diff options
-rwxr-xr-x | configure | 18 | ||||
-rw-r--r-- | configure.ac | 2 | ||||
-rw-r--r-- | configure.ac.pamphlet | 2 | ||||
-rw-r--r-- | src/ChangeLog | 13 | ||||
-rw-r--r-- | src/algebra/Makefile.in | 11 | ||||
-rw-r--r-- | src/algebra/Makefile.pamphlet | 11 | ||||
-rw-r--r-- | src/algebra/array1.spad.pamphlet | 6 | ||||
-rw-r--r-- | src/algebra/data.spad.pamphlet | 117 | ||||
-rw-r--r-- | src/algebra/exposed.lsp.pamphlet | 7 | ||||
-rw-r--r-- | src/algebra/net.spad.pamphlet | 120 | ||||
-rw-r--r-- | src/boot/ast.boot | 2 | ||||
-rw-r--r-- | src/include/sockio.h | 6 | ||||
-rw-r--r-- | src/interp/define.boot | 8 | ||||
-rw-r--r-- | src/interp/sys-os.boot | 32 | ||||
-rw-r--r-- | src/interp/sys-utility.boot | 6 | ||||
-rw-r--r-- | src/interp/wi1.boot | 4 | ||||
-rw-r--r-- | src/interp/wi2.boot | 4 | ||||
-rw-r--r-- | src/lib/cfuns-c.c | 2 | ||||
-rw-r--r-- | src/lib/sockio-c.c | 60 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 3558 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 5193 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1362 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 10339 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 33911 |
24 files changed, 27560 insertions, 27234 deletions
@@ -1,6 +1,6 @@ #! /bin/sh # Guess values for system-dependent variables and create Makefiles. -# Generated by GNU Autoconf 2.60 for OpenAxiom 1.3.0-2008-10-21. +# Generated by GNU Autoconf 2.60 for OpenAxiom 1.3.0-2008-10-24. # # Report bugs to <open-axiom-bugs@lists.sf.net>. # @@ -713,8 +713,8 @@ SHELL=${CONFIG_SHELL-/bin/sh} # Identity of this package. PACKAGE_NAME='OpenAxiom' PACKAGE_TARNAME='openaxiom' -PACKAGE_VERSION='1.3.0-2008-10-21' -PACKAGE_STRING='OpenAxiom 1.3.0-2008-10-21' +PACKAGE_VERSION='1.3.0-2008-10-24' +PACKAGE_STRING='OpenAxiom 1.3.0-2008-10-24' PACKAGE_BUGREPORT='open-axiom-bugs@lists.sf.net' ac_unique_file="src/Makefile.pamphlet" @@ -1404,7 +1404,7 @@ if test "$ac_init_help" = "long"; then # Omit some internal or obsolete options to make the list less imposing. # This message is too long to be a string in the A/UX 3.1 sh. cat <<_ACEOF -\`configure' configures OpenAxiom 1.3.0-2008-10-21 to adapt to many kinds of systems. +\`configure' configures OpenAxiom 1.3.0-2008-10-24 to adapt to many kinds of systems. Usage: $0 [OPTION]... [VAR=VALUE]... @@ -1474,7 +1474,7 @@ fi if test -n "$ac_init_help"; then case $ac_init_help in - short | recursive ) echo "Configuration of OpenAxiom 1.3.0-2008-10-21:";; + short | recursive ) echo "Configuration of OpenAxiom 1.3.0-2008-10-24:";; esac cat <<\_ACEOF @@ -1578,7 +1578,7 @@ fi test -n "$ac_init_help" && exit $ac_status if $ac_init_version; then cat <<\_ACEOF -OpenAxiom configure 1.3.0-2008-10-21 +OpenAxiom configure 1.3.0-2008-10-24 generated by GNU Autoconf 2.60 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, @@ -1592,7 +1592,7 @@ cat >config.log <<_ACEOF This file contains any messages produced by compilers while running configure, to aid debugging if configure makes a mistake. -It was created by OpenAxiom $as_me 1.3.0-2008-10-21, which was +It was created by OpenAxiom $as_me 1.3.0-2008-10-24, which was generated by GNU Autoconf 2.60. Invocation command line was $ $0 $@ @@ -26097,7 +26097,7 @@ exec 6>&1 # report actual input values of CONFIG_FILES etc. instead of their # values after options handling. ac_log=" -This file was extended by OpenAxiom $as_me 1.3.0-2008-10-21, which was +This file was extended by OpenAxiom $as_me 1.3.0-2008-10-24, which was generated by GNU Autoconf 2.60. Invocation command line was CONFIG_FILES = $CONFIG_FILES @@ -26146,7 +26146,7 @@ Report bugs to <bug-autoconf@gnu.org>." _ACEOF cat >>$CONFIG_STATUS <<_ACEOF ac_cs_version="\\ -OpenAxiom config.status 1.3.0-2008-10-21 +OpenAxiom config.status 1.3.0-2008-10-24 configured by $0, generated by GNU Autoconf 2.60, with options \\"`echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\" diff --git a/configure.ac b/configure.ac index 7bcdd02c..c1a34f97 100644 --- a/configure.ac +++ b/configure.ac @@ -1,6 +1,6 @@ sinclude(config/open-axiom.m4) sinclude(config/aclocal.m4) -AC_INIT([OpenAxiom], [1.3.0-2008-10-21], +AC_INIT([OpenAxiom], [1.3.0-2008-10-24], [open-axiom-bugs@lists.sf.net]) AC_CONFIG_AUX_DIR(config) diff --git a/configure.ac.pamphlet b/configure.ac.pamphlet index cea0e714..6ebb61d8 100644 --- a/configure.ac.pamphlet +++ b/configure.ac.pamphlet @@ -1126,7 +1126,7 @@ information: <<Autoconf init>>= sinclude(config/open-axiom.m4) sinclude(config/aclocal.m4) -AC_INIT([OpenAxiom], [1.3.0-2008-10-21], +AC_INIT([OpenAxiom], [1.3.0-2008-10-24], [open-axiom-bugs@lists.sf.net]) @ diff --git a/src/ChangeLog b/src/ChangeLog index 54405e7a..7c3a506a 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,3 +1,16 @@ +2008-10-24 Gabriel Dos Reis <gdr@cs.tamu.edu> + + Add basic support for stream client socket. + * lib/sockio-c.c (oa_inet_pton): Define. + (oa_get_host_address): Likewise. + * algebra/net.spad.pamphlet (IP4Address): New. + (NetworkClientSocket): Likewise. + (InetClientStreamSocket): Likewise. + * algebra/data.spad.pamphlet (DataArray): Rename from DataBuffer. + (ByteBuffer): Rename from ByteArray. Reimplement. + * algebra/exposed.lsp.pamphlet: Expose IP4Address, + InetClientStreamSocket, NetworkClientSocket. + 2008-10-22 Gabriel Dos Reis <gdr@cs.tamu.edu> * algebra/exposed.lsp.pamphlet: Unexpose BinaryFile. diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index 2bf2dc80..130b228f 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -376,7 +376,7 @@ axiom_algebra_layer_1 = \ PATAB PPCURVE PSCURVE REAL RESLATC RETRACT \ RETRACT- SEGCAT BINDING BMODULE LOGIC \ LOGIC- EVALAB EVALAB- FEVALAB FEVALAB- BYTE \ - OSGROUP MAYBE DATABUF PROPLOG + OSGROUP MAYBE DATAARY PROPLOG axiom_algebra_layer_1_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_1)) @@ -550,7 +550,7 @@ axiom_algebra_layer_11_objects = \ axiom_algebra_layer_12 = \ DIOPS DIOPS- DIAGG DIAGG- BITS DIRPROD2 IMATRIX \ IVECTOR LPOLY LSMP LSMP1 MATCAT2 PTCAT TRIMAT \ - FSAGG FSAGG- SYSTEM BYTEARY HOSTNAME PORTNUM + FSAGG FSAGG- SYSTEM HOSTNAME PORTNUM axiom_algebra_layer_12_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_12)) @@ -652,7 +652,7 @@ axiom_algebra_layer_15 = \ FRAMALG FRAMALG- MDAGG ODPOL \ PLOT RMCAT2 ROIRC SDPOL \ SMATCAT SMATCAT- TUBETOOL UPXSCCA \ - UPXSCCA- JAVACODE POLY + UPXSCCA- JAVACODE POLY BYTEBUF axiom_algebra_layer_15_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_15)) @@ -827,7 +827,7 @@ axiom_algebra_layer_user = \ CASEAST HASAST ISAST CATAST WHEREAST COMMAAST \ QQUTAST DEFAST MACROAST SPADXPT SPADAST \ INBFILE OUTBFILE IOBFILE RGBCMDL RGBCSPC CTORKIND \ - CTOR + CTOR IP4ADDR NETCLT INETCLTS axiom_algebra_layer_user_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_user)) @@ -893,6 +893,9 @@ IOBFILE.NRLIB/code.$(FASLEXT): $(OUT)/INBFILE.$(FASLEXT) \ CTOR.NRLIB/code.$(FASLEXT): $(OUT)/CTORKIND.$(FASLEXT) \ $(OUT)/IDENT.$(FASLEXT) +NETCLT.NRLIB/code.$(FASLEXT): $(OUT)/IOBCON.$(FASLEXT) +INETCLTS.NRLIB/code.$(FASLEXT): $(OUT)/NETCLT.$(FASLEXT) + .PHONY: all all-algebra mkdir-output-directory all: all-ax diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet index 16cb9d93..1a960216 100644 --- a/src/algebra/Makefile.pamphlet +++ b/src/algebra/Makefile.pamphlet @@ -219,7 +219,7 @@ axiom_algebra_layer_1 = \ PATAB PPCURVE PSCURVE REAL RESLATC RETRACT \ RETRACT- SEGCAT BINDING BMODULE LOGIC \ LOGIC- EVALAB EVALAB- FEVALAB FEVALAB- BYTE \ - OSGROUP MAYBE DATABUF PROPLOG + OSGROUP MAYBE DATAARY PROPLOG axiom_algebra_layer_1_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_1)) @@ -545,7 +545,7 @@ axiom_algebra_layer_11_objects = \ axiom_algebra_layer_12 = \ DIOPS DIOPS- DIAGG DIAGG- BITS DIRPROD2 IMATRIX \ IVECTOR LPOLY LSMP LSMP1 MATCAT2 PTCAT TRIMAT \ - FSAGG FSAGG- SYSTEM BYTEARY HOSTNAME PORTNUM + FSAGG FSAGG- SYSTEM HOSTNAME PORTNUM axiom_algebra_layer_12_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_12)) @@ -788,7 +788,7 @@ axiom_algebra_layer_15 = \ FRAMALG FRAMALG- MDAGG ODPOL \ PLOT RMCAT2 ROIRC SDPOL \ SMATCAT SMATCAT- TUBETOOL UPXSCCA \ - UPXSCCA- JAVACODE POLY + UPXSCCA- JAVACODE POLY BYTEBUF axiom_algebra_layer_15_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_15)) @@ -1254,7 +1254,7 @@ axiom_algebra_layer_user = \ CASEAST HASAST ISAST CATAST WHEREAST COMMAAST \ QQUTAST DEFAST MACROAST SPADXPT SPADAST \ INBFILE OUTBFILE IOBFILE RGBCMDL RGBCSPC CTORKIND \ - CTOR + CTOR IP4ADDR NETCLT INETCLTS axiom_algebra_layer_user_nrlibs = \ $(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_user)) @@ -1319,6 +1319,9 @@ IOBFILE.NRLIB/code.$(FASLEXT): $(OUT)/INBFILE.$(FASLEXT) \ CTOR.NRLIB/code.$(FASLEXT): $(OUT)/CTORKIND.$(FASLEXT) \ $(OUT)/IDENT.$(FASLEXT) + +NETCLT.NRLIB/code.$(FASLEXT): $(OUT)/IOBCON.$(FASLEXT) +INETCLTS.NRLIB/code.$(FASLEXT): $(OUT)/NETCLT.$(FASLEXT) @ \section{Broken Files} diff --git a/src/algebra/array1.spad.pamphlet b/src/algebra/array1.spad.pamphlet index 74039ad1..2d1d3a27 100644 --- a/src/algebra/array1.spad.pamphlet +++ b/src/algebra/array1.spad.pamphlet @@ -368,10 +368,8 @@ IndexedOneDimensionalArray(S:Type, mn:Integer): OneDimensionalArrayAggregate S == add Qmax ==> QVMAXINDEX$Lisp Qsize ==> QVSIZE$Lisp --- Qelt ==> QVELT$Lisp --- Qsetelt ==> QSETVELT$Lisp - Qelt ==> ELT$Lisp - Qsetelt ==> SETELT$Lisp + Qelt ==> QVELT$Lisp + Qsetelt ==> QSETVELT$Lisp -- Qelt1 ==> QVELT_-1$Lisp -- Qsetelt1 ==> QSETVELT_-1$Lisp Qnew ==> GETREFV$Lisp diff --git a/src/algebra/data.spad.pamphlet b/src/algebra/data.spad.pamphlet index 9a62ec4a..10fb2431 100644 --- a/src/algebra/data.spad.pamphlet +++ b/src/algebra/data.spad.pamphlet @@ -66,54 +66,137 @@ Byte(): Public == Private where @ -\section{The ByteArray domain} +\section{The ByteBuffer domain} -<<domain BYTEARY ByteArray>>= -import PrimitiveArray +<<domain BYTEBUF ByteBuffer>>= import Byte -)abbrev domain BYTEARY ByteArray +)abbrev domain BYTEBUF ByteBuffer ++ Author: Gabriel Dos Reis ++ Date Created: April 19, 2008 ++ Related Constructor: ++ Description: -++ ByteArray provides datatype for fix-sized buffer of bytes. -ByteArray() == PrimitiveArray Byte +++ ByteBuffer provides datatype for buffers of bytes. This domain +++ differs from PrimitiveArray Byte in that it has it is not as rigid +++ as PrimitiveArray Byte is. That is, the typical use of +++ ByteBuffer is to pre-allocate a vector of Byte of some capacity +++ `c'. The array can then store up to `c' bytes. The actual +++ interesting bytes count (the length of the buffer) is therefore +++ different from the capacity. The length is no more than the +++ capacity, but it can be set dynamically as needed. This +++ functionality is used for example when reading bytes from +++ input/output devices where we use buffers to transfer data in and +++ out of the system. +++ Note: a value of type ByteBuffer is 0-based indexed, as opposed +++ Vector, but not unlike PrimitiveArray Byte. +ByteBuffer(): Public == Private where + Public == Join(OneDimensionalArrayAggregate Byte, CoercibleTo String) with + byteBuffer: NonNegativeInteger -> % + ++ byteBuffer(n) creates a buffer of capacity n, and length 0. + _#: % -> NonNegativeInteger + ++ #buf returns the number of active elements in the buffer. + capacity: % -> NonNegativeInteger + ++ capacity(buf) returns the pre-allocated maximum size of `buf'. + setLength!: (%,NonNegativeInteger) -> NonNegativeInteger + ++ setLength!(buf,n) sets the number of active bytes in the + ++ `buf'. Error if `n' is more than the capacity. + Private == add + byteBuffer n == + buf := makeByteBuffer(n)$Lisp + setLength!(buf,0) + buf + + empty() == byteBuffer 0 + + new(n,b) == makeByteBuffer(n,b)$Lisp + + qelt(buf,i) == + AREF(buf,i)$Lisp + + elt(buf: %,i: Integer) == + i >= capacity buf => error "index out of range" + qelt(buf,i) + + qsetelt!(buf,i,b) == + SETF(AREF(buf,i)$Lisp,b)$Lisp + + setelt(buf: %,i: Integer, b: Byte) == + i >= capacity buf => error "index out of range" + qsetelt!(buf,i,b) + + capacity buf == ARRAY_-DIMENSION(buf,0)$Lisp + + minIndex buf == 0 + + maxIndex buf == capacity(buf)::Integer - 1 + + # buf == LENGTH(buf)$Lisp + + x = y == + EQUAL(x,y)$Lisp + + setLength!(buf,n) == + n > capacity buf => + error "attempt to set length higher than capacity" + SETF(FILL_-POINTER(buf)$Lisp,n)$Lisp + + coerce(buf: %): String == + s: String := MAKE_-STRING(#buf)$Lisp + for i in 0..(#buf - 1) repeat + qsetelt!(s,i + 1,qelt(buf,i)::Character)$String + s + + construct l == + buf := byteBuffer(#l) + for b in l for i in 0.. repeat + buf.i := b + buf + + concat(x: %, y:%) == + nx := #x + ny := #y + buf := byteBuffer(nx + ny) + for i in 0..(nx - 1) repeat + buf.i := x.i + for i in 0..(ny - 1) repeat + buf.(nx + i) := y.i + buf + @ -\section{The DataBuffer domain} +\section{The DataArray domain} -<<domain DATABUF DataBuffer>>= -)abbrev domain DATABUF DataBuffer +<<domain DATAARY DataArray>>= +)abbrev domain DATAARY DataArray ++ Author: Gabriel Dos Reis ++ Date Created: August 23, 2008 ++ Description: ++ This domain provides for a fixed-sized homogeneous data buffer. -DataBuffer(N: PositiveInteger, T: SetCategory): Public == Private where +DataArray(N: PositiveInteger, T: SetCategory): Public == Private where Public == SetCategory with new: () -> % ++ new() returns a fresly allocated data buffer or length N. - elt: (%,NonNegativeInteger) -> T + qelt: (%,NonNegativeInteger) -> T ++ elt(b,i) returns the ith element in buffer `b'. Indexing ++ is 0-based. - setelt: (%,NonNegativeInteger,T) -> T + qsetelt: (%,NonNegativeInteger,T) -> T ++ setelt(b,i,x) sets the ith entry of data buffer `b' to `x'. ++ Indexing is 0-based. Private == add new() == makeSimpleArray(getVMType(T)$Lisp,N)$Lisp - elt(b,i) == + qelt(b,i) == getSimpleArrayEntry(b,i)$Lisp - setelt(b,i,x) == + qsetelt(b,i,x) == setSimpleArrayEntry(b,i,x)$Lisp x = y == EQUAL(x,y)$Lisp coerce(b: %): OutputForm == - bracket([elt(b,i)::OutputForm for i in 0..(N-1)]) + bracket([qelt(b,i)::OutputForm for i in 0..(N-1)]) @ @@ -155,7 +238,9 @@ DataBuffer(N: PositiveInteger, T: SetCategory): Public == Private where <<*>>= <<license>> <<domain BYTE Byte>> -<<domain BYTEARY ByteArray>> +<<domain BYTEBUF ByteBuffer>> +<<domain DATAARY DataArray>> + @ \end{document} diff --git a/src/algebra/exposed.lsp.pamphlet b/src/algebra/exposed.lsp.pamphlet index 615657c9..4b434a9d 100644 --- a/src/algebra/exposed.lsp.pamphlet +++ b/src/algebra/exposed.lsp.pamphlet @@ -76,7 +76,7 @@ (|Bits| . BITS) (|Boolean| . BOOLEAN) (|Byte| . BYTE) - (|ByteArray| . BYTEARY) + (|ByteBuffer| . BYTEBUF) (|CallAst| . CALLAST) (|CapsuleAst| . CAPSLAST) (|CardinalNumber| . CARD) @@ -108,7 +108,7 @@ (|CRApackage| . CRAPACK) (|CycleIndicators| . CYCLES) (|Database| . DBASE) - (|DataBuffer| . DATABUF) + (|DataArray| . DATABUF) (|DataList| . DLIST) (|DecimalExpansion| . DECIMAL) (|DefinitionAst| . DEFAST) @@ -216,6 +216,7 @@ (|InventorViewPort| . IVVIEW) (|InventorRenderPackage| . IVREND) (|InverseLaplaceTransform| . INVLAPLA) + (|IP4Address| . IP4ADDR) (|IrrRepSymNatPackage| . IRSN) (|IsAst| . ISAST) (|JavaBytecode| . JAVACODE) @@ -261,6 +262,7 @@ (|MultivariateFactorize| . MULTFACT) (|MultivariatePolynomial| . MPOLY) (|MultFiniteFactorize| . MFINFACT) + (|InetClientStreamSocket| . INETCLTS) (|NoneFunctions1| . NONE1) (|NonNegativeInteger| . NNI) (|NormalizationPackage| . NORMPK) @@ -689,6 +691,7 @@ (|MultiDictionary| . MDAGG) (|MultisetAggregate| . MSETAGG) (|MultivariateTaylorSeriesCategory| . MTSCAT) + (|NetworkClientSocket| . NETCLT) (|NonAssociativeAlgebra| . NAALG) (|NonAssociativeRing| . NASRING) (|NonAssociativeRng| . NARNG) diff --git a/src/algebra/net.spad.pamphlet b/src/algebra/net.spad.pamphlet index ba8bfdc7..a216a5fb 100644 --- a/src/algebra/net.spad.pamphlet +++ b/src/algebra/net.spad.pamphlet @@ -44,16 +44,16 @@ InputByteConduit(): Category == Conduit with ++ Note: Ideally, the return value should have been of type ++ Maybe Byte; but that would have implied allocating ++ a cons cell for every read attempt, which is overkill. - readBytes!: (%,ByteArray) -> SingleInteger + readBytes!: (%,ByteBuffer) -> SingleInteger ++ readBytes!(c,b) reads byte sequences from conduit `c' into ++ the byte buffer `b'. The actual number of bytes written ++ is returned. add - readBytes!(cond,ary) == + readBytes!(cond,buf) == count: SingleInteger := 0 b : SingleInteger - while count < #ary and ((b := readByteIfCan! cond) >= 0) repeat - qsetelt!(ary,count,b : Byte) + while count < capacity buf and ((b := readByteIfCan! cond) >= 0) repeat + qsetelt!(buf,count,b : Byte) count := count + 1 count @@ -76,15 +76,15 @@ OutputByteConduit(): Category == Conduit with ++ Note: Ideally, the return value should have been of type ++ Maybe Byte; but that would have implied allocating ++ a cons cell for every write attempt, which is overkill. - writeBytes!: (%,ByteArray) -> SingleInteger + writeBytes!: (%,ByteBuffer) -> SingleInteger ++ writeBytes!(c,b) write bytes from buffer `b' ++ onto the conduit `c'. The actual number of written ++ bytes is returned. add - writeBytes!(cond,ary) == + writeBytes!(cond,buf) == count: SingleInteger := 0 - while count < #ary and - writeByteIfCan!(cond,qelt(ary,count)) >= 0 repeat + while count < capacity buf and + writeByteIfCan!(cond,qelt(buf,count)) >= 0 repeat count := count + 1 count @@ -284,6 +284,106 @@ PortNumber(): Public == Private where @ +\section{The IP4Address domain} + +<<domain IP4ADDR IP4Address>>= +)abbrev domain IP4ADDR IP4Address +++ Author: Gabriel Dos Reis +++ Date Created: October 22, 2008 +++ Date Last Modified: October 22, 2008 +++ Description: +++ This domain provides representation for ARPA Internet IP4 addresses. +IP4Address(): Public == Private where + Public == SetCategory with + ip4Address: String -> % + ++ ip4Address(a) builds a numeric address out of the ASCII form `a'. + bytes: % -> DataArray(4,Byte) + ++ bytes(x) returns the bytes of the numeric address `x'. + resolve: Hostname -> Union(%,"failed") + ++ resolve(h) returns the IP4 address of host `h'. + Private == add + Rep == DataArray(4,Byte) + ip4Address a == + n := new()$Rep + presentationToNumeric(a,4,n)$Lisp = 0@SingleInteger => per n + userError "invalid Internet IP4 address" + resolve h == + n := new()$Rep + hostnameToNumeric(h::String,4,n)$Lisp = 0@SingleInteger => per n + "failed" + bytes x == rep x + x = y == rep x = rep y + coerce(x: %): OutputForm == + infix('_.::OutputForm, + [qelt(rep x,i)::OutputForm for i in 0..3])$OutputForm +@ + + +\section{The NetworkClientSocket category} + +<<category NETCLT NetworkClientSocket>>= +)abbrev category NETCLT NetworkClientSocket +NetworkClientSocket(T: SetCategory): Category == InputOutputByteConduit with + connectTo: (T, PortNumber) -> Union(%,"failed") + isConnected?: % -> Boolean +@ + + +\section{The InetClientStreamSocket domain} + +<<domain INETCLTS InetClientStreamSocket>>= +)abbrev domain INETCLTS InetClientStreamSocket +InetClientStreamSocket(): Public == Private where + Public == Join(NetworkClientSocket IP4Address, CoercibleTo OutputForm) with + connectTo: (Hostname, PortNumber) -> Union(%,"failed") + Private == add + -- we hope that a small integer is OK on all platform + Host == Union(IP4Address,Hostname) + Rep == Record(%host: Host, %port: PortNumber, %sock: SingleInteger) + + connectTo(ip: IP4Address, p: PortNumber) == + s: SingleInteger := connectToHostAndPort(ip,4,p)$Lisp + s = -1::SingleInteger => "failed" + per [ip::Host,p,s] + + connectTo(h: Hostname, p: PortNumber) == + (ip := resolve(h)$IP4Address) case "failed" => "failed" + s: SingleInteger := connectToHostAndPort(ip::IP4Address,4,p)$Lisp + s = -1::SingleInteger => "failed" + per [h::Host,p,s] + + isConnected? s == + rep(s).%sock ~= -1::SingleInteger + + readBytes!(x,b) == + n: SingleInteger := + readFromStreamSocket(rep(x).%sock,b, capacity b)$Lisp + if n <= 0 then close! x + else setLength!(b,n : NonNegativeInteger) + n + + writeBytes!(x,b) == + n: SingleInteger := + writeToStreamSocket(rep(x).%sock,b, capacity b)$Lisp + if n <= 0 then close! x + else setLength!(b,n : NonNegativeInteger) + n + + close! x == + closeSocket(rep(x).%sock)$Lisp + rep(x).%sock := -1::SingleInteger + x + + coerce(x: %): OutputForm == + x' := rep x + h := + x'.%host case IP4Address => x'.%host::IP4Address::OutputForm + x'.%host::Hostname::OutputForm + infix('_:::OutputForm,h,x'.%port::OutputForm)$OutputForm + +@ + + \section{License} @@ -328,6 +428,7 @@ PortNumber(): Public == Private where <<category INBCON InputByteConduit>> <<category OUTBCON OutputByteConduit>> <<category IOBCON InputOutputByteConduit>> +<<category NETCLT NetworkClientSocket>> <<domain INBFILE InputBinaryFile>> <<domain OUTBFILE OutputBinaryFile>> @@ -335,6 +436,9 @@ PortNumber(): Public == Private where <<domain HOSTNAME Hostname>> <<domain PORTNUM PortNumber>> +<<domain IP4ADDR IP4Address>> + +<<domain INETCLTS InetClientStreamSocket>> @ diff --git a/src/boot/ast.boot b/src/boot/ast.boot index a8018467..d461bcd3 100644 --- a/src/boot/ast.boot +++ b/src/boot/ast.boot @@ -1393,7 +1393,7 @@ genGCLnativeTranslation(op,s,t,op') == '"object" gclArgInC(x,a) == x in $NativeSimpleDataTypes => a - x = "string" => strconc(a,'"->st.st__self") + x = "string" => a -- GCL takes responsability for the conversion [.,[.,y]] := x y = "char" => strconc(a,'"->st.st__self") y = "byte" => strconc(a,'"->ust.ust__self") diff --git a/src/include/sockio.h b/src/include/sockio.h index 88e8caaa..7188f560 100644 --- a/src/include/sockio.h +++ b/src/include/sockio.h @@ -86,10 +86,12 @@ typedef struct openaxiom_sio { OPENAXIOM_EXPORT openaxiom_filedesc - oa_open_local_client_stream_socket(const char*); + oa_open_local_client_stream_socket(const char*); +OPENAXIOM_EXPORT int oa_inet_pton(const char*, int, openaxiom_byte*); +OPENAXIOM_EXPORT int oa_get_host_address(const char*, int, openaxiom_byte*); OPENAXIOM_EXPORT int oa_open_local_server_stream_socket(const char*); OPENAXIOM_EXPORT openaxiom_socket -oa_open_ip4_client_stream_socket(const char*, openaxiom_port); + oa_connect_ip_port_stream(const openaxiom_byte*, int, openaxiom_port); OPENAXIOM_EXPORT int oa_socket_write(openaxiom_socket, const openaxiom_byte*, int); OPENAXIOM_EXPORT int oa_socket_read(openaxiom_socket, diff --git a/src/interp/define.boot b/src/interp/define.boot index a0ab70db..aec9d7ef 100644 --- a/src/interp/define.boot +++ b/src/interp/define.boot @@ -410,11 +410,11 @@ compDefineCategory2(form,signature,specialCases,body,m,e, pairlis:= [[a,:v] for a in argl for v in $FormalMapVariableList] parSignature:= SUBLIS(pairlis,signature') parForm:= SUBLIS(pairlis,form) - rwriteLispForm('"compilerInfo", + lisplibWrite('"compilerInfo", removeZeroOne ['SETQ,'$CategoryFrame, ['put,['QUOTE,op'],' (QUOTE isCategory),true,['addModemap,MKQ op',MKQ parForm, - MKQ parSignature,true,MKQ fun,'$CategoryFrame]]]) + MKQ parSignature,true,MKQ fun,'$CategoryFrame]]],$libFile) --Equivalent to the following two lines, we hope if null sargl then evalAndRwriteLispForm('NILADIC, @@ -643,14 +643,14 @@ compDefineFunctor1(df is ['DEF,form,signature,$functorSpecialCases,body], $lisplibSlot1 := $NRTslot1Info --NIL or set by $NRTmakeSlot1 $lisplibOperationAlist:= operationAlist $lisplibMissingFunctions:= $CheckVectorList - rwriteLispForm('"compilerInfo", + lisplibWrite('"compilerInfo", removeZeroOne ['SETQ,'$CategoryFrame, ['put,['QUOTE,op'],' (QUOTE isFunctor), ['QUOTE,operationAlist],['addModemap,['QUOTE,op'],[' QUOTE,parForm],['QUOTE,parSignature],true,['QUOTE,op'], ['put,['QUOTE,op' ],'(QUOTE mode), - ['QUOTE,['Mapping,:parSignature]],'$CategoryFrame]]]]) + ['QUOTE,['Mapping,:parSignature]],'$CategoryFrame]]]],$libFile) if null argl then evalAndRwriteLispForm('NILADIC, ['MAKEPROP, ['QUOTE,op'], ['QUOTE,'NILADIC], true]) diff --git a/src/interp/sys-os.boot b/src/interp/sys-os.boot index 8478299e..bfa70eba 100644 --- a/src/interp/sys-os.boot +++ b/src/interp/sys-os.boot @@ -103,12 +103,34 @@ import oa__open__local__client__stream__socket: string -> int --% INET socket stream support -import oa__open__ip4__client__stream__socket: (string,int) -> int - for openIP4ClientStreamSocket - -import oa__socket__read: (int,string,int) -> int for readFromStreamSocket +++ Convert an IP address (4 or 6) to numeric form. The result of +++ the conversion is stored in the last argument. The return value +++ is interpreted as follows: +++ -1: failure +++ 0: success +++ Note that at the moment, only IP4 is supported. +import oa__inet__pton: (string, int, writeonly buffer byte) -> int + for presentationToNumeric + +++ Try to resolve a network hostname to its IP address. On success, +++ return 0, otherwise -1. The IP address is written into the +++ third argument. +import oa__get__host__address: (string, int, writeonly buffer byte) -> int + for hostnameToNumeric + +++ Try to establish a client TCP/IP socket connection. The IP numeric +++ address is specified by the first argument; second argument is the +++ version of IP used (4 or 6); third argument is the desired port. +++ Return -1 on failure, otherwise the file descriptor corresponding +++ to the obtained client socket. +import oa__connect__ip__port__stream: (readonly buffer byte,int,int) -> int + for connectToHostAndPort + +import oa__socket__read: (int,writeonly buffer byte,int) -> int + for readFromStreamSocket -import oa__socket__write: (int,string,int) -> int for writeToStreamSocket +import oa__socket__write: (int,readonly buffer byte,int) -> int + for writeToStreamSocket import oa__close__socket: int -> int for closeSocket diff --git a/src/interp/sys-utility.boot b/src/interp/sys-utility.boot index 3c820e9f..977859a3 100644 --- a/src/interp/sys-utility.boot +++ b/src/interp/sys-utility.boot @@ -265,3 +265,9 @@ writeByteToFile(ofile,b) == closeFile file == CLOSE file nil + + +--% +makeByteBuffer(n,b == 0) == + MAKE_-ARRAY(n,KEYWORD::ELEMENT_-TYPE,"%Byte", + KEYWORD::FILL_-POINTER,0, KEYWORD::INITIAL_-ELEMENT,b) diff --git a/src/interp/wi1.boot b/src/interp/wi1.boot index abc58773..0293178c 100644 --- a/src/interp/wi1.boot +++ b/src/interp/wi1.boot @@ -1228,11 +1228,11 @@ compDefineCategory2(form,signature,specialCases,body,m,e, pairlis:= [[a,:v] for a in argl for v in $FormalMapVariableList] parSignature:= SUBLIS(pairlis,signature') parForm:= SUBLIS(pairlis,form) ----- evalAndRwriteLispForm('"compilerInfo", +---- lisplibWrite('"compilerInfo", ---- ['SETQ,'$CategoryFrame, ---- ['put,['QUOTE,op'],' ---- (QUOTE isCategory),true,['addModemap,MKQ op',MKQ parForm, ----- MKQ parSignature,true,MKQ fun,'$CategoryFrame]]]) +---- MKQ parSignature,true,MKQ fun,'$CategoryFrame]]],$libFile) --Equivalent to the following two lines, we hope if null sargl then evalAndRwriteLispForm('NILADIC, diff --git a/src/interp/wi2.boot b/src/interp/wi2.boot index 77daa492..cb2d24c3 100644 --- a/src/interp/wi2.boot +++ b/src/interp/wi2.boot @@ -225,14 +225,14 @@ compDefineFunctor1(df, m,$e,$prefix,$formalArgList) == $lisplibSlot1 := $NRTslot1Info --NIL or set by $NRTmakeSlot1 $lisplibOperationAlist:= operationAlist $lisplibMissingFunctions:= $CheckVectorList - evalAndRwriteLispForm('"compilerInfo", + lisplibWrite('"compilerInfo", ['SETQ,'$CategoryFrame, ['put,['QUOTE,op'],' (QUOTE isFunctor), ['QUOTE,operationAlist],['addModemap,['QUOTE,op'],[' QUOTE,parForm],['QUOTE,parSignature],true,['QUOTE,op'], ['put,['QUOTE,op' ],'(QUOTE mode), - ['QUOTE,['Mapping,:parSignature]],'$CategoryFrame]]]]) + ['QUOTE,['Mapping,:parSignature]],'$CategoryFrame]]]],$libFile) if null argl then evalAndRwriteLispForm('NILADIC, ['MAKEPROP, ['QUOTE,op'], ['QUOTE,'NILADIC], true]) diff --git a/src/lib/cfuns-c.c b/src/lib/cfuns-c.c index 8c7f4496..88a24d47 100644 --- a/src/lib/cfuns-c.c +++ b/src/lib/cfuns-c.c @@ -116,7 +116,7 @@ OPENAXIOM_EXPORT char* oa_dirname(const char* path) { const int n = strlen(path); - char* mark = path + n; + const char* mark = path + n; if (n == 0) return strdup("."); diff --git a/src/lib/sockio-c.c b/src/lib/sockio-c.c index 8705b08e..bec55d9a 100644 --- a/src/lib/sockio-c.c +++ b/src/lib/sockio-c.c @@ -47,6 +47,8 @@ #include <sys/time.h> #include <string.h> #include <signal.h> +#include <arpa/inet.h> +#include <netdb.h> #include "cfuns.h" #include "sockio.h" @@ -133,6 +135,44 @@ openaxiom_load_socket_module(void) } +/* Convert an IP address from presentation (string or ascii form) + to numeric form. The result is stored in the last argument. + Success is indicated by a return value 0; failure is -1. */ +OPENAXIOM_EXPORT int +oa_inet_pton(const char* addr, int prot, openaxiom_byte* bytes) +{ + switch (prot) { + case 4: { + struct in_addr inet_val; + if (inet_aton(addr, &inet_val) != 0) { + memcpy(bytes, &inet_val, 4); + return 0; + } + return -1; + } + + default: + return -1; + } +} + +/* Resolve a hostname to its IP address. On success return 0, + otherwise -1. */ +OPENAXIOM_EXPORT int +oa_get_host_address(const char* n, int prot, openaxiom_byte* bytes) +{ + struct hostent* h = gethostbyname(n); + if (h == 0) + return -1; + + if (h->h_length != prot) + /* Protocol mismatch. */ + return -1; + memcpy(bytes, h->h_addr_list[0], prot); + return 0; +} + + /* Get a socket identifier to a local server. We take whatever protocol is the default for the address family in the SOCK_STREAM type. */ static inline openaxiom_socket @@ -296,22 +336,22 @@ oa_filedesc_close(openaxiom_filedesc desc) */ OPENAXIOM_EXPORT openaxiom_socket -oa_open_ip4_client_stream_socket(const char* addr, openaxiom_port port) +oa_connect_ip_port_stream(const openaxiom_byte* addr, int prot, + openaxiom_port port) { struct sockaddr_in server; - openaxiom_socket sock = openaxiom_socket_stream_link(AF_INET); + openaxiom_socket sock; + /* IP6 is not yet supported. */ + if (prot != 4) + return OPENAXIOM_INVALID_SOCKET; + + sock = openaxiom_socket_stream_link(AF_INET); if (openaxiom_socket_is_invalid(sock)) return OPENAXIOM_INVALID_SOCKET; + memset(&server, 0, sizeof server); server.sin_family = AF_INET; -#ifdef __WIN32__ - if ((server.sin_addr.s_addr = inet_addr(addr)) == INADDR_NONE) { -#else - if (inet_pton(AF_INET, addr, &server.sin_addr) <= 0) { -#endif - oa_close_socket(sock); - return OPENAXIOM_INVALID_SOCKET; - } + memcpy(&server.sin_addr, addr, prot); server.sin_port = htons(port); if (connect(sock, (struct sockaddr*)&server, sizeof server) < 0) { oa_close_socket(sock); diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index cfbaa7fa..7c898d9e 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2269608 . 3432784494) +(2271415 . 3433818805) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4354 . T) (-4353 . T) (-3526 . T)) +((-4367 . T) (-4366 . T) (-2997 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}."))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4350 . T) (-4348 . T) (-4347 . T) ((-4355 "*") . T) (-4346 . T) (-4351 . T) (-4345 . T) (-3526 . T)) +((-4363 . T) (-4361 . T) (-4360 . T) ((-4368 "*") . T) (-4359 . T) (-4364 . T) (-4358 . T) (-2997 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,17 +56,17 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3281) +(-32 R -1935) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552))))) +((|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4353))) +((|HasAttribute| |#1| (QUOTE -4366))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) -((-3526 . T)) +((-2997 . T)) NIL (-35) ((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}."))) @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4353 . T) (-4354 . T) (-3526 . T)) +((-4366 . T) (-4367 . T) (-2997 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) -((-4347 . T) (-4348 . T) (-4350 . T)) +((-4360 . T) (-4361 . T) (-4363 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -3281 UP UPUP -1531) +(-40 -1935 UP UPUP -3484) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4346 |has| (-402 |#2|) (-358)) (-4351 |has| (-402 |#2|) (-358)) (-4345 |has| (-402 |#2|) (-358)) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| (-402 |#2|) (QUOTE (-143))) (|HasCategory| (-402 |#2|) (QUOTE (-145))) (|HasCategory| (-402 |#2|) (QUOTE (-344))) (-1523 (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-344)))) (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-363))) (-1523 (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (|HasCategory| (-402 |#2|) (QUOTE (-344)))) (-1523 (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-402 |#2|) (QUOTE (-344))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-1523 (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358))))) -(-41 R -3281) +((-4359 |has| (-401 |#2|) (-357)) (-4364 |has| (-401 |#2|) (-357)) (-4358 |has| (-401 |#2|) (-357)) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| (-401 |#2|) (QUOTE (-142))) (|HasCategory| (-401 |#2|) (QUOTE (-144))) (|HasCategory| (-401 |#2|) (QUOTE (-343))) (-1559 (|HasCategory| (-401 |#2|) (QUOTE (-357))) (|HasCategory| (-401 |#2|) (QUOTE (-343)))) (|HasCategory| (-401 |#2|) (QUOTE (-357))) (|HasCategory| (-401 |#2|) (QUOTE (-362))) (-1559 (-12 (|HasCategory| (-401 |#2|) (QUOTE (-228))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (|HasCategory| (-401 |#2|) (QUOTE (-343)))) (-1559 (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-401 |#2|) (QUOTE (-343))))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-362))) (-1559 (|HasCategory| (-401 |#2|) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (QUOTE (-228))) (|HasCategory| (-401 |#2|) (QUOTE (-357))))) +(-41 R -1935) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -425) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -424) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -103,34 +103,34 @@ NIL (-43 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,{}A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,{}a) = 0} and \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}x,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}b,{}x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,{}a,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,{}a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-302)))) +((|HasCategory| |#1| (QUOTE (-301)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4350 |has| |#1| (-544)) (-4348 . T) (-4347 . T)) -((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) +((-4363 |has| |#1| (-544)) (-4361 . T) (-4360 . T)) +((|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4353 . T) (-4354 . T)) -((-1523 (-12 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-827))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#2|))))))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-827))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-827))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1073)))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))) (-12 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839))))) +((-4366 . T) (-4367 . T)) +((-1559 (-12 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-830))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#2|))))))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-830))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-830))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1076)))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))) (-12 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358)))) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4347 . T) (-4348 . T) (-4350 . T)) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4360 . T) (-4361 . T) (-4363 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| $ (QUOTE (-1025))) (|HasCategory| $ (LIST (QUOTE -1014) (QUOTE (-552))))) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| $ (QUOTE (-1028))) (|HasCategory| $ (LIST (QUOTE -1017) (QUOTE (-552))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4350 . T)) +((-4363 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3281) +(-54 |Base| R -1935) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -154,7 +154,7 @@ NIL NIL (-56 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4353 . T) (-4354 . T) (-3526 . T)) +((-4366 . T) (-4367 . T) (-2997 . T)) NIL (-57 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) @@ -162,65 +162,65 @@ NIL NIL (-58 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4354 . T) (-4353 . T)) -((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) +((-4367 . T) (-4366 . T)) +((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (-59 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-60 -1288) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-60 -3112) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-61 -1288) +(-61 -3112) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-62 -1288) +(-62 -3112) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-63 -1288) +(-63 -3112) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-64 -1288) +(-64 -3112) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-65 -1288) +(-65 -3112) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-66 -1288) +(-66 -3112) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-67 -1288) +(-67 -3112) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -1288) +(-68 -3112) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-69 -1288) +(-69 -3112) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-70 -1288) +(-70 -3112) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-71 -1288) +(-71 -3112) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-72 -1288) +(-72 -3112) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-73 -1288) +(-73 -3112) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -232,66 +232,66 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-76 -1288) +(-76 -3112) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-77 -1288) +(-77 -3112) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -1288) +(-78 -3112) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-79 -1288) +(-79 -3112) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -1288) +(-80 -3112) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -1288) +(-81 -3112) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-82 -1288) +(-82 -3112) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -1288) +(-83 -3112) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -1288) +(-84 -3112) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -1288) +(-85 -3112) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -1288) +(-86 -3112) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -1288) +(-87 -3112) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-88 -1288) +(-88 -3112) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-89 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op,{} m)} returns \\spad{[w,{} eq,{} lw,{} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,{}...,{}A_n]} such that if \\spad{y = [y_1,{}...,{}y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',{}y_j'',{}...,{}y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op,{} m)} returns \\spad{[M,{}w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-358)))) +((|HasCategory| |#1| (QUOTE (-357)))) (-90 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (-91 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -314,15 +314,15 @@ NIL NIL (-96) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4353 . T)) +((-4366 . T)) NIL (-97) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4353 . T) ((-4355 "*") . T) (-4354 . T) (-4350 . T) (-4348 . T) (-4347 . T) (-4346 . T) (-4351 . T) (-4345 . T) (-4344 . T) (-4343 . T) (-4342 . T) (-4341 . T) (-4349 . T) (-4352 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4340 . T)) +((-4366 . T) ((-4368 "*") . T) (-4367 . T) (-4363 . T) (-4361 . T) (-4360 . T) (-4359 . T) (-4364 . T) (-4358 . T) (-4357 . T) (-4356 . T) (-4355 . T) (-4354 . T) (-4362 . T) (-4365 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4353 . T)) NIL (-98 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4350 . T)) +((-4363 . T)) NIL (-99 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}."))) @@ -338,15 +338,15 @@ NIL NIL (-102 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (-103 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4355 "*")))) +((|HasAttribute| |#1| (QUOTE (-4368 "*")))) (-104) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4353 . T)) +((-4366 . T)) NIL (-105 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -354,1684 +354,1684 @@ NIL NIL (-106 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4354 . T) (-3526 . T)) +((-4367 . T) (-2997 . T)) NIL (-107) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| (-552) (QUOTE (-885))) (|HasCategory| (-552) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-552) (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-145))) (|HasCategory| (-552) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-998))) (|HasCategory| (-552) (QUOTE (-800))) (-1523 (|HasCategory| (-552) (QUOTE (-800))) (|HasCategory| (-552) (QUOTE (-827)))) (|HasCategory| (-552) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-1124))) (|HasCategory| (-552) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| (-552) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| (-552) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| (-552) (QUOTE (-229))) (|HasCategory| (-552) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-552) (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -304) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -281) (QUOTE (-552)) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-302))) (|HasCategory| (-552) (QUOTE (-537))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| (-552) (LIST (QUOTE -621) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-885)))) (|HasCategory| (-552) (QUOTE (-143))))) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| (-552) (QUOTE (-888))) (|HasCategory| (-552) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| (-552) (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-144))) (|HasCategory| (-552) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-1001))) (|HasCategory| (-552) (QUOTE (-803))) (-1559 (|HasCategory| (-552) (QUOTE (-803))) (|HasCategory| (-552) (QUOTE (-830)))) (|HasCategory| (-552) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-1127))) (|HasCategory| (-552) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| (-552) (QUOTE (-228))) (|HasCategory| (-552) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-552) (LIST (QUOTE -506) (QUOTE (-1152)) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -303) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -280) (QUOTE (-552)) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-301))) (|HasCategory| (-552) (QUOTE (-537))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| (-552) (LIST (QUOTE -623) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-888)))) (|HasCategory| (-552) (QUOTE (-142))))) (-108) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-109) -((|constructor| (NIL "This domain provides an implementation of binary files. Data is accessed one byte at a time as a small integer.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "\\spad{position!(f,{} i)} sets the current byte-position to \\spad{i}.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{f}.")) (|readIfCan!| (((|Union| (|SingleInteger|) "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) -NIL -NIL -(-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4354 . T) (-4353 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1073))) (|HasCategory| (-112) (LIST (QUOTE -304) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-112) (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| (-112) (QUOTE (-1073))) (|HasCategory| (-112) (LIST (QUOTE -597) (QUOTE (-839))))) -(-111 R S) +((-4367 . T) (-4366 . T)) +((-12 (|HasCategory| (-111) (QUOTE (-1076))) (|HasCategory| (-111) (LIST (QUOTE -303) (QUOTE (-111))))) (|HasCategory| (-111) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-111) (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| (-111) (QUOTE (-1076))) (|HasCategory| (-111) (LIST (QUOTE -599) (QUOTE (-842))))) +(-110 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4348 . T) (-4347 . T)) +((-4361 . T) (-4360 . T)) NIL -(-112) +(-111) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-113 A) +(-112 A) ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) NIL -((|HasCategory| |#1| (QUOTE (-827)))) -(-114) +((|HasCategory| |#1| (QUOTE (-830)))) +(-113) ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) NIL NIL -(-115 -3281 UP) +(-114 -1935 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL -(-116 |p|) +(-115 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-117 |p|) +(-116 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| (-116 |#1|) (QUOTE (-885))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-116 |#1|) (QUOTE (-998))) (|HasCategory| (-116 |#1|) (QUOTE (-800))) (-1523 (|HasCategory| (-116 |#1|) (QUOTE (-800))) (|HasCategory| (-116 |#1|) (QUOTE (-827)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| (-116 |#1|) (QUOTE (-1124))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| (-116 |#1|) (QUOTE (-229))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -304) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -281) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-302))) (|HasCategory| (-116 |#1|) (QUOTE (-537))) (|HasCategory| (-116 |#1|) (QUOTE (-827))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-885)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))))) -(-118 A S) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| (-115 |#1|) (QUOTE (-888))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| (-115 |#1|) (QUOTE (-142))) (|HasCategory| (-115 |#1|) (QUOTE (-144))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-115 |#1|) (QUOTE (-1001))) (|HasCategory| (-115 |#1|) (QUOTE (-803))) (-1559 (|HasCategory| (-115 |#1|) (QUOTE (-803))) (|HasCategory| (-115 |#1|) (QUOTE (-830)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| (-115 |#1|) (QUOTE (-1127))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| (-115 |#1|) (QUOTE (-228))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -506) (QUOTE (-1152)) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -303) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -115) (|devaluate| |#1|)) (LIST (QUOTE -115) (|devaluate| |#1|)))) (|HasCategory| (-115 |#1|) (QUOTE (-301))) (|HasCategory| (-115 |#1|) (QUOTE (-537))) (|HasCategory| (-115 |#1|) (QUOTE (-830))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-115 |#1|) (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-115 |#1|) (QUOTE (-888)))) (|HasCategory| (-115 |#1|) (QUOTE (-142))))) +(-117 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4354))) -(-119 S) +((|HasAttribute| |#1| (QUOTE -4367))) +(-118 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) -((-3526 . T)) +((-2997 . T)) NIL -(-120 UP) +(-119 UP) ((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) NIL NIL -(-121 S) +(-120 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-122 S) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-121 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL -(-123) +(-122) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4354 . T) (-4353 . T) (-3526 . T)) +((-4367 . T) (-4366 . T) (-2997 . T)) NIL -(-124 A S) +(-123 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) NIL NIL -(-125 S) +(-124 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4353 . T) (-4354 . T) (-3526 . T)) +((-4366 . T) (-4367 . T) (-2997 . T)) NIL -(-126 S) +(-125 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-127 S) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-126 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-127) +((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it has it is not as rigid as PrimitiveArray Byte is. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`c'}. The array can then store up to \\spad{`c'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#buf} returns the number of active elements in the buffer.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) +((-4367 . T) (-4366 . T)) +((-1559 (-12 (|HasCategory| (-128) (QUOTE (-830))) (|HasCategory| (-128) (LIST (QUOTE -303) (QUOTE (-128))))) (-12 (|HasCategory| (-128) (QUOTE (-1076))) (|HasCategory| (-128) (LIST (QUOTE -303) (QUOTE (-128)))))) (-1559 (-12 (|HasCategory| (-128) (QUOTE (-1076))) (|HasCategory| (-128) (LIST (QUOTE -303) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-128) (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| (-128) (QUOTE (-830))) (|HasCategory| (-128) (QUOTE (-1076)))) (|HasCategory| (-128) (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| (-128) (QUOTE (-1076))) (-12 (|HasCategory| (-128) (QUOTE (-1076))) (|HasCategory| (-128) (LIST (QUOTE -303) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -599) (QUOTE (-842))))) (-128) -((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes."))) -((-4354 . T) (-4353 . T)) -((-1523 (-12 (|HasCategory| (-129) (QUOTE (-827))) (|HasCategory| (-129) (LIST (QUOTE -304) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1073))) (|HasCategory| (-129) (LIST (QUOTE -304) (QUOTE (-129)))))) (-1523 (-12 (|HasCategory| (-129) (QUOTE (-1073))) (|HasCategory| (-129) (LIST (QUOTE -304) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-129) (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| (-129) (QUOTE (-827))) (|HasCategory| (-129) (QUOTE (-1073)))) (|HasCategory| (-129) (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| (-129) (QUOTE (-1073))) (-12 (|HasCategory| (-129) (QUOTE (-1073))) (|HasCategory| (-129) (LIST (QUOTE -304) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -597) (QUOTE (-839))))) -(-129) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample()} returns a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} views \\spad{`c'} a a byte. In particular \\spad{`c'} is supposed to have a numerical value less than 256.") (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL NIL -(-130) +(-129) ((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) NIL NIL -(-131) +(-130) ((|constructor| (NIL "A cachable set is a set whose elements keep an integer as part of their structure.")) (|setPosition| (((|Void|) $ (|NonNegativeInteger|)) "\\spad{setPosition(x,{} n)} associates the integer \\spad{n} to \\spad{x}.")) (|position| (((|NonNegativeInteger|) $) "\\spad{position(x)} returns the integer \\spad{n} associated to \\spad{x}."))) NIL NIL -(-132) +(-131) ((|constructor| (NIL "This domain represents the capsule of a domain definition.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of top level expressions appearing in \\spad{`c'}."))) NIL NIL -(-133) +(-132) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) -(((-4355 "*") . T)) +(((-4368 "*") . T)) NIL -(-134 |minix| -2562 S T$) +(-133 |minix| -4030 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-135 |minix| -2562 R) +(-134 |minix| -4030 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL -(-136) +(-135) ((|constructor| (NIL "This domain represents a `case' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the case expression `e'."))) NIL NIL -(-137) +(-136) ((|constructor| (NIL "This domain represents the unnamed category defined \\indented{2}{by a list of exported signatures}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of exports in category syntax \\spad{`c'}.")) (|kind| (((|Symbol|) $) "\\spad{kind(c)} returns the kind of unnamed category,{} either 'domain' or 'package'."))) NIL NIL -(-138) +(-137) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: February 16,{} 2008. Date Last Updated: February 16,{} 2008. Basic Operations: coerce Related Constructors: Also See: Type"))) NIL NIL -(-139) +(-138) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4353 . T) (-4343 . T) (-4354 . T)) -((-1523 (-12 (|HasCategory| (-142) (QUOTE (-363))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1073))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-142) (QUOTE (-363))) (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-142) (QUOTE (-1073))) (-12 (|HasCategory| (-142) (QUOTE (-1073))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -597) (QUOTE (-839))))) -(-140 R Q A) +((-4366 . T) (-4356 . T) (-4367 . T)) +((-1559 (-12 (|HasCategory| (-141) (QUOTE (-362))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141))))) (-12 (|HasCategory| (-141) (QUOTE (-1076))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141)))))) (|HasCategory| (-141) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-141) (QUOTE (-362))) (|HasCategory| (-141) (QUOTE (-830))) (|HasCategory| (-141) (QUOTE (-1076))) (-12 (|HasCategory| (-141) (QUOTE (-1076))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141))))) (|HasCategory| (-141) (LIST (QUOTE -599) (QUOTE (-842))))) +(-139 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-141) +(-140) ((|constructor| (NIL "Category for the usual combinatorial functions.")) (|permutation| (($ $ $) "\\spad{permutation(n,{} m)} returns the number of permutations of \\spad{n} objects taken \\spad{m} at a time. Note: \\spad{permutation(n,{}m) = n!/(n-m)!}.")) (|factorial| (($ $) "\\spad{factorial(n)} computes the factorial of \\spad{n} (denoted in the literature by \\spad{n!}) Note: \\spad{n! = n (n-1)! when n > 0}; also,{} \\spad{0! = 1}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}r)} returns the \\spad{(n,{}r)} binomial coefficient (often denoted in the literature by \\spad{C(n,{}r)}). Note: \\spad{C(n,{}r) = n!/(r!(n-r)!)} where \\spad{n >= r >= 0}."))) NIL NIL -(-142) +(-141) ((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape()} provides the escape character,{} \\spad{_},{} which is used to allow quotes and other characters {\\em within} strings.")) (|quote| (($) "\\spad{quote()} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space()} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|NonNegativeInteger|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|NonNegativeInteger|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}."))) NIL NIL -(-143) +(-142) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4350 . T)) +((-4363 . T)) NIL -(-144 R) +(-143 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) NIL NIL -(-145) +(-144) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4350 . T)) +((-4363 . T)) NIL -(-146 -3281 UP UPUP) +(-145 -1935 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL -(-147 R CR) +(-146 R CR) ((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod \\spad{fj} (\\spad{j} \\spad{\\=} \\spad{i}) or equivalently g/prod \\spad{fj} = sum (ai/fi) or returns \"failed\" if no such list exists"))) NIL NIL -(-148 A S) +(-147 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasAttribute| |#1| (QUOTE -4353))) -(-149 S) +((|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasAttribute| |#1| (QUOTE -4366))) +(-148 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) -((-3526 . T)) +((-2997 . T)) NIL -(-150 |n| K Q) +(-149 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4348 . T) (-4347 . T) (-4350 . T)) +((-4361 . T) (-4360 . T) (-4363 . T)) NIL -(-151) +(-150) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) NIL NIL -(-152) +(-151) ((|constructor| (NIL "This domain represents list comprehension syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the expression being collected by the list comprehension `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of the iterators of the list comprehension `e'."))) NIL NIL -(-153 UP |Par|) +(-152 UP |Par|) ((|complexZeros| (((|List| (|Complex| |#2|)) |#1| |#2|) "\\spad{complexZeros(poly,{} eps)} finds the complex zeros of the univariate polynomial \\spad{poly} to precision eps with solutions returned as complex floats or rationals depending on the type of eps."))) NIL NIL -(-154) +(-153) ((|constructor| (NIL "This domain represents type specification \\indented{2}{for an identifier or expression.}")) (|rhs| (((|TypeAst|) $) "\\spad{rhs(e)} returns the right hand side of the colon expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the colon expression `e'."))) NIL NIL -(-155) +(-154) ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-156 R -3281) +(-155 R -1935) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL -(-157 I) +(-156 I) ((|stirling2| ((|#1| |#1| |#1|) "\\spad{stirling2(n,{}m)} returns the Stirling number of the second kind denoted \\spad{SS[n,{}m]}.")) (|stirling1| ((|#1| |#1| |#1|) "\\spad{stirling1(n,{}m)} returns the Stirling number of the first kind denoted \\spad{S[n,{}m]}.")) (|permutation| ((|#1| |#1| |#1|) "\\spad{permutation(n)} returns \\spad{!P(n,{}r) = n!/(n-r)!}. This is the number of permutations of \\spad{n} objects taken \\spad{r} at a time.")) (|partition| ((|#1| |#1|) "\\spad{partition(n)} returns the number of partitions of the integer \\spad{n}. This is the number of distinct ways that \\spad{n} can be written as a sum of positive integers.")) (|multinomial| ((|#1| |#1| (|List| |#1|)) "\\spad{multinomial(n,{}[m1,{}m2,{}...,{}mk])} returns the multinomial coefficient \\spad{n!/(m1! m2! ... mk!)}.")) (|factorial| ((|#1| |#1|) "\\spad{factorial(n)} returns \\spad{n!}. this is the product of all integers between 1 and \\spad{n} (inclusive). Note: \\spad{0!} is defined to be 1.")) (|binomial| ((|#1| |#1| |#1|) "\\spad{binomial(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r) = n!/(r! (n-r)!)},{} where \\spad{n >= r >= 0}. This is the number of combinations of \\spad{n} objects taken \\spad{r} at a time."))) NIL NIL -(-158) +(-157) ((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials."))) NIL NIL -(-159) +(-158) ((|constructor| (NIL "This domain represents the syntax of a comma-separated \\indented{2}{list of expressions.}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions making up `e'."))) NIL NIL -(-160) +(-159) ((|constructor| (NIL "A type for basic commutators")) (|mkcomm| (($ $ $) "\\spad{mkcomm(i,{}j)} \\undocumented{}") (($ (|Integer|)) "\\spad{mkcomm(i)} \\undocumented{}"))) NIL NIL -(-161) +(-160) ((|constructor| (NIL "This package exports the elementary operators,{} with some semantics already attached to them. The semantics that is attached here is not dependent on the set in which the operators will be applied.")) (|operator| (((|BasicOperator|) (|Symbol|)) "\\spad{operator(s)} returns an operator with name \\spad{s},{} with the appropriate semantics if \\spad{s} is known. If \\spad{s} is not known,{} the result has no semantics."))) NIL NIL -(-162 R UP UPUP) +(-161 R UP UPUP) ((|constructor| (NIL "A package for swapping the order of two variables in a tower of two UnivariatePolynomialCategory extensions.")) (|swap| ((|#3| |#3|) "\\spad{swap(p(x,{}y))} returns \\spad{p}(\\spad{y},{}\\spad{x})."))) NIL NIL -(-163 S R) -((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) +(-162 S R) +((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}."))) NIL -((|HasCategory| |#2| (QUOTE (-885))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-978))) (|HasCategory| |#2| (QUOTE (-1171))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-358))) (|HasAttribute| |#2| (QUOTE -4349)) (|HasAttribute| |#2| (QUOTE -4352)) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-827)))) -(-164 R) -((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4346 -1523 (|has| |#1| (-544)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4349 |has| |#1| (-6 -4349)) (-4352 |has| |#1| (-6 -4352)) (-3858 . T) (-3526 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#2| (QUOTE (-888))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (QUOTE (-1174))) (|HasCategory| |#2| (QUOTE (-1037))) (|HasCategory| |#2| (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-357))) (|HasAttribute| |#2| (QUOTE -4362)) (|HasAttribute| |#2| (QUOTE -4365)) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-830)))) +(-163 R) +((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}."))) +((-4359 -1559 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4362 |has| |#1| (-6 -4362)) (-4365 |has| |#1| (-6 -4365)) (-2997 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-165 RR PR) +(-164 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) NIL NIL -(-166 R S) +(-165 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL NIL -(-167 R) +(-166 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4346 -1523 (|has| |#1| (-544)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4349 |has| |#1| (-6 -4349)) (-4352 |has| |#1| (-6 -4352)) (-3858 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-344))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-229))) (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-808)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-827)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-998)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-885))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-885)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-885)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-885))))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1171)))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-808))) (|HasCategory| |#1| (QUOTE (-1034))) (-12 (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-1171)))) (|HasCategory| |#1| (QUOTE (-537))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-885))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-358)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-229))) (-12 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasAttribute| |#1| (QUOTE -4349)) (|HasAttribute| |#1| (QUOTE -4352)) (-12 (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-344))))) -(-168 R S CS) +((-4359 -1559 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4362 |has| |#1| (-6 -4362)) (-4365 |has| |#1| (-6 -4365)) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-343))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-362))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-228))) (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-343)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-1001)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-1174)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-888))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-888)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-888)))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-888))))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-981))) (|HasCategory| |#1| (QUOTE (-1174)))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-1037))) (-12 (|HasCategory| |#1| (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-1174)))) (|HasCategory| |#1| (QUOTE (-537))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-888))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-357)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-228))) (-12 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasAttribute| |#1| (QUOTE -4362)) (|HasAttribute| |#1| (QUOTE -4365)) (-12 (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152))))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-343))))) +(-167 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL NIL -(-169) +(-168) ((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} \\undocumented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,{}b)} \\undocumented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,{}b)} \\undocumented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} \\undocumented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented"))) NIL NIL -(-170) +(-169) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +(((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-171) +(-170) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) NIL NIL -(-172 R) +(-171 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4355 "*") . T) (-4346 . T) (-4351 . T) (-4345 . T) (-4347 . T) (-4348 . T) (-4350 . T)) +(((-4368 "*") . T) (-4359 . T) (-4364 . T) (-4358 . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-173) +(-172) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) NIL NIL -(-174 R) +(-173 R) ((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,{}b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,{}b)} is a function which will map the point \\spad{(lambda,{}mu,{}nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}."))) NIL NIL -(-175 R |PolR| E) +(-174 R |PolR| E) ((|constructor| (NIL "This package implements characteristicPolynomials for monogenic algebras using resultants")) (|characteristicPolynomial| ((|#2| |#3|) "\\spad{characteristicPolynomial(e)} returns the characteristic polynomial of \\spad{e} using resultants"))) NIL NIL -(-176 R S CS) +(-175 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-928 |#2|) (LIST (QUOTE -862) (|devaluate| |#1|)))) -(-177 R) +((|HasCategory| (-931 |#2|) (LIST (QUOTE -865) (|devaluate| |#1|)))) +(-176 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}"))) NIL NIL -(-178) +(-177) ((|constructor| (NIL "This domain represents `coerce' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-179 R UP) +(-178 R UP) ((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken\\spad{'s} idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user\\spad{'s} responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage\\spad{'s} variant of Graeffe\\spad{'s} method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,{}errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly,{} eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,{}eps,{}info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p,{} eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p,{} eps,{} info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,{}tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p,{} eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}."))) NIL NIL -(-180 S ST) +(-179 S ST) ((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,{}cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic"))) NIL NIL -(-181) +(-180) ((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor"))) NIL NIL -(-182) +(-181) ((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' designates package constructors.")) (|domain| (($) "`domain' designates domain constructors")) (|category| (($) "`category' designates category constructors"))) NIL NIL -(-183) +(-182) ((|constructor| (NIL "This domain provides implementations for constructors.")) (|arity| (((|SingleInteger|) $) "\\spad{arity(ctor)} returns the arity of the constructor `ctor'. \\indented{2}{A negative value means that the \\spad{ctor} takes a variable} \\indented{2}{length argument list,{} \\spadignore{e.g.} Mapping,{} Record,{} etc.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")) (|name| (((|Identifier|) $) "\\spad{name(ctor)} returns the name of the constructor `ctor'."))) NIL NIL -(-184 R -3281) +(-183 R -1935) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-185 R) +(-184 R) ((|constructor| (NIL "CoerceVectorMatrixPackage: an unexposed,{} technical package for data conversions")) (|coerce| (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Vector| (|Matrix| |#1|))) "\\spad{coerce(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Fraction Polynomial R}")) (|coerceP| (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|Vector| (|Matrix| |#1|))) "\\spad{coerceP(v)} coerces a vector \\spad{v} with entries in \\spadtype{Matrix R} as vector over \\spadtype{Matrix Polynomial R}"))) NIL NIL -(-186) +(-185) ((|constructor| (NIL "Enumeration by cycle indices.")) (|skewSFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{skewSFunction(li1,{}li2)} is the \\spad{S}-function \\indented{1}{of the partition difference \\spad{li1 - li2}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|SFunction| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|List| (|Integer|))) "\\spad{SFunction(\\spad{li})} is the \\spad{S}-function of the partition \\spad{\\spad{li}} \\indented{1}{expressed in terms of power sum symmetric functions.}")) (|wreath| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{wreath(s1,{}s2)} is the cycle index of the wreath product \\indented{1}{of the two groups whose cycle indices are \\spad{s1} and} \\indented{1}{\\spad{s2}.}")) (|eval| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval s} is the sum of the coefficients of a cycle index.")) (|cup| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cup(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices,{} in which the} \\indented{1}{power sums are retained to produce a cycle index.}")) (|cap| (((|Fraction| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|))) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{cap(s1,{}s2)},{} introduced by Redfield,{} \\indented{1}{is the scalar product of two cycle indices.}")) (|graphs| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{graphs n} is the cycle index of the group induced on \\indented{1}{the edges of a graph by applying the symmetric function to the} \\indented{1}{\\spad{n} nodes.}")) (|dihedral| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{dihedral n} is the cycle index of the \\indented{1}{dihedral group of degree \\spad{n}.}")) (|cyclic| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{cyclic n} is the cycle index of the \\indented{1}{cyclic group of degree \\spad{n}.}")) (|alternating| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{alternating n} is the cycle index of the \\indented{1}{alternating group of degree \\spad{n}.}")) (|elementary| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{elementary n} is the \\spad{n} th elementary symmetric \\indented{1}{function expressed in terms of power sums.}")) (|powerSum| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{powerSum n} is the \\spad{n} th power sum symmetric \\indented{1}{function.}")) (|complete| (((|SymmetricPolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{complete n} is the \\spad{n} th complete homogeneous \\indented{1}{symmetric function expressed in terms of power sums.} \\indented{1}{Alternatively it is the cycle index of the symmetric} \\indented{1}{group of degree \\spad{n}.}"))) NIL NIL -(-187) +(-186) ((|constructor| (NIL "This package \\undocumented{}")) (|cyclotomicFactorization| (((|Factored| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicFactorization(n)} \\undocumented{}")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} \\undocumented{}")) (|cyclotomicDecomposition| (((|List| (|SparseUnivariatePolynomial| (|Integer|))) (|Integer|)) "\\spad{cyclotomicDecomposition(n)} \\undocumented{}"))) NIL NIL -(-188) +(-187) ((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,{}t,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to \\axiom{\\spad{t}}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{x}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{x}}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points."))) NIL NIL -(-189) +(-188) ((|constructor| (NIL "\\axiomType{d01ajfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AJF,{} a general numerical integration routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AJF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-190) +(-189) ((|constructor| (NIL "\\axiomType{d01akfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AKF,{} a numerical integration routine which is is suitable for oscillating,{} non-singular functions. The function \\axiomFun{measure} measures the usefulness of the routine D01AKF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-191) +(-190) ((|constructor| (NIL "\\axiomType{d01alfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ALF,{} a general numerical integration routine which can handle a list of singularities. The function \\axiomFun{measure} measures the usefulness of the routine D01ALF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-192) +(-191) ((|constructor| (NIL "\\axiomType{d01amfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AMF,{} a general numerical integration routine which can handle infinite or semi-infinite range of the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AMF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-193) +(-192) ((|constructor| (NIL "\\axiomType{d01anfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ANF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}). The function \\axiomFun{measure} measures the usefulness of the routine D01ANF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-194) +(-193) ((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF,{} a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form \\spad{w}(\\spad{x}) = (\\spad{x}-a)\\spad{^c} * (\\spad{b}-\\spad{x})\\spad{^d}. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-195) +(-194) ((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF,{} a general numerical integration routine which can solve an integral of the form \\newline \\centerline{\\inputbitmap{/home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.\\spad{xbm}}} The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-196) +(-195) ((|constructor| (NIL "\\axiomType{d01asfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ASF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}) on an semi-infinite range. The function \\axiomFun{measure} measures the usefulness of the routine D01ASF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-197) +(-196) ((|constructor| (NIL "\\axiomType{d01fcfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01FCF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-198) +(-197) ((|constructor| (NIL "\\axiomType{d01gbfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01GBF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}."))) NIL NIL -(-199) +(-198) NIL NIL NIL -(-200) +(-199) ((|constructor| (NIL "\\axiom{d01WeightsPackage} is a package for functions used to investigate whether a function can be divided into a simpler function and a weight function. The types of weights investigated are those giving rise to end-point singularities of the algebraico-logarithmic type,{} and trigonometric weights.")) (|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasLogarithmicWeights} looks for logarithmic weights giving rise to singularities of the function at the end-points.")) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasAlgebraicWeight} looks for algebraic weights giving rise to singularities of the function at the end-points.")) (|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasWeightCosWXorSinWX} looks for trigonometric weights in an expression of the form \\axiom{cos \\omega \\spad{x}} or \\axiom{sin \\omega \\spad{x}},{} returning the value of \\omega (\\notequal 1) and the operator."))) NIL NIL -(-201) +(-200) ((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,{}symbols,{}values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,{}w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,{}L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,{}C2)} is for interacting attributes"))) NIL NIL -(-202) +(-201) ((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-203) +(-202) ((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-204) +(-203) ((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF,{} a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-205) +(-204) ((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF,{} a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-206) +(-205) ((|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,{}g,{}l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,{}n)} \\undocumented{}"))) NIL NIL -(-207) +(-206) ((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF."))) NIL NIL -(-208) +(-207) ((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF."))) NIL NIL -(-209 N T$) -((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|setelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "\\spad{setelt(b,{}i,{}x)} sets the \\spad{i}th entry of data buffer \\spad{`b'} to \\spad{`x'}. Indexing is 0-based.")) (|elt| ((|#2| $ (|NonNegativeInteger|)) "\\spad{elt(b,{}i)} returns the \\spad{i}th element in buffer \\spad{`b'}. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}."))) +(-208 N T$) +((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|qsetelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "setelt(\\spad{b},{}\\spad{i},{}\\spad{x}) sets the \\spad{i}th entry of data buffer \\spad{`b'} to \\spad{`x'}. Indexing is 0-based.")) (|qelt| ((|#2| $ (|NonNegativeInteger|)) "elt(\\spad{b},{}\\spad{i}) returns the \\spad{i}th element in buffer \\spad{`b'}. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}."))) NIL NIL -(-210 S) +(-209 S) ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-211 -3281 UP UPUP R) +(-210 -1935 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-212 -3281 FP) +(-211 -1935 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL -(-213) +(-212) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| (-552) (QUOTE (-885))) (|HasCategory| (-552) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-552) (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-145))) (|HasCategory| (-552) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-998))) (|HasCategory| (-552) (QUOTE (-800))) (-1523 (|HasCategory| (-552) (QUOTE (-800))) (|HasCategory| (-552) (QUOTE (-827)))) (|HasCategory| (-552) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-1124))) (|HasCategory| (-552) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| (-552) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| (-552) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| (-552) (QUOTE (-229))) (|HasCategory| (-552) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-552) (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -304) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -281) (QUOTE (-552)) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-302))) (|HasCategory| (-552) (QUOTE (-537))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| (-552) (LIST (QUOTE -621) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-885)))) (|HasCategory| (-552) (QUOTE (-143))))) -(-214) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| (-552) (QUOTE (-888))) (|HasCategory| (-552) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| (-552) (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-144))) (|HasCategory| (-552) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-1001))) (|HasCategory| (-552) (QUOTE (-803))) (-1559 (|HasCategory| (-552) (QUOTE (-803))) (|HasCategory| (-552) (QUOTE (-830)))) (|HasCategory| (-552) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-1127))) (|HasCategory| (-552) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| (-552) (QUOTE (-228))) (|HasCategory| (-552) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-552) (LIST (QUOTE -506) (QUOTE (-1152)) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -303) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -280) (QUOTE (-552)) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-301))) (|HasCategory| (-552) (QUOTE (-537))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| (-552) (LIST (QUOTE -623) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-888)))) (|HasCategory| (-552) (QUOTE (-142))))) +(-213) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-215 R -3281) +(-214 R -1935) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-216 R) +(-215 R) ((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-217 R1 R2) +(-216 R1 R2) ((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,{}n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) NIL NIL -(-218 S) +(-217 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-219 |CoefRing| |listIndVar|) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-218 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4350 . T)) +((-4363 . T)) NIL -(-220 R -3281) +(-219 R -1935) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL -(-221) +(-220) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-2874 . T) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-3030 . T) (-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-222) +(-221) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) NIL NIL -(-223 R) +(-222 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-544))) (|HasAttribute| |#1| (QUOTE (-4355 "*"))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-224 A S) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-544))) (|HasAttribute| |#1| (QUOTE (-4368 "*"))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-223 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL -(-225 S) +(-224 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4354 . T) (-3526 . T)) +((-4367 . T) (-2997 . T)) NIL -(-226 S R) +(-225 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-229)))) -(-227 R) +((|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-228)))) +(-226 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4350 . T)) +((-4363 . T)) NIL -(-228 S) +(-227 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) NIL NIL -(-229) +(-228) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4350 . T)) +((-4363 . T)) NIL -(-230 A S) +(-229 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4353))) -(-231 S) +((|HasAttribute| |#1| (QUOTE -4366))) +(-230 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4354 . T) (-3526 . T)) +((-4367 . T) (-2997 . T)) NIL -(-232) +(-231) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-233 S -2562 R) +(-232 S -4030 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (QUOTE (-825))) (|HasAttribute| |#3| (QUOTE -4350)) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (QUOTE (-1073)))) -(-234 -2562 R) +((|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-776))) (|HasCategory| |#3| (QUOTE (-828))) (|HasAttribute| |#3| (QUOTE -4363)) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-709))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (QUOTE (-1076)))) +(-233 -4030 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4347 |has| |#2| (-1025)) (-4348 |has| |#2| (-1025)) (-4350 |has| |#2| (-6 -4350)) ((-4355 "*") |has| |#2| (-170)) (-4353 . T) (-3526 . T)) +((-4360 |has| |#2| (-1028)) (-4361 |has| |#2| (-1028)) (-4363 |has| |#2| (-6 -4363)) ((-4368 "*") |has| |#2| (-169)) (-4366 . T) (-2997 . T)) NIL -(-235 -2562 A B) +(-234 -4030 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-236 -2562 R) +(-235 -4030 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4347 |has| |#2| (-1025)) (-4348 |has| |#2| (-1025)) (-4350 |has| |#2| (-6 -4350)) ((-4355 "*") |has| |#2| (-170)) (-4353 . T)) -((-1523 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))))) (-1523 (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1073)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#2| (QUOTE (-358))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358)))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-773))) (-1523 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-170))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-229)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-358)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-707)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-773)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1073))))) (-1523 (-12 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-827))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-1523 (|HasCategory| |#2| (QUOTE (-1025))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1073)))) (|HasAttribute| |#2| (QUOTE -4350)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) -(-237) +((-4360 |has| |#2| (-1028)) (-4361 |has| |#2| (-1028)) (-4363 |has| |#2| (-6 -4363)) ((-4368 "*") |has| |#2| (-169)) (-4366 . T)) +((-1559 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))))) (-1559 (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1076)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#2| (QUOTE (-357))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357)))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-776))) (-1559 (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-828)))) (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (QUOTE (-169))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1028)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1028)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-228)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-709)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-776)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-828)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1076))))) (-1559 (-12 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-830))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-1559 (|HasCategory| |#2| (QUOTE (-1028))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1076)))) (|HasAttribute| |#2| (QUOTE -4363)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) +(-236) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-238 S) +(-237 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-239) +(-238) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4346 . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4359 . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-240 S) +(-239 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) -((-3526 . T)) +((-2997 . T)) NIL -(-241 S) +(-240 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}"))) -((-4354 . T) (-4353 . T)) -((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-242 M) +((-4367 . T) (-4366 . T)) +((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-241 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-243 |vl| R) +(-242 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4355 "*") |has| |#2| (-170)) (-4346 |has| |#2| (-544)) (-4351 |has| |#2| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) -((|HasCategory| |#2| (QUOTE (-885))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-170))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-358))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-143))))) -(-244) +(((-4368 "*") |has| |#2| (-169)) (-4359 |has| |#2| (-544)) (-4364 |has| |#2| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) +((|HasCategory| |#2| (QUOTE (-888))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#2| (QUOTE -4364)) (|HasCategory| |#2| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-142))))) +(-243) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}."))) NIL NIL -(-245 |n| R M S) +(-244 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4350 -1523 (-3743 (|has| |#4| (-1025)) (|has| |#4| (-229))) (-3743 (|has| |#4| (-1025)) (|has| |#4| (-876 (-1149)))) (|has| |#4| (-6 -4350)) (-3743 (|has| |#4| (-1025)) (|has| |#4| (-621 (-552))))) (-4347 |has| |#4| (-1025)) (-4348 |has| |#4| (-1025)) ((-4355 "*") |has| |#4| (-170)) (-4353 . T)) -((-1523 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-707))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-773))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-825))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| |#4| (QUOTE (-358))) (-1523 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (QUOTE (-1025)))) (-1523 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-358)))) (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (QUOTE (-773))) (-1523 (|HasCategory| |#4| (QUOTE (-773))) (|HasCategory| |#4| (QUOTE (-825)))) (|HasCategory| |#4| (QUOTE (-825))) (|HasCategory| |#4| (QUOTE (-707))) (|HasCategory| |#4| (QUOTE (-170))) (-1523 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-1025)))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149)))) (-1523 (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1025)))) (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-170)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-229)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-358)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-363)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-707)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-773)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-825)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-1025)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-1073))))) (-1523 (-12 (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-707))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-773))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-825))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-827))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1025)))) (-1523 (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1025)))) (|HasCategory| |#4| (QUOTE (-707))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149)))))) (-1523 (|HasCategory| |#4| (QUOTE (-1025))) (-12 (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552)))))) (-12 (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-1073)))) (-1523 (|HasAttribute| |#4| (QUOTE -4350)) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1025)))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-839))))) -(-246 |n| R S) +((-4363 -1559 (-2520 (|has| |#4| (-1028)) (|has| |#4| (-228))) (-2520 (|has| |#4| (-1028)) (|has| |#4| (-879 (-1152)))) (|has| |#4| (-6 -4363)) (-2520 (|has| |#4| (-1028)) (|has| |#4| (-623 (-552))))) (-4360 |has| |#4| (-1028)) (-4361 |has| |#4| (-1028)) ((-4368 "*") |has| |#4| (-169)) (-4366 . T)) +((-1559 (-12 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-357))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-709))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-776))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-828))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1028))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-1152)))))) (|HasCategory| |#4| (QUOTE (-357))) (-1559 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-357))) (|HasCategory| |#4| (QUOTE (-1028)))) (-1559 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-357)))) (|HasCategory| |#4| (QUOTE (-1028))) (|HasCategory| |#4| (QUOTE (-776))) (-1559 (|HasCategory| |#4| (QUOTE (-776))) (|HasCategory| |#4| (QUOTE (-828)))) (|HasCategory| |#4| (QUOTE (-828))) (|HasCategory| |#4| (QUOTE (-709))) (|HasCategory| |#4| (QUOTE (-169))) (-1559 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-1028)))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-1152)))) (-1559 (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (QUOTE (-1028)))) (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-169)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-228)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-357)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-362)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-709)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-776)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-828)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-1028)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-1076))))) (-1559 (-12 (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-357))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-709))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-776))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-828))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1028))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-830))) (-12 (|HasCategory| |#4| (QUOTE (-1028))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1028))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (QUOTE (-1028)))) (-1559 (-12 (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (QUOTE (-1028)))) (|HasCategory| |#4| (QUOTE (-709))) (-12 (|HasCategory| |#4| (QUOTE (-1028))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1028))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-1152)))))) (-1559 (|HasCategory| |#4| (QUOTE (-1028))) (-12 (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552)))))) (-12 (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#4| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (QUOTE (-1076)))) (-1559 (|HasAttribute| |#4| (QUOTE -4363)) (-12 (|HasCategory| |#4| (QUOTE (-228))) (|HasCategory| |#4| (QUOTE (-1028)))) (-12 (|HasCategory| |#4| (QUOTE (-1028))) (|HasCategory| |#4| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#4| (QUOTE (-1028))) (|HasCategory| |#4| (LIST (QUOTE -879) (QUOTE (-1152)))))) (|HasCategory| |#4| (QUOTE (-129))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -599) (QUOTE (-842))))) +(-245 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4350 -1523 (-3743 (|has| |#3| (-1025)) (|has| |#3| (-229))) (-3743 (|has| |#3| (-1025)) (|has| |#3| (-876 (-1149)))) (|has| |#3| (-6 -4350)) (-3743 (|has| |#3| (-1025)) (|has| |#3| (-621 (-552))))) (-4347 |has| |#3| (-1025)) (-4348 |has| |#3| (-1025)) ((-4355 "*") |has| |#3| (-170)) (-4353 . T)) -((-1523 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| |#3| (QUOTE (-358))) (-1523 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1025)))) (-1523 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358)))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (QUOTE (-773))) (-1523 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (QUOTE (-825)))) (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (QUOTE (-170))) (-1523 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1025)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (-1523 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-229)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-358)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-707)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-773)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-825)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1025)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1073))))) (-1523 (-12 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-827))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (-1523 (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (|HasCategory| |#3| (QUOTE (-707))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))))) (-1523 (|HasCategory| |#3| (QUOTE (-1025))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552)))))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1073)))) (-1523 (|HasAttribute| |#3| (QUOTE -4350)) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -597) (QUOTE (-839))))) -(-247 A R S V E) +((-4363 -1559 (-2520 (|has| |#3| (-1028)) (|has| |#3| (-228))) (-2520 (|has| |#3| (-1028)) (|has| |#3| (-879 (-1152)))) (|has| |#3| (-6 -4363)) (-2520 (|has| |#3| (-1028)) (|has| |#3| (-623 (-552))))) (-4360 |has| |#3| (-1028)) (-4361 |has| |#3| (-1028)) ((-4368 "*") |has| |#3| (-169)) (-4366 . T)) +((-1559 (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-709))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-776))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-828))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))))) (|HasCategory| |#3| (QUOTE (-357))) (-1559 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1028)))) (-1559 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-357)))) (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (QUOTE (-776))) (-1559 (|HasCategory| |#3| (QUOTE (-776))) (|HasCategory| |#3| (QUOTE (-828)))) (|HasCategory| |#3| (QUOTE (-828))) (|HasCategory| |#3| (QUOTE (-709))) (|HasCategory| |#3| (QUOTE (-169))) (-1559 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-1028)))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))) (-1559 (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1028)))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-169)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-228)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-357)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-709)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-776)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-828)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1028)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1076))))) (-1559 (-12 (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-709))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-776))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-828))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-830))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1028)))) (-1559 (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1028)))) (|HasCategory| |#3| (QUOTE (-709))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))))) (-1559 (|HasCategory| |#3| (QUOTE (-1028))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552)))))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1076)))) (-1559 (|HasAttribute| |#3| (QUOTE -4363)) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1028)))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -599) (QUOTE (-842))))) +(-246 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-229)))) -(-248 R S V E) +((|HasCategory| |#2| (QUOTE (-228)))) +(-247 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) NIL -(-249 S) +(-248 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4353 . T) (-4354 . T) (-3526 . T)) +((-4366 . T) (-4367 . T) (-2997 . T)) NIL -(-250) +(-249) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-251 R |Ex|) +(-250 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-252) +(-251) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-253 R) +(-252 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-254 |Ex|) +(-253 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-255) +(-254) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-256) +(-255) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-257 S) +(-256 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-258) +(-257) ((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-259 R S V) +(-258 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-885))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#3| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#3| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#3| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-260 A S) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-888))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#3| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#3| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#3| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4364)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-259 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-261 S) +(-260 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-262) +(-261) ((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,{}n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,{}n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,{}b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL NIL -(-263) +(-262) ((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-264) +(-263) ((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-265) +(-264) ((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-266) +(-265) ((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-267) +(-266) ((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-268) +(-267) ((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-269) +(-268) ((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-270) +(-269) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-271 R -3281) +(-270 R -1935) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-272 R -3281) +(-271 R -1935) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-273 |Coef| UTS ULS) +(-272 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-358)))) -(-274 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-357)))) +(-273 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-358)))) -(-275) +((|HasCategory| |#1| (QUOTE (-357)))) +(-274) ((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Symbol|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Symbol|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|ConstructorCall|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL NIL -(-276 A S) +(-275 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1073)))) -(-277 S) +((|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-1076)))) +(-276 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4354 . T) (-3526 . T)) +((-4367 . T) (-2997 . T)) NIL -(-278 S) +(-277 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-279) +(-278) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-280 |Coef| UTS) +(-279 |Coef| UTS) ((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,{}c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,{}k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,{}k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,{}k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL -(-281 S |Index|) +(-280 S |Index|) ((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}."))) NIL NIL -(-282 S |Dom| |Im|) +(-281 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4354))) -(-283 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -4367))) +(-282 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-284 S R |Mod| -3297 -3280 |exactQuo|) +(-283 S R |Mod| -3226 -3759 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-285) +(-284) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4346 . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4359 . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-286) +(-285) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-287 R) +(-286 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-288 S R) +(-287 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-289 S) +(-288 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4350 -1523 (|has| |#1| (-1025)) (|has| |#1| (-467))) (-4347 |has| |#1| (-1025)) (-4348 |has| |#1| (-1025))) -((|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1025)))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-1025)))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1025)))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1025)))) (-1523 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-707)))) (|HasCategory| |#1| (QUOTE (-467))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-1073)))) (-1523 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1085)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-297))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-467)))) (-1523 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-707)))) (-1523 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) -(-290 |Key| |Entry|) +((-4363 -1559 (|has| |#1| (-1028)) (|has| |#1| (-466))) (-4360 |has| |#1| (-1028)) (-4361 |has| |#1| (-1028))) +((|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1028)))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-1028)))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1028)))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1028)))) (-1559 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-709)))) (|HasCategory| |#1| (QUOTE (-466))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-709))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-1088))) (|HasCategory| |#1| (QUOTE (-1076)))) (-1559 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-709))) (|HasCategory| |#1| (QUOTE (-1088)))) (|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-296))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-466)))) (-1559 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-709)))) (-1559 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1028)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-709))) (|HasCategory| |#1| (QUOTE (-1088))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) +(-289 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#2|)))))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1073))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839))))) -(-291) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#2|)))))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-1076))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842))))) +(-290) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-292 -3281 S) +(-291 -1935 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-293 E -3281) +(-292 E -1935) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL -(-294 A B) +(-293 A B) ((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL NIL -(-295) +(-294) ((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-296 S) +(-295 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-1025)))) -(-297) +((|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-1028)))) +(-296) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-298 R1) +(-297 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-299 R1 R2) +(-298 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-300) +(-299) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-301 S) +(-300 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-302) +(-301) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-303 S R) +(-302 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-304 R) +(-303 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-305 -3281) +(-304 -1935) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-306) +(-305) ((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL -(-307) +(-306) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-308 R FE |var| |cen|) +(-307 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-885))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-998))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-800))) (-1523 (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-800))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-827)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-1124))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-229))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -304) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -281) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-302))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-537))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-827))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-885))) (|HasCategory| $ (QUOTE (-143)))) (-1523 (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (-12 (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-885))) (|HasCategory| $ (QUOTE (-143)))))) -(-309 R S) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-888))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-142))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-1001))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-803))) (-1559 (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-803))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-830)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-1127))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-228))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -506) (QUOTE (-1152)) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -303) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (LIST (QUOTE -280) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-301))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-537))) (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-830))) (-12 (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-888))) (|HasCategory| $ (QUOTE (-142)))) (-1559 (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-142))) (-12 (|HasCategory| (-1221 |#1| |#2| |#3| |#4|) (QUOTE (-888))) (|HasCategory| $ (QUOTE (-142)))))) +(-308 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-310 R FE) +(-309 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-311 R) +(-310 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4350 -1523 (-3743 (|has| |#1| (-1025)) (|has| |#1| (-621 (-552)))) (-12 (|has| |#1| (-544)) (-1523 (-3743 (|has| |#1| (-1025)) (|has| |#1| (-621 (-552)))) (|has| |#1| (-1025)) (|has| |#1| (-467)))) (|has| |#1| (-1025)) (|has| |#1| (-467))) (-4348 |has| |#1| (-170)) (-4347 |has| |#1| (-170)) ((-4355 "*") |has| |#1| (-544)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-544)) (-4345 |has| |#1| (-544))) -((-1523 (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-544))) (-1523 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (-1523 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552))))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1025)))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1025)))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1025)))) (-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552))))) (-1523 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-1085)))) (-1523 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))))) (-1523 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-1085)))) (-1523 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))))) (-1523 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-1025)))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1085))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| $ (QUOTE (-1025))) (|HasCategory| $ (LIST (QUOTE -1014) (QUOTE (-552))))) -(-312 R -3281) +((-4363 -1559 (-2520 (|has| |#1| (-1028)) (|has| |#1| (-623 (-552)))) (-12 (|has| |#1| (-544)) (-1559 (-2520 (|has| |#1| (-1028)) (|has| |#1| (-623 (-552)))) (|has| |#1| (-1028)) (|has| |#1| (-466)))) (|has| |#1| (-1028)) (|has| |#1| (-466))) (-4361 |has| |#1| (-169)) (-4360 |has| |#1| (-169)) ((-4368 "*") |has| |#1| (-544)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-544)) (-4358 |has| |#1| (-544))) +((-1559 (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-544))) (-1559 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1028)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (-1559 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1088)))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552))))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1028)))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1028)))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1028)))) (-12 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552))))) (-1559 (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-1088)))) (-1559 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))))) (-1559 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-1088)))) (-1559 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))))) (-1559 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1028)))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1088))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| $ (QUOTE (-1028))) (|HasCategory| $ (LIST (QUOTE -1017) (QUOTE (-552))))) +(-311 R -1935) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL -(-313) +(-312) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-314 FE |var| |cen|) +(-313 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-552)) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552)))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2481) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#1|))))))) -(-315 M) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-401 (-552)) (QUOTE (-1088))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2747) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1152))))) (|HasSignature| |#1| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#1|))))))) +(-314 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-316 E OV R P) +(-315 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,{}i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly,{} lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly,{} lvar,{} lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-317 S) +(-316 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4348 . T) (-4347 . T)) -((|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-772)))) -(-318 S E) +((-4361 . T) (-4360 . T)) +((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-775)))) +(-317 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-319 S) +(-318 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-751) (QUOTE (-772)))) -(-320 S R E) +((|HasCategory| (-754) (QUOTE (-775)))) +(-319 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-170)))) -(-321 R E) +((|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169)))) +(-320 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4347 . T) (-4348 . T) (-4350 . T)) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-322 S) +(-321 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4354 . T) (-4353 . T)) -((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-323 S -3281) +((-4367 . T) (-4366 . T)) +((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-322 S -1935) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-363)))) -(-324 -3281) +((|HasCategory| |#2| (QUOTE (-362)))) +(-323 -1935) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-325) +(-324) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm."))) NIL NIL -(-326 E) +(-325 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-327) +(-326) ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}"))) NIL NIL -(-328 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-327 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-329 S -3281 UP UPUP R) +(-328 S -1935 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-330 -3281 UP UPUP R) +(-329 -1935 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-331 -3281 UP UPUP R) +(-330 -1935 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL -(-332 S R) +(-331 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-333 R) +((|HasCategory| |#2| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-332 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-334 |basicSymbols| |subscriptedSymbols| R) +(-333 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-374)))) (|HasCategory| $ (QUOTE (-1025))) (|HasCategory| $ (LIST (QUOTE -1014) (QUOTE (-552))))) -(-335 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +((-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-373)))) (|HasCategory| $ (QUOTE (-1028))) (|HasCategory| $ (LIST (QUOTE -1017) (QUOTE (-552))))) +(-334 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-336 S -3281 UP UPUP) +(-335 S -1935 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-358)))) -(-337 -3281 UP UPUP) +((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-357)))) +(-336 -1935 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4346 |has| (-402 |#2|) (-358)) (-4351 |has| (-402 |#2|) (-358)) (-4345 |has| (-402 |#2|) (-358)) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4359 |has| (-401 |#2|) (-357)) (-4364 |has| (-401 |#2|) (-357)) (-4358 |has| (-401 |#2|) (-357)) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-338 |p| |extdeg|) +(-337 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((-1523 (|HasCategory| (-886 |#1|) (QUOTE (-143))) (|HasCategory| (-886 |#1|) (QUOTE (-363)))) (|HasCategory| (-886 |#1|) (QUOTE (-145))) (|HasCategory| (-886 |#1|) (QUOTE (-363))) (|HasCategory| (-886 |#1|) (QUOTE (-143)))) -(-339 GF |defpol|) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-1559 (|HasCategory| (-889 |#1|) (QUOTE (-142))) (|HasCategory| (-889 |#1|) (QUOTE (-362)))) (|HasCategory| (-889 |#1|) (QUOTE (-144))) (|HasCategory| (-889 |#1|) (QUOTE (-362))) (|HasCategory| (-889 |#1|) (QUOTE (-142)))) +(-338 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((-1523 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143)))) -(-340 GF |extdeg|) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-1559 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) +(-339 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((-1523 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143)))) -(-341 GF) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-1559 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) +(-340 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-342 F1 GF F2) +(-341 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-343 S) +(-342 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-344) +(-343) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-345 R UP -3281) +(-344 R UP -1935) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-346 |p| |extdeg|) +(-345 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((-1523 (|HasCategory| (-886 |#1|) (QUOTE (-143))) (|HasCategory| (-886 |#1|) (QUOTE (-363)))) (|HasCategory| (-886 |#1|) (QUOTE (-145))) (|HasCategory| (-886 |#1|) (QUOTE (-363))) (|HasCategory| (-886 |#1|) (QUOTE (-143)))) -(-347 GF |uni|) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-1559 (|HasCategory| (-889 |#1|) (QUOTE (-142))) (|HasCategory| (-889 |#1|) (QUOTE (-362)))) (|HasCategory| (-889 |#1|) (QUOTE (-144))) (|HasCategory| (-889 |#1|) (QUOTE (-362))) (|HasCategory| (-889 |#1|) (QUOTE (-142)))) +(-346 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((-1523 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143)))) -(-348 GF |extdeg|) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-1559 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) +(-347 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((-1523 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143)))) -(-349 |p| |n|) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-1559 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) +(-348 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((-1523 (|HasCategory| (-886 |#1|) (QUOTE (-143))) (|HasCategory| (-886 |#1|) (QUOTE (-363)))) (|HasCategory| (-886 |#1|) (QUOTE (-145))) (|HasCategory| (-886 |#1|) (QUOTE (-363))) (|HasCategory| (-886 |#1|) (QUOTE (-143)))) -(-350 GF |defpol|) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-1559 (|HasCategory| (-889 |#1|) (QUOTE (-142))) (|HasCategory| (-889 |#1|) (QUOTE (-362)))) (|HasCategory| (-889 |#1|) (QUOTE (-144))) (|HasCategory| (-889 |#1|) (QUOTE (-362))) (|HasCategory| (-889 |#1|) (QUOTE (-142)))) +(-349 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((-1523 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143)))) -(-351 -3281 GF) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-1559 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) +(-350 -1935 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-352 GF) +(-351 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-353 -3281 FP FPP) +(-352 -1935 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-354 GF |n|) +(-353 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((-1523 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143)))) -(-355 R |ls|) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-1559 (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-142)))) +(-354 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL -(-356 S) +(-355 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4350 . T)) +((-4363 . T)) NIL -(-357 S) +(-356 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-358) +(-357) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-359 |Name| S) +(-358 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-360 S) +(-359 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-361 S R) +(-360 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL ((|HasCategory| |#2| (QUOTE (-544)))) -(-362 R) +(-361 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4350 |has| |#1| (-544)) (-4348 . T) (-4347 . T)) +((-4363 |has| |#1| (-544)) (-4361 . T) (-4360 . T)) NIL -(-363) +(-362) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-364 S R UP) +(-363 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-358)))) -(-365 R UP) +((|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-357)))) +(-364 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4347 . T) (-4348 . T) (-4350 . T)) +((-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-366 S A R B) +(-365 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-367 A S) +(-366 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4354)) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1073)))) -(-368 S) +((|HasAttribute| |#1| (QUOTE -4367)) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-1076)))) +(-367 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4353 . T) (-3526 . T)) +((-4366 . T) (-2997 . T)) NIL -(-369 |VarSet| R) +(-368 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4348 . T) (-4347 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4361 . T) (-4360 . T)) NIL -(-370 S V) +(-369 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-371 S R) +(-370 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) -(-372 R) +((|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) +(-371 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4350 . T)) +((-4363 . T)) NIL -(-373 |Par|) +(-372 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-374) +(-373) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4336 . T) (-4344 . T) (-2874 . T) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4349 . T) (-4357 . T) (-3030 . T) (-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-375 |Par|) +(-374 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-376 R S) +(-375 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4348 . T) (-4347 . T)) -((|HasCategory| |#1| (QUOTE (-170)))) -(-377 R |Basis|) +((-4361 . T) (-4360 . T)) +((|HasCategory| |#1| (QUOTE (-169)))) +(-376 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4348 . T) (-4347 . T)) +((-4361 . T) (-4360 . T)) NIL -(-378) +(-377) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-3526 . T)) +((-2997 . T)) NIL -(-379) +(-378) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-3526 . T)) +((-2997 . T)) NIL -(-380 R S) +(-379 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4348 . T) (-4347 . T)) -((|HasCategory| |#1| (QUOTE (-170)))) -(-381 S) +((-4361 . T) (-4360 . T)) +((|HasCategory| |#1| (QUOTE (-169)))) +(-380 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL -((|HasCategory| |#1| (QUOTE (-827)))) -(-382) +((|HasCategory| |#1| (QUOTE (-830)))) +(-381) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-383) +(-382) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-384) +(-383) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,{}pref,{}e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,{}n,{}e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")) (|coerce| (((|String|) $) "\\spad{coerce(fn)} produces a string for a file name according to operating system-dependent conventions.") (($ (|String|)) "\\spad{coerce(s)} converts a string to a file name according to operating system-dependent conventions."))) NIL NIL -(-385 |n| |class| R) +(-384 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4348 . T) (-4347 . T)) +((-4361 . T) (-4360 . T)) NIL -(-386) +(-385) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-387 -3281 UP UPUP R) +(-386 -1935 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-388 S) +(-387 S) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL -(-389) +(-388) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format."))) NIL NIL -(-390) +(-389) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) -((-3526 . T)) +((-2997 . T)) NIL -(-391) +(-390) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-3526 . T)) +((-2997 . T)) NIL -(-392) +(-391) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL NIL -(-393 -1288 |returnType| -1912 |symbols|) +(-392 -3112 |returnType| -4279 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-394 -3281 UP) +(-393 -1935 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-395 R) +(-394 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) -((-3526 . T)) +((-2997 . T)) NIL -(-396 S) +(-395 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-397) +(-396) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-398 S) +(-397 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4336)) (|HasAttribute| |#1| (QUOTE -4344))) -(-399) +((|HasAttribute| |#1| (QUOTE -4349)) (|HasAttribute| |#1| (QUOTE -4357))) +(-398) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-2874 . T) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-3030 . T) (-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-400 R S) +(-399 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-401 A B) +(-400 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-402 S) +(-401 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4340 -12 (|has| |#1| (-6 -4351)) (|has| |#1| (-446)) (|has| |#1| (-6 -4340))) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-885))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-808)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-800))) (-1523 (|HasCategory| |#1| (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-827)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-808)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-1124))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-808)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-808))))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-808))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-808)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-537))) (-12 (|HasAttribute| |#1| (QUOTE -4351)) (|HasAttribute| |#1| (QUOTE -4340)) (|HasCategory| |#1| (QUOTE (-446)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-403 S R UP) +((-4353 -12 (|has| |#1| (-6 -4364)) (|has| |#1| (-445)) (|has| |#1| (-6 -4353))) (-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-888))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-811)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (QUOTE (-803))) (-1559 (|HasCategory| |#1| (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-830)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-811)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-1127))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-811)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-811))))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-811))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-811)))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-537))) (-12 (|HasAttribute| |#1| (QUOTE -4364)) (|HasAttribute| |#1| (QUOTE -4353)) (|HasCategory| |#1| (QUOTE (-445)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-402 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-404 R UP) +(-403 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4347 . T) (-4348 . T) (-4350 . T)) +((-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-405 A S) +(-404 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) -(-406 S) +((|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) +(-405 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-407 R1 F1 U1 A1 R2 F2 U2 A2) +(-406 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-408 R -3281 UP A) +(-407 R -1935 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) -((-4350 . T)) +((-4363 . T)) NIL -(-409 R -3281 UP A |ibasis|) +(-408 R -1935 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1014) (|devaluate| |#2|)))) -(-410 AR R AS S) +((|HasCategory| |#4| (LIST (QUOTE -1017) (|devaluate| |#2|)))) +(-409 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-411 S R) +(-410 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-358)))) -(-412 R) +((|HasCategory| |#2| (QUOTE (-357)))) +(-411 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4350 |has| |#1| (-544)) (-4348 . T) (-4347 . T)) +((-4363 |has| |#1| (-544)) (-4361 . T) (-4360 . T)) NIL -(-413 R) +(-412 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -304) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -281) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-1190))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-446)))) -(-414 R) +((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1152)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -303) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -280) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-1193))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-445)))) +(-413 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL NIL -(-415 R FE |x| |cen|) +(-414 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-416 R A S B) +(-415 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-417 R FE |Expon| UPS TRAN |x|) +(-416 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'"))) NIL NIL -(-418 S A R B) +(-417 S A R B) ((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-419 A S) +(-418 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-363)))) -(-420 S) +((|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-362)))) +(-419 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4353 . T) (-4343 . T) (-4354 . T) (-3526 . T)) +((-4366 . T) (-4356 . T) (-4367 . T) (-2997 . T)) NIL -(-421 R -3281) +(-420 R -1935) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-422 R E) +(-421 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4340 -12 (|has| |#1| (-6 -4340)) (|has| |#2| (-6 -4340))) (-4347 . T) (-4348 . T) (-4350 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4340)) (|HasAttribute| |#2| (QUOTE -4340)))) -(-423 R -3281) +((-4353 -12 (|has| |#1| (-6 -4353)) (|has| |#2| (-6 -4353))) (-4360 . T) (-4361 . T) (-4363 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4353)) (|HasAttribute| |#2| (QUOTE -4353)))) +(-422 R -1935) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-424 S R) +(-423 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-1085))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528))))) -(-425 R) +((|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-1088))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) +(-424 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4350 -1523 (|has| |#1| (-1025)) (|has| |#1| (-467))) (-4348 |has| |#1| (-170)) (-4347 |has| |#1| (-170)) ((-4355 "*") |has| |#1| (-544)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-544)) (-4345 |has| |#1| (-544)) (-3526 . T)) +((-4363 -1559 (|has| |#1| (-1028)) (|has| |#1| (-466))) (-4361 |has| |#1| (-169)) (-4360 |has| |#1| (-169)) ((-4368 "*") |has| |#1| (-544)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-544)) (-4358 |has| |#1| (-544)) (-2997 . T)) NIL -(-426 R -3281) +(-425 R -1935) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-427 R -3281) +(-426 R -1935) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-428 R -3281) +(-427 R -1935) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-429) +(-428) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-430 R -3281 UP) +(-429 R -1935 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-48))))) -(-431) +((|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-48))))) +(-430) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-432) +(-431) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}"))) NIL NIL -(-433 |f|) +(-432 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-434) +(-433) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-3526 . T)) +((-2997 . T)) NIL -(-435) +(-434) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-3526 . T)) +((-2997 . T)) NIL -(-436 UP) +(-435 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-437 R UP -3281) +(-436 R UP -1935) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-438 R UP) +(-437 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,{}f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,{}f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,{}c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,{}c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-439 R) +(-438 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-399)))) -(-440) +((|HasCategory| |#1| (QUOTE (-398)))) +(-439) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(\\spad{zi})} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(\\spad{zi})} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-441 |Dom| |Expon| |VarSet| |Dpol|) +(-440 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-442 |Dom| |Expon| |VarSet| |Dpol|) +(-441 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-443 |Dom| |Expon| |VarSet| |Dpol|) +(-442 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-444 |Dom| |Expon| |VarSet| |Dpol|) +(-443 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL -((|HasCategory| |#1| (QUOTE (-358)))) -(-445 S) +((|HasCategory| |#1| (QUOTE (-357)))) +(-444 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-446) +(-445) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-447 R |n| |ls| |gamma|) +(-446 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4350 |has| (-402 (-928 |#1|)) (-544)) (-4348 . T) (-4347 . T)) -((|HasCategory| (-402 (-928 |#1|)) (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| (-402 (-928 |#1|)) (QUOTE (-544)))) -(-448 |vl| R E) +((-4363 |has| (-401 (-931 |#1|)) (-544)) (-4361 . T) (-4360 . T)) +((|HasCategory| (-401 (-931 |#1|)) (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| (-401 (-931 |#1|)) (QUOTE (-544)))) +(-447 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4355 "*") |has| |#2| (-170)) (-4346 |has| |#2| (-544)) (-4351 |has| |#2| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) -((|HasCategory| |#2| (QUOTE (-885))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-170))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-358))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-143))))) -(-449 R BP) +(((-4368 "*") |has| |#2| (-169)) (-4359 |has| |#2| (-544)) (-4364 |has| |#2| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) +((|HasCategory| |#2| (QUOTE (-888))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#2| (QUOTE -4364)) (|HasCategory| |#2| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-142))))) +(-448 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL NIL -(-450 OV E S R P) +(-449 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-451 E OV R P) +(-450 E OV R P) ((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL -(-452 R) +(-451 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-453 R FE) +(-452 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),{}n,{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(a(n),{}n,{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n=n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}."))) NIL NIL -(-454 RP TP) +(-453 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,{}pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,{}lfact,{}prime,{}bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,{}lfacts,{}prime,{}bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-455 |vl| R IS E |ff| P) +(-454 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4348 . T) (-4347 . T)) +((-4361 . T) (-4360 . T)) NIL -(-456 E V R P Q) +(-455 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-457 R E |VarSet| P) +(-456 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4354 . T) (-4353 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-839))))) -(-458 S R E) +((-4367 . T) (-4366 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#4| (LIST (QUOTE -599) (QUOTE (-842))))) +(-457 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-459 R E) +(-458 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-460) +(-459) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-461) +(-460) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-462) +(-461) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-463 S R E) +(-462 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-464 R E) +(-463 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-465 |lv| -3281 R) +(-464 |lv| -1935 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-466 S) +(-465 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-467) +(-466) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4350 . T)) +((-4363 . T)) NIL -(-468 |Coef| |var| |cen|) +(-467 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-552)) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552)))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2481) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#1|))))))) -(-469 |Key| |Entry| |Tbl| |dent|) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-401 (-552)) (QUOTE (-1088))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2747) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1152))))) (|HasSignature| |#1| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#1|))))))) +(-468 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4354 . T)) -((-12 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#2|)))))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-827))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839))))) -(-470 R E V P) +((-4367 . T)) +((-12 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#2|)))))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-830))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842))))) +(-469 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4354 . T) (-4353 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-839))))) -(-471) +((-4367 . T) (-4366 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -599) (QUOTE (-842))))) +(-470) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-472) +(-471) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-473 |Key| |Entry| |hashfn|) +(-472 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#2|)))))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1073))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839))))) -(-474) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#2|)))))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-1076))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842))))) +(-473) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-475 |vl| R) +(-474 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4355 "*") |has| |#2| (-170)) (-4346 |has| |#2| (-544)) (-4351 |has| |#2| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) -((|HasCategory| |#2| (QUOTE (-885))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-170))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-358))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-143))))) -(-476 -2562 S) +(((-4368 "*") |has| |#2| (-169)) (-4359 |has| |#2| (-544)) (-4364 |has| |#2| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) +((|HasCategory| |#2| (QUOTE (-888))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#2| (QUOTE -4364)) (|HasCategory| |#2| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-142))))) +(-475 -4030 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4347 |has| |#2| (-1025)) (-4348 |has| |#2| (-1025)) (-4350 |has| |#2| (-6 -4350)) ((-4355 "*") |has| |#2| (-170)) (-4353 . T)) -((-1523 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))))) (-1523 (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1073)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#2| (QUOTE (-358))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358)))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-773))) (-1523 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-170))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-229)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-358)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-707)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-773)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1073))))) (-1523 (-12 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-827))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-1523 (|HasCategory| |#2| (QUOTE (-1025))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1073)))) (|HasAttribute| |#2| (QUOTE -4350)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) -(-477) +((-4360 |has| |#2| (-1028)) (-4361 |has| |#2| (-1028)) (-4363 |has| |#2| (-6 -4363)) ((-4368 "*") |has| |#2| (-169)) (-4366 . T)) +((-1559 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))))) (-1559 (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1076)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#2| (QUOTE (-357))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357)))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-776))) (-1559 (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-828)))) (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (QUOTE (-169))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1028)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1028)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-228)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-709)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-776)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-828)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1076))))) (-1559 (-12 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-830))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-1559 (|HasCategory| |#2| (QUOTE (-1028))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1076)))) (|HasAttribute| |#2| (QUOTE -4363)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) +(-476) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header."))) NIL NIL -(-478 S) +(-477 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-479 -3281 UP UPUP R) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-478 -1935 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-480 BP) +(-479 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,{}..,{}ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,{}..,{}fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,{}..,{}fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,{}..,{}fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) NIL NIL -(-481) +(-480) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| (-552) (QUOTE (-885))) (|HasCategory| (-552) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-552) (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-145))) (|HasCategory| (-552) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-998))) (|HasCategory| (-552) (QUOTE (-800))) (-1523 (|HasCategory| (-552) (QUOTE (-800))) (|HasCategory| (-552) (QUOTE (-827)))) (|HasCategory| (-552) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-1124))) (|HasCategory| (-552) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| (-552) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| (-552) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| (-552) (QUOTE (-229))) (|HasCategory| (-552) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-552) (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -304) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -281) (QUOTE (-552)) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-302))) (|HasCategory| (-552) (QUOTE (-537))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| (-552) (LIST (QUOTE -621) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-885)))) (|HasCategory| (-552) (QUOTE (-143))))) -(-482 A S) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| (-552) (QUOTE (-888))) (|HasCategory| (-552) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| (-552) (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-144))) (|HasCategory| (-552) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-1001))) (|HasCategory| (-552) (QUOTE (-803))) (-1559 (|HasCategory| (-552) (QUOTE (-803))) (|HasCategory| (-552) (QUOTE (-830)))) (|HasCategory| (-552) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-1127))) (|HasCategory| (-552) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| (-552) (QUOTE (-228))) (|HasCategory| (-552) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-552) (LIST (QUOTE -506) (QUOTE (-1152)) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -303) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -280) (QUOTE (-552)) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-301))) (|HasCategory| (-552) (QUOTE (-537))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| (-552) (LIST (QUOTE -623) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-888)))) (|HasCategory| (-552) (QUOTE (-142))))) +(-481 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4353)) (|HasAttribute| |#1| (QUOTE -4354)) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) -(-483 S) +((|HasAttribute| |#1| (QUOTE -4366)) (|HasAttribute| |#1| (QUOTE -4367)) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) +(-482 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) -((-3526 . T)) +((-2997 . T)) NIL -(-484) +(-483) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}."))) NIL NIL -(-485 S) +(-484 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-486) +(-485) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-487 -3281 UP |AlExt| |AlPol|) +(-486 -1935 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-488) +(-487) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| $ (QUOTE (-1025))) (|HasCategory| $ (LIST (QUOTE -1014) (QUOTE (-552))))) -(-489 S |mn|) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| $ (QUOTE (-1028))) (|HasCategory| $ (LIST (QUOTE -1017) (QUOTE (-552))))) +(-488 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4354 . T) (-4353 . T)) -((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-490 R |mnRow| |mnCol|) +((-4367 . T) (-4366 . T)) +((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-489 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-491 K R UP) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-490 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-492 R UP -3281) +(-491 R UP -1935) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-493 |mn|) +(-492 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4354 . T) (-4353 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1073))) (|HasCategory| (-112) (LIST (QUOTE -304) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-112) (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| (-112) (QUOTE (-1073))) (|HasCategory| (-112) (LIST (QUOTE -597) (QUOTE (-839))))) -(-494 K R UP L) +((-4367 . T) (-4366 . T)) +((-12 (|HasCategory| (-111) (QUOTE (-1076))) (|HasCategory| (-111) (LIST (QUOTE -303) (QUOTE (-111))))) (|HasCategory| (-111) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-111) (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| (-111) (QUOTE (-1076))) (|HasCategory| (-111) (LIST (QUOTE -599) (QUOTE (-842))))) +(-493 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-495) +(-494) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,{}s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-496 R Q A B) +(-495 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-497 -3281 |Expon| |VarSet| |DPoly|) +(-496 -1935 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -598) (QUOTE (-1149))))) -(-498 |vl| |nv|) +((|HasCategory| |#3| (LIST (QUOTE -600) (QUOTE (-1152))))) +(-497 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-499) +(-498) ((|constructor| (NIL "This domain represents identifer AST."))) NIL NIL -(-500 A S) +(-499 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-501 A S) +(-500 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL NIL -(-502 A S) +(-501 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-503 A S) +(-502 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-504 A S) +(-503 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-505 A S) +(-504 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL NIL -(-506 S A B) +(-505 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-507 A B) +(-506 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-508 S E |un|) +(-507 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-772)))) -(-509 S |mn|) +((|HasCategory| |#2| (QUOTE (-775)))) +(-508 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4354 . T) (-4353 . T)) -((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-510) +((-4367 . T) (-4366 . T)) +((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-509) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-511 |p| |n|) +(-510 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((-1523 (|HasCategory| (-567 |#1|) (QUOTE (-143))) (|HasCategory| (-567 |#1|) (QUOTE (-363)))) (|HasCategory| (-567 |#1|) (QUOTE (-145))) (|HasCategory| (-567 |#1|) (QUOTE (-363))) (|HasCategory| (-567 |#1|) (QUOTE (-143)))) -(-512 R |mnRow| |mnCol| |Row| |Col|) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((-1559 (|HasCategory| (-569 |#1|) (QUOTE (-142))) (|HasCategory| (-569 |#1|) (QUOTE (-362)))) (|HasCategory| (-569 |#1|) (QUOTE (-144))) (|HasCategory| (-569 |#1|) (QUOTE (-362))) (|HasCategory| (-569 |#1|) (QUOTE (-142)))) +(-511 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-513 S |mn|) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-512 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4354 . T) (-4353 . T)) -((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-514 R |Row| |Col| M) +((-4367 . T) (-4366 . T)) +((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-513 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4354))) -(-515 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4367))) +(-514 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4354))) -(-516 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4367))) +(-515 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-544))) (|HasAttribute| |#1| (QUOTE (-4355 "*"))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-517) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-544))) (|HasAttribute| |#1| (QUOTE (-4368 "*"))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-516) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-518) +(-517) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Symbol|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-519 S) -((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned.")) (|readByteIfCan!| (((|SingleInteger|) $) "\\spad{readByteIfCan!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise return \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every read attempt,{} which is overkill.}"))) +(-518 S) +((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|SingleInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned.")) (|readByteIfCan!| (((|SingleInteger|) $) "\\spad{readByteIfCan!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise return \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every read attempt,{} which is overkill.}"))) NIL NIL -(-520) -((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned.")) (|readByteIfCan!| (((|SingleInteger|) $) "\\spad{readByteIfCan!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise return \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every read attempt,{} which is overkill.}"))) +(-519) +((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|SingleInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned.")) (|readByteIfCan!| (((|SingleInteger|) $) "\\spad{readByteIfCan!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise return \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every read attempt,{} which is overkill.}"))) NIL NIL -(-521 GF) +(-520 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-522) -((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) +(-521) +((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{`f'}.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-523 R) +(-522 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-524 |Varset|) +(-523 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-525 K -3281 |Par|) +(-524 K -1935 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL +(-525) +NIL +NIL +NIL (-526) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL @@ -2048,7 +2048,7 @@ NIL ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-530 K -3281 |Par|) +(-530 K -1935 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -2078,17 +2078,17 @@ NIL NIL (-537) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4351 . T) (-4352 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4364 . T) (-4365 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL (-538 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#2|)))))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1073))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839))))) -(-539 R -3281) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#2|)))))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-1076))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842))))) +(-539 R -1935) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-540 R0 -3281 UP UPUP R) +(-540 R0 -1935 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL @@ -2098,7 +2098,7 @@ NIL NIL (-542 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-2874 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-3030 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL (-543 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -2106,9 +2106,9 @@ NIL NIL (-544) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-545 R -3281) +(-545 R -1935) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL @@ -2120,39 +2120,39 @@ NIL ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-548 R -3281 L) +(-548 R -1935 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -636) (|devaluate| |#2|)))) +((|HasCategory| |#3| (LIST (QUOTE -638) (|devaluate| |#2|)))) (-549) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-550 -3281 UP UPUP R) +(-550 -1935 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-551 -3281 UP) +(-551 -1935 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL (-552) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) -((-4335 . T) (-4341 . T) (-4345 . T) (-4340 . T) (-4351 . T) (-4352 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4348 . T) (-4354 . T) (-4358 . T) (-4353 . T) (-4364 . T) (-4365 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL (-553) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-554 R -3281 L) +(-554 R -1935 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -636) (|devaluate| |#2|)))) -(-555 R -3281) +((|HasCategory| |#3| (LIST (QUOTE -638) (|devaluate| |#2|)))) +(-555 R -1935) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-1112)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-611))))) -(-556 -3281 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-1115)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-613))))) +(-556 -1935 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL @@ -2160,27 +2160,27 @@ NIL ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-558 -3281) +(-558 -1935) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-559 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-2874 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-3030 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL (-560) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-561 R -3281) +(-561 R -1935) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-279))) (|HasCategory| |#2| (QUOTE (-611))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-279)))) (|HasCategory| |#1| (QUOTE (-544)))) -(-562 -3281 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-613))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-1152))))) (-12 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-278)))) (|HasCategory| |#1| (QUOTE (-544)))) +(-562 -1935 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-563 R -3281) +(-563 R -1935) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL @@ -2189,2788 +2189,2800 @@ NIL NIL NIL (-565) +((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if \\spad{`f'} is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by \\spad{`f'} as a binary file."))) +NIL +NIL +(-566) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|bothWays| (($) "`bothWays' indicates that an IO conduit is for both input and output.")) (|output| (($) "`output' indicates that an IO conduit is for output")) (|input| (($) "`input' indicates that an IO conduit is for input."))) NIL NIL -(-566 |p| |unBalanced?|) +(-567) +((|constructor| (NIL "This domain provides representation for ARPA Internet IP4 addresses.")) (|resolve| (((|Union| $ "failed") (|Hostname|)) "\\spad{resolve(h)} returns the IP4 address of host \\spad{`h'}.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address \\spad{`x'}.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) +NIL +NIL +(-568 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-567 |p|) +(-569 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-363)))) -(-568) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-142))) (|HasCategory| $ (QUOTE (-362)))) +(-570) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-569 R -3281) +(-571 R -1935) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-570 E -3281) +(-572 E -1935) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-571 -3281) +(-573 -1935) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4348 . T) (-4347 . T)) -((|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-1149))))) -(-572 I) +((-4361 . T) (-4360 . T)) +((|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-1152))))) +(-574 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-573 GF) +(-575 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-574 R) +(-576 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL -((|HasCategory| |#1| (QUOTE (-145)))) -(-575) +((|HasCategory| |#1| (QUOTE (-144)))) +(-577) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-576 R E V P TS) +(-578 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-577) +(-579) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-578 |mn|) +(-580 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) -((-4354 . T) (-4353 . T)) -((-1523 (-12 (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1073))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (-1523 (|HasCategory| (-142) (LIST (QUOTE -597) (QUOTE (-839)))) (-12 (|HasCategory| (-142) (QUOTE (-1073))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-142) (QUOTE (-1073)))) (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| (-142) (QUOTE (-1073))) (-12 (|HasCategory| (-142) (QUOTE (-1073))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -597) (QUOTE (-839))))) -(-579 E V R P) +((-4367 . T) (-4366 . T)) +((-1559 (-12 (|HasCategory| (-141) (QUOTE (-830))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141))))) (-12 (|HasCategory| (-141) (QUOTE (-1076))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141)))))) (-1559 (|HasCategory| (-141) (LIST (QUOTE -599) (QUOTE (-842)))) (-12 (|HasCategory| (-141) (QUOTE (-1076))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141)))))) (|HasCategory| (-141) (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| (-141) (QUOTE (-830))) (|HasCategory| (-141) (QUOTE (-1076)))) (|HasCategory| (-141) (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| (-141) (QUOTE (-1076))) (-12 (|HasCategory| (-141) (QUOTE (-1076))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141))))) (|HasCategory| (-141) (LIST (QUOTE -599) (QUOTE (-842))))) +(-581 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-580 |Coef|) +(-582 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|)))) (|HasCategory| (-552) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552)))))) -(-581 |Coef|) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|)))) (|HasCategory| (-552) (QUOTE (-1088))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552)))))) +(-583 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -((-4348 |has| |#1| (-544)) (-4347 |has| |#1| (-544)) ((-4355 "*") |has| |#1| (-544)) (-4346 |has| |#1| (-544)) (-4350 . T)) +((-4361 |has| |#1| (-544)) (-4360 |has| |#1| (-544)) ((-4368 "*") |has| |#1| (-544)) (-4359 |has| |#1| (-544)) (-4363 . T)) ((|HasCategory| |#1| (QUOTE (-544)))) -(-582 A B) +(-584 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-583 A B C) +(-585 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-584 R -3281 FG) +(-586 R -1935 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-585 S) +(-587 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-586 R |mn|) +(-588 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4354 . T) (-4353 . T)) -((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1025))) (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1025)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-587 S |Index| |Entry|) +((-4367 . T) (-4366 . T)) +((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-709))) (|HasCategory| |#1| (QUOTE (-1028))) (-12 (|HasCategory| |#1| (QUOTE (-981))) (|HasCategory| |#1| (QUOTE (-1028)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-589 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4354)) (|HasCategory| |#2| (QUOTE (-827))) (|HasAttribute| |#1| (QUOTE -4353)) (|HasCategory| |#3| (QUOTE (-1073)))) -(-588 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4367)) (|HasCategory| |#2| (QUOTE (-830))) (|HasAttribute| |#1| (QUOTE -4366)) (|HasCategory| |#3| (QUOTE (-1076)))) +(-590 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) -((-3526 . T)) +((-2997 . T)) NIL -(-589) +(-591) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")) (|coerce| (($ (|Byte|)) "\\spad{coerce(x)} the numerical byte value into a \\spad{JVM} bytecode."))) NIL NIL -(-590) +(-592) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-591 R A) +(-593 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4350 -1523 (-3743 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))) (-4348 . T) (-4347 . T)) -((-1523 (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|)))) -(-592 |Entry|) +((-4363 -1559 (-2520 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))) (-4361 . T) (-4360 . T)) +((-1559 (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|)))) +(-594 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (QUOTE (-1131))) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| (-1131) (QUOTE (-827))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (LIST (QUOTE -597) (QUOTE (-839))))) -(-593 S |Key| |Entry|) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (QUOTE (-1134))) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| (-1134) (QUOTE (-830))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (LIST (QUOTE -599) (QUOTE (-842))))) +(-595 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-594 |Key| |Entry|) +(-596 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4354 . T) (-3526 . T)) +((-4367 . T) (-2997 . T)) NIL -(-595 R S) +(-597 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-596 S) +(-598 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) -(-597 S) +((|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) +(-599 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-598 S) +(-600 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-599 -3281 UP) +(-601 -1935 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-600) +(-602) ((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|true| (($) "the definite truth value")) (|unknown| (($) "the indefinite `unknown'")) (|false| (($) "the definite falsehood value"))) NIL NIL -(-601 S R) +(-603 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-602 R) +(-604 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4350 . T)) +((-4363 . T)) NIL -(-603 A R S) +(-605 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-825)))) -(-604 R -3281) +((-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-828)))) +(-606 R -1935) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL -(-605 R UP) +(-607 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4348 . T) (-4347 . T) ((-4355 "*") . T) (-4346 . T) (-4350 . T)) -((|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552))))) -(-606 R E V P TS ST) +((-4361 . T) (-4360 . T) ((-4368 "*") . T) (-4359 . T) (-4363 . T)) +((|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552))))) +(-608 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-607 OV E Z P) +(-609 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-608) +(-610) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-609 |VarSet| R |Order|) +(-611 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4350 . T)) +((-4363 . T)) NIL -(-610 R |ls|) +(-612 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-611) +(-613) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-612 R -3281) +(-614 R -1935) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-613 |lv| -3281) +(-615 |lv| -1935) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-614) +(-616) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4354 . T)) -((-12 (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (QUOTE (-1131))) (LIST (QUOTE |:|) (QUOTE -4120) (QUOTE (-52))))))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-52) (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-52) (QUOTE (-1073))) (|HasCategory| (-52) (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| (-52) (QUOTE (-1073))) (|HasCategory| (-52) (LIST (QUOTE -304) (QUOTE (-52))))) (|HasCategory| (-1131) (QUOTE (-827))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-52) (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-52) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-52) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (LIST (QUOTE -597) (QUOTE (-839))))) -(-615 S R) +((-4367 . T)) +((-12 (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (QUOTE (-1134))) (LIST (QUOTE |:|) (QUOTE -2162) (QUOTE (-52))))))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-52) (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-52) (QUOTE (-1076))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| (-52) (QUOTE (-1076))) (|HasCategory| (-52) (LIST (QUOTE -303) (QUOTE (-52))))) (|HasCategory| (-1134) (QUOTE (-830))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-52) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (LIST (QUOTE -599) (QUOTE (-842))))) +(-617 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-358)))) -(-616 R) +((|HasCategory| |#2| (QUOTE (-357)))) +(-618 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4348 . T) (-4347 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4361 . T) (-4360 . T)) NIL -(-617 R A) +(-619 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4350 -1523 (-3743 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))) (-4348 . T) (-4347 . T)) -((-1523 (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -412) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|)))) -(-618 R FE) +((-4363 -1559 (-2520 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))) (-4361 . T) (-4360 . T)) +((-1559 (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -361) (|devaluate| |#1|)))) +(-620 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL NIL -(-619 R) +(-621 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-620 S R) +(-622 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2960 (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-358)))) -(-621 R) +((-1681 (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-357)))) +(-623 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4350 . T)) +((-4363 . T)) NIL -(-622 A B) +(-624 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-623 A B) +(-625 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) NIL NIL -(-624 A B C) +(-626 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-625 S) +(-627 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) -((-4354 . T) (-4353 . T)) -((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-808))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-626 T$) +((-4367 . T) (-4366 . T)) +((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-628 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-627 S) +(-629 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-628 R) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-630 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-629 S E |un|) +(-631 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-630 A S) +(-632 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4354))) -(-631 S) +((|HasAttribute| |#1| (QUOTE -4367))) +(-633 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) -((-3526 . T)) +((-2997 . T)) NIL -(-632 R -3281 L) +(-634 R -1935 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-633 A) +(-635 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358)))) -(-634 A M) +((-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-357)))) +(-636 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358)))) -(-635 S A) +((-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-357)))) +(-637 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-358)))) -(-636 A) +((|HasCategory| |#2| (QUOTE (-357)))) +(-638 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4347 . T) (-4348 . T) (-4350 . T)) +((-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-637 -3281 UP) +(-639 -1935 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-638 A -3261) +(-640 A -1528) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358)))) -(-639 A L) +((-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-357)))) +(-641 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-640 S) +(-642 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-641) +(-643) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-642 M R S) +(-644 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4348 . T) (-4347 . T)) -((|HasCategory| |#1| (QUOTE (-771)))) -(-643 R) +((-4361 . T) (-4360 . T)) +((|HasCategory| |#1| (QUOTE (-774)))) +(-645 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-644 |VarSet| R) +(-646 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4348 . T) (-4347 . T)) -((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-170)))) -(-645 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4361 . T) (-4360 . T)) +((|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-169)))) +(-647 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-646 S) +(-648 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4354 . T) (-4353 . T) (-3526 . T)) +((-4367 . T) (-4366 . T) (-2997 . T)) NIL -(-647 -3281) +(-649 -1935) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-648 -3281 |Row| |Col| M) +(-650 -1935 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-649 R E OV P) +(-651 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-650 |n| R) +(-652 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4350 . T) (-4353 . T) (-4347 . T) (-4348 . T)) -((|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasAttribute| |#2| (QUOTE (-4355 "*"))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (-1523 (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-544))) (-1523 (|HasAttribute| |#2| (QUOTE (-4355 "*"))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-229)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-170)))) -(-651) +((-4363 . T) (-4366 . T) (-4360 . T) (-4361 . T)) +((|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasAttribute| |#2| (QUOTE (-4368 "*"))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (-1559 (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-544))) (-1559 (|HasAttribute| |#2| (QUOTE (-4368 "*"))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-228)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-169)))) +(-653) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-652 |VarSet|) +(-654 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-653 A S) +(-655 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) NIL NIL -(-654 S) +(-656 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) -((-3526 . T)) +((-2997 . T)) NIL -(-655 R) +(-657 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((-1523 (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (QUOTE (-1025))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-656) +((-1559 (-12 (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (QUOTE (-1028))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-658) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-657 |VarSet|) +(-659 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-658 A) +(-660 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-659 A C) +(-661 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument."))) NIL NIL -(-660 A B C) +(-662 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}."))) NIL NIL -(-661) +(-663) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,{}t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-662 A) +(-664 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-663 A C) +(-665 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-664 A B C) +(-666 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}"))) NIL NIL -(-665 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-667 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-666 S R |Row| |Col|) +(-668 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4355 "*"))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-544)))) -(-667 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4368 "*"))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-544)))) +(-669 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4353 . T) (-4354 . T) (-3526 . T)) +((-4366 . T) (-4367 . T) (-2997 . T)) NIL -(-668 R |Row| |Col| M) +(-670 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-544)))) -(-669 R) +((|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-544)))) +(-671 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4353 . T) (-4354 . T)) -((-1523 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-544))) (|HasAttribute| |#1| (QUOTE (-4355 "*"))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-670 R) +((-4366 . T) (-4367 . T)) +((-1559 (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-544))) (|HasAttribute| |#1| (QUOTE (-4368 "*"))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-672 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-671 T$) +(-673 T$) ((|constructor| (NIL "This domain implements the notion of optional vallue,{} where a computation may fail to produce expected value.")) (|nothing| (($) "represents failure.")) (|autoCoerce| ((|#1| $) "same as above but implicitly called by the compiler.")) (|coerce| ((|#1| $) "x::T tries to extract the value of \\spad{T} from the computation \\spad{x}. Produces a runtime error when the computation fails.") (($ |#1|) "x::T injects the value \\spad{x} into \\%.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} evaluates \\spad{true} if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}."))) NIL NIL -(-672 S -3281 FLAF FLAS) +(-674 S -1935 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-673 R Q) +(-675 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-674) +(-676) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4346 . T) (-4351 |has| (-679) (-358)) (-4345 |has| (-679) (-358)) (-3858 . T) (-4352 |has| (-679) (-6 -4352)) (-4349 |has| (-679) (-6 -4349)) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| (-679) (QUOTE (-145))) (|HasCategory| (-679) (QUOTE (-143))) (|HasCategory| (-679) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-679) (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| (-679) (QUOTE (-363))) (|HasCategory| (-679) (QUOTE (-358))) (|HasCategory| (-679) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-679) (QUOTE (-229))) (-1523 (|HasCategory| (-679) (QUOTE (-358))) (|HasCategory| (-679) (QUOTE (-344)))) (|HasCategory| (-679) (QUOTE (-344))) (|HasCategory| (-679) (LIST (QUOTE -281) (QUOTE (-679)) (QUOTE (-679)))) (|HasCategory| (-679) (LIST (QUOTE -304) (QUOTE (-679)))) (|HasCategory| (-679) (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE (-679)))) (|HasCategory| (-679) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| (-679) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| (-679) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| (-679) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (-1523 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-358))) (|HasCategory| (-679) (QUOTE (-344)))) (|HasCategory| (-679) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-679) (QUOTE (-998))) (|HasCategory| (-679) (QUOTE (-1171))) (-12 (|HasCategory| (-679) (QUOTE (-978))) (|HasCategory| (-679) (QUOTE (-1171)))) (-1523 (-12 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-885)))) (|HasCategory| (-679) (QUOTE (-358))) (-12 (|HasCategory| (-679) (QUOTE (-344))) (|HasCategory| (-679) (QUOTE (-885))))) (-1523 (-12 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-885)))) (-12 (|HasCategory| (-679) (QUOTE (-358))) (|HasCategory| (-679) (QUOTE (-885)))) (-12 (|HasCategory| (-679) (QUOTE (-344))) (|HasCategory| (-679) (QUOTE (-885))))) (|HasCategory| (-679) (QUOTE (-537))) (-12 (|HasCategory| (-679) (QUOTE (-1034))) (|HasCategory| (-679) (QUOTE (-1171)))) (|HasCategory| (-679) (QUOTE (-1034))) (-1523 (|HasCategory| (-679) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-679) (QUOTE (-358)))) (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-885))) (-1523 (-12 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-885)))) (|HasCategory| (-679) (QUOTE (-358)))) (-1523 (-12 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-885)))) (|HasCategory| (-679) (QUOTE (-544)))) (-12 (|HasCategory| (-679) (QUOTE (-229))) (|HasCategory| (-679) (QUOTE (-358)))) (-12 (|HasCategory| (-679) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-679) (QUOTE (-358)))) (|HasCategory| (-679) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| (-679) (QUOTE (-827))) (|HasCategory| (-679) (QUOTE (-544))) (|HasAttribute| (-679) (QUOTE -4352)) (|HasAttribute| (-679) (QUOTE -4349)) (-12 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-885)))) (|HasCategory| (-679) (QUOTE (-143)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-885)))) (|HasCategory| (-679) (QUOTE (-344))))) -(-675 S) +((-4359 . T) (-4364 |has| (-681) (-357)) (-4358 |has| (-681) (-357)) (-4365 |has| (-681) (-6 -4365)) (-4362 |has| (-681) (-6 -4362)) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| (-681) (QUOTE (-144))) (|HasCategory| (-681) (QUOTE (-142))) (|HasCategory| (-681) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-681) (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| (-681) (QUOTE (-362))) (|HasCategory| (-681) (QUOTE (-357))) (|HasCategory| (-681) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-681) (QUOTE (-228))) (-1559 (|HasCategory| (-681) (QUOTE (-357))) (|HasCategory| (-681) (QUOTE (-343)))) (|HasCategory| (-681) (QUOTE (-343))) (|HasCategory| (-681) (LIST (QUOTE -280) (QUOTE (-681)) (QUOTE (-681)))) (|HasCategory| (-681) (LIST (QUOTE -303) (QUOTE (-681)))) (|HasCategory| (-681) (LIST (QUOTE -506) (QUOTE (-1152)) (QUOTE (-681)))) (|HasCategory| (-681) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| (-681) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| (-681) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| (-681) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (-1559 (|HasCategory| (-681) (QUOTE (-301))) (|HasCategory| (-681) (QUOTE (-357))) (|HasCategory| (-681) (QUOTE (-343)))) (|HasCategory| (-681) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-681) (QUOTE (-1001))) (|HasCategory| (-681) (QUOTE (-1174))) (-12 (|HasCategory| (-681) (QUOTE (-981))) (|HasCategory| (-681) (QUOTE (-1174)))) (-1559 (-12 (|HasCategory| (-681) (QUOTE (-301))) (|HasCategory| (-681) (QUOTE (-888)))) (|HasCategory| (-681) (QUOTE (-357))) (-12 (|HasCategory| (-681) (QUOTE (-343))) (|HasCategory| (-681) (QUOTE (-888))))) (-1559 (-12 (|HasCategory| (-681) (QUOTE (-301))) (|HasCategory| (-681) (QUOTE (-888)))) (-12 (|HasCategory| (-681) (QUOTE (-357))) (|HasCategory| (-681) (QUOTE (-888)))) (-12 (|HasCategory| (-681) (QUOTE (-343))) (|HasCategory| (-681) (QUOTE (-888))))) (|HasCategory| (-681) (QUOTE (-537))) (-12 (|HasCategory| (-681) (QUOTE (-1037))) (|HasCategory| (-681) (QUOTE (-1174)))) (|HasCategory| (-681) (QUOTE (-1037))) (-1559 (|HasCategory| (-681) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-681) (QUOTE (-357)))) (|HasCategory| (-681) (QUOTE (-301))) (|HasCategory| (-681) (QUOTE (-888))) (-1559 (-12 (|HasCategory| (-681) (QUOTE (-301))) (|HasCategory| (-681) (QUOTE (-888)))) (|HasCategory| (-681) (QUOTE (-357)))) (-1559 (-12 (|HasCategory| (-681) (QUOTE (-301))) (|HasCategory| (-681) (QUOTE (-888)))) (|HasCategory| (-681) (QUOTE (-544)))) (-12 (|HasCategory| (-681) (QUOTE (-228))) (|HasCategory| (-681) (QUOTE (-357)))) (-12 (|HasCategory| (-681) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-681) (QUOTE (-357)))) (|HasCategory| (-681) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| (-681) (QUOTE (-830))) (|HasCategory| (-681) (QUOTE (-544))) (|HasAttribute| (-681) (QUOTE -4365)) (|HasAttribute| (-681) (QUOTE -4362)) (-12 (|HasCategory| (-681) (QUOTE (-301))) (|HasCategory| (-681) (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-681) (QUOTE (-301))) (|HasCategory| (-681) (QUOTE (-888)))) (|HasCategory| (-681) (QUOTE (-142)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-681) (QUOTE (-301))) (|HasCategory| (-681) (QUOTE (-888)))) (|HasCategory| (-681) (QUOTE (-343))))) +(-677 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4354 . T) (-3526 . T)) +((-4367 . T) (-2997 . T)) NIL -(-676 U) +(-678 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-677) +(-679) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-678 OV E -3281 PG) +(-680 OV E -1935 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-679) +(-681) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-2874 . T) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-3030 . T) (-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-680 R) +(-682 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-681) +(-683) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4352 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4365 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-682 S D1 D2 I) +(-684 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-683 S) +(-685 S) ((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s} viewed as an element of \\%."))) NIL NIL -(-684 S) +(-686 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-685 S) +(-687 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-686 S T$) +(-688 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-687 S -3768 I) +(-689 S -4251 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-688 E OV R P) +(-690 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented"))) NIL NIL -(-689 R) +(-691 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4347 . T) (-4348 . T) (-4350 . T)) +((-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-690 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-692 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-691) +(-693) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-692 R |Mod| -3297 -3280 |exactQuo|) +(-694 R |Mod| -3226 -3759 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-693 R |Rep|) +(-695 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4349 |has| |#1| (-358)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-344))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-694 IS E |ff|) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4362 |has| |#1| (-357)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1127))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-343))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasAttribute| |#1| (QUOTE -4364)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-696 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-695 R M) +(-697 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4348 |has| |#1| (-170)) (-4347 |has| |#1| (-170)) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145)))) -(-696 R |Mod| -3297 -3280 |exactQuo|) +((-4361 |has| |#1| (-169)) (-4360 |has| |#1| (-169)) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144)))) +(-698 R |Mod| -3226 -3759 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4350 . T)) +((-4363 . T)) NIL -(-697 S R) +(-699 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-698 R) +(-700 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4348 . T) (-4347 . T)) +((-4361 . T) (-4360 . T)) NIL -(-699 -3281) +(-701 -1935) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) -((-4350 . T)) +((-4363 . T)) NIL -(-700 S) +(-702 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-701) +(-703) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-702 S) +(-704 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-703) +(-705) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-704 S R UP) +(-706 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363)))) -(-705 R UP) +((|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-362)))) +(-707 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4346 |has| |#1| (-358)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4359 |has| |#1| (-357)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-706 S) +(-708 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-707) +(-709) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-708 -3281 UP) +(-710 -1935 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-709 |VarSet| E1 E2 R S PR PS) +(-711 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-710 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-712 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-711 E OV R PPR) +(-713 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-712 |vl| R) +(-714 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4355 "*") |has| |#2| (-170)) (-4346 |has| |#2| (-544)) (-4351 |has| |#2| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) -((|HasCategory| |#2| (QUOTE (-885))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-170))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-358))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-143))))) -(-713 E OV R PRF) +(((-4368 "*") |has| |#2| (-169)) (-4359 |has| |#2| (-544)) (-4364 |has| |#2| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) +((|HasCategory| |#2| (QUOTE (-888))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-844 |#1|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#2| (QUOTE -4364)) (|HasCategory| |#2| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-142))))) +(-715 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-714 E OV R P) +(-716 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-715 R S M) +(-717 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-716 R M) +(-718 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4348 |has| |#1| (-170)) (-4347 |has| |#1| (-170)) (-4350 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-827)))) -(-717 S) +((-4361 |has| |#1| (-169)) (-4360 |has| |#1| (-169)) (-4363 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-830)))) +(-719 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4343 . T) (-4354 . T) (-3526 . T)) +((-4356 . T) (-4367 . T) (-2997 . T)) NIL -(-718 S) +(-720 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4353 . T) (-4343 . T) (-4354 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-719) +((-4366 . T) (-4356 . T) (-4367 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-721) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-720 S) +(-722 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-721 |Coef| |Var|) +(-723 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4348 . T) (-4347 . T) (-4350 . T)) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4361 . T) (-4360 . T) (-4363 . T)) NIL -(-722 OV E R P) +(-724 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-723 E OV R P) +(-725 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-724 S R) +(-726 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-725 R) +(-727 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4348 . T) (-4347 . T)) +((-4361 . T) (-4360 . T)) NIL -(-726) +(-728) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-727) +(-729) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-728) +(-730) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-729) +(-731) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-730) +(-732) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-731) +(-733) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-732) +(-734) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-733) +(-735) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-734) +(-736) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-735) +(-737) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-736) +(-738) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-737) +(-739) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-738) +(-740) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-739) +(-741) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-740) +(-742) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-741 S) +(-743 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-742) +(-744) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-743 S) +(-745 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-744) +(-746) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-745 |Par|) +(-747 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-746 -3281) +(-748 -1935) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-747 P -3281) +(-749 P -1935) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-748 UP -3281) +(-750 T$) +NIL +NIL +NIL +(-751 UP -1935) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-749) +(-752) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-750 R) +(-753 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-751) +(-754) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4355 "*") . T)) +(((-4368 "*") . T)) NIL -(-752 R -3281) +(-755 R -1935) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-753 S) +(-756 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-754) +(-757) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-755 R |PolR| E |PolE|) +(-758 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-756 R E V P TS) +(-759 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-757 -3281 |ExtF| |SUEx| |ExtP| |n|) +(-760 -1935 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-758 BP E OV R P) +(-761 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-759 |Par|) +(-762 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-760 R |VarSet|) +(-763 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-885))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149))))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))) (-2960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))) (-2960 (|HasCategory| |#1| (QUOTE (-537)))) (-2960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))) (-2960 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-552))))) (-2960 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))) (-2960 (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-552))))))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-761 R S) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-888))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1152))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1152))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1152)))) (-1681 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1152)))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1152)))) (-1681 (|HasCategory| |#1| (QUOTE (-537)))) (-1681 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1152)))) (-1681 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-552))))) (-1681 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-1152)))) (-1681 (|HasCategory| |#1| (LIST (QUOTE -971) (QUOTE (-552))))))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4364)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-764 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-762 R) +(-765 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4349 |has| |#1| (-358)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-763 R) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4362 |has| |#1| (-357)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1127))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasAttribute| |#1| (QUOTE -4364)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-766 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) -(-764 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) +(-767 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4354 . T) (-4353 . T) (-3526 . T)) +((-4367 . T) (-4366 . T) (-2997 . T)) NIL -(-765 S) +(-768 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-827)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-170)))) -(-766) +((-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-1028))) (|HasCategory| |#1| (QUOTE (-169)))) +(-769) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-767) +(-770) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-768) +(-771) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-769) +(-772) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-770 |Curve|) +(-773 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-771) +(-774) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-772) +(-775) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-773) +(-776) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-774) +(-777) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-775) +(-778) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-776 S R) +(-779 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-363)))) -(-777 R) +((|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-1037))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-362)))) +(-780 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4347 . T) (-4348 . T) (-4350 . T)) +((-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-778 -1523 R OS S) +(-781 -1559 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-779 R) +(-782 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (-1523 (|HasCategory| (-975 |#1|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (-1523 (|HasCategory| (-975 |#1|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-975 |#1|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-975 |#1|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552))))) -(-780) +((-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|))) (-1559 (|HasCategory| (-978 |#1|) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (-1559 (|HasCategory| (-978 |#1|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| (-978 |#1|) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-978 |#1|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552))))) +(-783) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-781 R -3281 L) +(-784 R -1935 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-782 R -3281) +(-785 R -1935) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-783) +(-786) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-784 R -3281) +(-787 R -1935) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-785) +(-788) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-786 -3281 UP UPUP R) +(-789 -1935 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-787 -3281 UP L LQ) +(-790 -1935 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-788) +(-791) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-789 -3281 UP L LQ) +(-792 -1935 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-790 -3281 UP) +(-793 -1935 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-791 -3281 L UP A LO) +(-794 -1935 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-792 -3281 UP) +(-795 -1935 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-793 -3281 LO) +(-796 -1935 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-794 -3281 LODO) +(-797 -1935 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-795 -2562 S |f|) +(-798 -4030 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4347 |has| |#2| (-1025)) (-4348 |has| |#2| (-1025)) (-4350 |has| |#2| (-6 -4350)) ((-4355 "*") |has| |#2| (-170)) (-4353 . T)) -((-1523 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))))) (-1523 (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1073)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#2| (QUOTE (-358))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358)))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-773))) (-1523 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-170))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-170)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-229)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-358)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-707)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-773)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1073))))) (-1523 (-12 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-827))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-1523 (|HasCategory| |#2| (QUOTE (-1025))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1073)))) (|HasAttribute| |#2| (QUOTE -4350)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) -(-796 R) +((-4360 |has| |#2| (-1028)) (-4361 |has| |#2| (-1028)) (-4363 |has| |#2| (-6 -4363)) ((-4368 "*") |has| |#2| (-169)) (-4366 . T)) +((-1559 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))))) (-1559 (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1076)))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#2| (QUOTE (-357))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357)))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-776))) (-1559 (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-828)))) (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (QUOTE (-169))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1028)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1028)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1028)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-169)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-228)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-709)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-776)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-828)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1076))))) (-1559 (-12 (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-776))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-828))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-830))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (QUOTE (-1028)))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-1559 (|HasCategory| |#2| (QUOTE (-1028))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-1076)))) (|HasAttribute| |#2| (QUOTE -4363)) (|HasCategory| |#2| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) +(-799 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-885))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-798 (-1149)) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-798 (-1149)) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-798 (-1149)) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-798 (-1149)) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-798 (-1149)) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-797 |Kernels| R |var|) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-888))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-801 (-1152)) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-801 (-1152)) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-801 (-1152)) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-801 (-1152)) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-801 (-1152)) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4364)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-800 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring."))) -(((-4355 "*") |has| |#2| (-358)) (-4346 |has| |#2| (-358)) (-4351 |has| |#2| (-358)) (-4345 |has| |#2| (-358)) (-4350 . T) (-4348 . T) (-4347 . T)) -((|HasCategory| |#2| (QUOTE (-358)))) -(-798 S) +(((-4368 "*") |has| |#2| (-357)) (-4359 |has| |#2| (-357)) (-4364 |has| |#2| (-357)) (-4358 |has| |#2| (-357)) (-4363 . T) (-4361 . T) (-4360 . T)) +((|HasCategory| |#2| (QUOTE (-357)))) +(-801 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-799 S) +(-802 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-800) +(-803) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-801) +(-804) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-802) +(-805) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-803) +(-806) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-804) +(-807) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-805) +(-808) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-806 R) +(-809 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-807 P R) +(-810 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-229)))) -(-808) +((-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-228)))) +(-811) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-809) +(-812) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-810 S) +(-813 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4353 . T) (-4343 . T) (-4354 . T) (-3526 . T)) +((-4366 . T) (-4356 . T) (-4367 . T) (-2997 . T)) NIL -(-811) +(-814) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-812 R S) +(-815 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-813 R) +(-816 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4350 |has| |#1| (-825))) -((|HasCategory| |#1| (QUOTE (-825))) (-1523 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-537))) (-1523 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-21)))) -(-814 R) +((-4363 |has| |#1| (-828))) +((|HasCategory| |#1| (QUOTE (-828))) (-1559 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-537))) (-1559 (|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-21)))) +(-817 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4348 |has| |#1| (-170)) (-4347 |has| |#1| (-170)) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145)))) -(-815) +((-4361 |has| |#1| (-169)) (-4360 |has| |#1| (-169)) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144)))) +(-818) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-816) +(-819) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-817) +(-820) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-818) +(-821) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-819 R S) +(-822 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-820 R) +(-823 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4350 |has| |#1| (-825))) -((|HasCategory| |#1| (QUOTE (-825))) (-1523 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-537))) (-1523 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-21)))) -(-821) +((-4363 |has| |#1| (-828))) +((|HasCategory| |#1| (QUOTE (-828))) (-1559 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-537))) (-1559 (|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-21)))) +(-824) ((|constructor| (NIL "Ordered finite sets."))) NIL NIL -(-822 -2562 S) +(-825 -4030 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-823) +(-826) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-824 S) +(-827 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-825) +(-828) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4350 . T)) +((-4363 . T)) NIL -(-826 S) +(-829 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-827) +(-830) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-828 S R) +(-831 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-170)))) -(-829 R) +((|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169)))) +(-832 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4347 . T) (-4348 . T) (-4350 . T)) +((-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-830 R C) +(-833 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) -(-831 R |sigma| -4057) +((|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) +(-834 R |sigma| -3427) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358)))) -(-832 |x| R |sigma| -4057) +((-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-357)))) +(-835 |x| R |sigma| -3427) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial."))) -((-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-358)))) -(-833 R) +((-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-357)))) +(-836 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) -(-834) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) +(-837) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-835) +(-838) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-836 S) -((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}"))) +(-839 S) +((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}"))) NIL NIL -(-837) -((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}"))) +(-840) +((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}"))) NIL NIL -(-838) +(-841) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-839) +(-842) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-840) +(-843) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-841 |VariableList|) +(-844 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-842 R |vl| |wl| |wtlevel|) +(-845 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights"))) -((-4348 |has| |#1| (-170)) (-4347 |has| |#1| (-170)) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358)))) -(-843 R PS UP) +((-4361 |has| |#1| (-169)) (-4360 |has| |#1| (-169)) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357)))) +(-846 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-844 R |x| |pt|) +(-847 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-845 |p|) +(-848 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-846 |p|) +(-849 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-847 |p|) +(-850 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| (-846 |#1|) (QUOTE (-885))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-846 |#1|) (QUOTE (-143))) (|HasCategory| (-846 |#1|) (QUOTE (-145))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-846 |#1|) (QUOTE (-998))) (|HasCategory| (-846 |#1|) (QUOTE (-800))) (-1523 (|HasCategory| (-846 |#1|) (QUOTE (-800))) (|HasCategory| (-846 |#1|) (QUOTE (-827)))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| (-846 |#1|) (QUOTE (-1124))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| (-846 |#1|) (QUOTE (-229))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -846) (|devaluate| |#1|)))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -304) (LIST (QUOTE -846) (|devaluate| |#1|)))) (|HasCategory| (-846 |#1|) (LIST (QUOTE -281) (LIST (QUOTE -846) (|devaluate| |#1|)) (LIST (QUOTE -846) (|devaluate| |#1|)))) (|HasCategory| (-846 |#1|) (QUOTE (-302))) (|HasCategory| (-846 |#1|) (QUOTE (-537))) (|HasCategory| (-846 |#1|) (QUOTE (-827))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-846 |#1|) (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-846 |#1|) (QUOTE (-885)))) (|HasCategory| (-846 |#1|) (QUOTE (-143))))) -(-848 |p| PADIC) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| (-849 |#1|) (QUOTE (-888))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| (-849 |#1|) (QUOTE (-142))) (|HasCategory| (-849 |#1|) (QUOTE (-144))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-849 |#1|) (QUOTE (-1001))) (|HasCategory| (-849 |#1|) (QUOTE (-803))) (-1559 (|HasCategory| (-849 |#1|) (QUOTE (-803))) (|HasCategory| (-849 |#1|) (QUOTE (-830)))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| (-849 |#1|) (QUOTE (-1127))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| (-849 |#1|) (QUOTE (-228))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -506) (QUOTE (-1152)) (LIST (QUOTE -849) (|devaluate| |#1|)))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -303) (LIST (QUOTE -849) (|devaluate| |#1|)))) (|HasCategory| (-849 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -849) (|devaluate| |#1|)) (LIST (QUOTE -849) (|devaluate| |#1|)))) (|HasCategory| (-849 |#1|) (QUOTE (-301))) (|HasCategory| (-849 |#1|) (QUOTE (-537))) (|HasCategory| (-849 |#1|) (QUOTE (-830))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-849 |#1|) (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-849 |#1|) (QUOTE (-888)))) (|HasCategory| (-849 |#1|) (QUOTE (-142))))) +(-851 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#2| (QUOTE (-885))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-800))) (-1523 (|HasCategory| |#2| (QUOTE (-800))) (|HasCategory| |#2| (QUOTE (-827)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-1124))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-827))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-143))))) -(-849 S T$) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#2| (QUOTE (-888))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-803))) (-1559 (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-830)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-1127))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-830))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-142))))) +(-852 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1073)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))))) -(-850) +((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1076)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))))) +(-853) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-851) +(-854) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-852 CF1 CF2) +(-855 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-853 |ComponentFunction|) +(-856 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-854 CF1 CF2) +(-857 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-855 |ComponentFunction|) +(-858 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-856) +(-859) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-857 CF1 CF2) +(-860 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-858 |ComponentFunction|) +(-861 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-859) +(-862) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-860 R) +(-863 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-861 R S L) +(-864 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-862 S) +(-865 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-863 |Base| |Subject| |Pat|) +(-866 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2960 (|HasCategory| |#2| (QUOTE (-1025)))) (-2960 (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149)))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (-2960 (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149)))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149))))) -(-864 R A B) +((-12 (-1681 (|HasCategory| |#2| (QUOTE (-1028)))) (-1681 (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-1152)))))) (-12 (|HasCategory| |#2| (QUOTE (-1028))) (-1681 (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-1152)))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-1152))))) +(-867 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-865 R S) +(-868 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-866 R -3768) +(-869 R -4251) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-867 R S) +(-870 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-868 R) +(-871 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-869 |VarSet|) +(-872 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-870 UP R) +(-873 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented"))) NIL NIL -(-871) +(-874) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-872 UP -3281) +(-875 UP -1935) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-873) +(-876) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-874) +(-877) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-875 A S) +(-878 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-876 S) +(-879 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4350 . T)) +((-4363 . T)) NIL -(-877 S) +(-880 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-878 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-881 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-879 S) +(-882 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4350 . T)) +((-4363 . T)) NIL -(-880 S) +(-883 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-881 S) +(-884 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4350 . T)) -((-1523 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-827)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-827)))) -(-882 R E |VarSet| S) +((-4363 . T)) +((-1559 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-830)))) +(-885 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-883 R S) +(-886 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-884 S) +(-887 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL -((|HasCategory| |#1| (QUOTE (-143)))) -(-885) +((|HasCategory| |#1| (QUOTE (-142)))) +(-888) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-886 |p|) +(-889 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-363)))) -(-887 R0 -3281 UP UPUP R) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-142))) (|HasCategory| $ (QUOTE (-362)))) +(-890 R0 -1935 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-888 UP UPUP R) +(-891 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-889 UP UPUP) +(-892 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-890 R) +(-893 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-891 R) +(-894 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-892 E OV R P) +(-895 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-893) +(-896) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-894 -3281) +(-897 -1935) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-895 R) +(-898 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-896) +(-899) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-897) +(-900) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4355 "*") . T)) +(((-4368 "*") . T)) NIL -(-898 -3281 P) +(-901 -1935 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-899 |xx| -3281) +(-902 |xx| -1935) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL -(-900 R |Var| |Expon| GR) +(-903 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-901 S) +(-904 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-902) +(-905) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-903) +(-906) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) NIL NIL -(-904) +(-907) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-905 R -3281) +(-908 R -1935) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-906) +(-909) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-907 S A B) +(-910 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-908 S R -3281) +(-911 S R -1935) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-909 I) +(-912 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-910 S E) +(-913 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-911 S R L) +(-914 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-912 S E V R P) +(-915 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -862) (|devaluate| |#1|)))) -(-913 R -3281 -3768) +((|HasCategory| |#3| (LIST (QUOTE -865) (|devaluate| |#1|)))) +(-916 R -1935 -4251) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-914 -3768) +(-917 -4251) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-915 S R Q) +(-918 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-916 S) +(-919 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-917 S R P) +(-920 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-918) +(-921) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}."))) NIL NIL -(-919 R) +(-922 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4354 . T) (-4353 . T)) -((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1025))) (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1025)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-920 |lv| R) +((-4367 . T) (-4366 . T)) +((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-709))) (|HasCategory| |#1| (QUOTE (-1028))) (-12 (|HasCategory| |#1| (QUOTE (-981))) (|HasCategory| |#1| (QUOTE (-1028)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-923 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-921 |TheField| |ThePols|) +(-924 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-825)))) -(-922 R S) +((|HasCategory| |#1| (QUOTE (-828)))) +(-925 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-923 |x| R) +(-926 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-924 S R E |VarSet|) +(-927 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-885))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#4| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#4| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#4| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-827)))) -(-925 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-888))) (|HasAttribute| |#2| (QUOTE -4364)) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#4| (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#4| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#4| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#4| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-830)))) +(-928 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) NIL -(-926 E V R P -3281) +(-929 E V R P -1935) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-927 E |Vars| R P S) +(-930 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-928 R) +(-931 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-885))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1149) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-1149) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-1149) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-1149) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-1149) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-929 E V R P -3281) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-888))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1152) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-1152) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-1152) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-1152) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-1152) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4364)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-932 E V R P -1935) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-446)))) -(-930) +((|HasCategory| |#3| (QUOTE (-445)))) +(-933) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-931) +(-934) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-932 R L) +(-935 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}."))) NIL NIL -(-933 A B) +(-936 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-934 S) +(-937 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4354 . T) (-4353 . T)) -((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-935) +((-4367 . T) (-4366 . T)) +((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-938) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-936 -3281) +(-939 -1935) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-937 I) +(-940 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-938) +(-941) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-939 R E) +(-942 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-130)))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4351))) -(-940 A B) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-129)))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4364))) +(-943 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) -((-4350 -12 (|has| |#2| (-467)) (|has| |#1| (-467)))) -((-1523 (-12 (|HasCategory| |#1| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-773)))) (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-827))))) (-12 (|HasCategory| |#1| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-773)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-773))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-773))))) (-12 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-467)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-467)))) (-12 (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-707))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-363)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-467)))) (-12 (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-707)))) (-12 (|HasCategory| |#1| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-773))))) (-12 (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-707)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-827))))) -(-941) +((-4363 -12 (|has| |#2| (-466)) (|has| |#1| (-466)))) +((-1559 (-12 (|HasCategory| |#1| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-776)))) (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-830))))) (-12 (|HasCategory| |#1| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-776)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-776))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-776))))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-466)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-466)))) (-12 (|HasCategory| |#1| (QUOTE (-709))) (|HasCategory| |#2| (QUOTE (-709))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-362)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-466)))) (-12 (|HasCategory| |#1| (QUOTE (-709))) (|HasCategory| |#2| (QUOTE (-709)))) (-12 (|HasCategory| |#1| (QUOTE (-776))) (|HasCategory| |#2| (QUOTE (-776))))) (-12 (|HasCategory| |#1| (QUOTE (-709))) (|HasCategory| |#2| (QUOTE (-709)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-129))) (|HasCategory| |#2| (QUOTE (-129)))) (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-830))))) +(-944) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-942 T$) +(-945 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the variable name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula"))) NIL NIL -(-943) +(-946) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}."))) NIL NIL -(-944 S) +(-947 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4353 . T) (-4354 . T) (-3526 . T)) +((-4366 . T) (-4367 . T) (-2997 . T)) NIL -(-945 R |polR|) +(-948 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-446)))) -(-946) +((|HasCategory| |#1| (QUOTE (-445)))) +(-949) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-947) +(-950) ((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-948 S |Coef| |Expon| |Var|) +(-951 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) NIL NIL -(-949 |Coef| |Expon| |Var|) +(-952 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4347 . T) (-4348 . T) (-4350 . T)) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-950) +(-953) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-951 S R E |VarSet| P) +(-954 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL ((|HasCategory| |#2| (QUOTE (-544)))) -(-952 R E |VarSet| P) +(-955 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4353 . T) (-3526 . T)) +((-4366 . T) (-2997 . T)) NIL -(-953 R E V P) +(-956 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-302)))) (|HasCategory| |#1| (QUOTE (-446)))) -(-954 K) +((-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-301)))) (|HasCategory| |#1| (QUOTE (-445)))) +(-957 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-955 |VarSet| E RC P) +(-958 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-956 R) +(-959 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4354 . T) (-4353 . T) (-3526 . T)) +((-4367 . T) (-4366 . T) (-2997 . T)) NIL -(-957 R1 R2) +(-960 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-958 R) +(-961 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-959 K) +(-962 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-960 R E OV PPR) +(-963 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-961 K R UP -3281) +(-964 K R UP -1935) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-962 |vl| |nv|) +(-965 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-963 R |Var| |Expon| |Dpoly|) +(-966 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-302))))) -(-964 R E V P TS) +((-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-301))))) +(-967 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-965) +(-968) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation."))) NIL NIL -(-966 A B R S) +(-969 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-967 A S) +(-970 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-885))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-800))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-1124)))) -(-968 S) +((|HasCategory| |#2| (QUOTE (-888))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-803))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-1127)))) +(-971 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-3526 . T) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-2997 . T) (-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-969 |n| K) +(-972 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-970) +(-973) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-971 S) +(-974 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4353 . T) (-4354 . T) (-3526 . T)) +((-4366 . T) (-4367 . T) (-2997 . T)) NIL -(-972 S R) +(-975 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-285)))) -(-973 R) +((|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-1037))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-284)))) +(-976 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4346 |has| |#1| (-285)) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4359 |has| |#1| (-284)) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-974 QR R QS S) +(-977 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-975 R) +(-978 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4346 |has| |#1| (-285)) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (QUOTE (-285))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-285))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-537))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-358))))) -(-976 S) +((-4359 |has| |#1| (-284)) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-284))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-1037))) (|HasCategory| |#1| (QUOTE (-537))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357))))) +(-979 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-977 S) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-980 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-978) +(-981) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-979 -3281 UP UPUP |radicnd| |n|) +(-982 -1935 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4346 |has| (-402 |#2|) (-358)) (-4351 |has| (-402 |#2|) (-358)) (-4345 |has| (-402 |#2|) (-358)) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| (-402 |#2|) (QUOTE (-143))) (|HasCategory| (-402 |#2|) (QUOTE (-145))) (|HasCategory| (-402 |#2|) (QUOTE (-344))) (-1523 (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-344)))) (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-363))) (-1523 (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (|HasCategory| (-402 |#2|) (QUOTE (-344)))) (-1523 (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-402 |#2|) (QUOTE (-344))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-1523 (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358))))) -(-980 |bb|) +((-4359 |has| (-401 |#2|) (-357)) (-4364 |has| (-401 |#2|) (-357)) (-4358 |has| (-401 |#2|) (-357)) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| (-401 |#2|) (QUOTE (-142))) (|HasCategory| (-401 |#2|) (QUOTE (-144))) (|HasCategory| (-401 |#2|) (QUOTE (-343))) (-1559 (|HasCategory| (-401 |#2|) (QUOTE (-357))) (|HasCategory| (-401 |#2|) (QUOTE (-343)))) (|HasCategory| (-401 |#2|) (QUOTE (-357))) (|HasCategory| (-401 |#2|) (QUOTE (-362))) (-1559 (-12 (|HasCategory| (-401 |#2|) (QUOTE (-228))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (|HasCategory| (-401 |#2|) (QUOTE (-343)))) (-1559 (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-401 |#2|) (QUOTE (-343))))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-401 |#2|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-362))) (-1559 (|HasCategory| (-401 |#2|) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-401 |#2|) (QUOTE (-357)))) (-12 (|HasCategory| (-401 |#2|) (QUOTE (-228))) (|HasCategory| (-401 |#2|) (QUOTE (-357))))) +(-983 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| (-552) (QUOTE (-885))) (|HasCategory| (-552) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-552) (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-145))) (|HasCategory| (-552) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-998))) (|HasCategory| (-552) (QUOTE (-800))) (-1523 (|HasCategory| (-552) (QUOTE (-800))) (|HasCategory| (-552) (QUOTE (-827)))) (|HasCategory| (-552) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-1124))) (|HasCategory| (-552) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| (-552) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| (-552) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| (-552) (QUOTE (-229))) (|HasCategory| (-552) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-552) (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -304) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -281) (QUOTE (-552)) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-302))) (|HasCategory| (-552) (QUOTE (-537))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| (-552) (LIST (QUOTE -621) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-552) (QUOTE (-885)))) (|HasCategory| (-552) (QUOTE (-143))))) -(-981) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| (-552) (QUOTE (-888))) (|HasCategory| (-552) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| (-552) (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-144))) (|HasCategory| (-552) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-1001))) (|HasCategory| (-552) (QUOTE (-803))) (-1559 (|HasCategory| (-552) (QUOTE (-803))) (|HasCategory| (-552) (QUOTE (-830)))) (|HasCategory| (-552) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-1127))) (|HasCategory| (-552) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| (-552) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| (-552) (QUOTE (-228))) (|HasCategory| (-552) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| (-552) (LIST (QUOTE -506) (QUOTE (-1152)) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -303) (QUOTE (-552)))) (|HasCategory| (-552) (LIST (QUOTE -280) (QUOTE (-552)) (QUOTE (-552)))) (|HasCategory| (-552) (QUOTE (-301))) (|HasCategory| (-552) (QUOTE (-537))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| (-552) (LIST (QUOTE -623) (QUOTE (-552)))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-552) (QUOTE (-888)))) (|HasCategory| (-552) (QUOTE (-142))))) +(-984) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-982) +(-985) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-983 RP) +(-986 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-984 S) +(-987 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-985 A S) +(-988 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4354)) (|HasCategory| |#2| (QUOTE (-1073)))) -(-986 S) +((|HasAttribute| |#1| (QUOTE -4367)) (|HasCategory| |#2| (QUOTE (-1076)))) +(-989 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) -((-3526 . T)) +((-2997 . T)) NIL -(-987 S) +(-990 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-988) +(-991) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4346 . T) (-4351 . T) (-4345 . T) (-4348 . T) (-4347 . T) ((-4355 "*") . T) (-4350 . T)) +((-4359 . T) (-4364 . T) (-4358 . T) (-4361 . T) (-4360 . T) ((-4368 "*") . T) (-4363 . T)) NIL -(-989 R -3281) +(-992 R -1935) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-990 R -3281) +(-993 R -1935) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-991 -3281 UP) +(-994 -1935 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-992 -3281 UP) +(-995 -1935 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-993 S) +(-996 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-994 F1 UP UPUP R F2) +(-997 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented"))) NIL NIL -(-995) +(-998) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-996 |Pol|) +(-999 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-997 |Pol|) +(-1000 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-998) +(-1001) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-999) +(-1002) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1000 |TheField|) +(-1003 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4346 . T) (-4351 . T) (-4345 . T) (-4348 . T) (-4347 . T) ((-4355 "*") . T) (-4350 . T)) -((-1523 (|HasCategory| (-402 (-552)) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| (-402 (-552)) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-402 (-552)) (LIST (QUOTE -1014) (QUOTE (-552))))) -(-1001 -3281 L) +((-4359 . T) (-4364 . T) (-4358 . T) (-4361 . T) (-4360 . T) ((-4368 "*") . T) (-4363 . T)) +((-1559 (|HasCategory| (-401 (-552)) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| (-401 (-552)) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-401 (-552)) (LIST (QUOTE -1017) (QUOTE (-552))))) +(-1004 -1935 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1002 S) +(-1005 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1073)))) -(-1003 R E V P) +((|HasCategory| |#1| (QUOTE (-1076)))) +(-1006 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4354 . T) (-4353 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-839))))) -(-1004 R) +((-4367 . T) (-4366 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -599) (QUOTE (-842))))) +(-1007 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4355 "*")))) -(-1005 R) +((|HasAttribute| |#1| (QUOTE (-4368 "*")))) +(-1008 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-302)))) -(-1006 S) +((-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-301)))) +(-1009 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1007) +(-1010) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1008 S) +(-1011 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1009 S) +(-1012 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1010 -3281 |Expon| |VarSet| |FPol| |LFPol|) +(-1013 -1935 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +(((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-1011) +(-1014) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (QUOTE (-1149))) (LIST (QUOTE |:|) (QUOTE -4120) (QUOTE (-52))))))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-52) (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-52) (QUOTE (-1073))) (|HasCategory| (-52) (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| (-52) (QUOTE (-1073))) (|HasCategory| (-52) (LIST (QUOTE -304) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-1149) (QUOTE (-827))) (|HasCategory| (-52) (QUOTE (-1073))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-52) (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-52) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (LIST (QUOTE -597) (QUOTE (-839))))) -(-1012) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -2162) (QUOTE (-52))))))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-52) (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-52) (QUOTE (-1076))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| (-52) (QUOTE (-1076))) (|HasCategory| (-52) (LIST (QUOTE -303) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-1152) (QUOTE (-830))) (|HasCategory| (-52) (QUOTE (-1076))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (LIST (QUOTE -599) (QUOTE (-842))))) +(-1015) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1013 A S) +(-1016 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-1014 S) +(-1017 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-1015 Q R) +(-1018 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1016) +(-1019) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1017 UP) +(-1020 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1018 R) +(-1021 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1019 R) +(-1022 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1020 T$) +(-1023 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1021 T$) +(-1024 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitepoint is the contant indicating the white point of this color space."))) NIL NIL -(-1022 R |ls|) +(-1025 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4354 . T) (-4353 . T)) -((-12 (|HasCategory| (-760 |#1| (-841 |#2|)) (QUOTE (-1073))) (|HasCategory| (-760 |#1| (-841 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -760) (|devaluate| |#1|) (LIST (QUOTE -841) (|devaluate| |#2|)))))) (|HasCategory| (-760 |#1| (-841 |#2|)) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-760 |#1| (-841 |#2|)) (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| (-841 |#2|) (QUOTE (-363))) (|HasCategory| (-760 |#1| (-841 |#2|)) (LIST (QUOTE -597) (QUOTE (-839))))) -(-1023) +((-4367 . T) (-4366 . T)) +((-12 (|HasCategory| (-763 |#1| (-844 |#2|)) (QUOTE (-1076))) (|HasCategory| (-763 |#1| (-844 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -763) (|devaluate| |#1|) (LIST (QUOTE -844) (|devaluate| |#2|)))))) (|HasCategory| (-763 |#1| (-844 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-763 |#1| (-844 |#2|)) (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| (-844 |#2|) (QUOTE (-362))) (|HasCategory| (-763 |#1| (-844 |#2|)) (LIST (QUOTE -599) (QUOTE (-842))))) +(-1026) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1024 S) +(-1027 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1025) +(-1028) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4350 . T)) +((-4363 . T)) NIL -(-1026 |xx| -3281) +(-1029 |xx| -1935) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1027 S |m| |n| R |Row| |Col|) +(-1030 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-302))) (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (QUOTE (-544))) (|HasCategory| |#4| (QUOTE (-170)))) -(-1028 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-301))) (|HasCategory| |#4| (QUOTE (-357))) (|HasCategory| |#4| (QUOTE (-544))) (|HasCategory| |#4| (QUOTE (-169)))) +(-1031 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4353 . T) (-3526 . T) (-4348 . T) (-4347 . T)) +((-4366 . T) (-2997 . T) (-4361 . T) (-4360 . T)) NIL -(-1029 |m| |n| R) +(-1032 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4353 . T) (-4348 . T) (-4347 . T)) -((-1523 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358)))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (QUOTE (-302))) (|HasCategory| |#3| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -597) (QUOTE (-839)))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))))) -(-1030 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4366 . T) (-4361 . T) (-4360 . T)) +((-1559 (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-357)))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (QUOTE (-301))) (|HasCategory| |#3| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -599) (QUOTE (-842)))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))))) +(-1033 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1031 R) +(-1034 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-1032) +(-1035) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1033 S) +(-1036 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1034) +(-1037) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-1035 |TheField| |ThePolDom|) +(-1038 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1036) +(-1039) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4341 . T) (-4345 . T) (-4340 . T) (-4351 . T) (-4352 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4354 . T) (-4358 . T) (-4353 . T) (-4364 . T) (-4365 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-1037) +(-1040) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (QUOTE (-1149))) (LIST (QUOTE |:|) (QUOTE -4120) (QUOTE (-52))))))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-52) (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-52) (QUOTE (-1073))) (|HasCategory| (-52) (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| (-52) (QUOTE (-1073))) (|HasCategory| (-52) (LIST (QUOTE -304) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (QUOTE (-1073))) (|HasCategory| (-1149) (QUOTE (-827))) (|HasCategory| (-52) (QUOTE (-1073))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-52) (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-52) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (LIST (QUOTE -597) (QUOTE (-839))))) -(-1038 S R E V) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -2162) (QUOTE (-52))))))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-52) (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-52) (QUOTE (-1076))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| (-52) (QUOTE (-1076))) (|HasCategory| (-52) (LIST (QUOTE -303) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (QUOTE (-1076))) (|HasCategory| (-1152) (QUOTE (-830))) (|HasCategory| (-52) (QUOTE (-1076))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-52) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (LIST (QUOTE -599) (QUOTE (-842))))) +(-1041 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-1149))))) -(-1039 R E V) +((|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -971) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-1152))))) +(-1042 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) NIL -(-1040) +(-1043) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1041 S |TheField| |ThePols|) +(-1044 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1042 |TheField| |ThePols|) +(-1045 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1043 R E V P TS) +(-1046 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1044 S R E V P) +(-1047 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1045 R E V P) +(-1048 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4354 . T) (-4353 . T) (-3526 . T)) +((-4367 . T) (-4366 . T) (-2997 . T)) NIL -(-1046 R E V P TS) +(-1049 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1047) +(-1050) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1048 |f|) +(-1051 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1049 |Base| R -3281) +(-1052 |Base| R -1935) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1050 |Base| R -3281) +(-1053 |Base| R -1935) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL -(-1051 R |ls|) +(-1054 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1052 UP SAE UPA) +(-1055 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1053 R UP M) +(-1056 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4346 |has| |#1| (-358)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-344))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-344)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358))))) -(-1054 UP SAE UPA) +((-4359 |has| |#1| (-357)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-343))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-362))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-343)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152))))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357))))) +(-1057 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1055) +(-1058) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1056) +(-1059) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1057 S) +(-1060 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1058) +(-1061) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1059 R) +(-1062 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1060 R) +(-1063 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-885))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1061 (-1149)) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-1061 (-1149)) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-1061 (-1149)) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-1061 (-1149)) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-1061 (-1149)) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-1061 S) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-888))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1064 (-1152)) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-1064 (-1152)) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-1064 (-1152)) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-1064 (-1152)) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-1064 (-1152)) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4364)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-1064 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1062 R S) +(-1065 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-825)))) -(-1063) +((|HasCategory| |#1| (QUOTE (-828)))) +(-1066) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1064 R S) +(-1067 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1065 S) +(-1068 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1073)))) -(-1066 S) +((|HasCategory| |#1| (QUOTE (-1076)))) +(-1069 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) -((-3526 . T)) +((-2997 . T)) NIL -(-1067 S) +(-1070 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1073)))) -(-1068 S L) +((|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-1076)))) +(-1071 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) -((-3526 . T)) +((-2997 . T)) NIL -(-1069) +(-1072) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1070 A S) +(-1073 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1071 S) +(-1074 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4343 . T) (-3526 . T)) +((-4356 . T) (-2997 . T)) NIL -(-1072 S) +(-1075 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1073) +(-1076) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1074 |m| |n|) +(-1077 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1075 S) +(-1078 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) -((-4353 . T) (-4343 . T) (-4354 . T)) -((-1523 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-827))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-1076 |Str| |Sym| |Int| |Flt| |Expr|) +((-4366 . T) (-4356 . T) (-4367 . T)) +((-1559 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-830))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-1079 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1077) +(-1080) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1078 |Str| |Sym| |Int| |Flt| |Expr|) +(-1081 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1079 R FS) +(-1082 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1080 R E V P TS) +(-1083 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1081 R E V P TS) +(-1084 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1082 R E V P) +(-1085 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4354 . T) (-4353 . T) (-3526 . T)) +((-4367 . T) (-4366 . T) (-2997 . T)) NIL -(-1083) +(-1086) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1084 S) +(-1087 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1085) +(-1088) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1086 |dimtot| |dim1| S) +(-1089 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4347 |has| |#3| (-1025)) (-4348 |has| |#3| (-1025)) (-4350 |has| |#3| (-6 -4350)) ((-4355 "*") |has| |#3| (-170)) (-4353 . T)) -((-1523 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))))) (-1523 (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1073)))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#3| (QUOTE (-358))) (-1523 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1025)))) (-1523 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358)))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (QUOTE (-773))) (-1523 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (QUOTE (-825)))) (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (QUOTE (-170))) (-1523 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1025)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (-1523 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (QUOTE (-1073)))) (-1523 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1025)))) (-1523 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1025)))) (-1523 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1025)))) (-1523 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-170)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-229)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-358)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-707)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-773)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-825)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1025)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1073))))) (-1523 (-12 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-827))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552))))) (-1523 (|HasCategory| |#3| (QUOTE (-1025))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-552)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1073)))) (|HasAttribute| |#3| (QUOTE -4350)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1073))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -597) (QUOTE (-839))))) -(-1087 R |x|) +((-4360 |has| |#3| (-1028)) (-4361 |has| |#3| (-1028)) (-4363 |has| |#3| (-6 -4363)) ((-4368 "*") |has| |#3| (-169)) (-4366 . T)) +((-1559 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-709))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-776))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-828))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))))) (-1559 (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1076)))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1028)))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#3| (QUOTE (-357))) (-1559 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1028)))) (-1559 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-357)))) (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (QUOTE (-776))) (-1559 (|HasCategory| |#3| (QUOTE (-776))) (|HasCategory| |#3| (QUOTE (-828)))) (|HasCategory| |#3| (QUOTE (-828))) (|HasCategory| |#3| (QUOTE (-709))) (|HasCategory| |#3| (QUOTE (-169))) (-1559 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-1028)))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))) (-1559 (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-709))) (|HasCategory| |#3| (QUOTE (-776))) (|HasCategory| |#3| (QUOTE (-828))) (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (QUOTE (-1076)))) (-1559 (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1028)))) (-1559 (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1028)))) (-1559 (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (QUOTE (-1028)))) (-1559 (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1028)))) (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-129)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-169)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-228)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-357)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-709)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-776)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-828)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1028)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1076))))) (-1559 (-12 (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-169))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-357))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-709))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-776))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-828))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552)))))) (|HasCategory| (-552) (QUOTE (-830))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#3| (QUOTE (-228))) (|HasCategory| |#3| (QUOTE (-1028)))) (-12 (|HasCategory| |#3| (QUOTE (-1028))) (|HasCategory| |#3| (LIST (QUOTE -879) (QUOTE (-1152))))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552))))) (-1559 (|HasCategory| |#3| (QUOTE (-1028))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -1017) (QUOTE (-552)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#3| (QUOTE (-1076)))) (|HasAttribute| |#3| (QUOTE -4363)) (|HasCategory| |#3| (QUOTE (-129))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1076))) (|HasCategory| |#3| (LIST (QUOTE -303) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -599) (QUOTE (-842))))) +(-1090 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-446)))) -(-1088) +((|HasCategory| |#1| (QUOTE (-445)))) +(-1091) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1089 R -3281) +(-1092 R -1935) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1090 R) +(-1093 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1091) +(-1094) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1092) +(-1095) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1093) +(-1096) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4341 . T) (-4345 . T) (-4340 . T) (-4351 . T) (-4352 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4354 . T) (-4358 . T) (-4353 . T) (-4364 . T) (-4365 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-1094 S) +(-1097 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4353 . T) (-4354 . T) (-3526 . T)) +((-4366 . T) (-4367 . T) (-2997 . T)) NIL -(-1095 S |ndim| R |Row| |Col|) +(-1098 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-358))) (|HasAttribute| |#3| (QUOTE (-4355 "*"))) (|HasCategory| |#3| (QUOTE (-170)))) -(-1096 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-357))) (|HasAttribute| |#3| (QUOTE (-4368 "*"))) (|HasCategory| |#3| (QUOTE (-169)))) +(-1099 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-3526 . T) (-4353 . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-2997 . T) (-4366 . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-1097 R |Row| |Col| M) +(-1100 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1098 R |VarSet|) +(-1101 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-885))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-1099 |Coef| |Var| SMP) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-888))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4364)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-1102 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4348 . T) (-4347 . T) (-4350 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-358)))) -(-1100 R E V P) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4361 . T) (-4360 . T) (-4363 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-357)))) +(-1103 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4354 . T) (-4353 . T) (-3526 . T)) +((-4367 . T) (-4366 . T) (-2997 . T)) NIL -(-1101 UP -3281) +(-1104 UP -1935) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1102 R) +(-1105 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1103 R) +(-1106 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1104 R) +(-1107 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1105 S A) +(-1108 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-827)))) -(-1106 R) +((|HasCategory| |#1| (QUOTE (-830)))) +(-1109 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1107 R) +(-1110 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1108) +(-1111) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1109) +(-1112) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1110) +(-1113) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) -((-3526 . T)) +((-2997 . T)) NIL -(-1111) +(-1114) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1112) +(-1115) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1113 V C) +(-1116 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1114 V C) +(-1117 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| (-1113 |#1| |#2|) (LIST (QUOTE -304) (LIST (QUOTE -1113) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1113 |#1| |#2|) (QUOTE (-1073)))) (|HasCategory| (-1113 |#1| |#2|) (QUOTE (-1073))) (-1523 (|HasCategory| (-1113 |#1| |#2|) (LIST (QUOTE -597) (QUOTE (-839)))) (-12 (|HasCategory| (-1113 |#1| |#2|) (LIST (QUOTE -304) (LIST (QUOTE -1113) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1113 |#1| |#2|) (QUOTE (-1073))))) (|HasCategory| (-1113 |#1| |#2|) (LIST (QUOTE -597) (QUOTE (-839))))) -(-1115 |ndim| R) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| (-1116 |#1| |#2|) (LIST (QUOTE -303) (LIST (QUOTE -1116) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1116 |#1| |#2|) (QUOTE (-1076)))) (|HasCategory| (-1116 |#1| |#2|) (QUOTE (-1076))) (-1559 (|HasCategory| (-1116 |#1| |#2|) (LIST (QUOTE -599) (QUOTE (-842)))) (-12 (|HasCategory| (-1116 |#1| |#2|) (LIST (QUOTE -303) (LIST (QUOTE -1116) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1116 |#1| |#2|) (QUOTE (-1076))))) (|HasCategory| (-1116 |#1| |#2|) (LIST (QUOTE -599) (QUOTE (-842))))) +(-1118 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4350 . T) (-4342 |has| |#2| (-6 (-4355 "*"))) (-4353 . T) (-4347 . T) (-4348 . T)) -((|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasAttribute| |#2| (QUOTE (-4355 "*"))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (-1523 (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-358))) (-1523 (|HasAttribute| |#2| (QUOTE (-4355 "*"))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-229)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-170)))) -(-1116 S) +((-4363 . T) (-4355 |has| |#2| (-6 (-4368 "*"))) (-4366 . T) (-4360 . T) (-4361 . T)) +((|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-228))) (|HasAttribute| |#2| (QUOTE (-4368 "*"))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (-1559 (-12 (|HasCategory| |#2| (QUOTE (-228))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (QUOTE (-301))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-357))) (-1559 (|HasAttribute| |#2| (QUOTE (-4368 "*"))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#2| (QUOTE (-228)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-169)))) +(-1119 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1117) +(-1120) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4354 . T) (-4353 . T) (-3526 . T)) +((-4367 . T) (-4366 . T) (-2997 . T)) NIL -(-1118 R E V P TS) +(-1121 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1119 R E V P) +(-1122 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4354 . T) (-4353 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-839))))) -(-1120 S) +((-4367 . T) (-4366 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -599) (QUOTE (-842))))) +(-1123 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-1121 A S) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-1124 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1122 S) +(-1125 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) -((-3526 . T)) +((-2997 . T)) NIL -(-1123 |Key| |Ent| |dent|) +(-1126 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4354 . T)) -((-12 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#2|)))))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-827))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839))))) -(-1124) +((-4367 . T)) +((-12 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#2|)))))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-830))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842))))) +(-1127) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1125 |Coef|) +(-1128 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1126 S) +(-1129 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}."))) NIL NIL -(-1127 A B) +(-1130 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-1128 A B C) +(-1131 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}."))) NIL NIL -(-1129 S) +(-1132 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4354 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-1130) +((-4367 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-1133) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4354 . T) (-4353 . T) (-3526 . T)) +((-4367 . T) (-4366 . T) (-2997 . T)) NIL -(-1131) +(-1134) NIL -((-4354 . T) (-4353 . T)) -((-1523 (-12 (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1073))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| (-142) (QUOTE (-1073))) (-12 (|HasCategory| (-142) (QUOTE (-1073))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -597) (QUOTE (-839))))) -(-1132 |Entry|) +((-4367 . T) (-4366 . T)) +((-1559 (-12 (|HasCategory| (-141) (QUOTE (-830))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141))))) (-12 (|HasCategory| (-141) (QUOTE (-1076))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141)))))) (|HasCategory| (-141) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| (-141) (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| (-141) (QUOTE (-1076))) (-12 (|HasCategory| (-141) (QUOTE (-1076))) (|HasCategory| (-141) (LIST (QUOTE -303) (QUOTE (-141))))) (|HasCategory| (-141) (LIST (QUOTE -599) (QUOTE (-842))))) +(-1135 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (QUOTE (-1131))) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#1|)))))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (QUOTE (-1073))) (|HasCategory| (-1131) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (LIST (QUOTE -597) (QUOTE (-839))))) -(-1133 A) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (QUOTE (-1134))) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#1|)))))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (QUOTE (-1076))) (|HasCategory| (-1134) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (LIST (QUOTE -599) (QUOTE (-842))))) +(-1136 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) -(-1134 |Coef|) +((|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) +(-1137 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1135 |Coef|) +(-1138 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1136 R UP) +(-1139 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-302)))) -(-1137 |n| R) +((|HasCategory| |#1| (QUOTE (-301)))) +(-1140 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1138 S1 S2) +(-1141 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}"))) NIL NIL -(-1139) +(-1142) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1140 |Coef| |var| |cen|) +(-1143 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4355 "*") -1523 (-3743 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-800))) (|has| |#1| (-170)) (-3743 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-885)))) (-4346 -1523 (-3743 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-800))) (|has| |#1| (-544)) (-3743 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-885)))) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) -((-1523 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1523 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-145)))) (-1523 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|)))))) (-1523 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (|HasCategory| (-552) (QUOTE (-1085))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-358)))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-358)))) (-1523 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-358))))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2481) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-1523 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-1523 (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-1141 R -3281) +(((-4368 "*") -1559 (-2520 (|has| |#1| (-357)) (|has| (-1150 |#1| |#2| |#3|) (-803))) (|has| |#1| (-169)) (-2520 (|has| |#1| (-357)) (|has| (-1150 |#1| |#2| |#3|) (-888)))) (-4359 -1559 (-2520 (|has| |#1| (-357)) (|has| (-1150 |#1| |#2| |#3|) (-803))) (|has| |#1| (-544)) (-2520 (|has| |#1| (-357)) (|has| (-1150 |#1| |#2| |#3|) (-888)))) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) +((-1559 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-1001))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -303) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -506) (QUOTE (-1152)) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-142)))) (-1559 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-144)))) (-1559 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|)))))) (-1559 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (|HasCategory| (-552) (QUOTE (-1088))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-1001))) (|HasCategory| |#1| (QUOTE (-357)))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-357)))) (-1559 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-357))))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -303) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -506) (QUOTE (-1152)) (LIST (QUOTE -1150) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2747) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1152))))) (|HasSignature| |#1| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-142))) (-1559 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-1559 (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-169)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1150 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-1144 R -1935) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1142 R) +(-1145 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1143 R S) +(-1146 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1144 E OV R P) +(-1147 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1145 R) +(-1148 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4349 |has| |#1| (-358)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-1146 |Coef| |var| |cen|) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4362 |has| |#1| (-357)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-1127))) (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-228))) (|HasAttribute| |#1| (QUOTE -4364)) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-1149 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-552)) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552)))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2481) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#1|))))))) -(-1147 |Coef| |var| |cen|) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-401 (-552)) (QUOTE (-1088))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2747) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1152))))) (|HasSignature| |#1| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#1|))))))) +(-1150 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-751)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-751)) (|devaluate| |#1|)))) (|HasCategory| (-751) (QUOTE (-1085))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-751))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-751))))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2481) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#1|))))))) -(-1148) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-754)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-754)) (|devaluate| |#1|)))) (|HasCategory| (-754) (QUOTE (-1088))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-754))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-754))))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2747) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1152))))) (|HasSignature| |#1| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#1|))))))) +(-1151) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1149) +(-1152) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1150 R) +(-1153 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}."))) NIL NIL -(-1151 R) +(-1154 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-6 -4351)) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| (-947) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4351))) -(-1152) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-6 -4364)) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-445))) (-12 (|HasCategory| (-950) (QUOTE (-129))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasAttribute| |#1| (QUOTE -4364))) +(-1155) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1153) +(-1156) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1154) -((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} building complete representation of Spad programs as objects of a term algebra built from ground terms of type integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity in a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} Symbol,{} String,{} SExpression. See Also: SExpression,{} SetCategory. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} if \\spad{`x'} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (($ (|String|)) "\\spad{coerce(s)} injects the string value \\spad{`s'} into the syntax domain") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (($ (|Symbol|)) "\\spad{coerce(s)} injects the symbol \\spad{`s'} into the Syntax domain.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (($ (|DoubleFloat|)) "\\spad{coerce(f)} injects the float value \\spad{`f'} into the Syntax domain") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}") (($ (|Integer|)) "\\spad{coerce(i)} injects the integer value `i' into the Syntax domain.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) +(-1157) +((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{symbols,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: Integer,{} DoubleFloat,{} Symbol,{} String,{} SExpression. See Also: SExpression. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} if \\spad{`x'} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1155 R) +(-1158 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1156) +(-1159) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension()} returns a string representation of a filename extension for native modules.")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform()} returns a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1157 S) +(-1160 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1158 S) +(-1161 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1159 |Key| |Entry|) +(-1162 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4353 . T) (-4354 . T)) -((-12 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2971) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4120) (|devaluate| |#2|)))))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#2| (QUOTE (-1073)))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -598) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1073))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1073))) (-1523 (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-839)))) (|HasCategory| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (LIST (QUOTE -597) (QUOTE (-839))))) -(-1160 R) +((-4366 . T) (-4367 . T)) +((-12 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -303) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3998) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2162) (|devaluate| |#2|)))))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#2| (QUOTE (-1076)))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -600) (QUOTE (-528)))) (-12 (|HasCategory| |#2| (QUOTE (-1076))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-1076))) (-1559 (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#2| (LIST (QUOTE -599) (QUOTE (-842)))) (|HasCategory| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (LIST (QUOTE -599) (QUOTE (-842))))) +(-1163 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) NIL NIL -(-1161 S |Key| |Entry|) +(-1164 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1162 |Key| |Entry|) +(-1165 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4354 . T) (-3526 . T)) +((-4367 . T) (-2997 . T)) NIL -(-1163 |Key| |Entry|) +(-1166 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1164) +(-1167) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1165 S) +(-1168 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1166) +(-1169) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format."))) NIL NIL -(-1167) +(-1170) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1168 R) +(-1171 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1169) +(-1172) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1170 S) +(-1173 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1171) +(-1174) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1172 S) +(-1175 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4354 . T) (-4353 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1073))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-1173 S) +((-4367 . T) (-4366 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1076))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-1176 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1174) +(-1177) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1175 R -3281) +(-1178 R -1935) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1176 R |Row| |Col| M) +(-1179 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1177 R -3281) +(-1180 R -1935) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -868) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -862) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -862) (|devaluate| |#1|))))) -(-1178 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -600) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -865) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -865) (|devaluate| |#1|))))) +(-1181 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-363)))) -(-1179 R E V P) +((|HasCategory| |#4| (QUOTE (-362)))) +(-1182 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4354 . T) (-4353 . T) (-3526 . T)) +((-4367 . T) (-4366 . T) (-2997 . T)) NIL -(-1180 |Coef|) +(-1183 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4348 . T) (-4347 . T) (-4350 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-358)))) -(-1181 |Curve|) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4361 . T) (-4360 . T) (-4363 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-142))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-357)))) +(-1184 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1182) +(-1185) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1183 S) +(-1186 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a"))) NIL -((|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-1184 -3281) +((|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-1187 -1935) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1185) +(-1188) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1186) +(-1189) ((|constructor| (NIL "The fundamental Type."))) -((-3526 . T)) +((-2997 . T)) NIL -(-1187 S) +(-1190 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-827)))) -(-1188) +((|HasCategory| |#1| (QUOTE (-830)))) +(-1191) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1189 S) +(-1192 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1190) +(-1193) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-1191 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1194 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1192 |Coef|) +(-1195 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-1193 S |Coef| UTS) +(-1196 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-358)))) -(-1194 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-357)))) +(-1197 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-3526 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-2997 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-1195 |Coef| UTS) +(-1198 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) -((-1523 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-800)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-827)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-885)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-998)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1124)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149)))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-143))))) (-1523 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-145))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-229)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (|HasCategory| (-552) (QUOTE (-1085))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-885)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-998)))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-800)))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-800)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-827))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1124)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2481) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-827)))) (|HasCategory| |#2| (QUOTE (-885))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-537)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-302)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-143)))))) -(-1196 |Coef| |var| |cen|) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) +((-1559 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-888)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1001)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1127)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-1152)))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (|HasCategory| |#1| (QUOTE (-142))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-142))))) (-1559 (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-144))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-228)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (|HasCategory| (-552) (QUOTE (-1088))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-888)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-1152))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-803)))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-803)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-830))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1127)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -303) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -506) (QUOTE (-1152)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2747) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1152))))) (|HasSignature| |#1| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-830)))) (|HasCategory| |#2| (QUOTE (-888))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-537)))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-301)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#1| (QUOTE (-142))) (-12 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-142)))))) +(-1199 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4355 "*") -1523 (-3743 (|has| |#1| (-358)) (|has| (-1224 |#1| |#2| |#3|) (-800))) (|has| |#1| (-170)) (-3743 (|has| |#1| (-358)) (|has| (-1224 |#1| |#2| |#3|) (-885)))) (-4346 -1523 (-3743 (|has| |#1| (-358)) (|has| (-1224 |#1| |#2| |#3|) (-800))) (|has| |#1| (-544)) (-3743 (|has| |#1| (-358)) (|has| (-1224 |#1| |#2| |#3|) (-885)))) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) -((-1523 (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1224) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1224) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1224) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -1224) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-143)))) (-1523 (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-145)))) (-1523 (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|)))))) (-1523 (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (|HasCategory| (-552) (QUOTE (-1085))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-358)))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-358)))) (-1523 (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-358))))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1224) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1224) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1224) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -1224) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2481) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-1523 (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-1523 (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-885))) (|HasCategory| |#1| (QUOTE (-358)))) (-12 (|HasCategory| (-1224 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-1197 ZP) +(((-4368 "*") -1559 (-2520 (|has| |#1| (-357)) (|has| (-1227 |#1| |#2| |#3|) (-803))) (|has| |#1| (-169)) (-2520 (|has| |#1| (-357)) (|has| (-1227 |#1| |#2| |#3|) (-888)))) (-4359 -1559 (-2520 (|has| |#1| (-357)) (|has| (-1227 |#1| |#2| |#3|) (-803))) (|has| |#1| (-544)) (-2520 (|has| |#1| (-357)) (|has| (-1227 |#1| |#2| |#3|) (-888)))) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) +((-1559 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-1001))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -303) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -506) (QUOTE (-1152)) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-142)))) (-1559 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-144)))) (-1559 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|)))))) (-1559 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-228))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-552)) (|devaluate| |#1|))))) (|HasCategory| (-552) (QUOTE (-1088))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-357))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -1017) (QUOTE (-1152)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-1001))) (|HasCategory| |#1| (QUOTE (-357)))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-357)))) (-1559 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-357))))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-1127))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -303) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -506) (QUOTE (-1152)) (LIST (QUOTE -1227) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-552))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2747) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1152))))) (|HasSignature| |#1| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-142))) (-1559 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-1559 (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-803))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-169)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-888))) (|HasCategory| |#1| (QUOTE (-357)))) (-12 (|HasCategory| (-1227 |#1| |#2| |#3|) (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-142))))) +(-1200 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1198 R S) +(-1201 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-825)))) -(-1199 S) +((|HasCategory| |#1| (QUOTE (-828)))) +(-1202 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1073)))) -(-1200 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-1076)))) +(-1203 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1201 R Q UP) +(-1204 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1202 R UP) +(-1205 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1203 R UP) +(-1206 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1204 R U) +(-1207 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1205 |x| R) +(-1208 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) -(((-4355 "*") |has| |#2| (-170)) (-4346 |has| |#2| (-544)) (-4349 |has| |#2| (-358)) (-4351 |has| |#2| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) -((|HasCategory| |#2| (QUOTE (-885))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-170))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-374)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-374))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-552))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-374)))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -868) (QUOTE (-552)))))) (-12 (|HasCategory| (-1055) (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (-1523 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1124))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (-1523 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasCategory| |#2| (QUOTE (-229))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (-1523 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-143))))) -(-1206 R PR S PS) +(((-4368 "*") |has| |#2| (-169)) (-4359 |has| |#2| (-544)) (-4362 |has| |#2| (-357)) (-4364 |has| |#2| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) +((|HasCategory| |#2| (QUOTE (-888))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-544)))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -865) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-373))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -865) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -865) (QUOTE (-552))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-373)))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -600) (LIST (QUOTE -871) (QUOTE (-552)))))) (-12 (|HasCategory| (-1058) (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#2| (LIST (QUOTE -600) (QUOTE (-528))))) (|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (LIST (QUOTE -623) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (-1559 (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-1127))) (|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (-1559 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasCategory| |#2| (QUOTE (-228))) (|HasAttribute| |#2| (QUOTE -4364)) (|HasCategory| |#2| (QUOTE (-445))) (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (-1559 (-12 (|HasCategory| $ (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-888)))) (|HasCategory| |#2| (QUOTE (-142))))) +(-1209 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1207 S R) +(-1210 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1124)))) -(-1208 R) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357))) (|HasCategory| |#2| (QUOTE (-445))) (|HasCategory| |#2| (QUOTE (-544))) (|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (QUOTE (-1127)))) +(-1211 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4349 |has| |#1| (-358)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4362 |has| |#1| (-357)) (-4364 |has| |#1| (-6 -4364)) (-4361 . T) (-4360 . T) (-4363 . T)) NIL -(-1209 S |Coef| |Expon|) +(-1212 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1085))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -1683) (LIST (|devaluate| |#2|) (QUOTE (-1149)))))) -(-1210 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1088))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -1477) (LIST (|devaluate| |#2|) (QUOTE (-1152)))))) +(-1213 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4347 . T) (-4348 . T) (-4350 . T)) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-1211 RC P) +(-1214 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1212 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1215 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1213 |Coef|) +(-1216 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-1214 S |Coef| ULS) +(-1217 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1215 |Coef| ULS) +(-1218 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-1216 |Coef| ULS) +(-1219 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-552)) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552)))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2481) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) -(-1217 |Coef| |var| |cen|) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-401 (-552)) (QUOTE (-1088))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2747) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1152))))) (|HasSignature| |#1| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) +(-1220 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-170))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-552)) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-1523 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-552)))))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2481) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#1|))))))) -(-1218 R FE |var| |cen|) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4364 |has| |#1| (-357)) (-4358 |has| |#1| (-357)) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#1| (QUOTE (-169))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552))) (|devaluate| |#1|)))) (|HasCategory| (-401 (-552)) (QUOTE (-1088))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-1559 (|HasCategory| |#1| (QUOTE (-357))) (|HasCategory| |#1| (QUOTE (-544)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -401) (QUOTE (-552)))))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2747) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1152))))) (|HasSignature| |#1| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#1|))))))) +(-1221 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) -(((-4355 "*") |has| (-1217 |#2| |#3| |#4|) (-170)) (-4346 |has| (-1217 |#2| |#3| |#4|) (-544)) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| (-1217 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-1217 |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1217 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1217 |#2| |#3| |#4|) (QUOTE (-170))) (|HasCategory| (-1217 |#2| |#3| |#4|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-1217 |#2| |#3| |#4|) (LIST (QUOTE -1014) (QUOTE (-552)))) (|HasCategory| (-1217 |#2| |#3| |#4|) (QUOTE (-358))) (|HasCategory| (-1217 |#2| |#3| |#4|) (QUOTE (-446))) (-1523 (|HasCategory| (-1217 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| (-1217 |#2| |#3| |#4|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-552)))))) (|HasCategory| (-1217 |#2| |#3| |#4|) (QUOTE (-544)))) -(-1219 A S) +(((-4368 "*") |has| (-1220 |#2| |#3| |#4|) (-169)) (-4359 |has| (-1220 |#2| |#3| |#4|) (-544)) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| (-1220 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-1220 |#2| |#3| |#4|) (QUOTE (-142))) (|HasCategory| (-1220 |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1220 |#2| |#3| |#4|) (QUOTE (-169))) (|HasCategory| (-1220 |#2| |#3| |#4|) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-1220 |#2| |#3| |#4|) (LIST (QUOTE -1017) (QUOTE (-552)))) (|HasCategory| (-1220 |#2| |#3| |#4|) (QUOTE (-357))) (|HasCategory| (-1220 |#2| |#3| |#4|) (QUOTE (-445))) (-1559 (|HasCategory| (-1220 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| (-1220 |#2| |#3| |#4|) (LIST (QUOTE -1017) (LIST (QUOTE -401) (QUOTE (-552)))))) (|HasCategory| (-1220 |#2| |#3| |#4|) (QUOTE (-544)))) +(-1222 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4354))) -(-1220 S) +((|HasAttribute| |#1| (QUOTE -4367))) +(-1223 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) -((-3526 . T)) +((-2997 . T)) NIL -(-1221 |Coef1| |Coef2| UTS1 UTS2) +(-1224 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1222 S |Coef|) +(-1225 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-935))) (|HasCategory| |#2| (QUOTE (-1171))) (|HasSignature| |#2| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2481) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1149))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-358)))) -(-1223 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#2| (QUOTE (-938))) (|HasCategory| |#2| (QUOTE (-1174))) (|HasSignature| |#2| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2747) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1152))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#2| (QUOTE (-357)))) +(-1226 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4347 . T) (-4348 . T) (-4350 . T)) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-1224 |Coef| |var| |cen|) +(-1227 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-544)) (-4347 . T) (-4348 . T) (-4350 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-1523 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-751)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-751)) (|devaluate| |#1|)))) (|HasCategory| (-751) (QUOTE (-1085))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-751))))) (|HasSignature| |#1| (LIST (QUOTE -1683) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-751))))) (|HasCategory| |#1| (QUOTE (-358))) (-1523 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-935))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2481) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3982) (LIST (LIST (QUOTE -625) (QUOTE (-1149))) (|devaluate| |#1|))))))) -(-1225 |Coef| UTS) +(((-4368 "*") |has| |#1| (-169)) (-4359 |has| |#1| (-544)) (-4360 . T) (-4361 . T) (-4363 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasCategory| |#1| (QUOTE (-544))) (-1559 (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-544)))) (|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-142))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (LIST (QUOTE -879) (QUOTE (-1152)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-754)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-754)) (|devaluate| |#1|)))) (|HasCategory| (-754) (QUOTE (-1088))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-754))))) (|HasSignature| |#1| (LIST (QUOTE -1477) (LIST (|devaluate| |#1|) (QUOTE (-1152)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-754))))) (|HasCategory| |#1| (QUOTE (-357))) (-1559 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-552)))) (|HasCategory| |#1| (QUOTE (-938))) (|HasCategory| |#1| (QUOTE (-1174))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasSignature| |#1| (LIST (QUOTE -2747) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1152))))) (|HasSignature| |#1| (LIST (QUOTE -1853) (LIST (LIST (QUOTE -627) (QUOTE (-1152))) (|devaluate| |#1|))))))) +(-1228 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1226 -3281 UP L UTS) +(-1229 -1935 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-544)))) -(-1227) +(-1230) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) -((-3526 . T)) +((-2997 . T)) NIL -(-1228 |sym|) +(-1231 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1229 S R) +(-1232 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-978))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1230 R) +((|HasCategory| |#2| (QUOTE (-981))) (|HasCategory| |#2| (QUOTE (-1028))) (|HasCategory| |#2| (QUOTE (-709))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1233 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4354 . T) (-4353 . T) (-3526 . T)) +((-4367 . T) (-4366 . T) (-2997 . T)) NIL -(-1231 A B) +(-1234 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1232 R) +(-1235 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4354 . T) (-4353 . T)) -((-1523 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-1523 (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-528)))) (-1523 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-552) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1025))) (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1025)))) (-12 (|HasCategory| |#1| (QUOTE (-1073))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-839))))) -(-1233) +((-4367 . T) (-4366 . T)) +((-1559 (-12 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|))))) (-1559 (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) (|HasCategory| |#1| (LIST (QUOTE -600) (QUOTE (-528)))) (-1559 (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| (-552) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-709))) (|HasCategory| |#1| (QUOTE (-1028))) (-12 (|HasCategory| |#1| (QUOTE (-981))) (|HasCategory| |#1| (QUOTE (-1028)))) (-12 (|HasCategory| |#1| (QUOTE (-1076))) (|HasCategory| |#1| (LIST (QUOTE -303) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -599) (QUOTE (-842))))) +(-1236) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1234) +(-1237) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1235) +(-1238) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1236) +(-1239) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1237) +(-1240) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1238 A S) +(-1241 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1239 S) +(-1242 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4348 . T) (-4347 . T)) +((-4361 . T) (-4360 . T)) NIL -(-1240 R) +(-1243 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1241 K R UP -3281) +(-1244 K R UP -1935) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-1242) +(-1245) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1243) +(-1246) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1244 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1247 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights"))) -((-4348 |has| |#1| (-170)) (-4347 |has| |#1| (-170)) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358)))) -(-1245 R E V P) +((-4361 |has| |#1| (-169)) (-4360 |has| |#1| (-169)) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357)))) +(-1248 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4354 . T) (-4353 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1073))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-839))))) -(-1246 R) +((-4367 . T) (-4366 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#4| (LIST (QUOTE -303) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -600) (QUOTE (-528)))) (|HasCategory| |#4| (QUOTE (-1076))) (|HasCategory| |#1| (QUOTE (-544))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -599) (QUOTE (-842))))) +(-1249 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}."))) -((-4347 . T) (-4348 . T) (-4350 . T)) +((-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-1247 |vl| R) +(-1250 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4350 . T) (-4346 |has| |#2| (-6 -4346)) (-4348 . T) (-4347 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4346))) -(-1248 R |VarSet| XPOLY) +((-4363 . T) (-4359 |has| |#2| (-6 -4359)) (-4361 . T) (-4360 . T)) +((|HasCategory| |#2| (QUOTE (-169))) (|HasAttribute| |#2| (QUOTE -4359))) +(-1251 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1249 |vl| R) +(-1252 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4346 |has| |#2| (-6 -4346)) (-4348 . T) (-4347 . T) (-4350 . T)) +((-4359 |has| |#2| (-6 -4359)) (-4361 . T) (-4360 . T) (-4363 . T)) NIL -(-1250 S -3281) +(-1253 S -1935) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145)))) -(-1251 -3281) +((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-142))) (|HasCategory| |#2| (QUOTE (-144)))) +(-1254 -1935) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-4358 . T) (-4364 . T) (-4359 . T) ((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL -(-1252 |VarSet| R) +(-1255 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4346 |has| |#2| (-6 -4346)) (-4348 . T) (-4347 . T) (-4350 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -698) (LIST (QUOTE -402) (QUOTE (-552))))) (|HasAttribute| |#2| (QUOTE -4346))) -(-1253 |vl| R) +((-4359 |has| |#2| (-6 -4359)) (-4361 . T) (-4360 . T) (-4363 . T)) +((|HasCategory| |#2| (QUOTE (-169))) (|HasCategory| |#2| (LIST (QUOTE -700) (LIST (QUOTE -401) (QUOTE (-552))))) (|HasAttribute| |#2| (QUOTE -4359))) +(-1256 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4346 |has| |#2| (-6 -4346)) (-4348 . T) (-4347 . T) (-4350 . T)) +((-4359 |has| |#2| (-6 -4359)) (-4361 . T) (-4360 . T) (-4363 . T)) NIL -(-1254 R) +(-1257 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4346 |has| |#1| (-6 -4346)) (-4348 . T) (-4347 . T) (-4350 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasAttribute| |#1| (QUOTE -4346))) -(-1255 R E) +((-4359 |has| |#1| (-6 -4359)) (-4361 . T) (-4360 . T) (-4363 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasAttribute| |#1| (QUOTE -4359))) +(-1258 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4350 . T) (-4351 |has| |#1| (-6 -4351)) (-4346 |has| |#1| (-6 -4346)) (-4348 . T) (-4347 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasAttribute| |#1| (QUOTE -4350)) (|HasAttribute| |#1| (QUOTE -4351)) (|HasAttribute| |#1| (QUOTE -4346))) -(-1256 |VarSet| R) +((-4363 . T) (-4364 |has| |#1| (-6 -4364)) (-4359 |has| |#1| (-6 -4359)) (-4361 . T) (-4360 . T)) +((|HasCategory| |#1| (QUOTE (-169))) (|HasCategory| |#1| (QUOTE (-357))) (|HasAttribute| |#1| (QUOTE -4363)) (|HasAttribute| |#1| (QUOTE -4364)) (|HasAttribute| |#1| (QUOTE -4359))) +(-1259 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4346 |has| |#2| (-6 -4346)) (-4348 . T) (-4347 . T) (-4350 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4346))) -(-1257 A) +((-4359 |has| |#2| (-6 -4359)) (-4361 . T) (-4360 . T) (-4363 . T)) +((|HasCategory| |#2| (QUOTE (-169))) (|HasAttribute| |#2| (QUOTE -4359))) +(-1260 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1258 R |ls| |ls2|) +(-1261 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1259 R) +(-1262 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1260 |p|) +(-1263 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +(((-4368 "*") . T) (-4360 . T) (-4361 . T) (-4363 . T)) NIL NIL NIL @@ -4988,4 +5000,4 @@ NIL NIL NIL NIL -((-3 NIL 2269588 2269593 2269598 2269603) (-2 NIL 2269568 2269573 2269578 2269583) (-1 NIL 2269548 2269553 2269558 2269563) (0 NIL 2269528 2269533 2269538 2269543) (-1260 "ZMOD.spad" 2269337 2269350 2269466 2269523) (-1259 "ZLINDEP.spad" 2268381 2268392 2269327 2269332) (-1258 "ZDSOLVE.spad" 2258230 2258252 2268371 2268376) (-1257 "YSTREAM.spad" 2257723 2257734 2258220 2258225) (-1256 "XRPOLY.spad" 2256943 2256963 2257579 2257648) (-1255 "XPR.spad" 2254672 2254685 2256661 2256760) (-1254 "XPOLY.spad" 2254227 2254238 2254528 2254597) (-1253 "XPOLYC.spad" 2253544 2253560 2254153 2254222) (-1252 "XPBWPOLY.spad" 2251981 2252001 2253324 2253393) (-1251 "XF.spad" 2250442 2250457 2251883 2251976) (-1250 "XF.spad" 2248883 2248900 2250326 2250331) (-1249 "XFALG.spad" 2245907 2245923 2248809 2248878) (-1248 "XEXPPKG.spad" 2245158 2245184 2245897 2245902) (-1247 "XDPOLY.spad" 2244772 2244788 2245014 2245083) (-1246 "XALG.spad" 2244370 2244381 2244728 2244767) (-1245 "WUTSET.spad" 2240209 2240226 2244016 2244043) (-1244 "WP.spad" 2239223 2239267 2240067 2240134) (-1243 "WHILEAST.spad" 2239021 2239030 2239213 2239218) (-1242 "WHEREAST.spad" 2238692 2238701 2239011 2239016) (-1241 "WFFINTBS.spad" 2236255 2236277 2238682 2238687) (-1240 "WEIER.spad" 2234469 2234480 2236245 2236250) (-1239 "VSPACE.spad" 2234142 2234153 2234437 2234464) (-1238 "VSPACE.spad" 2233835 2233848 2234132 2234137) (-1237 "VOID.spad" 2233425 2233434 2233825 2233830) (-1236 "VIEW.spad" 2231047 2231056 2233415 2233420) (-1235 "VIEWDEF.spad" 2226244 2226253 2231037 2231042) (-1234 "VIEW3D.spad" 2210079 2210088 2226234 2226239) (-1233 "VIEW2D.spad" 2197816 2197825 2210069 2210074) (-1232 "VECTOR.spad" 2196491 2196502 2196742 2196769) (-1231 "VECTOR2.spad" 2195118 2195131 2196481 2196486) (-1230 "VECTCAT.spad" 2193006 2193017 2195074 2195113) (-1229 "VECTCAT.spad" 2190714 2190727 2192784 2192789) (-1228 "VARIABLE.spad" 2190494 2190509 2190704 2190709) (-1227 "UTYPE.spad" 2190128 2190137 2190474 2190489) (-1226 "UTSODETL.spad" 2189421 2189445 2190084 2190089) (-1225 "UTSODE.spad" 2187609 2187629 2189411 2189416) (-1224 "UTS.spad" 2182398 2182426 2186076 2186173) (-1223 "UTSCAT.spad" 2179849 2179865 2182296 2182393) (-1222 "UTSCAT.spad" 2176944 2176962 2179393 2179398) (-1221 "UTS2.spad" 2176537 2176572 2176934 2176939) (-1220 "URAGG.spad" 2171159 2171170 2176517 2176532) (-1219 "URAGG.spad" 2165755 2165768 2171115 2171120) (-1218 "UPXSSING.spad" 2163398 2163424 2164836 2164969) (-1217 "UPXS.spad" 2160425 2160453 2161530 2161679) (-1216 "UPXSCONS.spad" 2158182 2158202 2158557 2158706) (-1215 "UPXSCCA.spad" 2156640 2156660 2158028 2158177) (-1214 "UPXSCCA.spad" 2155240 2155262 2156630 2156635) (-1213 "UPXSCAT.spad" 2153821 2153837 2155086 2155235) (-1212 "UPXS2.spad" 2153362 2153415 2153811 2153816) (-1211 "UPSQFREE.spad" 2151774 2151788 2153352 2153357) (-1210 "UPSCAT.spad" 2149367 2149391 2151672 2151769) (-1209 "UPSCAT.spad" 2146666 2146692 2148973 2148978) (-1208 "UPOLYC.spad" 2141644 2141655 2146508 2146661) (-1207 "UPOLYC.spad" 2136514 2136527 2141380 2141385) (-1206 "UPOLYC2.spad" 2135983 2136002 2136504 2136509) (-1205 "UP.spad" 2133025 2133040 2133533 2133686) (-1204 "UPMP.spad" 2131915 2131928 2133015 2133020) (-1203 "UPDIVP.spad" 2131478 2131492 2131905 2131910) (-1202 "UPDECOMP.spad" 2129715 2129729 2131468 2131473) (-1201 "UPCDEN.spad" 2128922 2128938 2129705 2129710) (-1200 "UP2.spad" 2128284 2128305 2128912 2128917) (-1199 "UNISEG.spad" 2127637 2127648 2128203 2128208) (-1198 "UNISEG2.spad" 2127130 2127143 2127593 2127598) (-1197 "UNIFACT.spad" 2126231 2126243 2127120 2127125) (-1196 "ULS.spad" 2116785 2116813 2117878 2118307) (-1195 "ULSCONS.spad" 2110824 2110844 2111196 2111345) (-1194 "ULSCCAT.spad" 2108421 2108441 2110644 2110819) (-1193 "ULSCCAT.spad" 2106152 2106174 2108377 2108382) (-1192 "ULSCAT.spad" 2104368 2104384 2105998 2106147) (-1191 "ULS2.spad" 2103880 2103933 2104358 2104363) (-1190 "UFD.spad" 2102945 2102954 2103806 2103875) (-1189 "UFD.spad" 2102072 2102083 2102935 2102940) (-1188 "UDVO.spad" 2100919 2100928 2102062 2102067) (-1187 "UDPO.spad" 2098346 2098357 2100875 2100880) (-1186 "TYPE.spad" 2098268 2098277 2098326 2098341) (-1185 "TYPEAST.spad" 2098187 2098196 2098258 2098263) (-1184 "TWOFACT.spad" 2096837 2096852 2098177 2098182) (-1183 "TUPLE.spad" 2096223 2096234 2096736 2096741) (-1182 "TUBETOOL.spad" 2093060 2093069 2096213 2096218) (-1181 "TUBE.spad" 2091701 2091718 2093050 2093055) (-1180 "TS.spad" 2090290 2090306 2091266 2091363) (-1179 "TSETCAT.spad" 2077405 2077422 2090246 2090285) (-1178 "TSETCAT.spad" 2064518 2064537 2077361 2077366) (-1177 "TRMANIP.spad" 2058884 2058901 2064224 2064229) (-1176 "TRIMAT.spad" 2057843 2057868 2058874 2058879) (-1175 "TRIGMNIP.spad" 2056360 2056377 2057833 2057838) (-1174 "TRIGCAT.spad" 2055872 2055881 2056350 2056355) (-1173 "TRIGCAT.spad" 2055382 2055393 2055862 2055867) (-1172 "TREE.spad" 2053953 2053964 2054989 2055016) (-1171 "TRANFUN.spad" 2053784 2053793 2053943 2053948) (-1170 "TRANFUN.spad" 2053613 2053624 2053774 2053779) (-1169 "TOPSP.spad" 2053287 2053296 2053603 2053608) (-1168 "TOOLSIGN.spad" 2052950 2052961 2053277 2053282) (-1167 "TEXTFILE.spad" 2051507 2051516 2052940 2052945) (-1166 "TEX.spad" 2048524 2048533 2051497 2051502) (-1165 "TEX1.spad" 2048080 2048091 2048514 2048519) (-1164 "TEMUTL.spad" 2047635 2047644 2048070 2048075) (-1163 "TBCMPPK.spad" 2045728 2045751 2047625 2047630) (-1162 "TBAGG.spad" 2044752 2044775 2045696 2045723) (-1161 "TBAGG.spad" 2043796 2043821 2044742 2044747) (-1160 "TANEXP.spad" 2043172 2043183 2043786 2043791) (-1159 "TABLE.spad" 2041583 2041606 2041853 2041880) (-1158 "TABLEAU.spad" 2041064 2041075 2041573 2041578) (-1157 "TABLBUMP.spad" 2037847 2037858 2041054 2041059) (-1156 "SYSTEM.spad" 2037121 2037130 2037837 2037842) (-1155 "SYSSOLP.spad" 2034594 2034605 2037111 2037116) (-1154 "SYNTAX.spad" 2030786 2030795 2034584 2034589) (-1153 "SYMTAB.spad" 2028842 2028851 2030776 2030781) (-1152 "SYMS.spad" 2024827 2024836 2028832 2028837) (-1151 "SYMPOLY.spad" 2023834 2023845 2023916 2024043) (-1150 "SYMFUNC.spad" 2023309 2023320 2023824 2023829) (-1149 "SYMBOL.spad" 2020645 2020654 2023299 2023304) (-1148 "SWITCH.spad" 2017402 2017411 2020635 2020640) (-1147 "SUTS.spad" 2014301 2014329 2015869 2015966) (-1146 "SUPXS.spad" 2011315 2011343 2012433 2012582) (-1145 "SUP.spad" 2008084 2008095 2008865 2009018) (-1144 "SUPFRACF.spad" 2007189 2007207 2008074 2008079) (-1143 "SUP2.spad" 2006579 2006592 2007179 2007184) (-1142 "SUMRF.spad" 2005545 2005556 2006569 2006574) (-1141 "SUMFS.spad" 2005178 2005195 2005535 2005540) (-1140 "SULS.spad" 1995719 1995747 1996825 1997254) (-1139 "SUCHTAST.spad" 1995488 1995497 1995709 1995714) (-1138 "SUCH.spad" 1995168 1995183 1995478 1995483) (-1137 "SUBSPACE.spad" 1987175 1987190 1995158 1995163) (-1136 "SUBRESP.spad" 1986335 1986349 1987131 1987136) (-1135 "STTF.spad" 1982434 1982450 1986325 1986330) (-1134 "STTFNC.spad" 1978902 1978918 1982424 1982429) (-1133 "STTAYLOR.spad" 1971300 1971311 1978783 1978788) (-1132 "STRTBL.spad" 1969805 1969822 1969954 1969981) (-1131 "STRING.spad" 1969214 1969223 1969228 1969255) (-1130 "STRICAT.spad" 1968990 1968999 1969170 1969209) (-1129 "STREAM.spad" 1965758 1965769 1968515 1968530) (-1128 "STREAM3.spad" 1965303 1965318 1965748 1965753) (-1127 "STREAM2.spad" 1964371 1964384 1965293 1965298) (-1126 "STREAM1.spad" 1964075 1964086 1964361 1964366) (-1125 "STINPROD.spad" 1962981 1962997 1964065 1964070) (-1124 "STEP.spad" 1962182 1962191 1962971 1962976) (-1123 "STBL.spad" 1960708 1960736 1960875 1960890) (-1122 "STAGG.spad" 1959773 1959784 1960688 1960703) (-1121 "STAGG.spad" 1958846 1958859 1959763 1959768) (-1120 "STACK.spad" 1958197 1958208 1958453 1958480) (-1119 "SREGSET.spad" 1955901 1955918 1957843 1957870) (-1118 "SRDCMPK.spad" 1954446 1954466 1955891 1955896) (-1117 "SRAGG.spad" 1949531 1949540 1954402 1954441) (-1116 "SRAGG.spad" 1944648 1944659 1949521 1949526) (-1115 "SQMATRIX.spad" 1942264 1942282 1943180 1943267) (-1114 "SPLTREE.spad" 1936816 1936829 1941700 1941727) (-1113 "SPLNODE.spad" 1933404 1933417 1936806 1936811) (-1112 "SPFCAT.spad" 1932181 1932190 1933394 1933399) (-1111 "SPECOUT.spad" 1930731 1930740 1932171 1932176) (-1110 "SPADXPT.spad" 1922860 1922869 1930711 1930726) (-1109 "spad-parser.spad" 1922325 1922334 1922850 1922855) (-1108 "SPADAST.spad" 1922026 1922035 1922315 1922320) (-1107 "SPACEC.spad" 1906039 1906050 1922016 1922021) (-1106 "SPACE3.spad" 1905815 1905826 1906029 1906034) (-1105 "SORTPAK.spad" 1905360 1905373 1905771 1905776) (-1104 "SOLVETRA.spad" 1903117 1903128 1905350 1905355) (-1103 "SOLVESER.spad" 1901637 1901648 1903107 1903112) (-1102 "SOLVERAD.spad" 1897647 1897658 1901627 1901632) (-1101 "SOLVEFOR.spad" 1896067 1896085 1897637 1897642) (-1100 "SNTSCAT.spad" 1895655 1895672 1896023 1896062) (-1099 "SMTS.spad" 1893915 1893941 1895220 1895317) (-1098 "SMP.spad" 1891354 1891374 1891744 1891871) (-1097 "SMITH.spad" 1890197 1890222 1891344 1891349) (-1096 "SMATCAT.spad" 1888295 1888325 1890129 1890192) (-1095 "SMATCAT.spad" 1886337 1886369 1888173 1888178) (-1094 "SKAGG.spad" 1885286 1885297 1886293 1886332) (-1093 "SINT.spad" 1883594 1883603 1885152 1885281) (-1092 "SIMPAN.spad" 1883322 1883331 1883584 1883589) (-1091 "SIG.spad" 1882650 1882659 1883312 1883317) (-1090 "SIGNRF.spad" 1881758 1881769 1882640 1882645) (-1089 "SIGNEF.spad" 1881027 1881044 1881748 1881753) (-1088 "SIGAST.spad" 1880408 1880417 1881017 1881022) (-1087 "SHP.spad" 1878326 1878341 1880364 1880369) (-1086 "SHDP.spad" 1869311 1869338 1869820 1869951) (-1085 "SGROUP.spad" 1868919 1868928 1869301 1869306) (-1084 "SGROUP.spad" 1868525 1868536 1868909 1868914) (-1083 "SGCF.spad" 1861406 1861415 1868515 1868520) (-1082 "SFRTCAT.spad" 1860322 1860339 1861362 1861401) (-1081 "SFRGCD.spad" 1859385 1859405 1860312 1860317) (-1080 "SFQCMPK.spad" 1854022 1854042 1859375 1859380) (-1079 "SFORT.spad" 1853457 1853471 1854012 1854017) (-1078 "SEXOF.spad" 1853300 1853340 1853447 1853452) (-1077 "SEX.spad" 1853192 1853201 1853290 1853295) (-1076 "SEXCAT.spad" 1850296 1850336 1853182 1853187) (-1075 "SET.spad" 1848596 1848607 1849717 1849756) (-1074 "SETMN.spad" 1847030 1847047 1848586 1848591) (-1073 "SETCAT.spad" 1846515 1846524 1847020 1847025) (-1072 "SETCAT.spad" 1845998 1846009 1846505 1846510) (-1071 "SETAGG.spad" 1842507 1842518 1845966 1845993) (-1070 "SETAGG.spad" 1839036 1839049 1842497 1842502) (-1069 "SEQAST.spad" 1838739 1838748 1839026 1839031) (-1068 "SEGXCAT.spad" 1837851 1837864 1838719 1838734) (-1067 "SEG.spad" 1837664 1837675 1837770 1837775) (-1066 "SEGCAT.spad" 1836483 1836494 1837644 1837659) (-1065 "SEGBIND.spad" 1835555 1835566 1836438 1836443) (-1064 "SEGBIND2.spad" 1835251 1835264 1835545 1835550) (-1063 "SEGAST.spad" 1834965 1834974 1835241 1835246) (-1062 "SEG2.spad" 1834390 1834403 1834921 1834926) (-1061 "SDVAR.spad" 1833666 1833677 1834380 1834385) (-1060 "SDPOL.spad" 1831056 1831067 1831347 1831474) (-1059 "SCPKG.spad" 1829135 1829146 1831046 1831051) (-1058 "SCOPE.spad" 1828280 1828289 1829125 1829130) (-1057 "SCACHE.spad" 1826962 1826973 1828270 1828275) (-1056 "SASTCAT.spad" 1826871 1826880 1826952 1826957) (-1055 "SAOS.spad" 1826743 1826752 1826861 1826866) (-1054 "SAERFFC.spad" 1826456 1826476 1826733 1826738) (-1053 "SAE.spad" 1824631 1824647 1825242 1825377) (-1052 "SAEFACT.spad" 1824332 1824352 1824621 1824626) (-1051 "RURPK.spad" 1821973 1821989 1824322 1824327) (-1050 "RULESET.spad" 1821414 1821438 1821963 1821968) (-1049 "RULE.spad" 1819618 1819642 1821404 1821409) (-1048 "RULECOLD.spad" 1819470 1819483 1819608 1819613) (-1047 "RSTRCAST.spad" 1819187 1819196 1819460 1819465) (-1046 "RSETGCD.spad" 1815565 1815585 1819177 1819182) (-1045 "RSETCAT.spad" 1805337 1805354 1815521 1815560) (-1044 "RSETCAT.spad" 1795141 1795160 1805327 1805332) (-1043 "RSDCMPK.spad" 1793593 1793613 1795131 1795136) (-1042 "RRCC.spad" 1791977 1792007 1793583 1793588) (-1041 "RRCC.spad" 1790359 1790391 1791967 1791972) (-1040 "RPTAST.spad" 1790061 1790070 1790349 1790354) (-1039 "RPOLCAT.spad" 1769421 1769436 1789929 1790056) (-1038 "RPOLCAT.spad" 1748495 1748512 1769005 1769010) (-1037 "ROUTINE.spad" 1744358 1744367 1747142 1747169) (-1036 "ROMAN.spad" 1743590 1743599 1744224 1744353) (-1035 "ROIRC.spad" 1742670 1742702 1743580 1743585) (-1034 "RNS.spad" 1741573 1741582 1742572 1742665) (-1033 "RNS.spad" 1740562 1740573 1741563 1741568) (-1032 "RNG.spad" 1740297 1740306 1740552 1740557) (-1031 "RMODULE.spad" 1739935 1739946 1740287 1740292) (-1030 "RMCAT2.spad" 1739343 1739400 1739925 1739930) (-1029 "RMATRIX.spad" 1738022 1738041 1738510 1738549) (-1028 "RMATCAT.spad" 1733543 1733574 1737966 1738017) (-1027 "RMATCAT.spad" 1728966 1728999 1733391 1733396) (-1026 "RINTERP.spad" 1728854 1728874 1728956 1728961) (-1025 "RING.spad" 1728211 1728220 1728834 1728849) (-1024 "RING.spad" 1727576 1727587 1728201 1728206) (-1023 "RIDIST.spad" 1726960 1726969 1727566 1727571) (-1022 "RGCHAIN.spad" 1725539 1725555 1726445 1726472) (-1021 "RGBCSPC.spad" 1725320 1725332 1725529 1725534) (-1020 "RGBCMDL.spad" 1724850 1724862 1725310 1725315) (-1019 "RF.spad" 1722464 1722475 1724840 1724845) (-1018 "RFFACTOR.spad" 1721926 1721937 1722454 1722459) (-1017 "RFFACT.spad" 1721661 1721673 1721916 1721921) (-1016 "RFDIST.spad" 1720649 1720658 1721651 1721656) (-1015 "RETSOL.spad" 1720066 1720079 1720639 1720644) (-1014 "RETRACT.spad" 1719415 1719426 1720056 1720061) (-1013 "RETRACT.spad" 1718762 1718775 1719405 1719410) (-1012 "RETAST.spad" 1718574 1718583 1718752 1718757) (-1011 "RESULT.spad" 1716634 1716643 1717221 1717248) (-1010 "RESRING.spad" 1715981 1716028 1716572 1716629) (-1009 "RESLATC.spad" 1715305 1715316 1715971 1715976) (-1008 "REPSQ.spad" 1715034 1715045 1715295 1715300) (-1007 "REP.spad" 1712586 1712595 1715024 1715029) (-1006 "REPDB.spad" 1712291 1712302 1712576 1712581) (-1005 "REP2.spad" 1701863 1701874 1712133 1712138) (-1004 "REP1.spad" 1695853 1695864 1701813 1701818) (-1003 "REGSET.spad" 1693650 1693667 1695499 1695526) (-1002 "REF.spad" 1692979 1692990 1693605 1693610) (-1001 "REDORDER.spad" 1692155 1692172 1692969 1692974) (-1000 "RECLOS.spad" 1690938 1690958 1691642 1691735) (-999 "REALSOLV.spad" 1690071 1690079 1690928 1690933) (-998 "REAL.spad" 1689944 1689952 1690061 1690066) (-997 "REAL0Q.spad" 1687227 1687241 1689934 1689939) (-996 "REAL0.spad" 1684056 1684070 1687217 1687222) (-995 "RDUCEAST.spad" 1683778 1683786 1684046 1684051) (-994 "RDIV.spad" 1683430 1683454 1683768 1683773) (-993 "RDIST.spad" 1682994 1683004 1683420 1683425) (-992 "RDETRS.spad" 1681791 1681808 1682984 1682989) (-991 "RDETR.spad" 1679899 1679916 1681781 1681786) (-990 "RDEEFS.spad" 1678973 1678989 1679889 1679894) (-989 "RDEEF.spad" 1677970 1677986 1678963 1678968) (-988 "RCFIELD.spad" 1675157 1675165 1677872 1677965) (-987 "RCFIELD.spad" 1672430 1672440 1675147 1675152) (-986 "RCAGG.spad" 1670333 1670343 1672410 1672425) (-985 "RCAGG.spad" 1668173 1668185 1670252 1670257) (-984 "RATRET.spad" 1667534 1667544 1668163 1668168) (-983 "RATFACT.spad" 1667227 1667238 1667524 1667529) (-982 "RANDSRC.spad" 1666547 1666555 1667217 1667222) (-981 "RADUTIL.spad" 1666302 1666310 1666537 1666542) (-980 "RADIX.spad" 1663093 1663106 1664770 1664863) (-979 "RADFF.spad" 1661507 1661543 1661625 1661781) (-978 "RADCAT.spad" 1661101 1661109 1661497 1661502) (-977 "RADCAT.spad" 1660693 1660703 1661091 1661096) (-976 "QUEUE.spad" 1660036 1660046 1660300 1660327) (-975 "QUAT.spad" 1658618 1658628 1658960 1659025) (-974 "QUATCT2.spad" 1658237 1658255 1658608 1658613) (-973 "QUATCAT.spad" 1656402 1656412 1658167 1658232) (-972 "QUATCAT.spad" 1654318 1654330 1656085 1656090) (-971 "QUAGG.spad" 1653132 1653142 1654274 1654313) (-970 "QQUTAST.spad" 1652901 1652909 1653122 1653127) (-969 "QFORM.spad" 1652364 1652378 1652891 1652896) (-968 "QFCAT.spad" 1651055 1651065 1652254 1652359) (-967 "QFCAT.spad" 1649350 1649362 1650551 1650556) (-966 "QFCAT2.spad" 1649041 1649057 1649340 1649345) (-965 "QEQUAT.spad" 1648598 1648606 1649031 1649036) (-964 "QCMPACK.spad" 1643345 1643364 1648588 1648593) (-963 "QALGSET.spad" 1639420 1639452 1643259 1643264) (-962 "QALGSET2.spad" 1637416 1637434 1639410 1639415) (-961 "PWFFINTB.spad" 1634726 1634747 1637406 1637411) (-960 "PUSHVAR.spad" 1634055 1634074 1634716 1634721) (-959 "PTRANFN.spad" 1630181 1630191 1634045 1634050) (-958 "PTPACK.spad" 1627269 1627279 1630171 1630176) (-957 "PTFUNC2.spad" 1627090 1627104 1627259 1627264) (-956 "PTCAT.spad" 1626172 1626182 1627046 1627085) (-955 "PSQFR.spad" 1625479 1625503 1626162 1626167) (-954 "PSEUDLIN.spad" 1624337 1624347 1625469 1625474) (-953 "PSETPK.spad" 1609770 1609786 1624215 1624220) (-952 "PSETCAT.spad" 1603678 1603701 1609738 1609765) (-951 "PSETCAT.spad" 1597572 1597597 1603634 1603639) (-950 "PSCURVE.spad" 1596555 1596563 1597562 1597567) (-949 "PSCAT.spad" 1595322 1595351 1596453 1596550) (-948 "PSCAT.spad" 1594179 1594210 1595312 1595317) (-947 "PRTITION.spad" 1593022 1593030 1594169 1594174) (-946 "PRTDAST.spad" 1592741 1592749 1593012 1593017) (-945 "PRS.spad" 1582303 1582320 1592697 1592702) (-944 "PRQAGG.spad" 1581722 1581732 1582259 1582298) (-943 "PROPLOG.spad" 1581125 1581133 1581712 1581717) (-942 "PROPFRML.spad" 1579043 1579054 1581115 1581120) (-941 "PROPERTY.spad" 1578537 1578545 1579033 1579038) (-940 "PRODUCT.spad" 1576217 1576229 1576503 1576558) (-939 "PR.spad" 1574603 1574615 1575308 1575435) (-938 "PRINT.spad" 1574355 1574363 1574593 1574598) (-937 "PRIMES.spad" 1572606 1572616 1574345 1574350) (-936 "PRIMELT.spad" 1570587 1570601 1572596 1572601) (-935 "PRIMCAT.spad" 1570210 1570218 1570577 1570582) (-934 "PRIMARR.spad" 1569215 1569225 1569393 1569420) (-933 "PRIMARR2.spad" 1567938 1567950 1569205 1569210) (-932 "PREASSOC.spad" 1567310 1567322 1567928 1567933) (-931 "PPCURVE.spad" 1566447 1566455 1567300 1567305) (-930 "PORTNUM.spad" 1566222 1566230 1566437 1566442) (-929 "POLYROOT.spad" 1564994 1565016 1566178 1566183) (-928 "POLY.spad" 1562291 1562301 1562808 1562935) (-927 "POLYLIFT.spad" 1561552 1561575 1562281 1562286) (-926 "POLYCATQ.spad" 1559654 1559676 1561542 1561547) (-925 "POLYCAT.spad" 1553060 1553081 1559522 1559649) (-924 "POLYCAT.spad" 1545768 1545791 1552232 1552237) (-923 "POLY2UP.spad" 1545216 1545230 1545758 1545763) (-922 "POLY2.spad" 1544811 1544823 1545206 1545211) (-921 "POLUTIL.spad" 1543752 1543781 1544767 1544772) (-920 "POLTOPOL.spad" 1542500 1542515 1543742 1543747) (-919 "POINT.spad" 1541339 1541349 1541426 1541453) (-918 "PNTHEORY.spad" 1538005 1538013 1541329 1541334) (-917 "PMTOOLS.spad" 1536762 1536776 1537995 1538000) (-916 "PMSYM.spad" 1536307 1536317 1536752 1536757) (-915 "PMQFCAT.spad" 1535894 1535908 1536297 1536302) (-914 "PMPRED.spad" 1535363 1535377 1535884 1535889) (-913 "PMPREDFS.spad" 1534807 1534829 1535353 1535358) (-912 "PMPLCAT.spad" 1533877 1533895 1534739 1534744) (-911 "PMLSAGG.spad" 1533458 1533472 1533867 1533872) (-910 "PMKERNEL.spad" 1533025 1533037 1533448 1533453) (-909 "PMINS.spad" 1532601 1532611 1533015 1533020) (-908 "PMFS.spad" 1532174 1532192 1532591 1532596) (-907 "PMDOWN.spad" 1531460 1531474 1532164 1532169) (-906 "PMASS.spad" 1530472 1530480 1531450 1531455) (-905 "PMASSFS.spad" 1529441 1529457 1530462 1530467) (-904 "PLOTTOOL.spad" 1529221 1529229 1529431 1529436) (-903 "PLOT.spad" 1524052 1524060 1529211 1529216) (-902 "PLOT3D.spad" 1520472 1520480 1524042 1524047) (-901 "PLOT1.spad" 1519613 1519623 1520462 1520467) (-900 "PLEQN.spad" 1506829 1506856 1519603 1519608) (-899 "PINTERP.spad" 1506445 1506464 1506819 1506824) (-898 "PINTERPA.spad" 1506227 1506243 1506435 1506440) (-897 "PI.spad" 1505834 1505842 1506201 1506222) (-896 "PID.spad" 1504790 1504798 1505760 1505829) (-895 "PICOERCE.spad" 1504447 1504457 1504780 1504785) (-894 "PGROEB.spad" 1503044 1503058 1504437 1504442) (-893 "PGE.spad" 1494297 1494305 1503034 1503039) (-892 "PGCD.spad" 1493179 1493196 1494287 1494292) (-891 "PFRPAC.spad" 1492322 1492332 1493169 1493174) (-890 "PFR.spad" 1488979 1488989 1492224 1492317) (-889 "PFOTOOLS.spad" 1488237 1488253 1488969 1488974) (-888 "PFOQ.spad" 1487607 1487625 1488227 1488232) (-887 "PFO.spad" 1487026 1487053 1487597 1487602) (-886 "PF.spad" 1486600 1486612 1486831 1486924) (-885 "PFECAT.spad" 1484266 1484274 1486526 1486595) (-884 "PFECAT.spad" 1481960 1481970 1484222 1484227) (-883 "PFBRU.spad" 1479830 1479842 1481950 1481955) (-882 "PFBR.spad" 1477368 1477391 1479820 1479825) (-881 "PERM.spad" 1473049 1473059 1477198 1477213) (-880 "PERMGRP.spad" 1467785 1467795 1473039 1473044) (-879 "PERMCAT.spad" 1466337 1466347 1467765 1467780) (-878 "PERMAN.spad" 1464869 1464883 1466327 1466332) (-877 "PENDTREE.spad" 1464142 1464152 1464498 1464503) (-876 "PDRING.spad" 1462633 1462643 1464122 1464137) (-875 "PDRING.spad" 1461132 1461144 1462623 1462628) (-874 "PDEPROB.spad" 1460089 1460097 1461122 1461127) (-873 "PDEPACK.spad" 1454091 1454099 1460079 1460084) (-872 "PDECOMP.spad" 1453553 1453570 1454081 1454086) (-871 "PDECAT.spad" 1451907 1451915 1453543 1453548) (-870 "PCOMP.spad" 1451758 1451771 1451897 1451902) (-869 "PBWLB.spad" 1450340 1450357 1451748 1451753) (-868 "PATTERN.spad" 1444771 1444781 1450330 1450335) (-867 "PATTERN2.spad" 1444507 1444519 1444761 1444766) (-866 "PATTERN1.spad" 1442809 1442825 1444497 1444502) (-865 "PATRES.spad" 1440356 1440368 1442799 1442804) (-864 "PATRES2.spad" 1440018 1440032 1440346 1440351) (-863 "PATMATCH.spad" 1438175 1438206 1439726 1439731) (-862 "PATMAB.spad" 1437600 1437610 1438165 1438170) (-861 "PATLRES.spad" 1436684 1436698 1437590 1437595) (-860 "PATAB.spad" 1436448 1436458 1436674 1436679) (-859 "PARTPERM.spad" 1433810 1433818 1436438 1436443) (-858 "PARSURF.spad" 1433238 1433266 1433800 1433805) (-857 "PARSU2.spad" 1433033 1433049 1433228 1433233) (-856 "script-parser.spad" 1432553 1432561 1433023 1433028) (-855 "PARSCURV.spad" 1431981 1432009 1432543 1432548) (-854 "PARSC2.spad" 1431770 1431786 1431971 1431976) (-853 "PARPCURV.spad" 1431228 1431256 1431760 1431765) (-852 "PARPC2.spad" 1431017 1431033 1431218 1431223) (-851 "PAN2EXPR.spad" 1430429 1430437 1431007 1431012) (-850 "PALETTE.spad" 1429399 1429407 1430419 1430424) (-849 "PAIR.spad" 1428382 1428395 1428987 1428992) (-848 "PADICRC.spad" 1425713 1425731 1426888 1426981) (-847 "PADICRAT.spad" 1423729 1423741 1423950 1424043) (-846 "PADIC.spad" 1423424 1423436 1423655 1423724) (-845 "PADICCT.spad" 1421965 1421977 1423350 1423419) (-844 "PADEPAC.spad" 1420644 1420663 1421955 1421960) (-843 "PADE.spad" 1419384 1419400 1420634 1420639) (-842 "OWP.spad" 1418368 1418398 1419242 1419309) (-841 "OVAR.spad" 1418149 1418172 1418358 1418363) (-840 "OUT.spad" 1417233 1417241 1418139 1418144) (-839 "OUTFORM.spad" 1406529 1406537 1417223 1417228) (-838 "OUTBFILE.spad" 1405947 1405955 1406519 1406524) (-837 "OUTBCON.spad" 1405226 1405234 1405937 1405942) (-836 "OUTBCON.spad" 1404503 1404513 1405216 1405221) (-835 "OSI.spad" 1403978 1403986 1404493 1404498) (-834 "OSGROUP.spad" 1403896 1403904 1403968 1403973) (-833 "ORTHPOL.spad" 1402357 1402367 1403813 1403818) (-832 "OREUP.spad" 1401715 1401743 1402037 1402076) (-831 "ORESUP.spad" 1401014 1401038 1401395 1401434) (-830 "OREPCTO.spad" 1398833 1398845 1400934 1400939) (-829 "OREPCAT.spad" 1392890 1392900 1398789 1398828) (-828 "OREPCAT.spad" 1386837 1386849 1392738 1392743) (-827 "ORDSET.spad" 1386003 1386011 1386827 1386832) (-826 "ORDSET.spad" 1385167 1385177 1385993 1385998) (-825 "ORDRING.spad" 1384557 1384565 1385147 1385162) (-824 "ORDRING.spad" 1383955 1383965 1384547 1384552) (-823 "ORDMON.spad" 1383810 1383818 1383945 1383950) (-822 "ORDFUNS.spad" 1382936 1382952 1383800 1383805) (-821 "ORDFIN.spad" 1382870 1382878 1382926 1382931) (-820 "ORDCOMP.spad" 1381335 1381345 1382417 1382446) (-819 "ORDCOMP2.spad" 1380620 1380632 1381325 1381330) (-818 "OPTPROB.spad" 1379200 1379208 1380610 1380615) (-817 "OPTPACK.spad" 1371585 1371593 1379190 1379195) (-816 "OPTCAT.spad" 1369260 1369268 1371575 1371580) (-815 "OPQUERY.spad" 1368809 1368817 1369250 1369255) (-814 "OP.spad" 1368551 1368561 1368631 1368698) (-813 "ONECOMP.spad" 1367296 1367306 1368098 1368127) (-812 "ONECOMP2.spad" 1366714 1366726 1367286 1367291) (-811 "OMSERVER.spad" 1365716 1365724 1366704 1366709) (-810 "OMSAGG.spad" 1365492 1365502 1365660 1365711) (-809 "OMPKG.spad" 1364104 1364112 1365482 1365487) (-808 "OM.spad" 1363069 1363077 1364094 1364099) (-807 "OMLO.spad" 1362494 1362506 1362955 1362994) (-806 "OMEXPR.spad" 1362328 1362338 1362484 1362489) (-805 "OMERR.spad" 1361871 1361879 1362318 1362323) (-804 "OMERRK.spad" 1360905 1360913 1361861 1361866) (-803 "OMENC.spad" 1360249 1360257 1360895 1360900) (-802 "OMDEV.spad" 1354538 1354546 1360239 1360244) (-801 "OMCONN.spad" 1353947 1353955 1354528 1354533) (-800 "OINTDOM.spad" 1353710 1353718 1353873 1353942) (-799 "OFMONOID.spad" 1349897 1349907 1353700 1353705) (-798 "ODVAR.spad" 1349158 1349168 1349887 1349892) (-797 "ODR.spad" 1348606 1348632 1348970 1349119) (-796 "ODPOL.spad" 1345952 1345962 1346292 1346419) (-795 "ODP.spad" 1337073 1337093 1337446 1337577) (-794 "ODETOOLS.spad" 1335656 1335675 1337063 1337068) (-793 "ODESYS.spad" 1333306 1333323 1335646 1335651) (-792 "ODERTRIC.spad" 1329247 1329264 1333263 1333268) (-791 "ODERED.spad" 1328634 1328658 1329237 1329242) (-790 "ODERAT.spad" 1326185 1326202 1328624 1328629) (-789 "ODEPRRIC.spad" 1323076 1323098 1326175 1326180) (-788 "ODEPROB.spad" 1322275 1322283 1323066 1323071) (-787 "ODEPRIM.spad" 1319549 1319571 1322265 1322270) (-786 "ODEPAL.spad" 1318925 1318949 1319539 1319544) (-785 "ODEPACK.spad" 1305527 1305535 1318915 1318920) (-784 "ODEINT.spad" 1304958 1304974 1305517 1305522) (-783 "ODEIFTBL.spad" 1302353 1302361 1304948 1304953) (-782 "ODEEF.spad" 1297720 1297736 1302343 1302348) (-781 "ODECONST.spad" 1297239 1297257 1297710 1297715) (-780 "ODECAT.spad" 1295835 1295843 1297229 1297234) (-779 "OCT.spad" 1293973 1293983 1294689 1294728) (-778 "OCTCT2.spad" 1293617 1293638 1293963 1293968) (-777 "OC.spad" 1291391 1291401 1293573 1293612) (-776 "OC.spad" 1288890 1288902 1291074 1291079) (-775 "OCAMON.spad" 1288738 1288746 1288880 1288885) (-774 "OASGP.spad" 1288553 1288561 1288728 1288733) (-773 "OAMONS.spad" 1288073 1288081 1288543 1288548) (-772 "OAMON.spad" 1287934 1287942 1288063 1288068) (-771 "OAGROUP.spad" 1287796 1287804 1287924 1287929) (-770 "NUMTUBE.spad" 1287383 1287399 1287786 1287791) (-769 "NUMQUAD.spad" 1275245 1275253 1287373 1287378) (-768 "NUMODE.spad" 1266381 1266389 1275235 1275240) (-767 "NUMINT.spad" 1263939 1263947 1266371 1266376) (-766 "NUMFMT.spad" 1262779 1262787 1263929 1263934) (-765 "NUMERIC.spad" 1254851 1254861 1262584 1262589) (-764 "NTSCAT.spad" 1253341 1253357 1254807 1254846) (-763 "NTPOLFN.spad" 1252886 1252896 1253258 1253263) (-762 "NSUP.spad" 1245896 1245906 1250436 1250589) (-761 "NSUP2.spad" 1245288 1245300 1245886 1245891) (-760 "NSMP.spad" 1241483 1241502 1241791 1241918) (-759 "NREP.spad" 1239855 1239869 1241473 1241478) (-758 "NPCOEF.spad" 1239101 1239121 1239845 1239850) (-757 "NORMRETR.spad" 1238699 1238738 1239091 1239096) (-756 "NORMPK.spad" 1236601 1236620 1238689 1238694) (-755 "NORMMA.spad" 1236289 1236315 1236591 1236596) (-754 "NONE.spad" 1236030 1236038 1236279 1236284) (-753 "NONE1.spad" 1235706 1235716 1236020 1236025) (-752 "NODE1.spad" 1235175 1235191 1235696 1235701) (-751 "NNI.spad" 1234062 1234070 1235149 1235170) (-750 "NLINSOL.spad" 1232684 1232694 1234052 1234057) (-749 "NIPROB.spad" 1231167 1231175 1232674 1232679) (-748 "NFINTBAS.spad" 1228627 1228644 1231157 1231162) (-747 "NCODIV.spad" 1226825 1226841 1228617 1228622) (-746 "NCNTFRAC.spad" 1226467 1226481 1226815 1226820) (-745 "NCEP.spad" 1224627 1224641 1226457 1226462) (-744 "NASRING.spad" 1224223 1224231 1224617 1224622) (-743 "NASRING.spad" 1223817 1223827 1224213 1224218) (-742 "NARNG.spad" 1223161 1223169 1223807 1223812) (-741 "NARNG.spad" 1222503 1222513 1223151 1223156) (-740 "NAGSP.spad" 1221576 1221584 1222493 1222498) (-739 "NAGS.spad" 1211101 1211109 1221566 1221571) (-738 "NAGF07.spad" 1209494 1209502 1211091 1211096) (-737 "NAGF04.spad" 1203726 1203734 1209484 1209489) (-736 "NAGF02.spad" 1197535 1197543 1203716 1203721) (-735 "NAGF01.spad" 1193138 1193146 1197525 1197530) (-734 "NAGE04.spad" 1186598 1186606 1193128 1193133) (-733 "NAGE02.spad" 1176940 1176948 1186588 1186593) (-732 "NAGE01.spad" 1172824 1172832 1176930 1176935) (-731 "NAGD03.spad" 1170744 1170752 1172814 1172819) (-730 "NAGD02.spad" 1163275 1163283 1170734 1170739) (-729 "NAGD01.spad" 1157388 1157396 1163265 1163270) (-728 "NAGC06.spad" 1153175 1153183 1157378 1157383) (-727 "NAGC05.spad" 1151644 1151652 1153165 1153170) (-726 "NAGC02.spad" 1150899 1150907 1151634 1151639) (-725 "NAALG.spad" 1150434 1150444 1150867 1150894) (-724 "NAALG.spad" 1149989 1150001 1150424 1150429) (-723 "MULTSQFR.spad" 1146947 1146964 1149979 1149984) (-722 "MULTFACT.spad" 1146330 1146347 1146937 1146942) (-721 "MTSCAT.spad" 1144364 1144385 1146228 1146325) (-720 "MTHING.spad" 1144021 1144031 1144354 1144359) (-719 "MSYSCMD.spad" 1143455 1143463 1144011 1144016) (-718 "MSET.spad" 1141397 1141407 1143161 1143200) (-717 "MSETAGG.spad" 1141230 1141240 1141353 1141392) (-716 "MRING.spad" 1138201 1138213 1140938 1141005) (-715 "MRF2.spad" 1137769 1137783 1138191 1138196) (-714 "MRATFAC.spad" 1137315 1137332 1137759 1137764) (-713 "MPRFF.spad" 1135345 1135364 1137305 1137310) (-712 "MPOLY.spad" 1132780 1132795 1133139 1133266) (-711 "MPCPF.spad" 1132044 1132063 1132770 1132775) (-710 "MPC3.spad" 1131859 1131899 1132034 1132039) (-709 "MPC2.spad" 1131501 1131534 1131849 1131854) (-708 "MONOTOOL.spad" 1129836 1129853 1131491 1131496) (-707 "MONOID.spad" 1129155 1129163 1129826 1129831) (-706 "MONOID.spad" 1128472 1128482 1129145 1129150) (-705 "MONOGEN.spad" 1127218 1127231 1128332 1128467) (-704 "MONOGEN.spad" 1125986 1126001 1127102 1127107) (-703 "MONADWU.spad" 1124000 1124008 1125976 1125981) (-702 "MONADWU.spad" 1122012 1122022 1123990 1123995) (-701 "MONAD.spad" 1121156 1121164 1122002 1122007) (-700 "MONAD.spad" 1120298 1120308 1121146 1121151) (-699 "MOEBIUS.spad" 1118984 1118998 1120278 1120293) (-698 "MODULE.spad" 1118854 1118864 1118952 1118979) (-697 "MODULE.spad" 1118744 1118756 1118844 1118849) (-696 "MODRING.spad" 1118075 1118114 1118724 1118739) (-695 "MODOP.spad" 1116734 1116746 1117897 1117964) (-694 "MODMONOM.spad" 1116266 1116284 1116724 1116729) (-693 "MODMON.spad" 1112968 1112984 1113744 1113897) (-692 "MODFIELD.spad" 1112326 1112365 1112870 1112963) (-691 "MMLFORM.spad" 1111186 1111194 1112316 1112321) (-690 "MMAP.spad" 1110926 1110960 1111176 1111181) (-689 "MLO.spad" 1109353 1109363 1110882 1110921) (-688 "MLIFT.spad" 1107925 1107942 1109343 1109348) (-687 "MKUCFUNC.spad" 1107458 1107476 1107915 1107920) (-686 "MKRECORD.spad" 1107060 1107073 1107448 1107453) (-685 "MKFUNC.spad" 1106441 1106451 1107050 1107055) (-684 "MKFLCFN.spad" 1105397 1105407 1106431 1106436) (-683 "MKCHSET.spad" 1105173 1105183 1105387 1105392) (-682 "MKBCFUNC.spad" 1104658 1104676 1105163 1105168) (-681 "MINT.spad" 1104097 1104105 1104560 1104653) (-680 "MHROWRED.spad" 1102598 1102608 1104087 1104092) (-679 "MFLOAT.spad" 1101114 1101122 1102488 1102593) (-678 "MFINFACT.spad" 1100514 1100536 1101104 1101109) (-677 "MESH.spad" 1098246 1098254 1100504 1100509) (-676 "MDDFACT.spad" 1096439 1096449 1098236 1098241) (-675 "MDAGG.spad" 1095714 1095724 1096407 1096434) (-674 "MCMPLX.spad" 1091689 1091697 1092303 1092504) (-673 "MCDEN.spad" 1090897 1090909 1091679 1091684) (-672 "MCALCFN.spad" 1087999 1088025 1090887 1090892) (-671 "MAYBE.spad" 1087248 1087259 1087989 1087994) (-670 "MATSTOR.spad" 1084524 1084534 1087238 1087243) (-669 "MATRIX.spad" 1083228 1083238 1083712 1083739) (-668 "MATLIN.spad" 1080554 1080578 1083112 1083117) (-667 "MATCAT.spad" 1072127 1072149 1080510 1080549) (-666 "MATCAT.spad" 1063584 1063608 1071969 1071974) (-665 "MATCAT2.spad" 1062852 1062900 1063574 1063579) (-664 "MAPPKG3.spad" 1061751 1061765 1062842 1062847) (-663 "MAPPKG2.spad" 1061085 1061097 1061741 1061746) (-662 "MAPPKG1.spad" 1059903 1059913 1061075 1061080) (-661 "MAPPAST.spad" 1059216 1059224 1059893 1059898) (-660 "MAPHACK3.spad" 1059024 1059038 1059206 1059211) (-659 "MAPHACK2.spad" 1058789 1058801 1059014 1059019) (-658 "MAPHACK1.spad" 1058419 1058429 1058779 1058784) (-657 "MAGMA.spad" 1056209 1056226 1058409 1058414) (-656 "MACROAST.spad" 1055788 1055796 1056199 1056204) (-655 "M3D.spad" 1053484 1053494 1055166 1055171) (-654 "LZSTAGG.spad" 1050702 1050712 1053464 1053479) (-653 "LZSTAGG.spad" 1047928 1047940 1050692 1050697) (-652 "LWORD.spad" 1044633 1044650 1047918 1047923) (-651 "LSTAST.spad" 1044417 1044425 1044623 1044628) (-650 "LSQM.spad" 1042643 1042657 1043041 1043092) (-649 "LSPP.spad" 1042176 1042193 1042633 1042638) (-648 "LSMP.spad" 1041016 1041044 1042166 1042171) (-647 "LSMP1.spad" 1038820 1038834 1041006 1041011) (-646 "LSAGG.spad" 1038477 1038487 1038776 1038815) (-645 "LSAGG.spad" 1038166 1038178 1038467 1038472) (-644 "LPOLY.spad" 1037120 1037139 1038022 1038091) (-643 "LPEFRAC.spad" 1036377 1036387 1037110 1037115) (-642 "LO.spad" 1035778 1035792 1036311 1036338) (-641 "LOGIC.spad" 1035380 1035388 1035768 1035773) (-640 "LOGIC.spad" 1034980 1034990 1035370 1035375) (-639 "LODOOPS.spad" 1033898 1033910 1034970 1034975) (-638 "LODO.spad" 1033282 1033298 1033578 1033617) (-637 "LODOF.spad" 1032326 1032343 1033239 1033244) (-636 "LODOCAT.spad" 1030984 1030994 1032282 1032321) (-635 "LODOCAT.spad" 1029640 1029652 1030940 1030945) (-634 "LODO2.spad" 1028913 1028925 1029320 1029359) (-633 "LODO1.spad" 1028313 1028323 1028593 1028632) (-632 "LODEEF.spad" 1027085 1027103 1028303 1028308) (-631 "LNAGG.spad" 1022877 1022887 1027065 1027080) (-630 "LNAGG.spad" 1018643 1018655 1022833 1022838) (-629 "LMOPS.spad" 1015379 1015396 1018633 1018638) (-628 "LMODULE.spad" 1015021 1015031 1015369 1015374) (-627 "LMDICT.spad" 1014304 1014314 1014572 1014599) (-626 "LITERAL.spad" 1014210 1014221 1014294 1014299) (-625 "LIST.spad" 1011928 1011938 1013357 1013384) (-624 "LIST3.spad" 1011219 1011233 1011918 1011923) (-623 "LIST2.spad" 1009859 1009871 1011209 1011214) (-622 "LIST2MAP.spad" 1006736 1006748 1009849 1009854) (-621 "LINEXP.spad" 1006168 1006178 1006716 1006731) (-620 "LINDEP.spad" 1004945 1004957 1006080 1006085) (-619 "LIMITRF.spad" 1002859 1002869 1004935 1004940) (-618 "LIMITPS.spad" 1001742 1001755 1002849 1002854) (-617 "LIE.spad" 999756 999768 1001032 1001177) (-616 "LIECAT.spad" 999232 999242 999682 999751) (-615 "LIECAT.spad" 998736 998748 999188 999193) (-614 "LIB.spad" 996784 996792 997395 997410) (-613 "LGROBP.spad" 994137 994156 996774 996779) (-612 "LF.spad" 993056 993072 994127 994132) (-611 "LFCAT.spad" 992075 992083 993046 993051) (-610 "LEXTRIPK.spad" 987578 987593 992065 992070) (-609 "LEXP.spad" 985581 985608 987558 987573) (-608 "LETAST.spad" 985280 985288 985571 985576) (-607 "LEADCDET.spad" 983664 983681 985270 985275) (-606 "LAZM3PK.spad" 982368 982390 983654 983659) (-605 "LAUPOL.spad" 981057 981070 981961 982030) (-604 "LAPLACE.spad" 980630 980646 981047 981052) (-603 "LA.spad" 980070 980084 980552 980591) (-602 "LALG.spad" 979846 979856 980050 980065) (-601 "LALG.spad" 979630 979642 979836 979841) (-600 "KTVLOGIC.spad" 979053 979061 979620 979625) (-599 "KOVACIC.spad" 977766 977783 979043 979048) (-598 "KONVERT.spad" 977488 977498 977756 977761) (-597 "KOERCE.spad" 977225 977235 977478 977483) (-596 "KERNEL.spad" 975760 975770 977009 977014) (-595 "KERNEL2.spad" 975463 975475 975750 975755) (-594 "KDAGG.spad" 974554 974576 975431 975458) (-593 "KDAGG.spad" 973665 973689 974544 974549) (-592 "KAFILE.spad" 972628 972644 972863 972890) (-591 "JORDAN.spad" 970455 970467 971918 972063) (-590 "JOINAST.spad" 970149 970157 970445 970450) (-589 "JAVACODE.spad" 969915 969923 970139 970144) (-588 "IXAGG.spad" 968028 968052 969895 969910) (-587 "IXAGG.spad" 966006 966032 967875 967880) (-586 "IVECTOR.spad" 964777 964792 964932 964959) (-585 "ITUPLE.spad" 963922 963932 964767 964772) (-584 "ITRIGMNP.spad" 962733 962752 963912 963917) (-583 "ITFUN3.spad" 962227 962241 962723 962728) (-582 "ITFUN2.spad" 961957 961969 962217 962222) (-581 "ITAYLOR.spad" 959749 959764 961793 961918) (-580 "ISUPS.spad" 952160 952175 958723 958820) (-579 "ISUMP.spad" 951657 951673 952150 952155) (-578 "ISTRING.spad" 950660 950673 950826 950853) (-577 "ISAST.spad" 950379 950387 950650 950655) (-576 "IRURPK.spad" 949092 949111 950369 950374) (-575 "IRSN.spad" 947052 947060 949082 949087) (-574 "IRRF2F.spad" 945527 945537 947008 947013) (-573 "IRREDFFX.spad" 945128 945139 945517 945522) (-572 "IROOT.spad" 943459 943469 945118 945123) (-571 "IR.spad" 941248 941262 943314 943341) (-570 "IR2.spad" 940268 940284 941238 941243) (-569 "IR2F.spad" 939468 939484 940258 940263) (-568 "IPRNTPK.spad" 939228 939236 939458 939463) (-567 "IPF.spad" 938793 938805 939033 939126) (-566 "IPADIC.spad" 938554 938580 938719 938788) (-565 "IOMODE.spad" 938175 938183 938544 938549) (-564 "IOBCON.spad" 938040 938048 938165 938170) (-563 "INVLAPLA.spad" 937685 937701 938030 938035) (-562 "INTTR.spad" 930931 930948 937675 937680) (-561 "INTTOOLS.spad" 928642 928658 930505 930510) (-560 "INTSLPE.spad" 927948 927956 928632 928637) (-559 "INTRVL.spad" 927514 927524 927862 927943) (-558 "INTRF.spad" 925878 925892 927504 927509) (-557 "INTRET.spad" 925310 925320 925868 925873) (-556 "INTRAT.spad" 923985 924002 925300 925305) (-555 "INTPM.spad" 922348 922364 923628 923633) (-554 "INTPAF.spad" 920116 920134 922280 922285) (-553 "INTPACK.spad" 910426 910434 920106 920111) (-552 "INT.spad" 909787 909795 910280 910421) (-551 "INTHERTR.spad" 909053 909070 909777 909782) (-550 "INTHERAL.spad" 908719 908743 909043 909048) (-549 "INTHEORY.spad" 905132 905140 908709 908714) (-548 "INTG0.spad" 898595 898613 905064 905069) (-547 "INTFTBL.spad" 892624 892632 898585 898590) (-546 "INTFACT.spad" 891683 891693 892614 892619) (-545 "INTEF.spad" 889998 890014 891673 891678) (-544 "INTDOM.spad" 888613 888621 889924 889993) (-543 "INTDOM.spad" 887290 887300 888603 888608) (-542 "INTCAT.spad" 885543 885553 887204 887285) (-541 "INTBIT.spad" 885046 885054 885533 885538) (-540 "INTALG.spad" 884228 884255 885036 885041) (-539 "INTAF.spad" 883720 883736 884218 884223) (-538 "INTABL.spad" 882238 882269 882401 882428) (-537 "INS.spad" 879705 879713 882140 882233) (-536 "INS.spad" 877258 877268 879695 879700) (-535 "INPSIGN.spad" 876692 876705 877248 877253) (-534 "INPRODPF.spad" 875758 875777 876682 876687) (-533 "INPRODFF.spad" 874816 874840 875748 875753) (-532 "INNMFACT.spad" 873787 873804 874806 874811) (-531 "INMODGCD.spad" 873271 873301 873777 873782) (-530 "INFSP.spad" 871556 871578 873261 873266) (-529 "INFPROD0.spad" 870606 870625 871546 871551) (-528 "INFORM.spad" 867767 867775 870596 870601) (-527 "INFORM1.spad" 867392 867402 867757 867762) (-526 "INFINITY.spad" 866944 866952 867382 867387) (-525 "INEP.spad" 865476 865498 866934 866939) (-524 "INDE.spad" 865205 865222 865466 865471) (-523 "INCRMAPS.spad" 864626 864636 865195 865200) (-522 "INBFILE.spad" 863955 863963 864616 864621) (-521 "INBFF.spad" 859725 859736 863945 863950) (-520 "INBCON.spad" 859025 859033 859715 859720) (-519 "INBCON.spad" 858323 858333 859015 859020) (-518 "INAST.spad" 857988 857996 858313 858318) (-517 "IMPTAST.spad" 857696 857704 857978 857983) (-516 "IMATRIX.spad" 856641 856667 857153 857180) (-515 "IMATQF.spad" 855735 855779 856597 856602) (-514 "IMATLIN.spad" 854340 854364 855691 855696) (-513 "ILIST.spad" 852996 853011 853523 853550) (-512 "IIARRAY2.spad" 852384 852422 852603 852630) (-511 "IFF.spad" 851794 851810 852065 852158) (-510 "IFAST.spad" 851408 851416 851784 851789) (-509 "IFARRAY.spad" 848895 848910 850591 850618) (-508 "IFAMON.spad" 848757 848774 848851 848856) (-507 "IEVALAB.spad" 848146 848158 848747 848752) (-506 "IEVALAB.spad" 847533 847547 848136 848141) (-505 "IDPO.spad" 847331 847343 847523 847528) (-504 "IDPOAMS.spad" 847087 847099 847321 847326) (-503 "IDPOAM.spad" 846807 846819 847077 847082) (-502 "IDPC.spad" 845741 845753 846797 846802) (-501 "IDPAM.spad" 845486 845498 845731 845736) (-500 "IDPAG.spad" 845233 845245 845476 845481) (-499 "IDENT.spad" 845150 845158 845223 845228) (-498 "IDECOMP.spad" 842387 842405 845140 845145) (-497 "IDEAL.spad" 837310 837349 842322 842327) (-496 "ICDEN.spad" 836461 836477 837300 837305) (-495 "ICARD.spad" 835650 835658 836451 836456) (-494 "IBPTOOLS.spad" 834243 834260 835640 835645) (-493 "IBITS.spad" 833442 833455 833879 833906) (-492 "IBATOOL.spad" 830317 830336 833432 833437) (-491 "IBACHIN.spad" 828804 828819 830307 830312) (-490 "IARRAY2.spad" 827792 827818 828411 828438) (-489 "IARRAY1.spad" 826837 826852 826975 827002) (-488 "IAN.spad" 825050 825058 826653 826746) (-487 "IALGFACT.spad" 824651 824684 825040 825045) (-486 "HYPCAT.spad" 824075 824083 824641 824646) (-485 "HYPCAT.spad" 823497 823507 824065 824070) (-484 "HOSTNAME.spad" 823305 823313 823487 823492) (-483 "HOAGG.spad" 820563 820573 823285 823300) (-482 "HOAGG.spad" 817606 817618 820330 820335) (-481 "HEXADEC.spad" 815476 815484 816074 816167) (-480 "HEUGCD.spad" 814491 814502 815466 815471) (-479 "HELLFDIV.spad" 814081 814105 814481 814486) (-478 "HEAP.spad" 813473 813483 813688 813715) (-477 "HEADAST.spad" 813004 813012 813463 813468) (-476 "HDP.spad" 804121 804137 804498 804629) (-475 "HDMP.spad" 801297 801312 801915 802042) (-474 "HB.spad" 799534 799542 801287 801292) (-473 "HASHTBL.spad" 798004 798035 798215 798242) (-472 "HASAST.spad" 797720 797728 797994 797999) (-471 "HACKPI.spad" 797203 797211 797622 797715) (-470 "GTSET.spad" 796142 796158 796849 796876) (-469 "GSTBL.spad" 794661 794696 794835 794850) (-468 "GSERIES.spad" 791828 791855 792793 792942) (-467 "GROUP.spad" 791097 791105 791808 791823) (-466 "GROUP.spad" 790374 790384 791087 791092) (-465 "GROEBSOL.spad" 788862 788883 790364 790369) (-464 "GRMOD.spad" 787433 787445 788852 788857) (-463 "GRMOD.spad" 786002 786016 787423 787428) (-462 "GRIMAGE.spad" 778607 778615 785992 785997) (-461 "GRDEF.spad" 776986 776994 778597 778602) (-460 "GRAY.spad" 775445 775453 776976 776981) (-459 "GRALG.spad" 774492 774504 775435 775440) (-458 "GRALG.spad" 773537 773551 774482 774487) (-457 "GPOLSET.spad" 772991 773014 773219 773246) (-456 "GOSPER.spad" 772256 772274 772981 772986) (-455 "GMODPOL.spad" 771394 771421 772224 772251) (-454 "GHENSEL.spad" 770463 770477 771384 771389) (-453 "GENUPS.spad" 766564 766577 770453 770458) (-452 "GENUFACT.spad" 766141 766151 766554 766559) (-451 "GENPGCD.spad" 765725 765742 766131 766136) (-450 "GENMFACT.spad" 765177 765196 765715 765720) (-449 "GENEEZ.spad" 763116 763129 765167 765172) (-448 "GDMP.spad" 760134 760151 760910 761037) (-447 "GCNAALG.spad" 754029 754056 759928 759995) (-446 "GCDDOM.spad" 753201 753209 753955 754024) (-445 "GCDDOM.spad" 752435 752445 753191 753196) (-444 "GB.spad" 749953 749991 752391 752396) (-443 "GBINTERN.spad" 745973 746011 749943 749948) (-442 "GBF.spad" 741730 741768 745963 745968) (-441 "GBEUCLID.spad" 739604 739642 741720 741725) (-440 "GAUSSFAC.spad" 738901 738909 739594 739599) (-439 "GALUTIL.spad" 737223 737233 738857 738862) (-438 "GALPOLYU.spad" 735669 735682 737213 737218) (-437 "GALFACTU.spad" 733834 733853 735659 735664) (-436 "GALFACT.spad" 723967 723978 733824 733829) (-435 "FVFUN.spad" 720980 720988 723947 723962) (-434 "FVC.spad" 720022 720030 720960 720975) (-433 "FUNCTION.spad" 719871 719883 720012 720017) (-432 "FT.spad" 718083 718091 719861 719866) (-431 "FTEM.spad" 717246 717254 718073 718078) (-430 "FSUPFACT.spad" 716146 716165 717182 717187) (-429 "FST.spad" 714232 714240 716136 716141) (-428 "FSRED.spad" 713710 713726 714222 714227) (-427 "FSPRMELT.spad" 712534 712550 713667 713672) (-426 "FSPECF.spad" 710611 710627 712524 712529) (-425 "FS.spad" 704661 704671 710374 710606) (-424 "FS.spad" 698501 698513 704216 704221) (-423 "FSINT.spad" 698159 698175 698491 698496) (-422 "FSERIES.spad" 697346 697358 697979 698078) (-421 "FSCINT.spad" 696659 696675 697336 697341) (-420 "FSAGG.spad" 695764 695774 696603 696654) (-419 "FSAGG.spad" 694843 694855 695684 695689) (-418 "FSAGG2.spad" 693542 693558 694833 694838) (-417 "FS2UPS.spad" 687931 687965 693532 693537) (-416 "FS2.spad" 687576 687592 687921 687926) (-415 "FS2EXPXP.spad" 686699 686722 687566 687571) (-414 "FRUTIL.spad" 685641 685651 686689 686694) (-413 "FR.spad" 679336 679346 684666 684735) (-412 "FRNAALG.spad" 674423 674433 679278 679331) (-411 "FRNAALG.spad" 669522 669534 674379 674384) (-410 "FRNAAF2.spad" 668976 668994 669512 669517) (-409 "FRMOD.spad" 668370 668400 668907 668912) (-408 "FRIDEAL.spad" 667565 667586 668350 668365) (-407 "FRIDEAL2.spad" 667167 667199 667555 667560) (-406 "FRETRCT.spad" 666678 666688 667157 667162) (-405 "FRETRCT.spad" 666055 666067 666536 666541) (-404 "FRAMALG.spad" 664383 664396 666011 666050) (-403 "FRAMALG.spad" 662743 662758 664373 664378) (-402 "FRAC.spad" 659843 659853 660246 660419) (-401 "FRAC2.spad" 659446 659458 659833 659838) (-400 "FR2.spad" 658780 658792 659436 659441) (-399 "FPS.spad" 655589 655597 658670 658775) (-398 "FPS.spad" 652426 652436 655509 655514) (-397 "FPC.spad" 651468 651476 652328 652421) (-396 "FPC.spad" 650596 650606 651458 651463) (-395 "FPATMAB.spad" 650348 650358 650576 650591) (-394 "FPARFRAC.spad" 648821 648838 650338 650343) (-393 "FORTRAN.spad" 647327 647370 648811 648816) (-392 "FORT.spad" 646256 646264 647317 647322) (-391 "FORTFN.spad" 643416 643424 646236 646251) (-390 "FORTCAT.spad" 643090 643098 643396 643411) (-389 "FORMULA.spad" 640428 640436 643080 643085) (-388 "FORMULA1.spad" 639907 639917 640418 640423) (-387 "FORDER.spad" 639598 639622 639897 639902) (-386 "FOP.spad" 638799 638807 639588 639593) (-385 "FNLA.spad" 638223 638245 638767 638794) (-384 "FNCAT.spad" 636551 636559 638213 638218) (-383 "FNAME.spad" 636443 636451 636541 636546) (-382 "FMTC.spad" 636241 636249 636369 636438) (-381 "FMONOID.spad" 633296 633306 636197 636202) (-380 "FM.spad" 632991 633003 633230 633257) (-379 "FMFUN.spad" 630011 630019 632971 632986) (-378 "FMC.spad" 629053 629061 629991 630006) (-377 "FMCAT.spad" 626707 626725 629021 629048) (-376 "FM1.spad" 626064 626076 626641 626668) (-375 "FLOATRP.spad" 623785 623799 626054 626059) (-374 "FLOAT.spad" 616949 616957 623651 623780) (-373 "FLOATCP.spad" 614366 614380 616939 616944) (-372 "FLINEXP.spad" 614078 614088 614346 614361) (-371 "FLINEXP.spad" 613744 613756 614014 614019) (-370 "FLASORT.spad" 613064 613076 613734 613739) (-369 "FLALG.spad" 610710 610729 612990 613059) (-368 "FLAGG.spad" 607716 607726 610678 610705) (-367 "FLAGG.spad" 604635 604647 607599 607604) (-366 "FLAGG2.spad" 603316 603332 604625 604630) (-365 "FINRALG.spad" 601345 601358 603272 603311) (-364 "FINRALG.spad" 599300 599315 601229 601234) (-363 "FINITE.spad" 598452 598460 599290 599295) (-362 "FINAALG.spad" 587433 587443 598394 598447) (-361 "FINAALG.spad" 576426 576438 587389 587394) (-360 "FILE.spad" 576009 576019 576416 576421) (-359 "FILECAT.spad" 574527 574544 575999 576004) (-358 "FIELD.spad" 573933 573941 574429 574522) (-357 "FIELD.spad" 573425 573435 573923 573928) (-356 "FGROUP.spad" 572034 572044 573405 573420) (-355 "FGLMICPK.spad" 570821 570836 572024 572029) (-354 "FFX.spad" 570196 570211 570537 570630) (-353 "FFSLPE.spad" 569685 569706 570186 570191) (-352 "FFPOLY.spad" 560937 560948 569675 569680) (-351 "FFPOLY2.spad" 559997 560014 560927 560932) (-350 "FFP.spad" 559394 559414 559713 559806) (-349 "FF.spad" 558842 558858 559075 559168) (-348 "FFNBX.spad" 557354 557374 558558 558651) (-347 "FFNBP.spad" 555867 555884 557070 557163) (-346 "FFNB.spad" 554332 554353 555548 555641) (-345 "FFINTBAS.spad" 551746 551765 554322 554327) (-344 "FFIELDC.spad" 549321 549329 551648 551741) (-343 "FFIELDC.spad" 546982 546992 549311 549316) (-342 "FFHOM.spad" 545730 545747 546972 546977) (-341 "FFF.spad" 543165 543176 545720 545725) (-340 "FFCGX.spad" 542012 542032 542881 542974) (-339 "FFCGP.spad" 540901 540921 541728 541821) (-338 "FFCG.spad" 539693 539714 540582 540675) (-337 "FFCAT.spad" 532720 532742 539532 539688) (-336 "FFCAT.spad" 525826 525850 532640 532645) (-335 "FFCAT2.spad" 525571 525611 525816 525821) (-334 "FEXPR.spad" 517280 517326 525327 525366) (-333 "FEVALAB.spad" 516986 516996 517270 517275) (-332 "FEVALAB.spad" 516477 516489 516763 516768) (-331 "FDIV.spad" 515919 515943 516467 516472) (-330 "FDIVCAT.spad" 513961 513985 515909 515914) (-329 "FDIVCAT.spad" 512001 512027 513951 513956) (-328 "FDIV2.spad" 511655 511695 511991 511996) (-327 "FCPAK1.spad" 510208 510216 511645 511650) (-326 "FCOMP.spad" 509587 509597 510198 510203) (-325 "FC.spad" 499412 499420 509577 509582) (-324 "FAXF.spad" 492347 492361 499314 499407) (-323 "FAXF.spad" 485334 485350 492303 492308) (-322 "FARRAY.spad" 483480 483490 484517 484544) (-321 "FAMR.spad" 481600 481612 483378 483475) (-320 "FAMR.spad" 479704 479718 481484 481489) (-319 "FAMONOID.spad" 479354 479364 479658 479663) (-318 "FAMONC.spad" 477576 477588 479344 479349) (-317 "FAGROUP.spad" 477182 477192 477472 477499) (-316 "FACUTIL.spad" 475378 475395 477172 477177) (-315 "FACTFUNC.spad" 474554 474564 475368 475373) (-314 "EXPUPXS.spad" 471387 471410 472686 472835) (-313 "EXPRTUBE.spad" 468615 468623 471377 471382) (-312 "EXPRODE.spad" 465487 465503 468605 468610) (-311 "EXPR.spad" 460762 460772 461476 461883) (-310 "EXPR2UPS.spad" 456854 456867 460752 460757) (-309 "EXPR2.spad" 456557 456569 456844 456849) (-308 "EXPEXPAN.spad" 453496 453521 454130 454223) (-307 "EXIT.spad" 453167 453175 453486 453491) (-306 "EXITAST.spad" 452903 452911 453157 453162) (-305 "EVALCYC.spad" 452361 452375 452893 452898) (-304 "EVALAB.spad" 451925 451935 452351 452356) (-303 "EVALAB.spad" 451487 451499 451915 451920) (-302 "EUCDOM.spad" 449029 449037 451413 451482) (-301 "EUCDOM.spad" 446633 446643 449019 449024) (-300 "ESTOOLS.spad" 438473 438481 446623 446628) (-299 "ESTOOLS2.spad" 438074 438088 438463 438468) (-298 "ESTOOLS1.spad" 437759 437770 438064 438069) (-297 "ES.spad" 430306 430314 437749 437754) (-296 "ES.spad" 422759 422769 430204 430209) (-295 "ESCONT.spad" 419532 419540 422749 422754) (-294 "ESCONT1.spad" 419281 419293 419522 419527) (-293 "ES2.spad" 418776 418792 419271 419276) (-292 "ES1.spad" 418342 418358 418766 418771) (-291 "ERROR.spad" 415663 415671 418332 418337) (-290 "EQTBL.spad" 414135 414157 414344 414371) (-289 "EQ.spad" 409009 409019 411808 411920) (-288 "EQ2.spad" 408725 408737 408999 409004) (-287 "EP.spad" 405039 405049 408715 408720) (-286 "ENV.spad" 403741 403749 405029 405034) (-285 "ENTIRER.spad" 403409 403417 403685 403736) (-284 "EMR.spad" 402610 402651 403335 403404) (-283 "ELTAGG.spad" 400850 400869 402600 402605) (-282 "ELTAGG.spad" 399054 399075 400806 400811) (-281 "ELTAB.spad" 398501 398519 399044 399049) (-280 "ELFUTS.spad" 397880 397899 398491 398496) (-279 "ELEMFUN.spad" 397569 397577 397870 397875) (-278 "ELEMFUN.spad" 397256 397266 397559 397564) (-277 "ELAGG.spad" 395187 395197 397224 397251) (-276 "ELAGG.spad" 393067 393079 395106 395111) (-275 "ELABEXPR.spad" 391998 392006 393057 393062) (-274 "EFUPXS.spad" 388774 388804 391954 391959) (-273 "EFULS.spad" 385610 385633 388730 388735) (-272 "EFSTRUC.spad" 383565 383581 385600 385605) (-271 "EF.spad" 378331 378347 383555 383560) (-270 "EAB.spad" 376607 376615 378321 378326) (-269 "E04UCFA.spad" 376143 376151 376597 376602) (-268 "E04NAFA.spad" 375720 375728 376133 376138) (-267 "E04MBFA.spad" 375300 375308 375710 375715) (-266 "E04JAFA.spad" 374836 374844 375290 375295) (-265 "E04GCFA.spad" 374372 374380 374826 374831) (-264 "E04FDFA.spad" 373908 373916 374362 374367) (-263 "E04DGFA.spad" 373444 373452 373898 373903) (-262 "E04AGNT.spad" 369286 369294 373434 373439) (-261 "DVARCAT.spad" 365971 365981 369276 369281) (-260 "DVARCAT.spad" 362654 362666 365961 365966) (-259 "DSMP.spad" 360085 360099 360390 360517) (-258 "DROPT.spad" 354030 354038 360075 360080) (-257 "DROPT1.spad" 353693 353703 354020 354025) (-256 "DROPT0.spad" 348520 348528 353683 353688) (-255 "DRAWPT.spad" 346675 346683 348510 348515) (-254 "DRAW.spad" 339275 339288 346665 346670) (-253 "DRAWHACK.spad" 338583 338593 339265 339270) (-252 "DRAWCX.spad" 336025 336033 338573 338578) (-251 "DRAWCURV.spad" 335562 335577 336015 336020) (-250 "DRAWCFUN.spad" 324734 324742 335552 335557) (-249 "DQAGG.spad" 322890 322900 324690 324729) (-248 "DPOLCAT.spad" 318231 318247 322758 322885) (-247 "DPOLCAT.spad" 313658 313676 318187 318192) (-246 "DPMO.spad" 306961 306977 307099 307400) (-245 "DPMM.spad" 300277 300295 300402 300703) (-244 "DOMAIN.spad" 299548 299556 300267 300272) (-243 "DMP.spad" 296770 296785 297342 297469) (-242 "DLP.spad" 296118 296128 296760 296765) (-241 "DLIST.spad" 294530 294540 295301 295328) (-240 "DLAGG.spad" 292931 292941 294510 294525) (-239 "DIVRING.spad" 292473 292481 292875 292926) (-238 "DIVRING.spad" 292059 292069 292463 292468) (-237 "DISPLAY.spad" 290239 290247 292049 292054) (-236 "DIRPROD.spad" 281093 281109 281733 281864) (-235 "DIRPROD2.spad" 279901 279919 281083 281088) (-234 "DIRPCAT.spad" 278831 278847 279753 279896) (-233 "DIRPCAT.spad" 277502 277520 278426 278431) (-232 "DIOSP.spad" 276327 276335 277492 277497) (-231 "DIOPS.spad" 275299 275309 276295 276322) (-230 "DIOPS.spad" 274257 274269 275255 275260) (-229 "DIFRING.spad" 273549 273557 274237 274252) (-228 "DIFRING.spad" 272849 272859 273539 273544) (-227 "DIFEXT.spad" 272008 272018 272829 272844) (-226 "DIFEXT.spad" 271084 271096 271907 271912) (-225 "DIAGG.spad" 270702 270712 271052 271079) (-224 "DIAGG.spad" 270340 270352 270692 270697) (-223 "DHMATRIX.spad" 268644 268654 269797 269824) (-222 "DFSFUN.spad" 262052 262060 268634 268639) (-221 "DFLOAT.spad" 258773 258781 261942 262047) (-220 "DFINTTLS.spad" 256982 256998 258763 258768) (-219 "DERHAM.spad" 254892 254924 256962 256977) (-218 "DEQUEUE.spad" 254210 254220 254499 254526) (-217 "DEGRED.spad" 253825 253839 254200 254205) (-216 "DEFINTRF.spad" 251350 251360 253815 253820) (-215 "DEFINTEF.spad" 249846 249862 251340 251345) (-214 "DEFAST.spad" 249214 249222 249836 249841) (-213 "DECIMAL.spad" 247096 247104 247682 247775) (-212 "DDFACT.spad" 244895 244912 247086 247091) (-211 "DBLRESP.spad" 244493 244517 244885 244890) (-210 "DBASE.spad" 243065 243075 244483 244488) (-209 "DATABUF.spad" 242553 242566 243055 243060) (-208 "D03FAFA.spad" 242381 242389 242543 242548) (-207 "D03EEFA.spad" 242201 242209 242371 242376) (-206 "D03AGNT.spad" 241281 241289 242191 242196) (-205 "D02EJFA.spad" 240743 240751 241271 241276) (-204 "D02CJFA.spad" 240221 240229 240733 240738) (-203 "D02BHFA.spad" 239711 239719 240211 240216) (-202 "D02BBFA.spad" 239201 239209 239701 239706) (-201 "D02AGNT.spad" 234005 234013 239191 239196) (-200 "D01WGTS.spad" 232324 232332 233995 234000) (-199 "D01TRNS.spad" 232301 232309 232314 232319) (-198 "D01GBFA.spad" 231823 231831 232291 232296) (-197 "D01FCFA.spad" 231345 231353 231813 231818) (-196 "D01ASFA.spad" 230813 230821 231335 231340) (-195 "D01AQFA.spad" 230259 230267 230803 230808) (-194 "D01APFA.spad" 229683 229691 230249 230254) (-193 "D01ANFA.spad" 229177 229185 229673 229678) (-192 "D01AMFA.spad" 228687 228695 229167 229172) (-191 "D01ALFA.spad" 228227 228235 228677 228682) (-190 "D01AKFA.spad" 227753 227761 228217 228222) (-189 "D01AJFA.spad" 227276 227284 227743 227748) (-188 "D01AGNT.spad" 223335 223343 227266 227271) (-187 "CYCLOTOM.spad" 222841 222849 223325 223330) (-186 "CYCLES.spad" 219673 219681 222831 222836) (-185 "CVMP.spad" 219090 219100 219663 219668) (-184 "CTRIGMNP.spad" 217580 217596 219080 219085) (-183 "CTOR.spad" 217023 217031 217570 217575) (-182 "CTORKIND.spad" 216638 216646 217013 217018) (-181 "CTORCALL.spad" 216226 216234 216628 216633) (-180 "CSTTOOLS.spad" 215469 215482 216216 216221) (-179 "CRFP.spad" 209173 209186 215459 215464) (-178 "CRCEAST.spad" 208893 208901 209163 209168) (-177 "CRAPACK.spad" 207936 207946 208883 208888) (-176 "CPMATCH.spad" 207436 207451 207861 207866) (-175 "CPIMA.spad" 207141 207160 207426 207431) (-174 "COORDSYS.spad" 202034 202044 207131 207136) (-173 "CONTOUR.spad" 201436 201444 202024 202029) (-172 "CONTFRAC.spad" 197048 197058 201338 201431) (-171 "CONDUIT.spad" 196806 196814 197038 197043) (-170 "COMRING.spad" 196480 196488 196744 196801) (-169 "COMPPROP.spad" 195994 196002 196470 196475) (-168 "COMPLPAT.spad" 195761 195776 195984 195989) (-167 "COMPLEX.spad" 189787 189797 190031 190292) (-166 "COMPLEX2.spad" 189500 189512 189777 189782) (-165 "COMPFACT.spad" 189102 189116 189490 189495) (-164 "COMPCAT.spad" 187158 187168 188824 189097) (-163 "COMPCAT.spad" 184920 184932 186588 186593) (-162 "COMMUPC.spad" 184666 184684 184910 184915) (-161 "COMMONOP.spad" 184199 184207 184656 184661) (-160 "COMM.spad" 184008 184016 184189 184194) (-159 "COMMAAST.spad" 183771 183779 183998 184003) (-158 "COMBOPC.spad" 182676 182684 183761 183766) (-157 "COMBINAT.spad" 181421 181431 182666 182671) (-156 "COMBF.spad" 178789 178805 181411 181416) (-155 "COLOR.spad" 177626 177634 178779 178784) (-154 "COLONAST.spad" 177292 177300 177616 177621) (-153 "CMPLXRT.spad" 177001 177018 177282 177287) (-152 "CLLCTAST.spad" 176663 176671 176991 176996) (-151 "CLIP.spad" 172755 172763 176653 176658) (-150 "CLIF.spad" 171394 171410 172711 172750) (-149 "CLAGG.spad" 167869 167879 171374 171389) (-148 "CLAGG.spad" 164225 164237 167732 167737) (-147 "CINTSLPE.spad" 163550 163563 164215 164220) (-146 "CHVAR.spad" 161628 161650 163540 163545) (-145 "CHARZ.spad" 161543 161551 161608 161623) (-144 "CHARPOL.spad" 161051 161061 161533 161538) (-143 "CHARNZ.spad" 160804 160812 161031 161046) (-142 "CHAR.spad" 158672 158680 160794 160799) (-141 "CFCAT.spad" 157988 157996 158662 158667) (-140 "CDEN.spad" 157146 157160 157978 157983) (-139 "CCLASS.spad" 155295 155303 156557 156596) (-138 "CATEGORY.spad" 155074 155082 155285 155290) (-137 "CATAST.spad" 154701 154709 155064 155069) (-136 "CASEAST.spad" 154415 154423 154691 154696) (-135 "CARTEN.spad" 149518 149542 154405 154410) (-134 "CARTEN2.spad" 148904 148931 149508 149513) (-133 "CARD.spad" 146193 146201 148878 148899) (-132 "CAPSLAST.spad" 145967 145975 146183 146188) (-131 "CACHSET.spad" 145589 145597 145957 145962) (-130 "CABMON.spad" 145142 145150 145579 145584) (-129 "BYTE.spad" 144316 144324 145132 145137) (-128 "BYTEARY.spad" 143391 143399 143485 143512) (-127 "BTREE.spad" 142460 142470 142998 143025) (-126 "BTOURN.spad" 141463 141473 142067 142094) (-125 "BTCAT.spad" 140839 140849 141419 141458) (-124 "BTCAT.spad" 140247 140259 140829 140834) (-123 "BTAGG.spad" 139357 139365 140203 140242) (-122 "BTAGG.spad" 138499 138509 139347 139352) (-121 "BSTREE.spad" 137234 137244 138106 138133) (-120 "BRILL.spad" 135429 135440 137224 137229) (-119 "BRAGG.spad" 134343 134353 135409 135424) (-118 "BRAGG.spad" 133231 133243 134299 134304) (-117 "BPADICRT.spad" 131213 131225 131468 131561) (-116 "BPADIC.spad" 130877 130889 131139 131208) (-115 "BOUNDZRO.spad" 130533 130550 130867 130872) (-114 "BOP.spad" 125997 126005 130523 130528) (-113 "BOP1.spad" 123383 123393 125953 125958) (-112 "BOOLEAN.spad" 122707 122715 123373 123378) (-111 "BMODULE.spad" 122419 122431 122675 122702) (-110 "BITS.spad" 121838 121846 122055 122082) (-109 "BINFILE.spad" 121181 121189 121828 121833) (-108 "BINDING.spad" 120600 120608 121171 121176) (-107 "BINARY.spad" 118491 118499 119068 119161) (-106 "BGAGG.spad" 117676 117686 118459 118486) (-105 "BGAGG.spad" 116881 116893 117666 117671) (-104 "BFUNCT.spad" 116445 116453 116861 116876) (-103 "BEZOUT.spad" 115579 115606 116395 116400) (-102 "BBTREE.spad" 112398 112408 115186 115213) (-101 "BASTYPE.spad" 112070 112078 112388 112393) (-100 "BASTYPE.spad" 111740 111750 112060 112065) (-99 "BALFACT.spad" 111180 111192 111730 111735) (-98 "AUTOMOR.spad" 110627 110636 111160 111175) (-97 "ATTREG.spad" 107346 107353 110379 110622) (-96 "ATTRBUT.spad" 103369 103376 107326 107341) (-95 "ATTRAST.spad" 103086 103093 103359 103364) (-94 "ATRIG.spad" 102556 102563 103076 103081) (-93 "ATRIG.spad" 102024 102033 102546 102551) (-92 "ASTCAT.spad" 101928 101935 102014 102019) (-91 "ASTCAT.spad" 101830 101839 101918 101923) (-90 "ASTACK.spad" 101163 101172 101437 101464) (-89 "ASSOCEQ.spad" 99963 99974 101119 101124) (-88 "ASP9.spad" 99044 99057 99953 99958) (-87 "ASP8.spad" 98087 98100 99034 99039) (-86 "ASP80.spad" 97409 97422 98077 98082) (-85 "ASP7.spad" 96569 96582 97399 97404) (-84 "ASP78.spad" 96020 96033 96559 96564) (-83 "ASP77.spad" 95389 95402 96010 96015) (-82 "ASP74.spad" 94481 94494 95379 95384) (-81 "ASP73.spad" 93752 93765 94471 94476) (-80 "ASP6.spad" 92384 92397 93742 93747) (-79 "ASP55.spad" 90893 90906 92374 92379) (-78 "ASP50.spad" 88710 88723 90883 90888) (-77 "ASP4.spad" 88005 88018 88700 88705) (-76 "ASP49.spad" 87004 87017 87995 88000) (-75 "ASP42.spad" 85411 85450 86994 86999) (-74 "ASP41.spad" 83990 84029 85401 85406) (-73 "ASP35.spad" 82978 82991 83980 83985) (-72 "ASP34.spad" 82279 82292 82968 82973) (-71 "ASP33.spad" 81839 81852 82269 82274) (-70 "ASP31.spad" 80979 80992 81829 81834) (-69 "ASP30.spad" 79871 79884 80969 80974) (-68 "ASP29.spad" 79337 79350 79861 79866) (-67 "ASP28.spad" 70610 70623 79327 79332) (-66 "ASP27.spad" 69507 69520 70600 70605) (-65 "ASP24.spad" 68594 68607 69497 69502) (-64 "ASP20.spad" 67810 67823 68584 68589) (-63 "ASP1.spad" 67191 67204 67800 67805) (-62 "ASP19.spad" 61877 61890 67181 67186) (-61 "ASP12.spad" 61291 61304 61867 61872) (-60 "ASP10.spad" 60562 60575 61281 61286) (-59 "ARRAY2.spad" 59922 59931 60169 60196) (-58 "ARRAY1.spad" 58757 58766 59105 59132) (-57 "ARRAY12.spad" 57426 57437 58747 58752) (-56 "ARR2CAT.spad" 53076 53097 57382 57421) (-55 "ARR2CAT.spad" 48758 48781 53066 53071) (-54 "APPRULE.spad" 48002 48024 48748 48753) (-53 "APPLYORE.spad" 47617 47630 47992 47997) (-52 "ANY.spad" 45959 45966 47607 47612) (-51 "ANY1.spad" 45030 45039 45949 45954) (-50 "ANTISYM.spad" 43469 43485 45010 45025) (-49 "ANON.spad" 43166 43173 43459 43464) (-48 "AN.spad" 41467 41474 42982 43075) (-47 "AMR.spad" 39646 39657 41365 41462) (-46 "AMR.spad" 37662 37675 39383 39388) (-45 "ALIST.spad" 35074 35095 35424 35451) (-44 "ALGSC.spad" 34197 34223 34946 34999) (-43 "ALGPKG.spad" 29906 29917 34153 34158) (-42 "ALGMFACT.spad" 29095 29109 29896 29901) (-41 "ALGMANIP.spad" 26515 26530 28892 28897) (-40 "ALGFF.spad" 24830 24857 25047 25203) (-39 "ALGFACT.spad" 23951 23961 24820 24825) (-38 "ALGEBRA.spad" 23682 23691 23907 23946) (-37 "ALGEBRA.spad" 23445 23456 23672 23677) (-36 "ALAGG.spad" 22943 22964 23401 23440) (-35 "AHYP.spad" 22324 22331 22933 22938) (-34 "AGG.spad" 20623 20630 22304 22319) (-33 "AGG.spad" 18896 18905 20579 20584) (-32 "AF.spad" 17321 17336 18831 18836) (-31 "ADDAST.spad" 16999 17006 17311 17316) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2271395 2271400 2271405 2271410) (-2 NIL 2271375 2271380 2271385 2271390) (-1 NIL 2271355 2271360 2271365 2271370) (0 NIL 2271335 2271340 2271345 2271350) (-1263 "ZMOD.spad" 2271144 2271157 2271273 2271330) (-1262 "ZLINDEP.spad" 2270188 2270199 2271134 2271139) (-1261 "ZDSOLVE.spad" 2260037 2260059 2270178 2270183) (-1260 "YSTREAM.spad" 2259530 2259541 2260027 2260032) (-1259 "XRPOLY.spad" 2258750 2258770 2259386 2259455) (-1258 "XPR.spad" 2256479 2256492 2258468 2258567) (-1257 "XPOLY.spad" 2256034 2256045 2256335 2256404) (-1256 "XPOLYC.spad" 2255351 2255367 2255960 2256029) (-1255 "XPBWPOLY.spad" 2253788 2253808 2255131 2255200) (-1254 "XF.spad" 2252249 2252264 2253690 2253783) (-1253 "XF.spad" 2250690 2250707 2252133 2252138) (-1252 "XFALG.spad" 2247714 2247730 2250616 2250685) (-1251 "XEXPPKG.spad" 2246965 2246991 2247704 2247709) (-1250 "XDPOLY.spad" 2246579 2246595 2246821 2246890) (-1249 "XALG.spad" 2246177 2246188 2246535 2246574) (-1248 "WUTSET.spad" 2242016 2242033 2245823 2245850) (-1247 "WP.spad" 2241030 2241074 2241874 2241941) (-1246 "WHILEAST.spad" 2240828 2240837 2241020 2241025) (-1245 "WHEREAST.spad" 2240499 2240508 2240818 2240823) (-1244 "WFFINTBS.spad" 2238062 2238084 2240489 2240494) (-1243 "WEIER.spad" 2236276 2236287 2238052 2238057) (-1242 "VSPACE.spad" 2235949 2235960 2236244 2236271) (-1241 "VSPACE.spad" 2235642 2235655 2235939 2235944) (-1240 "VOID.spad" 2235232 2235241 2235632 2235637) (-1239 "VIEW.spad" 2232854 2232863 2235222 2235227) (-1238 "VIEWDEF.spad" 2228051 2228060 2232844 2232849) (-1237 "VIEW3D.spad" 2211886 2211895 2228041 2228046) (-1236 "VIEW2D.spad" 2199623 2199632 2211876 2211881) (-1235 "VECTOR.spad" 2198298 2198309 2198549 2198576) (-1234 "VECTOR2.spad" 2196925 2196938 2198288 2198293) (-1233 "VECTCAT.spad" 2194813 2194824 2196881 2196920) (-1232 "VECTCAT.spad" 2192521 2192534 2194591 2194596) (-1231 "VARIABLE.spad" 2192301 2192316 2192511 2192516) (-1230 "UTYPE.spad" 2191935 2191944 2192281 2192296) (-1229 "UTSODETL.spad" 2191228 2191252 2191891 2191896) (-1228 "UTSODE.spad" 2189416 2189436 2191218 2191223) (-1227 "UTS.spad" 2184205 2184233 2187883 2187980) (-1226 "UTSCAT.spad" 2181656 2181672 2184103 2184200) (-1225 "UTSCAT.spad" 2178751 2178769 2181200 2181205) (-1224 "UTS2.spad" 2178344 2178379 2178741 2178746) (-1223 "URAGG.spad" 2172966 2172977 2178324 2178339) (-1222 "URAGG.spad" 2167562 2167575 2172922 2172927) (-1221 "UPXSSING.spad" 2165205 2165231 2166643 2166776) (-1220 "UPXS.spad" 2162232 2162260 2163337 2163486) (-1219 "UPXSCONS.spad" 2159989 2160009 2160364 2160513) (-1218 "UPXSCCA.spad" 2158447 2158467 2159835 2159984) (-1217 "UPXSCCA.spad" 2157047 2157069 2158437 2158442) (-1216 "UPXSCAT.spad" 2155628 2155644 2156893 2157042) (-1215 "UPXS2.spad" 2155169 2155222 2155618 2155623) (-1214 "UPSQFREE.spad" 2153581 2153595 2155159 2155164) (-1213 "UPSCAT.spad" 2151174 2151198 2153479 2153576) (-1212 "UPSCAT.spad" 2148473 2148499 2150780 2150785) (-1211 "UPOLYC.spad" 2143451 2143462 2148315 2148468) (-1210 "UPOLYC.spad" 2138321 2138334 2143187 2143192) (-1209 "UPOLYC2.spad" 2137790 2137809 2138311 2138316) (-1208 "UP.spad" 2134832 2134847 2135340 2135493) (-1207 "UPMP.spad" 2133722 2133735 2134822 2134827) (-1206 "UPDIVP.spad" 2133285 2133299 2133712 2133717) (-1205 "UPDECOMP.spad" 2131522 2131536 2133275 2133280) (-1204 "UPCDEN.spad" 2130729 2130745 2131512 2131517) (-1203 "UP2.spad" 2130091 2130112 2130719 2130724) (-1202 "UNISEG.spad" 2129444 2129455 2130010 2130015) (-1201 "UNISEG2.spad" 2128937 2128950 2129400 2129405) (-1200 "UNIFACT.spad" 2128038 2128050 2128927 2128932) (-1199 "ULS.spad" 2118590 2118618 2119683 2120112) (-1198 "ULSCONS.spad" 2112627 2112647 2112999 2113148) (-1197 "ULSCCAT.spad" 2110224 2110244 2112447 2112622) (-1196 "ULSCCAT.spad" 2107955 2107977 2110180 2110185) (-1195 "ULSCAT.spad" 2106171 2106187 2107801 2107950) (-1194 "ULS2.spad" 2105683 2105736 2106161 2106166) (-1193 "UFD.spad" 2104748 2104757 2105609 2105678) (-1192 "UFD.spad" 2103875 2103886 2104738 2104743) (-1191 "UDVO.spad" 2102722 2102731 2103865 2103870) (-1190 "UDPO.spad" 2100149 2100160 2102678 2102683) (-1189 "TYPE.spad" 2100071 2100080 2100129 2100144) (-1188 "TYPEAST.spad" 2099990 2099999 2100061 2100066) (-1187 "TWOFACT.spad" 2098640 2098655 2099980 2099985) (-1186 "TUPLE.spad" 2098026 2098037 2098539 2098544) (-1185 "TUBETOOL.spad" 2094863 2094872 2098016 2098021) (-1184 "TUBE.spad" 2093504 2093521 2094853 2094858) (-1183 "TS.spad" 2092093 2092109 2093069 2093166) (-1182 "TSETCAT.spad" 2079208 2079225 2092049 2092088) (-1181 "TSETCAT.spad" 2066321 2066340 2079164 2079169) (-1180 "TRMANIP.spad" 2060687 2060704 2066027 2066032) (-1179 "TRIMAT.spad" 2059646 2059671 2060677 2060682) (-1178 "TRIGMNIP.spad" 2058163 2058180 2059636 2059641) (-1177 "TRIGCAT.spad" 2057675 2057684 2058153 2058158) (-1176 "TRIGCAT.spad" 2057185 2057196 2057665 2057670) (-1175 "TREE.spad" 2055756 2055767 2056792 2056819) (-1174 "TRANFUN.spad" 2055587 2055596 2055746 2055751) (-1173 "TRANFUN.spad" 2055416 2055427 2055577 2055582) (-1172 "TOPSP.spad" 2055090 2055099 2055406 2055411) (-1171 "TOOLSIGN.spad" 2054753 2054764 2055080 2055085) (-1170 "TEXTFILE.spad" 2053310 2053319 2054743 2054748) (-1169 "TEX.spad" 2050327 2050336 2053300 2053305) (-1168 "TEX1.spad" 2049883 2049894 2050317 2050322) (-1167 "TEMUTL.spad" 2049438 2049447 2049873 2049878) (-1166 "TBCMPPK.spad" 2047531 2047554 2049428 2049433) (-1165 "TBAGG.spad" 2046555 2046578 2047499 2047526) (-1164 "TBAGG.spad" 2045599 2045624 2046545 2046550) (-1163 "TANEXP.spad" 2044975 2044986 2045589 2045594) (-1162 "TABLE.spad" 2043386 2043409 2043656 2043683) (-1161 "TABLEAU.spad" 2042867 2042878 2043376 2043381) (-1160 "TABLBUMP.spad" 2039650 2039661 2042857 2042862) (-1159 "SYSTEM.spad" 2038924 2038933 2039640 2039645) (-1158 "SYSSOLP.spad" 2036397 2036408 2038914 2038919) (-1157 "SYNTAX.spad" 2032667 2032676 2036387 2036392) (-1156 "SYMTAB.spad" 2030723 2030732 2032657 2032662) (-1155 "SYMS.spad" 2026708 2026717 2030713 2030718) (-1154 "SYMPOLY.spad" 2025715 2025726 2025797 2025924) (-1153 "SYMFUNC.spad" 2025190 2025201 2025705 2025710) (-1152 "SYMBOL.spad" 2022526 2022535 2025180 2025185) (-1151 "SWITCH.spad" 2019283 2019292 2022516 2022521) (-1150 "SUTS.spad" 2016182 2016210 2017750 2017847) (-1149 "SUPXS.spad" 2013196 2013224 2014314 2014463) (-1148 "SUP.spad" 2009965 2009976 2010746 2010899) (-1147 "SUPFRACF.spad" 2009070 2009088 2009955 2009960) (-1146 "SUP2.spad" 2008460 2008473 2009060 2009065) (-1145 "SUMRF.spad" 2007426 2007437 2008450 2008455) (-1144 "SUMFS.spad" 2007059 2007076 2007416 2007421) (-1143 "SULS.spad" 1997598 1997626 1998704 1999133) (-1142 "SUCHTAST.spad" 1997367 1997376 1997588 1997593) (-1141 "SUCH.spad" 1997047 1997062 1997357 1997362) (-1140 "SUBSPACE.spad" 1989054 1989069 1997037 1997042) (-1139 "SUBRESP.spad" 1988214 1988228 1989010 1989015) (-1138 "STTF.spad" 1984313 1984329 1988204 1988209) (-1137 "STTFNC.spad" 1980781 1980797 1984303 1984308) (-1136 "STTAYLOR.spad" 1973179 1973190 1980662 1980667) (-1135 "STRTBL.spad" 1971684 1971701 1971833 1971860) (-1134 "STRING.spad" 1971093 1971102 1971107 1971134) (-1133 "STRICAT.spad" 1970869 1970878 1971049 1971088) (-1132 "STREAM.spad" 1967637 1967648 1970394 1970409) (-1131 "STREAM3.spad" 1967182 1967197 1967627 1967632) (-1130 "STREAM2.spad" 1966250 1966263 1967172 1967177) (-1129 "STREAM1.spad" 1965954 1965965 1966240 1966245) (-1128 "STINPROD.spad" 1964860 1964876 1965944 1965949) (-1127 "STEP.spad" 1964061 1964070 1964850 1964855) (-1126 "STBL.spad" 1962587 1962615 1962754 1962769) (-1125 "STAGG.spad" 1961652 1961663 1962567 1962582) (-1124 "STAGG.spad" 1960725 1960738 1961642 1961647) (-1123 "STACK.spad" 1960076 1960087 1960332 1960359) (-1122 "SREGSET.spad" 1957780 1957797 1959722 1959749) (-1121 "SRDCMPK.spad" 1956325 1956345 1957770 1957775) (-1120 "SRAGG.spad" 1951410 1951419 1956281 1956320) (-1119 "SRAGG.spad" 1946527 1946538 1951400 1951405) (-1118 "SQMATRIX.spad" 1944143 1944161 1945059 1945146) (-1117 "SPLTREE.spad" 1938695 1938708 1943579 1943606) (-1116 "SPLNODE.spad" 1935283 1935296 1938685 1938690) (-1115 "SPFCAT.spad" 1934060 1934069 1935273 1935278) (-1114 "SPECOUT.spad" 1932610 1932619 1934050 1934055) (-1113 "SPADXPT.spad" 1924739 1924748 1932590 1932605) (-1112 "spad-parser.spad" 1924204 1924213 1924729 1924734) (-1111 "SPADAST.spad" 1923905 1923914 1924194 1924199) (-1110 "SPACEC.spad" 1907918 1907929 1923895 1923900) (-1109 "SPACE3.spad" 1907694 1907705 1907908 1907913) (-1108 "SORTPAK.spad" 1907239 1907252 1907650 1907655) (-1107 "SOLVETRA.spad" 1904996 1905007 1907229 1907234) (-1106 "SOLVESER.spad" 1903516 1903527 1904986 1904991) (-1105 "SOLVERAD.spad" 1899526 1899537 1903506 1903511) (-1104 "SOLVEFOR.spad" 1897946 1897964 1899516 1899521) (-1103 "SNTSCAT.spad" 1897534 1897551 1897902 1897941) (-1102 "SMTS.spad" 1895794 1895820 1897099 1897196) (-1101 "SMP.spad" 1893233 1893253 1893623 1893750) (-1100 "SMITH.spad" 1892076 1892101 1893223 1893228) (-1099 "SMATCAT.spad" 1890174 1890204 1892008 1892071) (-1098 "SMATCAT.spad" 1888216 1888248 1890052 1890057) (-1097 "SKAGG.spad" 1887165 1887176 1888172 1888211) (-1096 "SINT.spad" 1885473 1885482 1887031 1887160) (-1095 "SIMPAN.spad" 1885201 1885210 1885463 1885468) (-1094 "SIG.spad" 1884529 1884538 1885191 1885196) (-1093 "SIGNRF.spad" 1883637 1883648 1884519 1884524) (-1092 "SIGNEF.spad" 1882906 1882923 1883627 1883632) (-1091 "SIGAST.spad" 1882287 1882296 1882896 1882901) (-1090 "SHP.spad" 1880205 1880220 1882243 1882248) (-1089 "SHDP.spad" 1871190 1871217 1871699 1871830) (-1088 "SGROUP.spad" 1870798 1870807 1871180 1871185) (-1087 "SGROUP.spad" 1870404 1870415 1870788 1870793) (-1086 "SGCF.spad" 1863285 1863294 1870394 1870399) (-1085 "SFRTCAT.spad" 1862201 1862218 1863241 1863280) (-1084 "SFRGCD.spad" 1861264 1861284 1862191 1862196) (-1083 "SFQCMPK.spad" 1855901 1855921 1861254 1861259) (-1082 "SFORT.spad" 1855336 1855350 1855891 1855896) (-1081 "SEXOF.spad" 1855179 1855219 1855326 1855331) (-1080 "SEX.spad" 1855071 1855080 1855169 1855174) (-1079 "SEXCAT.spad" 1852175 1852215 1855061 1855066) (-1078 "SET.spad" 1850475 1850486 1851596 1851635) (-1077 "SETMN.spad" 1848909 1848926 1850465 1850470) (-1076 "SETCAT.spad" 1848394 1848403 1848899 1848904) (-1075 "SETCAT.spad" 1847877 1847888 1848384 1848389) (-1074 "SETAGG.spad" 1844386 1844397 1847845 1847872) (-1073 "SETAGG.spad" 1840915 1840928 1844376 1844381) (-1072 "SEQAST.spad" 1840618 1840627 1840905 1840910) (-1071 "SEGXCAT.spad" 1839730 1839743 1840598 1840613) (-1070 "SEG.spad" 1839543 1839554 1839649 1839654) (-1069 "SEGCAT.spad" 1838362 1838373 1839523 1839538) (-1068 "SEGBIND.spad" 1837434 1837445 1838317 1838322) (-1067 "SEGBIND2.spad" 1837130 1837143 1837424 1837429) (-1066 "SEGAST.spad" 1836844 1836853 1837120 1837125) (-1065 "SEG2.spad" 1836269 1836282 1836800 1836805) (-1064 "SDVAR.spad" 1835545 1835556 1836259 1836264) (-1063 "SDPOL.spad" 1832935 1832946 1833226 1833353) (-1062 "SCPKG.spad" 1831014 1831025 1832925 1832930) (-1061 "SCOPE.spad" 1830159 1830168 1831004 1831009) (-1060 "SCACHE.spad" 1828841 1828852 1830149 1830154) (-1059 "SASTCAT.spad" 1828750 1828759 1828831 1828836) (-1058 "SAOS.spad" 1828622 1828631 1828740 1828745) (-1057 "SAERFFC.spad" 1828335 1828355 1828612 1828617) (-1056 "SAE.spad" 1826510 1826526 1827121 1827256) (-1055 "SAEFACT.spad" 1826211 1826231 1826500 1826505) (-1054 "RURPK.spad" 1823852 1823868 1826201 1826206) (-1053 "RULESET.spad" 1823293 1823317 1823842 1823847) (-1052 "RULE.spad" 1821497 1821521 1823283 1823288) (-1051 "RULECOLD.spad" 1821349 1821362 1821487 1821492) (-1050 "RSTRCAST.spad" 1821066 1821075 1821339 1821344) (-1049 "RSETGCD.spad" 1817444 1817464 1821056 1821061) (-1048 "RSETCAT.spad" 1807216 1807233 1817400 1817439) (-1047 "RSETCAT.spad" 1797020 1797039 1807206 1807211) (-1046 "RSDCMPK.spad" 1795472 1795492 1797010 1797015) (-1045 "RRCC.spad" 1793856 1793886 1795462 1795467) (-1044 "RRCC.spad" 1792238 1792270 1793846 1793851) (-1043 "RPTAST.spad" 1791940 1791949 1792228 1792233) (-1042 "RPOLCAT.spad" 1771300 1771315 1791808 1791935) (-1041 "RPOLCAT.spad" 1750374 1750391 1770884 1770889) (-1040 "ROUTINE.spad" 1746237 1746246 1749021 1749048) (-1039 "ROMAN.spad" 1745469 1745478 1746103 1746232) (-1038 "ROIRC.spad" 1744549 1744581 1745459 1745464) (-1037 "RNS.spad" 1743452 1743461 1744451 1744544) (-1036 "RNS.spad" 1742441 1742452 1743442 1743447) (-1035 "RNG.spad" 1742176 1742185 1742431 1742436) (-1034 "RMODULE.spad" 1741814 1741825 1742166 1742171) (-1033 "RMCAT2.spad" 1741222 1741279 1741804 1741809) (-1032 "RMATRIX.spad" 1739901 1739920 1740389 1740428) (-1031 "RMATCAT.spad" 1735422 1735453 1739845 1739896) (-1030 "RMATCAT.spad" 1730845 1730878 1735270 1735275) (-1029 "RINTERP.spad" 1730733 1730753 1730835 1730840) (-1028 "RING.spad" 1730090 1730099 1730713 1730728) (-1027 "RING.spad" 1729455 1729466 1730080 1730085) (-1026 "RIDIST.spad" 1728839 1728848 1729445 1729450) (-1025 "RGCHAIN.spad" 1727418 1727434 1728324 1728351) (-1024 "RGBCSPC.spad" 1727199 1727211 1727408 1727413) (-1023 "RGBCMDL.spad" 1726729 1726741 1727189 1727194) (-1022 "RF.spad" 1724343 1724354 1726719 1726724) (-1021 "RFFACTOR.spad" 1723805 1723816 1724333 1724338) (-1020 "RFFACT.spad" 1723540 1723552 1723795 1723800) (-1019 "RFDIST.spad" 1722528 1722537 1723530 1723535) (-1018 "RETSOL.spad" 1721945 1721958 1722518 1722523) (-1017 "RETRACT.spad" 1721294 1721305 1721935 1721940) (-1016 "RETRACT.spad" 1720641 1720654 1721284 1721289) (-1015 "RETAST.spad" 1720453 1720462 1720631 1720636) (-1014 "RESULT.spad" 1718513 1718522 1719100 1719127) (-1013 "RESRING.spad" 1717860 1717907 1718451 1718508) (-1012 "RESLATC.spad" 1717184 1717195 1717850 1717855) (-1011 "REPSQ.spad" 1716913 1716924 1717174 1717179) (-1010 "REP.spad" 1714465 1714474 1716903 1716908) (-1009 "REPDB.spad" 1714170 1714181 1714455 1714460) (-1008 "REP2.spad" 1703742 1703753 1714012 1714017) (-1007 "REP1.spad" 1697732 1697743 1703692 1703697) (-1006 "REGSET.spad" 1695529 1695546 1697378 1697405) (-1005 "REF.spad" 1694858 1694869 1695484 1695489) (-1004 "REDORDER.spad" 1694034 1694051 1694848 1694853) (-1003 "RECLOS.spad" 1692817 1692837 1693521 1693614) (-1002 "REALSOLV.spad" 1691949 1691958 1692807 1692812) (-1001 "REAL.spad" 1691821 1691830 1691939 1691944) (-1000 "REAL0Q.spad" 1689103 1689118 1691811 1691816) (-999 "REAL0.spad" 1685932 1685946 1689093 1689098) (-998 "RDUCEAST.spad" 1685654 1685662 1685922 1685927) (-997 "RDIV.spad" 1685306 1685330 1685644 1685649) (-996 "RDIST.spad" 1684870 1684880 1685296 1685301) (-995 "RDETRS.spad" 1683667 1683684 1684860 1684865) (-994 "RDETR.spad" 1681775 1681792 1683657 1683662) (-993 "RDEEFS.spad" 1680849 1680865 1681765 1681770) (-992 "RDEEF.spad" 1679846 1679862 1680839 1680844) (-991 "RCFIELD.spad" 1677033 1677041 1679748 1679841) (-990 "RCFIELD.spad" 1674306 1674316 1677023 1677028) (-989 "RCAGG.spad" 1672209 1672219 1674286 1674301) (-988 "RCAGG.spad" 1670049 1670061 1672128 1672133) (-987 "RATRET.spad" 1669410 1669420 1670039 1670044) (-986 "RATFACT.spad" 1669103 1669114 1669400 1669405) (-985 "RANDSRC.spad" 1668423 1668431 1669093 1669098) (-984 "RADUTIL.spad" 1668178 1668186 1668413 1668418) (-983 "RADIX.spad" 1664968 1664981 1666645 1666738) (-982 "RADFF.spad" 1663382 1663418 1663500 1663656) (-981 "RADCAT.spad" 1662976 1662984 1663372 1663377) (-980 "RADCAT.spad" 1662568 1662578 1662966 1662971) (-979 "QUEUE.spad" 1661911 1661921 1662175 1662202) (-978 "QUAT.spad" 1660493 1660503 1660835 1660900) (-977 "QUATCT2.spad" 1660112 1660130 1660483 1660488) (-976 "QUATCAT.spad" 1658277 1658287 1660042 1660107) (-975 "QUATCAT.spad" 1656193 1656205 1657960 1657965) (-974 "QUAGG.spad" 1655007 1655017 1656149 1656188) (-973 "QQUTAST.spad" 1654776 1654784 1654997 1655002) (-972 "QFORM.spad" 1654239 1654253 1654766 1654771) (-971 "QFCAT.spad" 1652930 1652940 1654129 1654234) (-970 "QFCAT.spad" 1651224 1651236 1652425 1652430) (-969 "QFCAT2.spad" 1650915 1650931 1651214 1651219) (-968 "QEQUAT.spad" 1650472 1650480 1650905 1650910) (-967 "QCMPACK.spad" 1645219 1645238 1650462 1650467) (-966 "QALGSET.spad" 1641294 1641326 1645133 1645138) (-965 "QALGSET2.spad" 1639290 1639308 1641284 1641289) (-964 "PWFFINTB.spad" 1636600 1636621 1639280 1639285) (-963 "PUSHVAR.spad" 1635929 1635948 1636590 1636595) (-962 "PTRANFN.spad" 1632055 1632065 1635919 1635924) (-961 "PTPACK.spad" 1629143 1629153 1632045 1632050) (-960 "PTFUNC2.spad" 1628964 1628978 1629133 1629138) (-959 "PTCAT.spad" 1628046 1628056 1628920 1628959) (-958 "PSQFR.spad" 1627353 1627377 1628036 1628041) (-957 "PSEUDLIN.spad" 1626211 1626221 1627343 1627348) (-956 "PSETPK.spad" 1611644 1611660 1626089 1626094) (-955 "PSETCAT.spad" 1605552 1605575 1611612 1611639) (-954 "PSETCAT.spad" 1599446 1599471 1605508 1605513) (-953 "PSCURVE.spad" 1598429 1598437 1599436 1599441) (-952 "PSCAT.spad" 1597196 1597225 1598327 1598424) (-951 "PSCAT.spad" 1596053 1596084 1597186 1597191) (-950 "PRTITION.spad" 1594896 1594904 1596043 1596048) (-949 "PRTDAST.spad" 1594615 1594623 1594886 1594891) (-948 "PRS.spad" 1584177 1584194 1594571 1594576) (-947 "PRQAGG.spad" 1583596 1583606 1584133 1584172) (-946 "PROPLOG.spad" 1582999 1583007 1583586 1583591) (-945 "PROPFRML.spad" 1580917 1580928 1582989 1582994) (-944 "PROPERTY.spad" 1580411 1580419 1580907 1580912) (-943 "PRODUCT.spad" 1578091 1578103 1578377 1578432) (-942 "PR.spad" 1576477 1576489 1577182 1577309) (-941 "PRINT.spad" 1576229 1576237 1576467 1576472) (-940 "PRIMES.spad" 1574480 1574490 1576219 1576224) (-939 "PRIMELT.spad" 1572461 1572475 1574470 1574475) (-938 "PRIMCAT.spad" 1572084 1572092 1572451 1572456) (-937 "PRIMARR.spad" 1571089 1571099 1571267 1571294) (-936 "PRIMARR2.spad" 1569812 1569824 1571079 1571084) (-935 "PREASSOC.spad" 1569184 1569196 1569802 1569807) (-934 "PPCURVE.spad" 1568321 1568329 1569174 1569179) (-933 "PORTNUM.spad" 1568096 1568104 1568311 1568316) (-932 "POLYROOT.spad" 1566868 1566890 1568052 1568057) (-931 "POLY.spad" 1564165 1564175 1564682 1564809) (-930 "POLYLIFT.spad" 1563426 1563449 1564155 1564160) (-929 "POLYCATQ.spad" 1561528 1561550 1563416 1563421) (-928 "POLYCAT.spad" 1554934 1554955 1561396 1561523) (-927 "POLYCAT.spad" 1547642 1547665 1554106 1554111) (-926 "POLY2UP.spad" 1547090 1547104 1547632 1547637) (-925 "POLY2.spad" 1546685 1546697 1547080 1547085) (-924 "POLUTIL.spad" 1545626 1545655 1546641 1546646) (-923 "POLTOPOL.spad" 1544374 1544389 1545616 1545621) (-922 "POINT.spad" 1543213 1543223 1543300 1543327) (-921 "PNTHEORY.spad" 1539879 1539887 1543203 1543208) (-920 "PMTOOLS.spad" 1538636 1538650 1539869 1539874) (-919 "PMSYM.spad" 1538181 1538191 1538626 1538631) (-918 "PMQFCAT.spad" 1537768 1537782 1538171 1538176) (-917 "PMPRED.spad" 1537237 1537251 1537758 1537763) (-916 "PMPREDFS.spad" 1536681 1536703 1537227 1537232) (-915 "PMPLCAT.spad" 1535751 1535769 1536613 1536618) (-914 "PMLSAGG.spad" 1535332 1535346 1535741 1535746) (-913 "PMKERNEL.spad" 1534899 1534911 1535322 1535327) (-912 "PMINS.spad" 1534475 1534485 1534889 1534894) (-911 "PMFS.spad" 1534048 1534066 1534465 1534470) (-910 "PMDOWN.spad" 1533334 1533348 1534038 1534043) (-909 "PMASS.spad" 1532346 1532354 1533324 1533329) (-908 "PMASSFS.spad" 1531315 1531331 1532336 1532341) (-907 "PLOTTOOL.spad" 1531095 1531103 1531305 1531310) (-906 "PLOT.spad" 1525926 1525934 1531085 1531090) (-905 "PLOT3D.spad" 1522346 1522354 1525916 1525921) (-904 "PLOT1.spad" 1521487 1521497 1522336 1522341) (-903 "PLEQN.spad" 1508703 1508730 1521477 1521482) (-902 "PINTERP.spad" 1508319 1508338 1508693 1508698) (-901 "PINTERPA.spad" 1508101 1508117 1508309 1508314) (-900 "PI.spad" 1507708 1507716 1508075 1508096) (-899 "PID.spad" 1506664 1506672 1507634 1507703) (-898 "PICOERCE.spad" 1506321 1506331 1506654 1506659) (-897 "PGROEB.spad" 1504918 1504932 1506311 1506316) (-896 "PGE.spad" 1496171 1496179 1504908 1504913) (-895 "PGCD.spad" 1495053 1495070 1496161 1496166) (-894 "PFRPAC.spad" 1494196 1494206 1495043 1495048) (-893 "PFR.spad" 1490853 1490863 1494098 1494191) (-892 "PFOTOOLS.spad" 1490111 1490127 1490843 1490848) (-891 "PFOQ.spad" 1489481 1489499 1490101 1490106) (-890 "PFO.spad" 1488900 1488927 1489471 1489476) (-889 "PF.spad" 1488474 1488486 1488705 1488798) (-888 "PFECAT.spad" 1486140 1486148 1488400 1488469) (-887 "PFECAT.spad" 1483834 1483844 1486096 1486101) (-886 "PFBRU.spad" 1481704 1481716 1483824 1483829) (-885 "PFBR.spad" 1479242 1479265 1481694 1481699) (-884 "PERM.spad" 1474923 1474933 1479072 1479087) (-883 "PERMGRP.spad" 1469659 1469669 1474913 1474918) (-882 "PERMCAT.spad" 1468211 1468221 1469639 1469654) (-881 "PERMAN.spad" 1466743 1466757 1468201 1468206) (-880 "PENDTREE.spad" 1466016 1466026 1466372 1466377) (-879 "PDRING.spad" 1464507 1464517 1465996 1466011) (-878 "PDRING.spad" 1463006 1463018 1464497 1464502) (-877 "PDEPROB.spad" 1461963 1461971 1462996 1463001) (-876 "PDEPACK.spad" 1455965 1455973 1461953 1461958) (-875 "PDECOMP.spad" 1455427 1455444 1455955 1455960) (-874 "PDECAT.spad" 1453781 1453789 1455417 1455422) (-873 "PCOMP.spad" 1453632 1453645 1453771 1453776) (-872 "PBWLB.spad" 1452214 1452231 1453622 1453627) (-871 "PATTERN.spad" 1446645 1446655 1452204 1452209) (-870 "PATTERN2.spad" 1446381 1446393 1446635 1446640) (-869 "PATTERN1.spad" 1444683 1444699 1446371 1446376) (-868 "PATRES.spad" 1442230 1442242 1444673 1444678) (-867 "PATRES2.spad" 1441892 1441906 1442220 1442225) (-866 "PATMATCH.spad" 1440049 1440080 1441600 1441605) (-865 "PATMAB.spad" 1439474 1439484 1440039 1440044) (-864 "PATLRES.spad" 1438558 1438572 1439464 1439469) (-863 "PATAB.spad" 1438322 1438332 1438548 1438553) (-862 "PARTPERM.spad" 1435684 1435692 1438312 1438317) (-861 "PARSURF.spad" 1435112 1435140 1435674 1435679) (-860 "PARSU2.spad" 1434907 1434923 1435102 1435107) (-859 "script-parser.spad" 1434427 1434435 1434897 1434902) (-858 "PARSCURV.spad" 1433855 1433883 1434417 1434422) (-857 "PARSC2.spad" 1433644 1433660 1433845 1433850) (-856 "PARPCURV.spad" 1433102 1433130 1433634 1433639) (-855 "PARPC2.spad" 1432891 1432907 1433092 1433097) (-854 "PAN2EXPR.spad" 1432303 1432311 1432881 1432886) (-853 "PALETTE.spad" 1431273 1431281 1432293 1432298) (-852 "PAIR.spad" 1430256 1430269 1430861 1430866) (-851 "PADICRC.spad" 1427586 1427604 1428761 1428854) (-850 "PADICRAT.spad" 1425601 1425613 1425822 1425915) (-849 "PADIC.spad" 1425296 1425308 1425527 1425596) (-848 "PADICCT.spad" 1423837 1423849 1425222 1425291) (-847 "PADEPAC.spad" 1422516 1422535 1423827 1423832) (-846 "PADE.spad" 1421256 1421272 1422506 1422511) (-845 "OWP.spad" 1420240 1420270 1421114 1421181) (-844 "OVAR.spad" 1420021 1420044 1420230 1420235) (-843 "OUT.spad" 1419105 1419113 1420011 1420016) (-842 "OUTFORM.spad" 1408401 1408409 1419095 1419100) (-841 "OUTBFILE.spad" 1407819 1407827 1408391 1408396) (-840 "OUTBCON.spad" 1407097 1407105 1407809 1407814) (-839 "OUTBCON.spad" 1406373 1406383 1407087 1407092) (-838 "OSI.spad" 1405848 1405856 1406363 1406368) (-837 "OSGROUP.spad" 1405766 1405774 1405838 1405843) (-836 "ORTHPOL.spad" 1404227 1404237 1405683 1405688) (-835 "OREUP.spad" 1403585 1403613 1403907 1403946) (-834 "ORESUP.spad" 1402884 1402908 1403265 1403304) (-833 "OREPCTO.spad" 1400703 1400715 1402804 1402809) (-832 "OREPCAT.spad" 1394760 1394770 1400659 1400698) (-831 "OREPCAT.spad" 1388707 1388719 1394608 1394613) (-830 "ORDSET.spad" 1387873 1387881 1388697 1388702) (-829 "ORDSET.spad" 1387037 1387047 1387863 1387868) (-828 "ORDRING.spad" 1386427 1386435 1387017 1387032) (-827 "ORDRING.spad" 1385825 1385835 1386417 1386422) (-826 "ORDMON.spad" 1385680 1385688 1385815 1385820) (-825 "ORDFUNS.spad" 1384806 1384822 1385670 1385675) (-824 "ORDFIN.spad" 1384740 1384748 1384796 1384801) (-823 "ORDCOMP.spad" 1383205 1383215 1384287 1384316) (-822 "ORDCOMP2.spad" 1382490 1382502 1383195 1383200) (-821 "OPTPROB.spad" 1381070 1381078 1382480 1382485) (-820 "OPTPACK.spad" 1373455 1373463 1381060 1381065) (-819 "OPTCAT.spad" 1371130 1371138 1373445 1373450) (-818 "OPQUERY.spad" 1370679 1370687 1371120 1371125) (-817 "OP.spad" 1370421 1370431 1370501 1370568) (-816 "ONECOMP.spad" 1369166 1369176 1369968 1369997) (-815 "ONECOMP2.spad" 1368584 1368596 1369156 1369161) (-814 "OMSERVER.spad" 1367586 1367594 1368574 1368579) (-813 "OMSAGG.spad" 1367362 1367372 1367530 1367581) (-812 "OMPKG.spad" 1365974 1365982 1367352 1367357) (-811 "OM.spad" 1364939 1364947 1365964 1365969) (-810 "OMLO.spad" 1364364 1364376 1364825 1364864) (-809 "OMEXPR.spad" 1364198 1364208 1364354 1364359) (-808 "OMERR.spad" 1363741 1363749 1364188 1364193) (-807 "OMERRK.spad" 1362775 1362783 1363731 1363736) (-806 "OMENC.spad" 1362119 1362127 1362765 1362770) (-805 "OMDEV.spad" 1356408 1356416 1362109 1362114) (-804 "OMCONN.spad" 1355817 1355825 1356398 1356403) (-803 "OINTDOM.spad" 1355580 1355588 1355743 1355812) (-802 "OFMONOID.spad" 1351767 1351777 1355570 1355575) (-801 "ODVAR.spad" 1351028 1351038 1351757 1351762) (-800 "ODR.spad" 1350476 1350502 1350840 1350989) (-799 "ODPOL.spad" 1347822 1347832 1348162 1348289) (-798 "ODP.spad" 1338943 1338963 1339316 1339447) (-797 "ODETOOLS.spad" 1337526 1337545 1338933 1338938) (-796 "ODESYS.spad" 1335176 1335193 1337516 1337521) (-795 "ODERTRIC.spad" 1331117 1331134 1335133 1335138) (-794 "ODERED.spad" 1330504 1330528 1331107 1331112) (-793 "ODERAT.spad" 1328055 1328072 1330494 1330499) (-792 "ODEPRRIC.spad" 1324946 1324968 1328045 1328050) (-791 "ODEPROB.spad" 1324145 1324153 1324936 1324941) (-790 "ODEPRIM.spad" 1321419 1321441 1324135 1324140) (-789 "ODEPAL.spad" 1320795 1320819 1321409 1321414) (-788 "ODEPACK.spad" 1307397 1307405 1320785 1320790) (-787 "ODEINT.spad" 1306828 1306844 1307387 1307392) (-786 "ODEIFTBL.spad" 1304223 1304231 1306818 1306823) (-785 "ODEEF.spad" 1299590 1299606 1304213 1304218) (-784 "ODECONST.spad" 1299109 1299127 1299580 1299585) (-783 "ODECAT.spad" 1297705 1297713 1299099 1299104) (-782 "OCT.spad" 1295843 1295853 1296559 1296598) (-781 "OCTCT2.spad" 1295487 1295508 1295833 1295838) (-780 "OC.spad" 1293261 1293271 1295443 1295482) (-779 "OC.spad" 1290760 1290772 1292944 1292949) (-778 "OCAMON.spad" 1290608 1290616 1290750 1290755) (-777 "OASGP.spad" 1290423 1290431 1290598 1290603) (-776 "OAMONS.spad" 1289943 1289951 1290413 1290418) (-775 "OAMON.spad" 1289804 1289812 1289933 1289938) (-774 "OAGROUP.spad" 1289666 1289674 1289794 1289799) (-773 "NUMTUBE.spad" 1289253 1289269 1289656 1289661) (-772 "NUMQUAD.spad" 1277115 1277123 1289243 1289248) (-771 "NUMODE.spad" 1268251 1268259 1277105 1277110) (-770 "NUMINT.spad" 1265809 1265817 1268241 1268246) (-769 "NUMFMT.spad" 1264649 1264657 1265799 1265804) (-768 "NUMERIC.spad" 1256721 1256731 1264454 1264459) (-767 "NTSCAT.spad" 1255211 1255227 1256677 1256716) (-766 "NTPOLFN.spad" 1254756 1254766 1255128 1255133) (-765 "NSUP.spad" 1247766 1247776 1252306 1252459) (-764 "NSUP2.spad" 1247158 1247170 1247756 1247761) (-763 "NSMP.spad" 1243353 1243372 1243661 1243788) (-762 "NREP.spad" 1241725 1241739 1243343 1243348) (-761 "NPCOEF.spad" 1240971 1240991 1241715 1241720) (-760 "NORMRETR.spad" 1240569 1240608 1240961 1240966) (-759 "NORMPK.spad" 1238471 1238490 1240559 1240564) (-758 "NORMMA.spad" 1238159 1238185 1238461 1238466) (-757 "NONE.spad" 1237900 1237908 1238149 1238154) (-756 "NONE1.spad" 1237576 1237586 1237890 1237895) (-755 "NODE1.spad" 1237045 1237061 1237566 1237571) (-754 "NNI.spad" 1235932 1235940 1237019 1237040) (-753 "NLINSOL.spad" 1234554 1234564 1235922 1235927) (-752 "NIPROB.spad" 1233037 1233045 1234544 1234549) (-751 "NFINTBAS.spad" 1230497 1230514 1233027 1233032) (-750 "NETCLT.spad" 1230471 1230482 1230487 1230492) (-749 "NCODIV.spad" 1228669 1228685 1230461 1230466) (-748 "NCNTFRAC.spad" 1228311 1228325 1228659 1228664) (-747 "NCEP.spad" 1226471 1226485 1228301 1228306) (-746 "NASRING.spad" 1226067 1226075 1226461 1226466) (-745 "NASRING.spad" 1225661 1225671 1226057 1226062) (-744 "NARNG.spad" 1225005 1225013 1225651 1225656) (-743 "NARNG.spad" 1224347 1224357 1224995 1225000) (-742 "NAGSP.spad" 1223420 1223428 1224337 1224342) (-741 "NAGS.spad" 1212945 1212953 1223410 1223415) (-740 "NAGF07.spad" 1211338 1211346 1212935 1212940) (-739 "NAGF04.spad" 1205570 1205578 1211328 1211333) (-738 "NAGF02.spad" 1199379 1199387 1205560 1205565) (-737 "NAGF01.spad" 1194982 1194990 1199369 1199374) (-736 "NAGE04.spad" 1188442 1188450 1194972 1194977) (-735 "NAGE02.spad" 1178784 1178792 1188432 1188437) (-734 "NAGE01.spad" 1174668 1174676 1178774 1178779) (-733 "NAGD03.spad" 1172588 1172596 1174658 1174663) (-732 "NAGD02.spad" 1165119 1165127 1172578 1172583) (-731 "NAGD01.spad" 1159232 1159240 1165109 1165114) (-730 "NAGC06.spad" 1155019 1155027 1159222 1159227) (-729 "NAGC05.spad" 1153488 1153496 1155009 1155014) (-728 "NAGC02.spad" 1152743 1152751 1153478 1153483) (-727 "NAALG.spad" 1152278 1152288 1152711 1152738) (-726 "NAALG.spad" 1151833 1151845 1152268 1152273) (-725 "MULTSQFR.spad" 1148791 1148808 1151823 1151828) (-724 "MULTFACT.spad" 1148174 1148191 1148781 1148786) (-723 "MTSCAT.spad" 1146208 1146229 1148072 1148169) (-722 "MTHING.spad" 1145865 1145875 1146198 1146203) (-721 "MSYSCMD.spad" 1145299 1145307 1145855 1145860) (-720 "MSET.spad" 1143241 1143251 1145005 1145044) (-719 "MSETAGG.spad" 1143074 1143084 1143197 1143236) (-718 "MRING.spad" 1140045 1140057 1142782 1142849) (-717 "MRF2.spad" 1139613 1139627 1140035 1140040) (-716 "MRATFAC.spad" 1139159 1139176 1139603 1139608) (-715 "MPRFF.spad" 1137189 1137208 1139149 1139154) (-714 "MPOLY.spad" 1134624 1134639 1134983 1135110) (-713 "MPCPF.spad" 1133888 1133907 1134614 1134619) (-712 "MPC3.spad" 1133703 1133743 1133878 1133883) (-711 "MPC2.spad" 1133345 1133378 1133693 1133698) (-710 "MONOTOOL.spad" 1131680 1131697 1133335 1133340) (-709 "MONOID.spad" 1130999 1131007 1131670 1131675) (-708 "MONOID.spad" 1130316 1130326 1130989 1130994) (-707 "MONOGEN.spad" 1129062 1129075 1130176 1130311) (-706 "MONOGEN.spad" 1127830 1127845 1128946 1128951) (-705 "MONADWU.spad" 1125844 1125852 1127820 1127825) (-704 "MONADWU.spad" 1123856 1123866 1125834 1125839) (-703 "MONAD.spad" 1123000 1123008 1123846 1123851) (-702 "MONAD.spad" 1122142 1122152 1122990 1122995) (-701 "MOEBIUS.spad" 1120828 1120842 1122122 1122137) (-700 "MODULE.spad" 1120698 1120708 1120796 1120823) (-699 "MODULE.spad" 1120588 1120600 1120688 1120693) (-698 "MODRING.spad" 1119919 1119958 1120568 1120583) (-697 "MODOP.spad" 1118578 1118590 1119741 1119808) (-696 "MODMONOM.spad" 1118110 1118128 1118568 1118573) (-695 "MODMON.spad" 1114812 1114828 1115588 1115741) (-694 "MODFIELD.spad" 1114170 1114209 1114714 1114807) (-693 "MMLFORM.spad" 1113030 1113038 1114160 1114165) (-692 "MMAP.spad" 1112770 1112804 1113020 1113025) (-691 "MLO.spad" 1111197 1111207 1112726 1112765) (-690 "MLIFT.spad" 1109769 1109786 1111187 1111192) (-689 "MKUCFUNC.spad" 1109302 1109320 1109759 1109764) (-688 "MKRECORD.spad" 1108904 1108917 1109292 1109297) (-687 "MKFUNC.spad" 1108285 1108295 1108894 1108899) (-686 "MKFLCFN.spad" 1107241 1107251 1108275 1108280) (-685 "MKCHSET.spad" 1107017 1107027 1107231 1107236) (-684 "MKBCFUNC.spad" 1106502 1106520 1107007 1107012) (-683 "MINT.spad" 1105941 1105949 1106404 1106497) (-682 "MHROWRED.spad" 1104442 1104452 1105931 1105936) (-681 "MFLOAT.spad" 1102958 1102966 1104332 1104437) (-680 "MFINFACT.spad" 1102358 1102380 1102948 1102953) (-679 "MESH.spad" 1100090 1100098 1102348 1102353) (-678 "MDDFACT.spad" 1098283 1098293 1100080 1100085) (-677 "MDAGG.spad" 1097558 1097568 1098251 1098278) (-676 "MCMPLX.spad" 1093544 1093552 1094158 1094347) (-675 "MCDEN.spad" 1092752 1092764 1093534 1093539) (-674 "MCALCFN.spad" 1089854 1089880 1092742 1092747) (-673 "MAYBE.spad" 1089103 1089114 1089844 1089849) (-672 "MATSTOR.spad" 1086379 1086389 1089093 1089098) (-671 "MATRIX.spad" 1085083 1085093 1085567 1085594) (-670 "MATLIN.spad" 1082409 1082433 1084967 1084972) (-669 "MATCAT.spad" 1073982 1074004 1082365 1082404) (-668 "MATCAT.spad" 1065439 1065463 1073824 1073829) (-667 "MATCAT2.spad" 1064707 1064755 1065429 1065434) (-666 "MAPPKG3.spad" 1063606 1063620 1064697 1064702) (-665 "MAPPKG2.spad" 1062940 1062952 1063596 1063601) (-664 "MAPPKG1.spad" 1061758 1061768 1062930 1062935) (-663 "MAPPAST.spad" 1061071 1061079 1061748 1061753) (-662 "MAPHACK3.spad" 1060879 1060893 1061061 1061066) (-661 "MAPHACK2.spad" 1060644 1060656 1060869 1060874) (-660 "MAPHACK1.spad" 1060274 1060284 1060634 1060639) (-659 "MAGMA.spad" 1058064 1058081 1060264 1060269) (-658 "MACROAST.spad" 1057643 1057651 1058054 1058059) (-657 "M3D.spad" 1055339 1055349 1057021 1057026) (-656 "LZSTAGG.spad" 1052557 1052567 1055319 1055334) (-655 "LZSTAGG.spad" 1049783 1049795 1052547 1052552) (-654 "LWORD.spad" 1046488 1046505 1049773 1049778) (-653 "LSTAST.spad" 1046272 1046280 1046478 1046483) (-652 "LSQM.spad" 1044498 1044512 1044896 1044947) (-651 "LSPP.spad" 1044031 1044048 1044488 1044493) (-650 "LSMP.spad" 1042871 1042899 1044021 1044026) (-649 "LSMP1.spad" 1040675 1040689 1042861 1042866) (-648 "LSAGG.spad" 1040332 1040342 1040631 1040670) (-647 "LSAGG.spad" 1040021 1040033 1040322 1040327) (-646 "LPOLY.spad" 1038975 1038994 1039877 1039946) (-645 "LPEFRAC.spad" 1038232 1038242 1038965 1038970) (-644 "LO.spad" 1037633 1037647 1038166 1038193) (-643 "LOGIC.spad" 1037235 1037243 1037623 1037628) (-642 "LOGIC.spad" 1036835 1036845 1037225 1037230) (-641 "LODOOPS.spad" 1035753 1035765 1036825 1036830) (-640 "LODO.spad" 1035137 1035153 1035433 1035472) (-639 "LODOF.spad" 1034181 1034198 1035094 1035099) (-638 "LODOCAT.spad" 1032839 1032849 1034137 1034176) (-637 "LODOCAT.spad" 1031495 1031507 1032795 1032800) (-636 "LODO2.spad" 1030768 1030780 1031175 1031214) (-635 "LODO1.spad" 1030168 1030178 1030448 1030487) (-634 "LODEEF.spad" 1028940 1028958 1030158 1030163) (-633 "LNAGG.spad" 1024732 1024742 1028920 1028935) (-632 "LNAGG.spad" 1020498 1020510 1024688 1024693) (-631 "LMOPS.spad" 1017234 1017251 1020488 1020493) (-630 "LMODULE.spad" 1016876 1016886 1017224 1017229) (-629 "LMDICT.spad" 1016159 1016169 1016427 1016454) (-628 "LITERAL.spad" 1016065 1016076 1016149 1016154) (-627 "LIST.spad" 1013783 1013793 1015212 1015239) (-626 "LIST3.spad" 1013074 1013088 1013773 1013778) (-625 "LIST2.spad" 1011714 1011726 1013064 1013069) (-624 "LIST2MAP.spad" 1008591 1008603 1011704 1011709) (-623 "LINEXP.spad" 1008023 1008033 1008571 1008586) (-622 "LINDEP.spad" 1006800 1006812 1007935 1007940) (-621 "LIMITRF.spad" 1004714 1004724 1006790 1006795) (-620 "LIMITPS.spad" 1003597 1003610 1004704 1004709) (-619 "LIE.spad" 1001611 1001623 1002887 1003032) (-618 "LIECAT.spad" 1001087 1001097 1001537 1001606) (-617 "LIECAT.spad" 1000591 1000603 1001043 1001048) (-616 "LIB.spad" 998639 998647 999250 999265) (-615 "LGROBP.spad" 995992 996011 998629 998634) (-614 "LF.spad" 994911 994927 995982 995987) (-613 "LFCAT.spad" 993930 993938 994901 994906) (-612 "LEXTRIPK.spad" 989433 989448 993920 993925) (-611 "LEXP.spad" 987436 987463 989413 989428) (-610 "LETAST.spad" 987135 987143 987426 987431) (-609 "LEADCDET.spad" 985519 985536 987125 987130) (-608 "LAZM3PK.spad" 984223 984245 985509 985514) (-607 "LAUPOL.spad" 982912 982925 983816 983885) (-606 "LAPLACE.spad" 982485 982501 982902 982907) (-605 "LA.spad" 981925 981939 982407 982446) (-604 "LALG.spad" 981701 981711 981905 981920) (-603 "LALG.spad" 981485 981497 981691 981696) (-602 "KTVLOGIC.spad" 980908 980916 981475 981480) (-601 "KOVACIC.spad" 979621 979638 980898 980903) (-600 "KONVERT.spad" 979343 979353 979611 979616) (-599 "KOERCE.spad" 979080 979090 979333 979338) (-598 "KERNEL.spad" 977615 977625 978864 978869) (-597 "KERNEL2.spad" 977318 977330 977605 977610) (-596 "KDAGG.spad" 976409 976431 977286 977313) (-595 "KDAGG.spad" 975520 975544 976399 976404) (-594 "KAFILE.spad" 974483 974499 974718 974745) (-593 "JORDAN.spad" 972310 972322 973773 973918) (-592 "JOINAST.spad" 972004 972012 972300 972305) (-591 "JAVACODE.spad" 971770 971778 971994 971999) (-590 "IXAGG.spad" 969883 969907 971750 971765) (-589 "IXAGG.spad" 967861 967887 969730 969735) (-588 "IVECTOR.spad" 966632 966647 966787 966814) (-587 "ITUPLE.spad" 965777 965787 966622 966627) (-586 "ITRIGMNP.spad" 964588 964607 965767 965772) (-585 "ITFUN3.spad" 964082 964096 964578 964583) (-584 "ITFUN2.spad" 963812 963824 964072 964077) (-583 "ITAYLOR.spad" 961604 961619 963648 963773) (-582 "ISUPS.spad" 954015 954030 960578 960675) (-581 "ISUMP.spad" 953512 953528 954005 954010) (-580 "ISTRING.spad" 952515 952528 952681 952708) (-579 "ISAST.spad" 952234 952242 952505 952510) (-578 "IRURPK.spad" 950947 950966 952224 952229) (-577 "IRSN.spad" 948907 948915 950937 950942) (-576 "IRRF2F.spad" 947382 947392 948863 948868) (-575 "IRREDFFX.spad" 946983 946994 947372 947377) (-574 "IROOT.spad" 945314 945324 946973 946978) (-573 "IR.spad" 943103 943117 945169 945196) (-572 "IR2.spad" 942123 942139 943093 943098) (-571 "IR2F.spad" 941323 941339 942113 942118) (-570 "IPRNTPK.spad" 941083 941091 941313 941318) (-569 "IPF.spad" 940648 940660 940888 940981) (-568 "IPADIC.spad" 940409 940435 940574 940643) (-567 "IP4ADDR.spad" 939957 939965 940399 940404) (-566 "IOMODE.spad" 939578 939586 939947 939952) (-565 "IOBFILE.spad" 938939 938947 939568 939573) (-564 "IOBCON.spad" 938804 938812 938929 938934) (-563 "INVLAPLA.spad" 938449 938465 938794 938799) (-562 "INTTR.spad" 931695 931712 938439 938444) (-561 "INTTOOLS.spad" 929406 929422 931269 931274) (-560 "INTSLPE.spad" 928712 928720 929396 929401) (-559 "INTRVL.spad" 928278 928288 928626 928707) (-558 "INTRF.spad" 926642 926656 928268 928273) (-557 "INTRET.spad" 926074 926084 926632 926637) (-556 "INTRAT.spad" 924749 924766 926064 926069) (-555 "INTPM.spad" 923112 923128 924392 924397) (-554 "INTPAF.spad" 920880 920898 923044 923049) (-553 "INTPACK.spad" 911190 911198 920870 920875) (-552 "INT.spad" 910551 910559 911044 911185) (-551 "INTHERTR.spad" 909817 909834 910541 910546) (-550 "INTHERAL.spad" 909483 909507 909807 909812) (-549 "INTHEORY.spad" 905896 905904 909473 909478) (-548 "INTG0.spad" 899359 899377 905828 905833) (-547 "INTFTBL.spad" 893388 893396 899349 899354) (-546 "INTFACT.spad" 892447 892457 893378 893383) (-545 "INTEF.spad" 890762 890778 892437 892442) (-544 "INTDOM.spad" 889377 889385 890688 890757) (-543 "INTDOM.spad" 888054 888064 889367 889372) (-542 "INTCAT.spad" 886307 886317 887968 888049) (-541 "INTBIT.spad" 885810 885818 886297 886302) (-540 "INTALG.spad" 884992 885019 885800 885805) (-539 "INTAF.spad" 884484 884500 884982 884987) (-538 "INTABL.spad" 883002 883033 883165 883192) (-537 "INS.spad" 880469 880477 882904 882997) (-536 "INS.spad" 878022 878032 880459 880464) (-535 "INPSIGN.spad" 877456 877469 878012 878017) (-534 "INPRODPF.spad" 876522 876541 877446 877451) (-533 "INPRODFF.spad" 875580 875604 876512 876517) (-532 "INNMFACT.spad" 874551 874568 875570 875575) (-531 "INMODGCD.spad" 874035 874065 874541 874546) (-530 "INFSP.spad" 872320 872342 874025 874030) (-529 "INFPROD0.spad" 871370 871389 872310 872315) (-528 "INFORM.spad" 868531 868539 871360 871365) (-527 "INFORM1.spad" 868156 868166 868521 868526) (-526 "INFINITY.spad" 867708 867716 868146 868151) (-525 "INETCLTS.spad" 867685 867693 867698 867703) (-524 "INEP.spad" 866217 866239 867675 867680) (-523 "INDE.spad" 865946 865963 866207 866212) (-522 "INCRMAPS.spad" 865367 865377 865936 865941) (-521 "INBFILE.spad" 864449 864457 865357 865362) (-520 "INBFF.spad" 860219 860230 864439 864444) (-519 "INBCON.spad" 859518 859526 860209 860214) (-518 "INBCON.spad" 858815 858825 859508 859513) (-517 "INAST.spad" 858480 858488 858805 858810) (-516 "IMPTAST.spad" 858188 858196 858470 858475) (-515 "IMATRIX.spad" 857133 857159 857645 857672) (-514 "IMATQF.spad" 856227 856271 857089 857094) (-513 "IMATLIN.spad" 854832 854856 856183 856188) (-512 "ILIST.spad" 853488 853503 854015 854042) (-511 "IIARRAY2.spad" 852876 852914 853095 853122) (-510 "IFF.spad" 852286 852302 852557 852650) (-509 "IFAST.spad" 851900 851908 852276 852281) (-508 "IFARRAY.spad" 849387 849402 851083 851110) (-507 "IFAMON.spad" 849249 849266 849343 849348) (-506 "IEVALAB.spad" 848638 848650 849239 849244) (-505 "IEVALAB.spad" 848025 848039 848628 848633) (-504 "IDPO.spad" 847823 847835 848015 848020) (-503 "IDPOAMS.spad" 847579 847591 847813 847818) (-502 "IDPOAM.spad" 847299 847311 847569 847574) (-501 "IDPC.spad" 846233 846245 847289 847294) (-500 "IDPAM.spad" 845978 845990 846223 846228) (-499 "IDPAG.spad" 845725 845737 845968 845973) (-498 "IDENT.spad" 845642 845650 845715 845720) (-497 "IDECOMP.spad" 842879 842897 845632 845637) (-496 "IDEAL.spad" 837802 837841 842814 842819) (-495 "ICDEN.spad" 836953 836969 837792 837797) (-494 "ICARD.spad" 836142 836150 836943 836948) (-493 "IBPTOOLS.spad" 834735 834752 836132 836137) (-492 "IBITS.spad" 833934 833947 834371 834398) (-491 "IBATOOL.spad" 830809 830828 833924 833929) (-490 "IBACHIN.spad" 829296 829311 830799 830804) (-489 "IARRAY2.spad" 828284 828310 828903 828930) (-488 "IARRAY1.spad" 827329 827344 827467 827494) (-487 "IAN.spad" 825542 825550 827145 827238) (-486 "IALGFACT.spad" 825143 825176 825532 825537) (-485 "HYPCAT.spad" 824567 824575 825133 825138) (-484 "HYPCAT.spad" 823989 823999 824557 824562) (-483 "HOSTNAME.spad" 823797 823805 823979 823984) (-482 "HOAGG.spad" 821055 821065 823777 823792) (-481 "HOAGG.spad" 818098 818110 820822 820827) (-480 "HEXADEC.spad" 815967 815975 816565 816658) (-479 "HEUGCD.spad" 814982 814993 815957 815962) (-478 "HELLFDIV.spad" 814572 814596 814972 814977) (-477 "HEAP.spad" 813964 813974 814179 814206) (-476 "HEADAST.spad" 813495 813503 813954 813959) (-475 "HDP.spad" 804612 804628 804989 805120) (-474 "HDMP.spad" 801788 801803 802406 802533) (-473 "HB.spad" 800025 800033 801778 801783) (-472 "HASHTBL.spad" 798495 798526 798706 798733) (-471 "HASAST.spad" 798211 798219 798485 798490) (-470 "HACKPI.spad" 797694 797702 798113 798206) (-469 "GTSET.spad" 796633 796649 797340 797367) (-468 "GSTBL.spad" 795152 795187 795326 795341) (-467 "GSERIES.spad" 792319 792346 793284 793433) (-466 "GROUP.spad" 791588 791596 792299 792314) (-465 "GROUP.spad" 790865 790875 791578 791583) (-464 "GROEBSOL.spad" 789353 789374 790855 790860) (-463 "GRMOD.spad" 787924 787936 789343 789348) (-462 "GRMOD.spad" 786493 786507 787914 787919) (-461 "GRIMAGE.spad" 779098 779106 786483 786488) (-460 "GRDEF.spad" 777477 777485 779088 779093) (-459 "GRAY.spad" 775936 775944 777467 777472) (-458 "GRALG.spad" 774983 774995 775926 775931) (-457 "GRALG.spad" 774028 774042 774973 774978) (-456 "GPOLSET.spad" 773482 773505 773710 773737) (-455 "GOSPER.spad" 772747 772765 773472 773477) (-454 "GMODPOL.spad" 771885 771912 772715 772742) (-453 "GHENSEL.spad" 770954 770968 771875 771880) (-452 "GENUPS.spad" 767055 767068 770944 770949) (-451 "GENUFACT.spad" 766632 766642 767045 767050) (-450 "GENPGCD.spad" 766216 766233 766622 766627) (-449 "GENMFACT.spad" 765668 765687 766206 766211) (-448 "GENEEZ.spad" 763607 763620 765658 765663) (-447 "GDMP.spad" 760625 760642 761401 761528) (-446 "GCNAALG.spad" 754520 754547 760419 760486) (-445 "GCDDOM.spad" 753692 753700 754446 754515) (-444 "GCDDOM.spad" 752926 752936 753682 753687) (-443 "GB.spad" 750444 750482 752882 752887) (-442 "GBINTERN.spad" 746464 746502 750434 750439) (-441 "GBF.spad" 742221 742259 746454 746459) (-440 "GBEUCLID.spad" 740095 740133 742211 742216) (-439 "GAUSSFAC.spad" 739392 739400 740085 740090) (-438 "GALUTIL.spad" 737714 737724 739348 739353) (-437 "GALPOLYU.spad" 736160 736173 737704 737709) (-436 "GALFACTU.spad" 734325 734344 736150 736155) (-435 "GALFACT.spad" 724458 724469 734315 734320) (-434 "FVFUN.spad" 721471 721479 724438 724453) (-433 "FVC.spad" 720513 720521 721451 721466) (-432 "FUNCTION.spad" 720362 720374 720503 720508) (-431 "FT.spad" 718574 718582 720352 720357) (-430 "FTEM.spad" 717737 717745 718564 718569) (-429 "FSUPFACT.spad" 716637 716656 717673 717678) (-428 "FST.spad" 714723 714731 716627 716632) (-427 "FSRED.spad" 714201 714217 714713 714718) (-426 "FSPRMELT.spad" 713025 713041 714158 714163) (-425 "FSPECF.spad" 711102 711118 713015 713020) (-424 "FS.spad" 705152 705162 710865 711097) (-423 "FS.spad" 698992 699004 704707 704712) (-422 "FSINT.spad" 698650 698666 698982 698987) (-421 "FSERIES.spad" 697837 697849 698470 698569) (-420 "FSCINT.spad" 697150 697166 697827 697832) (-419 "FSAGG.spad" 696255 696265 697094 697145) (-418 "FSAGG.spad" 695334 695346 696175 696180) (-417 "FSAGG2.spad" 694033 694049 695324 695329) (-416 "FS2UPS.spad" 688422 688456 694023 694028) (-415 "FS2.spad" 688067 688083 688412 688417) (-414 "FS2EXPXP.spad" 687190 687213 688057 688062) (-413 "FRUTIL.spad" 686132 686142 687180 687185) (-412 "FR.spad" 679826 679836 685156 685225) (-411 "FRNAALG.spad" 674913 674923 679768 679821) (-410 "FRNAALG.spad" 670012 670024 674869 674874) (-409 "FRNAAF2.spad" 669466 669484 670002 670007) (-408 "FRMOD.spad" 668860 668890 669397 669402) (-407 "FRIDEAL.spad" 668055 668076 668840 668855) (-406 "FRIDEAL2.spad" 667657 667689 668045 668050) (-405 "FRETRCT.spad" 667168 667178 667647 667652) (-404 "FRETRCT.spad" 666545 666557 667026 667031) (-403 "FRAMALG.spad" 664873 664886 666501 666540) (-402 "FRAMALG.spad" 663233 663248 664863 664868) (-401 "FRAC.spad" 660332 660342 660735 660908) (-400 "FRAC2.spad" 659935 659947 660322 660327) (-399 "FR2.spad" 659269 659281 659925 659930) (-398 "FPS.spad" 656078 656086 659159 659264) (-397 "FPS.spad" 652915 652925 655998 656003) (-396 "FPC.spad" 651957 651965 652817 652910) (-395 "FPC.spad" 651085 651095 651947 651952) (-394 "FPATMAB.spad" 650837 650847 651065 651080) (-393 "FPARFRAC.spad" 649310 649327 650827 650832) (-392 "FORTRAN.spad" 647816 647859 649300 649305) (-391 "FORT.spad" 646745 646753 647806 647811) (-390 "FORTFN.spad" 643905 643913 646725 646740) (-389 "FORTCAT.spad" 643579 643587 643885 643900) (-388 "FORMULA.spad" 640917 640925 643569 643574) (-387 "FORMULA1.spad" 640396 640406 640907 640912) (-386 "FORDER.spad" 640087 640111 640386 640391) (-385 "FOP.spad" 639288 639296 640077 640082) (-384 "FNLA.spad" 638712 638734 639256 639283) (-383 "FNCAT.spad" 637040 637048 638702 638707) (-382 "FNAME.spad" 636932 636940 637030 637035) (-381 "FMTC.spad" 636730 636738 636858 636927) (-380 "FMONOID.spad" 633785 633795 636686 636691) (-379 "FM.spad" 633480 633492 633719 633746) (-378 "FMFUN.spad" 630500 630508 633460 633475) (-377 "FMC.spad" 629542 629550 630480 630495) (-376 "FMCAT.spad" 627196 627214 629510 629537) (-375 "FM1.spad" 626553 626565 627130 627157) (-374 "FLOATRP.spad" 624274 624288 626543 626548) (-373 "FLOAT.spad" 617438 617446 624140 624269) (-372 "FLOATCP.spad" 614855 614869 617428 617433) (-371 "FLINEXP.spad" 614567 614577 614835 614850) (-370 "FLINEXP.spad" 614233 614245 614503 614508) (-369 "FLASORT.spad" 613553 613565 614223 614228) (-368 "FLALG.spad" 611199 611218 613479 613548) (-367 "FLAGG.spad" 608205 608215 611167 611194) (-366 "FLAGG.spad" 605124 605136 608088 608093) (-365 "FLAGG2.spad" 603805 603821 605114 605119) (-364 "FINRALG.spad" 601834 601847 603761 603800) (-363 "FINRALG.spad" 599789 599804 601718 601723) (-362 "FINITE.spad" 598941 598949 599779 599784) (-361 "FINAALG.spad" 587922 587932 598883 598936) (-360 "FINAALG.spad" 576915 576927 587878 587883) (-359 "FILE.spad" 576498 576508 576905 576910) (-358 "FILECAT.spad" 575016 575033 576488 576493) (-357 "FIELD.spad" 574422 574430 574918 575011) (-356 "FIELD.spad" 573914 573924 574412 574417) (-355 "FGROUP.spad" 572523 572533 573894 573909) (-354 "FGLMICPK.spad" 571310 571325 572513 572518) (-353 "FFX.spad" 570685 570700 571026 571119) (-352 "FFSLPE.spad" 570174 570195 570675 570680) (-351 "FFPOLY.spad" 561426 561437 570164 570169) (-350 "FFPOLY2.spad" 560486 560503 561416 561421) (-349 "FFP.spad" 559883 559903 560202 560295) (-348 "FF.spad" 559331 559347 559564 559657) (-347 "FFNBX.spad" 557843 557863 559047 559140) (-346 "FFNBP.spad" 556356 556373 557559 557652) (-345 "FFNB.spad" 554821 554842 556037 556130) (-344 "FFINTBAS.spad" 552235 552254 554811 554816) (-343 "FFIELDC.spad" 549810 549818 552137 552230) (-342 "FFIELDC.spad" 547471 547481 549800 549805) (-341 "FFHOM.spad" 546219 546236 547461 547466) (-340 "FFF.spad" 543654 543665 546209 546214) (-339 "FFCGX.spad" 542501 542521 543370 543463) (-338 "FFCGP.spad" 541390 541410 542217 542310) (-337 "FFCG.spad" 540182 540203 541071 541164) (-336 "FFCAT.spad" 533209 533231 540021 540177) (-335 "FFCAT.spad" 526315 526339 533129 533134) (-334 "FFCAT2.spad" 526060 526100 526305 526310) (-333 "FEXPR.spad" 517769 517815 525816 525855) (-332 "FEVALAB.spad" 517475 517485 517759 517764) (-331 "FEVALAB.spad" 516966 516978 517252 517257) (-330 "FDIV.spad" 516408 516432 516956 516961) (-329 "FDIVCAT.spad" 514450 514474 516398 516403) (-328 "FDIVCAT.spad" 512490 512516 514440 514445) (-327 "FDIV2.spad" 512144 512184 512480 512485) (-326 "FCPAK1.spad" 510697 510705 512134 512139) (-325 "FCOMP.spad" 510076 510086 510687 510692) (-324 "FC.spad" 499901 499909 510066 510071) (-323 "FAXF.spad" 492836 492850 499803 499896) (-322 "FAXF.spad" 485823 485839 492792 492797) (-321 "FARRAY.spad" 483969 483979 485006 485033) (-320 "FAMR.spad" 482089 482101 483867 483964) (-319 "FAMR.spad" 480193 480207 481973 481978) (-318 "FAMONOID.spad" 479843 479853 480147 480152) (-317 "FAMONC.spad" 478065 478077 479833 479838) (-316 "FAGROUP.spad" 477671 477681 477961 477988) (-315 "FACUTIL.spad" 475867 475884 477661 477666) (-314 "FACTFUNC.spad" 475043 475053 475857 475862) (-313 "EXPUPXS.spad" 471876 471899 473175 473324) (-312 "EXPRTUBE.spad" 469104 469112 471866 471871) (-311 "EXPRODE.spad" 465976 465992 469094 469099) (-310 "EXPR.spad" 461251 461261 461965 462372) (-309 "EXPR2UPS.spad" 457343 457356 461241 461246) (-308 "EXPR2.spad" 457046 457058 457333 457338) (-307 "EXPEXPAN.spad" 453984 454009 454618 454711) (-306 "EXIT.spad" 453655 453663 453974 453979) (-305 "EXITAST.spad" 453391 453399 453645 453650) (-304 "EVALCYC.spad" 452849 452863 453381 453386) (-303 "EVALAB.spad" 452413 452423 452839 452844) (-302 "EVALAB.spad" 451975 451987 452403 452408) (-301 "EUCDOM.spad" 449517 449525 451901 451970) (-300 "EUCDOM.spad" 447121 447131 449507 449512) (-299 "ESTOOLS.spad" 438961 438969 447111 447116) (-298 "ESTOOLS2.spad" 438562 438576 438951 438956) (-297 "ESTOOLS1.spad" 438247 438258 438552 438557) (-296 "ES.spad" 430794 430802 438237 438242) (-295 "ES.spad" 423247 423257 430692 430697) (-294 "ESCONT.spad" 420020 420028 423237 423242) (-293 "ESCONT1.spad" 419769 419781 420010 420015) (-292 "ES2.spad" 419264 419280 419759 419764) (-291 "ES1.spad" 418830 418846 419254 419259) (-290 "ERROR.spad" 416151 416159 418820 418825) (-289 "EQTBL.spad" 414623 414645 414832 414859) (-288 "EQ.spad" 409497 409507 412296 412408) (-287 "EQ2.spad" 409213 409225 409487 409492) (-286 "EP.spad" 405527 405537 409203 409208) (-285 "ENV.spad" 404229 404237 405517 405522) (-284 "ENTIRER.spad" 403897 403905 404173 404224) (-283 "EMR.spad" 403098 403139 403823 403892) (-282 "ELTAGG.spad" 401338 401357 403088 403093) (-281 "ELTAGG.spad" 399542 399563 401294 401299) (-280 "ELTAB.spad" 398989 399007 399532 399537) (-279 "ELFUTS.spad" 398368 398387 398979 398984) (-278 "ELEMFUN.spad" 398057 398065 398358 398363) (-277 "ELEMFUN.spad" 397744 397754 398047 398052) (-276 "ELAGG.spad" 395675 395685 397712 397739) (-275 "ELAGG.spad" 393555 393567 395594 395599) (-274 "ELABEXPR.spad" 392486 392494 393545 393550) (-273 "EFUPXS.spad" 389262 389292 392442 392447) (-272 "EFULS.spad" 386098 386121 389218 389223) (-271 "EFSTRUC.spad" 384053 384069 386088 386093) (-270 "EF.spad" 378819 378835 384043 384048) (-269 "EAB.spad" 377095 377103 378809 378814) (-268 "E04UCFA.spad" 376631 376639 377085 377090) (-267 "E04NAFA.spad" 376208 376216 376621 376626) (-266 "E04MBFA.spad" 375788 375796 376198 376203) (-265 "E04JAFA.spad" 375324 375332 375778 375783) (-264 "E04GCFA.spad" 374860 374868 375314 375319) (-263 "E04FDFA.spad" 374396 374404 374850 374855) (-262 "E04DGFA.spad" 373932 373940 374386 374391) (-261 "E04AGNT.spad" 369774 369782 373922 373927) (-260 "DVARCAT.spad" 366459 366469 369764 369769) (-259 "DVARCAT.spad" 363142 363154 366449 366454) (-258 "DSMP.spad" 360573 360587 360878 361005) (-257 "DROPT.spad" 354518 354526 360563 360568) (-256 "DROPT1.spad" 354181 354191 354508 354513) (-255 "DROPT0.spad" 349008 349016 354171 354176) (-254 "DRAWPT.spad" 347163 347171 348998 349003) (-253 "DRAW.spad" 339763 339776 347153 347158) (-252 "DRAWHACK.spad" 339071 339081 339753 339758) (-251 "DRAWCX.spad" 336513 336521 339061 339066) (-250 "DRAWCURV.spad" 336050 336065 336503 336508) (-249 "DRAWCFUN.spad" 325222 325230 336040 336045) (-248 "DQAGG.spad" 323378 323388 325178 325217) (-247 "DPOLCAT.spad" 318719 318735 323246 323373) (-246 "DPOLCAT.spad" 314146 314164 318675 318680) (-245 "DPMO.spad" 307449 307465 307587 307888) (-244 "DPMM.spad" 300765 300783 300890 301191) (-243 "DOMAIN.spad" 300036 300044 300755 300760) (-242 "DMP.spad" 297258 297273 297830 297957) (-241 "DLP.spad" 296606 296616 297248 297253) (-240 "DLIST.spad" 295018 295028 295789 295816) (-239 "DLAGG.spad" 293419 293429 294998 295013) (-238 "DIVRING.spad" 292961 292969 293363 293414) (-237 "DIVRING.spad" 292547 292557 292951 292956) (-236 "DISPLAY.spad" 290727 290735 292537 292542) (-235 "DIRPROD.spad" 281581 281597 282221 282352) (-234 "DIRPROD2.spad" 280389 280407 281571 281576) (-233 "DIRPCAT.spad" 279319 279335 280241 280384) (-232 "DIRPCAT.spad" 277990 278008 278914 278919) (-231 "DIOSP.spad" 276815 276823 277980 277985) (-230 "DIOPS.spad" 275787 275797 276783 276810) (-229 "DIOPS.spad" 274745 274757 275743 275748) (-228 "DIFRING.spad" 274037 274045 274725 274740) (-227 "DIFRING.spad" 273337 273347 274027 274032) (-226 "DIFEXT.spad" 272496 272506 273317 273332) (-225 "DIFEXT.spad" 271572 271584 272395 272400) (-224 "DIAGG.spad" 271190 271200 271540 271567) (-223 "DIAGG.spad" 270828 270840 271180 271185) (-222 "DHMATRIX.spad" 269132 269142 270285 270312) (-221 "DFSFUN.spad" 262540 262548 269122 269127) (-220 "DFLOAT.spad" 259261 259269 262430 262535) (-219 "DFINTTLS.spad" 257470 257486 259251 259256) (-218 "DERHAM.spad" 255380 255412 257450 257465) (-217 "DEQUEUE.spad" 254698 254708 254987 255014) (-216 "DEGRED.spad" 254313 254327 254688 254693) (-215 "DEFINTRF.spad" 251838 251848 254303 254308) (-214 "DEFINTEF.spad" 250334 250350 251828 251833) (-213 "DEFAST.spad" 249702 249710 250324 250329) (-212 "DECIMAL.spad" 247583 247591 248169 248262) (-211 "DDFACT.spad" 245382 245399 247573 247578) (-210 "DBLRESP.spad" 244980 245004 245372 245377) (-209 "DBASE.spad" 243552 243562 244970 244975) (-208 "DATAARY.spad" 243014 243027 243542 243547) (-207 "D03FAFA.spad" 242842 242850 243004 243009) (-206 "D03EEFA.spad" 242662 242670 242832 242837) (-205 "D03AGNT.spad" 241742 241750 242652 242657) (-204 "D02EJFA.spad" 241204 241212 241732 241737) (-203 "D02CJFA.spad" 240682 240690 241194 241199) (-202 "D02BHFA.spad" 240172 240180 240672 240677) (-201 "D02BBFA.spad" 239662 239670 240162 240167) (-200 "D02AGNT.spad" 234466 234474 239652 239657) (-199 "D01WGTS.spad" 232785 232793 234456 234461) (-198 "D01TRNS.spad" 232762 232770 232775 232780) (-197 "D01GBFA.spad" 232284 232292 232752 232757) (-196 "D01FCFA.spad" 231806 231814 232274 232279) (-195 "D01ASFA.spad" 231274 231282 231796 231801) (-194 "D01AQFA.spad" 230720 230728 231264 231269) (-193 "D01APFA.spad" 230144 230152 230710 230715) (-192 "D01ANFA.spad" 229638 229646 230134 230139) (-191 "D01AMFA.spad" 229148 229156 229628 229633) (-190 "D01ALFA.spad" 228688 228696 229138 229143) (-189 "D01AKFA.spad" 228214 228222 228678 228683) (-188 "D01AJFA.spad" 227737 227745 228204 228209) (-187 "D01AGNT.spad" 223796 223804 227727 227732) (-186 "CYCLOTOM.spad" 223302 223310 223786 223791) (-185 "CYCLES.spad" 220134 220142 223292 223297) (-184 "CVMP.spad" 219551 219561 220124 220129) (-183 "CTRIGMNP.spad" 218041 218057 219541 219546) (-182 "CTOR.spad" 217484 217492 218031 218036) (-181 "CTORKIND.spad" 217099 217107 217474 217479) (-180 "CTORCALL.spad" 216687 216695 217089 217094) (-179 "CSTTOOLS.spad" 215930 215943 216677 216682) (-178 "CRFP.spad" 209634 209647 215920 215925) (-177 "CRCEAST.spad" 209354 209362 209624 209629) (-176 "CRAPACK.spad" 208397 208407 209344 209349) (-175 "CPMATCH.spad" 207897 207912 208322 208327) (-174 "CPIMA.spad" 207602 207621 207887 207892) (-173 "COORDSYS.spad" 202495 202505 207592 207597) (-172 "CONTOUR.spad" 201897 201905 202485 202490) (-171 "CONTFRAC.spad" 197509 197519 201799 201892) (-170 "CONDUIT.spad" 197267 197275 197499 197504) (-169 "COMRING.spad" 196941 196949 197205 197262) (-168 "COMPPROP.spad" 196455 196463 196931 196936) (-167 "COMPLPAT.spad" 196222 196237 196445 196450) (-166 "COMPLEX.spad" 190258 190268 190502 190751) (-165 "COMPLEX2.spad" 189971 189983 190248 190253) (-164 "COMPFACT.spad" 189573 189587 189961 189966) (-163 "COMPCAT.spad" 187699 187709 189307 189568) (-162 "COMPCAT.spad" 185518 185530 187128 187133) (-161 "COMMUPC.spad" 185264 185282 185508 185513) (-160 "COMMONOP.spad" 184797 184805 185254 185259) (-159 "COMM.spad" 184606 184614 184787 184792) (-158 "COMMAAST.spad" 184369 184377 184596 184601) (-157 "COMBOPC.spad" 183274 183282 184359 184364) (-156 "COMBINAT.spad" 182019 182029 183264 183269) (-155 "COMBF.spad" 179387 179403 182009 182014) (-154 "COLOR.spad" 178224 178232 179377 179382) (-153 "COLONAST.spad" 177890 177898 178214 178219) (-152 "CMPLXRT.spad" 177599 177616 177880 177885) (-151 "CLLCTAST.spad" 177261 177269 177589 177594) (-150 "CLIP.spad" 173353 173361 177251 177256) (-149 "CLIF.spad" 171992 172008 173309 173348) (-148 "CLAGG.spad" 168467 168477 171972 171987) (-147 "CLAGG.spad" 164823 164835 168330 168335) (-146 "CINTSLPE.spad" 164148 164161 164813 164818) (-145 "CHVAR.spad" 162226 162248 164138 164143) (-144 "CHARZ.spad" 162141 162149 162206 162221) (-143 "CHARPOL.spad" 161649 161659 162131 162136) (-142 "CHARNZ.spad" 161402 161410 161629 161644) (-141 "CHAR.spad" 159270 159278 161392 161397) (-140 "CFCAT.spad" 158586 158594 159260 159265) (-139 "CDEN.spad" 157744 157758 158576 158581) (-138 "CCLASS.spad" 155893 155901 157155 157194) (-137 "CATEGORY.spad" 155672 155680 155883 155888) (-136 "CATAST.spad" 155299 155307 155662 155667) (-135 "CASEAST.spad" 155013 155021 155289 155294) (-134 "CARTEN.spad" 150116 150140 155003 155008) (-133 "CARTEN2.spad" 149502 149529 150106 150111) (-132 "CARD.spad" 146791 146799 149476 149497) (-131 "CAPSLAST.spad" 146565 146573 146781 146786) (-130 "CACHSET.spad" 146187 146195 146555 146560) (-129 "CABMON.spad" 145740 145748 146177 146182) (-128 "BYTE.spad" 144914 144922 145730 145735) (-127 "BYTEBUF.spad" 142736 142744 144083 144110) (-126 "BTREE.spad" 141805 141815 142343 142370) (-125 "BTOURN.spad" 140808 140818 141412 141439) (-124 "BTCAT.spad" 140184 140194 140764 140803) (-123 "BTCAT.spad" 139592 139604 140174 140179) (-122 "BTAGG.spad" 138702 138710 139548 139587) (-121 "BTAGG.spad" 137844 137854 138692 138697) (-120 "BSTREE.spad" 136579 136589 137451 137478) (-119 "BRILL.spad" 134774 134785 136569 136574) (-118 "BRAGG.spad" 133688 133698 134754 134769) (-117 "BRAGG.spad" 132576 132588 133644 133649) (-116 "BPADICRT.spad" 130557 130569 130812 130905) (-115 "BPADIC.spad" 130221 130233 130483 130552) (-114 "BOUNDZRO.spad" 129877 129894 130211 130216) (-113 "BOP.spad" 125341 125349 129867 129872) (-112 "BOP1.spad" 122727 122737 125297 125302) (-111 "BOOLEAN.spad" 122051 122059 122717 122722) (-110 "BMODULE.spad" 121763 121775 122019 122046) (-109 "BITS.spad" 121182 121190 121399 121426) (-108 "BINDING.spad" 120601 120609 121172 121177) (-107 "BINARY.spad" 118491 118499 119068 119161) (-106 "BGAGG.spad" 117676 117686 118459 118486) (-105 "BGAGG.spad" 116881 116893 117666 117671) (-104 "BFUNCT.spad" 116445 116453 116861 116876) (-103 "BEZOUT.spad" 115579 115606 116395 116400) (-102 "BBTREE.spad" 112398 112408 115186 115213) (-101 "BASTYPE.spad" 112070 112078 112388 112393) (-100 "BASTYPE.spad" 111740 111750 112060 112065) (-99 "BALFACT.spad" 111180 111192 111730 111735) (-98 "AUTOMOR.spad" 110627 110636 111160 111175) (-97 "ATTREG.spad" 107346 107353 110379 110622) (-96 "ATTRBUT.spad" 103369 103376 107326 107341) (-95 "ATTRAST.spad" 103086 103093 103359 103364) (-94 "ATRIG.spad" 102556 102563 103076 103081) (-93 "ATRIG.spad" 102024 102033 102546 102551) (-92 "ASTCAT.spad" 101928 101935 102014 102019) (-91 "ASTCAT.spad" 101830 101839 101918 101923) (-90 "ASTACK.spad" 101163 101172 101437 101464) (-89 "ASSOCEQ.spad" 99963 99974 101119 101124) (-88 "ASP9.spad" 99044 99057 99953 99958) (-87 "ASP8.spad" 98087 98100 99034 99039) (-86 "ASP80.spad" 97409 97422 98077 98082) (-85 "ASP7.spad" 96569 96582 97399 97404) (-84 "ASP78.spad" 96020 96033 96559 96564) (-83 "ASP77.spad" 95389 95402 96010 96015) (-82 "ASP74.spad" 94481 94494 95379 95384) (-81 "ASP73.spad" 93752 93765 94471 94476) (-80 "ASP6.spad" 92384 92397 93742 93747) (-79 "ASP55.spad" 90893 90906 92374 92379) (-78 "ASP50.spad" 88710 88723 90883 90888) (-77 "ASP4.spad" 88005 88018 88700 88705) (-76 "ASP49.spad" 87004 87017 87995 88000) (-75 "ASP42.spad" 85411 85450 86994 86999) (-74 "ASP41.spad" 83990 84029 85401 85406) (-73 "ASP35.spad" 82978 82991 83980 83985) (-72 "ASP34.spad" 82279 82292 82968 82973) (-71 "ASP33.spad" 81839 81852 82269 82274) (-70 "ASP31.spad" 80979 80992 81829 81834) (-69 "ASP30.spad" 79871 79884 80969 80974) (-68 "ASP29.spad" 79337 79350 79861 79866) (-67 "ASP28.spad" 70610 70623 79327 79332) (-66 "ASP27.spad" 69507 69520 70600 70605) (-65 "ASP24.spad" 68594 68607 69497 69502) (-64 "ASP20.spad" 67810 67823 68584 68589) (-63 "ASP1.spad" 67191 67204 67800 67805) (-62 "ASP19.spad" 61877 61890 67181 67186) (-61 "ASP12.spad" 61291 61304 61867 61872) (-60 "ASP10.spad" 60562 60575 61281 61286) (-59 "ARRAY2.spad" 59922 59931 60169 60196) (-58 "ARRAY1.spad" 58757 58766 59105 59132) (-57 "ARRAY12.spad" 57426 57437 58747 58752) (-56 "ARR2CAT.spad" 53076 53097 57382 57421) (-55 "ARR2CAT.spad" 48758 48781 53066 53071) (-54 "APPRULE.spad" 48002 48024 48748 48753) (-53 "APPLYORE.spad" 47617 47630 47992 47997) (-52 "ANY.spad" 45959 45966 47607 47612) (-51 "ANY1.spad" 45030 45039 45949 45954) (-50 "ANTISYM.spad" 43469 43485 45010 45025) (-49 "ANON.spad" 43166 43173 43459 43464) (-48 "AN.spad" 41467 41474 42982 43075) (-47 "AMR.spad" 39646 39657 41365 41462) (-46 "AMR.spad" 37662 37675 39383 39388) (-45 "ALIST.spad" 35074 35095 35424 35451) (-44 "ALGSC.spad" 34197 34223 34946 34999) (-43 "ALGPKG.spad" 29906 29917 34153 34158) (-42 "ALGMFACT.spad" 29095 29109 29896 29901) (-41 "ALGMANIP.spad" 26515 26530 28892 28897) (-40 "ALGFF.spad" 24830 24857 25047 25203) (-39 "ALGFACT.spad" 23951 23961 24820 24825) (-38 "ALGEBRA.spad" 23682 23691 23907 23946) (-37 "ALGEBRA.spad" 23445 23456 23672 23677) (-36 "ALAGG.spad" 22943 22964 23401 23440) (-35 "AHYP.spad" 22324 22331 22933 22938) (-34 "AGG.spad" 20623 20630 22304 22319) (-33 "AGG.spad" 18896 18905 20579 20584) (-32 "AF.spad" 17321 17336 18831 18836) (-31 "ADDAST.spad" 16999 17006 17311 17316) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 07562a96..f19bbf48 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,913 +1,910 @@ -(145091 . 3432784499) -(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((#0=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) #0#) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) +(145211 . 3433818811) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((#0=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) #0#) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) (((|#2| |#2|) . T)) ((((-552)) . T)) -((($ $) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) ((|#2| |#2|) . T) ((#0=(-402 (-552)) #0#) |has| |#2| (-38 (-402 (-552))))) +((($ $) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) ((|#2| |#2|) . T) ((#0=(-401 (-552)) #0#) |has| |#2| (-38 (-401 (-552))))) ((($) . T)) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) +((($) . T) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) (((|#2|) . T)) -((($) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) ((|#2|) . T) (((-402 (-552))) |has| |#2| (-38 (-402 (-552))))) -(|has| |#1| (-885)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((($) . T) (((-402 (-552))) . T)) +((($) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) ((|#2|) . T) (((-401 (-552))) |has| |#2| (-38 (-401 (-552))))) +(|has| |#1| (-888)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((($) . T) (((-401 (-552))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) -((((-142)) . T)) -((((-528)) . T) (((-1131)) . T) (((-221)) . T) (((-374)) . T) (((-868 (-374))) . T)) -(((|#1|) . T)) -((((-221)) . T) (((-839)) . T)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((|#1|) . T)) -(-1523 (|has| |#1| (-21)) (|has| |#1| (-825))) -((($ $) . T) ((#0=(-402 (-552)) #0#) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1| |#1|) . T)) -(-1523 (|has| |#1| (-800)) (|has| |#1| (-827))) -((((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-552)) |has| |#1| (-1014 (-552))) ((|#1|) . T)) -((((-839)) . T)) -((((-839)) . T)) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-544))) -(|has| |#1| (-825)) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) +((((-141)) . T)) +((((-528)) . T) (((-1134)) . T) (((-220)) . T) (((-373)) . T) (((-871 (-373))) . T)) +(((|#1|) . T)) +((((-220)) . T) (((-842)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1|) . T)) +(-1559 (|has| |#1| (-21)) (|has| |#1| (-828))) +((($ $) . T) ((#0=(-401 (-552)) #0#) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1| |#1|) . T)) +(-1559 (|has| |#1| (-803)) (|has| |#1| (-830))) +((((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-552)) |has| |#1| (-1017 (-552))) ((|#1|) . T)) +((((-842)) . T)) +((((-842)) . T)) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) +(|has| |#1| (-828)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (((|#1| |#2| |#3|) . T)) (((|#4|) . T)) -((($) . T) (((-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T)) -((((-839)) . T)) -((((-839)) |has| |#1| (-1073))) -((((-839)) . T) (((-1154)) . T)) +((($) . T) (((-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) +((((-842)) . T)) +((((-842)) |has| |#1| (-1076))) +((((-842)) . T) (((-1157)) . T)) (((|#1|) . T) ((|#2|) . T)) -(((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552))))) -(-1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) -(((|#2| (-476 (-1471 |#1|) (-751))) . T)) -(((|#1| (-524 (-1149))) . T)) -(((#0=(-846 |#1|) #0#) . T) ((#1=(-402 (-552)) #1#) . T) (($ $) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -(|has| |#4| (-363)) -(|has| |#3| (-363)) -(((|#1|) . T)) -((((-846 |#1|)) . T) (((-402 (-552))) . T) (($) . T)) +(((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552))))) +(-1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(((|#2| (-475 (-1383 |#1|) (-754))) . T)) +(((|#1| (-523 (-1152))) . T)) +(((#0=(-849 |#1|) #0#) . T) ((#1=(-401 (-552)) #1#) . T) (($ $) . T)) +((((-1134)) . T) (((-842)) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +(|has| |#4| (-362)) +(|has| |#3| (-362)) +(((|#1|) . T)) +((((-849 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) (((|#1| |#2|) . T)) ((($) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) +(|has| |#1| (-142)) +(|has| |#1| (-144)) (|has| |#1| (-544)) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-544))) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-544))) -((($) . T)) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073)))) -((((-528)) |has| |#1| (-598 (-528)))) -((($) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) . T)) -((($) . T)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -((((-839)) . T)) -((((-839)) . T)) -((((-402 (-552))) . T) (($) . T)) -((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (((-1224 |#1| |#2| |#3|)) |has| |#1| (-358)) (($) . T) ((|#1|) . T)) -((((-839)) . T)) -(((|#1|) . T)) -((((-839)) . T)) -((((-839)) . T)) -(((|#1|) . T) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) . T)) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) +((($) . T)) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +((((-528)) |has| |#1| (-600 (-528)))) +((($) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T)) +((($) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-842)) . T)) +((((-842)) . T)) +((((-401 (-552))) . T) (($) . T)) +((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (((-1227 |#1| |#2| |#3|)) |has| |#1| (-357)) (($) . T) ((|#1|) . T)) +((((-842)) . T)) +(((|#1|) . T)) +((((-842)) . T)) +((((-842)) . T)) +(((|#1|) . T) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) . T)) (((|#1| |#2|) . T)) -((((-839)) . T)) +((((-842)) . T)) (((|#1|) . T)) -(((#0=(-402 (-552)) #0#) |has| |#2| (-38 (-402 (-552)))) ((|#2| |#2|) . T) (($ $) -1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))) +(((#0=(-401 (-552)) #0#) |has| |#2| (-38 (-401 (-552)))) ((|#2| |#2|) . T) (($ $) -1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) (((|#1|) . T)) -(((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) (($) . T)) -((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) |has| |#2| (-170)) (($) -1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))) -((($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -(((|#1|) . T) (((-402 (-552))) . T) (($) . T)) -(((|#1|) . T) (((-402 (-552))) . T) (($) . T)) -(((|#1|) . T) (((-402 (-552))) . T) (($) . T)) -(((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552)))) ((|#1| |#1|) . T) (($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))) +(((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) (($) . T)) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) +((($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(((|#1|) . T) (((-401 (-552))) . T) (($) . T)) +(((|#1|) . T) (((-401 (-552))) . T) (($) . T)) +(((|#1|) . T) (((-401 (-552))) . T) (($) . T)) +(((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552)))) ((|#1| |#1|) . T) (($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888)))) ((($ $) . T)) (((|#2|) . T)) -((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) . T) (($) -1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) -((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) . T) (($) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) . T) (($) -1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T) (($) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888)))) ((($) . T)) -(|has| |#1| (-363)) +(|has| |#1| (-362)) (((|#1|) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -((((-839)) . T)) -((((-839)) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-842)) . T)) +((((-842)) . T)) (((|#1| |#2|) . T)) -(-1523 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025))) -(-1523 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025))) +(-1559 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028))) +(-1559 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028))) (((|#1| |#1|) . T)) (|has| |#1| (-544)) -(((|#2| |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))) (((-1149) |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-507 (-1149) |#2|)))) -((((-402 |#2|)) . T) (((-402 (-552))) . T) (($) . T)) -(-1523 (|has| |#1| (-21)) (|has| |#1| (-825))) -((($ $) . T) ((#0=(-402 (-552)) #0#) . T)) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) -(|has| |#1| (-1073)) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) -(|has| |#1| (-1073)) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) -(|has| |#1| (-825)) -((($) . T) (((-402 (-552))) . T)) -(((|#1|) . T)) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-344))) -(-1523 (|has| |#4| (-773)) (|has| |#4| (-825))) -(-1523 (|has| |#4| (-773)) (|has| |#4| (-825))) -(-1523 (|has| |#3| (-773)) (|has| |#3| (-825))) -(-1523 (|has| |#3| (-773)) (|has| |#3| (-825))) +(((|#2| |#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-303 |#2|))) (((-1152) |#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-506 (-1152) |#2|)))) +((((-401 |#2|)) . T) (((-401 (-552))) . T) (($) . T)) +(-1559 (|has| |#1| (-21)) (|has| |#1| (-828))) +((($ $) . T) ((#0=(-401 (-552)) #0#) . T)) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +(|has| |#1| (-1076)) +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +(|has| |#1| (-1076)) +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +(|has| |#1| (-828)) +((($) . T) (((-401 (-552))) . T)) +(((|#1|) . T)) +((((-552) (-128)) . T)) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-343))) +((((-128)) . T)) +(-1559 (|has| |#4| (-776)) (|has| |#4| (-828))) +(-1559 (|has| |#4| (-776)) (|has| |#4| (-828))) +(-1559 (|has| |#3| (-776)) (|has| |#3| (-828))) +(-1559 (|has| |#3| (-776)) (|has| |#3| (-828))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-1073)) -(|has| |#1| (-1073)) -(((|#1| (-1149) (-1061 (-1149)) (-524 (-1061 (-1149)))) . T)) +(|has| |#1| (-1076)) +(|has| |#1| (-1076)) +(((|#1| (-1152) (-1064 (-1152)) (-523 (-1064 (-1152)))) . T)) ((((-552) |#1|) . T)) ((((-552)) . T)) ((((-552)) . T)) -((((-886 |#1|)) . T)) -(((|#1| (-524 |#2|)) . T)) +((((-889 |#1|)) . T)) +(((|#1| (-523 |#2|)) . T)) ((((-552)) . T)) ((((-552)) . T)) (((|#1|) . T)) -(-1523 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025))) -(((|#1| (-751)) . T)) -(|has| |#2| (-773)) -(-1523 (|has| |#2| (-773)) (|has| |#2| (-825))) -(|has| |#2| (-825)) +(-1559 (|has| |#2| (-169)) (|has| |#2| (-709)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +(((|#1| (-754)) . T)) +(|has| |#2| (-776)) +(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) +(|has| |#2| (-828)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1131) |#1|) . T)) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073)))) -(((|#1|) . T)) -(((|#3| (-751)) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) -(|has| |#1| (-1073)) -((((-402 (-552))) . T) (((-552)) . T)) -((((-1149) |#2|) |has| |#2| (-507 (-1149) |#2|)) ((|#2| |#2|) |has| |#2| (-304 |#2|))) -((((-402 (-552))) . T) (((-552)) . T)) +((((-1134) |#1|) . T)) +((((-552) (-128)) . T)) +(((|#1|) . T)) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +(((|#3| (-754)) . T)) +(|has| |#1| (-144)) +(|has| |#1| (-142)) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) +(|has| |#1| (-1076)) +((((-401 (-552))) . T) (((-552)) . T)) +((((-1152) |#2|) |has| |#2| (-506 (-1152) |#2|)) ((|#2| |#2|) |has| |#2| (-303 |#2|))) +((((-401 (-552))) . T) (((-552)) . T)) (((|#1|) . T) (($) . T)) ((((-552)) . T)) ((((-552)) . T)) -((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170))) +((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#1|) |has| |#1| (-169))) ((((-552)) . T)) ((((-552)) . T)) -(((#0=(-679) (-1145 #0#)) . T)) -((((-402 (-552))) . T) (($) . T)) -(((|#1|) . T) (((-402 (-552))) . T) (($) . T)) +(((#0=(-681) (-1148 #0#)) . T)) +((((-401 (-552))) . T) (($) . T)) +(((|#1|) . T) (((-401 (-552))) . T) (($) . T)) ((((-552) |#1|) . T)) -((($) . T) (((-552)) . T) (((-402 (-552))) . T)) +((($) . T) (((-552)) . T) (((-401 (-552))) . T)) (((|#1|) . T)) -(|has| |#2| (-358)) +(|has| |#2| (-357)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-839)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -((((-1131) |#1|) . T)) +((((-842)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-1134) |#1|) . T)) (((|#3| |#3|) . T)) -((((-839)) . T)) -((((-839)) . T)) +((((-842)) . T)) +((((-842)) . T)) (((|#1| |#1|) . T)) -(((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552)))) ((|#1| |#1|) . T) (($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))) -((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552))))) -(((|#1|) . T)) -((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) . T) (($) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))) -((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -((($) -1523 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) ((|#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025)))) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) +(((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552)))) ((|#1| |#1|) . T) (($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888)))) +((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) +(((|#1|) . T)) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T) (($) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888)))) +((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((($) -1559 (|has| |#2| (-169)) (|has| |#2| (-828)) (|has| |#2| (-1028))) ((|#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1028)))) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) ((((-552) |#1|) . T)) -((((-839)) . T)) -((((-167 (-221))) |has| |#1| (-998)) (((-167 (-374))) |has| |#1| (-998)) (((-528)) |has| |#1| (-598 (-528))) (((-1145 |#1|)) . T) (((-868 (-552))) |has| |#1| (-598 (-868 (-552)))) (((-868 (-374))) |has| |#1| (-598 (-868 (-374))))) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((|#1|) . T)) -(-1523 (|has| |#1| (-21)) (|has| |#1| (-825))) -(-1523 (|has| |#1| (-21)) (|has| |#1| (-825))) -((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))) ((|#2|) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170)) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544)))) -(|has| |#1| (-358)) -(-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) -(-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) -(-1523 (|has| |#4| (-170)) (|has| |#4| (-825)) (|has| |#4| (-1025))) -(-1523 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025))) -((((-839)) . T) (((-1154)) . T)) -((((-839)) . T) (((-1154)) . T)) -((((-839)) . T)) -(((|#1|) . T)) -((((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-552)) |has| |#1| (-1014 (-552))) ((|#1|) . T)) -(((|#1|) . T) (((-552)) |has| |#1| (-621 (-552)))) -(((|#2|) . T) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T)) +((((-842)) . T)) +((((-166 (-220))) |has| |#1| (-1001)) (((-166 (-373))) |has| |#1| (-1001)) (((-528)) |has| |#1| (-600 (-528))) (((-1148 |#1|)) . T) (((-871 (-552))) |has| |#1| (-600 (-871 (-552)))) (((-871 (-373))) |has| |#1| (-600 (-871 (-373))))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1|) . T)) +(-1559 (|has| |#1| (-21)) (|has| |#1| (-828))) +(-1559 (|has| |#1| (-21)) (|has| |#1| (-828))) +((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544))) ((|#2|) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169)) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544)))) +(|has| |#1| (-357)) +((((-128)) . T)) +(-12 (|has| |#4| (-228)) (|has| |#4| (-1028))) +(-12 (|has| |#3| (-228)) (|has| |#3| (-1028))) +(-1559 (|has| |#4| (-169)) (|has| |#4| (-828)) (|has| |#4| (-1028))) +(-1559 (|has| |#3| (-169)) (|has| |#3| (-828)) (|has| |#3| (-1028))) +((((-842)) . T) (((-1157)) . T)) +((((-842)) . T) (((-1157)) . T)) +((((-842)) . T)) +(((|#1|) . T)) +((((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-552)) |has| |#1| (-1017 (-552))) ((|#1|) . T)) +(((|#1|) . T) (((-552)) |has| |#1| (-623 (-552)))) +(((|#2|) . T) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) (|has| |#1| (-544)) (|has| |#1| (-544)) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) (((|#1|) . T)) (|has| |#1| (-544)) (|has| |#1| (-544)) (|has| |#1| (-544)) -((((-679)) . T)) +((((-681)) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-978)) (|has| |#1| (-1171))) -(((|#2|) . T) (($) . T) (((-402 (-552))) . T)) -(-12 (|has| |#1| (-1073)) (|has| |#2| (-1073))) -((($) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) . T)) -((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) . T)) -(((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) (($) . T)) -(((|#4| |#4|) -1523 (|has| |#4| (-170)) (|has| |#4| (-358)) (|has| |#4| (-1025))) (($ $) |has| |#4| (-170))) -(((|#3| |#3|) -1523 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025))) (($ $) |has| |#3| (-170))) -(((|#2|) . T)) +(-12 (|has| |#1| (-981)) (|has| |#1| (-1174))) +(((|#2|) . T) (($) . T) (((-401 (-552))) . T)) +(-12 (|has| |#1| (-1076)) (|has| |#2| (-1076))) +((($) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T)) +((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (((-1150 |#1| |#2| |#3|)) |has| |#1| (-357)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) . T)) +(((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) (($) . T)) +(((|#3| |#3|) -1559 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1028))) (($ $) |has| |#3| (-169))) +(((|#4| |#4|) -1559 (|has| |#4| (-169)) (|has| |#4| (-357)) (|has| |#4| (-1028))) (($ $) |has| |#4| (-169))) (((|#1|) . T)) -((((-528)) |has| |#2| (-598 (-528))) (((-868 (-374))) |has| |#2| (-598 (-868 (-374)))) (((-868 (-552))) |has| |#2| (-598 (-868 (-552))))) -((((-839)) . T)) +(((|#2|) . T)) +((((-528)) |has| |#2| (-600 (-528))) (((-871 (-373))) |has| |#2| (-600 (-871 (-373)))) (((-871 (-552))) |has| |#2| (-600 (-871 (-552))))) +((((-842)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-839)) . T)) -((((-528)) |has| |#1| (-598 (-528))) (((-868 (-374))) |has| |#1| (-598 (-868 (-374)))) (((-868 (-552))) |has| |#1| (-598 (-868 (-552))))) -(((|#4|) -1523 (|has| |#4| (-170)) (|has| |#4| (-358)) (|has| |#4| (-1025))) (($) |has| |#4| (-170))) -(((|#3|) -1523 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025))) (($) |has| |#3| (-170))) -((((-839)) . T)) -((((-839)) . T)) -((((-528)) . T) (((-552)) . T) (((-868 (-552))) . T) (((-374)) . T) (((-221)) . T)) -(((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552))))) -((($) . T) (((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) . T)) -((((-402 $) (-402 $)) |has| |#2| (-544)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-885)) -((((-1131) (-52)) . T)) -((((-552)) |has| #0=(-402 |#2|) (-621 (-552))) ((#0#) . T)) -((((-528)) . T) (((-221)) . T) (((-374)) . T) (((-868 (-374))) . T)) -((((-839)) . T)) -(-1523 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025))) -(((|#1|) |has| |#1| (-170))) -(((|#1| $) |has| |#1| (-281 |#1| |#1|))) -((((-839)) . T)) -((((-839)) . T)) -((((-402 (-552))) . T) (($) . T)) -((((-402 (-552))) . T) (($) . T)) -((((-839)) . T)) -(|has| |#1| (-827)) -(|has| |#1| (-1073)) -(((|#1|) . T)) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073)))) -((((-528)) |has| |#1| (-598 (-528)))) -((((-839)) . T) (((-1154)) . T)) -((((-129)) . T)) -((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) |has| |#2| (-170)) (($) -1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))) -((((-129)) . T)) -((($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -(|has| |#1| (-229)) -((($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -(((|#1| (-524 (-798 (-1149)))) . T)) -(((|#1| (-947)) . T)) -(((#0=(-846 |#1|) $) |has| #0# (-281 #0# #0#))) +((((-842)) . T)) +((((-528)) |has| |#1| (-600 (-528))) (((-871 (-373))) |has| |#1| (-600 (-871 (-373)))) (((-871 (-552))) |has| |#1| (-600 (-871 (-552))))) +(((|#3|) -1559 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1028))) (($) |has| |#3| (-169))) +(((|#4|) -1559 (|has| |#4| (-169)) (|has| |#4| (-357)) (|has| |#4| (-1028))) (($) |has| |#4| (-169))) +((((-842)) . T)) +((((-842)) . T)) +((((-528)) . T) (((-552)) . T) (((-871 (-552))) . T) (((-373)) . T) (((-220)) . T)) +(((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552))))) +((($) . T) (((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) . T)) +((((-401 $) (-401 $)) |has| |#2| (-544)) (($ $) . T) ((|#2| |#2|) . T)) +((((-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-888)) +((((-1134) (-52)) . T)) +((((-552)) |has| #0=(-401 |#2|) (-623 (-552))) ((#0#) . T)) +((((-528)) . T) (((-220)) . T) (((-373)) . T) (((-871 (-373))) . T)) +((((-842)) . T)) +(-1559 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028))) +(((|#1|) |has| |#1| (-169))) +(((|#1| $) |has| |#1| (-280 |#1| |#1|))) +((((-842)) . T)) +((((-842)) . T)) +((((-401 (-552))) . T) (($) . T)) +((((-401 (-552))) . T) (($) . T)) +((((-842)) . T)) +(|has| |#1| (-830)) +(|has| |#1| (-1076)) +(((|#1|) . T)) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +((((-528)) |has| |#1| (-600 (-528)))) +((((-842)) . T) (((-1157)) . T)) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) +((($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(|has| |#1| (-228)) +((($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(((|#1| (-523 (-801 (-1152)))) . T)) +(((|#1| (-950)) . T)) +(((#0=(-849 |#1|) $) |has| #0# (-280 #0# #0#))) ((((-552) |#4|) . T)) ((((-552) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1124)) -((((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T)) -(|has| (-1218 |#1| |#2| |#3| |#4|) (-143)) -(|has| (-1218 |#1| |#2| |#3| |#4|) (-145)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(((|#1|) |has| |#1| (-170))) -((((-1149)) -12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) -(((|#2|) . T)) -(|has| |#1| (-1073)) -((((-1131) |#1|) . T)) -(((|#1|) . T)) -(((|#2|) . T) (((-552)) |has| |#2| (-621 (-552)))) -(|has| |#2| (-363)) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) +(|has| |#1| (-1127)) +((((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) +(|has| (-1221 |#1| |#2| |#3| |#4|) (-142)) +(|has| (-1221 |#1| |#2| |#3| |#4|) (-144)) +(|has| |#1| (-142)) +(|has| |#1| (-144)) +(((|#1|) |has| |#1| (-169))) +((((-1152)) -12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) +(((|#2|) . T)) +(|has| |#1| (-1076)) +((((-1134) |#1|) . T)) +(((|#1|) . T)) +(((|#2|) . T) (((-552)) |has| |#2| (-623 (-552)))) +(|has| |#2| (-362)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-1025))) -((((-839)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((#0=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) #0#) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) +(((|#2|) |has| |#2| (-1028))) +((((-842)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((#0=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) #0#) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) (((|#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((#0=(-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) #0#) |has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((#0=(-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) #0#) |has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))))) ((((-552) |#1|) . T)) -((((-839)) . T)) -((((-528)) -12 (|has| |#1| (-598 (-528))) (|has| |#2| (-598 (-528)))) (((-868 (-374))) -12 (|has| |#1| (-598 (-868 (-374)))) (|has| |#2| (-598 (-868 (-374))))) (((-868 (-552))) -12 (|has| |#1| (-598 (-868 (-552)))) (|has| |#2| (-598 (-868 (-552)))))) -((((-839)) . T)) +((((-842)) . T)) +((((-528)) -12 (|has| |#1| (-600 (-528))) (|has| |#2| (-600 (-528)))) (((-871 (-373))) -12 (|has| |#1| (-600 (-871 (-373)))) (|has| |#2| (-600 (-871 (-373))))) (((-871 (-552))) -12 (|has| |#1| (-600 (-871 (-552)))) (|has| |#2| (-600 (-871 (-552)))))) +((((-842)) . T)) ((($) . T)) -((((-839)) . T)) -((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552))))) +((((-842)) . T)) +((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -((((-839)) . T)) -((((-839)) . T)) -(|has| (-1217 |#2| |#3| |#4|) (-145)) -(|has| (-1217 |#2| |#3| |#4|) (-143)) -(((|#2|) |has| |#2| (-1073)) (((-552)) -12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073))) (((-402 (-552))) -12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) +((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-842)) . T)) +((((-842)) . T)) +(|has| (-1220 |#2| |#3| |#4|) (-144)) +(|has| (-1220 |#2| |#3| |#4|) (-142)) +(((|#2|) |has| |#2| (-1076)) (((-552)) -12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076))) (((-401 (-552))) -12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) (((|#1|) . T)) -(|has| |#1| (-1073)) -((((-839)) . T)) +(|has| |#1| (-1076)) +((((-842)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-1523 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025))) +(-1559 (|has| |#1| (-21)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028))) (((|#1|) . T)) ((((-552) |#1|) . T)) -(((|#2|) |has| |#2| (-170))) -(((|#1|) |has| |#1| (-170))) -(((|#1|) . T)) -(-1523 (|has| |#1| (-21)) (|has| |#1| (-825))) -((((-839)) |has| |#1| (-1073))) -(-1523 (|has| |#1| (-467)) (|has| |#1| (-707)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)) (|has| |#1| (-1085))) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-344))) -((((-886 |#1|)) . T)) -((((-402 |#2|) |#3|) . T)) +(((|#2|) |has| |#2| (-169))) +(((|#1|) |has| |#1| (-169))) +(((|#1|) . T)) +(-1559 (|has| |#1| (-21)) (|has| |#1| (-828))) +((((-842)) |has| |#1| (-1076))) +(-1559 (|has| |#1| (-466)) (|has| |#1| (-709)) (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028)) (|has| |#1| (-1088))) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-343))) +((((-889 |#1|)) . T)) +((((-401 |#2|) |#3|) . T)) (|has| |#1| (-15 * (|#1| (-552) |#1|))) -((((-402 (-552))) . T) (($) . T)) -(|has| |#1| (-827)) +((((-401 (-552))) . T) (($) . T)) +(|has| |#1| (-830)) (((|#1|) . T) (($) . T)) -((((-402 (-552))) . T) (($) . T)) -((((-839)) . T)) -(((|#1|) . T)) -((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-544))) -(|has| |#1| (-358)) -(-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))) -(|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) -(|has| |#1| (-358)) +((((-401 (-552))) . T) (($) . T)) +((((-842)) . T)) +(((|#1|) . T)) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-544))) +(|has| |#1| (-357)) +(-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))) +(|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) +(|has| |#1| (-357)) ((((-552)) . T)) -(|has| |#1| (-15 * (|#1| (-751) |#1|))) -((((-1115 |#2| (-402 (-928 |#1|)))) . T) (((-402 (-928 |#1|))) . T)) +(|has| |#1| (-15 * (|#1| (-754) |#1|))) +((((-1118 |#2| (-401 (-931 |#1|)))) . T) (((-401 (-931 |#1|))) . T)) ((($) . T)) -(((|#1|) |has| |#1| (-170)) (($) . T)) -(((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) (($) . T)) +(((|#1|) |has| |#1| (-169)) (($) . T)) +(((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) (($) . T)) (((|#1|) . T)) ((((-552) |#1|) . T)) -((((-839)) . T)) +((((-842)) . T)) (((|#2|) . T)) -(-1523 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) -(-1523 (|has| |#2| (-773)) (|has| |#2| (-825))) -(-1523 (|has| |#2| (-773)) (|has| |#2| (-825))) +(-1559 (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) +(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) +(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) (((|#1|) . T)) -((((-1149)) -12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(-12 (|has| |#1| (-358)) (|has| |#2| (-800))) -(-1523 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-544))) -(((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552)))) ((|#1| |#1|) . T) (($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-544)))) +((((-1152)) -12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(-12 (|has| |#1| (-357)) (|has| |#2| (-803))) +(-1559 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343)) (|has| |#1| (-544))) +(((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552)))) ((|#1| |#1|) . T) (($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-544)))) ((($ $) |has| |#1| (-544))) -(((#0=(-679) (-1145 #0#)) . T)) -((((-839)) . T)) -((((-839)) . T) (((-1232 |#4|)) . T)) -((((-839)) . T) (((-1232 |#3|)) . T)) -((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) . T) (($) -1523 (|has| |#1| (-170)) (|has| |#1| (-544)))) +(((#0=(-681) (-1148 #0#)) . T)) +((((-842)) . T) (((-1235 |#4|)) . T)) +((((-842)) . T) (((-1235 |#3|)) . T)) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T) (($) -1559 (|has| |#1| (-169)) (|has| |#1| (-544)))) ((($) |has| |#1| (-544))) -((((-839)) . T)) -((($) . T)) -((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) ((#0=(-402 (-552)) #0#) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((#1=(-1224 |#1| |#2| |#3|) #1#) |has| |#1| (-358)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) ((#0=(-402 (-552)) #0#) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358)))) -((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552))))) -((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (((-1224 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) . T)) -(((|#1|) . T) (($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358)))) -(((|#3|) |has| |#3| (-1025))) -((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -(|has| |#1| (-1073)) -(((|#2| (-799 |#1|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-358)) -((((-402 $) (-402 $)) |has| |#1| (-544)) (($ $) . T) ((|#1| |#1|) . T)) -(((#0=(-1055) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-886 |#1|)) . T)) -((((-142)) . T)) -((((-142)) . T)) -(((|#3|) |has| |#3| (-1073)) (((-552)) -12 (|has| |#3| (-1014 (-552))) (|has| |#3| (-1073))) (((-402 (-552))) -12 (|has| |#3| (-1014 (-402 (-552)))) (|has| |#3| (-1073)))) -((((-839)) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -(((|#1|) . T)) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073)))) -((((-528)) |has| |#1| (-598 (-528)))) -((((-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) . T)) -(|has| |#1| (-358)) -(-1523 (|has| |#1| (-21)) (|has| |#1| (-825))) -((((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|))) -(|has| |#2| (-800)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-825)) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) -((((-839)) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -((((-528)) |has| |#1| (-598 (-528)))) +((((-842)) . T)) +((($) . T)) +((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((#0=(-401 (-552)) #0#) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((#1=(-1227 |#1| |#2| |#3|) #1#) |has| |#1| (-357)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((#0=(-401 (-552)) #0#) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357)))) +((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) +((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (((-1227 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) . T)) +(((|#1|) . T) (($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357)))) +(((|#3|) |has| |#3| (-1028))) +((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(|has| |#1| (-1076)) +(((|#2| (-802 |#1|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-357)) +((((-401 $) (-401 $)) |has| |#1| (-544)) (($ $) . T) ((|#1| |#1|) . T)) +(((#0=(-1058) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((((-889 |#1|)) . T)) +((((-141)) . T)) +((((-141)) . T)) +(((|#3|) |has| |#3| (-1076)) (((-552)) -12 (|has| |#3| (-1017 (-552))) (|has| |#3| (-1076))) (((-401 (-552))) -12 (|has| |#3| (-1017 (-401 (-552)))) (|has| |#3| (-1076)))) +((((-842)) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +(((|#1|) . T)) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +((((-528)) |has| |#1| (-600 (-528)))) +((((-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) . T)) +(|has| |#1| (-357)) +(-1559 (|has| |#1| (-21)) (|has| |#1| (-828))) +((((-1152) |#1|) |has| |#1| (-506 (-1152) |#1|)) ((|#1| |#1|) |has| |#1| (-303 |#1|))) +(|has| |#2| (-803)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-828)) +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +((((-842)) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-528)) |has| |#1| (-600 (-528)))) (((|#1| |#2|) . T)) -((((-1149)) -12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) -((((-1131) |#1|) . T)) -(((|#1| |#2| |#3| (-524 |#3|)) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -((((-839)) . T)) -(((|#1|) . T)) -(-1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) -(|has| |#1| (-363)) -(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) +((((-1152)) -12 (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))))) +((((-1134) |#1|) . T)) +(((|#1| |#2| |#3| (-523 |#3|)) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +(|has| |#1| (-362)) +(|has| |#1| (-362)) +(|has| |#1| (-362)) +((((-842)) . T)) +(((|#1|) . T)) +(-1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) +(|has| |#1| (-362)) +(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((((-552)) . T)) ((((-552)) . T)) -(-1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) -((((-839)) . T)) -((((-839)) . T)) -(-12 (|has| |#2| (-229)) (|has| |#2| (-1025))) -((((-1149) #0=(-846 |#1|)) |has| #0# (-507 (-1149) #0#)) ((#0# #0#) |has| #0# (-304 #0#))) +(-1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) +((((-842)) . T)) +((((-842)) . T)) +(-12 (|has| |#2| (-228)) (|has| |#2| (-1028))) +((((-1152) #0=(-849 |#1|)) |has| #0# (-506 (-1152) #0#)) ((#0# #0#) |has| #0# (-303 #0#))) (((|#1|) . T)) ((((-552) |#4|) . T)) ((((-552) |#3|) . T)) -(((|#1|) . T) (((-552)) |has| |#1| (-621 (-552)))) -(-1523 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) -((((-1218 |#1| |#2| |#3| |#4|)) . T)) -((((-402 (-552))) . T) (((-552)) . T)) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073)))) +(((|#1|) . T) (((-552)) |has| |#1| (-623 (-552)))) +(-1559 (|has| |#2| (-169)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +((((-1221 |#1| |#2| |#3| |#4|)) . T)) +((((-401 (-552))) . T) (((-552)) . T)) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (((|#1|) . T)) (((|#1|) . T)) -((($) . T) (((-552)) . T) (((-402 (-552))) . T)) +((($) . T) (((-552)) . T) (((-401 (-552))) . T)) ((((-552)) . T)) ((((-552)) . T)) -((($) . T) (((-552)) . T) (((-402 (-552))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-552)) #0#) . T)) +((($) . T) (((-552)) . T) (((-401 (-552))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-401 (-552)) #0#) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((#0=(-552) #0#) . T) ((#1=(-402 (-552)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552))))) -(((|#1|) . T) (($) . T) (((-402 (-552))) . T)) +(((#0=(-552) #0#) . T) ((#1=(-401 (-552)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552))))) +(((|#1|) . T) (($) . T) (((-401 (-552))) . T)) (((|#1|) |has| |#1| (-544))) ((((-552) |#4|) . T)) ((((-552) |#3|) . T)) -((((-839)) . T)) -((((-552)) . T) (((-402 (-552))) . T) (($) . T)) -((((-839)) . T)) +((((-842)) . T)) +((((-552)) . T) (((-401 (-552))) . T) (($) . T)) +((((-842)) . T)) ((((-552) |#1|) . T)) (((|#1|) . T)) -((($ $) . T) ((#0=(-841 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((#0=(-844 |#1|) $) . T) ((#0# |#2|) . T)) ((($) . T)) -((($ $) . T) ((#0=(-1149) $) . T) ((#0# |#1|) . T)) -(((|#2|) |has| |#2| (-170))) -((($) -1523 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) ((|#2|) |has| |#2| (-170)) (((-402 (-552))) |has| |#2| (-38 (-402 (-552))))) -(((|#2| |#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($ $) |has| |#2| (-170))) -((((-142)) . T)) +((($ $) . T) ((#0=(-1152) $) . T) ((#0# |#1|) . T)) +(((|#2|) |has| |#2| (-169))) +((($) -1559 (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) ((|#2|) |has| |#2| (-169)) (((-401 (-552))) |has| |#2| (-38 (-401 (-552))))) +(((|#2| |#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1028))) (($ $) |has| |#2| (-169))) +((((-141)) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-363)) (|has| |#2| (-363))) -((((-839)) . T)) -(((|#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($) |has| |#2| (-170))) +(-12 (|has| |#1| (-362)) (|has| |#2| (-362))) +((((-842)) . T)) +(((|#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1028))) (($) |has| |#2| (-169))) (((|#1|) . T)) -((((-839)) . T)) -(|has| |#1| (-1073)) -(|has| $ (-145)) +((((-842)) . T)) +(|has| |#1| (-1076)) +(|has| $ (-144)) ((((-552) |#1|) . T)) -((($) -1523 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T)) -((((-1149)) -12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) -(|has| |#1| (-358)) -(-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))) -(|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) -(|has| |#1| (-358)) -(|has| |#1| (-15 * (|#1| (-751) |#1|))) -(((|#1|) . T)) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) -((((-839)) . T)) -((((-552) (-129)) . T)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(-1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) -(((|#2| (-524 (-841 |#1|))) . T)) -((((-839)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((|#1|) . T)) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) -(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) -((((-567 |#1|)) . T)) +((($) -1559 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) +((((-1152)) -12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) +(|has| |#1| (-357)) +(-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))) +(|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) +(|has| |#1| (-357)) +(|has| |#1| (-15 * (|#1| (-754) |#1|))) +(((|#1|) . T)) +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +((((-842)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(-1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) +(((|#2| (-523 (-844 |#1|))) . T)) +((((-842)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1|) . T)) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +((((-569 |#1|)) . T)) ((($) . T)) (((|#1|) . T) (($) . T)) -((((-552)) |has| |#1| (-621 (-552))) ((|#1|) . T)) +((((-552)) |has| |#1| (-623 (-552))) ((|#1|) . T)) (((|#4|) . T)) (((|#3|) . T)) -((((-846 |#1|)) . T) (($) . T) (((-402 (-552))) . T)) -((((-1149)) -12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) +((((-849 |#1|)) . T) (($) . T) (((-401 (-552))) . T)) +((((-1152)) -12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (((|#1|) . T)) -((((-839)) . T)) -((((-839)) . T)) +((((-842)) . T)) +((((-842)) . T)) ((((-552) |#2|) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552)))) ((|#1| |#1|) . T) (($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-544)))) -((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) ((#0=(-402 (-552)) #0#) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((#1=(-1147 |#1| |#2| |#3|) #1#) |has| |#1| (-358)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) ((#0=(-402 (-552)) #0#) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358)))) -((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552))))) -(((|#2|) |has| |#2| (-1025))) -(|has| |#1| (-1073)) -((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) . T) (($) -1523 (|has| |#1| (-170)) (|has| |#1| (-544)))) -((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) . T)) -(((|#1|) . T) (($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358)))) -((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -(((|#1|) |has| |#1| (-170)) (($) . T)) -(((|#1|) . T)) -(((#0=(-402 (-552)) #0#) |has| |#2| (-38 (-402 (-552)))) ((|#2| |#2|) . T) (($ $) -1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))) -((((-839)) . T)) -((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) |has| |#2| (-170)) (($) -1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))) +(((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552)))) ((|#1| |#1|) . T) (($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-544)))) +((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((#0=(-401 (-552)) #0#) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((#1=(-1150 |#1| |#2| |#3|) #1#) |has| |#1| (-357)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((#0=(-401 (-552)) #0#) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357)))) +((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) +((((-842)) . T)) +(((|#2|) |has| |#2| (-1028))) +(|has| |#1| (-1076)) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T) (($) -1559 (|has| |#1| (-169)) (|has| |#1| (-544)))) +((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (((-1150 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) . T)) +(((|#1|) . T) (($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357)))) +((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(((|#1|) |has| |#1| (-169)) (($) . T)) +(((|#1|) . T)) +(((#0=(-401 (-552)) #0#) |has| |#2| (-38 (-401 (-552)))) ((|#2| |#2|) . T) (($ $) -1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) +((((-842)) . T)) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) |has| |#1| (-170)) (($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))) -(((#0=(-1055) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) . T) (($) -1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888)))) +(((#0=(-1058) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) . T) (($) -1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) ((($) . T)) -(((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) (($) . T)) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) +(((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) (($) . T)) +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) (((|#1|) . T)) -(((|#2|) |has| |#1| (-358))) -(((|#2|) |has| |#2| (-1073)) (((-552)) -12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073))) (((-402 (-552))) -12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) +(((|#2|) |has| |#1| (-357))) +(((|#2|) |has| |#2| (-1076)) (((-552)) -12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076))) (((-401 (-552))) -12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) ((((-552) |#1|) . T)) -((((-839)) . T)) -((((-402 |#2|) |#3|) . T)) -(((|#1| (-402 (-552))) . T)) -((((-402 (-552))) . T) (($) . T)) -((((-402 (-552))) . T) (($) . T)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -((((-839)) . T) (((-1154)) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) |has| |#2| (-170)) (($) -1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))) -((($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -((((-402 (-552))) . T) (($) . T)) -((((-402 (-552))) . T) (($) . T)) -((((-402 (-552))) . T) (($) . T)) -(((|#2| |#3| (-841 |#1|)) . T)) -((((-1149)) |has| |#2| (-876 (-1149)))) -(((|#1|) . T)) -(((|#1| (-524 |#2|) |#2|) . T)) -(((|#1| (-751) (-1055)) . T)) -((((-402 (-552))) |has| |#2| (-358)) (($) . T)) -(((|#1| (-524 (-1061 (-1149))) (-1061 (-1149))) . T)) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) -(((|#1|) . T)) -(-1523 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025))) -(|has| |#2| (-773)) -(-1523 (|has| |#2| (-773)) (|has| |#2| (-825))) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -(|has| |#2| (-825)) -((((-869 |#1|)) . T) (((-799 |#1|)) . T)) -((((-799 (-1149))) . T)) -(((|#1|) . T)) -(((|#2|) . T)) -(((|#2|) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-625 (-552))) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-528)) . T) (((-868 (-552))) . T) (((-374)) . T) (((-221)) . T)) -(|has| |#1| (-229)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) +((((-842)) . T)) +((((-401 |#2|) |#3|) . T)) +(((|#1| (-401 (-552))) . T)) +((((-401 (-552))) . T) (($) . T)) +((((-401 (-552))) . T) (($) . T)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +((((-842)) . T) (((-1157)) . T)) +(|has| |#1| (-142)) +(|has| |#1| (-144)) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) +((($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-401 (-552))) . T) (($) . T)) +((((-401 (-552))) . T) (($) . T)) +((((-401 (-552))) . T) (($) . T)) +(((|#2| |#3| (-844 |#1|)) . T)) +((((-1152)) |has| |#2| (-879 (-1152)))) +(((|#1|) . T)) +(((|#1| (-523 |#2|) |#2|) . T)) +(((|#1| (-754) (-1058)) . T)) +((((-401 (-552))) |has| |#2| (-357)) (($) . T)) +(((|#1| (-523 (-1064 (-1152))) (-1064 (-1152))) . T)) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(((|#1|) . T)) +(-1559 (|has| |#2| (-169)) (|has| |#2| (-709)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +(|has| |#2| (-776)) +(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) +(|has| |#1| (-362)) +(|has| |#1| (-362)) +(|has| |#1| (-362)) +(|has| |#2| (-828)) +((((-872 |#1|)) . T) (((-802 |#1|)) . T)) +((((-802 (-1152))) . T)) +(((|#1|) . T)) +(((|#2|) . T)) +(((|#2|) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-627 (-552))) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-528)) . T) (((-871 (-552))) . T) (((-373)) . T) (((-220)) . T)) +(|has| |#1| (-228)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) ((($ $) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -((((-1224 |#1| |#2| |#3|) $) -12 (|has| (-1224 |#1| |#2| |#3|) (-281 (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358))) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-1227 |#1| |#2| |#3|) $) -12 (|has| (-1227 |#1| |#2| |#3|) (-280 (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357))) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1|) . T)) -((((-1113 |#1| |#2|)) |has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) -(((|#2|) . T) (((-552)) |has| |#2| (-1014 (-552))) (((-402 (-552))) |has| |#2| (-1014 (-402 (-552))))) -(((|#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) -(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) +((((-1116 |#1| |#2|)) |has| (-1116 |#1| |#2|) (-303 (-1116 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) +(((|#2|) . T) (((-552)) |has| |#2| (-1017 (-552))) (((-401 (-552))) |has| |#2| (-1017 (-401 (-552))))) +(((|#3| |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) -(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) (((|#2|) . T)) -((((-839)) -1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-597 (-839))) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1073))) (((-1232 |#2|)) . T)) -(((|#1|) |has| |#1| (-170))) +((((-842)) -1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-599 (-842))) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-709)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028)) (|has| |#2| (-1076))) (((-1235 |#2|)) . T)) +(((|#1|) |has| |#1| (-169))) ((((-552)) . T)) -((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) |has| |#1| (-170)) (($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))) -((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -((((-552) (-142)) . T)) -((($) -1523 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) ((|#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025)))) -(-1523 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-544)) (|has| |#1| (-1025))) -(((|#1|) . T)) -(-1523 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-544)) (|has| |#1| (-1025))) -(((|#2|) |has| |#1| (-358))) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888)))) +((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-552) (-141)) . T)) +((($) -1559 (|has| |#2| (-169)) (|has| |#2| (-828)) (|has| |#2| (-1028))) ((|#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1028)))) +(-1559 (|has| |#1| (-21)) (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-544)) (|has| |#1| (-1028))) +(((|#1|) . T)) +(-1559 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-544)) (|has| |#1| (-1028))) +(((|#2|) |has| |#1| (-357))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170))) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((|#1| (-524 #0=(-1149)) #0#) . T)) +((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#1|) |has| |#1| (-169))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1| (-523 #0=(-1152)) #0#) . T)) (((|#1|) . T) (($) . T)) -(|has| |#4| (-170)) -(|has| |#3| (-170)) -(((#0=(-402 (-928 |#1|)) #0#) . T)) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) -(|has| |#1| (-1073)) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) -(|has| |#1| (-1073)) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073)))) -((((-528)) |has| |#1| (-598 (-528)))) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) -((((-839)) . T) (((-1154)) . T)) -(((|#1| |#1|) |has| |#1| (-170))) -((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552))))) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((|#1|) . T)) -((((-402 (-928 |#1|))) . T)) -((((-552) (-129)) . T)) -(((|#1|) |has| |#1| (-170))) -((((-129)) . T)) -((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) -((((-839)) . T)) -((((-1218 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1025)) (((-552)) -12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025)))) +(|has| |#4| (-169)) +(|has| |#3| (-169)) +(((#0=(-401 (-931 |#1|)) #0#) . T)) +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +(|has| |#1| (-1076)) +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +(|has| |#1| (-1076)) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +((((-528)) |has| |#1| (-600 (-528)))) +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +((((-842)) . T) (((-1157)) . T)) +(((|#1| |#1|) |has| |#1| (-169))) +((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1|) . T)) +((((-401 (-931 |#1|))) . T)) +(((|#1|) |has| |#1| (-169))) +((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +((((-842)) . T)) +((((-1221 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1028)) (((-552)) -12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028)))) (((|#1| |#2|) . T)) -(-1523 (|has| |#3| (-170)) (|has| |#3| (-707)) (|has| |#3| (-825)) (|has| |#3| (-1025))) -(|has| |#3| (-773)) -(-1523 (|has| |#3| (-773)) (|has| |#3| (-825))) -(|has| |#3| (-825)) -((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))) ((|#2|) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170)) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544)))) -(((|#2|) . T)) -((((-552) (-129)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) +(-1559 (|has| |#3| (-169)) (|has| |#3| (-709)) (|has| |#3| (-828)) (|has| |#3| (-1028))) +(|has| |#3| (-776)) +(-1559 (|has| |#3| (-776)) (|has| |#3| (-828))) +(|has| |#3| (-828)) +((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544))) ((|#2|) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169)) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544)))) +(((|#2|) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +(((|#1| (-1132 |#1|)) |has| |#1| (-828))) ((((-552) |#2|) . T)) -(((|#1| (-1129 |#1|)) |has| |#1| (-825))) -(|has| |#1| (-1073)) -(((|#1|) . T)) -(-12 (|has| |#1| (-358)) (|has| |#2| (-1124))) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(|has| |#1| (-1073)) -(((|#2|) . T)) -((((-528)) |has| |#2| (-598 (-528))) (((-868 (-374))) |has| |#2| (-598 (-868 (-374)))) (((-868 (-552))) |has| |#2| (-598 (-868 (-552))))) -(((|#4|) -1523 (|has| |#4| (-170)) (|has| |#4| (-358)))) -(((|#3|) -1523 (|has| |#3| (-170)) (|has| |#3| (-358)))) -((((-839)) . T)) -(((|#1|) . T)) -(-1523 (|has| |#2| (-446)) (|has| |#2| (-885))) -(-1523 (|has| |#1| (-446)) (|has| |#1| (-885))) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-885))) -((($ $) . T) ((#0=(-1149) $) |has| |#1| (-229)) ((#0# |#1|) |has| |#1| (-229)) ((#1=(-798 (-1149)) |#1|) . T) ((#1# $) . T)) -(-1523 (|has| |#1| (-446)) (|has| |#1| (-885))) +(|has| |#1| (-1076)) +(((|#1|) . T)) +(-12 (|has| |#1| (-357)) (|has| |#2| (-1127))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(|has| |#1| (-1076)) +(((|#2|) . T)) +((((-528)) |has| |#2| (-600 (-528))) (((-871 (-373))) |has| |#2| (-600 (-871 (-373)))) (((-871 (-552))) |has| |#2| (-600 (-871 (-552))))) +(((|#4|) -1559 (|has| |#4| (-169)) (|has| |#4| (-357)))) +(((|#3|) -1559 (|has| |#3| (-169)) (|has| |#3| (-357)))) +((((-842)) . T)) +(((|#1|) . T)) +(-1559 (|has| |#2| (-445)) (|has| |#2| (-888))) +(-1559 (|has| |#1| (-445)) (|has| |#1| (-888))) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-888))) +((($ $) . T) ((#0=(-1152) $) |has| |#1| (-228)) ((#0# |#1|) |has| |#1| (-228)) ((#1=(-801 (-1152)) |#1|) . T) ((#1# $) . T)) +(-1559 (|has| |#1| (-445)) (|has| |#1| (-888))) ((((-552) |#2|) . T)) -((((-839)) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -((($) -1523 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025))) ((|#3|) -1523 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025)))) +((((-842)) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((($) -1559 (|has| |#3| (-169)) (|has| |#3| (-828)) (|has| |#3| (-1028))) ((|#3|) -1559 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1028)))) ((((-552) |#1|) . T)) -(|has| (-402 |#2|) (-145)) -(|has| (-402 |#2|) (-143)) -(((|#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|)))) -(|has| |#1| (-38 (-402 (-552)))) +(|has| (-401 |#2|) (-144)) +(|has| (-401 |#2|) (-142)) +(((|#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-303 |#2|)))) +(|has| |#1| (-38 (-401 (-552)))) (((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-402 (-552))) . T)) -((((-839)) . T)) +(((|#2|) . T) (($) . T) (((-401 (-552))) . T)) +((((-842)) . T)) (|has| |#1| (-544)) (|has| |#1| (-544)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -((((-839)) . T)) -((((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T)) -(|has| |#1| (-38 (-402 (-552)))) -((((-383) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#2| (-1124)) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-544))) -((((-839)) . T) (((-1154)) . T)) -((((-839)) . T) (((-1154)) . T)) -((((-839)) . T) (((-1154)) . T)) -((((-839)) . T) (((-1154)) . T)) -((((-1185)) . T) (((-839)) . T) (((-1154)) . T)) -((((-839)) . T) (((-1154)) . T)) -(((|#1|) . T)) -((((-383) (-1131)) . T)) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-544))) -((((-116 |#1|)) . T)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-842)) . T)) +((((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) +(|has| |#1| (-38 (-401 (-552)))) +((((-382) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#2| (-1127)) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) +((((-842)) . T) (((-1157)) . T)) +((((-842)) . T) (((-1157)) . T)) +((((-842)) . T) (((-1157)) . T)) +((((-842)) . T) (((-1157)) . T)) +((((-1188)) . T) (((-842)) . T) (((-1157)) . T)) +((((-842)) . T) (((-1157)) . T)) +(((|#1|) . T)) +((((-382) (-1134)) . T)) (|has| |#1| (-544)) -((((-129)) . T)) +((((-115 |#1|)) . T)) ((((-552) |#1|) . T)) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) (((|#2|) . T)) -((((-839)) . T)) -((((-799 |#1|)) . T)) -(((|#2|) |has| |#2| (-170))) -((((-1149) (-52)) . T)) +((((-842)) . T)) +((((-802 |#1|)) . T)) +(((|#2|) |has| |#2| (-169))) +((((-1152) (-52)) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-544)) -(((|#1|) |has| |#1| (-170))) -((((-839)) . T)) -((((-528)) |has| |#1| (-598 (-528)))) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) -(((|#2|) |has| |#2| (-304 |#2|))) -(((#0=(-552) #0#) . T) ((#1=(-402 (-552)) #1#) . T) (($ $) . T)) -(((|#1|) . T)) -(((|#1| (-1145 |#1|)) . T)) -(|has| $ (-145)) -(((|#2|) . T)) -(((#0=(-552) #0#) . T) ((#1=(-402 (-552)) #1#) . T) (($ $) . T)) -((($) . T) (((-552)) . T) (((-402 (-552))) . T)) -(|has| |#2| (-363)) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) -(((|#1|) . T) (((-402 (-552))) . T) (($) . T)) -(((|#1|) . T) (((-402 (-552))) . T) (($) . T)) -(((|#1|) . T) (((-402 (-552))) . T) (($) . T)) -((((-552)) . T) (((-402 (-552))) . T) (($) . T)) +(((|#1|) |has| |#1| (-169))) +((((-842)) . T)) +((((-528)) |has| |#1| (-600 (-528)))) +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +(((|#2|) |has| |#2| (-303 |#2|))) +(((#0=(-552) #0#) . T) ((#1=(-401 (-552)) #1#) . T) (($ $) . T)) +(((|#1|) . T)) +(((|#1| (-1148 |#1|)) . T)) +(|has| $ (-144)) +(((|#2|) . T)) +(((#0=(-552) #0#) . T) ((#1=(-401 (-552)) #1#) . T) (($ $) . T)) +((($) . T) (((-552)) . T) (((-401 (-552))) . T)) +(|has| |#2| (-362)) +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +(((|#1|) . T) (((-401 (-552))) . T) (($) . T)) +(((|#1|) . T) (((-401 (-552))) . T) (($) . T)) +(((|#1|) . T) (((-401 (-552))) . T) (($) . T)) +((((-552)) . T) (((-401 (-552))) . T) (($) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-552)) . T) (((-402 (-552))) . T) (($) . T)) -((((-1147 |#1| |#2| |#3|) $) -12 (|has| (-1147 |#1| |#2| |#3|) (-281 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358))) (($ $) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-528)) |has| |#1| (-598 (-528)))) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073)))) -((($) . T) (((-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T)) +((((-552)) . T) (((-401 (-552))) . T) (($) . T)) +((((-1150 |#1| |#2| |#3|) $) -12 (|has| (-1150 |#1| |#2| |#3|) (-280 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357))) (($ $) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-528)) |has| |#1| (-600 (-528)))) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +((($) . T) (((-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) ((($ $) . T)) +((((-842)) . T)) ((($ $) . T)) -((((-839)) . T)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((#0=(-1224 |#1| |#2| |#3|) #0#) -12 (|has| (-1224 |#1| |#2| |#3|) (-304 (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358))) (((-1149) #0#) -12 (|has| (-1224 |#1| |#2| |#3|) (-507 (-1149) (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358)))) -(-12 (|has| |#1| (-1073)) (|has| |#2| (-1073))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((#0=(-1227 |#1| |#2| |#3|) #0#) -12 (|has| (-1227 |#1| |#2| |#3|) (-303 (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357))) (((-1152) #0#) -12 (|has| (-1227 |#1| |#2| |#3|) (-506 (-1152) (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357)))) +(-12 (|has| |#1| (-1076)) (|has| |#2| (-1076))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -((((-402 (-552))) . T) (((-552)) . T)) -((((-552) (-142)) . T)) -((((-142)) . T)) +((($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-401 (-552))) . T) (((-552)) . T)) +((((-552) (-141)) . T)) +((((-141)) . T)) (((|#1|) . T)) -(-1523 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-544)) (|has| |#1| (-1025))) -((((-112)) . T)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -((((-112)) . T)) +(-1559 (|has| |#1| (-21)) (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-544)) (|has| |#1| (-1028))) +((((-111)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-111)) . T)) (((|#1|) . T)) -((((-528)) |has| |#1| (-598 (-528))) (((-221)) . #0=(|has| |#1| (-998))) (((-374)) . #0#)) -((((-839)) . T)) -(|has| |#1| (-800)) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) -(|has| |#1| (-827)) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-544))) +((((-528)) |has| |#1| (-600 (-528))) (((-220)) . #0=(|has| |#1| (-1001))) (((-373)) . #0#)) +((((-842)) . T)) +(|has| |#1| (-803)) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(|has| |#1| (-830)) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-544))) (|has| |#1| (-544)) -(|has| |#1| (-885)) -(((|#1|) . T)) -(|has| |#1| (-1073)) -((((-839)) . T)) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-544))) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -(((|#1| (-1232 |#1|) (-1232 |#1|)) . T)) -((((-552) (-142)) . T)) -((($) . T)) -(-1523 (|has| |#4| (-170)) (|has| |#4| (-825)) (|has| |#4| (-1025))) -(-1523 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025))) -((((-1154)) . T) (((-839)) . T)) -((((-839)) . T)) -(|has| |#1| (-1073)) -(((|#1| (-947)) . T)) +(|has| |#1| (-888)) +(((|#1|) . T)) +(|has| |#1| (-1076)) +((((-842)) . T)) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-544))) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +(((|#1| (-1235 |#1|) (-1235 |#1|)) . T)) +((((-552) (-141)) . T)) +((($) . T)) +(-1559 (|has| |#4| (-169)) (|has| |#4| (-828)) (|has| |#4| (-1028))) +(-1559 (|has| |#3| (-169)) (|has| |#3| (-828)) (|has| |#3| (-1028))) +((((-1157)) . T) (((-842)) . T)) +((((-842)) . T)) +(|has| |#1| (-1076)) +(((|#1| (-950)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(-1523 (|has| |#2| (-773)) (|has| |#2| (-825))) -(-1523 (|has| |#2| (-773)) (|has| |#2| (-825))) -(-12 (|has| |#1| (-467)) (|has| |#2| (-467))) -(-1523 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025))) -(-1523 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))) +(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) +(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) +(-12 (|has| |#1| (-466)) (|has| |#2| (-466))) +(-1559 (|has| |#2| (-169)) (|has| |#2| (-709)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +(-1559 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-709)) (|has| |#2| (-709)))) (((|#1|) . T)) -(|has| |#2| (-773)) -(-1523 (|has| |#2| (-773)) (|has| |#2| (-825))) +(|has| |#2| (-776)) +(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(|has| |#2| (-825)) -(-12 (|has| |#1| (-773)) (|has| |#2| (-773))) -(-12 (|has| |#1| (-773)) (|has| |#2| (-773))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(|has| |#2| (-828)) +(-12 (|has| |#1| (-776)) (|has| |#2| (-776))) +(-12 (|has| |#1| (-776)) (|has| |#2| (-776))) (((|#1| |#2|) . T)) -(((|#2|) |has| |#2| (-170))) -(((|#1|) |has| |#1| (-170))) -((((-839)) . T)) -(|has| |#1| (-344)) +(((|#2|) |has| |#2| (-169))) +(((|#1|) |has| |#1| (-169))) +((((-842)) . T)) +(|has| |#1| (-343)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-402 (-552))) . T) (($) . T)) -((($) . T) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((|#1|) . T)) -(|has| |#1| (-808)) -((((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-552)) |has| |#1| (-1014 (-552))) ((|#1|) . T)) -(|has| |#1| (-1073)) -(((|#1| $) |has| |#1| (-281 |#1| |#1|))) -((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-544))) +((((-401 (-552))) . T) (($) . T)) +((($) . T) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#1|) . T)) +(|has| |#1| (-811)) +((((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-552)) |has| |#1| (-1017 (-552))) ((|#1|) . T)) +(|has| |#1| (-1076)) +(((|#1| $) |has| |#1| (-280 |#1| |#1|))) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-544))) ((($) |has| |#1| (-544))) -(((|#4|) |has| |#4| (-1073))) -(((|#3|) |has| |#3| (-1073))) -(|has| |#3| (-363)) -(((|#1|) . T) (((-839)) . T)) -((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))) (((-1224 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170))) -((((-839)) . T)) -(((|#2|) . T)) -(((|#1|) |has| |#1| (-170)) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544)))) +(((|#4|) |has| |#4| (-1076))) +(((|#3|) |has| |#3| (-1076))) +(|has| |#3| (-362)) +(((|#1|) . T) (((-842)) . T)) +((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-1227 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) +((((-842)) . T)) +(((|#2|) . T)) +(((|#1|) |has| |#1| (-169)) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544)))) (((|#1| |#2|) . T)) -((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -(((|#1| |#1|) |has| |#1| (-170))) -(|has| |#2| (-358)) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-170))) -((((-402 (-552))) . T) (((-552)) . T)) -((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552))))) -((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-544))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) -((((-142)) . T)) -(((|#1|) . T)) -((($) -1523 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) ((|#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025)))) -((((-142)) . T)) -((((-142)) . T)) +((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(((|#1| |#1|) |has| |#1| (-169))) +(|has| |#2| (-357)) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-169))) +((((-401 (-552))) . T) (((-552)) . T)) +((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) +((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-544))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) +((((-141)) . T)) +(((|#1|) . T)) +((($) -1559 (|has| |#2| (-169)) (|has| |#2| (-828)) (|has| |#2| (-1028))) ((|#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1028)))) +((((-141)) . T)) +((((-141)) . T)) (((|#1| |#2| |#3|) . T)) -(-1523 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-544)) (|has| |#1| (-1025))) -(|has| $ (-145)) -(|has| $ (-145)) -(|has| |#1| (-1073)) -((((-839)) . T)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(-1523 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-467)) (|has| |#1| (-544)) (|has| |#1| (-1025)) (|has| |#1| (-1085))) -((($ $) |has| |#1| (-281 $ $)) ((|#1| $) |has| |#1| (-281 |#1| |#1|))) -(((|#1| (-402 (-552))) . T)) -(((|#1|) . T)) -((((-1149)) . T)) +(-1559 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-544)) (|has| |#1| (-1028))) +(|has| $ (-144)) +(|has| $ (-144)) +(|has| |#1| (-1076)) +((((-842)) . T)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(-1559 (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-466)) (|has| |#1| (-544)) (|has| |#1| (-1028)) (|has| |#1| (-1088))) +((($ $) |has| |#1| (-280 $ $)) ((|#1| $) |has| |#1| (-280 |#1| |#1|))) +(((|#1| (-401 (-552))) . T)) +(((|#1|) . T)) +((((-1152)) . T)) (|has| |#1| (-544)) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-544))) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-544))) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) (|has| |#1| (-544)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -((((-839)) . T)) -(|has| |#2| (-143)) -(|has| |#2| (-145)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +((((-842)) . T)) +(|has| |#2| (-142)) +(|has| |#2| (-144)) (((|#2|) . T) (($) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -(|has| |#4| (-825)) -(((|#2| (-236 (-1471 |#1|) (-751)) (-841 |#1|)) . T)) -(|has| |#3| (-825)) -(((|#1| (-524 |#3|) |#3|) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -(((#0=(-402 (-552)) #0#) |has| |#2| (-358)) (($ $) . T)) -((((-846 |#1|)) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -(|has| |#1| (-143)) -((((-402 (-552))) |has| |#2| (-358)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(-1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) -(-1523 (|has| |#1| (-344)) (|has| |#1| (-363))) -((((-1115 |#2| |#1|)) . T) ((|#1|) . T)) -(|has| |#2| (-170)) +(|has| |#1| (-144)) +(|has| |#1| (-142)) +(|has| |#4| (-828)) +(((|#2| (-235 (-1383 |#1|) (-754)) (-844 |#1|)) . T)) +(|has| |#3| (-828)) +(((|#1| (-523 |#3|) |#3|) . T)) +(|has| |#1| (-144)) +(|has| |#1| (-142)) +(((#0=(-401 (-552)) #0#) |has| |#2| (-357)) (($ $) . T)) +((((-849 |#1|)) . T)) +(|has| |#1| (-144)) +(|has| |#1| (-362)) +(|has| |#1| (-362)) +(|has| |#1| (-362)) +(|has| |#1| (-142)) +((((-401 (-552))) |has| |#2| (-357)) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(-1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) +(-1559 (|has| |#1| (-343)) (|has| |#1| (-362))) +((((-1118 |#2| |#1|)) . T) ((|#1|) . T)) +(|has| |#2| (-169)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-229)) (|has| |#2| (-1025))) -(((|#2|) . T) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -(-1523 (|has| |#3| (-773)) (|has| |#3| (-825))) -(-1523 (|has| |#3| (-773)) (|has| |#3| (-825))) -((((-839)) . T)) +(-12 (|has| |#2| (-228)) (|has| |#2| (-1028))) +(((|#2|) . T) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +(-1559 (|has| |#3| (-776)) (|has| |#3| (-828))) +(-1559 (|has| |#3| (-776)) (|has| |#3| (-828))) +((((-842)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) -(((|#1|) . T) (($) . T)) -((((-679)) . T)) -(-1523 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +((((-681)) . T)) +(-1559 (|has| |#2| (-169)) (|has| |#2| (-828)) (|has| |#2| (-1028))) (|has| |#1| (-544)) (((|#1|) . T)) (((|#1|) . T)) @@ -915,334 +912,335 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1149) (-52)) . T)) -((((-839)) . T)) -((((-528)) . T) (((-868 (-552))) . T) (((-374)) . T) (((-221)) . T)) +((((-1152) (-52)) . T)) +(((|#1|) . T) (($) . T)) +((((-842)) . T)) +((((-528)) . T) (((-871 (-552))) . T) (((-373)) . T) (((-220)) . T)) (((|#1|) . T)) -((((-839)) . T)) -((((-528)) . T) (((-868 (-552))) . T) (((-374)) . T) (((-221)) . T)) +((((-842)) . T)) +((((-528)) . T) (((-871 (-552))) . T) (((-373)) . T) (((-220)) . T)) (((|#1| (-552)) . T)) -((((-839)) . T)) -((((-839)) . T)) +((((-842)) . T)) +((((-842)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-402 (-552))) . T)) -(((|#3|) . T) (((-596 $)) . T)) +(((|#1| (-401 (-552))) . T)) +(((|#3|) . T) (((-598 $)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) ((($ $) . T) ((|#2| $) . T)) -(((|#1|) . T) (((-402 (-552))) . T) (($) . T)) -(((#0=(-1147 |#1| |#2| |#3|) #0#) -12 (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358))) (((-1149) #0#) -12 (|has| (-1147 |#1| |#2| |#3|) (-507 (-1149) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) -((((-552)) . T) (($) . T) (((-402 (-552))) . T)) -((((-839)) . T)) -((((-839)) . T)) +(((|#1|) . T) (((-401 (-552))) . T) (($) . T)) +(((#0=(-1150 |#1| |#2| |#3|) #0#) -12 (|has| (-1150 |#1| |#2| |#3|) (-303 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357))) (((-1152) #0#) -12 (|has| (-1150 |#1| |#2| |#3|) (-506 (-1152) (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357)))) +((((-552)) . T) (($) . T) (((-401 (-552))) . T)) +((((-842)) . T)) +((((-842)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) |has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))))) -((((-839)) . T)) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) |has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))))) +((((-842)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T)) -((((-1149) (-52)) . T)) +((((-1152) (-52)) . T)) (((|#3|) . T)) -((($ $) . T) ((#0=(-841 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-808)) -(|has| |#1| (-1073)) -(((|#2| |#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($ $) |has| |#2| (-170))) -(((|#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)))) -((((-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($) |has| |#2| (-170))) -((((-751)) . T)) +((($ $) . T) ((#0=(-844 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-811)) +(|has| |#1| (-1076)) +(((|#2| |#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1028))) (($ $) |has| |#2| (-169))) +(((|#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)))) +((((-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1028))) (($) |has| |#2| (-169))) +((((-754)) . T)) ((((-552)) . T)) (|has| |#1| (-544)) -((((-839)) . T)) -(((|#1| (-402 (-552)) (-1055)) . T)) -(|has| |#1| (-143)) +((((-842)) . T)) +(((|#1| (-401 (-552)) (-1058)) . T)) +(|has| |#1| (-142)) (((|#1|) . T)) (|has| |#1| (-544)) ((((-552)) . T)) -((((-116 |#1|)) . T)) -(((|#1|) . T)) -(|has| |#1| (-145)) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-544))) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-544))) -((((-868 (-552))) . T) (((-868 (-374))) . T) (((-528)) . T) (((-1149)) . T)) -((((-839)) . T)) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) -((((-839)) . T) (((-1154)) . T)) -((($) . T)) -((((-839)) . T)) -(-1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) -(((|#2|) |has| |#2| (-170))) -((($) -1523 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) ((|#2|) |has| |#2| (-170)) (((-402 (-552))) |has| |#2| (-38 (-402 (-552))))) -((((-846 |#1|)) . T)) -(-1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1073))) -(-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) -(|has| |#2| (-1124)) -(((#0=(-52)) . T) (((-2 (|:| -2971 (-1149)) (|:| -4120 #0#))) . T)) +((((-115 |#1|)) . T)) +(((|#1|) . T)) +(|has| |#1| (-144)) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-544))) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-544))) +((((-871 (-552))) . T) (((-871 (-373))) . T) (((-528)) . T) (((-1152)) . T)) +((((-842)) . T)) +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +((((-842)) . T) (((-1157)) . T)) +((($) . T)) +((((-842)) . T)) +(-1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) +(((|#2|) |has| |#2| (-169))) +((($) -1559 (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) ((|#2|) |has| |#2| (-169)) (((-401 (-552))) |has| |#2| (-38 (-401 (-552))))) +((((-849 |#1|)) . T)) +(-1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-709)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028)) (|has| |#2| (-1076))) +(-12 (|has| |#3| (-228)) (|has| |#3| (-1028))) +(|has| |#2| (-1127)) +(((#0=(-52)) . T) (((-2 (|:| -3998 (-1152)) (|:| -2162 #0#))) . T)) (((|#1| |#2|) . T)) -(-1523 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025))) -(((|#1| (-552) (-1055)) . T)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((|#1| (-402 (-552)) (-1055)) . T)) -((($) -1523 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T)) +(-1559 (|has| |#3| (-169)) (|has| |#3| (-828)) (|has| |#3| (-1028))) +(((|#1| (-552) (-1058)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1| (-401 (-552)) (-1058)) . T)) +((($) -1559 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) ((((-552) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#2| (-363)) -(-12 (|has| |#1| (-363)) (|has| |#2| (-363))) -((((-839)) . T)) -((((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|))) -(-1523 (|has| |#1| (-143)) (|has| |#1| (-363))) -(-1523 (|has| |#1| (-143)) (|has| |#1| (-363))) -(-1523 (|has| |#1| (-143)) (|has| |#1| (-363))) -(((|#1|) . T)) -((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-544))) -((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170)) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544)))) -((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -((((-839)) . T)) -(|has| |#1| (-344)) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((#0=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) #0#) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) +(|has| |#2| (-362)) +(-12 (|has| |#1| (-362)) (|has| |#2| (-362))) +((((-842)) . T)) +((((-1152) |#1|) |has| |#1| (-506 (-1152) |#1|)) ((|#1| |#1|) |has| |#1| (-303 |#1|))) +(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) +(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) +(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) +(((|#1|) . T)) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-544))) +((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-1150 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169)) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544)))) +((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-842)) . T)) +(|has| |#1| (-343)) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((#0=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) #0#) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) (|has| |#1| (-544)) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -((((-839)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-842)) . T)) (((|#1| |#2|) . T)) -(-1523 (|has| |#2| (-446)) (|has| |#2| (-885))) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) -(-1523 (|has| |#1| (-446)) (|has| |#1| (-885))) -((((-402 (-552))) . T) (((-552)) . T)) +(-1559 (|has| |#2| (-445)) (|has| |#2| (-888))) +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +(-1559 (|has| |#1| (-445)) (|has| |#1| (-888))) +((((-401 (-552))) . T) (((-552)) . T)) ((((-552)) . T)) -((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) |has| |#2| (-170)) (($) -1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))) -((($) . T)) -((((-839)) . T)) -(((|#1|) . T)) -((((-846 |#1|)) . T) (($) . T) (((-402 (-552))) . T)) -((((-839)) . T)) -(((|#3| |#3|) -1523 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025))) (($ $) |has| |#3| (-170))) -(|has| |#1| (-998)) -((((-839)) . T)) -(((|#3|) -1523 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025))) (($) |has| |#3| (-170))) -((((-552) (-112)) . T)) -(((|#1|) |has| |#1| (-304 |#1|))) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -((((-1149) $) |has| |#1| (-507 (-1149) $)) (($ $) |has| |#1| (-304 $)) ((|#1| |#1|) |has| |#1| (-304 |#1|)) (((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|))) -((((-1149)) |has| |#1| (-876 (-1149)))) -(-1523 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344))) -((((-383) (-1093)) . T)) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) +((($) . T)) +((((-842)) . T)) +(((|#1|) . T)) +((((-849 |#1|)) . T) (($) . T) (((-401 (-552))) . T)) +((((-842)) . T)) +(((|#3| |#3|) -1559 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1028))) (($ $) |has| |#3| (-169))) +(|has| |#1| (-1001)) +((((-842)) . T)) +(((|#3|) -1559 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1028))) (($) |has| |#3| (-169))) +((((-552) (-111)) . T)) +(((|#1|) |has| |#1| (-303 |#1|))) +(|has| |#1| (-362)) +(|has| |#1| (-362)) +(|has| |#1| (-362)) +((((-1152) $) |has| |#1| (-506 (-1152) $)) (($ $) |has| |#1| (-303 $)) ((|#1| |#1|) |has| |#1| (-303 |#1|)) (((-1152) |#1|) |has| |#1| (-506 (-1152) |#1|))) +((((-1152)) |has| |#1| (-879 (-1152)))) +(-1559 (-12 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343))) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) -((((-383) |#1|) . T)) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-344))) -(|has| |#1| (-1073)) -((((-839)) . T)) -((((-839)) . T)) -((((-886 |#1|)) . T)) -((((-839)) . T) (((-1154)) . T)) -((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) |has| |#2| (-170)) (($) -1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))) -((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) |has| |#1| (-170)) (($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))) +((((-382) |#1|) . T)) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-343))) +(|has| |#1| (-1076)) +((((-842)) . T)) +((((-842)) . T)) +((((-889 |#1|)) . T)) +((((-842)) . T) (((-1157)) . T)) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888)))) (((|#1| |#2|) . T)) ((($) . T)) (((|#1| |#1|) . T)) -(((#0=(-846 |#1|)) |has| #0# (-304 #0#))) +(((#0=(-849 |#1|)) |has| #0# (-303 #0#))) (((|#1| |#2|) . T)) -(-1523 (|has| |#2| (-773)) (|has| |#2| (-825))) -(-1523 (|has| |#2| (-773)) (|has| |#2| (-825))) -(-12 (|has| |#1| (-773)) (|has| |#2| (-773))) +(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) +(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) +(-12 (|has| |#1| (-776)) (|has| |#2| (-776))) (((|#1|) . T)) -(-12 (|has| |#1| (-773)) (|has| |#2| (-773))) -(-1523 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-12 (|has| |#1| (-776)) (|has| |#2| (-776))) +(-1559 (|has| |#2| (-169)) (|has| |#2| (-828)) (|has| |#2| (-1028))) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -(|has| |#1| (-1171)) -(((#0=(-552) #0#) . T) ((#1=(-402 (-552)) #1#) . T) (($ $) . T)) -((((-402 (-552))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1025))) -(((|#3|) |has| |#3| (-1025))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-552)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-552)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-552)) #0#) . T)) -(|has| |#1| (-358)) -((((-552)) . T) (((-402 (-552))) . T) (($) . T)) -((($ $) . T) ((#0=(-402 (-552)) #0#) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1| |#1|) . T)) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073)))) -(((|#1|) . T) (($) . T) (((-402 (-552))) . T)) -((((-839)) . T)) -((((-839)) . T)) -(((|#1|) . T) (($) . T) (((-402 (-552))) . T)) -(((|#1|) . T) (($) . T) (((-402 (-552))) . T)) +(((|#2|) . T) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +(|has| |#1| (-1174)) +(((#0=(-552) #0#) . T) ((#1=(-401 (-552)) #1#) . T) (($ $) . T)) +((((-401 (-552))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1028))) +(((|#3|) |has| |#3| (-1028))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-401 (-552)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-401 (-552)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-401 (-552)) #0#) . T)) +(|has| |#1| (-357)) +((((-552)) . T) (((-401 (-552))) . T) (($) . T)) +((($ $) . T) ((#0=(-401 (-552)) #0#) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1| |#1|) . T)) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +(((|#1|) . T) (($) . T) (((-401 (-552))) . T)) +((((-842)) . T)) +((((-842)) . T)) +(((|#1|) . T) (($) . T) (((-401 (-552))) . T)) +(((|#1|) . T) (($) . T) (((-401 (-552))) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-552) |#3|) . T)) -((((-839)) . T)) -((((-528)) |has| |#3| (-598 (-528)))) -((((-669 |#3|)) . T) (((-839)) . T)) +((((-842)) . T)) +((((-528)) |has| |#3| (-600 (-528)))) +((((-671 |#3|)) . T) (((-842)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-825)) -(|has| |#1| (-825)) -((($) . T) (((-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T)) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-544))) -((($) . T)) -(((#0=(-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) #0#) |has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))))) -(|has| |#2| (-827)) -((($) . T)) -(((|#2|) |has| |#2| (-1073))) -((((-839)) -1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-597 (-839))) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1073))) (((-1232 |#2|)) . T)) -(|has| |#1| (-827)) -(|has| |#1| (-827)) -((((-1131) (-52)) . T)) -(|has| |#1| (-827)) -((((-839)) . T)) -((((-552)) |has| #0=(-402 |#2|) (-621 (-552))) ((#0#) . T)) -((((-552) (-142)) . T)) -((((-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T) ((|#1| |#2|) . T)) -((((-402 (-552))) . T) (($) . T)) -(((|#1|) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -((((-839)) . T)) -((((-886 |#1|)) . T)) -(|has| |#1| (-358)) -(|has| |#1| (-358)) -(|has| |#1| (-358)) -(|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) -(|has| |#1| (-825)) -(|has| |#1| (-358)) -(|has| |#1| (-825)) +(|has| |#1| (-828)) +(|has| |#1| (-828)) +((($) . T) (((-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-544))) +((($) . T)) +(((#0=(-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) #0#) |has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))))) +(|has| |#2| (-830)) +((($) . T)) +(((|#2|) |has| |#2| (-1076))) +((((-842)) -1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-599 (-842))) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-709)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028)) (|has| |#2| (-1076))) (((-1235 |#2|)) . T)) +(|has| |#1| (-830)) +(|has| |#1| (-830)) +((((-1134) (-52)) . T)) +(|has| |#1| (-830)) +((((-842)) . T)) +((((-552)) |has| #0=(-401 |#2|) (-623 (-552))) ((#0#) . T)) +((((-552) (-141)) . T)) +((((-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T) ((|#1| |#2|) . T)) +((((-401 (-552))) . T) (($) . T)) +(((|#1|) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-842)) . T)) +((((-889 |#1|)) . T)) +(|has| |#1| (-357)) +(|has| |#1| (-357)) +(|has| |#1| (-357)) +(|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) +(|has| |#1| (-828)) +(|has| |#1| (-357)) +(|has| |#1| (-828)) (((|#1|) . T) (($) . T)) -(|has| |#1| (-825)) -((((-1149)) |has| |#1| (-876 (-1149)))) -(((|#1| (-1149)) . T)) -(((|#1| (-1232 |#1|) (-1232 |#1|)) . T)) -((((-839)) . T) (((-1154)) . T)) +(|has| |#1| (-828)) +((((-1152)) |has| |#1| (-879 (-1152)))) +(((|#1| (-1152)) . T)) +(((|#1| (-1235 |#1|) (-1235 |#1|)) . T)) +((((-842)) . T) (((-1157)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -(|has| |#1| (-1073)) -(((|#1| (-1149) (-798 (-1149)) (-524 (-798 (-1149)))) . T)) -((((-402 (-928 |#1|))) . T)) +(|has| |#1| (-1076)) +(((|#1| (-1152) (-801 (-1152)) (-523 (-801 (-1152)))) . T)) +((((-401 (-931 |#1|))) . T)) ((((-528)) . T)) -((((-839)) . T)) +((((-842)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) -((((-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T) ((|#1| |#2|) . T)) +((((-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-170))) -((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) +(((|#1|) |has| |#1| (-169))) +((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (((|#3|) . T)) -(((|#1|) |has| |#1| (-170))) -((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) |has| |#1| (-170)) (($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885)))) -((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) +(((|#1|) |has| |#1| (-169))) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888)))) +((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) (((|#1|) . T)) (((|#1|) . T)) -((((-528)) |has| |#1| (-598 (-528))) (((-868 (-374))) |has| |#1| (-598 (-868 (-374)))) (((-868 (-552))) |has| |#1| (-598 (-868 (-552))))) -((((-839)) . T)) -(((|#2|) . T) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -(|has| |#2| (-825)) -(-12 (|has| |#2| (-229)) (|has| |#2| (-1025))) +((((-528)) |has| |#1| (-600 (-528))) (((-871 (-373))) |has| |#1| (-600 (-871 (-373)))) (((-871 (-552))) |has| |#1| (-600 (-871 (-552))))) +((((-842)) . T)) +(((|#2|) . T) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +(|has| |#2| (-828)) +(-12 (|has| |#2| (-228)) (|has| |#2| (-1028))) (|has| |#1| (-544)) -(|has| |#1| (-1124)) -((((-1131) |#1|) . T)) -(-1523 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) -(((#0=(-402 (-552)) #0#) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) ((|#1| |#1|) . T)) -((((-402 (-552))) |has| |#1| (-1014 (-552))) (((-552)) |has| |#1| (-1014 (-552))) (((-1149)) |has| |#1| (-1014 (-1149))) ((|#1|) . T)) +(|has| |#1| (-1127)) +((((-1134) |#1|) . T)) +(-1559 (|has| |#2| (-169)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +(((#0=(-401 (-552)) #0#) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((|#1| |#1|) . T)) +((((-401 (-552))) |has| |#1| (-1017 (-552))) (((-552)) |has| |#1| (-1017 (-552))) (((-1152)) |has| |#1| (-1017 (-1152))) ((|#1|) . T)) ((((-552) |#2|) . T)) -((((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-552)) |has| |#1| (-1014 (-552))) ((|#1|) . T)) -((((-552)) |has| |#1| (-862 (-552))) (((-374)) |has| |#1| (-862 (-374)))) -((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) ((|#1|) . T)) +((((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-552)) |has| |#1| (-1017 (-552))) ((|#1|) . T)) +((((-552)) |has| |#1| (-865 (-552))) (((-373)) |has| |#1| (-865 (-373)))) +((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((|#1|) . T)) (((|#1|) . T)) -((((-625 |#4|)) . T) (((-839)) . T)) -((((-528)) |has| |#4| (-598 (-528)))) -((((-528)) |has| |#4| (-598 (-528)))) -((((-839)) . T) (((-625 |#4|)) . T)) -((($) |has| |#1| (-825))) +((((-627 |#4|)) . T) (((-842)) . T)) +((((-528)) |has| |#4| (-600 (-528)))) +((((-528)) |has| |#4| (-600 (-528)))) +((((-842)) . T) (((-627 |#4|)) . T)) +((($) |has| |#1| (-828))) (((|#1|) . T)) -((((-625 |#4|)) . T) (((-839)) . T)) -((((-528)) |has| |#4| (-598 (-528)))) +((((-627 |#4|)) . T) (((-842)) . T)) +((((-528)) |has| |#4| (-600 (-528)))) (((|#1|) . T)) (((|#2|) . T)) -((((-1149)) |has| (-402 |#2|) (-876 (-1149)))) -(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((#0=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) #0#) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) +((((-1152)) |has| (-401 |#2|) (-879 (-1152)))) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((#0=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) #0#) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) ((($) . T)) ((($) . T)) (((|#2|) . T)) -((((-839)) -1523 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-597 (-839))) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-363)) (|has| |#3| (-707)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025)) (|has| |#3| (-1073))) (((-1232 |#3|)) . T)) +((((-842)) -1559 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-599 (-842))) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-362)) (|has| |#3| (-709)) (|has| |#3| (-776)) (|has| |#3| (-828)) (|has| |#3| (-1028)) (|has| |#3| (-1076))) (((-1235 |#3|)) . T)) ((((-552) |#2|) . T)) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) -(((|#2| |#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($ $) |has| |#2| (-170))) -((((-839)) . T)) -((((-839)) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T) ((|#2|) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-1131) (-1149) (-552) (-221) (-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -((((-839)) . T)) -((((-552) (-112)) . T)) -(((|#1|) . T)) -((((-839)) . T)) -((((-112)) . T)) -((((-112)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-112)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -((((-839)) . T)) -((((-528)) |has| |#1| (-598 (-528)))) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073)))) -(((|#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($) |has| |#2| (-170))) -(|has| $ (-145)) -((((-402 |#2|)) . T)) -((((-402 (-552))) |has| #0=(-402 |#2|) (-1014 (-402 (-552)))) (((-552)) |has| #0# (-1014 (-552))) ((#0#) . T)) +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +(((|#2| |#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1028))) (($ $) |has| |#2| (-169))) +((((-842)) . T)) +((((-842)) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T) ((|#2|) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-1134) (-1152) (-552) (-220) (-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +((((-842)) . T)) +((((-552) (-111)) . T)) +(((|#1|) . T)) +((((-842)) . T)) +((((-111)) . T)) +((((-111)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-111)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +((((-842)) . T)) +((((-528)) |has| |#1| (-600 (-528)))) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +(((|#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-1028))) (($) |has| |#2| (-169))) +(|has| $ (-144)) +((((-401 |#2|)) . T)) +((((-401 (-552))) |has| #0=(-401 |#2|) (-1017 (-401 (-552)))) (((-552)) |has| #0# (-1017 (-552))) ((#0#) . T)) (((|#2| |#2|) . T)) -(((|#4|) |has| |#4| (-170))) -(|has| |#2| (-143)) -(|has| |#2| (-145)) -(((|#3|) |has| |#3| (-170))) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -(-1523 (|has| |#1| (-143)) (|has| |#1| (-363))) -(|has| |#1| (-145)) -(-1523 (|has| |#1| (-143)) (|has| |#1| (-363))) -(|has| |#1| (-145)) -(-1523 (|has| |#1| (-143)) (|has| |#1| (-363))) -(|has| |#1| (-145)) -(((|#1|) . T)) -(((|#2|) . T)) -(|has| |#2| (-229)) -((((-839)) . T) (((-1154)) . T)) -((((-1149) (-52)) . T)) -((((-839)) . T)) -((((-839)) . T) (((-1154)) . T)) +(((|#4|) |has| |#4| (-169))) +(|has| |#2| (-142)) +(|has| |#2| (-144)) +(((|#3|) |has| |#3| (-169))) +(|has| |#1| (-144)) +(|has| |#1| (-142)) +(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) +(|has| |#1| (-144)) +(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) +(|has| |#1| (-144)) +(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) +(|has| |#1| (-144)) +(((|#1|) . T)) +(((|#2|) . T)) +(|has| |#2| (-228)) +((((-842)) . T) (((-1157)) . T)) +((((-1152) (-52)) . T)) +((((-842)) . T)) +((((-842)) . T) (((-1157)) . T)) (((|#1| |#1|) . T)) -((((-1149)) |has| |#2| (-876 (-1149)))) -((((-552) (-112)) . T)) +((((-1152)) |has| |#2| (-879 (-1152)))) +((((-128)) . T)) +((((-552) (-111)) . T)) (|has| |#1| (-544)) (((|#2|) . T)) (((|#2|) . T)) @@ -1250,2022 +1248,2027 @@ (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) (((|#3|) . T)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(((|#1|) . T)) -((((-839)) . T)) -((((-528)) . T) (((-868 (-552))) . T) (((-374)) . T) (((-221)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-975 |#1|)) . T) ((|#1|) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -((((-402 (-552))) . T) (((-402 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1145 |#1|)) . T)) -((((-552)) . T) (($) . T) (((-402 (-552))) . T)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(((|#1|) . T)) +((((-842)) . T)) +((((-528)) . T) (((-871 (-552))) . T) (((-373)) . T) (((-220)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-978 |#1|)) . T) ((|#1|) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-401 (-552))) . T) (((-401 |#1|)) . T) ((|#1|) . T) (($) . T)) +(((|#1| (-1148 |#1|)) . T)) +((((-552)) . T) (($) . T) (((-401 (-552))) . T)) (((|#3|) . T) (($) . T)) -(|has| |#1| (-827)) +(|has| |#1| (-830)) (((|#2|) . T)) -((((-552)) . T) (($) . T) (((-402 (-552))) . T)) -((((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T)) +((((-552)) . T) (($) . T) (((-401 (-552))) . T)) +((((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) ((((-552) |#2|) . T)) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073)))) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) (((|#2|) . T)) ((((-552) |#3|) . T)) (((|#2|) . T)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -((((-1224 |#1| |#2| |#3|)) |has| |#1| (-358))) -(|has| |#1| (-38 (-402 (-552)))) -((((-839)) . T)) -(|has| |#1| (-1073)) -(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) -(((|#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) -(|has| |#1| (-38 (-402 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +((((-1227 |#1| |#2| |#3|)) |has| |#1| (-357))) +(|has| |#1| (-38 (-401 (-552)))) +((((-842)) . T)) +(|has| |#1| (-1076)) +(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) +(((|#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) +(|has| |#1| (-38 (-401 (-552)))) (((|#2|) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((#0=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) #0#) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((#0=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) #0#) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) (((|#2| |#2|) . T)) -(|has| |#2| (-358)) -(((|#2|) . T) (((-552)) |has| |#2| (-1014 (-552))) (((-402 (-552))) |has| |#2| (-1014 (-402 (-552))))) +(|has| |#2| (-357)) +(((|#2|) . T) (((-552)) |has| |#2| (-1017 (-552))) (((-401 (-552))) |has| |#2| (-1017 (-401 (-552))))) (((|#2|) . T)) -((((-1131) (-52)) . T)) -(((|#2|) |has| |#2| (-170))) +((((-1134) (-52)) . T)) +(((|#2|) |has| |#2| (-169))) ((((-552) |#3|) . T)) -((((-552) (-142)) . T)) -((((-142)) . T)) -((((-839)) . T)) -((((-112)) . T)) -(|has| |#1| (-145)) +((((-552) (-141)) . T)) +((((-141)) . T)) +((((-842)) . T)) +((((-111)) . T)) +(|has| |#1| (-144)) (((|#1|) . T)) -(|has| |#1| (-143)) +(|has| |#1| (-142)) ((($) . T)) (|has| |#1| (-544)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) ((($) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-552)) |has| |#2| (-621 (-552)))) -((((-839)) . T)) -((((-552)) |has| |#1| (-621 (-552))) ((|#1|) . T)) -((((-552)) |has| |#1| (-621 (-552))) ((|#1|) . T)) -((((-552)) |has| |#1| (-621 (-552))) ((|#1|) . T)) -((((-1131) (-52)) . T)) +(((|#2|) . T) (((-552)) |has| |#2| (-623 (-552)))) +((((-842)) . T)) +((((-552)) |has| |#1| (-623 (-552))) ((|#1|) . T)) +((((-552)) |has| |#1| (-623 (-552))) ((|#1|) . T)) +((((-552)) |has| |#1| (-623 (-552))) ((|#1|) . T)) +((((-1134) (-52)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (((|#1| |#2|) . T)) -((((-552) (-142)) . T)) -(((#0=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) #0#) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) -((($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -(|has| |#1| (-827)) -(((|#2| (-751) (-1055)) . T)) +((((-552) (-141)) . T)) +(((#0=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) #0#) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) +((($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(|has| |#1| (-830)) +(((|#2| (-754) (-1058)) . T)) (((|#1| |#2|) . T)) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-544))) -(|has| |#1| (-771)) -(((|#1|) |has| |#1| (-170))) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-544))) +(|has| |#1| (-774)) +(((|#1|) |has| |#1| (-169))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-1523 (|has| |#1| (-145)) (-12 (|has| |#1| (-358)) (|has| |#2| (-145)))) -(-1523 (|has| |#1| (-143)) (-12 (|has| |#1| (-358)) (|has| |#2| (-143)))) +(-1559 (|has| |#1| (-144)) (-12 (|has| |#1| (-357)) (|has| |#2| (-144)))) +(-1559 (|has| |#1| (-142)) (-12 (|has| |#1| (-357)) (|has| |#2| (-142)))) (((|#4|) . T)) -(|has| |#1| (-143)) -((((-1131) |#1|) . T)) -(|has| |#1| (-145)) +(|has| |#1| (-142)) +((((-1134) |#1|) . T)) +(|has| |#1| (-144)) (((|#1|) . T)) ((((-552)) . T)) -((((-839)) . T)) +((((-842)) . T)) (((|#1| |#2|) . T)) -((((-839)) . T)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) +((((-842)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (((|#3|) . T)) -((((-1224 |#1| |#2| |#3|)) |has| |#1| (-358))) -((((-839)) . T)) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) -(((|#1|) . T)) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073)))) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073))) (((-934 |#1|)) . T)) -(|has| |#1| (-825)) -(|has| |#1| (-825)) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(|has| |#2| (-358)) -(((|#1|) |has| |#1| (-170))) -(((|#2|) |has| |#2| (-1025))) -((((-1131) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) -(((|#2| (-869 |#1|)) . T)) -((($) . T)) -((((-383) (-1131)) . T)) -((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -((((-839)) -1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-597 (-839))) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1073))) (((-1232 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -2971 (-1131)) (|:| -4120 #0#))) . T)) -(((|#1|) . T)) -((((-839)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) -((((-142)) . T)) -(|has| |#2| (-143)) -(|has| |#2| (-145)) -(|has| |#1| (-467)) -(-1523 (|has| |#1| (-467)) (|has| |#1| (-707)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025))) -(|has| |#1| (-358)) -((((-839)) . T)) -(|has| |#1| (-38 (-402 (-552)))) -((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-544))) +((((-1227 |#1| |#2| |#3|)) |has| |#1| (-357))) +((((-842)) . T)) +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +(((|#1|) . T)) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076))) (((-937 |#1|)) . T)) +(|has| |#1| (-828)) +(|has| |#1| (-828)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(|has| |#2| (-357)) +(((|#1|) |has| |#1| (-169))) +(((|#2|) |has| |#2| (-1028))) +((((-1134) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) +(((|#2| (-872 |#1|)) . T)) +((($) . T)) +((((-382) (-1134)) . T)) +((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-842)) -1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-599 (-842))) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-709)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028)) (|has| |#2| (-1076))) (((-1235 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -3998 (-1134)) (|:| -2162 #0#))) . T)) +(((|#1|) . T)) +((((-842)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) +((((-141)) . T)) +(|has| |#2| (-142)) +(|has| |#2| (-144)) +(|has| |#1| (-466)) +(-1559 (|has| |#1| (-466)) (|has| |#1| (-709)) (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028))) +(|has| |#1| (-357)) +((((-842)) . T)) +(|has| |#1| (-38 (-401 (-552)))) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-544))) ((($) |has| |#1| (-544))) -(|has| |#1| (-825)) -(|has| |#1| (-825)) -((((-839)) . T)) -((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))) (((-1224 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170)) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544)))) -((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) +(|has| |#1| (-828)) +(|has| |#1| (-828)) +((((-842)) . T)) +((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-1227 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169)) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544)))) +((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) (((|#1| |#2|) . T)) -((((-1149)) |has| |#1| (-876 (-1149)))) -((((-886 |#1|)) . T) (((-402 (-552))) . T) (($) . T)) -((((-839)) . T)) -((((-839)) . T)) -(|has| |#1| (-1073)) -(((|#2| (-476 (-1471 |#1|) (-751)) (-841 |#1|)) . T)) -((((-402 (-552))) . #0=(|has| |#2| (-358))) (($) . #0#)) -(((|#1| (-524 (-1149)) (-1149)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-839)) . T)) -((((-839)) . T)) +((((-1152)) |has| |#1| (-879 (-1152)))) +((((-889 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) +((((-842)) . T)) +((((-842)) . T)) +(|has| |#1| (-1076)) +(((|#2| (-475 (-1383 |#1|) (-754)) (-844 |#1|)) . T)) +((((-401 (-552))) . #0=(|has| |#2| (-357))) (($) . #0#)) +(((|#1| (-523 (-1152)) (-1152)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-842)) . T)) +((((-842)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#2| (-170)) +(|has| |#2| (-169)) (((|#2| |#2|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) +(|has| |#1| (-142)) +(|has| |#1| (-144)) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -((((-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) . T)) -((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358))) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -((((-1149) (-52)) . T)) +(((|#1|) . T) (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) . T)) +((((-1150 |#1| |#2| |#3|)) |has| |#1| (-357))) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-1152) (-52)) . T)) ((($ $) . T)) (((|#1| (-552)) . T)) -((((-886 |#1|)) . T)) -(((|#1|) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-1025))) (($) -1523 (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)))) -(((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552))))) -(|has| |#1| (-827)) -(|has| |#1| (-827)) +((((-889 |#1|)) . T)) +(((|#1|) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-1028))) (($) -1559 (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028)))) +(((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552))))) +(|has| |#1| (-830)) +(|has| |#1| (-830)) ((((-552) |#2|) . T)) ((((-552)) . T)) -((((-1224 |#1| |#2| |#3|)) -12 (|has| (-1224 |#1| |#2| |#3|) (-304 (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358)))) -(|has| |#1| (-827)) -((((-669 |#2|)) . T) (((-839)) . T)) +((((-1227 |#1| |#2| |#3|)) -12 (|has| (-1227 |#1| |#2| |#3|) (-303 (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357)))) +(|has| |#1| (-830)) +((((-671 |#2|)) . T) (((-842)) . T)) (((|#1| |#2|) . T)) -((((-402 (-928 |#1|))) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) -(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) -(((|#1|) |has| |#1| (-170))) -(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) -(((|#3|) -1523 (|has| |#3| (-170)) (|has| |#3| (-358)))) -(|has| |#2| (-827)) -(|has| |#1| (-827)) -(-1523 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-885))) -((($ $) . T) ((#0=(-402 (-552)) #0#) . T)) +((((-401 (-931 |#1|))) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) +(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) +(((|#1|) |has| |#1| (-169))) +(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) +(|has| |#2| (-830)) +(|has| |#1| (-830)) +(((|#3|) -1559 (|has| |#3| (-169)) (|has| |#3| (-357)))) +(-1559 (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-888))) +((($ $) . T) ((#0=(-401 (-552)) #0#) . T)) ((((-552) |#2|) . T)) -(((|#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)))) -(|has| |#1| (-344)) -(((|#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) -((($) . T) (((-402 (-552))) . T)) -((((-552) (-112)) . T)) -(|has| |#1| (-800)) -(|has| |#1| (-800)) -(((|#1|) . T)) -(-1523 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344))) -(|has| |#1| (-825)) -(|has| |#1| (-825)) -(|has| |#1| (-825)) -(((|#1|) . T) (((-402 (-552))) . T) (($) . T)) -(|has| |#1| (-38 (-402 (-552)))) -((((-552)) . T) (($) . T) (((-402 (-552))) . T)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-344))) -(|has| |#1| (-38 (-402 (-552)))) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -((((-1149)) |has| |#1| (-876 (-1149))) (((-1055)) . T)) -(((|#1|) . T)) -(|has| |#1| (-825)) -(((#0=(-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) #0#) |has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))))) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(|has| |#1| (-1073)) -((((-839)) . T) (((-1154)) . T)) +(((|#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)))) +(|has| |#1| (-343)) +(((|#3| |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) +((($) . T) (((-401 (-552))) . T)) +((((-552) (-111)) . T)) +(|has| |#1| (-803)) +(|has| |#1| (-803)) +(((|#1|) . T)) +(-1559 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343))) +(|has| |#1| (-828)) +(|has| |#1| (-828)) +(|has| |#1| (-828)) +(((|#1|) . T) (((-401 (-552))) . T) (($) . T)) +(|has| |#1| (-38 (-401 (-552)))) +((((-552)) . T) (($) . T) (((-401 (-552))) . T)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-343))) +(|has| |#1| (-38 (-401 (-552)))) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-1152)) |has| |#1| (-879 (-1152))) (((-1058)) . T)) +(((|#1|) . T)) +(|has| |#1| (-828)) +(((#0=(-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) #0#) |has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(|has| |#1| (-1076)) +((((-842)) . T) (((-1157)) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) -(((|#1| |#2| |#3| (-236 |#2| |#3|) (-236 |#1| |#3|)) . T)) +(((|#1| |#2| |#3| (-235 |#2| |#3|) (-235 |#1| |#3|)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#1| (-524 |#2|) |#2|) . T)) -((((-839)) . T)) -((((-142)) . T) (((-751)) . T) (((-839)) . T)) -(((|#1| (-751) (-1055)) . T)) +(((|#1| (-523 |#2|) |#2|) . T)) +((((-842)) . T)) +((((-141)) . T) (((-754)) . T) (((-842)) . T)) +(((|#1| (-754) (-1058)) . T)) (((|#3|) . T)) (((|#1|) . T)) -((((-142)) . T)) -(((|#2|) |has| |#2| (-170))) -(-1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1073))) +((((-141)) . T)) +(((|#2|) |has| |#2| (-169))) +(-1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-709)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028)) (|has| |#2| (-1076))) (((|#1|) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(|has| |#3| (-170)) -(((|#4|) |has| |#4| (-358))) -(((|#3|) |has| |#3| (-358))) +(|has| |#1| (-142)) +(|has| |#1| (-144)) +(|has| |#3| (-169)) +(((|#4|) |has| |#4| (-357))) +(((|#3|) |has| |#3| (-357))) (((|#1|) . T)) -(((|#2|) |has| |#1| (-358))) -((((-839)) . T)) +(((|#2|) |has| |#1| (-357))) +((((-842)) . T)) (((|#2|) . T)) -(((|#1| (-1145 |#1|)) . T)) -((((-1055)) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552))))) -((($) . T) ((|#1|) . T) (((-402 (-552))) . T)) +(((|#1| (-1148 |#1|)) . T)) +((((-1058)) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552))))) +((($) . T) ((|#1|) . T) (((-401 (-552))) . T)) (((|#2|) . T)) -((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358))) -((($) |has| |#1| (-825))) -(|has| |#1| (-885)) -((((-839)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) +((((-1150 |#1| |#2| |#3|)) |has| |#1| (-357))) +((($) |has| |#1| (-828))) +(|has| |#1| (-888)) +((((-842)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((#0=(-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) #0#) |has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))))) -(-1523 (|has| |#2| (-446)) (|has| |#2| (-885))) -(-1523 (|has| |#1| (-446)) (|has| |#1| (-885))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((#0=(-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) #0#) |has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))))) +(-1559 (|has| |#2| (-445)) (|has| |#2| (-888))) +(-1559 (|has| |#1| (-445)) (|has| |#1| (-888))) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -1523 (|has| |#3| (-170)) (|has| |#3| (-358)))) -(|has| |#1| (-827)) +(((|#3|) -1559 (|has| |#3| (-169)) (|has| |#3| (-357)))) +(|has| |#1| (-830)) (|has| |#1| (-544)) -((((-567 |#1|)) . T)) +((((-569 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-1523 (-12 (|has| |#1| (-358)) (|has| |#2| (-800))) (-12 (|has| |#1| (-358)) (|has| |#2| (-827)))) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-544))) -((((-886 |#1|)) . T)) -(((|#1| (-489 |#1| |#3|) (-489 |#1| |#2|)) . T)) +(-1559 (-12 (|has| |#1| (-357)) (|has| |#2| (-803))) (-12 (|has| |#1| (-357)) (|has| |#2| (-830)))) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) +((((-889 |#1|)) . T)) +(((|#1| (-488 |#1| |#3|) (-488 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) -(((|#1| (-751)) . T)) -((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-544))) -((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170)) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544)))) -((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -((((-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) . T)) -((((-402 |#2|)) . T) (((-402 (-552))) . T) (($) . T)) -((((-652 |#1|)) . T)) +(((|#1| (-754)) . T)) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-544))) +((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-1150 |#1| |#2| |#3|)) |has| |#1| (-357)) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169)) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544)))) +((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) . T)) +((((-401 |#2|)) . T) (((-401 (-552))) . T) (($) . T)) +((((-654 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-839)) . T) (((-1154)) . T)) +((((-842)) . T) (((-1157)) . T)) ((((-528)) . T)) -((((-839)) . T)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -((((-839)) . T)) -((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) |has| |#2| (-170)) (($) -1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -(((|#2|) . T)) -(-1523 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-363)) (|has| |#3| (-707)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025)) (|has| |#3| (-1073))) -(-1523 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) -((((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-552)) |has| |#1| (-1014 (-552))) ((|#1|) . T)) -(|has| |#1| (-1171)) -(|has| |#1| (-1171)) -(-1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1073))) -(|has| |#1| (-1171)) -(|has| |#1| (-1171)) +((((-842)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-842)) . T)) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +(((|#2|) . T)) +(-1559 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-362)) (|has| |#3| (-709)) (|has| |#3| (-776)) (|has| |#3| (-828)) (|has| |#3| (-1028)) (|has| |#3| (-1076))) +(-1559 (|has| |#2| (-169)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +((((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-552)) |has| |#1| (-1017 (-552))) ((|#1|) . T)) +(|has| |#1| (-1174)) +(|has| |#1| (-1174)) +(-1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-709)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028)) (|has| |#2| (-1076))) +(|has| |#1| (-1174)) +(|has| |#1| (-1174)) (((|#3| |#3|) . T)) -((((-552)) . T) (($) . T) (((-402 (-552))) . T)) -((($) . T) (((-402 (-552))) . T) (((-402 |#1|)) . T) ((|#1|) . T)) -((($ $) . T) ((#0=(-402 (-552)) #0#) . T) ((#1=(-402 |#1|) #1#) . T) ((|#1| |#1|) . T)) +((((-552)) . T) (($) . T) (((-401 (-552))) . T)) +((($) . T) (((-401 (-552))) . T) (((-401 |#1|)) . T) ((|#1|) . T)) +((($ $) . T) ((#0=(-401 (-552)) #0#) . T) ((#1=(-401 |#1|) #1#) . T) ((|#1| |#1|) . T)) (((|#3|) . T)) -(((|#1|) . T) (((-402 (-552))) . T) (($) . T)) -(((|#1|) . T) (((-402 (-552))) . T) (($) . T)) -(((|#1|) . T) (((-402 (-552))) . T) (($) . T)) -((((-1131) (-52)) . T)) -(|has| |#1| (-1073)) -(-1523 (|has| |#2| (-800)) (|has| |#2| (-827))) -(((|#1|) . T)) -(((|#1|) |has| |#1| (-170)) (($) . T)) -((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) (((-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T)) -((($) . T)) -((((-1147 |#1| |#2| |#3|)) -12 (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) -((((-839)) . T)) -(-1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) -((($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) -((((-839)) . T)) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) -(|has| |#2| (-885)) -(|has| |#1| (-358)) -(((|#2|) |has| |#2| (-1073))) -(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) -(-1523 (|has| |#1| (-446)) (|has| |#1| (-885))) +(((|#1|) . T) (((-401 (-552))) . T) (($) . T)) +(((|#1|) . T) (((-401 (-552))) . T) (($) . T)) +(((|#1|) . T) (((-401 (-552))) . T) (($) . T)) +((((-1134) (-52)) . T)) +(|has| |#1| (-1076)) +(-1559 (|has| |#2| (-803)) (|has| |#2| (-830))) +(((|#1|) . T)) +(((|#1|) |has| |#1| (-169)) (($) . T)) +((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) (((-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) +((($) . T)) +((((-1150 |#1| |#2| |#3|)) -12 (|has| (-1150 |#1| |#2| |#3|) (-303 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357)))) +((((-842)) . T)) +(-1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((($) . T)) +(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +((((-842)) . T)) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(|has| |#2| (-888)) +(|has| |#1| (-357)) +(((|#2|) |has| |#2| (-1076))) +(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(-1559 (|has| |#1| (-445)) (|has| |#1| (-888))) ((($) . T) ((|#2|) . T)) -((((-528)) . T) (((-402 (-1145 (-552)))) . T) (((-221)) . T) (((-374)) . T)) -((((-374)) . T) (((-221)) . T) (((-839)) . T)) -(|has| |#1| (-885)) -(|has| |#1| (-885)) -(|has| |#1| (-885)) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-885))) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) +((((-528)) . T) (((-401 (-1148 (-552)))) . T) (((-220)) . T) (((-373)) . T)) +((((-373)) . T) (((-220)) . T) (((-842)) . T)) +(|has| |#1| (-888)) +(|has| |#1| (-888)) +(|has| |#1| (-888)) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-888))) +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) ((($ $) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) ((($ $) . T)) -((((-552) (-112)) . T)) +((((-552) (-111)) . T)) ((($) . T)) (((|#1|) . T)) ((((-552)) . T)) -((((-112)) . T)) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) -(|has| |#1| (-38 (-402 (-552)))) +((((-111)) . T)) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) +(|has| |#1| (-38 (-401 (-552)))) (((|#1| (-552)) . T)) ((($) . T)) -(((|#2|) . T) (((-552)) |has| |#2| (-621 (-552)))) -((((-552)) |has| |#1| (-621 (-552))) ((|#1|) . T)) +(((|#2|) . T) (((-552)) |has| |#2| (-623 (-552)))) +((((-552)) |has| |#1| (-623 (-552))) ((|#1|) . T)) (((|#1|) . T)) ((((-552)) . T)) (((|#1| |#2|) . T)) -((((-1149)) |has| |#1| (-1025))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) +((((-1152)) |has| |#1| (-1028))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) (((|#1|) . T)) -((((-839)) . T)) +((((-842)) . T)) (((|#1| (-552)) . T)) -(((|#1| (-1224 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -(((|#1| (-402 (-552))) . T)) -(((|#1| (-1196 |#1| |#2| |#3|)) . T)) -(((|#1| (-751)) . T)) -(((|#1|) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -((((-839)) . T)) -(|has| |#1| (-1073)) -((((-1131) |#1|) . T)) -((($) . T)) -(|has| |#2| (-145)) -(|has| |#2| (-143)) -(((|#1| (-524 (-798 (-1149))) (-798 (-1149))) . T)) -((((-839)) . T)) -((((-1218 |#1| |#2| |#3| |#4|)) . T)) -((((-1218 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1025))) -((((-552) (-112)) . T)) -((((-839)) |has| |#1| (-1073))) -(|has| |#2| (-170)) +(((|#1| (-1227 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +(((|#1| (-401 (-552))) . T)) +(((|#1| (-1199 |#1| |#2| |#3|)) . T)) +(((|#1| (-754)) . T)) +(((|#1|) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-842)) . T)) +(|has| |#1| (-1076)) +((((-1134) |#1|) . T)) +((($) . T)) +(|has| |#2| (-144)) +(|has| |#2| (-142)) +(((|#1| (-523 (-801 (-1152))) (-801 (-1152))) . T)) +((((-842)) . T)) +((((-1221 |#1| |#2| |#3| |#4|)) . T)) +((((-1221 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1028))) +((((-552) (-111)) . T)) +((((-842)) |has| |#1| (-1076))) +(|has| |#2| (-169)) ((((-552)) . T)) -(|has| |#2| (-825)) +(|has| |#2| (-828)) (((|#1|) . T)) ((((-552)) . T)) -((((-839)) . T)) -(-1523 (|has| |#1| (-143)) (|has| |#1| (-344))) -(|has| |#1| (-145)) -((((-839)) . T)) +((((-842)) . T)) +(-1559 (|has| |#1| (-142)) (|has| |#1| (-343))) +(|has| |#1| (-144)) +((((-842)) . T)) (((|#3|) . T)) -(-1523 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025))) -((((-839)) . T)) -((((-1217 |#2| |#3| |#4|)) . T) (((-1218 |#1| |#2| |#3| |#4|)) . T)) -((((-839)) . T)) -((((-48)) -12 (|has| |#1| (-544)) (|has| |#1| (-1014 (-552)))) (((-596 $)) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) -1523 (-12 (|has| |#1| (-544)) (|has| |#1| (-1014 (-552)))) (|has| |#1| (-1014 (-402 (-552))))) (((-402 (-928 |#1|))) |has| |#1| (-544)) (((-928 |#1|)) |has| |#1| (-1025)) (((-1149)) . T)) +(-1559 (|has| |#3| (-169)) (|has| |#3| (-828)) (|has| |#3| (-1028))) +((((-842)) . T)) +((((-1220 |#2| |#3| |#4|)) . T) (((-1221 |#1| |#2| |#3| |#4|)) . T)) +((((-842)) . T)) +((((-48)) -12 (|has| |#1| (-544)) (|has| |#1| (-1017 (-552)))) (((-598 $)) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) -1559 (-12 (|has| |#1| (-544)) (|has| |#1| (-1017 (-552)))) (|has| |#1| (-1017 (-401 (-552))))) (((-401 (-931 |#1|))) |has| |#1| (-544)) (((-931 |#1|)) |has| |#1| (-1028)) (((-1152)) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-751)) . T)) -((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-304 |#1|))) -((((-1218 |#1| |#2| |#3| |#4|)) . T)) -((((-552)) |has| |#1| (-862 (-552))) (((-374)) |has| |#1| (-862 (-374)))) +(((|#1| (-754)) . T)) +((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-303 |#1|))) +((((-1221 |#1| |#2| |#3| |#4|)) . T)) +((((-552)) |has| |#1| (-865 (-552))) (((-373)) |has| |#1| (-865 (-373)))) (((|#1|) . T)) (|has| |#1| (-544)) (((|#1|) . T)) -((((-839)) . T)) -(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) -(((|#1|) |has| |#1| (-170))) -((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) -(((|#1|) . T)) -(((|#3|) |has| |#3| (-1073))) -(((|#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-358)))) -((((-1217 |#2| |#3| |#4|)) . T)) -((((-112)) . T)) -(|has| |#1| (-800)) -(|has| |#1| (-800)) -(((|#1| (-552) (-1055)) . T)) -((($) |has| |#1| (-304 $)) ((|#1|) |has| |#1| (-304 |#1|))) -(|has| |#1| (-825)) -(|has| |#1| (-825)) -(((|#1| (-552) (-1055)) . T)) -(-1523 (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025))) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -(((|#1| (-402 (-552)) (-1055)) . T)) -(((|#1| (-751) (-1055)) . T)) -(|has| |#1| (-827)) -(((#0=(-886 |#1|) #0#) . T) (($ $) . T) ((#1=(-402 (-552)) #1#) . T)) -(|has| |#2| (-143)) -(|has| |#2| (-145)) -(((|#2|) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(|has| |#1| (-1073)) -((((-886 |#1|)) . T) (($) . T) (((-402 (-552))) . T)) -(|has| |#1| (-1073)) -(((|#1|) . T)) -(|has| |#1| (-1073)) -((((-552)) -12 (|has| |#1| (-358)) (|has| |#2| (-621 (-552)))) ((|#2|) |has| |#1| (-358))) -(-1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1073))) -(((|#2|) |has| |#2| (-170))) -(((|#1|) |has| |#1| (-170))) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -((((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T)) -((((-839)) . T)) -(|has| |#3| (-825)) -((((-839)) . T)) -((((-1217 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) . T)) -((((-839)) . T)) -(((|#1| |#1|) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-1025)))) +((((-842)) . T)) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) +(((|#1|) |has| |#1| (-169))) +((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) +(((|#1|) . T)) +(((|#3|) |has| |#3| (-1076))) +(((|#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-357)))) +((((-1220 |#2| |#3| |#4|)) . T)) +((((-111)) . T)) +(|has| |#1| (-803)) +(|has| |#1| (-803)) +(((|#1| (-552) (-1058)) . T)) +((($) |has| |#1| (-303 $)) ((|#1|) |has| |#1| (-303 |#1|))) +(|has| |#1| (-828)) +(|has| |#1| (-828)) +(((|#1| (-552) (-1058)) . T)) +(-1559 (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028))) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +(((|#1| (-401 (-552)) (-1058)) . T)) +(((|#1| (-754) (-1058)) . T)) +(|has| |#1| (-830)) +(((#0=(-889 |#1|) #0#) . T) (($ $) . T) ((#1=(-401 (-552)) #1#) . T)) +(|has| |#2| (-142)) +(|has| |#2| (-144)) +(((|#2|) . T)) +(|has| |#1| (-142)) +(|has| |#1| (-144)) +(|has| |#1| (-1076)) +((((-889 |#1|)) . T) (($) . T) (((-401 (-552))) . T)) +(|has| |#1| (-1076)) +(((|#1|) . T)) +(|has| |#1| (-1076)) +((((-552)) -12 (|has| |#1| (-357)) (|has| |#2| (-623 (-552)))) ((|#2|) |has| |#1| (-357))) +(-1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-709)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028)) (|has| |#2| (-1076))) +(((|#2|) |has| |#2| (-169))) +(((|#1|) |has| |#1| (-169))) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) +((((-842)) . T)) +(|has| |#3| (-828)) +((((-842)) . T)) +((((-1220 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) . T)) +((((-842)) . T)) +(((|#1| |#1|) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-1028)))) (((|#1|) . T)) ((((-552)) . T)) ((((-552)) . T)) -(((|#1|) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-1025)))) -(((|#2|) |has| |#2| (-358))) -((($) . T) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-358))) -(|has| |#1| (-827)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -(((|#2|) . T)) -((((-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) |has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))))) -(-1523 (|has| |#1| (-446)) (|has| |#1| (-885))) -(((|#2|) . T) (((-552)) |has| |#2| (-621 (-552)))) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-528)) . T) (((-552)) . T) (((-868 (-552))) . T) (((-374)) . T) (((-221)) . T)) -((((-839)) . T)) -(|has| |#1| (-38 (-402 (-552)))) -((((-552)) . T) (($) . T) (((-402 (-552))) . T)) -((((-552)) . T) (($) . T) (((-402 (-552))) . T)) -(|has| |#1| (-229)) +(((|#1|) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-1028)))) +(((|#2|) |has| |#2| (-357))) +((($) . T) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-357))) +(|has| |#1| (-830)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +(((|#2|) . T)) +((((-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) |has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))))) +(-1559 (|has| |#1| (-445)) (|has| |#1| (-888))) +(((|#2|) . T) (((-552)) |has| |#2| (-623 (-552)))) +((((-842)) . T)) +((((-842)) . T)) +((((-528)) . T) (((-552)) . T) (((-871 (-552))) . T) (((-373)) . T) (((-220)) . T)) +((((-842)) . T)) +(|has| |#1| (-38 (-401 (-552)))) +((((-552)) . T) (($) . T) (((-401 (-552))) . T)) +((((-552)) . T) (($) . T) (((-401 (-552))) . T)) +(|has| |#1| (-228)) (((|#1|) . T)) (((|#1| (-552)) . T)) -(|has| |#1| (-825)) -(((|#1| (-1147 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-828)) +(((|#1| (-1150 |#1| |#2| |#3|)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-402 (-552))) . T)) -(((|#1| (-1140 |#1| |#2| |#3|)) . T)) -(((|#1| (-751)) . T)) +(((|#1| (-401 (-552))) . T)) +(((|#1| (-1143 |#1| |#2| |#3|)) . T)) +(((|#1| (-754)) . T)) (((|#1|) . T)) -(((|#1| |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) . T)) +(((|#1| |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(|has| |#1| (-145)) -(|has| |#1| (-143)) +(|has| |#1| (-142)) +(|has| |#1| (-144)) +(|has| |#1| (-144)) +(|has| |#1| (-142)) (((|#1| |#2|) . T)) -((((-129)) . T)) -((((-142)) . T)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(((|#1|) . T)) -(-1523 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) -(((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) . T) (($ $) . T)) -((((-839)) . T)) -(((|#1|) . T) (((-402 (-552))) . T) (($) . T)) -((($) . T) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073)))) -(|has| |#1| (-358)) -(|has| |#1| (-358)) -(|has| (-402 |#2|) (-229)) -(|has| |#1| (-885)) -(((|#2|) |has| |#2| (-1025))) -(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) -(|has| |#1| (-358)) -(((|#1|) |has| |#1| (-170))) +((((-141)) . T)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(((|#1|) . T)) +(-1559 (|has| |#2| (-169)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +(((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) . T) (($ $) . T)) +((((-842)) . T)) +(((|#1|) . T) (((-401 (-552))) . T) (($) . T)) +((($) . T) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +(|has| |#1| (-357)) +(|has| |#1| (-357)) +(|has| (-401 |#2|) (-228)) +(|has| |#1| (-888)) +(((|#2|) |has| |#2| (-1028))) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) +(|has| |#1| (-357)) +(((|#1|) |has| |#1| (-169))) (((|#1| |#1|) . T)) -((((-846 |#1|)) . T)) -((((-839)) . T)) +((((-849 |#1|)) . T)) +((((-842)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1073))) -(|has| |#2| (-827)) +(((|#2|) |has| |#2| (-1076))) +(|has| |#2| (-830)) (((|#1|) . T)) -((((-402 (-552))) . T) (((-552)) . T) (((-596 $)) . T)) +((((-401 (-552))) . T) (((-552)) . T) (((-598 $)) . T)) (((|#1|) . T)) -((((-839)) . T)) +((((-842)) . T)) ((($) . T)) -(|has| |#1| (-827)) -((((-839)) . T)) -(((|#1| (-524 |#2|) |#2|) . T)) -(((|#1| (-552) (-1055)) . T)) -((((-886 |#1|)) . T)) -((((-839)) . T)) +(|has| |#1| (-830)) +((((-842)) . T)) +(((|#1| (-523 |#2|) |#2|) . T)) +(((|#1| (-552) (-1058)) . T)) +((((-889 |#1|)) . T)) +((((-842)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-402 (-552)) (-1055)) . T)) -(((|#1| (-751) (-1055)) . T)) -(((#0=(-402 |#2|) #0#) . T) ((#1=(-402 (-552)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-552)) -1523 (|has| (-402 (-552)) (-1014 (-552))) (|has| |#1| (-1014 (-552)))) (((-402 (-552))) . T)) -(((|#1| (-586 |#1| |#3|) (-586 |#1| |#2|)) . T)) -(((|#1|) |has| |#1| (-170))) +(((|#1| (-401 (-552)) (-1058)) . T)) +(((|#1| (-754) (-1058)) . T)) +(((#0=(-401 |#2|) #0#) . T) ((#1=(-401 (-552)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-552)) -1559 (|has| (-401 (-552)) (-1017 (-552))) (|has| |#1| (-1017 (-552)))) (((-401 (-552))) . T)) +(((|#1| (-588 |#1| |#3|) (-588 |#1| |#2|)) . T)) +(((|#1|) |has| |#1| (-169))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-402 |#2|)) . T) (((-402 (-552))) . T) (($) . T)) -(|has| |#2| (-229)) -(((|#2| (-524 (-841 |#1|)) (-841 |#1|)) . T)) -((((-839)) . T)) -((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -((((-839)) . T)) +((((-401 |#2|)) . T) (((-401 (-552))) . T) (($) . T)) +(|has| |#2| (-228)) +(((|#2| (-523 (-844 |#1|)) (-844 |#1|)) . T)) +((((-842)) . T)) +((($) |has| |#1| (-544)) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-842)) . T)) (((|#1| |#3|) . T)) -((((-839)) . T)) -(((|#1|) |has| |#1| (-170))) -((((-679)) . T)) -((((-679)) . T)) -(((|#2|) |has| |#2| (-170))) -(|has| |#2| (-825)) -((((-112)) |has| |#1| (-1073)) (((-839)) -1523 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-467)) (|has| |#1| (-707)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)) (|has| |#1| (-1085)) (|has| |#1| (-1073)))) +((((-842)) . T)) +(((|#1|) |has| |#1| (-169))) +((((-681)) . T)) +((((-681)) . T)) +(((|#2|) |has| |#2| (-169))) +(|has| |#2| (-828)) +((((-111)) |has| |#1| (-1076)) (((-842)) -1559 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-466)) (|has| |#1| (-709)) (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028)) (|has| |#1| (-1088)) (|has| |#1| (-1076)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) . T)) -((((-839)) . T)) +((((-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) . T)) +((((-842)) . T)) ((((-552) |#1|) . T)) -((((-679)) . T) (((-402 (-552))) . T) (((-552)) . T)) -(((|#1| |#1|) |has| |#1| (-170))) -(((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) -((((-374)) . T)) -((((-679)) . T)) -((((-402 (-552))) . #0=(|has| |#2| (-358))) (($) . #0#)) -(((|#1|) |has| |#1| (-170))) -((((-402 (-928 |#1|))) . T)) +((((-842)) . T)) +((((-681)) . T) (((-401 (-552))) . T) (((-552)) . T)) +(((|#1| |#1|) |has| |#1| (-169))) +(((|#2|) . T)) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) +((((-373)) . T)) +((((-681)) . T)) +((((-401 (-552))) . #0=(|has| |#2| (-357))) (($) . #0#)) +(((|#1|) |has| |#1| (-169))) +((((-401 (-931 |#1|))) . T)) (((|#2| |#2|) . T)) -(-1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) -(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) -(((|#2|) . T)) -(|has| |#2| (-827)) -(((|#3|) |has| |#3| (-1025))) -(|has| |#2| (-885)) -(|has| |#1| (-885)) -(|has| |#1| (-358)) -(|has| |#1| (-827)) -((((-1149)) |has| |#2| (-876 (-1149)))) -((((-839)) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -((((-402 (-552))) . T) (($) . T)) -(|has| |#1| (-467)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -(|has| |#1| (-358)) -(-1523 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-467)) (|has| |#1| (-544)) (|has| |#1| (-1025)) (|has| |#1| (-1085))) -(|has| |#1| (-38 (-402 (-552)))) -((((-116 |#1|)) . T)) -((((-116 |#1|)) . T)) -(|has| |#1| (-344)) -((((-142)) . T)) -(|has| |#1| (-38 (-402 (-552)))) -((($) . T)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(((|#2|) . T) (((-839)) . T)) -(((|#2|) . T) (((-839)) . T)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-827)) -((((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T)) +(-1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) +(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(((|#2|) . T)) +(|has| |#2| (-830)) +(|has| |#2| (-888)) +(|has| |#1| (-888)) +(|has| |#1| (-357)) +(|has| |#1| (-830)) +(((|#3|) |has| |#3| (-1028))) +((((-1152)) |has| |#2| (-879 (-1152)))) +((((-842)) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-401 (-552))) . T) (($) . T)) +(|has| |#1| (-466)) +(|has| |#1| (-362)) +(|has| |#1| (-362)) +(|has| |#1| (-362)) +(|has| |#1| (-357)) +(-1559 (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-466)) (|has| |#1| (-544)) (|has| |#1| (-1028)) (|has| |#1| (-1088))) +(|has| |#1| (-38 (-401 (-552)))) +((((-115 |#1|)) . T)) +((((-115 |#1|)) . T)) +(|has| |#1| (-343)) +((((-141)) . T)) +(|has| |#1| (-38 (-401 (-552)))) +((($) . T)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(((|#2|) . T) (((-842)) . T)) +(((|#2|) . T) (((-842)) . T)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-830)) +((((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) ((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) +(|has| |#1| (-144)) +(|has| |#1| (-142)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) ((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (((|#2|) . T)) (((|#3|) . T)) -((((-116 |#1|)) . T)) -(|has| |#1| (-363)) -(|has| |#1| (-827)) -(((|#2|) . T) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-552)) |has| |#1| (-1014 (-552))) ((|#1|) . T)) -((((-116 |#1|)) . T)) -(((|#2|) |has| |#2| (-170))) +((((-115 |#1|)) . T)) +(|has| |#1| (-362)) +(|has| |#1| (-830)) +(((|#2|) . T) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-552)) |has| |#1| (-1017 (-552))) ((|#1|) . T)) +((((-115 |#1|)) . T)) +(((|#2|) |has| |#2| (-169))) (((|#1|) . T)) ((((-552)) . T)) -(|has| |#1| (-358)) -(|has| |#1| (-358)) -((((-839)) . T)) -((((-839)) . T)) -((((-528)) |has| |#1| (-598 (-528))) (((-868 (-552))) |has| |#1| (-598 (-868 (-552)))) (((-868 (-374))) |has| |#1| (-598 (-868 (-374)))) (((-374)) . #0=(|has| |#1| (-998))) (((-221)) . #0#)) -(((|#1|) |has| |#1| (-358))) -((((-839)) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -((($ $) . T) (((-596 $) $) . T)) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-544))) -((($) . T) (((-1218 |#1| |#2| |#3| |#4|)) . T) (((-402 (-552))) . T)) -((($) -1523 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-544)) (|has| |#1| (-1025))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-544))) -(|has| |#1| (-358)) -(|has| |#1| (-358)) -(|has| |#1| (-358)) -((((-374)) . T) (((-552)) . T) (((-402 (-552))) . T)) -((((-625 (-760 |#1| (-841 |#2|)))) . T) (((-839)) . T)) -((((-528)) |has| (-760 |#1| (-841 |#2|)) (-598 (-528)))) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -((((-374)) . T)) -(((|#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) -((((-839)) . T)) -(-1523 (|has| |#2| (-446)) (|has| |#2| (-885))) -(((|#1|) . T)) -(|has| |#1| (-827)) -(|has| |#1| (-827)) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073)))) -((((-528)) |has| |#1| (-598 (-528)))) -(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) -(|has| |#1| (-1073)) -((((-839)) . T)) -((((-1149)) . T) (((-839)) . T) (((-1154)) . T)) -((((-402 (-552))) . T) (((-552)) . T) (((-596 $)) . T)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) +(|has| |#1| (-357)) +(|has| |#1| (-357)) +((((-842)) . T)) +((((-842)) . T)) +((((-528)) |has| |#1| (-600 (-528))) (((-871 (-552))) |has| |#1| (-600 (-871 (-552)))) (((-871 (-373))) |has| |#1| (-600 (-871 (-373)))) (((-373)) . #0=(|has| |#1| (-1001))) (((-220)) . #0#)) +(((|#1|) |has| |#1| (-357))) +((((-842)) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((($ $) . T) (((-598 $) $) . T)) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) +((($) . T) (((-1221 |#1| |#2| |#3| |#4|)) . T) (((-401 (-552))) . T)) +((($) -1559 (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-544)) (|has| |#1| (-1028))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-544))) +(|has| |#1| (-357)) +(|has| |#1| (-357)) +(|has| |#1| (-357)) +((((-373)) . T) (((-552)) . T) (((-401 (-552))) . T)) +((((-627 (-763 |#1| (-844 |#2|)))) . T) (((-842)) . T)) +((((-528)) |has| (-763 |#1| (-844 |#2|)) (-600 (-528)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-373)) . T)) +(((|#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) +((((-842)) . T)) +(-1559 (|has| |#2| (-445)) (|has| |#2| (-888))) +(((|#1|) . T)) +(|has| |#1| (-830)) +(|has| |#1| (-830)) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +((((-528)) |has| |#1| (-600 (-528)))) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) +(|has| |#1| (-1076)) +((((-842)) . T)) +((((-1152)) . T) (((-842)) . T) (((-1157)) . T)) +((((-401 (-552))) . T) (((-552)) . T) (((-598 $)) . T)) +(|has| |#1| (-142)) +(|has| |#1| (-144)) ((((-552)) . T)) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-544))) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-544))) -(((#0=(-1217 |#2| |#3| |#4|)) . T) (((-402 (-552))) |has| #0# (-38 (-402 (-552)))) (($) . T)) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) +(((#0=(-1220 |#2| |#3| |#4|)) . T) (((-401 (-552))) |has| #0# (-38 (-401 (-552)))) (($) . T)) ((((-552)) . T)) -(|has| |#1| (-358)) -(-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-145)) (|has| |#1| (-358))) (|has| |#1| (-145))) -(-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-143)) (|has| |#1| (-358))) (|has| |#1| (-143))) -(|has| |#1| (-358)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -(|has| |#1| (-229)) -(|has| |#1| (-358)) +(|has| |#1| (-357)) +(-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-144)) (|has| |#1| (-357))) (|has| |#1| (-144))) +(-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-142)) (|has| |#1| (-357))) (|has| |#1| (-142))) +(|has| |#1| (-357)) +(|has| |#1| (-142)) +(|has| |#1| (-144)) +(|has| |#1| (-144)) +(|has| |#1| (-142)) +(|has| |#1| (-228)) +(|has| |#1| (-357)) (((|#3|) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-552)) |has| |#2| (-621 (-552))) ((|#2|) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-552)) |has| |#2| (-623 (-552))) ((|#2|) . T)) (((|#2|) . T)) -(|has| |#1| (-1073)) +(|has| |#1| (-1076)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-552)) |has| |#1| (-621 (-552)))) -(((|#3|) |has| |#3| (-170))) -(-1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1073))) -((((-839)) . T)) +(((|#1|) . T) (((-552)) |has| |#1| (-623 (-552)))) +(((|#3|) |has| |#3| (-169))) +(-1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-709)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028)) (|has| |#2| (-1076))) +((((-842)) . T)) ((((-552)) . T)) -(((|#1| $) |has| |#1| (-281 |#1| |#1|))) -((((-402 (-552))) . T) (($) . T) (((-402 |#1|)) . T) ((|#1|) . T)) -((((-839)) . T)) +(((|#1| $) |has| |#1| (-280 |#1| |#1|))) +((((-401 (-552))) . T) (($) . T) (((-401 |#1|)) . T) ((|#1|) . T)) +((((-842)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -1523 (|has| |#1| (-285)) (|has| |#1| (-358))) ((#0=(-402 (-552)) #0#) |has| |#1| (-358))) -((((-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) . T)) +(((|#1| |#1|) . T) (($ $) -1559 (|has| |#1| (-284)) (|has| |#1| (-357))) ((#0=(-401 (-552)) #0#) |has| |#1| (-357))) +((((-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) . T)) ((($) . T)) ((((-552) |#1|) . T)) -((((-1149)) |has| (-402 |#2|) (-876 (-1149)))) -(((|#1|) . T) (($) -1523 (|has| |#1| (-285)) (|has| |#1| (-358))) (((-402 (-552))) |has| |#1| (-358))) -((((-528)) |has| |#2| (-598 (-528)))) -((((-669 |#2|)) . T) (((-839)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) -(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) -((((-846 |#1|)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(-1523 (|has| |#4| (-773)) (|has| |#4| (-825))) -(-1523 (|has| |#3| (-773)) (|has| |#3| (-825))) -((((-839)) . T)) -((((-839)) . T)) -(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) -(((|#2|) |has| |#2| (-1025))) -(((|#1|) . T)) -((((-402 |#2|)) . T)) -(((|#1|) . T)) -(((|#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) +((((-1152)) |has| (-401 |#2|) (-879 (-1152)))) +(((|#1|) . T) (($) -1559 (|has| |#1| (-284)) (|has| |#1| (-357))) (((-401 (-552))) |has| |#1| (-357))) +((((-528)) |has| |#2| (-600 (-528)))) +((((-671 |#2|)) . T) (((-842)) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) +(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) +((((-849 |#1|)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(-1559 (|has| |#4| (-776)) (|has| |#4| (-828))) +(-1559 (|has| |#3| (-776)) (|has| |#3| (-828))) +((((-842)) . T)) +((((-842)) . T)) +(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) +(((|#2|) |has| |#2| (-1028))) +(((|#1|) . T)) +((((-401 |#2|)) . T)) +(((|#1|) . T)) +(((|#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) ((((-552) |#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-552)) . T) (($) . T) (((-402 (-552))) . T)) -((((-402 (-552))) . T) (($) . T)) -((((-402 (-552))) . T) (($) . T)) -((((-402 (-552))) . T) (($) . T)) -(-1523 (|has| |#1| (-446)) (|has| |#1| (-1190))) +((((-552)) . T) (($) . T) (((-401 (-552))) . T)) +((((-401 (-552))) . T) (($) . T)) +((((-401 (-552))) . T) (($) . T)) +((((-401 (-552))) . T) (($) . T)) +(-1559 (|has| |#1| (-445)) (|has| |#1| (-1193))) ((($) . T)) -((((-402 (-552))) |has| #0=(-402 |#2|) (-1014 (-402 (-552)))) (((-552)) |has| #0# (-1014 (-552))) ((#0#) . T)) -(((|#2|) . T) (((-552)) |has| |#2| (-621 (-552)))) -(((|#1| (-751)) . T)) -(|has| |#1| (-827)) -(((|#1|) . T) (((-552)) |has| |#1| (-621 (-552)))) -((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) (((-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T)) +((((-401 (-552))) |has| #0=(-401 |#2|) (-1017 (-401 (-552)))) (((-552)) |has| #0# (-1017 (-552))) ((#0#) . T)) +(((|#2|) . T) (((-552)) |has| |#2| (-623 (-552)))) +(((|#1| (-754)) . T)) +(|has| |#1| (-830)) +(((|#1|) . T) (((-552)) |has| |#1| (-623 (-552)))) +((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) (((-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) ((((-552)) . T)) -(|has| |#1| (-38 (-402 (-552)))) -((((-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) |has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))))) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(|has| |#1| (-825)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-344)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +((((-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) |has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(|has| |#1| (-828)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-362)) +(|has| |#1| (-362)) +(|has| |#1| (-362)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-343)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +((((-1134)) . T) (((-1152)) . T) (((-220)) . T) (((-552)) . T)) (((|#1| |#2|) . T)) -((((-142)) . T)) -((((-760 |#1| (-841 |#2|))) . T)) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073)))) -(|has| |#1| (-1171)) -((((-839)) . T)) -(((|#1|) . T)) -(-1523 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-363)) (|has| |#3| (-707)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025)) (|has| |#3| (-1073))) -((((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|))) -(((|#2|) . T)) -((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552))))) -((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -((((-886 |#1|)) . T)) -((($) . T)) -((((-402 (-928 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -((((-528)) |has| |#4| (-598 (-528)))) -((((-839)) . T) (((-625 |#4|)) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -(((|#1|) . T)) -(|has| |#1| (-825)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) |has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))))) -(|has| |#1| (-1073)) -(|has| |#1| (-358)) -(|has| |#1| (-827)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((($) . T) (((-402 (-552))) . T)) -((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170))) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-145)) (|has| |#1| (-358))) (|has| |#1| (-145))) -(-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-143)) (|has| |#1| (-358))) (|has| |#1| (-143))) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073)))) -((((-1224 |#1| |#2| |#3|)) |has| |#1| (-358))) -(|has| |#1| (-825)) +((((-141)) . T)) +((((-763 |#1| (-844 |#2|))) . T)) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +(|has| |#1| (-1174)) +((((-842)) . T)) +(((|#1|) . T)) +(-1559 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-362)) (|has| |#3| (-709)) (|has| |#3| (-776)) (|has| |#3| (-828)) (|has| |#3| (-1028)) (|has| |#3| (-1076))) +((((-1152) |#1|) |has| |#1| (-506 (-1152) |#1|))) +(((|#2|) . T)) +((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) +((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-889 |#1|)) . T)) +((($) . T)) +((((-401 (-931 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-528)) |has| |#4| (-600 (-528)))) +((((-842)) . T) (((-627 |#4|)) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +(((|#1|) . T)) +(|has| |#1| (-828)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) |has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))))) +(|has| |#1| (-1076)) +(|has| |#1| (-357)) +(|has| |#1| (-830)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((($) . T) (((-401 (-552))) . T)) +((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#1|) |has| |#1| (-169))) +(|has| |#1| (-142)) +(|has| |#1| (-144)) +(-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-144)) (|has| |#1| (-357))) (|has| |#1| (-144))) +(-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-142)) (|has| |#1| (-357))) (|has| |#1| (-142))) +(|has| |#1| (-142)) +(|has| |#1| (-144)) +(|has| |#1| (-144)) +(|has| |#1| (-142)) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +((((-1227 |#1| |#2| |#3|)) |has| |#1| (-357))) +(|has| |#1| (-828)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-552)) |has| |#1| (-621 (-552)))) -((((-552)) |has| |#1| (-621 (-552))) ((|#1|) . T)) -((((-886 |#1|)) . T) (((-402 (-552))) . T) (($) . T)) -(|has| |#1| (-1073)) -(((|#1|) . T) (($) . T) (((-402 (-552))) . T) (((-552)) . T)) -(|has| |#2| (-143)) -(|has| |#2| (-145)) -((((-886 |#1|)) . T) (((-402 (-552))) . T) (($) . T)) -(|has| |#1| (-1073)) -(((|#2|) |has| |#2| (-170))) +(((|#1|) . T) (((-552)) |has| |#1| (-623 (-552)))) +((((-552)) |has| |#1| (-623 (-552))) ((|#1|) . T)) +((((-889 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) +(|has| |#1| (-1076)) +(((|#1|) . T) (($) . T) (((-401 (-552))) . T) (((-552)) . T)) +(|has| |#2| (-142)) +(|has| |#2| (-144)) +((((-889 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) +(|has| |#1| (-1076)) +(((|#2|) |has| |#2| (-169))) (((|#2|) . T)) (((|#1| |#1|) . T)) -(((|#3|) |has| |#3| (-358))) -((((-402 |#2|)) . T)) -((((-839)) . T)) -(((|#1|) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-528)) |has| |#1| (-598 (-528)))) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -((((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|))) -(((|#1|) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)))) -((((-311 |#1|)) . T)) -(((|#2|) |has| |#2| (-358))) -(((|#2|) . T)) -((((-402 (-552))) . T) (((-679)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((#0=(-760 |#1| (-841 |#2|)) #0#) |has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|))))) -((((-841 |#1|)) . T)) -(((|#2|) |has| |#2| (-170))) -(((|#1|) |has| |#1| (-170))) -(((|#2|) . T)) -((((-1149)) |has| |#1| (-876 (-1149))) (((-1055)) . T)) -((((-1149)) |has| |#1| (-876 (-1149))) (((-1061 (-1149))) . T)) -(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(|has| |#1| (-38 (-402 (-552)))) -(((|#4|) |has| |#4| (-1025)) (((-552)) -12 (|has| |#4| (-621 (-552))) (|has| |#4| (-1025)))) -(((|#3|) |has| |#3| (-1025)) (((-552)) -12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025)))) -(|has| |#1| (-143)) -(|has| |#1| (-145)) +(((|#3|) |has| |#3| (-357))) +((((-401 |#2|)) . T)) +((((-842)) . T)) +(((|#1|) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-528)) |has| |#1| (-600 (-528)))) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-1152) |#1|) |has| |#1| (-506 (-1152) |#1|)) ((|#1| |#1|) |has| |#1| (-303 |#1|))) +(((|#1|) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)))) +((((-310 |#1|)) . T)) +(((|#2|) |has| |#2| (-357))) +(((|#2|) . T)) +((((-401 (-552))) . T) (((-681)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((#0=(-763 |#1| (-844 |#2|)) #0#) |has| (-763 |#1| (-844 |#2|)) (-303 (-763 |#1| (-844 |#2|))))) +((((-844 |#1|)) . T)) +(((|#2|) |has| |#2| (-169))) +(((|#1|) |has| |#1| (-169))) +(((|#2|) . T)) +((((-1152)) |has| |#1| (-879 (-1152))) (((-1058)) . T)) +((((-1152)) |has| |#1| (-879 (-1152))) (((-1064 (-1152))) . T)) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(|has| |#1| (-38 (-401 (-552)))) +(((|#4|) |has| |#4| (-1028)) (((-552)) -12 (|has| |#4| (-623 (-552))) (|has| |#4| (-1028)))) +(((|#3|) |has| |#3| (-1028)) (((-552)) -12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028)))) +(|has| |#1| (-142)) +(|has| |#1| (-144)) ((($ $) . T)) -(-1523 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-467)) (|has| |#1| (-707)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)) (|has| |#1| (-1085)) (|has| |#1| (-1073))) +(-1559 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-466)) (|has| |#1| (-709)) (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028)) (|has| |#1| (-1088)) (|has| |#1| (-1076))) (|has| |#1| (-544)) (((|#2|) . T)) ((((-552)) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) (((|#1|) . T)) -(-1523 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-544)) (|has| |#1| (-1025))) -((((-567 |#1|)) . T)) +(-1559 (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-544)) (|has| |#1| (-1028))) +((((-569 |#1|)) . T)) ((($) . T)) (((|#1| (-58 |#1|) (-58 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-839)) . T)) -(((|#2|) |has| |#2| (-6 (-4355 "*")))) +((((-842)) . T)) +(((|#2|) |has| |#2| (-6 (-4368 "*")))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-402 (-552))) |has| |#2| (-1014 (-402 (-552)))) (((-552)) |has| |#2| (-1014 (-552))) ((|#2|) . T) (((-841 |#1|)) . T)) -((($) . T) (((-116 |#1|)) . T) (((-402 (-552))) . T)) -((((-1098 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552))))) -((((-1145 |#1|)) . T) (((-1055)) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552))))) -((((-1098 |#1| (-1149))) . T) (((-1061 (-1149))) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-1149)) . T)) -(|has| |#1| (-1073)) +((((-401 (-552))) |has| |#2| (-1017 (-401 (-552)))) (((-552)) |has| |#2| (-1017 (-552))) ((|#2|) . T) (((-844 |#1|)) . T)) +((($) . T) (((-115 |#1|)) . T) (((-401 (-552))) . T)) +((((-1101 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552))))) +((((-1148 |#1|)) . T) (((-1058)) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552))))) +((((-1101 |#1| (-1152))) . T) (((-1064 (-1152))) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-1152)) . T)) +(|has| |#1| (-1076)) ((($) . T)) -(|has| |#1| (-1073)) -((((-552)) -12 (|has| |#1| (-862 (-552))) (|has| |#2| (-862 (-552)))) (((-374)) -12 (|has| |#1| (-862 (-374))) (|has| |#2| (-862 (-374))))) +(|has| |#1| (-1076)) +((((-552)) -12 (|has| |#1| (-865 (-552))) (|has| |#2| (-865 (-552)))) (((-373)) -12 (|has| |#1| (-865 (-373))) (|has| |#2| (-865 (-373))))) (((|#1| |#2|) . T)) -((((-1149) |#1|) . T)) +((((-1152) |#1|) . T)) (((|#4|) . T)) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-344))) -((((-1149) (-52)) . T)) -((((-1217 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) . T)) -((((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-552)) |has| |#1| (-1014 (-552))) ((|#1|) . T)) -((((-839)) . T)) -(-1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1073))) -(((#0=(-1218 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-402 (-552)) #1#) . T) (($ $) . T)) -(((|#1| |#1|) |has| |#1| (-170)) ((#0=(-402 (-552)) #0#) |has| |#1| (-544)) (($ $) |has| |#1| (-544))) -(((|#1|) . T) (($) . T) (((-402 (-552))) . T)) -(((|#1| $) |has| |#1| (-281 |#1| |#1|))) -((((-1218 |#1| |#2| |#3| |#4|)) . T) (((-402 (-552))) . T) (($) . T)) -(((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-544)) (($) |has| |#1| (-544))) -(|has| |#1| (-358)) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -((((-402 (-552))) . T) (($) . T)) -(((|#3|) |has| |#3| (-358))) -(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) -((((-1149)) . T)) -(((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-343))) +((((-1152) (-52)) . T)) +((((-1220 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) . T)) +((((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-552)) |has| |#1| (-1017 (-552))) ((|#1|) . T)) +((((-842)) . T)) +(-1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-362)) (|has| |#2| (-709)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028)) (|has| |#2| (-1076))) +(((#0=(-1221 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-401 (-552)) #1#) . T) (($ $) . T)) +(((|#1| |#1|) |has| |#1| (-169)) ((#0=(-401 (-552)) #0#) |has| |#1| (-544)) (($ $) |has| |#1| (-544))) +(((|#1|) . T) (($) . T) (((-401 (-552))) . T)) +(((|#1| $) |has| |#1| (-280 |#1| |#1|))) +((((-1221 |#1| |#2| |#3| |#4|)) . T) (((-401 (-552))) . T) (($) . T)) +(((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-544)) (($) |has| |#1| (-544))) +(|has| |#1| (-357)) +(|has| |#1| (-142)) +(|has| |#1| (-144)) +(|has| |#1| (-144)) +(|has| |#1| (-142)) +((((-401 (-552))) . T) (($) . T)) +(((|#3|) |has| |#3| (-357))) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) +((((-1152)) . T)) +(((|#1|) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (((|#2| |#3|) . T)) -(-1523 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) -(((|#1| (-524 |#2|)) . T)) -(((|#1| (-751)) . T)) -(((|#1| (-524 (-1061 (-1149)))) . T)) -(((|#1|) |has| |#1| (-170))) -(((|#1|) . T)) -(|has| |#2| (-885)) -(-1523 (|has| |#2| (-773)) (|has| |#2| (-825))) -((((-839)) . T)) -((($ $) . T) ((#0=(-1217 |#2| |#3| |#4|) #0#) . T) ((#1=(-402 (-552)) #1#) |has| #0# (-38 (-402 (-552))))) -((((-886 |#1|)) . T)) -(-12 (|has| |#1| (-358)) (|has| |#2| (-800))) -((($) . T) (((-402 (-552))) . T)) -((($) . T)) -((($) . T)) -(|has| |#1| (-358)) -(-1523 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344)) (|has| |#1| (-544))) -(|has| |#1| (-358)) -((($) . T) ((#0=(-1217 |#2| |#3| |#4|)) . T) (((-402 (-552))) |has| #0# (-38 (-402 (-552))))) +(-1559 (|has| |#2| (-357)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) +(((|#1| (-523 |#2|)) . T)) +(((|#1| (-754)) . T)) +(((|#1| (-523 (-1064 (-1152)))) . T)) +(((|#1|) |has| |#1| (-169))) +(((|#1|) . T)) +(|has| |#2| (-888)) +(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) +((((-842)) . T)) +((($ $) . T) ((#0=(-1220 |#2| |#3| |#4|) #0#) . T) ((#1=(-401 (-552)) #1#) |has| #0# (-38 (-401 (-552))))) +((((-889 |#1|)) . T)) +(-12 (|has| |#1| (-357)) (|has| |#2| (-803))) +((($) . T) (((-401 (-552))) . T)) +((((-842)) . T)) +((($) . T)) +((($) . T)) +(-1559 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343)) (|has| |#1| (-544))) +(|has| |#1| (-357)) +(|has| |#1| (-357)) (((|#1| |#2|) . T)) -((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358))) -(-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-358)) (|has| |#1| (-344))) -(-1523 (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025))) -((((-552)) |has| |#1| (-621 (-552))) ((|#1|) . T)) +((($) . T) ((#0=(-1220 |#2| |#3| |#4|)) . T) (((-401 (-552))) |has| #0# (-38 (-401 (-552))))) +((((-1150 |#1| |#2| |#3|)) |has| |#1| (-357))) +(-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-357)) (|has| |#1| (-343))) +(-1559 (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028))) +((((-552)) |has| |#1| (-623 (-552))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-112)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-111)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-402 |#2|)) . T) (((-402 (-552))) . T) (($) . T)) +((((-401 |#2|)) . T) (((-401 (-552))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|))) . T)) -(|has| |#2| (-358)) -(|has| |#1| (-827)) +(((|#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|))) . T)) +(|has| |#2| (-357)) +(|has| |#1| (-830)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-839)) . T)) -(|has| |#1| (-1073)) +((((-842)) . T)) +(|has| |#1| (-1076)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -((((-402 $) (-402 $)) |has| |#1| (-544)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-800)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-401 $) (-401 $)) |has| |#1| (-544)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#2| (-803)) (((|#4|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) -((((-839)) . T)) -(((|#1| (-524 (-1149))) . T)) -(((|#1|) |has| |#1| (-170))) -((((-839)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) -(((|#2|) -1523 (|has| |#2| (-6 (-4355 "*"))) (|has| |#2| (-170)))) -(-1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) -(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) -(|has| |#2| (-827)) -(|has| |#2| (-885)) -(|has| |#1| (-885)) -(((|#2|) |has| |#2| (-170))) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -((((-1224 |#1| |#2| |#3|)) |has| |#1| (-358))) -((((-839)) . T)) -((((-839)) . T)) -((((-528)) . T) (((-552)) . T) (((-868 (-552))) . T) (((-374)) . T) (((-221)) . T)) +((((-842)) . T)) +(((|#1| (-523 (-1152))) . T)) +(((|#1|) |has| |#1| (-169))) +((((-842)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) +(((|#2|) -1559 (|has| |#2| (-6 (-4368 "*"))) (|has| |#2| (-169)))) +(-1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) +(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(|has| |#2| (-830)) +(|has| |#2| (-888)) +(|has| |#1| (-888)) +(((|#2|) |has| |#2| (-169))) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-1227 |#1| |#2| |#3|)) |has| |#1| (-357))) +((((-842)) . T)) +((((-842)) . T)) +((((-528)) . T) (((-552)) . T) (((-871 (-552))) . T) (((-373)) . T) (((-220)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -((((-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) . T)) (((|#1|) . T)) -((((-839)) . T)) +((((-842)) . T)) (((|#1| |#2|) . T)) -(((|#1| (-402 (-552))) . T)) +(((|#1| (-401 (-552))) . T)) (((|#1|) . T)) -(-1523 (|has| |#1| (-285)) (|has| |#1| (-358))) -((((-142)) . T)) -((((-402 |#2|)) . T) (((-402 (-552))) . T) (($) . T)) -(|has| |#1| (-825)) -((((-839)) . T)) -((((-839)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((|#1| |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) . T)) +(-1559 (|has| |#1| (-284)) (|has| |#1| (-357))) +((((-141)) . T)) +((((-401 |#2|)) . T) (((-401 (-552))) . T) (($) . T)) +(|has| |#1| (-828)) +((((-842)) . T)) +((((-842)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1| |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-402 (-552))) . T) (($) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) +((((-401 (-552))) . T) (($) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-528)) |has| |#1| (-598 (-528))) (((-868 (-552))) |has| |#1| (-598 (-868 (-552)))) (((-868 (-374))) |has| |#1| (-598 (-868 (-374))))) -((((-1149) (-52)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-528)) |has| |#1| (-600 (-528))) (((-871 (-552))) |has| |#1| (-600 (-871 (-552)))) (((-871 (-373))) |has| |#1| (-600 (-871 (-373))))) +((((-1152) (-52)) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-839)) . T)) -((((-625 (-142))) . T) (((-1131)) . T)) -((((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T)) -((((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|))) -(|has| |#1| (-827)) -((((-839)) . T)) -((((-528)) |has| |#1| (-598 (-528)))) -((((-839)) . T)) -(((|#2|) |has| |#2| (-358))) -((((-839)) . T)) -((((-528)) |has| |#4| (-598 (-528)))) -((((-839)) . T) (((-625 |#4|)) . T)) +((((-842)) . T)) +((((-627 (-141))) . T) (((-1134)) . T)) +((((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) +((((-1152) |#1|) |has| |#1| (-506 (-1152) |#1|)) ((|#1| |#1|) |has| |#1| (-303 |#1|))) +(|has| |#1| (-830)) +((((-842)) . T)) +((((-528)) |has| |#1| (-600 (-528)))) +((((-842)) . T)) +(((|#2|) |has| |#2| (-357))) +((((-842)) . T)) +((((-528)) |has| |#4| (-600 (-528)))) +((((-842)) . T) (((-627 |#4|)) . T)) (((|#2|) . T)) -((((-886 |#1|)) . T) (((-402 (-552))) . T) (($) . T)) -(-1523 (|has| |#4| (-170)) (|has| |#4| (-707)) (|has| |#4| (-825)) (|has| |#4| (-1025))) -(-1523 (|has| |#3| (-170)) (|has| |#3| (-707)) (|has| |#3| (-825)) (|has| |#3| (-1025))) -((((-1149) (-52)) . T)) -(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) +((((-889 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) +(-1559 (|has| |#4| (-169)) (|has| |#4| (-709)) (|has| |#4| (-828)) (|has| |#4| (-1028))) +(-1559 (|has| |#3| (-169)) (|has| |#3| (-709)) (|has| |#3| (-828)) (|has| |#3| (-1028))) +((((-1152) (-52)) . T)) +(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025))) -(-1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-825)) (|has| |#2| (-1025))) -(|has| |#1| (-885)) -(|has| |#1| (-885)) +(-1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +(-1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +(|has| |#1| (-888)) +(|has| |#1| (-888)) (((|#2|) . T)) (((|#1|) . T)) -((((-839)) . T)) +((((-842)) . T)) ((((-552)) . T)) -(((#0=(-402 (-552)) #0#) . T) (($ $) . T)) -((((-402 (-552))) . T) (($) . T)) -(((|#1| (-402 (-552)) (-1055)) . T)) -(|has| |#1| (-1073)) +(((#0=(-401 (-552)) #0#) . T) (($ $) . T)) +((((-401 (-552))) . T) (($) . T)) +(((|#1| (-401 (-552)) (-1058)) . T)) +(|has| |#1| (-1076)) (|has| |#1| (-544)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) -(|has| |#1| (-800)) -(((#0=(-886 |#1|) #0#) . T) (($ $) . T) ((#1=(-402 (-552)) #1#) . T)) -((((-402 |#2|)) . T)) -(|has| |#1| (-825)) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073)))) -(((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) . T) ((#1=(-552) #1#) . T) (($ $) . T)) -((((-886 |#1|)) . T) (($) . T) (((-402 (-552))) . T)) -(((|#2|) |has| |#2| (-1025)) (((-552)) -12 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025)))) -(((|#1|) . T) (((-402 (-552))) . T) (((-552)) . T) (($) . T)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(|has| |#1| (-803)) +(((#0=(-889 |#1|) #0#) . T) (($ $) . T) ((#1=(-401 (-552)) #1#) . T)) +((((-401 |#2|)) . T)) +(|has| |#1| (-828)) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +(((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) . T) ((#1=(-552) #1#) . T) (($ $) . T)) +((((-889 |#1|)) . T) (($) . T) (((-401 (-552))) . T)) +(((|#2|) |has| |#2| (-1028)) (((-552)) -12 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) +(((|#1|) . T) (((-401 (-552))) . T) (((-552)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -(((|#2|) . T)) -((((-839)) . T)) -(-1523 (|has| |#1| (-143)) (|has| |#1| (-363))) -(-1523 (|has| |#1| (-143)) (|has| |#1| (-363))) -(-1523 (|has| |#1| (-143)) (|has| |#1| (-363))) -((((-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) . T)) -(((#0=(-52)) . T) (((-2 (|:| -2971 (-1149)) (|:| -4120 #0#))) . T)) -(|has| |#1| (-344)) +(|has| |#1| (-144)) +(|has| |#1| (-142)) +(((|#2|) . T)) +((((-842)) . T)) +(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) +(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) +(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) +((((-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -3998 (-1152)) (|:| -2162 #0#))) . T)) +(|has| |#1| (-343)) ((((-552)) . T)) -((((-839)) . T)) -(((#0=(-1218 |#1| |#2| |#3| |#4|) $) |has| #0# (-281 #0# #0#))) -(|has| |#1| (-358)) -(((#0=(-1055) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-344))) -(((#0=(-402 (-552)) #0#) . T) ((#1=(-679) #1#) . T) (($ $) . T)) -((((-311 |#1|)) . T) (($) . T)) -(((|#1|) . T) (((-402 (-552))) |has| |#1| (-358))) -(|has| |#1| (-1073)) -(((|#1|) . T)) -(((|#1|) -1523 (|has| |#2| (-362 |#1|)) (|has| |#2| (-412 |#1|)))) -(((|#1|) -1523 (|has| |#2| (-362 |#1|)) (|has| |#2| (-412 |#1|)))) -(((|#2|) . T)) -((((-402 (-552))) . T) (((-679)) . T) (($) . T)) +((((-842)) . T)) +(((#0=(-1221 |#1| |#2| |#3| |#4|) $) |has| #0# (-280 #0# #0#))) +(|has| |#1| (-357)) +(((#0=(-1058) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-343))) +(((#0=(-401 (-552)) #0#) . T) ((#1=(-681) #1#) . T) (($ $) . T)) +((((-310 |#1|)) . T) (($) . T)) +(((|#1|) . T) (((-401 (-552))) |has| |#1| (-357))) +(|has| |#1| (-1076)) +(((|#1|) . T)) +(((|#1|) -1559 (|has| |#2| (-361 |#1|)) (|has| |#2| (-411 |#1|)))) +(((|#1|) -1559 (|has| |#2| (-361 |#1|)) (|has| |#2| (-411 |#1|)))) +(((|#2|) . T)) +((((-401 (-552))) . T) (((-681)) . T) (($) . T)) +((((-567)) . T)) (((|#3| |#3|) . T)) -(|has| |#2| (-229)) -((((-841 |#1|)) . T)) -((((-1149)) |has| |#1| (-876 (-1149))) ((|#3|) . T)) -(-12 (|has| |#1| (-358)) (|has| |#2| (-998))) -((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358))) -((((-839)) . T)) -(|has| |#1| (-358)) -(|has| |#1| (-358)) -((((-402 (-552))) . T) (($) . T) (((-402 |#1|)) . T) ((|#1|) . T)) +(|has| |#2| (-228)) +((((-844 |#1|)) . T)) +((((-1152)) |has| |#1| (-879 (-1152))) ((|#3|) . T)) +(-12 (|has| |#1| (-357)) (|has| |#2| (-1001))) +((((-1150 |#1| |#2| |#3|)) |has| |#1| (-357))) +((((-842)) . T)) +(|has| |#1| (-357)) +(|has| |#1| (-357)) +((((-401 (-552))) . T) (($) . T) (((-401 |#1|)) . T) ((|#1|) . T)) ((((-552)) . T)) -(|has| |#1| (-1073)) +(|has| |#1| (-1076)) (((|#3|) . T)) (((|#2|) . T)) (((|#1|) . T)) ((((-552)) . T)) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) -(((|#2|) . T) (((-552)) |has| |#2| (-621 (-552)))) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(((|#2|) . T) (((-552)) |has| |#2| (-623 (-552)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-567 |#1|)) . T) (((-402 (-552))) . T) (($) . T)) -((($) . T) (((-402 (-552))) . T)) +((((-569 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) +((($) . T) (((-401 (-552))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-1232 |#1|) (-1232 |#1|)) . T)) +(((|#1| (-1235 |#1|) (-1235 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-839)) . T)) -((((-839)) . T)) -(((#0=(-116 |#1|) #0#) . T) ((#1=(-402 (-552)) #1#) . T) (($ $) . T)) -((((-402 (-552))) |has| |#2| (-1014 (-402 (-552)))) (((-552)) |has| |#2| (-1014 (-552))) ((|#2|) . T) (((-841 |#1|)) . T)) -((((-1098 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((|#2|) . T)) +((((-842)) . T)) +((((-842)) . T)) +(((#0=(-115 |#1|) #0#) . T) ((#1=(-401 (-552)) #1#) . T) (($ $) . T)) +((((-401 (-552))) |has| |#2| (-1017 (-401 (-552)))) (((-552)) |has| |#2| (-1017 (-552))) ((|#2|) . T) (((-844 |#1|)) . T)) +((((-1101 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($ $) . T)) -((((-652 |#1|)) . T)) -((($) . T) (((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) . T)) -((((-116 |#1|)) . T) (((-402 (-552))) . T) (($) . T)) -((((-552)) -12 (|has| |#1| (-862 (-552))) (|has| |#3| (-862 (-552)))) (((-374)) -12 (|has| |#1| (-862 (-374))) (|has| |#3| (-862 (-374))))) +((((-654 |#1|)) . T)) +((($) . T) (((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) . T)) +((((-115 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) +((((-552)) -12 (|has| |#1| (-865 (-552))) (|has| |#3| (-865 (-552)))) (((-373)) -12 (|has| |#1| (-865 (-373))) (|has| |#3| (-865 (-373))))) (((|#2|) . T) ((|#6|) . T)) -(((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) (($) . T)) -((((-142)) . T)) +(((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) (($) . T)) +((((-141)) . T)) ((($) . T)) -((($) . T) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -((($) . T) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) +((($) . T) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((($) . T) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) (((|#1|) . T)) -(|has| |#2| (-885)) -(|has| |#1| (-885)) -(|has| |#1| (-885)) +(|has| |#2| (-888)) +(|has| |#1| (-888)) +(|has| |#1| (-888)) (((|#4|) . T)) -(|has| |#2| (-998)) +(|has| |#2| (-1001)) ((($) . T)) -(|has| |#1| (-885)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) +(|has| |#1| (-888)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((($) . T)) -(|has| |#1| (-358)) -((((-886 |#1|)) . T)) -((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -((($ $) . T) ((#0=(-402 (-552)) #0#) . T)) -(-1523 (|has| |#1| (-363)) (|has| |#1| (-827))) -(((|#1|) . T)) -((((-839)) . T)) -((((-1149)) -12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) -((((-402 |#2|) |#3|) . T)) -((($) . T) (((-402 (-552))) . T)) -((((-751) |#1|) . T)) -(((|#2| (-236 (-1471 |#1|) (-751))) . T)) -(((|#1| (-524 |#3|)) . T)) -((((-402 (-552))) . T)) -(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) -((((-839)) . T)) -(((#0=(-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) #0#) |has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))))) -(|has| |#1| (-885)) -(|has| |#2| (-358)) -(-1523 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025))) -((((-167 (-374))) . T) (((-221)) . T) (((-374)) . T)) -((((-839)) . T)) -(((|#1|) . T)) -((((-374)) . T) (((-552)) . T)) -(((#0=(-402 (-552)) #0#) . T) (($ $) . T)) +(|has| |#1| (-357)) +((((-889 |#1|)) . T)) +((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((($ $) . T) ((#0=(-401 (-552)) #0#) . T)) +(-1559 (|has| |#1| (-362)) (|has| |#1| (-830))) +(((|#1|) . T)) +((((-842)) . T)) +((((-1152)) -12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) +((((-401 |#2|) |#3|) . T)) +((($) . T) (((-401 (-552))) . T)) +((((-754) |#1|) . T)) +(((|#2| (-235 (-1383 |#1|) (-754))) . T)) +(((|#1| (-523 |#3|)) . T)) +((((-401 (-552))) . T)) +(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +((((-842)) . T)) +(((#0=(-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) #0#) |has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))))) +(|has| |#1| (-888)) +(|has| |#2| (-357)) +(-1559 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +((((-166 (-373))) . T) (((-220)) . T) (((-373)) . T)) +((((-842)) . T)) +(((|#1|) . T)) +((((-373)) . T) (((-552)) . T)) +(((#0=(-401 (-552)) #0#) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-839)) . T)) +((((-842)) . T)) (|has| |#1| (-544)) -((((-402 (-552))) . T) (($) . T)) -((($) . T)) -((($) . T)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(-1523 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344))) -(|has| |#1| (-38 (-402 (-552)))) -(-12 (|has| |#1| (-537)) (|has| |#1| (-808))) -((((-839)) . T)) -((((-1149)) -1523 (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149)))))) -(|has| |#1| (-358)) -((((-1149)) -12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) -(|has| |#1| (-358)) -((((-402 (-552))) . T) (($) . T)) -((($) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) . T)) +((((-401 (-552))) . T) (($) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(-1559 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343))) +(|has| |#1| (-38 (-401 (-552)))) +(-12 (|has| |#1| (-537)) (|has| |#1| (-811))) +((((-842)) . T)) +((((-1152)) -1559 (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))) (-12 (|has| |#1| (-357)) (|has| |#2| (-879 (-1152)))))) +(|has| |#1| (-357)) +((((-1152)) -12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) +(|has| |#1| (-357)) +((((-401 (-552))) . T) (($) . T)) +((($) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T)) ((((-552) |#1|) . T)) (((|#1|) . T)) -(((|#2|) |has| |#1| (-358))) -(((|#2|) |has| |#1| (-358))) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) +(((|#2|) |has| |#1| (-357))) +(((|#2|) |has| |#1| (-357))) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) (((|#1|) . T)) -(((|#1|) |has| |#1| (-170))) +(((|#1|) |has| |#1| (-169))) (((|#1|) . T)) -(((|#2|) . T) (((-1149)) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-1149)))) (((-552)) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-552)))) (((-402 (-552))) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-552))))) +(((|#2|) . T) (((-1152)) -12 (|has| |#1| (-357)) (|has| |#2| (-1017 (-1152)))) (((-552)) -12 (|has| |#1| (-357)) (|has| |#2| (-1017 (-552)))) (((-401 (-552))) -12 (|has| |#1| (-357)) (|has| |#2| (-1017 (-552))))) (((|#2|) . T)) -((((-1149) #0=(-1218 |#1| |#2| |#3| |#4|)) |has| #0# (-507 (-1149) #0#)) ((#0# #0#) |has| #0# (-304 #0#))) -((((-596 $) $) . T) (($ $) . T)) -((((-167 (-221))) . T) (((-167 (-374))) . T) (((-1145 (-679))) . T) (((-868 (-374))) . T)) -((((-839)) . T)) +((((-1152) #0=(-1221 |#1| |#2| |#3| |#4|)) |has| #0# (-506 (-1152) #0#)) ((#0# #0#) |has| #0# (-303 #0#))) +((((-598 $) $) . T) (($ $) . T)) +((((-166 (-220))) . T) (((-166 (-373))) . T) (((-1148 (-681))) . T) (((-871 (-373))) . T)) +((((-842)) . T)) (|has| |#1| (-544)) (|has| |#1| (-544)) -(|has| (-402 |#2|) (-229)) -(((|#1| (-402 (-552))) . T)) +(|has| (-401 |#2|) (-228)) +(((|#1| (-401 (-552))) . T)) ((($ $) . T)) -((((-1149)) |has| |#2| (-876 (-1149)))) -((($) . T)) -((((-839)) . T)) -((((-402 (-552))) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -((((-839)) . T)) -(((|#2|) |has| |#1| (-358))) -((((-374)) -12 (|has| |#1| (-358)) (|has| |#2| (-862 (-374)))) (((-552)) -12 (|has| |#1| (-358)) (|has| |#2| (-862 (-552))))) -(|has| |#1| (-358)) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-544))) -(|has| |#1| (-358)) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-544))) -(|has| |#1| (-358)) +((((-1152)) |has| |#2| (-879 (-1152)))) +((($) . T)) +((((-842)) . T)) +((((-401 (-552))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-842)) . T)) +(((|#2|) |has| |#1| (-357))) +((((-373)) -12 (|has| |#1| (-357)) (|has| |#2| (-865 (-373)))) (((-552)) -12 (|has| |#1| (-357)) (|has| |#2| (-865 (-552))))) +(|has| |#1| (-357)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) +(|has| |#1| (-357)) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) +(|has| |#1| (-357)) (|has| |#1| (-544)) -(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) +(((|#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (((|#3|) . T)) (((|#1|) . T)) -(-1523 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-1559 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028))) (((|#2|) . T)) (((|#2|) . T)) -(-1523 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025))) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -((((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -(|has| |#1| (-38 (-402 (-552)))) +(-1559 (|has| |#2| (-169)) (|has| |#2| (-709)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +(|has| |#1| (-38 (-401 (-552)))) (((|#1| |#2|) . T)) -(|has| |#1| (-38 (-402 (-552)))) -(-1523 (|has| |#1| (-143)) (|has| |#1| (-363))) -(|has| |#1| (-145)) -((((-1131) |#1|) . T)) -(-1523 (|has| |#1| (-143)) (|has| |#1| (-363))) -(|has| |#1| (-145)) -(-1523 (|has| |#1| (-143)) (|has| |#1| (-363))) -(|has| |#1| (-145)) -((((-567 |#1|)) . T)) -((($) . T)) -((((-402 |#2|)) . T)) +(|has| |#1| (-38 (-401 (-552)))) +(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) +(|has| |#1| (-144)) +((((-1134) |#1|) . T)) +(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) +(|has| |#1| (-144)) +(-1559 (|has| |#1| (-142)) (|has| |#1| (-362))) +(|has| |#1| (-144)) +((((-569 |#1|)) . T)) +((($) . T)) +((((-401 |#2|)) . T)) (|has| |#1| (-544)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) -(-1523 (|has| |#1| (-143)) (|has| |#1| (-344))) -(|has| |#1| (-145)) -((((-839)) . T)) -((($) . T)) -((((-402 (-552))) |has| |#2| (-1014 (-552))) (((-552)) |has| |#2| (-1014 (-552))) (((-1149)) |has| |#2| (-1014 (-1149))) ((|#2|) . T)) -(((#0=(-402 |#2|) #0#) . T) ((#1=(-402 (-552)) #1#) . T) (($ $) . T)) -((((-1113 |#1| |#2|)) . T)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) +(-1559 (|has| |#1| (-142)) (|has| |#1| (-343))) +(|has| |#1| (-144)) +((((-842)) . T)) +((($) . T)) +((((-401 (-552))) |has| |#2| (-1017 (-552))) (((-552)) |has| |#2| (-1017 (-552))) (((-1152)) |has| |#2| (-1017 (-1152))) ((|#2|) . T)) +(((#0=(-401 |#2|) #0#) . T) ((#1=(-401 (-552)) #1#) . T) (($ $) . T)) +((((-1116 |#1| |#2|)) . T)) (((|#1| (-552)) . T)) -(((|#1| (-402 (-552))) . T)) -((((-552)) |has| |#2| (-862 (-552))) (((-374)) |has| |#2| (-862 (-374)))) +(((|#1| (-401 (-552))) . T)) +((((-552)) |has| |#2| (-865 (-552))) (((-373)) |has| |#2| (-865 (-373)))) (((|#2|) . T)) -((((-402 |#2|)) . T) (((-402 (-552))) . T) (($) . T)) -((((-112)) . T)) -(((|#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) . T)) +((((-401 |#2|)) . T) (((-401 (-552))) . T) (($) . T)) +((((-111)) . T)) +(((|#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) . T)) (((|#2|) . T)) -((((-839)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -((((-1149) (-52)) . T)) -((((-402 |#2|)) . T)) -((((-839)) . T)) +((((-842)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-1152) (-52)) . T)) +((((-401 |#2|)) . T)) +((((-842)) . T)) (((|#1|) . T)) -(|has| |#1| (-1073)) -(|has| |#1| (-771)) -(|has| |#1| (-771)) -((((-528)) |has| |#1| (-598 (-528)))) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073)))) -((((-114)) . T) ((|#1|) . T)) +(|has| |#1| (-1076)) +(|has| |#1| (-774)) +(|has| |#1| (-774)) +((((-528)) |has| |#1| (-600 (-528)))) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +((((-113)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-221)) . T) (((-374)) . T) (((-868 (-374))) . T)) -((((-839)) . T)) -((((-1218 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-402 (-552))) . T)) -(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-544)) (((-402 (-552))) |has| |#1| (-544))) -((((-839)) . T)) -((((-839)) . T)) +((((-220)) . T) (((-373)) . T) (((-871 (-373))) . T)) +((((-842)) . T)) +((((-1221 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-401 (-552))) . T)) +(((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-544)) (((-401 (-552))) |has| |#1| (-544))) +((((-842)) . T)) +((((-842)) . T)) (((|#2|) . T)) -((((-839)) . T)) -(((#0=(-886 |#1|) #0#) . T) (($ $) . T) ((#1=(-402 (-552)) #1#) . T)) +((((-842)) . T)) +(((#0=(-889 |#1|) #0#) . T) (($ $) . T) ((#1=(-401 (-552)) #1#) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-886 |#1|)) . T) (($) . T) (((-402 (-552))) . T)) -(|has| |#1| (-358)) +((((-889 |#1|)) . T) (($) . T) (((-401 (-552))) . T)) +(|has| |#1| (-357)) (((|#2|) . T)) ((((-552)) . T)) -((((-839)) . T)) +((((-842)) . T)) ((((-552)) . T)) -(-1523 (|has| |#2| (-773)) (|has| |#2| (-825))) -((((-167 (-374))) . T) (((-221)) . T) (((-374)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-1131)) . T) (((-528)) . T) (((-552)) . T) (((-868 (-552))) . T) (((-374)) . T) (((-221)) . T)) -((((-839)) . T)) -(|has| |#1| (-145)) -(|has| |#1| (-143)) -((($) . T) ((#0=(-1217 |#2| |#3| |#4|)) |has| #0# (-170)) (((-402 (-552))) |has| #0# (-38 (-402 (-552))))) -(((|#1|) . T) (($) . T) (((-402 (-552))) . T)) -(|has| |#1| (-358)) -(|has| |#1| (-358)) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073)))) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073)))) -(-1523 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-467)) (|has| |#1| (-707)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)) (|has| |#1| (-1085)) (|has| |#1| (-1073))) -(|has| |#1| (-1124)) +(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) +((((-166 (-373))) . T) (((-220)) . T) (((-373)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-1134)) . T) (((-528)) . T) (((-552)) . T) (((-871 (-552))) . T) (((-373)) . T) (((-220)) . T)) +((((-842)) . T)) +(|has| |#1| (-144)) +(|has| |#1| (-142)) +((($) . T) ((#0=(-1220 |#2| |#3| |#4|)) |has| #0# (-169)) (((-401 (-552))) |has| #0# (-38 (-401 (-552))))) +(((|#1|) . T) (($) . T) (((-401 (-552))) . T)) +(|has| |#1| (-357)) +(|has| |#1| (-357)) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +(-1559 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-466)) (|has| |#1| (-709)) (|has| |#1| (-879 (-1152))) (|has| |#1| (-1028)) (|has| |#1| (-1088)) (|has| |#1| (-1076))) +(|has| |#1| (-1127)) ((((-552) |#1|) . T)) (((|#1|) . T)) -(((#0=(-116 |#1|) $) |has| #0# (-281 #0# #0#))) -(((|#1|) |has| |#1| (-170))) +(((#0=(-115 |#1|) $) |has| #0# (-280 #0# #0#))) +(((|#1|) |has| |#1| (-169))) (((|#1|) . T)) -((((-114)) . T) ((|#1|) . T)) -((((-839)) . T)) +((((-113)) . T) ((|#1|) . T)) +((((-842)) . T)) (((|#1| |#2|) . T)) -((((-1149) |#1|) . T)) -(((|#1|) |has| |#1| (-304 |#1|))) +((((-1152) |#1|) . T)) +(((|#1|) |has| |#1| (-303 |#1|))) ((((-552) |#1|) . T)) (((|#1|) . T)) -((((-552)) . T) (((-402 (-552))) . T)) +((((-552)) . T) (((-401 (-552))) . T)) (((|#1|) . T)) (|has| |#1| (-544)) -((((-402 |#2|)) . T) (((-402 (-552))) . T) (($) . T)) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-544))) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-544))) -((((-374)) . T)) +((((-401 |#2|)) . T) (((-401 (-552))) . T) (($) . T)) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) +((((-373)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-358)) -(|has| |#1| (-358)) +(|has| |#1| (-357)) +(|has| |#1| (-357)) (|has| |#1| (-544)) -(|has| |#1| (-1073)) -((((-760 |#1| (-841 |#2|))) |has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|))))) -(-1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) +(|has| |#1| (-1076)) +((((-763 |#1| (-844 |#2|))) |has| (-763 |#1| (-844 |#2|)) (-303 (-763 |#1| (-844 |#2|))))) +(-1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) -(|has| |#2| (-885)) -(((|#1| (-524 |#2|)) . T)) -(((|#1| (-751)) . T)) -(|has| |#1| (-229)) -(((|#1| (-524 (-1061 (-1149)))) . T)) -(|has| |#2| (-358)) -((((-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) . T)) +(|has| |#2| (-888)) +(((|#1| (-523 |#2|)) . T)) +(((|#1| (-754)) . T)) +(|has| |#1| (-228)) +(((|#1| (-523 (-1064 (-1152)))) . T)) +(|has| |#2| (-357)) +((((-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -((((-839)) . T)) -((((-839)) . T)) -(-1523 (|has| |#3| (-773)) (|has| |#3| (-825))) -((((-839)) . T)) -((((-1093)) . T) (((-839)) . T)) -((((-839)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-842)) . T)) +((((-842)) . T)) +(-1559 (|has| |#3| (-776)) (|has| |#3| (-828))) +((((-842)) . T)) +((((-1096)) . T) (((-842)) . T)) +((((-842)) . T)) (((|#1|) . T)) -((($ $) . T) (((-596 $) $) . T)) +((($ $) . T) (((-598 $) $) . T)) (((|#1|) . T)) ((((-552)) . T)) (((|#3|) . T)) -((((-839)) . T)) -(-1523 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-344))) -(-1523 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-544)) (|has| |#1| (-1025))) -(((#0=(-567 |#1|) #0#) . T) (($ $) . T) ((#1=(-402 (-552)) #1#) . T)) -((($ $) . T) ((#0=(-402 (-552)) #0#) . T)) -(((|#1|) |has| |#1| (-170))) -(((|#1| (-1232 |#1|) (-1232 |#1|)) . T)) -((((-567 |#1|)) . T) (($) . T) (((-402 (-552))) . T)) -((($) . T) (((-402 (-552))) . T)) -((($) . T) (((-402 (-552))) . T)) -(((|#2|) |has| |#2| (-6 (-4355 "*")))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-839)) . T)) -((((-289 |#3|)) . T)) -(((#0=(-402 (-552)) #0#) |has| |#2| (-38 (-402 (-552)))) ((|#2| |#2|) . T) (($ $) -1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))) +((((-842)) . T)) +(-1559 (|has| |#1| (-301)) (|has| |#1| (-357)) (|has| |#1| (-343))) +(-1559 (|has| |#1| (-142)) (|has| |#1| (-144)) (|has| |#1| (-169)) (|has| |#1| (-544)) (|has| |#1| (-1028))) +(((#0=(-569 |#1|) #0#) . T) (($ $) . T) ((#1=(-401 (-552)) #1#) . T)) +((($ $) . T) ((#0=(-401 (-552)) #0#) . T)) +(((|#1|) |has| |#1| (-169))) +(((|#1| (-1235 |#1|) (-1235 |#1|)) . T)) +((((-569 |#1|)) . T) (($) . T) (((-401 (-552))) . T)) +((($) . T) (((-401 (-552))) . T)) +((($) . T) (((-401 (-552))) . T)) +(((|#2|) |has| |#2| (-6 (-4368 "*")))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-842)) . T)) +((((-288 |#3|)) . T)) +(((#0=(-401 (-552)) #0#) |has| |#2| (-38 (-401 (-552)))) ((|#2| |#2|) . T) (($ $) -1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#1|) . T)) -((($) . T) (((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) . T)) -((($) . T) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -(((|#1|) . T) (((-402 (-552))) . T) (($) . T)) -(((|#1|) . T) (((-402 (-552))) . T) (($) . T)) -(((|#1|) . T) (((-402 (-552))) . T) (($) . T)) -((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552))))) -((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552))))) +((($) . T) (((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) . T)) +((($) . T) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(((|#1|) . T) (((-401 (-552))) . T) (($) . T)) +(((|#1|) . T) (((-401 (-552))) . T) (($) . T)) +(((|#1|) . T) (((-401 (-552))) . T) (($) . T)) +((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) +((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) (((|#2|) . T)) -((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) . T) (($) -1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) . T) (($) -1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552))))) -((((-839)) . T)) -((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -(|has| |#2| (-885)) -(|has| |#1| (-885)) -((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) +((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) +((((-842)) . T)) +((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(|has| |#2| (-888)) +(|has| |#1| (-888)) +((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) (((|#1|) . T)) -((((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) . T)) +((((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1073)) +(|has| |#1| (-1076)) (((|#1|) . T)) -((((-1149)) . T) ((|#1|) . T)) -((((-839)) . T)) -((((-839)) . T)) -(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) -(((#0=(-402 (-552)) #0#) . T)) -((((-402 (-552))) . T)) -(-1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +((((-1152)) . T) ((|#1|) . T)) +((((-842)) . T)) +((((-842)) . T)) +(((|#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) +(((#0=(-401 (-552)) #0#) . T)) +((((-401 (-552))) . T)) +(-1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028))) (((|#1|) . T)) (((|#1|) . T)) -(-1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-828)) (|has| |#2| (-1028))) ((((-528)) . T)) -((((-839)) . T)) -((((-1149)) |has| |#2| (-876 (-1149))) (((-1055)) . T)) -((((-1217 |#2| |#3| |#4|)) . T)) -((((-886 |#1|)) . T)) -((($) . T) (((-402 (-552))) . T)) -(-12 (|has| |#1| (-358)) (|has| |#2| (-800))) -(-12 (|has| |#1| (-358)) (|has| |#2| (-800))) -((((-839)) . T)) -(|has| |#1| (-1190)) -(((|#2|) . T)) -((($ $) . T) ((#0=(-402 (-552)) #0#) . T)) -((((-1149)) |has| |#1| (-876 (-1149)))) -((((-886 |#1|)) . T) (((-402 (-552))) . T) (($) . T)) -((($) . T) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((|#1|) . T)) -(((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552)))) ((|#1| |#1|) . T) (($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-544)))) -((($) . T) (((-402 (-552))) . T)) -(((|#1|) . T) (((-402 (-552))) . T) (((-552)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1025)) (((-552)) -12 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025)))) -((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) . T) (($) -1523 (|has| |#1| (-170)) (|has| |#1| (-544)))) +((((-842)) . T)) +((((-1152)) |has| |#2| (-879 (-1152))) (((-1058)) . T)) +((((-1220 |#2| |#3| |#4|)) . T)) +((((-889 |#1|)) . T)) +((($) . T) (((-401 (-552))) . T)) +(-12 (|has| |#1| (-357)) (|has| |#2| (-803))) +(-12 (|has| |#1| (-357)) (|has| |#2| (-803))) +((((-842)) . T)) +(|has| |#1| (-1193)) +(((|#2|) . T)) +((($ $) . T) ((#0=(-401 (-552)) #0#) . T)) +((((-1152)) |has| |#1| (-879 (-1152)))) +((((-889 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) +((($) . T) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#1|) . T)) +(((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552)))) ((|#1| |#1|) . T) (($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-544)))) +((($) . T) (((-401 (-552))) . T)) +(((|#1|) . T) (((-401 (-552))) . T) (((-552)) . T) (($) . T)) +(((|#2|) |has| |#2| (-1028)) (((-552)) -12 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T) (($) -1559 (|has| |#1| (-169)) (|has| |#1| (-544)))) (|has| |#1| (-544)) -(((|#1|) |has| |#1| (-358))) +(((|#1|) |has| |#1| (-357))) ((((-552)) . T)) -(|has| |#1| (-771)) -(|has| |#1| (-771)) -((((-1149) #0=(-116 |#1|)) |has| #0# (-507 (-1149) #0#)) ((#0# #0#) |has| #0# (-304 #0#))) -(((|#2|) . T) (((-552)) |has| |#2| (-1014 (-552))) (((-402 (-552))) |has| |#2| (-1014 (-402 (-552))))) -((((-1055)) . T) ((|#2|) . T) (((-552)) |has| |#2| (-1014 (-552))) (((-402 (-552))) |has| |#2| (-1014 (-402 (-552))))) +(|has| |#1| (-774)) +(|has| |#1| (-774)) +((((-1152) #0=(-115 |#1|)) |has| #0# (-506 (-1152) #0#)) ((#0# #0#) |has| #0# (-303 #0#))) +(((|#2|) . T) (((-552)) |has| |#2| (-1017 (-552))) (((-401 (-552))) |has| |#2| (-1017 (-401 (-552))))) +((((-1058)) . T) ((|#2|) . T) (((-552)) |has| |#2| (-1017 (-552))) (((-401 (-552))) |has| |#2| (-1017 (-401 (-552))))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-552) (-751)) . T) ((|#3| (-751)) . T)) +((((-552) (-754)) . T) ((|#3| (-754)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -((((-839)) . T)) -(|has| |#2| (-800)) -(|has| |#2| (-800)) -((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((|#2|) |has| |#1| (-358)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552))))) -((((-552)) |has| |#1| (-862 (-552))) (((-374)) |has| |#1| (-862 (-374)))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-842)) . T)) +(|has| |#2| (-803)) +(|has| |#2| (-803)) +((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#2|) |has| |#1| (-357)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552))))) +((((-552)) |has| |#1| (-865 (-552))) (((-373)) |has| |#1| (-865 (-373)))) (((|#1|) . T)) -((((-846 |#1|)) . T)) -((((-846 |#1|)) . T)) -(-12 (|has| |#1| (-358)) (|has| |#2| (-885))) -((((-402 (-552))) . T) (((-679)) . T) (($) . T)) -(|has| |#1| (-358)) -(|has| |#1| (-358)) +((((-849 |#1|)) . T)) +((((-849 |#1|)) . T)) +(-12 (|has| |#1| (-357)) (|has| |#2| (-888))) +((((-401 (-552))) . T) (((-681)) . T) (($) . T)) +(|has| |#1| (-357)) +(|has| |#1| (-357)) (((|#1|) . T)) (((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) -(|has| |#1| (-358)) +(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) +(|has| |#1| (-357)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-841 |#1|)) . T)) +((((-844 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| (-751)) . T)) -((((-1149)) . T)) -((((-846 |#1|)) . T)) -(-1523 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025))) -(-1523 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-825)) (|has| |#3| (-1025))) -((((-839)) . T)) +(((|#2| (-754)) . T)) +((((-1152)) . T)) +((((-849 |#1|)) . T)) +(-1559 (|has| |#3| (-25)) (|has| |#3| (-129)) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-776)) (|has| |#3| (-828)) (|has| |#3| (-1028))) +(-1559 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-828)) (|has| |#3| (-1028))) +((((-842)) . T)) (((|#1|) . T)) -(-1523 (|has| |#2| (-773)) (|has| |#2| (-825))) -(-1523 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))) -((((-846 |#1|)) . T)) +(-1559 (|has| |#2| (-776)) (|has| |#2| (-828))) +(-1559 (-12 (|has| |#1| (-776)) (|has| |#2| (-776))) (-12 (|has| |#1| (-830)) (|has| |#2| (-830)))) +((((-849 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) -((($ $) . T) (((-596 $) $) . T)) +(|has| |#1| (-362)) +(|has| |#1| (-362)) +(|has| |#1| (-362)) +((($ $) . T) (((-598 $) $) . T)) ((($) . T)) -((((-839)) . T)) +((((-842)) . T)) ((((-552)) . T)) (((|#2|) . T)) -((((-839)) . T)) -(((|#1|) . T) (((-402 (-552))) |has| |#1| (-358))) -((((-839)) . T)) -(((|#1|) . T)) -((((-839)) . T)) -((($) . T) ((|#2|) . T) (((-402 (-552))) . T)) -(|has| |#1| (-1073)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-839)) . T)) -(|has| |#2| (-885)) -((((-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) . T)) -((((-528)) |has| |#2| (-598 (-528))) (((-868 (-374))) |has| |#2| (-598 (-868 (-374)))) (((-868 (-552))) |has| |#2| (-598 (-868 (-552))))) -((((-839)) . T)) -((((-839)) . T)) -(((|#3|) |has| |#3| (-1025)) (((-552)) -12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025)))) -((((-1098 |#1| |#2|)) . T) (((-928 |#1|)) |has| |#2| (-598 (-1149))) (((-839)) . T)) -((((-928 |#1|)) |has| |#2| (-598 (-1149))) (((-1131)) -12 (|has| |#1| (-1014 (-552))) (|has| |#2| (-598 (-1149)))) (((-868 (-552))) -12 (|has| |#1| (-598 (-868 (-552)))) (|has| |#2| (-598 (-868 (-552))))) (((-868 (-374))) -12 (|has| |#1| (-598 (-868 (-374)))) (|has| |#2| (-598 (-868 (-374))))) (((-528)) -12 (|has| |#1| (-598 (-528))) (|has| |#2| (-598 (-528))))) -((((-1145 |#1|)) . T) (((-839)) . T)) -((((-839)) . T)) -((((-402 (-552))) |has| |#2| (-1014 (-402 (-552)))) (((-552)) |has| |#2| (-1014 (-552))) ((|#2|) . T) (((-841 |#1|)) . T)) -((((-116 |#1|)) . T) (($) . T) (((-402 (-552))) . T)) -((((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-552)) |has| |#1| (-1014 (-552))) ((|#1|) . T) (((-1149)) . T)) -((((-839)) . T)) +((((-842)) . T)) +(((|#1|) . T) (((-401 (-552))) |has| |#1| (-357))) +((((-842)) . T)) +(((|#1|) . T)) +((((-842)) . T)) +((($) . T) ((|#2|) . T) (((-401 (-552))) . T)) +(|has| |#1| (-1076)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-842)) . T)) +(|has| |#2| (-888)) +((((-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) . T)) +((((-528)) |has| |#2| (-600 (-528))) (((-871 (-373))) |has| |#2| (-600 (-871 (-373)))) (((-871 (-552))) |has| |#2| (-600 (-871 (-552))))) +((((-842)) . T)) +((((-842)) . T)) +(((|#3|) |has| |#3| (-1028)) (((-552)) -12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028)))) +((((-1101 |#1| |#2|)) . T) (((-931 |#1|)) |has| |#2| (-600 (-1152))) (((-842)) . T)) +((((-931 |#1|)) |has| |#2| (-600 (-1152))) (((-1134)) -12 (|has| |#1| (-1017 (-552))) (|has| |#2| (-600 (-1152)))) (((-871 (-552))) -12 (|has| |#1| (-600 (-871 (-552)))) (|has| |#2| (-600 (-871 (-552))))) (((-871 (-373))) -12 (|has| |#1| (-600 (-871 (-373)))) (|has| |#2| (-600 (-871 (-373))))) (((-528)) -12 (|has| |#1| (-600 (-528))) (|has| |#2| (-600 (-528))))) +((((-1148 |#1|)) . T) (((-842)) . T)) +((((-842)) . T)) +((((-401 (-552))) |has| |#2| (-1017 (-401 (-552)))) (((-552)) |has| |#2| (-1017 (-552))) ((|#2|) . T) (((-844 |#1|)) . T)) +((((-115 |#1|)) . T) (($) . T) (((-401 (-552))) . T)) +((((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-552)) |has| |#1| (-1017 (-552))) ((|#1|) . T) (((-1152)) . T)) +((((-842)) . T)) ((((-552)) . T)) ((($) . T)) -((((-374)) |has| |#1| (-862 (-374))) (((-552)) |has| |#1| (-862 (-552)))) +((((-373)) |has| |#1| (-865 (-373))) (((-552)) |has| |#1| (-865 (-552)))) ((((-552)) . T)) (((|#1|) . T)) -((((-839)) . T)) +((((-842)) . T)) (((|#1|) . T)) -((((-839)) . T)) -(((|#1|) |has| |#1| (-170)) (($) . T)) -((((-552)) . T) (((-402 (-552))) . T)) -(((|#1|) |has| |#1| (-304 |#1|))) -((((-839)) . T)) -((((-374)) . T)) +((((-842)) . T)) +(((|#1|) |has| |#1| (-169)) (($) . T)) +((((-552)) . T) (((-401 (-552))) . T)) +(((|#1|) |has| |#1| (-303 |#1|))) +((((-842)) . T)) +((((-373)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-839)) . T)) -((((-402 (-552))) . T) (($) . T)) -((((-402 |#2|) |#3|) . T)) +((((-842)) . T)) +((((-401 (-552))) . T) (($) . T)) +((((-401 |#2|) |#3|) . T)) (((|#1|) . T)) -(|has| |#1| (-1073)) -(((|#2| (-476 (-1471 |#1|) (-751))) . T)) +(|has| |#1| (-1076)) +(((|#2| (-475 (-1383 |#1|) (-754))) . T)) ((((-552) |#1|) . T)) -((((-1131)) . T) (((-839)) . T)) +((((-1134)) . T) (((-842)) . T)) (((|#2| |#2|) . T)) -(((|#1| (-524 (-1149))) . T)) -(-1523 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(((|#1| (-523 (-1152))) . T)) +(-1559 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028))) ((((-552)) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1149)) |has| |#1| (-876 (-1149))) (((-1055)) . T)) -(((|#1|) . T) (((-552)) |has| |#1| (-621 (-552)))) +((((-1152)) |has| |#1| (-879 (-1152))) (((-1058)) . T)) +(((|#1|) . T) (((-552)) |has| |#1| (-623 (-552)))) (|has| |#1| (-544)) -((($) . T) (((-402 (-552))) . T)) +((($) . T) (((-401 (-552))) . T)) ((($) . T)) ((($) . T)) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) (((|#1|) . T)) -((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -((((-839)) . T)) -((((-142)) . T)) -(((|#1|) . T) (((-402 (-552))) . T)) +((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-842)) . T)) +((((-141)) . T)) +(((|#1|) . T) (((-401 (-552))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-839)) . T)) +((((-842)) . T)) (((|#1|) . T)) -(|has| |#1| (-1124)) -(((|#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|))) . T)) +(|has| |#1| (-1127)) +(((|#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|))) . T)) (((|#1|) . T)) -((((-402 $) (-402 $)) |has| |#1| (-544)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552))))) -((((-839)) . T)) -((((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-552)) |has| |#1| (-1014 (-552))) ((|#1|) . T) ((|#2|) . T)) -((((-1055)) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552))))) -((((-374)) -12 (|has| |#1| (-862 (-374))) (|has| |#2| (-862 (-374)))) (((-552)) -12 (|has| |#1| (-862 (-552))) (|has| |#2| (-862 (-552))))) -((((-1218 |#1| |#2| |#3| |#4|)) . T)) +((((-401 $) (-401 $)) |has| |#1| (-544)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552))))) +((((-842)) . T)) +((((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-552)) |has| |#1| (-1017 (-552))) ((|#1|) . T) ((|#2|) . T)) +((((-1058)) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552))))) +((((-373)) -12 (|has| |#1| (-865 (-373))) (|has| |#2| (-865 (-373)))) (((-552)) -12 (|has| |#1| (-865 (-552))) (|has| |#2| (-865 (-552))))) +((((-1221 |#1| |#2| |#3| |#4|)) . T)) ((((-552) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) -(((|#1|) |has| |#1| (-170)) (($) . T)) -((($) . T)) -((((-679)) . T)) -((((-760 |#1| (-841 |#2|))) . T)) -((($) . T)) -((((-402 (-552))) . T) (($) . T)) -(|has| |#1| (-1073)) -(|has| |#1| (-1073)) -(|has| |#2| (-358)) -(|has| |#1| (-358)) -(|has| |#1| (-358)) -(|has| |#1| (-38 (-402 (-552)))) +(((|#1|) |has| |#1| (-169)) (($) . T)) +((($) . T)) +((((-681)) . T)) +((((-763 |#1| (-844 |#2|))) . T)) +((($) . T)) +((((-401 (-552))) . T) (($) . T)) +(|has| |#1| (-1076)) +(|has| |#1| (-1076)) +(|has| |#2| (-357)) +(|has| |#1| (-357)) +(|has| |#1| (-357)) +(|has| |#1| (-38 (-401 (-552)))) ((((-552)) . T)) -((((-1149)) -12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) -((((-1149)) -12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) -(((|#1|) . T)) -(|has| |#1| (-229)) -(((|#1| (-524 |#3|)) . T)) -(|has| |#1| (-363)) -(((|#2| (-236 (-1471 |#1|) (-751))) . T)) -(|has| |#1| (-363)) -(|has| |#1| (-363)) +((((-1152)) -12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))) +((((-1152)) -12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) +(((|#1|) . T)) +(|has| |#1| (-228)) +(((|#1| (-523 |#3|)) . T)) +(|has| |#1| (-362)) +(((|#2| (-235 (-1383 |#1|) (-754))) . T)) +(|has| |#1| (-362)) +(|has| |#1| (-362)) (((|#1|) . T) (($) . T)) -(((|#1| (-524 |#2|)) . T)) -(-1523 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025))) -(((|#1| (-751)) . T)) +(((|#1| (-523 |#2|)) . T)) +(-1559 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +(((|#1| (-754)) . T)) (|has| |#1| (-544)) -(-1523 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025))) -(-1523 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-1559 (|has| |#2| (-25)) (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +(-1559 (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-828)) (|has| |#2| (-1028))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-839)) . T)) -(-1523 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))) -(-1523 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025))) -(-1523 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025))) -(((|#1|) |has| |#1| (-170))) -(((|#4|) |has| |#4| (-1025))) -(((|#3|) |has| |#3| (-1025))) -(-12 (|has| |#1| (-358)) (|has| |#2| (-800))) -(-12 (|has| |#1| (-358)) (|has| |#2| (-800))) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073)))) -((((-528)) |has| |#1| (-598 (-528)))) -((((-402 |#2|)) . T) (((-402 (-552))) . T) (($) . T)) -((($ $) . T) ((#0=(-402 (-552)) #0#) . T)) -((((-839)) . T)) -((($) . T) (((-402 (-552))) . T)) -(((|#1|) . T)) -(((|#4|) |has| |#4| (-1073)) (((-552)) -12 (|has| |#4| (-1014 (-552))) (|has| |#4| (-1073))) (((-402 (-552))) -12 (|has| |#4| (-1014 (-402 (-552)))) (|has| |#4| (-1073)))) -(((|#3|) |has| |#3| (-1073)) (((-552)) -12 (|has| |#3| (-1014 (-552))) (|has| |#3| (-1073))) (((-402 (-552))) -12 (|has| |#3| (-1014 (-402 (-552)))) (|has| |#3| (-1073)))) -(|has| |#2| (-358)) -(((|#2|) |has| |#2| (-1025)) (((-552)) -12 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025)))) -(((|#1|) . T)) -(|has| |#2| (-358)) -(((#0=(-402 (-552)) #0#) |has| |#2| (-38 (-402 (-552)))) ((|#2| |#2|) . T) (($ $) -1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))) -((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1| |#1|) . T) ((#0=(-402 (-552)) #0#) |has| |#1| (-38 (-402 (-552))))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-552)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-552)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-402 (-552)) #0#) . T)) +((((-842)) . T)) +(-1559 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-776)) (|has| |#2| (-776)))) +(-1559 (|has| |#3| (-129)) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-776)) (|has| |#3| (-828)) (|has| |#3| (-1028))) +(-1559 (|has| |#2| (-169)) (|has| |#2| (-709)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +(((|#1|) |has| |#1| (-169))) +(((|#4|) |has| |#4| (-1028))) +(((|#3|) |has| |#3| (-1028))) +(-12 (|has| |#1| (-357)) (|has| |#2| (-803))) +(-12 (|has| |#1| (-357)) (|has| |#2| (-803))) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +((((-528)) |has| |#1| (-600 (-528)))) +((((-401 |#2|)) . T) (((-401 (-552))) . T) (($) . T)) +((($ $) . T) ((#0=(-401 (-552)) #0#) . T)) +((((-842)) . T)) +((($) . T) (((-401 (-552))) . T)) +(((|#1|) . T)) +(((|#4|) |has| |#4| (-1076)) (((-552)) -12 (|has| |#4| (-1017 (-552))) (|has| |#4| (-1076))) (((-401 (-552))) -12 (|has| |#4| (-1017 (-401 (-552)))) (|has| |#4| (-1076)))) +(((|#3|) |has| |#3| (-1076)) (((-552)) -12 (|has| |#3| (-1017 (-552))) (|has| |#3| (-1076))) (((-401 (-552))) -12 (|has| |#3| (-1017 (-401 (-552)))) (|has| |#3| (-1076)))) +(|has| |#2| (-357)) +(((|#2|) |has| |#2| (-1028)) (((-552)) -12 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) +(((|#1|) . T)) +(|has| |#2| (-357)) +(((#0=(-401 (-552)) #0#) |has| |#2| (-38 (-401 (-552)))) ((|#2| |#2|) . T) (($ $) -1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) +((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1| |#1|) . T) ((#0=(-401 (-552)) #0#) |has| |#1| (-38 (-401 (-552))))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-401 (-552)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-401 (-552)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-401 (-552)) #0#) . T)) (((|#2| |#2|) . T)) -((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) . T) (($) -1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))) -((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -(((|#1|) . T) (($) . T) (((-402 (-552))) . T)) -(((|#1|) . T) (($) . T) (((-402 (-552))) . T)) -(((|#1|) . T) (($) . T) (((-402 (-552))) . T)) -(((|#2|) . T)) -((((-839)) |has| |#1| (-1073))) -((($) . T)) -((((-1218 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#2| (-800)) -(|has| |#2| (-800)) -(|has| |#1| (-358)) -(|has| |#1| (-358)) -(|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) -(|has| |#1| (-358)) -(((|#1|) |has| |#2| (-412 |#1|))) -(((|#1|) |has| |#2| (-412 |#1|))) -((((-886 |#1|)) . T) (((-402 (-552))) . T) (($) . T)) -((((-839)) . T) (((-1154)) . T)) -((((-839)) . T) (((-1154)) . T)) -((((-839)) . T) (((-1154)) . T)) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073)))) -((((-528)) |has| |#1| (-598 (-528)))) -((((-839)) . T) (((-1154)) . T)) -((((-839)) . T)) -((((-839)) . T) (((-1154)) . T)) -((((-1185)) . T) (((-839)) . T) (((-1154)) . T)) -((((-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) |has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))))) -(-1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) . T) (($) -1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) +((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(((|#1|) . T) (($) . T) (((-401 (-552))) . T)) +(((|#1|) . T) (($) . T) (((-401 (-552))) . T)) +(((|#1|) . T) (($) . T) (((-401 (-552))) . T)) +(((|#2|) . T)) +((((-842)) |has| |#1| (-1076))) +((($) . T)) +((((-1221 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#2| (-803)) +(|has| |#2| (-803)) +(|has| |#1| (-357)) +(|has| |#1| (-357)) +(|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) +(|has| |#1| (-357)) +(((|#1|) |has| |#2| (-411 |#1|))) +(((|#1|) |has| |#2| (-411 |#1|))) +((((-889 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) +((((-842)) . T) (((-1157)) . T)) +((((-842)) . T) (((-1157)) . T)) +((((-842)) . T) (((-1157)) . T)) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +((((-528)) |has| |#1| (-600 (-528)))) +((((-842)) . T) (((-1157)) . T)) +((((-842)) . T)) +((((-842)) . T) (((-1157)) . T)) +((((-1188)) . T) (((-842)) . T) (((-1157)) . T)) +((((-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) |has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))))) +(-1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) ((((-552) |#1|) . T)) ((((-552) |#1|) . T)) ((((-552) |#1|) . T)) -(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) +(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((((-552) |#1|) . T)) (((|#1|) . T)) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) -(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) -((((-1149)) |has| |#1| (-876 (-1149))) (((-798 (-1149))) . T)) -(-1523 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025))) -((((-799 |#1|)) . T)) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +((((-1152)) |has| |#1| (-879 (-1152))) (((-801 (-1152))) . T)) +(-1559 (|has| |#3| (-129)) (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-776)) (|has| |#3| (-828)) (|has| |#3| (-1028))) +((((-802 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-839)) . T)) -(-1523 (|has| |#3| (-170)) (|has| |#3| (-707)) (|has| |#3| (-825)) (|has| |#3| (-1025))) +((((-842)) . T)) +(-1559 (|has| |#3| (-169)) (|has| |#3| (-709)) (|has| |#3| (-828)) (|has| |#3| (-1028))) (((|#1| |#2|) . T)) -(|has| |#1| (-38 (-402 (-552)))) -((((-839)) . T)) -((((-1218 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-402 (-552))) . T)) -(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-544)) (((-402 (-552))) |has| |#1| (-544))) -(((|#2|) . T) (((-552)) |has| |#2| (-621 (-552)))) -(|has| |#1| (-358)) -(-1523 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (-12 (|has| |#1| (-358)) (|has| |#2| (-229)))) -(|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) -(|has| |#1| (-358)) -(((|#1|) . T)) -(((#0=(-402 (-552)) #0#) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) ((|#1| |#1|) . T)) +(|has| |#1| (-38 (-401 (-552)))) +((((-842)) . T)) +((((-1221 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-401 (-552))) . T)) +(((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-544)) (((-401 (-552))) |has| |#1| (-544))) +(((|#2|) . T) (((-552)) |has| |#2| (-623 (-552)))) +(|has| |#1| (-357)) +(-1559 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (-12 (|has| |#1| (-357)) (|has| |#2| (-228)))) +(|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) +(|has| |#1| (-357)) +(((|#1|) . T)) +(((#0=(-401 (-552)) #0#) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((|#1| |#1|) . T)) ((((-552) |#1|) . T)) -((((-311 |#1|)) . T)) -(((#0=(-679) (-1145 #0#)) . T)) -((((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) (($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) ((|#1|) . T)) +((((-310 |#1|)) . T)) +(((#0=(-681) (-1148 #0#)) . T)) +((((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) (($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-825)) -((($ $) . T) ((#0=(-841 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1098 |#1| (-1149))) . T) (((-798 (-1149))) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1014 (-552))) (((-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) (((-1149)) . T)) +(|has| |#1| (-828)) +((($ $) . T) ((#0=(-844 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1101 |#1| (-1152))) . T) (((-801 (-1152))) . T) ((|#1|) . T) (((-552)) |has| |#1| (-1017 (-552))) (((-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) (((-1152)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1055) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1149) $) |has| |#1| (-229)) ((#0# |#1|) |has| |#1| (-229)) ((#1=(-1061 (-1149)) |#1|) . T) ((#1# $) . T)) +(((#0=(-1058) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1152) $) |has| |#1| (-228)) ((#0# |#1|) |has| |#1| (-228)) ((#1=(-1064 (-1152)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-402 (-552))) |has| |#2| (-38 (-402 (-552))))) -(|has| |#2| (-885)) -((($) . T) ((#0=(-1217 |#2| |#3| |#4|)) |has| #0# (-170)) (((-402 (-552))) |has| #0# (-38 (-402 (-552))))) +((($) . T) ((|#2|) . T) (((-401 (-552))) |has| |#2| (-38 (-401 (-552))))) +(|has| |#2| (-888)) +((($) . T) ((#0=(-1220 |#2| |#3| |#4|)) |has| #0# (-169)) (((-401 (-552))) |has| #0# (-38 (-401 (-552))))) ((((-552) |#1|) . T)) -(((#0=(-1218 |#1| |#2| |#3| |#4|)) |has| #0# (-304 #0#))) -((($) . T)) -(((|#1|) . T)) -((($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) ((#0=(-402 (-552)) #0#) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((|#2| |#2|) |has| |#1| (-358)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) ((#0=(-402 (-552)) #0#) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358)))) -(|has| |#2| (-229)) -(|has| $ (-145)) -((((-839)) . T)) -((($) . T) (((-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-344))) ((|#1|) . T)) -((((-839)) . T)) -(|has| |#1| (-825)) -((((-1149)) -12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))) -((((-402 |#2|) |#3|) . T)) -(((|#1|) . T)) -((((-839)) . T)) -(((|#2| (-652 |#1|)) . T)) -(-12 (|has| |#1| (-302)) (|has| |#1| (-885))) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) +(((#0=(-1221 |#1| |#2| |#3| |#4|)) |has| #0# (-303 #0#))) +((($) . T)) +(((|#1|) . T)) +((($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((#0=(-401 (-552)) #0#) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#2| |#2|) |has| |#1| (-357)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) ((#0=(-401 (-552)) #0#) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357)))) +(|has| |#2| (-228)) +(|has| $ (-144)) +((((-842)) . T)) +((($) . T) (((-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-343))) ((|#1|) . T)) +((((-842)) . T)) +(|has| |#1| (-828)) +((((-128)) . T)) +((((-1152)) -12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))) +((((-401 |#2|) |#3|) . T)) +(((|#1|) . T)) +((((-128)) . T)) +((((-842)) . T)) +(((|#2| (-654 |#1|)) . T)) +(-12 (|has| |#1| (-301)) (|has| |#1| (-888))) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (((|#4|) . T)) (|has| |#1| (-544)) -((($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358))) ((|#2|) |has| |#1| (-358)) ((|#1|) . T)) -((((-1149)) -1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) -(((|#1|) . T) (($) -1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-544))) (((-402 (-552))) -1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-358)))) -((((-1149)) -12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) -((((-1149)) -12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) -(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) +((($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357))) ((|#2|) |has| |#1| (-357)) ((|#1|) . T)) +((((-1152)) -1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) +(((|#1|) . T) (($) -1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-544))) (((-401 (-552))) -1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-357)))) +((((-1152)) -12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) +((((-1152)) -12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) +(((|#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) ((((-552) |#1|) . T)) -(-1523 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) +(-1559 (|has| |#2| (-169)) (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) (((|#1|) . T)) -(((|#1| (-524 (-798 (-1149)))) . T)) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) +(((|#1| (-523 (-801 (-1152)))) . T)) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) (((|#1|) . T)) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) (((|#1|) . T)) -(-1523 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025))) -(-1523 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))) -((((-1224 |#1| |#2| |#3|)) |has| |#1| (-358))) -((($) . T) (((-846 |#1|)) . T) (((-402 (-552))) . T)) -((((-1224 |#1| |#2| |#3|)) |has| |#1| (-358))) +(-1559 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +(-1559 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-776)) (|has| |#2| (-776)))) +((((-1227 |#1| |#2| |#3|)) |has| |#1| (-357))) +((($) . T) (((-849 |#1|)) . T) (((-401 (-552))) . T)) +((((-1227 |#1| |#2| |#3|)) |has| |#1| (-357))) (|has| |#1| (-544)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-402 |#2|)) . T)) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-344))) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073)))) -((((-528)) |has| |#1| (-598 (-528)))) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073)))) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073)))) -((((-528)) |has| |#1| (-598 (-528)))) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073)))) -((((-528)) |has| |#1| (-598 (-528)))) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073)))) +((((-401 |#2|)) . T)) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-343))) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +((((-528)) |has| |#1| (-600 (-528)))) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +((((-528)) |has| |#1| (-600 (-528)))) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +((((-528)) |has| |#1| (-600 (-528)))) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) (((|#1|) . T)) -(((|#2| |#2|) . T) ((#0=(-402 (-552)) #0#) . T) (($ $) . T)) +(((|#2| |#2|) . T) ((#0=(-401 (-552)) #0#) . T) (($ $) . T)) ((((-552)) . T)) -((((-839)) . T)) -(((|#2|) . T) (((-402 (-552))) . T) (($) . T)) -((((-567 |#1|)) . T) (((-402 (-552))) . T) (($) . T)) -((((-839)) . T)) -((((-402 (-552))) . T) (($) . T)) +((((-842)) . T)) +(((|#2|) . T) (((-401 (-552))) . T) (($) . T)) +((((-569 |#1|)) . T) (((-401 (-552))) . T) (($) . T)) +((((-842)) . T)) +((((-401 (-552))) . T) (($) . T)) ((((-552) |#1|) . T)) -((((-839)) . T)) -((($ $) . T) (((-1149) $) . T)) -((((-1224 |#1| |#2| |#3|)) . T)) -((((-528)) |has| |#2| (-598 (-528))) (((-868 (-374))) |has| |#2| (-598 (-868 (-374)))) (((-868 (-552))) |has| |#2| (-598 (-868 (-552))))) -((((-839)) . T)) -((((-839)) . T)) -((((-868 (-552))) -12 (|has| |#1| (-598 (-868 (-552)))) (|has| |#3| (-598 (-868 (-552))))) (((-868 (-374))) -12 (|has| |#1| (-598 (-868 (-374)))) (|has| |#3| (-598 (-868 (-374))))) (((-528)) -12 (|has| |#1| (-598 (-528))) (|has| |#3| (-598 (-528))))) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -(((|#1|) . T) (((-839)) . T) (((-1154)) . T)) -((((-839)) . T)) -(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((|#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|))) . T)) -(((|#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) . T)) -((((-839)) . T)) -((((-1224 |#1| |#2| |#3|)) |has| |#1| (-358))) -(|has| |#1| (-358)) -((((-1224 |#1| |#2| |#3|)) . T) (((-1196 |#1| |#2| |#3|)) . T)) -((((-1149)) . T) (((-839)) . T)) -((((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) |has| |#2| (-170)) (($) -1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885)))) +((((-842)) . T)) +((($ $) . T) (((-1152) $) . T)) +((((-1227 |#1| |#2| |#3|)) . T)) +((((-528)) |has| |#2| (-600 (-528))) (((-871 (-373))) |has| |#2| (-600 (-871 (-373)))) (((-871 (-552))) |has| |#2| (-600 (-871 (-552))))) +((((-842)) . T)) +((((-842)) . T)) +((((-871 (-552))) -12 (|has| |#1| (-600 (-871 (-552)))) (|has| |#3| (-600 (-871 (-552))))) (((-871 (-373))) -12 (|has| |#1| (-600 (-871 (-373)))) (|has| |#3| (-600 (-871 (-373))))) (((-528)) -12 (|has| |#1| (-600 (-528))) (|has| |#3| (-600 (-528))))) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +(((|#1|) . T) (((-842)) . T) (((-1157)) . T)) +((((-842)) . T)) +(((|#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|))) . T)) +(((|#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) . T)) +((((-842)) . T)) +((((-1227 |#1| |#2| |#3|)) |has| |#1| (-357))) +(|has| |#1| (-357)) +((((-1227 |#1| |#2| |#3|)) . T) (((-1199 |#1| |#2| |#3|)) . T)) +((((-1152)) . T) (((-842)) . T)) +((((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) |has| |#2| (-169)) (($) -1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888)))) (((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-402 (-552))) |has| |#2| (-38 (-402 (-552)))) ((|#2|) . T)) -((($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -((((-1077)) . T)) -((((-839)) . T)) -((($) -1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -((($) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) . T)) -((($) . T)) -((($) -1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) ((|#1|) |has| |#1| (-170)) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -(|has| |#2| (-885)) -(|has| |#1| (-885)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1| |#1|) |has| |#1| (-170))) -((((-679)) . T)) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073)))) -(((|#1|) |has| |#1| (-170))) -(((|#1|) |has| |#1| (-170))) -((((-402 (-552))) . T) (($) . T)) +((($) . T) (((-401 (-552))) |has| |#2| (-38 (-401 (-552)))) ((|#2|) . T)) +((($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((((-1080)) . T)) +((((-842)) . T)) +((($) -1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +((($) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T)) +((($) . T)) +((($) -1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) ((|#1|) |has| |#1| (-169)) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(|has| |#2| (-888)) +(|has| |#1| (-888)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1| |#1|) |has| |#1| (-169))) +((((-681)) . T)) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +(((|#1|) |has| |#1| (-169))) +(((|#1|) |has| |#1| (-169))) +((((-401 (-552))) . T) (($) . T)) (((|#1| (-552)) . T)) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-344))) -(|has| |#1| (-358)) -(|has| |#1| (-358)) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-344))) -(-1523 (|has| |#1| (-170)) (|has| |#1| (-544))) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-343))) +(|has| |#1| (-357)) +(|has| |#1| (-357)) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-343))) +(-1559 (|has| |#1| (-169)) (|has| |#1| (-544))) (((|#1| (-552)) . T)) -(((|#1| (-402 (-552))) . T)) -(((|#1| (-751)) . T)) -((((-402 (-552))) . T)) -(((|#1| (-524 |#2|) |#2|) . T)) +(((|#1| (-401 (-552))) . T)) +(((|#1| (-754)) . T)) +((((-401 (-552))) . T)) +(((|#1| (-523 |#2|) |#2|) . T)) ((((-552) |#1|) . T)) ((((-552) |#1|) . T)) -(|has| |#1| (-1073)) +(|has| |#1| (-1076)) ((((-552) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-868 (-374))) . T) (((-868 (-552))) . T) (((-1149)) . T) (((-528)) . T)) +((((-871 (-373))) . T) (((-871 (-552))) . T) (((-1152)) . T) (((-528)) . T)) (((|#1|) . T)) -((((-839)) . T)) -(-1523 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025))) -(-1523 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))) +((((-842)) . T)) +(-1559 (|has| |#2| (-129)) (|has| |#2| (-169)) (|has| |#2| (-357)) (|has| |#2| (-776)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +(-1559 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-776)) (|has| |#2| (-776)))) ((((-552)) . T)) ((((-552)) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(-1523 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025))) -((((-1149)) -12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) -(-1523 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))) -(|has| |#1| (-143)) -(|has| |#1| (-145)) -(|has| |#1| (-358)) +(-1559 (|has| |#2| (-169)) (|has| |#2| (-709)) (|has| |#2| (-828)) (|has| |#2| (-1028))) +((((-1152)) -12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) +(-1559 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-709)) (|has| |#2| (-709)))) +(|has| |#1| (-142)) +(|has| |#1| (-144)) +(|has| |#1| (-357)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-229)) -((((-839)) . T)) -(((|#1| (-751) (-1055)) . T)) +(|has| |#1| (-228)) +((((-842)) . T)) +(((|#1| (-754) (-1058)) . T)) ((((-552) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) ((((-552) |#1|) . T)) ((((-552) |#1|) . T)) -((((-116 |#1|)) . T)) -((((-402 (-552))) . T) (((-552)) . T)) -(((|#2|) |has| |#2| (-1025))) -((((-402 (-552))) . T) (($) . T)) +((((-115 |#1|)) . T)) +((((-401 (-552))) . T) (((-552)) . T)) +(((|#2|) |has| |#2| (-1028))) +((((-401 (-552))) . T) (($) . T)) (((|#2|) . T)) -((((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-544))) +((((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) |has| |#1| (-169)) (($) |has| |#1| (-544))) ((((-552)) . T)) ((((-552)) . T)) -((((-1131) (-1149) (-552) (-221) (-839)) . T)) +((((-1134) (-1152) (-552) (-220) (-842)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -(-1523 (|has| |#1| (-344)) (|has| |#1| (-363))) +(-1559 (|has| |#1| (-343)) (|has| |#1| (-362))) (((|#1| |#2|) . T)) ((($) . T) ((|#1|) . T)) -((((-839)) . T)) -((($) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-402 (-552))) |has| |#1| (-38 (-402 (-552))))) -(((|#2|) |has| |#2| (-1073)) (((-552)) -12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073))) (((-402 (-552))) -12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) -((((-528)) |has| |#1| (-598 (-528)))) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-827)) (|has| |#1| (-1073)))) -((($) . T) (((-402 (-552))) . T)) -(|has| |#1| (-885)) -(|has| |#1| (-885)) -((((-221)) -12 (|has| |#1| (-358)) (|has| |#2| (-998))) (((-374)) -12 (|has| |#1| (-358)) (|has| |#2| (-998))) (((-868 (-374))) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-868 (-374))))) (((-868 (-552))) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-868 (-552))))) (((-528)) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-528))))) -((((-839)) . T)) -((((-839)) . T)) +((((-842)) . T)) +((($) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-401 (-552))) |has| |#1| (-38 (-401 (-552))))) +(((|#2|) |has| |#2| (-1076)) (((-552)) -12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076))) (((-401 (-552))) -12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) +((((-528)) |has| |#1| (-600 (-528)))) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-830)) (|has| |#1| (-1076)))) +((($) . T) (((-401 (-552))) . T)) +(|has| |#1| (-888)) +(|has| |#1| (-888)) +((((-220)) -12 (|has| |#1| (-357)) (|has| |#2| (-1001))) (((-373)) -12 (|has| |#1| (-357)) (|has| |#2| (-1001))) (((-871 (-373))) -12 (|has| |#1| (-357)) (|has| |#2| (-600 (-871 (-373))))) (((-871 (-552))) -12 (|has| |#1| (-357)) (|has| |#2| (-600 (-871 (-552))))) (((-528)) -12 (|has| |#1| (-357)) (|has| |#2| (-600 (-528))))) +((((-842)) . T)) +((((-842)) . T)) (((|#2| |#2|) . T)) -(((|#1| |#1|) |has| |#1| (-170))) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-544))) -(-1523 (|has| |#1| (-21)) (|has| |#1| (-825))) -(((|#2|) . T)) -(-1523 (|has| |#1| (-21)) (|has| |#1| (-825))) -(((|#1|) |has| |#1| (-170))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-839)) -1523 (-12 (|has| |#1| (-597 (-839))) (|has| |#2| (-597 (-839)))) (-12 (|has| |#1| (-1073)) (|has| |#2| (-1073))))) -((((-402 |#2|) |#3|) . T)) -((((-402 (-552))) . T) (($) . T)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-358)) -((($ $) . T) ((#0=(-402 (-552)) #0#) . T)) -(|has| (-402 |#2|) (-145)) -(|has| (-402 |#2|) (-143)) -((((-679)) . T)) -(((|#1|) . T) (((-402 (-552))) . T) (((-552)) . T) (($) . T)) +(((|#1| |#1|) |has| |#1| (-169))) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-544))) +(-1559 (|has| |#1| (-21)) (|has| |#1| (-828))) +(((|#2|) . T)) +(-1559 (|has| |#1| (-21)) (|has| |#1| (-828))) +(((|#1|) |has| |#1| (-169))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-842)) -1559 (-12 (|has| |#1| (-599 (-842))) (|has| |#2| (-599 (-842)))) (-12 (|has| |#1| (-1076)) (|has| |#2| (-1076))))) +((((-401 |#2|) |#3|) . T)) +((((-401 (-552))) . T) (($) . T)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-357)) +((($ $) . T) ((#0=(-401 (-552)) #0#) . T)) +(|has| (-401 |#2|) (-144)) +(|has| (-401 |#2|) (-142)) +((((-681)) . T)) +(((|#1|) . T) (((-401 (-552))) . T) (((-552)) . T) (($) . T)) (((#0=(-552) #0#) . T)) -((($) . T) (((-402 (-552))) . T)) -(-1523 (|has| |#4| (-170)) (|has| |#4| (-707)) (|has| |#4| (-825)) (|has| |#4| (-1025))) -(-1523 (|has| |#3| (-170)) (|has| |#3| (-707)) (|has| |#3| (-825)) (|has| |#3| (-1025))) -((((-839)) . T) (((-1154)) . T)) -(|has| |#4| (-773)) -(-1523 (|has| |#4| (-773)) (|has| |#4| (-825))) -(|has| |#4| (-825)) -(|has| |#3| (-773)) -(-1523 (|has| |#3| (-773)) (|has| |#3| (-825))) -(|has| |#3| (-825)) +((($) . T) (((-401 (-552))) . T)) +(-1559 (|has| |#4| (-169)) (|has| |#4| (-709)) (|has| |#4| (-828)) (|has| |#4| (-1028))) +(-1559 (|has| |#3| (-169)) (|has| |#3| (-709)) (|has| |#3| (-828)) (|has| |#3| (-1028))) +((((-842)) . T) (((-1157)) . T)) +(|has| |#4| (-776)) +(-1559 (|has| |#4| (-776)) (|has| |#4| (-828))) +(|has| |#4| (-828)) +(|has| |#3| (-776)) +(-1559 (|has| |#3| (-776)) (|has| |#3| (-828))) +(|has| |#3| (-828)) ((((-552)) . T)) (((|#2|) . T)) -((((-1149)) -1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) -((((-1149)) -12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) -((((-1149)) -12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) +((((-1152)) -1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) +((((-1152)) -12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) +((((-1152)) -12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-841 |#1|)) . T)) -((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358))) -((((-1113 |#1| |#2|)) . T)) -((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358))) -(((|#2|) . T) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -((((-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) . T)) -((($) . T)) -(|has| |#1| (-998)) -(((|#2|) . T) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) -((((-839)) . T)) -((((-528)) |has| |#2| (-598 (-528))) (((-868 (-552))) |has| |#2| (-598 (-868 (-552)))) (((-868 (-374))) |has| |#2| (-598 (-868 (-374)))) (((-374)) . #0=(|has| |#2| (-998))) (((-221)) . #0#)) -((((-1149) (-52)) . T)) -(|has| |#1| (-38 (-402 (-552)))) -(|has| |#1| (-38 (-402 (-552)))) +((((-844 |#1|)) . T)) +((((-1150 |#1| |#2| |#3|)) |has| |#1| (-357))) +((((-1116 |#1| |#2|)) . T)) +((((-1150 |#1| |#2| |#3|)) |has| |#1| (-357))) +(((|#2|) . T) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) . T)) +((($) . T)) +(|has| |#1| (-1001)) +(((|#2|) . T) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) +((((-842)) . T)) +((((-528)) |has| |#2| (-600 (-528))) (((-871 (-552))) |has| |#2| (-600 (-871 (-552)))) (((-871 (-373))) |has| |#2| (-600 (-871 (-373)))) (((-373)) . #0=(|has| |#2| (-1001))) (((-220)) . #0#)) +((((-1152) (-52)) . T)) +(|has| |#1| (-38 (-401 (-552)))) +(|has| |#1| (-38 (-401 (-552)))) (((|#2|) . T)) ((($ $) . T)) -((((-402 (-552))) . T) (((-679)) . T) (($) . T)) -((((-1147 |#1| |#2| |#3|)) . T)) -((((-1147 |#1| |#2| |#3|)) . T) (((-1140 |#1| |#2| |#3|)) . T)) -((((-839)) . T)) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073)))) +((((-401 (-552))) . T) (((-681)) . T) (($) . T)) +((((-1150 |#1| |#2| |#3|)) . T)) +((((-1150 |#1| |#2| |#3|)) . T) (((-1143 |#1| |#2| |#3|)) . T)) +((((-842)) . T)) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) ((((-552) |#1|) . T)) -((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358))) +((((-1150 |#1| |#2| |#3|)) |has| |#1| (-357))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) -(|has| |#2| (-358)) -(((|#3|) . T) ((|#2|) . T) (($) -1523 (|has| |#4| (-170)) (|has| |#4| (-825)) (|has| |#4| (-1025))) ((|#4|) -1523 (|has| |#4| (-170)) (|has| |#4| (-358)) (|has| |#4| (-1025)))) -(((|#2|) . T) (($) -1523 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025))) ((|#3|) -1523 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025)))) +(|has| |#2| (-357)) +(((|#3|) . T) ((|#2|) . T) (($) -1559 (|has| |#4| (-169)) (|has| |#4| (-828)) (|has| |#4| (-1028))) ((|#4|) -1559 (|has| |#4| (-169)) (|has| |#4| (-357)) (|has| |#4| (-1028)))) +(((|#2|) . T) (($) -1559 (|has| |#3| (-169)) (|has| |#3| (-828)) (|has| |#3| (-1028))) ((|#3|) -1559 (|has| |#3| (-169)) (|has| |#3| (-357)) (|has| |#3| (-1028)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-358)) -((((-116 |#1|)) . T)) +(|has| |#1| (-357)) +((((-115 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-402 (-552))) |has| |#2| (-1014 (-402 (-552)))) (((-552)) |has| |#2| (-1014 (-552))) ((|#2|) . T) (((-841 |#1|)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) +((((-401 (-552))) |has| |#2| (-1017 (-401 (-552)))) (((-552)) |has| |#2| (-1017 (-552))) ((|#2|) . T) (((-844 |#1|)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) (((|#1|) . T)) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073)))) -((((-129)) . T) (((-839)) . T)) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) +((((-128)) . T) (((-842)) . T)) ((((-552) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-358)) (|has| |#2| (-281 |#2| |#2|))) (($ $) . T)) +(((|#2| $) -12 (|has| |#1| (-357)) (|has| |#2| (-280 |#2| |#2|))) (($ $) . T)) ((($ $) . T)) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-885))) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) -((((-839)) . T)) -((((-839)) . T)) -((((-839)) . T)) -(((|#1| (-524 |#2|)) . T)) -((((-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) . T)) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-445)) (|has| |#1| (-888))) +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +((((-842)) . T)) +((((-842)) . T)) +((((-842)) . T)) +(((|#1| (-523 |#2|)) . T)) +((((-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) . T)) +((((-552) (-128)) . T)) (((|#1| (-552)) . T)) -(((|#1| (-402 (-552))) . T)) -(((|#1| (-751)) . T)) -((((-839)) . T) (((-1154)) . T)) -((((-839)) . T) (((-1154)) . T)) -((((-839)) . T) (((-1154)) . T)) -((((-116 |#1|)) . T) (($) . T) (((-402 (-552))) . T)) -((((-839)) . T) (((-1154)) . T)) -((((-839)) . T) (((-1154)) . T)) -((((-839)) . T) (((-1154)) . T)) -(-1523 (|has| |#2| (-446)) (|has| |#2| (-544)) (|has| |#2| (-885))) -(-1523 (|has| |#1| (-446)) (|has| |#1| (-544)) (|has| |#1| (-885))) -((($) . T)) -(((|#2| (-524 (-841 |#1|))) . T)) -((((-839)) . T) (((-1154)) . T)) -((((-839)) . T) (((-1154)) . T)) +(((|#1| (-401 (-552))) . T)) +(((|#1| (-754)) . T)) +((((-842)) . T) (((-1157)) . T)) +((((-842)) . T) (((-1157)) . T)) +((((-842)) . T) (((-1157)) . T)) +((((-115 |#1|)) . T) (($) . T) (((-401 (-552))) . T)) +((((-842)) . T) (((-1157)) . T)) +((((-842)) . T) (((-1157)) . T)) +((((-842)) . T) (((-1157)) . T)) +(-1559 (|has| |#2| (-445)) (|has| |#2| (-544)) (|has| |#2| (-888))) +(-1559 (|has| |#1| (-445)) (|has| |#1| (-544)) (|has| |#1| (-888))) +((($) . T)) +(((|#2| (-523 (-844 |#1|))) . T)) +((((-842)) . T) (((-1157)) . T)) +((((-842)) . T) (((-1157)) . T)) ((((-552) |#1|) . T)) -((((-839)) . T) (((-1154)) . T)) +((((-842)) . T) (((-1157)) . T)) (((|#2|) . T)) -(((|#2| (-751)) . T)) -((((-839)) -1523 (|has| |#1| (-597 (-839))) (|has| |#1| (-1073)))) +(((|#2| (-754)) . T)) +((((-842)) -1559 (|has| |#1| (-599 (-842))) (|has| |#1| (-1076)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-1131) |#1|) . T)) -((((-402 |#2|)) . T)) -((((-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T)) +((((-1134) |#1|) . T)) +((((-401 |#2|)) . T)) +((((-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T)) (|has| |#1| (-544)) (|has| |#1| (-544)) ((($) . T) ((|#2|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#2| $) |has| |#2| (-281 |#2| |#2|))) -(((|#1| (-625 |#1|)) |has| |#1| (-825))) -(-1523 (|has| |#1| (-229)) (|has| |#1| (-344))) -(-1523 (|has| |#1| (-358)) (|has| |#1| (-344))) -(|has| |#1| (-1073)) -(((|#1|) . T)) -((((-402 (-552))) . T) (($) . T)) -((((-975 |#1|)) . T) ((|#1|) . T) (((-552)) -1523 (|has| (-975 |#1|) (-1014 (-552))) (|has| |#1| (-1014 (-552)))) (((-402 (-552))) -1523 (|has| (-975 |#1|) (-1014 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552)))))) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -((((-1149)) |has| |#1| (-876 (-1149)))) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) -(((|#1| (-586 |#1| |#3|) (-586 |#1| |#2|)) . T)) +(((|#2| $) |has| |#2| (-280 |#2| |#2|))) +(((|#1| (-627 |#1|)) |has| |#1| (-828))) +(-1559 (|has| |#1| (-228)) (|has| |#1| (-343))) +(-1559 (|has| |#1| (-357)) (|has| |#1| (-343))) +(|has| |#1| (-1076)) +(((|#1|) . T)) +((((-401 (-552))) . T) (($) . T)) +((((-978 |#1|)) . T) ((|#1|) . T) (((-552)) -1559 (|has| (-978 |#1|) (-1017 (-552))) (|has| |#1| (-1017 (-552)))) (((-401 (-552))) -1559 (|has| (-978 |#1|) (-1017 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552)))))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +((((-1152)) |has| |#1| (-879 (-1152)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) +(((|#1| (-588 |#1| |#3|) (-588 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1113 |#1| |#2|) #0#) |has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|)))) -(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((#0=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) #0#) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) -(((#0=(-116 |#1|)) |has| #0# (-304 #0#))) +(((#0=(-1116 |#1| |#2|) #0#) |has| (-1116 |#1| |#2|) (-303 (-1116 |#1| |#2|)))) +(((|#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((#0=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) #0#) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) +(((#0=(-115 |#1|)) |has| #0# (-303 #0#))) ((($ $) . T)) -(-1523 (|has| |#1| (-827)) (|has| |#1| (-1073))) -((($ $) . T) ((#0=(-841 |#1|) $) . T) ((#0# |#2|) . T)) -((($ $) . T) ((|#2| $) |has| |#1| (-229)) ((|#2| |#1|) |has| |#1| (-229)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-472 . -1073) T) ((-259 . -507) 144982) ((-243 . -507) 144925) ((-241 . -1073) 144875) ((-559 . -111) 144860) ((-524 . -23) T) ((-137 . -1073) T) ((-136 . -1073) T) ((-117 . -304) 144817) ((-132 . -1073) T) ((-473 . -507) 144609) ((-674 . -101) T) ((-1114 . -507) 144528) ((-385 . -130) T) ((-1245 . -952) 144497) ((-31 . -92) T) ((-586 . -483) 144481) ((-603 . -130) T) ((-799 . -823) T) ((-516 . -56) 144431) ((-58 . -507) 144364) ((-512 . -507) 144297) ((-413 . -876) 144256) ((-167 . -1025) T) ((-509 . -507) 144189) ((-490 . -507) 144122) ((-489 . -507) 144055) ((-779 . -1014) 143838) ((-679 . -38) 143803) ((-338 . -344) T) ((-1067 . -1066) 143787) ((-1067 . -1073) 143765) ((-167 . -239) 143716) ((-167 . -229) 143667) ((-1067 . -1068) 143625) ((-848 . -281) 143583) ((-221 . -775) T) ((-221 . -772) T) ((-674 . -279) NIL) ((-1123 . -1162) 143562) ((-402 . -968) 143546) ((-681 . -21) T) ((-681 . -25) T) ((-1247 . -628) 143520) ((-311 . -158) 143499) ((-311 . -141) 143478) ((-1123 . -106) 143428) ((-133 . -25) T) ((-40 . -227) 143405) ((-116 . -21) T) ((-116 . -25) T) ((-592 . -283) 143381) ((-469 . -283) 143360) ((-1205 . -1025) T) ((-832 . -1025) T) ((-779 . -333) 143344) ((-117 . -1124) NIL) ((-90 . -597) 143276) ((-471 . -130) T) ((-578 . -1186) T) ((-1205 . -321) 143253) ((-559 . -1025) T) ((-1205 . -229) T) ((-642 . -698) 143237) ((-1069 . -597) 143203) ((-934 . -283) 143180) ((-59 . -34) T) ((-1063 . -597) 143146) ((-1047 . -597) 143112) ((-1036 . -775) T) ((-1036 . -772) T) ((-796 . -707) T) ((-712 . -47) 143077) ((-605 . -38) 143064) ((-350 . -285) T) ((-347 . -285) T) ((-339 . -285) T) ((-259 . -285) 142995) ((-243 . -285) 142926) ((-1040 . -597) 142892) ((-1012 . -597) 142858) ((-1000 . -101) T) ((-995 . -597) 142824) ((-408 . -707) T) ((-117 . -38) 142769) ((-608 . -597) 142735) ((-408 . -467) T) ((-477 . -597) 142701) ((-349 . -101) T) ((-214 . -597) 142667) ((-1180 . -1032) T) ((-692 . -1032) T) ((-1147 . -47) 142644) ((-1146 . -47) 142614) ((-1140 . -47) 142591) ((-1011 . -149) 142537) ((-886 . -285) T) ((-1099 . -47) 142509) ((-674 . -304) NIL) ((-508 . -597) 142491) ((-503 . -597) 142473) ((-501 . -597) 142455) ((-322 . -1073) 142405) ((-693 . -446) 142336) ((-48 . -101) T) ((-1216 . -281) 142321) ((-1195 . -281) 142241) ((-625 . -646) 142225) ((-625 . -631) 142209) ((-334 . -21) T) ((-334 . -25) T) ((-40 . -344) NIL) ((-172 . -21) T) ((-172 . -25) T) ((-625 . -368) 142193) ((-586 . -281) 142170) ((-589 . -597) 142137) ((-383 . -101) T) ((-1093 . -141) T) ((-126 . -597) 142069) ((-850 . -1073) T) ((-638 . -406) 142053) ((-695 . -597) 142035) ((-183 . -597) 142017) ((-160 . -597) 141999) ((-155 . -597) 141981) ((-1247 . -707) T) ((-1075 . -34) T) ((-847 . -775) NIL) ((-847 . -772) NIL) ((-835 . -827) T) ((-712 . -862) NIL) ((-1256 . -130) T) ((-376 . -130) T) ((-880 . -101) T) ((-712 . -1014) 141857) ((-524 . -130) T) ((-1060 . -406) 141841) ((-976 . -483) 141825) ((-117 . -395) 141802) ((-1140 . -1186) 141781) ((-762 . -406) 141765) ((-760 . -406) 141749) ((-919 . -34) T) ((-674 . -1124) NIL) ((-246 . -628) 141584) ((-245 . -628) 141406) ((-797 . -896) 141385) ((-448 . -406) 141369) ((-586 . -19) 141353) ((-1119 . -1179) 141322) ((-1140 . -862) NIL) ((-1140 . -860) 141274) ((-586 . -588) 141251) ((-1172 . -597) 141183) ((-1148 . -597) 141165) ((-61 . -390) T) ((-1146 . -1014) 141100) ((-1140 . -1014) 141066) ((-674 . -38) 141016) ((-468 . -281) 141001) ((-712 . -372) 140985) ((-638 . -1032) T) ((-1216 . -978) 140951) ((-1195 . -978) 140917) ((-1037 . -1162) 140892) ((-848 . -598) 140700) ((-848 . -597) 140682) ((-1159 . -483) 140619) ((-413 . -998) 140598) ((-48 . -304) 140585) ((-1037 . -106) 140531) ((-473 . -483) 140468) ((-513 . -1186) T) ((-1140 . -333) 140420) ((-1114 . -483) 140391) ((-1140 . -372) 140343) ((-1060 . -1032) T) ((-432 . -101) T) ((-181 . -1073) T) ((-246 . -34) T) ((-245 . -34) T) ((-762 . -1032) T) ((-760 . -1032) T) ((-712 . -876) 140320) ((-448 . -1032) T) ((-58 . -483) 140304) ((-1010 . -1031) 140278) ((-512 . -483) 140262) ((-509 . -483) 140246) ((-490 . -483) 140230) ((-489 . -483) 140214) ((-241 . -507) 140147) ((-1010 . -111) 140114) ((-1147 . -876) 140027) ((-1146 . -876) 139933) ((-1140 . -876) 139766) ((-650 . -1085) T) ((-1099 . -876) 139750) ((-626 . -92) T) ((-349 . -1124) T) ((-317 . -1031) 139732) ((-246 . -771) 139711) ((-246 . -774) 139662) ((-246 . -773) 139641) ((-245 . -771) 139620) ((-245 . -774) 139571) ((-245 . -773) 139550) ((-31 . -597) 139516) ((-50 . -1032) T) ((-246 . -707) 139426) ((-245 . -707) 139336) ((-1180 . -1073) T) ((-650 . -23) T) ((-567 . -1032) T) ((-511 . -1032) T) ((-374 . -1031) 139301) ((-317 . -111) 139276) ((-72 . -378) T) ((-72 . -390) T) ((-1000 . -38) 139213) ((-674 . -395) 139195) ((-98 . -101) T) ((-692 . -1073) T) ((-979 . -143) 139167) ((-979 . -145) 139139) ((-374 . -111) 139095) ((-314 . -1190) 139074) ((-468 . -978) 139040) ((-349 . -38) 139005) ((-40 . -365) 138977) ((-849 . -597) 138849) ((-127 . -125) 138833) ((-121 . -125) 138817) ((-814 . -1031) 138787) ((-813 . -21) 138739) ((-807 . -1031) 138723) ((-813 . -25) 138675) ((-314 . -544) 138626) ((-552 . -808) T) ((-236 . -1186) T) ((-814 . -111) 138591) ((-807 . -111) 138570) ((-1216 . -597) 138552) ((-1195 . -597) 138534) ((-1195 . -598) 138207) ((-1145 . -885) 138186) ((-1098 . -885) 138165) ((-48 . -38) 138130) ((-1254 . -1085) T) ((-586 . -597) 138042) ((-586 . -598) 138003) ((-1252 . -1085) T) ((-236 . -1014) 137830) ((-1145 . -628) 137755) ((-1098 . -628) 137680) ((-699 . -597) 137662) ((-831 . -628) 137636) ((-484 . -1073) T) ((-1254 . -23) T) ((-1252 . -23) T) ((-1010 . -1025) T) ((-1159 . -281) 137615) ((-167 . -363) 137566) ((-980 . -1186) T) ((-44 . -23) T) ((-473 . -281) 137545) ((-571 . -1073) T) ((-1119 . -1082) 137514) ((-1077 . -1076) 137466) ((-128 . -1186) T) ((-385 . -21) T) ((-385 . -25) T) ((-150 . -1085) T) ((-1260 . -101) T) ((-980 . -860) 137448) ((-980 . -862) 137430) ((-1180 . -698) 137327) ((-605 . -227) 137311) ((-603 . -21) T) ((-284 . -544) T) ((-603 . -25) T) ((-1166 . -1073) T) ((-692 . -698) 137276) ((-236 . -372) 137245) ((-980 . -1014) 137205) ((-374 . -1025) T) ((-219 . -1032) T) ((-117 . -227) 137182) ((-58 . -281) 137159) ((-150 . -23) T) ((-509 . -281) 137136) ((-322 . -507) 137069) ((-489 . -281) 137046) ((-374 . -239) T) ((-374 . -229) T) ((-814 . -1025) T) ((-807 . -1025) T) ((-693 . -925) 137015) ((-681 . -827) T) ((-468 . -597) 136997) ((-807 . -229) 136976) ((-133 . -827) T) ((-638 . -1073) T) ((-1159 . -588) 136955) ((-538 . -1162) 136934) ((-331 . -1073) T) ((-314 . -358) 136913) ((-402 . -145) 136892) ((-402 . -143) 136871) ((-940 . -1085) 136770) ((-236 . -876) 136702) ((-795 . -1085) 136612) ((-634 . -829) 136596) ((-473 . -588) 136575) ((-538 . -106) 136525) ((-980 . -372) 136507) ((-980 . -333) 136489) ((-96 . -1073) T) ((-940 . -23) 136300) ((-471 . -21) T) ((-471 . -25) T) ((-795 . -23) 136170) ((-1149 . -597) 136152) ((-58 . -19) 136136) ((-1149 . -598) 136058) ((-1145 . -707) T) ((-1098 . -707) T) ((-509 . -19) 136042) ((-489 . -19) 136026) ((-58 . -588) 136003) ((-1060 . -1073) T) ((-877 . -101) 135981) ((-831 . -707) T) ((-762 . -1073) T) ((-509 . -588) 135958) ((-489 . -588) 135935) ((-760 . -1073) T) ((-760 . -1039) 135902) ((-455 . -1073) T) ((-448 . -1073) T) ((-571 . -698) 135877) ((-629 . -1073) T) ((-980 . -876) NIL) ((-1224 . -47) 135854) ((-609 . -1085) T) ((-650 . -130) T) ((-1218 . -101) T) ((-1217 . -47) 135824) ((-1196 . -47) 135801) ((-1180 . -170) 135752) ((-1053 . -1190) 135703) ((-270 . -1073) T) ((-84 . -435) T) ((-84 . -390) T) ((-1146 . -302) 135682) ((-1140 . -302) 135661) ((-50 . -1073) T) ((-1053 . -544) 135612) ((-692 . -170) T) ((-580 . -47) 135589) ((-221 . -628) 135554) ((-567 . -1073) T) ((-511 . -1073) T) ((-354 . -1190) T) ((-348 . -1190) T) ((-340 . -1190) T) ((-481 . -800) T) ((-481 . -896) T) ((-314 . -1085) T) ((-107 . -1190) T) ((-334 . -827) T) ((-213 . -896) T) ((-213 . -800) T) ((-695 . -1031) 135524) ((-354 . -544) T) ((-348 . -544) T) ((-340 . -544) T) ((-107 . -544) T) ((-638 . -698) 135494) ((-1140 . -998) NIL) ((-314 . -23) T) ((-66 . -1186) T) ((-976 . -597) 135426) ((-674 . -227) 135408) ((-695 . -111) 135373) ((-625 . -34) T) ((-241 . -483) 135357) ((-1075 . -1071) 135341) ((-169 . -1073) T) ((-928 . -885) 135320) ((-475 . -885) 135299) ((-1260 . -1124) T) ((-1256 . -21) T) ((-1256 . -25) T) ((-1254 . -130) T) ((-1252 . -130) T) ((-1060 . -698) 135148) ((-1036 . -628) 135135) ((-928 . -628) 135060) ((-762 . -698) 134889) ((-528 . -597) 134871) ((-528 . -598) 134852) ((-760 . -698) 134701) ((-1245 . -101) T) ((-1050 . -101) T) ((-376 . -25) T) ((-376 . -21) T) ((-475 . -628) 134626) ((-455 . -698) 134597) ((-448 . -698) 134446) ((-963 . -101) T) ((-1228 . -597) 134412) ((-1217 . -1014) 134347) ((-1196 . -1186) 134326) ((-718 . -101) T) ((-1196 . -862) NIL) ((-1196 . -860) 134278) ((-1159 . -598) NIL) ((-1159 . -597) 134260) ((-524 . -25) T) ((-1115 . -1096) 134205) ((-1022 . -1179) 134134) ((-877 . -304) 134072) ((-338 . -1032) T) ((-139 . -101) T) ((-44 . -130) T) ((-284 . -1085) T) ((-661 . -92) T) ((-656 . -92) T) ((-644 . -597) 134054) ((-626 . -597) 134007) ((-472 . -92) T) ((-350 . -597) 133989) ((-347 . -597) 133971) ((-339 . -597) 133953) ((-259 . -598) 133701) ((-259 . -597) 133683) ((-243 . -597) 133665) ((-243 . -598) 133526) ((-137 . -92) T) ((-136 . -92) T) ((-132 . -92) T) ((-1196 . -1014) 133492) ((-1180 . -507) 133459) ((-1114 . -597) 133441) ((-799 . -834) T) ((-799 . -707) T) ((-586 . -283) 133418) ((-567 . -698) 133383) ((-473 . -598) NIL) ((-473 . -597) 133365) ((-511 . -698) 133310) ((-311 . -101) T) ((-308 . -101) T) ((-284 . -23) T) ((-150 . -130) T) ((-381 . -707) T) ((-848 . -1031) 133262) ((-886 . -597) 133244) ((-886 . -598) 133226) ((-848 . -111) 133164) ((-135 . -101) T) ((-114 . -101) T) ((-693 . -1208) 133148) ((-695 . -1025) T) ((-674 . -344) NIL) ((-512 . -597) 133080) ((-374 . -775) T) ((-219 . -1073) T) ((-374 . -772) T) ((-221 . -774) T) ((-221 . -771) T) ((-58 . -598) 133041) ((-58 . -597) 132953) ((-221 . -707) T) ((-509 . -598) 132914) ((-509 . -597) 132826) ((-490 . -597) 132758) ((-489 . -598) 132719) ((-489 . -597) 132631) ((-1053 . -358) 132582) ((-40 . -406) 132559) ((-76 . -1186) T) ((-847 . -885) NIL) ((-354 . -324) 132543) ((-354 . -358) T) ((-348 . -324) 132527) ((-348 . -358) T) ((-340 . -324) 132511) ((-340 . -358) T) ((-311 . -279) 132490) ((-107 . -358) T) ((-69 . -1186) T) ((-1196 . -333) 132442) ((-847 . -628) 132387) ((-1196 . -372) 132339) ((-940 . -130) 132194) ((-795 . -130) 132064) ((-934 . -631) 132048) ((-1060 . -170) 131959) ((-934 . -368) 131943) ((-1036 . -774) T) ((-1036 . -771) T) ((-762 . -170) 131834) ((-760 . -170) 131745) ((-796 . -47) 131707) ((-1036 . -707) T) ((-322 . -483) 131691) ((-928 . -707) T) ((-448 . -170) 131602) ((-241 . -281) 131579) ((-475 . -707) T) ((-1245 . -304) 131517) ((-1224 . -876) 131430) ((-1217 . -876) 131336) ((-1216 . -1031) 131171) ((-1196 . -876) 131004) ((-1195 . -1031) 130812) ((-1180 . -285) 130791) ((-1119 . -149) 130775) ((-1093 . -101) T) ((-1048 . -101) T) ((-903 . -931) T) ((-718 . -304) 130713) ((-74 . -1186) T) ((-30 . -931) T) ((-167 . -885) 130666) ((-644 . -377) 130638) ((-112 . -821) T) ((-1 . -597) 130620) ((-1091 . -1073) T) ((-1053 . -23) T) ((-50 . -602) 130604) ((-1053 . -1085) T) ((-979 . -404) 130576) ((-580 . -876) 130489) ((-433 . -101) T) ((-139 . -304) NIL) ((-848 . -1025) T) ((-813 . -827) 130468) ((-80 . -1186) T) ((-692 . -285) T) ((-40 . -1032) T) ((-567 . -170) T) ((-511 . -170) T) ((-504 . -597) 130450) ((-167 . -628) 130360) ((-500 . -597) 130342) ((-346 . -145) 130324) ((-346 . -143) T) ((-354 . -1085) T) ((-348 . -1085) T) ((-340 . -1085) T) ((-980 . -302) T) ((-890 . -302) T) ((-848 . -239) T) ((-107 . -1085) T) ((-848 . -229) 130303) ((-1216 . -111) 130124) ((-1195 . -111) 129913) ((-241 . -1220) 129897) ((-552 . -825) T) ((-354 . -23) T) ((-349 . -344) T) ((-311 . -304) 129884) ((-308 . -304) 129825) ((-348 . -23) T) ((-314 . -130) T) ((-340 . -23) T) ((-980 . -998) T) ((-107 . -23) T) ((-241 . -588) 129802) ((-1218 . -38) 129694) ((-1205 . -885) 129673) ((-112 . -1073) T) ((-1011 . -101) T) ((-1205 . -628) 129598) ((-847 . -774) NIL) ((-832 . -628) 129572) ((-847 . -771) NIL) ((-796 . -862) NIL) ((-847 . -707) T) ((-1060 . -507) 129445) ((-762 . -507) 129392) ((-760 . -507) 129344) ((-559 . -628) 129331) ((-796 . -1014) 129159) ((-448 . -507) 129102) ((-383 . -384) T) ((-59 . -1186) T) ((-603 . -827) 129081) ((-493 . -641) T) ((-1119 . -952) 129050) ((-979 . -446) T) ((-679 . -825) T) ((-503 . -772) T) ((-468 . -1031) 128885) ((-338 . -1073) T) ((-308 . -1124) NIL) ((-284 . -130) T) ((-389 . -1073) T) ((-674 . -365) 128852) ((-846 . -1032) T) ((-219 . -602) 128829) ((-322 . -281) 128806) ((-468 . -111) 128627) ((-1216 . -1025) T) ((-1195 . -1025) T) ((-796 . -372) 128611) ((-167 . -707) T) ((-634 . -101) T) ((-1216 . -239) 128590) ((-1216 . -229) 128542) ((-1195 . -229) 128447) ((-1195 . -239) 128426) ((-979 . -397) NIL) ((-650 . -621) 128374) ((-311 . -38) 128284) ((-308 . -38) 128213) ((-68 . -597) 128195) ((-314 . -486) 128161) ((-1159 . -283) 128140) ((-1086 . -1085) 128050) ((-82 . -1186) T) ((-60 . -597) 128032) ((-473 . -283) 128011) ((-1247 . -1014) 127988) ((-1137 . -1073) T) ((-1086 . -23) 127858) ((-796 . -876) 127794) ((-1205 . -707) T) ((-1075 . -1186) T) ((-1060 . -285) 127725) ((-942 . -1073) T) ((-869 . -101) T) ((-762 . -285) 127636) ((-322 . -19) 127620) ((-58 . -283) 127597) ((-760 . -285) 127528) ((-832 . -707) T) ((-117 . -825) NIL) ((-509 . -283) 127505) ((-322 . -588) 127482) ((-489 . -283) 127459) ((-448 . -285) 127390) ((-1011 . -304) 127241) ((-559 . -707) T) ((-661 . -597) 127191) ((-656 . -597) 127157) ((-642 . -597) 127139) ((-472 . -597) 127105) ((-241 . -598) 127066) ((-241 . -597) 126978) ((-137 . -597) 126944) ((-136 . -597) 126910) ((-132 . -597) 126876) ((-1120 . -34) T) ((-919 . -1186) T) ((-338 . -698) 126821) ((-650 . -25) T) ((-650 . -21) T) ((-468 . -1025) T) ((-617 . -412) 126786) ((-591 . -412) 126751) ((-1093 . -1124) T) ((-567 . -285) T) ((-511 . -285) T) ((-1217 . -302) 126730) ((-468 . -229) 126682) ((-468 . -239) 126661) ((-1196 . -302) 126640) ((-1196 . -998) NIL) ((-1053 . -130) T) ((-848 . -775) 126619) ((-142 . -101) T) ((-40 . -1073) T) ((-848 . -772) 126598) ((-625 . -986) 126582) ((-566 . -1032) T) ((-552 . -1032) T) ((-488 . -1032) T) ((-402 . -446) T) ((-354 . -130) T) ((-311 . -395) 126566) ((-308 . -395) 126527) ((-348 . -130) T) ((-340 . -130) T) ((-1154 . -1073) T) ((-1093 . -38) 126514) ((-1067 . -597) 126481) ((-107 . -130) T) ((-930 . -1073) T) ((-897 . -1073) T) ((-751 . -1073) T) ((-652 . -1073) T) ((-499 . -1056) T) ((-681 . -145) T) ((-116 . -145) T) ((-1254 . -21) T) ((-1254 . -25) T) ((-1252 . -21) T) ((-1252 . -25) T) ((-644 . -1031) 126465) ((-524 . -827) T) ((-493 . -827) T) ((-350 . -1031) 126417) ((-347 . -1031) 126369) ((-339 . -1031) 126321) ((-246 . -1186) T) ((-245 . -1186) T) ((-259 . -1031) 126164) ((-243 . -1031) 126007) ((-644 . -111) 125986) ((-350 . -111) 125924) ((-347 . -111) 125862) ((-339 . -111) 125800) ((-259 . -111) 125629) ((-243 . -111) 125458) ((-797 . -1190) 125437) ((-605 . -406) 125421) ((-44 . -21) T) ((-44 . -25) T) ((-795 . -621) 125327) ((-797 . -544) 125306) ((-246 . -1014) 125133) ((-245 . -1014) 124960) ((-126 . -119) 124944) ((-886 . -1031) 124909) ((-679 . -1032) T) ((-693 . -101) T) ((-338 . -170) T) ((-150 . -21) T) ((-150 . -25) T) ((-87 . -597) 124891) ((-886 . -111) 124847) ((-40 . -698) 124792) ((-846 . -1073) T) ((-322 . -598) 124753) ((-322 . -597) 124665) ((-1195 . -772) 124618) ((-1195 . -775) 124571) ((-246 . -372) 124540) ((-245 . -372) 124509) ((-634 . -38) 124479) ((-592 . -34) T) ((-476 . -1085) 124389) ((-469 . -34) T) ((-1086 . -130) 124259) ((-940 . -25) 124070) ((-850 . -597) 124052) ((-940 . -21) 124007) ((-795 . -21) 123917) ((-795 . -25) 123768) ((-605 . -1032) T) ((-1151 . -544) 123747) ((-1145 . -47) 123724) ((-350 . -1025) T) ((-347 . -1025) T) ((-476 . -23) 123594) ((-339 . -1025) T) ((-259 . -1025) T) ((-243 . -1025) T) ((-1098 . -47) 123566) ((-117 . -1032) T) ((-1010 . -628) 123540) ((-934 . -34) T) ((-350 . -229) 123519) ((-350 . -239) T) ((-347 . -229) 123498) ((-347 . -239) T) ((-243 . -321) 123455) ((-339 . -229) 123434) ((-339 . -239) T) ((-259 . -321) 123406) ((-259 . -229) 123385) ((-1129 . -149) 123369) ((-246 . -876) 123301) ((-245 . -876) 123233) ((-1055 . -827) T) ((-1199 . -1186) T) ((-409 . -1085) T) ((-1029 . -23) T) ((-886 . -1025) T) ((-317 . -628) 123215) ((-1000 . -825) T) ((-1180 . -978) 123181) ((-1146 . -896) 123160) ((-1140 . -896) 123139) ((-886 . -239) T) ((-797 . -358) 123118) ((-380 . -23) T) ((-127 . -1073) 123096) ((-121 . -1073) 123074) ((-886 . -229) T) ((-1140 . -800) NIL) ((-374 . -628) 123039) ((-846 . -698) 123026) ((-1022 . -149) 122991) ((-40 . -170) T) ((-674 . -406) 122973) ((-693 . -304) 122960) ((-814 . -628) 122920) ((-807 . -628) 122894) ((-314 . -25) T) ((-314 . -21) T) ((-638 . -281) 122873) ((-566 . -1073) T) ((-552 . -1073) T) ((-488 . -1073) T) ((-241 . -283) 122850) ((-308 . -227) 122811) ((-1145 . -862) NIL) ((-1098 . -862) 122670) ((-129 . -827) T) ((-1145 . -1014) 122550) ((-1098 . -1014) 122433) ((-181 . -597) 122415) ((-831 . -1014) 122311) ((-762 . -281) 122238) ((-797 . -1085) T) ((-1010 . -707) T) ((-586 . -631) 122222) ((-1022 . -952) 122151) ((-975 . -101) T) ((-797 . -23) T) ((-693 . -1124) 122129) ((-674 . -1032) T) ((-586 . -368) 122113) ((-346 . -446) T) ((-338 . -285) T) ((-1233 . -1073) T) ((-244 . -1073) T) ((-394 . -101) T) ((-284 . -21) T) ((-284 . -25) T) ((-356 . -707) T) ((-691 . -1073) T) ((-679 . -1073) T) ((-356 . -467) T) ((-1180 . -597) 122095) ((-1145 . -372) 122079) ((-1098 . -372) 122063) ((-1000 . -406) 122025) ((-139 . -225) 122007) ((-374 . -774) T) ((-374 . -771) T) ((-846 . -170) T) ((-374 . -707) T) ((-692 . -597) 121989) ((-693 . -38) 121818) ((-1232 . -1230) 121802) ((-346 . -397) T) ((-1232 . -1073) 121752) ((-566 . -698) 121739) ((-552 . -698) 121726) ((-488 . -698) 121691) ((-311 . -611) 121670) ((-814 . -707) T) ((-807 . -707) T) ((-625 . -1186) T) ((-1053 . -621) 121618) ((-1145 . -876) 121561) ((-1098 . -876) 121545) ((-642 . -1031) 121529) ((-107 . -621) 121511) ((-476 . -130) 121381) ((-1151 . -1085) T) ((-928 . -47) 121350) ((-605 . -1073) T) ((-642 . -111) 121329) ((-484 . -597) 121295) ((-322 . -283) 121272) ((-475 . -47) 121229) ((-1151 . -23) T) ((-117 . -1073) T) ((-102 . -101) 121207) ((-1244 . -1085) T) ((-1029 . -130) T) ((-1000 . -1032) T) ((-799 . -1014) 121191) ((-979 . -705) 121163) ((-1244 . -23) T) ((-679 . -698) 121128) ((-571 . -597) 121110) ((-381 . -1014) 121094) ((-349 . -1032) T) ((-380 . -130) T) ((-319 . -1014) 121078) ((-221 . -862) 121060) ((-980 . -896) T) ((-90 . -34) T) ((-980 . -800) T) ((-890 . -896) T) ((-481 . -1190) T) ((-1166 . -597) 121042) ((-1078 . -1073) T) ((-213 . -1190) T) ((-975 . -304) 121007) ((-221 . -1014) 120967) ((-40 . -285) T) ((-1053 . -21) T) ((-1053 . -25) T) ((-1093 . -808) T) ((-481 . -544) T) ((-354 . -25) T) ((-213 . -544) T) ((-354 . -21) T) ((-348 . -25) T) ((-348 . -21) T) ((-695 . -628) 120927) ((-340 . -25) T) ((-340 . -21) T) ((-107 . -25) T) ((-107 . -21) T) ((-48 . -1032) T) ((-566 . -170) T) ((-552 . -170) T) ((-488 . -170) T) ((-638 . -597) 120909) ((-718 . -717) 120893) ((-331 . -597) 120875) ((-67 . -378) T) ((-67 . -390) T) ((-1075 . -106) 120859) ((-1036 . -862) 120841) ((-928 . -862) 120766) ((-633 . -1085) T) ((-605 . -698) 120753) ((-475 . -862) NIL) ((-1119 . -101) T) ((-1036 . -1014) 120735) ((-96 . -597) 120717) ((-471 . -145) T) ((-928 . -1014) 120597) ((-117 . -698) 120542) ((-633 . -23) T) ((-475 . -1014) 120418) ((-1060 . -598) NIL) ((-1060 . -597) 120400) ((-762 . -598) NIL) ((-762 . -597) 120361) ((-760 . -598) 119995) ((-760 . -597) 119909) ((-1086 . -621) 119815) ((-455 . -597) 119797) ((-448 . -597) 119779) ((-448 . -598) 119640) ((-1011 . -225) 119586) ((-848 . -885) 119565) ((-126 . -34) T) ((-797 . -130) T) ((-629 . -597) 119547) ((-565 . -101) T) ((-350 . -1251) 119531) ((-347 . -1251) 119515) ((-339 . -1251) 119499) ((-127 . -507) 119432) ((-121 . -507) 119365) ((-504 . -772) T) ((-504 . -775) T) ((-503 . -774) T) ((-102 . -304) 119303) ((-218 . -101) 119281) ((-674 . -1073) T) ((-679 . -170) T) ((-848 . -628) 119233) ((-64 . -379) T) ((-270 . -597) 119215) ((-64 . -390) T) ((-928 . -372) 119199) ((-846 . -285) T) ((-50 . -597) 119181) ((-975 . -38) 119129) ((-567 . -597) 119111) ((-475 . -372) 119095) ((-567 . -598) 119077) ((-511 . -597) 119059) ((-886 . -1251) 119046) ((-847 . -1186) T) ((-681 . -446) T) ((-488 . -507) 119012) ((-481 . -358) T) ((-350 . -363) 118991) ((-347 . -363) 118970) ((-339 . -363) 118949) ((-213 . -358) T) ((-695 . -707) T) ((-116 . -446) T) ((-1255 . -1246) 118933) ((-847 . -860) 118910) ((-847 . -862) NIL) ((-940 . -827) 118809) ((-795 . -827) 118760) ((-634 . -636) 118744) ((-1172 . -34) T) ((-169 . -597) 118726) ((-1086 . -21) 118636) ((-1086 . -25) 118487) ((-847 . -1014) 118464) ((-928 . -876) 118445) ((-1205 . -47) 118422) ((-886 . -363) T) ((-58 . -631) 118406) ((-509 . -631) 118390) ((-475 . -876) 118367) ((-70 . -435) T) ((-70 . -390) T) ((-489 . -631) 118351) ((-58 . -368) 118335) ((-605 . -170) T) ((-509 . -368) 118319) ((-489 . -368) 118303) ((-807 . -689) 118287) ((-1145 . -302) 118266) ((-1151 . -130) T) ((-117 . -170) T) ((-1119 . -304) 118204) ((-167 . -1186) T) ((-617 . -725) 118188) ((-591 . -725) 118172) ((-1244 . -130) T) ((-1217 . -896) 118151) ((-1196 . -896) 118130) ((-1196 . -800) NIL) ((-674 . -698) 118080) ((-1195 . -885) 118033) ((-1000 . -1073) T) ((-847 . -372) 118010) ((-847 . -333) 117987) ((-881 . -1085) T) ((-167 . -860) 117971) ((-167 . -862) 117896) ((-481 . -1085) T) ((-349 . -1073) T) ((-213 . -1085) T) ((-75 . -435) T) ((-75 . -390) T) ((-167 . -1014) 117792) ((-314 . -827) T) ((-1232 . -507) 117725) ((-1216 . -628) 117622) ((-1195 . -628) 117492) ((-848 . -774) 117471) ((-848 . -771) 117450) ((-848 . -707) T) ((-481 . -23) T) ((-219 . -597) 117432) ((-172 . -446) T) ((-218 . -304) 117370) ((-85 . -435) T) ((-85 . -390) T) ((-213 . -23) T) ((-1256 . -1249) 117349) ((-566 . -285) T) ((-552 . -285) T) ((-657 . -1014) 117333) ((-488 . -285) T) ((-135 . -464) 117288) ((-48 . -1073) T) ((-693 . -227) 117272) ((-847 . -876) NIL) ((-1205 . -862) NIL) ((-865 . -101) T) ((-861 . -101) T) ((-383 . -1073) T) ((-167 . -372) 117256) ((-167 . -333) 117240) ((-1205 . -1014) 117120) ((-832 . -1014) 117016) ((-1115 . -101) T) ((-633 . -130) T) ((-117 . -507) 116924) ((-642 . -772) 116903) ((-642 . -775) 116882) ((-559 . -1014) 116864) ((-289 . -1239) 116834) ((-842 . -101) T) ((-939 . -544) 116813) ((-1180 . -1031) 116696) ((-476 . -621) 116602) ((-880 . -1073) T) ((-1000 . -698) 116539) ((-692 . -1031) 116504) ((-600 . -101) T) ((-586 . -34) T) ((-1120 . -1186) T) ((-1180 . -111) 116373) ((-468 . -628) 116270) ((-349 . -698) 116215) ((-167 . -876) 116174) ((-679 . -285) T) ((-674 . -170) T) ((-692 . -111) 116130) ((-1260 . -1032) T) ((-1205 . -372) 116114) ((-413 . -1190) 116092) ((-1091 . -597) 116074) ((-308 . -825) NIL) ((-413 . -544) T) ((-221 . -302) T) ((-1195 . -771) 116027) ((-1195 . -774) 115980) ((-1216 . -707) T) ((-1195 . -707) T) ((-48 . -698) 115945) ((-221 . -998) T) ((-346 . -1239) 115922) ((-1218 . -406) 115888) ((-699 . -707) T) ((-1205 . -876) 115831) ((-112 . -597) 115813) ((-112 . -598) 115795) ((-699 . -467) T) ((-476 . -21) 115705) ((-127 . -483) 115689) ((-121 . -483) 115673) ((-476 . -25) 115524) ((-605 . -285) T) ((-571 . -1031) 115499) ((-432 . -1073) T) ((-1036 . -302) T) ((-117 . -285) T) ((-1077 . -101) T) ((-979 . -101) T) ((-571 . -111) 115467) ((-1115 . -304) 115405) ((-1180 . -1025) T) ((-1036 . -998) T) ((-65 . -1186) T) ((-1029 . -25) T) ((-1029 . -21) T) ((-692 . -1025) T) ((-380 . -21) T) ((-380 . -25) T) ((-674 . -507) NIL) ((-1000 . -170) T) ((-692 . -239) T) ((-1036 . -537) T) ((-499 . -101) T) ((-495 . -101) T) ((-349 . -170) T) ((-338 . -597) 115387) ((-389 . -597) 115369) ((-468 . -707) T) ((-1093 . -825) T) ((-868 . -1014) 115337) ((-107 . -827) T) ((-638 . -1031) 115321) ((-481 . -130) T) ((-1218 . -1032) T) ((-213 . -130) T) ((-1129 . -101) 115299) ((-98 . -1073) T) ((-241 . -646) 115283) ((-241 . -631) 115267) ((-638 . -111) 115246) ((-311 . -406) 115230) ((-241 . -368) 115214) ((-1132 . -231) 115161) ((-975 . -227) 115145) ((-73 . -1186) T) ((-48 . -170) T) ((-681 . -382) T) ((-681 . -141) T) ((-1255 . -101) T) ((-1060 . -1031) 114988) ((-259 . -885) 114967) ((-243 . -885) 114946) ((-762 . -1031) 114769) ((-760 . -1031) 114612) ((-592 . -1186) T) ((-1137 . -597) 114594) ((-1060 . -111) 114423) ((-1022 . -101) T) ((-469 . -1186) T) ((-455 . -1031) 114394) ((-448 . -1031) 114237) ((-644 . -628) 114221) ((-847 . -302) T) ((-762 . -111) 114030) ((-760 . -111) 113859) ((-350 . -628) 113811) ((-347 . -628) 113763) ((-339 . -628) 113715) ((-259 . -628) 113640) ((-243 . -628) 113565) ((-1131 . -827) T) ((-1061 . -1014) 113549) ((-455 . -111) 113510) ((-448 . -111) 113339) ((-1049 . -1014) 113316) ((-976 . -34) T) ((-942 . -597) 113298) ((-934 . -1186) T) ((-126 . -986) 113282) ((-939 . -1085) T) ((-847 . -998) NIL) ((-716 . -1085) T) ((-696 . -1085) T) ((-1232 . -483) 113266) ((-1115 . -38) 113226) ((-939 . -23) T) ((-820 . -101) T) ((-797 . -21) T) ((-797 . -25) T) ((-716 . -23) T) ((-696 . -23) T) ((-110 . -641) T) ((-886 . -628) 113191) ((-567 . -1031) 113156) ((-511 . -1031) 113101) ((-223 . -56) 113059) ((-447 . -23) T) ((-402 . -101) T) ((-258 . -101) T) ((-674 . -285) T) ((-842 . -38) 113029) ((-567 . -111) 112985) ((-511 . -111) 112914) ((-413 . -1085) T) ((-311 . -1032) 112804) ((-308 . -1032) T) ((-638 . -1025) T) ((-1260 . -1073) T) ((-167 . -302) 112735) ((-413 . -23) T) ((-40 . -597) 112717) ((-40 . -598) 112701) ((-107 . -968) 112683) ((-116 . -845) 112667) ((-48 . -507) 112633) ((-1172 . -986) 112617) ((-1154 . -597) 112599) ((-1159 . -34) T) ((-930 . -597) 112565) ((-897 . -597) 112547) ((-1086 . -827) 112498) ((-751 . -597) 112480) ((-652 . -597) 112462) ((-1129 . -304) 112400) ((-473 . -34) T) ((-1065 . -1186) T) ((-471 . -446) T) ((-1060 . -1025) T) ((-1114 . -34) T) ((-762 . -1025) T) ((-760 . -1025) T) ((-627 . -231) 112384) ((-614 . -231) 112330) ((-1205 . -302) 112309) ((-1060 . -321) 112270) ((-448 . -1025) T) ((-1151 . -21) T) ((-1060 . -229) 112249) ((-762 . -321) 112226) ((-762 . -229) T) ((-760 . -321) 112198) ((-712 . -1190) 112177) ((-322 . -631) 112161) ((-1151 . -25) T) ((-58 . -34) T) ((-512 . -34) T) ((-509 . -34) T) ((-448 . -321) 112140) ((-322 . -368) 112124) ((-490 . -34) T) ((-489 . -34) T) ((-979 . -1124) NIL) ((-712 . -544) 112055) ((-617 . -101) T) ((-591 . -101) T) ((-350 . -707) T) ((-347 . -707) T) ((-339 . -707) T) ((-259 . -707) T) ((-243 . -707) T) ((-1022 . -304) 111963) ((-877 . -1073) 111941) ((-50 . -1025) T) ((-1244 . -21) T) ((-1244 . -25) T) ((-1147 . -544) 111920) ((-1146 . -1190) 111899) ((-567 . -1025) T) ((-511 . -1025) T) ((-1140 . -1190) 111878) ((-356 . -1014) 111862) ((-317 . -1014) 111846) ((-1000 . -285) T) ((-374 . -862) 111828) ((-1146 . -544) 111779) ((-1140 . -544) 111730) ((-979 . -38) 111675) ((-779 . -1085) T) ((-886 . -707) T) ((-567 . -239) T) ((-567 . -229) T) ((-511 . -229) T) ((-511 . -239) T) ((-1099 . -544) 111654) ((-349 . -285) T) ((-627 . -675) 111638) ((-374 . -1014) 111598) ((-1093 . -1032) T) ((-102 . -125) 111582) ((-779 . -23) T) ((-1232 . -281) 111559) ((-402 . -304) 111524) ((-1254 . -1249) 111500) ((-1252 . -1249) 111479) ((-1218 . -1073) T) ((-846 . -597) 111461) ((-814 . -1014) 111430) ((-199 . -767) T) ((-198 . -767) T) ((-197 . -767) T) ((-196 . -767) T) ((-195 . -767) T) ((-194 . -767) T) ((-193 . -767) T) ((-192 . -767) T) ((-191 . -767) T) ((-190 . -767) T) ((-488 . -978) T) ((-269 . -816) T) ((-268 . -816) T) ((-267 . -816) T) ((-266 . -816) T) ((-48 . -285) T) ((-265 . -816) T) ((-264 . -816) T) ((-263 . -816) T) ((-189 . -767) T) ((-596 . -827) T) ((-634 . -406) 111414) ((-110 . -827) T) ((-633 . -21) T) ((-633 . -25) T) ((-1255 . -38) 111384) ((-117 . -281) 111335) ((-1232 . -19) 111319) ((-1232 . -588) 111296) ((-1245 . -1073) T) ((-1050 . -1073) T) ((-963 . -1073) T) ((-939 . -130) T) ((-718 . -1073) T) ((-716 . -130) T) ((-696 . -130) T) ((-504 . -773) T) ((-402 . -1124) 111274) ((-447 . -130) T) ((-504 . -774) T) ((-219 . -1025) T) ((-289 . -101) 111056) ((-139 . -1073) T) ((-679 . -978) T) ((-90 . -1186) T) ((-127 . -597) 110988) ((-121 . -597) 110920) ((-1260 . -170) T) ((-1146 . -358) 110899) ((-1140 . -358) 110878) ((-311 . -1073) T) ((-413 . -130) T) ((-308 . -1073) T) ((-402 . -38) 110830) ((-1106 . -101) T) ((-1218 . -698) 110722) ((-634 . -1032) T) ((-1108 . -1227) T) ((-314 . -143) 110701) ((-314 . -145) 110680) ((-135 . -1073) T) ((-114 . -1073) T) ((-835 . -101) T) ((-566 . -597) 110662) ((-552 . -598) 110561) ((-552 . -597) 110543) ((-488 . -597) 110525) ((-488 . -598) 110470) ((-479 . -23) T) ((-476 . -827) 110421) ((-481 . -621) 110403) ((-941 . -597) 110385) ((-213 . -621) 110367) ((-221 . -399) T) ((-642 . -628) 110351) ((-1145 . -896) 110330) ((-712 . -1085) T) ((-346 . -101) T) ((-1185 . -1056) T) ((-798 . -827) T) ((-712 . -23) T) ((-338 . -1031) 110275) ((-1131 . -1130) T) ((-1120 . -106) 110259) ((-1147 . -1085) T) ((-1146 . -1085) T) ((-508 . -1014) 110243) ((-1140 . -1085) T) ((-1099 . -1085) T) ((-338 . -111) 110172) ((-980 . -1190) T) ((-126 . -1186) T) ((-890 . -1190) T) ((-674 . -281) NIL) ((-1233 . -597) 110154) ((-1147 . -23) T) ((-1146 . -23) T) ((-1140 . -23) T) ((-980 . -544) T) ((-1115 . -227) 110138) ((-890 . -544) T) ((-1099 . -23) T) ((-244 . -597) 110120) ((-1048 . -1073) T) ((-779 . -130) T) ((-691 . -597) 110102) ((-311 . -698) 110012) ((-308 . -698) 109941) ((-679 . -597) 109923) ((-679 . -598) 109868) ((-402 . -395) 109852) ((-433 . -1073) T) ((-481 . -25) T) ((-481 . -21) T) ((-1093 . -1073) T) ((-213 . -25) T) ((-213 . -21) T) ((-693 . -406) 109836) ((-695 . -1014) 109805) ((-1232 . -597) 109717) ((-1232 . -598) 109678) ((-1218 . -170) T) ((-241 . -34) T) ((-902 . -950) T) ((-1172 . -1186) T) ((-642 . -771) 109657) ((-642 . -774) 109636) ((-393 . -390) T) ((-516 . -101) 109614) ((-1011 . -1073) T) ((-218 . -971) 109598) ((-497 . -101) T) ((-605 . -597) 109580) ((-45 . -827) NIL) ((-605 . -598) 109557) ((-1011 . -594) 109532) ((-877 . -507) 109465) ((-338 . -1025) T) ((-117 . -598) NIL) ((-117 . -597) 109447) ((-848 . -1186) T) ((-650 . -412) 109431) ((-650 . -1096) 109376) ((-493 . -149) 109358) ((-338 . -229) T) ((-338 . -239) T) ((-40 . -1031) 109303) ((-848 . -860) 109287) ((-848 . -862) 109212) ((-693 . -1032) T) ((-674 . -978) NIL) ((-3 . |UnionCategory|) T) ((-1216 . -47) 109182) ((-1195 . -47) 109159) ((-1114 . -986) 109130) ((-221 . -896) T) ((-40 . -111) 109059) ((-848 . -1014) 108923) ((-1093 . -698) 108910) ((-1078 . -597) 108892) ((-1053 . -145) 108871) ((-1053 . -143) 108822) ((-980 . -358) T) ((-314 . -1174) 108788) ((-374 . -302) T) ((-314 . -1171) 108754) ((-311 . -170) 108733) ((-308 . -170) T) ((-979 . -227) 108710) ((-890 . -358) T) ((-567 . -1251) 108697) ((-511 . -1251) 108674) ((-354 . -145) 108653) ((-354 . -143) 108604) ((-348 . -145) 108583) ((-348 . -143) 108534) ((-592 . -1162) 108510) ((-340 . -145) 108489) ((-340 . -143) 108440) ((-314 . -35) 108406) ((-469 . -1162) 108385) ((0 . |EnumerationCategory|) T) ((-314 . -94) 108351) ((-374 . -998) T) ((-107 . -145) T) ((-107 . -143) NIL) ((-45 . -231) 108301) ((-634 . -1073) T) ((-592 . -106) 108248) ((-479 . -130) T) ((-469 . -106) 108198) ((-236 . -1085) 108108) ((-848 . -372) 108092) ((-848 . -333) 108076) ((-236 . -23) 107946) ((-1036 . -896) T) ((-1036 . -800) T) ((-567 . -363) T) ((-511 . -363) T) ((-346 . -1124) T) ((-322 . -34) T) ((-44 . -412) 107930) ((-849 . -1186) T) ((-385 . -725) 107914) ((-1245 . -507) 107847) ((-712 . -130) T) ((-1224 . -544) 107826) ((-1217 . -1190) 107805) ((-1217 . -544) 107756) ((-1196 . -1190) 107735) ((-306 . -1056) T) ((-1196 . -544) 107686) ((-718 . -507) 107619) ((-1195 . -1186) 107598) ((-1195 . -862) 107471) ((-869 . -1073) T) ((-142 . -821) T) ((-1195 . -860) 107441) ((-671 . -597) 107423) ((-1147 . -130) T) ((-516 . -304) 107361) ((-1146 . -130) T) ((-139 . -507) NIL) ((-1140 . -130) T) ((-1099 . -130) T) ((-1000 . -978) T) ((-980 . -23) T) ((-346 . -38) 107326) ((-980 . -1085) T) ((-890 . -1085) T) ((-81 . -597) 107308) ((-40 . -1025) T) ((-846 . -1031) 107295) ((-979 . -344) NIL) ((-848 . -876) 107254) ((-681 . -101) T) ((-947 . -23) T) ((-586 . -1186) T) ((-890 . -23) T) ((-846 . -111) 107239) ((-422 . -1085) T) ((-468 . -47) 107209) ((-209 . -101) T) ((-133 . -101) T) ((-40 . -229) 107181) ((-40 . -239) T) ((-116 . -101) T) ((-581 . -544) 107160) ((-580 . -544) 107139) ((-674 . -597) 107121) ((-674 . -598) 107029) ((-311 . -507) 106995) ((-308 . -507) 106887) ((-1216 . -1014) 106871) ((-1195 . -1014) 106657) ((-975 . -406) 106641) ((-422 . -23) T) ((-1093 . -170) T) ((-1218 . -285) T) ((-634 . -698) 106611) ((-142 . -1073) T) ((-48 . -978) T) ((-402 . -227) 106595) ((-290 . -231) 106545) ((-847 . -896) T) ((-847 . -800) NIL) ((-841 . -827) T) ((-1195 . -333) 106515) ((-1195 . -372) 106485) ((-218 . -1094) 106469) ((-1232 . -283) 106446) ((-1180 . -628) 106371) ((-939 . -21) T) ((-939 . -25) T) ((-716 . -21) T) ((-716 . -25) T) ((-696 . -21) T) ((-696 . -25) T) ((-692 . -628) 106336) ((-447 . -21) T) ((-447 . -25) T) ((-334 . -101) T) ((-172 . -101) T) ((-975 . -1032) T) ((-846 . -1025) T) ((-754 . -101) T) ((-1217 . -358) 106315) ((-1216 . -876) 106221) ((-1196 . -358) 106200) ((-1195 . -876) 106051) ((-1000 . -597) 106033) ((-402 . -808) 105986) ((-1147 . -486) 105952) ((-167 . -896) 105883) ((-1146 . -486) 105849) ((-1140 . -486) 105815) ((-693 . -1073) T) ((-1099 . -486) 105781) ((-566 . -1031) 105768) ((-552 . -1031) 105755) ((-488 . -1031) 105720) ((-311 . -285) 105699) ((-308 . -285) T) ((-349 . -597) 105681) ((-413 . -25) T) ((-413 . -21) T) ((-98 . -281) 105660) ((-566 . -111) 105645) ((-552 . -111) 105630) ((-488 . -111) 105586) ((-1149 . -862) 105553) ((-877 . -483) 105537) ((-48 . -597) 105519) ((-48 . -598) 105464) ((-236 . -130) 105334) ((-1205 . -896) 105313) ((-796 . -1190) 105292) ((-1011 . -507) 105136) ((-383 . -597) 105118) ((-796 . -544) 105049) ((-571 . -628) 105024) ((-259 . -47) 104996) ((-243 . -47) 104953) ((-524 . -502) 104930) ((-976 . -1186) T) ((-679 . -1031) 104895) ((-1224 . -1085) T) ((-1217 . -1085) T) ((-1196 . -1085) T) ((-979 . -365) 104867) ((-112 . -363) T) ((-468 . -876) 104773) ((-1224 . -23) T) ((-1217 . -23) T) ((-880 . -597) 104755) ((-90 . -106) 104739) ((-1180 . -707) T) ((-881 . -827) 104690) ((-681 . -1124) T) ((-679 . -111) 104646) ((-1196 . -23) T) ((-581 . -1085) T) ((-580 . -1085) T) ((-693 . -698) 104475) ((-692 . -707) T) ((-1093 . -285) T) ((-980 . -130) T) ((-481 . -827) T) ((-947 . -130) T) ((-890 . -130) T) ((-779 . -25) T) ((-213 . -827) T) ((-779 . -21) T) ((-566 . -1025) T) ((-552 . -1025) T) ((-488 . -1025) T) ((-581 . -23) T) ((-338 . -1251) 104452) ((-314 . -446) 104431) ((-334 . -304) 104418) ((-580 . -23) T) ((-422 . -130) T) ((-638 . -628) 104392) ((-241 . -986) 104376) ((-848 . -302) T) ((-1256 . -1246) 104360) ((-751 . -772) T) ((-751 . -775) T) ((-681 . -38) 104347) ((-552 . -229) T) ((-488 . -239) T) ((-488 . -229) T) ((-1123 . -231) 104297) ((-1060 . -885) 104276) ((-116 . -38) 104263) ((-205 . -780) T) ((-204 . -780) T) ((-203 . -780) T) ((-202 . -780) T) ((-848 . -998) 104242) ((-1245 . -483) 104226) ((-762 . -885) 104205) ((-760 . -885) 104184) ((-1159 . -1186) T) ((-448 . -885) 104163) ((-718 . -483) 104147) ((-1060 . -628) 104072) ((-762 . -628) 103997) ((-605 . -1031) 103984) ((-473 . -1186) T) ((-338 . -363) T) ((-139 . -483) 103966) ((-760 . -628) 103891) ((-1114 . -1186) T) ((-455 . -628) 103862) ((-259 . -862) 103721) ((-243 . -862) NIL) ((-117 . -1031) 103666) ((-448 . -628) 103591) ((-644 . -1014) 103568) ((-605 . -111) 103553) ((-350 . -1014) 103537) ((-347 . -1014) 103521) ((-339 . -1014) 103505) ((-259 . -1014) 103349) ((-243 . -1014) 103225) ((-117 . -111) 103154) ((-58 . -1186) T) ((-512 . -1186) T) ((-509 . -1186) T) ((-490 . -1186) T) ((-489 . -1186) T) ((-432 . -597) 103136) ((-429 . -597) 103118) ((-3 . -101) T) ((-1003 . -1179) 103087) ((-813 . -101) T) ((-669 . -56) 103045) ((-679 . -1025) T) ((-50 . -628) 103019) ((-284 . -446) T) ((-470 . -1179) 102988) ((0 . -101) T) ((-567 . -628) 102953) ((-511 . -628) 102898) ((-49 . -101) T) ((-886 . -1014) 102885) ((-679 . -239) T) ((-1053 . -404) 102864) ((-712 . -621) 102812) ((-975 . -1073) T) ((-693 . -170) 102703) ((-481 . -968) 102685) ((-259 . -372) 102669) ((-243 . -372) 102653) ((-394 . -1073) T) ((-334 . -38) 102637) ((-1002 . -101) 102615) ((-213 . -968) 102597) ((-172 . -38) 102529) ((-1216 . -302) 102508) ((-1195 . -302) 102487) ((-638 . -707) T) ((-98 . -597) 102469) ((-1140 . -621) 102421) ((-479 . -25) T) ((-479 . -21) T) ((-1195 . -998) 102374) ((-605 . -1025) T) ((-374 . -399) T) ((-385 . -101) T) ((-259 . -876) 102320) ((-243 . -876) 102297) ((-117 . -1025) T) ((-796 . -1085) T) ((-1060 . -707) T) ((-605 . -229) 102276) ((-603 . -101) T) ((-762 . -707) T) ((-760 . -707) T) ((-408 . -1085) T) ((-117 . -239) T) ((-40 . -363) NIL) ((-117 . -229) NIL) ((-448 . -707) T) ((-796 . -23) T) ((-712 . -25) T) ((-712 . -21) T) ((-683 . -827) T) ((-1050 . -281) 102255) ((-77 . -391) T) ((-77 . -390) T) ((-674 . -1031) 102205) ((-1224 . -130) T) ((-1217 . -130) T) ((-1196 . -130) T) ((-1115 . -406) 102189) ((-617 . -362) 102121) ((-591 . -362) 102053) ((-1129 . -1122) 102037) ((-102 . -1073) 102015) ((-1147 . -25) T) ((-1147 . -21) T) ((-1146 . -21) T) ((-975 . -698) 101963) ((-219 . -628) 101930) ((-674 . -111) 101864) ((-50 . -707) T) ((-1146 . -25) T) ((-346 . -344) T) ((-1140 . -21) T) ((-1053 . -446) 101815) ((-1140 . -25) T) ((-693 . -507) 101762) ((-567 . -707) T) ((-511 . -707) T) ((-1099 . -21) T) ((-1099 . -25) T) ((-581 . -130) T) ((-580 . -130) T) ((-354 . -446) T) ((-348 . -446) T) ((-340 . -446) T) ((-468 . -302) 101741) ((-308 . -281) 101676) ((-107 . -446) T) ((-78 . -435) T) ((-78 . -390) T) ((-471 . -101) T) ((-1260 . -597) 101658) ((-1260 . -598) 101640) ((-1053 . -397) 101619) ((-1011 . -483) 101550) ((-552 . -775) T) ((-552 . -772) T) ((-1037 . -231) 101496) ((-354 . -397) 101447) ((-348 . -397) 101398) ((-340 . -397) 101349) ((-1247 . -1085) T) ((-1247 . -23) T) ((-1234 . -101) T) ((-173 . -597) 101331) ((-1115 . -1032) T) ((-650 . -725) 101315) ((-1151 . -143) 101294) ((-1151 . -145) 101273) ((-1119 . -1073) T) ((-1119 . -1045) 101242) ((-68 . -1186) T) ((-1000 . -1031) 101179) ((-842 . -1032) T) ((-236 . -621) 101085) ((-674 . -1025) T) ((-349 . -1031) 101030) ((-60 . -1186) T) ((-1000 . -111) 100946) ((-877 . -597) 100878) ((-674 . -239) T) ((-674 . -229) NIL) ((-820 . -825) 100857) ((-679 . -775) T) ((-679 . -772) T) ((-979 . -406) 100834) ((-349 . -111) 100763) ((-374 . -896) T) ((-402 . -825) 100742) ((-693 . -285) 100653) ((-219 . -707) T) ((-1224 . -486) 100619) ((-1217 . -486) 100585) ((-1196 . -486) 100551) ((-565 . -1073) T) ((-311 . -978) 100530) ((-218 . -1073) 100508) ((-314 . -949) 100470) ((-104 . -101) T) ((-48 . -1031) 100435) ((-1256 . -101) T) ((-376 . -101) T) ((-48 . -111) 100391) ((-980 . -621) 100373) ((-1218 . -597) 100355) ((-524 . -101) T) ((-493 . -101) T) ((-1106 . -1107) 100339) ((-150 . -1239) 100323) ((-241 . -1186) T) ((-1185 . -101) T) ((-1145 . -1190) 100302) ((-1098 . -1190) 100281) ((-236 . -21) 100191) ((-236 . -25) 100042) ((-127 . -119) 100026) ((-121 . -119) 100010) ((-44 . -725) 99994) ((-1145 . -544) 99905) ((-1098 . -544) 99836) ((-1011 . -281) 99811) ((-1139 . -1056) T) ((-970 . -1056) T) ((-796 . -130) T) ((-117 . -775) NIL) ((-117 . -772) NIL) ((-350 . -302) T) ((-347 . -302) T) ((-339 . -302) T) ((-1067 . -1186) T) ((-246 . -1085) 99721) ((-245 . -1085) 99631) ((-1000 . -1025) T) ((-979 . -1032) T) ((-338 . -628) 99576) ((-603 . -38) 99560) ((-1245 . -597) 99522) ((-1245 . -598) 99483) ((-1050 . -597) 99465) ((-1000 . -239) T) ((-349 . -1025) T) ((-795 . -1239) 99435) ((-246 . -23) T) ((-245 . -23) T) ((-963 . -597) 99417) ((-718 . -598) 99378) ((-718 . -597) 99360) ((-779 . -827) 99339) ((-975 . -507) 99251) ((-349 . -229) T) ((-349 . -239) T) ((-1132 . -149) 99198) ((-980 . -25) T) ((-139 . -598) 99157) ((-139 . -597) 99139) ((-886 . -302) T) ((-980 . -21) T) ((-947 . -25) T) ((-890 . -21) T) ((-890 . -25) T) ((-422 . -21) T) ((-422 . -25) T) ((-820 . -406) 99123) ((-48 . -1025) T) ((-1254 . -1246) 99107) ((-1252 . -1246) 99091) ((-1011 . -588) 99066) ((-311 . -598) 98927) ((-311 . -597) 98909) ((-308 . -598) NIL) ((-308 . -597) 98891) ((-48 . -239) T) ((-48 . -229) T) ((-634 . -281) 98852) ((-538 . -231) 98802) ((-135 . -597) 98784) ((-114 . -597) 98766) ((-471 . -38) 98731) ((-1256 . -1253) 98710) ((-1247 . -130) T) ((-1255 . -1032) T) ((-1055 . -101) T) ((-87 . -1186) T) ((-493 . -304) NIL) ((-976 . -106) 98694) ((-865 . -1073) T) ((-861 . -1073) T) ((-1232 . -631) 98678) ((-1232 . -368) 98662) ((-322 . -1186) T) ((-578 . -827) T) ((-1115 . -1073) T) ((-1115 . -1028) 98602) ((-102 . -507) 98535) ((-903 . -597) 98517) ((-338 . -707) T) ((-30 . -597) 98499) ((-842 . -1073) T) ((-820 . -1032) 98478) ((-40 . -628) 98423) ((-221 . -1190) T) ((-402 . -1032) T) ((-1131 . -149) 98405) ((-975 . -285) 98356) ((-600 . -1073) T) ((-221 . -544) T) ((-314 . -1213) 98340) ((-314 . -1210) 98310) ((-1159 . -1162) 98289) ((-1048 . -597) 98271) ((-627 . -149) 98255) ((-614 . -149) 98201) ((-1159 . -106) 98151) ((-473 . -1162) 98130) ((-481 . -145) T) ((-481 . -143) NIL) ((-1093 . -598) 98045) ((-433 . -597) 98027) ((-213 . -145) T) ((-213 . -143) NIL) ((-1093 . -597) 98009) ((-129 . -101) T) ((-52 . -101) T) ((-1196 . -621) 97961) ((-473 . -106) 97911) ((-969 . -23) T) ((-1256 . -38) 97881) ((-1145 . -1085) T) ((-1098 . -1085) T) ((-1036 . -1190) T) ((-306 . -101) T) ((-831 . -1085) T) ((-928 . -1190) 97860) ((-475 . -1190) 97839) ((-712 . -827) 97818) ((-1036 . -544) T) ((-928 . -544) 97749) ((-1145 . -23) T) ((-1098 . -23) T) ((-831 . -23) T) ((-475 . -544) 97680) ((-1115 . -698) 97612) ((-1119 . -507) 97545) ((-1011 . -598) NIL) ((-1011 . -597) 97527) ((-95 . -1056) T) ((-842 . -698) 97497) ((-1180 . -47) 97466) ((-246 . -130) T) ((-245 . -130) T) ((-1077 . -1073) T) ((-979 . -1073) T) ((-61 . -597) 97448) ((-1140 . -827) NIL) ((-1000 . -772) T) ((-1000 . -775) T) ((-1260 . -1031) 97435) ((-1260 . -111) 97420) ((-846 . -628) 97407) ((-1224 . -25) T) ((-1224 . -21) T) ((-1217 . -21) T) ((-1217 . -25) T) ((-1196 . -21) T) ((-1196 . -25) T) ((-1003 . -149) 97391) ((-848 . -800) 97370) ((-848 . -896) T) ((-693 . -281) 97297) ((-581 . -21) T) ((-581 . -25) T) ((-580 . -21) T) ((-40 . -707) T) ((-218 . -507) 97230) ((-580 . -25) T) ((-470 . -149) 97214) ((-457 . -149) 97198) ((-897 . -774) T) ((-897 . -707) T) ((-751 . -773) T) ((-751 . -774) T) ((-499 . -1073) T) ((-495 . -1073) T) ((-751 . -707) T) ((-221 . -358) T) ((-1129 . -1073) 97176) ((-847 . -1190) T) ((-634 . -597) 97158) ((-847 . -544) T) ((-674 . -363) NIL) ((-354 . -1239) 97142) ((-650 . -101) T) ((-348 . -1239) 97126) ((-340 . -1239) 97110) ((-1255 . -1073) T) ((-513 . -827) 97089) ((-797 . -446) 97068) ((-1022 . -1073) T) ((-1022 . -1045) 96997) ((-1003 . -952) 96966) ((-799 . -1085) T) ((-979 . -698) 96911) ((-381 . -1085) T) ((-470 . -952) 96880) ((-457 . -952) 96849) ((-110 . -149) 96831) ((-72 . -597) 96813) ((-869 . -597) 96795) ((-1053 . -705) 96774) ((-1260 . -1025) T) ((-796 . -621) 96722) ((-289 . -1032) 96664) ((-167 . -1190) 96569) ((-221 . -1085) T) ((-319 . -23) T) ((-1140 . -968) 96521) ((-820 . -1073) T) ((-1099 . -721) 96500) ((-1218 . -1031) 96405) ((-1216 . -896) 96384) ((-846 . -707) T) ((-167 . -544) 96295) ((-1195 . -896) 96274) ((-566 . -628) 96261) ((-402 . -1073) T) ((-552 . -628) 96248) ((-258 . -1073) T) ((-488 . -628) 96213) ((-221 . -23) T) ((-1195 . -800) 96166) ((-1254 . -101) T) ((-349 . -1251) 96143) ((-1252 . -101) T) ((-1218 . -111) 96035) ((-142 . -597) 96017) ((-969 . -130) T) ((-44 . -101) T) ((-236 . -827) 95968) ((-1205 . -1190) 95947) ((-102 . -483) 95931) ((-1255 . -698) 95901) ((-1060 . -47) 95862) ((-1036 . -1085) T) ((-928 . -1085) T) ((-127 . -34) T) ((-121 . -34) T) ((-762 . -47) 95839) ((-760 . -47) 95811) ((-1205 . -544) 95722) ((-349 . -363) T) ((-475 . -1085) T) ((-1145 . -130) T) ((-1098 . -130) T) ((-448 . -47) 95701) ((-847 . -358) T) ((-831 . -130) T) ((-150 . -101) T) ((-1036 . -23) T) ((-928 . -23) T) ((-559 . -544) T) ((-796 . -25) T) ((-796 . -21) T) ((-1115 . -507) 95634) ((-577 . -1056) T) ((-571 . -1014) 95618) ((-475 . -23) T) ((-346 . -1032) T) ((-1180 . -876) 95599) ((-650 . -304) 95537) ((-1086 . -1239) 95507) ((-679 . -628) 95472) ((-979 . -170) T) ((-939 . -143) 95451) ((-617 . -1073) T) ((-591 . -1073) T) ((-939 . -145) 95430) ((-980 . -827) T) ((-716 . -145) 95409) ((-716 . -143) 95388) ((-947 . -827) T) ((-468 . -896) 95367) ((-311 . -1031) 95277) ((-308 . -1031) 95206) ((-975 . -281) 95164) ((-402 . -698) 95116) ((-128 . -827) T) ((-681 . -825) T) ((-1218 . -1025) T) ((-311 . -111) 95012) ((-308 . -111) 94925) ((-940 . -101) T) ((-795 . -101) 94715) ((-693 . -598) NIL) ((-693 . -597) 94697) ((-638 . -1014) 94593) ((-1218 . -321) 94537) ((-1011 . -283) 94512) ((-566 . -707) T) ((-552 . -774) T) ((-167 . -358) 94463) ((-552 . -771) T) ((-552 . -707) T) ((-488 . -707) T) ((-1119 . -483) 94447) ((-1060 . -862) NIL) ((-847 . -1085) T) ((-117 . -885) NIL) ((-1254 . -1253) 94423) ((-1252 . -1253) 94402) ((-762 . -862) NIL) ((-760 . -862) 94261) ((-1247 . -25) T) ((-1247 . -21) T) ((-1183 . -101) 94239) ((-1079 . -390) T) ((-605 . -628) 94226) ((-448 . -862) NIL) ((-655 . -101) 94204) ((-1060 . -1014) 94031) ((-847 . -23) T) ((-762 . -1014) 93890) ((-760 . -1014) 93747) ((-117 . -628) 93692) ((-448 . -1014) 93568) ((-629 . -1014) 93552) ((-609 . -101) T) ((-218 . -483) 93536) ((-1232 . -34) T) ((-617 . -698) 93520) ((-591 . -698) 93504) ((-650 . -38) 93464) ((-314 . -101) T) ((-84 . -597) 93446) ((-50 . -1014) 93430) ((-1093 . -1031) 93417) ((-1060 . -372) 93401) ((-762 . -372) 93385) ((-59 . -56) 93347) ((-679 . -774) T) ((-679 . -771) T) ((-567 . -1014) 93334) ((-511 . -1014) 93311) ((-679 . -707) T) ((-319 . -130) T) ((-311 . -1025) 93201) ((-308 . -1025) T) ((-167 . -1085) T) ((-760 . -372) 93185) ((-45 . -149) 93135) ((-980 . -968) 93117) ((-448 . -372) 93101) ((-402 . -170) T) ((-311 . -239) 93080) ((-308 . -239) T) ((-308 . -229) NIL) ((-289 . -1073) 92862) ((-221 . -130) T) ((-1093 . -111) 92847) ((-167 . -23) T) ((-779 . -145) 92826) ((-779 . -143) 92805) ((-246 . -621) 92711) ((-245 . -621) 92617) ((-314 . -279) 92583) ((-1129 . -507) 92516) ((-1106 . -1073) T) ((-221 . -1034) T) ((-795 . -304) 92454) ((-1060 . -876) 92389) ((-762 . -876) 92332) ((-760 . -876) 92316) ((-1254 . -38) 92286) ((-1252 . -38) 92256) ((-1205 . -1085) T) ((-832 . -1085) T) ((-448 . -876) 92233) ((-835 . -1073) T) ((-1205 . -23) T) ((-559 . -1085) T) ((-832 . -23) T) ((-605 . -707) T) ((-350 . -896) T) ((-347 . -896) T) ((-284 . -101) T) ((-339 . -896) T) ((-1036 . -130) T) ((-946 . -1056) T) ((-928 . -130) T) ((-117 . -774) NIL) ((-117 . -771) NIL) ((-117 . -707) T) ((-674 . -885) NIL) ((-1022 . -507) 92134) ((-475 . -130) T) ((-559 . -23) T) ((-655 . -304) 92072) ((-617 . -742) T) ((-591 . -742) T) ((-1196 . -827) NIL) ((-979 . -285) T) ((-246 . -21) T) ((-674 . -628) 92022) ((-346 . -1073) T) ((-246 . -25) T) ((-245 . -21) T) ((-245 . -25) T) ((-150 . -38) 92006) ((-2 . -101) T) ((-886 . -896) T) ((-476 . -1239) 91976) ((-219 . -1014) 91953) ((-1093 . -1025) T) ((-692 . -302) T) ((-289 . -698) 91895) ((-681 . -1032) T) ((-481 . -446) T) ((-402 . -507) 91807) ((-213 . -446) T) ((-1093 . -229) T) ((-290 . -149) 91757) ((-975 . -598) 91718) ((-975 . -597) 91700) ((-965 . -597) 91682) ((-116 . -1032) T) ((-634 . -1031) 91666) ((-221 . -486) T) ((-394 . -597) 91648) ((-394 . -598) 91625) ((-1029 . -1239) 91595) ((-634 . -111) 91574) ((-1115 . -483) 91558) ((-795 . -38) 91528) ((-62 . -435) T) ((-62 . -390) T) ((-1132 . -101) T) ((-847 . -130) T) ((-478 . -101) 91506) ((-1260 . -363) T) ((-1053 . -101) T) ((-1035 . -101) T) ((-346 . -698) 91451) ((-712 . -145) 91430) ((-712 . -143) 91409) ((-1000 . -628) 91346) ((-516 . -1073) 91324) ((-354 . -101) T) ((-348 . -101) T) ((-340 . -101) T) ((-107 . -101) T) ((-497 . -1073) T) ((-349 . -628) 91269) ((-1145 . -621) 91217) ((-1098 . -621) 91165) ((-380 . -502) 91144) ((-813 . -825) 91123) ((-374 . -1190) T) ((-674 . -707) T) ((-334 . -1032) T) ((-1196 . -968) 91075) ((-172 . -1032) T) ((-102 . -597) 91007) ((-1147 . -143) 90986) ((-1147 . -145) 90965) ((-374 . -544) T) ((-1146 . -145) 90944) ((-1146 . -143) 90923) ((-1140 . -143) 90830) ((-402 . -285) T) ((-1140 . -145) 90737) ((-1099 . -145) 90716) ((-1099 . -143) 90695) ((-314 . -38) 90536) ((-167 . -130) T) ((-308 . -775) NIL) ((-308 . -772) NIL) ((-634 . -1025) T) ((-48 . -628) 90501) ((-1139 . -101) T) ((-970 . -101) T) ((-969 . -21) T) ((-127 . -986) 90485) ((-121 . -986) 90469) ((-969 . -25) T) ((-877 . -119) 90453) ((-1131 . -101) T) ((-796 . -827) 90432) ((-1205 . -130) T) ((-1145 . -25) T) ((-1145 . -21) T) ((-832 . -130) T) ((-1098 . -25) T) ((-1098 . -21) T) ((-831 . -25) T) ((-831 . -21) T) ((-762 . -302) 90411) ((-627 . -101) 90389) ((-614 . -101) T) ((-1132 . -304) 90184) ((-559 . -130) T) ((-603 . -825) 90163) ((-1129 . -483) 90147) ((-1123 . -149) 90097) ((-1119 . -597) 90059) ((-1119 . -598) 90020) ((-1000 . -771) T) ((-1000 . -774) T) ((-1000 . -707) T) ((-478 . -304) 89958) ((-447 . -412) 89928) ((-346 . -170) T) ((-284 . -38) 89915) ((-269 . -101) T) ((-268 . -101) T) ((-267 . -101) T) ((-266 . -101) T) ((-265 . -101) T) ((-264 . -101) T) ((-263 . -101) T) ((-338 . -1014) 89892) ((-208 . -101) T) ((-207 . -101) T) ((-205 . -101) T) ((-204 . -101) T) ((-203 . -101) T) ((-202 . -101) T) ((-199 . -101) T) ((-198 . -101) T) ((-693 . -1031) 89715) ((-197 . -101) T) ((-196 . -101) T) ((-195 . -101) T) ((-194 . -101) T) ((-193 . -101) T) ((-192 . -101) T) ((-191 . -101) T) ((-190 . -101) T) ((-189 . -101) T) ((-349 . -707) T) ((-693 . -111) 89524) ((-650 . -227) 89508) ((-567 . -302) T) ((-511 . -302) T) ((-289 . -507) 89457) ((-107 . -304) NIL) ((-71 . -390) T) ((-1086 . -101) 89247) ((-813 . -406) 89231) ((-1093 . -775) T) ((-1093 . -772) T) ((-681 . -1073) T) ((-565 . -597) 89213) ((-374 . -358) T) ((-167 . -486) 89191) ((-209 . -1073) T) ((-218 . -597) 89123) ((-133 . -1073) T) ((-116 . -1073) T) ((-48 . -707) T) ((-1022 . -483) 89088) ((-499 . -92) T) ((-139 . -420) 89070) ((-139 . -363) T) ((-1003 . -101) T) ((-505 . -502) 89049) ((-470 . -101) T) ((-457 . -101) T) ((-1010 . -1085) T) ((-1147 . -35) 89015) ((-1147 . -94) 88981) ((-1147 . -1174) 88947) ((-1147 . -1171) 88913) ((-1131 . -304) NIL) ((-88 . -391) T) ((-88 . -390) T) ((-1053 . -1124) 88892) ((-1146 . -1171) 88858) ((-1146 . -1174) 88824) ((-1010 . -23) T) ((-1146 . -94) 88790) ((-559 . -486) T) ((-1146 . -35) 88756) ((-1140 . -1171) 88722) ((-1140 . -1174) 88688) ((-1140 . -94) 88654) ((-356 . -1085) T) ((-354 . -1124) 88633) ((-348 . -1124) 88612) ((-340 . -1124) 88591) ((-1140 . -35) 88557) ((-1099 . -35) 88523) ((-1099 . -94) 88489) ((-107 . -1124) T) ((-1099 . -1174) 88455) ((-813 . -1032) 88434) ((-627 . -304) 88372) ((-614 . -304) 88223) ((-1099 . -1171) 88189) ((-693 . -1025) T) ((-1036 . -621) 88171) ((-1053 . -38) 88039) ((-928 . -621) 87987) ((-980 . -145) T) ((-980 . -143) NIL) ((-374 . -1085) T) ((-319 . -25) T) ((-317 . -23) T) ((-919 . -827) 87966) ((-693 . -321) 87943) ((-475 . -621) 87891) ((-40 . -1014) 87779) ((-681 . -698) 87766) ((-693 . -229) T) ((-334 . -1073) T) ((-172 . -1073) T) ((-326 . -827) T) ((-413 . -446) 87716) ((-374 . -23) T) ((-354 . -38) 87681) ((-348 . -38) 87646) ((-340 . -38) 87611) ((-79 . -435) T) ((-79 . -390) T) ((-221 . -25) T) ((-221 . -21) T) ((-814 . -1085) T) ((-107 . -38) 87561) ((-807 . -1085) T) ((-754 . -1073) T) ((-116 . -698) 87548) ((-652 . -1014) 87532) ((-596 . -101) T) ((-814 . -23) T) ((-807 . -23) T) ((-1129 . -281) 87509) ((-1086 . -304) 87447) ((-1075 . -231) 87431) ((-63 . -391) T) ((-63 . -390) T) ((-110 . -101) T) ((-40 . -372) 87408) ((-95 . -101) T) ((-633 . -829) 87392) ((-1108 . -1056) T) ((-1036 . -21) T) ((-1036 . -25) T) ((-795 . -227) 87361) ((-928 . -25) T) ((-928 . -21) T) ((-603 . -1032) T) ((-475 . -25) T) ((-475 . -21) T) ((-1003 . -304) 87299) ((-865 . -597) 87281) ((-861 . -597) 87263) ((-246 . -827) 87214) ((-245 . -827) 87165) ((-516 . -507) 87098) ((-847 . -621) 87075) ((-470 . -304) 87013) ((-457 . -304) 86951) ((-346 . -285) T) ((-1129 . -1220) 86935) ((-1115 . -597) 86897) ((-1115 . -598) 86858) ((-1113 . -101) T) ((-975 . -1031) 86754) ((-40 . -876) 86706) ((-1129 . -588) 86683) ((-1260 . -628) 86670) ((-1037 . -149) 86616) ((-848 . -1190) T) ((-975 . -111) 86498) ((-334 . -698) 86482) ((-842 . -597) 86464) ((-172 . -698) 86396) ((-402 . -281) 86354) ((-848 . -544) T) ((-107 . -395) 86336) ((-83 . -379) T) ((-83 . -390) T) ((-681 . -170) T) ((-600 . -597) 86318) ((-98 . -707) T) ((-476 . -101) 86108) ((-98 . -467) T) ((-116 . -170) T) ((-1086 . -38) 86078) ((-167 . -621) 86026) ((-1029 . -101) T) ((-847 . -25) T) ((-795 . -234) 86005) ((-847 . -21) T) ((-798 . -101) T) ((-409 . -101) T) ((-380 . -101) T) ((-110 . -304) NIL) ((-223 . -101) 85983) ((-127 . -1186) T) ((-121 . -1186) T) ((-1010 . -130) T) ((-650 . -362) 85967) ((-975 . -1025) T) ((-1205 . -621) 85915) ((-1077 . -597) 85897) ((-979 . -597) 85879) ((-508 . -23) T) ((-503 . -23) T) ((-338 . -302) T) ((-501 . -23) T) ((-317 . -130) T) ((-3 . -1073) T) ((-979 . -598) 85863) ((-975 . -239) 85842) ((-975 . -229) 85821) ((-1260 . -707) T) ((-1224 . -143) 85800) ((-813 . -1073) T) ((-1224 . -145) 85779) ((-1217 . -145) 85758) ((-1217 . -143) 85737) ((-1216 . -1190) 85716) ((-1196 . -143) 85623) ((-1196 . -145) 85530) ((-1195 . -1190) 85509) ((-374 . -130) T) ((-552 . -862) 85491) ((0 . -1073) T) ((-172 . -170) T) ((-167 . -21) T) ((-167 . -25) T) ((-49 . -1073) T) ((-1218 . -628) 85396) ((-1216 . -544) 85347) ((-695 . -1085) T) ((-1195 . -544) 85298) ((-552 . -1014) 85280) ((-580 . -145) 85259) ((-580 . -143) 85238) ((-488 . -1014) 85181) ((-1108 . -1110) T) ((-86 . -379) T) ((-86 . -390) T) ((-848 . -358) T) ((-814 . -130) T) ((-807 . -130) T) ((-695 . -23) T) ((-499 . -597) 85131) ((-495 . -597) 85113) ((-1256 . -1032) T) ((-374 . -1034) T) ((-1002 . -1073) 85091) ((-877 . -34) T) ((-476 . -304) 85029) ((-577 . -101) T) ((-1129 . -598) 84990) ((-1129 . -597) 84922) ((-1145 . -827) 84901) ((-45 . -101) T) ((-1098 . -827) 84880) ((-797 . -101) T) ((-1205 . -25) T) ((-1205 . -21) T) ((-832 . -25) T) ((-44 . -362) 84864) ((-832 . -21) T) ((-712 . -446) 84815) ((-1255 . -597) 84797) ((-1029 . -304) 84735) ((-651 . -1056) T) ((-590 . -1056) T) ((-385 . -1073) T) ((-559 . -25) T) ((-559 . -21) T) ((-178 . -1056) T) ((-159 . -1056) T) ((-154 . -1056) T) ((-152 . -1056) T) ((-603 . -1073) T) ((-679 . -862) 84717) ((-1232 . -1186) T) ((-223 . -304) 84655) ((-142 . -363) T) ((-1022 . -598) 84597) ((-1022 . -597) 84540) ((-308 . -885) NIL) ((-679 . -1014) 84485) ((-692 . -896) T) ((-468 . -1190) 84464) ((-1146 . -446) 84443) ((-1140 . -446) 84422) ((-325 . -101) T) ((-848 . -1085) T) ((-311 . -628) 84243) ((-308 . -628) 84172) ((-468 . -544) 84123) ((-334 . -507) 84089) ((-538 . -149) 84039) ((-40 . -302) T) ((-820 . -597) 84021) ((-681 . -285) T) ((-848 . -23) T) ((-374 . -486) T) ((-1053 . -227) 83991) ((-505 . -101) T) ((-402 . -598) 83799) ((-402 . -597) 83781) ((-258 . -597) 83763) ((-116 . -285) T) ((-1218 . -707) T) ((-1216 . -358) 83742) ((-1195 . -358) 83721) ((-1245 . -34) T) ((-117 . -1186) T) ((-107 . -227) 83703) ((-1151 . -101) T) ((-471 . -1073) T) ((-516 . -483) 83687) ((-718 . -34) T) ((-476 . -38) 83657) ((-139 . -34) T) ((-117 . -860) 83634) ((-117 . -862) NIL) ((-605 . -1014) 83517) ((-625 . -827) 83496) ((-1244 . -101) T) ((-290 . -101) T) ((-693 . -363) 83475) ((-117 . -1014) 83452) ((-385 . -698) 83436) ((-603 . -698) 83420) ((-45 . -304) 83224) ((-796 . -143) 83203) ((-796 . -145) 83182) ((-1255 . -377) 83161) ((-799 . -827) T) ((-1234 . -1073) T) ((-1132 . -225) 83108) ((-381 . -827) 83087) ((-1224 . -1174) 83053) ((-1224 . -1171) 83019) ((-1217 . -1171) 82985) ((-508 . -130) T) ((-1217 . -1174) 82951) ((-1196 . -1171) 82917) ((-1196 . -1174) 82883) ((-1224 . -35) 82849) ((-1224 . -94) 82815) ((-617 . -597) 82784) ((-591 . -597) 82753) ((-221 . -827) T) ((-1217 . -94) 82719) ((-1217 . -35) 82685) ((-1216 . -1085) T) ((-1093 . -628) 82672) ((-1196 . -94) 82638) ((-1195 . -1085) T) ((-578 . -149) 82620) ((-1053 . -344) 82599) ((-172 . -285) T) ((-117 . -372) 82576) ((-117 . -333) 82553) ((-1196 . -35) 82519) ((-846 . -302) T) ((-308 . -774) NIL) ((-308 . -771) NIL) ((-311 . -707) 82368) ((-308 . -707) T) ((-468 . -358) 82347) ((-354 . -344) 82326) ((-348 . -344) 82305) ((-340 . -344) 82284) ((-311 . -467) 82263) ((-1216 . -23) T) ((-1195 . -23) T) ((-699 . -1085) T) ((-695 . -130) T) ((-633 . -101) T) ((-471 . -698) 82228) ((-45 . -277) 82178) ((-104 . -1073) T) ((-67 . -597) 82160) ((-946 . -101) T) ((-841 . -101) T) ((-605 . -876) 82119) ((-1256 . -1073) T) ((-376 . -1073) T) ((-1185 . -1073) T) ((-81 . -1186) T) ((-1036 . -827) T) ((-928 . -827) 82098) ((-117 . -876) NIL) ((-762 . -896) 82077) ((-694 . -827) T) ((-524 . -1073) T) ((-493 . -1073) T) ((-350 . -1190) T) ((-347 . -1190) T) ((-339 . -1190) T) ((-259 . -1190) 82056) ((-243 . -1190) 82035) ((-1086 . -227) 82004) ((-475 . -827) 81983) ((-1115 . -1031) 81967) ((-385 . -742) T) ((-1131 . -808) T) ((-674 . -1186) T) ((-350 . -544) T) ((-347 . -544) T) ((-339 . -544) T) ((-259 . -544) 81898) ((-243 . -544) 81829) ((-518 . -1056) T) ((-1115 . -111) 81808) ((-447 . -725) 81778) ((-842 . -1031) 81748) ((-797 . -38) 81690) ((-674 . -860) 81672) ((-674 . -862) 81654) ((-290 . -304) 81458) ((-886 . -1190) T) ((-650 . -406) 81442) ((-842 . -111) 81407) ((-674 . -1014) 81352) ((-980 . -446) T) ((-886 . -544) T) ((-567 . -896) T) ((-468 . -1085) T) ((-511 . -896) T) ((-1129 . -283) 81329) ((-890 . -446) T) ((-64 . -597) 81311) ((-614 . -225) 81257) ((-468 . -23) T) ((-1093 . -774) T) ((-848 . -130) T) ((-1093 . -771) T) ((-1247 . -1249) 81236) ((-1093 . -707) T) ((-634 . -628) 81210) ((-289 . -597) 80951) ((-1011 . -34) T) ((-795 . -825) 80930) ((-566 . -302) T) ((-552 . -302) T) ((-488 . -302) T) ((-1256 . -698) 80900) ((-674 . -372) 80882) ((-674 . -333) 80864) ((-471 . -170) T) ((-376 . -698) 80834) ((-847 . -827) NIL) ((-552 . -998) T) ((-488 . -998) T) ((-1106 . -597) 80816) ((-1086 . -234) 80795) ((-210 . -101) T) ((-1123 . -101) T) ((-70 . -597) 80777) ((-1115 . -1025) T) ((-1151 . -38) 80674) ((-835 . -597) 80656) ((-552 . -537) T) ((-650 . -1032) T) ((-712 . -925) 80609) ((-1115 . -229) 80588) ((-1055 . -1073) T) ((-1010 . -25) T) ((-1010 . -21) T) ((-979 . -1031) 80533) ((-881 . -101) T) ((-842 . -1025) T) ((-674 . -876) NIL) ((-350 . -324) 80517) ((-350 . -358) T) ((-347 . -324) 80501) ((-347 . -358) T) ((-339 . -324) 80485) ((-339 . -358) T) ((-481 . -101) T) ((-1244 . -38) 80455) ((-516 . -667) 80405) ((-213 . -101) T) ((-1000 . -1014) 80285) ((-979 . -111) 80214) ((-1147 . -949) 80183) ((-1146 . -949) 80145) ((-513 . -149) 80129) ((-1053 . -365) 80108) ((-346 . -597) 80090) ((-317 . -21) T) ((-349 . -1014) 80067) ((-317 . -25) T) ((-1140 . -949) 80036) ((-1099 . -949) 80003) ((-75 . -597) 79985) ((-679 . -302) T) ((-167 . -827) 79964) ((-886 . -358) T) ((-374 . -25) T) ((-374 . -21) T) ((-886 . -324) 79951) ((-85 . -597) 79933) ((-679 . -998) T) ((-657 . -827) T) ((-1216 . -130) T) ((-1195 . -130) T) ((-877 . -986) 79917) ((-814 . -21) T) ((-48 . -1014) 79860) ((-814 . -25) T) ((-807 . -25) T) ((-807 . -21) T) ((-1254 . -1032) T) ((-1252 . -1032) T) ((-634 . -707) T) ((-1255 . -1031) 79844) ((-1205 . -827) 79823) ((-795 . -406) 79792) ((-102 . -119) 79776) ((-129 . -1073) T) ((-52 . -1073) T) ((-902 . -597) 79758) ((-847 . -968) 79735) ((-803 . -101) T) ((-1255 . -111) 79714) ((-633 . -38) 79684) ((-559 . -827) T) ((-350 . -1085) T) ((-347 . -1085) T) ((-339 . -1085) T) ((-259 . -1085) T) ((-243 . -1085) T) ((-605 . -302) 79663) ((-1123 . -304) 79467) ((-517 . -1056) T) ((-306 . -1073) T) ((-644 . -23) T) ((-476 . -227) 79436) ((-150 . -1032) T) ((-350 . -23) T) ((-347 . -23) T) ((-339 . -23) T) ((-117 . -302) T) ((-259 . -23) T) ((-243 . -23) T) ((-979 . -1025) T) ((-693 . -885) 79415) ((-979 . -229) 79387) ((-979 . -239) T) ((-117 . -998) NIL) ((-886 . -1085) T) ((-1217 . -446) 79366) ((-1196 . -446) 79345) ((-516 . -597) 79277) ((-693 . -628) 79202) ((-402 . -1031) 79154) ((-497 . -597) 79136) ((-886 . -23) T) ((-481 . -304) NIL) ((-468 . -130) T) ((-213 . -304) NIL) ((-402 . -111) 79074) ((-795 . -1032) 79004) ((-718 . -1071) 78988) ((-1216 . -486) 78954) ((-1195 . -486) 78920) ((-471 . -285) T) ((-139 . -1071) 78902) ((-128 . -149) 78884) ((-1255 . -1025) T) ((-1037 . -101) T) ((-493 . -507) NIL) ((-683 . -101) T) ((-476 . -234) 78863) ((-1145 . -143) 78842) ((-1145 . -145) 78821) ((-1098 . -145) 78800) ((-1098 . -143) 78779) ((-617 . -1031) 78763) ((-591 . -1031) 78747) ((-650 . -1073) T) ((-650 . -1028) 78687) ((-1147 . -1223) 78671) ((-1147 . -1210) 78648) ((-481 . -1124) T) ((-1146 . -1215) 78609) ((-1146 . -1210) 78579) ((-1146 . -1213) 78563) ((-213 . -1124) T) ((-338 . -896) T) ((-798 . -261) 78547) ((-617 . -111) 78526) ((-591 . -111) 78505) ((-1140 . -1194) 78466) ((-820 . -1025) 78445) ((-1140 . -1210) 78422) ((-508 . -25) T) ((-488 . -297) T) ((-504 . -23) T) ((-503 . -25) T) ((-501 . -25) T) ((-500 . -23) T) ((-1140 . -1192) 78406) ((-402 . -1025) T) ((-314 . -1032) T) ((-674 . -302) T) ((-107 . -825) T) ((-402 . -239) T) ((-402 . -229) 78385) ((-693 . -707) T) ((-481 . -38) 78335) ((-213 . -38) 78285) ((-468 . -486) 78251) ((-1131 . -1117) T) ((-1074 . -101) T) ((-681 . -597) 78233) ((-681 . -598) 78148) ((-695 . -21) T) ((-695 . -25) T) ((-1108 . -101) T) ((-209 . -597) 78130) ((-133 . -597) 78112) ((-116 . -597) 78094) ((-155 . -25) T) ((-1254 . -1073) T) ((-848 . -621) 78042) ((-1252 . -1073) T) ((-939 . -101) T) ((-716 . -101) T) ((-696 . -101) T) ((-447 . -101) T) ((-796 . -446) 77993) ((-44 . -1073) T) ((-1061 . -827) T) ((-644 . -130) T) ((-1037 . -304) 77844) ((-650 . -698) 77828) ((-284 . -1032) T) ((-350 . -130) T) ((-347 . -130) T) ((-339 . -130) T) ((-259 . -130) T) ((-243 . -130) T) ((-413 . -101) T) ((-150 . -1073) T) ((-45 . -225) 77778) ((-934 . -827) 77757) ((-975 . -628) 77695) ((-236 . -1239) 77665) ((-1000 . -302) T) ((-289 . -1031) 77586) ((-886 . -130) T) ((-40 . -896) T) ((-481 . -395) 77568) ((-349 . -302) T) ((-213 . -395) 77550) ((-1053 . -406) 77534) ((-289 . -111) 77450) ((-848 . -25) T) ((-848 . -21) T) ((-334 . -597) 77432) ((-1218 . -47) 77376) ((-221 . -145) T) ((-172 . -597) 77358) ((-1086 . -825) 77337) ((-754 . -597) 77319) ((-592 . -231) 77266) ((-469 . -231) 77216) ((-1254 . -698) 77186) ((-48 . -302) T) ((-1252 . -698) 77156) ((-940 . -1073) T) ((-795 . -1073) 76946) ((-307 . -101) T) ((-877 . -1186) T) ((-48 . -998) T) ((-1195 . -621) 76854) ((-669 . -101) 76832) ((-44 . -698) 76816) ((-538 . -101) T) ((-66 . -378) T) ((-66 . -390) T) ((-642 . -23) T) ((-650 . -742) T) ((-1183 . -1073) 76794) ((-346 . -1031) 76739) ((-655 . -1073) 76717) ((-1036 . -145) T) ((-928 . -145) 76696) ((-928 . -143) 76675) ((-779 . -101) T) ((-150 . -698) 76659) ((-475 . -145) 76638) ((-475 . -143) 76617) ((-346 . -111) 76546) ((-1053 . -1032) T) ((-317 . -827) 76525) ((-1224 . -949) 76494) ((-609 . -1073) T) ((-1217 . -949) 76456) ((-504 . -130) T) ((-500 . -130) T) ((-290 . -225) 76406) ((-354 . -1032) T) ((-348 . -1032) T) ((-340 . -1032) T) ((-289 . -1025) 76348) ((-1196 . -949) 76317) ((-374 . -827) T) ((-107 . -1032) T) ((-975 . -707) T) ((-846 . -896) T) ((-820 . -775) 76296) ((-820 . -772) 76275) ((-413 . -304) 76214) ((-462 . -101) T) ((-580 . -949) 76183) ((-314 . -1073) T) ((-402 . -775) 76162) ((-402 . -772) 76141) ((-493 . -483) 76123) ((-1218 . -1014) 76089) ((-1216 . -21) T) ((-1216 . -25) T) ((-1195 . -21) T) ((-1195 . -25) T) ((-795 . -698) 76031) ((-679 . -399) T) ((-1245 . -1186) T) ((-590 . -101) T) ((-1086 . -406) 76000) ((-979 . -363) NIL) ((-651 . -101) T) ((-178 . -101) T) ((-159 . -101) T) ((-154 . -101) T) ((-152 . -101) T) ((-102 . -34) T) ((-718 . -1186) T) ((-44 . -742) T) ((-578 . -101) T) ((-76 . -391) T) ((-76 . -390) T) ((-633 . -636) 75984) ((-139 . -1186) T) ((-847 . -145) T) ((-847 . -143) NIL) ((-1185 . -92) T) ((-346 . -1025) T) ((-69 . -378) T) ((-69 . -390) T) ((-1138 . -101) T) ((-650 . -507) 75917) ((-669 . -304) 75855) ((-939 . -38) 75752) ((-716 . -38) 75722) ((-538 . -304) 75526) ((-311 . -1186) T) ((-346 . -229) T) ((-346 . -239) T) ((-308 . -1186) T) ((-284 . -1073) T) ((-1153 . -597) 75508) ((-692 . -1190) T) ((-1129 . -631) 75492) ((-1180 . -544) 75471) ((-692 . -544) T) ((-311 . -860) 75455) ((-311 . -862) 75380) ((-308 . -860) 75341) ((-308 . -862) NIL) ((-779 . -304) 75306) ((-314 . -698) 75147) ((-319 . -318) 75124) ((-479 . -101) T) ((-468 . -25) T) ((-468 . -21) T) ((-413 . -38) 75098) ((-311 . -1014) 74761) ((-221 . -1171) T) ((-221 . -1174) T) ((-3 . -597) 74743) ((-308 . -1014) 74673) ((-2 . -1073) T) ((-2 . |RecordCategory|) T) ((-813 . -597) 74655) ((-1086 . -1032) 74585) ((-566 . -896) T) ((-552 . -800) T) ((-552 . -896) T) ((-488 . -896) T) ((-135 . -1014) 74569) ((-221 . -94) T) ((-74 . -435) T) ((-74 . -390) T) ((0 . -597) 74551) ((-167 . -145) 74530) ((-167 . -143) 74481) ((-221 . -35) T) ((-49 . -597) 74463) ((-471 . -1032) T) ((-481 . -227) 74445) ((-478 . -944) 74429) ((-476 . -825) 74408) ((-213 . -227) 74390) ((-80 . -435) T) ((-80 . -390) T) ((-1119 . -34) T) ((-795 . -170) 74369) ((-712 . -101) T) ((-1002 . -597) 74336) ((-493 . -281) 74311) ((-311 . -372) 74280) ((-308 . -372) 74241) ((-308 . -333) 74202) ((-1058 . -597) 74184) ((-796 . -925) 74131) ((-642 . -130) T) ((-1205 . -143) 74110) ((-1205 . -145) 74089) ((-1147 . -101) T) ((-1146 . -101) T) ((-1140 . -101) T) ((-1132 . -1073) T) ((-1099 . -101) T) ((-218 . -34) T) ((-284 . -698) 74076) ((-1132 . -594) 74052) ((-578 . -304) NIL) ((-478 . -1073) 74030) ((-385 . -597) 74012) ((-503 . -827) T) ((-1123 . -225) 73962) ((-1224 . -1223) 73946) ((-1224 . -1210) 73923) ((-1217 . -1215) 73884) ((-1217 . -1210) 73854) ((-1217 . -1213) 73838) ((-1196 . -1194) 73799) ((-1196 . -1210) 73776) ((-603 . -597) 73758) ((-1196 . -1192) 73742) ((-679 . -896) T) ((-1147 . -279) 73708) ((-1146 . -279) 73674) ((-1140 . -279) 73640) ((-1053 . -1073) T) ((-1035 . -1073) T) ((-48 . -297) T) ((-311 . -876) 73606) ((-308 . -876) NIL) ((-1035 . -1042) 73585) ((-1093 . -862) 73567) ((-779 . -38) 73551) ((-259 . -621) 73499) ((-243 . -621) 73447) ((-681 . -1031) 73434) ((-580 . -1210) 73411) ((-1099 . -279) 73377) ((-314 . -170) 73308) ((-354 . -1073) T) ((-348 . -1073) T) ((-340 . -1073) T) ((-493 . -19) 73290) ((-1093 . -1014) 73272) ((-1075 . -149) 73256) ((-107 . -1073) T) ((-116 . -1031) 73243) ((-692 . -358) T) ((-493 . -588) 73218) ((-681 . -111) 73203) ((-431 . -101) T) ((-45 . -1122) 73153) ((-116 . -111) 73138) ((-617 . -701) T) ((-591 . -701) T) ((-795 . -507) 73071) ((-1011 . -1186) T) ((-919 . -149) 73055) ((-518 . -101) T) ((-513 . -101) 73005) ((-1145 . -446) 72936) ((-1139 . -1073) T) ((-1060 . -1190) 72915) ((-762 . -1190) 72894) ((-760 . -1190) 72873) ((-61 . -1186) T) ((-471 . -597) 72825) ((-471 . -598) 72747) ((-1131 . -1073) T) ((-1115 . -628) 72721) ((-1098 . -446) 72672) ((-1060 . -544) 72603) ((-476 . -406) 72572) ((-605 . -896) 72551) ((-448 . -1190) 72530) ((-970 . -1073) T) ((-762 . -544) 72441) ((-393 . -597) 72423) ((-760 . -544) 72354) ((-655 . -507) 72287) ((-712 . -304) 72274) ((-644 . -25) T) ((-644 . -21) T) ((-448 . -544) 72205) ((-117 . -896) T) ((-117 . -800) NIL) ((-350 . -25) T) ((-350 . -21) T) ((-347 . -25) T) ((-347 . -21) T) ((-339 . -25) T) ((-339 . -21) T) ((-259 . -25) T) ((-259 . -21) T) ((-82 . -379) T) ((-82 . -390) T) ((-243 . -25) T) ((-243 . -21) T) ((-1234 . -597) 72187) ((-1180 . -1085) T) ((-1180 . -23) T) ((-1140 . -304) 72072) ((-1099 . -304) 72059) ((-1053 . -698) 71927) ((-842 . -628) 71887) ((-919 . -956) 71871) ((-886 . -21) T) ((-284 . -170) T) ((-886 . -25) T) ((-306 . -92) T) ((-848 . -827) 71822) ((-692 . -1085) T) ((-692 . -23) T) ((-627 . -1073) 71800) ((-614 . -594) 71775) ((-614 . -1073) T) ((-567 . -1190) T) ((-511 . -1190) T) ((-567 . -544) T) ((-511 . -544) T) ((-354 . -698) 71727) ((-348 . -698) 71679) ((-340 . -698) 71631) ((-334 . -1031) 71615) ((-172 . -111) 71526) ((-172 . -1031) 71458) ((-107 . -698) 71408) ((-334 . -111) 71387) ((-269 . -1073) T) ((-268 . -1073) T) ((-267 . -1073) T) ((-266 . -1073) T) ((-681 . -1025) T) ((-265 . -1073) T) ((-264 . -1073) T) ((-263 . -1073) T) ((-208 . -1073) T) ((-207 . -1073) T) ((-205 . -1073) T) ((-167 . -1174) 71365) ((-167 . -1171) 71343) ((-204 . -1073) T) ((-203 . -1073) T) ((-116 . -1025) T) ((-202 . -1073) T) ((-199 . -1073) T) ((-681 . -229) T) ((-198 . -1073) T) ((-197 . -1073) T) ((-196 . -1073) T) ((-195 . -1073) T) ((-194 . -1073) T) ((-193 . -1073) T) ((-192 . -1073) T) ((-191 . -1073) T) ((-190 . -1073) T) ((-189 . -1073) T) ((-236 . -101) 71133) ((-167 . -35) 71111) ((-167 . -94) 71089) ((-634 . -1014) 70985) ((-476 . -1032) 70915) ((-1086 . -1073) 70705) ((-1115 . -34) T) ((-650 . -483) 70689) ((-72 . -1186) T) ((-104 . -597) 70671) ((-1256 . -597) 70653) ((-376 . -597) 70635) ((-712 . -38) 70484) ((-559 . -1174) T) ((-559 . -1171) T) ((-524 . -597) 70466) ((-513 . -304) 70404) ((-493 . -597) 70386) ((-493 . -598) 70368) ((-1185 . -597) 70334) ((-1140 . -1124) NIL) ((-1003 . -1045) 70303) ((-1003 . -1073) T) ((-980 . -101) T) ((-947 . -101) T) ((-890 . -101) T) ((-869 . -1014) 70280) ((-1115 . -707) T) ((-979 . -628) 70225) ((-470 . -1073) T) ((-457 . -1073) T) ((-571 . -23) T) ((-559 . -35) T) ((-559 . -94) T) ((-422 . -101) T) ((-1037 . -225) 70171) ((-128 . -101) T) ((-1147 . -38) 70068) ((-842 . -707) T) ((-674 . -896) T) ((-504 . -25) T) ((-500 . -21) T) ((-500 . -25) T) ((-1146 . -38) 69909) ((-334 . -1025) T) ((-1140 . -38) 69705) ((-1053 . -170) T) ((-172 . -1025) T) ((-1099 . -38) 69602) ((-693 . -47) 69579) ((-354 . -170) T) ((-348 . -170) T) ((-512 . -56) 69553) ((-490 . -56) 69503) ((-346 . -1251) 69480) ((-221 . -446) T) ((-314 . -285) 69431) ((-340 . -170) T) ((-172 . -239) T) ((-1195 . -827) 69330) ((-107 . -170) T) ((-848 . -968) 69314) ((-638 . -1085) T) ((-567 . -358) T) ((-567 . -324) 69301) ((-511 . -324) 69278) ((-511 . -358) T) ((-311 . -302) 69257) ((-308 . -302) T) ((-586 . -827) 69236) ((-1086 . -698) 69178) ((-513 . -277) 69162) ((-638 . -23) T) ((-413 . -227) 69146) ((-308 . -998) NIL) ((-331 . -23) T) ((-102 . -986) 69130) ((-45 . -36) 69109) ((-596 . -1073) T) ((-346 . -363) T) ((-517 . -101) T) ((-488 . -27) T) ((-236 . -304) 69047) ((-1060 . -1085) T) ((-1255 . -628) 69021) ((-762 . -1085) T) ((-760 . -1085) T) ((-448 . -1085) T) ((-1036 . -446) T) ((-928 . -446) 68972) ((-1088 . -1056) T) ((-110 . -1073) T) ((-1060 . -23) T) ((-797 . -1032) T) ((-762 . -23) T) ((-760 . -23) T) ((-475 . -446) 68923) ((-1132 . -507) 68706) ((-376 . -377) 68685) ((-1151 . -406) 68669) ((-455 . -23) T) ((-448 . -23) T) ((-95 . -1073) T) ((-478 . -507) 68602) ((-284 . -285) T) ((-1055 . -597) 68584) ((-402 . -885) 68563) ((-50 . -1085) T) ((-1000 . -896) T) ((-979 . -707) T) ((-693 . -862) NIL) ((-567 . -1085) T) ((-511 . -1085) T) ((-820 . -628) 68536) ((-1180 . -130) T) ((-1140 . -395) 68488) ((-980 . -304) NIL) ((-795 . -483) 68472) ((-349 . -896) T) ((-1129 . -34) T) ((-402 . -628) 68424) ((-50 . -23) T) ((-692 . -130) T) ((-693 . -1014) 68304) ((-567 . -23) T) ((-107 . -507) NIL) ((-511 . -23) T) ((-167 . -404) 68275) ((-128 . -304) NIL) ((-1113 . -1073) T) ((-1247 . -1246) 68259) ((-681 . -775) T) ((-681 . -772) T) ((-1093 . -302) T) ((-374 . -145) T) ((-275 . -597) 68241) ((-1195 . -968) 68211) ((-48 . -896) T) ((-655 . -483) 68195) ((-246 . -1239) 68165) ((-245 . -1239) 68135) ((-1149 . -827) T) ((-1086 . -170) 68114) ((-1093 . -998) T) ((-1022 . -34) T) ((-814 . -145) 68093) ((-814 . -143) 68072) ((-718 . -106) 68056) ((-596 . -131) T) ((-476 . -1073) 67846) ((-1151 . -1032) T) ((-847 . -446) T) ((-84 . -1186) T) ((-236 . -38) 67816) ((-139 . -106) 67798) ((-693 . -372) 67782) ((-1093 . -537) T) ((-385 . -1031) 67766) ((-1255 . -707) T) ((-1145 . -925) 67735) ((-129 . -597) 67687) ((-52 . -597) 67669) ((-1098 . -925) 67636) ((-633 . -406) 67620) ((-1244 . -1032) T) ((-603 . -1031) 67604) ((-642 . -25) T) ((-642 . -21) T) ((-1131 . -507) NIL) ((-1224 . -101) T) ((-1217 . -101) T) ((-385 . -111) 67583) ((-218 . -249) 67567) ((-1196 . -101) T) ((-1029 . -1073) T) ((-980 . -1124) T) ((-1029 . -1028) 67507) ((-798 . -1073) T) ((-338 . -1190) T) ((-617 . -628) 67491) ((-603 . -111) 67470) ((-591 . -628) 67454) ((-581 . -101) T) ((-571 . -130) T) ((-580 . -101) T) ((-409 . -1073) T) ((-380 . -1073) T) ((-306 . -597) 67420) ((-223 . -1073) 67398) ((-627 . -507) 67331) ((-614 . -507) 67175) ((-813 . -1025) 67154) ((-625 . -149) 67138) ((-338 . -544) T) ((-693 . -876) 67081) ((-538 . -225) 67031) ((-1224 . -279) 66997) ((-1053 . -285) 66948) ((-481 . -825) T) ((-219 . -1085) T) ((-1217 . -279) 66914) ((-1196 . -279) 66880) ((-980 . -38) 66830) ((-213 . -825) T) ((-1180 . -486) 66796) ((-890 . -38) 66748) ((-820 . -774) 66727) ((-820 . -771) 66706) ((-820 . -707) 66685) ((-354 . -285) T) ((-348 . -285) T) ((-340 . -285) T) ((-167 . -446) 66616) ((-422 . -38) 66600) ((-107 . -285) T) ((-219 . -23) T) ((-402 . -774) 66579) ((-402 . -771) 66558) ((-402 . -707) T) ((-493 . -283) 66533) ((-471 . -1031) 66498) ((-638 . -130) T) ((-1086 . -507) 66431) ((-331 . -130) T) ((-167 . -397) 66410) ((-476 . -698) 66352) ((-795 . -281) 66329) ((-471 . -111) 66285) ((-633 . -1032) T) ((-1205 . -446) 66216) ((-1243 . -1056) T) ((-1242 . -1056) T) ((-1060 . -130) T) ((-259 . -827) 66195) ((-243 . -827) 66174) ((-762 . -130) T) ((-760 . -130) T) ((-559 . -446) T) ((-1029 . -698) 66116) ((-603 . -1025) T) ((-1003 . -507) 66049) ((-577 . -1073) T) ((-455 . -130) T) ((-448 . -130) T) ((-45 . -1073) T) ((-380 . -698) 66019) ((-797 . -1073) T) ((-470 . -507) 65952) ((-457 . -507) 65885) ((-447 . -362) 65855) ((-45 . -594) 65834) ((-311 . -297) T) ((-650 . -597) 65796) ((-58 . -827) 65775) ((-1196 . -304) 65660) ((-980 . -395) 65642) ((-795 . -588) 65619) ((-509 . -827) 65598) ((-489 . -827) 65577) ((-40 . -1190) T) ((-975 . -1014) 65473) ((-50 . -130) T) ((-567 . -130) T) ((-511 . -130) T) ((-289 . -628) 65333) ((-338 . -324) 65310) ((-338 . -358) T) ((-317 . -318) 65287) ((-314 . -281) 65272) ((-40 . -544) T) ((-374 . -1171) T) ((-374 . -1174) T) ((-1011 . -1162) 65247) ((-1159 . -231) 65197) ((-1140 . -227) 65149) ((-325 . -1073) T) ((-374 . -94) T) ((-374 . -35) T) ((-1011 . -106) 65095) ((-471 . -1025) T) ((-473 . -231) 65045) ((-1132 . -483) 64979) ((-1256 . -1031) 64963) ((-376 . -1031) 64947) ((-471 . -239) T) ((-796 . -101) T) ((-695 . -145) 64926) ((-695 . -143) 64905) ((-478 . -483) 64889) ((-479 . -330) 64858) ((-1256 . -111) 64837) ((-505 . -1073) T) ((-476 . -170) 64816) ((-975 . -372) 64800) ((-408 . -101) T) ((-376 . -111) 64779) ((-975 . -333) 64763) ((-274 . -959) 64747) ((-273 . -959) 64731) ((-1254 . -597) 64713) ((-1252 . -597) 64695) ((-110 . -507) NIL) ((-1145 . -1208) 64679) ((-831 . -829) 64663) ((-1151 . -1073) T) ((-102 . -1186) T) ((-928 . -925) 64624) ((-797 . -698) 64566) ((-1196 . -1124) NIL) ((-475 . -925) 64511) ((-1036 . -141) T) ((-59 . -101) 64489) ((-44 . -597) 64471) ((-77 . -597) 64453) ((-346 . -628) 64398) ((-1244 . -1073) T) ((-504 . -827) T) ((-338 . -1085) T) ((-290 . -1073) T) ((-975 . -876) 64357) ((-290 . -594) 64336) ((-1224 . -38) 64233) ((-1217 . -38) 64074) ((-481 . -1032) T) ((-1196 . -38) 63870) ((-213 . -1032) T) ((-338 . -23) T) ((-150 . -597) 63852) ((-813 . -775) 63831) ((-813 . -772) 63810) ((-581 . -38) 63783) ((-580 . -38) 63680) ((-846 . -544) T) ((-219 . -130) T) ((-314 . -978) 63646) ((-78 . -597) 63628) ((-693 . -302) 63607) ((-289 . -707) 63509) ((-804 . -101) T) ((-841 . -821) T) ((-289 . -467) 63488) ((-1247 . -101) T) ((-40 . -358) T) ((-848 . -145) 63467) ((-848 . -143) 63446) ((-1131 . -483) 63428) ((-1256 . -1025) T) ((-476 . -507) 63361) ((-1119 . -1186) T) ((-940 . -597) 63343) ((-627 . -483) 63327) ((-614 . -483) 63258) ((-795 . -597) 62989) ((-48 . -27) T) ((-1151 . -698) 62886) ((-633 . -1073) T) ((-838 . -837) T) ((-431 . -359) 62860) ((-1075 . -101) T) ((-796 . -304) 62847) ((-946 . -1073) T) ((-841 . -1073) T) ((-1252 . -377) 62819) ((-1029 . -507) 62752) ((-1132 . -281) 62728) ((-236 . -227) 62697) ((-1244 . -698) 62667) ((-1139 . -92) T) ((-970 . -92) T) ((-797 . -170) 62646) ((-223 . -507) 62579) ((-603 . -775) 62558) ((-603 . -772) 62537) ((-1183 . -597) 62449) ((-218 . -1186) T) ((-655 . -597) 62381) ((-1129 . -986) 62365) ((-919 . -101) 62315) ((-346 . -707) T) ((-838 . -597) 62297) ((-1196 . -395) 62249) ((-1086 . -483) 62233) ((-59 . -304) 62171) ((-326 . -101) T) ((-1180 . -21) T) ((-1180 . -25) T) ((-40 . -1085) T) ((-692 . -21) T) ((-609 . -597) 62153) ((-508 . -318) 62132) ((-692 . -25) T) ((-107 . -281) NIL) ((-897 . -1085) T) ((-40 . -23) T) ((-751 . -1085) T) ((-552 . -1190) T) ((-488 . -1190) T) ((-314 . -597) 62114) ((-980 . -227) 62096) ((-167 . -164) 62080) ((-566 . -544) T) ((-552 . -544) T) ((-488 . -544) T) ((-751 . -23) T) ((-1216 . -145) 62059) ((-1132 . -588) 62035) ((-1216 . -143) 62014) ((-1003 . -483) 61998) ((-1195 . -143) 61923) ((-1195 . -145) 61848) ((-1247 . -1253) 61827) ((-470 . -483) 61811) ((-457 . -483) 61795) ((-516 . -34) T) ((-633 . -698) 61765) ((-112 . -943) T) ((-642 . -827) 61744) ((-1151 . -170) 61695) ((-360 . -101) T) ((-236 . -234) 61674) ((-246 . -101) T) ((-245 . -101) T) ((-1205 . -925) 61643) ((-109 . -101) T) ((-241 . -827) 61622) ((-796 . -38) 61471) ((-45 . -507) 61263) ((-1131 . -281) 61238) ((-210 . -1073) T) ((-1123 . -1073) T) ((-1123 . -594) 61217) ((-571 . -25) T) ((-571 . -21) T) ((-1075 . -304) 61155) ((-939 . -406) 61139) ((-679 . -1190) T) ((-614 . -281) 61114) ((-1060 . -621) 61062) ((-762 . -621) 61010) ((-760 . -621) 60958) ((-338 . -130) T) ((-284 . -597) 60940) ((-679 . -544) T) ((-881 . -1073) T) ((-846 . -1085) T) ((-448 . -621) 60888) ((-881 . -879) 60872) ((-374 . -446) T) ((-481 . -1073) T) ((-681 . -628) 60859) ((-919 . -304) 60797) ((-213 . -1073) T) ((-311 . -896) 60776) ((-308 . -896) T) ((-308 . -800) NIL) ((-385 . -701) T) ((-846 . -23) T) ((-116 . -628) 60763) ((-468 . -143) 60742) ((-413 . -406) 60726) ((-468 . -145) 60705) ((-110 . -483) 60687) ((-2 . -597) 60669) ((-182 . -101) T) ((-1131 . -19) 60651) ((-1131 . -588) 60626) ((-638 . -21) T) ((-638 . -25) T) ((-578 . -1117) T) ((-1086 . -281) 60603) ((-331 . -25) T) ((-331 . -21) T) ((-488 . -358) T) ((-1247 . -38) 60573) ((-1115 . -1186) T) ((-614 . -588) 60548) ((-1060 . -25) T) ((-1060 . -21) T) ((-524 . -772) T) ((-524 . -775) T) ((-117 . -1190) T) ((-939 . -1032) T) ((-605 . -544) T) ((-762 . -25) T) ((-762 . -21) T) ((-760 . -21) T) ((-760 . -25) T) ((-716 . -1032) T) ((-696 . -1032) T) ((-650 . -1031) 60532) ((-510 . -1056) T) ((-455 . -25) T) ((-117 . -544) T) ((-455 . -21) T) ((-448 . -25) T) ((-448 . -21) T) ((-1115 . -1014) 60428) ((-797 . -285) 60407) ((-803 . -1073) T) ((-942 . -943) T) ((-650 . -111) 60386) ((-290 . -507) 60178) ((-1254 . -1031) 60162) ((-1252 . -1031) 60146) ((-1216 . -1171) 60112) ((-246 . -304) 60050) ((-245 . -304) 59988) ((-1199 . -101) 59966) ((-1132 . -598) NIL) ((-1132 . -597) 59948) ((-1216 . -1174) 59914) ((-1196 . -227) 59866) ((-1195 . -1171) 59832) ((-95 . -92) T) ((-1195 . -1174) 59798) ((-1115 . -372) 59782) ((-1093 . -800) T) ((-1093 . -896) T) ((-1086 . -588) 59759) ((-1053 . -598) 59743) ((-478 . -597) 59675) ((-795 . -283) 59652) ((-592 . -149) 59599) ((-413 . -1032) T) ((-481 . -698) 59549) ((-476 . -483) 59533) ((-322 . -827) 59512) ((-334 . -628) 59486) ((-50 . -21) T) ((-50 . -25) T) ((-213 . -698) 59436) ((-167 . -705) 59407) ((-172 . -628) 59339) ((-567 . -21) T) ((-567 . -25) T) ((-511 . -25) T) ((-511 . -21) T) ((-469 . -149) 59289) ((-1053 . -597) 59271) ((-1035 . -597) 59253) ((-969 . -101) T) ((-839 . -101) T) ((-779 . -406) 59217) ((-40 . -130) T) ((-679 . -358) T) ((-208 . -871) T) ((-681 . -774) T) ((-681 . -771) T) ((-566 . -1085) T) ((-552 . -1085) T) ((-488 . -1085) T) ((-681 . -707) T) ((-354 . -597) 59199) ((-348 . -597) 59181) ((-340 . -597) 59163) ((-65 . -391) T) ((-65 . -390) T) ((-107 . -598) 59093) ((-107 . -597) 59075) ((-207 . -871) T) ((-934 . -149) 59059) ((-1216 . -94) 59025) ((-751 . -130) T) ((-133 . -707) T) ((-116 . -707) T) ((-1216 . -35) 58991) ((-1029 . -483) 58975) ((-566 . -23) T) ((-552 . -23) T) ((-488 . -23) T) ((-1195 . -94) 58941) ((-1195 . -35) 58907) ((-1145 . -101) T) ((-1098 . -101) T) ((-831 . -101) T) ((-223 . -483) 58891) ((-1254 . -111) 58870) ((-1252 . -111) 58849) ((-44 . -1031) 58833) ((-1205 . -1208) 58817) ((-832 . -829) 58801) ((-1151 . -285) 58780) ((-110 . -281) 58755) ((-1115 . -876) 58714) ((-44 . -111) 58693) ((-1154 . -1227) T) ((-1139 . -597) 58659) ((-650 . -1025) T) ((-1131 . -598) NIL) ((-1131 . -597) 58641) ((-1037 . -594) 58616) ((-1037 . -1073) T) ((-970 . -597) 58582) ((-73 . -435) T) ((-73 . -390) T) ((-650 . -229) 58561) ((-150 . -1031) 58545) ((-559 . -542) 58529) ((-350 . -145) 58508) ((-350 . -143) 58459) ((-347 . -145) 58438) ((-683 . -1073) T) ((-347 . -143) 58389) ((-339 . -145) 58368) ((-339 . -143) 58319) ((-259 . -143) 58298) ((-259 . -145) 58277) ((-246 . -38) 58247) ((-243 . -145) 58226) ((-117 . -358) T) ((-243 . -143) 58205) ((-245 . -38) 58175) ((-150 . -111) 58154) ((-979 . -1014) 58042) ((-1140 . -825) NIL) ((-674 . -1190) T) ((-779 . -1032) T) ((-679 . -1085) T) ((-1254 . -1025) T) ((-1252 . -1025) T) ((-1129 . -1186) T) ((-979 . -372) 58019) ((-886 . -143) T) ((-886 . -145) 58001) ((-846 . -130) T) ((-795 . -1031) 57898) ((-674 . -544) T) ((-679 . -23) T) ((-627 . -597) 57830) ((-627 . -598) 57791) ((-614 . -598) NIL) ((-614 . -597) 57773) ((-481 . -170) T) ((-219 . -21) T) ((-213 . -170) T) ((-219 . -25) T) ((-468 . -1174) 57739) ((-468 . -1171) 57705) ((-269 . -597) 57687) ((-268 . -597) 57669) ((-267 . -597) 57651) ((-266 . -597) 57633) ((-265 . -597) 57615) ((-493 . -631) 57597) ((-264 . -597) 57579) ((-334 . -707) T) ((-263 . -597) 57561) ((-110 . -19) 57543) ((-172 . -707) T) ((-493 . -368) 57525) ((-208 . -597) 57507) ((-513 . -1122) 57491) ((-493 . -123) T) ((-110 . -588) 57466) ((-207 . -597) 57448) ((-468 . -35) 57414) ((-468 . -94) 57380) ((-205 . -597) 57362) ((-204 . -597) 57344) ((-203 . -597) 57326) ((-202 . -597) 57308) ((-199 . -597) 57290) ((-198 . -597) 57272) ((-197 . -597) 57254) ((-196 . -597) 57236) ((-195 . -597) 57218) ((-194 . -597) 57200) ((-193 . -597) 57182) ((-528 . -1076) 57134) ((-192 . -597) 57116) ((-191 . -597) 57098) ((-45 . -483) 57035) ((-190 . -597) 57017) ((-189 . -597) 56999) ((-1088 . -101) T) ((-795 . -111) 56889) ((-625 . -101) 56839) ((-476 . -281) 56816) ((-1086 . -597) 56547) ((-1074 . -1073) T) ((-1022 . -1186) T) ((-1255 . -1014) 56531) ((-605 . -1085) T) ((-1145 . -304) 56518) ((-1108 . -1073) T) ((-1098 . -304) 56505) ((-1069 . -1056) T) ((-1063 . -1056) T) ((-1047 . -1056) T) ((-1040 . -1056) T) ((-1012 . -1056) T) ((-995 . -1056) T) ((-117 . -1085) T) ((-799 . -101) T) ((-608 . -1056) T) ((-605 . -23) T) ((-1123 . -507) 56297) ((-477 . -1056) T) ((-979 . -876) 56249) ((-381 . -101) T) ((-319 . -101) T) ((-214 . -1056) T) ((-939 . -1073) T) ((-150 . -1025) T) ((-117 . -23) T) ((-712 . -406) 56233) ((-716 . -1073) T) ((-696 . -1073) T) ((-683 . -131) T) ((-447 . -1073) T) ((-402 . -1186) T) ((-311 . -425) 56217) ((-577 . -92) T) ((-1003 . -598) 56178) ((-1000 . -1190) T) ((-221 . -101) T) ((-1003 . -597) 56140) ((-796 . -227) 56124) ((-1000 . -544) T) ((-813 . -628) 56097) ((-349 . -1190) T) ((-470 . -597) 56059) ((-470 . -598) 56020) ((-457 . -598) 55981) ((-457 . -597) 55943) ((-402 . -860) 55927) ((-314 . -1031) 55762) ((-402 . -862) 55687) ((-820 . -1014) 55583) ((-481 . -507) NIL) ((-476 . -588) 55560) ((-349 . -544) T) ((-213 . -507) NIL) ((-848 . -446) T) ((-413 . -1073) T) ((-402 . -1014) 55424) ((-314 . -111) 55245) ((-674 . -358) T) ((-221 . -279) T) ((-48 . -1190) T) ((-795 . -1025) 55175) ((-566 . -130) T) ((-552 . -130) T) ((-488 . -130) T) ((-48 . -544) T) ((-1132 . -283) 55151) ((-1145 . -1124) 55129) ((-311 . -27) 55108) ((-1036 . -101) T) ((-795 . -229) 55060) ((-236 . -825) 55039) ((-928 . -101) T) ((-694 . -101) T) ((-290 . -483) 54976) ((-475 . -101) T) ((-712 . -1032) T) ((-596 . -597) 54958) ((-596 . -598) 54819) ((-402 . -372) 54803) ((-402 . -333) 54787) ((-1145 . -38) 54616) ((-1098 . -38) 54465) ((-831 . -38) 54435) ((-385 . -628) 54419) ((-625 . -304) 54357) ((-939 . -698) 54254) ((-716 . -698) 54224) ((-218 . -106) 54208) ((-45 . -281) 54133) ((-603 . -628) 54107) ((-307 . -1073) T) ((-284 . -1031) 54094) ((-110 . -597) 54076) ((-110 . -598) 54058) ((-447 . -698) 54028) ((-796 . -248) 53967) ((-669 . -1073) 53945) ((-538 . -1073) T) ((-1147 . -1032) T) ((-1146 . -1032) T) ((-1140 . -1032) T) ((-284 . -111) 53930) ((-1099 . -1032) T) ((-538 . -594) 53909) ((-95 . -597) 53875) ((-980 . -825) T) ((-223 . -667) 53833) ((-674 . -1085) T) ((-1180 . -721) 53809) ((-314 . -1025) T) ((-338 . -25) T) ((-338 . -21) T) ((-402 . -876) 53768) ((-67 . -1186) T) ((-813 . -774) 53747) ((-413 . -698) 53721) ((-779 . -1073) T) ((-813 . -771) 53700) ((-679 . -130) T) ((-693 . -896) 53679) ((-674 . -23) T) ((-481 . -285) T) ((-813 . -707) 53658) ((-314 . -229) 53610) ((-314 . -239) 53589) ((-213 . -285) T) ((-1000 . -358) T) ((-1216 . -446) 53568) ((-1195 . -446) 53547) ((-349 . -324) 53524) ((-349 . -358) T) ((-1113 . -597) 53506) ((-45 . -1220) 53456) ((-847 . -101) T) ((-625 . -277) 53440) ((-679 . -1034) T) ((-1243 . -101) T) ((-471 . -628) 53405) ((-462 . -1073) T) ((-45 . -588) 53330) ((-1242 . -101) T) ((-1131 . -283) 53305) ((-40 . -621) 53244) ((-48 . -358) T) ((-1079 . -597) 53226) ((-1060 . -827) 53205) ((-614 . -283) 53180) ((-762 . -827) 53159) ((-760 . -827) 53138) ((-476 . -597) 52869) ((-236 . -406) 52838) ((-928 . -304) 52825) ((-448 . -827) 52804) ((-64 . -1186) T) ((-1037 . -507) 52648) ((-605 . -130) T) ((-475 . -304) 52635) ((-590 . -1073) T) ((-117 . -130) T) ((-651 . -1073) T) ((-284 . -1025) T) ((-178 . -1073) T) ((-159 . -1073) T) ((-154 . -1073) T) ((-152 . -1073) T) ((-447 . -742) T) ((-31 . -1056) T) ((-939 . -170) 52586) ((-946 . -92) T) ((-1053 . -1031) 52496) ((-603 . -774) 52475) ((-578 . -1073) T) ((-603 . -771) 52454) ((-603 . -707) T) ((-290 . -281) 52433) ((-289 . -1186) T) ((-1029 . -597) 52395) ((-1029 . -598) 52356) ((-1000 . -1085) T) ((-167 . -101) T) ((-270 . -827) T) ((-1138 . -1073) T) ((-798 . -597) 52338) ((-1086 . -283) 52315) ((-1075 . -225) 52299) ((-979 . -302) T) ((-779 . -698) 52283) ((-354 . -1031) 52235) ((-349 . -1085) T) ((-348 . -1031) 52187) ((-409 . -597) 52169) ((-380 . -597) 52151) ((-340 . -1031) 52103) ((-223 . -597) 52035) ((-1053 . -111) 51931) ((-1000 . -23) T) ((-107 . -1031) 51881) ((-874 . -101) T) ((-818 . -101) T) ((-788 . -101) T) ((-749 . -101) T) ((-657 . -101) T) ((-468 . -446) 51860) ((-413 . -170) T) ((-354 . -111) 51798) ((-348 . -111) 51736) ((-340 . -111) 51674) ((-246 . -227) 51643) ((-245 . -227) 51612) ((-349 . -23) T) ((-70 . -1186) T) ((-221 . -38) 51577) ((-107 . -111) 51511) ((-40 . -25) T) ((-40 . -21) T) ((-650 . -701) T) ((-167 . -279) 51489) ((-48 . -1085) T) ((-897 . -25) T) ((-751 . -25) T) ((-1123 . -483) 51426) ((-479 . -1073) T) ((-1256 . -628) 51400) ((-1205 . -101) T) ((-832 . -101) T) ((-236 . -1032) 51330) ((-1036 . -1124) T) ((-940 . -772) 51283) ((-376 . -628) 51267) ((-48 . -23) T) ((-940 . -775) 51220) ((-795 . -775) 51171) ((-795 . -772) 51122) ((-290 . -588) 51101) ((-471 . -707) T) ((-559 . -101) T) ((-847 . -304) 51058) ((-633 . -281) 51037) ((-112 . -641) T) ((-75 . -1186) T) ((-1036 . -38) 51024) ((-644 . -369) 51003) ((-928 . -38) 50852) ((-712 . -1073) T) ((-475 . -38) 50701) ((-85 . -1186) T) ((-559 . -279) T) ((-1196 . -825) NIL) ((-577 . -597) 50667) ((-1147 . -1073) T) ((-1146 . -1073) T) ((-1140 . -1073) T) ((-346 . -1014) 50644) ((-1053 . -1025) T) ((-980 . -1032) T) ((-45 . -597) 50626) ((-45 . -598) NIL) ((-890 . -1032) T) ((-797 . -597) 50608) ((-1120 . -101) 50586) ((-1053 . -239) 50537) ((-422 . -1032) T) ((-354 . -1025) T) ((-348 . -1025) T) ((-360 . -359) 50514) ((-340 . -1025) T) ((-246 . -234) 50493) ((-245 . -234) 50472) ((-109 . -359) 50446) ((-1053 . -229) 50371) ((-1099 . -1073) T) ((-289 . -876) 50330) ((-107 . -1025) T) ((-674 . -130) T) ((-413 . -507) 50172) ((-354 . -229) 50151) ((-354 . -239) T) ((-44 . -701) T) ((-348 . -229) 50130) ((-348 . -239) T) ((-340 . -229) 50109) ((-340 . -239) T) ((-167 . -304) 50074) ((-107 . -239) T) ((-107 . -229) T) ((-314 . -772) T) ((-846 . -21) T) ((-846 . -25) T) ((-402 . -302) T) ((-493 . -34) T) ((-110 . -283) 50049) ((-1086 . -1031) 49946) ((-847 . -1124) NIL) ((-325 . -597) 49928) ((-402 . -998) 49907) ((-1086 . -111) 49797) ((-671 . -1227) T) ((-431 . -1073) T) ((-1256 . -707) T) ((-62 . -597) 49779) ((-847 . -38) 49724) ((-516 . -1186) T) ((-586 . -149) 49708) ((-505 . -597) 49690) ((-1205 . -304) 49677) ((-712 . -698) 49526) ((-524 . -773) T) ((-524 . -774) T) ((-552 . -621) 49508) ((-488 . -621) 49468) ((-350 . -446) T) ((-347 . -446) T) ((-339 . -446) T) ((-259 . -446) 49419) ((-518 . -1073) T) ((-513 . -1073) 49369) ((-243 . -446) 49320) ((-1123 . -281) 49299) ((-1151 . -597) 49281) ((-669 . -507) 49214) ((-939 . -285) 49193) ((-538 . -507) 48985) ((-1145 . -227) 48969) ((-167 . -1124) 48948) ((-1244 . -597) 48930) ((-1147 . -698) 48827) ((-1146 . -698) 48668) ((-868 . -101) T) ((-1140 . -698) 48464) ((-1099 . -698) 48361) ((-1129 . -654) 48345) ((-350 . -397) 48296) ((-347 . -397) 48247) ((-339 . -397) 48198) ((-1000 . -130) T) ((-779 . -507) 48110) ((-290 . -598) NIL) ((-290 . -597) 48092) ((-886 . -446) T) ((-940 . -363) 48045) ((-795 . -363) 48024) ((-503 . -502) 48003) ((-501 . -502) 47982) ((-481 . -281) NIL) ((-476 . -283) 47959) ((-413 . -285) T) ((-349 . -130) T) ((-213 . -281) NIL) ((-674 . -486) NIL) ((-98 . -1085) T) ((-167 . -38) 47787) ((-1216 . -949) 47749) ((-1120 . -304) 47687) ((-1195 . -949) 47656) ((-886 . -397) T) ((-1086 . -1025) 47586) ((-1218 . -544) T) ((-1123 . -588) 47565) ((-112 . -827) T) ((-1037 . -483) 47496) ((-566 . -21) T) ((-566 . -25) T) ((-552 . -21) T) ((-552 . -25) T) ((-488 . -25) T) ((-488 . -21) T) ((-1205 . -1124) 47474) ((-1086 . -229) 47426) ((-48 . -130) T) ((-1167 . -101) T) ((-236 . -1073) 47216) ((-847 . -395) 47193) ((-1061 . -101) T) ((-1049 . -101) T) ((-592 . -101) T) ((-469 . -101) T) ((-1205 . -38) 47022) ((-832 . -38) 46992) ((-712 . -170) 46903) ((-633 . -597) 46885) ((-626 . -1056) T) ((-559 . -38) 46872) ((-946 . -597) 46838) ((-934 . -101) 46788) ((-841 . -597) 46770) ((-841 . -598) 46692) ((-578 . -507) NIL) ((-1224 . -1032) T) ((-1217 . -1032) T) ((-1196 . -1032) T) ((-581 . -1032) T) ((-580 . -1032) T) ((-1260 . -1085) T) ((-1147 . -170) 46643) ((-1146 . -170) 46574) ((-1140 . -170) 46505) ((-1099 . -170) 46456) ((-980 . -1073) T) ((-947 . -1073) T) ((-890 . -1073) T) ((-1180 . -145) 46435) ((-779 . -777) 46419) ((-679 . -25) T) ((-679 . -21) T) ((-117 . -621) 46396) ((-681 . -862) 46378) ((-422 . -1073) T) ((-311 . -1190) 46357) ((-308 . -1190) T) ((-167 . -395) 46341) ((-1180 . -143) 46320) ((-468 . -949) 46282) ((-128 . -1073) T) ((-71 . -597) 46264) ((-107 . -775) T) ((-107 . -772) T) ((-311 . -544) 46243) ((-681 . -1014) 46225) ((-308 . -544) T) ((-1260 . -23) T) ((-133 . -1014) 46207) ((-476 . -1031) 46104) ((-45 . -283) 46029) ((-236 . -698) 45971) ((-510 . -101) T) ((-476 . -111) 45861) ((-1065 . -101) 45839) ((-1010 . -101) T) ((-625 . -808) 45818) ((-712 . -507) 45761) ((-1029 . -1031) 45745) ((-1108 . -92) T) ((-1037 . -281) 45720) ((-605 . -21) T) ((-605 . -25) T) ((-517 . -1073) T) ((-356 . -101) T) ((-317 . -101) T) ((-650 . -628) 45694) ((-380 . -1031) 45678) ((-1029 . -111) 45657) ((-796 . -406) 45641) ((-117 . -25) T) ((-88 . -597) 45623) ((-117 . -21) T) ((-592 . -304) 45418) ((-469 . -304) 45222) ((-1123 . -598) NIL) ((-380 . -111) 45201) ((-374 . -101) T) ((-210 . -597) 45183) ((-1123 . -597) 45165) ((-980 . -698) 45115) ((-1140 . -507) 44884) ((-890 . -698) 44836) ((-1099 . -507) 44806) ((-346 . -302) T) ((-1159 . -149) 44756) ((-934 . -304) 44694) ((-814 . -101) T) ((-422 . -698) 44678) ((-221 . -808) T) ((-807 . -101) T) ((-805 . -101) T) ((-473 . -149) 44628) ((-1216 . -1215) 44607) ((-1093 . -1190) T) ((-334 . -1014) 44574) ((-1216 . -1210) 44544) ((-1216 . -1213) 44528) ((-1195 . -1194) 44507) ((-79 . -597) 44489) ((-881 . -597) 44471) ((-1195 . -1210) 44448) ((-1093 . -544) T) ((-897 . -827) T) ((-751 . -827) T) ((-481 . -598) 44378) ((-481 . -597) 44360) ((-374 . -279) T) ((-652 . -827) T) ((-1195 . -1192) 44344) ((-1218 . -1085) T) ((-213 . -598) 44274) ((-213 . -597) 44256) ((-1037 . -588) 44231) ((-58 . -149) 44215) ((-509 . -149) 44199) ((-489 . -149) 44183) ((-354 . -1251) 44167) ((-348 . -1251) 44151) ((-340 . -1251) 44135) ((-311 . -358) 44114) ((-308 . -358) T) ((-476 . -1025) 44044) ((-674 . -621) 44026) ((-1254 . -628) 44000) ((-1252 . -628) 43974) ((-1218 . -23) T) ((-669 . -483) 43958) ((-63 . -597) 43940) ((-1086 . -775) 43891) ((-1086 . -772) 43842) ((-538 . -483) 43779) ((-650 . -34) T) ((-476 . -229) 43731) ((-290 . -283) 43710) ((-236 . -170) 43689) ((-796 . -1032) T) ((-44 . -628) 43647) ((-1053 . -363) 43598) ((-712 . -285) 43529) ((-513 . -507) 43462) ((-797 . -1031) 43413) ((-1060 . -143) 43392) ((-354 . -363) 43371) ((-348 . -363) 43350) ((-340 . -363) 43329) ((-1060 . -145) 43308) ((-847 . -227) 43285) ((-797 . -111) 43227) ((-762 . -143) 43206) ((-762 . -145) 43185) ((-259 . -925) 43152) ((-246 . -825) 43131) ((-243 . -925) 43076) ((-245 . -825) 43055) ((-760 . -143) 43034) ((-760 . -145) 43013) ((-150 . -628) 42987) ((-448 . -145) 42966) ((-448 . -143) 42945) ((-650 . -707) T) ((-803 . -597) 42927) ((-1224 . -1073) T) ((-1217 . -1073) T) ((-1196 . -1073) T) ((-1180 . -1174) 42893) ((-1180 . -1171) 42859) ((-1147 . -285) 42838) ((-1146 . -285) 42789) ((-1140 . -285) 42740) ((-1099 . -285) 42719) ((-334 . -876) 42700) ((-980 . -170) T) ((-890 . -170) T) ((-581 . -1073) T) ((-580 . -1073) T) ((-674 . -21) T) ((-674 . -25) T) ((-468 . -1213) 42684) ((-468 . -1210) 42654) ((-413 . -281) 42582) ((-311 . -1085) 42431) ((-308 . -1085) T) ((-1180 . -35) 42397) ((-1180 . -94) 42363) ((-83 . -597) 42345) ((-90 . -101) 42323) ((-1260 . -130) T) ((-567 . -143) T) ((-567 . -145) 42305) ((-511 . -145) 42287) ((-511 . -143) T) ((-311 . -23) 42139) ((-40 . -337) 42113) ((-308 . -23) T) ((-1131 . -631) 42095) ((-1247 . -1032) T) ((-1131 . -368) 42077) ((-795 . -628) 41925) ((-1069 . -101) T) ((-1063 . -101) T) ((-1047 . -101) T) ((-167 . -227) 41909) ((-1040 . -101) T) ((-1012 . -101) T) ((-995 . -101) T) ((-578 . -483) 41891) ((-608 . -101) T) ((-236 . -507) 41824) ((-477 . -101) T) ((-1254 . -707) T) ((-1252 . -707) T) ((-214 . -101) T) ((-1151 . -1031) 41707) ((-1151 . -111) 41576) ((-838 . -171) T) ((-797 . -1025) T) ((-661 . -1056) T) ((-656 . -1056) T) ((-508 . -101) T) ((-503 . -101) T) ((-48 . -621) 41536) ((-501 . -101) T) ((-472 . -1056) T) ((-1244 . -1031) 41506) ((-137 . -1056) T) ((-136 . -1056) T) ((-132 . -1056) T) ((-1010 . -38) 41490) ((-797 . -229) T) ((-797 . -239) 41469) ((-1244 . -111) 41434) ((-1224 . -698) 41331) ((-538 . -281) 41310) ((-1217 . -698) 41151) ((-1205 . -227) 41135) ((-590 . -92) T) ((-1037 . -598) NIL) ((-1037 . -597) 41117) ((-651 . -92) T) ((-178 . -92) T) ((-159 . -92) T) ((-154 . -92) T) ((-152 . -92) T) ((-1196 . -698) 40913) ((-979 . -896) T) ((-683 . -597) 40882) ((-150 . -707) T) ((-1086 . -363) 40861) ((-980 . -507) NIL) ((-246 . -406) 40830) ((-245 . -406) 40799) ((-1000 . -25) T) ((-1000 . -21) T) ((-581 . -698) 40772) ((-580 . -698) 40669) ((-779 . -281) 40627) ((-126 . -101) 40605) ((-813 . -1014) 40501) ((-167 . -808) 40480) ((-314 . -628) 40377) ((-795 . -34) T) ((-695 . -101) T) ((-1093 . -1085) T) ((-1002 . -1186) T) ((-128 . -507) NIL) ((-374 . -38) 40342) ((-349 . -25) T) ((-349 . -21) T) ((-183 . -101) T) ((-160 . -101) T) ((-155 . -101) T) ((-350 . -1239) 40326) ((-347 . -1239) 40310) ((-339 . -1239) 40294) ((-167 . -344) 40273) ((-552 . -827) T) ((-488 . -827) T) ((-1093 . -23) T) ((-86 . -597) 40255) ((-681 . -302) T) ((-814 . -38) 40225) ((-807 . -38) 40195) ((-1218 . -130) T) ((-1123 . -283) 40174) ((-940 . -773) 40127) ((-940 . -774) 40080) ((-795 . -771) 40059) ((-116 . -302) T) ((-90 . -304) 39997) ((-655 . -34) T) ((-538 . -588) 39976) ((-48 . -25) T) ((-48 . -21) T) ((-795 . -774) 39927) ((-795 . -773) 39906) ((-681 . -998) T) ((-633 . -1031) 39890) ((-940 . -707) 39789) ((-795 . -707) 39699) ((-940 . -467) 39652) ((-476 . -775) 39603) ((-476 . -772) 39554) ((-886 . -1239) 39541) ((-1151 . -1025) T) ((-633 . -111) 39520) ((-1151 . -321) 39497) ((-1172 . -101) 39475) ((-1074 . -597) 39457) ((-681 . -537) T) ((-796 . -1073) T) ((-1244 . -1025) T) ((-408 . -1073) T) ((-1108 . -597) 39423) ((-246 . -1032) 39353) ((-245 . -1032) 39283) ((-284 . -628) 39270) ((-578 . -281) 39245) ((-669 . -667) 39203) ((-939 . -597) 39185) ((-848 . -101) T) ((-716 . -597) 39167) ((-696 . -597) 39149) ((-1224 . -170) 39100) ((-1217 . -170) 39031) ((-1196 . -170) 38962) ((-679 . -827) T) ((-980 . -285) T) ((-447 . -597) 38944) ((-609 . -707) T) ((-59 . -1073) 38922) ((-241 . -149) 38906) ((-890 . -285) T) ((-1000 . -988) T) ((-609 . -467) T) ((-693 . -1190) 38885) ((-581 . -170) 38864) ((-580 . -170) 38815) ((-1232 . -827) 38794) ((-693 . -544) 38705) ((-402 . -896) T) ((-402 . -800) 38684) ((-314 . -774) T) ((-314 . -707) T) ((-413 . -597) 38666) ((-413 . -598) 38574) ((-625 . -1122) 38558) ((-110 . -631) 38540) ((-172 . -302) T) ((-126 . -304) 38478) ((-110 . -368) 38460) ((-393 . -1186) T) ((-311 . -130) 38331) ((-308 . -130) T) ((-68 . -390) T) ((-110 . -123) T) ((-513 . -483) 38315) ((-634 . -1085) T) ((-578 . -19) 38297) ((-60 . -435) T) ((-60 . -390) T) ((-804 . -1073) T) ((-578 . -588) 38272) ((-471 . -1014) 38232) ((-633 . -1025) T) ((-634 . -23) T) ((-1247 . -1073) T) ((-31 . -101) T) ((-796 . -698) 38081) ((-117 . -827) NIL) ((-1145 . -406) 38065) ((-1098 . -406) 38049) ((-831 . -406) 38033) ((-849 . -101) 37984) ((-1216 . -101) T) ((-1196 . -507) 37753) ((-1195 . -101) T) ((-518 . -92) T) ((-1172 . -304) 37691) ((-307 . -597) 37673) ((-1147 . -281) 37658) ((-1075 . -1073) T) ((-1146 . -281) 37643) ((-1053 . -628) 37553) ((-284 . -707) T) ((-107 . -885) NIL) ((-669 . -597) 37485) ((-669 . -598) 37446) ((-585 . -597) 37428) ((-538 . -598) NIL) ((-538 . -597) 37410) ((-522 . -597) 37392) ((-1140 . -281) 37240) ((-481 . -1031) 37190) ((-692 . -446) T) ((-504 . -502) 37169) ((-500 . -502) 37148) ((-213 . -1031) 37098) ((-354 . -628) 37050) ((-348 . -628) 37002) ((-221 . -825) T) ((-340 . -628) 36954) ((-586 . -101) 36904) ((-476 . -363) 36883) ((-107 . -628) 36833) ((-481 . -111) 36767) ((-236 . -483) 36751) ((-338 . -145) 36733) ((-338 . -143) T) ((-167 . -365) 36704) ((-919 . -1230) 36688) ((-213 . -111) 36622) ((-848 . -304) 36587) ((-919 . -1073) 36537) ((-779 . -598) 36498) ((-779 . -597) 36480) ((-699 . -101) T) ((-326 . -1073) T) ((-1093 . -130) T) ((-695 . -38) 36450) ((-311 . -486) 36429) ((-493 . -1186) T) ((-1216 . -279) 36395) ((-1195 . -279) 36361) ((-322 . -149) 36345) ((-1037 . -283) 36320) ((-1247 . -698) 36290) ((-1132 . -34) T) ((-1256 . -1014) 36267) ((-462 . -597) 36249) ((-478 . -34) T) ((-376 . -1014) 36233) ((-1145 . -1032) T) ((-1098 . -1032) T) ((-831 . -1032) T) ((-1036 . -825) T) ((-796 . -170) 36144) ((-513 . -281) 36121) ((-128 . -483) 36103) ((-1224 . -285) 36082) ((-117 . -968) 36059) ((-1217 . -285) 36010) ((-1167 . -359) 35984) ((-1061 . -261) 35968) ((-651 . -597) 35934) ((-590 . -597) 35884) ((-468 . -101) T) ((-178 . -597) 35850) ((-159 . -597) 35816) ((-154 . -597) 35782) ((-360 . -1073) T) ((-246 . -1073) T) ((-245 . -1073) T) ((-152 . -597) 35748) ((-109 . -1073) T) ((-1196 . -285) 35699) ((-848 . -1124) 35677) ((-1147 . -978) 35643) ((-592 . -359) 35583) ((-1146 . -978) 35549) ((-592 . -225) 35496) ((-578 . -597) 35478) ((-578 . -598) NIL) ((-674 . -827) T) ((-469 . -225) 35428) ((-481 . -1025) T) ((-1140 . -978) 35394) ((-87 . -434) T) ((-87 . -390) T) ((-213 . -1025) T) ((-1099 . -978) 35360) ((-1053 . -707) T) ((-693 . -1085) T) ((-581 . -285) 35339) ((-580 . -285) 35318) ((-481 . -239) T) ((-481 . -229) T) ((-213 . -239) T) ((-213 . -229) T) ((-1138 . -597) 35300) ((-848 . -38) 35252) ((-354 . -707) T) ((-348 . -707) T) ((-340 . -707) T) ((-107 . -774) T) ((-107 . -771) T) ((-513 . -1220) 35236) ((-107 . -707) T) ((-693 . -23) T) ((-1260 . -25) T) ((-468 . -279) 35202) ((-1260 . -21) T) ((-1195 . -304) 35141) ((-1149 . -101) T) ((-40 . -143) 35113) ((-40 . -145) 35085) ((-513 . -588) 35062) ((-1086 . -628) 34910) ((-586 . -304) 34848) ((-45 . -631) 34798) ((-45 . -646) 34748) ((-45 . -368) 34698) ((-1131 . -34) T) ((-847 . -825) NIL) ((-634 . -130) T) ((-479 . -597) 34680) ((-236 . -281) 34657) ((-182 . -1073) T) ((-627 . -34) T) ((-614 . -34) T) ((-1060 . -446) 34608) ((-796 . -507) 34482) ((-762 . -446) 34413) ((-760 . -446) 34364) ((-448 . -446) 34315) ((-928 . -406) 34299) ((-712 . -597) 34281) ((-246 . -698) 34223) ((-245 . -698) 34165) ((-712 . -598) 34026) ((-475 . -406) 34010) ((-334 . -297) T) ((-517 . -92) T) ((-346 . -896) T) ((-976 . -101) 33988) ((-1000 . -827) T) ((-59 . -507) 33921) ((-1195 . -1124) 33873) ((-980 . -281) NIL) ((-221 . -1032) T) ((-374 . -808) T) ((-1086 . -34) T) ((-1199 . -1066) 33857) ((-567 . -446) T) ((-511 . -446) T) ((-1199 . -1073) 33835) ((-1199 . -1068) 33792) ((-236 . -588) 33769) ((-1147 . -597) 33751) ((-1146 . -597) 33733) ((-1140 . -597) 33715) ((-1140 . -598) NIL) ((-1099 . -597) 33697) ((-128 . -281) 33672) ((-848 . -395) 33656) ((-528 . -101) T) ((-1216 . -38) 33497) ((-1195 . -38) 33311) ((-846 . -145) T) ((-567 . -397) T) ((-48 . -827) T) ((-511 . -397) T) ((-1228 . -101) T) ((-1218 . -21) T) ((-1218 . -25) T) ((-1086 . -771) 33290) ((-1086 . -774) 33241) ((-1086 . -773) 33220) ((-969 . -1073) T) ((-1003 . -34) T) ((-839 . -1073) T) ((-1086 . -707) 33130) ((-644 . -101) T) ((-626 . -101) T) ((-538 . -283) 33109) ((-1159 . -101) T) ((-470 . -34) T) ((-457 . -34) T) ((-350 . -101) T) ((-347 . -101) T) ((-339 . -101) T) ((-259 . -101) T) ((-243 . -101) T) ((-471 . -302) T) ((-1036 . -1032) T) ((-928 . -1032) T) ((-311 . -621) 33015) ((-308 . -621) 32976) ((-475 . -1032) T) ((-473 . -101) T) ((-431 . -597) 32958) ((-1145 . -1073) T) ((-1098 . -1073) T) ((-831 . -1073) T) ((-1114 . -101) T) ((-796 . -285) 32889) ((-939 . -1031) 32772) ((-471 . -998) T) ((-128 . -19) 32754) ((-716 . -1031) 32724) ((-128 . -588) 32699) ((-447 . -1031) 32669) ((-1120 . -1094) 32653) ((-1075 . -507) 32586) ((-939 . -111) 32455) ((-886 . -101) T) ((-716 . -111) 32420) ((-518 . -597) 32386) ((-58 . -101) 32336) ((-513 . -598) 32297) ((-513 . -597) 32209) ((-512 . -101) 32187) ((-509 . -101) 32137) ((-490 . -101) 32115) ((-489 . -101) 32065) ((-447 . -111) 32028) ((-246 . -170) 32007) ((-245 . -170) 31986) ((-413 . -1031) 31960) ((-1180 . -949) 31922) ((-975 . -1085) T) ((-919 . -507) 31855) ((-481 . -775) T) ((-468 . -38) 31696) ((-413 . -111) 31663) ((-481 . -772) T) ((-976 . -304) 31601) ((-213 . -775) T) ((-213 . -772) T) ((-975 . -23) T) ((-693 . -130) T) ((-1195 . -395) 31571) ((-311 . -25) 31423) ((-167 . -406) 31407) ((-311 . -21) 31278) ((-308 . -25) T) ((-308 . -21) T) ((-841 . -363) T) ((-110 . -34) T) ((-476 . -628) 31126) ((-847 . -1032) T) ((-578 . -283) 31101) ((-566 . -145) T) ((-552 . -145) T) ((-488 . -145) T) ((-1145 . -698) 30930) ((-1098 . -698) 30779) ((-1093 . -621) 30761) ((-831 . -698) 30731) ((-650 . -1186) T) ((-1 . -101) T) ((-236 . -597) 30462) ((-1088 . -1073) T) ((-1205 . -406) 30446) ((-1159 . -304) 30250) ((-939 . -1025) T) ((-716 . -1025) T) ((-696 . -1025) T) ((-625 . -1073) 30200) ((-1029 . -628) 30184) ((-832 . -406) 30168) ((-504 . -101) T) ((-500 . -101) T) ((-243 . -304) 30155) ((-259 . -304) 30142) ((-939 . -321) 30121) ((-380 . -628) 30105) ((-473 . -304) 29909) ((-246 . -507) 29842) ((-650 . -1014) 29738) ((-245 . -507) 29671) ((-1114 . -304) 29597) ((-799 . -1073) T) ((-779 . -1031) 29581) ((-1224 . -281) 29566) ((-1217 . -281) 29551) ((-1196 . -281) 29399) ((-381 . -1073) T) ((-319 . -1073) T) ((-413 . -1025) T) ((-167 . -1032) T) ((-58 . -304) 29337) ((-779 . -111) 29316) ((-580 . -281) 29301) ((-512 . -304) 29239) ((-509 . -304) 29177) ((-490 . -304) 29115) ((-489 . -304) 29053) ((-413 . -229) 29032) ((-476 . -34) T) ((-980 . -598) 28962) ((-221 . -1073) T) ((-980 . -597) 28944) ((-947 . -597) 28926) ((-947 . -598) 28901) ((-890 . -597) 28883) ((-679 . -145) T) ((-681 . -896) T) ((-681 . -800) T) ((-422 . -597) 28865) ((-1093 . -21) T) ((-128 . -598) NIL) ((-128 . -597) 28847) ((-1093 . -25) T) ((-650 . -372) 28831) ((-116 . -896) T) ((-848 . -227) 28815) ((-77 . -1186) T) ((-126 . -125) 28799) ((-1029 . -34) T) ((-1254 . -1014) 28773) ((-1252 . -1014) 28730) ((-1205 . -1032) T) ((-832 . -1032) T) ((-476 . -771) 28709) ((-350 . -1124) 28688) ((-347 . -1124) 28667) ((-339 . -1124) 28646) ((-476 . -774) 28597) ((-476 . -773) 28576) ((-223 . -34) T) ((-476 . -707) 28486) ((-59 . -483) 28470) ((-559 . -1032) T) ((-1145 . -170) 28361) ((-1098 . -170) 28272) ((-1036 . -1073) T) ((-1060 . -925) 28217) ((-928 . -1073) T) ((-797 . -628) 28168) ((-762 . -925) 28137) ((-694 . -1073) T) ((-760 . -925) 28104) ((-509 . -277) 28088) ((-650 . -876) 28047) ((-475 . -1073) T) ((-448 . -925) 28014) ((-78 . -1186) T) ((-350 . -38) 27979) ((-347 . -38) 27944) ((-339 . -38) 27909) ((-259 . -38) 27758) ((-243 . -38) 27607) ((-886 . -1124) T) ((-605 . -145) 27586) ((-605 . -143) 27565) ((-517 . -597) 27531) ((-117 . -145) T) ((-117 . -143) NIL) ((-409 . -707) T) ((-779 . -1025) T) ((-338 . -446) T) ((-1224 . -978) 27497) ((-1217 . -978) 27463) ((-1196 . -978) 27429) ((-886 . -38) 27394) ((-221 . -698) 27359) ((-314 . -47) 27329) ((-40 . -404) 27301) ((-138 . -597) 27283) ((-975 . -130) T) ((-795 . -1186) T) ((-172 . -896) T) ((-338 . -397) T) ((-513 . -283) 27260) ((-795 . -1014) 27087) ((-45 . -34) T) ((-661 . -101) T) ((-656 . -101) T) ((-642 . -101) T) ((-634 . -21) T) ((-634 . -25) T) ((-1195 . -227) 27057) ((-1075 . -483) 27041) ((-472 . -101) T) ((-655 . -1186) T) ((-241 . -101) 26991) ((-137 . -101) T) ((-136 . -101) T) ((-132 . -101) T) ((-847 . -1073) T) ((-1151 . -628) 26916) ((-1036 . -698) 26903) ((-712 . -1031) 26746) ((-1145 . -507) 26693) ((-928 . -698) 26542) ((-1098 . -507) 26494) ((-1243 . -1073) T) ((-1242 . -1073) T) ((-475 . -698) 26343) ((-66 . -597) 26325) ((-712 . -111) 26154) ((-919 . -483) 26138) ((-1244 . -628) 26098) ((-797 . -707) T) ((-1147 . -1031) 25981) ((-1146 . -1031) 25816) ((-1140 . -1031) 25606) ((-1099 . -1031) 25489) ((-979 . -1190) T) ((-1067 . -101) 25467) ((-795 . -372) 25436) ((-979 . -544) T) ((-1147 . -111) 25305) ((-1146 . -111) 25126) ((-1140 . -111) 24895) ((-1099 . -111) 24764) ((-1078 . -1076) 24728) ((-374 . -825) T) ((-1224 . -597) 24710) ((-1217 . -597) 24692) ((-1196 . -597) 24674) ((-1196 . -598) NIL) ((-236 . -283) 24651) ((-40 . -446) T) ((-221 . -170) T) ((-167 . -1073) T) ((-674 . -145) T) ((-674 . -143) NIL) ((-581 . -597) 24633) ((-580 . -597) 24615) ((-874 . -1073) T) ((-818 . -1073) T) ((-788 . -1073) T) ((-749 . -1073) T) ((-638 . -829) 24599) ((-657 . -1073) T) ((-795 . -876) 24531) ((-40 . -397) NIL) ((-1093 . -641) T) ((-847 . -698) 24476) ((-246 . -483) 24460) ((-245 . -483) 24444) ((-693 . -621) 24392) ((-633 . -628) 24366) ((-290 . -34) T) ((-712 . -1025) T) ((-567 . -1239) 24353) ((-511 . -1239) 24330) ((-1205 . -1073) T) ((-1145 . -285) 24241) ((-1098 . -285) 24172) ((-1036 . -170) T) ((-832 . -1073) T) ((-928 . -170) 24083) ((-762 . -1208) 24067) ((-625 . -507) 24000) ((-76 . -597) 23982) ((-712 . -321) 23947) ((-1151 . -707) T) ((-559 . -1073) T) ((-475 . -170) 23858) ((-241 . -304) 23796) ((-128 . -283) 23771) ((-1115 . -1085) T) ((-69 . -597) 23753) ((-1244 . -707) T) ((-1147 . -1025) T) ((-1146 . -1025) T) ((-322 . -101) 23703) ((-1140 . -1025) T) ((-1115 . -23) T) ((-1099 . -1025) T) ((-90 . -1094) 23687) ((-842 . -1085) T) ((-1147 . -229) 23646) ((-1146 . -239) 23625) ((-1146 . -229) 23577) ((-1140 . -229) 23464) ((-1140 . -239) 23443) ((-314 . -876) 23349) ((-842 . -23) T) ((-167 . -698) 23177) ((-402 . -1190) T) ((-1074 . -363) T) ((-1000 . -145) T) ((-979 . -358) T) ((-846 . -446) T) ((-919 . -281) 23154) ((-311 . -827) T) ((-308 . -827) NIL) ((-850 . -101) T) ((-693 . -25) T) ((-402 . -544) T) ((-693 . -21) T) ((-349 . -145) 23136) ((-349 . -143) T) ((-1120 . -1073) 23114) ((-447 . -701) T) ((-74 . -597) 23096) ((-114 . -827) T) ((-241 . -277) 23080) ((-236 . -1031) 22977) ((-80 . -597) 22959) ((-716 . -363) 22912) ((-1149 . -808) T) ((-718 . -231) 22896) ((-1132 . -1186) T) ((-139 . -231) 22878) ((-236 . -111) 22768) ((-1205 . -698) 22597) ((-48 . -145) T) ((-847 . -170) T) ((-832 . -698) 22567) ((-478 . -1186) T) ((-928 . -507) 22514) ((-633 . -707) T) ((-559 . -698) 22501) ((-1010 . -1032) T) ((-475 . -507) 22444) ((-919 . -19) 22428) ((-919 . -588) 22405) ((-796 . -598) NIL) ((-796 . -597) 22387) ((-980 . -1031) 22337) ((-408 . -597) 22319) ((-246 . -281) 22296) ((-245 . -281) 22273) ((-481 . -885) NIL) ((-311 . -29) 22243) ((-107 . -1186) T) ((-979 . -1085) T) ((-213 . -885) NIL) ((-890 . -1031) 22195) ((-1053 . -1014) 22091) ((-980 . -111) 22025) ((-718 . -675) 22009) ((-259 . -227) 21993) ((-422 . -1031) 21977) ((-374 . -1032) T) ((-979 . -23) T) ((-890 . -111) 21915) ((-674 . -1174) NIL) ((-481 . -628) 21865) ((-107 . -860) 21847) ((-107 . -862) 21829) ((-674 . -1171) NIL) ((-213 . -628) 21779) ((-354 . -1014) 21763) ((-348 . -1014) 21747) ((-322 . -304) 21685) ((-340 . -1014) 21669) ((-221 . -285) T) ((-422 . -111) 21648) ((-59 . -597) 21580) ((-167 . -170) T) ((-1093 . -827) T) ((-107 . -1014) 21540) ((-868 . -1073) T) ((-814 . -1032) T) ((-807 . -1032) T) ((-674 . -35) NIL) ((-674 . -94) NIL) ((-308 . -968) 21501) ((-181 . -101) T) ((-566 . -446) T) ((-552 . -446) T) ((-488 . -446) T) ((-402 . -358) T) ((-236 . -1025) 21431) ((-1123 . -34) T) ((-471 . -896) T) ((-975 . -621) 21379) ((-246 . -588) 21356) ((-245 . -588) 21333) ((-1053 . -372) 21317) ((-847 . -507) 21225) ((-236 . -229) 21177) ((-1131 . -1186) T) ((-804 . -597) 21159) ((-1255 . -1085) T) ((-1247 . -597) 21141) ((-1205 . -170) 21032) ((-107 . -372) 21014) ((-107 . -333) 20996) ((-1036 . -285) T) ((-928 . -285) 20927) ((-779 . -363) 20906) ((-627 . -1186) T) ((-614 . -1186) T) ((-475 . -285) 20837) ((-559 . -170) T) ((-322 . -277) 20821) ((-1255 . -23) T) ((-1180 . -101) T) ((-1167 . -1073) T) ((-1061 . -1073) T) ((-1049 . -1073) T) ((-82 . -597) 20803) ((-692 . -101) T) ((-350 . -344) 20782) ((-592 . -1073) T) ((-347 . -344) 20761) ((-339 . -344) 20740) ((-469 . -1073) T) ((-1159 . -225) 20690) ((-259 . -248) 20652) ((-1115 . -130) T) ((-592 . -594) 20628) ((-1053 . -876) 20561) ((-980 . -1025) T) ((-890 . -1025) T) ((-469 . -594) 20540) ((-1140 . -772) NIL) ((-1140 . -775) NIL) ((-1075 . -598) 20501) ((-473 . -225) 20451) ((-1075 . -597) 20433) ((-980 . -239) T) ((-980 . -229) T) ((-422 . -1025) T) ((-934 . -1073) 20383) ((-890 . -239) T) ((-842 . -130) T) ((-679 . -446) T) ((-820 . -1085) 20362) ((-107 . -876) NIL) ((-1180 . -279) 20328) ((-848 . -825) 20307) ((-1086 . -1186) T) ((-881 . -707) T) ((-167 . -507) 20219) ((-975 . -25) T) ((-881 . -467) T) ((-402 . -1085) T) ((-481 . -774) T) ((-481 . -771) T) ((-886 . -344) T) ((-481 . -707) T) ((-213 . -774) T) ((-213 . -771) T) ((-975 . -21) T) ((-213 . -707) T) ((-820 . -23) 20171) ((-314 . -302) 20150) ((-1011 . -231) 20096) ((-402 . -23) T) ((-919 . -598) 20057) ((-919 . -597) 19969) ((-625 . -483) 19953) ((-45 . -986) 19903) ((-600 . -943) T) ((-484 . -101) T) ((-326 . -597) 19885) ((-1086 . -1014) 19712) ((-578 . -631) 19694) ((-578 . -368) 19676) ((-338 . -1239) 19653) ((-1003 . -1186) T) ((-847 . -285) T) ((-1205 . -507) 19600) ((-470 . -1186) T) ((-457 . -1186) T) ((-571 . -101) T) ((-1145 . -281) 19527) ((-605 . -446) 19506) ((-976 . -971) 19490) ((-1247 . -377) 19462) ((-510 . -1073) T) ((-117 . -446) T) ((-1166 . -101) T) ((-1065 . -1073) 19440) ((-1010 . -1073) T) ((-1088 . -92) T) ((-869 . -827) T) ((-346 . -1190) T) ((-1224 . -1031) 19323) ((-1086 . -372) 19292) ((-1217 . -1031) 19127) ((-1196 . -1031) 18917) ((-1224 . -111) 18786) ((-1217 . -111) 18607) ((-1196 . -111) 18376) ((-1180 . -304) 18363) ((-346 . -544) T) ((-360 . -597) 18345) ((-284 . -302) T) ((-581 . -1031) 18318) ((-580 . -1031) 18201) ((-356 . -1073) T) ((-317 . -1073) T) ((-246 . -597) 18162) ((-245 . -597) 18123) ((-979 . -130) T) ((-109 . -597) 18105) ((-617 . -23) T) ((-674 . -404) 18072) ((-591 . -23) T) ((-638 . -101) T) ((-581 . -111) 18043) ((-580 . -111) 17912) ((-374 . -1073) T) ((-331 . -101) T) ((-167 . -285) 17823) ((-1195 . -825) 17776) ((-695 . -1032) T) ((-1120 . -507) 17709) ((-1086 . -876) 17641) ((-814 . -1073) T) ((-807 . -1073) T) ((-805 . -1073) T) ((-96 . -101) T) ((-142 . -827) T) ((-596 . -860) 17625) ((-110 . -1186) T) ((-1060 . -101) T) ((-1037 . -34) T) ((-762 . -101) T) ((-760 . -101) T) ((-455 . -101) T) ((-448 . -101) T) ((-236 . -775) 17576) ((-236 . -772) 17527) ((-629 . -101) T) ((-1205 . -285) 17438) ((-644 . -616) 17422) ((-182 . -597) 17404) ((-625 . -281) 17381) ((-1010 . -698) 17365) ((-559 . -285) T) ((-939 . -628) 17290) ((-1255 . -130) T) ((-716 . -628) 17250) ((-696 . -628) 17237) ((-270 . -101) T) ((-447 . -628) 17167) ((-50 . -101) T) ((-567 . -101) T) ((-511 . -101) T) ((-1224 . -1025) T) ((-1217 . -1025) T) ((-1196 . -1025) T) ((-1224 . -229) 17126) ((-317 . -698) 17108) ((-1217 . -239) 17087) ((-1217 . -229) 17039) ((-1196 . -229) 16926) ((-1196 . -239) 16905) ((-1180 . -38) 16802) ((-980 . -775) T) ((-581 . -1025) T) ((-580 . -1025) T) ((-980 . -772) T) ((-947 . -775) T) ((-947 . -772) T) ((-848 . -1032) T) ((-846 . -845) 16786) ((-108 . -597) 16768) ((-674 . -446) T) ((-374 . -698) 16733) ((-413 . -628) 16707) ((-693 . -827) 16686) ((-692 . -38) 16651) ((-580 . -229) 16610) ((-40 . -705) 16582) ((-346 . -324) 16559) ((-346 . -358) T) ((-1053 . -302) 16510) ((-289 . -1085) 16391) ((-1079 . -1186) T) ((-169 . -101) T) ((-1199 . -597) 16358) ((-820 . -130) 16310) ((-625 . -1220) 16294) ((-814 . -698) 16264) ((-807 . -698) 16234) ((-476 . -1186) T) ((-354 . -302) T) ((-348 . -302) T) ((-340 . -302) T) ((-625 . -588) 16211) ((-402 . -130) T) ((-513 . -646) 16195) ((-107 . -302) T) ((-289 . -23) 16078) ((-513 . -631) 16062) ((-674 . -397) NIL) ((-513 . -368) 16046) ((-286 . -597) 16028) ((-90 . -1073) 16006) ((-107 . -998) T) ((-552 . -141) T) ((-1232 . -149) 15990) ((-476 . -1014) 15817) ((-1218 . -143) 15778) ((-1218 . -145) 15739) ((-1029 . -1186) T) ((-969 . -597) 15721) ((-839 . -597) 15703) ((-796 . -1031) 15546) ((-1243 . -92) T) ((-1069 . -1073) T) ((-1063 . -1073) T) ((-1060 . -304) 15533) ((-1047 . -1073) T) ((-223 . -1186) T) ((-1040 . -1073) T) ((-1012 . -1073) T) ((-995 . -1073) T) ((-762 . -304) 15520) ((-760 . -304) 15507) ((-1242 . -92) T) ((-796 . -111) 15336) ((-1145 . -598) NIL) ((-608 . -1073) T) ((-1145 . -597) 15318) ((-522 . -171) T) ((-448 . -304) 15305) ((-477 . -1073) T) ((-1098 . -597) 15287) ((-1098 . -598) 15035) ((-1010 . -170) T) ((-214 . -1073) T) ((-831 . -597) 15017) ((-919 . -283) 14994) ((-592 . -507) 14777) ((-798 . -1014) 14761) ((-469 . -507) 14553) ((-939 . -707) T) ((-716 . -707) T) ((-696 . -707) T) ((-346 . -1085) T) ((-1152 . -597) 14535) ((-219 . -101) T) ((-476 . -372) 14504) ((-508 . -1073) T) ((-503 . -1073) T) ((-501 . -1073) T) ((-779 . -628) 14478) ((-1000 . -446) T) ((-934 . -507) 14411) ((-346 . -23) T) ((-617 . -130) T) ((-591 . -130) T) ((-349 . -446) T) ((-236 . -363) 14390) ((-374 . -170) T) ((-1216 . -1032) T) ((-1195 . -1032) T) ((-221 . -978) T) ((-679 . -382) T) ((-413 . -707) T) ((-681 . -1190) T) ((-1115 . -621) 14338) ((-566 . -845) 14322) ((-1132 . -1162) 14298) ((-681 . -544) T) ((-126 . -1073) 14276) ((-1247 . -1031) 14260) ((-695 . -1073) T) ((-476 . -876) 14192) ((-183 . -1073) T) ((-638 . -38) 14162) ((-349 . -397) T) ((-311 . -145) 14141) ((-311 . -143) 14120) ((-116 . -544) T) ((-308 . -145) 14076) ((-308 . -143) 14032) ((-48 . -446) T) ((-160 . -1073) T) ((-155 . -1073) T) ((-1132 . -106) 13979) ((-762 . -1124) 13957) ((-669 . -34) T) ((-1247 . -111) 13936) ((-538 . -34) T) ((-478 . -106) 13920) ((-246 . -283) 13897) ((-245 . -283) 13874) ((-847 . -281) 13825) ((-45 . -1186) T) ((-796 . -1025) T) ((-1151 . -47) 13802) ((-796 . -321) 13764) ((-1060 . -38) 13613) ((-796 . -229) 13592) ((-762 . -38) 13421) ((-760 . -38) 13270) ((-128 . -631) 13252) ((-448 . -38) 13101) ((-128 . -368) 13083) ((-1088 . -597) 13049) ((-1091 . -101) T) ((-625 . -598) 13010) ((-625 . -597) 12922) ((-567 . -1124) T) ((-511 . -1124) T) ((-1120 . -483) 12906) ((-1172 . -1073) 12884) ((-1115 . -25) T) ((-1115 . -21) T) ((-468 . -1032) T) ((-1196 . -772) NIL) ((-1196 . -775) NIL) ((-975 . -827) 12863) ((-799 . -597) 12845) ((-842 . -21) T) ((-842 . -25) T) ((-779 . -707) T) ((-172 . -1190) T) ((-567 . -38) 12810) ((-511 . -38) 12775) ((-381 . -597) 12757) ((-319 . -597) 12739) ((-167 . -281) 12697) ((-62 . -1186) T) ((-112 . -101) T) ((-848 . -1073) T) ((-172 . -544) T) ((-695 . -698) 12667) ((-289 . -130) 12550) ((-221 . -597) 12532) ((-221 . -598) 12462) ((-979 . -621) 12401) ((-1247 . -1025) T) ((-1093 . -145) T) ((-614 . -1162) 12376) ((-712 . -885) 12355) ((-578 . -34) T) ((-627 . -106) 12339) ((-614 . -106) 12285) ((-1205 . -281) 12212) ((-712 . -628) 12137) ((-290 . -1186) T) ((-1151 . -1014) 12033) ((-522 . -520) T) ((-1140 . -885) NIL) ((-1036 . -598) 11948) ((-1036 . -597) 11930) ((-928 . -597) 11912) ((-338 . -101) T) ((-246 . -1031) 11809) ((-245 . -1031) 11706) ((-389 . -101) T) ((-31 . -1073) T) ((-928 . -598) 11567) ((-694 . -597) 11549) ((-1245 . -1179) 11518) ((-475 . -597) 11500) ((-475 . -598) 11361) ((-259 . -406) 11345) ((-243 . -406) 11329) ((-246 . -111) 11219) ((-245 . -111) 11109) ((-1147 . -628) 11034) ((-1146 . -628) 10931) ((-1140 . -628) 10783) ((-1099 . -628) 10708) ((-346 . -130) T) ((-81 . -435) T) ((-81 . -390) T) ((-979 . -25) T) ((-979 . -21) T) ((-849 . -1073) 10659) ((-848 . -698) 10611) ((-374 . -285) T) ((-167 . -978) 10563) ((-674 . -382) T) ((-975 . -973) 10547) ((-681 . -1085) T) ((-674 . -164) 10529) ((-1216 . -1073) T) ((-1195 . -1073) T) ((-311 . -1171) 10508) ((-311 . -1174) 10487) ((-1137 . -101) T) ((-311 . -935) 10466) ((-133 . -1085) T) ((-116 . -1085) T) ((-586 . -1230) 10450) ((-681 . -23) T) ((-586 . -1073) 10400) ((-90 . -507) 10333) ((-172 . -358) T) ((-311 . -94) 10312) ((-311 . -35) 10291) ((-592 . -483) 10225) ((-133 . -23) T) ((-116 . -23) T) ((-942 . -101) T) ((-699 . -1073) T) ((-469 . -483) 10162) ((-402 . -621) 10110) ((-633 . -1014) 10006) ((-934 . -483) 9990) ((-350 . -1032) T) ((-347 . -1032) T) ((-339 . -1032) T) ((-259 . -1032) T) ((-243 . -1032) T) ((-847 . -598) NIL) ((-847 . -597) 9972) ((-1255 . -21) T) ((-1243 . -597) 9938) ((-1242 . -597) 9904) ((-559 . -978) T) ((-712 . -707) T) ((-1255 . -25) T) ((-246 . -1025) 9834) ((-245 . -1025) 9764) ((-71 . -1186) T) ((-246 . -229) 9716) ((-245 . -229) 9668) ((-40 . -101) T) ((-886 . -1032) T) ((-1154 . -101) T) ((-1147 . -707) T) ((-1146 . -707) T) ((-1140 . -707) T) ((-1140 . -771) NIL) ((-1140 . -774) NIL) ((-930 . -101) T) ((-897 . -101) T) ((-1099 . -707) T) ((-751 . -101) T) ((-652 . -101) T) ((-468 . -1073) T) ((-334 . -1085) T) ((-172 . -1085) T) ((-314 . -896) 9647) ((-1216 . -698) 9488) ((-848 . -170) T) ((-1195 . -698) 9302) ((-820 . -21) 9254) ((-820 . -25) 9206) ((-241 . -1122) 9190) ((-126 . -507) 9123) ((-402 . -25) T) ((-402 . -21) T) ((-334 . -23) T) ((-167 . -598) 8891) ((-167 . -597) 8873) ((-172 . -23) T) ((-625 . -283) 8850) ((-513 . -34) T) ((-874 . -597) 8832) ((-88 . -1186) T) ((-818 . -597) 8814) ((-788 . -597) 8796) ((-749 . -597) 8778) ((-657 . -597) 8760) ((-236 . -628) 8608) ((-1149 . -1073) T) ((-1145 . -1031) 8431) ((-1123 . -1186) T) ((-1098 . -1031) 8274) ((-831 . -1031) 8258) ((-1145 . -111) 8067) ((-1098 . -111) 7896) ((-831 . -111) 7875) ((-1205 . -598) NIL) ((-1205 . -597) 7857) ((-338 . -1124) T) ((-832 . -597) 7839) ((-1049 . -281) 7818) ((-79 . -1186) T) ((-980 . -885) NIL) ((-592 . -281) 7794) ((-1172 . -507) 7727) ((-481 . -1186) T) ((-559 . -597) 7709) ((-469 . -281) 7688) ((-510 . -92) T) ((-213 . -1186) T) ((-1060 . -227) 7672) ((-284 . -896) T) ((-797 . -302) 7651) ((-846 . -101) T) ((-762 . -227) 7635) ((-980 . -628) 7585) ((-934 . -281) 7562) ((-890 . -628) 7514) ((-617 . -21) T) ((-617 . -25) T) ((-591 . -21) T) ((-338 . -38) 7479) ((-674 . -705) 7446) ((-481 . -860) 7428) ((-481 . -862) 7410) ((-468 . -698) 7251) ((-213 . -860) 7233) ((-63 . -1186) T) ((-213 . -862) 7215) ((-591 . -25) T) ((-422 . -628) 7189) ((-481 . -1014) 7149) ((-848 . -507) 7061) ((-213 . -1014) 7021) ((-236 . -34) T) ((-976 . -1073) 6999) ((-1216 . -170) 6930) ((-1195 . -170) 6861) ((-693 . -143) 6840) ((-693 . -145) 6819) ((-681 . -130) T) ((-135 . -459) 6796) ((-638 . -636) 6780) ((-1120 . -597) 6712) ((-116 . -130) T) ((-471 . -1190) T) ((-592 . -588) 6688) ((-469 . -588) 6667) ((-331 . -330) 6636) ((-528 . -1073) T) ((-471 . -544) T) ((-1145 . -1025) T) ((-1098 . -1025) T) ((-831 . -1025) T) ((-236 . -771) 6615) ((-236 . -774) 6566) ((-236 . -773) 6545) ((-1145 . -321) 6522) ((-236 . -707) 6432) ((-934 . -19) 6416) ((-481 . -372) 6398) ((-481 . -333) 6380) ((-1098 . -321) 6352) ((-349 . -1239) 6329) ((-213 . -372) 6311) ((-213 . -333) 6293) ((-934 . -588) 6270) ((-1145 . -229) T) ((-644 . -1073) T) ((-626 . -1073) T) ((-1228 . -1073) T) ((-1159 . -1073) T) ((-1060 . -248) 6207) ((-350 . -1073) T) ((-347 . -1073) T) ((-339 . -1073) T) ((-259 . -1073) T) ((-243 . -1073) T) ((-83 . -1186) T) ((-127 . -101) 6185) ((-121 . -101) 6163) ((-128 . -34) T) ((-1159 . -594) 6142) ((-473 . -1073) T) ((-1114 . -1073) T) ((-473 . -594) 6121) ((-246 . -775) 6072) ((-246 . -772) 6023) ((-245 . -775) 5974) ((-40 . -1124) NIL) ((-245 . -772) 5925) ((-1053 . -896) 5876) ((-980 . -774) T) ((-980 . -771) T) ((-980 . -707) T) ((-947 . -774) T) ((-890 . -707) T) ((-90 . -483) 5860) ((-481 . -876) NIL) ((-886 . -1073) T) ((-221 . -1031) 5825) ((-848 . -285) T) ((-213 . -876) NIL) ((-813 . -1085) 5804) ((-58 . -1073) 5754) ((-512 . -1073) 5732) ((-509 . -1073) 5682) ((-490 . -1073) 5660) ((-489 . -1073) 5610) ((-566 . -101) T) ((-552 . -101) T) ((-488 . -101) T) ((-468 . -170) 5541) ((-354 . -896) T) ((-348 . -896) T) ((-340 . -896) T) ((-221 . -111) 5497) ((-813 . -23) 5449) ((-422 . -707) T) ((-107 . -896) T) ((-40 . -38) 5394) ((-107 . -800) T) ((-567 . -344) T) ((-511 . -344) T) ((-1195 . -507) 5254) ((-311 . -446) 5233) ((-308 . -446) T) ((-814 . -281) 5212) ((-334 . -130) T) ((-172 . -130) T) ((-289 . -25) 5076) ((-289 . -21) 4959) ((-45 . -1162) 4938) ((-65 . -597) 4920) ((-868 . -597) 4902) ((-586 . -507) 4835) ((-45 . -106) 4785) ((-1075 . -420) 4769) ((-1075 . -363) 4748) ((-1037 . -1186) T) ((-1036 . -1031) 4735) ((-928 . -1031) 4578) ((-1233 . -101) T) ((-1232 . -101) 4528) ((-475 . -1031) 4371) ((-644 . -698) 4355) ((-1036 . -111) 4340) ((-928 . -111) 4169) ((-471 . -358) T) ((-350 . -698) 4121) ((-347 . -698) 4073) ((-339 . -698) 4025) ((-259 . -698) 3874) ((-243 . -698) 3723) ((-1224 . -628) 3648) ((-1196 . -885) NIL) ((-1069 . -92) T) ((-1063 . -92) T) ((-919 . -631) 3632) ((-1047 . -92) T) ((-475 . -111) 3461) ((-1040 . -92) T) ((-1012 . -92) T) ((-919 . -368) 3445) ((-244 . -101) T) ((-995 . -92) T) ((-73 . -597) 3427) ((-939 . -47) 3406) ((-603 . -1085) T) ((-1 . -1073) T) ((-691 . -101) T) ((-679 . -101) T) ((-1217 . -628) 3303) ((-608 . -92) T) ((-1167 . -597) 3285) ((-1061 . -597) 3267) ((-126 . -483) 3251) ((-477 . -92) T) ((-1049 . -597) 3233) ((-385 . -23) T) ((-86 . -1186) T) ((-214 . -92) T) ((-1196 . -628) 3085) ((-886 . -698) 3050) ((-603 . -23) T) ((-592 . -597) 3032) ((-592 . -598) NIL) ((-469 . -598) NIL) ((-469 . -597) 3014) ((-504 . -1073) T) ((-500 . -1073) T) ((-346 . -25) T) ((-346 . -21) T) ((-127 . -304) 2952) ((-121 . -304) 2890) ((-581 . -628) 2877) ((-221 . -1025) T) ((-580 . -628) 2802) ((-374 . -978) T) ((-221 . -239) T) ((-221 . -229) T) ((-934 . -598) 2763) ((-934 . -597) 2675) ((-846 . -38) 2662) ((-1216 . -285) 2613) ((-1195 . -285) 2564) ((-1093 . -446) T) ((-495 . -827) T) ((-311 . -1112) 2543) ((-975 . -145) 2522) ((-975 . -143) 2501) ((-488 . -304) 2488) ((-290 . -1162) 2467) ((-471 . -1085) T) ((-847 . -1031) 2412) ((-605 . -101) T) ((-1172 . -483) 2396) ((-246 . -363) 2375) ((-245 . -363) 2354) ((-290 . -106) 2304) ((-1036 . -1025) T) ((-117 . -101) T) ((-928 . -1025) T) ((-847 . -111) 2233) ((-471 . -23) T) ((-475 . -1025) T) ((-1036 . -229) T) ((-928 . -321) 2202) ((-475 . -321) 2159) ((-350 . -170) T) ((-347 . -170) T) ((-339 . -170) T) ((-259 . -170) 2070) ((-243 . -170) 1981) ((-939 . -1014) 1877) ((-716 . -1014) 1848) ((-510 . -597) 1814) ((-1078 . -101) T) ((-1065 . -597) 1781) ((-1010 . -597) 1763) ((-1224 . -707) T) ((-1217 . -707) T) ((-1196 . -771) NIL) ((-167 . -1031) 1673) ((-1196 . -774) NIL) ((-886 . -170) T) ((-1196 . -707) T) ((-1245 . -149) 1657) ((-979 . -337) 1631) ((-976 . -507) 1564) ((-820 . -827) 1543) ((-552 . -1124) T) ((-468 . -285) 1494) ((-581 . -707) T) ((-356 . -597) 1476) ((-317 . -597) 1458) ((-413 . -1014) 1354) ((-580 . -707) T) ((-402 . -827) 1305) ((-167 . -111) 1201) ((-813 . -130) 1153) ((-718 . -149) 1137) ((-1232 . -304) 1075) ((-481 . -302) T) ((-374 . -597) 1042) ((-513 . -986) 1026) ((-374 . -598) 940) ((-213 . -302) T) ((-139 . -149) 922) ((-695 . -281) 901) ((-481 . -998) T) ((-566 . -38) 888) ((-552 . -38) 875) ((-488 . -38) 840) ((-213 . -998) T) ((-847 . -1025) T) ((-814 . -597) 822) ((-807 . -597) 804) ((-805 . -597) 786) ((-796 . -885) 765) ((-1256 . -1085) T) ((-1205 . -1031) 588) ((-832 . -1031) 572) ((-847 . -239) T) ((-847 . -229) NIL) ((-669 . -1186) T) ((-1256 . -23) T) ((-796 . -628) 497) ((-538 . -1186) T) ((-413 . -333) 481) ((-559 . -1031) 468) ((-1205 . -111) 277) ((-681 . -621) 259) ((-832 . -111) 238) ((-376 . -23) T) ((-1159 . -507) 30) ((-642 . -1073) T) ((-661 . -1073) T) ((-656 . -1073) T))
\ No newline at end of file +(-1559 (|has| |#1| (-830)) (|has| |#1| (-1076))) +((($ $) . T) ((#0=(-844 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((|#2| $) |has| |#1| (-228)) ((|#2| |#1|) |has| |#1| (-228)) ((|#3| |#1|) . T) ((|#3| $) . T)) +(((-471 . -1076) T) ((-258 . -506) 145102) ((-242 . -506) 145045) ((-240 . -1076) 144995) ((-559 . -110) 144980) ((-523 . -23) T) ((-136 . -1076) T) ((-135 . -1076) T) ((-116 . -303) 144937) ((-131 . -1076) T) ((-472 . -506) 144729) ((-676 . -101) T) ((-1117 . -506) 144648) ((-384 . -129) T) ((-1248 . -955) 144617) ((-31 . -92) T) ((-588 . -482) 144601) ((-605 . -129) T) ((-802 . -826) T) ((-515 . -56) 144551) ((-58 . -506) 144484) ((-511 . -506) 144417) ((-412 . -879) 144376) ((-166 . -1028) T) ((-508 . -506) 144309) ((-489 . -506) 144242) ((-488 . -506) 144175) ((-782 . -1017) 143958) ((-681 . -38) 143923) ((-337 . -343) T) ((-1070 . -1069) 143907) ((-1070 . -1076) 143885) ((-166 . -238) 143836) ((-166 . -228) 143787) ((-1070 . -1071) 143745) ((-851 . -280) 143703) ((-220 . -778) T) ((-220 . -775) T) ((-676 . -278) NIL) ((-1126 . -1165) 143682) ((-401 . -971) 143666) ((-683 . -21) T) ((-683 . -25) T) ((-1250 . -630) 143640) ((-310 . -157) 143619) ((-310 . -140) 143598) ((-1126 . -106) 143548) ((-132 . -25) T) ((-40 . -226) 143525) ((-115 . -21) T) ((-115 . -25) T) ((-594 . -282) 143501) ((-468 . -282) 143480) ((-1208 . -1028) T) ((-835 . -1028) T) ((-782 . -332) 143464) ((-116 . -1127) NIL) ((-90 . -599) 143396) ((-470 . -129) T) ((-580 . -1189) T) ((-1208 . -320) 143373) ((-559 . -1028) T) ((-1208 . -228) T) ((-644 . -700) 143357) ((-1072 . -599) 143323) ((-937 . -282) 143300) ((-59 . -34) T) ((-1066 . -599) 143266) ((-1050 . -599) 143232) ((-1039 . -778) T) ((-1039 . -775) T) ((-799 . -709) T) ((-714 . -47) 143197) ((-607 . -38) 143184) ((-349 . -284) T) ((-346 . -284) T) ((-338 . -284) T) ((-258 . -284) 143115) ((-242 . -284) 143046) ((-1043 . -599) 143012) ((-1015 . -599) 142978) ((-1003 . -101) T) ((-998 . -599) 142944) ((-407 . -709) T) ((-116 . -38) 142889) ((-610 . -599) 142855) ((-407 . -466) T) ((-476 . -599) 142821) ((-348 . -101) T) ((-213 . -599) 142787) ((-1183 . -1035) T) ((-694 . -1035) T) ((-1150 . -47) 142764) ((-1149 . -47) 142734) ((-1143 . -47) 142711) ((-127 . -282) 142686) ((-1014 . -148) 142632) ((-889 . -284) T) ((-1102 . -47) 142604) ((-676 . -303) NIL) ((-507 . -599) 142586) ((-502 . -599) 142568) ((-500 . -599) 142550) ((-321 . -1076) 142500) ((-695 . -445) 142431) ((-48 . -101) T) ((-1219 . -280) 142416) ((-1198 . -280) 142336) ((-627 . -648) 142320) ((-627 . -633) 142304) ((-333 . -21) T) ((-333 . -25) T) ((-40 . -343) NIL) ((-171 . -21) T) ((-171 . -25) T) ((-627 . -367) 142288) ((-588 . -280) 142265) ((-591 . -599) 142232) ((-382 . -101) T) ((-1096 . -140) T) ((-125 . -599) 142164) ((-853 . -1076) T) ((-640 . -405) 142148) ((-697 . -599) 142130) ((-182 . -599) 142112) ((-154 . -599) 142094) ((-159 . -599) 142076) ((-1250 . -709) T) ((-1078 . -34) T) ((-850 . -778) NIL) ((-850 . -775) NIL) ((-838 . -830) T) ((-714 . -865) NIL) ((-1259 . -129) T) ((-375 . -129) T) ((-883 . -101) T) ((-714 . -1017) 141952) ((-523 . -129) T) ((-1063 . -405) 141936) ((-979 . -482) 141920) ((-116 . -394) 141897) ((-1143 . -1189) 141876) ((-765 . -405) 141860) ((-763 . -405) 141844) ((-922 . -34) T) ((-676 . -1127) NIL) ((-245 . -630) 141679) ((-244 . -630) 141501) ((-800 . -899) 141480) ((-447 . -405) 141464) ((-588 . -19) 141448) ((-1122 . -1182) 141417) ((-1143 . -865) NIL) ((-1143 . -863) 141369) ((-588 . -590) 141346) ((-1175 . -599) 141278) ((-1151 . -599) 141260) ((-61 . -389) T) ((-1149 . -1017) 141195) ((-1143 . -1017) 141161) ((-676 . -38) 141111) ((-467 . -280) 141096) ((-714 . -371) 141080) ((-640 . -1035) T) ((-1219 . -981) 141046) ((-1198 . -981) 141012) ((-1040 . -1165) 140987) ((-851 . -600) 140794) ((-851 . -599) 140776) ((-1162 . -482) 140713) ((-412 . -1001) 140691) ((-48 . -303) 140678) ((-1040 . -106) 140624) ((-472 . -482) 140561) ((-512 . -1189) T) ((-1143 . -332) 140513) ((-1117 . -482) 140484) ((-1143 . -371) 140436) ((-1063 . -1035) T) ((-431 . -101) T) ((-180 . -1076) T) ((-245 . -34) T) ((-244 . -34) T) ((-765 . -1035) T) ((-763 . -1035) T) ((-714 . -879) 140413) ((-447 . -1035) T) ((-58 . -482) 140397) ((-1013 . -1034) 140371) ((-511 . -482) 140355) ((-508 . -482) 140339) ((-489 . -482) 140323) ((-488 . -482) 140307) ((-240 . -506) 140240) ((-1013 . -110) 140207) ((-1150 . -879) 140120) ((-1149 . -879) 140026) ((-1143 . -879) 139859) ((-652 . -1088) T) ((-1102 . -879) 139843) ((-628 . -92) T) ((-348 . -1127) T) ((-316 . -1034) 139825) ((-245 . -774) 139804) ((-245 . -777) 139755) ((-245 . -776) 139734) ((-244 . -774) 139713) ((-244 . -777) 139664) ((-244 . -776) 139643) ((-31 . -599) 139609) ((-50 . -1035) T) ((-245 . -709) 139519) ((-244 . -709) 139429) ((-1183 . -1076) T) ((-652 . -23) T) ((-569 . -1035) T) ((-510 . -1035) T) ((-373 . -1034) 139394) ((-316 . -110) 139369) ((-72 . -377) T) ((-72 . -389) T) ((-1003 . -38) 139306) ((-676 . -394) 139288) ((-98 . -101) T) ((-694 . -1076) T) ((-982 . -142) 139260) ((-982 . -144) 139232) ((-373 . -110) 139188) ((-313 . -1193) 139167) ((-467 . -981) 139133) ((-348 . -38) 139098) ((-40 . -364) 139070) ((-852 . -599) 138942) ((-126 . -124) 138926) ((-120 . -124) 138910) ((-817 . -1034) 138880) ((-816 . -21) 138832) ((-810 . -1034) 138816) ((-816 . -25) 138768) ((-313 . -544) 138719) ((-552 . -811) T) ((-235 . -1189) T) ((-817 . -110) 138684) ((-810 . -110) 138663) ((-1219 . -599) 138645) ((-1198 . -599) 138627) ((-1198 . -600) 138298) ((-1148 . -888) 138277) ((-1101 . -888) 138256) ((-48 . -38) 138221) ((-1257 . -1088) T) ((-588 . -599) 138133) ((-588 . -600) 138094) ((-1255 . -1088) T) ((-235 . -1017) 137921) ((-1148 . -630) 137846) ((-1101 . -630) 137771) ((-701 . -599) 137753) ((-834 . -630) 137727) ((-483 . -1076) T) ((-1257 . -23) T) ((-1255 . -23) T) ((-1013 . -1028) T) ((-1162 . -280) 137706) ((-166 . -362) 137657) ((-983 . -1189) T) ((-44 . -23) T) ((-472 . -280) 137636) ((-573 . -1076) T) ((-1122 . -1085) 137605) ((-1080 . -1079) 137557) ((-384 . -21) T) ((-384 . -25) T) ((-149 . -1088) T) ((-1263 . -101) T) ((-983 . -863) 137539) ((-983 . -865) 137521) ((-1183 . -700) 137418) ((-607 . -226) 137402) ((-605 . -21) T) ((-283 . -544) T) ((-605 . -25) T) ((-1169 . -1076) T) ((-694 . -700) 137367) ((-235 . -371) 137336) ((-983 . -1017) 137296) ((-373 . -1028) T) ((-218 . -1035) T) ((-116 . -226) 137273) ((-58 . -280) 137250) ((-149 . -23) T) ((-508 . -280) 137227) ((-321 . -506) 137160) ((-488 . -280) 137137) ((-373 . -238) T) ((-373 . -228) T) ((-817 . -1028) T) ((-810 . -1028) T) ((-695 . -928) 137106) ((-683 . -830) T) ((-467 . -599) 137088) ((-810 . -228) 137067) ((-132 . -830) T) ((-640 . -1076) T) ((-1162 . -590) 137046) ((-538 . -1165) 137025) ((-330 . -1076) T) ((-313 . -357) 137004) ((-401 . -144) 136983) ((-401 . -142) 136962) ((-943 . -1088) 136861) ((-235 . -879) 136793) ((-798 . -1088) 136703) ((-636 . -832) 136687) ((-472 . -590) 136666) ((-538 . -106) 136616) ((-983 . -371) 136598) ((-983 . -332) 136580) ((-96 . -1076) T) ((-943 . -23) 136391) ((-470 . -21) T) ((-470 . -25) T) ((-798 . -23) 136261) ((-1152 . -599) 136243) ((-58 . -19) 136227) ((-1152 . -600) 136149) ((-1148 . -709) T) ((-1101 . -709) T) ((-508 . -19) 136133) ((-488 . -19) 136117) ((-58 . -590) 136094) ((-1063 . -1076) T) ((-880 . -101) 136072) ((-834 . -709) T) ((-765 . -1076) T) ((-508 . -590) 136049) ((-488 . -590) 136026) ((-763 . -1076) T) ((-763 . -1042) 135993) ((-454 . -1076) T) ((-447 . -1076) T) ((-573 . -700) 135968) ((-631 . -1076) T) ((-983 . -879) NIL) ((-1227 . -47) 135945) ((-611 . -1088) T) ((-652 . -129) T) ((-1221 . -101) T) ((-1220 . -47) 135915) ((-1199 . -47) 135892) ((-1183 . -169) 135843) ((-1056 . -1193) 135794) ((-269 . -1076) T) ((-84 . -434) T) ((-84 . -389) T) ((-1149 . -301) 135773) ((-1143 . -301) 135752) ((-50 . -1076) T) ((-1056 . -544) 135703) ((-694 . -169) T) ((-582 . -47) 135680) ((-220 . -630) 135645) ((-569 . -1076) T) ((-510 . -1076) T) ((-353 . -1193) T) ((-347 . -1193) T) ((-339 . -1193) T) ((-480 . -803) T) ((-480 . -899) T) ((-313 . -1088) T) ((-107 . -1193) T) ((-333 . -830) T) ((-212 . -899) T) ((-212 . -803) T) ((-697 . -1034) 135615) ((-353 . -544) T) ((-347 . -544) T) ((-339 . -544) T) ((-107 . -544) T) ((-640 . -700) 135585) ((-1143 . -1001) NIL) ((-313 . -23) T) ((-66 . -1189) T) ((-979 . -599) 135517) ((-676 . -226) 135499) ((-697 . -110) 135464) ((-627 . -34) T) ((-240 . -482) 135448) ((-1078 . -1074) 135432) ((-168 . -1076) T) ((-931 . -888) 135411) ((-474 . -888) 135390) ((-1263 . -1127) T) ((-1259 . -21) T) ((-1259 . -25) T) ((-1257 . -129) T) ((-1255 . -129) T) ((-1063 . -700) 135239) ((-1039 . -630) 135226) ((-931 . -630) 135151) ((-765 . -700) 134980) ((-528 . -599) 134962) ((-528 . -600) 134943) ((-763 . -700) 134792) ((-1248 . -101) T) ((-1053 . -101) T) ((-375 . -25) T) ((-375 . -21) T) ((-474 . -630) 134717) ((-454 . -700) 134688) ((-447 . -700) 134537) ((-966 . -101) T) ((-1231 . -599) 134503) ((-1220 . -1017) 134438) ((-1199 . -1189) 134417) ((-720 . -101) T) ((-1199 . -865) NIL) ((-1199 . -863) 134369) ((-1162 . -600) NIL) ((-1162 . -599) 134351) ((-523 . -25) T) ((-1118 . -1099) 134296) ((-1025 . -1182) 134225) ((-880 . -303) 134163) ((-337 . -1035) T) ((-138 . -101) T) ((-44 . -129) T) ((-283 . -1088) T) ((-663 . -92) T) ((-658 . -92) T) ((-646 . -599) 134145) ((-628 . -599) 134098) ((-471 . -92) T) ((-349 . -599) 134080) ((-346 . -599) 134062) ((-338 . -599) 134044) ((-258 . -600) 133792) ((-258 . -599) 133774) ((-242 . -599) 133756) ((-242 . -600) 133617) ((-136 . -92) T) ((-135 . -92) T) ((-131 . -92) T) ((-1199 . -1017) 133583) ((-1183 . -506) 133550) ((-1117 . -599) 133532) ((-802 . -837) T) ((-802 . -709) T) ((-588 . -282) 133509) ((-569 . -700) 133474) ((-472 . -600) NIL) ((-472 . -599) 133456) ((-510 . -700) 133401) ((-310 . -101) T) ((-307 . -101) T) ((-283 . -23) T) ((-149 . -129) T) ((-380 . -709) T) ((-851 . -1034) 133353) ((-889 . -599) 133335) ((-889 . -600) 133317) ((-851 . -110) 133255) ((-134 . -101) T) ((-113 . -101) T) ((-695 . -1211) 133239) ((-697 . -1028) T) ((-676 . -343) NIL) ((-511 . -599) 133171) ((-373 . -778) T) ((-218 . -1076) T) ((-373 . -775) T) ((-220 . -777) T) ((-220 . -774) T) ((-58 . -600) 133132) ((-58 . -599) 133044) ((-220 . -709) T) ((-508 . -600) 133005) ((-508 . -599) 132917) ((-489 . -599) 132849) ((-488 . -600) 132810) ((-488 . -599) 132722) ((-1056 . -357) 132673) ((-40 . -405) 132650) ((-76 . -1189) T) ((-850 . -888) NIL) ((-353 . -323) 132634) ((-353 . -357) T) ((-347 . -323) 132618) ((-347 . -357) T) ((-339 . -323) 132602) ((-339 . -357) T) ((-310 . -278) 132581) ((-107 . -357) T) ((-69 . -1189) T) ((-1199 . -332) 132533) ((-850 . -630) 132478) ((-1199 . -371) 132430) ((-943 . -129) 132285) ((-798 . -129) 132155) ((-937 . -633) 132139) ((-1063 . -169) 132050) ((-937 . -367) 132034) ((-1039 . -777) T) ((-1039 . -774) T) ((-765 . -169) 131925) ((-763 . -169) 131836) ((-799 . -47) 131798) ((-1039 . -709) T) ((-321 . -482) 131782) ((-931 . -709) T) ((-447 . -169) 131693) ((-240 . -280) 131670) ((-474 . -709) T) ((-1248 . -303) 131608) ((-1227 . -879) 131521) ((-1220 . -879) 131427) ((-1219 . -1034) 131262) ((-1199 . -879) 131095) ((-1198 . -1034) 130903) ((-1183 . -284) 130882) ((-1122 . -148) 130866) ((-1096 . -101) T) ((-1094 . -1076) T) ((-1056 . -23) T) ((-1051 . -101) T) ((-906 . -934) T) ((-720 . -303) 130804) ((-74 . -1189) T) ((-30 . -934) T) ((-166 . -888) 130757) ((-646 . -376) 130729) ((-111 . -824) T) ((-1 . -599) 130711) ((-1056 . -1088) T) ((-127 . -633) 130693) ((-50 . -604) 130677) ((-982 . -403) 130649) ((-582 . -879) 130562) ((-432 . -101) T) ((-138 . -303) NIL) ((-127 . -367) 130544) ((-851 . -1028) T) ((-816 . -830) 130523) ((-80 . -1189) T) ((-694 . -284) T) ((-40 . -1035) T) ((-569 . -169) T) ((-510 . -169) T) ((-503 . -599) 130505) ((-166 . -630) 130415) ((-499 . -599) 130397) ((-345 . -144) 130379) ((-345 . -142) T) ((-353 . -1088) T) ((-347 . -1088) T) ((-339 . -1088) T) ((-983 . -301) T) ((-893 . -301) T) ((-851 . -238) T) ((-107 . -1088) T) ((-851 . -228) 130358) ((-1219 . -110) 130179) ((-1198 . -110) 129968) ((-240 . -1223) 129952) ((-552 . -828) T) ((-353 . -23) T) ((-348 . -343) T) ((-310 . -303) 129939) ((-307 . -303) 129880) ((-347 . -23) T) ((-313 . -129) T) ((-339 . -23) T) ((-983 . -1001) T) ((-107 . -23) T) ((-240 . -590) 129857) ((-1221 . -38) 129749) ((-1208 . -888) 129728) ((-111 . -1076) T) ((-1014 . -101) T) ((-1208 . -630) 129653) ((-850 . -777) NIL) ((-835 . -630) 129627) ((-850 . -774) NIL) ((-799 . -865) NIL) ((-850 . -709) T) ((-1063 . -506) 129500) ((-765 . -506) 129447) ((-763 . -506) 129399) ((-559 . -630) 129386) ((-799 . -1017) 129214) ((-447 . -506) 129157) ((-382 . -383) T) ((-59 . -1189) T) ((-605 . -830) 129136) ((-492 . -643) T) ((-1122 . -955) 129105) ((-982 . -445) T) ((-681 . -828) T) ((-502 . -775) T) ((-467 . -1034) 128940) ((-337 . -1076) T) ((-307 . -1127) NIL) ((-283 . -129) T) ((-388 . -1076) T) ((-676 . -364) 128907) ((-849 . -1035) T) ((-218 . -604) 128884) ((-321 . -280) 128861) ((-467 . -110) 128682) ((-1219 . -1028) T) ((-1198 . -1028) T) ((-799 . -371) 128666) ((-166 . -709) T) ((-636 . -101) T) ((-1219 . -238) 128645) ((-1219 . -228) 128597) ((-1198 . -228) 128502) ((-1198 . -238) 128481) ((-982 . -396) NIL) ((-652 . -623) 128429) ((-310 . -38) 128339) ((-307 . -38) 128268) ((-68 . -599) 128250) ((-313 . -485) 128216) ((-1162 . -282) 128195) ((-1089 . -1088) 128105) ((-82 . -1189) T) ((-60 . -599) 128087) ((-472 . -282) 128066) ((-1250 . -1017) 128043) ((-1140 . -1076) T) ((-1089 . -23) 127913) ((-799 . -879) 127849) ((-1208 . -709) T) ((-1078 . -1189) T) ((-1063 . -284) 127780) ((-945 . -1076) T) ((-872 . -101) T) ((-765 . -284) 127691) ((-321 . -19) 127675) ((-58 . -282) 127652) ((-763 . -284) 127583) ((-835 . -709) T) ((-116 . -828) NIL) ((-508 . -282) 127560) ((-321 . -590) 127537) ((-488 . -282) 127514) ((-447 . -284) 127445) ((-1014 . -303) 127296) ((-559 . -709) T) ((-663 . -599) 127246) ((-658 . -599) 127212) ((-644 . -599) 127194) ((-471 . -599) 127160) ((-240 . -600) 127121) ((-240 . -599) 127033) ((-208 . -101) T) ((-136 . -599) 126999) ((-135 . -599) 126965) ((-131 . -599) 126931) ((-1123 . -34) T) ((-922 . -1189) T) ((-337 . -700) 126876) ((-652 . -25) T) ((-652 . -21) T) ((-467 . -1028) T) ((-619 . -411) 126841) ((-593 . -411) 126806) ((-1096 . -1127) T) ((-569 . -284) T) ((-510 . -284) T) ((-1220 . -301) 126785) ((-467 . -228) 126737) ((-467 . -238) 126716) ((-1199 . -301) 126695) ((-1199 . -1001) NIL) ((-1056 . -129) T) ((-851 . -778) 126674) ((-141 . -101) T) ((-40 . -1076) T) ((-851 . -775) 126653) ((-627 . -989) 126637) ((-568 . -1035) T) ((-552 . -1035) T) ((-487 . -1035) T) ((-401 . -445) T) ((-353 . -129) T) ((-310 . -394) 126621) ((-307 . -394) 126582) ((-347 . -129) T) ((-339 . -129) T) ((-1157 . -1076) T) ((-1096 . -38) 126569) ((-1070 . -599) 126536) ((-107 . -129) T) ((-933 . -1076) T) ((-900 . -1076) T) ((-754 . -1076) T) ((-654 . -1076) T) ((-498 . -1059) T) ((-683 . -144) T) ((-115 . -144) T) ((-1257 . -21) T) ((-1257 . -25) T) ((-1255 . -21) T) ((-1255 . -25) T) ((-646 . -1034) 126520) ((-523 . -830) T) ((-492 . -830) T) ((-349 . -1034) 126472) ((-346 . -1034) 126424) ((-338 . -1034) 126376) ((-245 . -1189) T) ((-244 . -1189) T) ((-258 . -1034) 126219) ((-242 . -1034) 126062) ((-646 . -110) 126041) ((-349 . -110) 125979) ((-346 . -110) 125917) ((-338 . -110) 125855) ((-258 . -110) 125684) ((-242 . -110) 125513) ((-800 . -1193) 125492) ((-607 . -405) 125476) ((-44 . -21) T) ((-44 . -25) T) ((-798 . -623) 125382) ((-800 . -544) 125361) ((-245 . -1017) 125188) ((-244 . -1017) 125015) ((-125 . -118) 124999) ((-889 . -1034) 124964) ((-681 . -1035) T) ((-695 . -101) T) ((-337 . -169) T) ((-149 . -21) T) ((-149 . -25) T) ((-87 . -599) 124946) ((-889 . -110) 124902) ((-40 . -700) 124847) ((-849 . -1076) T) ((-321 . -600) 124808) ((-321 . -599) 124720) ((-1198 . -775) 124673) ((-1198 . -778) 124626) ((-245 . -371) 124595) ((-244 . -371) 124564) ((-636 . -38) 124534) ((-594 . -34) T) ((-475 . -1088) 124444) ((-468 . -34) T) ((-1089 . -129) 124314) ((-943 . -25) 124125) ((-853 . -599) 124107) ((-943 . -21) 124062) ((-798 . -21) 123972) ((-798 . -25) 123823) ((-607 . -1035) T) ((-1154 . -544) 123802) ((-1148 . -47) 123779) ((-349 . -1028) T) ((-346 . -1028) T) ((-475 . -23) 123649) ((-338 . -1028) T) ((-242 . -1028) T) ((-258 . -1028) T) ((-1101 . -47) 123621) ((-116 . -1035) T) ((-1013 . -630) 123595) ((-937 . -34) T) ((-349 . -228) 123574) ((-349 . -238) T) ((-346 . -228) 123553) ((-346 . -238) T) ((-242 . -320) 123510) ((-338 . -228) 123489) ((-338 . -238) T) ((-258 . -320) 123461) ((-258 . -228) 123440) ((-1132 . -148) 123424) ((-245 . -879) 123356) ((-244 . -879) 123288) ((-1058 . -830) T) ((-1202 . -1189) T) ((-408 . -1088) T) ((-1032 . -23) T) ((-889 . -1028) T) ((-316 . -630) 123270) ((-1003 . -828) T) ((-1183 . -981) 123236) ((-1149 . -899) 123215) ((-1143 . -899) 123194) ((-1143 . -803) NIL) ((-889 . -238) T) ((-800 . -357) 123173) ((-379 . -23) T) ((-126 . -1076) 123151) ((-120 . -1076) 123129) ((-889 . -228) T) ((-127 . -34) T) ((-373 . -630) 123094) ((-849 . -700) 123081) ((-1025 . -148) 123046) ((-40 . -169) T) ((-676 . -405) 123028) ((-695 . -303) 123015) ((-817 . -630) 122975) ((-810 . -630) 122949) ((-313 . -25) T) ((-313 . -21) T) ((-640 . -280) 122928) ((-568 . -1076) T) ((-552 . -1076) T) ((-487 . -1076) T) ((-240 . -282) 122905) ((-307 . -226) 122866) ((-1148 . -865) NIL) ((-1101 . -865) 122725) ((-128 . -830) T) ((-1148 . -1017) 122605) ((-1101 . -1017) 122488) ((-180 . -599) 122470) ((-834 . -1017) 122366) ((-765 . -280) 122293) ((-800 . -1088) T) ((-1013 . -709) T) ((-588 . -633) 122277) ((-1025 . -955) 122206) ((-978 . -101) T) ((-800 . -23) T) ((-695 . -1127) 122184) ((-676 . -1035) T) ((-588 . -367) 122168) ((-345 . -445) T) ((-337 . -284) T) ((-1236 . -1076) T) ((-243 . -1076) T) ((-393 . -101) T) ((-283 . -21) T) ((-283 . -25) T) ((-355 . -709) T) ((-693 . -1076) T) ((-681 . -1076) T) ((-355 . -466) T) ((-1183 . -599) 122150) ((-1148 . -371) 122134) ((-1101 . -371) 122118) ((-1003 . -405) 122080) ((-138 . -224) 122062) ((-373 . -777) T) ((-373 . -774) T) ((-849 . -169) T) ((-373 . -709) T) ((-694 . -599) 122044) ((-695 . -38) 121873) ((-1235 . -1233) 121857) ((-345 . -396) T) ((-1235 . -1076) 121807) ((-568 . -700) 121794) ((-552 . -700) 121781) ((-487 . -700) 121746) ((-310 . -613) 121725) ((-817 . -709) T) ((-810 . -709) T) ((-627 . -1189) T) ((-1056 . -623) 121673) ((-1148 . -879) 121616) ((-1101 . -879) 121600) ((-644 . -1034) 121584) ((-107 . -623) 121566) ((-475 . -129) 121436) ((-1154 . -1088) T) ((-931 . -47) 121405) ((-607 . -1076) T) ((-644 . -110) 121384) ((-483 . -599) 121350) ((-321 . -282) 121327) ((-474 . -47) 121284) ((-1154 . -23) T) ((-116 . -1076) T) ((-102 . -101) 121262) ((-1247 . -1088) T) ((-1032 . -129) T) ((-1003 . -1035) T) ((-802 . -1017) 121246) ((-982 . -707) 121218) ((-1247 . -23) T) ((-681 . -700) 121183) ((-573 . -599) 121165) ((-380 . -1017) 121149) ((-348 . -1035) T) ((-379 . -129) T) ((-318 . -1017) 121133) ((-220 . -865) 121115) ((-983 . -899) T) ((-90 . -34) T) ((-983 . -803) T) ((-893 . -899) T) ((-480 . -1193) T) ((-1169 . -599) 121097) ((-1081 . -1076) T) ((-212 . -1193) T) ((-978 . -303) 121062) ((-220 . -1017) 121022) ((-40 . -284) T) ((-1056 . -21) T) ((-1056 . -25) T) ((-1096 . -811) T) ((-480 . -544) T) ((-353 . -25) T) ((-212 . -544) T) ((-353 . -21) T) ((-347 . -25) T) ((-347 . -21) T) ((-697 . -630) 120982) ((-339 . -25) T) ((-339 . -21) T) ((-107 . -25) T) ((-107 . -21) T) ((-48 . -1035) T) ((-568 . -169) T) ((-552 . -169) T) ((-487 . -169) T) ((-640 . -599) 120964) ((-720 . -719) 120948) ((-330 . -599) 120930) ((-67 . -377) T) ((-67 . -389) T) ((-1078 . -106) 120914) ((-1039 . -865) 120896) ((-931 . -865) 120821) ((-635 . -1088) T) ((-607 . -700) 120808) ((-474 . -865) NIL) ((-1122 . -101) T) ((-1039 . -1017) 120790) ((-96 . -599) 120772) ((-470 . -144) T) ((-931 . -1017) 120652) ((-116 . -700) 120597) ((-635 . -23) T) ((-474 . -1017) 120473) ((-1063 . -600) NIL) ((-1063 . -599) 120455) ((-765 . -600) NIL) ((-765 . -599) 120416) ((-763 . -600) 120050) ((-763 . -599) 119964) ((-1089 . -623) 119870) ((-454 . -599) 119852) ((-447 . -599) 119834) ((-447 . -600) 119695) ((-1014 . -224) 119641) ((-851 . -888) 119620) ((-125 . -34) T) ((-800 . -129) T) ((-631 . -599) 119602) ((-566 . -101) T) ((-349 . -1254) 119586) ((-346 . -1254) 119570) ((-338 . -1254) 119554) ((-126 . -506) 119487) ((-120 . -506) 119420) ((-503 . -775) T) ((-503 . -778) T) ((-502 . -777) T) ((-102 . -303) 119358) ((-217 . -101) 119336) ((-676 . -1076) T) ((-681 . -169) T) ((-851 . -630) 119288) ((-64 . -378) T) ((-269 . -599) 119270) ((-64 . -389) T) ((-931 . -371) 119254) ((-849 . -284) T) ((-50 . -599) 119236) ((-978 . -38) 119184) ((-569 . -599) 119166) ((-474 . -371) 119150) ((-569 . -600) 119132) ((-510 . -599) 119114) ((-889 . -1254) 119101) ((-850 . -1189) T) ((-683 . -445) T) ((-487 . -506) 119067) ((-480 . -357) T) ((-349 . -362) 119046) ((-346 . -362) 119025) ((-338 . -362) 119004) ((-212 . -357) T) ((-697 . -709) T) ((-115 . -445) T) ((-1258 . -1249) 118988) ((-850 . -863) 118965) ((-850 . -865) NIL) ((-943 . -830) 118864) ((-798 . -830) 118815) ((-636 . -638) 118799) ((-1175 . -34) T) ((-168 . -599) 118781) ((-1089 . -21) 118691) ((-1089 . -25) 118542) ((-850 . -1017) 118519) ((-931 . -879) 118500) ((-1208 . -47) 118477) ((-889 . -362) T) ((-58 . -633) 118461) ((-508 . -633) 118445) ((-474 . -879) 118422) ((-70 . -434) T) ((-70 . -389) T) ((-488 . -633) 118406) ((-58 . -367) 118390) ((-607 . -169) T) ((-508 . -367) 118374) ((-488 . -367) 118358) ((-810 . -691) 118342) ((-1148 . -301) 118321) ((-1154 . -129) T) ((-116 . -169) T) ((-1122 . -303) 118259) ((-166 . -1189) T) ((-619 . -727) 118243) ((-593 . -727) 118227) ((-1247 . -129) T) ((-1220 . -899) 118206) ((-1199 . -899) 118185) ((-1199 . -803) NIL) ((-676 . -700) 118135) ((-1198 . -888) 118088) ((-1003 . -1076) T) ((-850 . -371) 118065) ((-850 . -332) 118042) ((-884 . -1088) T) ((-166 . -863) 118026) ((-166 . -865) 117951) ((-480 . -1088) T) ((-348 . -1076) T) ((-212 . -1088) T) ((-75 . -434) T) ((-75 . -389) T) ((-166 . -1017) 117847) ((-313 . -830) T) ((-1235 . -506) 117780) ((-1219 . -630) 117677) ((-1198 . -630) 117547) ((-851 . -777) 117526) ((-851 . -774) 117505) ((-851 . -709) T) ((-480 . -23) T) ((-218 . -599) 117487) ((-171 . -445) T) ((-217 . -303) 117425) ((-85 . -434) T) ((-85 . -389) T) ((-212 . -23) T) ((-1259 . -1252) 117404) ((-568 . -284) T) ((-552 . -284) T) ((-659 . -1017) 117388) ((-487 . -284) T) ((-134 . -463) 117343) ((-48 . -1076) T) ((-695 . -226) 117327) ((-850 . -879) NIL) ((-1208 . -865) NIL) ((-868 . -101) T) ((-864 . -101) T) ((-382 . -1076) T) ((-166 . -371) 117311) ((-166 . -332) 117295) ((-1208 . -1017) 117175) ((-835 . -1017) 117071) ((-1118 . -101) T) ((-635 . -129) T) ((-116 . -506) 116979) ((-644 . -775) 116958) ((-644 . -778) 116937) ((-559 . -1017) 116919) ((-288 . -1242) 116889) ((-845 . -101) T) ((-942 . -544) 116868) ((-1183 . -1034) 116751) ((-475 . -623) 116657) ((-883 . -1076) T) ((-1003 . -700) 116594) ((-694 . -1034) 116559) ((-602 . -101) T) ((-588 . -34) T) ((-1123 . -1189) T) ((-1183 . -110) 116428) ((-467 . -630) 116325) ((-348 . -700) 116270) ((-166 . -879) 116229) ((-681 . -284) T) ((-676 . -169) T) ((-694 . -110) 116185) ((-1263 . -1035) T) ((-1208 . -371) 116169) ((-412 . -1193) 116147) ((-1094 . -599) 116129) ((-307 . -828) NIL) ((-412 . -544) T) ((-220 . -301) T) ((-1198 . -774) 116082) ((-1198 . -777) 116035) ((-1219 . -709) T) ((-1198 . -709) T) ((-48 . -700) 116000) ((-220 . -1001) T) ((-345 . -1242) 115977) ((-1221 . -405) 115943) ((-701 . -709) T) ((-1208 . -879) 115886) ((-111 . -599) 115868) ((-111 . -600) 115850) ((-701 . -466) T) ((-475 . -21) 115760) ((-126 . -482) 115744) ((-120 . -482) 115728) ((-475 . -25) 115579) ((-607 . -284) T) ((-573 . -1034) 115554) ((-431 . -1076) T) ((-1039 . -301) T) ((-116 . -284) T) ((-1080 . -101) T) ((-982 . -101) T) ((-573 . -110) 115522) ((-1118 . -303) 115460) ((-1183 . -1028) T) ((-1039 . -1001) T) ((-65 . -1189) T) ((-1032 . -25) T) ((-1032 . -21) T) ((-694 . -1028) T) ((-379 . -21) T) ((-379 . -25) T) ((-676 . -506) NIL) ((-1003 . -169) T) ((-694 . -238) T) ((-1039 . -537) T) ((-498 . -101) T) ((-494 . -101) T) ((-348 . -169) T) ((-337 . -599) 115442) ((-388 . -599) 115424) ((-467 . -709) T) ((-1096 . -828) T) ((-871 . -1017) 115392) ((-107 . -830) T) ((-640 . -1034) 115376) ((-480 . -129) T) ((-1221 . -1035) T) ((-212 . -129) T) ((-1132 . -101) 115354) ((-98 . -1076) T) ((-240 . -648) 115338) ((-240 . -633) 115322) ((-640 . -110) 115301) ((-310 . -405) 115285) ((-240 . -367) 115269) ((-1135 . -230) 115216) ((-978 . -226) 115200) ((-73 . -1189) T) ((-48 . -169) T) ((-683 . -381) T) ((-683 . -140) T) ((-1258 . -101) T) ((-1063 . -1034) 115043) ((-258 . -888) 115022) ((-242 . -888) 115001) ((-765 . -1034) 114824) ((-763 . -1034) 114667) ((-594 . -1189) T) ((-1140 . -599) 114649) ((-1063 . -110) 114478) ((-1025 . -101) T) ((-468 . -1189) T) ((-454 . -1034) 114449) ((-447 . -1034) 114292) ((-646 . -630) 114276) ((-850 . -301) T) ((-765 . -110) 114085) ((-763 . -110) 113914) ((-349 . -630) 113866) ((-346 . -630) 113818) ((-338 . -630) 113770) ((-258 . -630) 113695) ((-242 . -630) 113620) ((-1134 . -830) T) ((-1064 . -1017) 113604) ((-454 . -110) 113565) ((-447 . -110) 113394) ((-1052 . -1017) 113371) ((-979 . -34) T) ((-945 . -599) 113353) ((-937 . -1189) T) ((-125 . -989) 113337) ((-942 . -1088) T) ((-850 . -1001) NIL) ((-718 . -1088) T) ((-698 . -1088) T) ((-1235 . -482) 113321) ((-1118 . -38) 113281) ((-942 . -23) T) ((-823 . -101) T) ((-800 . -21) T) ((-800 . -25) T) ((-718 . -23) T) ((-698 . -23) T) ((-109 . -643) T) ((-889 . -630) 113246) ((-569 . -1034) 113211) ((-510 . -1034) 113156) ((-222 . -56) 113114) ((-446 . -23) T) ((-401 . -101) T) ((-257 . -101) T) ((-676 . -284) T) ((-845 . -38) 113084) ((-569 . -110) 113040) ((-510 . -110) 112969) ((-412 . -1088) T) ((-310 . -1035) 112859) ((-307 . -1035) T) ((-127 . -1189) T) ((-640 . -1028) T) ((-1263 . -1076) T) ((-166 . -301) 112790) ((-412 . -23) T) ((-40 . -599) 112772) ((-40 . -600) 112756) ((-107 . -971) 112738) ((-115 . -848) 112722) ((-48 . -506) 112688) ((-1175 . -989) 112672) ((-1157 . -599) 112654) ((-1162 . -34) T) ((-933 . -599) 112620) ((-900 . -599) 112602) ((-1089 . -830) 112553) ((-754 . -599) 112535) ((-654 . -599) 112517) ((-1132 . -303) 112455) ((-472 . -34) T) ((-1068 . -1189) T) ((-470 . -445) T) ((-1063 . -1028) T) ((-1117 . -34) T) ((-765 . -1028) T) ((-763 . -1028) T) ((-629 . -230) 112439) ((-616 . -230) 112385) ((-1208 . -301) 112364) ((-1063 . -320) 112325) ((-447 . -1028) T) ((-1154 . -21) T) ((-1063 . -228) 112304) ((-765 . -320) 112281) ((-765 . -228) T) ((-763 . -320) 112253) ((-714 . -1193) 112232) ((-321 . -633) 112216) ((-1154 . -25) T) ((-58 . -34) T) ((-511 . -34) T) ((-508 . -34) T) ((-447 . -320) 112195) ((-321 . -367) 112179) ((-489 . -34) T) ((-488 . -34) T) ((-982 . -1127) NIL) ((-714 . -544) 112110) ((-619 . -101) T) ((-593 . -101) T) ((-349 . -709) T) ((-346 . -709) T) ((-338 . -709) T) ((-258 . -709) T) ((-242 . -709) T) ((-1025 . -303) 112018) ((-880 . -1076) 111996) ((-50 . -1028) T) ((-1247 . -21) T) ((-1247 . -25) T) ((-1150 . -544) 111975) ((-1149 . -1193) 111954) ((-569 . -1028) T) ((-510 . -1028) T) ((-1143 . -1193) 111933) ((-355 . -1017) 111917) ((-316 . -1017) 111901) ((-1003 . -284) T) ((-373 . -865) 111883) ((-1149 . -544) 111834) ((-1143 . -544) 111785) ((-982 . -38) 111730) ((-782 . -1088) T) ((-889 . -709) T) ((-569 . -238) T) ((-569 . -228) T) ((-510 . -228) T) ((-510 . -238) T) ((-1102 . -544) 111709) ((-348 . -284) T) ((-629 . -677) 111693) ((-373 . -1017) 111653) ((-1096 . -1035) T) ((-102 . -124) 111637) ((-782 . -23) T) ((-1235 . -280) 111614) ((-401 . -303) 111579) ((-1257 . -1252) 111555) ((-1255 . -1252) 111534) ((-1221 . -1076) T) ((-849 . -599) 111516) ((-817 . -1017) 111485) ((-198 . -770) T) ((-197 . -770) T) ((-196 . -770) T) ((-195 . -770) T) ((-194 . -770) T) ((-193 . -770) T) ((-192 . -770) T) ((-191 . -770) T) ((-190 . -770) T) ((-189 . -770) T) ((-487 . -981) T) ((-268 . -819) T) ((-267 . -819) T) ((-266 . -819) T) ((-265 . -819) T) ((-48 . -284) T) ((-264 . -819) T) ((-263 . -819) T) ((-262 . -819) T) ((-188 . -770) T) ((-598 . -830) T) ((-636 . -405) 111469) ((-109 . -830) T) ((-635 . -21) T) ((-635 . -25) T) ((-1258 . -38) 111439) ((-116 . -280) 111390) ((-1235 . -19) 111374) ((-1235 . -590) 111351) ((-1248 . -1076) T) ((-1053 . -1076) T) ((-966 . -1076) T) ((-942 . -129) T) ((-720 . -1076) T) ((-718 . -129) T) ((-698 . -129) T) ((-503 . -776) T) ((-401 . -1127) 111329) ((-446 . -129) T) ((-503 . -777) T) ((-218 . -1028) T) ((-288 . -101) 111111) ((-138 . -1076) T) ((-681 . -981) T) ((-90 . -1189) T) ((-126 . -599) 111043) ((-120 . -599) 110975) ((-1263 . -169) T) ((-1149 . -357) 110954) ((-1143 . -357) 110933) ((-310 . -1076) T) ((-412 . -129) T) ((-307 . -1076) T) ((-401 . -38) 110885) ((-1109 . -101) T) ((-1221 . -700) 110777) ((-636 . -1035) T) ((-1111 . -1230) T) ((-313 . -142) 110756) ((-313 . -144) 110735) ((-134 . -1076) T) ((-113 . -1076) T) ((-838 . -101) T) ((-568 . -599) 110717) ((-552 . -600) 110616) ((-552 . -599) 110598) ((-487 . -599) 110580) ((-487 . -600) 110525) ((-478 . -23) T) ((-475 . -830) 110476) ((-480 . -623) 110458) ((-944 . -599) 110440) ((-212 . -623) 110422) ((-220 . -398) T) ((-644 . -630) 110406) ((-1148 . -899) 110385) ((-714 . -1088) T) ((-345 . -101) T) ((-1188 . -1059) T) ((-801 . -830) T) ((-714 . -23) T) ((-337 . -1034) 110330) ((-1134 . -1133) T) ((-1123 . -106) 110314) ((-1150 . -1088) T) ((-1149 . -1088) T) ((-507 . -1017) 110298) ((-1143 . -1088) T) ((-1102 . -1088) T) ((-337 . -110) 110227) ((-983 . -1193) T) ((-125 . -1189) T) ((-893 . -1193) T) ((-676 . -280) NIL) ((-1236 . -599) 110209) ((-1150 . -23) T) ((-1149 . -23) T) ((-1143 . -23) T) ((-983 . -544) T) ((-1118 . -226) 110193) ((-893 . -544) T) ((-1102 . -23) T) ((-243 . -599) 110175) ((-1051 . -1076) T) ((-782 . -129) T) ((-693 . -599) 110157) ((-310 . -700) 110067) ((-307 . -700) 109996) ((-681 . -599) 109978) ((-681 . -600) 109923) ((-401 . -394) 109907) ((-432 . -1076) T) ((-480 . -25) T) ((-480 . -21) T) ((-1096 . -1076) T) ((-212 . -25) T) ((-212 . -21) T) ((-695 . -405) 109891) ((-697 . -1017) 109860) ((-1235 . -599) 109772) ((-1235 . -600) 109733) ((-1221 . -169) T) ((-240 . -34) T) ((-905 . -953) T) ((-1175 . -1189) T) ((-644 . -774) 109712) ((-644 . -777) 109691) ((-392 . -389) T) ((-515 . -101) 109669) ((-1014 . -1076) T) ((-217 . -974) 109653) ((-496 . -101) T) ((-607 . -599) 109635) ((-45 . -830) NIL) ((-607 . -600) 109612) ((-1014 . -596) 109587) ((-880 . -506) 109520) ((-337 . -1028) T) ((-116 . -600) NIL) ((-116 . -599) 109502) ((-851 . -1189) T) ((-652 . -411) 109486) ((-652 . -1099) 109431) ((-492 . -148) 109413) ((-337 . -228) T) ((-337 . -238) T) ((-40 . -1034) 109358) ((-851 . -863) 109342) ((-851 . -865) 109267) ((-695 . -1035) T) ((-676 . -981) NIL) ((-3 . |UnionCategory|) T) ((-1219 . -47) 109237) ((-1198 . -47) 109214) ((-1117 . -989) 109185) ((-220 . -899) T) ((-40 . -110) 109114) ((-851 . -1017) 108978) ((-1096 . -700) 108965) ((-1081 . -599) 108947) ((-1056 . -144) 108926) ((-1056 . -142) 108877) ((-983 . -357) T) ((-313 . -1177) 108843) ((-373 . -301) T) ((-313 . -1174) 108809) ((-310 . -169) 108788) ((-307 . -169) T) ((-982 . -226) 108765) ((-893 . -357) T) ((-569 . -1254) 108752) ((-510 . -1254) 108729) ((-353 . -144) 108708) ((-353 . -142) 108659) ((-347 . -144) 108638) ((-347 . -142) 108589) ((-594 . -1165) 108565) ((-339 . -144) 108544) ((-339 . -142) 108495) ((-313 . -35) 108461) ((-468 . -1165) 108440) ((0 . |EnumerationCategory|) T) ((-313 . -94) 108406) ((-373 . -1001) T) ((-107 . -144) T) ((-107 . -142) NIL) ((-45 . -230) 108356) ((-636 . -1076) T) ((-594 . -106) 108303) ((-478 . -129) T) ((-468 . -106) 108253) ((-235 . -1088) 108163) ((-851 . -371) 108147) ((-851 . -332) 108131) ((-235 . -23) 108001) ((-1039 . -899) T) ((-1039 . -803) T) ((-569 . -362) T) ((-510 . -362) T) ((-345 . -1127) T) ((-321 . -34) T) ((-44 . -411) 107985) ((-852 . -1189) T) ((-384 . -727) 107969) ((-1248 . -506) 107902) ((-714 . -129) T) ((-1227 . -544) 107881) ((-1220 . -1193) 107860) ((-1220 . -544) 107811) ((-1199 . -1193) 107790) ((-305 . -1059) T) ((-1199 . -544) 107741) ((-720 . -506) 107674) ((-1198 . -1189) 107653) ((-1198 . -865) 107526) ((-872 . -1076) T) ((-141 . -824) T) ((-1198 . -863) 107496) ((-673 . -599) 107478) ((-1150 . -129) T) ((-515 . -303) 107416) ((-1149 . -129) T) ((-138 . -506) NIL) ((-1143 . -129) T) ((-1102 . -129) T) ((-1003 . -981) T) ((-983 . -23) T) ((-345 . -38) 107381) ((-983 . -1088) T) ((-893 . -1088) T) ((-81 . -599) 107363) ((-40 . -1028) T) ((-849 . -1034) 107350) ((-982 . -343) NIL) ((-851 . -879) 107309) ((-683 . -101) T) ((-950 . -23) T) ((-588 . -1189) T) ((-893 . -23) T) ((-849 . -110) 107294) ((-421 . -1088) T) ((-208 . -1076) T) ((-467 . -47) 107264) ((-132 . -101) T) ((-40 . -228) 107236) ((-40 . -238) T) ((-115 . -101) T) ((-583 . -544) 107215) ((-582 . -544) 107194) ((-676 . -599) 107176) ((-676 . -600) 107084) ((-310 . -506) 107050) ((-307 . -506) 106942) ((-1219 . -1017) 106926) ((-1198 . -1017) 106712) ((-978 . -405) 106696) ((-421 . -23) T) ((-1096 . -169) T) ((-1221 . -284) T) ((-636 . -700) 106666) ((-141 . -1076) T) ((-48 . -981) T) ((-401 . -226) 106650) ((-289 . -230) 106600) ((-850 . -899) T) ((-850 . -803) NIL) ((-844 . -830) T) ((-1198 . -332) 106570) ((-1198 . -371) 106540) ((-217 . -1097) 106524) ((-1235 . -282) 106501) ((-1183 . -630) 106426) ((-942 . -21) T) ((-942 . -25) T) ((-718 . -21) T) ((-718 . -25) T) ((-698 . -21) T) ((-698 . -25) T) ((-694 . -630) 106391) ((-446 . -21) T) ((-446 . -25) T) ((-333 . -101) T) ((-171 . -101) T) ((-978 . -1035) T) ((-849 . -1028) T) ((-757 . -101) T) ((-1220 . -357) 106370) ((-1219 . -879) 106276) ((-1199 . -357) 106255) ((-1198 . -879) 106106) ((-1003 . -599) 106088) ((-401 . -811) 106041) ((-1150 . -485) 106007) ((-166 . -899) 105938) ((-1149 . -485) 105904) ((-1143 . -485) 105870) ((-695 . -1076) T) ((-1102 . -485) 105836) ((-568 . -1034) 105823) ((-552 . -1034) 105810) ((-487 . -1034) 105775) ((-310 . -284) 105754) ((-307 . -284) T) ((-348 . -599) 105736) ((-412 . -25) T) ((-412 . -21) T) ((-98 . -280) 105715) ((-568 . -110) 105700) ((-552 . -110) 105685) ((-487 . -110) 105641) ((-1152 . -865) 105608) ((-880 . -482) 105592) ((-48 . -599) 105574) ((-48 . -600) 105519) ((-235 . -129) 105389) ((-1208 . -899) 105368) ((-799 . -1193) 105347) ((-1014 . -506) 105191) ((-382 . -599) 105173) ((-799 . -544) 105104) ((-573 . -630) 105079) ((-258 . -47) 105051) ((-242 . -47) 105008) ((-523 . -501) 104985) ((-979 . -1189) T) ((-681 . -1034) 104950) ((-1227 . -1088) T) ((-1220 . -1088) T) ((-1199 . -1088) T) ((-982 . -364) 104922) ((-111 . -362) T) ((-467 . -879) 104828) ((-1227 . -23) T) ((-1220 . -23) T) ((-883 . -599) 104810) ((-90 . -106) 104794) ((-1183 . -709) T) ((-884 . -830) 104745) ((-683 . -1127) T) ((-681 . -110) 104701) ((-1199 . -23) T) ((-583 . -1088) T) ((-582 . -1088) T) ((-695 . -700) 104530) ((-694 . -709) T) ((-1096 . -284) T) ((-983 . -129) T) ((-480 . -830) T) ((-950 . -129) T) ((-893 . -129) T) ((-782 . -25) T) ((-212 . -830) T) ((-782 . -21) T) ((-568 . -1028) T) ((-552 . -1028) T) ((-487 . -1028) T) ((-583 . -23) T) ((-337 . -1254) 104507) ((-313 . -445) 104486) ((-333 . -303) 104473) ((-582 . -23) T) ((-421 . -129) T) ((-640 . -630) 104447) ((-240 . -989) 104431) ((-851 . -301) T) ((-1259 . -1249) 104415) ((-754 . -775) T) ((-754 . -778) T) ((-683 . -38) 104402) ((-552 . -228) T) ((-487 . -238) T) ((-487 . -228) T) ((-1126 . -230) 104352) ((-1063 . -888) 104331) ((-115 . -38) 104318) ((-204 . -783) T) ((-203 . -783) T) ((-202 . -783) T) ((-201 . -783) T) ((-851 . -1001) 104296) ((-1248 . -482) 104280) ((-765 . -888) 104259) ((-763 . -888) 104238) ((-1162 . -1189) T) ((-447 . -888) 104217) ((-720 . -482) 104201) ((-1063 . -630) 104126) ((-765 . -630) 104051) ((-607 . -1034) 104038) ((-472 . -1189) T) ((-337 . -362) T) ((-138 . -482) 104020) ((-763 . -630) 103945) ((-1117 . -1189) T) ((-454 . -630) 103916) ((-258 . -865) 103775) ((-242 . -865) NIL) ((-116 . -1034) 103720) ((-447 . -630) 103645) ((-646 . -1017) 103622) ((-607 . -110) 103607) ((-349 . -1017) 103591) ((-346 . -1017) 103575) ((-338 . -1017) 103559) ((-258 . -1017) 103403) ((-242 . -1017) 103279) ((-116 . -110) 103208) ((-58 . -1189) T) ((-511 . -1189) T) ((-508 . -1189) T) ((-489 . -1189) T) ((-488 . -1189) T) ((-431 . -599) 103190) ((-428 . -599) 103172) ((-3 . -101) T) ((-1006 . -1182) 103141) ((-816 . -101) T) ((-671 . -56) 103099) ((-681 . -1028) T) ((-50 . -630) 103073) ((-283 . -445) T) ((-469 . -1182) 103042) ((0 . -101) T) ((-569 . -630) 103007) ((-510 . -630) 102952) ((-49 . -101) T) ((-889 . -1017) 102939) ((-681 . -238) T) ((-1056 . -403) 102918) ((-714 . -623) 102866) ((-978 . -1076) T) ((-695 . -169) 102757) ((-480 . -971) 102739) ((-258 . -371) 102723) ((-242 . -371) 102707) ((-393 . -1076) T) ((-333 . -38) 102691) ((-1005 . -101) 102669) ((-212 . -971) 102651) ((-171 . -38) 102583) ((-1219 . -301) 102562) ((-1198 . -301) 102541) ((-640 . -709) T) ((-98 . -599) 102523) ((-1143 . -623) 102475) ((-478 . -25) T) ((-478 . -21) T) ((-1198 . -1001) 102427) ((-607 . -1028) T) ((-373 . -398) T) ((-384 . -101) T) ((-258 . -879) 102373) ((-242 . -879) 102350) ((-116 . -1028) T) ((-799 . -1088) T) ((-1063 . -709) T) ((-607 . -228) 102329) ((-605 . -101) T) ((-765 . -709) T) ((-763 . -709) T) ((-407 . -1088) T) ((-116 . -238) T) ((-40 . -362) NIL) ((-116 . -228) NIL) ((-447 . -709) T) ((-799 . -23) T) ((-714 . -25) T) ((-714 . -21) T) ((-685 . -830) T) ((-1053 . -280) 102308) ((-77 . -390) T) ((-77 . -389) T) ((-525 . -750) 102290) ((-676 . -1034) 102240) ((-1227 . -129) T) ((-1220 . -129) T) ((-1199 . -129) T) ((-1118 . -405) 102224) ((-619 . -361) 102156) ((-593 . -361) 102088) ((-1132 . -1125) 102072) ((-102 . -1076) 102050) ((-1150 . -25) T) ((-1150 . -21) T) ((-1149 . -21) T) ((-978 . -700) 101998) ((-218 . -630) 101965) ((-676 . -110) 101899) ((-50 . -709) T) ((-1149 . -25) T) ((-345 . -343) T) ((-1143 . -21) T) ((-1056 . -445) 101850) ((-1143 . -25) T) ((-695 . -506) 101797) ((-569 . -709) T) ((-510 . -709) T) ((-1102 . -21) T) ((-1102 . -25) T) ((-583 . -129) T) ((-582 . -129) T) ((-353 . -445) T) ((-347 . -445) T) ((-339 . -445) T) ((-467 . -301) 101776) ((-307 . -280) 101711) ((-107 . -445) T) ((-78 . -434) T) ((-78 . -389) T) ((-470 . -101) T) ((-1263 . -599) 101693) ((-1263 . -600) 101675) ((-1056 . -396) 101654) ((-1014 . -482) 101585) ((-552 . -778) T) ((-552 . -775) T) ((-1040 . -230) 101531) ((-353 . -396) 101482) ((-347 . -396) 101433) ((-339 . -396) 101384) ((-1250 . -1088) T) ((-1250 . -23) T) ((-1237 . -101) T) ((-172 . -599) 101366) ((-1118 . -1035) T) ((-652 . -727) 101350) ((-1154 . -142) 101329) ((-1154 . -144) 101308) ((-1122 . -1076) T) ((-1122 . -1048) 101277) ((-68 . -1189) T) ((-1003 . -1034) 101214) ((-845 . -1035) T) ((-235 . -623) 101120) ((-676 . -1028) T) ((-348 . -1034) 101065) ((-60 . -1189) T) ((-1003 . -110) 100981) ((-880 . -599) 100913) ((-676 . -238) T) ((-676 . -228) NIL) ((-823 . -828) 100892) ((-681 . -778) T) ((-681 . -775) T) ((-982 . -405) 100869) ((-348 . -110) 100798) ((-373 . -899) T) ((-401 . -828) 100777) ((-695 . -284) 100688) ((-218 . -709) T) ((-1227 . -485) 100654) ((-1220 . -485) 100620) ((-1199 . -485) 100586) ((-566 . -1076) T) ((-310 . -981) 100565) ((-217 . -1076) 100543) ((-313 . -952) 100505) ((-104 . -101) T) ((-48 . -1034) 100470) ((-1259 . -101) T) ((-375 . -101) T) ((-48 . -110) 100426) ((-983 . -623) 100408) ((-1221 . -599) 100390) ((-523 . -101) T) ((-492 . -101) T) ((-1109 . -1110) 100374) ((-149 . -1242) 100358) ((-240 . -1189) T) ((-1188 . -101) T) ((-1148 . -1193) 100337) ((-1101 . -1193) 100316) ((-235 . -21) 100226) ((-235 . -25) 100077) ((-126 . -118) 100061) ((-120 . -118) 100045) ((-44 . -727) 100029) ((-1148 . -544) 99940) ((-1101 . -544) 99871) ((-1014 . -280) 99846) ((-1142 . -1059) T) ((-973 . -1059) T) ((-799 . -129) T) ((-116 . -778) NIL) ((-116 . -775) NIL) ((-349 . -301) T) ((-346 . -301) T) ((-338 . -301) T) ((-1070 . -1189) T) ((-245 . -1088) 99756) ((-244 . -1088) 99666) ((-1003 . -1028) T) ((-982 . -1035) T) ((-337 . -630) 99611) ((-605 . -38) 99595) ((-1248 . -599) 99557) ((-1248 . -600) 99518) ((-1053 . -599) 99500) ((-1003 . -238) T) ((-348 . -1028) T) ((-798 . -1242) 99470) ((-245 . -23) T) ((-244 . -23) T) ((-966 . -599) 99452) ((-720 . -600) 99413) ((-720 . -599) 99395) ((-782 . -830) 99374) ((-978 . -506) 99286) ((-348 . -228) T) ((-348 . -238) T) ((-1135 . -148) 99233) ((-983 . -25) T) ((-138 . -600) 99192) ((-138 . -599) 99174) ((-889 . -301) T) ((-983 . -21) T) ((-950 . -25) T) ((-893 . -21) T) ((-893 . -25) T) ((-421 . -21) T) ((-421 . -25) T) ((-823 . -405) 99158) ((-48 . -1028) T) ((-1257 . -1249) 99142) ((-1255 . -1249) 99126) ((-1014 . -590) 99101) ((-310 . -600) 98962) ((-310 . -599) 98944) ((-307 . -600) NIL) ((-307 . -599) 98926) ((-48 . -238) T) ((-48 . -228) T) ((-636 . -280) 98887) ((-538 . -230) 98837) ((-134 . -599) 98819) ((-113 . -599) 98801) ((-470 . -38) 98766) ((-1259 . -1256) 98745) ((-1250 . -129) T) ((-1258 . -1035) T) ((-1058 . -101) T) ((-87 . -1189) T) ((-492 . -303) NIL) ((-979 . -106) 98729) ((-868 . -1076) T) ((-864 . -1076) T) ((-1235 . -633) 98713) ((-1235 . -367) 98697) ((-321 . -1189) T) ((-580 . -830) T) ((-1118 . -1076) T) ((-1118 . -1031) 98637) ((-102 . -506) 98570) ((-906 . -599) 98552) ((-337 . -709) T) ((-30 . -599) 98534) ((-845 . -1076) T) ((-823 . -1035) 98513) ((-40 . -630) 98458) ((-220 . -1193) T) ((-401 . -1035) T) ((-1134 . -148) 98440) ((-978 . -284) 98391) ((-602 . -1076) T) ((-220 . -544) T) ((-313 . -1216) 98375) ((-313 . -1213) 98345) ((-1162 . -1165) 98324) ((-1051 . -599) 98306) ((-629 . -148) 98290) ((-616 . -148) 98236) ((-1162 . -106) 98186) ((-472 . -1165) 98165) ((-480 . -144) T) ((-480 . -142) NIL) ((-1096 . -600) 98080) ((-432 . -599) 98062) ((-212 . -144) T) ((-212 . -142) NIL) ((-1096 . -599) 98044) ((-128 . -101) T) ((-52 . -101) T) ((-1199 . -623) 97996) ((-472 . -106) 97946) ((-972 . -23) T) ((-1259 . -38) 97916) ((-1148 . -1088) T) ((-1101 . -1088) T) ((-1039 . -1193) T) ((-305 . -101) T) ((-834 . -1088) T) ((-931 . -1193) 97895) ((-474 . -1193) 97874) ((-714 . -830) 97853) ((-1039 . -544) T) ((-931 . -544) 97784) ((-1148 . -23) T) ((-1101 . -23) T) ((-834 . -23) T) ((-474 . -544) 97715) ((-1118 . -700) 97647) ((-1122 . -506) 97580) ((-1014 . -600) NIL) ((-1014 . -599) 97562) ((-95 . -1059) T) ((-845 . -700) 97532) ((-1183 . -47) 97501) ((-244 . -129) T) ((-245 . -129) T) ((-1080 . -1076) T) ((-982 . -1076) T) ((-61 . -599) 97483) ((-1143 . -830) NIL) ((-1003 . -775) T) ((-1003 . -778) T) ((-1263 . -1034) 97470) ((-1263 . -110) 97455) ((-849 . -630) 97442) ((-1227 . -25) T) ((-1227 . -21) T) ((-1220 . -21) T) ((-1220 . -25) T) ((-1199 . -21) T) ((-1199 . -25) T) ((-1006 . -148) 97426) ((-851 . -803) 97405) ((-851 . -899) T) ((-695 . -280) 97332) ((-583 . -21) T) ((-583 . -25) T) ((-582 . -21) T) ((-40 . -709) T) ((-217 . -506) 97265) ((-582 . -25) T) ((-469 . -148) 97249) ((-456 . -148) 97233) ((-900 . -777) T) ((-900 . -709) T) ((-754 . -776) T) ((-754 . -777) T) ((-498 . -1076) T) ((-494 . -1076) T) ((-754 . -709) T) ((-220 . -357) T) ((-1132 . -1076) 97211) ((-850 . -1193) T) ((-636 . -599) 97193) ((-850 . -544) T) ((-676 . -362) NIL) ((-353 . -1242) 97177) ((-652 . -101) T) ((-347 . -1242) 97161) ((-339 . -1242) 97145) ((-1258 . -1076) T) ((-512 . -830) 97124) ((-800 . -445) 97103) ((-1025 . -1076) T) ((-1025 . -1048) 97032) ((-1006 . -955) 97001) ((-802 . -1088) T) ((-982 . -700) 96946) ((-380 . -1088) T) ((-469 . -955) 96915) ((-456 . -955) 96884) ((-109 . -148) 96866) ((-72 . -599) 96848) ((-872 . -599) 96830) ((-1056 . -707) 96809) ((-1263 . -1028) T) ((-799 . -623) 96757) ((-288 . -1035) 96699) ((-166 . -1193) 96604) ((-220 . -1088) T) ((-318 . -23) T) ((-1143 . -971) 96556) ((-823 . -1076) T) ((-1221 . -1034) 96461) ((-1102 . -723) 96440) ((-1219 . -899) 96419) ((-1198 . -899) 96398) ((-849 . -709) T) ((-166 . -544) 96309) ((-568 . -630) 96296) ((-552 . -630) 96283) ((-401 . -1076) T) ((-257 . -1076) T) ((-208 . -599) 96265) ((-487 . -630) 96230) ((-220 . -23) T) ((-1198 . -803) 96183) ((-1257 . -101) T) ((-348 . -1254) 96160) ((-1255 . -101) T) ((-1221 . -110) 96052) ((-141 . -599) 96034) ((-972 . -129) T) ((-44 . -101) T) ((-235 . -830) 95985) ((-1208 . -1193) 95964) ((-102 . -482) 95948) ((-1258 . -700) 95918) ((-1063 . -47) 95879) ((-1039 . -1088) T) ((-931 . -1088) T) ((-126 . -34) T) ((-120 . -34) T) ((-765 . -47) 95856) ((-763 . -47) 95828) ((-1208 . -544) 95739) ((-348 . -362) T) ((-474 . -1088) T) ((-1148 . -129) T) ((-1101 . -129) T) ((-447 . -47) 95718) ((-850 . -357) T) ((-834 . -129) T) ((-149 . -101) T) ((-1039 . -23) T) ((-931 . -23) T) ((-559 . -544) T) ((-799 . -25) T) ((-799 . -21) T) ((-1118 . -506) 95651) ((-579 . -1059) T) ((-573 . -1017) 95635) ((-474 . -23) T) ((-345 . -1035) T) ((-1183 . -879) 95616) ((-652 . -303) 95554) ((-1089 . -1242) 95524) ((-681 . -630) 95489) ((-982 . -169) T) ((-942 . -142) 95468) ((-619 . -1076) T) ((-593 . -1076) T) ((-942 . -144) 95447) ((-983 . -830) T) ((-718 . -144) 95426) ((-718 . -142) 95405) ((-950 . -830) T) ((-467 . -899) 95384) ((-310 . -1034) 95294) ((-307 . -1034) 95223) ((-978 . -280) 95181) ((-401 . -700) 95133) ((-683 . -828) T) ((-1221 . -1028) T) ((-310 . -110) 95029) ((-307 . -110) 94942) ((-943 . -101) T) ((-798 . -101) 94732) ((-695 . -600) NIL) ((-695 . -599) 94714) ((-640 . -1017) 94610) ((-1221 . -320) 94554) ((-1014 . -282) 94529) ((-568 . -709) T) ((-552 . -777) T) ((-166 . -357) 94480) ((-552 . -774) T) ((-552 . -709) T) ((-487 . -709) T) ((-1122 . -482) 94464) ((-1063 . -865) NIL) ((-850 . -1088) T) ((-116 . -888) NIL) ((-1257 . -1256) 94440) ((-1255 . -1256) 94419) ((-765 . -865) NIL) ((-763 . -865) 94278) ((-1250 . -25) T) ((-1250 . -21) T) ((-1186 . -101) 94256) ((-1082 . -389) T) ((-607 . -630) 94243) ((-447 . -865) NIL) ((-657 . -101) 94221) ((-1063 . -1017) 94048) ((-850 . -23) T) ((-765 . -1017) 93907) ((-763 . -1017) 93764) ((-116 . -630) 93709) ((-447 . -1017) 93585) ((-631 . -1017) 93569) ((-611 . -101) T) ((-217 . -482) 93553) ((-1235 . -34) T) ((-619 . -700) 93537) ((-593 . -700) 93521) ((-652 . -38) 93481) ((-313 . -101) T) ((-84 . -599) 93463) ((-50 . -1017) 93447) ((-1096 . -1034) 93434) ((-1063 . -371) 93418) ((-765 . -371) 93402) ((-59 . -56) 93364) ((-681 . -777) T) ((-681 . -774) T) ((-569 . -1017) 93351) ((-510 . -1017) 93328) ((-681 . -709) T) ((-318 . -129) T) ((-310 . -1028) 93218) ((-307 . -1028) T) ((-166 . -1088) T) ((-763 . -371) 93202) ((-45 . -148) 93152) ((-983 . -971) 93134) ((-447 . -371) 93118) ((-401 . -169) T) ((-310 . -238) 93097) ((-307 . -238) T) ((-307 . -228) NIL) ((-288 . -1076) 92879) ((-220 . -129) T) ((-1096 . -110) 92864) ((-166 . -23) T) ((-782 . -144) 92843) ((-782 . -142) 92822) ((-245 . -623) 92728) ((-244 . -623) 92634) ((-313 . -278) 92600) ((-1132 . -506) 92533) ((-1109 . -1076) T) ((-220 . -1037) T) ((-798 . -303) 92471) ((-1063 . -879) 92406) ((-765 . -879) 92349) ((-763 . -879) 92333) ((-1257 . -38) 92303) ((-1255 . -38) 92273) ((-1208 . -1088) T) ((-835 . -1088) T) ((-447 . -879) 92250) ((-838 . -1076) T) ((-1208 . -23) T) ((-559 . -1088) T) ((-835 . -23) T) ((-607 . -709) T) ((-349 . -899) T) ((-346 . -899) T) ((-283 . -101) T) ((-338 . -899) T) ((-1039 . -129) T) ((-949 . -1059) T) ((-931 . -129) T) ((-116 . -777) NIL) ((-116 . -774) NIL) ((-116 . -709) T) ((-676 . -888) NIL) ((-1025 . -506) 92151) ((-474 . -129) T) ((-559 . -23) T) ((-657 . -303) 92089) ((-619 . -744) T) ((-593 . -744) T) ((-1199 . -830) NIL) ((-982 . -284) T) ((-245 . -21) T) ((-676 . -630) 92039) ((-345 . -1076) T) ((-245 . -25) T) ((-244 . -21) T) ((-244 . -25) T) ((-149 . -38) 92023) ((-2 . -101) T) ((-889 . -899) T) ((-475 . -1242) 91993) ((-218 . -1017) 91970) ((-1096 . -1028) T) ((-694 . -301) T) ((-288 . -700) 91912) ((-683 . -1035) T) ((-480 . -445) T) ((-401 . -506) 91824) ((-212 . -445) T) ((-1096 . -228) T) ((-289 . -148) 91774) ((-978 . -600) 91735) ((-978 . -599) 91717) ((-968 . -599) 91699) ((-115 . -1035) T) ((-636 . -1034) 91683) ((-220 . -485) T) ((-393 . -599) 91665) ((-393 . -600) 91642) ((-1032 . -1242) 91612) ((-636 . -110) 91591) ((-1118 . -482) 91575) ((-798 . -38) 91545) ((-62 . -434) T) ((-62 . -389) T) ((-1135 . -101) T) ((-850 . -129) T) ((-477 . -101) 91523) ((-1263 . -362) T) ((-1056 . -101) T) ((-1038 . -101) T) ((-345 . -700) 91468) ((-714 . -144) 91447) ((-714 . -142) 91426) ((-1003 . -630) 91363) ((-515 . -1076) 91341) ((-353 . -101) T) ((-347 . -101) T) ((-339 . -101) T) ((-107 . -101) T) ((-496 . -1076) T) ((-348 . -630) 91286) ((-1148 . -623) 91234) ((-1101 . -623) 91182) ((-379 . -501) 91161) ((-816 . -828) 91140) ((-373 . -1193) T) ((-676 . -709) T) ((-333 . -1035) T) ((-1199 . -971) 91092) ((-171 . -1035) T) ((-102 . -599) 91024) ((-1150 . -142) 91003) ((-1150 . -144) 90982) ((-373 . -544) T) ((-1149 . -144) 90961) ((-1149 . -142) 90940) ((-1143 . -142) 90847) ((-401 . -284) T) ((-1143 . -144) 90754) ((-1102 . -144) 90733) ((-1102 . -142) 90712) ((-313 . -38) 90553) ((-166 . -129) T) ((-307 . -778) NIL) ((-307 . -775) NIL) ((-636 . -1028) T) ((-48 . -630) 90518) ((-1142 . -101) T) ((-973 . -101) T) ((-972 . -21) T) ((-126 . -989) 90502) ((-120 . -989) 90486) ((-972 . -25) T) ((-880 . -118) 90470) ((-1134 . -101) T) ((-799 . -830) 90449) ((-1208 . -129) T) ((-1148 . -25) T) ((-1148 . -21) T) ((-835 . -129) T) ((-1101 . -25) T) ((-1101 . -21) T) ((-834 . -25) T) ((-834 . -21) T) ((-765 . -301) 90428) ((-629 . -101) 90406) ((-616 . -101) T) ((-1135 . -303) 90201) ((-559 . -129) T) ((-605 . -828) 90180) ((-1132 . -482) 90164) ((-1126 . -148) 90114) ((-1122 . -599) 90076) ((-1122 . -600) 90037) ((-1003 . -774) T) ((-1003 . -777) T) ((-1003 . -709) T) ((-477 . -303) 89975) ((-446 . -411) 89945) ((-345 . -169) T) ((-283 . -38) 89932) ((-268 . -101) T) ((-267 . -101) T) ((-266 . -101) T) ((-265 . -101) T) ((-264 . -101) T) ((-263 . -101) T) ((-262 . -101) T) ((-337 . -1017) 89909) ((-207 . -101) T) ((-206 . -101) T) ((-204 . -101) T) ((-203 . -101) T) ((-202 . -101) T) ((-201 . -101) T) ((-198 . -101) T) ((-197 . -101) T) ((-695 . -1034) 89732) ((-196 . -101) T) ((-195 . -101) T) ((-194 . -101) T) ((-193 . -101) T) ((-192 . -101) T) ((-191 . -101) T) ((-190 . -101) T) ((-189 . -101) T) ((-188 . -101) T) ((-348 . -709) T) ((-695 . -110) 89541) ((-652 . -226) 89525) ((-569 . -301) T) ((-510 . -301) T) ((-288 . -506) 89474) ((-107 . -303) NIL) ((-71 . -389) T) ((-1089 . -101) 89264) ((-816 . -405) 89248) ((-1096 . -778) T) ((-1096 . -775) T) ((-683 . -1076) T) ((-566 . -599) 89230) ((-373 . -357) T) ((-166 . -485) 89208) ((-217 . -599) 89140) ((-132 . -1076) T) ((-115 . -1076) T) ((-48 . -709) T) ((-1025 . -482) 89105) ((-498 . -92) T) ((-138 . -419) 89087) ((-138 . -362) T) ((-1006 . -101) T) ((-504 . -501) 89066) ((-469 . -101) T) ((-456 . -101) T) ((-1013 . -1088) T) ((-1157 . -1017) 89001) ((-1150 . -35) 88967) ((-1150 . -94) 88933) ((-1150 . -1177) 88899) ((-1150 . -1174) 88865) ((-1134 . -303) NIL) ((-88 . -390) T) ((-88 . -389) T) ((-1056 . -1127) 88844) ((-1149 . -1174) 88810) ((-1149 . -1177) 88776) ((-1013 . -23) T) ((-1149 . -94) 88742) ((-559 . -485) T) ((-1149 . -35) 88708) ((-1143 . -1174) 88674) ((-1143 . -1177) 88640) ((-1143 . -94) 88606) ((-355 . -1088) T) ((-353 . -1127) 88585) ((-347 . -1127) 88564) ((-339 . -1127) 88543) ((-1143 . -35) 88509) ((-1102 . -35) 88475) ((-1102 . -94) 88441) ((-107 . -1127) T) ((-1102 . -1177) 88407) ((-816 . -1035) 88386) ((-629 . -303) 88324) ((-616 . -303) 88175) ((-1102 . -1174) 88141) ((-695 . -1028) T) ((-1039 . -623) 88123) ((-1056 . -38) 87991) ((-931 . -623) 87939) ((-983 . -144) T) ((-983 . -142) NIL) ((-373 . -1088) T) ((-318 . -25) T) ((-316 . -23) T) ((-922 . -830) 87918) ((-695 . -320) 87895) ((-474 . -623) 87843) ((-40 . -1017) 87731) ((-683 . -700) 87718) ((-695 . -228) T) ((-333 . -1076) T) ((-171 . -1076) T) ((-325 . -830) T) ((-412 . -445) 87668) ((-373 . -23) T) ((-353 . -38) 87633) ((-347 . -38) 87598) ((-339 . -38) 87563) ((-79 . -434) T) ((-79 . -389) T) ((-220 . -25) T) ((-220 . -21) T) ((-817 . -1088) T) ((-107 . -38) 87513) ((-810 . -1088) T) ((-757 . -1076) T) ((-115 . -700) 87500) ((-654 . -1017) 87484) ((-598 . -101) T) ((-817 . -23) T) ((-810 . -23) T) ((-1132 . -280) 87461) ((-1089 . -303) 87399) ((-1078 . -230) 87383) ((-63 . -390) T) ((-63 . -389) T) ((-109 . -101) T) ((-40 . -371) 87360) ((-95 . -101) T) ((-635 . -832) 87344) ((-1111 . -1059) T) ((-1039 . -21) T) ((-1039 . -25) T) ((-798 . -226) 87313) ((-931 . -25) T) ((-931 . -21) T) ((-605 . -1035) T) ((-474 . -25) T) ((-474 . -21) T) ((-1006 . -303) 87251) ((-868 . -599) 87233) ((-864 . -599) 87215) ((-245 . -830) 87166) ((-244 . -830) 87117) ((-515 . -506) 87050) ((-850 . -623) 87027) ((-469 . -303) 86965) ((-456 . -303) 86903) ((-345 . -284) T) ((-1132 . -1223) 86887) ((-1118 . -599) 86849) ((-1118 . -600) 86810) ((-1116 . -101) T) ((-978 . -1034) 86706) ((-40 . -879) 86658) ((-1132 . -590) 86635) ((-1263 . -630) 86622) ((-1040 . -148) 86568) ((-851 . -1193) T) ((-978 . -110) 86450) ((-333 . -700) 86434) ((-845 . -599) 86416) ((-171 . -700) 86348) ((-401 . -280) 86306) ((-851 . -544) T) ((-107 . -394) 86288) ((-83 . -378) T) ((-83 . -389) T) ((-683 . -169) T) ((-602 . -599) 86270) ((-98 . -709) T) ((-475 . -101) 86060) ((-98 . -466) T) ((-115 . -169) T) ((-1089 . -38) 86030) ((-166 . -623) 85978) ((-1032 . -101) T) ((-850 . -25) T) ((-798 . -233) 85957) ((-850 . -21) T) ((-801 . -101) T) ((-408 . -101) T) ((-379 . -101) T) ((-109 . -303) NIL) ((-222 . -101) 85935) ((-126 . -1189) T) ((-120 . -1189) T) ((-1013 . -129) T) ((-652 . -361) 85919) ((-978 . -1028) T) ((-1208 . -623) 85867) ((-1080 . -599) 85849) ((-982 . -599) 85831) ((-507 . -23) T) ((-502 . -23) T) ((-337 . -301) T) ((-500 . -23) T) ((-316 . -129) T) ((-3 . -1076) T) ((-982 . -600) 85815) ((-978 . -238) 85794) ((-978 . -228) 85773) ((-1263 . -709) T) ((-1227 . -142) 85752) ((-816 . -1076) T) ((-1227 . -144) 85731) ((-1220 . -144) 85710) ((-1220 . -142) 85689) ((-1219 . -1193) 85668) ((-1199 . -142) 85575) ((-1199 . -144) 85482) ((-1198 . -1193) 85461) ((-373 . -129) T) ((-552 . -865) 85443) ((0 . -1076) T) ((-171 . -169) T) ((-166 . -21) T) ((-166 . -25) T) ((-49 . -1076) T) ((-1221 . -630) 85348) ((-1219 . -544) 85299) ((-697 . -1088) T) ((-1198 . -544) 85250) ((-552 . -1017) 85232) ((-582 . -144) 85211) ((-582 . -142) 85190) ((-487 . -1017) 85133) ((-1111 . -1113) T) ((-86 . -378) T) ((-86 . -389) T) ((-851 . -357) T) ((-817 . -129) T) ((-810 . -129) T) ((-697 . -23) T) ((-498 . -599) 85083) ((-494 . -599) 85065) ((-1259 . -1035) T) ((-373 . -1037) T) ((-1005 . -1076) 85043) ((-880 . -34) T) ((-475 . -303) 84981) ((-579 . -101) T) ((-1132 . -600) 84942) ((-1132 . -599) 84874) ((-1148 . -830) 84853) ((-45 . -101) T) ((-1101 . -830) 84832) ((-800 . -101) T) ((-1208 . -25) T) ((-1208 . -21) T) ((-835 . -25) T) ((-44 . -361) 84816) ((-835 . -21) T) ((-714 . -445) 84767) ((-1258 . -599) 84749) ((-1032 . -303) 84687) ((-653 . -1059) T) ((-592 . -1059) T) ((-384 . -1076) T) ((-559 . -25) T) ((-559 . -21) T) ((-177 . -1059) T) ((-158 . -1059) T) ((-153 . -1059) T) ((-151 . -1059) T) ((-605 . -1076) T) ((-681 . -865) 84669) ((-1235 . -1189) T) ((-222 . -303) 84607) ((-141 . -362) T) ((-1025 . -600) 84549) ((-1025 . -599) 84492) ((-307 . -888) NIL) ((-681 . -1017) 84437) ((-694 . -899) T) ((-467 . -1193) 84416) ((-1149 . -445) 84395) ((-1143 . -445) 84374) ((-324 . -101) T) ((-851 . -1088) T) ((-310 . -630) 84195) ((-307 . -630) 84124) ((-467 . -544) 84075) ((-333 . -506) 84041) ((-538 . -148) 83991) ((-40 . -301) T) ((-823 . -599) 83973) ((-683 . -284) T) ((-851 . -23) T) ((-373 . -485) T) ((-1056 . -226) 83943) ((-504 . -101) T) ((-401 . -600) 83750) ((-401 . -599) 83732) ((-257 . -599) 83714) ((-115 . -284) T) ((-1221 . -709) T) ((-1219 . -357) 83693) ((-1198 . -357) 83672) ((-1248 . -34) T) ((-116 . -1189) T) ((-107 . -226) 83654) ((-1154 . -101) T) ((-470 . -1076) T) ((-515 . -482) 83638) ((-720 . -34) T) ((-475 . -38) 83608) ((-138 . -34) T) ((-116 . -863) 83585) ((-116 . -865) NIL) ((-607 . -1017) 83468) ((-627 . -830) 83447) ((-1247 . -101) T) ((-289 . -101) T) ((-695 . -362) 83426) ((-116 . -1017) 83403) ((-384 . -700) 83387) ((-605 . -700) 83371) ((-45 . -303) 83175) ((-799 . -142) 83154) ((-799 . -144) 83133) ((-1258 . -376) 83112) ((-802 . -830) T) ((-1237 . -1076) T) ((-1135 . -224) 83059) ((-380 . -830) 83038) ((-1227 . -1177) 83004) ((-1227 . -1174) 82970) ((-1220 . -1174) 82936) ((-507 . -129) T) ((-1220 . -1177) 82902) ((-1199 . -1174) 82868) ((-1199 . -1177) 82834) ((-1227 . -35) 82800) ((-1227 . -94) 82766) ((-619 . -599) 82735) ((-593 . -599) 82704) ((-220 . -830) T) ((-1220 . -94) 82670) ((-1220 . -35) 82636) ((-1219 . -1088) T) ((-1096 . -630) 82623) ((-1199 . -94) 82589) ((-1198 . -1088) T) ((-580 . -148) 82571) ((-1056 . -343) 82550) ((-171 . -284) T) ((-116 . -371) 82527) ((-116 . -332) 82504) ((-1199 . -35) 82470) ((-849 . -301) T) ((-307 . -777) NIL) ((-307 . -774) NIL) ((-310 . -709) 82319) ((-307 . -709) T) ((-467 . -357) 82298) ((-353 . -343) 82277) ((-347 . -343) 82256) ((-339 . -343) 82235) ((-310 . -466) 82214) ((-1219 . -23) T) ((-1198 . -23) T) ((-701 . -1088) T) ((-697 . -129) T) ((-635 . -101) T) ((-470 . -700) 82179) ((-45 . -276) 82129) ((-104 . -1076) T) ((-67 . -599) 82111) ((-949 . -101) T) ((-844 . -101) T) ((-607 . -879) 82070) ((-1259 . -1076) T) ((-375 . -1076) T) ((-1188 . -1076) T) ((-1089 . -226) 82039) ((-81 . -1189) T) ((-1039 . -830) T) ((-931 . -830) 82018) ((-116 . -879) NIL) ((-765 . -899) 81997) ((-696 . -830) T) ((-523 . -1076) T) ((-492 . -1076) T) ((-349 . -1193) T) ((-346 . -1193) T) ((-338 . -1193) T) ((-258 . -1193) 81976) ((-242 . -1193) 81955) ((-525 . -840) T) ((-474 . -830) 81934) ((-1118 . -1034) 81918) ((-384 . -744) T) ((-1134 . -811) T) ((-676 . -1189) T) ((-349 . -544) T) ((-346 . -544) T) ((-338 . -544) T) ((-258 . -544) 81849) ((-242 . -544) 81780) ((-517 . -1059) T) ((-1118 . -110) 81759) ((-446 . -727) 81729) ((-845 . -1034) 81699) ((-800 . -38) 81641) ((-676 . -863) 81623) ((-676 . -865) 81605) ((-289 . -303) 81409) ((-889 . -1193) T) ((-652 . -405) 81393) ((-845 . -110) 81358) ((-676 . -1017) 81303) ((-983 . -445) T) ((-889 . -544) T) ((-525 . -599) 81285) ((-569 . -899) T) ((-467 . -1088) T) ((-510 . -899) T) ((-1132 . -282) 81262) ((-893 . -445) T) ((-64 . -599) 81244) ((-616 . -224) 81190) ((-467 . -23) T) ((-1096 . -777) T) ((-851 . -129) T) ((-1096 . -774) T) ((-1250 . -1252) 81169) ((-1096 . -709) T) ((-636 . -630) 81143) ((-288 . -599) 80884) ((-1014 . -34) T) ((-798 . -828) 80863) ((-568 . -301) T) ((-552 . -301) T) ((-487 . -301) T) ((-1259 . -700) 80833) ((-676 . -371) 80815) ((-676 . -332) 80797) ((-470 . -169) T) ((-375 . -700) 80767) ((-850 . -830) NIL) ((-552 . -1001) T) ((-487 . -1001) T) ((-1109 . -599) 80749) ((-1089 . -233) 80728) ((-209 . -101) T) ((-1126 . -101) T) ((-70 . -599) 80710) ((-1118 . -1028) T) ((-1154 . -38) 80607) ((-838 . -599) 80589) ((-552 . -537) T) ((-652 . -1035) T) ((-714 . -928) 80542) ((-1118 . -228) 80521) ((-1058 . -1076) T) ((-1013 . -25) T) ((-1013 . -21) T) ((-982 . -1034) 80466) ((-884 . -101) T) ((-845 . -1028) T) ((-676 . -879) NIL) ((-349 . -323) 80450) ((-349 . -357) T) ((-346 . -323) 80434) ((-346 . -357) T) ((-338 . -323) 80418) ((-338 . -357) T) ((-480 . -101) T) ((-1247 . -38) 80388) ((-515 . -669) 80338) ((-212 . -101) T) ((-1003 . -1017) 80218) ((-982 . -110) 80147) ((-1150 . -952) 80116) ((-1149 . -952) 80078) ((-512 . -148) 80062) ((-1056 . -364) 80041) ((-345 . -599) 80023) ((-316 . -21) T) ((-348 . -1017) 80000) ((-316 . -25) T) ((-1143 . -952) 79969) ((-1102 . -952) 79936) ((-75 . -599) 79918) ((-681 . -301) T) ((-166 . -830) 79897) ((-889 . -357) T) ((-373 . -25) T) ((-373 . -21) T) ((-889 . -323) 79884) ((-85 . -599) 79866) ((-681 . -1001) T) ((-659 . -830) T) ((-1219 . -129) T) ((-1198 . -129) T) ((-880 . -989) 79850) ((-817 . -21) T) ((-48 . -1017) 79793) ((-817 . -25) T) ((-810 . -25) T) ((-810 . -21) T) ((-1257 . -1035) T) ((-1255 . -1035) T) ((-636 . -709) T) ((-1258 . -1034) 79777) ((-1208 . -830) 79756) ((-798 . -405) 79725) ((-102 . -118) 79709) ((-128 . -1076) T) ((-52 . -1076) T) ((-905 . -599) 79691) ((-850 . -971) 79668) ((-806 . -101) T) ((-1258 . -110) 79647) ((-635 . -38) 79617) ((-559 . -830) T) ((-349 . -1088) T) ((-346 . -1088) T) ((-338 . -1088) T) ((-258 . -1088) T) ((-242 . -1088) T) ((-607 . -301) 79596) ((-1126 . -303) 79400) ((-516 . -1059) T) ((-305 . -1076) T) ((-646 . -23) T) ((-475 . -226) 79369) ((-149 . -1035) T) ((-349 . -23) T) ((-346 . -23) T) ((-338 . -23) T) ((-116 . -301) T) ((-258 . -23) T) ((-242 . -23) T) ((-982 . -1028) T) ((-695 . -888) 79348) ((-982 . -228) 79320) ((-982 . -238) T) ((-116 . -1001) NIL) ((-889 . -1088) T) ((-1220 . -445) 79299) ((-1199 . -445) 79278) ((-515 . -599) 79210) ((-695 . -630) 79135) ((-401 . -1034) 79087) ((-496 . -599) 79069) ((-889 . -23) T) ((-480 . -303) NIL) ((-467 . -129) T) ((-212 . -303) NIL) ((-401 . -110) 79007) ((-798 . -1035) 78937) ((-720 . -1074) 78921) ((-1219 . -485) 78887) ((-1198 . -485) 78853) ((-138 . -1074) 78835) ((-470 . -284) T) ((-1258 . -1028) T) ((-1040 . -101) T) ((-492 . -506) NIL) ((-685 . -101) T) ((-475 . -233) 78814) ((-1148 . -142) 78793) ((-1148 . -144) 78772) ((-1101 . -144) 78751) ((-1101 . -142) 78730) ((-619 . -1034) 78714) ((-593 . -1034) 78698) ((-652 . -1076) T) ((-652 . -1031) 78638) ((-1150 . -1226) 78622) ((-1150 . -1213) 78599) ((-480 . -1127) T) ((-1149 . -1218) 78560) ((-1149 . -1213) 78530) ((-1149 . -1216) 78514) ((-212 . -1127) T) ((-337 . -899) T) ((-801 . -260) 78498) ((-619 . -110) 78477) ((-593 . -110) 78456) ((-1143 . -1197) 78417) ((-823 . -1028) 78396) ((-1143 . -1213) 78373) ((-507 . -25) T) ((-487 . -296) T) ((-503 . -23) T) ((-502 . -25) T) ((-500 . -25) T) ((-499 . -23) T) ((-1143 . -1195) 78357) ((-401 . -1028) T) ((-313 . -1035) T) ((-676 . -301) T) ((-107 . -828) T) ((-401 . -238) T) ((-401 . -228) 78336) ((-695 . -709) T) ((-480 . -38) 78286) ((-212 . -38) 78236) ((-467 . -485) 78202) ((-1134 . -1120) T) ((-1077 . -101) T) ((-683 . -599) 78184) ((-683 . -600) 78099) ((-697 . -21) T) ((-697 . -25) T) ((-1111 . -101) T) ((-132 . -599) 78081) ((-115 . -599) 78063) ((-154 . -25) T) ((-1257 . -1076) T) ((-851 . -623) 78011) ((-1255 . -1076) T) ((-942 . -101) T) ((-718 . -101) T) ((-698 . -101) T) ((-446 . -101) T) ((-799 . -445) 77962) ((-44 . -1076) T) ((-1064 . -830) T) ((-646 . -129) T) ((-1040 . -303) 77813) ((-652 . -700) 77797) ((-283 . -1035) T) ((-349 . -129) T) ((-346 . -129) T) ((-338 . -129) T) ((-258 . -129) T) ((-242 . -129) T) ((-412 . -101) T) ((-149 . -1076) T) ((-45 . -224) 77747) ((-937 . -830) 77726) ((-978 . -630) 77664) ((-235 . -1242) 77634) ((-1003 . -301) T) ((-288 . -1034) 77555) ((-889 . -129) T) ((-40 . -899) T) ((-480 . -394) 77537) ((-348 . -301) T) ((-212 . -394) 77519) ((-1056 . -405) 77503) ((-288 . -110) 77419) ((-851 . -25) T) ((-851 . -21) T) ((-333 . -599) 77401) ((-1221 . -47) 77345) ((-220 . -144) T) ((-171 . -599) 77327) ((-1089 . -828) 77306) ((-757 . -599) 77288) ((-127 . -830) T) ((-594 . -230) 77235) ((-468 . -230) 77185) ((-1257 . -700) 77155) ((-48 . -301) T) ((-1255 . -700) 77125) ((-943 . -1076) T) ((-798 . -1076) 76915) ((-306 . -101) T) ((-880 . -1189) T) ((-48 . -1001) T) ((-1198 . -623) 76823) ((-671 . -101) 76801) ((-44 . -700) 76785) ((-538 . -101) T) ((-66 . -377) T) ((-66 . -389) T) ((-644 . -23) T) ((-652 . -744) T) ((-1186 . -1076) 76763) ((-345 . -1034) 76708) ((-657 . -1076) 76686) ((-1039 . -144) T) ((-931 . -144) 76665) ((-931 . -142) 76644) ((-782 . -101) T) ((-149 . -700) 76628) ((-474 . -144) 76607) ((-474 . -142) 76586) ((-345 . -110) 76515) ((-1056 . -1035) T) ((-316 . -830) 76494) ((-1227 . -952) 76463) ((-611 . -1076) T) ((-1220 . -952) 76425) ((-503 . -129) T) ((-499 . -129) T) ((-289 . -224) 76375) ((-353 . -1035) T) ((-347 . -1035) T) ((-339 . -1035) T) ((-288 . -1028) 76317) ((-1199 . -952) 76286) ((-373 . -830) T) ((-107 . -1035) T) ((-978 . -709) T) ((-849 . -899) T) ((-823 . -778) 76265) ((-823 . -775) 76244) ((-412 . -303) 76183) ((-461 . -101) T) ((-582 . -952) 76152) ((-313 . -1076) T) ((-401 . -778) 76131) ((-401 . -775) 76110) ((-492 . -482) 76092) ((-1221 . -1017) 76058) ((-1219 . -21) T) ((-1219 . -25) T) ((-1198 . -21) T) ((-1198 . -25) T) ((-798 . -700) 76000) ((-681 . -398) T) ((-1248 . -1189) T) ((-592 . -101) T) ((-1089 . -405) 75969) ((-982 . -362) NIL) ((-653 . -101) T) ((-177 . -101) T) ((-158 . -101) T) ((-153 . -101) T) ((-151 . -101) T) ((-102 . -34) T) ((-720 . -1189) T) ((-44 . -744) T) ((-580 . -101) T) ((-76 . -390) T) ((-76 . -389) T) ((-635 . -638) 75953) ((-138 . -1189) T) ((-850 . -144) T) ((-850 . -142) NIL) ((-1188 . -92) T) ((-345 . -1028) T) ((-69 . -377) T) ((-69 . -389) T) ((-1141 . -101) T) ((-652 . -506) 75886) ((-671 . -303) 75824) ((-942 . -38) 75721) ((-718 . -38) 75691) ((-538 . -303) 75495) ((-310 . -1189) T) ((-345 . -228) T) ((-345 . -238) T) ((-307 . -1189) T) ((-283 . -1076) T) ((-1156 . -599) 75477) ((-694 . -1193) T) ((-1132 . -633) 75461) ((-1183 . -544) 75440) ((-694 . -544) T) ((-310 . -863) 75424) ((-310 . -865) 75349) ((-307 . -863) 75310) ((-307 . -865) NIL) ((-782 . -303) 75275) ((-313 . -700) 75116) ((-318 . -317) 75093) ((-478 . -101) T) ((-467 . -25) T) ((-467 . -21) T) ((-412 . -38) 75067) ((-310 . -1017) 74730) ((-220 . -1174) T) ((-220 . -1177) T) ((-3 . -599) 74712) ((-307 . -1017) 74642) ((-2 . -1076) T) ((-2 . |RecordCategory|) T) ((-816 . -599) 74624) ((-1089 . -1035) 74554) ((-568 . -899) T) ((-552 . -803) T) ((-552 . -899) T) ((-487 . -899) T) ((-134 . -1017) 74538) ((-220 . -94) T) ((-74 . -434) T) ((-74 . -389) T) ((0 . -599) 74520) ((-166 . -144) 74499) ((-166 . -142) 74450) ((-220 . -35) T) ((-49 . -599) 74432) ((-470 . -1035) T) ((-480 . -226) 74414) ((-477 . -947) 74398) ((-475 . -828) 74377) ((-212 . -226) 74359) ((-80 . -434) T) ((-80 . -389) T) ((-1122 . -34) T) ((-798 . -169) 74338) ((-714 . -101) T) ((-1005 . -599) 74305) ((-492 . -280) 74280) ((-310 . -371) 74249) ((-307 . -371) 74210) ((-307 . -332) 74171) ((-1061 . -599) 74153) ((-799 . -928) 74100) ((-644 . -129) T) ((-1208 . -142) 74079) ((-1208 . -144) 74058) ((-1150 . -101) T) ((-1149 . -101) T) ((-1143 . -101) T) ((-1135 . -1076) T) ((-1102 . -101) T) ((-217 . -34) T) ((-283 . -700) 74045) ((-1135 . -596) 74021) ((-580 . -303) NIL) ((-477 . -1076) 73999) ((-384 . -599) 73981) ((-502 . -830) T) ((-1126 . -224) 73931) ((-1227 . -1226) 73915) ((-1227 . -1213) 73892) ((-1220 . -1218) 73853) ((-1220 . -1213) 73823) ((-1220 . -1216) 73807) ((-1199 . -1197) 73768) ((-1199 . -1213) 73745) ((-605 . -599) 73727) ((-1199 . -1195) 73711) ((-681 . -899) T) ((-1150 . -278) 73677) ((-1149 . -278) 73643) ((-1143 . -278) 73609) ((-1056 . -1076) T) ((-1038 . -1076) T) ((-48 . -296) T) ((-310 . -879) 73575) ((-307 . -879) NIL) ((-1038 . -1045) 73554) ((-1096 . -865) 73536) ((-782 . -38) 73520) ((-258 . -623) 73468) ((-242 . -623) 73416) ((-683 . -1034) 73403) ((-582 . -1213) 73380) ((-1102 . -278) 73346) ((-313 . -169) 73277) ((-353 . -1076) T) ((-347 . -1076) T) ((-339 . -1076) T) ((-492 . -19) 73259) ((-1096 . -1017) 73241) ((-1078 . -148) 73225) ((-107 . -1076) T) ((-115 . -1034) 73212) ((-694 . -357) T) ((-492 . -590) 73187) ((-683 . -110) 73172) ((-430 . -101) T) ((-45 . -1125) 73122) ((-115 . -110) 73107) ((-619 . -703) T) ((-593 . -703) T) ((-798 . -506) 73040) ((-1014 . -1189) T) ((-922 . -148) 73024) ((-517 . -101) T) ((-512 . -101) 72974) ((-1148 . -445) 72905) ((-1142 . -1076) T) ((-1063 . -1193) 72884) ((-765 . -1193) 72863) ((-763 . -1193) 72842) ((-61 . -1189) T) ((-470 . -599) 72794) ((-470 . -600) 72716) ((-1134 . -1076) T) ((-1118 . -630) 72690) ((-1101 . -445) 72641) ((-1063 . -544) 72572) ((-475 . -405) 72541) ((-607 . -899) 72520) ((-447 . -1193) 72499) ((-973 . -1076) T) ((-765 . -544) 72410) ((-392 . -599) 72392) ((-763 . -544) 72323) ((-714 . -303) 72310) ((-657 . -506) 72243) ((-646 . -25) T) ((-646 . -21) T) ((-447 . -544) 72174) ((-116 . -899) T) ((-116 . -803) NIL) ((-349 . -25) T) ((-349 . -21) T) ((-346 . -25) T) ((-346 . -21) T) ((-338 . -25) T) ((-338 . -21) T) ((-258 . -25) T) ((-258 . -21) T) ((-82 . -378) T) ((-82 . -389) T) ((-242 . -25) T) ((-242 . -21) T) ((-1237 . -599) 72156) ((-1183 . -1088) T) ((-1183 . -23) T) ((-1143 . -303) 72041) ((-1102 . -303) 72028) ((-1056 . -700) 71896) ((-845 . -630) 71856) ((-922 . -959) 71840) ((-889 . -21) T) ((-283 . -169) T) ((-889 . -25) T) ((-305 . -92) T) ((-851 . -830) 71791) ((-694 . -1088) T) ((-694 . -23) T) ((-629 . -1076) 71769) ((-616 . -596) 71744) ((-616 . -1076) T) ((-569 . -1193) T) ((-510 . -1193) T) ((-569 . -544) T) ((-510 . -544) T) ((-353 . -700) 71696) ((-347 . -700) 71648) ((-339 . -700) 71600) ((-333 . -1034) 71584) ((-171 . -110) 71495) ((-171 . -1034) 71427) ((-107 . -700) 71377) ((-333 . -110) 71356) ((-268 . -1076) T) ((-267 . -1076) T) ((-266 . -1076) T) ((-265 . -1076) T) ((-683 . -1028) T) ((-264 . -1076) T) ((-263 . -1076) T) ((-262 . -1076) T) ((-207 . -1076) T) ((-206 . -1076) T) ((-204 . -1076) T) ((-166 . -1177) 71334) ((-166 . -1174) 71312) ((-203 . -1076) T) ((-202 . -1076) T) ((-115 . -1028) T) ((-201 . -1076) T) ((-198 . -1076) T) ((-683 . -228) T) ((-197 . -1076) T) ((-196 . -1076) T) ((-195 . -1076) T) ((-194 . -1076) T) ((-193 . -1076) T) ((-192 . -1076) T) ((-191 . -1076) T) ((-190 . -1076) T) ((-189 . -1076) T) ((-188 . -1076) T) ((-235 . -101) 71102) ((-166 . -35) 71080) ((-166 . -94) 71058) ((-636 . -1017) 70954) ((-475 . -1035) 70884) ((-1089 . -1076) 70674) ((-1118 . -34) T) ((-652 . -482) 70658) ((-72 . -1189) T) ((-104 . -599) 70640) ((-1259 . -599) 70622) ((-375 . -599) 70604) ((-714 . -38) 70453) ((-559 . -1177) T) ((-559 . -1174) T) ((-523 . -599) 70435) ((-512 . -303) 70373) ((-492 . -599) 70355) ((-492 . -600) 70337) ((-1188 . -599) 70303) ((-1143 . -1127) NIL) ((-1006 . -1048) 70272) ((-1006 . -1076) T) ((-983 . -101) T) ((-950 . -101) T) ((-893 . -101) T) ((-872 . -1017) 70249) ((-1118 . -709) T) ((-982 . -630) 70194) ((-469 . -1076) T) ((-456 . -1076) T) ((-573 . -23) T) ((-559 . -35) T) ((-559 . -94) T) ((-421 . -101) T) ((-1040 . -224) 70140) ((-1150 . -38) 70037) ((-845 . -709) T) ((-676 . -899) T) ((-503 . -25) T) ((-499 . -21) T) ((-499 . -25) T) ((-1149 . -38) 69878) ((-333 . -1028) T) ((-1143 . -38) 69674) ((-1056 . -169) T) ((-171 . -1028) T) ((-1102 . -38) 69571) ((-695 . -47) 69548) ((-353 . -169) T) ((-347 . -169) T) ((-511 . -56) 69522) ((-489 . -56) 69472) ((-345 . -1254) 69449) ((-220 . -445) T) ((-313 . -284) 69400) ((-339 . -169) T) ((-171 . -238) T) ((-1198 . -830) 69299) ((-107 . -169) T) ((-851 . -971) 69283) ((-640 . -1088) T) ((-569 . -357) T) ((-569 . -323) 69270) ((-510 . -323) 69247) ((-510 . -357) T) ((-310 . -301) 69226) ((-307 . -301) T) ((-588 . -830) 69205) ((-1089 . -700) 69147) ((-512 . -276) 69131) ((-640 . -23) T) ((-412 . -226) 69115) ((-307 . -1001) NIL) ((-330 . -23) T) ((-102 . -989) 69099) ((-45 . -36) 69078) ((-598 . -1076) T) ((-345 . -362) T) ((-516 . -101) T) ((-487 . -27) T) ((-235 . -303) 69016) ((-1063 . -1088) T) ((-1258 . -630) 68990) ((-765 . -1088) T) ((-763 . -1088) T) ((-447 . -1088) T) ((-1039 . -445) T) ((-931 . -445) 68941) ((-1091 . -1059) T) ((-109 . -1076) T) ((-1063 . -23) T) ((-800 . -1035) T) ((-765 . -23) T) ((-763 . -23) T) ((-474 . -445) 68892) ((-1135 . -506) 68675) ((-375 . -376) 68654) ((-1154 . -405) 68638) ((-454 . -23) T) ((-447 . -23) T) ((-95 . -1076) T) ((-477 . -506) 68571) ((-283 . -284) T) ((-1058 . -599) 68553) ((-401 . -888) 68532) ((-50 . -1088) T) ((-1003 . -899) T) ((-982 . -709) T) ((-695 . -865) NIL) ((-569 . -1088) T) ((-510 . -1088) T) ((-823 . -630) 68505) ((-1183 . -129) T) ((-1143 . -394) 68457) ((-983 . -303) NIL) ((-798 . -482) 68441) ((-348 . -899) T) ((-1132 . -34) T) ((-401 . -630) 68393) ((-50 . -23) T) ((-694 . -129) T) ((-695 . -1017) 68273) ((-569 . -23) T) ((-107 . -506) NIL) ((-510 . -23) T) ((-166 . -403) 68244) ((-1116 . -1076) T) ((-1250 . -1249) 68228) ((-683 . -778) T) ((-683 . -775) T) ((-1096 . -301) T) ((-373 . -144) T) ((-274 . -599) 68210) ((-1198 . -971) 68180) ((-48 . -899) T) ((-657 . -482) 68164) ((-245 . -1242) 68134) ((-244 . -1242) 68104) ((-1152 . -830) T) ((-1089 . -169) 68083) ((-1096 . -1001) T) ((-1025 . -34) T) ((-817 . -144) 68062) ((-817 . -142) 68041) ((-720 . -106) 68025) ((-598 . -130) T) ((-475 . -1076) 67815) ((-1154 . -1035) T) ((-850 . -445) T) ((-84 . -1189) T) ((-235 . -38) 67785) ((-138 . -106) 67767) ((-695 . -371) 67751) ((-1096 . -537) T) ((-567 . -101) T) ((-384 . -1034) 67735) ((-1258 . -709) T) ((-1148 . -928) 67704) ((-128 . -599) 67656) ((-52 . -599) 67638) ((-1101 . -928) 67605) ((-635 . -405) 67589) ((-1247 . -1035) T) ((-605 . -1034) 67573) ((-644 . -25) T) ((-644 . -21) T) ((-1134 . -506) NIL) ((-1227 . -101) T) ((-1220 . -101) T) ((-384 . -110) 67552) ((-217 . -248) 67536) ((-1199 . -101) T) ((-1032 . -1076) T) ((-983 . -1127) T) ((-1032 . -1031) 67476) ((-801 . -1076) T) ((-337 . -1193) T) ((-619 . -630) 67460) ((-605 . -110) 67439) ((-593 . -630) 67423) ((-583 . -101) T) ((-573 . -129) T) ((-582 . -101) T) ((-408 . -1076) T) ((-379 . -1076) T) ((-305 . -599) 67389) ((-222 . -1076) 67367) ((-629 . -506) 67300) ((-616 . -506) 67144) ((-816 . -1028) 67123) ((-627 . -148) 67107) ((-337 . -544) T) ((-695 . -879) 67050) ((-538 . -224) 67000) ((-1227 . -278) 66966) ((-1056 . -284) 66917) ((-480 . -828) T) ((-218 . -1088) T) ((-1220 . -278) 66883) ((-1199 . -278) 66849) ((-983 . -38) 66799) ((-212 . -828) T) ((-1183 . -485) 66765) ((-893 . -38) 66717) ((-823 . -777) 66696) ((-823 . -774) 66675) ((-823 . -709) 66654) ((-353 . -284) T) ((-347 . -284) T) ((-339 . -284) T) ((-166 . -445) 66585) ((-421 . -38) 66569) ((-107 . -284) T) ((-218 . -23) T) ((-401 . -777) 66548) ((-401 . -774) 66527) ((-401 . -709) T) ((-492 . -282) 66502) ((-470 . -1034) 66467) ((-640 . -129) T) ((-1089 . -506) 66400) ((-330 . -129) T) ((-166 . -396) 66379) ((-475 . -700) 66321) ((-798 . -280) 66298) ((-470 . -110) 66254) ((-635 . -1035) T) ((-1208 . -445) 66185) ((-1246 . -1059) T) ((-1245 . -1059) T) ((-1063 . -129) T) ((-1032 . -700) 66127) ((-258 . -830) 66106) ((-242 . -830) 66085) ((-765 . -129) T) ((-763 . -129) T) ((-559 . -445) T) ((-1006 . -506) 66018) ((-605 . -1028) T) ((-579 . -1076) T) ((-525 . -170) T) ((-454 . -129) T) ((-447 . -129) T) ((-45 . -1076) T) ((-379 . -700) 65988) ((-800 . -1076) T) ((-469 . -506) 65921) ((-456 . -506) 65854) ((-446 . -361) 65824) ((-45 . -596) 65803) ((-310 . -296) T) ((-652 . -599) 65765) ((-58 . -830) 65744) ((-1199 . -303) 65629) ((-983 . -394) 65611) ((-798 . -590) 65588) ((-508 . -830) 65567) ((-488 . -830) 65546) ((-40 . -1193) T) ((-978 . -1017) 65442) ((-50 . -129) T) ((-569 . -129) T) ((-510 . -129) T) ((-288 . -630) 65302) ((-337 . -323) 65279) ((-337 . -357) T) ((-316 . -317) 65256) ((-313 . -280) 65241) ((-40 . -544) T) ((-373 . -1174) T) ((-373 . -1177) T) ((-1014 . -1165) 65216) ((-1162 . -230) 65166) ((-1143 . -226) 65118) ((-324 . -1076) T) ((-373 . -94) T) ((-373 . -35) T) ((-1014 . -106) 65064) ((-470 . -1028) T) ((-472 . -230) 65014) ((-1135 . -482) 64948) ((-1259 . -1034) 64932) ((-375 . -1034) 64916) ((-470 . -238) T) ((-799 . -101) T) ((-697 . -144) 64895) ((-697 . -142) 64874) ((-477 . -482) 64858) ((-478 . -329) 64827) ((-1259 . -110) 64806) ((-504 . -1076) T) ((-475 . -169) 64785) ((-978 . -371) 64769) ((-407 . -101) T) ((-375 . -110) 64748) ((-978 . -332) 64732) ((-273 . -962) 64716) ((-272 . -962) 64700) ((-1257 . -599) 64682) ((-1255 . -599) 64664) ((-109 . -506) NIL) ((-1148 . -1211) 64648) ((-834 . -832) 64632) ((-1154 . -1076) T) ((-102 . -1189) T) ((-931 . -928) 64593) ((-800 . -700) 64535) ((-1199 . -1127) NIL) ((-474 . -928) 64480) ((-1039 . -140) T) ((-59 . -101) 64458) ((-44 . -599) 64440) ((-77 . -599) 64422) ((-345 . -630) 64367) ((-1247 . -1076) T) ((-503 . -830) T) ((-337 . -1088) T) ((-289 . -1076) T) ((-978 . -879) 64326) ((-289 . -596) 64305) ((-1227 . -38) 64202) ((-1220 . -38) 64043) ((-480 . -1035) T) ((-1199 . -38) 63839) ((-212 . -1035) T) ((-337 . -23) T) ((-149 . -599) 63821) ((-816 . -778) 63800) ((-816 . -775) 63779) ((-583 . -38) 63752) ((-582 . -38) 63649) ((-849 . -544) T) ((-218 . -129) T) ((-313 . -981) 63615) ((-78 . -599) 63597) ((-695 . -301) 63576) ((-288 . -709) 63478) ((-807 . -101) T) ((-844 . -824) T) ((-288 . -466) 63457) ((-1250 . -101) T) ((-40 . -357) T) ((-851 . -144) 63436) ((-851 . -142) 63415) ((-1134 . -482) 63397) ((-1259 . -1028) T) ((-475 . -506) 63330) ((-1122 . -1189) T) ((-943 . -599) 63312) ((-629 . -482) 63296) ((-616 . -482) 63227) ((-798 . -599) 62958) ((-48 . -27) T) ((-1154 . -700) 62855) ((-635 . -1076) T) ((-841 . -840) T) ((-430 . -358) 62829) ((-1078 . -101) T) ((-949 . -1076) T) ((-844 . -1076) T) ((-799 . -303) 62816) ((-525 . -519) T) ((-525 . -564) T) ((-1255 . -376) 62788) ((-1032 . -506) 62721) ((-1135 . -280) 62697) ((-235 . -226) 62666) ((-1247 . -700) 62636) ((-1142 . -92) T) ((-973 . -92) T) ((-800 . -169) 62615) ((-222 . -506) 62548) ((-605 . -778) 62527) ((-605 . -775) 62506) ((-1186 . -599) 62418) ((-217 . -1189) T) ((-657 . -599) 62350) ((-1132 . -989) 62334) ((-922 . -101) 62284) ((-345 . -709) T) ((-841 . -599) 62266) ((-1199 . -394) 62218) ((-1089 . -482) 62202) ((-59 . -303) 62140) ((-325 . -101) T) ((-1183 . -21) T) ((-1183 . -25) T) ((-40 . -1088) T) ((-694 . -21) T) ((-611 . -599) 62122) ((-507 . -317) 62101) ((-694 . -25) T) ((-107 . -280) NIL) ((-900 . -1088) T) ((-40 . -23) T) ((-754 . -1088) T) ((-552 . -1193) T) ((-487 . -1193) T) ((-313 . -599) 62083) ((-983 . -226) 62065) ((-166 . -163) 62049) ((-568 . -544) T) ((-552 . -544) T) ((-487 . -544) T) ((-754 . -23) T) ((-1219 . -144) 62028) ((-1135 . -590) 62004) ((-1219 . -142) 61983) ((-1006 . -482) 61967) ((-1198 . -142) 61892) ((-1198 . -144) 61817) ((-1250 . -1256) 61796) ((-469 . -482) 61780) ((-456 . -482) 61764) ((-515 . -34) T) ((-635 . -700) 61734) ((-111 . -946) T) ((-644 . -830) 61713) ((-1154 . -169) 61664) ((-359 . -101) T) ((-235 . -233) 61643) ((-245 . -101) T) ((-244 . -101) T) ((-1208 . -928) 61612) ((-240 . -830) 61591) ((-799 . -38) 61440) ((-45 . -506) 61232) ((-1134 . -280) 61207) ((-209 . -1076) T) ((-1126 . -1076) T) ((-1126 . -596) 61186) ((-573 . -25) T) ((-573 . -21) T) ((-1078 . -303) 61124) ((-942 . -405) 61108) ((-681 . -1193) T) ((-616 . -280) 61083) ((-1063 . -623) 61031) ((-765 . -623) 60979) ((-763 . -623) 60927) ((-337 . -129) T) ((-283 . -599) 60909) ((-681 . -544) T) ((-884 . -1076) T) ((-849 . -1088) T) ((-447 . -623) 60857) ((-884 . -882) 60841) ((-373 . -445) T) ((-480 . -1076) T) ((-683 . -630) 60828) ((-922 . -303) 60766) ((-212 . -1076) T) ((-310 . -899) 60745) ((-307 . -899) T) ((-307 . -803) NIL) ((-384 . -703) T) ((-849 . -23) T) ((-115 . -630) 60732) ((-467 . -142) 60711) ((-412 . -405) 60695) ((-467 . -144) 60674) ((-109 . -482) 60656) ((-2 . -599) 60638) ((-181 . -101) T) ((-1134 . -19) 60620) ((-1134 . -590) 60595) ((-640 . -21) T) ((-640 . -25) T) ((-580 . -1120) T) ((-1089 . -280) 60572) ((-330 . -25) T) ((-330 . -21) T) ((-487 . -357) T) ((-1250 . -38) 60542) ((-1118 . -1189) T) ((-616 . -590) 60517) ((-1063 . -25) T) ((-1063 . -21) T) ((-523 . -775) T) ((-523 . -778) T) ((-116 . -1193) T) ((-942 . -1035) T) ((-607 . -544) T) ((-765 . -25) T) ((-765 . -21) T) ((-763 . -21) T) ((-763 . -25) T) ((-718 . -1035) T) ((-698 . -1035) T) ((-652 . -1034) 60501) ((-509 . -1059) T) ((-454 . -25) T) ((-116 . -544) T) ((-454 . -21) T) ((-447 . -25) T) ((-447 . -21) T) ((-1118 . -1017) 60397) ((-800 . -284) 60376) ((-806 . -1076) T) ((-945 . -946) T) ((-652 . -110) 60355) ((-289 . -506) 60147) ((-1257 . -1034) 60131) ((-1255 . -1034) 60115) ((-1219 . -1174) 60081) ((-245 . -303) 60019) ((-244 . -303) 59957) ((-1202 . -101) 59935) ((-1135 . -600) NIL) ((-1135 . -599) 59917) ((-1219 . -1177) 59883) ((-1199 . -226) 59835) ((-1198 . -1174) 59801) ((-95 . -92) T) ((-1198 . -1177) 59767) ((-1118 . -371) 59751) ((-1096 . -803) T) ((-1096 . -899) T) ((-1089 . -590) 59728) ((-1056 . -600) 59712) ((-477 . -599) 59644) ((-798 . -282) 59621) ((-594 . -148) 59568) ((-412 . -1035) T) ((-480 . -700) 59518) ((-475 . -482) 59502) ((-321 . -830) 59481) ((-333 . -630) 59455) ((-50 . -21) T) ((-50 . -25) T) ((-212 . -700) 59405) ((-166 . -707) 59376) ((-171 . -630) 59308) ((-569 . -21) T) ((-569 . -25) T) ((-510 . -25) T) ((-510 . -21) T) ((-468 . -148) 59258) ((-1056 . -599) 59240) ((-1038 . -599) 59222) ((-972 . -101) T) ((-842 . -101) T) ((-782 . -405) 59186) ((-40 . -129) T) ((-681 . -357) T) ((-207 . -874) T) ((-683 . -777) T) ((-683 . -774) T) ((-568 . -1088) T) ((-552 . -1088) T) ((-487 . -1088) T) ((-683 . -709) T) ((-353 . -599) 59168) ((-347 . -599) 59150) ((-339 . -599) 59132) ((-65 . -390) T) ((-65 . -389) T) ((-107 . -600) 59062) ((-107 . -599) 59044) ((-206 . -874) T) ((-937 . -148) 59028) ((-1219 . -94) 58994) ((-754 . -129) T) ((-132 . -709) T) ((-115 . -709) T) ((-1219 . -35) 58960) ((-1032 . -482) 58944) ((-568 . -23) T) ((-552 . -23) T) ((-487 . -23) T) ((-1198 . -94) 58910) ((-1198 . -35) 58876) ((-1148 . -101) T) ((-1101 . -101) T) ((-834 . -101) T) ((-222 . -482) 58860) ((-1257 . -110) 58839) ((-1255 . -110) 58818) ((-44 . -1034) 58802) ((-1208 . -1211) 58786) ((-835 . -832) 58770) ((-1154 . -284) 58749) ((-109 . -280) 58724) ((-127 . -148) 58706) ((-1118 . -879) 58665) ((-44 . -110) 58644) ((-1157 . -1230) T) ((-1142 . -599) 58610) ((-652 . -1028) T) ((-1134 . -600) NIL) ((-1134 . -599) 58592) ((-1040 . -596) 58567) ((-1040 . -1076) T) ((-973 . -599) 58533) ((-73 . -434) T) ((-73 . -389) T) ((-652 . -228) 58512) ((-149 . -1034) 58496) ((-559 . -542) 58480) ((-349 . -144) 58459) ((-349 . -142) 58410) ((-346 . -144) 58389) ((-685 . -1076) T) ((-346 . -142) 58340) ((-338 . -144) 58319) ((-338 . -142) 58270) ((-258 . -142) 58249) ((-258 . -144) 58228) ((-245 . -38) 58198) ((-242 . -144) 58177) ((-116 . -357) T) ((-242 . -142) 58156) ((-244 . -38) 58126) ((-149 . -110) 58105) ((-982 . -1017) 57993) ((-1143 . -828) NIL) ((-676 . -1193) T) ((-782 . -1035) T) ((-681 . -1088) T) ((-1257 . -1028) T) ((-1255 . -1028) T) ((-1132 . -1189) T) ((-982 . -371) 57970) ((-889 . -142) T) ((-889 . -144) 57952) ((-849 . -129) T) ((-798 . -1034) 57849) ((-676 . -544) T) ((-681 . -23) T) ((-629 . -599) 57781) ((-629 . -600) 57742) ((-616 . -600) NIL) ((-616 . -599) 57724) ((-480 . -169) T) ((-218 . -21) T) ((-212 . -169) T) ((-218 . -25) T) ((-467 . -1177) 57690) ((-467 . -1174) 57656) ((-268 . -599) 57638) ((-267 . -599) 57620) ((-266 . -599) 57602) ((-265 . -599) 57584) ((-264 . -599) 57566) ((-492 . -633) 57548) ((-263 . -599) 57530) ((-333 . -709) T) ((-262 . -599) 57512) ((-109 . -19) 57494) ((-171 . -709) T) ((-492 . -367) 57476) ((-207 . -599) 57458) ((-512 . -1125) 57442) ((-492 . -122) T) ((-109 . -590) 57417) ((-206 . -599) 57399) ((-467 . -35) 57365) ((-467 . -94) 57331) ((-204 . -599) 57313) ((-203 . -599) 57295) ((-202 . -599) 57277) ((-201 . -599) 57259) ((-198 . -599) 57241) ((-197 . -599) 57223) ((-196 . -599) 57205) ((-195 . -599) 57187) ((-194 . -599) 57169) ((-193 . -599) 57151) ((-192 . -599) 57133) ((-528 . -1079) 57085) ((-191 . -599) 57067) ((-190 . -599) 57049) ((-45 . -482) 56986) ((-189 . -599) 56968) ((-188 . -599) 56950) ((-1091 . -101) T) ((-798 . -110) 56840) ((-627 . -101) 56790) ((-475 . -280) 56767) ((-1089 . -599) 56498) ((-1077 . -1076) T) ((-1025 . -1189) T) ((-1258 . -1017) 56482) ((-607 . -1088) T) ((-1148 . -303) 56469) ((-1111 . -1076) T) ((-1101 . -303) 56456) ((-1072 . -1059) T) ((-1066 . -1059) T) ((-1050 . -1059) T) ((-1043 . -1059) T) ((-1015 . -1059) T) ((-998 . -1059) T) ((-116 . -1088) T) ((-802 . -101) T) ((-610 . -1059) T) ((-607 . -23) T) ((-1126 . -506) 56248) ((-476 . -1059) T) ((-982 . -879) 56200) ((-380 . -101) T) ((-318 . -101) T) ((-213 . -1059) T) ((-942 . -1076) T) ((-149 . -1028) T) ((-714 . -405) 56184) ((-116 . -23) T) ((-718 . -1076) T) ((-698 . -1076) T) ((-685 . -130) T) ((-446 . -1076) T) ((-401 . -1189) T) ((-310 . -424) 56168) ((-579 . -92) T) ((-1006 . -600) 56129) ((-1003 . -1193) T) ((-220 . -101) T) ((-1006 . -599) 56091) ((-799 . -226) 56075) ((-1003 . -544) T) ((-816 . -630) 56048) ((-348 . -1193) T) ((-469 . -599) 56010) ((-469 . -600) 55971) ((-456 . -600) 55932) ((-456 . -599) 55894) ((-401 . -863) 55878) ((-313 . -1034) 55713) ((-401 . -865) 55638) ((-823 . -1017) 55534) ((-480 . -506) NIL) ((-475 . -590) 55511) ((-348 . -544) T) ((-212 . -506) NIL) ((-851 . -445) T) ((-412 . -1076) T) ((-401 . -1017) 55375) ((-313 . -110) 55196) ((-676 . -357) T) ((-220 . -278) T) ((-48 . -1193) T) ((-798 . -1028) 55126) ((-568 . -129) T) ((-552 . -129) T) ((-487 . -129) T) ((-48 . -544) T) ((-1135 . -282) 55102) ((-1148 . -1127) 55080) ((-310 . -27) 55059) ((-1039 . -101) T) ((-798 . -228) 55011) ((-235 . -828) 54990) ((-931 . -101) T) ((-696 . -101) T) ((-289 . -482) 54927) ((-474 . -101) T) ((-714 . -1035) T) ((-598 . -599) 54909) ((-598 . -600) 54770) ((-401 . -371) 54754) ((-401 . -332) 54738) ((-1148 . -38) 54567) ((-1101 . -38) 54416) ((-834 . -38) 54386) ((-384 . -630) 54370) ((-627 . -303) 54308) ((-942 . -700) 54205) ((-718 . -700) 54175) ((-217 . -106) 54159) ((-45 . -280) 54084) ((-605 . -630) 54058) ((-306 . -1076) T) ((-283 . -1034) 54045) ((-109 . -599) 54027) ((-109 . -600) 54009) ((-446 . -700) 53979) ((-799 . -247) 53918) ((-671 . -1076) 53896) ((-538 . -1076) T) ((-1150 . -1035) T) ((-1149 . -1035) T) ((-1143 . -1035) T) ((-283 . -110) 53881) ((-1102 . -1035) T) ((-538 . -596) 53860) ((-95 . -599) 53826) ((-983 . -828) T) ((-222 . -669) 53784) ((-676 . -1088) T) ((-1183 . -723) 53760) ((-313 . -1028) T) ((-337 . -25) T) ((-337 . -21) T) ((-401 . -879) 53719) ((-67 . -1189) T) ((-816 . -777) 53698) ((-412 . -700) 53672) ((-782 . -1076) T) ((-816 . -774) 53651) ((-681 . -129) T) ((-695 . -899) 53630) ((-676 . -23) T) ((-480 . -284) T) ((-816 . -709) 53609) ((-313 . -228) 53561) ((-313 . -238) 53540) ((-212 . -284) T) ((-1003 . -357) T) ((-1219 . -445) 53519) ((-1198 . -445) 53498) ((-348 . -323) 53475) ((-348 . -357) T) ((-1116 . -599) 53457) ((-45 . -1223) 53407) ((-850 . -101) T) ((-627 . -276) 53391) ((-681 . -1037) T) ((-1246 . -101) T) ((-470 . -630) 53356) ((-461 . -1076) T) ((-45 . -590) 53281) ((-1245 . -101) T) ((-1134 . -282) 53256) ((-40 . -623) 53195) ((-48 . -357) T) ((-1082 . -599) 53177) ((-1063 . -830) 53156) ((-616 . -282) 53131) ((-765 . -830) 53110) ((-763 . -830) 53089) ((-475 . -599) 52820) ((-235 . -405) 52789) ((-931 . -303) 52776) ((-447 . -830) 52755) ((-64 . -1189) T) ((-1040 . -506) 52599) ((-607 . -129) T) ((-474 . -303) 52586) ((-592 . -1076) T) ((-116 . -129) T) ((-653 . -1076) T) ((-283 . -1028) T) ((-177 . -1076) T) ((-158 . -1076) T) ((-153 . -1076) T) ((-151 . -1076) T) ((-446 . -744) T) ((-31 . -1059) T) ((-942 . -169) 52537) ((-949 . -92) T) ((-1056 . -1034) 52447) ((-605 . -777) 52426) ((-580 . -1076) T) ((-605 . -774) 52405) ((-605 . -709) T) ((-289 . -280) 52384) ((-288 . -1189) T) ((-1032 . -599) 52346) ((-1032 . -600) 52307) ((-1003 . -1088) T) ((-166 . -101) T) ((-269 . -830) T) ((-1141 . -1076) T) ((-801 . -599) 52289) ((-1089 . -282) 52266) ((-1078 . -224) 52250) ((-982 . -301) T) ((-782 . -700) 52234) ((-353 . -1034) 52186) ((-348 . -1088) T) ((-347 . -1034) 52138) ((-408 . -599) 52120) ((-379 . -599) 52102) ((-339 . -1034) 52054) ((-222 . -599) 51986) ((-1056 . -110) 51882) ((-1003 . -23) T) ((-107 . -1034) 51832) ((-877 . -101) T) ((-821 . -101) T) ((-791 . -101) T) ((-752 . -101) T) ((-659 . -101) T) ((-467 . -445) 51811) ((-412 . -169) T) ((-353 . -110) 51749) ((-347 . -110) 51687) ((-339 . -110) 51625) ((-245 . -226) 51594) ((-244 . -226) 51563) ((-348 . -23) T) ((-70 . -1189) T) ((-220 . -38) 51528) ((-107 . -110) 51462) ((-40 . -25) T) ((-40 . -21) T) ((-652 . -703) T) ((-166 . -278) 51440) ((-48 . -1088) T) ((-900 . -25) T) ((-754 . -25) T) ((-1126 . -482) 51377) ((-478 . -1076) T) ((-1259 . -630) 51351) ((-1208 . -101) T) ((-835 . -101) T) ((-235 . -1035) 51281) ((-1039 . -1127) T) ((-943 . -775) 51234) ((-375 . -630) 51218) ((-48 . -23) T) ((-943 . -778) 51171) ((-798 . -778) 51122) ((-798 . -775) 51073) ((-289 . -590) 51052) ((-470 . -709) T) ((-559 . -101) T) ((-850 . -303) 51009) ((-635 . -280) 50988) ((-111 . -643) T) ((-75 . -1189) T) ((-1039 . -38) 50975) ((-646 . -368) 50954) ((-931 . -38) 50803) ((-714 . -1076) T) ((-474 . -38) 50652) ((-85 . -1189) T) ((-559 . -278) T) ((-579 . -599) 50618) ((-1199 . -828) NIL) ((-1150 . -1076) T) ((-1149 . -1076) T) ((-345 . -1017) 50595) ((-1056 . -1028) T) ((-983 . -1035) T) ((-45 . -599) 50577) ((-45 . -600) NIL) ((-893 . -1035) T) ((-800 . -599) 50559) ((-1143 . -1076) T) ((-1123 . -101) 50537) ((-1056 . -238) 50488) ((-421 . -1035) T) ((-353 . -1028) T) ((-359 . -358) 50465) ((-347 . -1028) T) ((-339 . -1028) T) ((-245 . -233) 50444) ((-244 . -233) 50423) ((-1056 . -228) 50348) ((-1102 . -1076) T) ((-288 . -879) 50307) ((-107 . -1028) T) ((-676 . -129) T) ((-412 . -506) 50149) ((-353 . -228) 50128) ((-353 . -238) T) ((-44 . -703) T) ((-347 . -228) 50107) ((-347 . -238) T) ((-339 . -228) 50086) ((-339 . -238) T) ((-166 . -303) 50051) ((-107 . -238) T) ((-107 . -228) T) ((-313 . -775) T) ((-849 . -21) T) ((-849 . -25) T) ((-401 . -301) T) ((-492 . -34) T) ((-109 . -282) 50026) ((-1089 . -1034) 49923) ((-850 . -1127) NIL) ((-324 . -599) 49905) ((-401 . -1001) 49883) ((-1089 . -110) 49773) ((-673 . -1230) T) ((-430 . -1076) T) ((-1259 . -709) T) ((-62 . -599) 49755) ((-850 . -38) 49700) ((-515 . -1189) T) ((-588 . -148) 49684) ((-504 . -599) 49666) ((-1208 . -303) 49653) ((-714 . -700) 49502) ((-523 . -776) T) ((-523 . -777) T) ((-552 . -623) 49484) ((-487 . -623) 49444) ((-349 . -445) T) ((-346 . -445) T) ((-338 . -445) T) ((-258 . -445) 49395) ((-517 . -1076) T) ((-512 . -1076) 49345) ((-242 . -445) 49296) ((-1126 . -280) 49275) ((-1154 . -599) 49257) ((-671 . -506) 49190) ((-942 . -284) 49169) ((-538 . -506) 48961) ((-1148 . -226) 48945) ((-166 . -1127) 48924) ((-1247 . -599) 48906) ((-1150 . -700) 48803) ((-1149 . -700) 48644) ((-871 . -101) T) ((-1143 . -700) 48440) ((-1102 . -700) 48337) ((-1132 . -656) 48321) ((-349 . -396) 48272) ((-346 . -396) 48223) ((-338 . -396) 48174) ((-1003 . -129) T) ((-782 . -506) 48086) ((-289 . -600) NIL) ((-289 . -599) 48068) ((-889 . -445) T) ((-943 . -362) 48021) ((-798 . -362) 48000) ((-502 . -501) 47979) ((-500 . -501) 47958) ((-480 . -280) NIL) ((-475 . -282) 47935) ((-412 . -284) T) ((-348 . -129) T) ((-212 . -280) NIL) ((-676 . -485) NIL) ((-98 . -1088) T) ((-166 . -38) 47763) ((-1219 . -952) 47725) ((-1123 . -303) 47663) ((-1198 . -952) 47632) ((-889 . -396) T) ((-1089 . -1028) 47562) ((-1221 . -544) T) ((-1126 . -590) 47541) ((-111 . -830) T) ((-1040 . -482) 47472) ((-568 . -21) T) ((-568 . -25) T) ((-552 . -21) T) ((-552 . -25) T) ((-487 . -25) T) ((-487 . -21) T) ((-1208 . -1127) 47450) ((-1089 . -228) 47402) ((-48 . -129) T) ((-1170 . -101) T) ((-235 . -1076) 47192) ((-850 . -394) 47169) ((-1064 . -101) T) ((-1052 . -101) T) ((-594 . -101) T) ((-468 . -101) T) ((-1208 . -38) 46998) ((-835 . -38) 46968) ((-714 . -169) 46879) ((-635 . -599) 46861) ((-628 . -1059) T) ((-559 . -38) 46848) ((-949 . -599) 46814) ((-937 . -101) 46764) ((-844 . -599) 46746) ((-844 . -600) 46668) ((-580 . -506) NIL) ((-1227 . -1035) T) ((-1220 . -1035) T) ((-1199 . -1035) T) ((-583 . -1035) T) ((-582 . -1035) T) ((-1263 . -1088) T) ((-1150 . -169) 46619) ((-1149 . -169) 46550) ((-1143 . -169) 46481) ((-1102 . -169) 46432) ((-983 . -1076) T) ((-950 . -1076) T) ((-893 . -1076) T) ((-1183 . -144) 46411) ((-782 . -780) 46395) ((-681 . -25) T) ((-681 . -21) T) ((-116 . -623) 46372) ((-683 . -865) 46354) ((-421 . -1076) T) ((-310 . -1193) 46333) ((-307 . -1193) T) ((-166 . -394) 46317) ((-1183 . -142) 46296) ((-467 . -952) 46258) ((-127 . -101) T) ((-71 . -599) 46240) ((-107 . -778) T) ((-107 . -775) T) ((-310 . -544) 46219) ((-683 . -1017) 46201) ((-307 . -544) T) ((-1263 . -23) T) ((-132 . -1017) 46183) ((-475 . -1034) 46080) ((-45 . -282) 46005) ((-235 . -700) 45947) ((-509 . -101) T) ((-475 . -110) 45837) ((-1068 . -101) 45815) ((-1013 . -101) T) ((-627 . -811) 45794) ((-714 . -506) 45737) ((-1032 . -1034) 45721) ((-1111 . -92) T) ((-1040 . -280) 45696) ((-607 . -21) T) ((-607 . -25) T) ((-516 . -1076) T) ((-355 . -101) T) ((-316 . -101) T) ((-652 . -630) 45670) ((-379 . -1034) 45654) ((-1032 . -110) 45633) ((-799 . -405) 45617) ((-116 . -25) T) ((-88 . -599) 45599) ((-116 . -21) T) ((-594 . -303) 45394) ((-468 . -303) 45198) ((-1126 . -600) NIL) ((-379 . -110) 45177) ((-373 . -101) T) ((-209 . -599) 45159) ((-1126 . -599) 45141) ((-983 . -700) 45091) ((-1143 . -506) 44860) ((-893 . -700) 44812) ((-1102 . -506) 44782) ((-345 . -301) T) ((-1162 . -148) 44732) ((-937 . -303) 44670) ((-817 . -101) T) ((-421 . -700) 44654) ((-220 . -811) T) ((-810 . -101) T) ((-808 . -101) T) ((-472 . -148) 44604) ((-1219 . -1218) 44583) ((-1096 . -1193) T) ((-333 . -1017) 44550) ((-1219 . -1213) 44520) ((-1219 . -1216) 44504) ((-1198 . -1197) 44483) ((-79 . -599) 44465) ((-884 . -599) 44447) ((-1198 . -1213) 44424) ((-1096 . -544) T) ((-900 . -830) T) ((-754 . -830) T) ((-480 . -600) 44354) ((-480 . -599) 44336) ((-373 . -278) T) ((-654 . -830) T) ((-1198 . -1195) 44320) ((-1221 . -1088) T) ((-212 . -600) 44250) ((-212 . -599) 44232) ((-1257 . -630) 44206) ((-1040 . -590) 44181) ((-58 . -148) 44165) ((-508 . -148) 44149) ((-488 . -148) 44133) ((-353 . -1254) 44117) ((-347 . -1254) 44101) ((-339 . -1254) 44085) ((-310 . -357) 44064) ((-307 . -357) T) ((-475 . -1028) 43994) ((-676 . -623) 43976) ((-1255 . -630) 43950) ((-127 . -303) NIL) ((-1221 . -23) T) ((-671 . -482) 43934) ((-63 . -599) 43916) ((-1089 . -778) 43867) ((-1089 . -775) 43818) ((-538 . -482) 43755) ((-652 . -34) T) ((-475 . -228) 43707) ((-289 . -282) 43686) ((-235 . -169) 43665) ((-799 . -1035) T) ((-44 . -630) 43623) ((-1056 . -362) 43574) ((-714 . -284) 43505) ((-512 . -506) 43438) ((-800 . -1034) 43389) ((-1063 . -142) 43368) ((-353 . -362) 43347) ((-347 . -362) 43326) ((-339 . -362) 43305) ((-1063 . -144) 43284) ((-850 . -226) 43261) ((-800 . -110) 43203) ((-765 . -142) 43182) ((-765 . -144) 43161) ((-258 . -928) 43128) ((-245 . -828) 43107) ((-242 . -928) 43052) ((-244 . -828) 43031) ((-763 . -142) 43010) ((-763 . -144) 42989) ((-149 . -630) 42963) ((-567 . -1076) T) ((-447 . -144) 42942) ((-447 . -142) 42921) ((-652 . -709) T) ((-806 . -599) 42903) ((-1227 . -1076) T) ((-1220 . -1076) T) ((-1199 . -1076) T) ((-1183 . -1177) 42869) ((-1183 . -1174) 42835) ((-1150 . -284) 42814) ((-1149 . -284) 42765) ((-1143 . -284) 42716) ((-1102 . -284) 42695) ((-333 . -879) 42676) ((-983 . -169) T) ((-893 . -169) T) ((-583 . -1076) T) ((-582 . -1076) T) ((-676 . -21) T) ((-676 . -25) T) ((-467 . -1216) 42660) ((-467 . -1213) 42630) ((-412 . -280) 42558) ((-310 . -1088) 42407) ((-307 . -1088) T) ((-1183 . -35) 42373) ((-1183 . -94) 42339) ((-83 . -599) 42321) ((-90 . -101) 42299) ((-1263 . -129) T) ((-569 . -142) T) ((-569 . -144) 42281) ((-510 . -144) 42263) ((-510 . -142) T) ((-310 . -23) 42115) ((-40 . -336) 42089) ((-307 . -23) T) ((-1134 . -633) 42071) ((-1250 . -1035) T) ((-1134 . -367) 42053) ((-798 . -630) 41901) ((-1072 . -101) T) ((-1066 . -101) T) ((-1050 . -101) T) ((-166 . -226) 41885) ((-1043 . -101) T) ((-1015 . -101) T) ((-998 . -101) T) ((-580 . -482) 41867) ((-610 . -101) T) ((-235 . -506) 41800) ((-476 . -101) T) ((-1257 . -709) T) ((-1255 . -709) T) ((-213 . -101) T) ((-1154 . -1034) 41683) ((-1154 . -110) 41552) ((-841 . -170) T) ((-800 . -1028) T) ((-663 . -1059) T) ((-658 . -1059) T) ((-507 . -101) T) ((-502 . -101) T) ((-48 . -623) 41512) ((-500 . -101) T) ((-471 . -1059) T) ((-1247 . -1034) 41482) ((-136 . -1059) T) ((-135 . -1059) T) ((-131 . -1059) T) ((-1013 . -38) 41466) ((-800 . -228) T) ((-800 . -238) 41445) ((-1247 . -110) 41410) ((-1227 . -700) 41307) ((-538 . -280) 41286) ((-1220 . -700) 41127) ((-1208 . -226) 41111) ((-592 . -92) T) ((-1040 . -600) NIL) ((-1040 . -599) 41093) ((-653 . -92) T) ((-177 . -92) T) ((-158 . -92) T) ((-153 . -92) T) ((-151 . -92) T) ((-1199 . -700) 40889) ((-982 . -899) T) ((-685 . -599) 40858) ((-149 . -709) T) ((-1089 . -362) 40837) ((-983 . -506) NIL) ((-245 . -405) 40806) ((-244 . -405) 40775) ((-1003 . -25) T) ((-1003 . -21) T) ((-583 . -700) 40748) ((-582 . -700) 40645) ((-782 . -280) 40603) ((-125 . -101) 40581) ((-816 . -1017) 40477) ((-166 . -811) 40456) ((-313 . -630) 40353) ((-798 . -34) T) ((-697 . -101) T) ((-1096 . -1088) T) ((-1005 . -1189) T) ((-373 . -38) 40318) ((-348 . -25) T) ((-348 . -21) T) ((-182 . -101) T) ((-159 . -101) T) ((-154 . -101) T) ((-349 . -1242) 40302) ((-346 . -1242) 40286) ((-338 . -1242) 40270) ((-166 . -343) 40249) ((-552 . -830) T) ((-487 . -830) T) ((-1096 . -23) T) ((-86 . -599) 40231) ((-683 . -301) T) ((-817 . -38) 40201) ((-810 . -38) 40171) ((-1221 . -129) T) ((-1126 . -282) 40150) ((-943 . -776) 40103) ((-943 . -777) 40056) ((-798 . -774) 40035) ((-115 . -301) T) ((-90 . -303) 39973) ((-657 . -34) T) ((-538 . -590) 39952) ((-48 . -25) T) ((-48 . -21) T) ((-798 . -777) 39903) ((-798 . -776) 39882) ((-683 . -1001) T) ((-635 . -1034) 39866) ((-943 . -709) 39765) ((-798 . -709) 39675) ((-943 . -466) 39628) ((-475 . -778) 39579) ((-475 . -775) 39530) ((-889 . -1242) 39517) ((-1154 . -1028) T) ((-635 . -110) 39496) ((-1154 . -320) 39473) ((-1175 . -101) 39451) ((-1077 . -599) 39433) ((-683 . -537) T) ((-799 . -1076) T) ((-1247 . -1028) T) ((-407 . -1076) T) ((-1111 . -599) 39399) ((-245 . -1035) 39329) ((-244 . -1035) 39259) ((-283 . -630) 39246) ((-580 . -280) 39221) ((-671 . -669) 39179) ((-942 . -599) 39161) ((-851 . -101) T) ((-718 . -599) 39143) ((-698 . -599) 39125) ((-1227 . -169) 39076) ((-1220 . -169) 39007) ((-1199 . -169) 38938) ((-681 . -830) T) ((-983 . -284) T) ((-446 . -599) 38920) ((-611 . -709) T) ((-59 . -1076) 38898) ((-240 . -148) 38882) ((-893 . -284) T) ((-1003 . -991) T) ((-611 . -466) T) ((-695 . -1193) 38861) ((-583 . -169) 38840) ((-582 . -169) 38791) ((-1235 . -830) 38770) ((-695 . -544) 38681) ((-401 . -899) T) ((-401 . -803) 38660) ((-313 . -777) T) ((-313 . -709) T) ((-412 . -599) 38642) ((-412 . -600) 38549) ((-627 . -1125) 38533) ((-109 . -633) 38515) ((-171 . -301) T) ((-125 . -303) 38453) ((-109 . -367) 38435) ((-392 . -1189) T) ((-310 . -129) 38306) ((-307 . -129) T) ((-68 . -389) T) ((-109 . -122) T) ((-512 . -482) 38290) ((-636 . -1088) T) ((-580 . -19) 38272) ((-60 . -434) T) ((-60 . -389) T) ((-807 . -1076) T) ((-580 . -590) 38247) ((-470 . -1017) 38207) ((-635 . -1028) T) ((-636 . -23) T) ((-1250 . -1076) T) ((-31 . -101) T) ((-799 . -700) 38056) ((-565 . -840) T) ((-116 . -830) NIL) ((-1148 . -405) 38040) ((-1101 . -405) 38024) ((-834 . -405) 38008) ((-852 . -101) 37959) ((-1219 . -101) T) ((-1199 . -506) 37728) ((-1198 . -101) T) ((-1175 . -303) 37666) ((-517 . -92) T) ((-1150 . -280) 37651) ((-306 . -599) 37633) ((-1149 . -280) 37618) ((-1078 . -1076) T) ((-1056 . -630) 37528) ((-671 . -599) 37460) ((-283 . -709) T) ((-107 . -888) NIL) ((-671 . -600) 37421) ((-587 . -599) 37403) ((-565 . -599) 37385) ((-538 . -600) NIL) ((-538 . -599) 37367) ((-521 . -599) 37349) ((-1143 . -280) 37197) ((-480 . -1034) 37147) ((-694 . -445) T) ((-503 . -501) 37126) ((-499 . -501) 37105) ((-212 . -1034) 37055) ((-353 . -630) 37007) ((-347 . -630) 36959) ((-220 . -828) T) ((-339 . -630) 36911) ((-588 . -101) 36861) ((-475 . -362) 36840) ((-107 . -630) 36790) ((-480 . -110) 36724) ((-235 . -482) 36708) ((-337 . -144) 36690) ((-337 . -142) T) ((-166 . -364) 36661) ((-922 . -1233) 36645) ((-212 . -110) 36579) ((-851 . -303) 36544) ((-922 . -1076) 36494) ((-782 . -600) 36455) ((-782 . -599) 36437) ((-701 . -101) T) ((-325 . -1076) T) ((-1096 . -129) T) ((-697 . -38) 36407) ((-310 . -485) 36386) ((-492 . -1189) T) ((-1219 . -278) 36352) ((-1198 . -278) 36318) ((-321 . -148) 36302) ((-1040 . -282) 36277) ((-1250 . -700) 36247) ((-1135 . -34) T) ((-1259 . -1017) 36224) ((-461 . -599) 36206) ((-477 . -34) T) ((-375 . -1017) 36190) ((-1148 . -1035) T) ((-1101 . -1035) T) ((-834 . -1035) T) ((-1039 . -828) T) ((-799 . -169) 36101) ((-512 . -280) 36078) ((-116 . -971) 36055) ((-1227 . -284) 36034) ((-1170 . -358) 36008) ((-1064 . -260) 35992) ((-653 . -599) 35958) ((-592 . -599) 35908) ((-467 . -101) T) ((-177 . -599) 35874) ((-153 . -599) 35840) ((-151 . -599) 35806) ((-359 . -1076) T) ((-245 . -1076) T) ((-244 . -1076) T) ((-158 . -599) 35772) ((-1220 . -284) 35723) ((-1199 . -284) 35674) ((-851 . -1127) 35652) ((-1150 . -981) 35618) ((-594 . -358) 35558) ((-1149 . -981) 35524) ((-594 . -224) 35471) ((-580 . -599) 35453) ((-580 . -600) NIL) ((-676 . -830) T) ((-468 . -224) 35403) ((-480 . -1028) T) ((-1143 . -981) 35369) ((-87 . -433) T) ((-87 . -389) T) ((-212 . -1028) T) ((-1102 . -981) 35335) ((-1056 . -709) T) ((-695 . -1088) T) ((-583 . -284) 35314) ((-582 . -284) 35293) ((-480 . -238) T) ((-480 . -228) T) ((-212 . -238) T) ((-212 . -228) T) ((-1141 . -599) 35275) ((-851 . -38) 35227) ((-353 . -709) T) ((-347 . -709) T) ((-339 . -709) T) ((-107 . -777) T) ((-107 . -774) T) ((-512 . -1223) 35211) ((-107 . -709) T) ((-695 . -23) T) ((-1263 . -25) T) ((-467 . -278) 35177) ((-1263 . -21) T) ((-1198 . -303) 35116) ((-1152 . -101) T) ((-40 . -142) 35088) ((-40 . -144) 35060) ((-512 . -590) 35037) ((-1089 . -630) 34885) ((-588 . -303) 34823) ((-45 . -633) 34773) ((-45 . -648) 34723) ((-45 . -367) 34673) ((-1134 . -34) T) ((-850 . -828) NIL) ((-636 . -129) T) ((-478 . -599) 34655) ((-235 . -280) 34632) ((-181 . -1076) T) ((-629 . -34) T) ((-616 . -34) T) ((-1063 . -445) 34583) ((-799 . -506) 34457) ((-765 . -445) 34388) ((-763 . -445) 34339) ((-447 . -445) 34290) ((-931 . -405) 34274) ((-714 . -599) 34256) ((-245 . -700) 34198) ((-244 . -700) 34140) ((-714 . -600) 34001) ((-474 . -405) 33985) ((-333 . -296) T) ((-516 . -92) T) ((-345 . -899) T) ((-979 . -101) 33963) ((-1003 . -830) T) ((-59 . -506) 33896) ((-1198 . -1127) 33848) ((-983 . -280) NIL) ((-220 . -1035) T) ((-373 . -811) T) ((-1089 . -34) T) ((-569 . -445) T) ((-510 . -445) T) ((-1202 . -1069) 33832) ((-1202 . -1076) 33810) ((-235 . -590) 33787) ((-1202 . -1071) 33744) ((-1150 . -599) 33726) ((-1149 . -599) 33708) ((-1143 . -599) 33690) ((-1143 . -600) NIL) ((-1102 . -599) 33672) ((-851 . -394) 33656) ((-528 . -101) T) ((-1219 . -38) 33497) ((-1198 . -38) 33311) ((-849 . -144) T) ((-569 . -396) T) ((-48 . -830) T) ((-510 . -396) T) ((-1231 . -101) T) ((-1221 . -21) T) ((-1221 . -25) T) ((-1089 . -774) 33290) ((-1089 . -777) 33241) ((-1089 . -776) 33220) ((-972 . -1076) T) ((-1006 . -34) T) ((-842 . -1076) T) ((-1089 . -709) 33130) ((-646 . -101) T) ((-628 . -101) T) ((-538 . -282) 33109) ((-1162 . -101) T) ((-469 . -34) T) ((-456 . -34) T) ((-349 . -101) T) ((-346 . -101) T) ((-338 . -101) T) ((-258 . -101) T) ((-242 . -101) T) ((-470 . -301) T) ((-1039 . -1035) T) ((-931 . -1035) T) ((-310 . -623) 33015) ((-307 . -623) 32976) ((-474 . -1035) T) ((-472 . -101) T) ((-430 . -599) 32958) ((-1148 . -1076) T) ((-1101 . -1076) T) ((-834 . -1076) T) ((-1117 . -101) T) ((-799 . -284) 32889) ((-942 . -1034) 32772) ((-470 . -1001) T) ((-718 . -1034) 32742) ((-446 . -1034) 32712) ((-1123 . -1097) 32696) ((-1078 . -506) 32629) ((-942 . -110) 32498) ((-889 . -101) T) ((-718 . -110) 32463) ((-517 . -599) 32429) ((-58 . -101) 32379) ((-512 . -600) 32340) ((-512 . -599) 32252) ((-511 . -101) 32230) ((-508 . -101) 32180) ((-489 . -101) 32158) ((-488 . -101) 32108) ((-446 . -110) 32071) ((-245 . -169) 32050) ((-244 . -169) 32029) ((-412 . -1034) 32003) ((-1183 . -952) 31965) ((-978 . -1088) T) ((-922 . -506) 31898) ((-480 . -778) T) ((-467 . -38) 31739) ((-412 . -110) 31706) ((-480 . -775) T) ((-979 . -303) 31644) ((-212 . -778) T) ((-212 . -775) T) ((-978 . -23) T) ((-695 . -129) T) ((-1198 . -394) 31614) ((-310 . -25) 31466) ((-166 . -405) 31450) ((-310 . -21) 31321) ((-307 . -25) T) ((-307 . -21) T) ((-844 . -362) T) ((-109 . -34) T) ((-475 . -630) 31169) ((-850 . -1035) T) ((-580 . -282) 31144) ((-568 . -144) T) ((-552 . -144) T) ((-487 . -144) T) ((-1148 . -700) 30973) ((-1101 . -700) 30822) ((-1096 . -623) 30804) ((-834 . -700) 30774) ((-652 . -1189) T) ((-1 . -101) T) ((-235 . -599) 30505) ((-1091 . -1076) T) ((-1208 . -405) 30489) ((-1162 . -303) 30293) ((-942 . -1028) T) ((-718 . -1028) T) ((-698 . -1028) T) ((-627 . -1076) 30243) ((-1032 . -630) 30227) ((-835 . -405) 30211) ((-503 . -101) T) ((-499 . -101) T) ((-242 . -303) 30198) ((-258 . -303) 30185) ((-942 . -320) 30164) ((-379 . -630) 30148) ((-472 . -303) 29952) ((-245 . -506) 29885) ((-652 . -1017) 29781) ((-244 . -506) 29714) ((-1117 . -303) 29640) ((-802 . -1076) T) ((-782 . -1034) 29624) ((-1227 . -280) 29609) ((-1220 . -280) 29594) ((-1199 . -280) 29442) ((-380 . -1076) T) ((-318 . -1076) T) ((-412 . -1028) T) ((-166 . -1035) T) ((-58 . -303) 29380) ((-782 . -110) 29359) ((-582 . -280) 29344) ((-511 . -303) 29282) ((-508 . -303) 29220) ((-489 . -303) 29158) ((-488 . -303) 29096) ((-412 . -228) 29075) ((-475 . -34) T) ((-983 . -600) 29005) ((-220 . -1076) T) ((-983 . -599) 28987) ((-950 . -599) 28969) ((-950 . -600) 28944) ((-893 . -599) 28926) ((-681 . -144) T) ((-683 . -899) T) ((-683 . -803) T) ((-421 . -599) 28908) ((-1096 . -21) T) ((-1096 . -25) T) ((-652 . -371) 28892) ((-115 . -899) T) ((-851 . -226) 28876) ((-77 . -1189) T) ((-125 . -124) 28860) ((-1032 . -34) T) ((-1257 . -1017) 28834) ((-1255 . -1017) 28791) ((-1208 . -1035) T) ((-835 . -1035) T) ((-475 . -774) 28770) ((-349 . -1127) 28749) ((-346 . -1127) 28728) ((-338 . -1127) 28707) ((-475 . -777) 28658) ((-475 . -776) 28637) ((-222 . -34) T) ((-475 . -709) 28547) ((-59 . -482) 28531) ((-559 . -1035) T) ((-1148 . -169) 28422) ((-1101 . -169) 28333) ((-1039 . -1076) T) ((-1063 . -928) 28278) ((-931 . -1076) T) ((-800 . -630) 28229) ((-765 . -928) 28198) ((-696 . -1076) T) ((-763 . -928) 28165) ((-508 . -276) 28149) ((-652 . -879) 28108) ((-474 . -1076) T) ((-447 . -928) 28075) ((-78 . -1189) T) ((-349 . -38) 28040) ((-346 . -38) 28005) ((-338 . -38) 27970) ((-258 . -38) 27819) ((-242 . -38) 27668) ((-889 . -1127) T) ((-607 . -144) 27647) ((-607 . -142) 27626) ((-516 . -599) 27592) ((-116 . -144) T) ((-116 . -142) NIL) ((-408 . -709) T) ((-782 . -1028) T) ((-337 . -445) T) ((-1227 . -981) 27558) ((-1220 . -981) 27524) ((-1199 . -981) 27490) ((-889 . -38) 27455) ((-220 . -700) 27420) ((-313 . -47) 27390) ((-40 . -403) 27362) ((-137 . -599) 27344) ((-978 . -129) T) ((-798 . -1189) T) ((-171 . -899) T) ((-337 . -396) T) ((-512 . -282) 27321) ((-798 . -1017) 27148) ((-45 . -34) T) ((-663 . -101) T) ((-658 . -101) T) ((-644 . -101) T) ((-636 . -21) T) ((-636 . -25) T) ((-1198 . -226) 27118) ((-1078 . -482) 27102) ((-471 . -101) T) ((-657 . -1189) T) ((-240 . -101) 27052) ((-136 . -101) T) ((-135 . -101) T) ((-131 . -101) T) ((-850 . -1076) T) ((-1154 . -630) 26977) ((-1039 . -700) 26964) ((-714 . -1034) 26807) ((-1148 . -506) 26754) ((-931 . -700) 26603) ((-1101 . -506) 26555) ((-1246 . -1076) T) ((-1245 . -1076) T) ((-474 . -700) 26404) ((-66 . -599) 26386) ((-714 . -110) 26215) ((-922 . -482) 26199) ((-1247 . -630) 26159) ((-800 . -709) T) ((-1150 . -1034) 26042) ((-1149 . -1034) 25877) ((-1143 . -1034) 25667) ((-1102 . -1034) 25550) ((-982 . -1193) T) ((-1070 . -101) 25528) ((-798 . -371) 25497) ((-567 . -599) 25479) ((-982 . -544) T) ((-1150 . -110) 25348) ((-1149 . -110) 25169) ((-1143 . -110) 24938) ((-1102 . -110) 24807) ((-1081 . -1079) 24771) ((-373 . -828) T) ((-1227 . -599) 24753) ((-1220 . -599) 24735) ((-1199 . -599) 24717) ((-1199 . -600) NIL) ((-235 . -282) 24694) ((-40 . -445) T) ((-220 . -169) T) ((-166 . -1076) T) ((-676 . -144) T) ((-676 . -142) NIL) ((-583 . -599) 24676) ((-582 . -599) 24658) ((-877 . -1076) T) ((-821 . -1076) T) ((-791 . -1076) T) ((-752 . -1076) T) ((-640 . -832) 24642) ((-659 . -1076) T) ((-798 . -879) 24574) ((-40 . -396) NIL) ((-1096 . -643) T) ((-850 . -700) 24519) ((-245 . -482) 24503) ((-244 . -482) 24487) ((-695 . -623) 24435) ((-635 . -630) 24409) ((-289 . -34) T) ((-714 . -1028) T) ((-569 . -1242) 24396) ((-510 . -1242) 24373) ((-1208 . -1076) T) ((-1148 . -284) 24284) ((-1101 . -284) 24215) ((-1039 . -169) T) ((-835 . -1076) T) ((-931 . -169) 24126) ((-765 . -1211) 24110) ((-627 . -506) 24043) ((-76 . -599) 24025) ((-714 . -320) 23990) ((-1154 . -709) T) ((-559 . -1076) T) ((-474 . -169) 23901) ((-240 . -303) 23839) ((-1118 . -1088) T) ((-69 . -599) 23821) ((-1247 . -709) T) ((-1150 . -1028) T) ((-1149 . -1028) T) ((-321 . -101) 23771) ((-1143 . -1028) T) ((-1118 . -23) T) ((-1102 . -1028) T) ((-90 . -1097) 23755) ((-845 . -1088) T) ((-1150 . -228) 23714) ((-1149 . -238) 23693) ((-1149 . -228) 23645) ((-1143 . -228) 23532) ((-1143 . -238) 23511) ((-313 . -879) 23417) ((-845 . -23) T) ((-166 . -700) 23245) ((-401 . -1193) T) ((-1077 . -362) T) ((-1003 . -144) T) ((-982 . -357) T) ((-849 . -445) T) ((-922 . -280) 23222) ((-310 . -830) T) ((-307 . -830) NIL) ((-853 . -101) T) ((-695 . -25) T) ((-401 . -544) T) ((-695 . -21) T) ((-348 . -144) 23204) ((-348 . -142) T) ((-1123 . -1076) 23182) ((-446 . -703) T) ((-74 . -599) 23164) ((-113 . -830) T) ((-240 . -276) 23148) ((-235 . -1034) 23045) ((-80 . -599) 23027) ((-718 . -362) 22980) ((-1152 . -811) T) ((-720 . -230) 22964) ((-1135 . -1189) T) ((-138 . -230) 22946) ((-235 . -110) 22836) ((-1208 . -700) 22665) ((-48 . -144) T) ((-850 . -169) T) ((-835 . -700) 22635) ((-477 . -1189) T) ((-931 . -506) 22582) ((-635 . -709) T) ((-559 . -700) 22569) ((-1013 . -1035) T) ((-474 . -506) 22512) ((-922 . -19) 22496) ((-922 . -590) 22473) ((-799 . -600) NIL) ((-799 . -599) 22455) ((-983 . -1034) 22405) ((-407 . -599) 22387) ((-245 . -280) 22364) ((-244 . -280) 22341) ((-480 . -888) NIL) ((-310 . -29) 22311) ((-107 . -1189) T) ((-982 . -1088) T) ((-212 . -888) NIL) ((-893 . -1034) 22263) ((-1056 . -1017) 22159) ((-983 . -110) 22093) ((-720 . -677) 22077) ((-258 . -226) 22061) ((-421 . -1034) 22045) ((-373 . -1035) T) ((-982 . -23) T) ((-893 . -110) 21983) ((-676 . -1177) NIL) ((-480 . -630) 21933) ((-107 . -863) 21915) ((-107 . -865) 21897) ((-676 . -1174) NIL) ((-212 . -630) 21847) ((-353 . -1017) 21831) ((-347 . -1017) 21815) ((-321 . -303) 21753) ((-339 . -1017) 21737) ((-220 . -284) T) ((-421 . -110) 21716) ((-59 . -599) 21648) ((-166 . -169) T) ((-1096 . -830) T) ((-107 . -1017) 21608) ((-871 . -1076) T) ((-817 . -1035) T) ((-810 . -1035) T) ((-676 . -35) NIL) ((-676 . -94) NIL) ((-307 . -971) 21569) ((-180 . -101) T) ((-568 . -445) T) ((-552 . -445) T) ((-487 . -445) T) ((-401 . -357) T) ((-235 . -1028) 21499) ((-1126 . -34) T) ((-470 . -899) T) ((-978 . -623) 21447) ((-245 . -590) 21424) ((-244 . -590) 21401) ((-1056 . -371) 21385) ((-850 . -506) 21293) ((-235 . -228) 21245) ((-1134 . -1189) T) ((-807 . -599) 21227) ((-1258 . -1088) T) ((-1250 . -599) 21209) ((-1208 . -169) 21100) ((-107 . -371) 21082) ((-107 . -332) 21064) ((-1039 . -284) T) ((-931 . -284) 20995) ((-782 . -362) 20974) ((-629 . -1189) T) ((-616 . -1189) T) ((-474 . -284) 20905) ((-559 . -169) T) ((-321 . -276) 20889) ((-1258 . -23) T) ((-1183 . -101) T) ((-1170 . -1076) T) ((-1064 . -1076) T) ((-1052 . -1076) T) ((-82 . -599) 20871) ((-694 . -101) T) ((-349 . -343) 20850) ((-594 . -1076) T) ((-346 . -343) 20829) ((-338 . -343) 20808) ((-468 . -1076) T) ((-1162 . -224) 20758) ((-258 . -247) 20720) ((-1118 . -129) T) ((-594 . -596) 20696) ((-1056 . -879) 20629) ((-983 . -1028) T) ((-893 . -1028) T) ((-468 . -596) 20608) ((-1143 . -775) NIL) ((-1143 . -778) NIL) ((-1078 . -600) 20569) ((-472 . -224) 20519) ((-1078 . -599) 20501) ((-983 . -238) T) ((-983 . -228) T) ((-421 . -1028) T) ((-937 . -1076) 20451) ((-893 . -238) T) ((-845 . -129) T) ((-681 . -445) T) ((-823 . -1088) 20430) ((-107 . -879) NIL) ((-1183 . -278) 20396) ((-851 . -828) 20375) ((-1089 . -1189) T) ((-884 . -709) T) ((-166 . -506) 20287) ((-978 . -25) T) ((-884 . -466) T) ((-401 . -1088) T) ((-480 . -777) T) ((-480 . -774) T) ((-889 . -343) T) ((-480 . -709) T) ((-212 . -777) T) ((-212 . -774) T) ((-978 . -21) T) ((-212 . -709) T) ((-823 . -23) 20239) ((-313 . -301) 20218) ((-1014 . -230) 20164) ((-401 . -23) T) ((-922 . -600) 20125) ((-922 . -599) 20037) ((-627 . -482) 20021) ((-45 . -989) 19971) ((-602 . -946) T) ((-483 . -101) T) ((-325 . -599) 19953) ((-1089 . -1017) 19780) ((-580 . -633) 19762) ((-127 . -1076) T) ((-580 . -367) 19744) ((-337 . -1242) 19721) ((-1006 . -1189) T) ((-850 . -284) T) ((-1208 . -506) 19668) ((-469 . -1189) T) ((-456 . -1189) T) ((-573 . -101) T) ((-1148 . -280) 19595) ((-607 . -445) 19574) ((-979 . -974) 19558) ((-1250 . -376) 19530) ((-509 . -1076) T) ((-116 . -445) T) ((-1169 . -101) T) ((-1068 . -1076) 19508) ((-1013 . -1076) T) ((-1091 . -92) T) ((-872 . -830) T) ((-345 . -1193) T) ((-1227 . -1034) 19391) ((-1089 . -371) 19360) ((-1220 . -1034) 19195) ((-1199 . -1034) 18985) ((-1227 . -110) 18854) ((-1220 . -110) 18675) ((-1199 . -110) 18444) ((-1183 . -303) 18431) ((-345 . -544) T) ((-359 . -599) 18413) ((-283 . -301) T) ((-583 . -1034) 18386) ((-582 . -1034) 18269) ((-355 . -1076) T) ((-316 . -1076) T) ((-245 . -599) 18230) ((-244 . -599) 18191) ((-982 . -129) T) ((-619 . -23) T) ((-676 . -403) 18158) ((-593 . -23) T) ((-640 . -101) T) ((-583 . -110) 18129) ((-582 . -110) 17998) ((-373 . -1076) T) ((-330 . -101) T) ((-166 . -284) 17909) ((-1198 . -828) 17862) ((-697 . -1035) T) ((-1123 . -506) 17795) ((-1089 . -879) 17727) ((-817 . -1076) T) ((-810 . -1076) T) ((-808 . -1076) T) ((-96 . -101) T) ((-141 . -830) T) ((-598 . -863) 17711) ((-109 . -1189) T) ((-1063 . -101) T) ((-1040 . -34) T) ((-765 . -101) T) ((-763 . -101) T) ((-454 . -101) T) ((-447 . -101) T) ((-235 . -778) 17662) ((-235 . -775) 17613) ((-631 . -101) T) ((-1208 . -284) 17524) ((-646 . -618) 17508) ((-181 . -599) 17490) ((-627 . -280) 17467) ((-1013 . -700) 17451) ((-559 . -284) T) ((-942 . -630) 17376) ((-1258 . -129) T) ((-718 . -630) 17336) ((-698 . -630) 17323) ((-269 . -101) T) ((-446 . -630) 17253) ((-50 . -101) T) ((-569 . -101) T) ((-510 . -101) T) ((-1227 . -1028) T) ((-1220 . -1028) T) ((-1199 . -1028) T) ((-1227 . -228) 17212) ((-316 . -700) 17194) ((-1220 . -238) 17173) ((-1220 . -228) 17125) ((-1199 . -228) 17012) ((-1199 . -238) 16991) ((-1183 . -38) 16888) ((-983 . -778) T) ((-583 . -1028) T) ((-582 . -1028) T) ((-983 . -775) T) ((-950 . -778) T) ((-950 . -775) T) ((-851 . -1035) T) ((-849 . -848) 16872) ((-108 . -599) 16854) ((-676 . -445) T) ((-373 . -700) 16819) ((-412 . -630) 16793) ((-695 . -830) 16772) ((-694 . -38) 16737) ((-582 . -228) 16696) ((-40 . -707) 16668) ((-345 . -323) 16645) ((-345 . -357) T) ((-1056 . -301) 16596) ((-288 . -1088) 16477) ((-1082 . -1189) T) ((-168 . -101) T) ((-1202 . -599) 16444) ((-823 . -129) 16396) ((-627 . -1223) 16380) ((-817 . -700) 16350) ((-810 . -700) 16320) ((-475 . -1189) T) ((-353 . -301) T) ((-347 . -301) T) ((-339 . -301) T) ((-627 . -590) 16297) ((-401 . -129) T) ((-512 . -648) 16281) ((-107 . -301) T) ((-288 . -23) 16164) ((-512 . -633) 16148) ((-676 . -396) NIL) ((-512 . -367) 16132) ((-285 . -599) 16114) ((-90 . -1076) 16092) ((-107 . -1001) T) ((-552 . -140) T) ((-1235 . -148) 16076) ((-475 . -1017) 15903) ((-1221 . -142) 15864) ((-1221 . -144) 15825) ((-1032 . -1189) T) ((-972 . -599) 15807) ((-842 . -599) 15789) ((-799 . -1034) 15632) ((-1246 . -92) T) ((-1245 . -92) T) ((-1072 . -1076) T) ((-1066 . -1076) T) ((-1063 . -303) 15619) ((-1050 . -1076) T) ((-222 . -1189) T) ((-1043 . -1076) T) ((-1015 . -1076) T) ((-998 . -1076) T) ((-765 . -303) 15606) ((-763 . -303) 15593) ((-1148 . -600) NIL) ((-799 . -110) 15422) ((-1148 . -599) 15404) ((-610 . -1076) T) ((-565 . -170) T) ((-521 . -170) T) ((-447 . -303) 15391) ((-476 . -1076) T) ((-1101 . -599) 15373) ((-1101 . -600) 15121) ((-1013 . -169) T) ((-213 . -1076) T) ((-834 . -599) 15103) ((-922 . -282) 15080) ((-594 . -506) 14863) ((-801 . -1017) 14847) ((-468 . -506) 14639) ((-942 . -709) T) ((-718 . -709) T) ((-698 . -709) T) ((-345 . -1088) T) ((-1155 . -599) 14621) ((-218 . -101) T) ((-475 . -371) 14590) ((-507 . -1076) T) ((-502 . -1076) T) ((-500 . -1076) T) ((-782 . -630) 14564) ((-1003 . -445) T) ((-937 . -506) 14497) ((-345 . -23) T) ((-619 . -129) T) ((-593 . -129) T) ((-348 . -445) T) ((-235 . -362) 14476) ((-373 . -169) T) ((-1219 . -1035) T) ((-1198 . -1035) T) ((-220 . -981) T) ((-681 . -381) T) ((-412 . -709) T) ((-683 . -1193) T) ((-1118 . -623) 14424) ((-568 . -848) 14408) ((-1135 . -1165) 14384) ((-683 . -544) T) ((-125 . -1076) 14362) ((-1250 . -1034) 14346) ((-697 . -1076) T) ((-475 . -879) 14278) ((-182 . -1076) T) ((-640 . -38) 14248) ((-348 . -396) T) ((-310 . -144) 14227) ((-310 . -142) 14206) ((-127 . -506) NIL) ((-115 . -544) T) ((-307 . -144) 14162) ((-307 . -142) 14118) ((-48 . -445) T) ((-159 . -1076) T) ((-154 . -1076) T) ((-1135 . -106) 14065) ((-765 . -1127) 14043) ((-671 . -34) T) ((-1250 . -110) 14022) ((-538 . -34) T) ((-477 . -106) 14006) ((-245 . -282) 13983) ((-244 . -282) 13960) ((-850 . -280) 13911) ((-45 . -1189) T) ((-799 . -1028) T) ((-1154 . -47) 13888) ((-799 . -320) 13850) ((-1063 . -38) 13699) ((-799 . -228) 13678) ((-765 . -38) 13507) ((-763 . -38) 13356) ((-447 . -38) 13205) ((-1091 . -599) 13171) ((-1094 . -101) T) ((-627 . -600) 13132) ((-627 . -599) 13044) ((-569 . -1127) T) ((-510 . -1127) T) ((-1123 . -482) 13028) ((-1175 . -1076) 13006) ((-1118 . -25) T) ((-1118 . -21) T) ((-467 . -1035) T) ((-1199 . -775) NIL) ((-1199 . -778) NIL) ((-978 . -830) 12985) ((-802 . -599) 12967) ((-845 . -21) T) ((-845 . -25) T) ((-782 . -709) T) ((-171 . -1193) T) ((-569 . -38) 12932) ((-510 . -38) 12897) ((-380 . -599) 12879) ((-318 . -599) 12861) ((-166 . -280) 12819) ((-62 . -1189) T) ((-111 . -101) T) ((-851 . -1076) T) ((-171 . -544) T) ((-697 . -700) 12789) ((-288 . -129) 12672) ((-220 . -599) 12654) ((-220 . -600) 12584) ((-982 . -623) 12523) ((-1250 . -1028) T) ((-1096 . -144) T) ((-616 . -1165) 12498) ((-714 . -888) 12477) ((-580 . -34) T) ((-629 . -106) 12461) ((-616 . -106) 12407) ((-1208 . -280) 12334) ((-714 . -630) 12259) ((-289 . -1189) T) ((-1154 . -1017) 12155) ((-565 . -564) T) ((-565 . -519) T) ((-521 . -519) T) ((-1143 . -888) NIL) ((-1039 . -600) 12070) ((-1039 . -599) 12052) ((-931 . -599) 12034) ((-337 . -101) T) ((-244 . -1034) 11931) ((-245 . -1034) 11828) ((-388 . -101) T) ((-31 . -1076) T) ((-931 . -600) 11689) ((-696 . -599) 11671) ((-1248 . -1182) 11640) ((-474 . -599) 11622) ((-474 . -600) 11483) ((-242 . -405) 11467) ((-258 . -405) 11451) ((-244 . -110) 11341) ((-245 . -110) 11231) ((-1150 . -630) 11156) ((-1149 . -630) 11053) ((-1143 . -630) 10905) ((-1102 . -630) 10830) ((-345 . -129) T) ((-81 . -434) T) ((-81 . -389) T) ((-982 . -25) T) ((-982 . -21) T) ((-852 . -1076) 10781) ((-851 . -700) 10733) ((-373 . -284) T) ((-166 . -981) 10685) ((-676 . -381) T) ((-978 . -976) 10669) ((-683 . -1088) T) ((-676 . -163) 10651) ((-1219 . -1076) T) ((-1198 . -1076) T) ((-310 . -1174) 10630) ((-310 . -1177) 10609) ((-1140 . -101) T) ((-310 . -938) 10588) ((-132 . -1088) T) ((-115 . -1088) T) ((-588 . -1233) 10572) ((-683 . -23) T) ((-588 . -1076) 10522) ((-90 . -506) 10455) ((-171 . -357) T) ((-310 . -94) 10434) ((-310 . -35) 10413) ((-594 . -482) 10347) ((-132 . -23) T) ((-115 . -23) T) ((-945 . -101) T) ((-701 . -1076) T) ((-468 . -482) 10284) ((-401 . -623) 10232) ((-635 . -1017) 10128) ((-937 . -482) 10112) ((-349 . -1035) T) ((-346 . -1035) T) ((-338 . -1035) T) ((-258 . -1035) T) ((-242 . -1035) T) ((-850 . -600) NIL) ((-850 . -599) 10094) ((-1258 . -21) T) ((-1246 . -599) 10060) ((-1245 . -599) 10026) ((-559 . -981) T) ((-714 . -709) T) ((-1258 . -25) T) ((-245 . -1028) 9956) ((-244 . -1028) 9886) ((-71 . -1189) T) ((-245 . -228) 9838) ((-244 . -228) 9790) ((-40 . -101) T) ((-889 . -1035) T) ((-127 . -482) 9772) ((-1157 . -101) T) ((-1150 . -709) T) ((-1149 . -709) T) ((-1143 . -709) T) ((-1143 . -774) NIL) ((-1143 . -777) NIL) ((-933 . -101) T) ((-900 . -101) T) ((-1102 . -709) T) ((-754 . -101) T) ((-654 . -101) T) ((-467 . -1076) T) ((-333 . -1088) T) ((-171 . -1088) T) ((-313 . -899) 9751) ((-1219 . -700) 9592) ((-851 . -169) T) ((-1198 . -700) 9406) ((-823 . -21) 9358) ((-823 . -25) 9310) ((-240 . -1125) 9294) ((-125 . -506) 9227) ((-401 . -25) T) ((-401 . -21) T) ((-333 . -23) T) ((-166 . -600) 8993) ((-166 . -599) 8975) ((-171 . -23) T) ((-627 . -282) 8952) ((-512 . -34) T) ((-877 . -599) 8934) ((-88 . -1189) T) ((-821 . -599) 8916) ((-791 . -599) 8898) ((-752 . -599) 8880) ((-659 . -599) 8862) ((-235 . -630) 8710) ((-1152 . -1076) T) ((-1148 . -1034) 8533) ((-1126 . -1189) T) ((-1101 . -1034) 8376) ((-834 . -1034) 8360) ((-1148 . -110) 8169) ((-1101 . -110) 7998) ((-834 . -110) 7977) ((-1208 . -600) NIL) ((-1208 . -599) 7959) ((-337 . -1127) T) ((-835 . -599) 7941) ((-1052 . -280) 7920) ((-79 . -1189) T) ((-983 . -888) NIL) ((-594 . -280) 7896) ((-1175 . -506) 7829) ((-480 . -1189) T) ((-559 . -599) 7811) ((-468 . -280) 7790) ((-509 . -92) T) ((-212 . -1189) T) ((-1063 . -226) 7774) ((-283 . -899) T) ((-800 . -301) 7753) ((-849 . -101) T) ((-765 . -226) 7737) ((-983 . -630) 7687) ((-937 . -280) 7664) ((-893 . -630) 7616) ((-619 . -21) T) ((-619 . -25) T) ((-593 . -21) T) ((-337 . -38) 7581) ((-676 . -707) 7548) ((-480 . -863) 7530) ((-480 . -865) 7512) ((-467 . -700) 7353) ((-212 . -863) 7335) ((-63 . -1189) T) ((-212 . -865) 7317) ((-593 . -25) T) ((-421 . -630) 7291) ((-480 . -1017) 7251) ((-851 . -506) 7163) ((-212 . -1017) 7123) ((-235 . -34) T) ((-979 . -1076) 7101) ((-1219 . -169) 7032) ((-1198 . -169) 6963) ((-695 . -142) 6942) ((-695 . -144) 6921) ((-683 . -129) T) ((-134 . -458) 6898) ((-1123 . -599) 6830) ((-640 . -638) 6814) ((-127 . -280) 6789) ((-115 . -129) T) ((-470 . -1193) T) ((-594 . -590) 6765) ((-468 . -590) 6744) ((-330 . -329) 6713) ((-528 . -1076) T) ((-470 . -544) T) ((-1148 . -1028) T) ((-1101 . -1028) T) ((-834 . -1028) T) ((-235 . -774) 6692) ((-235 . -777) 6643) ((-235 . -776) 6622) ((-1148 . -320) 6599) ((-235 . -709) 6509) ((-937 . -19) 6493) ((-480 . -371) 6475) ((-480 . -332) 6457) ((-1101 . -320) 6429) ((-348 . -1242) 6406) ((-212 . -371) 6388) ((-212 . -332) 6370) ((-937 . -590) 6347) ((-1148 . -228) T) ((-646 . -1076) T) ((-628 . -1076) T) ((-1231 . -1076) T) ((-1162 . -1076) T) ((-1063 . -247) 6284) ((-349 . -1076) T) ((-346 . -1076) T) ((-338 . -1076) T) ((-258 . -1076) T) ((-242 . -1076) T) ((-83 . -1189) T) ((-126 . -101) 6262) ((-120 . -101) 6240) ((-1162 . -596) 6219) ((-472 . -1076) T) ((-1117 . -1076) T) ((-472 . -596) 6198) ((-245 . -778) 6149) ((-245 . -775) 6100) ((-244 . -778) 6051) ((-40 . -1127) NIL) ((-244 . -775) 6002) ((-127 . -19) 5984) ((-1056 . -899) 5935) ((-983 . -777) T) ((-983 . -774) T) ((-983 . -709) T) ((-950 . -777) T) ((-127 . -590) 5910) ((-893 . -709) T) ((-90 . -482) 5894) ((-480 . -879) NIL) ((-889 . -1076) T) ((-220 . -1034) 5859) ((-851 . -284) T) ((-212 . -879) NIL) ((-816 . -1088) 5838) ((-58 . -1076) 5788) ((-511 . -1076) 5766) ((-508 . -1076) 5716) ((-489 . -1076) 5694) ((-488 . -1076) 5644) ((-568 . -101) T) ((-552 . -101) T) ((-487 . -101) T) ((-467 . -169) 5575) ((-353 . -899) T) ((-347 . -899) T) ((-339 . -899) T) ((-220 . -110) 5531) ((-816 . -23) 5483) ((-421 . -709) T) ((-107 . -899) T) ((-40 . -38) 5428) ((-107 . -803) T) ((-569 . -343) T) ((-510 . -343) T) ((-1198 . -506) 5288) ((-310 . -445) 5267) ((-307 . -445) T) ((-817 . -280) 5246) ((-333 . -129) T) ((-171 . -129) T) ((-288 . -25) 5110) ((-288 . -21) 4993) ((-45 . -1165) 4972) ((-65 . -599) 4954) ((-871 . -599) 4936) ((-588 . -506) 4869) ((-45 . -106) 4819) ((-1078 . -419) 4803) ((-1078 . -362) 4782) ((-1040 . -1189) T) ((-1039 . -1034) 4769) ((-931 . -1034) 4612) ((-1236 . -101) T) ((-1235 . -101) 4562) ((-474 . -1034) 4405) ((-646 . -700) 4389) ((-1039 . -110) 4374) ((-931 . -110) 4203) ((-470 . -357) T) ((-349 . -700) 4155) ((-346 . -700) 4107) ((-338 . -700) 4059) ((-258 . -700) 3908) ((-242 . -700) 3757) ((-1227 . -630) 3682) ((-1199 . -888) NIL) ((-1072 . -92) T) ((-1066 . -92) T) ((-922 . -633) 3666) ((-1050 . -92) T) ((-474 . -110) 3495) ((-1043 . -92) T) ((-1015 . -92) T) ((-922 . -367) 3479) ((-243 . -101) T) ((-998 . -92) T) ((-73 . -599) 3461) ((-942 . -47) 3440) ((-605 . -1088) T) ((-1 . -1076) T) ((-693 . -101) T) ((-681 . -101) T) ((-1220 . -630) 3337) ((-610 . -92) T) ((-1170 . -599) 3319) ((-1064 . -599) 3301) ((-125 . -482) 3285) ((-476 . -92) T) ((-1052 . -599) 3267) ((-384 . -23) T) ((-86 . -1189) T) ((-213 . -92) T) ((-1199 . -630) 3119) ((-889 . -700) 3084) ((-605 . -23) T) ((-594 . -599) 3066) ((-594 . -600) NIL) ((-468 . -600) NIL) ((-468 . -599) 3048) ((-503 . -1076) T) ((-499 . -1076) T) ((-345 . -25) T) ((-345 . -21) T) ((-126 . -303) 2986) ((-120 . -303) 2924) ((-583 . -630) 2911) ((-220 . -1028) T) ((-582 . -630) 2836) ((-373 . -981) T) ((-220 . -238) T) ((-220 . -228) T) ((-937 . -600) 2797) ((-937 . -599) 2709) ((-849 . -38) 2696) ((-1219 . -284) 2647) ((-1198 . -284) 2598) ((-1096 . -445) T) ((-494 . -830) T) ((-310 . -1115) 2577) ((-978 . -144) 2556) ((-978 . -142) 2535) ((-487 . -303) 2522) ((-289 . -1165) 2501) ((-470 . -1088) T) ((-850 . -1034) 2446) ((-607 . -101) T) ((-1175 . -482) 2430) ((-245 . -362) 2409) ((-244 . -362) 2388) ((-1039 . -1028) T) ((-289 . -106) 2338) ((-127 . -600) NIL) ((-127 . -599) 2304) ((-116 . -101) T) ((-931 . -1028) T) ((-850 . -110) 2233) ((-470 . -23) T) ((-474 . -1028) T) ((-1039 . -228) T) ((-931 . -320) 2202) ((-474 . -320) 2159) ((-349 . -169) T) ((-346 . -169) T) ((-338 . -169) T) ((-258 . -169) 2070) ((-242 . -169) 1981) ((-942 . -1017) 1877) ((-718 . -1017) 1848) ((-509 . -599) 1814) ((-1081 . -101) T) ((-1068 . -599) 1781) ((-1013 . -599) 1763) ((-1227 . -709) T) ((-1220 . -709) T) ((-1199 . -774) NIL) ((-166 . -1034) 1673) ((-1199 . -777) NIL) ((-889 . -169) T) ((-1199 . -709) T) ((-1248 . -148) 1657) ((-982 . -336) 1631) ((-979 . -506) 1564) ((-823 . -830) 1543) ((-552 . -1127) T) ((-467 . -284) 1494) ((-583 . -709) T) ((-355 . -599) 1476) ((-316 . -599) 1458) ((-412 . -1017) 1354) ((-582 . -709) T) ((-401 . -830) 1305) ((-166 . -110) 1201) ((-816 . -129) 1153) ((-720 . -148) 1137) ((-1235 . -303) 1075) ((-480 . -301) T) ((-373 . -599) 1042) ((-512 . -989) 1026) ((-373 . -600) 940) ((-212 . -301) T) ((-138 . -148) 922) ((-697 . -280) 901) ((-480 . -1001) T) ((-568 . -38) 888) ((-552 . -38) 875) ((-487 . -38) 840) ((-212 . -1001) T) ((-850 . -1028) T) ((-817 . -599) 822) ((-810 . -599) 804) ((-808 . -599) 786) ((-799 . -888) 765) ((-1259 . -1088) T) ((-1208 . -1034) 588) ((-835 . -1034) 572) ((-850 . -238) T) ((-850 . -228) NIL) ((-671 . -1189) T) ((-1259 . -23) T) ((-799 . -630) 497) ((-538 . -1189) T) ((-412 . -332) 481) ((-559 . -1034) 468) ((-1208 . -110) 277) ((-683 . -623) 259) ((-835 . -110) 238) ((-375 . -23) T) ((-1162 . -506) 30) ((-644 . -1076) T) ((-663 . -1076) T) ((-658 . -1076) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index cf793d0f..0b28009d 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3432784492) -(4356 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3433818803) +(4369 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -27,13 +27,13 @@ |AttributeAst| |AttributeButtons| |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate| - |BinaryExpansion| |Binding| |BinaryFile| |Bits| |BiModule| |Boolean| + |BinaryExpansion| |Binding| |Bits| |BiModule| |Boolean| |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots| |BalancedPAdicInteger| |BalancedPAdicRational| |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate| |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| - |BinaryTree| |ByteArray| |Byte| |CancellationAbelianMonoid| + |BinaryTree| |ByteBuffer| |Byte| |CancellationAbelianMonoid| |CachableSet| |CapsuleAst| |CardinalNumber| |CartesianTensorFunctions2| |CartesianTensor| |CaseAst| |CategoryAst| |Category| |CharacterClass| |CommonDenominator| @@ -59,7 +59,7 @@ |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| - |d03eefAnnaType| |d03fafAnnaType| |DataBuffer| |Database| + |d03eefAnnaType| |d03fafAnnaType| |DataArray| |Database| |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion| |DefinitionAst| |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| @@ -186,27 +186,27 @@ |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |ImportAst| |InAst| |InputByteConduit&| |InputByteConduit| |InnerNormalBasisFieldFunctions| |InputBinaryFile| |IncrementingMaps| - |IndexedExponents| |InnerNumericEigenPackage| |Infinity| - |InputFormFunctions1| |InputForm| |InfiniteProductCharacteristicZero| - |InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact| - |InfiniteProductFiniteField| |InfiniteProductPrimeField| - |InnerPolySign| |IntegerNumberSystem&| |IntegerNumberSystem| - |InnerTable| |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| - |IntervalCategory| |IntegralDomain&| |IntegralDomain| - |ElementaryIntegration| |IntegerFactorizationPackage| - |IntegrationFunctionsTable| |GenusZeroIntegration| - |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration| - |TranscendentalHermiteIntegration| |Integer| - |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration| + |IndexedExponents| |InnerNumericEigenPackage| |InetClientStreamSocket| + |Infinity| |InputFormFunctions1| |InputForm| + |InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage| + |InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField| + |InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&| + |IntegerNumberSystem| |InnerTable| |AlgebraicIntegration| + |AlgebraicIntegrate| |IntegerBits| |IntervalCategory| + |IntegralDomain&| |IntegralDomain| |ElementaryIntegration| + |IntegerFactorizationPackage| |IntegrationFunctionsTable| + |GenusZeroIntegration| |IntegerNumberTheoryFunctions| + |AlgebraicHermiteIntegration| |TranscendentalHermiteIntegration| + |Integer| |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration| |PatternMatchIntegration| |RationalIntegration| |IntegerRetractions| |RationalFunctionIntegration| |Interval| |IntegerSolveLinearPolynomialEquation| |IntegrationTools| |TranscendentalIntegration| |InverseLaplaceTransform| - |InputOutputByteConduit| |IOMode| |InnerPAdicInteger| - |InnerPrimeField| |InternalPrintPackage| |IntegrationResultToFunction| - |IntegrationResultFunctions2| |IntegrationResult| |IntegerRoots| - |IrredPolyOverFiniteField| |IntegrationResultRFToFunction| - |IrrRepSymNatPackage| + |InputOutputByteConduit| |InputOutputBinaryFile| |IOMode| |IP4Address| + |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage| + |IntegrationResultToFunction| |IntegrationResultFunctions2| + |IntegrationResult| |IntegerRoots| |IrredPolyOverFiniteField| + |IntegrationResultRFToFunction| |IrrRepSymNatPackage| |InternalRationalUnivariateRepresentationPackage| |IsAst| |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |InfiniteTupleFunctions2| @@ -271,11 +271,12 @@ |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing| |NumericComplexEigenPackage| |NumericContinuedFraction| |NonCommutativeOperatorDivision| - |NumberFieldIntegralBasis| |NumericalIntegrationProblem| - |NonLinearSolvePackage| |NonNegativeInteger| - |NonLinearFirstOrderODESolver| |NoneFunctions1| |None| - |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| - |NPCoef| |NumericRealEigenPackage| |NewSparseMultivariatePolynomial| + |NetworkClientSocket| |NumberFieldIntegralBasis| + |NumericalIntegrationProblem| |NonLinearSolvePackage| + |NonNegativeInteger| |NonLinearFirstOrderODESolver| |NoneFunctions1| + |None| |NormInMonogenicAlgebra| |NormalizationPackage| + |NormRetractPackage| |NPCoef| |NumericRealEigenPackage| + |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2| |NewSparseUnivariatePolynomial| |NumberTheoreticPolynomialFunctions| |NormalizedTriangularSetCategory| |Numeric| |NumberFormats| @@ -470,654 +471,659 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |leftScalarTimes!| |selectMultiDimensionalRoutines| - |getGoodPrime| |RemainderList| |ipow| |basis| |makeprod| - |trapezoidalo| |sinhcosh| |say| |rightScalarTimes!| - |selectNonFiniteRoutines| |badNum| |unexpand| |factorial| - |normalElement| |equivOperands| |sup| |subresultantVector| - |normalDeriv| |times!| |mix| |selectSumOfSquaresRoutines| |name| - |triangSolve| |multinomial| |minimalPolynomial| |equiv?| |imagE| - |primitivePart| |e| |ran| |power!| |doubleDisc| |selectFiniteRoutines| - |body| |univariateSolve| |permutation| |eof?| |impliesOperands| - |imagk| |pointData| |highCommonTerms| |gradient| - |selectODEIVPRoutines| |polyred| |realSolve| |stirling1| |imagj| - |parent| |mapCoef| |divergence| |selectPDERoutines| |reset| - |padicFraction| |positiveSolve| |stirling2| |genericRightDiscriminant| - |alternatingGroup| |imagi| |extractProperty| |nthCoef| |laplacian| - |selectOptimizationRoutines| |padicallyExpand| |squareFree| - |summation| |genericRightTraceForm| |abelianGroup| |octon| - |extractClosed| |binomThmExpt| |hessian| |selectIntegrationRoutines| - |write| |numberOfFractionalTerms| |linearlyDependentOverZ?| - |factorials| |genericLeftDiscriminant| |cyclicGroup| |ODESolve| - |extractIndex| |pomopo!| |nthFractionalTerm| |linearDependenceOverZ| - |mkcomm| |genericLeftTraceForm| |dihedralGroup| |replace| - |constDsolve| |extractPoint| |numer| |mapExponents| |entries| - |setchildren!| |firstNumer| |solveLinearlyOverQ| |polarCoordinates| - |genericRightNorm| |mathieu11| |showTheIFTable| |traverse| Y |denom| - |linearAssociatedLog| |key?| |node?| |firstDenom| |imaginary| - |genericRightTrace| |mathieu12| |clearTheIFTable| |defineProperty| - |linearAssociatedOrder| |symbolIfCan| |child?| |compactFraction| - |solid| |genericRightMinimalPolynomial| |mathieu22| |pi| - |linearAssociatedExp| |close| |argument| |distance| |partialFraction| - |solid?| |rightRankPolynomial| |mathieu23| |f04arf| |aQuartic| - |infinity| |createNormalElement| |constantKernel| |nodes| - |gcdPrimitive| |denominators| |genericLeftNorm| |mathieu24| |f04asf| - |radicalSolve| |setLabelValue| |display| |constantIfCan| |rename| - |symmetricGroup| |numerators| |genericLeftTrace| |f04atf| |janko2| - |radicalRoots| |remove| |getCode| |kovacic| |rename!| |convergents| - |genericLeftMinimalPolynomial| |rubiksGroup| |f04axf| |contractSolve| - |kernel| |constant| |printCode| |laplace| |mainValue| |superHeight| - |cross| |approximants| |leftRankPolynomial| |f04faf| |youngGroup| - |decomposeFunc| |last| |draw| |printStatement| |trailingCoefficient| - |mainDefiningPolynomial| |subHeight| |dot| |assoc| |reducedForm| - |generic| |lexGroebner| |f04jgf| |unvectorise| |block| - |normalizeIfCan| |mainForm| |doubleFloatFormat| |scan| - |partialQuotients| |rightUnits| |totalGroebner| |f04maf| |bubbleSort!| - |returns| |input| |polCase| |rischDE| |messagePrint| |graphCurves| - |partialDenominators| |leftUnits| |expressIdealMember| |f04mbf| - |insertionSort!| |#| |goto| |library| |distFact| |rischDEsys| |padecf| - |drawCurves| |partialNumerators| |compBound| |principalIdeal| |f04mcf| - |check| |repeatUntilLoop| |identification| |monomRDE| |pade| |scale| - |reducedContinuedFraction| |tablePow| |LagrangeInterpolation| |f04qaf| - |lprop| |whileLoop| |LyndonCoordinates| |baseRDE| |root| |connect| - |push| |solveid| |psolve| |f07adf| |llprop| |forLoop| SEGMENT - |LyndonBasis| |polyRDE| |quotientByP| |region| |interpret| |bindings| - NOT |testModulus| |wrregime| |f07aef| |lllp| |sin?| |set| - |zeroDimensional?| |monomRDEsys| |moduloP| |points| |cartesian| OR - |HenselLift| |rdregime| |f07fdf| |lllip| |zeroVector| |fglmIfCan| - |baseRDEsys| |modulus| |getGraph| |polar| AND |completeHensel| - |bsolve| |f07fef| |mesh?| |zeroSquareMatrix| |groebner| |weighted| - |digits| |putGraph| |cylindrical| |multMonom| |dmp2rfi| |s01eaf| - |mesh| |top| |identitySquareMatrix| |lexTriangular| |rdHack1| - |continuedFraction| |graphs| |spherical| |build| |se2rfi| |s13aaf| - |polygon?| |continue| |lSpaceBasis| |squareFreeLexTriangular| - |operator| |light| |graphStates| |parabolic| |leadingIndex| |pr2dmp| - |s13acf| |polygon| |finiteBasis| |belong?| |midpoint| |pastel| - |graphState| |parabolicCylindrical| |leadingExponent| |hasoln| - |s13adf| |closedCurve?| |principal?| |Ci| |dark| |midpoints| - |makeViewport2D| |direction| |cons| |paraboloidal| |GospersMethod| - |ParCondList| |s14aaf| |closedCurve| |divisor| |Si| - |getSyntaxFormsFromFile| |realZeros| |viewport2D| |createThreeSpace| - |ellipticCylindrical| |nextSubsetGray| |redpps| |s14abf| |curve?| - |properties| |useNagFunctions| |Ei| |mainCharacterization| |surface| - |getPickedPoints| |prolateSpheroidal| |firstSubsetGray| |B1solve| - |s14baf| |curve| |rationalPoints| |linGenPos| |algebraicOf| - |translate| |coordinate| |colorDef| |oblateSpheroidal| - |clipPointsDefault| |factorset| |s15adf| |point?| |nonSingularModel| - |show| |groebgen| |ReduceOrder| |partitions| |intensity| |bipolar| * - |drawToScale| |maxrank| |s15aef| |enterPointData| |ptree| - |algSplitSimple| |totolex| |setref| |conjugates| |lighting| - |bipolarCylindrical| |adaptive| |minrank| |s17acf| |composites| - |hyperelliptic| |trace| |minPol| |deref| |shuffle| |clipSurface| - |source| |toroidal| |figureUnits| |minset| |s17adf| |components| - |elliptic| |computeBasis| |ref| |shufflein| |showClipRegion| |conical| - |putColorInfo| |nextSublist| |s17aef| |numberOfComposites| ~= - |integralDerivationMatrix| |coord| |radicalEigenvectors| |sequences| - |showRegion| |modTree| |mr| |appendPoint| |overset?| |s17aff| - |numberOfComponents| |coerce| |integralRepresents| |anticoord| - |radicalEigenvector| |permutations| |hitherPlane| |multiEuclideanTree| - |constructorName| |component| |ParCond| |s17agf| |create3Space| - |construct| |integralCoordinates| |intcompBasis| |radicalEigenvalues| - |atoms| |eyeDistance| |complexZeros| |ranges| |redmat| |s17ahf| - |outputAsScript| |yCoordinates| |choosemon| |eigenMatrix| |makeResult| - |perspective| |target| |divisorCascade| |pointLists| |regime| |s17ajf| - |outputAsTex| |buildSyntax| |inverseIntegralMatrixAtInfinity| - |transform| |normalise| |is?| |zoom| |graeffe| |makeGraphImage| - |sqfree| |s17akf| |abs| |solve| |integralMatrixAtInfinity| |formula| - |pack!| |gramschmidt| |Is| |rotate| |pleskenSplit| |graphImage| - |inconsistent?| |s17dcf| |Beta| |inverseIntegralMatrix| |complexLimit| - |orthonormalBasis| |addMatchRestricted| |drawStyle| - |reciprocalPolynomial| |groebSolve| |numFunEvals| |s17def| |digamma| - |integralMatrix| |limit| |antisymmetricTensors| |insertMatch| - |outlineRender| |rootRadius| |testDim| |setAdaptive| |s17dgf| - |polygamma| |reduceBasisAtInfinity| |linearlyDependent?| - |createGenericMatrix| |addMatch| |diagonals| |schwerpunkt| - |genericPosition| |adaptive?| |s17dhf| |Gamma| |normalizeAtInfinity| - |linearDependence| |symmetricTensors| |nrows| |getMatch| |axes| - |setErrorBound| |lfunc| |setScreenResolution| |s17dlf| |besselJ| - |complementaryBasis| |solveLinear| |tensorProduct| |ncols| |failed?| - |controlPanel| |startPolynomial| |inHallBasis?| |s18acf| - |screenResolution| |sum| |besselY| |integral?| |reducedSystem| - |permutationRepresentation| |optpair| |viewpoint| |compound?| - |cycleElt| |sort| |reorder| |setMaxPoints| |s18adf| |besselI| - |integralAtInfinity?| |duplicates?| |completeEchelonBasis| - |getBadValues| |dimensions| |getOperands| |computeCycleLength| - |headAst| |maxPoints| |s18aef| |besselK| |integralBasisAtInfinity| - |mapGen| |createRandomElement| |resetBadValues| |resize| - |computeCycleEntry| |heap| |setMinPoints| |s18aff| |airyAi| - |ramified?| |mapExpon| |plusInfinity| |cyclicSubmodule| - |hasTopPredicate?| |move| |arity| |gcdprim| |minPoints| |s18dcf| - |airyBi| |clearCache| |triangularSystems| |ramifiedAtInfinity?| - |commutativeEquality| |minusInfinity| |standardBasisOfCyclicSubmodule| - |topPredicate| |modifyPointData| |coerceP| |gcdcofact| |parametric?| - |s18def| |subNode?| |rootDirectory| |setelt| |singular?| |leftMult| - |areEquivalent?| |setTopPredicate| |subspace| |gcdcofactprim| - |plotPolar| |s19aaf| |infLex?| |singularAtInfinity?| |rightMult| - |isAbsolutelyIrreducible?| |patternVariable| |makeViewport3D| - |equality| |lintgcd| |debug3D| |s19abf| |setEmpty!| |copy| - |branchPoint?| |makeUnit| |meatAxe| |withPredicates| |viewport3D| - |nary?| |hex| |numFunEvals3D| |s19acf| |setStatus!| - |branchPointAtInfinity?| |reverse!| |scanOneDimSubspaces| - |setPredicates| |viewDeltaYDefault| |unary?| |every?| |setAdaptive3D| - |s19adf| |setCondition!| |makeMulti| |retractIfCan| |expt| |retract| - |predicates| |viewDeltaXDefault| |nullary?| |match?| |any?| - |adaptive3D?| |s20acf| |setValue!| |swap| |autoCoerce| |type| - |makeTerm| |showArrayValues| |hasPredicate?| |viewZoomDefault| - |derivative| |arguments| |host| |setScreenResolution3D| |s20adf| - |empty?| |minPoly| |listOfMonoms| |showScalarValues| |optional?| - |viewPhiDefault| |constantOperator| |precision| |width| |trueEqual| - |screenResolution3D| |s21baf| |splitNodeOf!| |freeOf?| |directory| - |symmetricSquare| |solveRetract| |simplify| |multiple?| - |viewThetaDefault| |constantOpIfCan| |s21bbf| |remove!| |error| - |operators| |factor1| |mainVariable| |htrigs| |generic?| - |pointColorDefault| |integerBound| |useSingleFactorBound?| |s21bcf| - |subNodeOf?| |assert| |substring?| |mainKernel| |symmetricProduct| - |uniform01| |simplifyExp| |quoted?| |lineColorDefault| |setright!| - |numeric| |useSingleFactorBound| |s21bdf| |nodeOf?| |distribute| - |setleft!| |symmetricPower| |normal01| |simplifyLog| |inR?| - |axesColorDefault| |radical| |inc| |useEisensteinCriterion?| - |fortranCompilerName| |updateStatus!| |suffix?| - |functionIsFracPolynomial?| |isList| |unitsColorDefault| - |brillhartIrreducible?| |useEisensteinCriterion| |fortranLinkerArgs| - |extractSplittingLeaf| |problemPoints| |perfectSquare?| |asinIfCan| - |isOp| |pointSizeDefault| |brillhartTrials| |eisensteinIrreducible?| - |aspFilename| |squareMatrix| |prefix?| |zerosOf| |perfectSqrt| - |acosIfCan| |map| |satisfy?| |viewPosDefault| |noLinearFactor?| - |tryFunctionalDecomposition?| |optional| |dimensionsOf| |transpose| - |singularitiesOf| |approxSqrt| |atanIfCan| |addBadValue| - |viewSizeDefault| |insertRoot!| |tryFunctionalDecomposition| - |polynomialZeros| |generateIrredPoly| |acotIfCan| |badValues| - |viewDefaults| |binarySearchTree| |btwFact| |e01saf| |startTableGcd!| - |f2df| |complexExpand| |asecIfCan| |retractable?| |viewWriteDefault| - |nor| |beauzamyBound| |e01sbf| |stopTableGcd!| |ef2edf| - |complexIntegrate| |acscIfCan| |ListOfTerms| |viewWriteAvailable| - |nand| |bombieriNorm| |e01sef| |startTableInvSet!| |optimize| - |ocf2ocdf| |dimensionOfIrreducibleRepresentation| |sinhIfCan| - |convert| |binaryTournament| |rootBound| |e01sff| |stopTableInvSet!| - |infix?| |socf2socdf| |irreducibleRepresentation| |coshIfCan| - |infinite?| |pseudoRemainder| |any| |binaryTree| |signature| - |singleFactorBound| |e02adf| |stosePrepareSubResAlgo| |mask| BY - |df2fi| |checkRur| |tanhIfCan| |finite?| |shiftLeft| |byte| - |quadraticNorm| |null| |e02aef| |stoseInternalLastSubResultant| |init| - |edf2fi| |cAcsch| |cothIfCan| |pureLex| |shiftRight| |subtractIfCan| - |infinityNorm| |case| |e02agf| |stoseIntegralLastSubResultant| - |edf2df| |cAsech| |sechIfCan| |totalLex| |karatsubaDivide| - |setPosition| |scaleRoots| |Zero| |e02ahf| |stoseLastSubResultant| - |pattern| |expenseOfEvaluation| |cAcoth| |cschIfCan| |reverseLex| - |monicDivide| |generalizedContinuumHypothesisAssumed| |shiftRoots| - |One| |tail| |e02ajf| |stoseInvertible?sqfreg| |numberOfOperations| - |cAtanh| |asinhIfCan| |leftLcm| |divideExponents| - |generalizedContinuumHypothesisAssumed?| |degreePartition| |e02akf| - |stoseInvertibleSetsqfreg| |edf2efi| |cAcosh| |acoshIfCan| - |rightExtendedGcd| |unmakeSUP| |countable?| |factorOfDegree| |e02baf| - |stoseInvertible?reg| |dfRange| |cAsinh| |atanhIfCan| |printInfo| - |rightGcd| |makeSUP| |Aleph| |factorsOfDegree| |e02bbf| - |stoseInvertibleSetreg| |char| |message| |dflist| |cCsch| |acothIfCan| - |rightExactQuotient| |vectorise| |unravel| |pascalTriangle| |e02bcf| - |stoseInvertible?| |df2mf| |cSech| |asechIfCan| |rightRemainder| - |extend| |lift| |expr| |id| |isQuotient| |leviCivitaSymbol| - |rangePascalTriangle| |elt| |e02bdf| |stoseInvertibleSet| |plus| - |ldf2vmf| |cCoth| |acschIfCan| |rightQuotient| |truncate| |reduce| - |kroneckerDelta| |sizePascalTriangle| |e02bef| |stoseSquareFreePart| - |edf2ef| |cTanh| |pushdown| |rightLcm| |order| |table| |reindex| - |fillPascalTriangle| |e02daf| |coleman| |vedf2vef| |cCosh| |pushup| - |leftExtendedGcd| |terms| |new| |alphanumeric| |cond| |safeCeiling| - |e02dcf| |inverseColeman| |float| |df2st| |cSinh| - |reducedDiscriminant| |leftGcd| |squareFreePart| |variable| - |alphabetic| |safeFloor| |e02ddf| |listYoungTableaus| |times| |f2st| - |cAcsc| |idealSimplify| |leftExactQuotient| |BumInSepFFE| |iterators| - |height| |hexDigit| |safetyMargin| |e02def| |makeYoungTableau| - |ldf2lst| |cAsec| |definingInequation| |leftRemainder| - |multiplyExponents| |digit| |sumSquares| |e02dff| |nextColeman| - |implies| |sdf2lst| |cAcot| |definingEquations| |leftQuotient| - |laurentIfCan| |tree| |t| |status| |charClass| |euclideanNormalForm| - |e02gaf| |nextLatticePermutation| |getlo| |cAtan| |setStatus| - |monicLeftDivide| |laurentRep| |alphanumeric?| |euclideanGroebner| - |e02zaf| |nextPartition| |monom| |xor| |gethi| |cAcos| - |quasiAlgebraicSet| |monicRightDivide| |rationalPower| |lowerCase?| - |factorGroebnerBasis| |e04dgf| |numberOfImproperPartitions| - |outputMeasure| |cAsin| |radicalSimplify| |leftDivide| |dominantTerm| - |upperCase?| |groebnerFactorize| |e04fdf| |subSet| |measure2Result| - |cCsc| |denominator| |rightDivide| |limitPlus| |alphabetic?| |credPol| - |e04gcf| |unrankImproperPartitions0| |common| GE |att2Result| |cSec| - |numerator| |hermiteH| |split!| |hexDigit?| |redPol| = |e04jaf| - |unrankImproperPartitions1| GT |iflist2Result| |cCot| |quadraticForm| - |laguerreL| |setlast!| |left| |escape| |arg1| |gbasis| |e04mbf| - |subresultantSequence| LE |pdf2ef| |cTan| |back| |legendreP| - |setrest!| |ord| |right| |critT| |arg2| |reverse| < |e04naf| - |SturmHabichtSequence| LT |currentSubProgram| |pdf2df| |cCos| |front| - |writeBytes!| |cyclic?| |setfirst!| |mkIntegral| |critM| > |e04ucf| - |SturmHabichtCoefficients| |showSummary| |newSubProgram| |df2ef| - |cSin| |rotate!| |writeByteIfCan!| |complexNormalize| |cycleSplit!| - |radPoly| |conditions| |critB| <= |e04ycf| |SturmHabicht| - |clearTheSymbolTable| |fi2df| |cLog| |dequeue!| |isOpen?| |concat!| - |rootPoly| |match| |critBonD| >= |f01brf| |countRealRoots| |erf| - |showTheSymbolTable| |mat| |showAttributes| |cExp| |enqueue!| - |outputBinaryFile| |cycleTail| |loadNativeModule| |ravel| |goodPoint| - |critMTonD1| |f01bsf| |SturmHabichtMultiple| |printTypes| |neglist| - |cRationalPower| |quatern| |blankSeparate| |cycleLength| |chvar| - |reshape| |critMonD1| |f01maf| |countRealRootsMultiple| |newTypeLists| - |multiEuclidean| |cPower| |imagK| |semicolonSeparate| |cycleEntry| - |find| |redPo| + |f01mcf| |signatureAst| |extendedEuclidean| - |seriesToOutputForm| |imagJ| |commaSeparate| |depth| |invmultisect| - |clipParametric| |hMonic| - |f01qcf| |pop!| |typeLists| - |euclideanSize| |iCompose| |imagI| |pile| |multisect| |clipWithRanges| - |updatF| / |f01qdf| |push!| |externalList| |sizeLess?| - |taylorQuoByVar| |conjugate| |paren| |revert| |numberOfHues| |sPol| - |f01qef| |minordet| |simplifyPower| |iExquo| |queue| |bracket| - |generalLambert| |yellow| |update| |updatD| |f01rcf| |determinant| - |number?| |getStream| |nthRoot| |prod| |evenlambert| |iifact| - |minGbasis| |f01rdf| |diagonalProduct| |seriesSolve| |getRef| - |equation| |fractRadix| |overlabel| |oddlambert| |getOperator| - |iibinom| |lepol| |f01ref| |diagonal| |constantToUnaryFunction| - |makeSeries| |wholeRadix| |overbar| |lambert| |fortran| |nil?| - |iiperm| |prinshINFO| |f02aaf| |diagonalMatrix| |log| |tubePlot| GF2FG - |cycleRagits| |prime| |lagrange| |iipow| |prindINFO| |f02abf| - |scalarMatrix| |exponentialOrder| FG2F |prefixRagits| |quote| - |univariatePolynomial| |fprindINFO| |f02adf| |hermite| |digit?| - |completeEval| F2FG |fractRagits| |supersub| |integrate| |rightRank| - |position| |prinpolINFO| |f02aef| |completeHermite| |function| ~ - |lowerPolynomial| |explogs2trigs| |wholeRagits| |presuper| - |multiplyCoefficients| |doubleRank| |prinb| |f02aff| |smith| - |raisePolynomial| |trigs2explogs| |radix| |presub| |quoByVar| - |weakBiRank| |critpOrder| |outputList| |f02agf| |completeSmith| |open| - |swap!| |randnum| |super| |coefficients| |biRank| |makeCrit| |f02ajf| - |diophantineSystem| |iilog| |fill!| |reseed| |sub| |stFunc1| - |basisOfCommutingElements| |virtualDegree| |f02akf| |csubst| |iisin| - |minIndex| |seed| |rarrow| |stFunc2| |basisOfLeftAnnihilator| |stack| - |conditionsForIdempotents| |f02awf| |particularSolution| |iicos| - |maxIndex| |rational| |assign| |stFuncN| |basisOfRightAnnihilator| - |f02axf| |mapSolve| |iitan| |entry?| |rational?| |slash| - |fixedPointExquo| |basisOfLeftNucleus| |nilFactor| |f02bbf| - |quadratic| |iicot| |indices| |rationalIfCan| |over| |ode1| - |basisOfRightNucleus| |regularRepresentation| |f02bjf| |cubic| |dim| - |iisec| |index?| |setvalue!| |zag| |ode2| |basisOfMiddleNucleus| - |script| |traceMatrix| |f02fjf| |quartic| |iicsc| |declare| |postfix| - |ode| |basisOfNucleus| |leader| |randomLC| |f02wef| |aLinear| |iiasin| - |eulerPhi| |collect| |infix| |complexElementary| |mpsode| - |basisOfCenter| |minimize| |f02xef| |aQuadratic| |iiacos| |fibonacci| - |mantissa| |collectUnder| |double| |vconcat| |trigs| UP2UTS - |basisOfLeftNucloid| |tex| |module| |f04adf| |aCubic| |lcm| |iiatan| - |harmonic| |mainVariable?| |hconcat| UTS2UP |basisOfRightNucloid| - |rightRegularRepresentation| |iiacot| |jacobi| |mainVariables| - |rspace| LODO2FUN |basisOfCentroid| |leftRegularRepresentation| - |squareFreePrim| |internalLastSubResultant| |append| |iiasec| - |moebiusMu| |removeSquaresIfCan| |vspace| RF2UTS - |radicalOfLeftTraceForm| |rightTraceMatrix| |compdegd| - |checkPrecision| |integralLastSubResultant| |gcd| |iiacsc| - |numberOfDivisors| |unprotectedRemoveRedundantFactors| |hspace| - |magnitude| |showTypeInOutput| |leftTraceMatrix| |univcase| - |toseLastSubResultant| |false| |iisinh| |sumOfDivisors| - |removeRedundantFactors| |objectOf| |rightDiscriminant| |consnewpol| - |toseInvertible?| |lhs| |iicosh| |sumOfKthPowerDivisors| - |certainlySubVariety?| |OMputString| |stronglyReduced?| |domainOf| - |leftDiscriminant| |nsqfree| |toseInvertibleSet| |iitanh| |rhs| - |HermiteIntegrate| |OMputSymbol| |declare!| |possiblyNewVariety?| - |prefix| |reduced?| |applyRules| |represents| |intChoose| - |toseSquareFreePart| |second| |iicoth| |palgint| |probablyZeroDim?| - |OMgetApp| |normalized?| |localUnquote| |node| |test| |mergeFactors| - |coefChoose| |quotedOperators| |iisech| |palgextint| |OMgetAtp| - |selectPolynomials| |quasiComponent| |cyclicParents| |setColumn!| - |isMult| |myDegree| |rur| |iicsch| |palglimint| |OMgetAttr| - |selectOrPolynomials| |initials| |cyclicEqual?| |setRow!| |exprToXXP| - |normDeriv2| |create| |iiasinh| |palgRDE| |selectAndPolynomials| - |OMgetBind| |basicSet| |oneDimensionalArray| |exprToUPS| - |plenaryPower| |enterInCache| |iiacosh| |dec| |palgLODE| - |quasiMonicPolynomials| |OMgetBVar| |infRittWu?| |associatedSystem| - |exprToGenUPS| |c02aff| |currentCategoryFrame| |iiatanh| - |splitConstant| |univariate?| |OMgetError| |getCurve| - |uncouplingMatrices| |localAbs| |c02agf| |currentScope| |iiacoth| - |pmComplexintegrate| |segment| |univariatePolynomials| |OMgetObject| - |listLoops| |associatedEquations| |universe| |c05adf| |pushNewContour| - |iiasech| |pmintegrate| |linear?| |OMgetEndApp| |closed?| |arrayStack| - |complement| |c05nbf| |findBinding| |iiacsch| |infieldint| - |linearPolynomials| |OMgetEndAtp| |open?| |setButtonValue| - |cardinality| |c05pbf| |contours| |call| |specialTrigs| |extendedint| - |bivariate?| |OMgetEndAttr| |setClosed| |setAttributeButtonStep| - |internalIntegrate0| |c06eaf| |structuralConstants| |localReal?| |eq| - |limitedint| |bivariatePolynomials| |OMgetEndBind| |tube| - |resetAttributeButtons| |makeCos| |c06ebf| |coordinates| |void| - |rischNormalize| |iter| |integerIfCan| - |removeRoughlyRedundantFactorsInPols| |OMgetEndBVar| |unitVector| - |getButtonValue| |makeSin| |c06ecf| |bounds| |realElementary| - |internalIntegrate| |removeRoughlyRedundantFactorsInPol| - |OMgetEndError| |cosSinInfo| |decrease| |iiGamma| |c06ekf| |high| - |list| |exquo| |validExponential| |infieldIntegrate| |interReduce| - |OMgetEndObject| |loopPoints| |increase| |iiabs| |c06fpf| |low| |car| - |div| |/\\| |rootNormalize| |limitedIntegrate| |roughBasicSet| - |OMgetInteger| |generalTwoFactor| |morphism| |bringDown| |c06fqf| - |subset?| |next| |cdr| |quo| |\\/| |tanQ| |extendedIntegrate| - |crushedSet| |hash| |OMgetFloat| |generalSqFr| |balancedFactorisation| - |newReduc| |c06frf| |symmetricDifference| |setDifference| |callForm?| - |count| |varselect| |OMgetVariable| - |rewriteSetByReducingWithParticularGenerators| |twoFactor| |center| - |mapDown!| |logical?| |c06fuf| |difference| |setIntersection| |rem| - |getIdentifier| |kmax| |rewriteIdealWithQuasiMonicGenerators| - |OMgetString| |setOrder| |mapUp!| |character?| |c06gbf| |intersect| - |setUnion| |getConstant| |exp| |ksec| |squareFreeFactors| - |OMgetSymbol| |getOrder| |setleaves!| |doubleComplex?| |c06gcf| - |part?| |apply| |select!| |approximate| |vark| - |univariatePolynomialsGcds| |OMgetType| |less?| |balancedBinaryTree| - |previous| |complex?| |c06gqf| |latex| |delete!| |symbolTable| - |removeConstantTerm| |removeRoughlyRedundantFactorsInContents| - |OMencodingBinary| |userOrdered?| |sylvesterMatrix| |double?| |c06gsf| - |member?| |size| |sn| |mkPrim| |removeRedundantFactorsInContents| - |OMencodingSGML| |largest| |bezoutMatrix| |ffactor| |d01ajf| - |enumerate| |dn| |pushFortranOutputStack| |intPatternMatch| - |removeRedundantFactorsInPols| |OMencodingXML| |more?| - |bezoutResultant| |qfactor| |d01akf| |setOfMinN| |sncndn| - |popFortranOutputStack| |primintegrate| |irreducibleFactors| - |OMencodingUnknown| |setVariableOrder| |bezoutDiscriminant| |UP2ifCan| - |d01alf| |elements| |first| |rule| |categoryFrame| |outputAsFortran| - |expintegrate| |lazyIrreducibleFactors| |omError| |getVariableOrder| - |bfEntry| |anfactor| |d01amf| |replaceKthElement| |rest| - |setProperties!| |tanintegrate| |removeIrreducibleRedundantFactors| - |errorInfo| |resetVariableOrder| |bfKeys| |fortranCharacter| |d01anf| - |incrementKthElement| |substitute| |getProperties| |primextendedint| - |normalForm| |errorKind| |prime?| |lp| |inspect| - |fortranDoubleComplex| |systemCommand| |d01apf| |hostPlatform| - |float?| |removeDuplicates| |not| |setProperty!| |expextendedint| - |changeBase| |OMReadError?| |rationalFunction| |extract!| - |fortranComplex| |d01aqf| |nativeModuleExtension| |integer?| |key| - |getProperty| |primlimitedint| |companionBlocks| |OMUnknownSymbol?| - |taylorIfCan| |bag| |fortranLogical| |d01asf| |bumprow| |symbol?| - |scopes| |zero| |explimitedint| |xCoord| |OMUnknownCD?| |removeZeroes| - |binding| |fortranInteger| |d01bbf| |bumptab| |normal| |string?| - |filename| |eigenvalues| |primextintfrac| |yCoord| |OMParseError?| - |taylorRep| |position!| |fortranDouble| |d01fcf| |bumptab1| |list?| - |not?| |eigenvector| |And| |primlimintfrac| |zCoord| |OMwrite| - |factorSquareFree| |setProperties| |fortranReal| |d01gaf| |untab| - |pair?| |parse| |generalizedEigenvector| |Or| |primintfldpoly| - |rCoord| |po| |henselFact| |setProperty| |external?| |d01gbf| |bat1| - |atom?| |generalizedEigenvectors| |Not| |expintfldpoly| |thetaCoord| - |OMread| |hasHi| |deleteProperty!| |scalarTypeOf| |d02bbf| |bat| - |null?| |eigenvectors| |monomialIntegrate| |phiCoord| |OMreadFile| - |fmecg| |has?| |fortranCarriageReturn| |d02bhf| |tab1| |startTable!| - |label| |factorAndSplit| |monomialIntPoly| |color| |OMreadStr| - |commonDenominator| |comparison| |fortranLiteral| |d02cjf| |tab| - |stopTable!| |rightOne| |vector| |inverseLaplace| |hue| |OMlistCDs| - |clearDenominator| |fortranLiteralLine| |d02ejf| |lex| - |supDimElseRittWu?| |leftOne| |differentiate| |bothWays| |shade| - |OMlistSymbols| |splitDenominator| |processTemplate| |d02gaf| - |algebraicSort| |rightZero| |iprint| |nthRootIfCan| |OMsupportsCD?| - |monicRightFactorIfCan| |makeFR| |d02gbf| |moreAlgebraic?| |leftZero| - |elem?| |expIfCan| |OMsupportsSymbol?| |rightFactorIfCan| - |musserTrials| |d02kef| |subTriSet?| |notelem| |logIfCan| - |OMunhandledSymbol| |leftFactorIfCan| |flatten| |sample| - |stopMusserTrials| |d02raf| |subPolSet?| |setnext!| |logpart| - |sinIfCan| |OMreceive| |monicDecomposeIfCan| |numberOfFactors| - |d03edf| |internalSubPolSet?| |setprevious!| |ratpart| |cosIfCan| - |OMsend| |monicCompleteDecompose| |argscript| |modularFactor| |d03eef| - |internalInfRittWu?| |shanksDiscLogAlgorithm| |index| |mkAnswer| - |tanIfCan| |OMserve| |divideIfCan| |search| |d03faf| - |internalSubQuasiComponent?| |reflect| |perfectNthPower?| |cotIfCan| - |makeop| |noKaratsuba| |superscript| |antiCommutative?| |e01baf| - |slex| |subQuasiComponent?| |option| |reify| |perfectNthRoot| - |secIfCan| |opeval| |karatsubaOnce| |subscript| |commutative?| - |e01bef| |inverse| |removeSuperfluousQuasiComponents| |or| |separant| - |pair| |approxNthRoot| |cscIfCan| |evaluateInverse| |karatsuba| - |rightCharacteristicPolynomial| |e01bff| |subCase?| |isobaric?| - |nothing| |evaluate| |separate| |leftCharacteristicPolynomial| - |e01bgf| |removeSuperfluousCases| |weights| |inputBinaryFile| - |implies?| |conjug| |pseudoDivide| |rightNorm| |e01bhf| - |prepareDecompose| |differentialVariables| |increment| |orOperands| - |adjoint| |pseudoQuotient| |leftNorm| |leaves| |e01daf| |branchIfCan| - |extractBottom!| |charpol| |or?| |getDatabase| |composite| - |outerProduct| |rightTrace| |extractTop!| |solve1| |andOperands| - |numericalOptimization| |subResultantGcd| |save| |leftTrace| - |bandedHessian| |routines| |varList| |insertBottom!| - |innerEigenvectors| |and?| |goodnessOfFit| |resultant| |someBasis| - |rightTrim| |jacobian| |mainSquareFreePart| |generator| |insertTop!| - |parseString| |notOperand| |whatInfinity| |discriminant| |sort!| - |scripted?| |bandedJacobian| |leftTrim| |mainPrimitivePart| |lists| - |bottom!| |unparse| |variable?| |resetNew| |copyInto!| |duplicates| - |mainContent| |top!| |binary| |term| |iFTable| |closeComponent| - |symFunc| |sorted?| |removeDuplicates!| |primitivePart!| |dequeue| - |packageCall| |term?| |showIntensityFunctions| |modifyPoint| - |symbolTableOf| |LiePoly| |linears| |nextsubResultant2| |recolor| - |innerSolve1| |equiv| |expint| |addPointLast| |argumentListOf| - |quickSort| |ddFact| |LazardQuotient2| |drawComplex| |innerSolve| - |merge!| |diff| |addPoint2| |returnTypeOf| |heapSort| - |separateFactors| |LazardQuotient| |drawComplexVectorField| |makeEq| - |resultantEuclidean| |algDsolve| |addPoint| |printHeader| |shellSort| - |exptMod| |subResultantChain| |setRealSteps| |modularGcdPrimitive| - |denomLODE| |semiResultantEuclidean2| |merge| F |returnType!| - |outputSpacing| |meshPar2Var| |halfExtendedSubResultantGcd2| |lo| - |setImagSteps| |modularGcd| |semiResultantEuclidean1| - |indicialEquations| |deepCopy| |outputGeneral| |meshFun2Var| - |halfExtendedSubResultantGcd1| |incr| |setClipValue| |reduction| - |indiceSubResultant| |indicialEquation| |shallowCopy| |real?| - |outputFixed| |meshPar1Var| |extendedSubResultantGcd| |hi| |option?| - |signAround| |indiceSubResultantEuclidean| |denomRicDE| - |numberOfChildren| |complexForm| |outputFloating| |ptFunc| - |exactQuotient!| |range| |stop| |invmod| - |semiIndiceSubResultantEuclidean| |leadingCoefficientRicDE| |children| - |predicate| |makeObject| |exp1| |minimumExponent| |exactQuotient| - |colorFunction| |powmod| |degreeSubResultant| - |constantCoefficientRicDE| |child| |log2| |max| |maximumExponent| - |primPartElseUnitCanonical!| |curveColor| |mulmod| - |degreeSubResultantEuclidean| |changeVar| |birth| |coef| - |rationalApproximation| |rowEch| |primPartElseUnitCanonical| - |UpTriBddDenomInv| |pointColor| |submod| - |semiDegreeSubResultantEuclidean| |ratDsolve| |internal?| |relerror| - |rowEchLocal| |lazyResidueClass| |kind| |clip| |addmod| - |lastSubResultantEuclidean| |indicialEquationAtInfinity| |root?| - |complexSolve| |rowEchelonLocal| |monicModulo| |op| |clipBoolean| - |symmetricRemainder| |semiLastSubResultantEuclidean| |reduceLODE| - |leaf?| |complexRoots| |normalizedDivide| |lazyPseudoDivide| |style| - |positiveRemainder| |subResultantGcdEuclidean| |singRicDE| - |outputForm| |comment| |currentEnv| |realRoots| |maxint| - |lazyPremWithDefault| |maxrow| |toScale| |bit?| - |semiSubResultantGcdEuclidean2| |polyRicDE| |expandPower| |obj| - |leadingTerm| |binaryFunction| |lazyPquo| |tableau| - |pointColorPalette| |parameters| |algint| - |semiSubResultantGcdEuclidean1| |ricDsolve| |expandLog| |cache| - |writable?| |makeFloatFunction| |lazyPrem| |concat| - |curveColorPalette| |algintegrate| |discriminantEuclidean| - |triangulate| |cos2sec| |readable?| |unaryFunction| |pquo| |var1Steps| - |palgintegrate| |semiDiscriminantEuclidean| |solveInField| |cosh2sech| - |exists?| |compiledFunction| |prem| |union| |shift| |generate| - |var2Steps| |operation| |palginfieldint| |chainSubResultants| - |wronskianMatrix| |cot2trig| |zeroOf| |extension| |corrPoly| - |supRittWu?| |category| |space| |bitLength| |schema| - |variationOfParameters| |coth2trigh| |rootsOf| |shallowExpand| - |lifting| |RittWuCompare| |rank| |domain| |incrementBy| |tubePoints| - |bitCoef| |resultantReduit| |result| |factors| |csc2sin| |makeSketch| - |deepExpand| |lifting1| |mainMonomials| |expand| |length| |package| - |tubeRadius| |bitTruth| |resultantReduitEuclidean| |nthFactor| - |csch2sinh| |inrootof| |clearFortranOutputStack| |exprex| - |mainCoefficients| |filterWhile| |scripts| |weight| |contains?| - |semiResultantReduitEuclidean| |nthExpon| |sec2cos| |droot| - |showFortranOutputStack| |coerceL| |leastMonomial| |filterUntil| - |makeVariable| |inf| |divide| |overlap| |sech2cosh| |iroot| - |topFortranOutputStack| |coerceS| |mainMonomial| |select| - |finiteBound| |qinterval| |Lazard| |hcrf| |sin2csc| |unknown| |size?| - |setFormula!| |frobenius| |quasiMonic?| |sortConstraints| |interval| - |Lazard2| |hclf| |sinh2csch| |eq?| |linkToFortran| |computePowers| - |monic?| |sumOfSquares| |unit?| |nextsousResultant2| |lexico| - |tan2trig| |doublyTransitive?| |setLegalFortranSourceExtensions| |pow| - |deepestInitial| |splitLinear| |associates?| |resultantnaif| - |OMmakeConn| |tanh2trigh| |knownInfBasis| |fracPart| |An| - |iteratedInitials| |nil| |simpleBounds?| |unitCanonical| - |resultantEuclideannaif| |OMcloseConn| |tan2cot| |rootSplit| - |polyPart| |UnVectorise| |deepestTail| |linearMatrix| |unitNormal| - |semiResultantEuclideannaif| |OMconnInDevice| |tanh2coth| |ratDenom| - |rules| |fullPartialFraction| |Vectorise| |head| |makeRecord| |failed| - |linearPart| |lfextendedint| |pdct| |OMconnOutDevice| |cot2tan| - |ratPoly| |primeFrobenius| |setPoly| |mdeg| |nonLinearPart| - |lflimitedint| |powers| |OMconnectTCP| |coth2tanh| |rootPower| - |discreteLog| |exponent| |mvar| |typeList| |quadratic?| |lfinfieldint| - |dilog| |partition| |OMbindTCP| |removeCosSq| |rootProduct| - |decreasePrecision| |exQuo| |relativeApprox| |changeNameToObjf| - |parametersOf| |lfintegrate| |complete| |sin| |point| |OMopenFile| - |removeSinSq| |rootSimp| |increasePrecision| |moebius| |rootOf| - |fortranTypeOf| |optAttributes| |lfextlimint| |pole?| |cos| - |OMopenString| |removeCoshSq| |rootKerSimp| |bits| |rightRecip| - |allRootsOf| |empty| |Nul| |BasicMethod| |listBranches| |tan| - |OMclose| |removeSinhSq| |leftRank| |unitNormalize| |leftRecip| - |definingPolynomial| |exponents| |PollardSmallFactor| |triangular?| - |cot| |series| |OMsetEncoding| |expandTrigProducts| |unit| |leftPower| - |positive?| |symbol| |iisqrt2| |showTheFTable| - |rewriteIdealWithRemainder| |OMputApp| |fintegrate| |sec| |flagFactor| - |rightPower| |negative?| |qelt| |expression| |iisqrt3| - |clearTheFTable| |rewriteIdealWithHeadRemainder| |OMputAtp| - |coefficient| |csc| |sqfrFactor| |derivationCoordinates| |zero?| - |integer| |iiexp| |fTable| |remainder| |OMputAttr| |coHeight| |asin| - |primeFactor| |one?| |augment| |xRange| |palgint0| |li| - |headRemainder| |OMputBind| |extendIfCan| |min| |acos| |nthFlag| - |splitSquarefree| |lastSubResultant| |yRange| |powerSum| |palgextint0| - |categories| |roughUnitIdeal?| |OMputBVar| |algebraicVariables| |atan| - |level| |nthExponent| |normalDenom| |lastSubResultantElseSplit| - |zRange| |elementary| |palglimint0| |roughEqualIdeals?| |OMputError| - |zeroSetSplitIntoTriangularSystems| |acot| |irreducibleFactor| |map!| - |totalfract| |invertibleSet| |alternating| |palgRDE0| |roughSubIdeal?| - |OMputObject| |zeroSetSplit| |asec| |qsetelt!| |pushdterm| - |invertible?| |cyclic| |palgLODE0| |roughBase?| |OMputEndApp| - |reduceByQuasiMonic| |acsc| |rationalPoint?| |random| |pushucoef| - |invertibleElseSplit?| |dihedral| |chineseRemainder| |trivialIdeal?| - |OMputEndAtp| |collectQuasiMonic| |sinh| |absolutelyIrreducible?| - |keys| |pushuconst| |purelyAlgebraicLeadingMonomial?| |tower| |cap| - |divisors| |collectUpper| |OMputEndAttr| |removeZero| |cosh| |genus| - |numberOfMonomials| |algebraicCoefficients?| |cup| |OMputEndBind| - |initiallyReduce| |tanh| |getZechTable| |members| - |purelyTranscendental?| |true| |wreath| |factorList| |setMaxPoints3D| - |OMputEndBVar| |headReduce| |coth| |createZechTable| |multiset| - |purelyAlgebraic?| |acsch| |and| |SFunction| |listConjugateBases| - |maxPoints3D| |OMputEndError| |stronglyReduce| |sech| - |createMultiplicationTable| |mergeDifference| |prepareSubResAlgo| - |skewSFunction| |matrixGcd| |setMinPoints3D| |OMputEndObject| - |rewriteSetWithReduction| |debug| |csch| |createMultiplicationMatrix| - |brace| |complexNumeric| |cyclotomicDecomposition| |divideIfCan!| - |minPoints3D| |OMputInteger| |autoReduced?| D |asinh| - |createLowComplexityTable| |directSum| |exponential1| - |cyclotomicFactorization| |leastPower| |tValues| |OMputFloat| - |initiallyReduced?| |acosh| |box| |createLowComplexityNormalBasis| - |solveLinearPolynomialEquationByFractions| |chiSquare1| |kernels| - |rangeIsFinite| |idealiser| |tRange| |OMputVariable| |headReduced?| - |atanh| |representationType| |hasSolution?| |exponential| |univariate| - |functionIsContinuousAtEndPoints| |idealiserMatrix| |plot| |acoth| - |createPrimitiveElement| |parts| |value| |linSolve| |chiSquare| - |listOfLists| |functionIsOscillatory| |moduleSum| |pointPlot| - |restorePrecision| |trim| |asech| ** |tableForDiscreteLogarithm| - |LyndonWordsList| |factorFraction| |tanSum| |changeName| - |mapUnivariate| |calcRanges| |antiCommutator| |split| - |factorsOfCyclicGroupSize| |LyndonWordsList1| |componentUpperBound| - |tanAn| |factor| |exprHasWeightCosWXorSinWX| |mapUnivariateIfCan| - |fixPredicate| |commutator| |upperCase!| |multiple| |subst| - |sizeMultiplication| |lyndonIfCan| |blue| |tanNa| - |exprHasAlgebraicWeight| |sqrt| |datalist| EQ |mapMatrixIfCan| - |patternMatch| |associator| |upperCase| |applyQuote| - |getMultiplicationMatrix| |lyndon| |green| |condition| |initTable!| - |PDESolve| |var1StepsDefault| |real| |exprHasLogarithmicWeights| - |mapBivariate| |patternMatchTimes| |complexEigenvalues| |lowerCase!| - |complex| |getMultiplicationTable| |lyndon?| |red| |printInfo!| - |leftFactor| |var2StepsDefault| |imag| |combineFeatureCompatibility| - |fullDisplay| |bernoulli| |complexEigenvectors| |lowerCase| |print| - |primitive?| |numberOfComputedEntries| |whitePoint| |startStats!| - |rightFactorCandidate| |tubePointsDefault| |directProduct| - |sparsityIF| |relationsIdeal| |chebyshevT| |normalizedAssociate| - |KrullNumber| |ruleset| |argumentList!| |numberOfIrreduciblePoly| - |rst| |uniform| |printStats!| |measure| |tubeRadiusDefault| - |stiffnessAndStabilityFactor| |saturate| |chebyshevU| |normalize| - |numberOfVariables| |third| |endSubProgram| |numberOfPrimitivePoly| - |frst| |binomial| |clearTable!| |coerceImages| |dimension| |destruct| - |stiffnessAndStabilityOfODEIF| |matrix| |groebner?| |cyclotomic| - |outputArgs| |algebraicDecompose| |numberOfNormalPoly| |lazyEvaluate| - |poisson| |objects| |usingTable?| |fixedPoints| |crest| - |LowTriBddDenomInv| |systemSizeIF| |groebnerIdeal| |euler| - |normInvertible?| |transcendentalDecompose| |suchThat| - |createIrreduciblePoly| |lazy?| |geometric| |base| |printingInfo?| - |bright| |odd?| |cfirst| |expenseOfEvaluationIF| |ideal| - |fixedDivisor| |normFactors| |internalDecompose| |createPrimitivePoly| - |explicitlyEmpty?| |ridHack1| |makingStats?| |even?| |sts2stst| - |accuracyIF| |leadingIdeal| |npcoef| |laguerre| |cyclicEntries| - |decompose| |createNormalPoly| |explicitEntries?| |interpolate| - |extractIfCan| |numberOfCycles| |clikeUniv| |monomial| - |intermediateResultsIF| |backOldPos| |listexp| |legendre| |cyclicCopy| - |upDateBranches| |createNormalPrimitivePoly| |matrixDimensions| - |insert!| |nullSpace| |cyclePartition| |weierstrass| |multivariate| - |subscriptedVariables| |generalPosition| |dmpToHdmp| - |characteristicPolynomial| |preprocess| |createPrimitiveNormalPoly| - |matrixConcat3D| |interpretString| |nullity| |coerceListOfPairs| |qqq| - |variables| |central?| |quotient| |hdmpToDmp| |realEigenvalues| - |internalZeroSetSplit| |nextIrreduciblePoly| |setelt!| - |stripCommentsAndBlanks| |rowEchelon| |coercePreimagesImages| - |integralBasis| |insert| |elliptic?| |zeroDim?| |pToHdmp| - |realEigenvectors| |internalAugment| |nextPrimitivePoly| |delete| - |identityMatrix| |setPrologue!| |column| |listRepresentation| - |localIntegralBasis| |doubleResultant| |inRadical?| |hdmpToP| - |halfExtendedResultant2| |possiblyInfinite?| |nextNormalPoly| - |zeroMatrix| |setTex!| |row| |permanent| |qualifier| |distdfact| |in?| - |dmpToP| |halfExtendedResultant1| |explicitlyFinite?| - |nextNormalPrimitivePoly| |compile| |mappingAst| |setEpilogue!| - |maxColIndex| |cycles| |mainExpression| |separateDegrees| |element?| - |pToDmp| |extendedResultant| |nextItem| |nextPrimitiveNormalPoly| - |nullary| |prologue| |minColIndex| |cycle| |changeWeightLevel| - |taylor| |trace2PowMod| |zeroDimPrime?| |sylvesterSequence| - |subResultantsChain| |infiniteProduct| |leastAffineMultiple| - |fixedPoint| |epilogue| |maxRowIndex| |initializeGroupForWordProblem| - |characteristicSerie| |laurent| |tracePowMod| |zeroDimPrimary?| - |sturmSequence| |delta| |lazyPseudoQuotient| |evenInfiniteProduct| - |reducedQPowers| |recur| |endOfFile?| |minRowIndex| |movedPoints| - |characteristicSet| |puiseux| |irreducible?| |primaryDecomp| - |boundOfCauchy| |lazyPseudoRemainder| |oddInfiniteProduct| |linear| - |eval| |rootOfIrreduciblePoly| |const| |readIfCan!| |antisymmetric?| - |wordInGenerators| |medialSet| |decimal| |contract| - |sturmVariationsOf| |bernoulliB| |generalInfiniteProduct| |property| - |write!| |curry| |readLineIfCan!| |symmetric?| - |wordInStrongGenerators| |Hausdorff| |inv| |innerint| |leadingSupport| - |lazyVariations| |eulerE| |showAll?| |polynomial| |read!| |diag| - |readLine!| |diagonal?| |orbits| |Frobenius| |ground?| - |exteriorDifferential| |shrinkable| |content| |numericIfCan| - |showAllElements| |iomode| |curryRight| |writeLine!| |square?| |orbit| - |transcendenceDegree| |ground| |totalDifferential| |physicalLength!| - |entry| |totalDegree| |complexNumericIfCan| |delay| |units| |close!| - |curryLeft| |sign| |rectangularMatrix| |permutationGroup| - |extensionDegree| |leadingMonomial| |homogeneous?| |physicalLength| - |minimumDegree| |FormatArabic| |findCycle| |reopen!| |log10| - |constantRight| |nonQsign| |characteristic| |wordsForStrongGenerators| - |inGroundField?| |leadingCoefficient| |leadingBasisTerm| - |flexibleArray| |lambda| |monomials| |ScanArabic| |repeating?| - |bitand| |rightUnit| |constantLeft| |round| |strongGenerators| - |transcendent?| |primitiveMonomials| |ignore?| |elseBranch| |isPlus| - |FormatRoman| |repeating| |bitior| |leftUnit| |twist| |fractionPart| - |generators| |algebraic?| |reductum| |computeInt| |thenBranch| - |isTimes| |ScanRoman| |recip| |rightMinimalPolynomial| |setsubMatrix!| - |wholePart| |bivariateSLPEBR| |sh| |checkForZero| |generalizedInverse| - |isExpt| |ScanFloatIgnoreSpaces| |integers| |code| |initial| - |leftMinimalPolynomial| |subMatrix| |floor| - |solveLinearPolynomialEquationByRecursion| |mirror| |logGamma| - |imports| |isPower| |ScanFloatIgnoreSpacesIfCan| |oddintegers| - |associatorDependence| |swapColumns!| |ceiling| |factorByRecursion| - |monomial?| |hypergeometric0F1| |sequence| |rroot| - |numericalIntegration| |int| |lieAlgebra?| |swapRows!| |norm| - |factorSquareFreeByRecursion| |rquo| |rotatez| |output| |iterationVar| - |qroot| |rk4| |mapmult| |jordanAlgebra?| |vertConcat| |mightHaveRoots| - |randomR| |lquo| |rotatey| |readBytes!| |froot| |rk4a| |deriv| - |noncommutativeJordanAlgebra?| |horizConcat| |refine| - |factorSFBRlcUnit| |options| |mindegTerm| |rotatex| |readByteIfCan!| - |nthr| |rk4qc| |gderiv| |jordanAdmissible?| |comp| |squareTop| - |middle| |charthRoot| |product| |identity| |setFieldInfo| |port| - |rk4f| |compose| |lieAdmissible?| |elRow1!| |roman| |conditionP| - |LiePolyIfCan| |dictionary| |pol| |firstUncouplingMatrix| |aromberg| - |addiag| |cn| |jacobiIdentity?| |elRow2!| |recoverAfterFail| - |solveLinearPolynomialEquation| |string| |trunc| |dioSolve| |xn| - |integral| |asimpson| |lazyIntegrate| |powerAssociative?| |elColumn2!| - |showTheRoutinesTable| |factorSquareFreePolynomial| |degree| |newLine| - |dAndcExp| |primitiveElement| |atrapezoidal| |nlde| |dom| - |alternative?| |fractionFreeGauss!| |deleteRoutine!| - |factorPolynomial| |quasiRegular| |copies| |repSq| |nextPrime| - |romberg| |powern| |flexible?| |invertIfCan| |getExplanations| - |squareFreePolynomial| |quasiRegular?| |sayLength| |expPot| - |prevPrime| |simpson| |mapdiv| |rightAlternative?| |copy!| - |getMeasure| |gcdPolynomial| |constant?| |qPot| |primes| |trapezoidal| - |lazyGintegrate| |leftAlternative?| |plus!| |changeMeasure| |torsion?| - |mindeg| |iidsum| |lookup| |selectsecond| |rombergo| |power| - |antiAssociative?| |minus!| |changeThreshhold| |torsionIfCan| |maxdeg| - |iidprod| |normal?| |selectfirst| |simpsono| |sincos| |title| - |associative?| |nil| |infinite| |arbitraryExponent| |approximate| - |complex| |shallowMutable| |canonical| |noetherian| |central| - |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| - |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| - |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| - |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file + |Record| |Union| |input| |fortranInteger| |mapDown!| |systemCommand| + |localAbs| |OMputEndAttr| |relerror| |empty?| |lcm| |print| + |iterationVar| |random| |iterators| |rationalFunction| |geometric| + |monic?| |library| |matrixGcd| |nextPrime| |seriesToOutputForm| + |gcdPrimitive| |makeEq| |cCos| |resolve| |s17dhf| |slash| |last| + |getOperands| |keys| |primeFactor| |explicitlyEmpty?| |list| |isOpen?| + |patternVariable| |selectOptimizationRoutines| + |extendedSubResultantGcd| |rootsOf| |assoc| |palgint| |append| + |stoseInvertibleSetsqfreg| |graphCurves| |dark| |doubleDisc| + |setPrologue!| |dec| |car| |laplace| |radicalEigenvector| |normal| + |rangeIsFinite| |normalize| |loopPoints| |basisOfCommutingElements| + |increase| |gcd| |hermite| |characteristicSerie| |minPol| |graphs| + |cdr| |rewriteSetByReducingWithParticularGenerators| |makeSin| + |subQuasiComponent?| |readLine!| |controlPanel| |getProperty| + |lfintegrate| |false| |f02aff| |OMunhandledSymbol| |changeName| + |subResultantGcd| |setDifference| |set| |dimensions| |mathieu11| + |space| |tan2trig| |stoseInternalLastSubResultant| |newLine| + |upperCase| |intensity| |leftOne| |nthRoot| |setIntersection| + |edf2efi| |monicModulo| |reducedQPowers| |ffactor| |trapezoidalo| + |fortranReal| |associatorDependence| |zeroSetSplit| |bumprow| + |removeSinhSq| |setUnion| |tubePointsDefault| |ocf2ocdf| |tablePow| + |UnVectorise| |var1StepsDefault| |quoted?| |element?| |setelt!| + |traverse| |initTable!| |primitivePart| |definingPolynomial| + |setFieldInfo| |monicLeftDivide| |generators| |normalizeAtInfinity| + |maximumExponent| |isPower| |#| |e01bgf| |polyRDE| |stFunc2| + |physicalLength| |s18adf| |nthExpon| |createZechTable| |GospersMethod| + |OMgetObject| |Gamma| |odd?| |output| |viewDeltaYDefault| |d01aqf| + |erf| |romberg| |coordinate| |sin2csc| |divideIfCan| |getCurve| + |raisePolynomial| |removeZeroes| |setProperties| |rightPower| + |setMaxPoints3D| |permutations| |plenaryPower| |triangularSystems| + |front| |dflist| |knownInfBasis| |primitive?| |top!| |ridHack1| + |bipolar| |pseudoRemainder| |f02akf| |imagJ| |derivative| + |stiffnessAndStabilityFactor| |partition| |leftTraceMatrix| + |possiblyNewVariety?| |flatten| |f01rcf| |OMgetVariable| |dilog| + |c06eaf| |points| |showClipRegion| |charClass| |clearCache| + |leadingSupport| |setClipValue| |merge!| |sorted?| |mapUnivariate| + |mainValue| |iibinom| |f02wef| |problemPoints| |sin| |palginfieldint| + |dAndcExp| |smith| |cyclicCopy| |inverseLaplace| |prod| |shift| + |idealiser| |rotate| |numberOfVariables| |cos| |expenseOfEvaluation| + |genericLeftTraceForm| |setsubMatrix!| |OMsend| |gbasis| + |removeSuperfluousCases| |parabolicCylindrical| |complexExpand| ~= + |cCsc| |tan| |iitan| |fracPart| |tableau| |iiabs| |rowEchelon| + |critMTonD1| |setrest!| |c06gqf| |viewPosDefault| |coerce| + |deepestTail| |cot| |sinhcosh| |property| |divisorCascade| + |primPartElseUnitCanonical!| |limit| |OMParseError?| + |inverseIntegralMatrixAtInfinity| |createMultiplicationTable| + |nullary| |numericIfCan| |construct| |expressIdealMember| |sec| + |coefficients| |pr2dmp| |hdmpToP| |reopen!| |quotientByP| |hash| + |froot| |powern| |argumentListOf| |csc| |find| |f04faf| |integral?| + |OMputSymbol| |even?| |negative?| |count| |spherical| |cyclic| + |besselI| |asin| |listOfMonoms| |e02ajf| |units| |firstSubsetGray| + F2FG |unparse| |lllp| |brillhartTrials| |monicRightFactorIfCan| + |henselFact| |acos| |writeBytes!| |mdeg| |iiasinh| |diff| + |squareFreePrim| |determinant| |has?| |module| |enterInCache| |atan| + |logical?| |impliesOperands| |stirling1| |ran| |bandedJacobian| |plot| + |outerProduct| |genericRightTrace| |lquo| |colorFunction| NOT + |factorSFBRlcUnit| |acot| |leftRankPolynomial| |enqueue!| |modularGcd| + |lyndon| |color| |stronglyReduce| |binarySearchTree| |declare| + |rowEchLocal| |write| |scalarTypeOf| OR |csubst| |asec| + |semiDiscriminantEuclidean| |numberOfHues| |saturate| + |coercePreimagesImages| |setRow!| |e04gcf| |save| + |createIrreduciblePoly| |branchIfCan| |radicalRoots| |directory| AND + |minPoints3D| |acsc| |cAcsch| |code| |makeSUP| |polynomialZeros| + |c06ecf| |e04fdf| |perfectNthRoot| |denominator| |sinh| |palglimint0| + |e02bbf| |Lazard| |expIfCan| |doubleRank| |pointLists| |previous| + |rightRecip| |cosh2sech| |safeFloor| |latex| |cosh| |bezoutMatrix| + |RittWuCompare| |rootPoly| |OMReadError?| |d01alf| |more?| |ScanRoman| + |atrapezoidal| |nonLinearPart| |integralDerivationMatrix| |tanh| + |rightCharacteristicPolynomial| |decomposeFunc| |nullity| |shiftRight| + |setfirst!| |viewDefaults| |lazyVariations| |coth| |fortranComplex| + |inconsistent?| |stoseInvertible?sqfreg| |cot2trig| + |changeWeightLevel| |operation| |zeroSquareMatrix| |dimensionsOf| + |coord| |ScanFloatIgnoreSpaces| |parabolic| |setMinPoints3D| |sech| + |showScalarValues| |changeNameToObjf| |setLabelValue| |integers| + |prime?| |OMreadStr| |internalLastSubResultant| |OMputError| + |discriminant| |yCoord| |iteratedInitials| |csch| |coHeight| + |basisOfRightAnnihilator| |algint| |HermiteIntegrate| |unknown| + |bfEntry| |unrankImproperPartitions0| |double?| |cSech| |cycles| |eq| + |asinh| |c06fqf| |imagk| |equiv| |sinhIfCan| |makeCos| |compBound| + |complexNumeric| |qroot| |acosh| |solveInField| |factorByRecursion| + |outputBinaryFile| |scalarMatrix| |setColumn!| |rightOne| + |integralBasisAtInfinity| |symbolTableOf| |dihedralGroup| |varList| * + |atanh| |call| |janko2| |fortranDouble| |moduleSum| |lyndonIfCan| + |OMUnknownCD?| |subCase?| |not| |cartesian| |lazyResidueClass| + |kernels| |factorSquareFree| |acoth| |cothIfCan| |maxrow| + |OMsupportsSymbol?| |pToHdmp| |totalDifferential| |tan2cot| |ef2edf| + |univariate| |create| |solve| |asech| |cap| |stoseInvertibleSetreg| + |tail| |gcdcofact| |coerceListOfPairs| |retract| |removeCosSq| + |eulerE| |brillhartIrreducible?| |range| |edf2df| |returns| |anfactor| + |epilogue| |LyndonCoordinates| |lazyPseudoQuotient| |allRootsOf| + |imagK| |diophantineSystem| |iicos| |multiple| |resize| + |doublyTransitive?| |leadingExponent| |port| |viewport3D| |iifact| + |nlde| |perfectNthPower?| |factor| |sylvesterMatrix| |applyQuote| + |dfRange| |argument| |OMconnOutDevice| |iiasec| |conjugates| |s21bdf| + |removeCoshSq| |sqrt| |uniform| |sincos| |lfinfieldint| + |mergeDifference| |semiSubResultantGcdEuclidean2| + |certainlySubVariety?| |minordet| |point| |alternating| |safeCeiling| + |c06gcf| |real| |fortranDoubleComplex| |pointData| |lowerPolynomial| + |whatInfinity| |f02axf| |putGraph| |linearPart| |radicalEigenvectors| + |elliptic| |imag| |ruleset| |showArrayValues| |stFuncN| |expint| + |zeroSetSplitIntoTriangularSystems| |monomialIntPoly| |hitherPlane| + |directProduct| |rightRemainder| |rk4| |totalGroebner| |legendreP| + |rootPower| |cyclotomicDecomposition| |realEigenvectors| |blue| + |tRange| |series| |c05pbf| |pascalTriangle| |multisect| |low| |d01asf| + |readIfCan!| |cyclicEntries| |accuracyIF| |groebnerFactorize| + |extractTop!| |f02fjf| |drawToScale| |destruct| |palgintegrate| + |suchThat| |leviCivitaSymbol| |leftMinimalPolynomial| |host| + |ellipticCylindrical| |primintegrate| |getlo| |zoom| |reducedSystem| + |plus| |f04asf| |ldf2vmf| |s17ajf| |cycleTail| |complexZeros| |rk4f| + |generateIrredPoly| |minimize| |medialSet| |checkRur| + |bipolarCylindrical| |iicsch| |baseRDE| |se2rfi| |min| + |evenInfiniteProduct| |continue| |rightAlternative?| |mapCoef| + |randomR| |commutative?| |leaves| |trailingCoefficient| + |fillPascalTriangle| |clearTheSymbolTable| |jacobi| |setMinPoints| + |external?| |pointSizeDefault| |signAround| |monomial| |palgextint0| + |optimize| |cAtanh| |polyRicDE| |OMputString| |byte| |fmecg| |redPol| + |measure| |multivariate| |nodeOf?| |times| |critB| |powers| FG2F + |distance| |bottom!| |prepareSubResAlgo| |cotIfCan| |showAll?| + |variables| |part?| |s17dcf| |leftNorm| |addPointLast| |expandPower| + |pointColor| |aspFilename| |/\\| |hex| |nullary?| |e02bef| + |hasPredicate?| |multiple?| |redPo| |permutation| + |setLegalFortranSourceExtensions| |singularitiesOf| |phiCoord| |\\/| + |bfKeys| |sequences| |resetAttributeButtons| |f04maf| |subSet| + |lieAlgebra?| |divideIfCan!| |ListOfTerms| |or| |getOperator| |e04dgf| + |removeRedundantFactorsInPols| |shallowExpand| |contours| |unitNormal| + |e02baf| |coefficient| |associatedEquations| |symbol?| + |internalAugment| |drawCurves| |ranges| |mapSolve| |style| |charpol| + |mapmult| |rquo| |null| |complement| |setAdaptive3D| |triangSolve| + |leadingIdeal| |root| |cAsec| |quartic| |s14baf| |taylor| + |discriminantEuclidean| |case| |cCsch| |reduceBasisAtInfinity| + |outputAsTex| |seriesSolve| |sumSquares| |pushuconst| |getDatabase| + |permutationRepresentation| |laurent| |radicalSolve| |Zero| |bitTruth| + |palgextint| |s13aaf| |alphabetic?| |mainVariable?| |iisqrt2| + |iiatanh| |puiseux| |ode1| |finite?| |One| |mainDefiningPolynomial| F + |deleteProperty!| |numberOfFactors| |parseString| |s18aff| |equality| + |createLowComplexityNormalBasis| |fill!| |headRemainder| |asinhIfCan| + |f01bsf| |bat1| |OMreadFile| |weierstrass| |fractionFreeGauss!| + |d01fcf| |inv| |indiceSubResultant| |next| |leftScalarTimes!| + |OMconnectTCP| |nextNormalPrimitivePoly| |ip4Address| |rootKerSimp| + |squareMatrix| |ground?| |s19aaf| |makeop| |trunc| + |solveLinearPolynomialEquation| |eigenvector| |subMatrix| + |prefixRagits| |gethi| |mulmod| |ground| |splitDenominator| |exprex| + |limitPlus| |Beta| |maxPoints3D| |setProperties!| |laurentIfCan| + |perfectSquare?| |OMencodingXML| |linearAssociatedOrder| + |leadingMonomial| |stoseSquareFreePart| |bubbleSort!| |monicDivide| + |elt| |c02agf| |doubleResultant| |s19adf| |overset?| |euler| + |transcendent?| |resultantEuclideannaif| |leadingCoefficient| + |stoseInvertible?reg| |showFortranOutputStack| |subHeight| |logGamma| + |probablyZeroDim?| |e02ddf| |largest| |tracePowMod| + |symmetricRemainder| |primitiveMonomials| + |purelyAlgebraicLeadingMonomial?| |callForm?| |resultantReduit| + |explogs2trigs| |complexLimit| |backOldPos| |OMputEndError| + |jordanAdmissible?| |acotIfCan| |updatF| |reductum| |ratPoly| + |leftLcm| |resultantEuclidean| |polygon?| |iExquo| |constant?| + |PollardSmallFactor| |optpair| |orOperands| |triangulate| + |reducedForm| |showTheSymbolTable| |mergeFactors| |putColorInfo| + |and?| |tree| |att2Result| |symmetricPower| |B1solve| |tanhIfCan| + |write!| |shellSort| |SturmHabichtMultiple| + |tableForDiscreteLogarithm| |airyAi| |recip| |deleteRoutine!| + |palgLODE| |list?| |FormatRoman| |constantOpIfCan| |char| |compose| + |identityMatrix| |quote| |lp| |nonQsign| |SFunction| |ord| |decimal| + |indicialEquation| |OMputBind| |radicalOfLeftTraceForm| + |primextintfrac| |li| |floor| |pomopo!| |cAcot| |plotPolar| + |repeatUntilLoop| |reseed| |selectMultiDimensionalRoutines| |d02kef| + |s21bcf| |degreeSubResultant| |is?| |level| |stripCommentsAndBlanks| + |rischNormalize| |applyRules| |mainCoefficients| |setleft!| + |currentScope| |definingEquations| |lift| |setCondition!| |HenselLift| + |numberOfImproperPartitions| |entries| |df2mf| |trigs| |wreath| + |inRadical?| |acothIfCan| BY |OMgetApp| |reduce| |normInvertible?| + |hclf| |lastSubResultantEuclidean| |df2st| |crest| |e04naf| |category| + |zero| |imports| |factors| |algDsolve| |float| |asinIfCan| + |nativeModuleExtension| |htrigs| |unravel| |imagi| |extendedIntegrate| + |domain| |currentEnv| |principal?| |wholeRagits| |constDsolve| + |listYoungTableaus| |listBranches| |zeroDimPrimary?| |torsionIfCan| + |printCode| |cAcoth| |And| |package| |quadraticNorm| + |orthonormalBasis| |homogeneous?| |queue| |diag| + |generalizedEigenvectors| |vertConcat| |superscript| |iisec| |Or| + |combineFeatureCompatibility| |splitLinear| |iidsum| |fixedDivisor| + LODO2FUN |inR?| |curve| |cos2sec| |rightNorm| |Not| |reindex| + |nsqfree| |singular?| |hasSolution?| |removeConstantTerm| + |pseudoDivide| |compound?| |critMonD1| |ddFact| |column| |binding| + |minrank| |clearDenominator| |polCase| |selectAndPolynomials| + |repeating| |s21bbf| |iiacsc| |genus| |entry| |headReduced?| |psolve| + |roughEqualIdeals?| |addmod| |sub| |modifyPointData| |scan| |integer?| + |cAsin| |subTriSet?| |monicDecomposeIfCan| |times!| |returnType!| + |findBinding| |cAsinh| |shallowCopy| |setProperty!| |bitCoef| |entry?| + |bracket| |cubic| |mkcomm| |iiacos| |factorList| |usingTable?| + |multinomial| |approximants| |constantCoefficientRicDE| |linear| + |extractPoint| |atanIfCan| |systemSizeIF| |f01mcf| + |SturmHabichtSequence| |superHeight| |zeroDim?| |algebraicVariables| + |fortranLiteralLine| |evaluate| |exponents| |cTanh| |extractProperty| + |sech2cosh| |roughBasicSet| |cschIfCan| |d01apf| |getMeasure| + |exponential| |transcendentalDecompose| |polynomial| |curry| + |extension| |eigenvalues| |integralMatrix| |delay| |sdf2lst| |close!| + |generator| |elColumn2!| |Aleph| |LiePolyIfCan| |constantIfCan| + |palgLODE0| |s01eaf| |numFunEvals3D| |expintegrate| |e02zaf| |options| + |escape| |swapRows!| |lifting1| |partialDenominators| |power!| + |prolateSpheroidal| |outputAsScript| |yCoordinates| |normFactors| + |top| |s18def| |condition| |f04jgf| |halfExtendedResultant1| + |irreducibleFactor| |squareFreePolynomial| + |removeRoughlyRedundantFactorsInPols| |untab| |inGroundField?| + |computeCycleLength| |pushucoef| |separant| |e02dff| |heapSort| + |vconcat| |multiEuclideanTree| |ramifiedAtInfinity?| |string| + |linearAssociatedLog| |implies?| |curve?| |dom| |fi2df| |figureUnits| + |remove!| |cycleRagits| |outputForm| |pade| |rule| |ratDsolve| + |selectOrPolynomials| |quatern| |primextendedint| |inrootof| + |setProperty| |exprHasLogarithmicWeights| |binaryTree| |iiasech| + |adjoint| |objectOf| |super| |schema| |linkToFortran| + |stopMusserTrials| |maxIndex| |collectUnder| |getProperties| + |component| |cosIfCan| |deepCopy| |shade| = |generalSqFr| |pdf2ef| + |dmpToHdmp| |solveLinearPolynomialEquationByFractions| + |semiIndiceSubResultantEuclidean| |lo| |BasicMethod| |irreducible?| + |useEisensteinCriterion?| |central?| |trueEqual| |reverseLex| |float?| + |magnitude| |createPrimitivePoly| |ODESolve| |incr| |stop| + |symmetric?| |regime| |chebyshevT| |mainMonomials| |fintegrate| < + |categoryFrame| |createMultiplicationMatrix| |pack!| |title| |OMread| + |evaluateInverse| |hi| |cCoth| |showTheRoutinesTable| |errorInfo| + |unvectorise| |interReduce| > |roughSubIdeal?| |mesh| |setStatus!| + |inverseColeman| |interpretString| |subNode?| |nodes| |commaSeparate| + |invertibleElseSplit?| |getVariableOrder| <= + |ScanFloatIgnoreSpacesIfCan| |represents| |OMgetEndBVar| + |jacobiIdentity?| |hcrf| |localReal?| |sumOfDivisors| |imagj| |norm| + |argscript| >= |e| |selectFiniteRoutines| |writable?| + |euclideanNormalForm| |mapGen| |userOrdered?| |index?| |width| + |factorSquareFreeByRecursion| |explicitlyFinite?| |term| |expandLog| + |explimitedint| |linears| |tube| |setLength!| + |initializeGroupForWordProblem| |internal?| |nonSingularModel| |vark| + |diagonal| |empty| |nextColeman| |singleFactorBound| |prime| + |OMputEndBVar| |maxrank| |df2ef| |simplify| |goto| |headAst| + |OMlistSymbols| + |lowerCase?| |mapBivariate| |f01brf| |number?| + |pmComplexintegrate| |compile| |pole?| |BumInSepFFE| |OMgetAttr| + |move| |dot| - |doubleComplex?| |shanksDiscLogAlgorithm| |d02gbf| + |leadingCoefficientRicDE| |extractIndex| |outputFloating| + |wordInStrongGenerators| |quotient| |dimension| |tanintegrate| / + |variationOfParameters| |curryLeft| |characteristicPolynomial| + |rational| |chiSquare1| UTS2UP |parent| |quasiComponent| |adaptive3D?| + |setEpilogue!| |coth2trigh| |absolutelyIrreducible?| |unexpand| + |lazyEvaluate| |sign| |branchPoint?| |connectTo| |fixedPointExquo| + |exists?| |build| |expextendedint| |oddintegers| |finiteBasis| + |choosemon| |eq?| |complexForm| |d01bbf| |nextSublist| + |normalizedAssociate| |optional| |e04mbf| |OMcloseConn| + |SturmHabichtCoefficients| |result| |scale| |genericLeftNorm| + |gramschmidt| |ldf2lst| |testModulus| |extendedint| |acschIfCan| + |vectorise| |OMgetEndObject| |unprotectedRemoveRedundantFactors| + |varselect| |factor1| |maxint| |consnewpol| |squareTop| |printHeader| + |generate| |fortran| |semiDegreeSubResultantEuclidean| + |squareFreeFactors| |collectQuasiMonic| |exponentialOrder| |rspace| + |printStatement| |generalTwoFactor| |companionBlocks| |e01sef| + |nextsubResultant2| |rootSimp| |s15aef| |setvalue!| |toroidal| + |leastAffineMultiple| |partialQuotients| |iFTable| |compiledFunction| + |rightUnits| |cAsech| |countRealRoots| |initiallyReduced?| + |hostPlatform| |generalLambert| |incrementBy| |denominators| + |normalizeIfCan| |squareFree| |exprHasAlgebraicWeight| |nthExponent| + |shiftRoots| |c06fuf| |normal?| |commutator| |capacity| + |createRandomElement| |expand| |OMopenString| |iiasin| |Ei| |reify| + |cyclicParents| |cylindrical| |true| |resetNew| |rectangularMatrix| + |moreAlgebraic?| |taylorQuoByVar| |univariate?| |filterWhile| + |sayLength| |screenResolution| |removeSinSq| |leftUnit| |constantLeft| + |mat| |implies| |push| |checkForZero| |reverse!| |and| |iipow| + |assign| |status| |filterUntil| |lambert| |rightTrace| |lex| |s20acf| + |legendre| |normalDenom| |decreasePrecision| |eigenMatrix| + |preprocess| |isOp| |children| |select| |leftMult| |hMonic| + |conditionsForIdempotents| |bsolve| |lazyIrreducibleFactors| + |position!| |xor| |differentialVariables| |isMult| |lexTriangular| + |imaginary| |iomode| |initial| |s17aef| |basisOfLeftNucleus| + |meshFun2Var| |subresultantSequence| |currentSubProgram| + |listConjugateBases| |multiEuclidean| |mathieu22| |viewThetaDefault| + |integralCoordinates| |poisson| |biRank| |d03faf| |string?| + |startStats!| |coth2tanh| |normalForm| |getMatch| + |lazyPremWithDefault| |toseInvertible?| |cSinh| + |LagrangeInterpolation| |zag| |OMgetSymbol| |KrullNumber| + |makeFloatFunction| |OMputFloat| |bag| |generic?| |prinpolINFO| + |startTableInvSet!| |decrease| |insertRoot!| |linearPolynomials| + |contains?| |rightQuotient| |makeSeries| |cosSinInfo| |crushedSet| + |polar| |sumOfSquares| SEGMENT |viewport2D| + |leftRegularRepresentation| |middle| |beauzamyBound| + |fullPartialFraction| |mainForm| |infinityNorm| |closeComponent| + |kovacic| |clearFortranOutputStack| |minPoly| |e02gaf| + |resetBadValues| |makeRecord| |script| |typeLists| |credPol| + |definingInequation| |factorial| |normalElement| |prem| |difference| + |permutationGroup| |fixPredicate| |conjugate| |enterPointData| |id| + |balancedFactorisation| |subst| |rotatex| |divisors| |mapMatrixIfCan| + |one?| |e02agf| |youngGroup| |nextPrimitivePoly| |primes| + |fortranLiteral| |OMgetError| |expPot| |mappingAst| |divergence| + |d01anf| |round| |sizePascalTriangle| |factorOfDegree| + |generalizedInverse| |makeResult| |rationalApproximation| |order| + |table| |tex| |areEquivalent?| |s18acf| |torsion?| |listexp| |Is| + |bivariateSLPEBR| |setPoly| |rootRadius| |scanOneDimSubspaces| + |d01ajf| |infRittWu?| |new| |numberOfComposites| + |cyclotomicFactorization| |mainCharacterization| + |inverseIntegralMatrix| |setValue!| |lastSubResultantElseSplit| + |inputBinaryFile| |intChoose| |rdHack1| |binaryTournament| + |tryFunctionalDecomposition?| |complexRoots| |concat| + |generalizedEigenvector| |exprToGenUPS| |weight| |f07fef| + |equivOperands| |cExp| |f04adf| |qualifier| |f04qaf| |fixedPoints| + |OMgetEndAtp| |partialFraction| |makingStats?| |zeroOf| + |factorGroebnerBasis| |insertMatch| |mainVariable| + |drawComplexVectorField| |outlineRender| |dioSolve| |multiset| + |objects| |closed?| |halfExtendedSubResultantGcd1| |doubleFloatFormat| + |digit| |bumptab1| |screenResolution3D| |categories| |karatsuba| + |df2fi| |numberOfFractionalTerms| |sort!| |reducedDiscriminant| + |numberOfNormalPoly| |e01daf| |base| |resultantReduitEuclidean| |sum| + |quickSort| |lazyPrem| |finiteBound| |rangePascalTriangle| |interval| + |elem?| |predicate| |minGbasis| |cot2tan| |unit| |euclideanSize| + |internalSubQuasiComponent?| |e02adf| |wholeRadix| |OMgetFloat| |cn| + |lifting| |setPredicates| |upperCase!| |basisOfNucleus| |contract| + |physicalLength!| |trivialIdeal?| |sinh2csch| |musserTrials| |augment| + |rename!| |product| |matrixConcat3D| |trapezoidal| |totolex| |d02bbf| + |primitiveElement| |An| |selectPDERoutines| |antiCommutator| + |strongGenerators| |viewpoint| |isPlus| |integrate| |enumerate| + |composite| |symbolTable| |sn| |leastPower| |leftRemainder| + |selectfirst| |incrementKthElement| |stoseIntegralLastSubResultant| + |genericLeftDiscriminant| |testDim| |nextLatticePermutation| + |frobenius| |exquo| |mr| |setTopPredicate| |readByteIfCan!| + |primlimintfrac| |getZechTable| |upDateBranches| |e02bcf| + |pushFortranOutputStack| |minimumExponent| |continuedFraction| + |leftFactorIfCan| |div| |lprop| |iroot| |left| |tanSum| |reset| + |digit?| |maxColIndex| |transform| |monicCompleteDecompose| |iicoth| + |var2StepsDefault| |popFortranOutputStack| |palgRDE0| |e01bff| + |toseSquareFreePart| |quo| |purelyAlgebraic?| |right| |nthFactor| + |surface| |newReduc| |mesh?| |sup| |curveColorPalette| + |leftCharacteristicPolynomial| |innerSolve| |bandedHessian| |setlast!| + |outputAsFortran| UP2UTS |besselY| |setOrder| |leftDiscriminant| + |cTan| |stFunc1| |parameters| |f02abf| |aCubic| |leftGcd| |rem| |mix| + |commutativeEquality| |target| |normDeriv2| |asechIfCan| + |genericLeftMinimalPolynomial| |removeDuplicates!| |s21baf| + |getMultiplicationTable| |dimensionOfIrreducibleRepresentation| + |coerceP| |functionIsOscillatory| |s17adf| |c06frf| |f02ajf| + |csch2sinh| |overbar| ~ |axes| |noKaratsuba| |constructorName| + |euclideanGroebner| |null?| |weakBiRank| |cPower| |clipSurface| + |d02gaf| |stosePrepareSubResAlgo| |cSin| |split| |tanNa| |xn| + |quasiRegular?| |infieldint| |functionIsFracPolynomial?| |open| + |OMputEndAtp| |rubiksGroup| |calcRanges| |viewWriteAvailable| + |clearTable!| |computeInt| |rightRankPolynomial| |sin?| + |sturmSequence| |rationalIfCan| |rst| |scripted?| |region| + |nextIrreduciblePoly| |simpsono| |oblateSpheroidal| |matrixDimensions| + |normalizedDivide| |outputList| |setref| |quasiMonic?| |solid?| + |quoByVar| |RemainderList| |hspace| |groebner| |stopTableGcd!| + |rightTraceMatrix| |f01qef| |copies| |myDegree| |completeHermite| + |chvar| |lSpaceBasis| |numberOfOperations| |log10| |lookup| + |viewPhiDefault| |alternatingGroup| |clikeUniv| |complete| + |compactFraction| |patternMatchTimes| |makeTerm| |normalise| |bitand| + |leftPower| |toseLastSubResultant| |routines| |exactQuotient| + |rewriteIdealWithQuasiMonicGenerators| + |standardBasisOfCyclicSubmodule| |halfExtendedSubResultantGcd2| + |update| |univcase| |back| |bitior| |fprindINFO| |orbit| |symbol| + |oddlambert| |distribute| |complementaryBasis| |c06fpf| + |primitivePart!| |solveid| |withPredicates| |makeViewport2D| |numer| + |linearDependenceOverZ| |expression| |components| |nextSubsetGray| + |whitePoint| |var2Steps| |autoReduced?| |arity| |swap| + |radicalEigenvalues| |denom| |overlap| |vector| |complexSolve| + |integer| |reduceByQuasiMonic| |tubeRadiusDefault| |mathieu24| + |algebraicSort| |getMultiplicationMatrix| |iiGamma| |groebgen| + |rootDirectory| |differentiate| |linear?| |setPosition| |normalDeriv| + |someBasis| |thenBranch| |mantissa| |mathieu12| |setelt| |pi| + |inverse| |failed| |over| |modularGcdPrimitive| |invmultisect| |basis| + |restorePrecision| |genericRightTraceForm| |nullSpace| + |lazyPseudoDivide| |infinity| |imagI| |btwFact| |s17dlf| + |complexEigenvalues| |position| |createPrimitiveNormalPoly| + |wordsForStrongGenerators| |reciprocalPolynomial| |iicot| |socf2socdf| + |copy| |basisOfMiddleNucleus| |ptFunc| |OMopenFile| + |getSyntaxFormsFromFile| |cyclic?| |d01amf| |e04jaf| |bezoutResultant| + |weighted| |positive?| |iiperm| |expenseOfEvaluationIF| |morphism| + |mkAnswer| |OMgetString| |bringDown| |f07fdf| |kernel| |atoms| + |localIntegralBasis| |c06gsf| |e01bef| |repSq| |nil| + |linearlyDependent?| |match?| |f04arf| |rur| |init| |OMmakeConn| + |drawComplex| |draw| |prevPrime| |autoCoerce| |leftExtendedGcd| + |principalIdeal| |delete!| |f02agf| |hasoln| |splitNodeOf!| |LiePoly| + |lazyPquo| |padicallyExpand| |univariatePolynomial| |Vectorise| + |returnTypeOf| |iicsc| |topPredicate| |rotate!| |lighting| |zero?| + |bumptab| |iprint| |meatAxe| |dictionary| |rightRegularRepresentation| + |approximate| |rowEch| |rightFactorCandidate| |quasiAlgebraicSet| + |e02def| |selectsecond| |LyndonWordsList1| |c06ebf| |hessian| + |subResultantsChain| |complex| |OMgetEndApp| |stirling2| |polyPart| + |fractRadix| |multiplyCoefficients| |makeObject| |f02xef| + |cyclePartition| |gcdprim| |charthRoot| |listLoops| + |setAttributeButtonStep| |lowerCase!| |goodPoint| |makeFR| |monomials| + |drawStyle| |functionIsContinuousAtEndPoints| |ReduceOrder| |e01bhf| + |rotatey| |printingInfo?| |makeMulti| |trim| |universe| |groebSolve| + |complexIntegrate| |fortranCarriageReturn| |coef| |properties| + |nothing| |interpret| |newTypeLists| |s13adf| |besselJ| + |explicitEntries?| |unrankImproperPartitions1| |lhs| |mapUp!| |digits| + |symmetricGroup| |member?| |shrinkable| |translate| + |createGenericMatrix| |taylorRep| |c06ekf| |replaceKthElement| |rhs| + |iitanh| |viewSizeDefault| |box| |integralRepresents| |exactQuotient!| + |chainSubResultants| |integral| |option?| |chineseRemainder| + |mathieu23| |lllip| |innerSolve1| |simpson| |ideal| |f04mcf| + |sechIfCan| |computeBasis| |monicRightDivide| |characteristicSet| + |endSubProgram| |diagonals| |f02aaf| |name| |rightFactorIfCan| + |members| |removeSuperfluousQuasiComponents| |resultant| |gradient| + |tanIfCan| |rightDiscriminant| |viewWriteDefault| |nthRootIfCan| + |body| |shiftLeft| |selectIntegrationRoutines| |tanh2trigh| |node| + |listOfLists| |gcdPolynomial| |completeSmith| |balancedBinaryTree| + |duplicates| |componentUpperBound| |coordinates| |head| |ode| + |genericRightNorm| |numberOfIrreduciblePoly| |dominantTerm| |rombergo| + |overlabel| |pointColorPalette| |errorKind| |idealiserMatrix| |pol| + |primPartElseUnitCanonical| |linearMatrix| |useSingleFactorBound?| + |fortranCharacter| |makeYoungTableau| |aQuadratic| |concat!| |d01gbf| + |infiniteProduct| |exp| |prepareDecompose| Y |droot| |trace2PowMod| + |basisOfRightNucloid| |predicates| |sqfree| |acscIfCan| |partitions| + |quasiRegular| |elementary| |readBytes!| |closedCurve?| |tubeRadius| + |d02ejf| |nand| |iiexp| |resetVariableOrder| |maxPoints| |center| + |unitNormalize| |e04ucf| |integralAtInfinity?| |axesColorDefault| + |interpolate| |high| |flexibleArray| |sumOfKthPowerDivisors| |c02aff| + |check| |getIdentifier| |bernoulliB| |clipPointsDefault| |roughBase?| + |var1Steps| |maxdeg| |term?| |mapdiv| |updatD| |f02awf| |rootSplit| + |asimpson| |identitySquareMatrix| |numericalIntegration| |aQuartic| + |subresultantVector| |radPoly| |diagonalMatrix| + |purelyTranscendental?| |showRegion| |domainOf| |ref| |clipParametric| + |selectODEIVPRoutines| |iisin| |integralMatrixAtInfinity| |dihedral| + |OMsupportsCD?| |zerosOf| |getGraph| |parts| |internalIntegrate0| + |highCommonTerms| |lyndon?| |critM| |compdegd| |retractable?| |sh| + |tValues| |cyclotomic| |f02bjf| |reduction| |d03edf| |mainContent| + |power| |uncouplingMatrices| |createNormalElement| |paraboloidal| + |atom?| |perspective| |complex?| |OMserve| |s17akf| + |rewriteSetWithReduction| |leadingIndex| |bit?| |exteriorDifferential| + |quadratic?| |f2df| |startPolynomial| |unitCanonical| + |sizeMultiplication| |expt| |goodnessOfFit| |prologue| |forLoop| + |rootOfIrreduciblePoly| |insert| |moebius| |useNagFunctions| + |zeroDimPrime?| |cCot| |supDimElseRittWu?| |antiAssociative?| + |OMconnInDevice| |coerceS| |nthr| |equation| |sturmVariationsOf| + |OMputEndApp| |rroot| |ignore?| |monomial?| |t| |clearTheFTable| + |stoseInvertible?| |insertTop!| |s18aef| |lazyIntegrate| |solveLinear| + |int| |ratDenom| |numberOfCycles| |totalDegree| + |removeRedundantFactors| |hasHi| |sts2stst| |lintgcd| |algintegrate| + |precision| |redpps| |connect| |fglmIfCan| |apply| |completeEval| + |UP2ifCan| |factorAndSplit| |currentCategoryFrame| |shufflein| + |iiacosh| |red| |palgint0| |viewZoomDefault| |constantOperator| |any?| + |showIntensityFunctions| |curveColor| |badNum| |clipBoolean| + |antiCommutative?| |swap!| |internalSubPolSet?| |size| + |integralLastSubResultant| |alphanumeric?| |validExponential| + |cyclicEqual?| |fortranLinkerArgs| |particularSolution| |obj| |c05nbf| + |c06gbf| |semiResultantEuclidean1| |prindINFO| |conditionP| + |symbolIfCan| |eval| |multiplyExponents| |intPatternMatch| + |approxNthRoot| |cache| |cyclicGroup| |stiffnessAndStabilityOfODEIF| + |buildSyntax| |abs| |graphState| |elliptic?| + |subResultantGcdEuclidean| |identification| |outputArgs| |say| + |extractBottom!| |approxSqrt| |leftZero| |complexElementary| |first| + |karatsubaDivide| |kind| |rightMinimalPolynomial| |simplifyLog| + |safetyMargin| |mainMonomial| |extendedEuclidean| |rootOf| + |LyndonWordsList| |resultantnaif| |rest| |quadraticForm| |copy!| |op| + |dmp2rfi| |iiacot| |lflimitedint| |pleskenSplit| |comp| |tanQ| + |flexible?| |mainKernel| |noncommutativeJordanAlgebra?| |substitute| + |show| |complexNumericIfCan| |newSubProgram| |innerEigenvectors| + |fixedPoint| |removeDuplicates| |generalInfiniteProduct| |leftFactor| + |dmpToP| |getCode| |elseBranch| |edf2ef| |s17ahf| |f01qdf| |rk4qc| + |s14abf| |parametric?| |semiSubResultantGcdEuclidean1| |intersect| + |cycleSplit!| |trace| |s19acf| |OMputVariable| |upperCase?| + |monomialIntegrate| |unary?| |tensorProduct| |coshIfCan| |baseRDEsys| + |internalIntegrate| GF2FG |besselK| |extractSplittingLeaf| |cAcosh| + |palgRDE| |lexGroebner| |remainder| |integralBasis| |singRicDE| + |modifyPoint| |removeRedundantFactorsInContents| |Frobenius| + |showSummary| |OMbindTCP| |recolor| |randomLC| |indicialEquations| + |minus!| |qelt| |basisOfCentroid| |child?| |union| |binomThmExpt| + |monomRDE| |any| |boundOfCauchy| |qsetelt| |increment| |ScanArabic| + |randnum| |isQuotient| |padicFraction| |delta| |powmod| |reverse| + |makeViewport3D| |showAttributes| |firstUncouplingMatrix| |setright!| + |factorials| |cRationalPower| |bothWays| |xRange| |toScale| + |createPrimitiveElement| |cscIfCan| |powerSum| |cup| |tower| + |groebner?| |inc| |ratpart| |yRange| |factorFraction| + |structuralConstants| |harmonic| |algebraicDecompose| |deref| + |associatedSystem| |vedf2vef| |rationalPower| |laguerreL| |zRange| + |aLinear| |e02dcf| |andOperands| |kroneckerDelta| + |selectSumOfSquaresRoutines| |map!| |limitedIntegrate| |minimumDegree| + |numericalOptimization| |pdct| |push!| |primlimitedint| |f02bbf| + |wholePart| |complexNormalize| |qsetelt!| |graphImage| + |constantKernel| |height| |iisqrt3| |thetaCoord| |maxRowIndex| + |eyeDistance| |f01maf| |s13acf| |ricDsolve| |modulus| + |leftAlternative?| |OMencodingSGML| |gderiv| |constant| |acoshIfCan| + |halfExtendedResultant2| |antisymmetricTensors| |iicosh| |infinite?| + |lambda| |content| |gcdcofactprim| |modularFactor| |readLineIfCan!| + |packageCall| |OMputAttr| |mkIntegral| |f04mbf| |rk4a| |printTypes| + |linearDependence| |bat| |f01ref| |changeThreshhold| |every?| + |insertBottom!| |minColIndex| |datalist| |lazyPseudoRemainder| + |ParCondList| |fractRagits| |map| |badValues| |repeating?| |acsch| + |linearAssociatedExp| |ramified?| |numberOfMonomials| |summation| + |aromberg| |formula| |addPoint2| |label| |algebraic?| |adaptive| + |ode2| |palglimint| |shuffle| |checkPrecision| |green| + |mainPrimitivePart| |bounds| |positiveRemainder| |d01gaf| |Hausdorff| + |clip| |solveRetract| |trigs2explogs| |cycleLength| + |intermediateResultsIF| |completeHensel| |asecIfCan| |nthCoef| + |fortranCompilerName| |setFormula!| |cardinality| |denomLODE| + |univariateSolve| |perfectSqrt| |ParCond| |showTheFTable| |invmod| + |rightDivide| |abelianGroup| |bernoulli| |nrows| |polygon| |convert| + |oneDimensionalArray| |setleaves!| |invertIfCan| |frst| |degree| + |partialNumerators| |roughUnitIdeal?| |jordanAlgebra?| + |rightExtendedGcd| |ncols| |lineColorDefault| |iilog| |elements| + |showAllElements| |coerceL| |secIfCan| |critBonD| |bits| |bytes| + |countRealRootsMultiple| |zeroDimensional?| |lazyGintegrate| |qfactor| + |e02daf| |insertionSort!| |rightScalarTimes!| |makeSketch| + |oddInfiniteProduct| |supersub| |possiblyInfinite?| |length| |pow| + |transpose| |plusInfinity| |debug3D| |sPol| |lfextendedint| |s17def| + |bitLength| |search| |d02raf| |addiag| |s14aaf| |scripts| |direction| + |qqq| |realElementary| |minusInfinity| |cycle| + |algebraicCoefficients?| |optional?| |minPoints| |PDESolve| + |symmetricTensors| |tubePoints| |prinshINFO| |key?| |solve1| |deriv| + |topFortranOutputStack| |commonDenominator| |arrayStack| + |complexEigenvectors| |graphStates| |mirror| |option| |reduceLODE| + |duplicates?| |pair?| |subset?| |submod| |hypergeometric0F1| + |selectPolynomials| |subscriptedVariables| |lexico| |simplifyExp| + |factorset| |updateStatus!| |f04atf| |setErrorBound| |c05adf| + |factorPolynomial| |semiResultantEuclidean2| |wrregime| |mindeg| + |triangular?| |innerint| |iiacoth| |subscript| |scopes| |quadratic| + |divisor| |radix| |associative?| |monomRDEsys| |nary?| + |symmetricSquare| |whileLoop| |minIndex| |pureLex| |hexDigit?| + |isConnected?| |OMputObject| |fTable| |deepestInitial| |comparison| + |type| |ptree| |getExplanations| |extendIfCan| + |indiceSubResultantEuclidean| |leastMonomial| |isobaric?| + |factorSquareFreePolynomial| |exQuo| |simpleBounds?| |outputSpacing| + |integerBound| |FormatArabic| |nor| |s17agf| |opeval| |cfirst| + |nilFactor| |OMputBVar| |nextPrimitiveNormalPoly| |read!| |stack| + |stronglyReduced?| |iidprod| |dequeue| |symmetricDifference| |s19abf| + |getGoodPrime| |binomial| |selectNonFiniteRoutines| |alternative?| + |swapColumns!| |subPolSet?| |rightTrim| |factorsOfCyclicGroupSize| + |polyred| |f04axf| |integerIfCan| |or?| |coleman| |digamma| |s18dcf| + |closedCurve| |leftTrim| |laurentRep| |basisOfLeftNucloid| |cSec| + |semiLastSubResultantEuclidean| |eigenvectors| + |semiResultantEuclideannaif| |divideExponents| |distdfact| + |pushNewContour| |error| |unitsColorDefault| |rootNormalize| + |inputOutputBinaryFile| |node?| |representationType| |lieAdmissible?| + |leftRank| |useSingleFactorBound| |sequence| |assert| + |leadingBasisTerm| |f07aef| |numeric| |convergents| |mkPrim| |revert| + |degreeSubResultantEuclidean| |lfunc| |OMgetAtp| |generalPosition| + |argumentList!| |radical| |iflist2Result| |distFact| |s15adf| + |acosIfCan| |belong?| |presub| |plus!| |moduloP| |OMsetEncoding| + |replace| |monom| |getBadValues| |subspace| |relativeApprox| |merge| + |nil?| |rewriteIdealWithHeadRemainder| |viewDeltaXDefault| |pattern| + |create3Space| |iiatan| |splitConstant| |const| |showTypeInOutput| + |lowerCase| |iisinh| |findCycle| RF2UTS |rules| |f01qcf| |denomRicDE| + |elRow2!| |critpOrder| |associates?| |processTemplate| |binary| + |common| |setEmpty!| |octon| |seed| |appendPoint| |zeroMatrix| + |separateFactors| |linSolve| |f01rdf| |bivariatePolynomials| + |expintfldpoly| |coerceImages| |exprHasWeightCosWXorSinWX| |airyBi| + |operators| |ceiling| |arg1| |numerator| |message| |infix| |directSum| + |real?| |cycleElt| |extensionDegree| |in?| |infieldIntegrate| |arg2| + |hue| |printInfo| |leaf?| |f2st| + |removeRoughlyRedundantFactorsInContents| |mapExponents| + |rationalPoints| |isExpt| |pdf2df| |idealSimplify| |rootBound| + |modTree| |paren| |numberOfPrimitivePoly| |changeVar| |s17dgf| + |OMputAtp| |omError| |conditions| |typeList| |getButtonValue| + |rischDEsys| |conjug| |laguerre| |midpoint| |tab| |changeMeasure| + |match| |generalizedContinuumHypothesisAssumed?| |fibonacci| + |horizConcat| |Nul| |outputFixed| |traceMatrix| |graeffe| |d02cjf| + |curryRight| |completeEchelonBasis| |pop!| |antisymmetric?| |cons| + |sparsityIF| |normalized?| |chiSquare| |setVariableOrder| |sncndn| + |bright| |point?| |extractClosed| |recoverAfterFail| |d03eef| + |firstNumer| |numberOfDivisors| |hermiteH| |rationalPoint?| |po| + |quasiMonicPolynomials| |singularAtInfinity?| |alphanumeric| + |LazardQuotient| |variable?| |removeRoughlyRedundantFactorsInPol| + |e02bdf| |rarrow| |exponential1| |minset| |logpart| + |nextsousResultant2| |hconcat| |diagonalProduct| |OMgetEndBind| + |OMencodingBinary| |numberOfChildren| |specialTrigs| ** |pastel| |row| + |void| |mapUnivariateIfCan| |sample| |leadingTerm| |character?| + |polarCoordinates| |qinterval| |indices| |reorder| |setAdaptive| + |OMlistCDs| |fortranTypeOf| |generic| |setClosed| |padecf| |split!| + |source| |birth| |Si| |pushdterm| |constantRight| |tanh2coth| |delete| + |e01sbf| EQ |cCosh| |collect| |exprToUPS| |LowTriBddDenomInv| + |relationsIdeal| |iter| |npcoef| |cross| |setprevious!| + |fortranLogical| |rootProduct| |initiallyReduce| |lfextlimint| + |virtualDegree| |f02aef| |addBadValue| |setTex!| |sqfrFactor| + |writeByteIfCan!| |simplifyPower| |primaryDecomp| |wordInGenerators| + |meshPar2Var| |colorDef| |multMonom| |stopTable!| |intcompBasis| + |isList| |refine| |numberOfComputedEntries| |sinIfCan| + |makeGraphImage| |expandTrigProducts| |wronskianMatrix| |square?| + |hyperelliptic| |rCoord| |twoFactor| |ksec| |internalInfRittWu?| + |OMgetEndError| |removeSquaresIfCan| |makeUnit| |totalLex| |insert!| + |pseudoQuotient| |csc2sin| |semicolonSeparate| |polygamma| |tubePlot| + |readable?| |stoseInvertibleSet| |OMgetBVar| |divide| + |increasePrecision| |ravel| |permanent| |taylorIfCan| + |clearTheIFTable| |unitVector| |log2| |less?| |powerAssociative?| + |setImagSteps| |reshape| |positiveSolve| |nthFlag| |pointPlot| + |reducedContinuedFraction| |s17aff| |OMputEndBind| |basicSet| |recur| + |setScreenResolution| |invertible?| |reflect| |createThreeSpace| + |hexDigit| |infLex?| |localUnquote| |noLinearFactor?| |xCoord| + |OMreceive| |realZeros| |rightUnit| |characteristic| |weights| + |limitedint| |key| |eisensteinIrreducible?| |iCompose| |subNodeOf?| + |rightZero| |substring?| |decompose| |neglist| + |indicialEquationAtInfinity| |pushup| |writeLine!| |leftQuotient| + |transcendenceDegree| GE |tab1| |rdregime| |squareFreePart| |addMatch| + |filename| |setchildren!| |discreteLog| |truncate| |presuper| + |rightExactQuotient| |hdmpToDmp| GT |critT| |suffix?| |redmat| + |unmakeSUP| |numerators| |not?| |dim| |size?| |sylvesterSequence| + |leader| |leftUnits| |isTimes| |addPoint| LE |ipow| |retractIfCan| + |printInfo!| |e04ycf| |OMclose| |parse| |squareFreeLexTriangular| + |e01sff| |symFunc| |prefix| LT |genericLeftTrace| |prefix?| + |OMputInteger| |mindegTerm| |generalizedContinuumHypothesisAssumed| + |double| |primintfldpoly| |pile| |bindings| |unit?| + |pointColorDefault| |getRef| |binaryFunction| |deepExpand| |test| + |diagonal?| |pToDmp| |normal01| |exponent| |listRepresentation| + |toseInvertibleSet| |derivationCoordinates| |defineProperty| + |contractSolve| |branchPointAtInfinity?| |univariatePolynomialsGcds| + |mightHaveRoots| |elRow1!| |prinb| |realSolve| |degreePartition| + |numberOfComponents| |conical| |computeCycleEntry| |minRowIndex| + |exprToXXP| |LazardQuotient2| |mapExpon| |f07adf| + |regularRepresentation| |bivariate?| |algSplitSimple| |rischDE| + |createLowComplexityTable| |max| |freeOf?| |outputGeneral| |s17acf| + |rewriteIdealWithRemainder| |eof?| |postfix| |OMgetBind| |atanhIfCan| + |failed?| |fullDisplay| |reduced?| |copyInto!| |moebiusMu| |infix?| + |cLog| |root?| |outputMeasure| |exp1| |iiacsch| |realEigenvalues| + |stopTableInvSet!| |createNormalPoly| |headReduce| |mask| + |basisOfLeftAnnihilator| |bombieriNorm| |declare!| |eulerPhi| + |initials| |s20adf| |factorsOfDegree| |OMUnknownSymbol?| |Lazard2| + |d02bhf| |UpTriBddDenomInv| |karatsubaOnce| |externalList| |leftTrace| + |useEisensteinCriterion| |extract!| |movedPoints| |log| + |subtractIfCan| |schwerpunkt| |cAcsc| |satisfy?| |SturmHabicht| + |setnext!| |groebnerIdeal| |second| |signatureAst| |OMgetInteger| + |byteBuffer| |mvar| |operator| |cycleEntry| |d01akf| + |irreducibleFactors| |getConstant| |index| |rank| |third| |orbits| + |OMwrite| |pushdown| |unaryFunction| |radicalSimplify| |inHallBasis?| + |mainExpression| |nextPartition| |internalDecompose| |inspect| |dn| + |removeZero| |extend| |rename| |depth| |rightRank| |roman| |Ci| + |nthFractionalTerm| |cyclicSubmodule| |matrix| |corrPoly| |rightMult| + |extendedResultant| |OMgetType| |scaleRoots| |symmetricProduct| + |coefChoose| |getPickedPoints| |llprop| |composites| |realRoots| + |e02ahf| |pair| |loadNativeModule| |inf| |linearlyDependentOverZ?| + |splitSquarefree| |separate| |makeCrit| |notelem| |OMputApp| + |mainVariables| |signature| |clipWithRanges| |OMgetEndAttr| |segment| + |heap| |messagePrint| |minimalPolynomial| |measure2Result| |exptMod| + |patternMatch| |bezoutDiscriminant| |constantToUnaryFunction| + |totalfract| |open?| |linGenPos| |rightGcd| |twist| |edf2fi| + |pmintegrate| |function| |internalZeroSetSplit| |jacobian| + |notOperand| |changeBase| |equiv?| |sizeLess?| |e01saf| |lists| |slex| + |setScreenResolution3D| |rational?| |setButtonValue| |endOfFile?| + |solid| |startTable!| |dequeue!| |flagFactor| + |genericRightDiscriminant| |collectUpper| + |removeIrreducibleRedundantFactors| |debug| |countable?| |child| + |genericPosition| |brace| |lazy?| |terms| |skewSFunction| |qPot| + |cAtan| |meshPar1Var| |makeVariable| D |e02akf| |rotatez| |light| + |createNormalPrimitivePoly| |setOfMinN| |sortConstraints| |lagrange| + |laplacian| |e01baf| |printStats!| |optAttributes| |setRealSteps| + |adaptive?| |zeroVector| |leftExactQuotient| |close| |block| + |anticoord| |basisOfRightNucleus| |chebyshevU| |vspace| |leftDivide| + |iisech| |midpoints| |computePowers| |OMencodingUnknown| |kmax| + |arguments| |isAbsolutelyIrreducible?| |rightLcm| |zCoord| |comment| + |pquo| |f02adf| |evenlambert| |quotedOperators| |value| |select!| + |parametersOf| |display| |supRittWu?| |tanAn| |primeFrobenius| + |setStatus| |e02aef| |associator| |sort| |mpsode| |firstDenom| |expr| + |lepol| |hasTopPredicate?| |stoseLastSubResultant| + |genericRightMinimalPolynomial| |identity| |extractIfCan| |makeprod| + |yellow| |logIfCan| |subResultantChain| |OMputEndObject| + |mainSquareFreePart| |invertibleSet| |rowEchelonLocal| + |semiResultantReduitEuclidean| |nextItem| |lastSubResultant| + |uniform01| |alphabetic| |irreducibleRepresentation| |basisOfCenter| + |getStream| |imagE| |startTableGcd!| |setMaxPoints| |getOrder| + |fractionPart| |cAcos| |nextNormalPoly| |blankSeparate| + |showTheIFTable| |solveLinearlyOverQ| |cond| + |solveLinearPolynomialEquationByRecursion| |leftRecip| |algebraicOf| + |sec2cos| |addMatchRestricted| |separateDegrees| + |univariatePolynomials| |remove| |numFunEvals| |variable| + |tryFunctionalDecomposition| |LyndonBasis| |nil| |infinite| + |arbitraryExponent| |approximate| |complex| |shallowMutable| + |canonical| |noetherian| |central| |partiallyOrderedSet| + |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| + |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| + |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| + |shallowlyMutable| |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index ec090c96..4568d4f3 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5182 +1,5195 @@ -(3178548 . 3432784514) -((-3237 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-3218 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-1851 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-1199 (-552)) |#2|) 34)) (-1883 (($ $) 59)) (-2163 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2483 (((-552) (-1 (-112) |#2|) $) 22) (((-552) |#2| $) NIL) (((-552) |#2| $ (-552)) 73)) (-3799 (((-625 |#2|) $) 13)) (-3280 (($ (-1 (-112) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-3683 (($ (-1 |#2| |#2|) $) 29)) (-1996 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-3994 (($ |#2| $ (-552)) NIL) (($ $ $ (-552)) 50)) (-2380 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-1888 (((-112) (-1 (-112) |#2|) $) 21)) (-2154 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-552)) NIL) (($ $ (-1199 (-552))) 49)) (-4001 (($ $ (-552)) 56) (($ $ (-1199 (-552))) 55)) (-2840 (((-751) (-1 (-112) |#2|) $) 26) (((-751) |#2| $) NIL)) (-3228 (($ $ $ (-552)) 52)) (-1871 (($ $) 51)) (-1695 (($ (-625 |#2|)) 53)) (-3402 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-625 $)) 62)) (-1683 (((-839) $) 69)) (-1900 (((-112) (-1 (-112) |#2|) $) 20)) (-2281 (((-112) $ $) 72)) (-2307 (((-112) $ $) 75))) -(((-18 |#1| |#2|) (-10 -8 (-15 -2281 ((-112) |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2307 ((-112) |#1| |#1|)) (-15 -3218 (|#1| |#1|)) (-15 -3218 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1883 (|#1| |#1|)) (-15 -3228 (|#1| |#1| |#1| (-552))) (-15 -3237 ((-112) |#1|)) (-15 -3280 (|#1| |#1| |#1|)) (-15 -2483 ((-552) |#2| |#1| (-552))) (-15 -2483 ((-552) |#2| |#1|)) (-15 -2483 ((-552) (-1 (-112) |#2|) |#1|)) (-15 -3237 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3280 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1851 (|#2| |#1| (-1199 (-552)) |#2|)) (-15 -3994 (|#1| |#1| |#1| (-552))) (-15 -3994 (|#1| |#2| |#1| (-552))) (-15 -4001 (|#1| |#1| (-1199 (-552)))) (-15 -4001 (|#1| |#1| (-552))) (-15 -2154 (|#1| |#1| (-1199 (-552)))) (-15 -1996 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3402 (|#1| (-625 |#1|))) (-15 -3402 (|#1| |#1| |#1|)) (-15 -3402 (|#1| |#2| |#1|)) (-15 -3402 (|#1| |#1| |#2|)) (-15 -1695 (|#1| (-625 |#2|))) (-15 -2380 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2154 (|#2| |#1| (-552))) (-15 -2154 (|#2| |#1| (-552) |#2|)) (-15 -1851 (|#2| |#1| (-552) |#2|)) (-15 -2840 ((-751) |#2| |#1|)) (-15 -3799 ((-625 |#2|) |#1|)) (-15 -2840 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -1888 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3683 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1871 (|#1| |#1|))) (-19 |#2|) (-1186)) (T -18)) -NIL -(-10 -8 (-15 -2281 ((-112) |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2307 ((-112) |#1| |#1|)) (-15 -3218 (|#1| |#1|)) (-15 -3218 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1883 (|#1| |#1|)) (-15 -3228 (|#1| |#1| |#1| (-552))) (-15 -3237 ((-112) |#1|)) (-15 -3280 (|#1| |#1| |#1|)) (-15 -2483 ((-552) |#2| |#1| (-552))) (-15 -2483 ((-552) |#2| |#1|)) (-15 -2483 ((-552) (-1 (-112) |#2|) |#1|)) (-15 -3237 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3280 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1851 (|#2| |#1| (-1199 (-552)) |#2|)) (-15 -3994 (|#1| |#1| |#1| (-552))) (-15 -3994 (|#1| |#2| |#1| (-552))) (-15 -4001 (|#1| |#1| (-1199 (-552)))) (-15 -4001 (|#1| |#1| (-552))) (-15 -2154 (|#1| |#1| (-1199 (-552)))) (-15 -1996 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3402 (|#1| (-625 |#1|))) (-15 -3402 (|#1| |#1| |#1|)) (-15 -3402 (|#1| |#2| |#1|)) (-15 -3402 (|#1| |#1| |#2|)) (-15 -1695 (|#1| (-625 |#2|))) (-15 -2380 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2154 (|#2| |#1| (-552))) (-15 -2154 (|#2| |#1| (-552) |#2|)) (-15 -1851 (|#2| |#1| (-552) |#2|)) (-15 -2840 ((-751) |#2| |#1|)) (-15 -3799 ((-625 |#2|) |#1|)) (-15 -2840 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -1888 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3683 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1871 (|#1| |#1|))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-2509 (((-1237) $ (-552) (-552)) 40 (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| |#1| (-827)) (|has| $ (-6 -4354))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) 8)) (-1851 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) 58 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-1883 (($ $) 90 (|has| $ (-6 -4354)))) (-2306 (($ $) 100)) (-2959 (($ $) 78 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#1| $) 77 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 51)) (-2483 (((-552) (-1 (-112) |#1|) $) 97) (((-552) |#1| $) 96 (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) 95 (|has| |#1| (-1073)))) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2183 (($ (-751) |#1|) 69)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 43 (|has| (-552) (-827)))) (-3658 (($ $ $) 87 (|has| |#1| (-827)))) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 44 (|has| (-552) (-827)))) (-3332 (($ $ $) 86 (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-2554 (((-625 (-552)) $) 46)) (-2564 (((-112) (-552) $) 47)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2924 ((|#1| $) 42 (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2518 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1199 (-552))) 63)) (-4001 (($ $ (-552)) 62) (($ $ (-1199 (-552))) 61)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3228 (($ $ $ (-552)) 91 (|has| $ (-6 -4354)))) (-1871 (($ $) 13)) (-2042 (((-528) $) 79 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 70)) (-3402 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-625 $)) 65)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) 84 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 83 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-2334 (((-112) $ $) 85 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 82 (|has| |#1| (-827)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-19 |#1|) (-138) (-1186)) (T -19)) -NIL -(-13 (-368 |t#1|) (-10 -7 (-6 -4354))) -(((-34) . T) ((-101) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827))) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-281 #0=(-552) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-368 |#1|) . T) ((-483 |#1|) . T) ((-588 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-631 |#1|) . T) ((-827) |has| |#1| (-827)) ((-1073) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827))) ((-1186) . T)) -((-2077 (((-3 $ "failed") $ $) 12)) (-2393 (($ $) NIL) (($ $ $) 9)) (* (($ (-897) $) NIL) (($ (-751) $) 16) (($ (-552) $) 21))) -(((-20 |#1|) (-10 -8 (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2077 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|))) (-21)) (T -20)) -NIL -(-10 -8 (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2077 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20))) -(((-21) (-138)) (T -21)) -((-2393 (*1 *1 *1) (-4 *1 (-21))) (-2393 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-552))))) -(-13 (-130) (-10 -8 (-15 -2393 ($ $)) (-15 -2393 ($ $ $)) (-15 * ($ (-552) $)))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-3641 (((-112) $) 10)) (-3101 (($) 15)) (* (($ (-897) $) 14) (($ (-751) $) 18))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-751) |#1|)) (-15 -3641 ((-112) |#1|)) (-15 -3101 (|#1|)) (-15 * (|#1| (-897) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-751) |#1|)) (-15 -3641 ((-112) |#1|)) (-15 -3101 (|#1|)) (-15 * (|#1| (-897) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3101 (($) 17 T CONST)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15))) -(((-23) (-138)) (T -23)) -((-2089 (*1 *1) (-4 *1 (-23))) (-3101 (*1 *1) (-4 *1 (-23))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-751))))) -(-13 (-25) (-10 -8 (-15 (-2089) ($) -1426) (-15 -3101 ($) -1426) (-15 -3641 ((-112) $)) (-15 * ($ (-751) $)))) -(((-25) . T) ((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((* (($ (-897) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-897) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-897) |#1|))) -((-1671 (((-112) $ $) 7)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 6)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13))) -(((-25) (-138)) (T -25)) -((-2382 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-897))))) -(-13 (-1073) (-10 -8 (-15 -2382 ($ $ $)) (-15 * ($ (-897) $)))) -(((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-1993 (((-625 $) (-928 $)) 29) (((-625 $) (-1145 $)) 16) (((-625 $) (-1145 $) (-1149)) 20)) (-3428 (($ (-928 $)) 27) (($ (-1145 $)) 11) (($ (-1145 $) (-1149)) 54)) (-3438 (((-625 $) (-928 $)) 30) (((-625 $) (-1145 $)) 18) (((-625 $) (-1145 $) (-1149)) 19)) (-3588 (($ (-928 $)) 28) (($ (-1145 $)) 13) (($ (-1145 $) (-1149)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -1993 ((-625 |#1|) (-1145 |#1|) (-1149))) (-15 -1993 ((-625 |#1|) (-1145 |#1|))) (-15 -1993 ((-625 |#1|) (-928 |#1|))) (-15 -3428 (|#1| (-1145 |#1|) (-1149))) (-15 -3428 (|#1| (-1145 |#1|))) (-15 -3428 (|#1| (-928 |#1|))) (-15 -3438 ((-625 |#1|) (-1145 |#1|) (-1149))) (-15 -3438 ((-625 |#1|) (-1145 |#1|))) (-15 -3438 ((-625 |#1|) (-928 |#1|))) (-15 -3588 (|#1| (-1145 |#1|) (-1149))) (-15 -3588 (|#1| (-1145 |#1|))) (-15 -3588 (|#1| (-928 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -1993 ((-625 |#1|) (-1145 |#1|) (-1149))) (-15 -1993 ((-625 |#1|) (-1145 |#1|))) (-15 -1993 ((-625 |#1|) (-928 |#1|))) (-15 -3428 (|#1| (-1145 |#1|) (-1149))) (-15 -3428 (|#1| (-1145 |#1|))) (-15 -3428 (|#1| (-928 |#1|))) (-15 -3438 ((-625 |#1|) (-1145 |#1|) (-1149))) (-15 -3438 ((-625 |#1|) (-1145 |#1|))) (-15 -3438 ((-625 |#1|) (-928 |#1|))) (-15 -3588 (|#1| (-1145 |#1|) (-1149))) (-15 -3588 (|#1| (-1145 |#1|))) (-15 -3588 (|#1| (-928 |#1|)))) -((-1671 (((-112) $ $) 7)) (-1993 (((-625 $) (-928 $)) 77) (((-625 $) (-1145 $)) 76) (((-625 $) (-1145 $) (-1149)) 75)) (-3428 (($ (-928 $)) 80) (($ (-1145 $)) 79) (($ (-1145 $) (-1149)) 78)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 70)) (-1330 (((-413 $) $) 69)) (-3837 (($ $) 89)) (-2408 (((-112) $ $) 57)) (-3101 (($) 17 T CONST)) (-3438 (((-625 $) (-928 $)) 83) (((-625 $) (-1145 $)) 82) (((-625 $) (-1145 $) (-1149)) 81)) (-3588 (($ (-928 $)) 86) (($ (-1145 $)) 85) (($ (-1145 $) (-1149)) 84)) (-2851 (($ $ $) 53)) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-2951 (((-112) $) 68)) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 88)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 67)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-3824 (((-413 $) $) 71)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-2397 (((-751) $) 56)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-402 (-552))) 63)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ $) 62)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 66) (($ $ (-402 (-552))) 87)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 65) (($ (-402 (-552)) $) 64))) -(((-27) (-138)) (T -27)) -((-3588 (*1 *1 *2) (-12 (-5 *2 (-928 *1)) (-4 *1 (-27)))) (-3588 (*1 *1 *2) (-12 (-5 *2 (-1145 *1)) (-4 *1 (-27)))) (-3588 (*1 *1 *2 *3) (-12 (-5 *2 (-1145 *1)) (-5 *3 (-1149)) (-4 *1 (-27)))) (-3438 (*1 *2 *3) (-12 (-5 *3 (-928 *1)) (-4 *1 (-27)) (-5 *2 (-625 *1)))) (-3438 (*1 *2 *3) (-12 (-5 *3 (-1145 *1)) (-4 *1 (-27)) (-5 *2 (-625 *1)))) (-3438 (*1 *2 *3 *4) (-12 (-5 *3 (-1145 *1)) (-5 *4 (-1149)) (-4 *1 (-27)) (-5 *2 (-625 *1)))) (-3428 (*1 *1 *2) (-12 (-5 *2 (-928 *1)) (-4 *1 (-27)))) (-3428 (*1 *1 *2) (-12 (-5 *2 (-1145 *1)) (-4 *1 (-27)))) (-3428 (*1 *1 *2 *3) (-12 (-5 *2 (-1145 *1)) (-5 *3 (-1149)) (-4 *1 (-27)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-928 *1)) (-4 *1 (-27)) (-5 *2 (-625 *1)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-1145 *1)) (-4 *1 (-27)) (-5 *2 (-625 *1)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *3 (-1145 *1)) (-5 *4 (-1149)) (-4 *1 (-27)) (-5 *2 (-625 *1))))) -(-13 (-358) (-978) (-10 -8 (-15 -3588 ($ (-928 $))) (-15 -3588 ($ (-1145 $))) (-15 -3588 ($ (-1145 $) (-1149))) (-15 -3438 ((-625 $) (-928 $))) (-15 -3438 ((-625 $) (-1145 $))) (-15 -3438 ((-625 $) (-1145 $) (-1149))) (-15 -3428 ($ (-928 $))) (-15 -3428 ($ (-1145 $))) (-15 -3428 ($ (-1145 $) (-1149))) (-15 -1993 ((-625 $) (-928 $))) (-15 -1993 ((-625 $) (-1145 $))) (-15 -1993 ((-625 $) (-1145 $) (-1149))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-544) . T) ((-628 #0#) . T) ((-628 $) . T) ((-698 #0#) . T) ((-698 $) . T) ((-707) . T) ((-896) . T) ((-978) . T) ((-1031 #0#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) . T)) -((-1993 (((-625 $) (-928 $)) NIL) (((-625 $) (-1145 $)) NIL) (((-625 $) (-1145 $) (-1149)) 50) (((-625 $) $) 19) (((-625 $) $ (-1149)) 41)) (-3428 (($ (-928 $)) NIL) (($ (-1145 $)) NIL) (($ (-1145 $) (-1149)) 52) (($ $) 17) (($ $ (-1149)) 37)) (-3438 (((-625 $) (-928 $)) NIL) (((-625 $) (-1145 $)) NIL) (((-625 $) (-1145 $) (-1149)) 48) (((-625 $) $) 15) (((-625 $) $ (-1149)) 43)) (-3588 (($ (-928 $)) NIL) (($ (-1145 $)) NIL) (($ (-1145 $) (-1149)) NIL) (($ $) 12) (($ $ (-1149)) 39))) -(((-28 |#1| |#2|) (-10 -8 (-15 -1993 ((-625 |#1|) |#1| (-1149))) (-15 -3428 (|#1| |#1| (-1149))) (-15 -1993 ((-625 |#1|) |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -3438 ((-625 |#1|) |#1| (-1149))) (-15 -3588 (|#1| |#1| (-1149))) (-15 -3438 ((-625 |#1|) |#1|)) (-15 -3588 (|#1| |#1|)) (-15 -1993 ((-625 |#1|) (-1145 |#1|) (-1149))) (-15 -1993 ((-625 |#1|) (-1145 |#1|))) (-15 -1993 ((-625 |#1|) (-928 |#1|))) (-15 -3428 (|#1| (-1145 |#1|) (-1149))) (-15 -3428 (|#1| (-1145 |#1|))) (-15 -3428 (|#1| (-928 |#1|))) (-15 -3438 ((-625 |#1|) (-1145 |#1|) (-1149))) (-15 -3438 ((-625 |#1|) (-1145 |#1|))) (-15 -3438 ((-625 |#1|) (-928 |#1|))) (-15 -3588 (|#1| (-1145 |#1|) (-1149))) (-15 -3588 (|#1| (-1145 |#1|))) (-15 -3588 (|#1| (-928 |#1|)))) (-29 |#2|) (-13 (-827) (-544))) (T -28)) -NIL -(-10 -8 (-15 -1993 ((-625 |#1|) |#1| (-1149))) (-15 -3428 (|#1| |#1| (-1149))) (-15 -1993 ((-625 |#1|) |#1|)) (-15 -3428 (|#1| |#1|)) (-15 -3438 ((-625 |#1|) |#1| (-1149))) (-15 -3588 (|#1| |#1| (-1149))) (-15 -3438 ((-625 |#1|) |#1|)) (-15 -3588 (|#1| |#1|)) (-15 -1993 ((-625 |#1|) (-1145 |#1|) (-1149))) (-15 -1993 ((-625 |#1|) (-1145 |#1|))) (-15 -1993 ((-625 |#1|) (-928 |#1|))) (-15 -3428 (|#1| (-1145 |#1|) (-1149))) (-15 -3428 (|#1| (-1145 |#1|))) (-15 -3428 (|#1| (-928 |#1|))) (-15 -3438 ((-625 |#1|) (-1145 |#1|) (-1149))) (-15 -3438 ((-625 |#1|) (-1145 |#1|))) (-15 -3438 ((-625 |#1|) (-928 |#1|))) (-15 -3588 (|#1| (-1145 |#1|) (-1149))) (-15 -3588 (|#1| (-1145 |#1|))) (-15 -3588 (|#1| (-928 |#1|)))) -((-1671 (((-112) $ $) 7)) (-1993 (((-625 $) (-928 $)) 77) (((-625 $) (-1145 $)) 76) (((-625 $) (-1145 $) (-1149)) 75) (((-625 $) $) 123) (((-625 $) $ (-1149)) 121)) (-3428 (($ (-928 $)) 80) (($ (-1145 $)) 79) (($ (-1145 $) (-1149)) 78) (($ $) 124) (($ $ (-1149)) 122)) (-3641 (((-112) $) 16)) (-3982 (((-625 (-1149)) $) 198)) (-3793 (((-402 (-1145 $)) $ (-596 $)) 230 (|has| |#1| (-544)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-3715 (((-625 (-596 $)) $) 161)) (-2077 (((-3 $ "failed") $ $) 19)) (-3831 (($ $ (-625 (-596 $)) (-625 $)) 151) (($ $ (-625 (-289 $))) 150) (($ $ (-289 $)) 149)) (-2194 (($ $) 70)) (-1330 (((-413 $) $) 69)) (-3837 (($ $) 89)) (-2408 (((-112) $ $) 57)) (-3101 (($) 17 T CONST)) (-3438 (((-625 $) (-928 $)) 83) (((-625 $) (-1145 $)) 82) (((-625 $) (-1145 $) (-1149)) 81) (((-625 $) $) 127) (((-625 $) $ (-1149)) 125)) (-3588 (($ (-928 $)) 86) (($ (-1145 $)) 85) (($ (-1145 $) (-1149)) 84) (($ $) 128) (($ $ (-1149)) 126)) (-1893 (((-3 (-928 |#1|) "failed") $) 248 (|has| |#1| (-1025))) (((-3 (-402 (-928 |#1|)) "failed") $) 232 (|has| |#1| (-544))) (((-3 |#1| "failed") $) 194) (((-3 (-552) "failed") $) 192 (|has| |#1| (-1014 (-552)))) (((-3 (-1149) "failed") $) 185) (((-3 (-596 $) "failed") $) 136) (((-3 (-402 (-552)) "failed") $) 120 (-1523 (-12 (|has| |#1| (-1014 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1014 (-402 (-552))))))) (-1895 (((-928 |#1|) $) 249 (|has| |#1| (-1025))) (((-402 (-928 |#1|)) $) 233 (|has| |#1| (-544))) ((|#1| $) 195) (((-552) $) 191 (|has| |#1| (-1014 (-552)))) (((-1149) $) 186) (((-596 $) $) 137) (((-402 (-552)) $) 119 (-1523 (-12 (|has| |#1| (-1014 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1014 (-402 (-552))))))) (-2851 (($ $ $) 53)) (-1794 (((-669 |#1|) (-669 $)) 238 (|has| |#1| (-1025))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 237 (|has| |#1| (-1025))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 118 (-1523 (-3743 (|has| |#1| (-1025)) (|has| |#1| (-621 (-552)))) (-3743 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))))) (((-669 (-552)) (-669 $)) 117 (-1523 (-3743 (|has| |#1| (-1025)) (|has| |#1| (-621 (-552)))) (-3743 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025)))))) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-2951 (((-112) $) 68)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 190 (|has| |#1| (-862 (-374)))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 189 (|has| |#1| (-862 (-552))))) (-2411 (($ (-625 $)) 155) (($ $) 154)) (-1940 (((-625 (-114)) $) 162)) (-1563 (((-114) (-114)) 163)) (-3650 (((-112) $) 30)) (-3932 (((-112) $) 183 (|has| $ (-1014 (-552))))) (-2276 (($ $) 215 (|has| |#1| (-1025)))) (-1356 (((-1098 |#1| (-596 $)) $) 214 (|has| |#1| (-1025)))) (-2429 (($ $ (-552)) 88)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-1917 (((-1145 $) (-596 $)) 180 (|has| $ (-1025)))) (-3658 (($ $ $) 134)) (-3332 (($ $ $) 133)) (-1996 (($ (-1 $ $) (-596 $)) 169)) (-1952 (((-3 (-596 $) "failed") $) 159)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-3783 (((-625 (-596 $)) $) 160)) (-1425 (($ (-114) (-625 $)) 168) (($ (-114) $) 167)) (-4172 (((-3 (-625 $) "failed") $) 209 (|has| |#1| (-1085)))) (-4194 (((-3 (-2 (|:| |val| $) (|:| -3564 (-552))) "failed") $) 218 (|has| |#1| (-1025)))) (-4160 (((-3 (-625 $) "failed") $) 211 (|has| |#1| (-25)))) (-2692 (((-3 (-2 (|:| -3340 (-552)) (|:| |var| (-596 $))) "failed") $) 212 (|has| |#1| (-25)))) (-4182 (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $ (-1149)) 217 (|has| |#1| (-1025))) (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $ (-114)) 216 (|has| |#1| (-1025))) (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $) 210 (|has| |#1| (-1085)))) (-1721 (((-112) $ (-1149)) 166) (((-112) $ (-114)) 165)) (-4092 (($ $) 67)) (-2207 (((-751) $) 158)) (-2831 (((-1093) $) 10)) (-4105 (((-112) $) 196)) (-4117 ((|#1| $) 197)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-1929 (((-112) $ (-1149)) 171) (((-112) $ $) 170)) (-3824 (((-413 $) $) 71)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-3943 (((-112) $) 182 (|has| $ (-1014 (-552))))) (-4073 (($ $ (-1149) (-751) (-1 $ $)) 222 (|has| |#1| (-1025))) (($ $ (-1149) (-751) (-1 $ (-625 $))) 221 (|has| |#1| (-1025))) (($ $ (-625 (-1149)) (-625 (-751)) (-625 (-1 $ (-625 $)))) 220 (|has| |#1| (-1025))) (($ $ (-625 (-1149)) (-625 (-751)) (-625 (-1 $ $))) 219 (|has| |#1| (-1025))) (($ $ (-625 (-114)) (-625 $) (-1149)) 208 (|has| |#1| (-598 (-528)))) (($ $ (-114) $ (-1149)) 207 (|has| |#1| (-598 (-528)))) (($ $) 206 (|has| |#1| (-598 (-528)))) (($ $ (-625 (-1149))) 205 (|has| |#1| (-598 (-528)))) (($ $ (-1149)) 204 (|has| |#1| (-598 (-528)))) (($ $ (-114) (-1 $ $)) 179) (($ $ (-114) (-1 $ (-625 $))) 178) (($ $ (-625 (-114)) (-625 (-1 $ (-625 $)))) 177) (($ $ (-625 (-114)) (-625 (-1 $ $))) 176) (($ $ (-1149) (-1 $ $)) 175) (($ $ (-1149) (-1 $ (-625 $))) 174) (($ $ (-625 (-1149)) (-625 (-1 $ (-625 $)))) 173) (($ $ (-625 (-1149)) (-625 (-1 $ $))) 172) (($ $ (-625 $) (-625 $)) 143) (($ $ $ $) 142) (($ $ (-289 $)) 141) (($ $ (-625 (-289 $))) 140) (($ $ (-625 (-596 $)) (-625 $)) 139) (($ $ (-596 $) $) 138)) (-2397 (((-751) $) 56)) (-2154 (($ (-114) (-625 $)) 148) (($ (-114) $ $ $ $) 147) (($ (-114) $ $ $) 146) (($ (-114) $ $) 145) (($ (-114) $) 144)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-1963 (($ $ $) 157) (($ $) 156)) (-3072 (($ $ (-1149)) 246 (|has| |#1| (-1025))) (($ $ (-625 (-1149))) 245 (|has| |#1| (-1025))) (($ $ (-1149) (-751)) 244 (|has| |#1| (-1025))) (($ $ (-625 (-1149)) (-625 (-751))) 243 (|has| |#1| (-1025)))) (-2265 (($ $) 225 (|has| |#1| (-544)))) (-1368 (((-1098 |#1| (-596 $)) $) 224 (|has| |#1| (-544)))) (-3610 (($ $) 181 (|has| $ (-1025)))) (-2042 (((-528) $) 252 (|has| |#1| (-598 (-528)))) (($ (-413 $)) 223 (|has| |#1| (-544))) (((-868 (-374)) $) 188 (|has| |#1| (-598 (-868 (-374))))) (((-868 (-552)) $) 187 (|has| |#1| (-598 (-868 (-552)))))) (-2410 (($ $ $) 251 (|has| |#1| (-467)))) (-3828 (($ $ $) 250 (|has| |#1| (-467)))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-402 (-552))) 63) (($ (-928 |#1|)) 247 (|has| |#1| (-1025))) (($ (-402 (-928 |#1|))) 231 (|has| |#1| (-544))) (($ (-402 (-928 (-402 |#1|)))) 229 (|has| |#1| (-544))) (($ (-928 (-402 |#1|))) 228 (|has| |#1| (-544))) (($ (-402 |#1|)) 227 (|has| |#1| (-544))) (($ (-1098 |#1| (-596 $))) 213 (|has| |#1| (-1025))) (($ |#1|) 193) (($ (-1149)) 184) (($ (-596 $)) 135)) (-4243 (((-3 $ "failed") $) 236 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-3779 (($ (-625 $)) 153) (($ $) 152)) (-1572 (((-112) (-114)) 164)) (-3518 (((-112) $ $) 37)) (-3844 (($ (-1149) (-625 $)) 203) (($ (-1149) $ $ $ $) 202) (($ (-1149) $ $ $) 201) (($ (-1149) $ $) 200) (($ (-1149) $) 199)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-1149)) 242 (|has| |#1| (-1025))) (($ $ (-625 (-1149))) 241 (|has| |#1| (-1025))) (($ $ (-1149) (-751)) 240 (|has| |#1| (-1025))) (($ $ (-625 (-1149)) (-625 (-751))) 239 (|has| |#1| (-1025)))) (-2346 (((-112) $ $) 131)) (-2320 (((-112) $ $) 130)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 132)) (-2307 (((-112) $ $) 129)) (-2404 (($ $ $) 62) (($ (-1098 |#1| (-596 $)) (-1098 |#1| (-596 $))) 226 (|has| |#1| (-544)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 66) (($ $ (-402 (-552))) 87)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 65) (($ (-402 (-552)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-170))) (($ |#1| $) 234 (|has| |#1| (-170))))) -(((-29 |#1|) (-138) (-13 (-827) (-544))) (T -29)) -((-3588 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-827) (-544))))) (-3438 (*1 *2 *1) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *2 (-625 *1)) (-4 *1 (-29 *3)))) (-3588 (*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-827) (-544))))) (-3438 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-625 *1)) (-4 *1 (-29 *4)))) (-3428 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-827) (-544))))) (-1993 (*1 *2 *1) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *2 (-625 *1)) (-4 *1 (-29 *3)))) (-3428 (*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-827) (-544))))) (-1993 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-625 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-425 |t#1|) (-10 -8 (-15 -3588 ($ $)) (-15 -3438 ((-625 $) $)) (-15 -3588 ($ $ (-1149))) (-15 -3438 ((-625 $) $ (-1149))) (-15 -3428 ($ $)) (-15 -1993 ((-625 $) $)) (-15 -3428 ($ $ (-1149))) (-15 -1993 ((-625 $) $ (-1149))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) . T) ((-27) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-598 (-868 (-374))) |has| |#1| (-598 (-868 (-374)))) ((-598 (-868 (-552))) |has| |#1| (-598 (-868 (-552)))) ((-239) . T) ((-285) . T) ((-302) . T) ((-304 $) . T) ((-297) . T) ((-358) . T) ((-372 |#1|) |has| |#1| (-1025)) ((-395 |#1|) . T) ((-406 |#1|) . T) ((-425 |#1|) . T) ((-446) . T) ((-467) |has| |#1| (-467)) ((-507 (-596 $) $) . T) ((-507 $ $) . T) ((-544) . T) ((-628 #0#) . T) ((-628 |#1|) |has| |#1| (-170)) ((-628 $) . T) ((-621 (-552)) -12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))) ((-621 |#1|) |has| |#1| (-1025)) ((-698 #0#) . T) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) . T) ((-707) . T) ((-827) . T) ((-876 (-1149)) |has| |#1| (-1025)) ((-862 (-374)) |has| |#1| (-862 (-374))) ((-862 (-552)) |has| |#1| (-862 (-552))) ((-860 |#1|) . T) ((-896) . T) ((-978) . T) ((-1014 (-402 (-552))) -1523 (|has| |#1| (-1014 (-402 (-552)))) (-12 (|has| |#1| (-544)) (|has| |#1| (-1014 (-552))))) ((-1014 (-402 (-928 |#1|))) |has| |#1| (-544)) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 (-596 $)) . T) ((-1014 (-928 |#1|)) |has| |#1| (-1025)) ((-1014 (-1149)) . T) ((-1014 |#1|) . T) ((-1031 #0#) . T) ((-1031 |#1|) |has| |#1| (-170)) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1186) . T) ((-1190) . T)) -((-3663 (((-1067 (-221)) $) NIL)) (-3652 (((-1067 (-221)) $) NIL)) (-4230 (($ $ (-221)) 125)) (-3451 (($ (-928 (-552)) (-1149) (-1149) (-1067 (-402 (-552))) (-1067 (-402 (-552)))) 83)) (-3603 (((-625 (-625 (-919 (-221)))) $) 137)) (-1683 (((-839) $) 149))) -(((-30) (-13 (-931) (-10 -8 (-15 -3451 ($ (-928 (-552)) (-1149) (-1149) (-1067 (-402 (-552))) (-1067 (-402 (-552))))) (-15 -4230 ($ $ (-221)))))) (T -30)) -((-3451 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-928 (-552))) (-5 *3 (-1149)) (-5 *4 (-1067 (-402 (-552)))) (-5 *1 (-30)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-30))))) -(-13 (-931) (-10 -8 (-15 -3451 ($ (-928 (-552)) (-1149) (-1149) (-1067 (-402 (-552))) (-1067 (-402 (-552))))) (-15 -4230 ($ $ (-221))))) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-1300 (((-1108) $) 11)) (-3929 (((-1108) $) 9)) (-2281 (((-112) $ $) NIL))) -(((-31) (-13 (-1056) (-10 -8 (-15 -3929 ((-1108) $)) (-15 -1300 ((-1108) $))))) (T -31)) -((-3929 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-31)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-31))))) -(-13 (-1056) (-10 -8 (-15 -3929 ((-1108) $)) (-15 -1300 ((-1108) $)))) -((-3588 ((|#2| (-1145 |#2|) (-1149)) 43)) (-1563 (((-114) (-114)) 56)) (-1917 (((-1145 |#2|) (-596 |#2|)) 133 (|has| |#1| (-1014 (-552))))) (-3484 ((|#2| |#1| (-552)) 122 (|has| |#1| (-1014 (-552))))) (-3463 ((|#2| (-1145 |#2|) |#2|) 30)) (-3474 (((-839) (-625 |#2|)) 85)) (-3610 ((|#2| |#2|) 129 (|has| |#1| (-1014 (-552))))) (-1572 (((-112) (-114)) 18)) (** ((|#2| |#2| (-402 (-552))) 96 (|has| |#1| (-1014 (-552)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3588 (|#2| (-1145 |#2|) (-1149))) (-15 -1563 ((-114) (-114))) (-15 -1572 ((-112) (-114))) (-15 -3463 (|#2| (-1145 |#2|) |#2|)) (-15 -3474 ((-839) (-625 |#2|))) (IF (|has| |#1| (-1014 (-552))) (PROGN (-15 ** (|#2| |#2| (-402 (-552)))) (-15 -1917 ((-1145 |#2|) (-596 |#2|))) (-15 -3610 (|#2| |#2|)) (-15 -3484 (|#2| |#1| (-552)))) |%noBranch|)) (-13 (-827) (-544)) (-425 |#1|)) (T -32)) -((-3484 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-4 *2 (-425 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1014 *4)) (-4 *3 (-13 (-827) (-544))))) (-3610 (*1 *2 *2) (-12 (-4 *3 (-1014 (-552))) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-32 *3 *2)) (-4 *2 (-425 *3)))) (-1917 (*1 *2 *3) (-12 (-5 *3 (-596 *5)) (-4 *5 (-425 *4)) (-4 *4 (-1014 (-552))) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-1145 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-402 (-552))) (-4 *4 (-1014 (-552))) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-32 *4 *2)) (-4 *2 (-425 *4)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-625 *5)) (-4 *5 (-425 *4)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-839)) (-5 *1 (-32 *4 *5)))) (-3463 (*1 *2 *3 *2) (-12 (-5 *3 (-1145 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-32 *4 *2)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-425 *4)))) (-1563 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-32 *3 *4)) (-4 *4 (-425 *3)))) (-3588 (*1 *2 *3 *4) (-12 (-5 *3 (-1145 *2)) (-5 *4 (-1149)) (-4 *2 (-425 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-827) (-544)))))) -(-10 -7 (-15 -3588 (|#2| (-1145 |#2|) (-1149))) (-15 -1563 ((-114) (-114))) (-15 -1572 ((-112) (-114))) (-15 -3463 (|#2| (-1145 |#2|) |#2|)) (-15 -3474 ((-839) (-625 |#2|))) (IF (|has| |#1| (-1014 (-552))) (PROGN (-15 ** (|#2| |#2| (-402 (-552)))) (-15 -1917 ((-1145 |#2|) (-596 |#2|))) (-15 -3610 (|#2| |#2|)) (-15 -3484 (|#2| |#1| (-552)))) |%noBranch|)) -((-3495 (((-112) $ (-751)) 16)) (-3101 (($) 10)) (-2909 (((-112) $ (-751)) 15)) (-2878 (((-112) $ (-751)) 14)) (-3504 (((-112) $ $) 8)) (-1916 (((-112) $) 13))) -(((-33 |#1|) (-10 -8 (-15 -3101 (|#1|)) (-15 -3495 ((-112) |#1| (-751))) (-15 -2909 ((-112) |#1| (-751))) (-15 -2878 ((-112) |#1| (-751))) (-15 -1916 ((-112) |#1|)) (-15 -3504 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -3101 (|#1|)) (-15 -3495 ((-112) |#1| (-751))) (-15 -2909 ((-112) |#1| (-751))) (-15 -2878 ((-112) |#1| (-751))) (-15 -1916 ((-112) |#1|)) (-15 -3504 ((-112) |#1| |#1|))) -((-3495 (((-112) $ (-751)) 8)) (-3101 (($) 7 T CONST)) (-2909 (((-112) $ (-751)) 9)) (-2878 (((-112) $ (-751)) 10)) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-1871 (($ $) 13)) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-34) (-138)) (T -34)) -((-3504 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1871 (*1 *1 *1) (-4 *1 (-34))) (-3600 (*1 *1) (-4 *1 (-34))) (-1916 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2878 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112)))) (-2909 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112)))) (-3495 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112)))) (-3101 (*1 *1) (-4 *1 (-34))) (-1471 (*1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-34)) (-5 *2 (-751))))) -(-13 (-1186) (-10 -8 (-15 -3504 ((-112) $ $)) (-15 -1871 ($ $)) (-15 -3600 ($)) (-15 -1916 ((-112) $)) (-15 -2878 ((-112) $ (-751))) (-15 -2909 ((-112) $ (-751))) (-15 -3495 ((-112) $ (-751))) (-15 -3101 ($) -1426) (IF (|has| $ (-6 -4353)) (-15 -1471 ((-751) $)) |%noBranch|))) -(((-1186) . T)) -((-3789 (($ $) 11)) (-3769 (($ $) 10)) (-3809 (($ $) 9)) (-3742 (($ $) 8)) (-3797 (($ $) 7)) (-3778 (($ $) 6))) -(((-35) (-138)) (T -35)) -((-3789 (*1 *1 *1) (-4 *1 (-35))) (-3769 (*1 *1 *1) (-4 *1 (-35))) (-3809 (*1 *1 *1) (-4 *1 (-35))) (-3742 (*1 *1 *1) (-4 *1 (-35))) (-3797 (*1 *1 *1) (-4 *1 (-35))) (-3778 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -3778 ($ $)) (-15 -3797 ($ $)) (-15 -3742 ($ $)) (-15 -3809 ($ $)) (-15 -3769 ($ $)) (-15 -3789 ($ $)))) -((-1671 (((-112) $ $) 19 (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-3800 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 125)) (-3897 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 148)) (-2101 (($ $) 146)) (-2173 (($) 72) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 71)) (-2509 (((-1237) $ |#1| |#1|) 99 (|has| $ (-6 -4354))) (((-1237) $ (-552) (-552)) 178 (|has| $ (-6 -4354)))) (-2278 (($ $ (-552)) 159 (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3218 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 200 (|has| $ (-6 -4354))) (($ $) 199 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)) (|has| $ (-6 -4354))))) (-1800 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3495 (((-112) $ (-751)) 8)) (-2565 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 134 (|has| $ (-6 -4354)))) (-2301 (($ $ $) 155 (|has| $ (-6 -4354)))) (-2289 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 157 (|has| $ (-6 -4354)))) (-2317 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 153 (|has| $ (-6 -4354)))) (-1851 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 189 (|has| $ (-6 -4354))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-1199 (-552)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 160 (|has| $ (-6 -4354))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "last" (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 158 (|has| $ (-6 -4354))) (($ $ "rest" $) 156 (|has| $ (-6 -4354))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "first" (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 154 (|has| $ (-6 -4354))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "value" (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 133 (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 132 (|has| $ (-6 -4354)))) (-2873 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 45 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 216)) (-3488 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 55 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 175 (|has| $ (-6 -4353)))) (-2673 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 147)) (-3128 (((-3 |#2| "failed") |#1| $) 61)) (-3101 (($) 7 T CONST)) (-1883 (($ $) 201 (|has| $ (-6 -4354)))) (-2306 (($ $) 211)) (-2936 (($ $ (-751)) 142) (($ $) 140)) (-3238 (($ $) 214 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-2959 (($ $) 58 (-1523 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353))) (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))))) (-1938 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 46 (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 220) (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 215 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-1416 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 54 (|has| $ (-6 -4353))) (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 177 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 174 (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 56 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 53 (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 52 (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 176 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 173 (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 172 (|has| $ (-6 -4353)))) (-3692 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4354))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 190 (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) 88) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552)) 188)) (-4011 (((-112) $) 192)) (-2483 (((-552) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 208) (((-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 207 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))) (((-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552)) 206 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-3799 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 30 (|has| $ (-6 -4353))) (((-625 |#2|) $) 79 (|has| $ (-6 -4353))) (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 114 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) 123)) (-1371 (((-112) $ $) 131 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-2183 (($ (-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 169)) (-2909 (((-112) $ (-751)) 9)) (-2527 ((|#1| $) 96 (|has| |#1| (-827))) (((-552) $) 180 (|has| (-552) (-827)))) (-3658 (($ $ $) 198 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3260 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3280 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3730 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 29 (|has| $ (-6 -4353))) (((-625 |#2|) $) 80 (|has| $ (-6 -4353))) (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 115 (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1073)) (|has| $ (-6 -4353)))) (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 117 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353))))) (-2537 ((|#1| $) 95 (|has| |#1| (-827))) (((-552) $) 181 (|has| (-552) (-827)))) (-3332 (($ $ $) 197 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 34 (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4354))) (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 110 (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 109)) (-2801 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 225)) (-2878 (((-112) $ (-751)) 10)) (-3183 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 128)) (-3367 (((-112) $) 124)) (-2883 (((-1131) $) 22 (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1437 (($ $ (-751)) 145) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 143)) (-3712 (((-625 |#1|) $) 63)) (-1370 (((-112) |#1| $) 64)) (-2953 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 39)) (-3966 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 40) (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552)) 219) (($ $ $ (-552)) 218)) (-3994 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552)) 162) (($ $ $ (-552)) 161)) (-2554 (((-625 |#1|) $) 93) (((-625 (-552)) $) 183)) (-2564 (((-112) |#1| $) 92) (((-112) (-552) $) 184)) (-2831 (((-1093) $) 21 (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-2924 ((|#2| $) 97 (|has| |#1| (-827))) (($ $ (-751)) 139) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 137)) (-2380 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 51) (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 171)) (-2518 (($ $ |#2|) 98 (|has| $ (-6 -4354))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 179 (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 41)) (-4022 (((-112) $) 191)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 32 (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 112 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) 26 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 25 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 24 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 23 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) 86 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) 84 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-289 |#2|))) 83 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 121 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 120 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 119 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) 118 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073)))) (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 182 (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1358 (((-625 |#2|) $) 91) (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 185)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 187) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552)) 186) (($ $ (-1199 (-552))) 165) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "first") 138) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "value") 126)) (-1389 (((-552) $ $) 129)) (-4255 (($) 49) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 48)) (-2884 (($ $ (-552)) 222) (($ $ (-1199 (-552))) 221)) (-4001 (($ $ (-552)) 164) (($ $ (-1199 (-552))) 163)) (-2316 (((-112) $) 127)) (-2356 (($ $) 151)) (-2330 (($ $) 152 (|has| $ (-6 -4354)))) (-2368 (((-751) $) 150)) (-2379 (($ $) 149)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 31 (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (((-751) |#2| $) 81 (-12 (|has| |#2| (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 116 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 113 (|has| $ (-6 -4353)))) (-3228 (($ $ $ (-552)) 202 (|has| $ (-6 -4354)))) (-1871 (($ $) 13)) (-2042 (((-528) $) 59 (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528)))))) (-1695 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 50) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 170)) (-2342 (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 224) (($ $ $) 223)) (-3402 (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 168) (($ (-625 $)) 167) (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 136) (($ $ $) 135)) (-1683 (((-839) $) 18 (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839))) (|has| |#2| (-597 (-839))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839)))))) (-3320 (((-625 $) $) 122)) (-1380 (((-112) $ $) 130 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-2977 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 42)) (-1444 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") |#1| $) 108)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 33 (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 111 (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) 195 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-2320 (((-112) $ $) 194 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-2281 (((-112) $ $) 20 (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-2334 (((-112) $ $) 196 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-2307 (((-112) $ $) 193 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-36 |#1| |#2|) (-138) (-1073) (-1073)) (T -36)) -((-1444 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-5 *2 (-2 (|:| -2971 *3) (|:| -4120 *4)))))) -(-13 (-1162 |t#1| |t#2|) (-646 (-2 (|:| -2971 |t#1|) (|:| -4120 |t#2|))) (-10 -8 (-15 -1444 ((-3 (-2 (|:| -2971 |t#1|) (|:| -4120 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-106 #0=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T) ((-101) -1523 (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827))) ((-597 (-839)) -1523 (|has| |#2| (-1073)) (|has| |#2| (-597 (-839))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839)))) ((-149 #1=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T) ((-598 (-528)) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))) ((-225 #0#) . T) ((-231 #0#) . T) ((-281 #2=(-552) #1#) . T) ((-281 |#1| |#2|) . T) ((-283 #2# #1#) . T) ((-283 |#1| |#2|) . T) ((-304 #1#) -12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((-277 #1#) . T) ((-368 #1#) . T) ((-483 #1#) . T) ((-483 |#2|) . T) ((-588 #2# #1#) . T) ((-588 |#1| |#2|) . T) ((-507 #1# #1#) -12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))) ((-507 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((-594 |#1| |#2|) . T) ((-631 #1#) . T) ((-646 #1#) . T) ((-827) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)) ((-986 #1#) . T) ((-1073) -1523 (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827))) ((-1122 #1#) . T) ((-1162 |#1| |#2|) . T) ((-1186) . T) ((-1220 #1#) . T)) -((-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -1683 (|#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|))) (-38 |#2|) (-170)) (T -37)) -NIL -(-10 -8 (-15 -1683 (|#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 35)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-38 |#1|) (-138) (-170)) (T -38)) -((-1683 (*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170))))) -(-13 (-1025) (-698 |t#1|) (-10 -8 (-15 -1683 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) . T) ((-707) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-3819 (((-413 |#1|) |#1|) 41)) (-3824 (((-413 |#1|) |#1|) 30) (((-413 |#1|) |#1| (-625 (-48))) 33)) (-3513 (((-112) |#1|) 56))) -(((-39 |#1|) (-10 -7 (-15 -3824 ((-413 |#1|) |#1| (-625 (-48)))) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -3819 ((-413 |#1|) |#1|)) (-15 -3513 ((-112) |#1|))) (-1208 (-48))) (T -39)) -((-3513 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1208 (-48))))) (-3819 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1208 (-48))))) (-3824 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1208 (-48))))) (-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-48))) (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1208 (-48)))))) -(-10 -7 (-15 -3824 ((-413 |#1|) |#1| (-625 (-48)))) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -3819 ((-413 |#1|) |#1|)) (-15 -3513 ((-112) |#1|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-1706 (((-2 (|:| |num| (-1232 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| (-402 |#2|) (-358)))) (-3528 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-3509 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-2570 (((-669 (-402 |#2|)) (-1232 $)) NIL) (((-669 (-402 |#2|))) NIL)) (-1650 (((-402 |#2|) $) NIL)) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| (-402 |#2|) (-344)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-1330 (((-413 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2408 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-2894 (((-751)) NIL (|has| (-402 |#2|) (-363)))) (-1861 (((-112)) NIL)) (-1852 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| (-402 |#2|) (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| (-402 |#2|) (-1014 (-402 (-552))))) (((-3 (-402 |#2|) "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| (-402 |#2|) (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| (-402 |#2|) (-1014 (-402 (-552))))) (((-402 |#2|) $) NIL)) (-2670 (($ (-1232 (-402 |#2|)) (-1232 $)) NIL) (($ (-1232 (-402 |#2|))) 57) (($ (-1232 |#2|) |#2|) 125)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-402 |#2|) (-344)))) (-2851 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-2559 (((-669 (-402 |#2|)) $ (-1232 $)) NIL) (((-669 (-402 |#2|)) $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| (-402 |#2|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| (-402 |#2|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-402 |#2|))) (|:| |vec| (-1232 (-402 |#2|)))) (-669 $) (-1232 $)) NIL) (((-669 (-402 |#2|)) (-669 $)) NIL)) (-1760 (((-1232 $) (-1232 $)) NIL)) (-2163 (($ |#3|) NIL) (((-3 $ "failed") (-402 |#3|)) NIL (|has| (-402 |#2|) (-358)))) (-4174 (((-3 $ "failed") $) NIL)) (-1615 (((-625 (-625 |#1|))) NIL (|has| |#1| (-363)))) (-3701 (((-112) |#1| |#1|) NIL)) (-3442 (((-897)) NIL)) (-3702 (($) NIL (|has| (-402 |#2|) (-363)))) (-1839 (((-112)) NIL)) (-1826 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2826 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| (-402 |#2|) (-358)))) (-1294 (($ $) NIL)) (-4279 (($) NIL (|has| (-402 |#2|) (-344)))) (-3872 (((-112) $) NIL (|has| (-402 |#2|) (-344)))) (-3554 (($ $ (-751)) NIL (|has| (-402 |#2|) (-344))) (($ $) NIL (|has| (-402 |#2|) (-344)))) (-2951 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-2172 (((-897) $) NIL (|has| (-402 |#2|) (-344))) (((-813 (-897)) $) NIL (|has| (-402 |#2|) (-344)))) (-3650 (((-112) $) NIL)) (-1682 (((-751)) NIL)) (-1770 (((-1232 $) (-1232 $)) 102)) (-4209 (((-402 |#2|) $) NIL)) (-1626 (((-625 (-928 |#1|)) (-1149)) NIL (|has| |#1| (-358)))) (-4034 (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-344)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| (-402 |#2|) (-358)))) (-1291 ((|#3| $) NIL (|has| (-402 |#2|) (-358)))) (-4318 (((-897) $) NIL (|has| (-402 |#2|) (-363)))) (-2148 ((|#3| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-2883 (((-1131) $) NIL)) (-3522 (((-1237) (-751)) 79)) (-1718 (((-669 (-402 |#2|))) 51)) (-1740 (((-669 (-402 |#2|))) 44)) (-4092 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-1684 (($ (-1232 |#2|) |#2|) 126)) (-1729 (((-669 (-402 |#2|))) 45)) (-1750 (((-669 (-402 |#2|))) 43)) (-1672 (((-2 (|:| |num| (-669 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1696 (((-2 (|:| |num| (-1232 |#2|)) (|:| |den| |#2|)) $) 64)) (-1816 (((-1232 $)) 42)) (-3993 (((-1232 $)) 41)) (-1805 (((-112) $) NIL)) (-1793 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2071 (($) NIL (|has| (-402 |#2|) (-344)) CONST)) (-3123 (($ (-897)) NIL (|has| (-402 |#2|) (-363)))) (-1649 (((-3 |#2| "failed")) NIL)) (-2831 (((-1093) $) NIL)) (-3722 (((-751)) NIL)) (-3212 (($) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| (-402 |#2|) (-358)))) (-2633 (($ (-625 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| (-402 |#2|) (-344)))) (-3824 (((-413 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-402 |#2|) (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-2802 (((-3 $ "failed") $ $) NIL (|has| (-402 |#2|) (-358)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2397 (((-751) $) NIL (|has| (-402 |#2|) (-358)))) (-2154 ((|#1| $ |#1| |#1|) NIL)) (-1661 (((-3 |#2| "failed")) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-3217 (((-402 |#2|) (-1232 $)) NIL) (((-402 |#2|)) 39)) (-3563 (((-751) $) NIL (|has| (-402 |#2|) (-344))) (((-3 (-751) "failed") $ $) NIL (|has| (-402 |#2|) (-344)))) (-3072 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-751)) NIL (-1523 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) NIL (-1523 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-3640 (((-669 (-402 |#2|)) (-1232 $) (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358)))) (-3610 ((|#3|) 50)) (-3798 (($) NIL (|has| (-402 |#2|) (-344)))) (-2780 (((-1232 (-402 |#2|)) $ (-1232 $)) NIL) (((-669 (-402 |#2|)) (-1232 $) (-1232 $)) NIL) (((-1232 (-402 |#2|)) $) 58) (((-669 (-402 |#2|)) (-1232 $)) 103)) (-2042 (((-1232 (-402 |#2|)) $) NIL) (($ (-1232 (-402 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| (-402 |#2|) (-344)))) (-1781 (((-1232 $) (-1232 $)) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ (-402 |#2|)) NIL) (($ (-402 (-552))) NIL (-1523 (|has| (-402 |#2|) (-1014 (-402 (-552)))) (|has| (-402 |#2|) (-358)))) (($ $) NIL (|has| (-402 |#2|) (-358)))) (-4243 (($ $) NIL (|has| (-402 |#2|) (-344))) (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-143)))) (-3974 ((|#3| $) NIL)) (-4141 (((-751)) NIL)) (-1882 (((-112)) 37)) (-1872 (((-112) |#1|) 49) (((-112) |#2|) 132)) (-1270 (((-1232 $)) 93)) (-3518 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-1639 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3711 (((-112)) NIL)) (-2089 (($) 16 T CONST)) (-2100 (($) 26 T CONST)) (-3768 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-751)) NIL (-1523 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) NIL (-1523 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| (-402 |#2|) (-358)))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 |#2|)) NIL) (($ (-402 |#2|) $) NIL) (($ (-402 (-552)) $) NIL (|has| (-402 |#2|) (-358))) (($ $ (-402 (-552))) NIL (|has| (-402 |#2|) (-358))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-337 |#1| |#2| |#3|) (-10 -7 (-15 -3522 ((-1237) (-751))))) (-358) (-1208 |#1|) (-1208 (-402 |#2|)) |#3|) (T -40)) -((-3522 (*1 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-358)) (-4 *5 (-1208 *4)) (-5 *2 (-1237)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1208 (-402 *5))) (-14 *7 *6)))) -(-13 (-337 |#1| |#2| |#3|) (-10 -7 (-15 -3522 ((-1237) (-751))))) -((-3532 ((|#2| |#2|) 48)) (-3585 ((|#2| |#2|) 120 (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-827)) (|has| |#1| (-1014 (-552)))))) (-3573 ((|#2| |#2|) 87 (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-827)) (|has| |#1| (-1014 (-552)))))) (-3562 ((|#2| |#2|) 88 (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-827)) (|has| |#1| (-1014 (-552)))))) (-3596 ((|#2| (-114) |#2| (-751)) 116 (-12 (|has| |#2| (-425 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-827)) (|has| |#1| (-1014 (-552)))))) (-3553 (((-1145 |#2|) |#2|) 45)) (-3541 ((|#2| |#2| (-625 (-596 |#2|))) 18) ((|#2| |#2| (-625 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -3532 (|#2| |#2|)) (-15 -3541 (|#2| |#2|)) (-15 -3541 (|#2| |#2| |#2|)) (-15 -3541 (|#2| |#2| (-625 |#2|))) (-15 -3541 (|#2| |#2| (-625 (-596 |#2|)))) (-15 -3553 ((-1145 |#2|) |#2|)) (IF (|has| |#1| (-827)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-1014 (-552))) (IF (|has| |#2| (-425 |#1|)) (PROGN (-15 -3562 (|#2| |#2|)) (-15 -3573 (|#2| |#2|)) (-15 -3585 (|#2| |#2|)) (-15 -3596 (|#2| (-114) |#2| (-751)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-544) (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 |#1| (-596 $)) $)) (-15 -1368 ((-1098 |#1| (-596 $)) $)) (-15 -1683 ($ (-1098 |#1| (-596 $))))))) (T -41)) -((-3596 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-751)) (-4 *5 (-446)) (-4 *5 (-827)) (-4 *5 (-1014 (-552))) (-4 *5 (-544)) (-5 *1 (-41 *5 *2)) (-4 *2 (-425 *5)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 *5 (-596 $)) $)) (-15 -1368 ((-1098 *5 (-596 $)) $)) (-15 -1683 ($ (-1098 *5 (-596 $))))))))) (-3585 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-552))) (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $)) (-15 -1368 ((-1098 *3 (-596 $)) $)) (-15 -1683 ($ (-1098 *3 (-596 $))))))))) (-3573 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-552))) (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $)) (-15 -1368 ((-1098 *3 (-596 $)) $)) (-15 -1683 ($ (-1098 *3 (-596 $))))))))) (-3562 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-552))) (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $)) (-15 -1368 ((-1098 *3 (-596 $)) $)) (-15 -1683 ($ (-1098 *3 (-596 $))))))))) (-3553 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-1145 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 *4 (-596 $)) $)) (-15 -1368 ((-1098 *4 (-596 $)) $)) (-15 -1683 ($ (-1098 *4 (-596 $))))))))) (-3541 (*1 *2 *2 *3) (-12 (-5 *3 (-625 (-596 *2))) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 *4 (-596 $)) $)) (-15 -1368 ((-1098 *4 (-596 $)) $)) (-15 -1683 ($ (-1098 *4 (-596 $))))))) (-4 *4 (-544)) (-5 *1 (-41 *4 *2)))) (-3541 (*1 *2 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 *4 (-596 $)) $)) (-15 -1368 ((-1098 *4 (-596 $)) $)) (-15 -1683 ($ (-1098 *4 (-596 $))))))) (-4 *4 (-544)) (-5 *1 (-41 *4 *2)))) (-3541 (*1 *2 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $)) (-15 -1368 ((-1098 *3 (-596 $)) $)) (-15 -1683 ($ (-1098 *3 (-596 $))))))))) (-3541 (*1 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $)) (-15 -1368 ((-1098 *3 (-596 $)) $)) (-15 -1683 ($ (-1098 *3 (-596 $))))))))) (-3532 (*1 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-358) (-297) (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $)) (-15 -1368 ((-1098 *3 (-596 $)) $)) (-15 -1683 ($ (-1098 *3 (-596 $)))))))))) -(-10 -7 (-15 -3532 (|#2| |#2|)) (-15 -3541 (|#2| |#2|)) (-15 -3541 (|#2| |#2| |#2|)) (-15 -3541 (|#2| |#2| (-625 |#2|))) (-15 -3541 (|#2| |#2| (-625 (-596 |#2|)))) (-15 -3553 ((-1145 |#2|) |#2|)) (IF (|has| |#1| (-827)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-1014 (-552))) (IF (|has| |#2| (-425 |#1|)) (PROGN (-15 -3562 (|#2| |#2|)) (-15 -3573 (|#2| |#2|)) (-15 -3585 (|#2| |#2|)) (-15 -3596 (|#2| (-114) |#2| (-751)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-3824 (((-413 (-1145 |#3|)) (-1145 |#3|) (-625 (-48))) 23) (((-413 |#3|) |#3| (-625 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -3824 ((-413 |#3|) |#3| (-625 (-48)))) (-15 -3824 ((-413 (-1145 |#3|)) (-1145 |#3|) (-625 (-48))))) (-827) (-773) (-925 (-48) |#2| |#1|)) (T -42)) -((-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-48))) (-4 *5 (-827)) (-4 *6 (-773)) (-4 *7 (-925 (-48) *6 *5)) (-5 *2 (-413 (-1145 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1145 *7)))) (-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-48))) (-4 *5 (-827)) (-4 *6 (-773)) (-5 *2 (-413 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-925 (-48) *6 *5))))) -(-10 -7 (-15 -3824 ((-413 |#3|) |#3| (-625 (-48)))) (-15 -3824 ((-413 (-1145 |#3|)) (-1145 |#3|) (-625 (-48))))) -((-2503 (((-751) |#2|) 65)) (-2482 (((-751) |#2|) 68)) (-2628 (((-625 |#2|)) 33)) (-3607 (((-751) |#2|) 67)) (-2494 (((-751) |#2|) 64)) (-2513 (((-751) |#2|) 66)) (-2611 (((-625 (-669 |#1|))) 60)) (-2558 (((-625 |#2|)) 55)) (-2541 (((-625 |#2|) |#2|) 43)) (-2577 (((-625 |#2|)) 57)) (-2568 (((-625 |#2|)) 56)) (-2600 (((-625 (-669 |#1|))) 48)) (-2549 (((-625 |#2|)) 54)) (-2531 (((-625 |#2|) |#2|) 42)) (-2522 (((-625 |#2|)) 50)) (-2618 (((-625 (-669 |#1|))) 61)) (-2588 (((-625 |#2|)) 59)) (-1270 (((-1232 |#2|) (-1232 |#2|)) 84 (|has| |#1| (-302))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -3607 ((-751) |#2|)) (-15 -2482 ((-751) |#2|)) (-15 -2494 ((-751) |#2|)) (-15 -2503 ((-751) |#2|)) (-15 -2513 ((-751) |#2|)) (-15 -2522 ((-625 |#2|))) (-15 -2531 ((-625 |#2|) |#2|)) (-15 -2541 ((-625 |#2|) |#2|)) (-15 -2549 ((-625 |#2|))) (-15 -2558 ((-625 |#2|))) (-15 -2568 ((-625 |#2|))) (-15 -2577 ((-625 |#2|))) (-15 -2588 ((-625 |#2|))) (-15 -2600 ((-625 (-669 |#1|)))) (-15 -2611 ((-625 (-669 |#1|)))) (-15 -2618 ((-625 (-669 |#1|)))) (-15 -2628 ((-625 |#2|))) (IF (|has| |#1| (-302)) (-15 -1270 ((-1232 |#2|) (-1232 |#2|))) |%noBranch|)) (-544) (-412 |#1|)) (T -43)) -((-1270 (*1 *2 *2) (-12 (-5 *2 (-1232 *4)) (-4 *4 (-412 *3)) (-4 *3 (-302)) (-4 *3 (-544)) (-5 *1 (-43 *3 *4)))) (-2628 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2618 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-625 (-669 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2611 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-625 (-669 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2600 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-625 (-669 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2588 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2577 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2568 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2558 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2549 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2541 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-625 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-2531 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-625 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-2522 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-412 *3)))) (-2513 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-2503 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-2494 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-2482 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4)))) (-3607 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-412 *4))))) -(-10 -7 (-15 -3607 ((-751) |#2|)) (-15 -2482 ((-751) |#2|)) (-15 -2494 ((-751) |#2|)) (-15 -2503 ((-751) |#2|)) (-15 -2513 ((-751) |#2|)) (-15 -2522 ((-625 |#2|))) (-15 -2531 ((-625 |#2|) |#2|)) (-15 -2541 ((-625 |#2|) |#2|)) (-15 -2549 ((-625 |#2|))) (-15 -2558 ((-625 |#2|))) (-15 -2568 ((-625 |#2|))) (-15 -2577 ((-625 |#2|))) (-15 -2588 ((-625 |#2|))) (-15 -2600 ((-625 (-669 |#1|)))) (-15 -2611 ((-625 (-669 |#1|)))) (-15 -2618 ((-625 (-669 |#1|)))) (-15 -2628 ((-625 |#2|))) (IF (|has| |#1| (-302)) (-15 -1270 ((-1232 |#2|) (-1232 |#2|))) |%noBranch|)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3618 (((-3 $ "failed")) NIL (|has| |#1| (-544)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2770 (((-1232 (-669 |#1|)) (-1232 $)) NIL) (((-1232 (-669 |#1|))) 24)) (-3208 (((-1232 $)) 51)) (-3101 (($) NIL T CONST)) (-1456 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) NIL (|has| |#1| (-544)))) (-4152 (((-3 $ "failed")) NIL (|has| |#1| (-544)))) (-2629 (((-669 |#1|) (-1232 $)) NIL) (((-669 |#1|)) NIL)) (-3192 ((|#1| $) NIL)) (-2612 (((-669 |#1|) $ (-1232 $)) NIL) (((-669 |#1|) $) NIL)) (-3598 (((-3 $ "failed") $) NIL (|has| |#1| (-544)))) (-1392 (((-1145 (-928 |#1|))) NIL (|has| |#1| (-358)))) (-3629 (($ $ (-897)) NIL)) (-3174 ((|#1| $) NIL)) (-4175 (((-1145 |#1|) $) NIL (|has| |#1| (-544)))) (-2648 ((|#1| (-1232 $)) NIL) ((|#1|) NIL)) (-3159 (((-1145 |#1|) $) NIL)) (-4303 (((-112)) 87)) (-2670 (($ (-1232 |#1|) (-1232 $)) NIL) (($ (-1232 |#1|)) NIL)) (-4174 (((-3 $ "failed") $) 14 (|has| |#1| (-544)))) (-3442 (((-897)) 52)) (-4272 (((-112)) NIL)) (-2712 (($ $ (-897)) NIL)) (-4228 (((-112)) NIL)) (-4207 (((-112)) NIL)) (-4250 (((-112)) 89)) (-1467 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) NIL (|has| |#1| (-544)))) (-4164 (((-3 $ "failed")) NIL (|has| |#1| (-544)))) (-2640 (((-669 |#1|) (-1232 $)) NIL) (((-669 |#1|)) NIL)) (-3199 ((|#1| $) NIL)) (-2619 (((-669 |#1|) $ (-1232 $)) NIL) (((-669 |#1|) $) NIL)) (-3609 (((-3 $ "failed") $) NIL (|has| |#1| (-544)))) (-1433 (((-1145 (-928 |#1|))) NIL (|has| |#1| (-358)))) (-3619 (($ $ (-897)) NIL)) (-3182 ((|#1| $) NIL)) (-4187 (((-1145 |#1|) $) NIL (|has| |#1| (-544)))) (-2658 ((|#1| (-1232 $)) NIL) ((|#1|) NIL)) (-3166 (((-1145 |#1|) $) NIL)) (-4312 (((-112)) 86)) (-2883 (((-1131) $) NIL)) (-4218 (((-112)) 93)) (-4239 (((-112)) 92)) (-4261 (((-112)) 94)) (-2831 (((-1093) $) NIL)) (-4293 (((-112)) 88)) (-2154 ((|#1| $ (-552)) 54)) (-2780 (((-1232 |#1|) $ (-1232 $)) 48) (((-669 |#1|) (-1232 $) (-1232 $)) NIL) (((-1232 |#1|) $) 28) (((-669 |#1|) (-1232 $)) NIL)) (-2042 (((-1232 |#1|) $) NIL) (($ (-1232 |#1|)) NIL)) (-2533 (((-625 (-928 |#1|)) (-1232 $)) NIL) (((-625 (-928 |#1|))) NIL)) (-3828 (($ $ $) NIL)) (-3148 (((-112)) 84)) (-1683 (((-839) $) 69) (($ (-1232 |#1|)) 22)) (-1270 (((-1232 $)) 45)) (-4197 (((-625 (-1232 |#1|))) NIL (|has| |#1| (-544)))) (-3842 (($ $ $ $) NIL)) (-4333 (((-112)) 82)) (-2872 (($ (-669 |#1|) $) 18)) (-3818 (($ $ $) NIL)) (-3137 (((-112)) 85)) (-4322 (((-112)) 83)) (-4283 (((-112)) 81)) (-2089 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1115 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-412 |#1|) (-628 (-1115 |#2| |#1|)) (-10 -8 (-15 -1683 ($ (-1232 |#1|))))) (-358) (-897) (-625 (-1149)) (-1232 (-669 |#1|))) (T -44)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-358)) (-14 *6 (-1232 (-669 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-897)) (-14 *5 (-625 (-1149)))))) -(-13 (-412 |#1|) (-628 (-1115 |#2| |#1|)) (-10 -8 (-15 -1683 ($ (-1232 |#1|))))) -((-1671 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-3800 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-3897 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-2101 (($ $) NIL)) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2509 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354))) (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-2278 (($ $ (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3218 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827))))) (-1800 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-2565 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4354)))) (-2301 (($ $ $) 27 (|has| $ (-6 -4354)))) (-2289 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4354)))) (-2317 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 29 (|has| $ (-6 -4354)))) (-1851 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4354))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-1199 (-552)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4354))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "last" (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4354))) (($ $ "rest" $) NIL (|has| $ (-6 -4354))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "first" (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4354))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "value" (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) NIL (|has| $ (-6 -4354)))) (-2873 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL)) (-3488 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2673 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-3128 (((-3 |#2| "failed") |#1| $) 37)) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2936 (($ $ (-751)) NIL) (($ $) 24)) (-3238 (($ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1938 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-1416 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) NIL) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552)) NIL)) (-4011 (((-112) $) NIL)) (-2483 (((-552) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (((-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))) (((-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552)) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-3799 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 18 (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353))) (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 18 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) NIL)) (-1371 (((-112) $ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-2183 (($ (-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 ((|#1| $) NIL (|has| |#1| (-827))) (((-552) $) 32 (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3260 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3280 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3730 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353))) (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073)))) (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-2537 ((|#1| $) NIL (|has| |#1| (-827))) (((-552) $) 34 (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354))) (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL)) (-2801 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-3183 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL)) (-3367 (((-112) $) NIL)) (-2883 (((-1131) $) 42 (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-1437 (($ $ (-751)) NIL) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-3712 (((-625 |#1|) $) 20)) (-1370 (((-112) |#1| $) NIL)) (-2953 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-3966 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL) (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3994 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 |#1|) $) NIL) (((-625 (-552)) $) NIL)) (-2564 (((-112) |#1| $) NIL) (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2924 ((|#2| $) NIL (|has| |#1| (-827))) (($ $ (-751)) NIL) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 23)) (-2380 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL)) (-2518 (($ $ |#2|) NIL (|has| $ (-6 -4354))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-4022 (((-112) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073)))) (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1358 (((-625 |#2|) $) NIL) (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 17)) (-1916 (((-112) $) 16)) (-3600 (($) 13)) (-2154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ (-552)) NIL) (($ $ (-1199 (-552))) NIL) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "first") NIL) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $ "value") NIL)) (-1389 (((-552) $ $) NIL)) (-4255 (($) 12) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2884 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-2316 (((-112) $) NIL)) (-2356 (($ $) NIL)) (-2330 (($ $) NIL (|has| $ (-6 -4354)))) (-2368 (((-751) $) NIL)) (-2379 (($ $) NIL)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2342 (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL) (($ $ $) NIL)) (-3402 (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL) (($ (-625 $)) NIL) (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 25) (($ $ $) NIL)) (-1683 (((-839) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839))) (|has| |#2| (-597 (-839)))))) (-3320 (((-625 $) $) NIL)) (-1380 (((-112) $ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-2977 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1444 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") |#1| $) 44)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-2281 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2334 (((-112) $ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-2307 (((-112) $ $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-827)))) (-1471 (((-751) $) 22 (|has| $ (-6 -4353))))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1073) (-1073)) (T -45)) +(3180903 . 3433818827) +((-1439 (((-111) (-1 (-111) |#2| |#2|) $) 63) (((-111) $) NIL)) (-2701 (($ (-1 (-111) |#2| |#2|) $) 18) (($ $) NIL)) (-2950 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-1202 (-552)) |#2|) 34)) (-2519 (($ $) 59)) (-2091 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2967 (((-552) (-1 (-111) |#2|) $) 22) (((-552) |#2| $) NIL) (((-552) |#2| $ (-552)) 73)) (-3215 (((-627 |#2|) $) 13)) (-3759 (($ (-1 (-111) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-3463 (($ (-1 |#2| |#2|) $) 29)) (-3516 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-3252 (($ |#2| $ (-552)) NIL) (($ $ $ (-552)) 50)) (-1503 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 24)) (-3509 (((-111) (-1 (-111) |#2|) $) 21)) (-1985 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-552)) NIL) (($ $ (-1202 (-552))) 49)) (-3907 (($ $ (-552)) 56) (($ $ (-1202 (-552))) 55)) (-1509 (((-754) (-1 (-111) |#2|) $) 26) (((-754) |#2| $) NIL)) (-4105 (($ $ $ (-552)) 52)) (-2973 (($ $) 51)) (-1490 (($ (-627 |#2|)) 53)) (-2668 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-627 $)) 62)) (-1477 (((-842) $) 69)) (-3299 (((-111) (-1 (-111) |#2|) $) 20)) (-2292 (((-111) $ $) 72)) (-2316 (((-111) $ $) 75))) +(((-18 |#1| |#2|) (-10 -8 (-15 -2292 ((-111) |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -2316 ((-111) |#1| |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -2701 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2519 (|#1| |#1|)) (-15 -4105 (|#1| |#1| |#1| (-552))) (-15 -1439 ((-111) |#1|)) (-15 -3759 (|#1| |#1| |#1|)) (-15 -2967 ((-552) |#2| |#1| (-552))) (-15 -2967 ((-552) |#2| |#1|)) (-15 -2967 ((-552) (-1 (-111) |#2|) |#1|)) (-15 -1439 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -3759 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -2950 (|#2| |#1| (-1202 (-552)) |#2|)) (-15 -3252 (|#1| |#1| |#1| (-552))) (-15 -3252 (|#1| |#2| |#1| (-552))) (-15 -3907 (|#1| |#1| (-1202 (-552)))) (-15 -3907 (|#1| |#1| (-552))) (-15 -1985 (|#1| |#1| (-1202 (-552)))) (-15 -3516 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2668 (|#1| (-627 |#1|))) (-15 -2668 (|#1| |#1| |#1|)) (-15 -2668 (|#1| |#2| |#1|)) (-15 -2668 (|#1| |#1| |#2|)) (-15 -1490 (|#1| (-627 |#2|))) (-15 -1503 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1985 (|#2| |#1| (-552))) (-15 -1985 (|#2| |#1| (-552) |#2|)) (-15 -2950 (|#2| |#1| (-552) |#2|)) (-15 -1509 ((-754) |#2| |#1|)) (-15 -3215 ((-627 |#2|) |#1|)) (-15 -1509 ((-754) (-1 (-111) |#2|) |#1|)) (-15 -3509 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3463 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2973 (|#1| |#1|))) (-19 |#2|) (-1189)) (T -18)) +NIL +(-10 -8 (-15 -2292 ((-111) |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -2316 ((-111) |#1| |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -2701 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2519 (|#1| |#1|)) (-15 -4105 (|#1| |#1| |#1| (-552))) (-15 -1439 ((-111) |#1|)) (-15 -3759 (|#1| |#1| |#1|)) (-15 -2967 ((-552) |#2| |#1| (-552))) (-15 -2967 ((-552) |#2| |#1|)) (-15 -2967 ((-552) (-1 (-111) |#2|) |#1|)) (-15 -1439 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -3759 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -2950 (|#2| |#1| (-1202 (-552)) |#2|)) (-15 -3252 (|#1| |#1| |#1| (-552))) (-15 -3252 (|#1| |#2| |#1| (-552))) (-15 -3907 (|#1| |#1| (-1202 (-552)))) (-15 -3907 (|#1| |#1| (-552))) (-15 -1985 (|#1| |#1| (-1202 (-552)))) (-15 -3516 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2668 (|#1| (-627 |#1|))) (-15 -2668 (|#1| |#1| |#1|)) (-15 -2668 (|#1| |#2| |#1|)) (-15 -2668 (|#1| |#1| |#2|)) (-15 -1490 (|#1| (-627 |#2|))) (-15 -1503 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1985 (|#2| |#1| (-552))) (-15 -1985 (|#2| |#1| (-552) |#2|)) (-15 -2950 (|#2| |#1| (-552) |#2|)) (-15 -1509 ((-754) |#2| |#1|)) (-15 -3215 ((-627 |#2|) |#1|)) (-15 -1509 ((-754) (-1 (-111) |#2|) |#1|)) (-15 -3509 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3463 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2973 (|#1| |#1|))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-3305 (((-1240) $ (-552) (-552)) 40 (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4367))) (($ $) 88 (-12 (|has| |#1| (-830)) (|has| $ (-6 -4367))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) 8)) (-2950 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) 58 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-2519 (($ $) 90 (|has| $ (-6 -4367)))) (-3429 (($ $) 100)) (-3370 (($ $) 78 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#1| $) 77 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 51)) (-2967 (((-552) (-1 (-111) |#1|) $) 97) (((-552) |#1| $) 96 (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) 95 (|has| |#1| (-1076)))) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2655 (($ (-754) |#1|) 69)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 43 (|has| (-552) (-830)))) (-1816 (($ $ $) 87 (|has| |#1| (-830)))) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 44 (|has| (-552) (-830)))) (-4093 (($ $ $) 86 (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-3892 (((-627 (-552)) $) 46)) (-2358 (((-111) (-552) $) 47)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3340 ((|#1| $) 42 (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-1942 (($ $ |#1|) 41 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1202 (-552))) 63)) (-3907 (($ $ (-552)) 62) (($ $ (-1202 (-552))) 61)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4105 (($ $ $ (-552)) 91 (|has| $ (-6 -4367)))) (-2973 (($ $) 13)) (-3562 (((-528) $) 79 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 70)) (-2668 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-627 $)) 65)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) 84 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 83 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-2340 (((-111) $ $) 85 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 82 (|has| |#1| (-830)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-19 |#1|) (-137) (-1189)) (T -19)) +NIL +(-13 (-367 |t#1|) (-10 -7 (-6 -4367))) +(((-34) . T) ((-101) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830))) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-367 |#1|) . T) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-633 |#1|) . T) ((-830) |has| |#1| (-830)) ((-1076) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830))) ((-1189) . T)) +((-4136 (((-3 $ "failed") $ $) 12)) (-2396 (($ $) NIL) (($ $ $) 9)) (* (($ (-900) $) NIL) (($ (-754) $) 16) (($ (-552) $) 21))) +(((-20 |#1|) (-10 -8 (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 -4136 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|))) (-21)) (T -20)) +NIL +(-10 -8 (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 -4136 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20))) +(((-21) (-137)) (T -21)) +((-2396 (*1 *1 *1) (-4 *1 (-21))) (-2396 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-552))))) +(-13 (-129) (-10 -8 (-15 -2396 ($ $)) (-15 -2396 ($ $ $)) (-15 * ($ (-552) $)))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-3024 (((-111) $) 10)) (-3887 (($) 15)) (* (($ (-900) $) 14) (($ (-754) $) 18))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-754) |#1|)) (-15 -3024 ((-111) |#1|)) (-15 -3887 (|#1|)) (-15 * (|#1| (-900) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-754) |#1|)) (-15 -3024 ((-111) |#1|)) (-15 -3887 (|#1|)) (-15 * (|#1| (-900) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3887 (($) 17 T CONST)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15))) +(((-23) (-137)) (T -23)) +((-1922 (*1 *1) (-4 *1 (-23))) (-3887 (*1 *1) (-4 *1 (-23))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-111)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-754))))) +(-13 (-25) (-10 -8 (-15 (-1922) ($) -3488) (-15 -3887 ($) -3488) (-15 -3024 ((-111) $)) (-15 * ($ (-754) $)))) +(((-25) . T) ((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((* (($ (-900) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-900) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-900) |#1|))) +((-1465 (((-111) $ $) 7)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 6)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13))) +(((-25) (-137)) (T -25)) +((-2384 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-900))))) +(-13 (-1076) (-10 -8 (-15 -2384 ($ $ $)) (-15 * ($ (-900) $)))) +(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-3213 (((-627 $) (-931 $)) 29) (((-627 $) (-1148 $)) 16) (((-627 $) (-1148 $) (-1152)) 20)) (-2682 (($ (-931 $)) 27) (($ (-1148 $)) 11) (($ (-1148 $) (-1152)) 54)) (-1304 (((-627 $) (-931 $)) 30) (((-627 $) (-1148 $)) 18) (((-627 $) (-1148 $) (-1152)) 19)) (-3348 (($ (-931 $)) 28) (($ (-1148 $)) 13) (($ (-1148 $) (-1152)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -3213 ((-627 |#1|) (-1148 |#1|) (-1152))) (-15 -3213 ((-627 |#1|) (-1148 |#1|))) (-15 -3213 ((-627 |#1|) (-931 |#1|))) (-15 -2682 (|#1| (-1148 |#1|) (-1152))) (-15 -2682 (|#1| (-1148 |#1|))) (-15 -2682 (|#1| (-931 |#1|))) (-15 -1304 ((-627 |#1|) (-1148 |#1|) (-1152))) (-15 -1304 ((-627 |#1|) (-1148 |#1|))) (-15 -1304 ((-627 |#1|) (-931 |#1|))) (-15 -3348 (|#1| (-1148 |#1|) (-1152))) (-15 -3348 (|#1| (-1148 |#1|))) (-15 -3348 (|#1| (-931 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -3213 ((-627 |#1|) (-1148 |#1|) (-1152))) (-15 -3213 ((-627 |#1|) (-1148 |#1|))) (-15 -3213 ((-627 |#1|) (-931 |#1|))) (-15 -2682 (|#1| (-1148 |#1|) (-1152))) (-15 -2682 (|#1| (-1148 |#1|))) (-15 -2682 (|#1| (-931 |#1|))) (-15 -1304 ((-627 |#1|) (-1148 |#1|) (-1152))) (-15 -1304 ((-627 |#1|) (-1148 |#1|))) (-15 -1304 ((-627 |#1|) (-931 |#1|))) (-15 -3348 (|#1| (-1148 |#1|) (-1152))) (-15 -3348 (|#1| (-1148 |#1|))) (-15 -3348 (|#1| (-931 |#1|)))) +((-1465 (((-111) $ $) 7)) (-3213 (((-627 $) (-931 $)) 77) (((-627 $) (-1148 $)) 76) (((-627 $) (-1148 $) (-1152)) 75)) (-2682 (($ (-931 $)) 80) (($ (-1148 $)) 79) (($ (-1148 $) (-1152)) 78)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 70)) (-2487 (((-412 $) $) 69)) (-1737 (($ $) 89)) (-4224 (((-111) $ $) 57)) (-3887 (($) 17 T CONST)) (-1304 (((-627 $) (-931 $)) 83) (((-627 $) (-1148 $)) 82) (((-627 $) (-1148 $) (-1152)) 81)) (-3348 (($ (-931 $)) 86) (($ (-1148 $)) 85) (($ (-1148 $) (-1152)) 84)) (-2813 (($ $ $) 53)) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-1633 (((-111) $) 68)) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 88)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 67)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-1727 (((-412 $) $) 71)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-2718 (((-754) $) 56)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ $) 62)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 66) (($ $ (-401 (-552))) 87)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64))) +(((-27) (-137)) (T -27)) +((-3348 (*1 *1 *2) (-12 (-5 *2 (-931 *1)) (-4 *1 (-27)))) (-3348 (*1 *1 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-27)))) (-3348 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 *1)) (-5 *3 (-1152)) (-4 *1 (-27)))) (-1304 (*1 *2 *3) (-12 (-5 *3 (-931 *1)) (-4 *1 (-27)) (-5 *2 (-627 *1)))) (-1304 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-27)) (-5 *2 (-627 *1)))) (-1304 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 *1)) (-5 *4 (-1152)) (-4 *1 (-27)) (-5 *2 (-627 *1)))) (-2682 (*1 *1 *2) (-12 (-5 *2 (-931 *1)) (-4 *1 (-27)))) (-2682 (*1 *1 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-27)))) (-2682 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 *1)) (-5 *3 (-1152)) (-4 *1 (-27)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-931 *1)) (-4 *1 (-27)) (-5 *2 (-627 *1)))) (-3213 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-27)) (-5 *2 (-627 *1)))) (-3213 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 *1)) (-5 *4 (-1152)) (-4 *1 (-27)) (-5 *2 (-627 *1))))) +(-13 (-357) (-981) (-10 -8 (-15 -3348 ($ (-931 $))) (-15 -3348 ($ (-1148 $))) (-15 -3348 ($ (-1148 $) (-1152))) (-15 -1304 ((-627 $) (-931 $))) (-15 -1304 ((-627 $) (-1148 $))) (-15 -1304 ((-627 $) (-1148 $) (-1152))) (-15 -2682 ($ (-931 $))) (-15 -2682 ($ (-1148 $))) (-15 -2682 ($ (-1148 $) (-1152))) (-15 -3213 ((-627 $) (-931 $))) (-15 -3213 ((-627 $) (-1148 $))) (-15 -3213 ((-627 $) (-1148 $) (-1152))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-445) . T) ((-544) . T) ((-630 #0#) . T) ((-630 $) . T) ((-700 #0#) . T) ((-700 $) . T) ((-709) . T) ((-899) . T) ((-981) . T) ((-1034 #0#) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) . T)) +((-3213 (((-627 $) (-931 $)) NIL) (((-627 $) (-1148 $)) NIL) (((-627 $) (-1148 $) (-1152)) 50) (((-627 $) $) 19) (((-627 $) $ (-1152)) 41)) (-2682 (($ (-931 $)) NIL) (($ (-1148 $)) NIL) (($ (-1148 $) (-1152)) 52) (($ $) 17) (($ $ (-1152)) 37)) (-1304 (((-627 $) (-931 $)) NIL) (((-627 $) (-1148 $)) NIL) (((-627 $) (-1148 $) (-1152)) 48) (((-627 $) $) 15) (((-627 $) $ (-1152)) 43)) (-3348 (($ (-931 $)) NIL) (($ (-1148 $)) NIL) (($ (-1148 $) (-1152)) NIL) (($ $) 12) (($ $ (-1152)) 39))) +(((-28 |#1| |#2|) (-10 -8 (-15 -3213 ((-627 |#1|) |#1| (-1152))) (-15 -2682 (|#1| |#1| (-1152))) (-15 -3213 ((-627 |#1|) |#1|)) (-15 -2682 (|#1| |#1|)) (-15 -1304 ((-627 |#1|) |#1| (-1152))) (-15 -3348 (|#1| |#1| (-1152))) (-15 -1304 ((-627 |#1|) |#1|)) (-15 -3348 (|#1| |#1|)) (-15 -3213 ((-627 |#1|) (-1148 |#1|) (-1152))) (-15 -3213 ((-627 |#1|) (-1148 |#1|))) (-15 -3213 ((-627 |#1|) (-931 |#1|))) (-15 -2682 (|#1| (-1148 |#1|) (-1152))) (-15 -2682 (|#1| (-1148 |#1|))) (-15 -2682 (|#1| (-931 |#1|))) (-15 -1304 ((-627 |#1|) (-1148 |#1|) (-1152))) (-15 -1304 ((-627 |#1|) (-1148 |#1|))) (-15 -1304 ((-627 |#1|) (-931 |#1|))) (-15 -3348 (|#1| (-1148 |#1|) (-1152))) (-15 -3348 (|#1| (-1148 |#1|))) (-15 -3348 (|#1| (-931 |#1|)))) (-29 |#2|) (-13 (-830) (-544))) (T -28)) +NIL +(-10 -8 (-15 -3213 ((-627 |#1|) |#1| (-1152))) (-15 -2682 (|#1| |#1| (-1152))) (-15 -3213 ((-627 |#1|) |#1|)) (-15 -2682 (|#1| |#1|)) (-15 -1304 ((-627 |#1|) |#1| (-1152))) (-15 -3348 (|#1| |#1| (-1152))) (-15 -1304 ((-627 |#1|) |#1|)) (-15 -3348 (|#1| |#1|)) (-15 -3213 ((-627 |#1|) (-1148 |#1|) (-1152))) (-15 -3213 ((-627 |#1|) (-1148 |#1|))) (-15 -3213 ((-627 |#1|) (-931 |#1|))) (-15 -2682 (|#1| (-1148 |#1|) (-1152))) (-15 -2682 (|#1| (-1148 |#1|))) (-15 -2682 (|#1| (-931 |#1|))) (-15 -1304 ((-627 |#1|) (-1148 |#1|) (-1152))) (-15 -1304 ((-627 |#1|) (-1148 |#1|))) (-15 -1304 ((-627 |#1|) (-931 |#1|))) (-15 -3348 (|#1| (-1148 |#1|) (-1152))) (-15 -3348 (|#1| (-1148 |#1|))) (-15 -3348 (|#1| (-931 |#1|)))) +((-1465 (((-111) $ $) 7)) (-3213 (((-627 $) (-931 $)) 77) (((-627 $) (-1148 $)) 76) (((-627 $) (-1148 $) (-1152)) 75) (((-627 $) $) 123) (((-627 $) $ (-1152)) 121)) (-2682 (($ (-931 $)) 80) (($ (-1148 $)) 79) (($ (-1148 $) (-1152)) 78) (($ $) 124) (($ $ (-1152)) 122)) (-3024 (((-111) $) 16)) (-1853 (((-627 (-1152)) $) 198)) (-1694 (((-401 (-1148 $)) $ (-598 $)) 230 (|has| |#1| (-544)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-3443 (((-627 (-598 $)) $) 161)) (-4136 (((-3 $ "failed") $ $) 19)) (-2620 (($ $ (-627 (-598 $)) (-627 $)) 151) (($ $ (-627 (-288 $))) 150) (($ $ (-288 $)) 149)) (-4014 (($ $) 70)) (-2487 (((-412 $) $) 69)) (-1737 (($ $) 89)) (-4224 (((-111) $ $) 57)) (-3887 (($) 17 T CONST)) (-1304 (((-627 $) (-931 $)) 83) (((-627 $) (-1148 $)) 82) (((-627 $) (-1148 $) (-1152)) 81) (((-627 $) $) 127) (((-627 $) $ (-1152)) 125)) (-3348 (($ (-931 $)) 86) (($ (-1148 $)) 85) (($ (-1148 $) (-1152)) 84) (($ $) 128) (($ $ (-1152)) 126)) (-4039 (((-3 (-931 |#1|) "failed") $) 248 (|has| |#1| (-1028))) (((-3 (-401 (-931 |#1|)) "failed") $) 232 (|has| |#1| (-544))) (((-3 |#1| "failed") $) 194) (((-3 (-552) "failed") $) 192 (|has| |#1| (-1017 (-552)))) (((-3 (-1152) "failed") $) 185) (((-3 (-598 $) "failed") $) 136) (((-3 (-401 (-552)) "failed") $) 120 (-1559 (-12 (|has| |#1| (-1017 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1017 (-401 (-552))))))) (-1703 (((-931 |#1|) $) 249 (|has| |#1| (-1028))) (((-401 (-931 |#1|)) $) 233 (|has| |#1| (-544))) ((|#1| $) 195) (((-552) $) 191 (|has| |#1| (-1017 (-552)))) (((-1152) $) 186) (((-598 $) $) 137) (((-401 (-552)) $) 119 (-1559 (-12 (|has| |#1| (-1017 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1017 (-401 (-552))))))) (-2813 (($ $ $) 53)) (-1800 (((-671 |#1|) (-671 $)) 238 (|has| |#1| (-1028))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 237 (|has| |#1| (-1028))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 118 (-1559 (-2520 (|has| |#1| (-1028)) (|has| |#1| (-623 (-552)))) (-2520 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))))) (((-671 (-552)) (-671 $)) 117 (-1559 (-2520 (|has| |#1| (-1028)) (|has| |#1| (-623 (-552)))) (-2520 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028)))))) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-1633 (((-111) $) 68)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 190 (|has| |#1| (-865 (-373)))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 189 (|has| |#1| (-865 (-552))))) (-3820 (($ (-627 $)) 155) (($ $) 154)) (-3795 (((-627 (-113)) $) 162)) (-4148 (((-113) (-113)) 163)) (-2624 (((-111) $) 30)) (-1394 (((-111) $) 183 (|has| $ (-1017 (-552))))) (-3798 (($ $) 215 (|has| |#1| (-1028)))) (-2918 (((-1101 |#1| (-598 $)) $) 214 (|has| |#1| (-1028)))) (-1352 (($ $ (-552)) 88)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-2602 (((-1148 $) (-598 $)) 180 (|has| $ (-1028)))) (-1816 (($ $ $) 134)) (-4093 (($ $ $) 133)) (-3516 (($ (-1 $ $) (-598 $)) 169)) (-3362 (((-3 (-598 $) "failed") $) 159)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1684 (((-627 (-598 $)) $) 160)) (-2991 (($ (-113) (-627 $)) 168) (($ (-113) $) 167)) (-4035 (((-3 (-627 $) "failed") $) 209 (|has| |#1| (-1088)))) (-1382 (((-3 (-2 (|:| |val| $) (|:| -4067 (-552))) "failed") $) 218 (|has| |#1| (-1028)))) (-2746 (((-3 (-627 $) "failed") $) 211 (|has| |#1| (-25)))) (-2545 (((-3 (-2 (|:| -3069 (-552)) (|:| |var| (-598 $))) "failed") $) 212 (|has| |#1| (-25)))) (-3815 (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $ (-1152)) 217 (|has| |#1| (-1028))) (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $ (-113)) 216 (|has| |#1| (-1028))) (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $) 210 (|has| |#1| (-1088)))) (-2070 (((-111) $ (-1152)) 166) (((-111) $ (-113)) 165)) (-1951 (($ $) 67)) (-3476 (((-754) $) 158)) (-1498 (((-1096) $) 10)) (-1960 (((-111) $) 196)) (-1970 ((|#1| $) 197)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-4094 (((-111) $ (-1152)) 171) (((-111) $ $) 170)) (-1727 (((-412 $) $) 71)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-1507 (((-111) $) 182 (|has| $ (-1017 (-552))))) (-3321 (($ $ (-1152) (-754) (-1 $ $)) 222 (|has| |#1| (-1028))) (($ $ (-1152) (-754) (-1 $ (-627 $))) 221 (|has| |#1| (-1028))) (($ $ (-627 (-1152)) (-627 (-754)) (-627 (-1 $ (-627 $)))) 220 (|has| |#1| (-1028))) (($ $ (-627 (-1152)) (-627 (-754)) (-627 (-1 $ $))) 219 (|has| |#1| (-1028))) (($ $ (-627 (-113)) (-627 $) (-1152)) 208 (|has| |#1| (-600 (-528)))) (($ $ (-113) $ (-1152)) 207 (|has| |#1| (-600 (-528)))) (($ $) 206 (|has| |#1| (-600 (-528)))) (($ $ (-627 (-1152))) 205 (|has| |#1| (-600 (-528)))) (($ $ (-1152)) 204 (|has| |#1| (-600 (-528)))) (($ $ (-113) (-1 $ $)) 179) (($ $ (-113) (-1 $ (-627 $))) 178) (($ $ (-627 (-113)) (-627 (-1 $ (-627 $)))) 177) (($ $ (-627 (-113)) (-627 (-1 $ $))) 176) (($ $ (-1152) (-1 $ $)) 175) (($ $ (-1152) (-1 $ (-627 $))) 174) (($ $ (-627 (-1152)) (-627 (-1 $ (-627 $)))) 173) (($ $ (-627 (-1152)) (-627 (-1 $ $))) 172) (($ $ (-627 $) (-627 $)) 143) (($ $ $ $) 142) (($ $ (-288 $)) 141) (($ $ (-627 (-288 $))) 140) (($ $ (-627 (-598 $)) (-627 $)) 139) (($ $ (-598 $) $) 138)) (-2718 (((-754) $) 56)) (-1985 (($ (-113) (-627 $)) 148) (($ (-113) $ $ $ $) 147) (($ (-113) $ $ $) 146) (($ (-113) $ $) 145) (($ (-113) $) 144)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-2911 (($ $ $) 157) (($ $) 156)) (-2942 (($ $ (-1152)) 246 (|has| |#1| (-1028))) (($ $ (-627 (-1152))) 245 (|has| |#1| (-1028))) (($ $ (-1152) (-754)) 244 (|has| |#1| (-1028))) (($ $ (-627 (-1152)) (-627 (-754))) 243 (|has| |#1| (-1028)))) (-1583 (($ $) 225 (|has| |#1| (-544)))) (-2929 (((-1101 |#1| (-598 $)) $) 224 (|has| |#1| (-544)))) (-1376 (($ $) 181 (|has| $ (-1028)))) (-3562 (((-528) $) 252 (|has| |#1| (-600 (-528)))) (($ (-412 $)) 223 (|has| |#1| (-544))) (((-871 (-373)) $) 188 (|has| |#1| (-600 (-871 (-373))))) (((-871 (-552)) $) 187 (|has| |#1| (-600 (-871 (-552)))))) (-2616 (($ $ $) 251 (|has| |#1| (-466)))) (-2493 (($ $ $) 250 (|has| |#1| (-466)))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63) (($ (-931 |#1|)) 247 (|has| |#1| (-1028))) (($ (-401 (-931 |#1|))) 231 (|has| |#1| (-544))) (($ (-401 (-931 (-401 |#1|)))) 229 (|has| |#1| (-544))) (($ (-931 (-401 |#1|))) 228 (|has| |#1| (-544))) (($ (-401 |#1|)) 227 (|has| |#1| (-544))) (($ (-1101 |#1| (-598 $))) 213 (|has| |#1| (-1028))) (($ |#1|) 193) (($ (-1152)) 184) (($ (-598 $)) 135)) (-3050 (((-3 $ "failed") $) 236 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3092 (($ (-627 $)) 153) (($ $) 152)) (-3749 (((-111) (-113)) 164)) (-3778 (((-111) $ $) 37)) (-1729 (($ (-1152) (-627 $)) 203) (($ (-1152) $ $ $ $) 202) (($ (-1152) $ $ $) 201) (($ (-1152) $ $) 200) (($ (-1152) $) 199)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-1152)) 242 (|has| |#1| (-1028))) (($ $ (-627 (-1152))) 241 (|has| |#1| (-1028))) (($ $ (-1152) (-754)) 240 (|has| |#1| (-1028))) (($ $ (-627 (-1152)) (-627 (-754))) 239 (|has| |#1| (-1028)))) (-2351 (((-111) $ $) 131)) (-2329 (((-111) $ $) 130)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 132)) (-2316 (((-111) $ $) 129)) (-2407 (($ $ $) 62) (($ (-1101 |#1| (-598 $)) (-1101 |#1| (-598 $))) 226 (|has| |#1| (-544)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 66) (($ $ (-401 (-552))) 87)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-169))) (($ |#1| $) 234 (|has| |#1| (-169))))) +(((-29 |#1|) (-137) (-13 (-830) (-544))) (T -29)) +((-3348 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-830) (-544))))) (-1304 (*1 *2 *1) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *2 (-627 *1)) (-4 *1 (-29 *3)))) (-3348 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-830) (-544))))) (-1304 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-627 *1)) (-4 *1 (-29 *4)))) (-2682 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-830) (-544))))) (-3213 (*1 *2 *1) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *2 (-627 *1)) (-4 *1 (-29 *3)))) (-2682 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-830) (-544))))) (-3213 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-627 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-424 |t#1|) (-10 -8 (-15 -3348 ($ $)) (-15 -1304 ((-627 $) $)) (-15 -3348 ($ $ (-1152))) (-15 -1304 ((-627 $) $ (-1152))) (-15 -2682 ($ $)) (-15 -3213 ((-627 $) $)) (-15 -2682 ($ $ (-1152))) (-15 -3213 ((-627 $) $ (-1152))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) . T) ((-27) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) |has| |#1| (-169)) ((-110 $ $) . T) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-600 (-871 (-373))) |has| |#1| (-600 (-871 (-373)))) ((-600 (-871 (-552))) |has| |#1| (-600 (-871 (-552)))) ((-238) . T) ((-284) . T) ((-301) . T) ((-303 $) . T) ((-296) . T) ((-357) . T) ((-371 |#1|) |has| |#1| (-1028)) ((-394 |#1|) . T) ((-405 |#1|) . T) ((-424 |#1|) . T) ((-445) . T) ((-466) |has| |#1| (-466)) ((-506 (-598 $) $) . T) ((-506 $ $) . T) ((-544) . T) ((-630 #0#) . T) ((-630 |#1|) |has| |#1| (-169)) ((-630 $) . T) ((-623 (-552)) -12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))) ((-623 |#1|) |has| |#1| (-1028)) ((-700 #0#) . T) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) . T) ((-709) . T) ((-830) . T) ((-879 (-1152)) |has| |#1| (-1028)) ((-865 (-373)) |has| |#1| (-865 (-373))) ((-865 (-552)) |has| |#1| (-865 (-552))) ((-863 |#1|) . T) ((-899) . T) ((-981) . T) ((-1017 (-401 (-552))) -1559 (|has| |#1| (-1017 (-401 (-552)))) (-12 (|has| |#1| (-544)) (|has| |#1| (-1017 (-552))))) ((-1017 (-401 (-931 |#1|))) |has| |#1| (-544)) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 (-598 $)) . T) ((-1017 (-931 |#1|)) |has| |#1| (-1028)) ((-1017 (-1152)) . T) ((-1017 |#1|) . T) ((-1034 #0#) . T) ((-1034 |#1|) |has| |#1| (-169)) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1189) . T) ((-1193) . T)) +((-3447 (((-1070 (-220)) $) NIL)) (-3437 (((-1070 (-220)) $) NIL)) (-3938 (($ $ (-220)) 125)) (-3589 (($ (-931 (-552)) (-1152) (-1152) (-1070 (-401 (-552))) (-1070 (-401 (-552)))) 83)) (-2116 (((-627 (-627 (-922 (-220)))) $) 137)) (-1477 (((-842) $) 149))) +(((-30) (-13 (-934) (-10 -8 (-15 -3589 ($ (-931 (-552)) (-1152) (-1152) (-1070 (-401 (-552))) (-1070 (-401 (-552))))) (-15 -3938 ($ $ (-220)))))) (T -30)) +((-3589 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-931 (-552))) (-5 *3 (-1152)) (-5 *4 (-1070 (-401 (-552)))) (-5 *1 (-30)))) (-3938 (*1 *1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-30))))) +(-13 (-934) (-10 -8 (-15 -3589 ($ (-931 (-552)) (-1152) (-1152) (-1070 (-401 (-552))) (-1070 (-401 (-552))))) (-15 -3938 ($ $ (-220))))) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 19) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3122 (((-1111) $) 11)) (-2705 (((-1111) $) 9)) (-2292 (((-111) $ $) NIL))) +(((-31) (-13 (-1059) (-10 -8 (-15 -2705 ((-1111) $)) (-15 -3122 ((-1111) $))))) (T -31)) +((-2705 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-31)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-31))))) +(-13 (-1059) (-10 -8 (-15 -2705 ((-1111) $)) (-15 -3122 ((-1111) $)))) +((-3348 ((|#2| (-1148 |#2|) (-1152)) 43)) (-4148 (((-113) (-113)) 56)) (-2602 (((-1148 |#2|) (-598 |#2|)) 133 (|has| |#1| (-1017 (-552))))) (-2775 ((|#2| |#1| (-552)) 123 (|has| |#1| (-1017 (-552))))) (-2274 ((|#2| (-1148 |#2|) |#2|) 30)) (-3157 (((-842) (-627 |#2|)) 85)) (-1376 ((|#2| |#2|) 129 (|has| |#1| (-1017 (-552))))) (-3749 (((-111) (-113)) 18)) (** ((|#2| |#2| (-401 (-552))) 96 (|has| |#1| (-1017 (-552)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3348 (|#2| (-1148 |#2|) (-1152))) (-15 -4148 ((-113) (-113))) (-15 -3749 ((-111) (-113))) (-15 -2274 (|#2| (-1148 |#2|) |#2|)) (-15 -3157 ((-842) (-627 |#2|))) (IF (|has| |#1| (-1017 (-552))) (PROGN (-15 ** (|#2| |#2| (-401 (-552)))) (-15 -2602 ((-1148 |#2|) (-598 |#2|))) (-15 -1376 (|#2| |#2|)) (-15 -2775 (|#2| |#1| (-552)))) |%noBranch|)) (-13 (-830) (-544)) (-424 |#1|)) (T -32)) +((-2775 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-4 *2 (-424 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1017 *4)) (-4 *3 (-13 (-830) (-544))))) (-1376 (*1 *2 *2) (-12 (-4 *3 (-1017 (-552))) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-32 *3 *2)) (-4 *2 (-424 *3)))) (-2602 (*1 *2 *3) (-12 (-5 *3 (-598 *5)) (-4 *5 (-424 *4)) (-4 *4 (-1017 (-552))) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-1148 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-401 (-552))) (-4 *4 (-1017 (-552))) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-32 *4 *2)) (-4 *2 (-424 *4)))) (-3157 (*1 *2 *3) (-12 (-5 *3 (-627 *5)) (-4 *5 (-424 *4)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-842)) (-5 *1 (-32 *4 *5)))) (-2274 (*1 *2 *3 *2) (-12 (-5 *3 (-1148 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-32 *4 *2)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) (-5 *1 (-32 *4 *5)) (-4 *5 (-424 *4)))) (-4148 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-32 *3 *4)) (-4 *4 (-424 *3)))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 *2)) (-5 *4 (-1152)) (-4 *2 (-424 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-830) (-544)))))) +(-10 -7 (-15 -3348 (|#2| (-1148 |#2|) (-1152))) (-15 -4148 ((-113) (-113))) (-15 -3749 ((-111) (-113))) (-15 -2274 (|#2| (-1148 |#2|) |#2|)) (-15 -3157 ((-842) (-627 |#2|))) (IF (|has| |#1| (-1017 (-552))) (PROGN (-15 ** (|#2| |#2| (-401 (-552)))) (-15 -2602 ((-1148 |#2|) (-598 |#2|))) (-15 -1376 (|#2| |#2|)) (-15 -2775 (|#2| |#1| (-552)))) |%noBranch|)) +((-4031 (((-111) $ (-754)) 16)) (-3887 (($) 10)) (-1602 (((-111) $ (-754)) 15)) (-3971 (((-111) $ (-754)) 14)) (-2432 (((-111) $ $) 8)) (-1275 (((-111) $) 13))) +(((-33 |#1|) (-10 -8 (-15 -3887 (|#1|)) (-15 -4031 ((-111) |#1| (-754))) (-15 -1602 ((-111) |#1| (-754))) (-15 -3971 ((-111) |#1| (-754))) (-15 -1275 ((-111) |#1|)) (-15 -2432 ((-111) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -3887 (|#1|)) (-15 -4031 ((-111) |#1| (-754))) (-15 -1602 ((-111) |#1| (-754))) (-15 -3971 ((-111) |#1| (-754))) (-15 -1275 ((-111) |#1|)) (-15 -2432 ((-111) |#1| |#1|))) +((-4031 (((-111) $ (-754)) 8)) (-3887 (($) 7 T CONST)) (-1602 (((-111) $ (-754)) 9)) (-3971 (((-111) $ (-754)) 10)) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-2973 (($ $) 13)) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-34) (-137)) (T -34)) +((-2432 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-111)))) (-2973 (*1 *1 *1) (-4 *1 (-34))) (-2373 (*1 *1) (-4 *1 (-34))) (-1275 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-111)))) (-3971 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-754)) (-5 *2 (-111)))) (-1602 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-754)) (-5 *2 (-111)))) (-4031 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-754)) (-5 *2 (-111)))) (-3887 (*1 *1) (-4 *1 (-34))) (-1383 (*1 *2 *1) (-12 (|has| *1 (-6 -4366)) (-4 *1 (-34)) (-5 *2 (-754))))) +(-13 (-1189) (-10 -8 (-15 -2432 ((-111) $ $)) (-15 -2973 ($ $)) (-15 -2373 ($)) (-15 -1275 ((-111) $)) (-15 -3971 ((-111) $ (-754))) (-15 -1602 ((-111) $ (-754))) (-15 -4031 ((-111) $ (-754))) (-15 -3887 ($) -3488) (IF (|has| $ (-6 -4366)) (-15 -1383 ((-754) $)) |%noBranch|))) +(((-1189) . T)) +((-1673 (($ $) 11)) (-1652 (($ $) 10)) (-1697 (($ $) 9)) (-3519 (($ $) 8)) (-1686 (($ $) 7)) (-1661 (($ $) 6))) +(((-35) (-137)) (T -35)) +((-1673 (*1 *1 *1) (-4 *1 (-35))) (-1652 (*1 *1 *1) (-4 *1 (-35))) (-1697 (*1 *1 *1) (-4 *1 (-35))) (-3519 (*1 *1 *1) (-4 *1 (-35))) (-1686 (*1 *1 *1) (-4 *1 (-35))) (-1661 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -1661 ($ $)) (-15 -1686 ($ $)) (-15 -3519 ($ $)) (-15 -1697 ($ $)) (-15 -1652 ($ $)) (-15 -1673 ($ $)))) +((-1465 (((-111) $ $) 19 (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-4288 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 125)) (-4155 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 148)) (-1700 (($ $) 146)) (-2642 (($) 72) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 71)) (-3305 (((-1240) $ |#1| |#1|) 99 (|has| $ (-6 -4367))) (((-1240) $ (-552) (-552)) 178 (|has| $ (-6 -4367)))) (-3900 (($ $ (-552)) 159 (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 209) (((-111) $) 203 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-2701 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 200 (|has| $ (-6 -4367))) (($ $) 199 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)) (|has| $ (-6 -4367))))) (-4298 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-4031 (((-111) $ (-754)) 8)) (-2472 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 134 (|has| $ (-6 -4367)))) (-1474 (($ $ $) 155 (|has| $ (-6 -4367)))) (-2801 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 157 (|has| $ (-6 -4367)))) (-1612 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 153 (|has| $ (-6 -4367)))) (-2950 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 189 (|has| $ (-6 -4367))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-1202 (-552)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 160 (|has| $ (-6 -4367))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "last" (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 158 (|has| $ (-6 -4367))) (($ $ "rest" $) 156 (|has| $ (-6 -4367))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "first" (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 154 (|has| $ (-6 -4367))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "value" (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 133 (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 132 (|has| $ (-6 -4367)))) (-4289 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 45 (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 216)) (-2536 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 55 (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 175 (|has| $ (-6 -4366)))) (-4143 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 147)) (-3602 (((-3 |#2| "failed") |#1| $) 61)) (-3887 (($) 7 T CONST)) (-2519 (($ $) 201 (|has| $ (-6 -4367)))) (-3429 (($ $) 211)) (-3351 (($ $ (-754)) 142) (($ $) 140)) (-2820 (($ $) 214 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-3370 (($ $) 58 (-1559 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366))) (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))))) (-2265 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 47 (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 46 (|has| $ (-6 -4366))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 220) (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 215 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-4342 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 54 (|has| $ (-6 -4366))) (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 174 (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 56 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 53 (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 52 (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 176 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 173 (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 172 (|has| $ (-6 -4366)))) (-3473 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4367))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 190 (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) 88) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552)) 188)) (-3592 (((-111) $) 192)) (-2967 (((-552) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 208) (((-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 207 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))) (((-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552)) 206 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-3215 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 30 (|has| $ (-6 -4366))) (((-627 |#2|) $) 79 (|has| $ (-6 -4366))) (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 114 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) 123)) (-3726 (((-111) $ $) 131 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-2655 (($ (-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 169)) (-1602 (((-111) $ (-754)) 9)) (-3661 ((|#1| $) 96 (|has| |#1| (-830))) (((-552) $) 180 (|has| (-552) (-830)))) (-1816 (($ $ $) 198 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-1438 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-3759 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-3114 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 29 (|has| $ (-6 -4366))) (((-627 |#2|) $) 80 (|has| $ (-6 -4366))) (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 115 (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (((-111) |#2| $) 82 (-12 (|has| |#2| (-1076)) (|has| $ (-6 -4366)))) (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366))))) (-2285 ((|#1| $) 95 (|has| |#1| (-830))) (((-552) $) 181 (|has| (-552) (-830)))) (-4093 (($ $ $) 197 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 34 (|has| $ (-6 -4367))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4367))) (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 110 (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 109)) (-1299 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 225)) (-3971 (((-111) $ (-754)) 10)) (-1823 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 128)) (-3810 (((-111) $) 124)) (-1595 (((-1134) $) 22 (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-1294 (($ $ (-754)) 145) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 143)) (-1296 (((-627 |#1|) $) 63)) (-3619 (((-111) |#1| $) 64)) (-4165 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 39)) (-3954 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 40) (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552)) 219) (($ $ $ (-552)) 218)) (-3252 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552)) 162) (($ $ $ (-552)) 161)) (-3892 (((-627 |#1|) $) 93) (((-627 (-552)) $) 183)) (-2358 (((-111) |#1| $) 92) (((-111) (-552) $) 184)) (-1498 (((-1096) $) 21 (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-3340 ((|#2| $) 97 (|has| |#1| (-830))) (($ $ (-754)) 139) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 137)) (-1503 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 51) (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 171)) (-1942 (($ $ |#2|) 98 (|has| $ (-6 -4367))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 179 (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 41)) (-2361 (((-111) $) 191)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 32 (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) 77 (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 112 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) 26 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 25 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 24 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 23 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) 86 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) 84 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-288 |#2|))) 83 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 121 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 120 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 119 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) 118 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#2| $) 94 (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076)))) (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 182 (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2083 (((-627 |#2|) $) 91) (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 185)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 187) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552)) 186) (($ $ (-1202 (-552))) 165) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "first") 138) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "value") 126)) (-1848 (((-552) $ $) 129)) (-3028 (($) 49) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 48)) (-3010 (($ $ (-552)) 222) (($ $ (-1202 (-552))) 221)) (-3907 (($ $ (-552)) 164) (($ $ (-1202 (-552))) 163)) (-2978 (((-111) $) 127)) (-1805 (($ $) 151)) (-3384 (($ $) 152 (|has| $ (-6 -4367)))) (-3543 (((-754) $) 150)) (-4149 (($ $) 149)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 31 (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (((-754) |#2| $) 81 (-12 (|has| |#2| (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) |#2|) $) 78 (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 113 (|has| $ (-6 -4366)))) (-4105 (($ $ $ (-552)) 202 (|has| $ (-6 -4367)))) (-2973 (($ $) 13)) (-3562 (((-528) $) 59 (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528)))))) (-1490 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 50) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 170)) (-3151 (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 224) (($ $ $) 223)) (-2668 (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 168) (($ (-627 $)) 167) (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 136) (($ $ $) 135)) (-1477 (((-842) $) 18 (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842))) (|has| |#2| (-599 (-842))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842)))))) (-2535 (((-627 $) $) 122)) (-3415 (((-111) $ $) 130 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-2577 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 42)) (-1305 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") |#1| $) 108)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 33 (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) 76 (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 111 (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) 195 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-2329 (((-111) $ $) 194 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-2292 (((-111) $ $) 20 (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2340 (((-111) $ $) 196 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-2316 (((-111) $ $) 193 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-36 |#1| |#2|) (-137) (-1076) (-1076)) (T -36)) +((-1305 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-5 *2 (-2 (|:| -3998 *3) (|:| -2162 *4)))))) +(-13 (-1165 |t#1| |t#2|) (-648 (-2 (|:| -3998 |t#1|) (|:| -2162 |t#2|))) (-10 -8 (-15 -1305 ((-3 (-2 (|:| -3998 |t#1|) (|:| -2162 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-106 #0=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T) ((-101) -1559 (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830))) ((-599 (-842)) -1559 (|has| |#2| (-1076)) (|has| |#2| (-599 (-842))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842)))) ((-148 #1=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T) ((-600 (-528)) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))) ((-224 #0#) . T) ((-230 #0#) . T) ((-280 #2=(-552) #1#) . T) ((-280 |#1| |#2|) . T) ((-282 #2# #1#) . T) ((-282 |#1| |#2|) . T) ((-303 #1#) -12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((-276 #1#) . T) ((-367 #1#) . T) ((-482 #1#) . T) ((-482 |#2|) . T) ((-590 #2# #1#) . T) ((-590 |#1| |#2|) . T) ((-506 #1# #1#) -12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))) ((-506 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((-596 |#1| |#2|) . T) ((-633 #1#) . T) ((-648 #1#) . T) ((-830) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)) ((-989 #1#) . T) ((-1076) -1559 (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830))) ((-1125 #1#) . T) ((-1165 |#1| |#2|) . T) ((-1189) . T) ((-1223 #1#) . T)) +((-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -1477 (|#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) (-38 |#2|) (-169)) (T -37)) +NIL +(-10 -8 (-15 -1477 (|#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 35)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-38 |#1|) (-137) (-169)) (T -38)) +((-1477 (*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-169))))) +(-13 (-1028) (-700 |t#1|) (-10 -8 (-15 -1477 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-700 |#1|) . T) ((-709) . T) ((-1034 |#1|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-2843 (((-412 |#1|) |#1|) 41)) (-1727 (((-412 |#1|) |#1|) 30) (((-412 |#1|) |#1| (-627 (-48))) 33)) (-1720 (((-111) |#1|) 56))) +(((-39 |#1|) (-10 -7 (-15 -1727 ((-412 |#1|) |#1| (-627 (-48)))) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -2843 ((-412 |#1|) |#1|)) (-15 -1720 ((-111) |#1|))) (-1211 (-48))) (T -39)) +((-1720 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-39 *3)) (-4 *3 (-1211 (-48))))) (-2843 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1211 (-48))))) (-1727 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1211 (-48))))) (-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-48))) (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1211 (-48)))))) +(-10 -7 (-15 -1727 ((-412 |#1|) |#1| (-627 (-48)))) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -2843 ((-412 |#1|) |#1|)) (-15 -1720 ((-111) |#1|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2238 (((-2 (|:| |num| (-1235 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| (-401 |#2|) (-357)))) (-3245 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-4058 (((-111) $) NIL (|has| (-401 |#2|) (-357)))) (-3841 (((-671 (-401 |#2|)) (-1235 $)) NIL) (((-671 (-401 |#2|))) NIL)) (-3385 (((-401 |#2|) $) NIL)) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| (-401 |#2|) (-343)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-2487 (((-412 $) $) NIL (|has| (-401 |#2|) (-357)))) (-4224 (((-111) $ $) NIL (|has| (-401 |#2|) (-357)))) (-3307 (((-754)) NIL (|has| (-401 |#2|) (-362)))) (-3865 (((-111)) NIL)) (-2145 (((-111) |#1|) NIL) (((-111) |#2|) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| (-401 |#2|) (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-401 |#2|) (-1017 (-401 (-552))))) (((-3 (-401 |#2|) "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| (-401 |#2|) (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| (-401 |#2|) (-1017 (-401 (-552))))) (((-401 |#2|) $) NIL)) (-2342 (($ (-1235 (-401 |#2|)) (-1235 $)) NIL) (($ (-1235 (-401 |#2|))) 57) (($ (-1235 |#2|) |#2|) 125)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-401 |#2|) (-343)))) (-2813 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-4088 (((-671 (-401 |#2|)) $ (-1235 $)) NIL) (((-671 (-401 |#2|)) $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| (-401 |#2|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| (-401 |#2|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-401 |#2|))) (|:| |vec| (-1235 (-401 |#2|)))) (-671 $) (-1235 $)) NIL) (((-671 (-401 |#2|)) (-671 $)) NIL)) (-1913 (((-1235 $) (-1235 $)) NIL)) (-2091 (($ |#3|) NIL) (((-3 $ "failed") (-401 |#3|)) NIL (|has| (-401 |#2|) (-357)))) (-2040 (((-3 $ "failed") $) NIL)) (-3814 (((-627 (-627 |#1|))) NIL (|has| |#1| (-362)))) (-3862 (((-111) |#1| |#1|) NIL)) (-4154 (((-900)) NIL)) (-1279 (($) NIL (|has| (-401 |#2|) (-362)))) (-2257 (((-111)) NIL)) (-3521 (((-111) |#1|) NIL) (((-111) |#2|) NIL)) (-2789 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| (-401 |#2|) (-357)))) (-1375 (($ $) NIL)) (-2740 (($) NIL (|has| (-401 |#2|) (-343)))) (-1415 (((-111) $) NIL (|has| (-401 |#2|) (-343)))) (-4294 (($ $ (-754)) NIL (|has| (-401 |#2|) (-343))) (($ $) NIL (|has| (-401 |#2|) (-343)))) (-1633 (((-111) $) NIL (|has| (-401 |#2|) (-357)))) (-2641 (((-900) $) NIL (|has| (-401 |#2|) (-343))) (((-816 (-900)) $) NIL (|has| (-401 |#2|) (-343)))) (-2624 (((-111) $) NIL)) (-4080 (((-754)) NIL)) (-1380 (((-1235 $) (-1235 $)) 102)) (-2349 (((-401 |#2|) $) NIL)) (-2370 (((-627 (-931 |#1|)) (-1152)) NIL (|has| |#1| (-357)))) (-4317 (((-3 $ "failed") $) NIL (|has| (-401 |#2|) (-343)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| (-401 |#2|) (-357)))) (-4205 ((|#3| $) NIL (|has| (-401 |#2|) (-357)))) (-2886 (((-900) $) NIL (|has| (-401 |#2|) (-362)))) (-2079 ((|#3| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| (-401 |#2|) (-357))) (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-1595 (((-1134) $) NIL)) (-1414 (((-1240) (-754)) 79)) (-1486 (((-671 (-401 |#2|))) 51)) (-2659 (((-671 (-401 |#2|))) 44)) (-1951 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-3093 (($ (-1235 |#2|) |#2|) 126)) (-3210 (((-671 (-401 |#2|))) 45)) (-2216 (((-671 (-401 |#2|))) 43)) (-1606 (((-2 (|:| |num| (-671 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-2559 (((-2 (|:| |num| (-1235 |#2|)) (|:| |den| |#2|)) $) 64)) (-1668 (((-1235 $)) 42)) (-3402 (((-1235 $)) 41)) (-3177 (((-111) $) NIL)) (-1505 (((-111) $) NIL) (((-111) $ |#1|) NIL) (((-111) $ |#2|) NIL)) (-3002 (($) NIL (|has| (-401 |#2|) (-343)) CONST)) (-4153 (($ (-900)) NIL (|has| (-401 |#2|) (-362)))) (-3945 (((-3 |#2| "failed")) NIL)) (-1498 (((-1096) $) NIL)) (-2161 (((-754)) NIL)) (-2220 (($) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| (-401 |#2|) (-357)))) (-1323 (($ (-627 $)) NIL (|has| (-401 |#2|) (-357))) (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| (-401 |#2|) (-343)))) (-1727 (((-412 $) $) NIL (|has| (-401 |#2|) (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-401 |#2|) (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| (-401 |#2|) (-357)))) (-2761 (((-3 $ "failed") $ $) NIL (|has| (-401 |#2|) (-357)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| (-401 |#2|) (-357)))) (-2718 (((-754) $) NIL (|has| (-401 |#2|) (-357)))) (-1985 ((|#1| $ |#1| |#1|) NIL)) (-1758 (((-3 |#2| "failed")) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| (-401 |#2|) (-357)))) (-1637 (((-401 |#2|) (-1235 $)) NIL) (((-401 |#2|)) 39)) (-4018 (((-754) $) NIL (|has| (-401 |#2|) (-343))) (((-3 (-754) "failed") $ $) NIL (|has| (-401 |#2|) (-343)))) (-2942 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-754)) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-754)) NIL (-1559 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) NIL (-1559 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-4070 (((-671 (-401 |#2|)) (-1235 $) (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357)))) (-1376 ((|#3|) 50)) (-3439 (($) NIL (|has| (-401 |#2|) (-343)))) (-3133 (((-1235 (-401 |#2|)) $ (-1235 $)) NIL) (((-671 (-401 |#2|)) (-1235 $) (-1235 $)) NIL) (((-1235 (-401 |#2|)) $) 58) (((-671 (-401 |#2|)) (-1235 $)) 103)) (-3562 (((-1235 (-401 |#2|)) $) NIL) (($ (-1235 (-401 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| (-401 |#2|) (-343)))) (-2912 (((-1235 $) (-1235 $)) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ (-401 |#2|)) NIL) (($ (-401 (-552))) NIL (-1559 (|has| (-401 |#2|) (-1017 (-401 (-552)))) (|has| (-401 |#2|) (-357)))) (($ $) NIL (|has| (-401 |#2|) (-357)))) (-3050 (($ $) NIL (|has| (-401 |#2|) (-343))) (((-3 $ "failed") $) NIL (|has| (-401 |#2|) (-142)))) (-2410 ((|#3| $) NIL)) (-3995 (((-754)) NIL)) (-4073 (((-111)) 37)) (-2423 (((-111) |#1|) 49) (((-111) |#2|) 132)) (-2957 (((-1235 $)) 93)) (-3778 (((-111) $ $) NIL (|has| (-401 |#2|) (-357)))) (-4090 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2419 (((-111)) NIL)) (-1922 (($) 16 T CONST)) (-1933 (($) 26 T CONST)) (-4251 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-754)) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-754)) NIL (-1559 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) NIL (-1559 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| (-401 |#2|) (-357)))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 |#2|)) NIL) (($ (-401 |#2|) $) NIL) (($ (-401 (-552)) $) NIL (|has| (-401 |#2|) (-357))) (($ $ (-401 (-552))) NIL (|has| (-401 |#2|) (-357))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-336 |#1| |#2| |#3|) (-10 -7 (-15 -1414 ((-1240) (-754))))) (-357) (-1211 |#1|) (-1211 (-401 |#2|)) |#3|) (T -40)) +((-1414 (*1 *2 *3) (-12 (-5 *3 (-754)) (-4 *4 (-357)) (-4 *5 (-1211 *4)) (-5 *2 (-1240)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1211 (-401 *5))) (-14 *7 *6)))) +(-13 (-336 |#1| |#2| |#3|) (-10 -7 (-15 -1414 ((-1240) (-754))))) +((-3195 ((|#2| |#2|) 48)) (-2470 ((|#2| |#2|) 120 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-445)) (|has| |#1| (-830)) (|has| |#1| (-1017 (-552)))))) (-3920 ((|#2| |#2|) 87 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-445)) (|has| |#1| (-830)) (|has| |#1| (-1017 (-552)))))) (-1772 ((|#2| |#2|) 88 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-445)) (|has| |#1| (-830)) (|has| |#1| (-1017 (-552)))))) (-1958 ((|#2| (-113) |#2| (-754)) 116 (-12 (|has| |#2| (-424 |#1|)) (|has| |#1| (-445)) (|has| |#1| (-830)) (|has| |#1| (-1017 (-552)))))) (-2015 (((-1148 |#2|) |#2|) 45)) (-3276 ((|#2| |#2| (-627 (-598 |#2|))) 18) ((|#2| |#2| (-627 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -3195 (|#2| |#2|)) (-15 -3276 (|#2| |#2|)) (-15 -3276 (|#2| |#2| |#2|)) (-15 -3276 (|#2| |#2| (-627 |#2|))) (-15 -3276 (|#2| |#2| (-627 (-598 |#2|)))) (-15 -2015 ((-1148 |#2|) |#2|)) (IF (|has| |#1| (-830)) (IF (|has| |#1| (-445)) (IF (|has| |#1| (-1017 (-552))) (IF (|has| |#2| (-424 |#1|)) (PROGN (-15 -1772 (|#2| |#2|)) (-15 -3920 (|#2| |#2|)) (-15 -2470 (|#2| |#2|)) (-15 -1958 (|#2| (-113) |#2| (-754)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-544) (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 |#1| (-598 $)) $)) (-15 -2929 ((-1101 |#1| (-598 $)) $)) (-15 -1477 ($ (-1101 |#1| (-598 $))))))) (T -41)) +((-1958 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-113)) (-5 *4 (-754)) (-4 *5 (-445)) (-4 *5 (-830)) (-4 *5 (-1017 (-552))) (-4 *5 (-544)) (-5 *1 (-41 *5 *2)) (-4 *2 (-424 *5)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 *5 (-598 $)) $)) (-15 -2929 ((-1101 *5 (-598 $)) $)) (-15 -1477 ($ (-1101 *5 (-598 $))))))))) (-2470 (*1 *2 *2) (-12 (-4 *3 (-445)) (-4 *3 (-830)) (-4 *3 (-1017 (-552))) (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) (-15 -2929 ((-1101 *3 (-598 $)) $)) (-15 -1477 ($ (-1101 *3 (-598 $))))))))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-445)) (-4 *3 (-830)) (-4 *3 (-1017 (-552))) (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) (-15 -2929 ((-1101 *3 (-598 $)) $)) (-15 -1477 ($ (-1101 *3 (-598 $))))))))) (-1772 (*1 *2 *2) (-12 (-4 *3 (-445)) (-4 *3 (-830)) (-4 *3 (-1017 (-552))) (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) (-15 -2929 ((-1101 *3 (-598 $)) $)) (-15 -1477 ($ (-1101 *3 (-598 $))))))))) (-2015 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-1148 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 *4 (-598 $)) $)) (-15 -2929 ((-1101 *4 (-598 $)) $)) (-15 -1477 ($ (-1101 *4 (-598 $))))))))) (-3276 (*1 *2 *2 *3) (-12 (-5 *3 (-627 (-598 *2))) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 *4 (-598 $)) $)) (-15 -2929 ((-1101 *4 (-598 $)) $)) (-15 -1477 ($ (-1101 *4 (-598 $))))))) (-4 *4 (-544)) (-5 *1 (-41 *4 *2)))) (-3276 (*1 *2 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 *4 (-598 $)) $)) (-15 -2929 ((-1101 *4 (-598 $)) $)) (-15 -1477 ($ (-1101 *4 (-598 $))))))) (-4 *4 (-544)) (-5 *1 (-41 *4 *2)))) (-3276 (*1 *2 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) (-15 -2929 ((-1101 *3 (-598 $)) $)) (-15 -1477 ($ (-1101 *3 (-598 $))))))))) (-3276 (*1 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) (-15 -2929 ((-1101 *3 (-598 $)) $)) (-15 -1477 ($ (-1101 *3 (-598 $))))))))) (-3195 (*1 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-357) (-296) (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) (-15 -2929 ((-1101 *3 (-598 $)) $)) (-15 -1477 ($ (-1101 *3 (-598 $)))))))))) +(-10 -7 (-15 -3195 (|#2| |#2|)) (-15 -3276 (|#2| |#2|)) (-15 -3276 (|#2| |#2| |#2|)) (-15 -3276 (|#2| |#2| (-627 |#2|))) (-15 -3276 (|#2| |#2| (-627 (-598 |#2|)))) (-15 -2015 ((-1148 |#2|) |#2|)) (IF (|has| |#1| (-830)) (IF (|has| |#1| (-445)) (IF (|has| |#1| (-1017 (-552))) (IF (|has| |#2| (-424 |#1|)) (PROGN (-15 -1772 (|#2| |#2|)) (-15 -3920 (|#2| |#2|)) (-15 -2470 (|#2| |#2|)) (-15 -1958 (|#2| (-113) |#2| (-754)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-1727 (((-412 (-1148 |#3|)) (-1148 |#3|) (-627 (-48))) 23) (((-412 |#3|) |#3| (-627 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -1727 ((-412 |#3|) |#3| (-627 (-48)))) (-15 -1727 ((-412 (-1148 |#3|)) (-1148 |#3|) (-627 (-48))))) (-830) (-776) (-928 (-48) |#2| |#1|)) (T -42)) +((-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-48))) (-4 *5 (-830)) (-4 *6 (-776)) (-4 *7 (-928 (-48) *6 *5)) (-5 *2 (-412 (-1148 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1148 *7)))) (-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-48))) (-4 *5 (-830)) (-4 *6 (-776)) (-5 *2 (-412 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-928 (-48) *6 *5))))) +(-10 -7 (-15 -1727 ((-412 |#3|) |#3| (-627 (-48)))) (-15 -1727 ((-412 (-1148 |#3|)) (-1148 |#3|) (-627 (-48))))) +((-2837 (((-754) |#2|) 65)) (-4171 (((-754) |#2|) 68)) (-2057 (((-627 |#2|)) 33)) (-3729 (((-754) |#2|) 67)) (-1589 (((-754) |#2|) 64)) (-2561 (((-754) |#2|) 66)) (-3159 (((-627 (-671 |#1|))) 60)) (-4270 (((-627 |#2|)) 55)) (-1642 (((-627 |#2|) |#2|) 43)) (-2727 (((-627 |#2|)) 57)) (-2974 (((-627 |#2|)) 56)) (-3714 (((-627 (-671 |#1|))) 48)) (-2551 (((-627 |#2|)) 54)) (-4118 (((-627 |#2|) |#2|) 42)) (-1321 (((-627 |#2|)) 50)) (-3414 (((-627 (-671 |#1|))) 61)) (-4322 (((-627 |#2|)) 59)) (-2957 (((-1235 |#2|) (-1235 |#2|)) 84 (|has| |#1| (-301))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -3729 ((-754) |#2|)) (-15 -4171 ((-754) |#2|)) (-15 -1589 ((-754) |#2|)) (-15 -2837 ((-754) |#2|)) (-15 -2561 ((-754) |#2|)) (-15 -1321 ((-627 |#2|))) (-15 -4118 ((-627 |#2|) |#2|)) (-15 -1642 ((-627 |#2|) |#2|)) (-15 -2551 ((-627 |#2|))) (-15 -4270 ((-627 |#2|))) (-15 -2974 ((-627 |#2|))) (-15 -2727 ((-627 |#2|))) (-15 -4322 ((-627 |#2|))) (-15 -3714 ((-627 (-671 |#1|)))) (-15 -3159 ((-627 (-671 |#1|)))) (-15 -3414 ((-627 (-671 |#1|)))) (-15 -2057 ((-627 |#2|))) (IF (|has| |#1| (-301)) (-15 -2957 ((-1235 |#2|) (-1235 |#2|))) |%noBranch|)) (-544) (-411 |#1|)) (T -43)) +((-2957 (*1 *2 *2) (-12 (-5 *2 (-1235 *4)) (-4 *4 (-411 *3)) (-4 *3 (-301)) (-4 *3 (-544)) (-5 *1 (-43 *3 *4)))) (-2057 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-3414 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-627 (-671 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-3159 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-627 (-671 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-3714 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-627 (-671 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-4322 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-2727 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-2974 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-4270 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-2551 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1642 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-627 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-4118 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-627 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1321 (*1 *2) (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-2561 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-2837 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1589 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-4171 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-3729 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) +(-10 -7 (-15 -3729 ((-754) |#2|)) (-15 -4171 ((-754) |#2|)) (-15 -1589 ((-754) |#2|)) (-15 -2837 ((-754) |#2|)) (-15 -2561 ((-754) |#2|)) (-15 -1321 ((-627 |#2|))) (-15 -4118 ((-627 |#2|) |#2|)) (-15 -1642 ((-627 |#2|) |#2|)) (-15 -2551 ((-627 |#2|))) (-15 -4270 ((-627 |#2|))) (-15 -2974 ((-627 |#2|))) (-15 -2727 ((-627 |#2|))) (-15 -4322 ((-627 |#2|))) (-15 -3714 ((-627 (-671 |#1|)))) (-15 -3159 ((-627 (-671 |#1|)))) (-15 -3414 ((-627 (-671 |#1|)))) (-15 -2057 ((-627 |#2|))) (IF (|has| |#1| (-301)) (-15 -2957 ((-1235 |#2|) (-1235 |#2|))) |%noBranch|)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2717 (((-3 $ "failed")) NIL (|has| |#1| (-544)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-3449 (((-1235 (-671 |#1|)) (-1235 $)) NIL) (((-1235 (-671 |#1|))) 24)) (-2946 (((-1235 $)) 51)) (-3887 (($) NIL T CONST)) (-2478 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) NIL (|has| |#1| (-544)))) (-3994 (((-3 $ "failed")) NIL (|has| |#1| (-544)))) (-2877 (((-671 |#1|) (-1235 $)) NIL) (((-671 |#1|)) NIL)) (-2526 ((|#1| $) NIL)) (-3029 (((-671 |#1|) $ (-1235 $)) NIL) (((-671 |#1|) $) NIL)) (-1592 (((-3 $ "failed") $) NIL (|has| |#1| (-544)))) (-2856 (((-1148 (-931 |#1|))) NIL (|has| |#1| (-357)))) (-1407 (($ $ (-900)) NIL)) (-2141 ((|#1| $) NIL)) (-3343 (((-1148 |#1|) $) NIL (|has| |#1| (-544)))) (-3119 ((|#1| (-1235 $)) NIL) ((|#1|) NIL)) (-1608 (((-1148 |#1|) $) NIL)) (-1819 (((-111)) 87)) (-2342 (($ (-1235 |#1|) (-1235 $)) NIL) (($ (-1235 |#1|)) NIL)) (-2040 (((-3 $ "failed") $) 14 (|has| |#1| (-544)))) (-4154 (((-900)) 52)) (-3972 (((-111)) NIL)) (-1410 (($ $ (-900)) NIL)) (-3363 (((-111)) NIL)) (-1878 (((-111)) NIL)) (-3728 (((-111)) 89)) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) NIL (|has| |#1| (-544)))) (-2513 (((-3 $ "failed")) NIL (|has| |#1| (-544)))) (-1425 (((-671 |#1|) (-1235 $)) NIL) (((-671 |#1|)) NIL)) (-4131 ((|#1| $) NIL)) (-2593 (((-671 |#1|) $ (-1235 $)) NIL) (((-671 |#1|) $) NIL)) (-4336 (((-3 $ "failed") $) NIL (|has| |#1| (-544)))) (-1548 (((-1148 (-931 |#1|))) NIL (|has| |#1| (-357)))) (-2896 (($ $ (-900)) NIL)) (-1856 ((|#1| $) NIL)) (-1794 (((-1148 |#1|) $) NIL (|has| |#1| (-544)))) (-2806 ((|#1| (-1235 $)) NIL) ((|#1|) NIL)) (-2798 (((-1148 |#1|) $) NIL)) (-3485 (((-111)) 86)) (-1595 (((-1134) $) NIL)) (-3570 (((-111)) 93)) (-2011 (((-111)) 92)) (-2344 (((-111)) 94)) (-1498 (((-1096) $) NIL)) (-3361 (((-111)) 88)) (-1985 ((|#1| $ (-552)) 54)) (-3133 (((-1235 |#1|) $ (-1235 $)) 48) (((-671 |#1|) (-1235 $) (-1235 $)) NIL) (((-1235 |#1|) $) 28) (((-671 |#1|) (-1235 $)) NIL)) (-3562 (((-1235 |#1|) $) NIL) (($ (-1235 |#1|)) NIL)) (-2539 (((-627 (-931 |#1|)) (-1235 $)) NIL) (((-627 (-931 |#1|))) NIL)) (-2493 (($ $ $) NIL)) (-1822 (((-111)) 84)) (-1477 (((-842) $) 69) (($ (-1235 |#1|)) 22)) (-2957 (((-1235 $)) 45)) (-1360 (((-627 (-1235 |#1|))) NIL (|has| |#1| (-544)))) (-4297 (($ $ $ $) NIL)) (-3656 (((-111)) 82)) (-3288 (($ (-671 |#1|) $) 18)) (-2743 (($ $ $) NIL)) (-3304 (((-111)) 85)) (-3258 (((-111)) 83)) (-3699 (((-111)) 81)) (-1922 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1118 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-411 |#1|) (-630 (-1118 |#2| |#1|)) (-10 -8 (-15 -1477 ($ (-1235 |#1|))))) (-357) (-900) (-627 (-1152)) (-1235 (-671 |#1|))) (T -44)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-357)) (-14 *6 (-1235 (-671 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-900)) (-14 *5 (-627 (-1152)))))) +(-13 (-411 |#1|) (-630 (-1118 |#2| |#1|)) (-10 -8 (-15 -1477 ($ (-1235 |#1|))))) +((-1465 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-4288 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-4155 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-1700 (($ $) NIL)) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3305 (((-1240) $ |#1| |#1|) NIL (|has| $ (-6 -4367))) (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-3900 (($ $ (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (((-111) $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-2701 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830))))) (-4298 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-2472 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4367)))) (-1474 (($ $ $) 27 (|has| $ (-6 -4367)))) (-2801 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4367)))) (-1612 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 29 (|has| $ (-6 -4367)))) (-2950 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4367))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-1202 (-552)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4367))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "last" (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4367))) (($ $ "rest" $) NIL (|has| $ (-6 -4367))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "first" (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4367))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "value" (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) NIL (|has| $ (-6 -4367)))) (-4289 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL)) (-2536 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-4143 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3602 (((-3 |#2| "failed") |#1| $) 37)) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3351 (($ $ (-754)) NIL) (($ $) 24)) (-2820 (($ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2265 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-4342 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4367))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) NIL) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552)) NIL)) (-3592 (((-111) $) NIL)) (-2967 (((-552) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (((-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))) (((-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552)) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-3215 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 18 (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366))) (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 18 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) NIL)) (-3726 (((-111) $ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-2655 (($ (-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 ((|#1| $) NIL (|has| |#1| (-830))) (((-552) $) 32 (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-1438 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-3759 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-3114 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366))) (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076)))) (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2285 ((|#1| $) NIL (|has| |#1| (-830))) (((-552) $) 34 (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4367))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367))) (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL)) (-1299 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1823 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL)) (-3810 (((-111) $) NIL)) (-1595 (((-1134) $) 42 (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1294 (($ $ (-754)) NIL) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-1296 (((-627 |#1|) $) 20)) (-3619 (((-111) |#1| $) NIL)) (-4165 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3954 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL) (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3252 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 |#1|) $) NIL) (((-627 (-552)) $) NIL)) (-2358 (((-111) |#1| $) NIL) (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-3340 ((|#2| $) NIL (|has| |#1| (-830))) (($ $ (-754)) NIL) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 23)) (-1503 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL)) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4367))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-2361 (((-111) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076)))) (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2083 (((-627 |#2|) $) NIL) (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 17)) (-1275 (((-111) $) 16)) (-2373 (($) 13)) (-1985 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ (-552)) NIL) (($ $ (-1202 (-552))) NIL) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "first") NIL) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $ "value") NIL)) (-1848 (((-552) $ $) NIL)) (-3028 (($) 12) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3010 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-2978 (((-111) $) NIL)) (-1805 (($ $) NIL)) (-3384 (($ $) NIL (|has| $ (-6 -4367)))) (-3543 (((-754) $) NIL)) (-4149 (($ $) NIL)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076)))) (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3151 (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL) (($ $ $) NIL)) (-2668 (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL) (($ (-627 $)) NIL) (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 25) (($ $ $) NIL)) (-1477 (((-842) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842))) (|has| |#2| (-599 (-842)))))) (-2535 (((-627 $) $) NIL)) (-3415 (((-111) $ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-2577 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1305 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") |#1| $) 44)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-2292 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-2340 (((-111) $ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-2316 (((-111) $ $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-830)))) (-1383 (((-754) $) 22 (|has| $ (-6 -4366))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1076) (-1076)) (T -45)) NIL (-36 |#1| |#2|) -((-4201 (((-112) $) 12)) (-1996 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-402 (-552)) $) 25) (($ $ (-402 (-552))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-402 (-552)))) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 -4201 ((-112) |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|))) (-47 |#2| |#3|) (-1025) (-772)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-402 (-552)))) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 -4201 ((-112) |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3528 (($ $) 50 (|has| |#1| (-544)))) (-3509 (((-112) $) 52 (|has| |#1| (-544)))) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4169 (($ $) 58)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-4201 (((-112) $) 60)) (-3957 (($ |#1| |#2|) 59)) (-1996 (($ (-1 |#1| |#1|) $) 61)) (-4131 (($ $) 63)) (-4144 ((|#1| $) 64)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-2802 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-4276 ((|#2| $) 62)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ (-402 (-552))) 55 (|has| |#1| (-38 (-402 (-552))))) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45 (|has| |#1| (-170)))) (-3637 ((|#1| $ |#2|) 57)) (-4243 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 51 (|has| |#1| (-544)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 56 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-552)) $) 54 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 53 (|has| |#1| (-38 (-402 (-552))))))) -(((-47 |#1| |#2|) (-138) (-1025) (-772)) (T -47)) -((-4144 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) (-4131 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-112)))) (-3957 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) (-4169 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) (-3637 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) (-2404 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *2 (-358))))) -(-13 (-1025) (-111 |t#1| |t#1|) (-10 -8 (-15 -4144 (|t#1| $)) (-15 -4131 ($ $)) (-15 -4276 (|t#2| $)) (-15 -1996 ($ (-1 |t#1| |t#1|) $)) (-15 -4201 ((-112) $)) (-15 -3957 ($ |t#1| |t#2|)) (-15 -4169 ($ $)) (-15 -3637 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-358)) (-15 -2404 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-6 (-170)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-544)) (-6 (-544)) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-552)))) (-6 (-38 (-402 (-552)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-552)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-285) |has| |#1| (-544)) ((-544) |has| |#1| (-544)) ((-628 #0#) |has| |#1| (-38 (-402 (-552)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #0#) |has| |#1| (-38 (-402 (-552)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-544)) ((-707) . T) ((-1031 #0#) |has| |#1| (-38 (-402 (-552)))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-1993 (((-625 $) (-1145 $) (-1149)) NIL) (((-625 $) (-1145 $)) NIL) (((-625 $) (-928 $)) NIL)) (-3428 (($ (-1145 $) (-1149)) NIL) (($ (-1145 $)) NIL) (($ (-928 $)) NIL)) (-3641 (((-112) $) 11)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-3715 (((-625 (-596 $)) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3831 (($ $ (-289 $)) NIL) (($ $ (-625 (-289 $))) NIL) (($ $ (-625 (-596 $)) (-625 $)) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-3837 (($ $) NIL)) (-2408 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-3438 (((-625 $) (-1145 $) (-1149)) NIL) (((-625 $) (-1145 $)) NIL) (((-625 $) (-928 $)) NIL)) (-3588 (($ (-1145 $) (-1149)) NIL) (($ (-1145 $)) NIL) (($ (-928 $)) NIL)) (-1893 (((-3 (-596 $) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL)) (-1895 (((-596 $) $) NIL) (((-552) $) NIL) (((-402 (-552)) $) NIL)) (-2851 (($ $ $) NIL)) (-1794 (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-669 (-552)) (-669 $)) NIL) (((-2 (|:| -2351 (-669 (-402 (-552)))) (|:| |vec| (-1232 (-402 (-552))))) (-669 $) (-1232 $)) NIL) (((-669 (-402 (-552))) (-669 $)) NIL)) (-2163 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-2411 (($ $) NIL) (($ (-625 $)) NIL)) (-1940 (((-625 (-114)) $) NIL)) (-1563 (((-114) (-114)) NIL)) (-3650 (((-112) $) 14)) (-3932 (((-112) $) NIL (|has| $ (-1014 (-552))))) (-1356 (((-1098 (-552) (-596 $)) $) NIL)) (-2429 (($ $ (-552)) NIL)) (-4209 (((-1145 $) (-1145 $) (-596 $)) NIL) (((-1145 $) (-1145 $) (-625 (-596 $))) NIL) (($ $ (-596 $)) NIL) (($ $ (-625 (-596 $))) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1917 (((-1145 $) (-596 $)) NIL (|has| $ (-1025)))) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-1996 (($ (-1 $ $) (-596 $)) NIL)) (-1952 (((-3 (-596 $) "failed") $) NIL)) (-2605 (($ (-625 $)) NIL) (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-3783 (((-625 (-596 $)) $) NIL)) (-1425 (($ (-114) $) NIL) (($ (-114) (-625 $)) NIL)) (-1721 (((-112) $ (-114)) NIL) (((-112) $ (-1149)) NIL)) (-4092 (($ $) NIL)) (-2207 (((-751) $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ (-625 $)) NIL) (($ $ $) NIL)) (-1929 (((-112) $ $) NIL) (((-112) $ (-1149)) NIL)) (-3824 (((-413 $) $) NIL)) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3943 (((-112) $) NIL (|has| $ (-1014 (-552))))) (-4073 (($ $ (-596 $) $) NIL) (($ $ (-625 (-596 $)) (-625 $)) NIL) (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ $))) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ (-625 $)))) NIL) (($ $ (-1149) (-1 $ (-625 $))) NIL) (($ $ (-1149) (-1 $ $)) NIL) (($ $ (-625 (-114)) (-625 (-1 $ $))) NIL) (($ $ (-625 (-114)) (-625 (-1 $ (-625 $)))) NIL) (($ $ (-114) (-1 $ (-625 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2397 (((-751) $) NIL)) (-2154 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-625 $)) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1963 (($ $) NIL) (($ $ $) NIL)) (-3072 (($ $ (-751)) NIL) (($ $) NIL)) (-1368 (((-1098 (-552) (-596 $)) $) NIL)) (-3610 (($ $) NIL (|has| $ (-1025)))) (-2042 (((-374) $) NIL) (((-221) $) NIL) (((-167 (-374)) $) NIL)) (-1683 (((-839) $) NIL) (($ (-596 $)) NIL) (($ (-402 (-552))) NIL) (($ $) NIL) (($ (-552)) NIL) (($ (-1098 (-552) (-596 $))) NIL)) (-4141 (((-751)) NIL)) (-3779 (($ $) NIL) (($ (-625 $)) NIL)) (-1572 (((-112) (-114)) NIL)) (-3518 (((-112) $ $) NIL)) (-2089 (($) 7 T CONST)) (-2100 (($) 12 T CONST)) (-3768 (($ $ (-751)) NIL) (($ $) NIL)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 16)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL)) (-2393 (($ $ $) 15) (($ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-402 (-552))) NIL) (($ $ (-552)) NIL) (($ $ (-751)) NIL) (($ $ (-897)) NIL)) (* (($ (-402 (-552)) $) NIL) (($ $ (-402 (-552))) NIL) (($ $ $) NIL) (($ (-552) $) NIL) (($ (-751) $) NIL) (($ (-897) $) NIL))) -(((-48) (-13 (-297) (-27) (-1014 (-552)) (-1014 (-402 (-552))) (-621 (-552)) (-998) (-621 (-402 (-552))) (-145) (-598 (-167 (-374))) (-229) (-10 -8 (-15 -1683 ($ (-1098 (-552) (-596 $)))) (-15 -1356 ((-1098 (-552) (-596 $)) $)) (-15 -1368 ((-1098 (-552) (-596 $)) $)) (-15 -2163 ($ $)) (-15 -4209 ((-1145 $) (-1145 $) (-596 $))) (-15 -4209 ((-1145 $) (-1145 $) (-625 (-596 $)))) (-15 -4209 ($ $ (-596 $))) (-15 -4209 ($ $ (-625 (-596 $))))))) (T -48)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1098 (-552) (-596 (-48)))) (-5 *1 (-48)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-1098 (-552) (-596 (-48)))) (-5 *1 (-48)))) (-1368 (*1 *2 *1) (-12 (-5 *2 (-1098 (-552) (-596 (-48)))) (-5 *1 (-48)))) (-2163 (*1 *1 *1) (-5 *1 (-48))) (-4209 (*1 *2 *2 *3) (-12 (-5 *2 (-1145 (-48))) (-5 *3 (-596 (-48))) (-5 *1 (-48)))) (-4209 (*1 *2 *2 *3) (-12 (-5 *2 (-1145 (-48))) (-5 *3 (-625 (-596 (-48)))) (-5 *1 (-48)))) (-4209 (*1 *1 *1 *2) (-12 (-5 *2 (-596 (-48))) (-5 *1 (-48)))) (-4209 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-596 (-48)))) (-5 *1 (-48))))) -(-13 (-297) (-27) (-1014 (-552)) (-1014 (-402 (-552))) (-621 (-552)) (-998) (-621 (-402 (-552))) (-145) (-598 (-167 (-374))) (-229) (-10 -8 (-15 -1683 ($ (-1098 (-552) (-596 $)))) (-15 -1356 ((-1098 (-552) (-596 $)) $)) (-15 -1368 ((-1098 (-552) (-596 $)) $)) (-15 -2163 ($ $)) (-15 -4209 ((-1145 $) (-1145 $) (-596 $))) (-15 -4209 ((-1145 $) (-1145 $) (-625 (-596 $)))) (-15 -4209 ($ $ (-596 $))) (-15 -4209 ($ $ (-625 (-596 $)))))) -((-1671 (((-112) $ $) NIL)) (-3393 (((-625 (-1149)) $) 17)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 7)) (-1300 (((-1154) $) 18)) (-2281 (((-112) $ $) NIL))) -(((-49) (-13 (-1073) (-10 -8 (-15 -3393 ((-625 (-1149)) $)) (-15 -1300 ((-1154) $))))) (T -49)) -((-3393 (*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-49)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-49))))) -(-13 (-1073) (-10 -8 (-15 -3393 ((-625 (-1149)) $)) (-15 -1300 ((-1154) $)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 61)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2023 (((-112) $) 20)) (-1893 (((-3 |#1| "failed") $) 23)) (-1895 ((|#1| $) 24)) (-4169 (($ $) 28)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-4144 ((|#1| $) 21)) (-4145 (($ $) 50)) (-2883 (((-1131) $) NIL)) (-4132 (((-112) $) 30)) (-2831 (((-1093) $) NIL)) (-3212 (($ (-751)) 48)) (-2863 (($ (-625 (-552))) 49)) (-4276 (((-751) $) 31)) (-1683 (((-839) $) 64) (($ (-552)) 45) (($ |#1|) 43)) (-3637 ((|#1| $ $) 19)) (-4141 (((-751)) 47)) (-2089 (($) 32 T CONST)) (-2100 (($) 14 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 40)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) -(((-50 |#1| |#2|) (-13 (-602 |#1|) (-1014 |#1|) (-10 -8 (-15 -4144 (|#1| $)) (-15 -4145 ($ $)) (-15 -4169 ($ $)) (-15 -3637 (|#1| $ $)) (-15 -3212 ($ (-751))) (-15 -2863 ($ (-625 (-552)))) (-15 -4132 ((-112) $)) (-15 -2023 ((-112) $)) (-15 -4276 ((-751) $)) (-15 -1996 ($ (-1 |#1| |#1|) $)))) (-1025) (-625 (-1149))) (T -50)) -((-4144 (*1 *2 *1) (-12 (-4 *2 (-1025)) (-5 *1 (-50 *2 *3)) (-14 *3 (-625 (-1149))))) (-4145 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1025)) (-14 *3 (-625 (-1149))))) (-4169 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1025)) (-14 *3 (-625 (-1149))))) (-3637 (*1 *2 *1 *1) (-12 (-4 *2 (-1025)) (-5 *1 (-50 *2 *3)) (-14 *3 (-625 (-1149))))) (-3212 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) (-14 *4 (-625 (-1149))))) (-2863 (*1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) (-14 *4 (-625 (-1149))))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) (-14 *4 (-625 (-1149))))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) (-14 *4 (-625 (-1149))))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) (-14 *4 (-625 (-1149))))) (-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-50 *3 *4)) (-14 *4 (-625 (-1149)))))) -(-13 (-602 |#1|) (-1014 |#1|) (-10 -8 (-15 -4144 (|#1| $)) (-15 -4145 ($ $)) (-15 -4169 ($ $)) (-15 -3637 (|#1| $ $)) (-15 -3212 ($ (-751))) (-15 -2863 ($ (-625 (-552)))) (-15 -4132 ((-112) $)) (-15 -2023 ((-112) $)) (-15 -4276 ((-751) $)) (-15 -1996 ($ (-1 |#1| |#1|) $)))) -((-2023 (((-112) (-52)) 13)) (-1893 (((-3 |#1| "failed") (-52)) 21)) (-1895 ((|#1| (-52)) 22)) (-1683 (((-52) |#1|) 18))) -(((-51 |#1|) (-10 -7 (-15 -1683 ((-52) |#1|)) (-15 -1893 ((-3 |#1| "failed") (-52))) (-15 -2023 ((-112) (-52))) (-15 -1895 (|#1| (-52)))) (-1186)) (T -51)) -((-1895 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1186)))) (-2023 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1186)))) (-1893 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1186)))) (-1683 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1186))))) -(-10 -7 (-15 -1683 ((-52) |#1|)) (-15 -1893 ((-3 |#1| "failed") (-52))) (-15 -2023 ((-112) (-52))) (-15 -1895 (|#1| (-52)))) -((-1671 (((-112) $ $) NIL)) (-2639 (((-1131) (-112)) 25)) (-2647 (((-839) $) 24)) (-3387 (((-754) $) 12)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2657 (((-839) $) 16)) (-4282 (((-1077) $) 14)) (-1683 (((-839) $) 32)) (-2053 (($ (-1077) (-754)) 33)) (-2281 (((-112) $ $) 18))) -(((-52) (-13 (-1073) (-10 -8 (-15 -2053 ($ (-1077) (-754))) (-15 -2657 ((-839) $)) (-15 -2647 ((-839) $)) (-15 -4282 ((-1077) $)) (-15 -3387 ((-754) $)) (-15 -2639 ((-1131) (-112)))))) (T -52)) -((-2053 (*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-754)) (-5 *1 (-52)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-52)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-52)))) (-4282 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-52)))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-52)))) (-2639 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1131)) (-5 *1 (-52))))) -(-13 (-1073) (-10 -8 (-15 -2053 ($ (-1077) (-754))) (-15 -2657 ((-839) $)) (-15 -2647 ((-839) $)) (-15 -4282 ((-1077) $)) (-15 -3387 ((-754) $)) (-15 -2639 ((-1131) (-112))))) -((-2872 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2872 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1025) (-628 |#1|) (-829 |#1|)) (T -53)) -((-2872 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-628 *5)) (-4 *5 (-1025)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-829 *5))))) -(-10 -7 (-15 -2872 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-2679 ((|#3| |#3| (-625 (-1149))) 35)) (-2669 ((|#3| (-625 (-1049 |#1| |#2| |#3|)) |#3| (-897)) 22) ((|#3| (-625 (-1049 |#1| |#2| |#3|)) |#3|) 20))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2669 (|#3| (-625 (-1049 |#1| |#2| |#3|)) |#3|)) (-15 -2669 (|#3| (-625 (-1049 |#1| |#2| |#3|)) |#3| (-897))) (-15 -2679 (|#3| |#3| (-625 (-1149))))) (-1073) (-13 (-1025) (-862 |#1|) (-827) (-598 (-868 |#1|))) (-13 (-425 |#2|) (-862 |#1|) (-598 (-868 |#1|)))) (T -54)) -((-2679 (*1 *2 *2 *3) (-12 (-5 *3 (-625 (-1149))) (-4 *4 (-1073)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-425 *5) (-862 *4) (-598 (-868 *4)))))) (-2669 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-625 (-1049 *5 *6 *2))) (-5 *4 (-897)) (-4 *5 (-1073)) (-4 *6 (-13 (-1025) (-862 *5) (-827) (-598 (-868 *5)))) (-4 *2 (-13 (-425 *6) (-862 *5) (-598 (-868 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2669 (*1 *2 *3 *2) (-12 (-5 *3 (-625 (-1049 *4 *5 *2))) (-4 *4 (-1073)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4)))) (-4 *2 (-13 (-425 *5) (-862 *4) (-598 (-868 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -2669 (|#3| (-625 (-1049 |#1| |#2| |#3|)) |#3|)) (-15 -2669 (|#3| (-625 (-1049 |#1| |#2| |#3|)) |#3| (-897))) (-15 -2679 (|#3| |#3| (-625 (-1149))))) -((-3495 (((-112) $ (-751)) 23)) (-2701 (($ $ (-552) |#3|) 47)) (-2691 (($ $ (-552) |#4|) 51)) (-4015 ((|#3| $ (-552)) 60)) (-3799 (((-625 |#2|) $) 30)) (-2909 (((-112) $ (-751)) 25)) (-2893 (((-112) |#2| $) 55)) (-3683 (($ (-1 |#2| |#2|) $) 38)) (-1996 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-2878 (((-112) $ (-751)) 24)) (-2518 (($ $ |#2|) 35)) (-1888 (((-112) (-1 (-112) |#2|) $) 19)) (-2154 ((|#2| $ (-552) (-552)) NIL) ((|#2| $ (-552) (-552) |#2|) 27)) (-2840 (((-751) (-1 (-112) |#2|) $) 28) (((-751) |#2| $) 57)) (-1871 (($ $) 34)) (-4004 ((|#4| $ (-552)) 63)) (-1683 (((-839) $) 69)) (-1900 (((-112) (-1 (-112) |#2|) $) 18)) (-2281 (((-112) $ $) 54)) (-1471 (((-751) $) 26))) -(((-55 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1996 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3683 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2691 (|#1| |#1| (-552) |#4|)) (-15 -2701 (|#1| |#1| (-552) |#3|)) (-15 -3799 ((-625 |#2|) |#1|)) (-15 -4004 (|#4| |#1| (-552))) (-15 -4015 (|#3| |#1| (-552))) (-15 -2154 (|#2| |#1| (-552) (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552) (-552))) (-15 -2518 (|#1| |#1| |#2|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -2893 ((-112) |#2| |#1|)) (-15 -2840 ((-751) |#2| |#1|)) (-15 -2840 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -1888 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1471 ((-751) |#1|)) (-15 -3495 ((-112) |#1| (-751))) (-15 -2909 ((-112) |#1| (-751))) (-15 -2878 ((-112) |#1| (-751))) (-15 -1871 (|#1| |#1|))) (-56 |#2| |#3| |#4|) (-1186) (-368 |#2|) (-368 |#2|)) (T -55)) -NIL -(-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1996 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3683 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2691 (|#1| |#1| (-552) |#4|)) (-15 -2701 (|#1| |#1| (-552) |#3|)) (-15 -3799 ((-625 |#2|) |#1|)) (-15 -4004 (|#4| |#1| (-552))) (-15 -4015 (|#3| |#1| (-552))) (-15 -2154 (|#2| |#1| (-552) (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552) (-552))) (-15 -2518 (|#1| |#1| |#2|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -2893 ((-112) |#2| |#1|)) (-15 -2840 ((-751) |#2| |#1|)) (-15 -2840 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -1888 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1471 ((-751) |#1|)) (-15 -3495 ((-112) |#1| (-751))) (-15 -2909 ((-112) |#1| (-751))) (-15 -2878 ((-112) |#1| (-751))) (-15 -1871 (|#1| |#1|))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) 8)) (-1851 ((|#1| $ (-552) (-552) |#1|) 44)) (-2701 (($ $ (-552) |#2|) 42)) (-2691 (($ $ (-552) |#3|) 41)) (-3101 (($) 7 T CONST)) (-4015 ((|#2| $ (-552)) 46)) (-3692 ((|#1| $ (-552) (-552) |#1|) 43)) (-3631 ((|#1| $ (-552) (-552)) 48)) (-3799 (((-625 |#1|) $) 30)) (-1773 (((-751) $) 51)) (-2183 (($ (-751) (-751) |#1|) 57)) (-1784 (((-751) $) 50)) (-2909 (((-112) $ (-751)) 9)) (-4063 (((-552) $) 55)) (-4038 (((-552) $) 53)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-4050 (((-552) $) 54)) (-4027 (((-552) $) 52)) (-3683 (($ (-1 |#1| |#1|) $) 34)) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2518 (($ $ |#1|) 56)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ (-552) (-552)) 49) ((|#1| $ (-552) (-552) |#1|) 47)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-4004 ((|#3| $ (-552)) 45)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-56 |#1| |#2| |#3|) (-138) (-1186) (-368 |t#1|) (-368 |t#1|)) (T -56)) -((-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2183 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-751)) (-4 *3 (-1186)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2518 (*1 *1 *1 *2) (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1186)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-4063 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-552)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-552)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-552)))) (-4027 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-552)))) (-1773 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-751)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-751)))) (-2154 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-1186)))) (-3631 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-1186)))) (-2154 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1186)) (-4 *4 (-368 *2)) (-4 *5 (-368 *2)))) (-4015 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1186)) (-4 *5 (-368 *4)) (-4 *2 (-368 *4)))) (-4004 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1186)) (-4 *5 (-368 *4)) (-4 *2 (-368 *4)))) (-3799 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-625 *3)))) (-1851 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1186)) (-4 *4 (-368 *2)) (-4 *5 (-368 *2)))) (-3692 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1186)) (-4 *4 (-368 *2)) (-4 *5 (-368 *2)))) (-2701 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-552)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1186)) (-4 *3 (-368 *4)) (-4 *5 (-368 *4)))) (-2691 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-552)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1186)) (-4 *5 (-368 *4)) (-4 *3 (-368 *4)))) (-3683 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-1996 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-1996 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))) -(-13 (-483 |t#1|) (-10 -8 (-6 -4354) (-6 -4353) (-15 -2183 ($ (-751) (-751) |t#1|)) (-15 -2518 ($ $ |t#1|)) (-15 -4063 ((-552) $)) (-15 -4050 ((-552) $)) (-15 -4038 ((-552) $)) (-15 -4027 ((-552) $)) (-15 -1773 ((-751) $)) (-15 -1784 ((-751) $)) (-15 -2154 (|t#1| $ (-552) (-552))) (-15 -3631 (|t#1| $ (-552) (-552))) (-15 -2154 (|t#1| $ (-552) (-552) |t#1|)) (-15 -4015 (|t#2| $ (-552))) (-15 -4004 (|t#3| $ (-552))) (-15 -3799 ((-625 |t#1|) $)) (-15 -1851 (|t#1| $ (-552) (-552) |t#1|)) (-15 -3692 (|t#1| $ (-552) (-552) |t#1|)) (-15 -2701 ($ $ (-552) |t#2|)) (-15 -2691 ($ $ (-552) |t#3|)) (-15 -1996 ($ (-1 |t#1| |t#1|) $)) (-15 -3683 ($ (-1 |t#1| |t#1|) $)) (-15 -1996 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1996 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T)) -((-1454 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16)) (-2163 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18)) (-1996 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13))) -(((-57 |#1| |#2|) (-10 -7 (-15 -1454 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2163 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -1996 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1186) (-1186)) (T -57)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) (-2163 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1186)) (-4 *2 (-1186)) (-5 *1 (-57 *5 *2)))) (-1454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1186)) (-4 *5 (-1186)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5))))) -(-10 -7 (-15 -1454 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2163 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -1996 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-552) |#1|) 11 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) NIL)) (-2483 (((-552) (-1 (-112) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073)))) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2710 (($ (-625 |#1|)) 13) (($ (-751) |#1|) 14)) (-2183 (($ (-751) |#1|) 9)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2924 ((|#1| $) NIL (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) 7)) (-2154 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) NIL)) (-3402 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-625 $)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2710 ($ (-625 |#1|))) (-15 -2710 ($ (-751) |#1|)))) (-1186)) (T -58)) -((-2710 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-58 *3)))) (-2710 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *1 (-58 *3)) (-4 *3 (-1186))))) -(-13 (-19 |#1|) (-10 -8 (-15 -2710 ($ (-625 |#1|))) (-15 -2710 ($ (-751) |#1|)))) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-552) (-552) |#1|) NIL)) (-2701 (($ $ (-552) (-58 |#1|)) NIL)) (-2691 (($ $ (-552) (-58 |#1|)) NIL)) (-3101 (($) NIL T CONST)) (-4015 (((-58 |#1|) $ (-552)) NIL)) (-3692 ((|#1| $ (-552) (-552) |#1|) NIL)) (-3631 ((|#1| $ (-552) (-552)) NIL)) (-3799 (((-625 |#1|) $) NIL)) (-1773 (((-751) $) NIL)) (-2183 (($ (-751) (-751) |#1|) NIL)) (-1784 (((-751) $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-4063 (((-552) $) NIL)) (-4038 (((-552) $) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-4050 (((-552) $) NIL)) (-4027 (((-552) $) NIL)) (-3683 (($ (-1 |#1| |#1|) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2518 (($ $ |#1|) NIL)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-4004 (((-58 |#1|) $ (-552)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-59 |#1|) (-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4354))) (-1186)) (T -59)) -NIL -(-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4354))) -((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 74) (((-3 $ "failed") (-1232 (-311 (-552)))) 63) (((-3 $ "failed") (-1232 (-928 (-374)))) 94) (((-3 $ "failed") (-1232 (-928 (-552)))) 84) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 52) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 39)) (-1895 (($ (-1232 (-311 (-374)))) 70) (($ (-1232 (-311 (-552)))) 59) (($ (-1232 (-928 (-374)))) 90) (($ (-1232 (-928 (-552)))) 80) (($ (-1232 (-402 (-928 (-374))))) 48) (($ (-1232 (-402 (-928 (-552))))) 32)) (-2927 (((-1237) $) 120)) (-1683 (((-839) $) 113) (($ (-625 (-325))) 103) (($ (-325)) 97) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 101) (($ (-1232 (-334 (-1695 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1695) (-679)))) 31))) -(((-60 |#1|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1695) (-679))))))) (-1149)) (T -60)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1695) (-679)))) (-5 *1 (-60 *3)) (-14 *3 (-1149))))) -(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1695) (-679))))))) -((-2927 (((-1237) $) 53) (((-1237)) 54)) (-1683 (((-839) $) 50))) -(((-61 |#1|) (-13 (-390) (-10 -7 (-15 -2927 ((-1237))))) (-1149)) (T -61)) -((-2927 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-61 *3)) (-14 *3 (-1149))))) -(-13 (-390) (-10 -7 (-15 -2927 ((-1237))))) -((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 144) (((-3 $ "failed") (-1232 (-311 (-552)))) 134) (((-3 $ "failed") (-1232 (-928 (-374)))) 164) (((-3 $ "failed") (-1232 (-928 (-552)))) 154) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 123) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 111)) (-1895 (($ (-1232 (-311 (-374)))) 140) (($ (-1232 (-311 (-552)))) 130) (($ (-1232 (-928 (-374)))) 160) (($ (-1232 (-928 (-552)))) 150) (($ (-1232 (-402 (-928 (-374))))) 119) (($ (-1232 (-402 (-928 (-552))))) 104)) (-2927 (((-1237) $) 97)) (-1683 (((-839) $) 91) (($ (-625 (-325))) 29) (($ (-325)) 34) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 32) (($ (-1232 (-334 (-1695) (-1695 (QUOTE XC)) (-679)))) 89))) -(((-62 |#1|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695) (-1695 (QUOTE XC)) (-679))))))) (-1149)) (T -62)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695) (-1695 (QUOTE XC)) (-679)))) (-5 *1 (-62 *3)) (-14 *3 (-1149))))) -(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695) (-1695 (QUOTE XC)) (-679))))))) -((-1893 (((-3 $ "failed") (-311 (-374))) 41) (((-3 $ "failed") (-311 (-552))) 46) (((-3 $ "failed") (-928 (-374))) 50) (((-3 $ "failed") (-928 (-552))) 54) (((-3 $ "failed") (-402 (-928 (-374)))) 36) (((-3 $ "failed") (-402 (-928 (-552)))) 29)) (-1895 (($ (-311 (-374))) 39) (($ (-311 (-552))) 44) (($ (-928 (-374))) 48) (($ (-928 (-552))) 52) (($ (-402 (-928 (-374)))) 34) (($ (-402 (-928 (-552)))) 26)) (-2927 (((-1237) $) 76)) (-1683 (((-839) $) 69) (($ (-625 (-325))) 61) (($ (-325)) 66) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 64) (($ (-334 (-1695 (QUOTE X)) (-1695) (-679))) 25))) -(((-63 |#1|) (-13 (-391) (-10 -8 (-15 -1683 ($ (-334 (-1695 (QUOTE X)) (-1695) (-679)))))) (-1149)) (T -63)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-334 (-1695 (QUOTE X)) (-1695) (-679))) (-5 *1 (-63 *3)) (-14 *3 (-1149))))) -(-13 (-391) (-10 -8 (-15 -1683 ($ (-334 (-1695 (QUOTE X)) (-1695) (-679)))))) -((-1893 (((-3 $ "failed") (-669 (-311 (-374)))) 109) (((-3 $ "failed") (-669 (-311 (-552)))) 97) (((-3 $ "failed") (-669 (-928 (-374)))) 131) (((-3 $ "failed") (-669 (-928 (-552)))) 120) (((-3 $ "failed") (-669 (-402 (-928 (-374))))) 85) (((-3 $ "failed") (-669 (-402 (-928 (-552))))) 71)) (-1895 (($ (-669 (-311 (-374)))) 105) (($ (-669 (-311 (-552)))) 93) (($ (-669 (-928 (-374)))) 127) (($ (-669 (-928 (-552)))) 116) (($ (-669 (-402 (-928 (-374))))) 81) (($ (-669 (-402 (-928 (-552))))) 64)) (-2927 (((-1237) $) 139)) (-1683 (((-839) $) 133) (($ (-625 (-325))) 28) (($ (-325)) 33) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 31) (($ (-669 (-334 (-1695) (-1695 (QUOTE X) (QUOTE HESS)) (-679)))) 54))) -(((-64 |#1|) (-13 (-379) (-10 -8 (-15 -1683 ($ (-669 (-334 (-1695) (-1695 (QUOTE X) (QUOTE HESS)) (-679))))))) (-1149)) (T -64)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-669 (-334 (-1695) (-1695 (QUOTE X) (QUOTE HESS)) (-679)))) (-5 *1 (-64 *3)) (-14 *3 (-1149))))) -(-13 (-379) (-10 -8 (-15 -1683 ($ (-669 (-334 (-1695) (-1695 (QUOTE X) (QUOTE HESS)) (-679))))))) -((-1893 (((-3 $ "failed") (-311 (-374))) 59) (((-3 $ "failed") (-311 (-552))) 64) (((-3 $ "failed") (-928 (-374))) 68) (((-3 $ "failed") (-928 (-552))) 72) (((-3 $ "failed") (-402 (-928 (-374)))) 54) (((-3 $ "failed") (-402 (-928 (-552)))) 47)) (-1895 (($ (-311 (-374))) 57) (($ (-311 (-552))) 62) (($ (-928 (-374))) 66) (($ (-928 (-552))) 70) (($ (-402 (-928 (-374)))) 52) (($ (-402 (-928 (-552)))) 44)) (-2927 (((-1237) $) 81)) (-1683 (((-839) $) 75) (($ (-625 (-325))) 28) (($ (-325)) 33) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 31) (($ (-334 (-1695) (-1695 (QUOTE XC)) (-679))) 39))) -(((-65 |#1|) (-13 (-391) (-10 -8 (-15 -1683 ($ (-334 (-1695) (-1695 (QUOTE XC)) (-679)))))) (-1149)) (T -65)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-334 (-1695) (-1695 (QUOTE XC)) (-679))) (-5 *1 (-65 *3)) (-14 *3 (-1149))))) -(-13 (-391) (-10 -8 (-15 -1683 ($ (-334 (-1695) (-1695 (QUOTE XC)) (-679)))))) -((-2927 (((-1237) $) 63)) (-1683 (((-839) $) 57) (($ (-669 (-679))) 49) (($ (-625 (-325))) 48) (($ (-325)) 55) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 53))) -(((-66 |#1|) (-378) (-1149)) (T -66)) -NIL -(-378) -((-2927 (((-1237) $) 64)) (-1683 (((-839) $) 58) (($ (-669 (-679))) 50) (($ (-625 (-325))) 49) (($ (-325)) 52) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 55))) -(((-67 |#1|) (-378) (-1149)) (T -67)) -NIL -(-378) -((-2927 (((-1237) $) NIL) (((-1237)) 32)) (-1683 (((-839) $) NIL))) -(((-68 |#1|) (-13 (-390) (-10 -7 (-15 -2927 ((-1237))))) (-1149)) (T -68)) -((-2927 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-68 *3)) (-14 *3 (-1149))))) -(-13 (-390) (-10 -7 (-15 -2927 ((-1237))))) -((-2927 (((-1237) $) 73)) (-1683 (((-839) $) 67) (($ (-669 (-679))) 59) (($ (-625 (-325))) 61) (($ (-325)) 64) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 58))) -(((-69 |#1|) (-378) (-1149)) (T -69)) -NIL -(-378) -((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 103) (((-3 $ "failed") (-1232 (-311 (-552)))) 92) (((-3 $ "failed") (-1232 (-928 (-374)))) 123) (((-3 $ "failed") (-1232 (-928 (-552)))) 113) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 81) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 68)) (-1895 (($ (-1232 (-311 (-374)))) 99) (($ (-1232 (-311 (-552)))) 88) (($ (-1232 (-928 (-374)))) 119) (($ (-1232 (-928 (-552)))) 109) (($ (-1232 (-402 (-928 (-374))))) 77) (($ (-1232 (-402 (-928 (-552))))) 61)) (-2927 (((-1237) $) 136)) (-1683 (((-839) $) 130) (($ (-625 (-325))) 125) (($ (-325)) 128) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 53) (($ (-1232 (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679)))) 54))) -(((-70 |#1|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679))))))) (-1149)) (T -70)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679)))) (-5 *1 (-70 *3)) (-14 *3 (-1149))))) -(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679))))))) -((-2927 (((-1237) $) 32) (((-1237)) 31)) (-1683 (((-839) $) 35))) -(((-71 |#1|) (-13 (-390) (-10 -7 (-15 -2927 ((-1237))))) (-1149)) (T -71)) -((-2927 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-71 *3)) (-14 *3 (-1149))))) -(-13 (-390) (-10 -7 (-15 -2927 ((-1237))))) -((-2927 (((-1237) $) 63)) (-1683 (((-839) $) 57) (($ (-669 (-679))) 49) (($ (-625 (-325))) 51) (($ (-325)) 54) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 48))) -(((-72 |#1|) (-378) (-1149)) (T -72)) -NIL -(-378) -((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 125) (((-3 $ "failed") (-1232 (-311 (-552)))) 115) (((-3 $ "failed") (-1232 (-928 (-374)))) 145) (((-3 $ "failed") (-1232 (-928 (-552)))) 135) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 105) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 93)) (-1895 (($ (-1232 (-311 (-374)))) 121) (($ (-1232 (-311 (-552)))) 111) (($ (-1232 (-928 (-374)))) 141) (($ (-1232 (-928 (-552)))) 131) (($ (-1232 (-402 (-928 (-374))))) 101) (($ (-1232 (-402 (-928 (-552))))) 86)) (-2927 (((-1237) $) 78)) (-1683 (((-839) $) 27) (($ (-625 (-325))) 68) (($ (-325)) 64) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 71) (($ (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679)))) 65))) -(((-73 |#1|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679))))))) (-1149)) (T -73)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679)))) (-5 *1 (-73 *3)) (-14 *3 (-1149))))) -(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679))))))) -((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 130) (((-3 $ "failed") (-1232 (-311 (-552)))) 119) (((-3 $ "failed") (-1232 (-928 (-374)))) 150) (((-3 $ "failed") (-1232 (-928 (-552)))) 140) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 108) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 95)) (-1895 (($ (-1232 (-311 (-374)))) 126) (($ (-1232 (-311 (-552)))) 115) (($ (-1232 (-928 (-374)))) 146) (($ (-1232 (-928 (-552)))) 136) (($ (-1232 (-402 (-928 (-374))))) 104) (($ (-1232 (-402 (-928 (-552))))) 88)) (-2927 (((-1237) $) 79)) (-1683 (((-839) $) 71) (($ (-625 (-325))) NIL) (($ (-325)) NIL) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) NIL) (($ (-1232 (-334 (-1695 (QUOTE X) (QUOTE EPS)) (-1695 (QUOTE -1367)) (-679)))) 66))) -(((-74 |#1| |#2| |#3|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE X) (QUOTE EPS)) (-1695 (QUOTE -1367)) (-679))))))) (-1149) (-1149) (-1149)) (T -74)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695 (QUOTE X) (QUOTE EPS)) (-1695 (QUOTE -1367)) (-679)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1149)) (-14 *4 (-1149)) (-14 *5 (-1149))))) -(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE X) (QUOTE EPS)) (-1695 (QUOTE -1367)) (-679))))))) -((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 134) (((-3 $ "failed") (-1232 (-311 (-552)))) 123) (((-3 $ "failed") (-1232 (-928 (-374)))) 154) (((-3 $ "failed") (-1232 (-928 (-552)))) 144) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 112) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 99)) (-1895 (($ (-1232 (-311 (-374)))) 130) (($ (-1232 (-311 (-552)))) 119) (($ (-1232 (-928 (-374)))) 150) (($ (-1232 (-928 (-552)))) 140) (($ (-1232 (-402 (-928 (-374))))) 108) (($ (-1232 (-402 (-928 (-552))))) 92)) (-2927 (((-1237) $) 83)) (-1683 (((-839) $) 75) (($ (-625 (-325))) NIL) (($ (-325)) NIL) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) NIL) (($ (-1232 (-334 (-1695 (QUOTE EPS)) (-1695 (QUOTE YA) (QUOTE YB)) (-679)))) 70))) -(((-75 |#1| |#2| |#3|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE EPS)) (-1695 (QUOTE YA) (QUOTE YB)) (-679))))))) (-1149) (-1149) (-1149)) (T -75)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695 (QUOTE EPS)) (-1695 (QUOTE YA) (QUOTE YB)) (-679)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1149)) (-14 *4 (-1149)) (-14 *5 (-1149))))) -(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE EPS)) (-1695 (QUOTE YA) (QUOTE YB)) (-679))))))) -((-1893 (((-3 $ "failed") (-311 (-374))) 82) (((-3 $ "failed") (-311 (-552))) 87) (((-3 $ "failed") (-928 (-374))) 91) (((-3 $ "failed") (-928 (-552))) 95) (((-3 $ "failed") (-402 (-928 (-374)))) 77) (((-3 $ "failed") (-402 (-928 (-552)))) 70)) (-1895 (($ (-311 (-374))) 80) (($ (-311 (-552))) 85) (($ (-928 (-374))) 89) (($ (-928 (-552))) 93) (($ (-402 (-928 (-374)))) 75) (($ (-402 (-928 (-552)))) 67)) (-2927 (((-1237) $) 62)) (-1683 (((-839) $) 50) (($ (-625 (-325))) 46) (($ (-325)) 56) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 54) (($ (-334 (-1695) (-1695 (QUOTE X)) (-679))) 47))) -(((-76 |#1|) (-13 (-391) (-10 -8 (-15 -1683 ($ (-334 (-1695) (-1695 (QUOTE X)) (-679)))))) (-1149)) (T -76)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-334 (-1695) (-1695 (QUOTE X)) (-679))) (-5 *1 (-76 *3)) (-14 *3 (-1149))))) -(-13 (-391) (-10 -8 (-15 -1683 ($ (-334 (-1695) (-1695 (QUOTE X)) (-679)))))) -((-1893 (((-3 $ "failed") (-311 (-374))) 46) (((-3 $ "failed") (-311 (-552))) 51) (((-3 $ "failed") (-928 (-374))) 55) (((-3 $ "failed") (-928 (-552))) 59) (((-3 $ "failed") (-402 (-928 (-374)))) 41) (((-3 $ "failed") (-402 (-928 (-552)))) 34)) (-1895 (($ (-311 (-374))) 44) (($ (-311 (-552))) 49) (($ (-928 (-374))) 53) (($ (-928 (-552))) 57) (($ (-402 (-928 (-374)))) 39) (($ (-402 (-928 (-552)))) 31)) (-2927 (((-1237) $) 80)) (-1683 (((-839) $) 74) (($ (-625 (-325))) 66) (($ (-325)) 71) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 69) (($ (-334 (-1695) (-1695 (QUOTE X)) (-679))) 30))) -(((-77 |#1|) (-13 (-391) (-10 -8 (-15 -1683 ($ (-334 (-1695) (-1695 (QUOTE X)) (-679)))))) (-1149)) (T -77)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-334 (-1695) (-1695 (QUOTE X)) (-679))) (-5 *1 (-77 *3)) (-14 *3 (-1149))))) -(-13 (-391) (-10 -8 (-15 -1683 ($ (-334 (-1695) (-1695 (QUOTE X)) (-679)))))) -((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 89) (((-3 $ "failed") (-1232 (-311 (-552)))) 78) (((-3 $ "failed") (-1232 (-928 (-374)))) 109) (((-3 $ "failed") (-1232 (-928 (-552)))) 99) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 67) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 54)) (-1895 (($ (-1232 (-311 (-374)))) 85) (($ (-1232 (-311 (-552)))) 74) (($ (-1232 (-928 (-374)))) 105) (($ (-1232 (-928 (-552)))) 95) (($ (-1232 (-402 (-928 (-374))))) 63) (($ (-1232 (-402 (-928 (-552))))) 47)) (-2927 (((-1237) $) 125)) (-1683 (((-839) $) 119) (($ (-625 (-325))) 112) (($ (-325)) 37) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 115) (($ (-1232 (-334 (-1695) (-1695 (QUOTE XC)) (-679)))) 38))) -(((-78 |#1|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695) (-1695 (QUOTE XC)) (-679))))))) (-1149)) (T -78)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695) (-1695 (QUOTE XC)) (-679)))) (-5 *1 (-78 *3)) (-14 *3 (-1149))))) -(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695) (-1695 (QUOTE XC)) (-679))))))) -((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 142) (((-3 $ "failed") (-1232 (-311 (-552)))) 132) (((-3 $ "failed") (-1232 (-928 (-374)))) 162) (((-3 $ "failed") (-1232 (-928 (-552)))) 152) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 122) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 110)) (-1895 (($ (-1232 (-311 (-374)))) 138) (($ (-1232 (-311 (-552)))) 128) (($ (-1232 (-928 (-374)))) 158) (($ (-1232 (-928 (-552)))) 148) (($ (-1232 (-402 (-928 (-374))))) 118) (($ (-1232 (-402 (-928 (-552))))) 103)) (-2927 (((-1237) $) 96)) (-1683 (((-839) $) 90) (($ (-625 (-325))) 81) (($ (-325)) 88) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 86) (($ (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679)))) 82))) -(((-79 |#1|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679))))))) (-1149)) (T -79)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679)))) (-5 *1 (-79 *3)) (-14 *3 (-1149))))) -(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679))))))) -((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 78) (((-3 $ "failed") (-1232 (-311 (-552)))) 67) (((-3 $ "failed") (-1232 (-928 (-374)))) 98) (((-3 $ "failed") (-1232 (-928 (-552)))) 88) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 56) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 43)) (-1895 (($ (-1232 (-311 (-374)))) 74) (($ (-1232 (-311 (-552)))) 63) (($ (-1232 (-928 (-374)))) 94) (($ (-1232 (-928 (-552)))) 84) (($ (-1232 (-402 (-928 (-374))))) 52) (($ (-1232 (-402 (-928 (-552))))) 36)) (-2927 (((-1237) $) 124)) (-1683 (((-839) $) 118) (($ (-625 (-325))) 109) (($ (-325)) 115) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 113) (($ (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679)))) 35))) -(((-80 |#1|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679))))))) (-1149)) (T -80)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679)))) (-5 *1 (-80 *3)) (-14 *3 (-1149))))) -(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695) (-1695 (QUOTE X)) (-679))))))) -((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 95) (((-3 $ "failed") (-1232 (-311 (-552)))) 84) (((-3 $ "failed") (-1232 (-928 (-374)))) 115) (((-3 $ "failed") (-1232 (-928 (-552)))) 105) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 73) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 60)) (-1895 (($ (-1232 (-311 (-374)))) 91) (($ (-1232 (-311 (-552)))) 80) (($ (-1232 (-928 (-374)))) 111) (($ (-1232 (-928 (-552)))) 101) (($ (-1232 (-402 (-928 (-374))))) 69) (($ (-1232 (-402 (-928 (-552))))) 53)) (-2927 (((-1237) $) 45)) (-1683 (((-839) $) 39) (($ (-625 (-325))) 29) (($ (-325)) 32) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 35) (($ (-1232 (-334 (-1695 (QUOTE X) (QUOTE -1367)) (-1695) (-679)))) 30))) -(((-81 |#1|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE X) (QUOTE -1367)) (-1695) (-679))))))) (-1149)) (T -81)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695 (QUOTE X) (QUOTE -1367)) (-1695) (-679)))) (-5 *1 (-81 *3)) (-14 *3 (-1149))))) -(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE X) (QUOTE -1367)) (-1695) (-679))))))) -((-1893 (((-3 $ "failed") (-669 (-311 (-374)))) 115) (((-3 $ "failed") (-669 (-311 (-552)))) 104) (((-3 $ "failed") (-669 (-928 (-374)))) 137) (((-3 $ "failed") (-669 (-928 (-552)))) 126) (((-3 $ "failed") (-669 (-402 (-928 (-374))))) 93) (((-3 $ "failed") (-669 (-402 (-928 (-552))))) 80)) (-1895 (($ (-669 (-311 (-374)))) 111) (($ (-669 (-311 (-552)))) 100) (($ (-669 (-928 (-374)))) 133) (($ (-669 (-928 (-552)))) 122) (($ (-669 (-402 (-928 (-374))))) 89) (($ (-669 (-402 (-928 (-552))))) 73)) (-2927 (((-1237) $) 63)) (-1683 (((-839) $) 50) (($ (-625 (-325))) 57) (($ (-325)) 46) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 55) (($ (-669 (-334 (-1695 (QUOTE X) (QUOTE -1367)) (-1695) (-679)))) 47))) -(((-82 |#1|) (-13 (-379) (-10 -8 (-15 -1683 ($ (-669 (-334 (-1695 (QUOTE X) (QUOTE -1367)) (-1695) (-679))))))) (-1149)) (T -82)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-669 (-334 (-1695 (QUOTE X) (QUOTE -1367)) (-1695) (-679)))) (-5 *1 (-82 *3)) (-14 *3 (-1149))))) -(-13 (-379) (-10 -8 (-15 -1683 ($ (-669 (-334 (-1695 (QUOTE X) (QUOTE -1367)) (-1695) (-679))))))) -((-1893 (((-3 $ "failed") (-669 (-311 (-374)))) 112) (((-3 $ "failed") (-669 (-311 (-552)))) 100) (((-3 $ "failed") (-669 (-928 (-374)))) 134) (((-3 $ "failed") (-669 (-928 (-552)))) 123) (((-3 $ "failed") (-669 (-402 (-928 (-374))))) 88) (((-3 $ "failed") (-669 (-402 (-928 (-552))))) 74)) (-1895 (($ (-669 (-311 (-374)))) 108) (($ (-669 (-311 (-552)))) 96) (($ (-669 (-928 (-374)))) 130) (($ (-669 (-928 (-552)))) 119) (($ (-669 (-402 (-928 (-374))))) 84) (($ (-669 (-402 (-928 (-552))))) 67)) (-2927 (((-1237) $) 59)) (-1683 (((-839) $) 53) (($ (-625 (-325))) 47) (($ (-325)) 50) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 44) (($ (-669 (-334 (-1695 (QUOTE X)) (-1695) (-679)))) 45))) -(((-83 |#1|) (-13 (-379) (-10 -8 (-15 -1683 ($ (-669 (-334 (-1695 (QUOTE X)) (-1695) (-679))))))) (-1149)) (T -83)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-669 (-334 (-1695 (QUOTE X)) (-1695) (-679)))) (-5 *1 (-83 *3)) (-14 *3 (-1149))))) -(-13 (-379) (-10 -8 (-15 -1683 ($ (-669 (-334 (-1695 (QUOTE X)) (-1695) (-679))))))) -((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 104) (((-3 $ "failed") (-1232 (-311 (-552)))) 93) (((-3 $ "failed") (-1232 (-928 (-374)))) 124) (((-3 $ "failed") (-1232 (-928 (-552)))) 114) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 82) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 69)) (-1895 (($ (-1232 (-311 (-374)))) 100) (($ (-1232 (-311 (-552)))) 89) (($ (-1232 (-928 (-374)))) 120) (($ (-1232 (-928 (-552)))) 110) (($ (-1232 (-402 (-928 (-374))))) 78) (($ (-1232 (-402 (-928 (-552))))) 62)) (-2927 (((-1237) $) 46)) (-1683 (((-839) $) 40) (($ (-625 (-325))) 49) (($ (-325)) 36) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 52) (($ (-1232 (-334 (-1695 (QUOTE X)) (-1695) (-679)))) 37))) -(((-84 |#1|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE X)) (-1695) (-679))))))) (-1149)) (T -84)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695 (QUOTE X)) (-1695) (-679)))) (-5 *1 (-84 *3)) (-14 *3 (-1149))))) -(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE X)) (-1695) (-679))))))) -((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 79) (((-3 $ "failed") (-1232 (-311 (-552)))) 68) (((-3 $ "failed") (-1232 (-928 (-374)))) 99) (((-3 $ "failed") (-1232 (-928 (-552)))) 89) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 57) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 44)) (-1895 (($ (-1232 (-311 (-374)))) 75) (($ (-1232 (-311 (-552)))) 64) (($ (-1232 (-928 (-374)))) 95) (($ (-1232 (-928 (-552)))) 85) (($ (-1232 (-402 (-928 (-374))))) 53) (($ (-1232 (-402 (-928 (-552))))) 37)) (-2927 (((-1237) $) 125)) (-1683 (((-839) $) 119) (($ (-625 (-325))) 110) (($ (-325)) 116) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 114) (($ (-1232 (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679)))) 36))) -(((-85 |#1|) (-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679))))))) (-1149)) (T -85)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679)))) (-5 *1 (-85 *3)) (-14 *3 (-1149))))) -(-13 (-435) (-10 -8 (-15 -1683 ($ (-1232 (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679))))))) -((-1893 (((-3 $ "failed") (-669 (-311 (-374)))) 113) (((-3 $ "failed") (-669 (-311 (-552)))) 101) (((-3 $ "failed") (-669 (-928 (-374)))) 135) (((-3 $ "failed") (-669 (-928 (-552)))) 124) (((-3 $ "failed") (-669 (-402 (-928 (-374))))) 89) (((-3 $ "failed") (-669 (-402 (-928 (-552))))) 75)) (-1895 (($ (-669 (-311 (-374)))) 109) (($ (-669 (-311 (-552)))) 97) (($ (-669 (-928 (-374)))) 131) (($ (-669 (-928 (-552)))) 120) (($ (-669 (-402 (-928 (-374))))) 85) (($ (-669 (-402 (-928 (-552))))) 68)) (-2927 (((-1237) $) 59)) (-1683 (((-839) $) 53) (($ (-625 (-325))) 43) (($ (-325)) 50) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 48) (($ (-669 (-334 (-1695 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1695) (-679)))) 44))) -(((-86 |#1|) (-13 (-379) (-10 -8 (-15 -1683 ($ (-669 (-334 (-1695 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1695) (-679))))))) (-1149)) (T -86)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-669 (-334 (-1695 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1695) (-679)))) (-5 *1 (-86 *3)) (-14 *3 (-1149))))) -(-13 (-379) (-10 -8 (-15 -1683 ($ (-669 (-334 (-1695 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1695) (-679))))))) -((-2927 (((-1237) $) 44)) (-1683 (((-839) $) 38) (($ (-1232 (-679))) 92) (($ (-625 (-325))) 30) (($ (-325)) 35) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 33))) -(((-87 |#1|) (-434) (-1149)) (T -87)) -NIL -(-434) -((-1893 (((-3 $ "failed") (-311 (-374))) 47) (((-3 $ "failed") (-311 (-552))) 52) (((-3 $ "failed") (-928 (-374))) 56) (((-3 $ "failed") (-928 (-552))) 60) (((-3 $ "failed") (-402 (-928 (-374)))) 42) (((-3 $ "failed") (-402 (-928 (-552)))) 35)) (-1895 (($ (-311 (-374))) 45) (($ (-311 (-552))) 50) (($ (-928 (-374))) 54) (($ (-928 (-552))) 58) (($ (-402 (-928 (-374)))) 40) (($ (-402 (-928 (-552)))) 32)) (-2927 (((-1237) $) 90)) (-1683 (((-839) $) 84) (($ (-625 (-325))) 78) (($ (-325)) 81) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 76) (($ (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679))) 31))) -(((-88 |#1|) (-13 (-391) (-10 -8 (-15 -1683 ($ (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679)))))) (-1149)) (T -88)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679))) (-5 *1 (-88 *3)) (-14 *3 (-1149))))) -(-13 (-391) (-10 -8 (-15 -1683 ($ (-334 (-1695 (QUOTE X)) (-1695 (QUOTE -1367)) (-679)))))) -((-2729 (((-1232 (-669 |#1|)) (-669 |#1|)) 54)) (-2720 (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 (-625 (-897))))) |#2| (-897)) 44)) (-2739 (((-2 (|:| |minor| (-625 (-897))) (|:| -2772 |#2|) (|:| |minors| (-625 (-625 (-897)))) (|:| |ops| (-625 |#2|))) |#2| (-897)) 65 (|has| |#1| (-358))))) -(((-89 |#1| |#2|) (-10 -7 (-15 -2720 ((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 (-625 (-897))))) |#2| (-897))) (-15 -2729 ((-1232 (-669 |#1|)) (-669 |#1|))) (IF (|has| |#1| (-358)) (-15 -2739 ((-2 (|:| |minor| (-625 (-897))) (|:| -2772 |#2|) (|:| |minors| (-625 (-625 (-897)))) (|:| |ops| (-625 |#2|))) |#2| (-897))) |%noBranch|)) (-544) (-636 |#1|)) (T -89)) -((-2739 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |minor| (-625 (-897))) (|:| -2772 *3) (|:| |minors| (-625 (-625 (-897)))) (|:| |ops| (-625 *3)))) (-5 *1 (-89 *5 *3)) (-5 *4 (-897)) (-4 *3 (-636 *5)))) (-2729 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-1232 (-669 *4))) (-5 *1 (-89 *4 *5)) (-5 *3 (-669 *4)) (-4 *5 (-636 *4)))) (-2720 (*1 *2 *3 *4) (-12 (-4 *5 (-544)) (-5 *2 (-2 (|:| -2351 (-669 *5)) (|:| |vec| (-1232 (-625 (-897)))))) (-5 *1 (-89 *5 *3)) (-5 *4 (-897)) (-4 *3 (-636 *5))))) -(-10 -7 (-15 -2720 ((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 (-625 (-897))))) |#2| (-897))) (-15 -2729 ((-1232 (-669 |#1|)) (-669 |#1|))) (IF (|has| |#1| (-358)) (-15 -2739 ((-2 (|:| |minor| (-625 (-897))) (|:| -2772 |#2|) (|:| |minors| (-625 (-625 (-897)))) (|:| |ops| (-625 |#2|))) |#2| (-897))) |%noBranch|)) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1549 ((|#1| $) 35)) (-3495 (((-112) $ (-751)) NIL)) (-3101 (($) NIL T CONST)) (-2406 ((|#1| |#1| $) 30)) (-2395 ((|#1| $) 28)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2953 ((|#1| $) NIL)) (-3966 (($ |#1| $) 31)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2966 ((|#1| $) 29)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 16)) (-3600 (($) 39)) (-2389 (((-751) $) 26)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) 15)) (-1683 (((-839) $) 25 (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) NIL)) (-2748 (($ (-625 |#1|)) 37)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 13 (|has| |#1| (-1073)))) (-1471 (((-751) $) 10 (|has| $ (-6 -4353))))) -(((-90 |#1|) (-13 (-1094 |#1|) (-10 -8 (-15 -2748 ($ (-625 |#1|))))) (-1073)) (T -90)) -((-2748 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-90 *3))))) -(-13 (-1094 |#1|) (-10 -8 (-15 -2748 ($ (-625 |#1|))))) -((-1683 (((-839) $) 13) (((-1154) $) 8) (($ (-1154)) 9))) -(((-91 |#1|) (-10 -8 (-15 -1683 (|#1| (-1154))) (-15 -1683 ((-1154) |#1|)) (-15 -1683 ((-839) |#1|))) (-92)) (T -91)) -NIL -(-10 -8 (-15 -1683 (|#1| (-1154))) (-15 -1683 ((-1154) |#1|)) (-15 -1683 ((-839) |#1|))) -((-1671 (((-112) $ $) 7)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (((-1154) $) 15) (($ (-1154)) 14)) (-2281 (((-112) $ $) 6))) -(((-92) (-138)) (T -92)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1154)) (-4 *1 (-92))))) -(-13 (-1073) (-597 (-1154)) (-10 -8 (-15 -1683 ($ (-1154))))) -(((-101) . T) ((-597 (-839)) . T) ((-597 (-1154)) . T) ((-1073) . T)) -((-3691 (($ $) 10)) (-3700 (($ $) 12))) -(((-93 |#1|) (-10 -8 (-15 -3700 (|#1| |#1|)) (-15 -3691 (|#1| |#1|))) (-94)) (T -93)) -NIL -(-10 -8 (-15 -3700 (|#1| |#1|)) (-15 -3691 (|#1| |#1|))) -((-3670 (($ $) 11)) (-3648 (($ $) 10)) (-3691 (($ $) 9)) (-3700 (($ $) 8)) (-3681 (($ $) 7)) (-3659 (($ $) 6))) -(((-94) (-138)) (T -94)) -((-3670 (*1 *1 *1) (-4 *1 (-94))) (-3648 (*1 *1 *1) (-4 *1 (-94))) (-3691 (*1 *1 *1) (-4 *1 (-94))) (-3700 (*1 *1 *1) (-4 *1 (-94))) (-3681 (*1 *1 *1) (-4 *1 (-94))) (-3659 (*1 *1 *1) (-4 *1 (-94)))) -(-13 (-10 -8 (-15 -3659 ($ $)) (-15 -3681 ($ $)) (-15 -3700 ($ $)) (-15 -3691 ($ $)) (-15 -3648 ($ $)) (-15 -3670 ($ $)))) -((-1671 (((-112) $ $) NIL)) (-1288 (((-1108) $) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL))) -(((-95) (-13 (-1056) (-10 -8 (-15 -1288 ((-1108) $))))) (T -95)) -((-1288 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-95))))) -(-13 (-1056) (-10 -8 (-15 -1288 ((-1108) $)))) -((-1671 (((-112) $ $) NIL)) (-2757 (((-374) (-1131) (-374)) 42) (((-374) (-1131) (-1131) (-374)) 41)) (-2767 (((-374) (-374)) 33)) (-2777 (((-1237)) 36)) (-2883 (((-1131) $) NIL)) (-2808 (((-374) (-1131) (-1131)) 46) (((-374) (-1131)) 48)) (-2831 (((-1093) $) NIL)) (-2788 (((-374) (-1131) (-1131)) 47)) (-2797 (((-374) (-1131) (-1131)) 49) (((-374) (-1131)) 50)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL))) -(((-96) (-13 (-1073) (-10 -7 (-15 -2808 ((-374) (-1131) (-1131))) (-15 -2808 ((-374) (-1131))) (-15 -2797 ((-374) (-1131) (-1131))) (-15 -2797 ((-374) (-1131))) (-15 -2788 ((-374) (-1131) (-1131))) (-15 -2777 ((-1237))) (-15 -2767 ((-374) (-374))) (-15 -2757 ((-374) (-1131) (-374))) (-15 -2757 ((-374) (-1131) (-1131) (-374))) (-6 -4353)))) (T -96)) -((-2808 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-96)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-96)))) (-2797 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-96)))) (-2797 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-96)))) (-2788 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-96)))) (-2777 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-96)))) (-2767 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-96)))) (-2757 (*1 *2 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-1131)) (-5 *1 (-96)))) (-2757 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-1131)) (-5 *1 (-96))))) -(-13 (-1073) (-10 -7 (-15 -2808 ((-374) (-1131) (-1131))) (-15 -2808 ((-374) (-1131))) (-15 -2797 ((-374) (-1131) (-1131))) (-15 -2797 ((-374) (-1131))) (-15 -2788 ((-374) (-1131) (-1131))) (-15 -2777 ((-1237))) (-15 -2767 ((-374) (-374))) (-15 -2757 ((-374) (-1131) (-374))) (-15 -2757 ((-374) (-1131) (-1131) (-374))) (-6 -4353))) -NIL -(((-97) (-138)) (T -97)) -NIL -(-13 (-10 -7 (-6 -4353) (-6 (-4355 "*")) (-6 -4354) (-6 -4350) (-6 -4348) (-6 -4347) (-6 -4346) (-6 -4351) (-6 -4345) (-6 -4344) (-6 -4343) (-6 -4342) (-6 -4341) (-6 -4349) (-6 -4352) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4340))) -((-1671 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-2820 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-552))) 22)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 14)) (-2831 (((-1093) $) NIL)) (-2154 ((|#1| $ |#1|) 11)) (-2410 (($ $ $) NIL)) (-3828 (($ $ $) NIL)) (-1683 (((-839) $) 20)) (-2100 (($) 8 T CONST)) (-2281 (((-112) $ $) 10)) (-2404 (($ $ $) NIL)) (** (($ $ (-897)) 27) (($ $ (-751)) NIL) (($ $ (-552)) 16)) (* (($ $ $) 28))) -(((-98 |#1|) (-13 (-467) (-281 |#1| |#1|) (-10 -8 (-15 -2820 ($ (-1 |#1| |#1|))) (-15 -2820 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2820 ($ (-1 |#1| |#1| (-552)))))) (-1025)) (T -98)) -((-2820 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-98 *3)))) (-2820 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-98 *3)))) (-2820 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-552))) (-4 *3 (-1025)) (-5 *1 (-98 *3))))) -(-13 (-467) (-281 |#1| |#1|) (-10 -8 (-15 -2820 ($ (-1 |#1| |#1|))) (-15 -2820 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2820 ($ (-1 |#1| |#1| (-552)))))) -((-2834 (((-413 |#2|) |#2| (-625 |#2|)) 10) (((-413 |#2|) |#2| |#2|) 11))) -(((-99 |#1| |#2|) (-10 -7 (-15 -2834 ((-413 |#2|) |#2| |#2|)) (-15 -2834 ((-413 |#2|) |#2| (-625 |#2|)))) (-13 (-446) (-145)) (-1208 |#1|)) (T -99)) -((-2834 (*1 *2 *3 *4) (-12 (-5 *4 (-625 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-13 (-446) (-145))) (-5 *2 (-413 *3)) (-5 *1 (-99 *5 *3)))) (-2834 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-446) (-145))) (-5 *2 (-413 *3)) (-5 *1 (-99 *4 *3)) (-4 *3 (-1208 *4))))) -(-10 -7 (-15 -2834 ((-413 |#2|) |#2| |#2|)) (-15 -2834 ((-413 |#2|) |#2| (-625 |#2|)))) -((-1671 (((-112) $ $) 10))) -(((-100 |#1|) (-10 -8 (-15 -1671 ((-112) |#1| |#1|))) (-101)) (T -100)) -NIL -(-10 -8 (-15 -1671 ((-112) |#1| |#1|))) -((-1671 (((-112) $ $) 7)) (-2281 (((-112) $ $) 6))) -(((-101) (-138)) (T -101)) -((-1671 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) (-2281 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112))))) -(-13 (-10 -8 (-15 -2281 ((-112) $ $)) (-15 -1671 ((-112) $ $)))) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3800 ((|#1| $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-2565 ((|#1| $ |#1|) 13 (|has| $ (-6 -4354)))) (-1958 (($ $ $) NIL (|has| $ (-6 -4354)))) (-1964 (($ $ $) NIL (|has| $ (-6 -4354)))) (-2868 (($ $ (-625 |#1|)) 15)) (-1851 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4354))) (($ $ "left" $) NIL (|has| $ (-6 -4354))) (($ $ "right" $) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-2303 (($ $) 11)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) NIL)) (-1371 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2680 (($ $ |#1| $) 17)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2857 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-2846 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-625 |#1|) |#1| |#1| |#1|)) 35)) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2290 (($ $) 10)) (-3183 (((-625 |#1|) $) NIL)) (-3367 (((-112) $) 12)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 9)) (-3600 (($) 16)) (-2154 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1389 (((-552) $ $) NIL)) (-2316 (((-112) $) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) NIL)) (-1380 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2879 (($ (-751) |#1|) 19)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-102 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -2879 ($ (-751) |#1|)) (-15 -2868 ($ $ (-625 |#1|))) (-15 -2857 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2857 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2846 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2846 ($ $ |#1| (-1 (-625 |#1|) |#1| |#1| |#1|))))) (-1073)) (T -102)) -((-2879 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *1 (-102 *3)) (-4 *3 (-1073)))) (-2868 (*1 *1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-102 *3)))) (-2857 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1073)))) (-2857 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1073)) (-5 *1 (-102 *3)))) (-2846 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1073)) (-5 *1 (-102 *2)))) (-2846 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-625 *2) *2 *2 *2)) (-4 *2 (-1073)) (-5 *1 (-102 *2))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -2879 ($ (-751) |#1|)) (-15 -2868 ($ $ (-625 |#1|))) (-15 -2857 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2857 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2846 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2846 ($ $ |#1| (-1 (-625 |#1|) |#1| |#1| |#1|))))) -((-2890 ((|#3| |#2| |#2|) 29)) (-2910 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4355 "*"))))) (-2900 ((|#3| |#2| |#2|) 30)) (-2920 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4355 "*")))))) -(((-103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2890 (|#3| |#2| |#2|)) (-15 -2900 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4355 "*"))) (PROGN (-15 -2910 (|#1| |#2| |#2|)) (-15 -2920 (|#1| |#2|))) |%noBranch|)) (-1025) (-1208 |#1|) (-667 |#1| |#4| |#5|) (-368 |#1|) (-368 |#1|)) (T -103)) -((-2920 (*1 *2 *3) (-12 (|has| *2 (-6 (-4355 "*"))) (-4 *5 (-368 *2)) (-4 *6 (-368 *2)) (-4 *2 (-1025)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1208 *2)) (-4 *4 (-667 *2 *5 *6)))) (-2910 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4355 "*"))) (-4 *5 (-368 *2)) (-4 *6 (-368 *2)) (-4 *2 (-1025)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1208 *2)) (-4 *4 (-667 *2 *5 *6)))) (-2900 (*1 *2 *3 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-667 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1208 *4)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)))) (-2890 (*1 *2 *3 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-667 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1208 *4)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4))))) -(-10 -7 (-15 -2890 (|#3| |#2| |#2|)) (-15 -2900 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4355 "*"))) (PROGN (-15 -2910 (|#1| |#2| |#2|)) (-15 -2920 (|#1| |#2|))) |%noBranch|)) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2942 (((-625 (-1149))) 33)) (-2932 (((-2 (|:| |zeros| (-1129 (-221))) (|:| |ones| (-1129 (-221))) (|:| |singularities| (-1129 (-221)))) (-1149)) 35)) (-2281 (((-112) $ $) NIL))) -(((-104) (-13 (-1073) (-10 -7 (-15 -2942 ((-625 (-1149)))) (-15 -2932 ((-2 (|:| |zeros| (-1129 (-221))) (|:| |ones| (-1129 (-221))) (|:| |singularities| (-1129 (-221)))) (-1149))) (-6 -4353)))) (T -104)) -((-2942 (*1 *2) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-104)))) (-2932 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-2 (|:| |zeros| (-1129 (-221))) (|:| |ones| (-1129 (-221))) (|:| |singularities| (-1129 (-221))))) (-5 *1 (-104))))) -(-13 (-1073) (-10 -7 (-15 -2942 ((-625 (-1149)))) (-15 -2932 ((-2 (|:| |zeros| (-1129 (-221))) (|:| |ones| (-1129 (-221))) (|:| |singularities| (-1129 (-221)))) (-1149))) (-6 -4353))) -((-2977 (($ (-625 |#2|)) 11))) -(((-105 |#1| |#2|) (-10 -8 (-15 -2977 (|#1| (-625 |#2|)))) (-106 |#2|) (-1186)) (T -105)) -NIL -(-10 -8 (-15 -2977 (|#1| (-625 |#2|)))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) 8)) (-3101 (($) 7 T CONST)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2953 ((|#1| $) 39)) (-3966 (($ |#1| $) 40)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-106 |#1|) (-138) (-1186)) (T -106)) -((-2977 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-4 *1 (-106 *3)))) (-2966 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1186)))) (-3966 (*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1186)))) (-2953 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1186))))) -(-13 (-483 |t#1|) (-10 -8 (-6 -4354) (-15 -2977 ($ (-625 |t#1|))) (-15 -2966 (|t#1| $)) (-15 -3966 ($ |t#1| $)) (-15 -2953 (|t#1| $)))) -(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4177 (((-552) $) NIL (|has| (-552) (-302)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL (|has| (-552) (-800)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-1149) "failed") $) NIL (|has| (-552) (-1014 (-1149)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| (-552) (-1014 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-552) (-1014 (-552))))) (-1895 (((-552) $) NIL) (((-1149) $) NIL (|has| (-552) (-1014 (-1149)))) (((-402 (-552)) $) NIL (|has| (-552) (-1014 (-552)))) (((-552) $) NIL (|has| (-552) (-1014 (-552))))) (-2851 (($ $ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| (-552) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| (-552) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-669 (-552)) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-552) (-537)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3620 (((-112) $) NIL (|has| (-552) (-800)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| (-552) (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| (-552) (-862 (-374))))) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL)) (-1356 (((-552) $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| (-552) (-1124)))) (-3630 (((-112) $) NIL (|has| (-552) (-800)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| (-552) (-827)))) (-1996 (($ (-1 (-552) (-552)) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-552) (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL (|has| (-552) (-302))) (((-402 (-552)) $) NIL)) (-4189 (((-552) $) NIL (|has| (-552) (-537)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-4073 (($ $ (-625 (-552)) (-625 (-552))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-552) (-552)) NIL (|has| (-552) (-304 (-552)))) (($ $ (-289 (-552))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-625 (-289 (-552)))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-625 (-1149)) (-625 (-552))) NIL (|has| (-552) (-507 (-1149) (-552)))) (($ $ (-1149) (-552)) NIL (|has| (-552) (-507 (-1149) (-552))))) (-2397 (((-751) $) NIL)) (-2154 (($ $ (-552)) NIL (|has| (-552) (-281 (-552) (-552))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $) NIL (|has| (-552) (-229))) (($ $ (-751)) NIL (|has| (-552) (-229))) (($ $ (-1149)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1 (-552) (-552)) (-751)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2265 (($ $) NIL)) (-1368 (((-552) $) NIL)) (-2042 (((-868 (-552)) $) NIL (|has| (-552) (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| (-552) (-598 (-868 (-374))))) (((-528) $) NIL (|has| (-552) (-598 (-528)))) (((-374) $) NIL (|has| (-552) (-998))) (((-221) $) NIL (|has| (-552) (-998)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-552) (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) 8) (($ (-552)) NIL) (($ (-1149)) NIL (|has| (-552) (-1014 (-1149)))) (((-402 (-552)) $) NIL) (((-980 2) $) 10)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| (-552) (-885))) (|has| (-552) (-143))))) (-4141 (((-751)) NIL)) (-4199 (((-552) $) NIL (|has| (-552) (-537)))) (-3232 (($ (-402 (-552))) 9)) (-3518 (((-112) $ $) NIL)) (-1727 (($ $) NIL (|has| (-552) (-800)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $) NIL (|has| (-552) (-229))) (($ $ (-751)) NIL (|has| (-552) (-229))) (($ $ (-1149)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1 (-552) (-552)) (-751)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2346 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2307 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2404 (($ $ $) NIL) (($ (-552) (-552)) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ (-552) $) NIL) (($ $ (-552)) NIL))) -(((-107) (-13 (-968 (-552)) (-10 -8 (-15 -1683 ((-402 (-552)) $)) (-15 -1683 ((-980 2) $)) (-15 -4166 ((-402 (-552)) $)) (-15 -3232 ($ (-402 (-552))))))) (T -107)) -((-1683 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-107)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-980 2)) (-5 *1 (-107)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-107)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-107))))) -(-13 (-968 (-552)) (-10 -8 (-15 -1683 ((-402 (-552)) $)) (-15 -1683 ((-980 2) $)) (-15 -4166 ((-402 (-552)) $)) (-15 -3232 ($ (-402 (-552)))))) -((-1604 (((-625 (-941)) $) 14)) (-1288 (((-1149) $) 10)) (-1683 (((-839) $) 23)) (-2988 (($ (-1149) (-625 (-941))) 15))) -(((-108) (-13 (-597 (-839)) (-10 -8 (-15 -1288 ((-1149) $)) (-15 -1604 ((-625 (-941)) $)) (-15 -2988 ($ (-1149) (-625 (-941))))))) (T -108)) -((-1288 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-108)))) (-1604 (*1 *2 *1) (-12 (-5 *2 (-625 (-941))) (-5 *1 (-108)))) (-2988 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-941))) (-5 *1 (-108))))) -(-13 (-597 (-839)) (-10 -8 (-15 -1288 ((-1149) $)) (-15 -1604 ((-625 (-941)) $)) (-15 -2988 ($ (-1149) (-625 (-941)))))) -((-1671 (((-112) $ $) NIL)) (-4086 (((-1093) $ (-1093)) 24)) (-4137 (($ $ (-1131)) 17)) (-4076 (((-3 (-1093) "failed") $) 23)) (-4099 (((-1093) $) 21)) (-3000 (((-1093) $ (-1093)) 26)) (-2483 (((-1093) $) 25)) (-2508 (($ (-383)) NIL) (($ (-383) (-1131)) 16)) (-1288 (((-383) $) NIL)) (-2883 (((-1131) $) NIL)) (-4111 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-4125 (($ $) 18)) (-2281 (((-112) $ $) NIL))) -(((-109) (-13 (-359 (-383) (-1093)) (-10 -8 (-15 -4076 ((-3 (-1093) "failed") $)) (-15 -2483 ((-1093) $)) (-15 -3000 ((-1093) $ (-1093)))))) (T -109)) -((-4076 (*1 *2 *1) (|partial| -12 (-5 *2 (-1093)) (-5 *1 (-109)))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-109)))) (-3000 (*1 *2 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-109))))) -(-13 (-359 (-383) (-1093)) (-10 -8 (-15 -4076 ((-3 (-1093) "failed") $)) (-15 -2483 ((-1093) $)) (-15 -3000 ((-1093) $ (-1093))))) -((-1671 (((-112) $ $) NIL)) (-2488 (($ $) NIL)) (-2244 (($ $ $) NIL)) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) $) NIL (|has| (-112) (-827))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3218 (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-112) (-827)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4354)))) (-1800 (($ $) NIL (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-1851 (((-112) $ (-1199 (-552)) (-112)) NIL (|has| $ (-6 -4354))) (((-112) $ (-552) (-112)) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-1416 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-2163 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-3692 (((-112) $ (-552) (-112)) NIL (|has| $ (-6 -4354)))) (-3631 (((-112) $ (-552)) NIL)) (-2483 (((-552) (-112) $ (-552)) NIL (|has| (-112) (-1073))) (((-552) (-112) $) NIL (|has| (-112) (-1073))) (((-552) (-1 (-112) (-112)) $) NIL)) (-3799 (((-625 (-112)) $) NIL (|has| $ (-6 -4353)))) (-3152 (($ $ $) NIL)) (-2960 (($ $) NIL)) (-2025 (($ $ $) NIL)) (-2183 (($ (-751) (-112)) 8)) (-2034 (($ $ $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL)) (-3280 (($ $ $) NIL (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3730 (((-625 (-112)) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL)) (-3683 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-3994 (($ $ $ (-552)) NIL) (($ (-112) $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 (((-112) $) NIL (|has| (-552) (-827)))) (-2380 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2518 (($ $ (-112)) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-112)) (-625 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073)))) (($ $ (-289 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073)))) (($ $ (-625 (-289 (-112)))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-1358 (((-625 (-112)) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 (($ $ (-1199 (-552))) NIL) (((-112) $ (-552)) NIL) (((-112) $ (-552) (-112)) NIL)) (-4001 (($ $ (-1199 (-552))) NIL) (($ $ (-552)) NIL)) (-2840 (((-751) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073)))) (((-751) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-112) (-598 (-528))))) (-1695 (($ (-625 (-112))) NIL)) (-3402 (($ (-625 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-1683 (((-839) $) NIL)) (-3597 (($ (-751) (-112)) 9)) (-1900 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-3743 (($ $ $) NIL)) (-2827 (($ $ $) NIL)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2814 (($ $ $) NIL)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-110) (-13 (-123) (-10 -8 (-15 -3597 ($ (-751) (-112)))))) (T -110)) -((-3597 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-123) (-10 -8 (-15 -3597 ($ (-751) (-112))))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) -(((-111 |#1| |#2|) (-138) (-1025) (-1025)) (T -111)) -NIL -(-13 (-628 |t#1|) (-1031 |t#2|) (-10 -7 (-6 -4348) (-6 -4347))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-1031 |#2|) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-2488 (($ $) 10)) (-2244 (($ $ $) 15)) (-3732 (($) 7 T CONST)) (-2681 (($ $) 6)) (-2894 (((-751)) 24)) (-3702 (($) 30)) (-3152 (($ $ $) 13)) (-2960 (($ $) 9)) (-2025 (($ $ $) 16)) (-2034 (($ $ $) 17)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-4318 (((-897) $) 29)) (-2883 (((-1131) $) NIL)) (-3123 (($ (-897)) 28)) (-2221 (($ $ $) 20)) (-2831 (((-1093) $) NIL)) (-2643 (($) 8 T CONST)) (-3251 (($ $ $) 21)) (-2042 (((-528) $) 36)) (-1683 (((-839) $) 39)) (-3743 (($ $ $) 11)) (-2827 (($ $ $) 14)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 19)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 22)) (-2814 (($ $ $) 12))) -(((-112) (-13 (-821) (-641) (-943) (-598 (-528)) (-10 -8 (-15 -3732 ($) -1426) (-15 -2643 ($) -1426) (-15 -2244 ($ $ $)) (-15 -2034 ($ $ $)) (-15 -2025 ($ $ $)) (-15 -2681 ($ $))))) (T -112)) -((-3732 (*1 *1) (-5 *1 (-112))) (-2643 (*1 *1) (-5 *1 (-112))) (-2244 (*1 *1 *1 *1) (-5 *1 (-112))) (-2034 (*1 *1 *1 *1) (-5 *1 (-112))) (-2025 (*1 *1 *1 *1) (-5 *1 (-112))) (-2681 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-821) (-641) (-943) (-598 (-528)) (-10 -8 (-15 -3732 ($) -1426) (-15 -2643 ($) -1426) (-15 -2244 ($ $ $)) (-15 -2034 ($ $ $)) (-15 -2025 ($ $ $)) (-15 -2681 ($ $)))) -((-3164 (((-3 (-1 |#1| (-625 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-625 |#1|))) 11) (((-3 |#1| "failed") (-114) (-625 |#1|)) 21)) (-1911 (((-3 (-625 (-1 |#1| (-625 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-625 (-1 |#1| (-625 |#1|)))) 26)) (-1922 (((-114) |#1|) 56 (|has| |#1| (-827)))) (-1936 (((-3 |#1| "failed") (-114)) 50 (|has| |#1| (-827))))) -(((-113 |#1|) (-10 -7 (-15 -3164 ((-3 |#1| "failed") (-114) (-625 |#1|))) (-15 -3164 ((-114) (-114) (-1 |#1| (-625 |#1|)))) (-15 -3164 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3164 ((-3 (-1 |#1| (-625 |#1|)) "failed") (-114))) (-15 -1911 ((-114) (-114) (-625 (-1 |#1| (-625 |#1|))))) (-15 -1911 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1911 ((-3 (-625 (-1 |#1| (-625 |#1|))) "failed") (-114))) (IF (|has| |#1| (-827)) (PROGN (-15 -1922 ((-114) |#1|)) (-15 -1936 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1073)) (T -113)) -((-1936 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1073)) (-4 *2 (-827)) (-5 *1 (-113 *2)))) (-1922 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-827)) (-4 *3 (-1073)))) (-1911 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-625 (-1 *4 (-625 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1073)))) (-1911 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1073)) (-5 *1 (-113 *4)))) (-1911 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-625 (-1 *4 (-625 *4)))) (-4 *4 (-1073)) (-5 *1 (-113 *4)))) (-3164 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-625 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1073)))) (-3164 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1073)) (-5 *1 (-113 *4)))) (-3164 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-625 *4))) (-4 *4 (-1073)) (-5 *1 (-113 *4)))) (-3164 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-625 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1073))))) -(-10 -7 (-15 -3164 ((-3 |#1| "failed") (-114) (-625 |#1|))) (-15 -3164 ((-114) (-114) (-1 |#1| (-625 |#1|)))) (-15 -3164 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3164 ((-3 (-1 |#1| (-625 |#1|)) "failed") (-114))) (-15 -1911 ((-114) (-114) (-625 (-1 |#1| (-625 |#1|))))) (-15 -1911 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1911 ((-3 (-625 (-1 |#1| (-625 |#1|))) "failed") (-114))) (IF (|has| |#1| (-827)) (PROGN (-15 -1922 ((-114) |#1|)) (-15 -1936 ((-3 |#1| "failed") (-114)))) |%noBranch|)) -((-1671 (((-112) $ $) NIL)) (-3469 (((-751) $) 72) (($ $ (-751)) 30)) (-1887 (((-112) $) 32)) (-3024 (($ $ (-1131) (-754)) 26)) (-3012 (($ $ (-45 (-1131) (-754))) 15)) (-4085 (((-3 (-754) "failed") $ (-1131)) 25)) (-1604 (((-45 (-1131) (-754)) $) 14)) (-1563 (($ (-1149)) 17) (($ (-1149) (-751)) 22)) (-1898 (((-112) $) 31)) (-1877 (((-112) $) 33)) (-1288 (((-1149) $) 8)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-1721 (((-112) $ (-1149)) 10)) (-1461 (($ $ (-1 (-528) (-625 (-528)))) 52) (((-3 (-1 (-528) (-625 (-528))) "failed") $) 56)) (-2831 (((-1093) $) NIL)) (-3045 (((-112) $ (-1131)) 29)) (-1866 (($ $ (-1 (-112) $ $)) 35)) (-1407 (((-3 (-1 (-839) (-625 (-839))) "failed") $) 54) (($ $ (-1 (-839) (-625 (-839)))) 41) (($ $ (-1 (-839) (-839))) 43)) (-3035 (($ $ (-1131)) 45)) (-1871 (($ $) 63)) (-3056 (($ $ (-1 (-112) $ $)) 36)) (-1683 (((-839) $) 48)) (-1950 (($ $ (-1131)) 27)) (-1832 (((-3 (-751) "failed") $) 58)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 71)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 79))) -(((-114) (-13 (-827) (-10 -8 (-15 -1288 ((-1149) $)) (-15 -1604 ((-45 (-1131) (-754)) $)) (-15 -1871 ($ $)) (-15 -1563 ($ (-1149))) (-15 -1563 ($ (-1149) (-751))) (-15 -1832 ((-3 (-751) "failed") $)) (-15 -1898 ((-112) $)) (-15 -1887 ((-112) $)) (-15 -1877 ((-112) $)) (-15 -3469 ((-751) $)) (-15 -3469 ($ $ (-751))) (-15 -1866 ($ $ (-1 (-112) $ $))) (-15 -3056 ($ $ (-1 (-112) $ $))) (-15 -1407 ((-3 (-1 (-839) (-625 (-839))) "failed") $)) (-15 -1407 ($ $ (-1 (-839) (-625 (-839))))) (-15 -1407 ($ $ (-1 (-839) (-839)))) (-15 -1461 ($ $ (-1 (-528) (-625 (-528))))) (-15 -1461 ((-3 (-1 (-528) (-625 (-528))) "failed") $)) (-15 -1721 ((-112) $ (-1149))) (-15 -3045 ((-112) $ (-1131))) (-15 -1950 ($ $ (-1131))) (-15 -3035 ($ $ (-1131))) (-15 -4085 ((-3 (-754) "failed") $ (-1131))) (-15 -3024 ($ $ (-1131) (-754))) (-15 -3012 ($ $ (-45 (-1131) (-754))))))) (T -114)) -((-1288 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-114)))) (-1604 (*1 *2 *1) (-12 (-5 *2 (-45 (-1131) (-754))) (-5 *1 (-114)))) (-1871 (*1 *1 *1) (-5 *1 (-114))) (-1563 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-114)))) (-1563 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *1 (-114)))) (-1832 (*1 *2 *1) (|partial| -12 (-5 *2 (-751)) (-5 *1 (-114)))) (-1898 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-114)))) (-3469 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-114)))) (-1866 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-3056 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1407 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-839) (-625 (-839)))) (-5 *1 (-114)))) (-1407 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-839) (-625 (-839)))) (-5 *1 (-114)))) (-1407 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-839) (-839))) (-5 *1 (-114)))) (-1461 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-528) (-625 (-528)))) (-5 *1 (-114)))) (-1461 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-528) (-625 (-528)))) (-5 *1 (-114)))) (-1721 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3045 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-114)))) (-1950 (*1 *1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-114)))) (-3035 (*1 *1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-114)))) (-4085 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1131)) (-5 *2 (-754)) (-5 *1 (-114)))) (-3024 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-754)) (-5 *1 (-114)))) (-3012 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1131) (-754))) (-5 *1 (-114))))) -(-13 (-827) (-10 -8 (-15 -1288 ((-1149) $)) (-15 -1604 ((-45 (-1131) (-754)) $)) (-15 -1871 ($ $)) (-15 -1563 ($ (-1149))) (-15 -1563 ($ (-1149) (-751))) (-15 -1832 ((-3 (-751) "failed") $)) (-15 -1898 ((-112) $)) (-15 -1887 ((-112) $)) (-15 -1877 ((-112) $)) (-15 -3469 ((-751) $)) (-15 -3469 ($ $ (-751))) (-15 -1866 ($ $ (-1 (-112) $ $))) (-15 -3056 ($ $ (-1 (-112) $ $))) (-15 -1407 ((-3 (-1 (-839) (-625 (-839))) "failed") $)) (-15 -1407 ($ $ (-1 (-839) (-625 (-839))))) (-15 -1407 ($ $ (-1 (-839) (-839)))) (-15 -1461 ($ $ (-1 (-528) (-625 (-528))))) (-15 -1461 ((-3 (-1 (-528) (-625 (-528))) "failed") $)) (-15 -1721 ((-112) $ (-1149))) (-15 -3045 ((-112) $ (-1131))) (-15 -1950 ($ $ (-1131))) (-15 -3035 ($ $ (-1131))) (-15 -4085 ((-3 (-754) "failed") $ (-1131))) (-15 -3024 ($ $ (-1131) (-754))) (-15 -3012 ($ $ (-45 (-1131) (-754)))))) -((-1946 (((-552) |#2|) 37))) -(((-115 |#1| |#2|) (-10 -7 (-15 -1946 ((-552) |#2|))) (-13 (-358) (-1014 (-402 (-552)))) (-1208 |#1|)) (T -115)) -((-1946 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-1014 (-402 *2)))) (-5 *2 (-552)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1208 *4))))) -(-10 -7 (-15 -1946 ((-552) |#2|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3837 (($ $ (-552)) NIL)) (-2408 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-1496 (($ (-1145 (-552)) (-552)) NIL)) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1507 (($ $) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2172 (((-751) $) NIL)) (-3650 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1531 (((-552)) NIL)) (-1520 (((-552) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2147 (($ $ (-552)) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1542 (((-1129 (-552)) $) NIL)) (-3580 (($ $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL)) (-4141 (((-751)) NIL)) (-3518 (((-112) $ $) NIL)) (-2874 (((-552) $ (-552)) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL))) -(((-116 |#1|) (-845 |#1|) (-552)) (T -116)) -NIL -(-845 |#1|) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4177 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-302)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-116 |#1|) (-885)))) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| (-116 |#1|) (-885)))) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL (|has| (-116 |#1|) (-800)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1149) "failed") $) NIL (|has| (-116 |#1|) (-1014 (-1149)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| (-116 |#1|) (-1014 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-116 |#1|) (-1014 (-552))))) (-1895 (((-116 |#1|) $) NIL) (((-1149) $) NIL (|has| (-116 |#1|) (-1014 (-1149)))) (((-402 (-552)) $) NIL (|has| (-116 |#1|) (-1014 (-552)))) (((-552) $) NIL (|has| (-116 |#1|) (-1014 (-552))))) (-2987 (($ $) NIL) (($ (-552) $) NIL)) (-2851 (($ $ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| (-116 |#1|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| (-116 |#1|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-116 |#1|))) (|:| |vec| (-1232 (-116 |#1|)))) (-669 $) (-1232 $)) NIL) (((-669 (-116 |#1|)) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-116 |#1|) (-537)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3620 (((-112) $) NIL (|has| (-116 |#1|) (-800)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| (-116 |#1|) (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| (-116 |#1|) (-862 (-374))))) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL)) (-1356 (((-116 |#1|) $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1124)))) (-3630 (((-112) $) NIL (|has| (-116 |#1|) (-800)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL (|has| (-116 |#1|) (-827)))) (-3332 (($ $ $) NIL (|has| (-116 |#1|) (-827)))) (-1996 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-116 |#1|) (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL (|has| (-116 |#1|) (-302)))) (-4189 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-537)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-116 |#1|) (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-116 |#1|) (-885)))) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-4073 (($ $ (-625 (-116 |#1|)) (-625 (-116 |#1|))) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-289 (-116 |#1|))) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-625 (-289 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-625 (-1149)) (-625 (-116 |#1|))) NIL (|has| (-116 |#1|) (-507 (-1149) (-116 |#1|)))) (($ $ (-1149) (-116 |#1|)) NIL (|has| (-116 |#1|) (-507 (-1149) (-116 |#1|))))) (-2397 (((-751) $) NIL)) (-2154 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-281 (-116 |#1|) (-116 |#1|))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $) NIL (|has| (-116 |#1|) (-229))) (($ $ (-751)) NIL (|has| (-116 |#1|) (-229))) (($ $ (-1149)) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-751)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2265 (($ $) NIL)) (-1368 (((-116 |#1|) $) NIL)) (-2042 (((-868 (-552)) $) NIL (|has| (-116 |#1|) (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| (-116 |#1|) (-598 (-868 (-374))))) (((-528) $) NIL (|has| (-116 |#1|) (-598 (-528)))) (((-374) $) NIL (|has| (-116 |#1|) (-998))) (((-221) $) NIL (|has| (-116 |#1|) (-998)))) (-1553 (((-172 (-402 (-552))) $) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ (-116 |#1|)) NIL) (($ (-1149)) NIL (|has| (-116 |#1|) (-1014 (-1149))))) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-885))) (|has| (-116 |#1|) (-143))))) (-4141 (((-751)) NIL)) (-4199 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-537)))) (-3518 (((-112) $ $) NIL)) (-2874 (((-402 (-552)) $ (-552)) NIL)) (-1727 (($ $) NIL (|has| (-116 |#1|) (-800)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $) NIL (|has| (-116 |#1|) (-229))) (($ $ (-751)) NIL (|has| (-116 |#1|) (-229))) (($ $ (-1149)) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-751)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2346 (((-112) $ $) NIL (|has| (-116 |#1|) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-116 |#1|) (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| (-116 |#1|) (-827)))) (-2307 (((-112) $ $) NIL (|has| (-116 |#1|) (-827)))) (-2404 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) -(((-117 |#1|) (-13 (-968 (-116 |#1|)) (-10 -8 (-15 -2874 ((-402 (-552)) $ (-552))) (-15 -1553 ((-172 (-402 (-552))) $)) (-15 -2987 ($ $)) (-15 -2987 ($ (-552) $)))) (-552)) (T -117)) -((-2874 (*1 *2 *1 *3) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-552)))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-172 (-402 (-552)))) (-5 *1 (-117 *3)) (-14 *3 (-552)))) (-2987 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-552)))) (-2987 (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-117 *3)) (-14 *3 *2)))) -(-13 (-968 (-116 |#1|)) (-10 -8 (-15 -2874 ((-402 (-552)) $ (-552))) (-15 -1553 ((-172 (-402 (-552))) $)) (-15 -2987 ($ $)) (-15 -2987 ($ (-552) $)))) -((-1851 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-1399 (((-625 $) $) 27)) (-1371 (((-112) $ $) 32)) (-2893 (((-112) |#2| $) 36)) (-3183 (((-625 |#2|) $) 22)) (-3367 (((-112) $) 16)) (-2154 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2316 (((-112) $) 45)) (-1683 (((-839) $) 41)) (-3320 (((-625 $) $) 28)) (-2281 (((-112) $ $) 34)) (-1471 (((-751) $) 43))) -(((-118 |#1| |#2|) (-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -1851 (|#1| |#1| "right" |#1|)) (-15 -1851 (|#1| |#1| "left" |#1|)) (-15 -2154 (|#1| |#1| "right")) (-15 -2154 (|#1| |#1| "left")) (-15 -1851 (|#2| |#1| "value" |#2|)) (-15 -1371 ((-112) |#1| |#1|)) (-15 -3183 ((-625 |#2|) |#1|)) (-15 -2316 ((-112) |#1|)) (-15 -2154 (|#2| |#1| "value")) (-15 -3367 ((-112) |#1|)) (-15 -1399 ((-625 |#1|) |#1|)) (-15 -3320 ((-625 |#1|) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -2893 ((-112) |#2| |#1|)) (-15 -1471 ((-751) |#1|))) (-119 |#2|) (-1186)) (T -118)) -NIL -(-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -1851 (|#1| |#1| "right" |#1|)) (-15 -1851 (|#1| |#1| "left" |#1|)) (-15 -2154 (|#1| |#1| "right")) (-15 -2154 (|#1| |#1| "left")) (-15 -1851 (|#2| |#1| "value" |#2|)) (-15 -1371 ((-112) |#1| |#1|)) (-15 -3183 ((-625 |#2|) |#1|)) (-15 -2316 ((-112) |#1|)) (-15 -2154 (|#2| |#1| "value")) (-15 -3367 ((-112) |#1|)) (-15 -1399 ((-625 |#1|) |#1|)) (-15 -3320 ((-625 |#1|) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -2893 ((-112) |#2| |#1|)) (-15 -1471 ((-751) |#1|))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3800 ((|#1| $) 48)) (-3495 (((-112) $ (-751)) 8)) (-2565 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-1958 (($ $ $) 52 (|has| $ (-6 -4354)))) (-1964 (($ $ $) 54 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4354))) (($ $ "left" $) 55 (|has| $ (-6 -4354))) (($ $ "right" $) 53 (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 41 (|has| $ (-6 -4354)))) (-3101 (($) 7 T CONST)) (-2303 (($ $) 57)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) 50)) (-1371 (((-112) $ $) 42 (|has| |#1| (-1073)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2290 (($ $) 59)) (-3183 (((-625 |#1|) $) 45)) (-3367 (((-112) $) 49)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1389 (((-552) $ $) 44)) (-2316 (((-112) $) 46)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) 51)) (-1380 (((-112) $ $) 43 (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-119 |#1|) (-138) (-1186)) (T -119)) -((-2290 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1186)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1186)))) (-2303 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1186)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1186)))) (-1851 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4354)) (-4 *1 (-119 *3)) (-4 *3 (-1186)))) (-1964 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-119 *2)) (-4 *2 (-1186)))) (-1851 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4354)) (-4 *1 (-119 *3)) (-4 *3 (-1186)))) (-1958 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-119 *2)) (-4 *2 (-1186))))) -(-13 (-986 |t#1|) (-10 -8 (-15 -2290 ($ $)) (-15 -2154 ($ $ "left")) (-15 -2303 ($ $)) (-15 -2154 ($ $ "right")) (IF (|has| $ (-6 -4354)) (PROGN (-15 -1851 ($ $ "left" $)) (-15 -1964 ($ $ $)) (-15 -1851 ($ $ "right" $)) (-15 -1958 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-986 |#1|) . T) ((-1073) |has| |#1| (-1073)) ((-1186) . T)) -((-1999 (((-112) |#1|) 24)) (-1988 (((-751) (-751)) 23) (((-751)) 22)) (-1979 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26))) -(((-120 |#1|) (-10 -7 (-15 -1979 ((-112) |#1|)) (-15 -1979 ((-112) |#1| (-112))) (-15 -1988 ((-751))) (-15 -1988 ((-751) (-751))) (-15 -1999 ((-112) |#1|))) (-1208 (-552))) (T -120)) -((-1999 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1208 (-552))))) (-1988 (*1 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-120 *3)) (-4 *3 (-1208 (-552))))) (-1988 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-120 *3)) (-4 *3 (-1208 (-552))))) (-1979 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1208 (-552))))) (-1979 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1208 (-552)))))) -(-10 -7 (-15 -1979 ((-112) |#1|)) (-15 -1979 ((-112) |#1| (-112))) (-15 -1988 ((-751))) (-15 -1988 ((-751) (-751))) (-15 -1999 ((-112) |#1|))) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3800 ((|#1| $) 15)) (-3819 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3495 (((-112) $ (-751)) NIL)) (-2565 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-1958 (($ $ $) 18 (|has| $ (-6 -4354)))) (-1964 (($ $ $) 20 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4354))) (($ $ "left" $) NIL (|has| $ (-6 -4354))) (($ $ "right" $) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-2303 (($ $) 17)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) NIL)) (-1371 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2680 (($ $ |#1| $) 23)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2290 (($ $) 19)) (-3183 (((-625 |#1|) $) NIL)) (-3367 (((-112) $) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2009 (($ |#1| $) 24)) (-3966 (($ |#1| $) 10)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 14)) (-3600 (($) 8)) (-2154 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1389 (((-552) $ $) NIL)) (-2316 (((-112) $) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) NIL)) (-1380 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2016 (($ (-625 |#1|)) 12)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4354) (-6 -4353) (-15 -2016 ($ (-625 |#1|))) (-15 -3966 ($ |#1| $)) (-15 -2009 ($ |#1| $)) (-15 -3819 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-827)) (T -121)) -((-2016 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-121 *3)))) (-3966 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-827)))) (-2009 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-827)))) (-3819 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-827))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4354) (-6 -4353) (-15 -2016 ($ (-625 |#1|))) (-15 -3966 ($ |#1| $)) (-15 -2009 ($ |#1| $)) (-15 -3819 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-2488 (($ $) 13)) (-2960 (($ $) 11)) (-2025 (($ $ $) 23)) (-2034 (($ $ $) 21)) (-2827 (($ $ $) 19)) (-2814 (($ $ $) 17))) -(((-122 |#1|) (-10 -8 (-15 -2025 (|#1| |#1| |#1|)) (-15 -2034 (|#1| |#1| |#1|)) (-15 -2960 (|#1| |#1|)) (-15 -2488 (|#1| |#1|)) (-15 -2814 (|#1| |#1| |#1|)) (-15 -2827 (|#1| |#1| |#1|))) (-123)) (T -122)) -NIL -(-10 -8 (-15 -2025 (|#1| |#1| |#1|)) (-15 -2034 (|#1| |#1| |#1|)) (-15 -2960 (|#1| |#1|)) (-15 -2488 (|#1| |#1|)) (-15 -2814 (|#1| |#1| |#1|)) (-15 -2827 (|#1| |#1| |#1|))) -((-1671 (((-112) $ $) 7)) (-2488 (($ $) 103)) (-2244 (($ $ $) 25)) (-2509 (((-1237) $ (-552) (-552)) 66 (|has| $ (-6 -4354)))) (-3237 (((-112) $) 98 (|has| (-112) (-827))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-3218 (($ $) 102 (-12 (|has| (-112) (-827)) (|has| $ (-6 -4354)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4354)))) (-1800 (($ $) 97 (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-3495 (((-112) $ (-751)) 37)) (-1851 (((-112) $ (-1199 (-552)) (-112)) 88 (|has| $ (-6 -4354))) (((-112) $ (-552) (-112)) 54 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4353)))) (-3101 (($) 38 T CONST)) (-1883 (($ $) 100 (|has| $ (-6 -4354)))) (-2306 (($ $) 90)) (-2959 (($ $) 68 (-12 (|has| (-112) (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4353))) (($ (-112) $) 69 (-12 (|has| (-112) (-1073)) (|has| $ (-6 -4353))))) (-2163 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1073)) (|has| $ (-6 -4353))))) (-3692 (((-112) $ (-552) (-112)) 53 (|has| $ (-6 -4354)))) (-3631 (((-112) $ (-552)) 55)) (-2483 (((-552) (-112) $ (-552)) 95 (|has| (-112) (-1073))) (((-552) (-112) $) 94 (|has| (-112) (-1073))) (((-552) (-1 (-112) (-112)) $) 93)) (-3799 (((-625 (-112)) $) 45 (|has| $ (-6 -4353)))) (-3152 (($ $ $) 26)) (-2960 (($ $) 30)) (-2025 (($ $ $) 28)) (-2183 (($ (-751) (-112)) 77)) (-2034 (($ $ $) 29)) (-2909 (((-112) $ (-751)) 36)) (-2527 (((-552) $) 63 (|has| (-552) (-827)))) (-3658 (($ $ $) 13)) (-3280 (($ $ $) 96 (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-3730 (((-625 (-112)) $) 46 (|has| $ (-6 -4353)))) (-2893 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 62 (|has| (-552) (-827)))) (-3332 (($ $ $) 14)) (-3683 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-2878 (((-112) $ (-751)) 35)) (-2883 (((-1131) $) 9)) (-3994 (($ $ $ (-552)) 87) (($ (-112) $ (-552)) 86)) (-2554 (((-625 (-552)) $) 60)) (-2564 (((-112) (-552) $) 59)) (-2831 (((-1093) $) 10)) (-2924 (((-112) $) 64 (|has| (-552) (-827)))) (-2380 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2518 (($ $ (-112)) 65 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-112)) (-625 (-112))) 52 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073)))) (($ $ (-289 (-112))) 50 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073)))) (($ $ (-625 (-289 (-112)))) 49 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073))))) (-3504 (((-112) $ $) 31)) (-2545 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-1358 (((-625 (-112)) $) 58)) (-1916 (((-112) $) 34)) (-3600 (($) 33)) (-2154 (($ $ (-1199 (-552))) 83) (((-112) $ (-552)) 57) (((-112) $ (-552) (-112)) 56)) (-4001 (($ $ (-1199 (-552))) 85) (($ $ (-552)) 84)) (-2840 (((-751) (-112) $) 47 (-12 (|has| (-112) (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4353)))) (-3228 (($ $ $ (-552)) 99 (|has| $ (-6 -4354)))) (-1871 (($ $) 32)) (-2042 (((-528) $) 67 (|has| (-112) (-598 (-528))))) (-1695 (($ (-625 (-112))) 76)) (-3402 (($ (-625 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-1683 (((-839) $) 11)) (-1900 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4353)))) (-3743 (($ $ $) 27)) (-2827 (($ $ $) 105)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)) (-2814 (($ $ $) 104)) (-1471 (((-751) $) 39 (|has| $ (-6 -4353))))) -(((-123) (-138)) (T -123)) -((-2960 (*1 *1 *1) (-4 *1 (-123))) (-2034 (*1 *1 *1 *1) (-4 *1 (-123))) (-2025 (*1 *1 *1 *1) (-4 *1 (-123))) (-3743 (*1 *1 *1 *1) (-4 *1 (-123))) (-3152 (*1 *1 *1 *1) (-4 *1 (-123))) (-2244 (*1 *1 *1 *1) (-4 *1 (-123)))) -(-13 (-827) (-641) (-19 (-112)) (-10 -8 (-15 -2960 ($ $)) (-15 -2034 ($ $ $)) (-15 -2025 ($ $ $)) (-15 -3743 ($ $ $)) (-15 -3152 ($ $ $)) (-15 -2244 ($ $ $)))) -(((-34) . T) ((-101) . T) ((-597 (-839)) . T) ((-149 #0=(-112)) . T) ((-598 (-528)) |has| (-112) (-598 (-528))) ((-281 #1=(-552) #0#) . T) ((-283 #1# #0#) . T) ((-304 #0#) -12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073))) ((-368 #0#) . T) ((-483 #0#) . T) ((-588 #1# #0#) . T) ((-507 #0# #0#) -12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073))) ((-631 #0#) . T) ((-641) . T) ((-19 #0#) . T) ((-827) . T) ((-1073) . T) ((-1186) . T)) -((-3683 (($ (-1 |#2| |#2|) $) 22)) (-1871 (($ $) 16)) (-1471 (((-751) $) 24))) -(((-124 |#1| |#2|) (-10 -8 (-15 -3683 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1471 ((-751) |#1|)) (-15 -1871 (|#1| |#1|))) (-125 |#2|) (-1073)) (T -124)) -NIL -(-10 -8 (-15 -3683 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1471 ((-751) |#1|)) (-15 -1871 (|#1| |#1|))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3800 ((|#1| $) 48)) (-3495 (((-112) $ (-751)) 8)) (-2565 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-1958 (($ $ $) 52 (|has| $ (-6 -4354)))) (-1964 (($ $ $) 54 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4354))) (($ $ "left" $) 55 (|has| $ (-6 -4354))) (($ $ "right" $) 53 (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 41 (|has| $ (-6 -4354)))) (-3101 (($) 7 T CONST)) (-2303 (($ $) 57)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) 50)) (-1371 (((-112) $ $) 42 (|has| |#1| (-1073)))) (-2680 (($ $ |#1| $) 60)) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2290 (($ $) 59)) (-3183 (((-625 |#1|) $) 45)) (-3367 (((-112) $) 49)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1389 (((-552) $ $) 44)) (-2316 (((-112) $) 46)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) 51)) (-1380 (((-112) $ $) 43 (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-125 |#1|) (-138) (-1073)) (T -125)) -((-2680 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1073))))) -(-13 (-119 |t#1|) (-10 -8 (-6 -4354) (-6 -4353) (-15 -2680 ($ $ |t#1| $)))) -(((-34) . T) ((-101) |has| |#1| (-1073)) ((-119 |#1|) . T) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-986 |#1|) . T) ((-1073) |has| |#1| (-1073)) ((-1186) . T)) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3800 ((|#1| $) 15)) (-3495 (((-112) $ (-751)) NIL)) (-2565 ((|#1| $ |#1|) 19 (|has| $ (-6 -4354)))) (-1958 (($ $ $) 20 (|has| $ (-6 -4354)))) (-1964 (($ $ $) 18 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4354))) (($ $ "left" $) NIL (|has| $ (-6 -4354))) (($ $ "right" $) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-2303 (($ $) 21)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) NIL)) (-1371 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2680 (($ $ |#1| $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2290 (($ $) NIL)) (-3183 (((-625 |#1|) $) NIL)) (-3367 (((-112) $) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3966 (($ |#1| $) 10)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 14)) (-3600 (($) 8)) (-2154 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1389 (((-552) $ $) NIL)) (-2316 (((-112) $) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) 17)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) NIL)) (-1380 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2043 (($ (-625 |#1|)) 12)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4354) (-15 -2043 ($ (-625 |#1|))) (-15 -3966 ($ |#1| $)))) (-827)) (T -126)) -((-2043 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-126 *3)))) (-3966 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-827))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4354) (-15 -2043 ($ (-625 |#1|))) (-15 -3966 ($ |#1| $)))) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3800 ((|#1| $) 24)) (-3495 (((-112) $ (-751)) NIL)) (-2565 ((|#1| $ |#1|) 26 (|has| $ (-6 -4354)))) (-1958 (($ $ $) 30 (|has| $ (-6 -4354)))) (-1964 (($ $ $) 28 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4354))) (($ $ "left" $) NIL (|has| $ (-6 -4354))) (($ $ "right" $) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-2303 (($ $) 20)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) NIL)) (-1371 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2680 (($ $ |#1| $) 15)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2290 (($ $) 19)) (-3183 (((-625 |#1|) $) NIL)) (-3367 (((-112) $) 21)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 18)) (-3600 (($) 11)) (-2154 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1389 (((-552) $ $) NIL)) (-2316 (((-112) $) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) NIL)) (-1380 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2054 (($ |#1|) 17) (($ $ |#1| $) 16)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 10 (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2054 ($ |#1|)) (-15 -2054 ($ $ |#1| $)))) (-1073)) (T -127)) -((-2054 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1073)))) (-2054 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1073))))) -(-13 (-125 |#1|) (-10 -8 (-15 -2054 ($ |#1|)) (-15 -2054 ($ $ |#1| $)))) -((-1671 (((-112) $ $) NIL (|has| (-129) (-1073)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-827)))) (-3218 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-129) (-827))))) (-1800 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 (((-129) $ (-552) (-129)) NIL (|has| $ (-6 -4354))) (((-129) $ (-1199 (-552)) (-129)) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-129) (-1073))))) (-1416 (($ (-129) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-129) (-1073)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-129) (-1073)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4353))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4353)))) (-3692 (((-129) $ (-552) (-129)) NIL (|has| $ (-6 -4354)))) (-3631 (((-129) $ (-552)) NIL)) (-2483 (((-552) (-1 (-112) (-129)) $) NIL) (((-552) (-129) $) NIL (|has| (-129) (-1073))) (((-552) (-129) $ (-552)) NIL (|has| (-129) (-1073)))) (-3799 (((-625 (-129)) $) NIL (|has| $ (-6 -4353)))) (-2183 (($ (-751) (-129)) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| (-129) (-827)))) (-3280 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-827)))) (-3730 (((-625 (-129)) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-129) (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| (-129) (-827)))) (-3683 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| (-129) (-1073)))) (-3994 (($ (-129) $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| (-129) (-1073)))) (-2924 (((-129) $) NIL (|has| (-552) (-827)))) (-2380 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-2518 (($ $ (-129)) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-129)))) NIL (-12 (|has| (-129) (-304 (-129))) (|has| (-129) (-1073)))) (($ $ (-289 (-129))) NIL (-12 (|has| (-129) (-304 (-129))) (|has| (-129) (-1073)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-304 (-129))) (|has| (-129) (-1073)))) (($ $ (-625 (-129)) (-625 (-129))) NIL (-12 (|has| (-129) (-304 (-129))) (|has| (-129) (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-129) (-1073))))) (-1358 (((-625 (-129)) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 (((-129) $ (-552) (-129)) NIL) (((-129) $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-2840 (((-751) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4353))) (((-751) (-129) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-129) (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-129) (-598 (-528))))) (-1695 (($ (-625 (-129))) NIL)) (-3402 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) NIL) (($ (-625 $)) NIL)) (-1683 (((-839) $) NIL (|has| (-129) (-597 (-839))))) (-1900 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| (-129) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-129) (-827)))) (-2281 (((-112) $ $) NIL (|has| (-129) (-1073)))) (-2334 (((-112) $ $) NIL (|has| (-129) (-827)))) (-2307 (((-112) $ $) NIL (|has| (-129) (-827)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-128) (-19 (-129))) (T -128)) -NIL -(-19 (-129)) -((-1671 (((-112) $ $) NIL)) (-3101 (($) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) 9)) (-1683 (((-839) $) 19) (((-751) $) 11) (((-142) $) 16) (($ (-751)) 10) (($ (-142)) 14)) (-2066 (($ (-751)) 7)) (-4163 (($ $ $) 24)) (-4151 (($ $ $) 23)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 21)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 22))) -(((-129) (-13 (-827) (-597 (-751)) (-597 (-142)) (-10 -8 (-15 -2066 ($ (-751))) (-15 -1683 ($ (-751))) (-15 -1683 ($ (-142))) (-15 -4151 ($ $ $)) (-15 -4163 ($ $ $)) (-15 -3101 ($))))) (T -129)) -((-2066 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-129)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-129)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-129)))) (-4151 (*1 *1 *1 *1) (-5 *1 (-129))) (-4163 (*1 *1 *1 *1) (-5 *1 (-129))) (-3101 (*1 *1) (-5 *1 (-129)))) -(-13 (-827) (-597 (-751)) (-597 (-142)) (-10 -8 (-15 -2066 ($ (-751))) (-15 -1683 ($ (-751))) (-15 -1683 ($ (-142))) (-15 -4151 ($ $ $)) (-15 -4163 ($ $ $)) (-15 -3101 ($)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15))) -(((-130) (-138)) (T -130)) -((-2077 (*1 *1 *1 *1) (|partial| -4 *1 (-130)))) -(-13 (-23) (-10 -8 (-15 -2077 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-1671 (((-112) $ $) 7)) (-2087 (((-1237) $ (-751)) 19)) (-2483 (((-751) $) 20)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18))) -(((-131) (-138)) (T -131)) -((-2483 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-751)))) (-2087 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-751)) (-5 *2 (-1237))))) -(-13 (-827) (-10 -8 (-15 -2483 ((-751) $)) (-15 -2087 ((-1237) $ (-751))))) -(((-101) . T) ((-597 (-839)) . T) ((-827) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 18) (((-1154) $) NIL) (($ (-1154)) NIL)) (-1300 (((-625 (-1108)) $) 10)) (-2281 (((-112) $ $) NIL))) -(((-132) (-13 (-1056) (-10 -8 (-15 -1300 ((-625 (-1108)) $))))) (T -132)) -((-1300 (*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-132))))) -(-13 (-1056) (-10 -8 (-15 -1300 ((-625 (-1108)) $)))) -((-1671 (((-112) $ $) 34)) (-3641 (((-112) $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-751) "failed") $) 40)) (-1895 (((-751) $) 38)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) 27)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2109 (((-112)) 41)) (-2098 (((-112) (-112)) 43)) (-2064 (((-112) $) 24)) (-2118 (((-112) $) 37)) (-1683 (((-839) $) 22) (($ (-751)) 14)) (-2089 (($) 11 T CONST)) (-2100 (($) 12 T CONST)) (-2128 (($ (-751)) 15)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 25)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 26)) (-2393 (((-3 $ "failed") $ $) 30)) (-2382 (($ $ $) 28)) (** (($ $ (-751)) NIL) (($ $ (-897)) NIL) (($ $ $) 36)) (* (($ (-751) $) 33) (($ (-897) $) NIL) (($ $ $) 31))) -(((-133) (-13 (-827) (-23) (-707) (-1014 (-751)) (-10 -8 (-6 (-4355 "*")) (-15 -2393 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2128 ($ (-751))) (-15 -2064 ((-112) $)) (-15 -2118 ((-112) $)) (-15 -2109 ((-112))) (-15 -2098 ((-112) (-112)))))) (T -133)) -((-2393 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-133)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-2118 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-2109 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-2098 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(-13 (-827) (-23) (-707) (-1014 (-751)) (-10 -8 (-6 (-4355 "*")) (-15 -2393 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2128 ($ (-751))) (-15 -2064 ((-112) $)) (-15 -2118 ((-112) $)) (-15 -2109 ((-112))) (-15 -2098 ((-112) (-112))))) -((-2370 (((-135 |#1| |#2| |#4|) (-625 |#4|) (-135 |#1| |#2| |#3|)) 14)) (-1996 (((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)) 18))) -(((-134 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2370 ((-135 |#1| |#2| |#4|) (-625 |#4|) (-135 |#1| |#2| |#3|))) (-15 -1996 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) (-552) (-751) (-170) (-170)) (T -134)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-552)) (-14 *6 (-751)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) (-2370 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-552)) (-14 *6 (-751)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8))))) -(-10 -7 (-15 -2370 ((-135 |#1| |#2| |#4|) (-625 |#4|) (-135 |#1| |#2| |#3|))) (-15 -1996 ((-135 |#1| |#2| |#4|) (-1 |#4| |#3|) (-135 |#1| |#2| |#3|)))) -((-1671 (((-112) $ $) NIL)) (-2139 (($ (-625 |#3|)) 40)) (-2003 (($ $) 99) (($ $ (-552) (-552)) 98)) (-3101 (($) 17)) (-1893 (((-3 |#3| "failed") $) 60)) (-1895 ((|#3| $) NIL)) (-2174 (($ $ (-625 (-552))) 100)) (-2358 (((-625 |#3|) $) 36)) (-3442 (((-751) $) 44)) (-4244 (($ $ $) 93)) (-2152 (($) 43)) (-2883 (((-1131) $) NIL)) (-2164 (($) 16)) (-2831 (((-1093) $) NIL)) (-2154 ((|#3| $) 46) ((|#3| $ (-552)) 47) ((|#3| $ (-552) (-552)) 48) ((|#3| $ (-552) (-552) (-552)) 49) ((|#3| $ (-552) (-552) (-552) (-552)) 50) ((|#3| $ (-625 (-552))) 52)) (-4276 (((-751) $) 45)) (-4081 (($ $ (-552) $ (-552)) 94) (($ $ (-552) (-552)) 96)) (-1683 (((-839) $) 67) (($ |#3|) 68) (($ (-236 |#2| |#3|)) 75) (($ (-1115 |#2| |#3|)) 78) (($ (-625 |#3|)) 53) (($ (-625 $)) 58)) (-2089 (($) 69 T CONST)) (-2100 (($) 70 T CONST)) (-2281 (((-112) $ $) 80)) (-2393 (($ $) 86) (($ $ $) 84)) (-2382 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-552)) 89) (($ (-552) $) 88) (($ $ $) 95))) -(((-135 |#1| |#2| |#3|) (-13 (-459 |#3| (-751)) (-464 (-552) (-751)) (-10 -8 (-15 -1683 ($ (-236 |#2| |#3|))) (-15 -1683 ($ (-1115 |#2| |#3|))) (-15 -1683 ($ (-625 |#3|))) (-15 -1683 ($ (-625 $))) (-15 -3442 ((-751) $)) (-15 -2154 (|#3| $)) (-15 -2154 (|#3| $ (-552))) (-15 -2154 (|#3| $ (-552) (-552))) (-15 -2154 (|#3| $ (-552) (-552) (-552))) (-15 -2154 (|#3| $ (-552) (-552) (-552) (-552))) (-15 -2154 (|#3| $ (-625 (-552)))) (-15 -4244 ($ $ $)) (-15 * ($ $ $)) (-15 -4081 ($ $ (-552) $ (-552))) (-15 -4081 ($ $ (-552) (-552))) (-15 -2003 ($ $)) (-15 -2003 ($ $ (-552) (-552))) (-15 -2174 ($ $ (-625 (-552)))) (-15 -2164 ($)) (-15 -2152 ($)) (-15 -2358 ((-625 |#3|) $)) (-15 -2139 ($ (-625 |#3|))) (-15 -3101 ($)))) (-552) (-751) (-170)) (T -135)) -((-4244 (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751)) (-4 *4 (-170)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-236 *4 *5)) (-14 *4 (-751)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1115 *4 *5)) (-14 *4 (-751)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-751)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-751)) (-4 *5 (-170)))) (-3442 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 *2) (-4 *5 (-170)))) (-2154 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-552)) (-14 *4 (-751)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-751)))) (-2154 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-751)))) (-2154 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-552)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-751)))) (-2154 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-552)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-751)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-625 (-552))) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) (-14 *4 (-552)) (-14 *5 (-751)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751)) (-4 *4 (-170)))) (-4081 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-751)) (-4 *5 (-170)))) (-4081 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-751)) (-4 *5 (-170)))) (-2003 (*1 *1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751)) (-4 *4 (-170)))) (-2003 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-751)) (-4 *5 (-170)))) (-2174 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-751)) (-4 *5 (-170)))) (-2164 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751)) (-4 *4 (-170)))) (-2152 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751)) (-4 *4 (-170)))) (-2358 (*1 *2 *1) (-12 (-5 *2 (-625 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-751)) (-4 *5 (-170)))) (-2139 (*1 *1 *2) (-12 (-5 *2 (-625 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-751)))) (-3101 (*1 *1) (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751)) (-4 *4 (-170))))) -(-13 (-459 |#3| (-751)) (-464 (-552) (-751)) (-10 -8 (-15 -1683 ($ (-236 |#2| |#3|))) (-15 -1683 ($ (-1115 |#2| |#3|))) (-15 -1683 ($ (-625 |#3|))) (-15 -1683 ($ (-625 $))) (-15 -3442 ((-751) $)) (-15 -2154 (|#3| $)) (-15 -2154 (|#3| $ (-552))) (-15 -2154 (|#3| $ (-552) (-552))) (-15 -2154 (|#3| $ (-552) (-552) (-552))) (-15 -2154 (|#3| $ (-552) (-552) (-552) (-552))) (-15 -2154 (|#3| $ (-625 (-552)))) (-15 -4244 ($ $ $)) (-15 * ($ $ $)) (-15 -4081 ($ $ (-552) $ (-552))) (-15 -4081 ($ $ (-552) (-552))) (-15 -2003 ($ $)) (-15 -2003 ($ $ (-552) (-552))) (-15 -2174 ($ $ (-625 (-552)))) (-15 -2164 ($)) (-15 -2152 ($)) (-15 -2358 ((-625 |#3|) $)) (-15 -2139 ($ (-625 |#3|))) (-15 -3101 ($)))) -((-1671 (((-112) $ $) NIL)) (-2662 (((-1108) $) 11)) (-2651 (((-1108) $) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL))) -(((-136) (-13 (-1056) (-10 -8 (-15 -2651 ((-1108) $)) (-15 -2662 ((-1108) $))))) (T -136)) -((-2651 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-136)))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-136))))) -(-13 (-1056) (-10 -8 (-15 -2651 ((-1108) $)) (-15 -2662 ((-1108) $)))) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-3353 (((-1149) $) 10)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-1300 (((-625 (-1108)) $) 12)) (-2281 (((-112) $ $) NIL))) -(((-137) (-13 (-1056) (-10 -8 (-15 -3353 ((-1149) $)) (-15 -1300 ((-625 (-1108)) $))))) (T -137)) -((-3353 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-137)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-137))))) -(-13 (-1056) (-10 -8 (-15 -3353 ((-1149) $)) (-15 -1300 ((-625 (-1108)) $)))) -((-1683 (((-839) $) 7))) -(((-138) (-597 (-839))) (T -138)) -NIL -(-597 (-839)) -((-1671 (((-112) $ $) NIL)) (-3843 (($) 15 T CONST)) (-2740 (($) NIL (|has| (-142) (-363)))) (-3419 (($ $ $) 17) (($ $ (-142)) NIL) (($ (-142) $) NIL)) (-2837 (($ $ $) NIL)) (-2823 (((-112) $ $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-2894 (((-751)) NIL (|has| (-142) (-363)))) (-1517 (($) NIL) (($ (-625 (-142))) NIL)) (-2873 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-1938 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353))) (($ (-142) $) 51 (|has| $ (-6 -4353)))) (-1416 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353))) (($ (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-2163 (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-3702 (($) NIL (|has| (-142) (-363)))) (-3799 (((-625 (-142)) $) 60 (|has| $ (-6 -4353)))) (-2871 (((-112) $ $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-3658 (((-142) $) NIL (|has| (-142) (-827)))) (-3730 (((-625 (-142)) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-142) $) 26 (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-3332 (((-142) $) NIL (|has| (-142) (-827)))) (-3683 (($ (-1 (-142) (-142)) $) 59 (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-142) (-142)) $) 55)) (-3870 (($) 16 T CONST)) (-4318 (((-897) $) NIL (|has| (-142) (-363)))) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-2860 (($ $ $) 29)) (-2953 (((-142) $) 52)) (-3966 (($ (-142) $) 50)) (-3123 (($ (-897)) NIL (|has| (-142) (-363)))) (-2208 (($) 14 T CONST)) (-2831 (((-1093) $) NIL)) (-2380 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2966 (((-142) $) 53)) (-1888 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-142)) (-625 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-289 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-625 (-289 (-142)))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) 48)) (-2217 (($) 13 T CONST)) (-2849 (($ $ $) 31) (($ $ (-142)) NIL)) (-4255 (($ (-625 (-142))) NIL) (($) NIL)) (-2840 (((-751) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073)))) (((-751) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-1131) $) 36) (((-528) $) NIL (|has| (-142) (-598 (-528)))) (((-625 (-142)) $) 34)) (-1695 (($ (-625 (-142))) NIL)) (-2749 (($ $) 32 (|has| (-142) (-363)))) (-1683 (((-839) $) 46)) (-2230 (($ (-1131)) 12) (($ (-625 (-142))) 43)) (-2758 (((-751) $) NIL)) (-3761 (($) 49) (($ (-625 (-142))) NIL)) (-2977 (($ (-625 (-142))) NIL)) (-1900 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-2184 (($) 19 T CONST)) (-2196 (($) 18 T CONST)) (-2281 (((-112) $ $) 22)) (-1471 (((-751) $) 47 (|has| $ (-6 -4353))))) -(((-139) (-13 (-1073) (-598 (-1131)) (-420 (-142)) (-598 (-625 (-142))) (-10 -8 (-15 -2230 ($ (-1131))) (-15 -2230 ($ (-625 (-142)))) (-15 -2217 ($) -1426) (-15 -2208 ($) -1426) (-15 -3843 ($) -1426) (-15 -3870 ($) -1426) (-15 -2196 ($) -1426) (-15 -2184 ($) -1426)))) (T -139)) -((-2230 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-139)))) (-2230 (*1 *1 *2) (-12 (-5 *2 (-625 (-142))) (-5 *1 (-139)))) (-2217 (*1 *1) (-5 *1 (-139))) (-2208 (*1 *1) (-5 *1 (-139))) (-3843 (*1 *1) (-5 *1 (-139))) (-3870 (*1 *1) (-5 *1 (-139))) (-2196 (*1 *1) (-5 *1 (-139))) (-2184 (*1 *1) (-5 *1 (-139)))) -(-13 (-1073) (-598 (-1131)) (-420 (-142)) (-598 (-625 (-142))) (-10 -8 (-15 -2230 ($ (-1131))) (-15 -2230 ($ (-625 (-142)))) (-15 -2217 ($) -1426) (-15 -2208 ($) -1426) (-15 -3843 ($) -1426) (-15 -3870 ($) -1426) (-15 -2196 ($) -1426) (-15 -2184 ($) -1426))) -((-3076 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3055 ((|#1| |#3|) 9)) (-3066 ((|#3| |#3|) 15))) -(((-140 |#1| |#2| |#3|) (-10 -7 (-15 -3055 (|#1| |#3|)) (-15 -3066 (|#3| |#3|)) (-15 -3076 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-544) (-968 |#1|) (-368 |#2|)) (T -140)) -((-3076 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-968 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) (-4 *3 (-368 *5)))) (-3066 (*1 *2 *2) (-12 (-4 *3 (-544)) (-4 *4 (-968 *3)) (-5 *1 (-140 *3 *4 *2)) (-4 *2 (-368 *4)))) (-3055 (*1 *2 *3) (-12 (-4 *4 (-968 *2)) (-4 *2 (-544)) (-5 *1 (-140 *2 *4 *3)) (-4 *3 (-368 *4))))) -(-10 -7 (-15 -3055 (|#1| |#3|)) (-15 -3066 (|#3| |#3|)) (-15 -3076 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-1302 (($ $ $) 8)) (-1279 (($ $) 7)) (-3901 (($ $ $) 6))) -(((-141) (-138)) (T -141)) -((-1302 (*1 *1 *1 *1) (-4 *1 (-141))) (-1279 (*1 *1 *1) (-4 *1 (-141))) (-3901 (*1 *1 *1 *1) (-4 *1 (-141)))) -(-13 (-10 -8 (-15 -3901 ($ $ $)) (-15 -1279 ($ $)) (-15 -1302 ($ $ $)))) -((-1671 (((-112) $ $) NIL)) (-2259 (((-112) $) 30)) (-3843 (($ $) 43)) (-3433 (($) 17)) (-2894 (((-751)) 10)) (-3702 (($) 16)) (-2471 (($) 18)) (-2302 (((-751) $) 14)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2250 (((-112) $) 32)) (-3870 (($ $) 44)) (-4318 (((-897) $) 15)) (-2883 (((-1131) $) 38)) (-3123 (($ (-897)) 13)) (-2279 (((-112) $) 28)) (-2831 (((-1093) $) NIL)) (-2291 (($) 19)) (-2476 (((-112) $) 26)) (-1683 (((-839) $) 21)) (-2132 (($ (-751)) 11) (($ (-1131)) 42)) (-2239 (((-112) $) 36)) (-2268 (((-112) $) 34)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 7)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 8))) -(((-142) (-13 (-821) (-10 -8 (-15 -2302 ((-751) $)) (-15 -2132 ($ (-751))) (-15 -2132 ($ (-1131))) (-15 -3433 ($)) (-15 -2471 ($)) (-15 -2291 ($)) (-15 -3843 ($ $)) (-15 -3870 ($ $)) (-15 -2476 ((-112) $)) (-15 -2279 ((-112) $)) (-15 -2268 ((-112) $)) (-15 -2259 ((-112) $)) (-15 -2250 ((-112) $)) (-15 -2239 ((-112) $))))) (T -142)) -((-2302 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-142)))) (-2132 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-142)))) (-2132 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-142)))) (-3433 (*1 *1) (-5 *1 (-142))) (-2471 (*1 *1) (-5 *1 (-142))) (-2291 (*1 *1) (-5 *1 (-142))) (-3843 (*1 *1 *1) (-5 *1 (-142))) (-3870 (*1 *1 *1) (-5 *1 (-142))) (-2476 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2279 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2268 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(-13 (-821) (-10 -8 (-15 -2302 ((-751) $)) (-15 -2132 ($ (-751))) (-15 -2132 ($ (-1131))) (-15 -3433 ($)) (-15 -2471 ($)) (-15 -2291 ($)) (-15 -3843 ($ $)) (-15 -3870 ($ $)) (-15 -2476 ((-112) $)) (-15 -2279 ((-112) $)) (-15 -2268 ((-112) $)) (-15 -2259 ((-112) $)) (-15 -2250 ((-112) $)) (-15 -2239 ((-112) $)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27)) (-4243 (((-3 $ "failed") $) 33)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-143) (-138)) (T -143)) -((-4243 (*1 *1 *1) (|partial| -4 *1 (-143)))) -(-13 (-1025) (-10 -8 (-15 -4243 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-3974 ((|#1| (-669 |#1|) |#1|) 19))) -(((-144 |#1|) (-10 -7 (-15 -3974 (|#1| (-669 |#1|) |#1|))) (-170)) (T -144)) -((-3974 (*1 *2 *3 *2) (-12 (-5 *3 (-669 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2))))) -(-10 -7 (-15 -3974 (|#1| (-669 |#1|) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-145) (-138)) (T -145)) -NIL -(-13 (-1025)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-2343 (((-2 (|:| -3564 (-751)) (|:| -3340 (-402 |#2|)) (|:| |radicand| |#2|)) (-402 |#2|) (-751)) 70)) (-2331 (((-3 (-2 (|:| |radicand| (-402 |#2|)) (|:| |deg| (-751))) "failed") |#3|) 52)) (-2318 (((-2 (|:| -3340 (-402 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-2359 ((|#1| |#3| |#3|) 40)) (-4073 ((|#3| |#3| (-402 |#2|) (-402 |#2|)) 19)) (-2369 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| |deg| (-751))) |#3| |#3|) 49))) -(((-146 |#1| |#2| |#3|) (-10 -7 (-15 -2318 ((-2 (|:| -3340 (-402 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2331 ((-3 (-2 (|:| |radicand| (-402 |#2|)) (|:| |deg| (-751))) "failed") |#3|)) (-15 -2343 ((-2 (|:| -3564 (-751)) (|:| -3340 (-402 |#2|)) (|:| |radicand| |#2|)) (-402 |#2|) (-751))) (-15 -2359 (|#1| |#3| |#3|)) (-15 -4073 (|#3| |#3| (-402 |#2|) (-402 |#2|))) (-15 -2369 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| |deg| (-751))) |#3| |#3|))) (-1190) (-1208 |#1|) (-1208 (-402 |#2|))) (T -146)) -((-2369 (*1 *2 *3 *3) (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-402 *5)) (|:| |c2| (-402 *5)) (|:| |deg| (-751)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1208 (-402 *5))))) (-4073 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-402 *5)) (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1208 *3)))) (-2359 (*1 *2 *3 *3) (-12 (-4 *4 (-1208 *2)) (-4 *2 (-1190)) (-5 *1 (-146 *2 *4 *3)) (-4 *3 (-1208 (-402 *4))))) (-2343 (*1 *2 *3 *4) (-12 (-5 *3 (-402 *6)) (-4 *5 (-1190)) (-4 *6 (-1208 *5)) (-5 *2 (-2 (|:| -3564 (-751)) (|:| -3340 *3) (|:| |radicand| *6))) (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-751)) (-4 *7 (-1208 *3)))) (-2331 (*1 *2 *3) (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-5 *2 (-2 (|:| |radicand| (-402 *5)) (|:| |deg| (-751)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1208 (-402 *5))))) (-2318 (*1 *2 *3) (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-5 *2 (-2 (|:| -3340 (-402 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1208 (-402 *5)))))) -(-10 -7 (-15 -2318 ((-2 (|:| -3340 (-402 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2331 ((-3 (-2 (|:| |radicand| (-402 |#2|)) (|:| |deg| (-751))) "failed") |#3|)) (-15 -2343 ((-2 (|:| -3564 (-751)) (|:| -3340 (-402 |#2|)) (|:| |radicand| |#2|)) (-402 |#2|) (-751))) (-15 -2359 (|#1| |#3| |#3|)) (-15 -4073 (|#3| |#3| (-402 |#2|) (-402 |#2|))) (-15 -2369 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| |deg| (-751))) |#3| |#3|))) -((-4264 (((-3 (-625 (-1145 |#2|)) "failed") (-625 (-1145 |#2|)) (-1145 |#2|)) 32))) -(((-147 |#1| |#2|) (-10 -7 (-15 -4264 ((-3 (-625 (-1145 |#2|)) "failed") (-625 (-1145 |#2|)) (-1145 |#2|)))) (-537) (-164 |#1|)) (T -147)) -((-4264 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-625 (-1145 *5))) (-5 *3 (-1145 *5)) (-4 *5 (-164 *4)) (-4 *4 (-537)) (-5 *1 (-147 *4 *5))))) -(-10 -7 (-15 -4264 ((-3 (-625 (-1145 |#2|)) "failed") (-625 (-1145 |#2|)) (-1145 |#2|)))) -((-3488 (($ (-1 (-112) |#2|) $) 29)) (-2959 (($ $) 36)) (-1416 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-2163 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-2380 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-1888 (((-112) (-1 (-112) |#2|) $) 16)) (-2840 (((-751) (-1 (-112) |#2|) $) 14) (((-751) |#2| $) NIL)) (-1900 (((-112) (-1 (-112) |#2|) $) 15)) (-1471 (((-751) $) 11))) -(((-148 |#1| |#2|) (-10 -8 (-15 -2959 (|#1| |#1|)) (-15 -1416 (|#1| |#2| |#1|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3488 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1416 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2380 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2840 ((-751) |#2| |#1|)) (-15 -2840 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -1888 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-751) |#1|))) (-149 |#2|) (-1186)) (T -148)) -NIL -(-10 -8 (-15 -2959 (|#1| |#1|)) (-15 -1416 (|#1| |#2| |#1|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3488 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1416 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2380 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2840 ((-751) |#2| |#1|)) (-15 -2840 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -1888 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-751) |#1|))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) 8)) (-3488 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-2959 (($ $) 41 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353))) (($ |#1| $) 42 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 40 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 49)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-149 |#1|) (-138) (-1186)) (T -149)) -((-1695 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-4 *1 (-149 *3)))) (-2380 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1186)))) (-2163 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1186)))) (-2163 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1186)))) (-1416 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *3)) (-4 *3 (-1186)))) (-3488 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *3)) (-4 *3 (-1186)))) (-2163 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1073)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1186)))) (-1416 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1186)) (-4 *2 (-1073)))) (-2959 (*1 *1 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1186)) (-4 *2 (-1073))))) -(-13 (-483 |t#1|) (-10 -8 (-15 -1695 ($ (-625 |t#1|))) (-15 -2380 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4353)) (PROGN (-15 -2163 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2163 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1416 ($ (-1 (-112) |t#1|) $)) (-15 -3488 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1073)) (PROGN (-15 -2163 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1416 ($ |t#1| $)) (-15 -2959 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) 86)) (-3650 (((-112) $) NIL)) (-3957 (($ |#2| (-625 (-897))) 56)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1295 (($ (-897)) 47)) (-3904 (((-133)) 23)) (-1683 (((-839) $) 69) (($ (-552)) 45) (($ |#2|) 46)) (-3637 ((|#2| $ (-625 (-897))) 59)) (-4141 (((-751)) 20)) (-2089 (($) 40 T CONST)) (-2100 (($) 43 T CONST)) (-2281 (((-112) $ $) 26)) (-2404 (($ $ |#2|) NIL)) (-2393 (($ $) 34) (($ $ $) 32)) (-2382 (($ $ $) 30)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) -(((-150 |#1| |#2| |#3|) (-13 (-1025) (-38 |#2|) (-1239 |#2|) (-10 -8 (-15 -1295 ($ (-897))) (-15 -3957 ($ |#2| (-625 (-897)))) (-15 -3637 (|#2| $ (-625 (-897)))) (-15 -4174 ((-3 $ "failed") $)))) (-897) (-358) (-969 |#1| |#2|)) (T -150)) -((-4174 (*1 *1 *1) (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-897)) (-4 *3 (-358)) (-14 *4 (-969 *2 *3)))) (-1295 (*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-358)) (-14 *5 (-969 *3 *4)))) (-3957 (*1 *1 *2 *3) (-12 (-5 *3 (-625 (-897))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-897)) (-4 *2 (-358)) (-14 *5 (-969 *4 *2)))) (-3637 (*1 *2 *1 *3) (-12 (-5 *3 (-625 (-897))) (-4 *2 (-358)) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-897)) (-14 *5 (-969 *4 *2))))) -(-13 (-1025) (-38 |#2|) (-1239 |#2|) (-10 -8 (-15 -1295 ($ (-897))) (-15 -3957 ($ |#2| (-625 (-897)))) (-15 -3637 (|#2| $ (-625 (-897)))) (-15 -4174 ((-3 $ "failed") $)))) -((-2402 (((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-625 (-625 (-919 (-221)))) (-221) (-221) (-221) (-221)) 38)) (-2391 (((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903) (-402 (-552)) (-402 (-552))) 63) (((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903)) 64)) (-3354 (((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-625 (-625 (-919 (-221))))) 67) (((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-625 (-919 (-221)))) 66) (((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903) (-402 (-552)) (-402 (-552))) 58) (((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903)) 59))) -(((-151) (-10 -7 (-15 -3354 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903))) (-15 -3354 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903) (-402 (-552)) (-402 (-552)))) (-15 -2391 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903))) (-15 -2391 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903) (-402 (-552)) (-402 (-552)))) (-15 -2402 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-625 (-625 (-919 (-221)))) (-221) (-221) (-221) (-221))) (-15 -3354 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-625 (-919 (-221))))) (-15 -3354 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-625 (-625 (-919 (-221)))))))) (T -151)) -((-3354 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221))))) (-5 *1 (-151)) (-5 *3 (-625 (-625 (-919 (-221))))))) (-3354 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221))))) (-5 *1 (-151)) (-5 *3 (-625 (-919 (-221)))))) (-2402 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-221)) (-5 *2 (-2 (|:| |brans| (-625 (-625 (-919 *4)))) (|:| |xValues| (-1067 *4)) (|:| |yValues| (-1067 *4)))) (-5 *1 (-151)) (-5 *3 (-625 (-625 (-919 *4)))))) (-2391 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-903)) (-5 *4 (-402 (-552))) (-5 *2 (-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221))))) (-5 *1 (-151)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221))))) (-5 *1 (-151)))) (-3354 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-903)) (-5 *4 (-402 (-552))) (-5 *2 (-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221))))) (-5 *1 (-151)))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221))))) (-5 *1 (-151))))) -(-10 -7 (-15 -3354 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903))) (-15 -3354 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903) (-402 (-552)) (-402 (-552)))) (-15 -2391 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903))) (-15 -2391 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-903) (-402 (-552)) (-402 (-552)))) (-15 -2402 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-625 (-625 (-919 (-221)))) (-221) (-221) (-221) (-221))) (-15 -3354 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-625 (-919 (-221))))) (-15 -3354 ((-2 (|:| |brans| (-625 (-625 (-919 (-221))))) (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221)))) (-625 (-625 (-919 (-221))))))) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2206 (((-625 (-1108)) $) 15)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 24) (((-1154) $) NIL) (($ (-1154)) NIL)) (-1300 (((-1108) $) 9)) (-2281 (((-112) $ $) NIL))) -(((-152) (-13 (-1056) (-10 -8 (-15 -2206 ((-625 (-1108)) $)) (-15 -1300 ((-1108) $))))) (T -152)) -((-2206 (*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-152)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-152))))) -(-13 (-1056) (-10 -8 (-15 -2206 ((-625 (-1108)) $)) (-15 -1300 ((-1108) $)))) -((-1701 (((-625 (-167 |#2|)) |#1| |#2|) 45))) -(((-153 |#1| |#2|) (-10 -7 (-15 -1701 ((-625 (-167 |#2|)) |#1| |#2|))) (-1208 (-167 (-552))) (-13 (-358) (-825))) (T -153)) -((-1701 (*1 *2 *3 *4) (-12 (-5 *2 (-625 (-167 *4))) (-5 *1 (-153 *3 *4)) (-4 *3 (-1208 (-167 (-552)))) (-4 *4 (-13 (-358) (-825)))))) -(-10 -7 (-15 -1701 ((-625 (-167 |#2|)) |#1| |#2|))) -((-1671 (((-112) $ $) NIL)) (-2662 (((-1185) $) 12)) (-2651 (((-1108) $) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 21) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL))) -(((-154) (-13 (-1056) (-10 -8 (-15 -2651 ((-1108) $)) (-15 -2662 ((-1185) $))))) (T -154)) -((-2651 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-154)))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-154))))) -(-13 (-1056) (-10 -8 (-15 -2651 ((-1108) $)) (-15 -2662 ((-1185) $)))) -((-1671 (((-112) $ $) NIL)) (-2422 (($) 15)) (-3861 (($) 14)) (-2413 (((-897)) 22)) (-2883 (((-1131) $) NIL)) (-3064 (((-552) $) 19)) (-2831 (((-1093) $) NIL)) (-3847 (($) 16)) (-3053 (($ (-552)) 23)) (-1683 (((-839) $) 29)) (-3834 (($) 17)) (-2281 (((-112) $ $) 13)) (-2382 (($ $ $) 11)) (* (($ (-897) $) 21) (($ (-221) $) 8))) -(((-155) (-13 (-25) (-10 -8 (-15 * ($ (-897) $)) (-15 * ($ (-221) $)) (-15 -2382 ($ $ $)) (-15 -3861 ($)) (-15 -2422 ($)) (-15 -3847 ($)) (-15 -3834 ($)) (-15 -3064 ((-552) $)) (-15 -2413 ((-897))) (-15 -3053 ($ (-552)))))) (T -155)) -((-2382 (*1 *1 *1 *1) (-5 *1 (-155))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-897)) (-5 *1 (-155)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-155)))) (-3861 (*1 *1) (-5 *1 (-155))) (-2422 (*1 *1) (-5 *1 (-155))) (-3847 (*1 *1) (-5 *1 (-155))) (-3834 (*1 *1) (-5 *1 (-155))) (-3064 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-155)))) (-2413 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-155)))) (-3053 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-155))))) -(-13 (-25) (-10 -8 (-15 * ($ (-897) $)) (-15 * ($ (-221) $)) (-15 -2382 ($ $ $)) (-15 -3861 ($)) (-15 -2422 ($)) (-15 -3847 ($)) (-15 -3834 ($)) (-15 -3064 ((-552) $)) (-15 -2413 ((-897))) (-15 -3053 ($ (-552))))) -((-1331 ((|#2| |#2| (-1065 |#2|)) 88) ((|#2| |#2| (-1149)) 68)) (-4244 ((|#2| |#2| (-1065 |#2|)) 87) ((|#2| |#2| (-1149)) 67)) (-1302 ((|#2| |#2| |#2|) 27)) (-1563 (((-114) (-114)) 99)) (-1269 ((|#2| (-625 |#2|)) 117)) (-2464 ((|#2| (-625 |#2|)) 135)) (-2454 ((|#2| (-625 |#2|)) 125)) (-2432 ((|#2| |#2|) 123)) (-4317 ((|#2| (-625 |#2|)) 111)) (-4327 ((|#2| (-625 |#2|)) 112)) (-2443 ((|#2| (-625 |#2|)) 133)) (-1342 ((|#2| |#2| (-1149)) 56) ((|#2| |#2|) 55)) (-1279 ((|#2| |#2|) 23)) (-3901 ((|#2| |#2| |#2|) 26)) (-1572 (((-112) (-114)) 49)) (** ((|#2| |#2| |#2|) 41))) -(((-156 |#1| |#2|) (-10 -7 (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3901 (|#2| |#2| |#2|)) (-15 -1302 (|#2| |#2| |#2|)) (-15 -1279 (|#2| |#2|)) (-15 -1342 (|#2| |#2|)) (-15 -1342 (|#2| |#2| (-1149))) (-15 -1331 (|#2| |#2| (-1149))) (-15 -1331 (|#2| |#2| (-1065 |#2|))) (-15 -4244 (|#2| |#2| (-1149))) (-15 -4244 (|#2| |#2| (-1065 |#2|))) (-15 -2432 (|#2| |#2|)) (-15 -2443 (|#2| (-625 |#2|))) (-15 -2454 (|#2| (-625 |#2|))) (-15 -2464 (|#2| (-625 |#2|))) (-15 -4317 (|#2| (-625 |#2|))) (-15 -4327 (|#2| (-625 |#2|))) (-15 -1269 (|#2| (-625 |#2|)))) (-13 (-827) (-544)) (-425 |#1|)) (T -156)) -((-1269 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-544))))) (-4327 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-544))))) (-4317 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-544))))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-544))))) (-2454 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-544))))) (-2443 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-544))))) (-2432 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (-4244 (*1 *2 *2 *3) (-12 (-5 *3 (-1065 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-156 *4 *2)))) (-4244 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-156 *4 *2)) (-4 *2 (-425 *4)))) (-1331 (*1 *2 *2 *3) (-12 (-5 *3 (-1065 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-156 *4 *2)))) (-1331 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-156 *4 *2)) (-4 *2 (-425 *4)))) (-1342 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-156 *4 *2)) (-4 *2 (-425 *4)))) (-1342 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (-1279 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (-1302 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (-3901 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2)) (-4 *2 (-425 *3)))) (-1563 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *4)) (-4 *4 (-425 *3)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112)) (-5 *1 (-156 *4 *5)) (-4 *5 (-425 *4))))) -(-10 -7 (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3901 (|#2| |#2| |#2|)) (-15 -1302 (|#2| |#2| |#2|)) (-15 -1279 (|#2| |#2|)) (-15 -1342 (|#2| |#2|)) (-15 -1342 (|#2| |#2| (-1149))) (-15 -1331 (|#2| |#2| (-1149))) (-15 -1331 (|#2| |#2| (-1065 |#2|))) (-15 -4244 (|#2| |#2| (-1149))) (-15 -4244 (|#2| |#2| (-1065 |#2|))) (-15 -2432 (|#2| |#2|)) (-15 -2443 (|#2| (-625 |#2|))) (-15 -2454 (|#2| (-625 |#2|))) (-15 -2464 (|#2| (-625 |#2|))) (-15 -4317 (|#2| (-625 |#2|))) (-15 -4327 (|#2| (-625 |#2|))) (-15 -1269 (|#2| (-625 |#2|)))) -((-1321 ((|#1| |#1| |#1|) 53)) (-1312 ((|#1| |#1| |#1|) 50)) (-1302 ((|#1| |#1| |#1|) 44)) (-3570 ((|#1| |#1|) 35)) (-1290 ((|#1| |#1| (-625 |#1|)) 43)) (-1279 ((|#1| |#1|) 37)) (-3901 ((|#1| |#1| |#1|) 40))) -(((-157 |#1|) (-10 -7 (-15 -3901 (|#1| |#1| |#1|)) (-15 -1279 (|#1| |#1|)) (-15 -1290 (|#1| |#1| (-625 |#1|))) (-15 -3570 (|#1| |#1|)) (-15 -1302 (|#1| |#1| |#1|)) (-15 -1312 (|#1| |#1| |#1|)) (-15 -1321 (|#1| |#1| |#1|))) (-537)) (T -157)) -((-1321 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) (-1312 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) (-1302 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) (-3570 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) (-1290 (*1 *2 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-537)) (-5 *1 (-157 *2)))) (-1279 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) (-3901 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537))))) -(-10 -7 (-15 -3901 (|#1| |#1| |#1|)) (-15 -1279 (|#1| |#1|)) (-15 -1290 (|#1| |#1| (-625 |#1|))) (-15 -3570 (|#1| |#1|)) (-15 -1302 (|#1| |#1| |#1|)) (-15 -1312 (|#1| |#1| |#1|)) (-15 -1321 (|#1| |#1| |#1|))) -((-1331 (($ $ (-1149)) 12) (($ $ (-1065 $)) 11)) (-4244 (($ $ (-1149)) 10) (($ $ (-1065 $)) 9)) (-1302 (($ $ $) 8)) (-1342 (($ $) 14) (($ $ (-1149)) 13)) (-1279 (($ $) 7)) (-3901 (($ $ $) 6))) -(((-158) (-138)) (T -158)) -((-1342 (*1 *1 *1) (-4 *1 (-158))) (-1342 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1149)))) (-1331 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1149)))) (-1331 (*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-158)))) (-4244 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1149)))) (-4244 (*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-158))))) -(-13 (-141) (-10 -8 (-15 -1342 ($ $)) (-15 -1342 ($ $ (-1149))) (-15 -1331 ($ $ (-1149))) (-15 -1331 ($ $ (-1065 $))) (-15 -4244 ($ $ (-1149))) (-15 -4244 ($ $ (-1065 $))))) -(((-141) . T)) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-1300 (((-625 (-1108)) $) 9)) (-2281 (((-112) $ $) NIL))) -(((-159) (-13 (-1056) (-10 -8 (-15 -1300 ((-625 (-1108)) $))))) (T -159)) -((-1300 (*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-159))))) -(-13 (-1056) (-10 -8 (-15 -1300 ((-625 (-1108)) $)))) -((-1671 (((-112) $ $) NIL)) (-1350 (($ (-552)) 13) (($ $ $) 14)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 17)) (-2281 (((-112) $ $) 9))) -(((-160) (-13 (-1073) (-10 -8 (-15 -1350 ($ (-552))) (-15 -1350 ($ $ $))))) (T -160)) -((-1350 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-160)))) (-1350 (*1 *1 *1 *1) (-5 *1 (-160)))) -(-13 (-1073) (-10 -8 (-15 -1350 ($ (-552))) (-15 -1350 ($ $ $)))) -((-1563 (((-114) (-1149)) 97))) -(((-161) (-10 -7 (-15 -1563 ((-114) (-1149))))) (T -161)) -((-1563 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-114)) (-5 *1 (-161))))) -(-10 -7 (-15 -1563 ((-114) (-1149)))) -((-1904 ((|#3| |#3|) 19))) -(((-162 |#1| |#2| |#3|) (-10 -7 (-15 -1904 (|#3| |#3|))) (-1025) (-1208 |#1|) (-1208 |#2|)) (T -162)) -((-1904 (*1 *2 *2) (-12 (-4 *3 (-1025)) (-4 *4 (-1208 *3)) (-5 *1 (-162 *3 *4 *2)) (-4 *2 (-1208 *4))))) -(-10 -7 (-15 -1904 (|#3| |#3|))) -((-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 217)) (-1650 ((|#2| $) 96)) (-3728 (($ $) 247)) (-3604 (($ $) 241)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 40)) (-3710 (($ $) 245)) (-3581 (($ $) 239)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-1895 (((-552) $) NIL) (((-402 (-552)) $) NIL) ((|#2| $) 139)) (-2851 (($ $ $) 222)) (-1794 (((-669 (-552)) (-669 $)) NIL) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) 155) (((-669 |#2|) (-669 $)) 149)) (-2163 (($ (-1145 |#2|)) 119) (((-3 $ "failed") (-402 (-1145 |#2|))) NIL)) (-4174 (((-3 $ "failed") $) 209)) (-2555 (((-3 (-402 (-552)) "failed") $) 199)) (-2546 (((-112) $) 194)) (-2538 (((-402 (-552)) $) 197)) (-3442 (((-897)) 89)) (-2826 (($ $ $) 224)) (-1362 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-1385 (($) 236)) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 186) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 191)) (-4209 ((|#2| $) 94)) (-1291 (((-1145 |#2|) $) 121)) (-1996 (($ (-1 |#2| |#2|) $) 102)) (-2458 (($ $) 238)) (-2148 (((-1145 |#2|) $) 120)) (-4092 (($ $) 202)) (-1373 (($) 97)) (-4275 (((-413 (-1145 $)) (-1145 $)) 88)) (-4286 (((-413 (-1145 $)) (-1145 $)) 57)) (-2802 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-2863 (($ $) 237)) (-2397 (((-751) $) 219)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 229)) (-3217 ((|#2| (-1232 $)) NIL) ((|#2|) 91)) (-3072 (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)) (-3610 (((-1145 |#2|)) 114)) (-3721 (($ $) 246)) (-3593 (($ $) 240)) (-2780 (((-1232 |#2|) $ (-1232 $)) 128) (((-669 |#2|) (-1232 $) (-1232 $)) NIL) (((-1232 |#2|) $) 110) (((-669 |#2|) (-1232 $)) NIL)) (-2042 (((-1232 |#2|) $) NIL) (($ (-1232 |#2|)) NIL) (((-1145 |#2|) $) NIL) (($ (-1145 |#2|)) NIL) (((-868 (-552)) $) 177) (((-868 (-374)) $) 181) (((-167 (-374)) $) 167) (((-167 (-221)) $) 162) (((-528) $) 173)) (-2410 (($ $) 98)) (-1683 (((-839) $) 138) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-402 (-552))) NIL) (($ $) NIL)) (-3974 (((-1145 |#2|) $) 23)) (-4141 (((-751)) 100)) (-3789 (($ $) 250)) (-3670 (($ $) 244)) (-3769 (($ $) 248)) (-3648 (($ $) 242)) (-1388 ((|#2| $) 233)) (-3778 (($ $) 249)) (-3659 (($ $) 243)) (-1727 (($ $) 157)) (-2281 (((-112) $ $) 104)) (-2307 (((-112) $ $) 193)) (-2393 (($ $) 106) (($ $ $) NIL)) (-2382 (($ $ $) 105)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-402 (-552))) 267) (($ $ $) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-402 (-552)) $) NIL) (($ $ (-402 (-552))) NIL))) -(((-163 |#1| |#2|) (-10 -8 (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -1683 (|#1| |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3537 ((-2 (|:| -3618 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -2397 ((-751) |#1|)) (-15 -3481 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -2826 (|#1| |#1| |#1|)) (-15 -2851 (|#1| |#1| |#1|)) (-15 -4092 (|#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 * (|#1| |#1| (-402 (-552)))) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -2307 ((-112) |#1| |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -2042 ((-167 (-221)) |#1|)) (-15 -2042 ((-167 (-374)) |#1|)) (-15 -3604 (|#1| |#1|)) (-15 -3581 (|#1| |#1|)) (-15 -3593 (|#1| |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3721 (|#1| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -3728 (|#1| |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3789 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 -2863 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1385 (|#1|)) (-15 ** (|#1| |#1| (-402 (-552)))) (-15 -4286 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4275 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4264 ((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|))) (-15 -2555 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -2538 ((-402 (-552)) |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -1362 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1388 (|#2| |#1|)) (-15 -1727 (|#1| |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2410 (|#1| |#1|)) (-15 -1373 (|#1|)) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -3841 ((-865 (-374) |#1|) |#1| (-868 (-374)) (-865 (-374) |#1|))) (-15 -3841 ((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|))) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -2163 ((-3 |#1| "failed") (-402 (-1145 |#2|)))) (-15 -2148 ((-1145 |#2|) |#1|)) (-15 -2042 (|#1| (-1145 |#2|))) (-15 -2163 (|#1| (-1145 |#2|))) (-15 -3610 ((-1145 |#2|))) (-15 -1794 ((-669 |#2|) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -2042 ((-1145 |#2|) |#1|)) (-15 -3217 (|#2|)) (-15 -2042 (|#1| (-1232 |#2|))) (-15 -2042 ((-1232 |#2|) |#1|)) (-15 -2780 ((-669 |#2|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1|)) (-15 -1291 ((-1145 |#2|) |#1|)) (-15 -3974 ((-1145 |#2|) |#1|)) (-15 -3217 (|#2| (-1232 |#1|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1| (-1232 |#1|))) (-15 -4209 (|#2| |#1|)) (-15 -1650 (|#2| |#1|)) (-15 -3442 ((-897))) (-15 -1683 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 -4141 ((-751))) (-15 ** (|#1| |#1| (-751))) (-15 -4174 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-897))) (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|))) (-164 |#2|) (-170)) (T -163)) -((-4141 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-3442 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-897)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-3217 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) (-3610 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1145 *4)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4))))) -(-10 -8 (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -1683 (|#1| |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3537 ((-2 (|:| -3618 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -2397 ((-751) |#1|)) (-15 -3481 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -2826 (|#1| |#1| |#1|)) (-15 -2851 (|#1| |#1| |#1|)) (-15 -4092 (|#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 * (|#1| |#1| (-402 (-552)))) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -2307 ((-112) |#1| |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -2042 ((-167 (-221)) |#1|)) (-15 -2042 ((-167 (-374)) |#1|)) (-15 -3604 (|#1| |#1|)) (-15 -3581 (|#1| |#1|)) (-15 -3593 (|#1| |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3721 (|#1| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -3728 (|#1| |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3789 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 -2863 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1385 (|#1|)) (-15 ** (|#1| |#1| (-402 (-552)))) (-15 -4286 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4275 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4264 ((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|))) (-15 -2555 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -2538 ((-402 (-552)) |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -1362 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1388 (|#2| |#1|)) (-15 -1727 (|#1| |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2410 (|#1| |#1|)) (-15 -1373 (|#1|)) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -3841 ((-865 (-374) |#1|) |#1| (-868 (-374)) (-865 (-374) |#1|))) (-15 -3841 ((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|))) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -2163 ((-3 |#1| "failed") (-402 (-1145 |#2|)))) (-15 -2148 ((-1145 |#2|) |#1|)) (-15 -2042 (|#1| (-1145 |#2|))) (-15 -2163 (|#1| (-1145 |#2|))) (-15 -3610 ((-1145 |#2|))) (-15 -1794 ((-669 |#2|) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -2042 ((-1145 |#2|) |#1|)) (-15 -3217 (|#2|)) (-15 -2042 (|#1| (-1232 |#2|))) (-15 -2042 ((-1232 |#2|) |#1|)) (-15 -2780 ((-669 |#2|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1|)) (-15 -1291 ((-1145 |#2|) |#1|)) (-15 -3974 ((-1145 |#2|) |#1|)) (-15 -3217 (|#2| (-1232 |#1|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1| (-1232 |#1|))) (-15 -4209 (|#2| |#1|)) (-15 -1650 (|#2| |#1|)) (-15 -3442 ((-897))) (-15 -1683 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 -4141 ((-751))) (-15 ** (|#1| |#1| (-751))) (-15 -4174 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-897))) (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 91 (-1523 (|has| |#1| (-544)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))))) (-3528 (($ $) 92 (-1523 (|has| |#1| (-544)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))))) (-3509 (((-112) $) 94 (-1523 (|has| |#1| (-544)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))))) (-2570 (((-669 |#1|) (-1232 $)) 44) (((-669 |#1|)) 59)) (-1650 ((|#1| $) 50)) (-3728 (($ $) 225 (|has| |#1| (-1171)))) (-3604 (($ $) 208 (|has| |#1| (-1171)))) (-3811 (((-1159 (-897) (-751)) (-552)) 144 (|has| |#1| (-344)))) (-2077 (((-3 $ "failed") $ $) 19)) (-4296 (((-413 (-1145 $)) (-1145 $)) 239 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))))) (-2194 (($ $) 111 (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-358))))) (-1330 (((-413 $) $) 112 (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-358))))) (-3837 (($ $) 238 (-12 (|has| |#1| (-978)) (|has| |#1| (-1171))))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 242 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))))) (-2408 (((-112) $ $) 102 (|has| |#1| (-302)))) (-2894 (((-751)) 85 (|has| |#1| (-363)))) (-3710 (($ $) 224 (|has| |#1| (-1171)))) (-3581 (($ $) 209 (|has| |#1| (-1171)))) (-3749 (($ $) 223 (|has| |#1| (-1171)))) (-3627 (($ $) 210 (|has| |#1| (-1171)))) (-3101 (($) 17 T CONST)) (-1893 (((-3 (-552) "failed") $) 166 (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) 164 (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 163)) (-1895 (((-552) $) 167 (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) 165 (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) 162)) (-2670 (($ (-1232 |#1|) (-1232 $)) 46) (($ (-1232 |#1|)) 62)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-344)))) (-2851 (($ $ $) 106 (|has| |#1| (-302)))) (-2559 (((-669 |#1|) $ (-1232 $)) 51) (((-669 |#1|) $) 57)) (-1794 (((-669 (-552)) (-669 $)) 161 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 160 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 159) (((-669 |#1|) (-669 $)) 158)) (-2163 (($ (-1145 |#1|)) 155) (((-3 $ "failed") (-402 (-1145 |#1|))) 152 (|has| |#1| (-358)))) (-4174 (((-3 $ "failed") $) 32)) (-3852 ((|#1| $) 250)) (-2555 (((-3 (-402 (-552)) "failed") $) 243 (|has| |#1| (-537)))) (-2546 (((-112) $) 245 (|has| |#1| (-537)))) (-2538 (((-402 (-552)) $) 244 (|has| |#1| (-537)))) (-3442 (((-897)) 52)) (-3702 (($) 88 (|has| |#1| (-363)))) (-2826 (($ $ $) 105 (|has| |#1| (-302)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 100 (|has| |#1| (-302)))) (-4279 (($) 146 (|has| |#1| (-344)))) (-3872 (((-112) $) 147 (|has| |#1| (-344)))) (-3554 (($ $ (-751)) 138 (|has| |#1| (-344))) (($ $) 137 (|has| |#1| (-344)))) (-2951 (((-112) $) 113 (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-358))))) (-1362 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1034)) (|has| |#1| (-1171))))) (-1385 (($) 235 (|has| |#1| (-1171)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 258 (|has| |#1| (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 257 (|has| |#1| (-862 (-374))))) (-2172 (((-897) $) 149 (|has| |#1| (-344))) (((-813 (-897)) $) 135 (|has| |#1| (-344)))) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 237 (-12 (|has| |#1| (-978)) (|has| |#1| (-1171))))) (-4209 ((|#1| $) 49)) (-4034 (((-3 $ "failed") $) 139 (|has| |#1| (-344)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 109 (|has| |#1| (-302)))) (-1291 (((-1145 |#1|) $) 42 (|has| |#1| (-358)))) (-3658 (($ $ $) 204 (|has| |#1| (-827)))) (-3332 (($ $ $) 203 (|has| |#1| (-827)))) (-1996 (($ (-1 |#1| |#1|) $) 259)) (-4318 (((-897) $) 87 (|has| |#1| (-363)))) (-2458 (($ $) 232 (|has| |#1| (-1171)))) (-2148 (((-1145 |#1|) $) 153)) (-2605 (($ (-625 $)) 98 (-1523 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885))))) (($ $ $) 97 (-1523 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))))) (-2883 (((-1131) $) 9)) (-4092 (($ $) 114 (|has| |#1| (-358)))) (-2071 (($) 140 (|has| |#1| (-344)) CONST)) (-3123 (($ (-897)) 86 (|has| |#1| (-363)))) (-1373 (($) 254)) (-3865 ((|#1| $) 251)) (-2831 (((-1093) $) 10)) (-3212 (($) 157)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 99 (-1523 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))))) (-2633 (($ (-625 $)) 96 (-1523 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885))))) (($ $ $) 95 (-1523 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))))) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) 143 (|has| |#1| (-344)))) (-4275 (((-413 (-1145 $)) (-1145 $)) 241 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))))) (-4286 (((-413 (-1145 $)) (-1145 $)) 240 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))))) (-3824 (((-413 $) $) 110 (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-358))))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-302))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 107 (|has| |#1| (-302)))) (-2802 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 90 (-1523 (|has| |#1| (-544)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 101 (|has| |#1| (-302)))) (-2863 (($ $) 233 (|has| |#1| (-1171)))) (-4073 (($ $ (-625 |#1|) (-625 |#1|)) 265 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) 263 (|has| |#1| (-304 |#1|))) (($ $ (-625 (-289 |#1|))) 262 (|has| |#1| (-304 |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) 261 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) 260 (|has| |#1| (-507 (-1149) |#1|)))) (-2397 (((-751) $) 103 (|has| |#1| (-302)))) (-2154 (($ $ |#1|) 266 (|has| |#1| (-281 |#1| |#1|)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 104 (|has| |#1| (-302)))) (-3217 ((|#1| (-1232 $)) 45) ((|#1|) 58)) (-3563 (((-751) $) 148 (|has| |#1| (-344))) (((-3 (-751) "failed") $ $) 136 (|has| |#1| (-344)))) (-3072 (($ $ (-1 |#1| |#1|) (-751)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-625 (-1149)) (-625 (-751))) 127 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 128 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 129 (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) 130 (|has| |#1| (-876 (-1149)))) (($ $ (-751)) 132 (-1523 (-3743 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3743 (|has| |#1| (-229)) (|has| |#1| (-358))))) (($ $) 134 (-1523 (-3743 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3743 (|has| |#1| (-229)) (|has| |#1| (-358)))))) (-3640 (((-669 |#1|) (-1232 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-358)))) (-3610 (((-1145 |#1|)) 156)) (-3759 (($ $) 222 (|has| |#1| (-1171)))) (-3638 (($ $) 211 (|has| |#1| (-1171)))) (-3798 (($) 145 (|has| |#1| (-344)))) (-3738 (($ $) 221 (|has| |#1| (-1171)))) (-3614 (($ $) 212 (|has| |#1| (-1171)))) (-3721 (($ $) 220 (|has| |#1| (-1171)))) (-3593 (($ $) 213 (|has| |#1| (-1171)))) (-2780 (((-1232 |#1|) $ (-1232 $)) 48) (((-669 |#1|) (-1232 $) (-1232 $)) 47) (((-1232 |#1|) $) 64) (((-669 |#1|) (-1232 $)) 63)) (-2042 (((-1232 |#1|) $) 61) (($ (-1232 |#1|)) 60) (((-1145 |#1|) $) 168) (($ (-1145 |#1|)) 154) (((-868 (-552)) $) 256 (|has| |#1| (-598 (-868 (-552))))) (((-868 (-374)) $) 255 (|has| |#1| (-598 (-868 (-374))))) (((-167 (-374)) $) 207 (|has| |#1| (-998))) (((-167 (-221)) $) 206 (|has| |#1| (-998))) (((-528) $) 205 (|has| |#1| (-598 (-528))))) (-2410 (($ $) 253)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 142 (-1523 (-3743 (|has| $ (-143)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))) (|has| |#1| (-344))))) (-3858 (($ |#1| |#1|) 252)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 35) (($ (-402 (-552))) 84 (-1523 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-552)))))) (($ $) 89 (-1523 (|has| |#1| (-544)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))))) (-4243 (($ $) 141 (|has| |#1| (-344))) (((-3 $ "failed") $) 41 (-1523 (-3743 (|has| $ (-143)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))) (|has| |#1| (-143))))) (-3974 (((-1145 |#1|) $) 43)) (-4141 (((-751)) 28)) (-1270 (((-1232 $)) 65)) (-3789 (($ $) 231 (|has| |#1| (-1171)))) (-3670 (($ $) 219 (|has| |#1| (-1171)))) (-3518 (((-112) $ $) 93 (-1523 (|has| |#1| (-544)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885)))))) (-3769 (($ $) 230 (|has| |#1| (-1171)))) (-3648 (($ $) 218 (|has| |#1| (-1171)))) (-3809 (($ $) 229 (|has| |#1| (-1171)))) (-3691 (($ $) 217 (|has| |#1| (-1171)))) (-1388 ((|#1| $) 247 (|has| |#1| (-1171)))) (-3742 (($ $) 228 (|has| |#1| (-1171)))) (-3700 (($ $) 216 (|has| |#1| (-1171)))) (-3797 (($ $) 227 (|has| |#1| (-1171)))) (-3681 (($ $) 215 (|has| |#1| (-1171)))) (-3778 (($ $) 226 (|has| |#1| (-1171)))) (-3659 (($ $) 214 (|has| |#1| (-1171)))) (-1727 (($ $) 248 (|has| |#1| (-1034)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-1 |#1| |#1|) (-751)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-625 (-1149)) (-625 (-751))) 123 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 124 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 125 (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) 126 (|has| |#1| (-876 (-1149)))) (($ $ (-751)) 131 (-1523 (-3743 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3743 (|has| |#1| (-229)) (|has| |#1| (-358))))) (($ $) 133 (-1523 (-3743 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3743 (|has| |#1| (-229)) (|has| |#1| (-358)))))) (-2346 (((-112) $ $) 201 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 200 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 202 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 199 (|has| |#1| (-827)))) (-2404 (($ $ $) 118 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-402 (-552))) 236 (-12 (|has| |#1| (-978)) (|has| |#1| (-1171)))) (($ $ $) 234 (|has| |#1| (-1171))) (($ $ (-552)) 115 (|has| |#1| (-358)))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-402 (-552)) $) 117 (|has| |#1| (-358))) (($ $ (-402 (-552))) 116 (|has| |#1| (-358))))) -(((-164 |#1|) (-138) (-170)) (T -164)) -((-4209 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1373 (*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-2410 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3858 (*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3865 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-2802 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-544)))) (-1727 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) (-1388 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1171)))) (-1362 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1034)) (-4 *3 (-1171)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112)))) (-2538 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-552))))) (-2555 (*1 *2 *1) (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-552)))))) -(-13 (-705 |t#1| (-1145 |t#1|)) (-406 |t#1|) (-227 |t#1|) (-333 |t#1|) (-395 |t#1|) (-860 |t#1|) (-372 |t#1|) (-170) (-10 -8 (-6 -3858) (-15 -1373 ($)) (-15 -2410 ($ $)) (-15 -3858 ($ |t#1| |t#1|)) (-15 -3865 (|t#1| $)) (-15 -3852 (|t#1| $)) (-15 -4209 (|t#1| $)) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-6 (-544)) (-15 -2802 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-302)) (-6 (-302)) |%noBranch|) (IF (|has| |t#1| (-6 -4352)) (-6 -4352) |%noBranch|) (IF (|has| |t#1| (-6 -4349)) (-6 -4349) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|) (IF (|has| |t#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-998)) (PROGN (-6 (-598 (-167 (-221)))) (-6 (-598 (-167 (-374))))) |%noBranch|) (IF (|has| |t#1| (-1034)) (-15 -1727 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1171)) (PROGN (-6 (-1171)) (-15 -1388 (|t#1| $)) (IF (|has| |t#1| (-978)) (-6 (-978)) |%noBranch|) (IF (|has| |t#1| (-1034)) (-15 -1362 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -2546 ((-112) $)) (-15 -2538 ((-402 (-552)) $)) (-15 -2555 ((-3 (-402 (-552)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-885)) (IF (|has| |t#1| (-302)) (-6 (-885)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-38 |#1|) . T) ((-38 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-35) |has| |#1| (-1171)) ((-94) |has| |#1| (-1171)) ((-101) . T) ((-111 #0# #0#) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1523 (|has| |#1| (-344)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) . T) ((-598 (-167 (-221))) |has| |#1| (-998)) ((-598 (-167 (-374))) |has| |#1| (-998)) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-598 (-868 (-374))) |has| |#1| (-598 (-868 (-374)))) ((-598 (-868 (-552))) |has| |#1| (-598 (-868 (-552)))) ((-598 #1=(-1145 |#1|)) . T) ((-227 |#1|) . T) ((-229) -1523 (|has| |#1| (-344)) (|has| |#1| (-229))) ((-239) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-279) |has| |#1| (-1171)) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-285) -1523 (|has| |#1| (-544)) (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-302) -1523 (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-358) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-397) |has| |#1| (-344)) ((-363) -1523 (|has| |#1| (-363)) (|has| |#1| (-344))) ((-344) |has| |#1| (-344)) ((-365 |#1| #1#) . T) ((-404 |#1| #1#) . T) ((-333 |#1|) . T) ((-372 |#1|) . T) ((-395 |#1|) . T) ((-406 |#1|) . T) ((-446) -1523 (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-486) |has| |#1| (-1171)) ((-507 (-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-544) -1523 (|has| |#1| (-544)) (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-628 #0#) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-552)) |has| |#1| (-621 (-552))) ((-621 |#1|) . T) ((-698 #0#) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-698 |#1|) . T) ((-698 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-705 |#1| #1#) . T) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-862 (-374)) |has| |#1| (-862 (-374))) ((-862 (-552)) |has| |#1| (-862 (-552))) ((-860 |#1|) . T) ((-885) -12 (|has| |#1| (-302)) (|has| |#1| (-885))) ((-896) -1523 (|has| |#1| (-344)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-978) -12 (|has| |#1| (-978)) (|has| |#1| (-1171))) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T) ((-1031 #0#) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-1031 |#1|) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1124) |has| |#1| (-344)) ((-1171) |has| |#1| (-1171)) ((-1174) |has| |#1| (-1171)) ((-1186) . T) ((-1190) -1523 (|has| |#1| (-344)) (|has| |#1| (-358)) (-12 (|has| |#1| (-302)) (|has| |#1| (-885))))) -((-3824 (((-413 |#2|) |#2|) 63))) -(((-165 |#1| |#2|) (-10 -7 (-15 -3824 ((-413 |#2|) |#2|))) (-302) (-1208 (-167 |#1|))) (T -165)) -((-3824 (*1 *2 *3) (-12 (-4 *4 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1208 (-167 *4)))))) -(-10 -7 (-15 -3824 ((-413 |#2|) |#2|))) -((-1996 (((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)) 14))) -(((-166 |#1| |#2|) (-10 -7 (-15 -1996 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)))) (-170) (-170)) (T -166)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-5 *2 (-167 *6)) (-5 *1 (-166 *5 *6))))) -(-10 -7 (-15 -1996 ((-167 |#2|) (-1 |#2| |#1|) (-167 |#1|)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 33)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-544))))) (-3528 (($ $) NIL (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-544))))) (-3509 (((-112) $) NIL (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-544))))) (-2570 (((-669 |#1|) (-1232 $)) NIL) (((-669 |#1|)) NIL)) (-1650 ((|#1| $) NIL)) (-3728 (($ $) NIL (|has| |#1| (-1171)))) (-3604 (($ $) NIL (|has| |#1| (-1171)))) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| |#1| (-344)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-885))))) (-2194 (($ $) NIL (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-358))))) (-1330 (((-413 $) $) NIL (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-358))))) (-3837 (($ $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1171))))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-885))))) (-2408 (((-112) $ $) NIL (|has| |#1| (-302)))) (-2894 (((-751)) NIL (|has| |#1| (-363)))) (-3710 (($ $) NIL (|has| |#1| (-1171)))) (-3581 (($ $) NIL (|has| |#1| (-1171)))) (-3749 (($ $) NIL (|has| |#1| (-1171)))) (-3627 (($ $) NIL (|has| |#1| (-1171)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) NIL)) (-2670 (($ (-1232 |#1|) (-1232 $)) NIL) (($ (-1232 |#1|)) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-344)))) (-2851 (($ $ $) NIL (|has| |#1| (-302)))) (-2559 (((-669 |#1|) $ (-1232 $)) NIL) (((-669 |#1|) $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-2163 (($ (-1145 |#1|)) NIL) (((-3 $ "failed") (-402 (-1145 |#1|))) NIL (|has| |#1| (-358)))) (-4174 (((-3 $ "failed") $) NIL)) (-3852 ((|#1| $) 13)) (-2555 (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-537)))) (-2546 (((-112) $) NIL (|has| |#1| (-537)))) (-2538 (((-402 (-552)) $) NIL (|has| |#1| (-537)))) (-3442 (((-897)) NIL)) (-3702 (($) NIL (|has| |#1| (-363)))) (-2826 (($ $ $) NIL (|has| |#1| (-302)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-302)))) (-4279 (($) NIL (|has| |#1| (-344)))) (-3872 (((-112) $) NIL (|has| |#1| (-344)))) (-3554 (($ $ (-751)) NIL (|has| |#1| (-344))) (($ $) NIL (|has| |#1| (-344)))) (-2951 (((-112) $) NIL (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-358))))) (-1362 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1034)) (|has| |#1| (-1171))))) (-1385 (($) NIL (|has| |#1| (-1171)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| |#1| (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| |#1| (-862 (-374))))) (-2172 (((-897) $) NIL (|has| |#1| (-344))) (((-813 (-897)) $) NIL (|has| |#1| (-344)))) (-3650 (((-112) $) 35)) (-2429 (($ $ (-552)) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1171))))) (-4209 ((|#1| $) 46)) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-302)))) (-1291 (((-1145 |#1|) $) NIL (|has| |#1| (-358)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-4318 (((-897) $) NIL (|has| |#1| (-363)))) (-2458 (($ $) NIL (|has| |#1| (-1171)))) (-2148 (((-1145 |#1|) $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-302))) (($ $ $) NIL (|has| |#1| (-302)))) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| |#1| (-358)))) (-2071 (($) NIL (|has| |#1| (-344)) CONST)) (-3123 (($ (-897)) NIL (|has| |#1| (-363)))) (-1373 (($) NIL)) (-3865 ((|#1| $) 15)) (-2831 (((-1093) $) NIL)) (-3212 (($) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-302)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-302))) (($ $ $) NIL (|has| |#1| (-302)))) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| |#1| (-344)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-885))))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-885))))) (-3824 (((-413 $) $) NIL (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-358))))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-302))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-302)))) (-2802 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 47 (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-544))))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-302)))) (-2863 (($ $) NIL (|has| |#1| (-1171)))) (-4073 (($ $ (-625 |#1|) (-625 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-625 (-289 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) NIL (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-507 (-1149) |#1|)))) (-2397 (((-751) $) NIL (|has| |#1| (-302)))) (-2154 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-302)))) (-3217 ((|#1| (-1232 $)) NIL) ((|#1|) NIL)) (-3563 (((-751) $) NIL (|has| |#1| (-344))) (((-3 (-751) "failed") $ $) NIL (|has| |#1| (-344)))) (-3072 (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-3640 (((-669 |#1|) (-1232 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-3610 (((-1145 |#1|)) NIL)) (-3759 (($ $) NIL (|has| |#1| (-1171)))) (-3638 (($ $) NIL (|has| |#1| (-1171)))) (-3798 (($) NIL (|has| |#1| (-344)))) (-3738 (($ $) NIL (|has| |#1| (-1171)))) (-3614 (($ $) NIL (|has| |#1| (-1171)))) (-3721 (($ $) NIL (|has| |#1| (-1171)))) (-3593 (($ $) NIL (|has| |#1| (-1171)))) (-2780 (((-1232 |#1|) $ (-1232 $)) NIL) (((-669 |#1|) (-1232 $) (-1232 $)) NIL) (((-1232 |#1|) $) NIL) (((-669 |#1|) (-1232 $)) NIL)) (-2042 (((-1232 |#1|) $) NIL) (($ (-1232 |#1|)) NIL) (((-1145 |#1|) $) NIL) (($ (-1145 |#1|)) NIL) (((-868 (-552)) $) NIL (|has| |#1| (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| |#1| (-598 (-868 (-374))))) (((-167 (-374)) $) NIL (|has| |#1| (-998))) (((-167 (-221)) $) NIL (|has| |#1| (-998))) (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-2410 (($ $) 45)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-344))))) (-3858 (($ |#1| |#1|) 37)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) 36) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-552)))))) (($ $) NIL (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-544))))) (-4243 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-3974 (((-1145 |#1|) $) NIL)) (-4141 (((-751)) NIL)) (-1270 (((-1232 $)) NIL)) (-3789 (($ $) NIL (|has| |#1| (-1171)))) (-3670 (($ $) NIL (|has| |#1| (-1171)))) (-3518 (((-112) $ $) NIL (-1523 (-12 (|has| |#1| (-302)) (|has| |#1| (-885))) (|has| |#1| (-544))))) (-3769 (($ $) NIL (|has| |#1| (-1171)))) (-3648 (($ $) NIL (|has| |#1| (-1171)))) (-3809 (($ $) NIL (|has| |#1| (-1171)))) (-3691 (($ $) NIL (|has| |#1| (-1171)))) (-1388 ((|#1| $) NIL (|has| |#1| (-1171)))) (-3742 (($ $) NIL (|has| |#1| (-1171)))) (-3700 (($ $) NIL (|has| |#1| (-1171)))) (-3797 (($ $) NIL (|has| |#1| (-1171)))) (-3681 (($ $) NIL (|has| |#1| (-1171)))) (-3778 (($ $) NIL (|has| |#1| (-1171)))) (-3659 (($ $) NIL (|has| |#1| (-1171)))) (-1727 (($ $) NIL (|has| |#1| (-1034)))) (-2089 (($) 28 T CONST)) (-2100 (($) 30 T CONST)) (-3010 (((-1131) $) 23 (|has| |#1| (-808))) (((-1131) $ (-112)) 25 (|has| |#1| (-808))) (((-1237) (-802) $) 26 (|has| |#1| (-808))) (((-1237) (-802) $ (-112)) 27 (|has| |#1| (-808)))) (-3768 (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2404 (($ $ $) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 39)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-402 (-552))) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1171)))) (($ $ $) NIL (|has| |#1| (-1171))) (($ $ (-552)) NIL (|has| |#1| (-358)))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-552)) $) NIL (|has| |#1| (-358))) (($ $ (-402 (-552))) NIL (|has| |#1| (-358))))) -(((-167 |#1|) (-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-808)) (-6 (-808)) |%noBranch|))) (-170)) (T -167)) -NIL -(-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-808)) (-6 (-808)) |%noBranch|))) -((-2042 (((-868 |#1|) |#3|) 22))) -(((-168 |#1| |#2| |#3|) (-10 -7 (-15 -2042 ((-868 |#1|) |#3|))) (-1073) (-13 (-598 (-868 |#1|)) (-170)) (-164 |#2|)) (T -168)) -((-2042 (*1 *2 *3) (-12 (-4 *5 (-13 (-598 *2) (-170))) (-5 *2 (-868 *4)) (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1073)) (-4 *3 (-164 *5))))) -(-10 -7 (-15 -2042 ((-868 |#1|) |#3|))) -((-1671 (((-112) $ $) NIL)) (-1391 (((-112) $) 9)) (-1382 (((-112) $ (-112)) 11)) (-2183 (($) 12)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1871 (($ $) 13)) (-1683 (((-839) $) 17)) (-2747 (((-112) $) 8)) (-1387 (((-112) $ (-112)) 10)) (-2281 (((-112) $ $) NIL))) -(((-169) (-13 (-1073) (-10 -8 (-15 -2183 ($)) (-15 -2747 ((-112) $)) (-15 -1391 ((-112) $)) (-15 -1387 ((-112) $ (-112))) (-15 -1382 ((-112) $ (-112))) (-15 -1871 ($ $))))) (T -169)) -((-2183 (*1 *1) (-5 *1 (-169))) (-2747 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1391 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1387 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1382 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1871 (*1 *1 *1) (-5 *1 (-169)))) -(-13 (-1073) (-10 -8 (-15 -2183 ($)) (-15 -2747 ((-112) $)) (-15 -1391 ((-112) $)) (-15 -1387 ((-112) $ (-112))) (-15 -1382 ((-112) $ (-112))) (-15 -1871 ($ $)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-170) (-138)) (T -170)) -NIL -(-13 (-1025) (-111 $ $) (-10 -7 (-6 (-4355 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-4125 (($ $) 6))) -(((-171) (-138)) (T -171)) -((-4125 (*1 *1 *1) (-4 *1 (-171)))) -(-13 (-10 -8 (-15 -4125 ($ $)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4177 ((|#1| $) 75)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-2851 (($ $ $) NIL)) (-1445 (($ $) 19)) (-1488 (($ |#1| (-1129 |#1|)) 48)) (-4174 (((-3 $ "failed") $) 117)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-1455 (((-1129 |#1|) $) 82)) (-1478 (((-1129 |#1|) $) 79)) (-1466 (((-1129 |#1|) $) 80)) (-3650 (((-112) $) NIL)) (-1411 (((-1129 |#1|) $) 88)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2605 (($ (-625 $)) NIL) (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ (-625 $)) NIL) (($ $ $) NIL)) (-3824 (((-413 $) $) NIL)) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL)) (-2147 (($ $ (-552)) 91)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1401 (((-1129 |#1|) $) 89)) (-1420 (((-1129 (-402 |#1|)) $) 14)) (-1553 (($ (-402 |#1|)) 17) (($ |#1| (-1129 |#1|) (-1129 |#1|)) 38)) (-3580 (($ $) 93)) (-1683 (((-839) $) 127) (($ (-552)) 51) (($ |#1|) 52) (($ (-402 |#1|)) 36) (($ (-402 (-552))) NIL) (($ $) NIL)) (-4141 (((-751)) 64)) (-3518 (((-112) $ $) NIL)) (-1432 (((-1129 (-402 |#1|)) $) 18)) (-2089 (($) 25 T CONST)) (-2100 (($) 28 T CONST)) (-2281 (((-112) $ $) 35)) (-2404 (($ $ $) 115)) (-2393 (($ $) 106) (($ $ $) 103)) (-2382 (($ $ $) 101)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-402 |#1|) $) 111) (($ $ (-402 |#1|)) NIL) (($ (-402 (-552)) $) NIL) (($ $ (-402 (-552))) NIL))) -(((-172 |#1|) (-13 (-38 |#1|) (-38 (-402 |#1|)) (-358) (-10 -8 (-15 -1553 ($ (-402 |#1|))) (-15 -1553 ($ |#1| (-1129 |#1|) (-1129 |#1|))) (-15 -1488 ($ |#1| (-1129 |#1|))) (-15 -1478 ((-1129 |#1|) $)) (-15 -1466 ((-1129 |#1|) $)) (-15 -1455 ((-1129 |#1|) $)) (-15 -4177 (|#1| $)) (-15 -1445 ($ $)) (-15 -1432 ((-1129 (-402 |#1|)) $)) (-15 -1420 ((-1129 (-402 |#1|)) $)) (-15 -1411 ((-1129 |#1|) $)) (-15 -1401 ((-1129 |#1|) $)) (-15 -2147 ($ $ (-552))) (-15 -3580 ($ $)))) (-302)) (T -172)) -((-1553 (*1 *1 *2) (-12 (-5 *2 (-402 *3)) (-4 *3 (-302)) (-5 *1 (-172 *3)))) (-1553 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1129 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2)))) (-1488 (*1 *1 *2 *3) (-12 (-5 *3 (-1129 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2)))) (-1478 (*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-4177 (*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))) (-1445 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))) (-1432 (*1 *2 *1) (-12 (-5 *2 (-1129 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1420 (*1 *2 *1) (-12 (-5 *2 (-1129 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1411 (*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1401 (*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-2147 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-3580 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302))))) -(-13 (-38 |#1|) (-38 (-402 |#1|)) (-358) (-10 -8 (-15 -1553 ($ (-402 |#1|))) (-15 -1553 ($ |#1| (-1129 |#1|) (-1129 |#1|))) (-15 -1488 ($ |#1| (-1129 |#1|))) (-15 -1478 ((-1129 |#1|) $)) (-15 -1466 ((-1129 |#1|) $)) (-15 -1455 ((-1129 |#1|) $)) (-15 -4177 (|#1| $)) (-15 -1445 ($ $)) (-15 -1432 ((-1129 (-402 |#1|)) $)) (-15 -1420 ((-1129 (-402 |#1|)) $)) (-15 -1411 ((-1129 |#1|) $)) (-15 -1401 ((-1129 |#1|) $)) (-15 -2147 ($ $ (-552))) (-15 -3580 ($ $)))) -((-1498 (($ (-108) $) 13)) (-2751 (((-3 (-108) "failed") (-1149) $) 12)) (-1683 (((-839) $) 16)) (-1510 (((-625 (-108)) $) 8))) -(((-173) (-13 (-597 (-839)) (-10 -8 (-15 -1510 ((-625 (-108)) $)) (-15 -1498 ($ (-108) $)) (-15 -2751 ((-3 (-108) "failed") (-1149) $))))) (T -173)) -((-1510 (*1 *2 *1) (-12 (-5 *2 (-625 (-108))) (-5 *1 (-173)))) (-1498 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173)))) (-2751 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-108)) (-5 *1 (-173))))) -(-13 (-597 (-839)) (-10 -8 (-15 -1510 ((-625 (-108)) $)) (-15 -1498 ($ (-108) $)) (-15 -2751 ((-3 (-108) "failed") (-1149) $)))) -((-1656 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 40)) (-1555 (((-919 |#1|) (-919 |#1|)) 19)) (-1610 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 36)) (-1533 (((-919 |#1|) (-919 |#1|)) 17)) (-1588 (((-919 |#1|) (-919 |#1|)) 25)) (-1576 (((-919 |#1|) (-919 |#1|)) 24)) (-1566 (((-919 |#1|) (-919 |#1|)) 23)) (-1621 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 37)) (-1599 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 35)) (-1661 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 34)) (-1544 (((-919 |#1|) (-919 |#1|)) 18)) (-1666 (((-1 (-919 |#1|) (-919 |#1|)) |#1| |#1|) 43)) (-1522 (((-919 |#1|) (-919 |#1|)) 8)) (-1644 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 39)) (-1632 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 38))) -(((-174 |#1|) (-10 -7 (-15 -1522 ((-919 |#1|) (-919 |#1|))) (-15 -1533 ((-919 |#1|) (-919 |#1|))) (-15 -1544 ((-919 |#1|) (-919 |#1|))) (-15 -1555 ((-919 |#1|) (-919 |#1|))) (-15 -1566 ((-919 |#1|) (-919 |#1|))) (-15 -1576 ((-919 |#1|) (-919 |#1|))) (-15 -1588 ((-919 |#1|) (-919 |#1|))) (-15 -1661 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1599 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1610 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1621 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1632 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1644 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1656 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1666 ((-1 (-919 |#1|) (-919 |#1|)) |#1| |#1|))) (-13 (-358) (-1171) (-978))) (T -174)) -((-1666 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1656 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1644 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1632 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1621 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1610 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1599 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1661 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1588 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1576 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1566 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1555 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1544 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1533 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1522 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3))))) -(-10 -7 (-15 -1522 ((-919 |#1|) (-919 |#1|))) (-15 -1533 ((-919 |#1|) (-919 |#1|))) (-15 -1544 ((-919 |#1|) (-919 |#1|))) (-15 -1555 ((-919 |#1|) (-919 |#1|))) (-15 -1566 ((-919 |#1|) (-919 |#1|))) (-15 -1576 ((-919 |#1|) (-919 |#1|))) (-15 -1588 ((-919 |#1|) (-919 |#1|))) (-15 -1661 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1599 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1610 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1621 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1632 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1644 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1656 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1666 ((-1 (-919 |#1|) (-919 |#1|)) |#1| |#1|))) -((-3974 ((|#2| |#3|) 27))) -(((-175 |#1| |#2| |#3|) (-10 -7 (-15 -3974 (|#2| |#3|))) (-170) (-1208 |#1|) (-705 |#1| |#2|)) (T -175)) -((-3974 (*1 *2 *3) (-12 (-4 *4 (-170)) (-4 *2 (-1208 *4)) (-5 *1 (-175 *4 *2 *3)) (-4 *3 (-705 *4 *2))))) -(-10 -7 (-15 -3974 (|#2| |#3|))) -((-3841 (((-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|)) 47 (|has| (-928 |#2|) (-862 |#1|))))) -(((-176 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-928 |#2|) (-862 |#1|)) (-15 -3841 ((-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|))) |%noBranch|)) (-1073) (-13 (-862 |#1|) (-170)) (-164 |#2|)) (T -176)) -((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-865 *5 *3)) (-5 *4 (-868 *5)) (-4 *5 (-1073)) (-4 *3 (-164 *6)) (-4 (-928 *6) (-862 *5)) (-4 *6 (-13 (-862 *5) (-170))) (-5 *1 (-176 *5 *6 *3))))) -(-10 -7 (IF (|has| (-928 |#2|) (-862 |#1|)) (-15 -3841 ((-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|))) |%noBranch|)) -((-1689 (((-625 |#1|) (-625 |#1|) |#1|) 38)) (-1677 (((-625 |#1|) |#1| (-625 |#1|)) 19)) (-3706 (((-625 |#1|) (-625 (-625 |#1|)) (-625 |#1|)) 33) ((|#1| (-625 |#1|) (-625 |#1|)) 31))) -(((-177 |#1|) (-10 -7 (-15 -1677 ((-625 |#1|) |#1| (-625 |#1|))) (-15 -3706 (|#1| (-625 |#1|) (-625 |#1|))) (-15 -3706 ((-625 |#1|) (-625 (-625 |#1|)) (-625 |#1|))) (-15 -1689 ((-625 |#1|) (-625 |#1|) |#1|))) (-302)) (T -177)) -((-1689 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3)))) (-3706 (*1 *2 *3 *2) (-12 (-5 *3 (-625 (-625 *4))) (-5 *2 (-625 *4)) (-4 *4 (-302)) (-5 *1 (-177 *4)))) (-3706 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *2)) (-5 *1 (-177 *2)) (-4 *2 (-302)))) (-1677 (*1 *2 *3 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3))))) -(-10 -7 (-15 -1677 ((-625 |#1|) |#1| (-625 |#1|))) (-15 -3706 (|#1| (-625 |#1|) (-625 |#1|))) (-15 -3706 ((-625 |#1|) (-625 (-625 |#1|)) (-625 |#1|))) (-15 -1689 ((-625 |#1|) (-625 |#1|) |#1|))) -((-1671 (((-112) $ $) NIL)) (-1711 (((-1185) $) 13)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3632 (((-1108) $) 10)) (-1683 (((-839) $) 22) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL))) -(((-178) (-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $)) (-15 -1711 ((-1185) $))))) (T -178)) -((-3632 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-178)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-178))))) -(-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $)) (-15 -1711 ((-1185) $)))) -((-1787 (((-2 (|:| |start| |#2|) (|:| -3449 (-413 |#2|))) |#2|) 61)) (-1776 ((|#1| |#1|) 54)) (-1765 (((-167 |#1|) |#2|) 84)) (-1755 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-1745 ((|#2| |#2|) 83)) (-1735 (((-413 |#2|) |#2| |#1|) 113) (((-413 |#2|) |#2| |#1| (-112)) 81)) (-4209 ((|#1| |#2|) 112)) (-1723 ((|#2| |#2|) 119)) (-3824 (((-413 |#2|) |#2|) 134) (((-413 |#2|) |#2| |#1|) 32) (((-413 |#2|) |#2| |#1| (-112)) 133)) (-1712 (((-625 (-2 (|:| -3449 (-625 |#2|)) (|:| -1939 |#1|))) |#2| |#2|) 132) (((-625 (-2 (|:| -3449 (-625 |#2|)) (|:| -1939 |#1|))) |#2| |#2| (-112)) 76)) (-1701 (((-625 (-167 |#1|)) |#2| |#1|) 40) (((-625 (-167 |#1|)) |#2|) 41))) -(((-179 |#1| |#2|) (-10 -7 (-15 -1701 ((-625 (-167 |#1|)) |#2|)) (-15 -1701 ((-625 (-167 |#1|)) |#2| |#1|)) (-15 -1712 ((-625 (-2 (|:| -3449 (-625 |#2|)) (|:| -1939 |#1|))) |#2| |#2| (-112))) (-15 -1712 ((-625 (-2 (|:| -3449 (-625 |#2|)) (|:| -1939 |#1|))) |#2| |#2|)) (-15 -3824 ((-413 |#2|) |#2| |#1| (-112))) (-15 -3824 ((-413 |#2|) |#2| |#1|)) (-15 -3824 ((-413 |#2|) |#2|)) (-15 -1723 (|#2| |#2|)) (-15 -4209 (|#1| |#2|)) (-15 -1735 ((-413 |#2|) |#2| |#1| (-112))) (-15 -1735 ((-413 |#2|) |#2| |#1|)) (-15 -1745 (|#2| |#2|)) (-15 -1755 (|#1| |#2| |#1|)) (-15 -1755 (|#1| |#2|)) (-15 -1765 ((-167 |#1|) |#2|)) (-15 -1776 (|#1| |#1|)) (-15 -1787 ((-2 (|:| |start| |#2|) (|:| -3449 (-413 |#2|))) |#2|))) (-13 (-358) (-825)) (-1208 (-167 |#1|))) (T -179)) -((-1787 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-2 (|:| |start| *3) (|:| -3449 (-413 *3)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))) (-1776 (*1 *2 *2) (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1208 (-167 *2))))) (-1765 (*1 *2 *3) (-12 (-5 *2 (-167 *4)) (-5 *1 (-179 *4 *3)) (-4 *4 (-13 (-358) (-825))) (-4 *3 (-1208 *2)))) (-1755 (*1 *2 *3) (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1208 (-167 *2))))) (-1755 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1208 (-167 *2))))) (-1745 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-825))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1208 (-167 *3))))) (-1735 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-413 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))) (-1735 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-825))) (-5 *2 (-413 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))) (-4209 (*1 *2 *3) (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1208 (-167 *2))))) (-1723 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-825))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1208 (-167 *3))))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-413 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))) (-3824 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-413 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))) (-3824 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-825))) (-5 *2 (-413 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))) (-1712 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-625 (-2 (|:| -3449 (-625 *3)) (|:| -1939 *4)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))) (-1712 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-358) (-825))) (-5 *2 (-625 (-2 (|:| -3449 (-625 *3)) (|:| -1939 *5)))) (-5 *1 (-179 *5 *3)) (-4 *3 (-1208 (-167 *5))))) (-1701 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-625 (-167 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))) (-1701 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-625 (-167 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4)))))) -(-10 -7 (-15 -1701 ((-625 (-167 |#1|)) |#2|)) (-15 -1701 ((-625 (-167 |#1|)) |#2| |#1|)) (-15 -1712 ((-625 (-2 (|:| -3449 (-625 |#2|)) (|:| -1939 |#1|))) |#2| |#2| (-112))) (-15 -1712 ((-625 (-2 (|:| -3449 (-625 |#2|)) (|:| -1939 |#1|))) |#2| |#2|)) (-15 -3824 ((-413 |#2|) |#2| |#1| (-112))) (-15 -3824 ((-413 |#2|) |#2| |#1|)) (-15 -3824 ((-413 |#2|) |#2|)) (-15 -1723 (|#2| |#2|)) (-15 -4209 (|#1| |#2|)) (-15 -1735 ((-413 |#2|) |#2| |#1| (-112))) (-15 -1735 ((-413 |#2|) |#2| |#1|)) (-15 -1745 (|#2| |#2|)) (-15 -1755 (|#1| |#2| |#1|)) (-15 -1755 (|#1| |#2|)) (-15 -1765 ((-167 |#1|) |#2|)) (-15 -1776 (|#1| |#1|)) (-15 -1787 ((-2 (|:| |start| |#2|) (|:| -3449 (-413 |#2|))) |#2|))) -((-1799 (((-3 |#2| "failed") |#2|) 14)) (-1811 (((-751) |#2|) 16)) (-1821 ((|#2| |#2| |#2|) 18))) -(((-180 |#1| |#2|) (-10 -7 (-15 -1799 ((-3 |#2| "failed") |#2|)) (-15 -1811 ((-751) |#2|)) (-15 -1821 (|#2| |#2| |#2|))) (-1186) (-654 |#1|)) (T -180)) -((-1821 (*1 *2 *2 *2) (-12 (-4 *3 (-1186)) (-5 *1 (-180 *3 *2)) (-4 *2 (-654 *3)))) (-1811 (*1 *2 *3) (-12 (-4 *4 (-1186)) (-5 *2 (-751)) (-5 *1 (-180 *4 *3)) (-4 *3 (-654 *4)))) (-1799 (*1 *2 *2) (|partial| -12 (-4 *3 (-1186)) (-5 *1 (-180 *3 *2)) (-4 *2 (-654 *3))))) -(-10 -7 (-15 -1799 ((-3 |#2| "failed") |#2|)) (-15 -1811 ((-751) |#2|)) (-15 -1821 (|#2| |#2| |#2|))) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1690 (((-1149) $) 10)) (-1683 (((-839) $) 17)) (-1912 (((-625 (-1154)) $) 12)) (-2281 (((-112) $ $) 15))) -(((-181) (-13 (-1073) (-10 -8 (-15 -1690 ((-1149) $)) (-15 -1912 ((-625 (-1154)) $))))) (T -181)) -((-1690 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-181)))) (-1912 (*1 *2 *1) (-12 (-5 *2 (-625 (-1154))) (-5 *1 (-181))))) -(-13 (-1073) (-10 -8 (-15 -1690 ((-1149) $)) (-15 -1912 ((-625 (-1154)) $)))) -((-1671 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-8 (($) 7 T CONST)) (-1683 (((-839) $) 14)) (-9 (($) 6 T CONST)) (-2281 (((-112) $ $) 10))) -(((-182) (-13 (-1073) (-10 -8 (-15 -9 ($) -1426) (-15 -8 ($) -1426) (-15 -7 ($) -1426)))) (T -182)) -((-9 (*1 *1) (-5 *1 (-182))) (-8 (*1 *1) (-5 *1 (-182))) (-7 (*1 *1) (-5 *1 (-182)))) -(-13 (-1073) (-10 -8 (-15 -9 ($) -1426) (-15 -8 ($) -1426) (-15 -7 ($) -1426))) -((-1671 (((-112) $ $) NIL)) (-1288 (((-499) $) 8)) (-2883 (((-1131) $) NIL)) (-3353 (((-182) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 14)) (-1832 (((-1093) $) NIL)) (-2281 (((-112) $ $) 11))) -(((-183) (-13 (-1073) (-10 -8 (-15 -1288 ((-499) $)) (-15 -3353 ((-182) $)) (-15 -1832 ((-1093) $))))) (T -183)) -((-1288 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-183)))) (-3353 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-183)))) (-1832 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-183))))) -(-13 (-1073) (-10 -8 (-15 -1288 ((-499) $)) (-15 -3353 ((-182) $)) (-15 -1832 ((-1093) $)))) -((-2598 ((|#2| |#2|) 28)) (-3301 (((-112) |#2|) 19)) (-3852 (((-311 |#1|) |#2|) 12)) (-3865 (((-311 |#1|) |#2|) 14)) (-2329 ((|#2| |#2| (-1149)) 68) ((|#2| |#2|) 69)) (-3311 (((-167 (-311 |#1|)) |#2|) 10)) (-2586 ((|#2| |#2| (-1149)) 65) ((|#2| |#2|) 59))) -(((-184 |#1| |#2|) (-10 -7 (-15 -2329 (|#2| |#2|)) (-15 -2329 (|#2| |#2| (-1149))) (-15 -2586 (|#2| |#2|)) (-15 -2586 (|#2| |#2| (-1149))) (-15 -3852 ((-311 |#1|) |#2|)) (-15 -3865 ((-311 |#1|) |#2|)) (-15 -3301 ((-112) |#2|)) (-15 -2598 (|#2| |#2|)) (-15 -3311 ((-167 (-311 |#1|)) |#2|))) (-13 (-544) (-827) (-1014 (-552))) (-13 (-27) (-1171) (-425 (-167 |#1|)))) (T -184)) -((-3311 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-167 (-311 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 (-167 *4)))))) (-2598 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-827) (-1014 (-552)))) (-5 *1 (-184 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 (-167 *3)))))) (-3301 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-112)) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 (-167 *4)))))) (-3865 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-311 *4)) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 (-167 *4)))))) (-3852 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-311 *4)) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 (-167 *4)))))) (-2586 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 (-167 *4)))))) (-2586 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-827) (-1014 (-552)))) (-5 *1 (-184 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 (-167 *3)))))) (-2329 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 (-167 *4)))))) (-2329 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-827) (-1014 (-552)))) (-5 *1 (-184 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 (-167 *3))))))) -(-10 -7 (-15 -2329 (|#2| |#2|)) (-15 -2329 (|#2| |#2| (-1149))) (-15 -2586 (|#2| |#2|)) (-15 -2586 (|#2| |#2| (-1149))) (-15 -3852 ((-311 |#1|) |#2|)) (-15 -3865 ((-311 |#1|) |#2|)) (-15 -3301 ((-112) |#2|)) (-15 -2598 (|#2| |#2|)) (-15 -3311 ((-167 (-311 |#1|)) |#2|))) -((-1845 (((-1232 (-669 (-928 |#1|))) (-1232 (-669 |#1|))) 24)) (-1683 (((-1232 (-669 (-402 (-928 |#1|)))) (-1232 (-669 |#1|))) 33))) -(((-185 |#1|) (-10 -7 (-15 -1845 ((-1232 (-669 (-928 |#1|))) (-1232 (-669 |#1|)))) (-15 -1683 ((-1232 (-669 (-402 (-928 |#1|)))) (-1232 (-669 |#1|))))) (-170)) (T -185)) -((-1683 (*1 *2 *3) (-12 (-5 *3 (-1232 (-669 *4))) (-4 *4 (-170)) (-5 *2 (-1232 (-669 (-402 (-928 *4))))) (-5 *1 (-185 *4)))) (-1845 (*1 *2 *3) (-12 (-5 *3 (-1232 (-669 *4))) (-4 *4 (-170)) (-5 *2 (-1232 (-669 (-928 *4)))) (-5 *1 (-185 *4))))) -(-10 -7 (-15 -1845 ((-1232 (-669 (-928 |#1|))) (-1232 (-669 |#1|)))) (-15 -1683 ((-1232 (-669 (-402 (-928 |#1|)))) (-1232 (-669 |#1|))))) -((-3733 (((-1151 (-402 (-552))) (-1151 (-402 (-552))) (-1151 (-402 (-552)))) 66)) (-3753 (((-1151 (-402 (-552))) (-625 (-552)) (-625 (-552))) 75)) (-3664 (((-1151 (-402 (-552))) (-552)) 40)) (-1554 (((-1151 (-402 (-552))) (-552)) 52)) (-4073 (((-402 (-552)) (-1151 (-402 (-552)))) 62)) (-3676 (((-1151 (-402 (-552))) (-552)) 32)) (-3705 (((-1151 (-402 (-552))) (-552)) 48)) (-3695 (((-1151 (-402 (-552))) (-552)) 46)) (-3725 (((-1151 (-402 (-552))) (-1151 (-402 (-552))) (-1151 (-402 (-552)))) 60)) (-3580 (((-1151 (-402 (-552))) (-552)) 25)) (-3716 (((-402 (-552)) (-1151 (-402 (-552))) (-1151 (-402 (-552)))) 64)) (-3686 (((-1151 (-402 (-552))) (-552)) 30)) (-3744 (((-1151 (-402 (-552))) (-625 (-552))) 72))) -(((-186) (-10 -7 (-15 -3580 ((-1151 (-402 (-552))) (-552))) (-15 -3664 ((-1151 (-402 (-552))) (-552))) (-15 -3676 ((-1151 (-402 (-552))) (-552))) (-15 -3686 ((-1151 (-402 (-552))) (-552))) (-15 -3695 ((-1151 (-402 (-552))) (-552))) (-15 -3705 ((-1151 (-402 (-552))) (-552))) (-15 -1554 ((-1151 (-402 (-552))) (-552))) (-15 -3716 ((-402 (-552)) (-1151 (-402 (-552))) (-1151 (-402 (-552))))) (-15 -3725 ((-1151 (-402 (-552))) (-1151 (-402 (-552))) (-1151 (-402 (-552))))) (-15 -4073 ((-402 (-552)) (-1151 (-402 (-552))))) (-15 -3733 ((-1151 (-402 (-552))) (-1151 (-402 (-552))) (-1151 (-402 (-552))))) (-15 -3744 ((-1151 (-402 (-552))) (-625 (-552)))) (-15 -3753 ((-1151 (-402 (-552))) (-625 (-552)) (-625 (-552)))))) (T -186)) -((-3753 (*1 *2 *3 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)))) (-3744 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)))) (-3733 (*1 *2 *2 *2) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-1151 (-402 (-552)))) (-5 *2 (-402 (-552))) (-5 *1 (-186)))) (-3725 (*1 *2 *2 *2) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)))) (-3716 (*1 *2 *3 *3) (-12 (-5 *3 (-1151 (-402 (-552)))) (-5 *2 (-402 (-552))) (-5 *1 (-186)))) (-1554 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))) (-3705 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))) (-3695 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))) (-3686 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))) (-3676 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))) (-3664 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))) (-3580 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552))))) -(-10 -7 (-15 -3580 ((-1151 (-402 (-552))) (-552))) (-15 -3664 ((-1151 (-402 (-552))) (-552))) (-15 -3676 ((-1151 (-402 (-552))) (-552))) (-15 -3686 ((-1151 (-402 (-552))) (-552))) (-15 -3695 ((-1151 (-402 (-552))) (-552))) (-15 -3705 ((-1151 (-402 (-552))) (-552))) (-15 -1554 ((-1151 (-402 (-552))) (-552))) (-15 -3716 ((-402 (-552)) (-1151 (-402 (-552))) (-1151 (-402 (-552))))) (-15 -3725 ((-1151 (-402 (-552))) (-1151 (-402 (-552))) (-1151 (-402 (-552))))) (-15 -4073 ((-402 (-552)) (-1151 (-402 (-552))))) (-15 -3733 ((-1151 (-402 (-552))) (-1151 (-402 (-552))) (-1151 (-402 (-552))))) (-15 -3744 ((-1151 (-402 (-552))) (-625 (-552)))) (-15 -3753 ((-1151 (-402 (-552))) (-625 (-552)) (-625 (-552))))) -((-3773 (((-413 (-1145 (-552))) (-552)) 28)) (-3763 (((-625 (-1145 (-552))) (-552)) 23)) (-3909 (((-1145 (-552)) (-552)) 21))) -(((-187) (-10 -7 (-15 -3763 ((-625 (-1145 (-552))) (-552))) (-15 -3909 ((-1145 (-552)) (-552))) (-15 -3773 ((-413 (-1145 (-552))) (-552))))) (T -187)) -((-3773 (*1 *2 *3) (-12 (-5 *2 (-413 (-1145 (-552)))) (-5 *1 (-187)) (-5 *3 (-552)))) (-3909 (*1 *2 *3) (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-187)) (-5 *3 (-552)))) (-3763 (*1 *2 *3) (-12 (-5 *2 (-625 (-1145 (-552)))) (-5 *1 (-187)) (-5 *3 (-552))))) -(-10 -7 (-15 -3763 ((-625 (-1145 (-552))) (-552))) (-15 -3909 ((-1145 (-552)) (-552))) (-15 -3773 ((-413 (-1145 (-552))) (-552)))) -((-2004 (((-1129 (-221)) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 105)) (-2222 (((-625 (-1131)) (-1129 (-221))) NIL)) (-3784 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 81)) (-1983 (((-625 (-221)) (-311 (-221)) (-1149) (-1067 (-820 (-221)))) NIL)) (-2212 (((-625 (-1131)) (-625 (-221))) NIL)) (-2234 (((-221) (-1067 (-820 (-221)))) 24)) (-2245 (((-221) (-1067 (-820 (-221)))) 25)) (-3804 (((-374) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 98)) (-3794 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 42)) (-2190 (((-1131) (-221)) NIL)) (-2388 (((-1131) (-625 (-1131))) 20)) (-3815 (((-1011) (-1149) (-1149) (-1011)) 13))) -(((-188) (-10 -7 (-15 -3784 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3794 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2234 ((-221) (-1067 (-820 (-221))))) (-15 -2245 ((-221) (-1067 (-820 (-221))))) (-15 -3804 ((-374) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1983 ((-625 (-221)) (-311 (-221)) (-1149) (-1067 (-820 (-221))))) (-15 -2004 ((-1129 (-221)) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2190 ((-1131) (-221))) (-15 -2212 ((-625 (-1131)) (-625 (-221)))) (-15 -2222 ((-625 (-1131)) (-1129 (-221)))) (-15 -2388 ((-1131) (-625 (-1131)))) (-15 -3815 ((-1011) (-1149) (-1149) (-1011))))) (T -188)) -((-3815 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1011)) (-5 *3 (-1149)) (-5 *1 (-188)))) (-2388 (*1 *2 *3) (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-1131)) (-5 *1 (-188)))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-1129 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-188)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-625 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-188)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-188)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-1129 (-221))) (-5 *1 (-188)))) (-1983 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-221))) (-5 *4 (-1149)) (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-625 (-221))) (-5 *1 (-188)))) (-3804 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-374)) (-5 *1 (-188)))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-188)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-188)))) (-3794 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-188)))) (-3784 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-188))))) -(-10 -7 (-15 -3784 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3794 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2234 ((-221) (-1067 (-820 (-221))))) (-15 -2245 ((-221) (-1067 (-820 (-221))))) (-15 -3804 ((-374) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1983 ((-625 (-221)) (-311 (-221)) (-1149) (-1067 (-820 (-221))))) (-15 -2004 ((-1129 (-221)) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2190 ((-1131) (-221))) (-15 -2212 ((-625 (-1131)) (-625 (-221)))) (-15 -2222 ((-625 (-1131)) (-1129 (-221)))) (-15 -2388 ((-1131) (-625 (-1131)))) (-15 -3815 ((-1011) (-1149) (-1149) (-1011)))) -((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 55) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 32) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL))) -(((-189) (-767)) (T -189)) -NIL -(-767) -((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 60) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 41) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL))) -(((-190) (-767)) (T -190)) -NIL -(-767) -((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 69) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 40) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL))) -(((-191) (-767)) (T -191)) -NIL -(-767) -((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 56) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 34) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL))) -(((-192) (-767)) (T -192)) -NIL -(-767) -((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 67) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 38) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL))) -(((-193) (-767)) (T -193)) -NIL -(-767) -((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 73) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 36) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL))) -(((-194) (-767)) (T -194)) -NIL -(-767) -((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 80) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 44) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL))) -(((-195) (-767)) (T -195)) -NIL -(-767) -((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 70) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 40) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL))) -(((-196) (-767)) (T -196)) -NIL -(-767) -((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 66)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 32)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL))) -(((-197) (-767)) (T -197)) -NIL -(-767) -((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 63)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 34)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL))) -(((-198) (-767)) (T -198)) -NIL -(-767) -((-1671 (((-112) $ $) NIL)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 90) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 78) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL))) -(((-199) (-767)) (T -199)) -NIL -(-767) -((-3825 (((-3 (-2 (|:| -3362 (-114)) (|:| |w| (-221))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 85)) (-3853 (((-552) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 42)) (-3836 (((-3 (-625 (-221)) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 73))) -(((-200) (-10 -7 (-15 -3825 ((-3 (-2 (|:| -3362 (-114)) (|:| |w| (-221))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3836 ((-3 (-625 (-221)) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3853 ((-552) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -200)) -((-3853 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-552)) (-5 *1 (-200)))) (-3836 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-625 (-221))) (-5 *1 (-200)))) (-3825 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -3362 (-114)) (|:| |w| (-221)))) (-5 *1 (-200))))) -(-10 -7 (-15 -3825 ((-3 (-2 (|:| -3362 (-114)) (|:| |w| (-221))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3836 ((-3 (-625 (-221)) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3853 ((-552) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) -((-3920 (((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 39)) (-3906 (((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 130)) (-3892 (((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-669 (-311 (-221)))) 89)) (-3879 (((-374) (-669 (-311 (-221)))) 113)) (-3210 (((-669 (-311 (-221))) (-1232 (-311 (-221))) (-625 (-1149))) 110)) (-3958 (((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 30)) (-3934 (((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 43)) (-4073 (((-669 (-311 (-221))) (-669 (-311 (-221))) (-625 (-1149)) (-1232 (-311 (-221)))) 102)) (-3866 (((-374) (-374) (-625 (-374))) 107) (((-374) (-374) (-374)) 105)) (-3945 (((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 36))) -(((-201) (-10 -7 (-15 -3866 ((-374) (-374) (-374))) (-15 -3866 ((-374) (-374) (-625 (-374)))) (-15 -3879 ((-374) (-669 (-311 (-221))))) (-15 -3210 ((-669 (-311 (-221))) (-1232 (-311 (-221))) (-625 (-1149)))) (-15 -4073 ((-669 (-311 (-221))) (-669 (-311 (-221))) (-625 (-1149)) (-1232 (-311 (-221))))) (-15 -3892 ((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-669 (-311 (-221))))) (-15 -3906 ((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3920 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3934 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3945 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3958 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -201)) -((-3958 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))) (-3920 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374)))) (-5 *1 (-201)))) (-3892 (*1 *2 *3) (-12 (-5 *3 (-669 (-311 (-221)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374)))) (-5 *1 (-201)))) (-4073 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-669 (-311 (-221)))) (-5 *3 (-625 (-1149))) (-5 *4 (-1232 (-311 (-221)))) (-5 *1 (-201)))) (-3210 (*1 *2 *3 *4) (-12 (-5 *3 (-1232 (-311 (-221)))) (-5 *4 (-625 (-1149))) (-5 *2 (-669 (-311 (-221)))) (-5 *1 (-201)))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-669 (-311 (-221)))) (-5 *2 (-374)) (-5 *1 (-201)))) (-3866 (*1 *2 *2 *3) (-12 (-5 *3 (-625 (-374))) (-5 *2 (-374)) (-5 *1 (-201)))) (-3866 (*1 *2 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-201))))) -(-10 -7 (-15 -3866 ((-374) (-374) (-374))) (-15 -3866 ((-374) (-374) (-625 (-374)))) (-15 -3879 ((-374) (-669 (-311 (-221))))) (-15 -3210 ((-669 (-311 (-221))) (-1232 (-311 (-221))) (-625 (-1149)))) (-15 -4073 ((-669 (-311 (-221))) (-669 (-311 (-221))) (-625 (-1149)) (-1232 (-311 (-221))))) (-15 -3892 ((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-669 (-311 (-221))))) (-15 -3906 ((-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374))) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3920 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3934 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3945 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -3958 ((-374) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) -((-1671 (((-112) $ $) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 41)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-1345 (((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 64)) (-2281 (((-112) $ $) NIL))) -(((-202) (-780)) (T -202)) -NIL -(-780) -((-1671 (((-112) $ $) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 41)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-1345 (((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 62)) (-2281 (((-112) $ $) NIL))) -(((-203) (-780)) (T -203)) -NIL -(-780) -((-1671 (((-112) $ $) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 40)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-1345 (((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 66)) (-2281 (((-112) $ $) NIL))) -(((-204) (-780)) (T -204)) -NIL -(-780) -((-1671 (((-112) $ $) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 46)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-1345 (((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 75)) (-2281 (((-112) $ $) NIL))) -(((-205) (-780)) (T -205)) -NIL -(-780) -((-3202 (((-625 (-1149)) (-1149) (-751)) 23)) (-3971 (((-311 (-221)) (-311 (-221))) 31)) (-3995 (((-112) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 74)) (-3983 (((-112) (-221) (-221) (-625 (-311 (-221)))) 45))) -(((-206) (-10 -7 (-15 -3202 ((-625 (-1149)) (-1149) (-751))) (-15 -3971 ((-311 (-221)) (-311 (-221)))) (-15 -3983 ((-112) (-221) (-221) (-625 (-311 (-221))))) (-15 -3995 ((-112) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))))))) (T -206)) -((-3995 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) (-5 *2 (-112)) (-5 *1 (-206)))) (-3983 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-625 (-311 (-221)))) (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-206)))) (-3971 (*1 *2 *2) (-12 (-5 *2 (-311 (-221))) (-5 *1 (-206)))) (-3202 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-5 *2 (-625 (-1149))) (-5 *1 (-206)) (-5 *3 (-1149))))) -(-10 -7 (-15 -3202 ((-625 (-1149)) (-1149) (-751))) (-15 -3971 ((-311 (-221)) (-311 (-221)))) (-15 -3983 ((-112) (-221) (-221) (-625 (-311 (-221))))) (-15 -3995 ((-112) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))))) -((-1671 (((-112) $ $) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 26)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-3850 (((-1011) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 57)) (-2281 (((-112) $ $) NIL))) -(((-207) (-871)) (T -207)) -NIL -(-871) -((-1671 (((-112) $ $) NIL)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 21)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-3850 (((-1011) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) NIL)) (-2281 (((-112) $ $) NIL))) -(((-208) (-871)) (T -208)) -NIL -(-871) -((-1671 (((-112) $ $) NIL)) (-1851 ((|#2| $ (-751) |#2|) 11)) (-2183 (($) 8)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2154 ((|#2| $ (-751)) 10)) (-1683 (((-839) $) 18)) (-2281 (((-112) $ $) 13))) -(((-209 |#1| |#2|) (-13 (-1073) (-10 -8 (-15 -2183 ($)) (-15 -2154 (|#2| $ (-751))) (-15 -1851 (|#2| $ (-751) |#2|)))) (-897) (-1073)) (T -209)) -((-2183 (*1 *1) (-12 (-5 *1 (-209 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1073)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *2 (-1073)) (-5 *1 (-209 *4 *2)) (-14 *4 (-897)))) (-1851 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-209 *4 *2)) (-14 *4 (-897)) (-4 *2 (-1073))))) -(-13 (-1073) (-10 -8 (-15 -2183 ($)) (-15 -2154 (|#2| $ (-751))) (-15 -1851 (|#2| $ (-751) |#2|)))) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3867 (((-1237) $) 36) (((-1237) $ (-897) (-897)) 38)) (-2154 (($ $ (-965)) 19) (((-241 (-1131)) $ (-1149)) 15)) (-1407 (((-1237) $) 34)) (-1683 (((-839) $) 31) (($ (-625 |#1|)) 8)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $ $) 27)) (-2382 (($ $ $) 22))) -(((-210 |#1|) (-13 (-1073) (-10 -8 (-15 -2154 ($ $ (-965))) (-15 -2154 ((-241 (-1131)) $ (-1149))) (-15 -2382 ($ $ $)) (-15 -2393 ($ $ $)) (-15 -1683 ($ (-625 |#1|))) (-15 -1407 ((-1237) $)) (-15 -3867 ((-1237) $)) (-15 -3867 ((-1237) $ (-897) (-897))))) (-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $)) (-15 -3867 ((-1237) $))))) (T -210)) -((-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-965)) (-5 *1 (-210 *3)) (-4 *3 (-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $)) (-15 -3867 ((-1237) $))))))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-241 (-1131))) (-5 *1 (-210 *4)) (-4 *4 (-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ *3)) (-15 -1407 ((-1237) $)) (-15 -3867 ((-1237) $))))))) (-2382 (*1 *1 *1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $)) (-15 -3867 ((-1237) $))))))) (-2393 (*1 *1 *1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $)) (-15 -3867 ((-1237) $))))))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $)) (-15 -3867 ((-1237) $))))) (-5 *1 (-210 *3)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-210 *3)) (-4 *3 (-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 (*2 $)) (-15 -3867 (*2 $))))))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-210 *3)) (-4 *3 (-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 (*2 $)) (-15 -3867 (*2 $))))))) (-3867 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1237)) (-5 *1 (-210 *4)) (-4 *4 (-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 (*2 $)) (-15 -3867 (*2 $)))))))) -(-13 (-1073) (-10 -8 (-15 -2154 ($ $ (-965))) (-15 -2154 ((-241 (-1131)) $ (-1149))) (-15 -2382 ($ $ $)) (-15 -2393 ($ $ $)) (-15 -1683 ($ (-625 |#1|))) (-15 -1407 ((-1237) $)) (-15 -3867 ((-1237) $)) (-15 -3867 ((-1237) $ (-897) (-897))))) -((-4007 ((|#2| |#4| (-1 |#2| |#2|)) 46))) -(((-211 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4007 (|#2| |#4| (-1 |#2| |#2|)))) (-358) (-1208 |#1|) (-1208 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -211)) -((-4007 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-358)) (-4 *6 (-1208 (-402 *2))) (-4 *2 (-1208 *5)) (-5 *1 (-211 *5 *2 *6 *3)) (-4 *3 (-337 *5 *2 *6))))) -(-10 -7 (-15 -4007 (|#2| |#4| (-1 |#2| |#2|)))) -((-4054 ((|#2| |#2| (-751) |#2|) 42)) (-4042 ((|#2| |#2| (-751) |#2|) 38)) (-3265 (((-625 |#2|) (-625 (-2 (|:| |deg| (-751)) (|:| -2430 |#2|)))) 57)) (-4030 (((-625 (-2 (|:| |deg| (-751)) (|:| -2430 |#2|))) |#2|) 53)) (-4067 (((-112) |#2|) 50)) (-3011 (((-413 |#2|) |#2|) 77)) (-3824 (((-413 |#2|) |#2|) 76)) (-3274 ((|#2| |#2| (-751) |#2|) 36)) (-4018 (((-2 (|:| |cont| |#1|) (|:| -3449 (-625 (-2 (|:| |irr| |#2|) (|:| -3515 (-552)))))) |#2| (-112)) 69))) -(((-212 |#1| |#2|) (-10 -7 (-15 -3824 ((-413 |#2|) |#2|)) (-15 -3011 ((-413 |#2|) |#2|)) (-15 -4018 ((-2 (|:| |cont| |#1|) (|:| -3449 (-625 (-2 (|:| |irr| |#2|) (|:| -3515 (-552)))))) |#2| (-112))) (-15 -4030 ((-625 (-2 (|:| |deg| (-751)) (|:| -2430 |#2|))) |#2|)) (-15 -3265 ((-625 |#2|) (-625 (-2 (|:| |deg| (-751)) (|:| -2430 |#2|))))) (-15 -3274 (|#2| |#2| (-751) |#2|)) (-15 -4042 (|#2| |#2| (-751) |#2|)) (-15 -4054 (|#2| |#2| (-751) |#2|)) (-15 -4067 ((-112) |#2|))) (-344) (-1208 |#1|)) (T -212)) -((-4067 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-112)) (-5 *1 (-212 *4 *3)) (-4 *3 (-1208 *4)))) (-4054 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-751)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1208 *4)))) (-4042 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-751)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1208 *4)))) (-3274 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-751)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1208 *4)))) (-3265 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| |deg| (-751)) (|:| -2430 *5)))) (-4 *5 (-1208 *4)) (-4 *4 (-344)) (-5 *2 (-625 *5)) (-5 *1 (-212 *4 *5)))) (-4030 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-625 (-2 (|:| |deg| (-751)) (|:| -2430 *3)))) (-5 *1 (-212 *4 *3)) (-4 *3 (-1208 *4)))) (-4018 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3449 (-625 (-2 (|:| |irr| *3) (|:| -3515 (-552))))))) (-5 *1 (-212 *5 *3)) (-4 *3 (-1208 *5)))) (-3011 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-413 *3)) (-5 *1 (-212 *4 *3)) (-4 *3 (-1208 *4)))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-413 *3)) (-5 *1 (-212 *4 *3)) (-4 *3 (-1208 *4))))) -(-10 -7 (-15 -3824 ((-413 |#2|) |#2|)) (-15 -3011 ((-413 |#2|) |#2|)) (-15 -4018 ((-2 (|:| |cont| |#1|) (|:| -3449 (-625 (-2 (|:| |irr| |#2|) (|:| -3515 (-552)))))) |#2| (-112))) (-15 -4030 ((-625 (-2 (|:| |deg| (-751)) (|:| -2430 |#2|))) |#2|)) (-15 -3265 ((-625 |#2|) (-625 (-2 (|:| |deg| (-751)) (|:| -2430 |#2|))))) (-15 -3274 (|#2| |#2| (-751) |#2|)) (-15 -4042 (|#2| |#2| (-751) |#2|)) (-15 -4054 (|#2| |#2| (-751) |#2|)) (-15 -4067 ((-112) |#2|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4177 (((-552) $) NIL (|has| (-552) (-302)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL (|has| (-552) (-800)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-1149) "failed") $) NIL (|has| (-552) (-1014 (-1149)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| (-552) (-1014 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-552) (-1014 (-552))))) (-1895 (((-552) $) NIL) (((-1149) $) NIL (|has| (-552) (-1014 (-1149)))) (((-402 (-552)) $) NIL (|has| (-552) (-1014 (-552)))) (((-552) $) NIL (|has| (-552) (-1014 (-552))))) (-2851 (($ $ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| (-552) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| (-552) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-669 (-552)) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-552) (-537)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3620 (((-112) $) NIL (|has| (-552) (-800)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| (-552) (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| (-552) (-862 (-374))))) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL)) (-1356 (((-552) $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| (-552) (-1124)))) (-3630 (((-112) $) NIL (|has| (-552) (-800)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| (-552) (-827)))) (-1996 (($ (-1 (-552) (-552)) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-552) (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL (|has| (-552) (-302))) (((-402 (-552)) $) NIL)) (-4189 (((-552) $) NIL (|has| (-552) (-537)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-4073 (($ $ (-625 (-552)) (-625 (-552))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-552) (-552)) NIL (|has| (-552) (-304 (-552)))) (($ $ (-289 (-552))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-625 (-289 (-552)))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-625 (-1149)) (-625 (-552))) NIL (|has| (-552) (-507 (-1149) (-552)))) (($ $ (-1149) (-552)) NIL (|has| (-552) (-507 (-1149) (-552))))) (-2397 (((-751) $) NIL)) (-2154 (($ $ (-552)) NIL (|has| (-552) (-281 (-552) (-552))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $) NIL (|has| (-552) (-229))) (($ $ (-751)) NIL (|has| (-552) (-229))) (($ $ (-1149)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1 (-552) (-552)) (-751)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2265 (($ $) NIL)) (-1368 (((-552) $) NIL)) (-4080 (($ (-402 (-552))) 9)) (-2042 (((-868 (-552)) $) NIL (|has| (-552) (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| (-552) (-598 (-868 (-374))))) (((-528) $) NIL (|has| (-552) (-598 (-528)))) (((-374) $) NIL (|has| (-552) (-998))) (((-221) $) NIL (|has| (-552) (-998)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-552) (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) 8) (($ (-552)) NIL) (($ (-1149)) NIL (|has| (-552) (-1014 (-1149)))) (((-402 (-552)) $) NIL) (((-980 10) $) 10)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| (-552) (-885))) (|has| (-552) (-143))))) (-4141 (((-751)) NIL)) (-4199 (((-552) $) NIL (|has| (-552) (-537)))) (-3518 (((-112) $ $) NIL)) (-1727 (($ $) NIL (|has| (-552) (-800)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $) NIL (|has| (-552) (-229))) (($ $ (-751)) NIL (|has| (-552) (-229))) (($ $ (-1149)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1 (-552) (-552)) (-751)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2346 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2307 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2404 (($ $ $) NIL) (($ (-552) (-552)) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ (-552) $) NIL) (($ $ (-552)) NIL))) -(((-213) (-13 (-968 (-552)) (-10 -8 (-15 -1683 ((-402 (-552)) $)) (-15 -1683 ((-980 10) $)) (-15 -4166 ((-402 (-552)) $)) (-15 -4080 ($ (-402 (-552))))))) (T -213)) -((-1683 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-213)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-980 10)) (-5 *1 (-213)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-213)))) (-4080 (*1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-213))))) -(-13 (-968 (-552)) (-10 -8 (-15 -1683 ((-402 (-552)) $)) (-15 -1683 ((-980 10) $)) (-15 -4166 ((-402 (-552)) $)) (-15 -4080 ($ (-402 (-552)))))) -((-1671 (((-112) $ $) NIL)) (-2055 (((-1091) $) 13)) (-2883 (((-1131) $) NIL)) (-3545 (((-477) $) 10)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 25) (((-1154) $) NIL) (($ (-1154)) NIL)) (-1300 (((-1108) $) 15)) (-2281 (((-112) $ $) NIL))) -(((-214) (-13 (-1056) (-10 -8 (-15 -3545 ((-477) $)) (-15 -2055 ((-1091) $)) (-15 -1300 ((-1108) $))))) (T -214)) -((-3545 (*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-214)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-214)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-214))))) -(-13 (-1056) (-10 -8 (-15 -3545 ((-477) $)) (-15 -2055 ((-1091) $)) (-15 -1300 ((-1108) $)))) -((-2481 (((-3 (|:| |f1| (-820 |#2|)) (|:| |f2| (-625 (-820 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1065 (-820 |#2|)) (-1131)) 28) (((-3 (|:| |f1| (-820 |#2|)) (|:| |f2| (-625 (-820 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1065 (-820 |#2|))) 24)) (-4093 (((-3 (|:| |f1| (-820 |#2|)) (|:| |f2| (-625 (-820 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1149) (-820 |#2|) (-820 |#2|) (-112)) 17))) -(((-215 |#1| |#2|) (-10 -7 (-15 -2481 ((-3 (|:| |f1| (-820 |#2|)) (|:| |f2| (-625 (-820 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1065 (-820 |#2|)))) (-15 -2481 ((-3 (|:| |f1| (-820 |#2|)) (|:| |f2| (-625 (-820 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1065 (-820 |#2|)) (-1131))) (-15 -4093 ((-3 (|:| |f1| (-820 |#2|)) (|:| |f2| (-625 (-820 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1149) (-820 |#2|) (-820 |#2|) (-112)))) (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))) (-13 (-1171) (-935) (-29 |#1|))) (T -215)) -((-4093 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1149)) (-5 *6 (-112)) (-4 *7 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-4 *3 (-13 (-1171) (-935) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-820 *3)) (|:| |f2| (-625 (-820 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *7 *3)) (-5 *5 (-820 *3)))) (-2481 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1065 (-820 *3))) (-5 *5 (-1131)) (-4 *3 (-13 (-1171) (-935) (-29 *6))) (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-3 (|:| |f1| (-820 *3)) (|:| |f2| (-625 (-820 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *6 *3)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *4 (-1065 (-820 *3))) (-4 *3 (-13 (-1171) (-935) (-29 *5))) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-3 (|:| |f1| (-820 *3)) (|:| |f2| (-625 (-820 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *5 *3))))) -(-10 -7 (-15 -2481 ((-3 (|:| |f1| (-820 |#2|)) (|:| |f2| (-625 (-820 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1065 (-820 |#2|)))) (-15 -2481 ((-3 (|:| |f1| (-820 |#2|)) (|:| |f2| (-625 (-820 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1065 (-820 |#2|)) (-1131))) (-15 -4093 ((-3 (|:| |f1| (-820 |#2|)) (|:| |f2| (-625 (-820 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1149) (-820 |#2|) (-820 |#2|) (-112)))) -((-2481 (((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-402 (-928 |#1|)))) (-1131)) 46) (((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-402 (-928 |#1|))))) 43) (((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-311 |#1|))) (-1131)) 47) (((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-311 |#1|)))) 20))) -(((-216 |#1|) (-10 -7 (-15 -2481 ((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-311 |#1|))))) (-15 -2481 ((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-311 |#1|))) (-1131))) (-15 -2481 ((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-402 (-928 |#1|)))))) (-15 -2481 ((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-402 (-928 |#1|)))) (-1131)))) (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (T -216)) -((-2481 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1065 (-820 (-402 (-928 *6))))) (-5 *5 (-1131)) (-5 *3 (-402 (-928 *6))) (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-3 (|:| |f1| (-820 (-311 *6))) (|:| |f2| (-625 (-820 (-311 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-216 *6)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *4 (-1065 (-820 (-402 (-928 *5))))) (-5 *3 (-402 (-928 *5))) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-3 (|:| |f1| (-820 (-311 *5))) (|:| |f2| (-625 (-820 (-311 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-216 *5)))) (-2481 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-402 (-928 *6))) (-5 *4 (-1065 (-820 (-311 *6)))) (-5 *5 (-1131)) (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-3 (|:| |f1| (-820 (-311 *6))) (|:| |f2| (-625 (-820 (-311 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-216 *6)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1065 (-820 (-311 *5)))) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-3 (|:| |f1| (-820 (-311 *5))) (|:| |f2| (-625 (-820 (-311 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-216 *5))))) -(-10 -7 (-15 -2481 ((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-311 |#1|))))) (-15 -2481 ((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-311 |#1|))) (-1131))) (-15 -2481 ((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-402 (-928 |#1|)))))) (-15 -2481 ((-3 (|:| |f1| (-820 (-311 |#1|))) (|:| |f2| (-625 (-820 (-311 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-402 (-928 |#1|)) (-1065 (-820 (-402 (-928 |#1|)))) (-1131)))) -((-2163 (((-2 (|:| -4256 (-1145 |#1|)) (|:| |deg| (-897))) (-1145 |#1|)) 21)) (-3455 (((-625 (-311 |#2|)) (-311 |#2|) (-897)) 42))) -(((-217 |#1| |#2|) (-10 -7 (-15 -2163 ((-2 (|:| -4256 (-1145 |#1|)) (|:| |deg| (-897))) (-1145 |#1|))) (-15 -3455 ((-625 (-311 |#2|)) (-311 |#2|) (-897)))) (-1025) (-13 (-544) (-827))) (T -217)) -((-3455 (*1 *2 *3 *4) (-12 (-5 *4 (-897)) (-4 *6 (-13 (-544) (-827))) (-5 *2 (-625 (-311 *6))) (-5 *1 (-217 *5 *6)) (-5 *3 (-311 *6)) (-4 *5 (-1025)))) (-2163 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-5 *2 (-2 (|:| -4256 (-1145 *4)) (|:| |deg| (-897)))) (-5 *1 (-217 *4 *5)) (-5 *3 (-1145 *4)) (-4 *5 (-13 (-544) (-827)))))) -(-10 -7 (-15 -2163 ((-2 (|:| -4256 (-1145 |#1|)) (|:| |deg| (-897))) (-1145 |#1|))) (-15 -3455 ((-625 (-311 |#2|)) (-311 |#2|) (-897)))) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3231 ((|#1| $) NIL)) (-1549 ((|#1| $) 25)) (-3495 (((-112) $ (-751)) NIL)) (-3101 (($) NIL T CONST)) (-2327 (($ $) NIL)) (-1883 (($ $) 31)) (-2406 ((|#1| |#1| $) NIL)) (-2395 ((|#1| $) NIL)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-3456 (((-751) $) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2953 ((|#1| $) NIL)) (-3213 ((|#1| |#1| $) 28)) (-3203 ((|#1| |#1| $) 30)) (-3966 (($ |#1| $) NIL)) (-2207 (((-751) $) 27)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2314 ((|#1| $) NIL)) (-3193 ((|#1| $) 26)) (-3186 ((|#1| $) 24)) (-2966 ((|#1| $) NIL)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2354 ((|#1| |#1| $) NIL)) (-1916 (((-112) $) 9)) (-3600 (($) NIL)) (-2340 ((|#1| $) NIL)) (-3240 (($) NIL) (($ (-625 |#1|)) 16)) (-2389 (((-751) $) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-3224 ((|#1| $) 13)) (-2977 (($ (-625 |#1|)) NIL)) (-2299 ((|#1| $) NIL)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-218 |#1|) (-13 (-249 |#1|) (-10 -8 (-15 -3240 ($ (-625 |#1|))))) (-1073)) (T -218)) -((-3240 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-218 *3))))) -(-13 (-249 |#1|) (-10 -8 (-15 -3240 ($ (-625 |#1|))))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4118 (($ (-311 |#1|)) 23)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2023 (((-112) $) NIL)) (-1893 (((-3 (-311 |#1|) "failed") $) NIL)) (-1895 (((-311 |#1|) $) NIL)) (-4169 (($ $) 31)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-1996 (($ (-1 (-311 |#1|) (-311 |#1|)) $) NIL)) (-4144 (((-311 |#1|) $) NIL)) (-4145 (($ $) 30)) (-2883 (((-1131) $) NIL)) (-4132 (((-112) $) NIL)) (-2831 (((-1093) $) NIL)) (-3212 (($ (-751)) NIL)) (-4106 (($ $) 32)) (-4276 (((-552) $) NIL)) (-1683 (((-839) $) 57) (($ (-552)) NIL) (($ (-311 |#1|)) NIL)) (-3637 (((-311 |#1|) $ $) NIL)) (-4141 (((-751)) NIL)) (-2089 (($) 25 T CONST)) (-2100 (($) 50 T CONST)) (-2281 (((-112) $ $) 28)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 19)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 24) (($ (-311 |#1|) $) 18))) -(((-219 |#1| |#2|) (-13 (-602 (-311 |#1|)) (-1014 (-311 |#1|)) (-10 -8 (-15 -4144 ((-311 |#1|) $)) (-15 -4145 ($ $)) (-15 -4169 ($ $)) (-15 -3637 ((-311 |#1|) $ $)) (-15 -3212 ($ (-751))) (-15 -4132 ((-112) $)) (-15 -2023 ((-112) $)) (-15 -4276 ((-552) $)) (-15 -1996 ($ (-1 (-311 |#1|) (-311 |#1|)) $)) (-15 -4118 ($ (-311 |#1|))) (-15 -4106 ($ $)))) (-13 (-1025) (-827)) (-625 (-1149))) (T -219)) -((-4144 (*1 *2 *1) (-12 (-5 *2 (-311 *3)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-625 (-1149))))) (-4145 (*1 *1 *1) (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827))) (-14 *3 (-625 (-1149))))) (-4169 (*1 *1 *1) (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827))) (-14 *3 (-625 (-1149))))) (-3637 (*1 *2 *1 *1) (-12 (-5 *2 (-311 *3)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-625 (-1149))))) (-3212 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-625 (-1149))))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-625 (-1149))))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-625 (-1149))))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-625 (-1149))))) (-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-311 *3) (-311 *3))) (-4 *3 (-13 (-1025) (-827))) (-5 *1 (-219 *3 *4)) (-14 *4 (-625 (-1149))))) (-4118 (*1 *1 *2) (-12 (-5 *2 (-311 *3)) (-4 *3 (-13 (-1025) (-827))) (-5 *1 (-219 *3 *4)) (-14 *4 (-625 (-1149))))) (-4106 (*1 *1 *1) (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827))) (-14 *3 (-625 (-1149)))))) -(-13 (-602 (-311 |#1|)) (-1014 (-311 |#1|)) (-10 -8 (-15 -4144 ((-311 |#1|) $)) (-15 -4145 ($ $)) (-15 -4169 ($ $)) (-15 -3637 ((-311 |#1|) $ $)) (-15 -3212 ($ (-751))) (-15 -4132 ((-112) $)) (-15 -2023 ((-112) $)) (-15 -4276 ((-552) $)) (-15 -1996 ($ (-1 (-311 |#1|) (-311 |#1|)) $)) (-15 -4118 ($ (-311 |#1|))) (-15 -4106 ($ $)))) -((-4158 (((-112) (-1131)) 22)) (-4170 (((-3 (-820 |#2|) "failed") (-596 |#2|) |#2| (-820 |#2|) (-820 |#2|) (-112)) 32)) (-4180 (((-3 (-112) "failed") (-1145 |#2|) (-820 |#2|) (-820 |#2|) (-112)) 73) (((-3 (-112) "failed") (-928 |#1|) (-1149) (-820 |#2|) (-820 |#2|) (-112)) 74))) -(((-220 |#1| |#2|) (-10 -7 (-15 -4158 ((-112) (-1131))) (-15 -4170 ((-3 (-820 |#2|) "failed") (-596 |#2|) |#2| (-820 |#2|) (-820 |#2|) (-112))) (-15 -4180 ((-3 (-112) "failed") (-928 |#1|) (-1149) (-820 |#2|) (-820 |#2|) (-112))) (-15 -4180 ((-3 (-112) "failed") (-1145 |#2|) (-820 |#2|) (-820 |#2|) (-112)))) (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))) (-13 (-1171) (-29 |#1|))) (T -220)) -((-4180 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1145 *6)) (-5 *4 (-820 *6)) (-4 *6 (-13 (-1171) (-29 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-220 *5 *6)))) (-4180 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-928 *6)) (-5 *4 (-1149)) (-5 *5 (-820 *7)) (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-4 *7 (-13 (-1171) (-29 *6))) (-5 *1 (-220 *6 *7)))) (-4170 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-820 *4)) (-5 *3 (-596 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1171) (-29 *6))) (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-220 *6 *4)))) (-4158 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-112)) (-5 *1 (-220 *4 *5)) (-4 *5 (-13 (-1171) (-29 *4)))))) -(-10 -7 (-15 -4158 ((-112) (-1131))) (-15 -4170 ((-3 (-820 |#2|) "failed") (-596 |#2|) |#2| (-820 |#2|) (-820 |#2|) (-112))) (-15 -4180 ((-3 (-112) "failed") (-928 |#1|) (-1149) (-820 |#2|) (-820 |#2|) (-112))) (-15 -4180 ((-3 (-112) "failed") (-1145 |#2|) (-820 |#2|) (-820 |#2|) (-112)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 87)) (-4177 (((-552) $) 98)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2162 (($ $) NIL)) (-3728 (($ $) 75)) (-3604 (($ $) 63)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-3837 (($ $) 54)) (-2408 (((-112) $ $) NIL)) (-3710 (($ $) 73)) (-3581 (($ $) 61)) (-4127 (((-552) $) 115)) (-3749 (($ $) 78)) (-3627 (($ $) 65)) (-3101 (($) NIL T CONST)) (-4154 (($ $) NIL)) (-1893 (((-3 (-552) "failed") $) 114) (((-3 (-402 (-552)) "failed") $) 111)) (-1895 (((-552) $) 112) (((-402 (-552)) $) 109)) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) 91)) (-3341 (((-402 (-552)) $ (-751)) 107) (((-402 (-552)) $ (-751) (-751)) 106)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-1923 (((-897)) 27) (((-897) (-897)) NIL (|has| $ (-6 -4344)))) (-3620 (((-112) $) NIL)) (-1385 (($) 37)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL)) (-2172 (((-552) $) 33)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL)) (-4209 (($ $) NIL)) (-3630 (((-112) $) 86)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) 51) (($) 32 (-12 (-2960 (|has| $ (-6 -4336))) (-2960 (|has| $ (-6 -4344)))))) (-3332 (($ $ $) 50) (($) 31 (-12 (-2960 (|has| $ (-6 -4336))) (-2960 (|has| $ (-6 -4344)))))) (-2594 (((-552) $) 25)) (-3331 (($ $) 28)) (-4138 (($ $) 55)) (-2458 (($ $) 60)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-3586 (((-897) (-552)) NIL (|has| $ (-6 -4344)))) (-2831 (((-1093) $) 89)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL)) (-4189 (($ $) NIL)) (-2189 (($ (-552) (-552)) NIL) (($ (-552) (-552) (-897)) 99)) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3564 (((-552) $) 26)) (-3323 (($) 36)) (-2863 (($ $) 59)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1542 (((-897)) NIL) (((-897) (-897)) NIL (|has| $ (-6 -4344)))) (-3072 (($ $ (-751)) NIL) (($ $) 92)) (-3574 (((-897) (-552)) NIL (|has| $ (-6 -4344)))) (-3759 (($ $) 76)) (-3638 (($ $) 66)) (-3738 (($ $) 77)) (-3614 (($ $) 64)) (-3721 (($ $) 74)) (-3593 (($ $) 62)) (-2042 (((-374) $) 103) (((-221) $) 100) (((-868 (-374)) $) NIL) (((-528) $) 43)) (-1683 (((-839) $) 40) (($ (-552)) 58) (($ $) NIL) (($ (-402 (-552))) NIL) (($ (-552)) 58) (($ (-402 (-552))) NIL)) (-4141 (((-751)) NIL)) (-4199 (($ $) NIL)) (-3597 (((-897)) 30) (((-897) (-897)) NIL (|has| $ (-6 -4344)))) (-3929 (((-897)) 23)) (-3789 (($ $) 81)) (-3670 (($ $) 69) (($ $ $) 108)) (-3518 (((-112) $ $) NIL)) (-3769 (($ $) 79)) (-3648 (($ $) 67)) (-3809 (($ $) 84)) (-3691 (($ $) 72)) (-3742 (($ $) 82)) (-3700 (($ $) 70)) (-3797 (($ $) 83)) (-3681 (($ $) 71)) (-3778 (($ $) 80)) (-3659 (($ $) 68)) (-1727 (($ $) 116)) (-2089 (($) 34 T CONST)) (-2100 (($) 35 T CONST)) (-3010 (((-1131) $) 17) (((-1131) $ (-112)) 19) (((-1237) (-802) $) 20) (((-1237) (-802) $ (-112)) 21)) (-1769 (($ $) 95)) (-3768 (($ $ (-751)) NIL) (($ $) NIL)) (-1739 (($ $ $) 97)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 52)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 44)) (-2404 (($ $ $) 85) (($ $ (-552)) 53)) (-2393 (($ $) 45) (($ $ $) 47)) (-2382 (($ $ $) 46)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) 56) (($ $ (-402 (-552))) 128) (($ $ $) 57)) (* (($ (-897) $) 29) (($ (-751) $) NIL) (($ (-552) $) 49) (($ $ $) 48) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL))) -(((-221) (-13 (-399) (-229) (-808) (-1171) (-598 (-528)) (-10 -8 (-15 -2404 ($ $ (-552))) (-15 ** ($ $ $)) (-15 -3323 ($)) (-15 -3331 ($ $)) (-15 -4138 ($ $)) (-15 -3670 ($ $ $)) (-15 -1769 ($ $)) (-15 -1739 ($ $ $)) (-15 -3341 ((-402 (-552)) $ (-751))) (-15 -3341 ((-402 (-552)) $ (-751) (-751)))))) (T -221)) -((** (*1 *1 *1 *1) (-5 *1 (-221))) (-2404 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-221)))) (-3323 (*1 *1) (-5 *1 (-221))) (-3331 (*1 *1 *1) (-5 *1 (-221))) (-4138 (*1 *1 *1) (-5 *1 (-221))) (-3670 (*1 *1 *1 *1) (-5 *1 (-221))) (-1769 (*1 *1 *1) (-5 *1 (-221))) (-1739 (*1 *1 *1 *1) (-5 *1 (-221))) (-3341 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-552))) (-5 *1 (-221)))) (-3341 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-552))) (-5 *1 (-221))))) -(-13 (-399) (-229) (-808) (-1171) (-598 (-528)) (-10 -8 (-15 -2404 ($ $ (-552))) (-15 ** ($ $ $)) (-15 -3323 ($)) (-15 -3331 ($ $)) (-15 -4138 ($ $)) (-15 -3670 ($ $ $)) (-15 -1769 ($ $)) (-15 -1739 ($ $ $)) (-15 -3341 ((-402 (-552)) $ (-751))) (-15 -3341 ((-402 (-552)) $ (-751) (-751))))) -((-1759 (((-167 (-221)) (-751) (-167 (-221))) 11) (((-221) (-751) (-221)) 12)) (-4192 (((-167 (-221)) (-167 (-221))) 13) (((-221) (-221)) 14)) (-4202 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 19) (((-221) (-221) (-221)) 22)) (-1749 (((-167 (-221)) (-167 (-221))) 25) (((-221) (-221)) 24)) (-1792 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 43) (((-221) (-221) (-221)) 35)) (-1815 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 48) (((-221) (-221) (-221)) 45)) (-1780 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 15) (((-221) (-221) (-221)) 16)) (-1804 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 17) (((-221) (-221) (-221)) 18)) (-1836 (((-167 (-221)) (-167 (-221))) 60) (((-221) (-221)) 59)) (-1825 (((-221) (-221)) 54) (((-167 (-221)) (-167 (-221))) 58)) (-1769 (((-167 (-221)) (-167 (-221))) 8) (((-221) (-221)) 9)) (-1739 (((-167 (-221)) (-167 (-221)) (-167 (-221))) 30) (((-221) (-221) (-221)) 26))) -(((-222) (-10 -7 (-15 -1769 ((-221) (-221))) (-15 -1769 ((-167 (-221)) (-167 (-221)))) (-15 -1739 ((-221) (-221) (-221))) (-15 -1739 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -4192 ((-221) (-221))) (-15 -4192 ((-167 (-221)) (-167 (-221)))) (-15 -1749 ((-221) (-221))) (-15 -1749 ((-167 (-221)) (-167 (-221)))) (-15 -1759 ((-221) (-751) (-221))) (-15 -1759 ((-167 (-221)) (-751) (-167 (-221)))) (-15 -1780 ((-221) (-221) (-221))) (-15 -1780 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1792 ((-221) (-221) (-221))) (-15 -1792 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1804 ((-221) (-221) (-221))) (-15 -1804 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1815 ((-221) (-221) (-221))) (-15 -1815 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1825 ((-167 (-221)) (-167 (-221)))) (-15 -1825 ((-221) (-221))) (-15 -1836 ((-221) (-221))) (-15 -1836 ((-167 (-221)) (-167 (-221)))) (-15 -4202 ((-221) (-221) (-221))) (-15 -4202 ((-167 (-221)) (-167 (-221)) (-167 (-221)))))) (T -222)) -((-4202 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-4202 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1836 (*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1836 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1825 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1825 (*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1815 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1815 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1804 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1804 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1792 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1792 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1780 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1780 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1759 (*1 *2 *3 *2) (-12 (-5 *2 (-167 (-221))) (-5 *3 (-751)) (-5 *1 (-222)))) (-1759 (*1 *2 *3 *2) (-12 (-5 *2 (-221)) (-5 *3 (-751)) (-5 *1 (-222)))) (-1749 (*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1749 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-4192 (*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-4192 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1739 (*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1739 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1769 (*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) (-1769 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))) -(-10 -7 (-15 -1769 ((-221) (-221))) (-15 -1769 ((-167 (-221)) (-167 (-221)))) (-15 -1739 ((-221) (-221) (-221))) (-15 -1739 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -4192 ((-221) (-221))) (-15 -4192 ((-167 (-221)) (-167 (-221)))) (-15 -1749 ((-221) (-221))) (-15 -1749 ((-167 (-221)) (-167 (-221)))) (-15 -1759 ((-221) (-751) (-221))) (-15 -1759 ((-167 (-221)) (-751) (-167 (-221)))) (-15 -1780 ((-221) (-221) (-221))) (-15 -1780 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1792 ((-221) (-221) (-221))) (-15 -1792 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1804 ((-221) (-221) (-221))) (-15 -1804 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1815 ((-221) (-221) (-221))) (-15 -1815 ((-167 (-221)) (-167 (-221)) (-167 (-221)))) (-15 -1825 ((-167 (-221)) (-167 (-221)))) (-15 -1825 ((-221) (-221))) (-15 -1836 ((-221) (-221))) (-15 -1836 ((-167 (-221)) (-167 (-221)))) (-15 -4202 ((-221) (-221) (-221))) (-15 -4202 ((-167 (-221)) (-167 (-221)) (-167 (-221))))) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2983 (($ (-751) (-751)) NIL)) (-4219 (($ $ $) NIL)) (-2003 (($ (-1232 |#1|)) NIL) (($ $) NIL)) (-1618 (($ |#1| |#1| |#1|) 32)) (-4089 (((-112) $) NIL)) (-4208 (($ $ (-552) (-552)) NIL)) (-4198 (($ $ (-552) (-552)) NIL)) (-4188 (($ $ (-552) (-552) (-552) (-552)) NIL)) (-4241 (($ $) NIL)) (-4114 (((-112) $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-4176 (($ $ (-552) (-552) $) NIL)) (-1851 ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-625 (-552)) (-625 (-552)) $) NIL)) (-2701 (($ $ (-552) (-1232 |#1|)) NIL)) (-2691 (($ $ (-552) (-1232 |#1|)) NIL)) (-1487 (($ |#1| |#1| |#1|) 31)) (-2467 (($ (-751) |#1|) NIL)) (-3101 (($) NIL T CONST)) (-3991 (($ $) NIL (|has| |#1| (-302)))) (-4015 (((-1232 |#1|) $ (-552)) NIL)) (-4212 (($ |#1|) 30)) (-4223 (($ |#1|) 29)) (-4234 (($ |#1|) 28)) (-3442 (((-751) $) NIL (|has| |#1| (-544)))) (-3692 ((|#1| $ (-552) (-552) |#1|) NIL)) (-3631 ((|#1| $ (-552) (-552)) NIL)) (-3799 (((-625 |#1|) $) NIL)) (-3979 (((-751) $) NIL (|has| |#1| (-544)))) (-3967 (((-625 (-1232 |#1|)) $) NIL (|has| |#1| (-544)))) (-1773 (((-751) $) NIL)) (-2183 (($ (-751) (-751) |#1|) NIL)) (-1784 (((-751) $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2416 ((|#1| $) NIL (|has| |#1| (-6 (-4355 "*"))))) (-4063 (((-552) $) NIL)) (-4038 (((-552) $) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-4050 (((-552) $) NIL)) (-4027 (((-552) $) NIL)) (-3907 (($ (-625 (-625 |#1|))) 11)) (-3683 (($ (-1 |#1| |#1|) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3803 (((-625 (-625 |#1|)) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3150 (((-3 $ "failed") $) NIL (|has| |#1| (-358)))) (-4245 (($) 12)) (-4229 (($ $ $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2518 (($ $ |#1|) NIL)) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-625 (-552)) (-625 (-552))) NIL)) (-2457 (($ (-625 |#1|)) NIL) (($ (-625 $)) NIL)) (-4102 (((-112) $) NIL)) (-2426 ((|#1| $) NIL (|has| |#1| (-6 (-4355 "*"))))) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-4004 (((-1232 |#1|) $ (-552)) NIL)) (-1683 (($ (-1232 |#1|)) NIL) (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4077 (((-112) $) NIL)) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $ $) NIL) (($ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| |#1| (-358)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-552) $) NIL) (((-1232 |#1|) $ (-1232 |#1|)) 15) (((-1232 |#1|) (-1232 |#1|) $) NIL) (((-919 |#1|) $ (-919 |#1|)) 20)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-223 |#1|) (-13 (-667 |#1| (-1232 |#1|) (-1232 |#1|)) (-10 -8 (-15 * ((-919 |#1|) $ (-919 |#1|))) (-15 -4245 ($)) (-15 -4234 ($ |#1|)) (-15 -4223 ($ |#1|)) (-15 -4212 ($ |#1|)) (-15 -1487 ($ |#1| |#1| |#1|)) (-15 -1618 ($ |#1| |#1| |#1|)))) (-13 (-358) (-1171))) (T -223)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171))) (-5 *1 (-223 *3)))) (-4245 (*1 *1) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) (-4234 (*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) (-4223 (*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) (-4212 (*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) (-1487 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) (-1618 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171)))))) -(-13 (-667 |#1| (-1232 |#1|) (-1232 |#1|)) (-10 -8 (-15 * ((-919 |#1|) $ (-919 |#1|))) (-15 -4245 ($)) (-15 -4234 ($ |#1|)) (-15 -4223 ($ |#1|)) (-15 -4212 ($ |#1|)) (-15 -1487 ($ |#1| |#1| |#1|)) (-15 -1618 ($ |#1| |#1| |#1|)))) -((-2873 (($ (-1 (-112) |#2|) $) 16)) (-1938 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 25)) (-4255 (($) NIL) (($ (-625 |#2|)) 11)) (-2281 (((-112) $ $) 23))) -(((-224 |#1| |#2|) (-10 -8 (-15 -2873 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1938 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1938 (|#1| |#2| |#1|)) (-15 -4255 (|#1| (-625 |#2|))) (-15 -4255 (|#1|)) (-15 -2281 ((-112) |#1| |#1|))) (-225 |#2|) (-1073)) (T -224)) -NIL -(-10 -8 (-15 -2873 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1938 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1938 (|#1| |#2| |#1|)) (-15 -4255 (|#1| (-625 |#2|))) (-15 -4255 (|#1|)) (-15 -2281 ((-112) |#1| |#1|))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) 8)) (-2873 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-2959 (($ $) 58 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1938 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-1416 (($ |#1| $) 57 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2953 ((|#1| $) 39)) (-3966 (($ |#1| $) 40)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-4255 (($) 49) (($ (-625 |#1|)) 48)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 59 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 50)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-225 |#1|) (-138) (-1073)) (T -225)) -NIL -(-13 (-231 |t#1|)) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T)) -((-3072 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) 11) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149)) 19) (($ $ (-751)) NIL) (($ $) 16)) (-3768 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-751)) 14) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL))) -(((-226 |#1| |#2|) (-10 -8 (-15 -3072 (|#1| |#1|)) (-15 -3768 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3768 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3768 (|#1| |#1| (-1149))) (-15 -3768 (|#1| |#1| (-625 (-1149)))) (-15 -3768 (|#1| |#1| (-1149) (-751))) (-15 -3768 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3768 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3768 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|)))) (-227 |#2|) (-1025)) (T -226)) -NIL -(-10 -8 (-15 -3072 (|#1| |#1|)) (-15 -3768 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3768 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3768 (|#1| |#1| (-1149))) (-15 -3768 (|#1| |#1| (-625 (-1149)))) (-15 -3768 (|#1| |#1| (-1149) (-751))) (-15 -3768 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3768 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3768 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3072 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-751)) 49) (($ $ (-625 (-1149)) (-625 (-751))) 42 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 41 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 40 (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) 39 (|has| |#1| (-876 (-1149)))) (($ $ (-751)) 37 (|has| |#1| (-229))) (($ $) 35 (|has| |#1| (-229)))) (-1683 (((-839) $) 11) (($ (-552)) 27)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-751)) 47) (($ $ (-625 (-1149)) (-625 (-751))) 46 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 45 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 44 (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) 43 (|has| |#1| (-876 (-1149)))) (($ $ (-751)) 38 (|has| |#1| (-229))) (($ $) 36 (|has| |#1| (-229)))) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-227 |#1|) (-138) (-1025)) (T -227)) -((-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1025)))) (-3072 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *1 (-227 *4)) (-4 *4 (-1025)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1025)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *1 (-227 *4)) (-4 *4 (-1025))))) -(-13 (-1025) (-10 -8 (-15 -3072 ($ $ (-1 |t#1| |t#1|))) (-15 -3072 ($ $ (-1 |t#1| |t#1|) (-751))) (-15 -3768 ($ $ (-1 |t#1| |t#1|))) (-15 -3768 ($ $ (-1 |t#1| |t#1|) (-751))) (IF (|has| |t#1| (-229)) (-6 (-229)) |%noBranch|) (IF (|has| |t#1| (-876 (-1149))) (-6 (-876 (-1149))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-229) |has| |#1| (-229)) ((-628 $) . T) ((-707) . T) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-3072 (($ $) NIL) (($ $ (-751)) 10)) (-3768 (($ $) 8) (($ $ (-751)) 12))) -(((-228 |#1|) (-10 -8 (-15 -3768 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-751))) (-15 -3768 (|#1| |#1|)) (-15 -3072 (|#1| |#1|))) (-229)) (T -228)) -NIL -(-10 -8 (-15 -3768 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-751))) (-15 -3768 (|#1| |#1|)) (-15 -3072 (|#1| |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3072 (($ $) 36) (($ $ (-751)) 34)) (-1683 (((-839) $) 11) (($ (-552)) 27)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $) 35) (($ $ (-751)) 33)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-229) (-138)) (T -229)) -((-3072 (*1 *1 *1) (-4 *1 (-229))) (-3768 (*1 *1 *1) (-4 *1 (-229))) (-3072 (*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-751)))) (-3768 (*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-751))))) -(-13 (-1025) (-10 -8 (-15 -3072 ($ $)) (-15 -3768 ($ $)) (-15 -3072 ($ $ (-751))) (-15 -3768 ($ $ (-751))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-4255 (($) 12) (($ (-625 |#2|)) NIL)) (-1871 (($ $) 14)) (-1695 (($ (-625 |#2|)) 10)) (-1683 (((-839) $) 21))) -(((-230 |#1| |#2|) (-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -4255 (|#1| (-625 |#2|))) (-15 -4255 (|#1|)) (-15 -1695 (|#1| (-625 |#2|))) (-15 -1871 (|#1| |#1|))) (-231 |#2|) (-1073)) (T -230)) -NIL -(-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -4255 (|#1| (-625 |#2|))) (-15 -4255 (|#1|)) (-15 -1695 (|#1| (-625 |#2|))) (-15 -1871 (|#1| |#1|))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) 8)) (-2873 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-2959 (($ $) 58 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1938 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-1416 (($ |#1| $) 57 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2953 ((|#1| $) 39)) (-3966 (($ |#1| $) 40)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-4255 (($) 49) (($ (-625 |#1|)) 48)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 59 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 50)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-231 |#1|) (-138) (-1073)) (T -231)) -((-4255 (*1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1073)))) (-4255 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-4 *1 (-231 *3)))) (-1938 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-231 *2)) (-4 *2 (-1073)))) (-1938 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-231 *3)) (-4 *3 (-1073)))) (-2873 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-231 *3)) (-4 *3 (-1073))))) -(-13 (-106 |t#1|) (-149 |t#1|) (-10 -8 (-15 -4255 ($)) (-15 -4255 ($ (-625 |t#1|))) (IF (|has| $ (-6 -4353)) (PROGN (-15 -1938 ($ |t#1| $)) (-15 -1938 ($ (-1 (-112) |t#1|) $)) (-15 -2873 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T)) -((-4267 (((-2 (|:| |varOrder| (-625 (-1149))) (|:| |inhom| (-3 (-625 (-1232 (-751))) "failed")) (|:| |hom| (-625 (-1232 (-751))))) (-289 (-928 (-552)))) 27))) -(((-232) (-10 -7 (-15 -4267 ((-2 (|:| |varOrder| (-625 (-1149))) (|:| |inhom| (-3 (-625 (-1232 (-751))) "failed")) (|:| |hom| (-625 (-1232 (-751))))) (-289 (-928 (-552))))))) (T -232)) -((-4267 (*1 *2 *3) (-12 (-5 *3 (-289 (-928 (-552)))) (-5 *2 (-2 (|:| |varOrder| (-625 (-1149))) (|:| |inhom| (-3 (-625 (-1232 (-751))) "failed")) (|:| |hom| (-625 (-1232 (-751)))))) (-5 *1 (-232))))) -(-10 -7 (-15 -4267 ((-2 (|:| |varOrder| (-625 (-1149))) (|:| |inhom| (-3 (-625 (-1232 (-751))) "failed")) (|:| |hom| (-625 (-1232 (-751))))) (-289 (-928 (-552)))))) -((-2894 (((-751)) 51)) (-1794 (((-2 (|:| -2351 (-669 |#3|)) (|:| |vec| (-1232 |#3|))) (-669 $) (-1232 $)) 49) (((-669 |#3|) (-669 $)) 41) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-669 (-552)) (-669 $)) NIL)) (-3904 (((-133)) 57)) (-3072 (($ $ (-1 |#3| |#3|) (-751)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)) (-1683 (((-1232 |#3|) $) NIL) (($ |#3|) NIL) (((-839) $) NIL) (($ (-552)) 12) (($ (-402 (-552))) NIL)) (-4141 (((-751)) 15)) (-2404 (($ $ |#3|) 54))) -(((-233 |#1| |#2| |#3|) (-10 -8 (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|)) (-15 -4141 ((-751))) (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1683 (|#1| |#3|)) (-15 -3072 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3072 (|#1| |#1| (-1 |#3| |#3|) (-751))) (-15 -1794 ((-669 |#3|) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#3|)) (|:| |vec| (-1232 |#3|))) (-669 |#1|) (-1232 |#1|))) (-15 -2894 ((-751))) (-15 -2404 (|#1| |#1| |#3|)) (-15 -3904 ((-133))) (-15 -1683 ((-1232 |#3|) |#1|))) (-234 |#2| |#3|) (-751) (-1186)) (T -233)) -((-3904 (*1 *2) (-12 (-14 *4 (-751)) (-4 *5 (-1186)) (-5 *2 (-133)) (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5)))) (-2894 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1186)) (-5 *2 (-751)) (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5)))) (-4141 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1186)) (-5 *2 (-751)) (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5))))) -(-10 -8 (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|)) (-15 -4141 ((-751))) (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1683 (|#1| |#3|)) (-15 -3072 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3072 (|#1| |#1| (-1 |#3| |#3|) (-751))) (-15 -1794 ((-669 |#3|) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#3|)) (|:| |vec| (-1232 |#3|))) (-669 |#1|) (-1232 |#1|))) (-15 -2894 ((-751))) (-15 -2404 (|#1| |#1| |#3|)) (-15 -3904 ((-133))) (-15 -1683 ((-1232 |#3|) |#1|))) -((-1671 (((-112) $ $) 19 (|has| |#2| (-1073)))) (-3641 (((-112) $) 72 (|has| |#2| (-130)))) (-2787 (($ (-897)) 125 (|has| |#2| (-1025)))) (-2509 (((-1237) $ (-552) (-552)) 40 (|has| $ (-6 -4354)))) (-1282 (($ $ $) 121 (|has| |#2| (-773)))) (-2077 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-3495 (((-112) $ (-751)) 8)) (-2894 (((-751)) 107 (|has| |#2| (-363)))) (-4127 (((-552) $) 119 (|has| |#2| (-825)))) (-1851 ((|#2| $ (-552) |#2|) 52 (|has| $ (-6 -4354)))) (-3101 (($) 7 T CONST)) (-1893 (((-3 (-552) "failed") $) 67 (-3743 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073)))) (((-3 (-402 (-552)) "failed") $) 64 (-3743 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1073)))) (-1895 (((-552) $) 68 (-3743 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073)))) (((-402 (-552)) $) 65 (-3743 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) ((|#2| $) 60 (|has| |#2| (-1073)))) (-1794 (((-669 (-552)) (-669 $)) 106 (-3743 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 105 (-3743 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) 104 (|has| |#2| (-1025))) (((-669 |#2|) (-669 $)) 103 (|has| |#2| (-1025)))) (-4174 (((-3 $ "failed") $) 79 (|has| |#2| (-707)))) (-3702 (($) 110 (|has| |#2| (-363)))) (-3692 ((|#2| $ (-552) |#2|) 53 (|has| $ (-6 -4354)))) (-3631 ((|#2| $ (-552)) 51)) (-3620 (((-112) $) 117 (|has| |#2| (-825)))) (-3799 (((-625 |#2|) $) 30 (|has| $ (-6 -4353)))) (-3650 (((-112) $) 81 (|has| |#2| (-707)))) (-3630 (((-112) $) 118 (|has| |#2| (-825)))) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 43 (|has| (-552) (-827)))) (-3658 (($ $ $) 116 (-1523 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-3730 (((-625 |#2|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 44 (|has| (-552) (-827)))) (-3332 (($ $ $) 115 (-1523 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-3683 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#2| |#2|) $) 35)) (-4318 (((-897) $) 109 (|has| |#2| (-363)))) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#2| (-1073)))) (-2554 (((-625 (-552)) $) 46)) (-2564 (((-112) (-552) $) 47)) (-3123 (($ (-897)) 108 (|has| |#2| (-363)))) (-2831 (((-1093) $) 21 (|has| |#2| (-1073)))) (-2924 ((|#2| $) 42 (|has| (-552) (-827)))) (-2518 (($ $ |#2|) 41 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#2|))) 26 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) 25 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) 23 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#2| $ (-552) |#2|) 50) ((|#2| $ (-552)) 49)) (-1443 ((|#2| $ $) 124 (|has| |#2| (-1025)))) (-3878 (($ (-1232 |#2|)) 126)) (-3904 (((-133)) 123 (|has| |#2| (-358)))) (-3072 (($ $) 98 (-3743 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) 96 (-3743 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) 94 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149))) 93 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) 92 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149)) (-625 (-751))) 91 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) 84 (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1025)))) (-2840 (((-751) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4353))) (((-751) |#2| $) 28 (-12 (|has| |#2| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-1232 |#2|) $) 127) (($ (-552)) 66 (-1523 (-3743 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073))) (|has| |#2| (-1025)))) (($ (-402 (-552))) 63 (-3743 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) (($ |#2|) 62 (|has| |#2| (-1073))) (((-839) $) 18 (|has| |#2| (-597 (-839))))) (-4141 (((-751)) 102 (|has| |#2| (-1025)))) (-1900 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4353)))) (-1727 (($ $) 120 (|has| |#2| (-825)))) (-2089 (($) 71 (|has| |#2| (-130)) CONST)) (-2100 (($) 82 (|has| |#2| (-707)) CONST)) (-3768 (($ $) 97 (-3743 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) 95 (-3743 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) 90 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149))) 89 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) 88 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149)) (-625 (-751))) 87 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) 86 (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1025)))) (-2346 (((-112) $ $) 113 (-1523 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-2320 (((-112) $ $) 112 (-1523 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-2281 (((-112) $ $) 20 (|has| |#2| (-1073)))) (-2334 (((-112) $ $) 114 (-1523 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-2307 (((-112) $ $) 111 (-1523 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-2404 (($ $ |#2|) 122 (|has| |#2| (-358)))) (-2393 (($ $ $) 100 (|has| |#2| (-1025))) (($ $) 99 (|has| |#2| (-1025)))) (-2382 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-751)) 80 (|has| |#2| (-707))) (($ $ (-897)) 77 (|has| |#2| (-707)))) (* (($ (-552) $) 101 (|has| |#2| (-1025))) (($ $ $) 78 (|has| |#2| (-707))) (($ $ |#2|) 76 (|has| |#2| (-707))) (($ |#2| $) 75 (|has| |#2| (-707))) (($ (-751) $) 73 (|has| |#2| (-130))) (($ (-897) $) 70 (|has| |#2| (-25)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-234 |#1| |#2|) (-138) (-751) (-1186)) (T -234)) -((-3878 (*1 *1 *2) (-12 (-5 *2 (-1232 *4)) (-4 *4 (-1186)) (-4 *1 (-234 *3 *4)))) (-2787 (*1 *1 *2) (-12 (-5 *2 (-897)) (-4 *1 (-234 *3 *4)) (-4 *4 (-1025)) (-4 *4 (-1186)))) (-1443 (*1 *2 *1 *1) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1186)) (-4 *2 (-1025)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1186)) (-4 *2 (-707)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1186)) (-4 *2 (-707))))) -(-13 (-588 (-552) |t#2|) (-597 (-1232 |t#2|)) (-10 -8 (-6 -4353) (-15 -3878 ($ (-1232 |t#2|))) (IF (|has| |t#2| (-1073)) (-6 (-406 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1025)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-227 |t#2|)) (-6 (-372 |t#2|)) (-15 -2787 ($ (-897))) (-15 -1443 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-707)) (PROGN (-6 (-707)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#2| (-170)) (PROGN (-6 (-38 |t#2|)) (-6 (-170))) |%noBranch|) (IF (|has| |t#2| (-6 -4350)) (-6 -4350) |%noBranch|) (IF (|has| |t#2| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#2| (-773)) (-6 (-773)) |%noBranch|) (IF (|has| |t#2| (-358)) (-6 (-1239 |t#2|)) |%noBranch|))) -(((-21) -1523 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-23) -1523 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-25) -1523 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) -1523 (|has| |#2| (-1073)) (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-707)) (|has| |#2| (-363)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -1523 (|has| |#2| (-1025)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-111 $ $) |has| |#2| (-170)) ((-130) -1523 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-597 (-839)) -1523 (|has| |#2| (-1073)) (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-707)) (|has| |#2| (-363)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-597 (-839))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-597 (-1232 |#2|)) . T) ((-170) |has| |#2| (-170)) ((-227 |#2|) |has| |#2| (-1025)) ((-229) -12 (|has| |#2| (-229)) (|has| |#2| (-1025))) ((-281 #0=(-552) |#2|) . T) ((-283 #0# |#2|) . T) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((-363) |has| |#2| (-363)) ((-372 |#2|) |has| |#2| (-1025)) ((-406 |#2|) |has| |#2| (-1073)) ((-483 |#2|) . T) ((-588 #0# |#2|) . T) ((-507 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((-628 |#2|) -1523 (|has| |#2| (-1025)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-628 $) -1523 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-170))) ((-621 (-552)) -12 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025))) ((-621 |#2|) |has| |#2| (-1025)) ((-698 |#2|) -1523 (|has| |#2| (-358)) (|has| |#2| (-170))) ((-707) -1523 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-707)) (|has| |#2| (-170))) ((-771) |has| |#2| (-825)) ((-772) -1523 (|has| |#2| (-825)) (|has| |#2| (-773))) ((-773) |has| |#2| (-773)) ((-774) -1523 (|has| |#2| (-825)) (|has| |#2| (-773))) ((-775) -1523 (|has| |#2| (-825)) (|has| |#2| (-773))) ((-825) |has| |#2| (-825)) ((-827) -1523 (|has| |#2| (-825)) (|has| |#2| (-773))) ((-876 (-1149)) -12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025))) ((-1014 (-402 (-552))) -12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073))) ((-1014 (-552)) -12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073))) ((-1014 |#2|) |has| |#2| (-1073)) ((-1031 |#2|) -1523 (|has| |#2| (-1025)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-1031 $) |has| |#2| (-170)) ((-1025) -1523 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-170))) ((-1032) -1523 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-170))) ((-1085) -1523 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-707)) (|has| |#2| (-170))) ((-1073) -1523 (|has| |#2| (-1073)) (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-707)) (|has| |#2| (-363)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1186) . T) ((-1239 |#2|) |has| |#2| (-358))) -((-1454 (((-236 |#1| |#3|) (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|) 21)) (-2163 ((|#3| (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|) 23)) (-1996 (((-236 |#1| |#3|) (-1 |#3| |#2|) (-236 |#1| |#2|)) 18))) -(((-235 |#1| |#2| |#3|) (-10 -7 (-15 -1454 ((-236 |#1| |#3|) (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|)) (-15 -2163 (|#3| (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|)) (-15 -1996 ((-236 |#1| |#3|) (-1 |#3| |#2|) (-236 |#1| |#2|)))) (-751) (-1186) (-1186)) (T -235)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-236 *5 *6)) (-14 *5 (-751)) (-4 *6 (-1186)) (-4 *7 (-1186)) (-5 *2 (-236 *5 *7)) (-5 *1 (-235 *5 *6 *7)))) (-2163 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-236 *5 *6)) (-14 *5 (-751)) (-4 *6 (-1186)) (-4 *2 (-1186)) (-5 *1 (-235 *5 *6 *2)))) (-1454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-236 *6 *7)) (-14 *6 (-751)) (-4 *7 (-1186)) (-4 *5 (-1186)) (-5 *2 (-236 *6 *5)) (-5 *1 (-235 *6 *7 *5))))) -(-10 -7 (-15 -1454 ((-236 |#1| |#3|) (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|)) (-15 -2163 (|#3| (-1 |#3| |#2| |#3|) (-236 |#1| |#2|) |#3|)) (-15 -1996 ((-236 |#1| |#3|) (-1 |#3| |#2|) (-236 |#1| |#2|)))) -((-1671 (((-112) $ $) NIL (|has| |#2| (-1073)))) (-3641 (((-112) $) NIL (|has| |#2| (-130)))) (-2787 (($ (-897)) 56 (|has| |#2| (-1025)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-1282 (($ $ $) 60 (|has| |#2| (-773)))) (-2077 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-3495 (((-112) $ (-751)) 17)) (-2894 (((-751)) NIL (|has| |#2| (-363)))) (-4127 (((-552) $) NIL (|has| |#2| (-825)))) (-1851 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (-12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073)))) (((-3 (-402 (-552)) "failed") $) NIL (-12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1073)))) (-1895 (((-552) $) NIL (-12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073)))) (((-402 (-552)) $) NIL (-12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) ((|#2| $) 27 (|has| |#2| (-1073)))) (-1794 (((-669 (-552)) (-669 $)) NIL (-12 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (-12 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL (|has| |#2| (-1025))) (((-669 |#2|) (-669 $)) NIL (|has| |#2| (-1025)))) (-4174 (((-3 $ "failed") $) 53 (|has| |#2| (-707)))) (-3702 (($) NIL (|has| |#2| (-363)))) (-3692 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#2| $ (-552)) 51)) (-3620 (((-112) $) NIL (|has| |#2| (-825)))) (-3799 (((-625 |#2|) $) 15 (|has| $ (-6 -4353)))) (-3650 (((-112) $) NIL (|has| |#2| (-707)))) (-3630 (((-112) $) NIL (|has| |#2| (-825)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) 20 (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3730 (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-2537 (((-552) $) 50 (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3683 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#2| |#2|) $) 41)) (-4318 (((-897) $) NIL (|has| |#2| (-363)))) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#2| (-1073)))) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-3123 (($ (-897)) NIL (|has| |#2| (-363)))) (-2831 (((-1093) $) NIL (|has| |#2| (-1073)))) (-2924 ((|#2| $) NIL (|has| (-552) (-827)))) (-2518 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-552)) 21)) (-1443 ((|#2| $ $) NIL (|has| |#2| (-1025)))) (-3878 (($ (-1232 |#2|)) 18)) (-3904 (((-133)) NIL (|has| |#2| (-358)))) (-3072 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2840 (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-1232 |#2|) $) 10) (($ (-552)) NIL (-1523 (-12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073))) (|has| |#2| (-1025)))) (($ (-402 (-552))) NIL (-12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) (($ |#2|) 13 (|has| |#2| (-1073))) (((-839) $) NIL (|has| |#2| (-597 (-839))))) (-4141 (((-751)) NIL (|has| |#2| (-1025)))) (-1900 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-1727 (($ $) NIL (|has| |#2| (-825)))) (-2089 (($) 35 (|has| |#2| (-130)) CONST)) (-2100 (($) 38 (|has| |#2| (-707)) CONST)) (-3768 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2346 (((-112) $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2320 (((-112) $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2281 (((-112) $ $) 26 (|has| |#2| (-1073)))) (-2334 (((-112) $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2307 (((-112) $ $) 58 (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2404 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-2393 (($ $ $) NIL (|has| |#2| (-1025))) (($ $) NIL (|has| |#2| (-1025)))) (-2382 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-751)) NIL (|has| |#2| (-707))) (($ $ (-897)) NIL (|has| |#2| (-707)))) (* (($ (-552) $) NIL (|has| |#2| (-1025))) (($ $ $) 44 (|has| |#2| (-707))) (($ $ |#2|) 42 (|has| |#2| (-707))) (($ |#2| $) 43 (|has| |#2| (-707))) (($ (-751) $) NIL (|has| |#2| (-130))) (($ (-897) $) NIL (|has| |#2| (-25)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-236 |#1| |#2|) (-234 |#1| |#2|) (-751) (-1186)) (T -236)) -NIL -(-234 |#1| |#2|) -((-4298 (((-552) (-625 (-1131))) 24) (((-552) (-1131)) 19)) (-1274 (((-1237) (-625 (-1131))) 29) (((-1237) (-1131)) 28)) (-4277 (((-1131)) 14)) (-4288 (((-1131) (-552) (-1131)) 16)) (-2845 (((-625 (-1131)) (-625 (-1131)) (-552) (-1131)) 25) (((-1131) (-1131) (-552) (-1131)) 23)) (-3931 (((-625 (-1131)) (-625 (-1131))) 13) (((-625 (-1131)) (-1131)) 11))) -(((-237) (-10 -7 (-15 -3931 ((-625 (-1131)) (-1131))) (-15 -3931 ((-625 (-1131)) (-625 (-1131)))) (-15 -4277 ((-1131))) (-15 -4288 ((-1131) (-552) (-1131))) (-15 -2845 ((-1131) (-1131) (-552) (-1131))) (-15 -2845 ((-625 (-1131)) (-625 (-1131)) (-552) (-1131))) (-15 -1274 ((-1237) (-1131))) (-15 -1274 ((-1237) (-625 (-1131)))) (-15 -4298 ((-552) (-1131))) (-15 -4298 ((-552) (-625 (-1131)))))) (T -237)) -((-4298 (*1 *2 *3) (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-552)) (-5 *1 (-237)))) (-4298 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-552)) (-5 *1 (-237)))) (-1274 (*1 *2 *3) (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-1237)) (-5 *1 (-237)))) (-1274 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-237)))) (-2845 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-625 (-1131))) (-5 *3 (-552)) (-5 *4 (-1131)) (-5 *1 (-237)))) (-2845 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-552)) (-5 *1 (-237)))) (-4288 (*1 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-552)) (-5 *1 (-237)))) (-4277 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-237)))) (-3931 (*1 *2 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-237)))) (-3931 (*1 *2 *3) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-237)) (-5 *3 (-1131))))) -(-10 -7 (-15 -3931 ((-625 (-1131)) (-1131))) (-15 -3931 ((-625 (-1131)) (-625 (-1131)))) (-15 -4277 ((-1131))) (-15 -4288 ((-1131) (-552) (-1131))) (-15 -2845 ((-1131) (-1131) (-552) (-1131))) (-15 -2845 ((-625 (-1131)) (-625 (-1131)) (-552) (-1131))) (-15 -1274 ((-1237) (-1131))) (-15 -1274 ((-1237) (-625 (-1131)))) (-15 -4298 ((-552) (-1131))) (-15 -4298 ((-552) (-625 (-1131))))) -((** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) 16)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ (-402 (-552)) $) 23) (($ $ (-402 (-552))) NIL))) -(((-238 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-552))) (-15 * (|#1| |#1| (-402 (-552)))) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-897))) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|))) (-239)) (T -238)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-552))) (-15 * (|#1| |#1| (-402 (-552)))) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-897))) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 37)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ (-402 (-552))) 41)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 38)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ (-402 (-552)) $) 40) (($ $ (-402 (-552))) 39))) -(((-239) (-138)) (T -239)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-552)))) (-4092 (*1 *1 *1) (-4 *1 (-239)))) -(-13 (-285) (-38 (-402 (-552))) (-10 -8 (-15 ** ($ $ (-552))) (-15 -4092 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-285) . T) ((-628 #0#) . T) ((-628 $) . T) ((-698 #0#) . T) ((-707) . T) ((-1031 #0#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3800 ((|#1| $) 48)) (-2101 (($ $) 57)) (-3495 (((-112) $ (-751)) 8)) (-2565 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-3113 (($ $ $) 53 (|has| $ (-6 -4354)))) (-3105 (($ $ $) 52 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 41 (|has| $ (-6 -4354)))) (-3101 (($) 7 T CONST)) (-2880 (($ $) 56)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) 50)) (-1371 (((-112) $ $) 42 (|has| |#1| (-1073)))) (-2824 (($ $) 55)) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-3183 (((-625 |#1|) $) 45)) (-3367 (((-112) $) 49)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-1437 ((|#1| $) 59)) (-3545 (($ $) 58)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ "value") 47)) (-1389 (((-552) $ $) 44)) (-2316 (((-112) $) 46)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2342 (($ $ $) 54 (|has| $ (-6 -4354)))) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) 51)) (-1380 (((-112) $ $) 43 (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-240 |#1|) (-138) (-1186)) (T -240)) -((-1437 (*1 *2 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1186)))) (-3545 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1186)))) (-2101 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1186)))) (-2880 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1186)))) (-2824 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1186)))) (-2342 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1186)))) (-3113 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1186)))) (-3105 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1186))))) -(-13 (-986 |t#1|) (-10 -8 (-15 -1437 (|t#1| $)) (-15 -3545 ($ $)) (-15 -2101 ($ $)) (-15 -2880 ($ $)) (-15 -2824 ($ $)) (IF (|has| $ (-6 -4354)) (PROGN (-15 -2342 ($ $ $)) (-15 -3113 ($ $ $)) (-15 -3105 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-986 |#1|) . T) ((-1073) |has| |#1| (-1073)) ((-1186) . T)) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3800 ((|#1| $) NIL)) (-3897 ((|#1| $) NIL)) (-2101 (($ $) NIL)) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-2278 (($ $ (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) $) NIL (|has| |#1| (-827))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3218 (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1800 (($ $) 10 (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-2565 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-2301 (($ $ $) NIL (|has| $ (-6 -4354)))) (-2289 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-2317 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4354))) (($ $ "rest" $) NIL (|has| $ (-6 -4354))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) NIL (|has| $ (-6 -4354)))) (-2873 (($ (-1 (-112) |#1|) $) NIL)) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2673 ((|#1| $) NIL)) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2936 (($ $) NIL) (($ $ (-751)) NIL)) (-3238 (($ $) NIL (|has| |#1| (-1073)))) (-2959 (($ $) 7 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1938 (($ |#1| $) NIL (|has| |#1| (-1073))) (($ (-1 (-112) |#1|) $) NIL)) (-1416 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3692 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) NIL)) (-4011 (((-112) $) NIL)) (-2483 (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073))) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) (-1 (-112) |#1|) $) NIL)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) NIL)) (-1371 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2183 (($ (-751) |#1|) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3260 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3280 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2801 (($ |#1|) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-3183 (((-625 |#1|) $) NIL)) (-3367 (((-112) $) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-1437 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-3966 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3994 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2924 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-4022 (((-112) $) NIL)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1199 (-552))) NIL) ((|#1| $ (-552)) NIL) ((|#1| $ (-552) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-751) $ "count") 16)) (-1389 (((-552) $ $) NIL)) (-2884 (($ $ (-1199 (-552))) NIL) (($ $ (-552)) NIL)) (-4001 (($ $ (-1199 (-552))) NIL) (($ $ (-552)) NIL)) (-3838 (($ (-625 |#1|)) 22)) (-2316 (((-112) $) NIL)) (-2356 (($ $) NIL)) (-2330 (($ $) NIL (|has| $ (-6 -4354)))) (-2368 (((-751) $) NIL)) (-2379 (($ $) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) NIL)) (-2342 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3402 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-625 $)) NIL) (($ $ |#1|) NIL)) (-1683 (($ (-625 |#1|)) 17) (((-625 |#1|) $) 18) (((-839) $) 21 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) NIL)) (-1380 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-1471 (((-751) $) 14 (|has| $ (-6 -4353))))) -(((-241 |#1|) (-13 (-646 |#1|) (-10 -8 (-15 -1683 ($ (-625 |#1|))) (-15 -1683 ((-625 |#1|) $)) (-15 -3838 ($ (-625 |#1|))) (-15 -2154 ($ $ "unique")) (-15 -2154 ($ $ "sort")) (-15 -2154 ((-751) $ "count")))) (-827)) (T -241)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-241 *3)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-241 *3)) (-4 *3 (-827)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-241 *3)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-241 *3)) (-4 *3 (-827)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-241 *3)) (-4 *3 (-827)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-751)) (-5 *1 (-241 *4)) (-4 *4 (-827))))) -(-13 (-646 |#1|) (-10 -8 (-15 -1683 ($ (-625 |#1|))) (-15 -1683 ((-625 |#1|) $)) (-15 -3838 ($ (-625 |#1|))) (-15 -2154 ($ $ "unique")) (-15 -2154 ($ $ "sort")) (-15 -2154 ((-751) $ "count")))) -((-3122 (((-3 (-751) "failed") |#1| |#1| (-751)) 27))) -(((-242 |#1|) (-10 -7 (-15 -3122 ((-3 (-751) "failed") |#1| |#1| (-751)))) (-13 (-707) (-363) (-10 -7 (-15 ** (|#1| |#1| (-552)))))) (T -242)) -((-3122 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-751)) (-4 *3 (-13 (-707) (-363) (-10 -7 (-15 ** (*3 *3 (-552)))))) (-5 *1 (-242 *3))))) -(-10 -7 (-15 -3122 ((-3 (-751) "failed") |#1| |#1| (-751)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-841 |#1|)) $) NIL)) (-3793 (((-1145 $) $ (-841 |#1|)) NIL) (((-1145 |#2|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3528 (($ $) NIL (|has| |#2| (-544)))) (-3509 (((-112) $) NIL (|has| |#2| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-841 |#1|))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-2194 (($ $) NIL (|has| |#2| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#2| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1014 (-552)))) (((-3 (-841 |#1|) "failed") $) NIL)) (-1895 ((|#2| $) NIL) (((-402 (-552)) $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#2| (-1014 (-552)))) (((-841 |#1|) $) NIL)) (-3207 (($ $ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-1801 (($ $ (-625 (-552))) NIL)) (-4169 (($ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#2| (-885)))) (-1347 (($ $ |#2| (-236 (-1471 |#1|) (-751)) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-374))) (|has| |#2| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-552))) (|has| |#2| (-862 (-552)))))) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-3970 (($ (-1145 |#2|) (-841 |#1|)) NIL) (($ (-1145 $) (-841 |#1|)) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#2| (-236 (-1471 |#1|) (-751))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-841 |#1|)) NIL)) (-4134 (((-236 (-1471 |#1|) (-751)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-625 (-751)) $ (-625 (-841 |#1|))) NIL)) (-3658 (($ $ $) NIL (|has| |#2| (-827)))) (-3332 (($ $ $) NIL (|has| |#2| (-827)))) (-1357 (($ (-1 (-236 (-1471 |#1|) (-751)) (-236 (-1471 |#1|) (-751))) $) NIL)) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-1942 (((-3 (-841 |#1|) "failed") $) NIL)) (-4131 (($ $) NIL)) (-4144 ((|#2| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-2883 (((-1131) $) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-841 |#1|)) (|:| -3564 (-751))) "failed") $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 ((|#2| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#2| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#2| (-885)))) (-2802 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-841 |#1|) |#2|) NIL) (($ $ (-625 (-841 |#1|)) (-625 |#2|)) NIL) (($ $ (-841 |#1|) $) NIL) (($ $ (-625 (-841 |#1|)) (-625 $)) NIL)) (-3217 (($ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-3072 (($ $ (-841 |#1|)) NIL) (($ $ (-625 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-4276 (((-236 (-1471 |#1|) (-751)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-625 (-751)) $ (-625 (-841 |#1|))) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-868 (-374)))) (|has| |#2| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-868 (-552)))) (|has| |#2| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-841 |#1|) (-598 (-528))) (|has| |#2| (-598 (-528)))))) (-4108 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-841 |#1|)) NIL) (($ (-402 (-552))) NIL (-1523 (|has| |#2| (-38 (-402 (-552)))) (|has| |#2| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#2| (-544)))) (-2512 (((-625 |#2|) $) NIL)) (-3637 ((|#2| $ (-236 (-1471 |#1|) (-751))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#2| (-885))) (|has| |#2| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#2| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#2| (-544)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-841 |#1|)) NIL) (($ $ (-625 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-2346 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2404 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL (|has| |#2| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#2| (-38 (-402 (-552))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-243 |#1| |#2|) (-13 (-925 |#2| (-236 (-1471 |#1|) (-751)) (-841 |#1|)) (-10 -8 (-15 -1801 ($ $ (-625 (-552)))))) (-625 (-1149)) (-1025)) (T -243)) -((-1801 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-243 *3 *4)) (-14 *3 (-625 (-1149))) (-4 *4 (-1025))))) -(-13 (-925 |#2| (-236 (-1471 |#1|) (-751)) (-841 |#1|)) (-10 -8 (-15 -1801 ($ $ (-625 (-552)))))) -((-1671 (((-112) $ $) NIL)) (-2323 (((-1237) $) 15)) (-3142 (((-181) $) 9)) (-3131 (($ (-181)) 10)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 7)) (-2281 (((-112) $ $) 13))) -(((-244) (-13 (-1073) (-10 -8 (-15 -3142 ((-181) $)) (-15 -3131 ($ (-181))) (-15 -2323 ((-1237) $))))) (T -244)) -((-3142 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-244)))) (-3131 (*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-244)))) (-2323 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-244))))) -(-13 (-1073) (-10 -8 (-15 -3142 ((-181) $)) (-15 -3131 ($ (-181))) (-15 -2323 ((-1237) $)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2787 (($ (-897)) NIL (|has| |#4| (-1025)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-1282 (($ $ $) NIL (|has| |#4| (-773)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-2894 (((-751)) NIL (|has| |#4| (-363)))) (-4127 (((-552) $) NIL (|has| |#4| (-825)))) (-1851 ((|#4| $ (-552) |#4|) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1073))) (((-3 (-552) "failed") $) NIL (-12 (|has| |#4| (-1014 (-552))) (|has| |#4| (-1073)))) (((-3 (-402 (-552)) "failed") $) NIL (-12 (|has| |#4| (-1014 (-402 (-552)))) (|has| |#4| (-1073))))) (-1895 ((|#4| $) NIL (|has| |#4| (-1073))) (((-552) $) NIL (-12 (|has| |#4| (-1014 (-552))) (|has| |#4| (-1073)))) (((-402 (-552)) $) NIL (-12 (|has| |#4| (-1014 (-402 (-552)))) (|has| |#4| (-1073))))) (-1794 (((-2 (|:| -2351 (-669 |#4|)) (|:| |vec| (-1232 |#4|))) (-669 $) (-1232 $)) NIL (|has| |#4| (-1025))) (((-669 |#4|) (-669 $)) NIL (|has| |#4| (-1025))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (-12 (|has| |#4| (-621 (-552))) (|has| |#4| (-1025)))) (((-669 (-552)) (-669 $)) NIL (-12 (|has| |#4| (-621 (-552))) (|has| |#4| (-1025))))) (-4174 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-552))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))))) (-3702 (($) NIL (|has| |#4| (-363)))) (-3692 ((|#4| $ (-552) |#4|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#4| $ (-552)) NIL)) (-3620 (((-112) $) NIL (|has| |#4| (-825)))) (-3799 (((-625 |#4|) $) NIL (|has| $ (-6 -4353)))) (-3650 (((-112) $) NIL (-1523 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-552))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))))) (-3630 (((-112) $) NIL (|has| |#4| (-825)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (-1523 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-3730 (((-625 |#4|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (-1523 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-3683 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) NIL)) (-4318 (((-897) $) NIL (|has| |#4| (-363)))) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-3123 (($ (-897)) NIL (|has| |#4| (-363)))) (-2831 (((-1093) $) NIL)) (-2924 ((|#4| $) NIL (|has| (-552) (-827)))) (-2518 (($ $ |#4|) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 |#4|) (-625 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-1358 (((-625 |#4|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#4| $ (-552) |#4|) NIL) ((|#4| $ (-552)) 12)) (-1443 ((|#4| $ $) NIL (|has| |#4| (-1025)))) (-3878 (($ (-1232 |#4|)) NIL)) (-3904 (((-133)) NIL (|has| |#4| (-358)))) (-3072 (($ $ (-1 |#4| |#4|) (-751)) NIL (|has| |#4| (-1025))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1025))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1025)))) (($ $) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))))) (-2840 (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353))) (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-1232 |#4|) $) NIL) (((-839) $) NIL) (($ |#4|) NIL (|has| |#4| (-1073))) (($ (-552)) NIL (-1523 (-12 (|has| |#4| (-1014 (-552))) (|has| |#4| (-1073))) (|has| |#4| (-1025)))) (($ (-402 (-552))) NIL (-12 (|has| |#4| (-1014 (-402 (-552)))) (|has| |#4| (-1073))))) (-4141 (((-751)) NIL (|has| |#4| (-1025)))) (-1900 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-1727 (($ $) NIL (|has| |#4| (-825)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL (-1523 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-552))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) CONST)) (-3768 (($ $ (-1 |#4| |#4|) (-751)) NIL (|has| |#4| (-1025))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1025))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1025)))) (($ $) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))))) (-2346 (((-112) $ $) NIL (-1523 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-2320 (((-112) $ $) NIL (-1523 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (-1523 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-2307 (((-112) $ $) NIL (-1523 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-2404 (($ $ |#4|) NIL (|has| |#4| (-358)))) (-2393 (($ $ $) NIL) (($ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-751)) NIL (-1523 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-552))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025))))) (($ $ (-897)) NIL (-1523 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-552))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))))) (* (($ |#2| $) 14) (($ (-552) $) NIL) (($ (-751) $) NIL) (($ (-897) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-707))) (($ |#4| $) NIL (|has| |#4| (-707))) (($ $ $) NIL (-1523 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-552))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-245 |#1| |#2| |#3| |#4|) (-13 (-234 |#1| |#4|) (-628 |#2|) (-628 |#3|)) (-897) (-1025) (-1096 |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) (-628 |#2|)) (T -245)) -NIL -(-13 (-234 |#1| |#4|) (-628 |#2|) (-628 |#3|)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2787 (($ (-897)) NIL (|has| |#3| (-1025)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-1282 (($ $ $) NIL (|has| |#3| (-773)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-2894 (((-751)) NIL (|has| |#3| (-363)))) (-4127 (((-552) $) NIL (|has| |#3| (-825)))) (-1851 ((|#3| $ (-552) |#3|) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1073))) (((-3 (-552) "failed") $) NIL (-12 (|has| |#3| (-1014 (-552))) (|has| |#3| (-1073)))) (((-3 (-402 (-552)) "failed") $) NIL (-12 (|has| |#3| (-1014 (-402 (-552)))) (|has| |#3| (-1073))))) (-1895 ((|#3| $) NIL (|has| |#3| (-1073))) (((-552) $) NIL (-12 (|has| |#3| (-1014 (-552))) (|has| |#3| (-1073)))) (((-402 (-552)) $) NIL (-12 (|has| |#3| (-1014 (-402 (-552)))) (|has| |#3| (-1073))))) (-1794 (((-2 (|:| -2351 (-669 |#3|)) (|:| |vec| (-1232 |#3|))) (-669 $) (-1232 $)) NIL (|has| |#3| (-1025))) (((-669 |#3|) (-669 $)) NIL (|has| |#3| (-1025))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (-12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025)))) (((-669 (-552)) (-669 $)) NIL (-12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025))))) (-4174 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))))) (-3702 (($) NIL (|has| |#3| (-363)))) (-3692 ((|#3| $ (-552) |#3|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#3| $ (-552)) NIL)) (-3620 (((-112) $) NIL (|has| |#3| (-825)))) (-3799 (((-625 |#3|) $) NIL (|has| $ (-6 -4353)))) (-3650 (((-112) $) NIL (-1523 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))))) (-3630 (((-112) $) NIL (|has| |#3| (-825)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-3730 (((-625 |#3|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-3683 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#3| |#3|) $) NIL)) (-4318 (((-897) $) NIL (|has| |#3| (-363)))) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-3123 (($ (-897)) NIL (|has| |#3| (-363)))) (-2831 (((-1093) $) NIL)) (-2924 ((|#3| $) NIL (|has| (-552) (-827)))) (-2518 (($ $ |#3|) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#3|))) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ (-289 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ (-625 |#3|) (-625 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1073))))) (-1358 (((-625 |#3|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#3| $ (-552) |#3|) NIL) ((|#3| $ (-552)) 11)) (-1443 ((|#3| $ $) NIL (|has| |#3| (-1025)))) (-3878 (($ (-1232 |#3|)) NIL)) (-3904 (((-133)) NIL (|has| |#3| (-358)))) (-3072 (($ $ (-1 |#3| |#3|) (-751)) NIL (|has| |#3| (-1025))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1025))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))))) (-2840 (((-751) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353))) (((-751) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-1232 |#3|) $) NIL) (((-839) $) NIL) (($ |#3|) NIL (|has| |#3| (-1073))) (($ (-552)) NIL (-1523 (-12 (|has| |#3| (-1014 (-552))) (|has| |#3| (-1073))) (|has| |#3| (-1025)))) (($ (-402 (-552))) NIL (-12 (|has| |#3| (-1014 (-402 (-552)))) (|has| |#3| (-1073))))) (-4141 (((-751)) NIL (|has| |#3| (-1025)))) (-1900 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-1727 (($ $) NIL (|has| |#3| (-825)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL (-1523 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) CONST)) (-3768 (($ $ (-1 |#3| |#3|) (-751)) NIL (|has| |#3| (-1025))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1025))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))))) (-2346 (((-112) $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2320 (((-112) $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2307 (((-112) $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2404 (($ $ |#3|) NIL (|has| |#3| (-358)))) (-2393 (($ $ $) NIL) (($ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-751)) NIL (-1523 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025))))) (($ $ (-897)) NIL (-1523 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))))) (* (($ |#2| $) 13) (($ (-552) $) NIL) (($ (-751) $) NIL) (($ (-897) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-707))) (($ |#3| $) NIL (|has| |#3| (-707))) (($ $ $) NIL (-1523 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-246 |#1| |#2| |#3|) (-13 (-234 |#1| |#3|) (-628 |#2|)) (-751) (-1025) (-628 |#2|)) (T -246)) -NIL -(-13 (-234 |#1| |#3|) (-628 |#2|)) -((-3169 (((-625 (-751)) $) 47) (((-625 (-751)) $ |#3|) 50)) (-3469 (((-751) $) 49) (((-751) $ |#3|) 52)) (-3153 (($ $) 65)) (-1893 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-2172 (((-751) $ |#3|) 39) (((-751) $) 36)) (-3479 (((-1 $ (-751)) |#3|) 15) (((-1 $ (-751)) $) 77)) (-2578 ((|#4| $) 58)) (-3162 (((-112) $) 56)) (-4186 (($ $) 64)) (-4073 (($ $ (-625 (-289 $))) 97) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-625 |#4|) (-625 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-625 |#4|) (-625 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-625 |#3|) (-625 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-625 |#3|) (-625 |#2|)) 84)) (-3072 (($ $ |#4|) NIL) (($ $ (-625 |#4|)) NIL) (($ $ |#4| (-751)) NIL) (($ $ (-625 |#4|) (-625 (-751))) NIL) (($ $) NIL) (($ $ (-751)) NIL) (($ $ (-1149)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3177 (((-625 |#3|) $) 75)) (-4276 ((|#5| $) NIL) (((-751) $ |#4|) NIL) (((-625 (-751)) $ (-625 |#4|)) NIL) (((-751) $ |#3|) 44)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-402 (-552))) NIL) (($ $) NIL))) -(((-247 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1683 (|#1| |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -4073 (|#1| |#1| (-625 |#3|) (-625 |#2|))) (-15 -4073 (|#1| |#1| |#3| |#2|)) (-15 -4073 (|#1| |#1| (-625 |#3|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#3| |#1|)) (-15 -3479 ((-1 |#1| (-751)) |#1|)) (-15 -3153 (|#1| |#1|)) (-15 -4186 (|#1| |#1|)) (-15 -2578 (|#4| |#1|)) (-15 -3162 ((-112) |#1|)) (-15 -3469 ((-751) |#1| |#3|)) (-15 -3169 ((-625 (-751)) |#1| |#3|)) (-15 -3469 ((-751) |#1|)) (-15 -3169 ((-625 (-751)) |#1|)) (-15 -4276 ((-751) |#1| |#3|)) (-15 -2172 ((-751) |#1|)) (-15 -2172 ((-751) |#1| |#3|)) (-15 -3177 ((-625 |#3|) |#1|)) (-15 -3479 ((-1 |#1| (-751)) |#3|)) (-15 -1893 ((-3 |#3| "failed") |#1|)) (-15 -1683 (|#1| |#3|)) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1|)) (-15 -4276 ((-625 (-751)) |#1| (-625 |#4|))) (-15 -4276 ((-751) |#1| |#4|)) (-15 -1893 ((-3 |#4| "failed") |#1|)) (-15 -1683 (|#1| |#4|)) (-15 -4073 (|#1| |#1| (-625 |#4|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#4| |#1|)) (-15 -4073 (|#1| |#1| (-625 |#4|) (-625 |#2|))) (-15 -4073 (|#1| |#1| |#4| |#2|)) (-15 -4073 (|#1| |#1| (-625 |#1|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| (-289 |#1|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -4276 (|#5| |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -3072 (|#1| |#1| (-625 |#4|) (-625 (-751)))) (-15 -3072 (|#1| |#1| |#4| (-751))) (-15 -3072 (|#1| |#1| (-625 |#4|))) (-15 -3072 (|#1| |#1| |#4|)) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|))) (-248 |#2| |#3| |#4| |#5|) (-1025) (-827) (-261 |#3|) (-773)) (T -247)) -NIL -(-10 -8 (-15 -1683 (|#1| |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -4073 (|#1| |#1| (-625 |#3|) (-625 |#2|))) (-15 -4073 (|#1| |#1| |#3| |#2|)) (-15 -4073 (|#1| |#1| (-625 |#3|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#3| |#1|)) (-15 -3479 ((-1 |#1| (-751)) |#1|)) (-15 -3153 (|#1| |#1|)) (-15 -4186 (|#1| |#1|)) (-15 -2578 (|#4| |#1|)) (-15 -3162 ((-112) |#1|)) (-15 -3469 ((-751) |#1| |#3|)) (-15 -3169 ((-625 (-751)) |#1| |#3|)) (-15 -3469 ((-751) |#1|)) (-15 -3169 ((-625 (-751)) |#1|)) (-15 -4276 ((-751) |#1| |#3|)) (-15 -2172 ((-751) |#1|)) (-15 -2172 ((-751) |#1| |#3|)) (-15 -3177 ((-625 |#3|) |#1|)) (-15 -3479 ((-1 |#1| (-751)) |#3|)) (-15 -1893 ((-3 |#3| "failed") |#1|)) (-15 -1683 (|#1| |#3|)) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1|)) (-15 -4276 ((-625 (-751)) |#1| (-625 |#4|))) (-15 -4276 ((-751) |#1| |#4|)) (-15 -1893 ((-3 |#4| "failed") |#1|)) (-15 -1683 (|#1| |#4|)) (-15 -4073 (|#1| |#1| (-625 |#4|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#4| |#1|)) (-15 -4073 (|#1| |#1| (-625 |#4|) (-625 |#2|))) (-15 -4073 (|#1| |#1| |#4| |#2|)) (-15 -4073 (|#1| |#1| (-625 |#1|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| (-289 |#1|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -4276 (|#5| |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -3072 (|#1| |#1| (-625 |#4|) (-625 (-751)))) (-15 -3072 (|#1| |#1| |#4| (-751))) (-15 -3072 (|#1| |#1| (-625 |#4|))) (-15 -3072 (|#1| |#1| |#4|)) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3169 (((-625 (-751)) $) 212) (((-625 (-751)) $ |#2|) 210)) (-3469 (((-751) $) 211) (((-751) $ |#2|) 209)) (-3982 (((-625 |#3|) $) 108)) (-3793 (((-1145 $) $ |#3|) 123) (((-1145 |#1|) $) 122)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 85 (|has| |#1| (-544)))) (-3528 (($ $) 86 (|has| |#1| (-544)))) (-3509 (((-112) $) 88 (|has| |#1| (-544)))) (-4121 (((-751) $) 110) (((-751) $ (-625 |#3|)) 109)) (-2077 (((-3 $ "failed") $ $) 19)) (-4296 (((-413 (-1145 $)) (-1145 $)) 98 (|has| |#1| (-885)))) (-2194 (($ $) 96 (|has| |#1| (-446)))) (-1330 (((-413 $) $) 95 (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 101 (|has| |#1| (-885)))) (-3153 (($ $) 205)) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#1| "failed") $) 162) (((-3 (-402 (-552)) "failed") $) 160 (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) 158 (|has| |#1| (-1014 (-552)))) (((-3 |#3| "failed") $) 134) (((-3 |#2| "failed") $) 219)) (-1895 ((|#1| $) 163) (((-402 (-552)) $) 159 (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) 157 (|has| |#1| (-1014 (-552)))) ((|#3| $) 133) ((|#2| $) 218)) (-3207 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-4169 (($ $) 152)) (-1794 (((-669 (-552)) (-669 $)) 132 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 131 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 130) (((-669 |#1|) (-669 $)) 129)) (-4174 (((-3 $ "failed") $) 32)) (-1294 (($ $) 174 (|has| |#1| (-446))) (($ $ |#3|) 103 (|has| |#1| (-446)))) (-4157 (((-625 $) $) 107)) (-2951 (((-112) $) 94 (|has| |#1| (-885)))) (-1347 (($ $ |#1| |#4| $) 170)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 82 (-12 (|has| |#3| (-862 (-374))) (|has| |#1| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 81 (-12 (|has| |#3| (-862 (-552))) (|has| |#1| (-862 (-552)))))) (-2172 (((-751) $ |#2|) 215) (((-751) $) 214)) (-3650 (((-112) $) 30)) (-3723 (((-751) $) 167)) (-3970 (($ (-1145 |#1|) |#3|) 115) (($ (-1145 $) |#3|) 114)) (-4148 (((-625 $) $) 124)) (-4201 (((-112) $) 150)) (-3957 (($ |#1| |#4|) 151) (($ $ |#3| (-751)) 117) (($ $ (-625 |#3|) (-625 (-751))) 116)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ |#3|) 118)) (-4134 ((|#4| $) 168) (((-751) $ |#3|) 120) (((-625 (-751)) $ (-625 |#3|)) 119)) (-3658 (($ $ $) 77 (|has| |#1| (-827)))) (-3332 (($ $ $) 76 (|has| |#1| (-827)))) (-1357 (($ (-1 |#4| |#4|) $) 169)) (-1996 (($ (-1 |#1| |#1|) $) 149)) (-3479 (((-1 $ (-751)) |#2|) 217) (((-1 $ (-751)) $) 204 (|has| |#1| (-229)))) (-1942 (((-3 |#3| "failed") $) 121)) (-4131 (($ $) 147)) (-4144 ((|#1| $) 146)) (-2578 ((|#3| $) 207)) (-2605 (($ (-625 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-2883 (((-1131) $) 9)) (-3162 (((-112) $) 208)) (-4172 (((-3 (-625 $) "failed") $) 112)) (-4160 (((-3 (-625 $) "failed") $) 113)) (-4182 (((-3 (-2 (|:| |var| |#3|) (|:| -3564 (-751))) "failed") $) 111)) (-4186 (($ $) 206)) (-2831 (((-1093) $) 10)) (-4105 (((-112) $) 164)) (-4117 ((|#1| $) 165)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 93 (|has| |#1| (-446)))) (-2633 (($ (-625 $)) 90 (|has| |#1| (-446))) (($ $ $) 89 (|has| |#1| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) 100 (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) 99 (|has| |#1| (-885)))) (-3824 (((-413 $) $) 97 (|has| |#1| (-885)))) (-2802 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-4073 (($ $ (-625 (-289 $))) 143) (($ $ (-289 $)) 142) (($ $ $ $) 141) (($ $ (-625 $) (-625 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-625 |#3|) (-625 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-625 |#3|) (-625 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-229))) (($ $ (-625 |#2|) (-625 $)) 202 (|has| |#1| (-229))) (($ $ |#2| |#1|) 201 (|has| |#1| (-229))) (($ $ (-625 |#2|) (-625 |#1|)) 200 (|has| |#1| (-229)))) (-3217 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-3072 (($ $ |#3|) 40) (($ $ (-625 |#3|)) 39) (($ $ |#3| (-751)) 38) (($ $ (-625 |#3|) (-625 (-751))) 37) (($ $) 236 (|has| |#1| (-229))) (($ $ (-751)) 234 (|has| |#1| (-229))) (($ $ (-1149)) 232 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 231 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 230 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) 229 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-3177 (((-625 |#2|) $) 216)) (-4276 ((|#4| $) 148) (((-751) $ |#3|) 128) (((-625 (-751)) $ (-625 |#3|)) 127) (((-751) $ |#2|) 213)) (-2042 (((-868 (-374)) $) 80 (-12 (|has| |#3| (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374)))))) (((-868 (-552)) $) 79 (-12 (|has| |#3| (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552)))))) (((-528) $) 78 (-12 (|has| |#3| (-598 (-528))) (|has| |#1| (-598 (-528)))))) (-4108 ((|#1| $) 173 (|has| |#1| (-446))) (($ $ |#3|) 104 (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 102 (-3743 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-402 (-552))) 70 (-1523 (|has| |#1| (-1014 (-402 (-552)))) (|has| |#1| (-38 (-402 (-552)))))) (($ $) 83 (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) 166)) (-3637 ((|#1| $ |#4|) 153) (($ $ |#3| (-751)) 126) (($ $ (-625 |#3|) (-625 (-751))) 125)) (-4243 (((-3 $ "failed") $) 71 (-1523 (-3743 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) 28)) (-1336 (($ $ $ (-751)) 171 (|has| |#1| (-170)))) (-3518 (((-112) $ $) 87 (|has| |#1| (-544)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ |#3|) 36) (($ $ (-625 |#3|)) 35) (($ $ |#3| (-751)) 34) (($ $ (-625 |#3|) (-625 (-751))) 33) (($ $) 235 (|has| |#1| (-229))) (($ $ (-751)) 233 (|has| |#1| (-229))) (($ $ (-1149)) 228 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 227 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 226 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) 225 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2346 (((-112) $ $) 74 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 73 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 75 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 72 (|has| |#1| (-827)))) (-2404 (($ $ |#1|) 154 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 156 (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) 155 (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-248 |#1| |#2| |#3| |#4|) (-138) (-1025) (-827) (-261 |t#2|) (-773)) (T -248)) -((-3479 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-1 *1 (-751))) (-4 *1 (-248 *4 *3 *5 *6)))) (-3177 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-625 *4)))) (-2172 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751)))) (-2172 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-751)))) (-4276 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-625 (-751))))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-751)))) (-3169 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-625 (-751))))) (-3469 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751)))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-112)))) (-2578 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773)) (-4 *2 (-261 *4)))) (-4186 (*1 *1 *1) (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1025)) (-4 *3 (-827)) (-4 *4 (-261 *3)) (-4 *5 (-773)))) (-3153 (*1 *1 *1) (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1025)) (-4 *3 (-827)) (-4 *4 (-261 *3)) (-4 *5 (-773)))) (-3479 (*1 *2 *1) (-12 (-4 *3 (-229)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-1 *1 (-751))) (-4 *1 (-248 *3 *4 *5 *6))))) -(-13 (-925 |t#1| |t#4| |t#3|) (-227 |t#1|) (-1014 |t#2|) (-10 -8 (-15 -3479 ((-1 $ (-751)) |t#2|)) (-15 -3177 ((-625 |t#2|) $)) (-15 -2172 ((-751) $ |t#2|)) (-15 -2172 ((-751) $)) (-15 -4276 ((-751) $ |t#2|)) (-15 -3169 ((-625 (-751)) $)) (-15 -3469 ((-751) $)) (-15 -3169 ((-625 (-751)) $ |t#2|)) (-15 -3469 ((-751) $ |t#2|)) (-15 -3162 ((-112) $)) (-15 -2578 (|t#3| $)) (-15 -4186 ($ $)) (-15 -3153 ($ $)) (IF (|has| |t#1| (-229)) (PROGN (-6 (-507 |t#2| |t#1|)) (-6 (-507 |t#2| $)) (-6 (-304 $)) (-15 -3479 ((-1 $ (-751)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-552)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-598 (-528)) -12 (|has| |#1| (-598 (-528))) (|has| |#3| (-598 (-528)))) ((-598 (-868 (-374))) -12 (|has| |#1| (-598 (-868 (-374)))) (|has| |#3| (-598 (-868 (-374))))) ((-598 (-868 (-552))) -12 (|has| |#1| (-598 (-868 (-552)))) (|has| |#3| (-598 (-868 (-552))))) ((-227 |#1|) . T) ((-229) |has| |#1| (-229)) ((-285) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-304 $) . T) ((-321 |#1| |#4|) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-446) -1523 (|has| |#1| (-885)) (|has| |#1| (-446))) ((-507 |#2| |#1|) |has| |#1| (-229)) ((-507 |#2| $) |has| |#1| (-229)) ((-507 |#3| |#1|) . T) ((-507 |#3| $) . T) ((-507 $ $) . T) ((-544) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-628 #0#) |has| |#1| (-38 (-402 (-552)))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-552)) |has| |#1| (-621 (-552))) ((-621 |#1|) . T) ((-698 #0#) |has| |#1| (-38 (-402 (-552)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-876 |#3|) . T) ((-862 (-374)) -12 (|has| |#1| (-862 (-374))) (|has| |#3| (-862 (-374)))) ((-862 (-552)) -12 (|has| |#1| (-862 (-552))) (|has| |#3| (-862 (-552)))) ((-925 |#1| |#4| |#3|) . T) ((-885) |has| |#1| (-885)) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T) ((-1014 |#2|) . T) ((-1014 |#3|) . T) ((-1031 #0#) |has| |#1| (-38 (-402 (-552)))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) |has| |#1| (-885))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3231 ((|#1| $) 54)) (-1549 ((|#1| $) 44)) (-3495 (((-112) $ (-751)) 8)) (-3101 (($) 7 T CONST)) (-2327 (($ $) 60)) (-1883 (($ $) 48)) (-2406 ((|#1| |#1| $) 46)) (-2395 ((|#1| $) 45)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-3456 (((-751) $) 61)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2953 ((|#1| $) 39)) (-3213 ((|#1| |#1| $) 52)) (-3203 ((|#1| |#1| $) 51)) (-3966 (($ |#1| $) 40)) (-2207 (((-751) $) 55)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2314 ((|#1| $) 62)) (-3193 ((|#1| $) 50)) (-3186 ((|#1| $) 49)) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2354 ((|#1| |#1| $) 58)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2340 ((|#1| $) 59)) (-3240 (($) 57) (($ (-625 |#1|)) 56)) (-2389 (((-751) $) 43)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-3224 ((|#1| $) 53)) (-2977 (($ (-625 |#1|)) 42)) (-2299 ((|#1| $) 63)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-249 |#1|) (-138) (-1186)) (T -249)) -((-3240 (*1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))) (-3240 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-4 *1 (-249 *3)))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-249 *3)) (-4 *3 (-1186)) (-5 *2 (-751)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))) (-3213 (*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))) (-3203 (*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))) (-3193 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))) (-3186 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))) (-1883 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186))))) -(-13 (-1094 |t#1|) (-971 |t#1|) (-10 -8 (-15 -3240 ($)) (-15 -3240 ($ (-625 |t#1|))) (-15 -2207 ((-751) $)) (-15 -3231 (|t#1| $)) (-15 -3224 (|t#1| $)) (-15 -3213 (|t#1| |t#1| $)) (-15 -3203 (|t#1| |t#1| $)) (-15 -3193 (|t#1| $)) (-15 -3186 (|t#1| $)) (-15 -1883 ($ $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-971 |#1|) . T) ((-1073) |has| |#1| (-1073)) ((-1094 |#1|) . T) ((-1186) . T)) -((-3249 (((-1 (-919 (-221)) (-221) (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221) (-221))) 139)) (-3322 (((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374))) 160) (((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374)) (-625 (-258))) 158) (((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374))) 163) (((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258))) 159) (((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374))) 150) (((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258))) 149) (((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1067 (-374))) 129) (((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1067 (-374)) (-625 (-258))) 127) (((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1067 (-374))) 128) (((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1067 (-374)) (-625 (-258))) 125)) (-1438 (((-1234) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374))) 162) (((-1234) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374)) (-625 (-258))) 161) (((-1234) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374))) 165) (((-1234) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258))) 164) (((-1234) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374))) 152) (((-1234) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258))) 151) (((-1234) (-1 (-919 (-221)) (-221)) (-1067 (-374))) 135) (((-1234) (-1 (-919 (-221)) (-221)) (-1067 (-374)) (-625 (-258))) 134) (((-1234) (-855 (-1 (-221) (-221))) (-1067 (-374))) 133) (((-1234) (-855 (-1 (-221) (-221))) (-1067 (-374)) (-625 (-258))) 132) (((-1233) (-853 (-1 (-221) (-221))) (-1067 (-374))) 100) (((-1233) (-853 (-1 (-221) (-221))) (-1067 (-374)) (-625 (-258))) 99) (((-1233) (-1 (-221) (-221)) (-1067 (-374))) 96) (((-1233) (-1 (-221) (-221)) (-1067 (-374)) (-625 (-258))) 95))) -(((-250) (-10 -7 (-15 -1438 ((-1233) (-1 (-221) (-221)) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1233) (-1 (-221) (-221)) (-1067 (-374)))) (-15 -1438 ((-1233) (-853 (-1 (-221) (-221))) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1233) (-853 (-1 (-221) (-221))) (-1067 (-374)))) (-15 -1438 ((-1234) (-855 (-1 (-221) (-221))) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-855 (-1 (-221) (-221))) (-1067 (-374)))) (-15 -1438 ((-1234) (-1 (-919 (-221)) (-221)) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-1 (-919 (-221)) (-221)) (-1067 (-374)))) (-15 -3322 ((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1067 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1067 (-374)))) (-15 -3322 ((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1067 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1067 (-374)))) (-15 -1438 ((-1234) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374)))) (-15 -3322 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374)))) (-15 -1438 ((-1234) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374)))) (-15 -3322 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374)))) (-15 -1438 ((-1234) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374)))) (-15 -3322 ((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374)))) (-15 -3249 ((-1 (-919 (-221)) (-221) (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221) (-221)))))) (T -250)) -((-3249 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-919 (-221)) (-221) (-221))) (-5 *3 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-250)))) (-3322 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1067 (-374))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) (-3322 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1067 (-374))) (-5 *2 (-1234)) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-250)))) (-3322 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-374))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) (-3322 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-374))) (-5 *2 (-1234)) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-250)))) (-3322 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1067 (-374))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) (-3322 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1067 (-374))) (-5 *2 (-1234)) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-250)))) (-3322 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1067 (-374))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) (-3322 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) (-3322 (*1 *2 *3 *4) (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) (-3322 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1067 (-374))) (-5 *2 (-1234)) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374))) (-5 *2 (-1234)) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-853 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374))) (-5 *2 (-1233)) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-853 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1233)) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1067 (-374))) (-5 *2 (-1233)) (-5 *1 (-250)))) (-1438 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1067 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1233)) (-5 *1 (-250))))) -(-10 -7 (-15 -1438 ((-1233) (-1 (-221) (-221)) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1233) (-1 (-221) (-221)) (-1067 (-374)))) (-15 -1438 ((-1233) (-853 (-1 (-221) (-221))) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1233) (-853 (-1 (-221) (-221))) (-1067 (-374)))) (-15 -1438 ((-1234) (-855 (-1 (-221) (-221))) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-855 (-1 (-221) (-221))) (-1067 (-374)))) (-15 -1438 ((-1234) (-1 (-919 (-221)) (-221)) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-1 (-919 (-221)) (-221)) (-1067 (-374)))) (-15 -3322 ((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1067 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1067 (-374)))) (-15 -3322 ((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1067 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1067 (-374)))) (-15 -1438 ((-1234) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374)))) (-15 -3322 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1067 (-374)) (-1067 (-374)))) (-15 -1438 ((-1234) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374)))) (-15 -3322 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-374)) (-1067 (-374)))) (-15 -1438 ((-1234) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374)))) (-15 -3322 ((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1067 (-374)) (-1067 (-374)))) (-15 -3249 ((-1 (-919 (-221)) (-221) (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221) (-221))))) -((-1438 (((-1233) (-289 |#2|) (-1149) (-1149) (-625 (-258))) 96))) -(((-251 |#1| |#2|) (-10 -7 (-15 -1438 ((-1233) (-289 |#2|) (-1149) (-1149) (-625 (-258))))) (-13 (-544) (-827) (-1014 (-552))) (-425 |#1|)) (T -251)) -((-1438 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-289 *7)) (-5 *4 (-1149)) (-5 *5 (-625 (-258))) (-4 *7 (-425 *6)) (-4 *6 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-1233)) (-5 *1 (-251 *6 *7))))) -(-10 -7 (-15 -1438 ((-1233) (-289 |#2|) (-1149) (-1149) (-625 (-258))))) -((-3276 (((-552) (-552)) 50)) (-3287 (((-552) (-552)) 51)) (-3296 (((-221) (-221)) 52)) (-3267 (((-1234) (-1 (-167 (-221)) (-167 (-221))) (-1067 (-221)) (-1067 (-221))) 49)) (-3258 (((-1234) (-1 (-167 (-221)) (-167 (-221))) (-1067 (-221)) (-1067 (-221)) (-112)) 47))) -(((-252) (-10 -7 (-15 -3258 ((-1234) (-1 (-167 (-221)) (-167 (-221))) (-1067 (-221)) (-1067 (-221)) (-112))) (-15 -3267 ((-1234) (-1 (-167 (-221)) (-167 (-221))) (-1067 (-221)) (-1067 (-221)))) (-15 -3276 ((-552) (-552))) (-15 -3287 ((-552) (-552))) (-15 -3296 ((-221) (-221))))) (T -252)) -((-3296 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-252)))) (-3287 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-252)))) (-3276 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-252)))) (-3267 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-167 (-221)) (-167 (-221)))) (-5 *4 (-1067 (-221))) (-5 *2 (-1234)) (-5 *1 (-252)))) (-3258 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-167 (-221)) (-167 (-221)))) (-5 *4 (-1067 (-221))) (-5 *5 (-112)) (-5 *2 (-1234)) (-5 *1 (-252))))) -(-10 -7 (-15 -3258 ((-1234) (-1 (-167 (-221)) (-167 (-221))) (-1067 (-221)) (-1067 (-221)) (-112))) (-15 -3267 ((-1234) (-1 (-167 (-221)) (-167 (-221))) (-1067 (-221)) (-1067 (-221)))) (-15 -3276 ((-552) (-552))) (-15 -3287 ((-552) (-552))) (-15 -3296 ((-221) (-221)))) -((-1683 (((-1065 (-374)) (-1065 (-311 |#1|))) 16))) -(((-253 |#1|) (-10 -7 (-15 -1683 ((-1065 (-374)) (-1065 (-311 |#1|))))) (-13 (-827) (-544) (-598 (-374)))) (T -253)) -((-1683 (*1 *2 *3) (-12 (-5 *3 (-1065 (-311 *4))) (-4 *4 (-13 (-827) (-544) (-598 (-374)))) (-5 *2 (-1065 (-374))) (-5 *1 (-253 *4))))) -(-10 -7 (-15 -1683 ((-1065 (-374)) (-1065 (-311 |#1|))))) -((-3322 (((-1106 (-221)) (-858 |#1|) (-1065 (-374)) (-1065 (-374))) 71) (((-1106 (-221)) (-858 |#1|) (-1065 (-374)) (-1065 (-374)) (-625 (-258))) 70) (((-1106 (-221)) |#1| (-1065 (-374)) (-1065 (-374))) 61) (((-1106 (-221)) |#1| (-1065 (-374)) (-1065 (-374)) (-625 (-258))) 60) (((-1106 (-221)) (-855 |#1|) (-1065 (-374))) 52) (((-1106 (-221)) (-855 |#1|) (-1065 (-374)) (-625 (-258))) 51)) (-1438 (((-1234) (-858 |#1|) (-1065 (-374)) (-1065 (-374))) 74) (((-1234) (-858 |#1|) (-1065 (-374)) (-1065 (-374)) (-625 (-258))) 73) (((-1234) |#1| (-1065 (-374)) (-1065 (-374))) 64) (((-1234) |#1| (-1065 (-374)) (-1065 (-374)) (-625 (-258))) 63) (((-1234) (-855 |#1|) (-1065 (-374))) 56) (((-1234) (-855 |#1|) (-1065 (-374)) (-625 (-258))) 55) (((-1233) (-853 |#1|) (-1065 (-374))) 43) (((-1233) (-853 |#1|) (-1065 (-374)) (-625 (-258))) 42) (((-1233) |#1| (-1065 (-374))) 35) (((-1233) |#1| (-1065 (-374)) (-625 (-258))) 34))) -(((-254 |#1|) (-10 -7 (-15 -1438 ((-1233) |#1| (-1065 (-374)) (-625 (-258)))) (-15 -1438 ((-1233) |#1| (-1065 (-374)))) (-15 -1438 ((-1233) (-853 |#1|) (-1065 (-374)) (-625 (-258)))) (-15 -1438 ((-1233) (-853 |#1|) (-1065 (-374)))) (-15 -1438 ((-1234) (-855 |#1|) (-1065 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-855 |#1|) (-1065 (-374)))) (-15 -3322 ((-1106 (-221)) (-855 |#1|) (-1065 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-855 |#1|) (-1065 (-374)))) (-15 -1438 ((-1234) |#1| (-1065 (-374)) (-1065 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) |#1| (-1065 (-374)) (-1065 (-374)))) (-15 -3322 ((-1106 (-221)) |#1| (-1065 (-374)) (-1065 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) |#1| (-1065 (-374)) (-1065 (-374)))) (-15 -1438 ((-1234) (-858 |#1|) (-1065 (-374)) (-1065 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-858 |#1|) (-1065 (-374)) (-1065 (-374)))) (-15 -3322 ((-1106 (-221)) (-858 |#1|) (-1065 (-374)) (-1065 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-858 |#1|) (-1065 (-374)) (-1065 (-374))))) (-13 (-598 (-528)) (-1073))) (T -254)) -((-3322 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-1065 (-374))) (-4 *5 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1106 (-221))) (-5 *1 (-254 *5)))) (-3322 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-858 *6)) (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) (-4 *6 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1106 (-221))) (-5 *1 (-254 *6)))) (-1438 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-1065 (-374))) (-4 *5 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1234)) (-5 *1 (-254 *5)))) (-1438 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-858 *6)) (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) (-4 *6 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1234)) (-5 *1 (-254 *6)))) (-3322 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1065 (-374))) (-5 *2 (-1106 (-221))) (-5 *1 (-254 *3)) (-4 *3 (-13 (-598 (-528)) (-1073))))) (-3322 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-254 *3)) (-4 *3 (-13 (-598 (-528)) (-1073))))) (-1438 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1065 (-374))) (-5 *2 (-1234)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-598 (-528)) (-1073))))) (-1438 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-598 (-528)) (-1073))))) (-3322 (*1 *2 *3 *4) (-12 (-5 *3 (-855 *5)) (-5 *4 (-1065 (-374))) (-4 *5 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1106 (-221))) (-5 *1 (-254 *5)))) (-3322 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-855 *6)) (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) (-4 *6 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1106 (-221))) (-5 *1 (-254 *6)))) (-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-855 *5)) (-5 *4 (-1065 (-374))) (-4 *5 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1234)) (-5 *1 (-254 *5)))) (-1438 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-855 *6)) (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) (-4 *6 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1234)) (-5 *1 (-254 *6)))) (-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-853 *5)) (-5 *4 (-1065 (-374))) (-4 *5 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1233)) (-5 *1 (-254 *5)))) (-1438 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-853 *6)) (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) (-4 *6 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1233)) (-5 *1 (-254 *6)))) (-1438 (*1 *2 *3 *4) (-12 (-5 *4 (-1065 (-374))) (-5 *2 (-1233)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-598 (-528)) (-1073))))) (-1438 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1233)) (-5 *1 (-254 *3)) (-4 *3 (-13 (-598 (-528)) (-1073)))))) -(-10 -7 (-15 -1438 ((-1233) |#1| (-1065 (-374)) (-625 (-258)))) (-15 -1438 ((-1233) |#1| (-1065 (-374)))) (-15 -1438 ((-1233) (-853 |#1|) (-1065 (-374)) (-625 (-258)))) (-15 -1438 ((-1233) (-853 |#1|) (-1065 (-374)))) (-15 -1438 ((-1234) (-855 |#1|) (-1065 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-855 |#1|) (-1065 (-374)))) (-15 -3322 ((-1106 (-221)) (-855 |#1|) (-1065 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-855 |#1|) (-1065 (-374)))) (-15 -1438 ((-1234) |#1| (-1065 (-374)) (-1065 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) |#1| (-1065 (-374)) (-1065 (-374)))) (-15 -3322 ((-1106 (-221)) |#1| (-1065 (-374)) (-1065 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) |#1| (-1065 (-374)) (-1065 (-374)))) (-15 -1438 ((-1234) (-858 |#1|) (-1065 (-374)) (-1065 (-374)) (-625 (-258)))) (-15 -1438 ((-1234) (-858 |#1|) (-1065 (-374)) (-1065 (-374)))) (-15 -3322 ((-1106 (-221)) (-858 |#1|) (-1065 (-374)) (-1065 (-374)) (-625 (-258)))) (-15 -3322 ((-1106 (-221)) (-858 |#1|) (-1065 (-374)) (-1065 (-374))))) -((-1438 (((-1234) (-625 (-221)) (-625 (-221)) (-625 (-221)) (-625 (-258))) 23) (((-1234) (-625 (-221)) (-625 (-221)) (-625 (-221))) 24) (((-1233) (-625 (-919 (-221))) (-625 (-258))) 16) (((-1233) (-625 (-919 (-221)))) 17) (((-1233) (-625 (-221)) (-625 (-221)) (-625 (-258))) 20) (((-1233) (-625 (-221)) (-625 (-221))) 21))) -(((-255) (-10 -7 (-15 -1438 ((-1233) (-625 (-221)) (-625 (-221)))) (-15 -1438 ((-1233) (-625 (-221)) (-625 (-221)) (-625 (-258)))) (-15 -1438 ((-1233) (-625 (-919 (-221))))) (-15 -1438 ((-1233) (-625 (-919 (-221))) (-625 (-258)))) (-15 -1438 ((-1234) (-625 (-221)) (-625 (-221)) (-625 (-221)))) (-15 -1438 ((-1234) (-625 (-221)) (-625 (-221)) (-625 (-221)) (-625 (-258)))))) (T -255)) -((-1438 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-625 (-221))) (-5 *4 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-255)))) (-1438 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-625 (-221))) (-5 *2 (-1234)) (-5 *1 (-255)))) (-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-919 (-221)))) (-5 *4 (-625 (-258))) (-5 *2 (-1233)) (-5 *1 (-255)))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-625 (-919 (-221)))) (-5 *2 (-1233)) (-5 *1 (-255)))) (-1438 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-625 (-221))) (-5 *4 (-625 (-258))) (-5 *2 (-1233)) (-5 *1 (-255)))) (-1438 (*1 *2 *3 *3) (-12 (-5 *3 (-625 (-221))) (-5 *2 (-1233)) (-5 *1 (-255))))) -(-10 -7 (-15 -1438 ((-1233) (-625 (-221)) (-625 (-221)))) (-15 -1438 ((-1233) (-625 (-221)) (-625 (-221)) (-625 (-258)))) (-15 -1438 ((-1233) (-625 (-919 (-221))))) (-15 -1438 ((-1233) (-625 (-919 (-221))) (-625 (-258)))) (-15 -1438 ((-1234) (-625 (-221)) (-625 (-221)) (-625 (-221)))) (-15 -1438 ((-1234) (-625 (-221)) (-625 (-221)) (-625 (-221)) (-625 (-258))))) -((-1797 (((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) (-625 (-258)) (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) 26)) (-3422 (((-897) (-625 (-258)) (-897)) 53)) (-3411 (((-897) (-625 (-258)) (-897)) 52)) (-4124 (((-625 (-374)) (-625 (-258)) (-625 (-374))) 69)) (-3458 (((-374) (-625 (-258)) (-374)) 58)) (-3445 (((-897) (-625 (-258)) (-897)) 54)) (-3382 (((-112) (-625 (-258)) (-112)) 28)) (-4332 (((-1131) (-625 (-258)) (-1131)) 20)) (-3371 (((-1131) (-625 (-258)) (-1131)) 27)) (-3433 (((-1106 (-221)) (-625 (-258))) 47)) (-1702 (((-625 (-1067 (-374))) (-625 (-258)) (-625 (-1067 (-374)))) 41)) (-3392 (((-850) (-625 (-258)) (-850)) 33)) (-3403 (((-850) (-625 (-258)) (-850)) 34)) (-1673 (((-1 (-919 (-221)) (-919 (-221))) (-625 (-258)) (-1 (-919 (-221)) (-919 (-221)))) 64)) (-3363 (((-112) (-625 (-258)) (-112)) 16)) (-1645 (((-112) (-625 (-258)) (-112)) 15))) -(((-256) (-10 -7 (-15 -1645 ((-112) (-625 (-258)) (-112))) (-15 -3363 ((-112) (-625 (-258)) (-112))) (-15 -1797 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) (-625 (-258)) (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -4332 ((-1131) (-625 (-258)) (-1131))) (-15 -3371 ((-1131) (-625 (-258)) (-1131))) (-15 -3382 ((-112) (-625 (-258)) (-112))) (-15 -3392 ((-850) (-625 (-258)) (-850))) (-15 -3403 ((-850) (-625 (-258)) (-850))) (-15 -1702 ((-625 (-1067 (-374))) (-625 (-258)) (-625 (-1067 (-374))))) (-15 -3411 ((-897) (-625 (-258)) (-897))) (-15 -3422 ((-897) (-625 (-258)) (-897))) (-15 -3433 ((-1106 (-221)) (-625 (-258)))) (-15 -3445 ((-897) (-625 (-258)) (-897))) (-15 -3458 ((-374) (-625 (-258)) (-374))) (-15 -1673 ((-1 (-919 (-221)) (-919 (-221))) (-625 (-258)) (-1 (-919 (-221)) (-919 (-221))))) (-15 -4124 ((-625 (-374)) (-625 (-258)) (-625 (-374)))))) (T -256)) -((-4124 (*1 *2 *3 *2) (-12 (-5 *2 (-625 (-374))) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-1673 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-3458 (*1 *2 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-3445 (*1 *2 *3 *2) (-12 (-5 *2 (-897)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-3433 (*1 *2 *3) (-12 (-5 *3 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-256)))) (-3422 (*1 *2 *3 *2) (-12 (-5 *2 (-897)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-3411 (*1 *2 *3 *2) (-12 (-5 *2 (-897)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-1702 (*1 *2 *3 *2) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-3403 (*1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-3392 (*1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-3382 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-3371 (*1 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-4332 (*1 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-1797 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-3363 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) (-1645 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-625 (-258))) (-5 *1 (-256))))) -(-10 -7 (-15 -1645 ((-112) (-625 (-258)) (-112))) (-15 -3363 ((-112) (-625 (-258)) (-112))) (-15 -1797 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) (-625 (-258)) (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -4332 ((-1131) (-625 (-258)) (-1131))) (-15 -3371 ((-1131) (-625 (-258)) (-1131))) (-15 -3382 ((-112) (-625 (-258)) (-112))) (-15 -3392 ((-850) (-625 (-258)) (-850))) (-15 -3403 ((-850) (-625 (-258)) (-850))) (-15 -1702 ((-625 (-1067 (-374))) (-625 (-258)) (-625 (-1067 (-374))))) (-15 -3411 ((-897) (-625 (-258)) (-897))) (-15 -3422 ((-897) (-625 (-258)) (-897))) (-15 -3433 ((-1106 (-221)) (-625 (-258)))) (-15 -3445 ((-897) (-625 (-258)) (-897))) (-15 -3458 ((-374) (-625 (-258)) (-374))) (-15 -1673 ((-1 (-919 (-221)) (-919 (-221))) (-625 (-258)) (-1 (-919 (-221)) (-919 (-221))))) (-15 -4124 ((-625 (-374)) (-625 (-258)) (-625 (-374))))) -((-3141 (((-3 |#1| "failed") (-625 (-258)) (-1149)) 17))) -(((-257 |#1|) (-10 -7 (-15 -3141 ((-3 |#1| "failed") (-625 (-258)) (-1149)))) (-1186)) (T -257)) -((-3141 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-625 (-258))) (-5 *4 (-1149)) (-5 *1 (-257 *2)) (-4 *2 (-1186))))) -(-10 -7 (-15 -3141 ((-3 |#1| "failed") (-625 (-258)) (-1149)))) -((-1671 (((-112) $ $) NIL)) (-1797 (($ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) 15)) (-3422 (($ (-897)) 76)) (-3411 (($ (-897)) 75)) (-3618 (($ (-625 (-374))) 82)) (-3458 (($ (-374)) 58)) (-3445 (($ (-897)) 77)) (-3382 (($ (-112)) 23)) (-4332 (($ (-1131)) 18)) (-3371 (($ (-1131)) 19)) (-3433 (($ (-1106 (-221))) 71)) (-1702 (($ (-625 (-1067 (-374)))) 67)) (-3315 (($ (-625 (-1067 (-374)))) 59) (($ (-625 (-1067 (-402 (-552))))) 66)) (-3345 (($ (-374)) 29) (($ (-850)) 33)) (-3306 (((-112) (-625 $) (-1149)) 91)) (-3141 (((-3 (-52) "failed") (-625 $) (-1149)) 93)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3335 (($ (-374)) 34) (($ (-850)) 35)) (-2780 (($ (-1 (-919 (-221)) (-919 (-221)))) 57)) (-1673 (($ (-1 (-919 (-221)) (-919 (-221)))) 78)) (-3326 (($ (-1 (-221) (-221))) 39) (($ (-1 (-221) (-221) (-221))) 43) (($ (-1 (-221) (-221) (-221) (-221))) 47)) (-1683 (((-839) $) 87)) (-3354 (($ (-112)) 24) (($ (-625 (-1067 (-374)))) 52)) (-1645 (($ (-112)) 25)) (-2281 (((-112) $ $) 89))) -(((-258) (-13 (-1073) (-10 -8 (-15 -1645 ($ (-112))) (-15 -3354 ($ (-112))) (-15 -1797 ($ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -4332 ($ (-1131))) (-15 -3371 ($ (-1131))) (-15 -3382 ($ (-112))) (-15 -3354 ($ (-625 (-1067 (-374))))) (-15 -2780 ($ (-1 (-919 (-221)) (-919 (-221))))) (-15 -3345 ($ (-374))) (-15 -3345 ($ (-850))) (-15 -3335 ($ (-374))) (-15 -3335 ($ (-850))) (-15 -3326 ($ (-1 (-221) (-221)))) (-15 -3326 ($ (-1 (-221) (-221) (-221)))) (-15 -3326 ($ (-1 (-221) (-221) (-221) (-221)))) (-15 -3458 ($ (-374))) (-15 -3315 ($ (-625 (-1067 (-374))))) (-15 -3315 ($ (-625 (-1067 (-402 (-552)))))) (-15 -1702 ($ (-625 (-1067 (-374))))) (-15 -3433 ($ (-1106 (-221)))) (-15 -3411 ($ (-897))) (-15 -3422 ($ (-897))) (-15 -3445 ($ (-897))) (-15 -1673 ($ (-1 (-919 (-221)) (-919 (-221))))) (-15 -3618 ($ (-625 (-374)))) (-15 -3141 ((-3 (-52) "failed") (-625 $) (-1149))) (-15 -3306 ((-112) (-625 $) (-1149)))))) (T -258)) -((-1645 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258)))) (-3354 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258)))) (-1797 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *1 (-258)))) (-4332 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-258)))) (-3371 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-258)))) (-3382 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258)))) (-3354 (*1 *1 *2) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *1 (-258)))) (-2780 (*1 *1 *2) (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *1 (-258)))) (-3345 (*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258)))) (-3345 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-258)))) (-3335 (*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258)))) (-3335 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-258)))) (-3326 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-258)))) (-3326 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221) (-221))) (-5 *1 (-258)))) (-3326 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-258)))) (-3458 (*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258)))) (-3315 (*1 *1 *2) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *1 (-258)))) (-3315 (*1 *1 *2) (-12 (-5 *2 (-625 (-1067 (-402 (-552))))) (-5 *1 (-258)))) (-1702 (*1 *1 *2) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *1 (-258)))) (-3433 (*1 *1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-258)))) (-3411 (*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-258)))) (-3422 (*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-258)))) (-3445 (*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-258)))) (-1673 (*1 *1 *2) (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *1 (-258)))) (-3618 (*1 *1 *2) (-12 (-5 *2 (-625 (-374))) (-5 *1 (-258)))) (-3141 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-625 (-258))) (-5 *4 (-1149)) (-5 *2 (-52)) (-5 *1 (-258)))) (-3306 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-258))) (-5 *4 (-1149)) (-5 *2 (-112)) (-5 *1 (-258))))) -(-13 (-1073) (-10 -8 (-15 -1645 ($ (-112))) (-15 -3354 ($ (-112))) (-15 -1797 ($ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -4332 ($ (-1131))) (-15 -3371 ($ (-1131))) (-15 -3382 ($ (-112))) (-15 -3354 ($ (-625 (-1067 (-374))))) (-15 -2780 ($ (-1 (-919 (-221)) (-919 (-221))))) (-15 -3345 ($ (-374))) (-15 -3345 ($ (-850))) (-15 -3335 ($ (-374))) (-15 -3335 ($ (-850))) (-15 -3326 ($ (-1 (-221) (-221)))) (-15 -3326 ($ (-1 (-221) (-221) (-221)))) (-15 -3326 ($ (-1 (-221) (-221) (-221) (-221)))) (-15 -3458 ($ (-374))) (-15 -3315 ($ (-625 (-1067 (-374))))) (-15 -3315 ($ (-625 (-1067 (-402 (-552)))))) (-15 -1702 ($ (-625 (-1067 (-374))))) (-15 -3433 ($ (-1106 (-221)))) (-15 -3411 ($ (-897))) (-15 -3422 ($ (-897))) (-15 -3445 ($ (-897))) (-15 -1673 ($ (-1 (-919 (-221)) (-919 (-221))))) (-15 -3618 ($ (-625 (-374)))) (-15 -3141 ((-3 (-52) "failed") (-625 $) (-1149))) (-15 -3306 ((-112) (-625 $) (-1149))))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3169 (((-625 (-751)) $) NIL) (((-625 (-751)) $ |#2|) NIL)) (-3469 (((-751) $) NIL) (((-751) $ |#2|) NIL)) (-3982 (((-625 |#3|) $) NIL)) (-3793 (((-1145 $) $ |#3|) NIL) (((-1145 |#1|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 |#3|)) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2194 (($ $) NIL (|has| |#1| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3153 (($ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1098 |#1| |#2|) "failed") $) 21)) (-1895 ((|#1| $) NIL) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#1| (-1014 (-552)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1098 |#1| |#2|) $) NIL)) (-3207 (($ $ $ |#3|) NIL (|has| |#1| (-170)))) (-4169 (($ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#1| (-446))) (($ $ |#3|) NIL (|has| |#1| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#1| (-885)))) (-1347 (($ $ |#1| (-524 |#3|) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| |#1| (-862 (-374))) (|has| |#3| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| |#1| (-862 (-552))) (|has| |#3| (-862 (-552)))))) (-2172 (((-751) $ |#2|) NIL) (((-751) $) 10)) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-3970 (($ (-1145 |#1|) |#3|) NIL) (($ (-1145 $) |#3|) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-524 |#3|)) NIL) (($ $ |#3| (-751)) NIL) (($ $ (-625 |#3|) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ |#3|) NIL)) (-4134 (((-524 |#3|) $) NIL) (((-751) $ |#3|) NIL) (((-625 (-751)) $ (-625 |#3|)) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1357 (($ (-1 (-524 |#3|) (-524 |#3|)) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-3479 (((-1 $ (-751)) |#2|) NIL) (((-1 $ (-751)) $) NIL (|has| |#1| (-229)))) (-1942 (((-3 |#3| "failed") $) NIL)) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2578 ((|#3| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2883 (((-1131) $) NIL)) (-3162 (((-112) $) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| |#3|) (|:| -3564 (-751))) "failed") $) NIL)) (-4186 (($ $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 ((|#1| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-885)))) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-625 |#3|) (-625 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-625 |#3|) (-625 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-229))) (($ $ (-625 |#2|) (-625 $)) NIL (|has| |#1| (-229))) (($ $ |#2| |#1|) NIL (|has| |#1| (-229))) (($ $ (-625 |#2|) (-625 |#1|)) NIL (|has| |#1| (-229)))) (-3217 (($ $ |#3|) NIL (|has| |#1| (-170)))) (-3072 (($ $ |#3|) NIL) (($ $ (-625 |#3|)) NIL) (($ $ |#3| (-751)) NIL) (($ $ (-625 |#3|) (-625 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3177 (((-625 |#2|) $) NIL)) (-4276 (((-524 |#3|) $) NIL) (((-751) $ |#3|) NIL) (((-625 (-751)) $ (-625 |#3|)) NIL) (((-751) $ |#2|) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| |#1| (-598 (-868 (-374)))) (|has| |#3| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| |#1| (-598 (-868 (-552)))) (|has| |#3| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| |#1| (-598 (-528))) (|has| |#3| (-598 (-528)))))) (-4108 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ |#3|) NIL (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1098 |#1| |#2|)) 30) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-524 |#3|)) NIL) (($ $ |#3| (-751)) NIL) (($ $ (-625 |#3|) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ |#3|) NIL) (($ $ (-625 |#3|)) NIL) (($ $ |#3| (-751)) NIL) (($ $ (-625 |#3|) (-625 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-259 |#1| |#2| |#3|) (-13 (-248 |#1| |#2| |#3| (-524 |#3|)) (-1014 (-1098 |#1| |#2|))) (-1025) (-827) (-261 |#2|)) (T -259)) -NIL -(-13 (-248 |#1| |#2| |#3| (-524 |#3|)) (-1014 (-1098 |#1| |#2|))) -((-3469 (((-751) $) 30)) (-1893 (((-3 |#2| "failed") $) 17)) (-1895 ((|#2| $) 27)) (-3072 (($ $) 12) (($ $ (-751)) 15)) (-1683 (((-839) $) 26) (($ |#2|) 10)) (-2281 (((-112) $ $) 20)) (-2307 (((-112) $ $) 29))) -(((-260 |#1| |#2|) (-10 -8 (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1|)) (-15 -3469 ((-751) |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -2307 ((-112) |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|))) (-261 |#2|) (-827)) (T -260)) -NIL -(-10 -8 (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1|)) (-15 -3469 ((-751) |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -2307 ((-112) |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|))) -((-1671 (((-112) $ $) 7)) (-3469 (((-751) $) 22)) (-2195 ((|#1| $) 23)) (-1893 (((-3 |#1| "failed") $) 27)) (-1895 ((|#1| $) 26)) (-2172 (((-751) $) 24)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-3479 (($ |#1| (-751)) 25)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3072 (($ $) 21) (($ $ (-751)) 20)) (-1683 (((-839) $) 11) (($ |#1|) 28)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18))) -(((-261 |#1|) (-138) (-827)) (T -261)) -((-1683 (*1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827)))) (-3479 (*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-261 *2)) (-4 *2 (-827)))) (-2172 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-827)) (-5 *2 (-751)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827)))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-827)) (-5 *2 (-751)))) (-3072 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827)))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-261 *3)) (-4 *3 (-827))))) -(-13 (-827) (-1014 |t#1|) (-10 -8 (-15 -3479 ($ |t#1| (-751))) (-15 -2172 ((-751) $)) (-15 -2195 (|t#1| $)) (-15 -3469 ((-751) $)) (-15 -3072 ($ $)) (-15 -3072 ($ $ (-751))) (-15 -1683 ($ |t#1|)))) -(((-101) . T) ((-597 (-839)) . T) ((-827) . T) ((-1014 |#1|) . T) ((-1073) . T)) -((-3982 (((-625 (-1149)) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) 41)) (-3202 (((-625 (-1149)) (-311 (-221)) (-751)) 80)) (-3508 (((-3 (-311 (-221)) "failed") (-311 (-221))) 51)) (-3517 (((-311 (-221)) (-311 (-221))) 67)) (-3499 (((-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221))))) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 26)) (-3527 (((-112) (-625 (-311 (-221)))) 84)) (-3567 (((-112) (-311 (-221))) 24)) (-3590 (((-625 (-1131)) (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))))) 106)) (-3557 (((-625 (-311 (-221))) (-625 (-311 (-221)))) 88)) (-3548 (((-625 (-311 (-221))) (-625 (-311 (-221)))) 86)) (-3536 (((-669 (-221)) (-625 (-311 (-221))) (-751)) 95)) (-2745 (((-112) (-311 (-221))) 20) (((-112) (-625 (-311 (-221)))) 85)) (-3489 (((-625 (-221)) (-625 (-820 (-221))) (-221)) 14)) (-2093 (((-374) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) 101)) (-3577 (((-1011) (-1149) (-1011)) 34))) -(((-262) (-10 -7 (-15 -3489 ((-625 (-221)) (-625 (-820 (-221))) (-221))) (-15 -3499 ((-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221))))) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221))))))) (-15 -3508 ((-3 (-311 (-221)) "failed") (-311 (-221)))) (-15 -3517 ((-311 (-221)) (-311 (-221)))) (-15 -3527 ((-112) (-625 (-311 (-221))))) (-15 -2745 ((-112) (-625 (-311 (-221))))) (-15 -2745 ((-112) (-311 (-221)))) (-15 -3536 ((-669 (-221)) (-625 (-311 (-221))) (-751))) (-15 -3548 ((-625 (-311 (-221))) (-625 (-311 (-221))))) (-15 -3557 ((-625 (-311 (-221))) (-625 (-311 (-221))))) (-15 -3567 ((-112) (-311 (-221)))) (-15 -3982 ((-625 (-1149)) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) (-15 -3202 ((-625 (-1149)) (-311 (-221)) (-751))) (-15 -3577 ((-1011) (-1149) (-1011))) (-15 -2093 ((-374) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) (-15 -3590 ((-625 (-1131)) (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))))))) (T -262)) -((-3590 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))))) (-5 *2 (-625 (-1131))) (-5 *1 (-262)))) (-2093 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) (-5 *2 (-374)) (-5 *1 (-262)))) (-3577 (*1 *2 *3 *2) (-12 (-5 *2 (-1011)) (-5 *3 (-1149)) (-5 *1 (-262)))) (-3202 (*1 *2 *3 *4) (-12 (-5 *3 (-311 (-221))) (-5 *4 (-751)) (-5 *2 (-625 (-1149))) (-5 *1 (-262)))) (-3982 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) (-5 *2 (-625 (-1149))) (-5 *1 (-262)))) (-3567 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-112)) (-5 *1 (-262)))) (-3557 (*1 *2 *2) (-12 (-5 *2 (-625 (-311 (-221)))) (-5 *1 (-262)))) (-3548 (*1 *2 *2) (-12 (-5 *2 (-625 (-311 (-221)))) (-5 *1 (-262)))) (-3536 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-311 (-221)))) (-5 *4 (-751)) (-5 *2 (-669 (-221))) (-5 *1 (-262)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-112)) (-5 *1 (-262)))) (-2745 (*1 *2 *3) (-12 (-5 *3 (-625 (-311 (-221)))) (-5 *2 (-112)) (-5 *1 (-262)))) (-3527 (*1 *2 *3) (-12 (-5 *3 (-625 (-311 (-221)))) (-5 *2 (-112)) (-5 *1 (-262)))) (-3517 (*1 *2 *2) (-12 (-5 *2 (-311 (-221))) (-5 *1 (-262)))) (-3508 (*1 *2 *2) (|partial| -12 (-5 *2 (-311 (-221))) (-5 *1 (-262)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (-5 *1 (-262)))) (-3489 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-820 (-221)))) (-5 *4 (-221)) (-5 *2 (-625 *4)) (-5 *1 (-262))))) -(-10 -7 (-15 -3489 ((-625 (-221)) (-625 (-820 (-221))) (-221))) (-15 -3499 ((-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221))))) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221))))))) (-15 -3508 ((-3 (-311 (-221)) "failed") (-311 (-221)))) (-15 -3517 ((-311 (-221)) (-311 (-221)))) (-15 -3527 ((-112) (-625 (-311 (-221))))) (-15 -2745 ((-112) (-625 (-311 (-221))))) (-15 -2745 ((-112) (-311 (-221)))) (-15 -3536 ((-669 (-221)) (-625 (-311 (-221))) (-751))) (-15 -3548 ((-625 (-311 (-221))) (-625 (-311 (-221))))) (-15 -3557 ((-625 (-311 (-221))) (-625 (-311 (-221))))) (-15 -3567 ((-112) (-311 (-221)))) (-15 -3982 ((-625 (-1149)) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) (-15 -3202 ((-625 (-1149)) (-311 (-221)) (-751))) (-15 -3577 ((-1011) (-1149) (-1011))) (-15 -2093 ((-374) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) (-15 -3590 ((-625 (-1131)) (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))))))) -((-1671 (((-112) $ $) NIL)) (-3196 (((-1011) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) NIL) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 44)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 26) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL))) -(((-263) (-816)) (T -263)) -NIL -(-816) -((-1671 (((-112) $ $) NIL)) (-3196 (((-1011) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) 58) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 54)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 34) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) 36)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL))) -(((-264) (-816)) (T -264)) -NIL -(-816) -((-1671 (((-112) $ $) NIL)) (-3196 (((-1011) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) 76) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 73)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 44) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) 55)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL))) -(((-265) (-816)) (T -265)) -NIL -(-816) -((-1671 (((-112) $ $) NIL)) (-3196 (((-1011) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) NIL) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 50)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 31) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL))) -(((-266) (-816)) (T -266)) -NIL -(-816) -((-1671 (((-112) $ $) NIL)) (-3196 (((-1011) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) NIL) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 50)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 28) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL))) -(((-267) (-816)) (T -267)) -NIL -(-816) -((-1671 (((-112) $ $) NIL)) (-3196 (((-1011) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) NIL) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 73)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 28) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL))) -(((-268) (-816)) (T -268)) -NIL -(-816) -((-1671 (((-112) $ $) NIL)) (-3196 (((-1011) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) NIL) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 77)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 25) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2281 (((-112) $ $) NIL))) -(((-269) (-816)) (T -269)) -NIL -(-816) -((-1671 (((-112) $ $) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3611 (((-625 (-552)) $) 19)) (-4276 (((-751) $) 17)) (-1683 (((-839) $) 23) (($ (-625 (-552))) 15)) (-3601 (($ (-751)) 20)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 9)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 11))) -(((-270) (-13 (-827) (-10 -8 (-15 -1683 ($ (-625 (-552)))) (-15 -4276 ((-751) $)) (-15 -3611 ((-625 (-552)) $)) (-15 -3601 ($ (-751)))))) (T -270)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-270)))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-270)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-270)))) (-3601 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-270))))) -(-13 (-827) (-10 -8 (-15 -1683 ($ (-625 (-552)))) (-15 -4276 ((-751) $)) (-15 -3611 ((-625 (-552)) $)) (-15 -3601 ($ (-751))))) -((-3728 ((|#2| |#2|) 77)) (-3604 ((|#2| |#2|) 65)) (-2762 (((-3 |#2| "failed") |#2| (-625 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-3710 ((|#2| |#2|) 75)) (-3581 ((|#2| |#2|) 63)) (-3749 ((|#2| |#2|) 79)) (-3627 ((|#2| |#2|) 67)) (-1385 ((|#2|) 46)) (-1563 (((-114) (-114)) 95)) (-2458 ((|#2| |#2|) 61)) (-2771 (((-112) |#2|) 134)) (-2661 ((|#2| |#2|) 181)) (-2544 ((|#2| |#2|) 157)) (-3633 ((|#2|) 59)) (-3622 ((|#2|) 58)) (-2644 ((|#2| |#2|) 177)) (-2526 ((|#2| |#2|) 153)) (-2685 ((|#2| |#2|) 185)) (-2563 ((|#2| |#2|) 161)) (-2517 ((|#2| |#2|) 149)) (-3643 ((|#2| |#2|) 151)) (-2695 ((|#2| |#2|) 187)) (-2573 ((|#2| |#2|) 163)) (-2674 ((|#2| |#2|) 183)) (-2553 ((|#2| |#2|) 159)) (-2652 ((|#2| |#2|) 179)) (-2536 ((|#2| |#2|) 155)) (-2724 ((|#2| |#2|) 193)) (-2606 ((|#2| |#2|) 169)) (-2705 ((|#2| |#2|) 189)) (-2582 ((|#2| |#2|) 165)) (-2743 ((|#2| |#2|) 197)) (-2623 ((|#2| |#2|) 173)) (-2752 ((|#2| |#2|) 199)) (-2634 ((|#2| |#2|) 175)) (-2733 ((|#2| |#2|) 195)) (-2613 ((|#2| |#2|) 171)) (-2714 ((|#2| |#2|) 191)) (-2592 ((|#2| |#2|) 167)) (-2863 ((|#2| |#2|) 62)) (-3759 ((|#2| |#2|) 80)) (-3638 ((|#2| |#2|) 68)) (-3738 ((|#2| |#2|) 78)) (-3614 ((|#2| |#2|) 66)) (-3721 ((|#2| |#2|) 76)) (-3593 ((|#2| |#2|) 64)) (-1572 (((-112) (-114)) 93)) (-3789 ((|#2| |#2|) 83)) (-3670 ((|#2| |#2|) 71)) (-3769 ((|#2| |#2|) 81)) (-3648 ((|#2| |#2|) 69)) (-3809 ((|#2| |#2|) 85)) (-3691 ((|#2| |#2|) 73)) (-3742 ((|#2| |#2|) 86)) (-3700 ((|#2| |#2|) 74)) (-3797 ((|#2| |#2|) 84)) (-3681 ((|#2| |#2|) 72)) (-3778 ((|#2| |#2|) 82)) (-3659 ((|#2| |#2|) 70))) -(((-271 |#1| |#2|) (-10 -7 (-15 -2863 (|#2| |#2|)) (-15 -2458 (|#2| |#2|)) (-15 -3581 (|#2| |#2|)) (-15 -3593 (|#2| |#2|)) (-15 -3604 (|#2| |#2|)) (-15 -3614 (|#2| |#2|)) (-15 -3627 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3681 (|#2| |#2|)) (-15 -3691 (|#2| |#2|)) (-15 -3700 (|#2| |#2|)) (-15 -3710 (|#2| |#2|)) (-15 -3721 (|#2| |#2|)) (-15 -3728 (|#2| |#2|)) (-15 -3738 (|#2| |#2|)) (-15 -3749 (|#2| |#2|)) (-15 -3759 (|#2| |#2|)) (-15 -3769 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3797 (|#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -3742 (|#2| |#2|)) (-15 -1385 (|#2|)) (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 -3622 (|#2|)) (-15 -3633 (|#2|)) (-15 -3643 (|#2| |#2|)) (-15 -2517 (|#2| |#2|)) (-15 -2526 (|#2| |#2|)) (-15 -2536 (|#2| |#2|)) (-15 -2544 (|#2| |#2|)) (-15 -2553 (|#2| |#2|)) (-15 -2563 (|#2| |#2|)) (-15 -2573 (|#2| |#2|)) (-15 -2582 (|#2| |#2|)) (-15 -2592 (|#2| |#2|)) (-15 -2606 (|#2| |#2|)) (-15 -2613 (|#2| |#2|)) (-15 -2623 (|#2| |#2|)) (-15 -2634 (|#2| |#2|)) (-15 -2644 (|#2| |#2|)) (-15 -2652 (|#2| |#2|)) (-15 -2661 (|#2| |#2|)) (-15 -2674 (|#2| |#2|)) (-15 -2685 (|#2| |#2|)) (-15 -2695 (|#2| |#2|)) (-15 -2705 (|#2| |#2|)) (-15 -2714 (|#2| |#2|)) (-15 -2724 (|#2| |#2|)) (-15 -2733 (|#2| |#2|)) (-15 -2743 (|#2| |#2|)) (-15 -2752 (|#2| |#2|)) (-15 -2762 ((-3 |#2| "failed") |#2| (-625 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2771 ((-112) |#2|))) (-13 (-827) (-544)) (-13 (-425 |#1|) (-978))) (T -271)) -((-2771 (*1 *2 *3) (-12 (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112)) (-5 *1 (-271 *4 *3)) (-4 *3 (-13 (-425 *4) (-978))))) (-2762 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-625 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-425 *4) (-978))) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-271 *4 *2)))) (-2752 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2743 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2733 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2724 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2714 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2705 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2695 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2685 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2674 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2661 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2652 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2644 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2634 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2623 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2613 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2606 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2592 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2582 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2573 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2563 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2553 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2544 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2536 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2526 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2517 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3643 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3633 (*1 *2) (-12 (-4 *2 (-13 (-425 *3) (-978))) (-5 *1 (-271 *3 *2)) (-4 *3 (-13 (-827) (-544))))) (-3622 (*1 *2) (-12 (-4 *2 (-13 (-425 *3) (-978))) (-5 *1 (-271 *3 *2)) (-4 *3 (-13 (-827) (-544))))) (-1563 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *4)) (-4 *4 (-13 (-425 *3) (-978))))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112)) (-5 *1 (-271 *4 *5)) (-4 *5 (-13 (-425 *4) (-978))))) (-1385 (*1 *2) (-12 (-4 *2 (-13 (-425 *3) (-978))) (-5 *1 (-271 *3 *2)) (-4 *3 (-13 (-827) (-544))))) (-3742 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3797 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3769 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3749 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3728 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3721 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3710 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3700 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3691 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3681 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3627 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3614 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3604 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3593 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-3581 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2458 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978))))) (-2863 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-425 *3) (-978)))))) -(-10 -7 (-15 -2863 (|#2| |#2|)) (-15 -2458 (|#2| |#2|)) (-15 -3581 (|#2| |#2|)) (-15 -3593 (|#2| |#2|)) (-15 -3604 (|#2| |#2|)) (-15 -3614 (|#2| |#2|)) (-15 -3627 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -3659 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3681 (|#2| |#2|)) (-15 -3691 (|#2| |#2|)) (-15 -3700 (|#2| |#2|)) (-15 -3710 (|#2| |#2|)) (-15 -3721 (|#2| |#2|)) (-15 -3728 (|#2| |#2|)) (-15 -3738 (|#2| |#2|)) (-15 -3749 (|#2| |#2|)) (-15 -3759 (|#2| |#2|)) (-15 -3769 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3789 (|#2| |#2|)) (-15 -3797 (|#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -3742 (|#2| |#2|)) (-15 -1385 (|#2|)) (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 -3622 (|#2|)) (-15 -3633 (|#2|)) (-15 -3643 (|#2| |#2|)) (-15 -2517 (|#2| |#2|)) (-15 -2526 (|#2| |#2|)) (-15 -2536 (|#2| |#2|)) (-15 -2544 (|#2| |#2|)) (-15 -2553 (|#2| |#2|)) (-15 -2563 (|#2| |#2|)) (-15 -2573 (|#2| |#2|)) (-15 -2582 (|#2| |#2|)) (-15 -2592 (|#2| |#2|)) (-15 -2606 (|#2| |#2|)) (-15 -2613 (|#2| |#2|)) (-15 -2623 (|#2| |#2|)) (-15 -2634 (|#2| |#2|)) (-15 -2644 (|#2| |#2|)) (-15 -2652 (|#2| |#2|)) (-15 -2661 (|#2| |#2|)) (-15 -2674 (|#2| |#2|)) (-15 -2685 (|#2| |#2|)) (-15 -2695 (|#2| |#2|)) (-15 -2705 (|#2| |#2|)) (-15 -2714 (|#2| |#2|)) (-15 -2724 (|#2| |#2|)) (-15 -2733 (|#2| |#2|)) (-15 -2743 (|#2| |#2|)) (-15 -2752 (|#2| |#2|)) (-15 -2762 ((-3 |#2| "failed") |#2| (-625 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2771 ((-112) |#2|))) -((-2803 (((-3 |#2| "failed") (-625 (-596 |#2|)) |#2| (-1149)) 135)) (-2828 ((|#2| (-402 (-552)) |#2|) 51)) (-2815 ((|#2| |#2| (-596 |#2|)) 128)) (-2782 (((-2 (|:| |func| |#2|) (|:| |kers| (-625 (-596 |#2|))) (|:| |vals| (-625 |#2|))) |#2| (-1149)) 127)) (-2792 ((|#2| |#2| (-1149)) 20) ((|#2| |#2|) 23)) (-3895 ((|#2| |#2| (-1149)) 141) ((|#2| |#2|) 139))) -(((-272 |#1| |#2|) (-10 -7 (-15 -3895 (|#2| |#2|)) (-15 -3895 (|#2| |#2| (-1149))) (-15 -2782 ((-2 (|:| |func| |#2|) (|:| |kers| (-625 (-596 |#2|))) (|:| |vals| (-625 |#2|))) |#2| (-1149))) (-15 -2792 (|#2| |#2|)) (-15 -2792 (|#2| |#2| (-1149))) (-15 -2803 ((-3 |#2| "failed") (-625 (-596 |#2|)) |#2| (-1149))) (-15 -2815 (|#2| |#2| (-596 |#2|))) (-15 -2828 (|#2| (-402 (-552)) |#2|))) (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))) (-13 (-27) (-1171) (-425 |#1|))) (T -272)) -((-2828 (*1 *2 *3 *2) (-12 (-5 *3 (-402 (-552))) (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4))))) (-2815 (*1 *2 *2 *3) (-12 (-5 *3 (-596 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4))) (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-272 *4 *2)))) (-2803 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-625 (-596 *2))) (-5 *4 (-1149)) (-4 *2 (-13 (-27) (-1171) (-425 *5))) (-4 *5 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-272 *5 *2)))) (-2792 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4))))) (-2792 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3))))) (-2782 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-625 (-596 *3))) (|:| |vals| (-625 *3)))) (-5 *1 (-272 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))))) (-3895 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4))))) (-3895 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3)))))) -(-10 -7 (-15 -3895 (|#2| |#2|)) (-15 -3895 (|#2| |#2| (-1149))) (-15 -2782 ((-2 (|:| |func| |#2|) (|:| |kers| (-625 (-596 |#2|))) (|:| |vals| (-625 |#2|))) |#2| (-1149))) (-15 -2792 (|#2| |#2|)) (-15 -2792 (|#2| |#2| (-1149))) (-15 -2803 ((-3 |#2| "failed") (-625 (-596 |#2|)) |#2| (-1149))) (-15 -2815 (|#2| |#2| (-596 |#2|))) (-15 -2828 (|#2| (-402 (-552)) |#2|))) -((-2063 (((-3 |#3| "failed") |#3|) 111)) (-3728 ((|#3| |#3|) 132)) (-3125 (((-3 |#3| "failed") |#3|) 82)) (-3604 ((|#3| |#3|) 122)) (-2041 (((-3 |#3| "failed") |#3|) 58)) (-3710 ((|#3| |#3|) 130)) (-3107 (((-3 |#3| "failed") |#3|) 46)) (-3581 ((|#3| |#3|) 120)) (-2084 (((-3 |#3| "failed") |#3|) 113)) (-3749 ((|#3| |#3|) 134)) (-3144 (((-3 |#3| "failed") |#3|) 84)) (-3627 ((|#3| |#3|) 124)) (-3082 (((-3 |#3| "failed") |#3| (-751)) 36)) (-3097 (((-3 |#3| "failed") |#3|) 74)) (-2458 ((|#3| |#3|) 119)) (-3090 (((-3 |#3| "failed") |#3|) 44)) (-2863 ((|#3| |#3|) 118)) (-2095 (((-3 |#3| "failed") |#3|) 114)) (-3759 ((|#3| |#3|) 135)) (-3156 (((-3 |#3| "failed") |#3|) 85)) (-3638 ((|#3| |#3|) 125)) (-2074 (((-3 |#3| "failed") |#3|) 112)) (-3738 ((|#3| |#3|) 133)) (-3133 (((-3 |#3| "failed") |#3|) 83)) (-3614 ((|#3| |#3|) 123)) (-2050 (((-3 |#3| "failed") |#3|) 60)) (-3721 ((|#3| |#3|) 131)) (-3115 (((-3 |#3| "failed") |#3|) 48)) (-3593 ((|#3| |#3|) 121)) (-2124 (((-3 |#3| "failed") |#3|) 66)) (-3789 ((|#3| |#3|) 138)) (-2006 (((-3 |#3| "failed") |#3|) 105)) (-3670 ((|#3| |#3|) 142)) (-2106 (((-3 |#3| "failed") |#3|) 62)) (-3769 ((|#3| |#3|) 136)) (-1985 (((-3 |#3| "failed") |#3|) 50)) (-3648 ((|#3| |#3|) 126)) (-2145 (((-3 |#3| "failed") |#3|) 70)) (-3809 ((|#3| |#3|) 140)) (-2022 (((-3 |#3| "failed") |#3|) 54)) (-3691 ((|#3| |#3|) 128)) (-2160 (((-3 |#3| "failed") |#3|) 72)) (-3742 ((|#3| |#3|) 141)) (-2031 (((-3 |#3| "failed") |#3|) 56)) (-3700 ((|#3| |#3|) 129)) (-2136 (((-3 |#3| "failed") |#3|) 68)) (-3797 ((|#3| |#3|) 139)) (-2013 (((-3 |#3| "failed") |#3|) 108)) (-3681 ((|#3| |#3|) 143)) (-2115 (((-3 |#3| "failed") |#3|) 64)) (-3778 ((|#3| |#3|) 137)) (-1995 (((-3 |#3| "failed") |#3|) 52)) (-3659 ((|#3| |#3|) 127)) (** ((|#3| |#3| (-402 (-552))) 40 (|has| |#1| (-358))))) -(((-273 |#1| |#2| |#3|) (-13 (-959 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-552)))) |%noBranch|) (-15 -2863 (|#3| |#3|)) (-15 -2458 (|#3| |#3|)) (-15 -3581 (|#3| |#3|)) (-15 -3593 (|#3| |#3|)) (-15 -3604 (|#3| |#3|)) (-15 -3614 (|#3| |#3|)) (-15 -3627 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3648 (|#3| |#3|)) (-15 -3659 (|#3| |#3|)) (-15 -3670 (|#3| |#3|)) (-15 -3681 (|#3| |#3|)) (-15 -3691 (|#3| |#3|)) (-15 -3700 (|#3| |#3|)) (-15 -3710 (|#3| |#3|)) (-15 -3721 (|#3| |#3|)) (-15 -3728 (|#3| |#3|)) (-15 -3738 (|#3| |#3|)) (-15 -3749 (|#3| |#3|)) (-15 -3759 (|#3| |#3|)) (-15 -3769 (|#3| |#3|)) (-15 -3778 (|#3| |#3|)) (-15 -3789 (|#3| |#3|)) (-15 -3797 (|#3| |#3|)) (-15 -3809 (|#3| |#3|)) (-15 -3742 (|#3| |#3|)))) (-38 (-402 (-552))) (-1223 |#1|) (-1194 |#1| |#2|)) (T -273)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-402 (-552))) (-4 *4 (-358)) (-4 *4 (-38 *3)) (-4 *5 (-1223 *4)) (-5 *1 (-273 *4 *5 *2)) (-4 *2 (-1194 *4 *5)))) (-2863 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-2458 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3581 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3593 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3604 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3614 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3627 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3681 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3691 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3700 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3710 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3721 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3728 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3749 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3769 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3797 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) (-3742 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4))))) -(-13 (-959 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-552)))) |%noBranch|) (-15 -2863 (|#3| |#3|)) (-15 -2458 (|#3| |#3|)) (-15 -3581 (|#3| |#3|)) (-15 -3593 (|#3| |#3|)) (-15 -3604 (|#3| |#3|)) (-15 -3614 (|#3| |#3|)) (-15 -3627 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3648 (|#3| |#3|)) (-15 -3659 (|#3| |#3|)) (-15 -3670 (|#3| |#3|)) (-15 -3681 (|#3| |#3|)) (-15 -3691 (|#3| |#3|)) (-15 -3700 (|#3| |#3|)) (-15 -3710 (|#3| |#3|)) (-15 -3721 (|#3| |#3|)) (-15 -3728 (|#3| |#3|)) (-15 -3738 (|#3| |#3|)) (-15 -3749 (|#3| |#3|)) (-15 -3759 (|#3| |#3|)) (-15 -3769 (|#3| |#3|)) (-15 -3778 (|#3| |#3|)) (-15 -3789 (|#3| |#3|)) (-15 -3797 (|#3| |#3|)) (-15 -3809 (|#3| |#3|)) (-15 -3742 (|#3| |#3|)))) -((-2063 (((-3 |#3| "failed") |#3|) 66)) (-3728 ((|#3| |#3|) 129)) (-3125 (((-3 |#3| "failed") |#3|) 50)) (-3604 ((|#3| |#3|) 117)) (-2041 (((-3 |#3| "failed") |#3|) 62)) (-3710 ((|#3| |#3|) 127)) (-3107 (((-3 |#3| "failed") |#3|) 46)) (-3581 ((|#3| |#3|) 115)) (-2084 (((-3 |#3| "failed") |#3|) 70)) (-3749 ((|#3| |#3|) 131)) (-3144 (((-3 |#3| "failed") |#3|) 54)) (-3627 ((|#3| |#3|) 119)) (-3082 (((-3 |#3| "failed") |#3| (-751)) 35)) (-3097 (((-3 |#3| "failed") |#3|) 44)) (-2458 ((|#3| |#3|) 105)) (-3090 (((-3 |#3| "failed") |#3|) 42)) (-2863 ((|#3| |#3|) 114)) (-2095 (((-3 |#3| "failed") |#3|) 72)) (-3759 ((|#3| |#3|) 132)) (-3156 (((-3 |#3| "failed") |#3|) 56)) (-3638 ((|#3| |#3|) 120)) (-2074 (((-3 |#3| "failed") |#3|) 68)) (-3738 ((|#3| |#3|) 130)) (-3133 (((-3 |#3| "failed") |#3|) 52)) (-3614 ((|#3| |#3|) 118)) (-2050 (((-3 |#3| "failed") |#3|) 64)) (-3721 ((|#3| |#3|) 128)) (-3115 (((-3 |#3| "failed") |#3|) 48)) (-3593 ((|#3| |#3|) 116)) (-2124 (((-3 |#3| "failed") |#3|) 74)) (-3789 ((|#3| |#3|) 135)) (-2006 (((-3 |#3| "failed") |#3|) 58)) (-3670 ((|#3| |#3|) 123)) (-2106 (((-3 |#3| "failed") |#3|) 106)) (-3769 ((|#3| |#3|) 133)) (-1985 (((-3 |#3| "failed") |#3|) 95)) (-3648 ((|#3| |#3|) 121)) (-2145 (((-3 |#3| "failed") |#3|) 109)) (-3809 ((|#3| |#3|) 137)) (-2022 (((-3 |#3| "failed") |#3|) 102)) (-3691 ((|#3| |#3|) 125)) (-2160 (((-3 |#3| "failed") |#3|) 110)) (-3742 ((|#3| |#3|) 138)) (-2031 (((-3 |#3| "failed") |#3|) 104)) (-3700 ((|#3| |#3|) 126)) (-2136 (((-3 |#3| "failed") |#3|) 76)) (-3797 ((|#3| |#3|) 136)) (-2013 (((-3 |#3| "failed") |#3|) 60)) (-3681 ((|#3| |#3|) 124)) (-2115 (((-3 |#3| "failed") |#3|) 107)) (-3778 ((|#3| |#3|) 134)) (-1995 (((-3 |#3| "failed") |#3|) 98)) (-3659 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-402 (-552))) 40 (|has| |#1| (-358))))) -(((-274 |#1| |#2| |#3| |#4|) (-13 (-959 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-552)))) |%noBranch|) (-15 -2863 (|#3| |#3|)) (-15 -2458 (|#3| |#3|)) (-15 -3581 (|#3| |#3|)) (-15 -3593 (|#3| |#3|)) (-15 -3604 (|#3| |#3|)) (-15 -3614 (|#3| |#3|)) (-15 -3627 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3648 (|#3| |#3|)) (-15 -3659 (|#3| |#3|)) (-15 -3670 (|#3| |#3|)) (-15 -3681 (|#3| |#3|)) (-15 -3691 (|#3| |#3|)) (-15 -3700 (|#3| |#3|)) (-15 -3710 (|#3| |#3|)) (-15 -3721 (|#3| |#3|)) (-15 -3728 (|#3| |#3|)) (-15 -3738 (|#3| |#3|)) (-15 -3749 (|#3| |#3|)) (-15 -3759 (|#3| |#3|)) (-15 -3769 (|#3| |#3|)) (-15 -3778 (|#3| |#3|)) (-15 -3789 (|#3| |#3|)) (-15 -3797 (|#3| |#3|)) (-15 -3809 (|#3| |#3|)) (-15 -3742 (|#3| |#3|)))) (-38 (-402 (-552))) (-1192 |#1|) (-1215 |#1| |#2|) (-959 |#2|)) (T -274)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-402 (-552))) (-4 *4 (-358)) (-4 *4 (-38 *3)) (-4 *5 (-1192 *4)) (-5 *1 (-274 *4 *5 *2 *6)) (-4 *2 (-1215 *4 *5)) (-4 *6 (-959 *5)))) (-2863 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-2458 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3581 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3593 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3604 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3614 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3627 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3659 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3681 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3691 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3700 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3710 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3721 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3728 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3749 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3769 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3789 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3797 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) (-3742 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4))))) -(-13 (-959 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-552)))) |%noBranch|) (-15 -2863 (|#3| |#3|)) (-15 -2458 (|#3| |#3|)) (-15 -3581 (|#3| |#3|)) (-15 -3593 (|#3| |#3|)) (-15 -3604 (|#3| |#3|)) (-15 -3614 (|#3| |#3|)) (-15 -3627 (|#3| |#3|)) (-15 -3638 (|#3| |#3|)) (-15 -3648 (|#3| |#3|)) (-15 -3659 (|#3| |#3|)) (-15 -3670 (|#3| |#3|)) (-15 -3681 (|#3| |#3|)) (-15 -3691 (|#3| |#3|)) (-15 -3700 (|#3| |#3|)) (-15 -3710 (|#3| |#3|)) (-15 -3721 (|#3| |#3|)) (-15 -3728 (|#3| |#3|)) (-15 -3738 (|#3| |#3|)) (-15 -3749 (|#3| |#3|)) (-15 -3759 (|#3| |#3|)) (-15 -3769 (|#3| |#3|)) (-15 -3778 (|#3| |#3|)) (-15 -3789 (|#3| |#3|)) (-15 -3797 (|#3| |#3|)) (-15 -3809 (|#3| |#3|)) (-15 -3742 (|#3| |#3|)))) -((-3226 (((-112) $) 19)) (-1906 (((-181) $) 7)) (-2442 (((-3 (-1149) "failed") $) 14)) (-1810 (((-3 (-625 $) "failed") $) NIL)) (-2852 (((-3 (-1149) "failed") $) 21)) (-2862 (((-3 (-1077) "failed") $) 17)) (-4307 (((-112) $) 15)) (-1683 (((-839) $) NIL)) (-2839 (((-112) $) 9))) -(((-275) (-13 (-597 (-839)) (-10 -8 (-15 -1906 ((-181) $)) (-15 -4307 ((-112) $)) (-15 -2862 ((-3 (-1077) "failed") $)) (-15 -3226 ((-112) $)) (-15 -2852 ((-3 (-1149) "failed") $)) (-15 -2839 ((-112) $)) (-15 -2442 ((-3 (-1149) "failed") $)) (-15 -1810 ((-3 (-625 $) "failed") $))))) (T -275)) -((-1906 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-275)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) (-2862 (*1 *2 *1) (|partial| -12 (-5 *2 (-1077)) (-5 *1 (-275)))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) (-2852 (*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-275)))) (-2839 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) (-2442 (*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-275)))) (-1810 (*1 *2 *1) (|partial| -12 (-5 *2 (-625 (-275))) (-5 *1 (-275))))) -(-13 (-597 (-839)) (-10 -8 (-15 -1906 ((-181) $)) (-15 -4307 ((-112) $)) (-15 -2862 ((-3 (-1077) "failed") $)) (-15 -3226 ((-112) $)) (-15 -2852 ((-3 (-1149) "failed") $)) (-15 -2839 ((-112) $)) (-15 -2442 ((-3 (-1149) "failed") $)) (-15 -1810 ((-3 (-625 $) "failed") $)))) -((-3488 (($ (-1 (-112) |#2|) $) 24)) (-2959 (($ $) 36)) (-1938 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-1416 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-3260 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-3994 (($ |#2| $ (-552)) 20) (($ $ $ (-552)) 22)) (-4001 (($ $ (-552)) 11) (($ $ (-1199 (-552))) 14)) (-2342 (($ $ |#2|) 30) (($ $ $) NIL)) (-3402 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-625 $)) NIL))) -(((-276 |#1| |#2|) (-10 -8 (-15 -3260 (|#1| |#1| |#1|)) (-15 -1938 (|#1| |#2| |#1|)) (-15 -3260 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1938 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2342 (|#1| |#1| |#1|)) (-15 -2342 (|#1| |#1| |#2|)) (-15 -3994 (|#1| |#1| |#1| (-552))) (-15 -3994 (|#1| |#2| |#1| (-552))) (-15 -4001 (|#1| |#1| (-1199 (-552)))) (-15 -4001 (|#1| |#1| (-552))) (-15 -3402 (|#1| (-625 |#1|))) (-15 -3402 (|#1| |#1| |#1|)) (-15 -3402 (|#1| |#2| |#1|)) (-15 -3402 (|#1| |#1| |#2|)) (-15 -1416 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3488 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1416 (|#1| |#2| |#1|)) (-15 -2959 (|#1| |#1|))) (-277 |#2|) (-1186)) (T -276)) -NIL -(-10 -8 (-15 -3260 (|#1| |#1| |#1|)) (-15 -1938 (|#1| |#2| |#1|)) (-15 -3260 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1938 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2342 (|#1| |#1| |#1|)) (-15 -2342 (|#1| |#1| |#2|)) (-15 -3994 (|#1| |#1| |#1| (-552))) (-15 -3994 (|#1| |#2| |#1| (-552))) (-15 -4001 (|#1| |#1| (-1199 (-552)))) (-15 -4001 (|#1| |#1| (-552))) (-15 -3402 (|#1| (-625 |#1|))) (-15 -3402 (|#1| |#1| |#1|)) (-15 -3402 (|#1| |#2| |#1|)) (-15 -3402 (|#1| |#1| |#2|)) (-15 -1416 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3488 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1416 (|#1| |#2| |#1|)) (-15 -2959 (|#1| |#1|))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-2509 (((-1237) $ (-552) (-552)) 40 (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) 8)) (-1851 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) 58 (|has| $ (-6 -4354)))) (-2873 (($ (-1 (-112) |#1|) $) 85)) (-3488 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-3238 (($ $) 83 (|has| |#1| (-1073)))) (-2959 (($ $) 78 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1938 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1073)))) (-1416 (($ |#1| $) 77 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 51)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2183 (($ (-751) |#1|) 69)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 43 (|has| (-552) (-827)))) (-3260 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 44 (|has| (-552) (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-3966 (($ |#1| $ (-552)) 88) (($ $ $ (-552)) 87)) (-3994 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-2554 (((-625 (-552)) $) 46)) (-2564 (((-112) (-552) $) 47)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2924 ((|#1| $) 42 (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2518 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1199 (-552))) 63)) (-2884 (($ $ (-552)) 91) (($ $ (-1199 (-552))) 90)) (-4001 (($ $ (-552)) 62) (($ $ (-1199 (-552))) 61)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 79 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 70)) (-2342 (($ $ |#1|) 93) (($ $ $) 92)) (-3402 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-625 $)) 65)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-277 |#1|) (-138) (-1186)) (T -277)) -((-2342 (*1 *1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1186)))) (-2342 (*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1186)))) (-2884 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-277 *3)) (-4 *3 (-1186)))) (-2884 (*1 *1 *1 *2) (-12 (-5 *2 (-1199 (-552))) (-4 *1 (-277 *3)) (-4 *3 (-1186)))) (-1938 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1186)))) (-3966 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-277 *2)) (-4 *2 (-1186)))) (-3966 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-277 *3)) (-4 *3 (-1186)))) (-3260 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-277 *3)) (-4 *3 (-1186)))) (-2873 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1186)))) (-1938 (*1 *1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1186)) (-4 *2 (-1073)))) (-3238 (*1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1186)) (-4 *2 (-1073)))) (-3260 (*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1186)) (-4 *2 (-827))))) -(-13 (-631 |t#1|) (-10 -8 (-6 -4354) (-15 -2342 ($ $ |t#1|)) (-15 -2342 ($ $ $)) (-15 -2884 ($ $ (-552))) (-15 -2884 ($ $ (-1199 (-552)))) (-15 -1938 ($ (-1 (-112) |t#1|) $)) (-15 -3966 ($ |t#1| $ (-552))) (-15 -3966 ($ $ $ (-552))) (-15 -3260 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2873 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1073)) (PROGN (-15 -1938 ($ |t#1| $)) (-15 -3238 ($ $))) |%noBranch|) (IF (|has| |t#1| (-827)) (-15 -3260 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-281 #0=(-552) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-588 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-631 |#1|) . T) ((-1073) |has| |#1| (-1073)) ((-1186) . T)) +((-3267 (((-111) $) 12)) (-3516 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-401 (-552)) $) 25) (($ $ (-401 (-552))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -3267 ((-111) |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|))) (-47 |#2| |#3|) (-1028) (-775)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -3267 ((-111) |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3245 (($ $) 50 (|has| |#1| (-544)))) (-4058 (((-111) $) 52 (|has| |#1| (-544)))) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2014 (($ $) 58)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-3267 (((-111) $) 60)) (-1832 (($ |#1| |#2|) 59)) (-3516 (($ (-1 |#1| |#1|) $) 61)) (-1981 (($ $) 63)) (-1993 ((|#1| $) 64)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2761 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-3567 ((|#2| $) 62)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45 (|has| |#1| (-169)))) (-1889 ((|#1| $ |#2|) 57)) (-3050 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 51 (|has| |#1| (-544)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 56 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) +(((-47 |#1| |#2|) (-137) (-1028) (-775)) (T -47)) +((-1993 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)))) (-1981 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) (-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) (-5 *2 (-111)))) (-1832 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)))) (-2014 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)))) (-1889 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)) (-4 *2 (-357))))) +(-13 (-1028) (-110 |t#1| |t#1|) (-10 -8 (-15 -1993 (|t#1| $)) (-15 -1981 ($ $)) (-15 -3567 (|t#2| $)) (-15 -3516 ($ (-1 |t#1| |t#1|) $)) (-15 -3267 ((-111) $)) (-15 -1832 ($ |t#1| |t#2|)) (-15 -2014 ($ $)) (-15 -1889 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-357)) (-15 -2407 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-6 (-169)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-544)) (-6 (-544)) |%noBranch|) (IF (|has| |t#1| (-38 (-401 (-552)))) (-6 (-38 (-401 (-552)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-284) |has| |#1| (-544)) ((-544) |has| |#1| (-544)) ((-630 #0#) |has| |#1| (-38 (-401 (-552)))) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #0#) |has| |#1| (-38 (-401 (-552)))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) |has| |#1| (-544)) ((-709) . T) ((-1034 #0#) |has| |#1| (-38 (-401 (-552)))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-3213 (((-627 $) (-1148 $) (-1152)) NIL) (((-627 $) (-1148 $)) NIL) (((-627 $) (-931 $)) NIL)) (-2682 (($ (-1148 $) (-1152)) NIL) (($ (-1148 $)) NIL) (($ (-931 $)) NIL)) (-3024 (((-111) $) 11)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-3443 (((-627 (-598 $)) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2620 (($ $ (-288 $)) NIL) (($ $ (-627 (-288 $))) NIL) (($ $ (-627 (-598 $)) (-627 $)) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1737 (($ $) NIL)) (-4224 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-1304 (((-627 $) (-1148 $) (-1152)) NIL) (((-627 $) (-1148 $)) NIL) (((-627 $) (-931 $)) NIL)) (-3348 (($ (-1148 $) (-1152)) NIL) (($ (-1148 $)) NIL) (($ (-931 $)) NIL)) (-4039 (((-3 (-598 $) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL)) (-1703 (((-598 $) $) NIL) (((-552) $) NIL) (((-401 (-552)) $) NIL)) (-2813 (($ $ $) NIL)) (-1800 (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-671 (-552)) (-671 $)) NIL) (((-2 (|:| -2515 (-671 (-401 (-552)))) (|:| |vec| (-1235 (-401 (-552))))) (-671 $) (-1235 $)) NIL) (((-671 (-401 (-552))) (-671 $)) NIL)) (-2091 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-3820 (($ $) NIL) (($ (-627 $)) NIL)) (-3795 (((-627 (-113)) $) NIL)) (-4148 (((-113) (-113)) NIL)) (-2624 (((-111) $) 14)) (-1394 (((-111) $) NIL (|has| $ (-1017 (-552))))) (-2918 (((-1101 (-552) (-598 $)) $) NIL)) (-1352 (($ $ (-552)) NIL)) (-2349 (((-1148 $) (-1148 $) (-598 $)) NIL) (((-1148 $) (-1148 $) (-627 (-598 $))) NIL) (($ $ (-598 $)) NIL) (($ $ (-627 (-598 $))) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2602 (((-1148 $) (-598 $)) NIL (|has| $ (-1028)))) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3516 (($ (-1 $ $) (-598 $)) NIL)) (-3362 (((-3 (-598 $) "failed") $) NIL)) (-1276 (($ (-627 $)) NIL) (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1684 (((-627 (-598 $)) $) NIL)) (-2991 (($ (-113) $) NIL) (($ (-113) (-627 $)) NIL)) (-2070 (((-111) $ (-113)) NIL) (((-111) $ (-1152)) NIL)) (-1951 (($ $) NIL)) (-3476 (((-754) $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ (-627 $)) NIL) (($ $ $) NIL)) (-4094 (((-111) $ $) NIL) (((-111) $ (-1152)) NIL)) (-1727 (((-412 $) $) NIL)) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1507 (((-111) $) NIL (|has| $ (-1017 (-552))))) (-3321 (($ $ (-598 $) $) NIL) (($ $ (-627 (-598 $)) (-627 $)) NIL) (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ $))) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ (-627 $)))) NIL) (($ $ (-1152) (-1 $ (-627 $))) NIL) (($ $ (-1152) (-1 $ $)) NIL) (($ $ (-627 (-113)) (-627 (-1 $ $))) NIL) (($ $ (-627 (-113)) (-627 (-1 $ (-627 $)))) NIL) (($ $ (-113) (-1 $ (-627 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-2718 (((-754) $) NIL)) (-1985 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-627 $)) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2911 (($ $) NIL) (($ $ $) NIL)) (-2942 (($ $ (-754)) NIL) (($ $) NIL)) (-2929 (((-1101 (-552) (-598 $)) $) NIL)) (-1376 (($ $) NIL (|has| $ (-1028)))) (-3562 (((-373) $) NIL) (((-220) $) NIL) (((-166 (-373)) $) NIL)) (-1477 (((-842) $) NIL) (($ (-598 $)) NIL) (($ (-401 (-552))) NIL) (($ $) NIL) (($ (-552)) NIL) (($ (-1101 (-552) (-598 $))) NIL)) (-3995 (((-754)) NIL)) (-3092 (($ $) NIL) (($ (-627 $)) NIL)) (-3749 (((-111) (-113)) NIL)) (-3778 (((-111) $ $) NIL)) (-1922 (($) 7 T CONST)) (-1933 (($) 12 T CONST)) (-4251 (($ $ (-754)) NIL) (($ $) NIL)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 16)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL)) (-2396 (($ $ $) 15) (($ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-401 (-552))) NIL) (($ $ (-552)) NIL) (($ $ (-754)) NIL) (($ $ (-900)) NIL)) (* (($ (-401 (-552)) $) NIL) (($ $ (-401 (-552))) NIL) (($ $ $) NIL) (($ (-552) $) NIL) (($ (-754) $) NIL) (($ (-900) $) NIL))) +(((-48) (-13 (-296) (-27) (-1017 (-552)) (-1017 (-401 (-552))) (-623 (-552)) (-1001) (-623 (-401 (-552))) (-144) (-600 (-166 (-373))) (-228) (-10 -8 (-15 -1477 ($ (-1101 (-552) (-598 $)))) (-15 -2918 ((-1101 (-552) (-598 $)) $)) (-15 -2929 ((-1101 (-552) (-598 $)) $)) (-15 -2091 ($ $)) (-15 -2349 ((-1148 $) (-1148 $) (-598 $))) (-15 -2349 ((-1148 $) (-1148 $) (-627 (-598 $)))) (-15 -2349 ($ $ (-598 $))) (-15 -2349 ($ $ (-627 (-598 $))))))) (T -48)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1101 (-552) (-598 (-48)))) (-5 *1 (-48)))) (-2918 (*1 *2 *1) (-12 (-5 *2 (-1101 (-552) (-598 (-48)))) (-5 *1 (-48)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-1101 (-552) (-598 (-48)))) (-5 *1 (-48)))) (-2091 (*1 *1 *1) (-5 *1 (-48))) (-2349 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 (-48))) (-5 *3 (-598 (-48))) (-5 *1 (-48)))) (-2349 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 (-48))) (-5 *3 (-627 (-598 (-48)))) (-5 *1 (-48)))) (-2349 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-48))) (-5 *1 (-48)))) (-2349 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-598 (-48)))) (-5 *1 (-48))))) +(-13 (-296) (-27) (-1017 (-552)) (-1017 (-401 (-552))) (-623 (-552)) (-1001) (-623 (-401 (-552))) (-144) (-600 (-166 (-373))) (-228) (-10 -8 (-15 -1477 ($ (-1101 (-552) (-598 $)))) (-15 -2918 ((-1101 (-552) (-598 $)) $)) (-15 -2929 ((-1101 (-552) (-598 $)) $)) (-15 -2091 ($ $)) (-15 -2349 ((-1148 $) (-1148 $) (-598 $))) (-15 -2349 ((-1148 $) (-1148 $) (-627 (-598 $)))) (-15 -2349 ($ $ (-598 $))) (-15 -2349 ($ $ (-627 (-598 $)))))) +((-1465 (((-111) $ $) NIL)) (-2809 (((-627 (-1152)) $) 17)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 7)) (-3122 (((-1157) $) 18)) (-2292 (((-111) $ $) NIL))) +(((-49) (-13 (-1076) (-10 -8 (-15 -2809 ((-627 (-1152)) $)) (-15 -3122 ((-1157) $))))) (T -49)) +((-2809 (*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-49)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-49))))) +(-13 (-1076) (-10 -8 (-15 -2809 ((-627 (-1152)) $)) (-15 -3122 ((-1157) $)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 61)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-3221 (((-111) $) 20)) (-4039 (((-3 |#1| "failed") $) 23)) (-1703 ((|#1| $) 24)) (-2014 (($ $) 28)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1993 ((|#1| $) 21)) (-3733 (($ $) 50)) (-1595 (((-1134) $) NIL)) (-2125 (((-111) $) 30)) (-1498 (((-1096) $) NIL)) (-2220 (($ (-754)) 48)) (-3154 (($ (-627 (-552))) 49)) (-3567 (((-754) $) 31)) (-1477 (((-842) $) 64) (($ (-552)) 45) (($ |#1|) 43)) (-1889 ((|#1| $ $) 19)) (-3995 (((-754)) 47)) (-1922 (($) 32 T CONST)) (-1933 (($) 14 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 40)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) +(((-50 |#1| |#2|) (-13 (-604 |#1|) (-1017 |#1|) (-10 -8 (-15 -1993 (|#1| $)) (-15 -3733 ($ $)) (-15 -2014 ($ $)) (-15 -1889 (|#1| $ $)) (-15 -2220 ($ (-754))) (-15 -3154 ($ (-627 (-552)))) (-15 -2125 ((-111) $)) (-15 -3221 ((-111) $)) (-15 -3567 ((-754) $)) (-15 -3516 ($ (-1 |#1| |#1|) $)))) (-1028) (-627 (-1152))) (T -50)) +((-1993 (*1 *2 *1) (-12 (-4 *2 (-1028)) (-5 *1 (-50 *2 *3)) (-14 *3 (-627 (-1152))))) (-3733 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1028)) (-14 *3 (-627 (-1152))))) (-2014 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1028)) (-14 *3 (-627 (-1152))))) (-1889 (*1 *2 *1 *1) (-12 (-4 *2 (-1028)) (-5 *1 (-50 *2 *3)) (-14 *3 (-627 (-1152))))) (-2220 (*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1028)) (-14 *4 (-627 (-1152))))) (-3154 (*1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1028)) (-14 *4 (-627 (-1152))))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1028)) (-14 *4 (-627 (-1152))))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1028)) (-14 *4 (-627 (-1152))))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1028)) (-14 *4 (-627 (-1152))))) (-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-50 *3 *4)) (-14 *4 (-627 (-1152)))))) +(-13 (-604 |#1|) (-1017 |#1|) (-10 -8 (-15 -1993 (|#1| $)) (-15 -3733 ($ $)) (-15 -2014 ($ $)) (-15 -1889 (|#1| $ $)) (-15 -2220 ($ (-754))) (-15 -3154 ($ (-627 (-552)))) (-15 -2125 ((-111) $)) (-15 -3221 ((-111) $)) (-15 -3567 ((-754) $)) (-15 -3516 ($ (-1 |#1| |#1|) $)))) +((-3221 (((-111) (-52)) 13)) (-4039 (((-3 |#1| "failed") (-52)) 21)) (-1703 ((|#1| (-52)) 22)) (-1477 (((-52) |#1|) 18))) +(((-51 |#1|) (-10 -7 (-15 -1477 ((-52) |#1|)) (-15 -4039 ((-3 |#1| "failed") (-52))) (-15 -3221 ((-111) (-52))) (-15 -1703 (|#1| (-52)))) (-1189)) (T -51)) +((-1703 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1189)))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-111)) (-5 *1 (-51 *4)) (-4 *4 (-1189)))) (-4039 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1189)))) (-1477 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1189))))) +(-10 -7 (-15 -1477 ((-52) |#1|)) (-15 -4039 ((-3 |#1| "failed") (-52))) (-15 -3221 ((-111) (-52))) (-15 -1703 (|#1| (-52)))) +((-1465 (((-111) $ $) NIL)) (-3768 (((-1134) (-111)) 25)) (-2280 (((-842) $) 24)) (-3314 (((-757) $) 12)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3205 (((-842) $) 16)) (-2262 (((-1080) $) 14)) (-1477 (((-842) $) 32)) (-3419 (($ (-1080) (-757)) 33)) (-2292 (((-111) $ $) 18))) +(((-52) (-13 (-1076) (-10 -8 (-15 -3419 ($ (-1080) (-757))) (-15 -3205 ((-842) $)) (-15 -2280 ((-842) $)) (-15 -2262 ((-1080) $)) (-15 -3314 ((-757) $)) (-15 -3768 ((-1134) (-111)))))) (T -52)) +((-3419 (*1 *1 *2 *3) (-12 (-5 *2 (-1080)) (-5 *3 (-757)) (-5 *1 (-52)))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-52)))) (-2280 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-52)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-52)))) (-3314 (*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-52)))) (-3768 (*1 *2 *3) (-12 (-5 *3 (-111)) (-5 *2 (-1134)) (-5 *1 (-52))))) +(-13 (-1076) (-10 -8 (-15 -3419 ($ (-1080) (-757))) (-15 -3205 ((-842) $)) (-15 -2280 ((-842) $)) (-15 -2262 ((-1080) $)) (-15 -3314 ((-757) $)) (-15 -3768 ((-1134) (-111))))) +((-3288 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3288 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1028) (-630 |#1|) (-832 |#1|)) (T -53)) +((-3288 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-630 *5)) (-4 *5 (-1028)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-832 *5))))) +(-10 -7 (-15 -3288 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-3989 ((|#3| |#3| (-627 (-1152))) 35)) (-2074 ((|#3| (-627 (-1052 |#1| |#2| |#3|)) |#3| (-900)) 22) ((|#3| (-627 (-1052 |#1| |#2| |#3|)) |#3|) 20))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2074 (|#3| (-627 (-1052 |#1| |#2| |#3|)) |#3|)) (-15 -2074 (|#3| (-627 (-1052 |#1| |#2| |#3|)) |#3| (-900))) (-15 -3989 (|#3| |#3| (-627 (-1152))))) (-1076) (-13 (-1028) (-865 |#1|) (-830) (-600 (-871 |#1|))) (-13 (-424 |#2|) (-865 |#1|) (-600 (-871 |#1|)))) (T -54)) +((-3989 (*1 *2 *2 *3) (-12 (-5 *3 (-627 (-1152))) (-4 *4 (-1076)) (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-865 *4) (-600 (-871 *4)))))) (-2074 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-627 (-1052 *5 *6 *2))) (-5 *4 (-900)) (-4 *5 (-1076)) (-4 *6 (-13 (-1028) (-865 *5) (-830) (-600 (-871 *5)))) (-4 *2 (-13 (-424 *6) (-865 *5) (-600 (-871 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2074 (*1 *2 *3 *2) (-12 (-5 *3 (-627 (-1052 *4 *5 *2))) (-4 *4 (-1076)) (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) (-4 *2 (-13 (-424 *5) (-865 *4) (-600 (-871 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -2074 (|#3| (-627 (-1052 |#1| |#2| |#3|)) |#3|)) (-15 -2074 (|#3| (-627 (-1052 |#1| |#2| |#3|)) |#3| (-900))) (-15 -3989 (|#3| |#3| (-627 (-1152))))) +((-4031 (((-111) $ (-754)) 23)) (-1566 (($ $ (-552) |#3|) 47)) (-1666 (($ $ (-552) |#4|) 51)) (-3884 ((|#3| $ (-552)) 60)) (-3215 (((-627 |#2|) $) 30)) (-1602 (((-111) $ (-754)) 25)) (-3082 (((-111) |#2| $) 55)) (-3463 (($ (-1 |#2| |#2|) $) 38)) (-3516 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-3971 (((-111) $ (-754)) 24)) (-1942 (($ $ |#2|) 35)) (-3509 (((-111) (-1 (-111) |#2|) $) 19)) (-1985 ((|#2| $ (-552) (-552)) NIL) ((|#2| $ (-552) (-552) |#2|) 27)) (-1509 (((-754) (-1 (-111) |#2|) $) 28) (((-754) |#2| $) 57)) (-2973 (($ $) 34)) (-2152 ((|#4| $ (-552)) 63)) (-1477 (((-842) $) 69)) (-3299 (((-111) (-1 (-111) |#2|) $) 18)) (-2292 (((-111) $ $) 54)) (-1383 (((-754) $) 26))) +(((-55 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3516 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3463 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1666 (|#1| |#1| (-552) |#4|)) (-15 -1566 (|#1| |#1| (-552) |#3|)) (-15 -3215 ((-627 |#2|) |#1|)) (-15 -2152 (|#4| |#1| (-552))) (-15 -3884 (|#3| |#1| (-552))) (-15 -1985 (|#2| |#1| (-552) (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552) (-552))) (-15 -1942 (|#1| |#1| |#2|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -3082 ((-111) |#2| |#1|)) (-15 -1509 ((-754) |#2| |#1|)) (-15 -1509 ((-754) (-1 (-111) |#2|) |#1|)) (-15 -3509 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1383 ((-754) |#1|)) (-15 -4031 ((-111) |#1| (-754))) (-15 -1602 ((-111) |#1| (-754))) (-15 -3971 ((-111) |#1| (-754))) (-15 -2973 (|#1| |#1|))) (-56 |#2| |#3| |#4|) (-1189) (-367 |#2|) (-367 |#2|)) (T -55)) +NIL +(-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3516 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3463 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1666 (|#1| |#1| (-552) |#4|)) (-15 -1566 (|#1| |#1| (-552) |#3|)) (-15 -3215 ((-627 |#2|) |#1|)) (-15 -2152 (|#4| |#1| (-552))) (-15 -3884 (|#3| |#1| (-552))) (-15 -1985 (|#2| |#1| (-552) (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552) (-552))) (-15 -1942 (|#1| |#1| |#2|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -3082 ((-111) |#2| |#1|)) (-15 -1509 ((-754) |#2| |#1|)) (-15 -1509 ((-754) (-1 (-111) |#2|) |#1|)) (-15 -3509 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1383 ((-754) |#1|)) (-15 -4031 ((-111) |#1| (-754))) (-15 -1602 ((-111) |#1| (-754))) (-15 -3971 ((-111) |#1| (-754))) (-15 -2973 (|#1| |#1|))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) 8)) (-2950 ((|#1| $ (-552) (-552) |#1|) 44)) (-1566 (($ $ (-552) |#2|) 42)) (-1666 (($ $ (-552) |#3|) 41)) (-3887 (($) 7 T CONST)) (-3884 ((|#2| $ (-552)) 46)) (-3473 ((|#1| $ (-552) (-552) |#1|) 43)) (-3413 ((|#1| $ (-552) (-552)) 48)) (-3215 (((-627 |#1|) $) 30)) (-3560 (((-754) $) 51)) (-2655 (($ (-754) (-754) |#1|) 57)) (-3572 (((-754) $) 50)) (-1602 (((-111) $ (-754)) 9)) (-4083 (((-552) $) 55)) (-3511 (((-552) $) 53)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3479 (((-552) $) 54)) (-2780 (((-552) $) 52)) (-3463 (($ (-1 |#1| |#1|) $) 34)) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-1942 (($ $ |#1|) 56)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ (-552) (-552)) 49) ((|#1| $ (-552) (-552) |#1|) 47)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-2152 ((|#3| $ (-552)) 45)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-56 |#1| |#2| |#3|) (-137) (-1189) (-367 |t#1|) (-367 |t#1|)) (T -56)) +((-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2655 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-754)) (-4 *3 (-1189)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1942 (*1 *1 *1 *2) (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1189)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-4083 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-552)))) (-3479 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-552)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-552)))) (-2780 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-552)))) (-3560 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-754)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-754)))) (-1985 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-1189)))) (-3413 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-1189)))) (-1985 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1189)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1189)) (-4 *5 (-367 *4)) (-4 *2 (-367 *4)))) (-2152 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1189)) (-4 *5 (-367 *4)) (-4 *2 (-367 *4)))) (-3215 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-627 *3)))) (-2950 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1189)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) (-3473 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1189)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) (-1566 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-552)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1189)) (-4 *3 (-367 *4)) (-4 *5 (-367 *4)))) (-1666 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-552)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1189)) (-4 *5 (-367 *4)) (-4 *3 (-367 *4)))) (-3463 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3516 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3516 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))) +(-13 (-482 |t#1|) (-10 -8 (-6 -4367) (-6 -4366) (-15 -2655 ($ (-754) (-754) |t#1|)) (-15 -1942 ($ $ |t#1|)) (-15 -4083 ((-552) $)) (-15 -3479 ((-552) $)) (-15 -3511 ((-552) $)) (-15 -2780 ((-552) $)) (-15 -3560 ((-754) $)) (-15 -3572 ((-754) $)) (-15 -1985 (|t#1| $ (-552) (-552))) (-15 -3413 (|t#1| $ (-552) (-552))) (-15 -1985 (|t#1| $ (-552) (-552) |t#1|)) (-15 -3884 (|t#2| $ (-552))) (-15 -2152 (|t#3| $ (-552))) (-15 -3215 ((-627 |t#1|) $)) (-15 -2950 (|t#1| $ (-552) (-552) |t#1|)) (-15 -3473 (|t#1| $ (-552) (-552) |t#1|)) (-15 -1566 ($ $ (-552) |t#2|)) (-15 -1666 ($ $ (-552) |t#3|)) (-15 -3516 ($ (-1 |t#1| |t#1|) $)) (-15 -3463 ($ (-1 |t#1| |t#1|) $)) (-15 -3516 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3516 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) +((-2169 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16)) (-2091 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18)) (-3516 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13))) +(((-57 |#1| |#2|) (-10 -7 (-15 -2169 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2091 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3516 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1189) (-1189)) (T -57)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) (-2091 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1189)) (-4 *2 (-1189)) (-5 *1 (-57 *5 *2)))) (-2169 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1189)) (-4 *5 (-1189)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5))))) +(-10 -7 (-15 -2169 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2091 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3516 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-552) |#1|) 11 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) NIL)) (-2967 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076)))) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3563 (($ (-627 |#1|)) 13) (($ (-754) |#1|) 14)) (-2655 (($ (-754) |#1|) 9)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3340 ((|#1| $) NIL (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) 7)) (-1985 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) NIL)) (-2668 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-627 $)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3563 ($ (-627 |#1|))) (-15 -3563 ($ (-754) |#1|)))) (-1189)) (T -58)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-58 *3)))) (-3563 (*1 *1 *2 *3) (-12 (-5 *2 (-754)) (-5 *1 (-58 *3)) (-4 *3 (-1189))))) +(-13 (-19 |#1|) (-10 -8 (-15 -3563 ($ (-627 |#1|))) (-15 -3563 ($ (-754) |#1|)))) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-552) (-552) |#1|) NIL)) (-1566 (($ $ (-552) (-58 |#1|)) NIL)) (-1666 (($ $ (-552) (-58 |#1|)) NIL)) (-3887 (($) NIL T CONST)) (-3884 (((-58 |#1|) $ (-552)) NIL)) (-3473 ((|#1| $ (-552) (-552) |#1|) NIL)) (-3413 ((|#1| $ (-552) (-552)) NIL)) (-3215 (((-627 |#1|) $) NIL)) (-3560 (((-754) $) NIL)) (-2655 (($ (-754) (-754) |#1|) NIL)) (-3572 (((-754) $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-4083 (((-552) $) NIL)) (-3511 (((-552) $) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3479 (((-552) $) NIL)) (-2780 (((-552) $) NIL)) (-3463 (($ (-1 |#1| |#1|) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1942 (($ $ |#1|) NIL)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-2152 (((-58 |#1|) $ (-552)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-59 |#1|) (-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4367))) (-1189)) (T -59)) +NIL +(-13 (-56 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4367))) +((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 74) (((-3 $ "failed") (-1235 (-310 (-552)))) 63) (((-3 $ "failed") (-1235 (-931 (-373)))) 94) (((-3 $ "failed") (-1235 (-931 (-552)))) 84) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 52) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 39)) (-1703 (($ (-1235 (-310 (-373)))) 70) (($ (-1235 (-310 (-552)))) 59) (($ (-1235 (-931 (-373)))) 90) (($ (-1235 (-931 (-552)))) 80) (($ (-1235 (-401 (-931 (-373))))) 48) (($ (-1235 (-401 (-931 (-552))))) 32)) (-2802 (((-1240) $) 120)) (-1477 (((-842) $) 113) (($ (-627 (-324))) 103) (($ (-324)) 97) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 101) (($ (-1235 (-333 (-1490 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1490) (-681)))) 31))) +(((-60 |#1|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1490) (-681))))))) (-1152)) (T -60)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1490) (-681)))) (-5 *1 (-60 *3)) (-14 *3 (-1152))))) +(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1490) (-681))))))) +((-2802 (((-1240) $) 53) (((-1240)) 54)) (-1477 (((-842) $) 50))) +(((-61 |#1|) (-13 (-389) (-10 -7 (-15 -2802 ((-1240))))) (-1152)) (T -61)) +((-2802 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-61 *3)) (-14 *3 (-1152))))) +(-13 (-389) (-10 -7 (-15 -2802 ((-1240))))) +((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 144) (((-3 $ "failed") (-1235 (-310 (-552)))) 134) (((-3 $ "failed") (-1235 (-931 (-373)))) 164) (((-3 $ "failed") (-1235 (-931 (-552)))) 154) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 123) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 111)) (-1703 (($ (-1235 (-310 (-373)))) 140) (($ (-1235 (-310 (-552)))) 130) (($ (-1235 (-931 (-373)))) 160) (($ (-1235 (-931 (-552)))) 150) (($ (-1235 (-401 (-931 (-373))))) 119) (($ (-1235 (-401 (-931 (-552))))) 104)) (-2802 (((-1240) $) 97)) (-1477 (((-842) $) 91) (($ (-627 (-324))) 29) (($ (-324)) 34) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 32) (($ (-1235 (-333 (-1490) (-1490 (QUOTE XC)) (-681)))) 89))) +(((-62 |#1|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490) (-1490 (QUOTE XC)) (-681))))))) (-1152)) (T -62)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490) (-1490 (QUOTE XC)) (-681)))) (-5 *1 (-62 *3)) (-14 *3 (-1152))))) +(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490) (-1490 (QUOTE XC)) (-681))))))) +((-4039 (((-3 $ "failed") (-310 (-373))) 41) (((-3 $ "failed") (-310 (-552))) 46) (((-3 $ "failed") (-931 (-373))) 50) (((-3 $ "failed") (-931 (-552))) 54) (((-3 $ "failed") (-401 (-931 (-373)))) 36) (((-3 $ "failed") (-401 (-931 (-552)))) 29)) (-1703 (($ (-310 (-373))) 39) (($ (-310 (-552))) 44) (($ (-931 (-373))) 48) (($ (-931 (-552))) 52) (($ (-401 (-931 (-373)))) 34) (($ (-401 (-931 (-552)))) 26)) (-2802 (((-1240) $) 76)) (-1477 (((-842) $) 69) (($ (-627 (-324))) 61) (($ (-324)) 66) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 64) (($ (-333 (-1490 (QUOTE X)) (-1490) (-681))) 25))) +(((-63 |#1|) (-13 (-390) (-10 -8 (-15 -1477 ($ (-333 (-1490 (QUOTE X)) (-1490) (-681)))))) (-1152)) (T -63)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-333 (-1490 (QUOTE X)) (-1490) (-681))) (-5 *1 (-63 *3)) (-14 *3 (-1152))))) +(-13 (-390) (-10 -8 (-15 -1477 ($ (-333 (-1490 (QUOTE X)) (-1490) (-681)))))) +((-4039 (((-3 $ "failed") (-671 (-310 (-373)))) 109) (((-3 $ "failed") (-671 (-310 (-552)))) 97) (((-3 $ "failed") (-671 (-931 (-373)))) 131) (((-3 $ "failed") (-671 (-931 (-552)))) 120) (((-3 $ "failed") (-671 (-401 (-931 (-373))))) 85) (((-3 $ "failed") (-671 (-401 (-931 (-552))))) 71)) (-1703 (($ (-671 (-310 (-373)))) 105) (($ (-671 (-310 (-552)))) 93) (($ (-671 (-931 (-373)))) 127) (($ (-671 (-931 (-552)))) 116) (($ (-671 (-401 (-931 (-373))))) 81) (($ (-671 (-401 (-931 (-552))))) 64)) (-2802 (((-1240) $) 139)) (-1477 (((-842) $) 133) (($ (-627 (-324))) 28) (($ (-324)) 33) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 31) (($ (-671 (-333 (-1490) (-1490 (QUOTE X) (QUOTE HESS)) (-681)))) 54))) +(((-64 |#1|) (-13 (-378) (-10 -8 (-15 -1477 ($ (-671 (-333 (-1490) (-1490 (QUOTE X) (QUOTE HESS)) (-681))))))) (-1152)) (T -64)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-671 (-333 (-1490) (-1490 (QUOTE X) (QUOTE HESS)) (-681)))) (-5 *1 (-64 *3)) (-14 *3 (-1152))))) +(-13 (-378) (-10 -8 (-15 -1477 ($ (-671 (-333 (-1490) (-1490 (QUOTE X) (QUOTE HESS)) (-681))))))) +((-4039 (((-3 $ "failed") (-310 (-373))) 59) (((-3 $ "failed") (-310 (-552))) 64) (((-3 $ "failed") (-931 (-373))) 68) (((-3 $ "failed") (-931 (-552))) 72) (((-3 $ "failed") (-401 (-931 (-373)))) 54) (((-3 $ "failed") (-401 (-931 (-552)))) 47)) (-1703 (($ (-310 (-373))) 57) (($ (-310 (-552))) 62) (($ (-931 (-373))) 66) (($ (-931 (-552))) 70) (($ (-401 (-931 (-373)))) 52) (($ (-401 (-931 (-552)))) 44)) (-2802 (((-1240) $) 81)) (-1477 (((-842) $) 75) (($ (-627 (-324))) 28) (($ (-324)) 33) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 31) (($ (-333 (-1490) (-1490 (QUOTE XC)) (-681))) 39))) +(((-65 |#1|) (-13 (-390) (-10 -8 (-15 -1477 ($ (-333 (-1490) (-1490 (QUOTE XC)) (-681)))))) (-1152)) (T -65)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-333 (-1490) (-1490 (QUOTE XC)) (-681))) (-5 *1 (-65 *3)) (-14 *3 (-1152))))) +(-13 (-390) (-10 -8 (-15 -1477 ($ (-333 (-1490) (-1490 (QUOTE XC)) (-681)))))) +((-2802 (((-1240) $) 63)) (-1477 (((-842) $) 57) (($ (-671 (-681))) 49) (($ (-627 (-324))) 48) (($ (-324)) 55) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 53))) +(((-66 |#1|) (-377) (-1152)) (T -66)) +NIL +(-377) +((-2802 (((-1240) $) 64)) (-1477 (((-842) $) 58) (($ (-671 (-681))) 50) (($ (-627 (-324))) 49) (($ (-324)) 52) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 55))) +(((-67 |#1|) (-377) (-1152)) (T -67)) +NIL +(-377) +((-2802 (((-1240) $) NIL) (((-1240)) 32)) (-1477 (((-842) $) NIL))) +(((-68 |#1|) (-13 (-389) (-10 -7 (-15 -2802 ((-1240))))) (-1152)) (T -68)) +((-2802 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-68 *3)) (-14 *3 (-1152))))) +(-13 (-389) (-10 -7 (-15 -2802 ((-1240))))) +((-2802 (((-1240) $) 73)) (-1477 (((-842) $) 67) (($ (-671 (-681))) 59) (($ (-627 (-324))) 61) (($ (-324)) 64) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 58))) +(((-69 |#1|) (-377) (-1152)) (T -69)) +NIL +(-377) +((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 103) (((-3 $ "failed") (-1235 (-310 (-552)))) 92) (((-3 $ "failed") (-1235 (-931 (-373)))) 123) (((-3 $ "failed") (-1235 (-931 (-552)))) 113) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 81) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 68)) (-1703 (($ (-1235 (-310 (-373)))) 99) (($ (-1235 (-310 (-552)))) 88) (($ (-1235 (-931 (-373)))) 119) (($ (-1235 (-931 (-552)))) 109) (($ (-1235 (-401 (-931 (-373))))) 77) (($ (-1235 (-401 (-931 (-552))))) 61)) (-2802 (((-1240) $) 136)) (-1477 (((-842) $) 130) (($ (-627 (-324))) 125) (($ (-324)) 128) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 53) (($ (-1235 (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681)))) 54))) +(((-70 |#1|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681))))))) (-1152)) (T -70)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681)))) (-5 *1 (-70 *3)) (-14 *3 (-1152))))) +(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681))))))) +((-2802 (((-1240) $) 32) (((-1240)) 31)) (-1477 (((-842) $) 35))) +(((-71 |#1|) (-13 (-389) (-10 -7 (-15 -2802 ((-1240))))) (-1152)) (T -71)) +((-2802 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-71 *3)) (-14 *3 (-1152))))) +(-13 (-389) (-10 -7 (-15 -2802 ((-1240))))) +((-2802 (((-1240) $) 63)) (-1477 (((-842) $) 57) (($ (-671 (-681))) 49) (($ (-627 (-324))) 51) (($ (-324)) 54) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 48))) +(((-72 |#1|) (-377) (-1152)) (T -72)) +NIL +(-377) +((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 125) (((-3 $ "failed") (-1235 (-310 (-552)))) 115) (((-3 $ "failed") (-1235 (-931 (-373)))) 145) (((-3 $ "failed") (-1235 (-931 (-552)))) 135) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 105) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 93)) (-1703 (($ (-1235 (-310 (-373)))) 121) (($ (-1235 (-310 (-552)))) 111) (($ (-1235 (-931 (-373)))) 141) (($ (-1235 (-931 (-552)))) 131) (($ (-1235 (-401 (-931 (-373))))) 101) (($ (-1235 (-401 (-931 (-552))))) 86)) (-2802 (((-1240) $) 78)) (-1477 (((-842) $) 27) (($ (-627 (-324))) 68) (($ (-324)) 64) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 71) (($ (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681)))) 65))) +(((-73 |#1|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681))))))) (-1152)) (T -73)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681)))) (-5 *1 (-73 *3)) (-14 *3 (-1152))))) +(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681))))))) +((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 130) (((-3 $ "failed") (-1235 (-310 (-552)))) 119) (((-3 $ "failed") (-1235 (-931 (-373)))) 150) (((-3 $ "failed") (-1235 (-931 (-552)))) 140) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 108) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 95)) (-1703 (($ (-1235 (-310 (-373)))) 126) (($ (-1235 (-310 (-552)))) 115) (($ (-1235 (-931 (-373)))) 146) (($ (-1235 (-931 (-552)))) 136) (($ (-1235 (-401 (-931 (-373))))) 104) (($ (-1235 (-401 (-931 (-552))))) 88)) (-2802 (((-1240) $) 79)) (-1477 (((-842) $) 71) (($ (-627 (-324))) NIL) (($ (-324)) NIL) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) NIL) (($ (-1235 (-333 (-1490 (QUOTE X) (QUOTE EPS)) (-1490 (QUOTE -3156)) (-681)))) 66))) +(((-74 |#1| |#2| |#3|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE X) (QUOTE EPS)) (-1490 (QUOTE -3156)) (-681))))))) (-1152) (-1152) (-1152)) (T -74)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490 (QUOTE X) (QUOTE EPS)) (-1490 (QUOTE -3156)) (-681)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1152)) (-14 *4 (-1152)) (-14 *5 (-1152))))) +(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE X) (QUOTE EPS)) (-1490 (QUOTE -3156)) (-681))))))) +((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 134) (((-3 $ "failed") (-1235 (-310 (-552)))) 123) (((-3 $ "failed") (-1235 (-931 (-373)))) 154) (((-3 $ "failed") (-1235 (-931 (-552)))) 144) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 112) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 99)) (-1703 (($ (-1235 (-310 (-373)))) 130) (($ (-1235 (-310 (-552)))) 119) (($ (-1235 (-931 (-373)))) 150) (($ (-1235 (-931 (-552)))) 140) (($ (-1235 (-401 (-931 (-373))))) 108) (($ (-1235 (-401 (-931 (-552))))) 92)) (-2802 (((-1240) $) 83)) (-1477 (((-842) $) 75) (($ (-627 (-324))) NIL) (($ (-324)) NIL) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) NIL) (($ (-1235 (-333 (-1490 (QUOTE EPS)) (-1490 (QUOTE YA) (QUOTE YB)) (-681)))) 70))) +(((-75 |#1| |#2| |#3|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE EPS)) (-1490 (QUOTE YA) (QUOTE YB)) (-681))))))) (-1152) (-1152) (-1152)) (T -75)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490 (QUOTE EPS)) (-1490 (QUOTE YA) (QUOTE YB)) (-681)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1152)) (-14 *4 (-1152)) (-14 *5 (-1152))))) +(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE EPS)) (-1490 (QUOTE YA) (QUOTE YB)) (-681))))))) +((-4039 (((-3 $ "failed") (-310 (-373))) 82) (((-3 $ "failed") (-310 (-552))) 87) (((-3 $ "failed") (-931 (-373))) 91) (((-3 $ "failed") (-931 (-552))) 95) (((-3 $ "failed") (-401 (-931 (-373)))) 77) (((-3 $ "failed") (-401 (-931 (-552)))) 70)) (-1703 (($ (-310 (-373))) 80) (($ (-310 (-552))) 85) (($ (-931 (-373))) 89) (($ (-931 (-552))) 93) (($ (-401 (-931 (-373)))) 75) (($ (-401 (-931 (-552)))) 67)) (-2802 (((-1240) $) 62)) (-1477 (((-842) $) 50) (($ (-627 (-324))) 46) (($ (-324)) 56) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 54) (($ (-333 (-1490) (-1490 (QUOTE X)) (-681))) 47))) +(((-76 |#1|) (-13 (-390) (-10 -8 (-15 -1477 ($ (-333 (-1490) (-1490 (QUOTE X)) (-681)))))) (-1152)) (T -76)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-333 (-1490) (-1490 (QUOTE X)) (-681))) (-5 *1 (-76 *3)) (-14 *3 (-1152))))) +(-13 (-390) (-10 -8 (-15 -1477 ($ (-333 (-1490) (-1490 (QUOTE X)) (-681)))))) +((-4039 (((-3 $ "failed") (-310 (-373))) 46) (((-3 $ "failed") (-310 (-552))) 51) (((-3 $ "failed") (-931 (-373))) 55) (((-3 $ "failed") (-931 (-552))) 59) (((-3 $ "failed") (-401 (-931 (-373)))) 41) (((-3 $ "failed") (-401 (-931 (-552)))) 34)) (-1703 (($ (-310 (-373))) 44) (($ (-310 (-552))) 49) (($ (-931 (-373))) 53) (($ (-931 (-552))) 57) (($ (-401 (-931 (-373)))) 39) (($ (-401 (-931 (-552)))) 31)) (-2802 (((-1240) $) 80)) (-1477 (((-842) $) 74) (($ (-627 (-324))) 66) (($ (-324)) 71) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 69) (($ (-333 (-1490) (-1490 (QUOTE X)) (-681))) 30))) +(((-77 |#1|) (-13 (-390) (-10 -8 (-15 -1477 ($ (-333 (-1490) (-1490 (QUOTE X)) (-681)))))) (-1152)) (T -77)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-333 (-1490) (-1490 (QUOTE X)) (-681))) (-5 *1 (-77 *3)) (-14 *3 (-1152))))) +(-13 (-390) (-10 -8 (-15 -1477 ($ (-333 (-1490) (-1490 (QUOTE X)) (-681)))))) +((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 89) (((-3 $ "failed") (-1235 (-310 (-552)))) 78) (((-3 $ "failed") (-1235 (-931 (-373)))) 109) (((-3 $ "failed") (-1235 (-931 (-552)))) 99) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 67) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 54)) (-1703 (($ (-1235 (-310 (-373)))) 85) (($ (-1235 (-310 (-552)))) 74) (($ (-1235 (-931 (-373)))) 105) (($ (-1235 (-931 (-552)))) 95) (($ (-1235 (-401 (-931 (-373))))) 63) (($ (-1235 (-401 (-931 (-552))))) 47)) (-2802 (((-1240) $) 125)) (-1477 (((-842) $) 119) (($ (-627 (-324))) 112) (($ (-324)) 37) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 115) (($ (-1235 (-333 (-1490) (-1490 (QUOTE XC)) (-681)))) 38))) +(((-78 |#1|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490) (-1490 (QUOTE XC)) (-681))))))) (-1152)) (T -78)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490) (-1490 (QUOTE XC)) (-681)))) (-5 *1 (-78 *3)) (-14 *3 (-1152))))) +(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490) (-1490 (QUOTE XC)) (-681))))))) +((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 142) (((-3 $ "failed") (-1235 (-310 (-552)))) 132) (((-3 $ "failed") (-1235 (-931 (-373)))) 162) (((-3 $ "failed") (-1235 (-931 (-552)))) 152) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 122) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 110)) (-1703 (($ (-1235 (-310 (-373)))) 138) (($ (-1235 (-310 (-552)))) 128) (($ (-1235 (-931 (-373)))) 158) (($ (-1235 (-931 (-552)))) 148) (($ (-1235 (-401 (-931 (-373))))) 118) (($ (-1235 (-401 (-931 (-552))))) 103)) (-2802 (((-1240) $) 96)) (-1477 (((-842) $) 90) (($ (-627 (-324))) 81) (($ (-324)) 88) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 86) (($ (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681)))) 82))) +(((-79 |#1|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681))))))) (-1152)) (T -79)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681)))) (-5 *1 (-79 *3)) (-14 *3 (-1152))))) +(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681))))))) +((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 78) (((-3 $ "failed") (-1235 (-310 (-552)))) 67) (((-3 $ "failed") (-1235 (-931 (-373)))) 98) (((-3 $ "failed") (-1235 (-931 (-552)))) 88) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 56) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 43)) (-1703 (($ (-1235 (-310 (-373)))) 74) (($ (-1235 (-310 (-552)))) 63) (($ (-1235 (-931 (-373)))) 94) (($ (-1235 (-931 (-552)))) 84) (($ (-1235 (-401 (-931 (-373))))) 52) (($ (-1235 (-401 (-931 (-552))))) 36)) (-2802 (((-1240) $) 124)) (-1477 (((-842) $) 118) (($ (-627 (-324))) 109) (($ (-324)) 115) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 113) (($ (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681)))) 35))) +(((-80 |#1|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681))))))) (-1152)) (T -80)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681)))) (-5 *1 (-80 *3)) (-14 *3 (-1152))))) +(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490) (-1490 (QUOTE X)) (-681))))))) +((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 95) (((-3 $ "failed") (-1235 (-310 (-552)))) 84) (((-3 $ "failed") (-1235 (-931 (-373)))) 115) (((-3 $ "failed") (-1235 (-931 (-552)))) 105) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 73) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 60)) (-1703 (($ (-1235 (-310 (-373)))) 91) (($ (-1235 (-310 (-552)))) 80) (($ (-1235 (-931 (-373)))) 111) (($ (-1235 (-931 (-552)))) 101) (($ (-1235 (-401 (-931 (-373))))) 69) (($ (-1235 (-401 (-931 (-552))))) 53)) (-2802 (((-1240) $) 45)) (-1477 (((-842) $) 39) (($ (-627 (-324))) 29) (($ (-324)) 32) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 35) (($ (-1235 (-333 (-1490 (QUOTE X) (QUOTE -3156)) (-1490) (-681)))) 30))) +(((-81 |#1|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE X) (QUOTE -3156)) (-1490) (-681))))))) (-1152)) (T -81)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490 (QUOTE X) (QUOTE -3156)) (-1490) (-681)))) (-5 *1 (-81 *3)) (-14 *3 (-1152))))) +(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE X) (QUOTE -3156)) (-1490) (-681))))))) +((-4039 (((-3 $ "failed") (-671 (-310 (-373)))) 115) (((-3 $ "failed") (-671 (-310 (-552)))) 104) (((-3 $ "failed") (-671 (-931 (-373)))) 137) (((-3 $ "failed") (-671 (-931 (-552)))) 126) (((-3 $ "failed") (-671 (-401 (-931 (-373))))) 93) (((-3 $ "failed") (-671 (-401 (-931 (-552))))) 80)) (-1703 (($ (-671 (-310 (-373)))) 111) (($ (-671 (-310 (-552)))) 100) (($ (-671 (-931 (-373)))) 133) (($ (-671 (-931 (-552)))) 122) (($ (-671 (-401 (-931 (-373))))) 89) (($ (-671 (-401 (-931 (-552))))) 73)) (-2802 (((-1240) $) 63)) (-1477 (((-842) $) 50) (($ (-627 (-324))) 57) (($ (-324)) 46) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 55) (($ (-671 (-333 (-1490 (QUOTE X) (QUOTE -3156)) (-1490) (-681)))) 47))) +(((-82 |#1|) (-13 (-378) (-10 -8 (-15 -1477 ($ (-671 (-333 (-1490 (QUOTE X) (QUOTE -3156)) (-1490) (-681))))))) (-1152)) (T -82)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-671 (-333 (-1490 (QUOTE X) (QUOTE -3156)) (-1490) (-681)))) (-5 *1 (-82 *3)) (-14 *3 (-1152))))) +(-13 (-378) (-10 -8 (-15 -1477 ($ (-671 (-333 (-1490 (QUOTE X) (QUOTE -3156)) (-1490) (-681))))))) +((-4039 (((-3 $ "failed") (-671 (-310 (-373)))) 112) (((-3 $ "failed") (-671 (-310 (-552)))) 100) (((-3 $ "failed") (-671 (-931 (-373)))) 134) (((-3 $ "failed") (-671 (-931 (-552)))) 123) (((-3 $ "failed") (-671 (-401 (-931 (-373))))) 88) (((-3 $ "failed") (-671 (-401 (-931 (-552))))) 74)) (-1703 (($ (-671 (-310 (-373)))) 108) (($ (-671 (-310 (-552)))) 96) (($ (-671 (-931 (-373)))) 130) (($ (-671 (-931 (-552)))) 119) (($ (-671 (-401 (-931 (-373))))) 84) (($ (-671 (-401 (-931 (-552))))) 67)) (-2802 (((-1240) $) 59)) (-1477 (((-842) $) 53) (($ (-627 (-324))) 47) (($ (-324)) 50) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 44) (($ (-671 (-333 (-1490 (QUOTE X)) (-1490) (-681)))) 45))) +(((-83 |#1|) (-13 (-378) (-10 -8 (-15 -1477 ($ (-671 (-333 (-1490 (QUOTE X)) (-1490) (-681))))))) (-1152)) (T -83)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-671 (-333 (-1490 (QUOTE X)) (-1490) (-681)))) (-5 *1 (-83 *3)) (-14 *3 (-1152))))) +(-13 (-378) (-10 -8 (-15 -1477 ($ (-671 (-333 (-1490 (QUOTE X)) (-1490) (-681))))))) +((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 104) (((-3 $ "failed") (-1235 (-310 (-552)))) 93) (((-3 $ "failed") (-1235 (-931 (-373)))) 124) (((-3 $ "failed") (-1235 (-931 (-552)))) 114) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 82) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 69)) (-1703 (($ (-1235 (-310 (-373)))) 100) (($ (-1235 (-310 (-552)))) 89) (($ (-1235 (-931 (-373)))) 120) (($ (-1235 (-931 (-552)))) 110) (($ (-1235 (-401 (-931 (-373))))) 78) (($ (-1235 (-401 (-931 (-552))))) 62)) (-2802 (((-1240) $) 46)) (-1477 (((-842) $) 40) (($ (-627 (-324))) 49) (($ (-324)) 36) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 52) (($ (-1235 (-333 (-1490 (QUOTE X)) (-1490) (-681)))) 37))) +(((-84 |#1|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE X)) (-1490) (-681))))))) (-1152)) (T -84)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490 (QUOTE X)) (-1490) (-681)))) (-5 *1 (-84 *3)) (-14 *3 (-1152))))) +(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE X)) (-1490) (-681))))))) +((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 79) (((-3 $ "failed") (-1235 (-310 (-552)))) 68) (((-3 $ "failed") (-1235 (-931 (-373)))) 99) (((-3 $ "failed") (-1235 (-931 (-552)))) 89) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 57) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 44)) (-1703 (($ (-1235 (-310 (-373)))) 75) (($ (-1235 (-310 (-552)))) 64) (($ (-1235 (-931 (-373)))) 95) (($ (-1235 (-931 (-552)))) 85) (($ (-1235 (-401 (-931 (-373))))) 53) (($ (-1235 (-401 (-931 (-552))))) 37)) (-2802 (((-1240) $) 125)) (-1477 (((-842) $) 119) (($ (-627 (-324))) 110) (($ (-324)) 116) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 114) (($ (-1235 (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681)))) 36))) +(((-85 |#1|) (-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681))))))) (-1152)) (T -85)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681)))) (-5 *1 (-85 *3)) (-14 *3 (-1152))))) +(-13 (-434) (-10 -8 (-15 -1477 ($ (-1235 (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681))))))) +((-4039 (((-3 $ "failed") (-671 (-310 (-373)))) 113) (((-3 $ "failed") (-671 (-310 (-552)))) 101) (((-3 $ "failed") (-671 (-931 (-373)))) 135) (((-3 $ "failed") (-671 (-931 (-552)))) 124) (((-3 $ "failed") (-671 (-401 (-931 (-373))))) 89) (((-3 $ "failed") (-671 (-401 (-931 (-552))))) 75)) (-1703 (($ (-671 (-310 (-373)))) 109) (($ (-671 (-310 (-552)))) 97) (($ (-671 (-931 (-373)))) 131) (($ (-671 (-931 (-552)))) 120) (($ (-671 (-401 (-931 (-373))))) 85) (($ (-671 (-401 (-931 (-552))))) 68)) (-2802 (((-1240) $) 59)) (-1477 (((-842) $) 53) (($ (-627 (-324))) 43) (($ (-324)) 50) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 48) (($ (-671 (-333 (-1490 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1490) (-681)))) 44))) +(((-86 |#1|) (-13 (-378) (-10 -8 (-15 -1477 ($ (-671 (-333 (-1490 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1490) (-681))))))) (-1152)) (T -86)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-671 (-333 (-1490 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1490) (-681)))) (-5 *1 (-86 *3)) (-14 *3 (-1152))))) +(-13 (-378) (-10 -8 (-15 -1477 ($ (-671 (-333 (-1490 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1490) (-681))))))) +((-2802 (((-1240) $) 44)) (-1477 (((-842) $) 38) (($ (-1235 (-681))) 92) (($ (-627 (-324))) 30) (($ (-324)) 35) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 33))) +(((-87 |#1|) (-433) (-1152)) (T -87)) +NIL +(-433) +((-4039 (((-3 $ "failed") (-310 (-373))) 47) (((-3 $ "failed") (-310 (-552))) 52) (((-3 $ "failed") (-931 (-373))) 56) (((-3 $ "failed") (-931 (-552))) 60) (((-3 $ "failed") (-401 (-931 (-373)))) 42) (((-3 $ "failed") (-401 (-931 (-552)))) 35)) (-1703 (($ (-310 (-373))) 45) (($ (-310 (-552))) 50) (($ (-931 (-373))) 54) (($ (-931 (-552))) 58) (($ (-401 (-931 (-373)))) 40) (($ (-401 (-931 (-552)))) 32)) (-2802 (((-1240) $) 90)) (-1477 (((-842) $) 84) (($ (-627 (-324))) 78) (($ (-324)) 81) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 76) (($ (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681))) 31))) +(((-88 |#1|) (-13 (-390) (-10 -8 (-15 -1477 ($ (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681)))))) (-1152)) (T -88)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681))) (-5 *1 (-88 *3)) (-14 *3 (-1152))))) +(-13 (-390) (-10 -8 (-15 -1477 ($ (-333 (-1490 (QUOTE X)) (-1490 (QUOTE -3156)) (-681)))))) +((-3230 (((-1235 (-671 |#1|)) (-671 |#1|)) 54)) (-3453 (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 (-627 (-900))))) |#2| (-900)) 44)) (-1890 (((-2 (|:| |minor| (-627 (-900))) (|:| -1651 |#2|) (|:| |minors| (-627 (-627 (-900)))) (|:| |ops| (-627 |#2|))) |#2| (-900)) 65 (|has| |#1| (-357))))) +(((-89 |#1| |#2|) (-10 -7 (-15 -3453 ((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 (-627 (-900))))) |#2| (-900))) (-15 -3230 ((-1235 (-671 |#1|)) (-671 |#1|))) (IF (|has| |#1| (-357)) (-15 -1890 ((-2 (|:| |minor| (-627 (-900))) (|:| -1651 |#2|) (|:| |minors| (-627 (-627 (-900)))) (|:| |ops| (-627 |#2|))) |#2| (-900))) |%noBranch|)) (-544) (-638 |#1|)) (T -89)) +((-1890 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |minor| (-627 (-900))) (|:| -1651 *3) (|:| |minors| (-627 (-627 (-900)))) (|:| |ops| (-627 *3)))) (-5 *1 (-89 *5 *3)) (-5 *4 (-900)) (-4 *3 (-638 *5)))) (-3230 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-1235 (-671 *4))) (-5 *1 (-89 *4 *5)) (-5 *3 (-671 *4)) (-4 *5 (-638 *4)))) (-3453 (*1 *2 *3 *4) (-12 (-4 *5 (-544)) (-5 *2 (-2 (|:| -2515 (-671 *5)) (|:| |vec| (-1235 (-627 (-900)))))) (-5 *1 (-89 *5 *3)) (-5 *4 (-900)) (-4 *3 (-638 *5))))) +(-10 -7 (-15 -3453 ((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 (-627 (-900))))) |#2| (-900))) (-15 -3230 ((-1235 (-671 |#1|)) (-671 |#1|))) (IF (|has| |#1| (-357)) (-15 -1890 ((-2 (|:| |minor| (-627 (-900))) (|:| -1651 |#2|) (|:| |minors| (-627 (-627 (-900)))) (|:| |ops| (-627 |#2|))) |#2| (-900))) |%noBranch|)) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2240 ((|#1| $) 35)) (-4031 (((-111) $ (-754)) NIL)) (-3887 (($) NIL T CONST)) (-3468 ((|#1| |#1| $) 30)) (-3846 ((|#1| $) 28)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-4165 ((|#1| $) NIL)) (-3954 (($ |#1| $) 31)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-4133 ((|#1| $) 29)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 16)) (-2373 (($) 39)) (-4170 (((-754) $) 26)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) 15)) (-1477 (((-842) $) 25 (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) NIL)) (-3624 (($ (-627 |#1|)) 37)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 13 (|has| |#1| (-1076)))) (-1383 (((-754) $) 10 (|has| $ (-6 -4366))))) +(((-90 |#1|) (-13 (-1097 |#1|) (-10 -8 (-15 -3624 ($ (-627 |#1|))))) (-1076)) (T -90)) +((-3624 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-90 *3))))) +(-13 (-1097 |#1|) (-10 -8 (-15 -3624 ($ (-627 |#1|))))) +((-1477 (((-842) $) 13) (((-1157) $) 8) (($ (-1157)) 9))) +(((-91 |#1|) (-10 -8 (-15 -1477 (|#1| (-1157))) (-15 -1477 ((-1157) |#1|)) (-15 -1477 ((-842) |#1|))) (-92)) (T -91)) +NIL +(-10 -8 (-15 -1477 (|#1| (-1157))) (-15 -1477 ((-1157) |#1|)) (-15 -1477 ((-842) |#1|))) +((-1465 (((-111) $ $) 7)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (((-1157) $) 15) (($ (-1157)) 14)) (-2292 (((-111) $ $) 6))) +(((-92) (-137)) (T -92)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-92))))) +(-13 (-1076) (-599 (-1157)) (-10 -8 (-15 -1477 ($ (-1157))))) +(((-101) . T) ((-599 (-842)) . T) ((-599 (-1157)) . T) ((-1076) . T)) +((-1561 (($ $) 10)) (-1575 (($ $) 12))) +(((-93 |#1|) (-10 -8 (-15 -1575 (|#1| |#1|)) (-15 -1561 (|#1| |#1|))) (-94)) (T -93)) +NIL +(-10 -8 (-15 -1575 (|#1| |#1|)) (-15 -1561 (|#1| |#1|))) +((-1534 (($ $) 11)) (-1513 (($ $) 10)) (-1561 (($ $) 9)) (-1575 (($ $) 8)) (-1547 (($ $) 7)) (-1524 (($ $) 6))) +(((-94) (-137)) (T -94)) +((-1534 (*1 *1 *1) (-4 *1 (-94))) (-1513 (*1 *1 *1) (-4 *1 (-94))) (-1561 (*1 *1 *1) (-4 *1 (-94))) (-1575 (*1 *1 *1) (-4 *1 (-94))) (-1547 (*1 *1 *1) (-4 *1 (-94))) (-1524 (*1 *1 *1) (-4 *1 (-94)))) +(-13 (-10 -8 (-15 -1524 ($ $)) (-15 -1547 ($ $)) (-15 -1575 ($ $)) (-15 -1561 ($ $)) (-15 -1513 ($ $)) (-15 -1534 ($ $)))) +((-1465 (((-111) $ $) NIL)) (-3112 (((-1111) $) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 17) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) +(((-95) (-13 (-1059) (-10 -8 (-15 -3112 ((-1111) $))))) (T -95)) +((-3112 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-95))))) +(-13 (-1059) (-10 -8 (-15 -3112 ((-1111) $)))) +((-1465 (((-111) $ $) NIL)) (-4230 (((-373) (-1134) (-373)) 42) (((-373) (-1134) (-1134) (-373)) 41)) (-3052 (((-373) (-373)) 33)) (-1875 (((-1240)) 36)) (-1595 (((-1134) $) NIL)) (-1322 (((-373) (-1134) (-1134)) 46) (((-373) (-1134)) 48)) (-1498 (((-1096) $) NIL)) (-3828 (((-373) (-1134) (-1134)) 47)) (-2581 (((-373) (-1134) (-1134)) 49) (((-373) (-1134)) 50)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) +(((-96) (-13 (-1076) (-10 -7 (-15 -1322 ((-373) (-1134) (-1134))) (-15 -1322 ((-373) (-1134))) (-15 -2581 ((-373) (-1134) (-1134))) (-15 -2581 ((-373) (-1134))) (-15 -3828 ((-373) (-1134) (-1134))) (-15 -1875 ((-1240))) (-15 -3052 ((-373) (-373))) (-15 -4230 ((-373) (-1134) (-373))) (-15 -4230 ((-373) (-1134) (-1134) (-373))) (-6 -4366)))) (T -96)) +((-1322 (*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-96)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-96)))) (-2581 (*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-96)))) (-2581 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-96)))) (-3828 (*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-96)))) (-1875 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-96)))) (-3052 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-96)))) (-4230 (*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1134)) (-5 *1 (-96)))) (-4230 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1134)) (-5 *1 (-96))))) +(-13 (-1076) (-10 -7 (-15 -1322 ((-373) (-1134) (-1134))) (-15 -1322 ((-373) (-1134))) (-15 -2581 ((-373) (-1134) (-1134))) (-15 -2581 ((-373) (-1134))) (-15 -3828 ((-373) (-1134) (-1134))) (-15 -1875 ((-1240))) (-15 -3052 ((-373) (-373))) (-15 -4230 ((-373) (-1134) (-373))) (-15 -4230 ((-373) (-1134) (-1134) (-373))) (-6 -4366))) +NIL +(((-97) (-137)) (T -97)) +NIL +(-13 (-10 -7 (-6 -4366) (-6 (-4368 "*")) (-6 -4367) (-6 -4363) (-6 -4361) (-6 -4360) (-6 -4359) (-6 -4364) (-6 -4358) (-6 -4357) (-6 -4356) (-6 -4355) (-6 -4354) (-6 -4362) (-6 -4365) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4353))) +((-1465 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-2986 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-552))) 22)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 14)) (-1498 (((-1096) $) NIL)) (-1985 ((|#1| $ |#1|) 11)) (-2616 (($ $ $) NIL)) (-2493 (($ $ $) NIL)) (-1477 (((-842) $) 20)) (-1933 (($) 8 T CONST)) (-2292 (((-111) $ $) 10)) (-2407 (($ $ $) NIL)) (** (($ $ (-900)) 27) (($ $ (-754)) NIL) (($ $ (-552)) 16)) (* (($ $ $) 28))) +(((-98 |#1|) (-13 (-466) (-280 |#1| |#1|) (-10 -8 (-15 -2986 ($ (-1 |#1| |#1|))) (-15 -2986 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2986 ($ (-1 |#1| |#1| (-552)))))) (-1028)) (T -98)) +((-2986 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-98 *3)))) (-2986 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-98 *3)))) (-2986 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-552))) (-4 *3 (-1028)) (-5 *1 (-98 *3))))) +(-13 (-466) (-280 |#1| |#1|) (-10 -8 (-15 -2986 ($ (-1 |#1| |#1|))) (-15 -2986 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2986 ($ (-1 |#1| |#1| (-552)))))) +((-2619 (((-412 |#2|) |#2| (-627 |#2|)) 10) (((-412 |#2|) |#2| |#2|) 11))) +(((-99 |#1| |#2|) (-10 -7 (-15 -2619 ((-412 |#2|) |#2| |#2|)) (-15 -2619 ((-412 |#2|) |#2| (-627 |#2|)))) (-13 (-445) (-144)) (-1211 |#1|)) (T -99)) +((-2619 (*1 *2 *3 *4) (-12 (-5 *4 (-627 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-13 (-445) (-144))) (-5 *2 (-412 *3)) (-5 *1 (-99 *5 *3)))) (-2619 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-445) (-144))) (-5 *2 (-412 *3)) (-5 *1 (-99 *4 *3)) (-4 *3 (-1211 *4))))) +(-10 -7 (-15 -2619 ((-412 |#2|) |#2| |#2|)) (-15 -2619 ((-412 |#2|) |#2| (-627 |#2|)))) +((-1465 (((-111) $ $) 10))) +(((-100 |#1|) (-10 -8 (-15 -1465 ((-111) |#1| |#1|))) (-101)) (T -100)) +NIL +(-10 -8 (-15 -1465 ((-111) |#1| |#1|))) +((-1465 (((-111) $ $) 7)) (-2292 (((-111) $ $) 6))) +(((-101) (-137)) (T -101)) +((-1465 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-111)))) (-2292 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-111))))) +(-13 (-10 -8 (-15 -2292 ((-111) $ $)) (-15 -1465 ((-111) $ $)))) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4288 ((|#1| $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2472 ((|#1| $ |#1|) 13 (|has| $ (-6 -4367)))) (-3433 (($ $ $) NIL (|has| $ (-6 -4367)))) (-2076 (($ $ $) NIL (|has| $ (-6 -4367)))) (-3564 (($ $ (-627 |#1|)) 15)) (-2950 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4367))) (($ $ "left" $) NIL (|has| $ (-6 -4367))) (($ $ "right" $) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-2791 (($ $) 11)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) NIL)) (-3726 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3126 (($ $ |#1| $) 17)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3079 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1270 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-627 |#1|) |#1| |#1| |#1|)) 35)) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-2776 (($ $) 10)) (-1823 (((-627 |#1|) $) NIL)) (-3810 (((-111) $) 12)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 9)) (-2373 (($) 16)) (-1985 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1848 (((-552) $ $) NIL)) (-2978 (((-111) $) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) NIL)) (-3415 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3130 (($ (-754) |#1|) 19)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-102 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4366) (-6 -4367) (-15 -3130 ($ (-754) |#1|)) (-15 -3564 ($ $ (-627 |#1|))) (-15 -3079 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3079 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1270 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1270 ($ $ |#1| (-1 (-627 |#1|) |#1| |#1| |#1|))))) (-1076)) (T -102)) +((-3130 (*1 *1 *2 *3) (-12 (-5 *2 (-754)) (-5 *1 (-102 *3)) (-4 *3 (-1076)))) (-3564 (*1 *1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-102 *3)))) (-3079 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1076)))) (-3079 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1076)) (-5 *1 (-102 *3)))) (-1270 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1076)) (-5 *1 (-102 *2)))) (-1270 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-627 *2) *2 *2 *2)) (-4 *2 (-1076)) (-5 *1 (-102 *2))))) +(-13 (-124 |#1|) (-10 -8 (-6 -4366) (-6 -4367) (-15 -3130 ($ (-754) |#1|)) (-15 -3564 ($ $ (-627 |#1|))) (-15 -3079 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3079 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1270 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1270 ($ $ |#1| (-1 (-627 |#1|) |#1| |#1| |#1|))))) +((-1728 ((|#3| |#2| |#2|) 29)) (-2981 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4368 "*"))))) (-1597 ((|#3| |#2| |#2|) 30)) (-4209 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4368 "*")))))) +(((-103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1728 (|#3| |#2| |#2|)) (-15 -1597 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4368 "*"))) (PROGN (-15 -2981 (|#1| |#2| |#2|)) (-15 -4209 (|#1| |#2|))) |%noBranch|)) (-1028) (-1211 |#1|) (-669 |#1| |#4| |#5|) (-367 |#1|) (-367 |#1|)) (T -103)) +((-4209 (*1 *2 *3) (-12 (|has| *2 (-6 (-4368 "*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) (-4 *2 (-1028)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1211 *2)) (-4 *4 (-669 *2 *5 *6)))) (-2981 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4368 "*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) (-4 *2 (-1028)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1211 *2)) (-4 *4 (-669 *2 *5 *6)))) (-1597 (*1 *2 *3 *3) (-12 (-4 *4 (-1028)) (-4 *2 (-669 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1211 *4)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)))) (-1728 (*1 *2 *3 *3) (-12 (-4 *4 (-1028)) (-4 *2 (-669 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1211 *4)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4))))) +(-10 -7 (-15 -1728 (|#3| |#2| |#2|)) (-15 -1597 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4368 "*"))) (PROGN (-15 -2981 (|#1| |#2| |#2|)) (-15 -4209 (|#1| |#2|))) |%noBranch|)) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-1873 (((-627 (-1152))) 33)) (-1646 (((-2 (|:| |zeros| (-1132 (-220))) (|:| |ones| (-1132 (-220))) (|:| |singularities| (-1132 (-220)))) (-1152)) 35)) (-2292 (((-111) $ $) NIL))) +(((-104) (-13 (-1076) (-10 -7 (-15 -1873 ((-627 (-1152)))) (-15 -1646 ((-2 (|:| |zeros| (-1132 (-220))) (|:| |ones| (-1132 (-220))) (|:| |singularities| (-1132 (-220)))) (-1152))) (-6 -4366)))) (T -104)) +((-1873 (*1 *2) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-104)))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-2 (|:| |zeros| (-1132 (-220))) (|:| |ones| (-1132 (-220))) (|:| |singularities| (-1132 (-220))))) (-5 *1 (-104))))) +(-13 (-1076) (-10 -7 (-15 -1873 ((-627 (-1152)))) (-15 -1646 ((-2 (|:| |zeros| (-1132 (-220))) (|:| |ones| (-1132 (-220))) (|:| |singularities| (-1132 (-220)))) (-1152))) (-6 -4366))) +((-2577 (($ (-627 |#2|)) 11))) +(((-105 |#1| |#2|) (-10 -8 (-15 -2577 (|#1| (-627 |#2|)))) (-106 |#2|) (-1189)) (T -105)) +NIL +(-10 -8 (-15 -2577 (|#1| (-627 |#2|)))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) 8)) (-3887 (($) 7 T CONST)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-4165 ((|#1| $) 39)) (-3954 (($ |#1| $) 40)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) 42)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-106 |#1|) (-137) (-1189)) (T -106)) +((-2577 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-4 *1 (-106 *3)))) (-4133 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1189)))) (-3954 (*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1189)))) (-4165 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1189))))) +(-13 (-482 |t#1|) (-10 -8 (-6 -4367) (-15 -2577 ($ (-627 |t#1|))) (-15 -4133 (|t#1| $)) (-15 -3954 ($ |t#1| $)) (-15 -4165 (|t#1| $)))) +(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3471 (((-552) $) NIL (|has| (-552) (-301)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL (|has| (-552) (-803)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-1152) "failed") $) NIL (|has| (-552) (-1017 (-1152)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-552) (-1017 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-552) (-1017 (-552))))) (-1703 (((-552) $) NIL) (((-1152) $) NIL (|has| (-552) (-1017 (-1152)))) (((-401 (-552)) $) NIL (|has| (-552) (-1017 (-552)))) (((-552) $) NIL (|has| (-552) (-1017 (-552))))) (-2813 (($ $ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| (-552) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| (-552) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-671 (-552)) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-552) (-537)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2983 (((-111) $) NIL (|has| (-552) (-803)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| (-552) (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| (-552) (-865 (-373))))) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL)) (-2918 (((-552) $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| (-552) (-1127)))) (-1508 (((-111) $) NIL (|has| (-552) (-803)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| (-552) (-830)))) (-3516 (($ (-1 (-552) (-552)) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-552) (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL (|has| (-552) (-301))) (((-401 (-552)) $) NIL)) (-2060 (((-552) $) NIL (|has| (-552) (-537)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3321 (($ $ (-627 (-552)) (-627 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-552) (-552)) NIL (|has| (-552) (-303 (-552)))) (($ $ (-288 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-627 (-288 (-552)))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-627 (-1152)) (-627 (-552))) NIL (|has| (-552) (-506 (-1152) (-552)))) (($ $ (-1152) (-552)) NIL (|has| (-552) (-506 (-1152) (-552))))) (-2718 (((-754) $) NIL)) (-1985 (($ $ (-552)) NIL (|has| (-552) (-280 (-552) (-552))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $) NIL (|has| (-552) (-228))) (($ $ (-754)) NIL (|has| (-552) (-228))) (($ $ (-1152)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1 (-552) (-552)) (-754)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-1583 (($ $) NIL)) (-2929 (((-552) $) NIL)) (-3562 (((-871 (-552)) $) NIL (|has| (-552) (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| (-552) (-600 (-871 (-373))))) (((-528) $) NIL (|has| (-552) (-600 (-528)))) (((-373) $) NIL (|has| (-552) (-1001))) (((-220) $) NIL (|has| (-552) (-1001)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| (-552) (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) 8) (($ (-552)) NIL) (($ (-1152)) NIL (|has| (-552) (-1017 (-1152)))) (((-401 (-552)) $) NIL) (((-983 2) $) 10)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| (-552) (-888))) (|has| (-552) (-142))))) (-3995 (((-754)) NIL)) (-3796 (((-552) $) NIL (|has| (-552) (-537)))) (-3780 (($ (-401 (-552))) 9)) (-3778 (((-111) $ $) NIL)) (-3329 (($ $) NIL (|has| (-552) (-803)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $) NIL (|has| (-552) (-228))) (($ $ (-754)) NIL (|has| (-552) (-228))) (($ $ (-1152)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1 (-552) (-552)) (-754)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2351 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2316 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2407 (($ $ $) NIL) (($ (-552) (-552)) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ (-552) $) NIL) (($ $ (-552)) NIL))) +(((-107) (-13 (-971 (-552)) (-10 -8 (-15 -1477 ((-401 (-552)) $)) (-15 -1477 ((-983 2) $)) (-15 -4328 ((-401 (-552)) $)) (-15 -3780 ($ (-401 (-552))))))) (T -107)) +((-1477 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-107)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-983 2)) (-5 *1 (-107)))) (-4328 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-107)))) (-3780 (*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-107))))) +(-13 (-971 (-552)) (-10 -8 (-15 -1477 ((-401 (-552)) $)) (-15 -1477 ((-983 2) $)) (-15 -4328 ((-401 (-552)) $)) (-15 -3780 ($ (-401 (-552)))))) +((-3070 (((-627 (-944)) $) 14)) (-3112 (((-1152) $) 10)) (-1477 (((-842) $) 23)) (-2153 (($ (-1152) (-627 (-944))) 15))) +(((-108) (-13 (-599 (-842)) (-10 -8 (-15 -3112 ((-1152) $)) (-15 -3070 ((-627 (-944)) $)) (-15 -2153 ($ (-1152) (-627 (-944))))))) (T -108)) +((-3112 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-108)))) (-3070 (*1 *2 *1) (-12 (-5 *2 (-627 (-944))) (-5 *1 (-108)))) (-2153 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-944))) (-5 *1 (-108))))) +(-13 (-599 (-842)) (-10 -8 (-15 -3112 ((-1152) $)) (-15 -3070 ((-627 (-944)) $)) (-15 -2153 ($ (-1152) (-627 (-944)))))) +((-1465 (((-111) $ $) NIL)) (-2831 (($ $) NIL)) (-2543 (($ $ $) NIL)) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) $) NIL (|has| (-111) (-830))) (((-111) (-1 (-111) (-111) (-111)) $) NIL)) (-2701 (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| (-111) (-830)))) (($ (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4367)))) (-4298 (($ $) NIL (|has| (-111) (-830))) (($ (-1 (-111) (-111) (-111)) $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2950 (((-111) $ (-1202 (-552)) (-111)) NIL (|has| $ (-6 -4367))) (((-111) $ (-552) (-111)) NIL (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-4342 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4366))) (($ (-111) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-2091 (((-111) (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-3473 (((-111) $ (-552) (-111)) NIL (|has| $ (-6 -4367)))) (-3413 (((-111) $ (-552)) NIL)) (-2967 (((-552) (-111) $ (-552)) NIL (|has| (-111) (-1076))) (((-552) (-111) $) NIL (|has| (-111) (-1076))) (((-552) (-1 (-111) (-111)) $) NIL)) (-3215 (((-627 (-111)) $) NIL (|has| $ (-6 -4366)))) (-1881 (($ $ $) NIL)) (-1681 (($ $) NIL)) (-3682 (($ $ $) NIL)) (-2655 (($ (-754) (-111)) 8)) (-3170 (($ $ $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL)) (-3759 (($ $ $) NIL (|has| (-111) (-830))) (($ (-1 (-111) (-111) (-111)) $ $) NIL)) (-3114 (((-627 (-111)) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL)) (-3463 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-111) (-111) (-111)) $ $) NIL) (($ (-1 (-111) (-111)) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-3252 (($ $ $ (-552)) NIL) (($ (-111) $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 (((-111) $) NIL (|has| (-552) (-830)))) (-1503 (((-3 (-111) "failed") (-1 (-111) (-111)) $) NIL)) (-1942 (($ $ (-111)) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-111)) (-627 (-111))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076)))) (($ $ (-111) (-111)) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076)))) (($ $ (-288 (-111))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076)))) (($ $ (-627 (-288 (-111)))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-2083 (((-627 (-111)) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 (($ $ (-1202 (-552))) NIL) (((-111) $ (-552)) NIL) (((-111) $ (-552) (-111)) NIL)) (-3907 (($ $ (-1202 (-552))) NIL) (($ $ (-552)) NIL)) (-1509 (((-754) (-111) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076)))) (((-754) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4366)))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-111) (-600 (-528))))) (-1490 (($ (-627 (-111))) NIL)) (-2668 (($ (-627 $)) NIL) (($ $ $) NIL) (($ (-111) $) NIL) (($ $ (-111)) NIL)) (-1477 (((-842) $) NIL)) (-3580 (($ (-754) (-111)) 9)) (-3299 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4366)))) (-2520 (($ $ $) NIL)) (-1872 (($ $ $) NIL)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-1861 (($ $ $) NIL)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-109) (-13 (-122) (-10 -8 (-15 -3580 ($ (-754) (-111)))))) (T -109)) +((-3580 (*1 *1 *2 *3) (-12 (-5 *2 (-754)) (-5 *3 (-111)) (-5 *1 (-109))))) +(-13 (-122) (-10 -8 (-15 -3580 ($ (-754) (-111))))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) +(((-110 |#1| |#2|) (-137) (-1028) (-1028)) (T -110)) +NIL +(-13 (-630 |t#1|) (-1034 |t#2|) (-10 -7 (-6 -4361) (-6 -4360))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-1034 |#2|) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-2831 (($ $) 10)) (-2543 (($ $ $) 15)) (-2503 (($) 7 T CONST)) (-4063 (($ $) 6)) (-3307 (((-754)) 24)) (-1279 (($) 30)) (-1881 (($ $ $) 13)) (-1681 (($ $) 9)) (-3682 (($ $ $) 16)) (-3170 (($ $ $) 17)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-2886 (((-900) $) 29)) (-1595 (((-1134) $) NIL)) (-4153 (($ (-900)) 28)) (-2516 (($ $ $) 20)) (-1498 (((-1096) $) NIL)) (-1336 (($) 8 T CONST)) (-1655 (($ $ $) 21)) (-3562 (((-528) $) 36)) (-1477 (((-842) $) 39)) (-2520 (($ $ $) 11)) (-1872 (($ $ $) 14)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 19)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 22)) (-1861 (($ $ $) 12))) +(((-111) (-13 (-824) (-643) (-946) (-600 (-528)) (-10 -8 (-15 -2503 ($) -3488) (-15 -1336 ($) -3488) (-15 -2543 ($ $ $)) (-15 -3170 ($ $ $)) (-15 -3682 ($ $ $)) (-15 -4063 ($ $))))) (T -111)) +((-2503 (*1 *1) (-5 *1 (-111))) (-1336 (*1 *1) (-5 *1 (-111))) (-2543 (*1 *1 *1 *1) (-5 *1 (-111))) (-3170 (*1 *1 *1 *1) (-5 *1 (-111))) (-3682 (*1 *1 *1 *1) (-5 *1 (-111))) (-4063 (*1 *1 *1) (-5 *1 (-111)))) +(-13 (-824) (-643) (-946) (-600 (-528)) (-10 -8 (-15 -2503 ($) -3488) (-15 -1336 ($) -3488) (-15 -2543 ($ $ $)) (-15 -3170 ($ $ $)) (-15 -3682 ($ $ $)) (-15 -4063 ($ $)))) +((-2201 (((-3 (-1 |#1| (-627 |#1|)) "failed") (-113)) 19) (((-113) (-113) (-1 |#1| |#1|)) 13) (((-113) (-113) (-1 |#1| (-627 |#1|))) 11) (((-3 |#1| "failed") (-113) (-627 |#1|)) 21)) (-1422 (((-3 (-627 (-1 |#1| (-627 |#1|))) "failed") (-113)) 25) (((-113) (-113) (-1 |#1| |#1|)) 30) (((-113) (-113) (-627 (-1 |#1| (-627 |#1|)))) 26)) (-3298 (((-113) |#1|) 56 (|has| |#1| (-830)))) (-2045 (((-3 |#1| "failed") (-113)) 50 (|has| |#1| (-830))))) +(((-112 |#1|) (-10 -7 (-15 -2201 ((-3 |#1| "failed") (-113) (-627 |#1|))) (-15 -2201 ((-113) (-113) (-1 |#1| (-627 |#1|)))) (-15 -2201 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2201 ((-3 (-1 |#1| (-627 |#1|)) "failed") (-113))) (-15 -1422 ((-113) (-113) (-627 (-1 |#1| (-627 |#1|))))) (-15 -1422 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1422 ((-3 (-627 (-1 |#1| (-627 |#1|))) "failed") (-113))) (IF (|has| |#1| (-830)) (PROGN (-15 -3298 ((-113) |#1|)) (-15 -2045 ((-3 |#1| "failed") (-113)))) |%noBranch|)) (-1076)) (T -112)) +((-2045 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1076)) (-4 *2 (-830)) (-5 *1 (-112 *2)))) (-3298 (*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-112 *3)) (-4 *3 (-830)) (-4 *3 (-1076)))) (-1422 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-627 (-1 *4 (-627 *4)))) (-5 *1 (-112 *4)) (-4 *4 (-1076)))) (-1422 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1076)) (-5 *1 (-112 *4)))) (-1422 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-627 (-1 *4 (-627 *4)))) (-4 *4 (-1076)) (-5 *1 (-112 *4)))) (-2201 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-627 *4))) (-5 *1 (-112 *4)) (-4 *4 (-1076)))) (-2201 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1076)) (-5 *1 (-112 *4)))) (-2201 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-627 *4))) (-4 *4 (-1076)) (-5 *1 (-112 *4)))) (-2201 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-627 *2)) (-5 *1 (-112 *2)) (-4 *2 (-1076))))) +(-10 -7 (-15 -2201 ((-3 |#1| "failed") (-113) (-627 |#1|))) (-15 -2201 ((-113) (-113) (-1 |#1| (-627 |#1|)))) (-15 -2201 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2201 ((-3 (-1 |#1| (-627 |#1|)) "failed") (-113))) (-15 -1422 ((-113) (-113) (-627 (-1 |#1| (-627 |#1|))))) (-15 -1422 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1422 ((-3 (-627 (-1 |#1| (-627 |#1|))) "failed") (-113))) (IF (|has| |#1| (-830)) (PROGN (-15 -3298 ((-113) |#1|)) (-15 -2045 ((-3 |#1| "failed") (-113)))) |%noBranch|)) +((-1465 (((-111) $ $) NIL)) (-2671 (((-754) $) 72) (($ $ (-754)) 30)) (-3390 (((-111) $) 32)) (-2275 (($ $ (-1134) (-757)) 26)) (-1406 (($ $ (-45 (-1134) (-757))) 15)) (-1481 (((-3 (-757) "failed") $ (-1134)) 25)) (-3070 (((-45 (-1134) (-757)) $) 14)) (-4148 (($ (-1152)) 17) (($ (-1152) (-754)) 22)) (-1863 (((-111) $) 31)) (-3658 (((-111) $) 33)) (-3112 (((-1152) $) 8)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-2070 (((-111) $ (-1152)) 10)) (-1268 (($ $ (-1 (-528) (-627 (-528)))) 52) (((-3 (-1 (-528) (-627 (-528))) "failed") $) 56)) (-1498 (((-1096) $) NIL)) (-1531 (((-111) $ (-1134)) 29)) (-1940 (($ $ (-1 (-111) $ $)) 35)) (-4291 (((-3 (-1 (-842) (-627 (-842))) "failed") $) 54) (($ $ (-1 (-842) (-627 (-842)))) 41) (($ $ (-1 (-842) (-842))) 43)) (-1936 (($ $ (-1134)) 45)) (-2973 (($ $) 63)) (-3668 (($ $ (-1 (-111) $ $)) 36)) (-1477 (((-842) $) 48)) (-3732 (($ $ (-1134)) 27)) (-2926 (((-3 (-754) "failed") $) 58)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 71)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 79))) +(((-113) (-13 (-830) (-10 -8 (-15 -3112 ((-1152) $)) (-15 -3070 ((-45 (-1134) (-757)) $)) (-15 -2973 ($ $)) (-15 -4148 ($ (-1152))) (-15 -4148 ($ (-1152) (-754))) (-15 -2926 ((-3 (-754) "failed") $)) (-15 -1863 ((-111) $)) (-15 -3390 ((-111) $)) (-15 -3658 ((-111) $)) (-15 -2671 ((-754) $)) (-15 -2671 ($ $ (-754))) (-15 -1940 ($ $ (-1 (-111) $ $))) (-15 -3668 ($ $ (-1 (-111) $ $))) (-15 -4291 ((-3 (-1 (-842) (-627 (-842))) "failed") $)) (-15 -4291 ($ $ (-1 (-842) (-627 (-842))))) (-15 -4291 ($ $ (-1 (-842) (-842)))) (-15 -1268 ($ $ (-1 (-528) (-627 (-528))))) (-15 -1268 ((-3 (-1 (-528) (-627 (-528))) "failed") $)) (-15 -2070 ((-111) $ (-1152))) (-15 -1531 ((-111) $ (-1134))) (-15 -3732 ($ $ (-1134))) (-15 -1936 ($ $ (-1134))) (-15 -1481 ((-3 (-757) "failed") $ (-1134))) (-15 -2275 ($ $ (-1134) (-757))) (-15 -1406 ($ $ (-45 (-1134) (-757))))))) (T -113)) +((-3112 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-113)))) (-3070 (*1 *2 *1) (-12 (-5 *2 (-45 (-1134) (-757))) (-5 *1 (-113)))) (-2973 (*1 *1 *1) (-5 *1 (-113))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-113)))) (-4148 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-754)) (-5 *1 (-113)))) (-2926 (*1 *2 *1) (|partial| -12 (-5 *2 (-754)) (-5 *1 (-113)))) (-1863 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113)))) (-3390 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113)))) (-3658 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-113)))) (-2671 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-113)))) (-1940 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113)))) (-3668 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113)))) (-4291 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-842) (-627 (-842)))) (-5 *1 (-113)))) (-4291 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-842) (-627 (-842)))) (-5 *1 (-113)))) (-4291 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-842) (-842))) (-5 *1 (-113)))) (-1268 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-528) (-627 (-528)))) (-5 *1 (-113)))) (-1268 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-528) (-627 (-528)))) (-5 *1 (-113)))) (-2070 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-111)) (-5 *1 (-113)))) (-1531 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-111)) (-5 *1 (-113)))) (-3732 (*1 *1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-113)))) (-1936 (*1 *1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-113)))) (-1481 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1134)) (-5 *2 (-757)) (-5 *1 (-113)))) (-2275 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1134)) (-5 *3 (-757)) (-5 *1 (-113)))) (-1406 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1134) (-757))) (-5 *1 (-113))))) +(-13 (-830) (-10 -8 (-15 -3112 ((-1152) $)) (-15 -3070 ((-45 (-1134) (-757)) $)) (-15 -2973 ($ $)) (-15 -4148 ($ (-1152))) (-15 -4148 ($ (-1152) (-754))) (-15 -2926 ((-3 (-754) "failed") $)) (-15 -1863 ((-111) $)) (-15 -3390 ((-111) $)) (-15 -3658 ((-111) $)) (-15 -2671 ((-754) $)) (-15 -2671 ($ $ (-754))) (-15 -1940 ($ $ (-1 (-111) $ $))) (-15 -3668 ($ $ (-1 (-111) $ $))) (-15 -4291 ((-3 (-1 (-842) (-627 (-842))) "failed") $)) (-15 -4291 ($ $ (-1 (-842) (-627 (-842))))) (-15 -4291 ($ $ (-1 (-842) (-842)))) (-15 -1268 ($ $ (-1 (-528) (-627 (-528))))) (-15 -1268 ((-3 (-1 (-528) (-627 (-528))) "failed") $)) (-15 -2070 ((-111) $ (-1152))) (-15 -1531 ((-111) $ (-1134))) (-15 -3732 ($ $ (-1134))) (-15 -1936 ($ $ (-1134))) (-15 -1481 ((-3 (-757) "failed") $ (-1134))) (-15 -2275 ($ $ (-1134) (-757))) (-15 -1406 ($ $ (-45 (-1134) (-757)))))) +((-3680 (((-552) |#2|) 37))) +(((-114 |#1| |#2|) (-10 -7 (-15 -3680 ((-552) |#2|))) (-13 (-357) (-1017 (-401 (-552)))) (-1211 |#1|)) (T -114)) +((-3680 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-1017 (-401 *2)))) (-5 *2 (-552)) (-5 *1 (-114 *4 *3)) (-4 *3 (-1211 *4))))) +(-10 -7 (-15 -3680 ((-552) |#2|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1737 (($ $ (-552)) NIL)) (-4224 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-1905 (($ (-1148 (-552)) (-552)) NIL)) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1497 (($ $) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2641 (((-754) $) NIL)) (-2624 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3484 (((-552)) NIL)) (-3752 (((-552) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4168 (($ $ (-552)) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-3080 (((-1132 (-552)) $) NIL)) (-2890 (($ $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL)) (-3995 (((-754)) NIL)) (-3778 (((-111) $ $) NIL)) (-3030 (((-552) $ (-552)) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL))) +(((-115 |#1|) (-848 |#1|) (-552)) (T -115)) +NIL +(-848 |#1|) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3471 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-301)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-115 |#1|) (-888)))) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| (-115 |#1|) (-888)))) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL (|has| (-115 |#1|) (-803)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-115 |#1|) "failed") $) NIL) (((-3 (-1152) "failed") $) NIL (|has| (-115 |#1|) (-1017 (-1152)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-115 |#1|) (-1017 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-115 |#1|) (-1017 (-552))))) (-1703 (((-115 |#1|) $) NIL) (((-1152) $) NIL (|has| (-115 |#1|) (-1017 (-1152)))) (((-401 (-552)) $) NIL (|has| (-115 |#1|) (-1017 (-552)))) (((-552) $) NIL (|has| (-115 |#1|) (-1017 (-552))))) (-1405 (($ $) NIL) (($ (-552) $) NIL)) (-2813 (($ $ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| (-115 |#1|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| (-115 |#1|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-115 |#1|))) (|:| |vec| (-1235 (-115 |#1|)))) (-671 $) (-1235 $)) NIL) (((-671 (-115 |#1|)) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-115 |#1|) (-537)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2983 (((-111) $) NIL (|has| (-115 |#1|) (-803)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| (-115 |#1|) (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| (-115 |#1|) (-865 (-373))))) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL)) (-2918 (((-115 |#1|) $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| (-115 |#1|) (-1127)))) (-1508 (((-111) $) NIL (|has| (-115 |#1|) (-803)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL (|has| (-115 |#1|) (-830)))) (-4093 (($ $ $) NIL (|has| (-115 |#1|) (-830)))) (-3516 (($ (-1 (-115 |#1|) (-115 |#1|)) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-115 |#1|) (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL (|has| (-115 |#1|) (-301)))) (-2060 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-537)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-115 |#1|) (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-115 |#1|) (-888)))) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3321 (($ $ (-627 (-115 |#1|)) (-627 (-115 |#1|))) NIL (|has| (-115 |#1|) (-303 (-115 |#1|)))) (($ $ (-115 |#1|) (-115 |#1|)) NIL (|has| (-115 |#1|) (-303 (-115 |#1|)))) (($ $ (-288 (-115 |#1|))) NIL (|has| (-115 |#1|) (-303 (-115 |#1|)))) (($ $ (-627 (-288 (-115 |#1|)))) NIL (|has| (-115 |#1|) (-303 (-115 |#1|)))) (($ $ (-627 (-1152)) (-627 (-115 |#1|))) NIL (|has| (-115 |#1|) (-506 (-1152) (-115 |#1|)))) (($ $ (-1152) (-115 |#1|)) NIL (|has| (-115 |#1|) (-506 (-1152) (-115 |#1|))))) (-2718 (((-754) $) NIL)) (-1985 (($ $ (-115 |#1|)) NIL (|has| (-115 |#1|) (-280 (-115 |#1|) (-115 |#1|))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $) NIL (|has| (-115 |#1|) (-228))) (($ $ (-754)) NIL (|has| (-115 |#1|) (-228))) (($ $ (-1152)) NIL (|has| (-115 |#1|) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-115 |#1|) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-115 |#1|) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-115 |#1|) (-879 (-1152)))) (($ $ (-1 (-115 |#1|) (-115 |#1|)) (-754)) NIL) (($ $ (-1 (-115 |#1|) (-115 |#1|))) NIL)) (-1583 (($ $) NIL)) (-2929 (((-115 |#1|) $) NIL)) (-3562 (((-871 (-552)) $) NIL (|has| (-115 |#1|) (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| (-115 |#1|) (-600 (-871 (-373))))) (((-528) $) NIL (|has| (-115 |#1|) (-600 (-528)))) (((-373) $) NIL (|has| (-115 |#1|) (-1001))) (((-220) $) NIL (|has| (-115 |#1|) (-1001)))) (-2771 (((-171 (-401 (-552))) $) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| (-115 |#1|) (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-115 |#1|)) NIL) (($ (-1152)) NIL (|has| (-115 |#1|) (-1017 (-1152))))) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| (-115 |#1|) (-888))) (|has| (-115 |#1|) (-142))))) (-3995 (((-754)) NIL)) (-3796 (((-115 |#1|) $) NIL (|has| (-115 |#1|) (-537)))) (-3778 (((-111) $ $) NIL)) (-3030 (((-401 (-552)) $ (-552)) NIL)) (-3329 (($ $) NIL (|has| (-115 |#1|) (-803)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $) NIL (|has| (-115 |#1|) (-228))) (($ $ (-754)) NIL (|has| (-115 |#1|) (-228))) (($ $ (-1152)) NIL (|has| (-115 |#1|) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-115 |#1|) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-115 |#1|) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-115 |#1|) (-879 (-1152)))) (($ $ (-1 (-115 |#1|) (-115 |#1|)) (-754)) NIL) (($ $ (-1 (-115 |#1|) (-115 |#1|))) NIL)) (-2351 (((-111) $ $) NIL (|has| (-115 |#1|) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-115 |#1|) (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| (-115 |#1|) (-830)))) (-2316 (((-111) $ $) NIL (|has| (-115 |#1|) (-830)))) (-2407 (($ $ $) NIL) (($ (-115 |#1|) (-115 |#1|)) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ (-115 |#1|) $) NIL) (($ $ (-115 |#1|)) NIL))) +(((-116 |#1|) (-13 (-971 (-115 |#1|)) (-10 -8 (-15 -3030 ((-401 (-552)) $ (-552))) (-15 -2771 ((-171 (-401 (-552))) $)) (-15 -1405 ($ $)) (-15 -1405 ($ (-552) $)))) (-552)) (T -116)) +((-3030 (*1 *2 *1 *3) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-116 *4)) (-14 *4 *3) (-5 *3 (-552)))) (-2771 (*1 *2 *1) (-12 (-5 *2 (-171 (-401 (-552)))) (-5 *1 (-116 *3)) (-14 *3 (-552)))) (-1405 (*1 *1 *1) (-12 (-5 *1 (-116 *2)) (-14 *2 (-552)))) (-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-116 *3)) (-14 *3 *2)))) +(-13 (-971 (-115 |#1|)) (-10 -8 (-15 -3030 ((-401 (-552)) $ (-552))) (-15 -2771 ((-171 (-401 (-552))) $)) (-15 -1405 ($ $)) (-15 -1405 ($ (-552) $)))) +((-2950 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-2336 (((-627 $) $) 27)) (-3726 (((-111) $ $) 32)) (-3082 (((-111) |#2| $) 36)) (-1823 (((-627 |#2|) $) 22)) (-3810 (((-111) $) 16)) (-1985 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2978 (((-111) $) 45)) (-1477 (((-842) $) 41)) (-2535 (((-627 $) $) 28)) (-2292 (((-111) $ $) 34)) (-1383 (((-754) $) 43))) +(((-117 |#1| |#2|) (-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -2950 (|#1| |#1| "right" |#1|)) (-15 -2950 (|#1| |#1| "left" |#1|)) (-15 -1985 (|#1| |#1| "right")) (-15 -1985 (|#1| |#1| "left")) (-15 -2950 (|#2| |#1| "value" |#2|)) (-15 -3726 ((-111) |#1| |#1|)) (-15 -1823 ((-627 |#2|) |#1|)) (-15 -2978 ((-111) |#1|)) (-15 -1985 (|#2| |#1| "value")) (-15 -3810 ((-111) |#1|)) (-15 -2336 ((-627 |#1|) |#1|)) (-15 -2535 ((-627 |#1|) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -3082 ((-111) |#2| |#1|)) (-15 -1383 ((-754) |#1|))) (-118 |#2|) (-1189)) (T -117)) +NIL +(-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -2950 (|#1| |#1| "right" |#1|)) (-15 -2950 (|#1| |#1| "left" |#1|)) (-15 -1985 (|#1| |#1| "right")) (-15 -1985 (|#1| |#1| "left")) (-15 -2950 (|#2| |#1| "value" |#2|)) (-15 -3726 ((-111) |#1| |#1|)) (-15 -1823 ((-627 |#2|) |#1|)) (-15 -2978 ((-111) |#1|)) (-15 -1985 (|#2| |#1| "value")) (-15 -3810 ((-111) |#1|)) (-15 -2336 ((-627 |#1|) |#1|)) (-15 -2535 ((-627 |#1|) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -3082 ((-111) |#2| |#1|)) (-15 -1383 ((-754) |#1|))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4288 ((|#1| $) 48)) (-4031 (((-111) $ (-754)) 8)) (-2472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4367)))) (-3433 (($ $ $) 52 (|has| $ (-6 -4367)))) (-2076 (($ $ $) 54 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4367))) (($ $ "left" $) 55 (|has| $ (-6 -4367))) (($ $ "right" $) 53 (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 41 (|has| $ (-6 -4367)))) (-3887 (($) 7 T CONST)) (-2791 (($ $) 57)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) 50)) (-3726 (((-111) $ $) 42 (|has| |#1| (-1076)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-2776 (($ $) 59)) (-1823 (((-627 |#1|) $) 45)) (-3810 (((-111) $) 49)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1848 (((-552) $ $) 44)) (-2978 (((-111) $) 46)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) 51)) (-3415 (((-111) $ $) 43 (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-118 |#1|) (-137) (-1189)) (T -118)) +((-2776 (*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1189)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-118 *3)) (-4 *3 (-1189)))) (-2791 (*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1189)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-118 *3)) (-4 *3 (-1189)))) (-2950 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4367)) (-4 *1 (-118 *3)) (-4 *3 (-1189)))) (-2076 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-118 *2)) (-4 *2 (-1189)))) (-2950 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4367)) (-4 *1 (-118 *3)) (-4 *3 (-1189)))) (-3433 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-118 *2)) (-4 *2 (-1189))))) +(-13 (-989 |t#1|) (-10 -8 (-15 -2776 ($ $)) (-15 -1985 ($ $ "left")) (-15 -2791 ($ $)) (-15 -1985 ($ $ "right")) (IF (|has| $ (-6 -4367)) (PROGN (-15 -2950 ($ $ "left" $)) (-15 -2076 ($ $ $)) (-15 -2950 ($ $ "right" $)) (-15 -3433 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-989 |#1|) . T) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) +((-3990 (((-111) |#1|) 24)) (-1521 (((-754) (-754)) 23) (((-754)) 22)) (-1706 (((-111) |#1| (-111)) 25) (((-111) |#1|) 26))) +(((-119 |#1|) (-10 -7 (-15 -1706 ((-111) |#1|)) (-15 -1706 ((-111) |#1| (-111))) (-15 -1521 ((-754))) (-15 -1521 ((-754) (-754))) (-15 -3990 ((-111) |#1|))) (-1211 (-552))) (T -119)) +((-3990 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1211 (-552))))) (-1521 (*1 *2 *2) (-12 (-5 *2 (-754)) (-5 *1 (-119 *3)) (-4 *3 (-1211 (-552))))) (-1521 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-119 *3)) (-4 *3 (-1211 (-552))))) (-1706 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1211 (-552))))) (-1706 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1211 (-552)))))) +(-10 -7 (-15 -1706 ((-111) |#1|)) (-15 -1706 ((-111) |#1| (-111))) (-15 -1521 ((-754))) (-15 -1521 ((-754) (-754))) (-15 -3990 ((-111) |#1|))) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4288 ((|#1| $) 15)) (-2843 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-4031 (((-111) $ (-754)) NIL)) (-2472 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-3433 (($ $ $) 18 (|has| $ (-6 -4367)))) (-2076 (($ $ $) 20 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4367))) (($ $ "left" $) NIL (|has| $ (-6 -4367))) (($ $ "right" $) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-2791 (($ $) 17)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) NIL)) (-3726 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3126 (($ $ |#1| $) 23)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-2776 (($ $) 19)) (-1823 (((-627 |#1|) $) NIL)) (-3810 (((-111) $) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-2582 (($ |#1| $) 24)) (-3954 (($ |#1| $) 10)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 14)) (-2373 (($) 8)) (-1985 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1848 (((-552) $ $) NIL)) (-2978 (((-111) $) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) NIL)) (-3415 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1554 (($ (-627 |#1|)) 12)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-120 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4367) (-6 -4366) (-15 -1554 ($ (-627 |#1|))) (-15 -3954 ($ |#1| $)) (-15 -2582 ($ |#1| $)) (-15 -2843 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-830)) (T -120)) +((-1554 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-120 *3)))) (-3954 (*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-830)))) (-2582 (*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-830)))) (-2843 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-120 *3)) (|:| |greater| (-120 *3)))) (-5 *1 (-120 *3)) (-4 *3 (-830))))) +(-13 (-124 |#1|) (-10 -8 (-6 -4367) (-6 -4366) (-15 -1554 ($ (-627 |#1|))) (-15 -3954 ($ |#1| $)) (-15 -2582 ($ |#1| $)) (-15 -2843 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-2831 (($ $) 13)) (-1681 (($ $) 11)) (-3682 (($ $ $) 23)) (-3170 (($ $ $) 21)) (-1872 (($ $ $) 19)) (-1861 (($ $ $) 17))) +(((-121 |#1|) (-10 -8 (-15 -3682 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#1|)) (-15 -1681 (|#1| |#1|)) (-15 -2831 (|#1| |#1|)) (-15 -1861 (|#1| |#1| |#1|)) (-15 -1872 (|#1| |#1| |#1|))) (-122)) (T -121)) +NIL +(-10 -8 (-15 -3682 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#1|)) (-15 -1681 (|#1| |#1|)) (-15 -2831 (|#1| |#1|)) (-15 -1861 (|#1| |#1| |#1|)) (-15 -1872 (|#1| |#1| |#1|))) +((-1465 (((-111) $ $) 7)) (-2831 (($ $) 103)) (-2543 (($ $ $) 25)) (-3305 (((-1240) $ (-552) (-552)) 66 (|has| $ (-6 -4367)))) (-1439 (((-111) $) 98 (|has| (-111) (-830))) (((-111) (-1 (-111) (-111) (-111)) $) 92)) (-2701 (($ $) 102 (-12 (|has| (-111) (-830)) (|has| $ (-6 -4367)))) (($ (-1 (-111) (-111) (-111)) $) 101 (|has| $ (-6 -4367)))) (-4298 (($ $) 97 (|has| (-111) (-830))) (($ (-1 (-111) (-111) (-111)) $) 91)) (-4031 (((-111) $ (-754)) 37)) (-2950 (((-111) $ (-1202 (-552)) (-111)) 88 (|has| $ (-6 -4367))) (((-111) $ (-552) (-111)) 54 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) (-111)) $) 71 (|has| $ (-6 -4366)))) (-3887 (($) 38 T CONST)) (-2519 (($ $) 100 (|has| $ (-6 -4367)))) (-3429 (($ $) 90)) (-3370 (($ $) 68 (-12 (|has| (-111) (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ (-1 (-111) (-111)) $) 72 (|has| $ (-6 -4366))) (($ (-111) $) 69 (-12 (|has| (-111) (-1076)) (|has| $ (-6 -4366))))) (-2091 (((-111) (-1 (-111) (-111) (-111)) $) 74 (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) 73 (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) 70 (-12 (|has| (-111) (-1076)) (|has| $ (-6 -4366))))) (-3473 (((-111) $ (-552) (-111)) 53 (|has| $ (-6 -4367)))) (-3413 (((-111) $ (-552)) 55)) (-2967 (((-552) (-111) $ (-552)) 95 (|has| (-111) (-1076))) (((-552) (-111) $) 94 (|has| (-111) (-1076))) (((-552) (-1 (-111) (-111)) $) 93)) (-3215 (((-627 (-111)) $) 45 (|has| $ (-6 -4366)))) (-1881 (($ $ $) 26)) (-1681 (($ $) 30)) (-3682 (($ $ $) 28)) (-2655 (($ (-754) (-111)) 77)) (-3170 (($ $ $) 29)) (-1602 (((-111) $ (-754)) 36)) (-3661 (((-552) $) 63 (|has| (-552) (-830)))) (-1816 (($ $ $) 13)) (-3759 (($ $ $) 96 (|has| (-111) (-830))) (($ (-1 (-111) (-111) (-111)) $ $) 89)) (-3114 (((-627 (-111)) $) 46 (|has| $ (-6 -4366)))) (-3082 (((-111) (-111) $) 48 (-12 (|has| (-111) (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 62 (|has| (-552) (-830)))) (-4093 (($ $ $) 14)) (-3463 (($ (-1 (-111) (-111)) $) 41 (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-111) (-111) (-111)) $ $) 82) (($ (-1 (-111) (-111)) $) 40)) (-3971 (((-111) $ (-754)) 35)) (-1595 (((-1134) $) 9)) (-3252 (($ $ $ (-552)) 87) (($ (-111) $ (-552)) 86)) (-3892 (((-627 (-552)) $) 60)) (-2358 (((-111) (-552) $) 59)) (-1498 (((-1096) $) 10)) (-3340 (((-111) $) 64 (|has| (-552) (-830)))) (-1503 (((-3 (-111) "failed") (-1 (-111) (-111)) $) 75)) (-1942 (($ $ (-111)) 65 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) (-111)) $) 43 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-111)) (-627 (-111))) 52 (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076)))) (($ $ (-111) (-111)) 51 (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076)))) (($ $ (-288 (-111))) 50 (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076)))) (($ $ (-627 (-288 (-111)))) 49 (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076))))) (-2432 (((-111) $ $) 31)) (-2181 (((-111) (-111) $) 61 (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-2083 (((-627 (-111)) $) 58)) (-1275 (((-111) $) 34)) (-2373 (($) 33)) (-1985 (($ $ (-1202 (-552))) 83) (((-111) $ (-552)) 57) (((-111) $ (-552) (-111)) 56)) (-3907 (($ $ (-1202 (-552))) 85) (($ $ (-552)) 84)) (-1509 (((-754) (-111) $) 47 (-12 (|has| (-111) (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) (-111)) $) 44 (|has| $ (-6 -4366)))) (-4105 (($ $ $ (-552)) 99 (|has| $ (-6 -4367)))) (-2973 (($ $) 32)) (-3562 (((-528) $) 67 (|has| (-111) (-600 (-528))))) (-1490 (($ (-627 (-111))) 76)) (-2668 (($ (-627 $)) 81) (($ $ $) 80) (($ (-111) $) 79) (($ $ (-111)) 78)) (-1477 (((-842) $) 11)) (-3299 (((-111) (-1 (-111) (-111)) $) 42 (|has| $ (-6 -4366)))) (-2520 (($ $ $) 27)) (-1872 (($ $ $) 105)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18)) (-1861 (($ $ $) 104)) (-1383 (((-754) $) 39 (|has| $ (-6 -4366))))) +(((-122) (-137)) (T -122)) +((-1681 (*1 *1 *1) (-4 *1 (-122))) (-3170 (*1 *1 *1 *1) (-4 *1 (-122))) (-3682 (*1 *1 *1 *1) (-4 *1 (-122))) (-2520 (*1 *1 *1 *1) (-4 *1 (-122))) (-1881 (*1 *1 *1 *1) (-4 *1 (-122))) (-2543 (*1 *1 *1 *1) (-4 *1 (-122)))) +(-13 (-830) (-643) (-19 (-111)) (-10 -8 (-15 -1681 ($ $)) (-15 -3170 ($ $ $)) (-15 -3682 ($ $ $)) (-15 -2520 ($ $ $)) (-15 -1881 ($ $ $)) (-15 -2543 ($ $ $)))) +(((-34) . T) ((-101) . T) ((-599 (-842)) . T) ((-148 #0=(-111)) . T) ((-600 (-528)) |has| (-111) (-600 (-528))) ((-280 #1=(-552) #0#) . T) ((-282 #1# #0#) . T) ((-303 #0#) -12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076))) ((-367 #0#) . T) ((-482 #0#) . T) ((-590 #1# #0#) . T) ((-506 #0# #0#) -12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076))) ((-633 #0#) . T) ((-643) . T) ((-19 #0#) . T) ((-830) . T) ((-1076) . T) ((-1189) . T)) +((-3463 (($ (-1 |#2| |#2|) $) 22)) (-2973 (($ $) 16)) (-1383 (((-754) $) 24))) +(((-123 |#1| |#2|) (-10 -8 (-15 -3463 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1383 ((-754) |#1|)) (-15 -2973 (|#1| |#1|))) (-124 |#2|) (-1076)) (T -123)) +NIL +(-10 -8 (-15 -3463 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1383 ((-754) |#1|)) (-15 -2973 (|#1| |#1|))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4288 ((|#1| $) 48)) (-4031 (((-111) $ (-754)) 8)) (-2472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4367)))) (-3433 (($ $ $) 52 (|has| $ (-6 -4367)))) (-2076 (($ $ $) 54 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4367))) (($ $ "left" $) 55 (|has| $ (-6 -4367))) (($ $ "right" $) 53 (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 41 (|has| $ (-6 -4367)))) (-3887 (($) 7 T CONST)) (-2791 (($ $) 57)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) 50)) (-3726 (((-111) $ $) 42 (|has| |#1| (-1076)))) (-3126 (($ $ |#1| $) 60)) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-2776 (($ $) 59)) (-1823 (((-627 |#1|) $) 45)) (-3810 (((-111) $) 49)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1848 (((-552) $ $) 44)) (-2978 (((-111) $) 46)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) 51)) (-3415 (((-111) $ $) 43 (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-124 |#1|) (-137) (-1076)) (T -124)) +((-3126 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-124 *2)) (-4 *2 (-1076))))) +(-13 (-118 |t#1|) (-10 -8 (-6 -4367) (-6 -4366) (-15 -3126 ($ $ |t#1| $)))) +(((-34) . T) ((-101) |has| |#1| (-1076)) ((-118 |#1|) . T) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-989 |#1|) . T) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4288 ((|#1| $) 15)) (-4031 (((-111) $ (-754)) NIL)) (-2472 ((|#1| $ |#1|) 19 (|has| $ (-6 -4367)))) (-3433 (($ $ $) 20 (|has| $ (-6 -4367)))) (-2076 (($ $ $) 18 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4367))) (($ $ "left" $) NIL (|has| $ (-6 -4367))) (($ $ "right" $) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-2791 (($ $) 21)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) NIL)) (-3726 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3126 (($ $ |#1| $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-2776 (($ $) NIL)) (-1823 (((-627 |#1|) $) NIL)) (-3810 (((-111) $) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-3954 (($ |#1| $) 10)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 14)) (-2373 (($) 8)) (-1985 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1848 (((-552) $ $) NIL)) (-2978 (((-111) $) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) 17)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) NIL)) (-3415 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2665 (($ (-627 |#1|)) 12)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-125 |#1|) (-13 (-124 |#1|) (-10 -8 (-6 -4367) (-15 -2665 ($ (-627 |#1|))) (-15 -3954 ($ |#1| $)))) (-830)) (T -125)) +((-2665 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-125 *3)))) (-3954 (*1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-830))))) +(-13 (-124 |#1|) (-10 -8 (-6 -4367) (-15 -2665 ($ (-627 |#1|))) (-15 -3954 ($ |#1| $)))) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4288 ((|#1| $) 24)) (-4031 (((-111) $ (-754)) NIL)) (-2472 ((|#1| $ |#1|) 26 (|has| $ (-6 -4367)))) (-3433 (($ $ $) 30 (|has| $ (-6 -4367)))) (-2076 (($ $ $) 28 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4367))) (($ $ "left" $) NIL (|has| $ (-6 -4367))) (($ $ "right" $) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-2791 (($ $) 20)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) NIL)) (-3726 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3126 (($ $ |#1| $) 15)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-2776 (($ $) 19)) (-1823 (((-627 |#1|) $) NIL)) (-3810 (((-111) $) 21)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 18)) (-2373 (($) 11)) (-1985 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1848 (((-552) $ $) NIL)) (-2978 (((-111) $) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) NIL)) (-3415 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2277 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 10 (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-126 |#1|) (-13 (-124 |#1|) (-10 -8 (-15 -2277 ($ |#1|)) (-15 -2277 ($ $ |#1| $)))) (-1076)) (T -126)) +((-2277 (*1 *1 *2) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1076)))) (-2277 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1076))))) +(-13 (-124 |#1|) (-10 -8 (-15 -2277 ($ |#1|)) (-15 -2277 ($ $ |#1| $)))) +((-1465 (((-111) $ $) NIL (|has| (-128) (-1076)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) (-128) (-128)) $) NIL) (((-111) $) NIL (|has| (-128) (-830)))) (-2701 (($ (-1 (-111) (-128) (-128)) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| (-128) (-830))))) (-4298 (($ (-1 (-111) (-128) (-128)) $) NIL) (($ $) NIL (|has| (-128) (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 (((-128) $ (-552) (-128)) 17 (|has| $ (-6 -4367))) (((-128) $ (-1202 (-552)) (-128)) NIL (|has| $ (-6 -4367)))) (-2367 (((-754) $ (-754)) 7)) (-2536 (($ (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-128) (-1076))))) (-4342 (($ (-128) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-128) (-1076)))) (($ (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-128) (-1 (-128) (-128) (-128)) $ (-128) (-128)) NIL (-12 (|has| $ (-6 -4366)) (|has| (-128) (-1076)))) (((-128) (-1 (-128) (-128) (-128)) $ (-128)) NIL (|has| $ (-6 -4366))) (((-128) (-1 (-128) (-128) (-128)) $) NIL (|has| $ (-6 -4366)))) (-3473 (((-128) $ (-552) (-128)) 16 (|has| $ (-6 -4367)))) (-3413 (((-128) $ (-552)) 13)) (-2967 (((-552) (-1 (-111) (-128)) $) NIL) (((-552) (-128) $) NIL (|has| (-128) (-1076))) (((-552) (-128) $ (-552)) NIL (|has| (-128) (-1076)))) (-3215 (((-627 (-128)) $) NIL (|has| $ (-6 -4366)))) (-2655 (($ (-754) (-128)) 11)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) 18 (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| (-128) (-830)))) (-3759 (($ (-1 (-111) (-128) (-128)) $ $) NIL) (($ $ $) NIL (|has| (-128) (-830)))) (-3114 (((-627 (-128)) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-128) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-128) (-1076))))) (-2285 (((-552) $) 19 (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| (-128) (-830)))) (-3463 (($ (-1 (-128) (-128)) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-128) (-128)) $) NIL) (($ (-1 (-128) (-128) (-128)) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| (-128) (-1076)))) (-3252 (($ (-128) $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| (-128) (-1076)))) (-3340 (((-128) $) NIL (|has| (-552) (-830)))) (-1503 (((-3 (-128) "failed") (-1 (-111) (-128)) $) NIL)) (-1942 (($ $ (-128)) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-128)))) NIL (-12 (|has| (-128) (-303 (-128))) (|has| (-128) (-1076)))) (($ $ (-288 (-128))) NIL (-12 (|has| (-128) (-303 (-128))) (|has| (-128) (-1076)))) (($ $ (-128) (-128)) NIL (-12 (|has| (-128) (-303 (-128))) (|has| (-128) (-1076)))) (($ $ (-627 (-128)) (-627 (-128))) NIL (-12 (|has| (-128) (-303 (-128))) (|has| (-128) (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) (-128) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-128) (-1076))))) (-2083 (((-627 (-128)) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) 9)) (-1985 (((-128) $ (-552) (-128)) NIL) (((-128) $ (-552)) 15) (($ $ (-1202 (-552))) NIL)) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-1509 (((-754) (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4366))) (((-754) (-128) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-128) (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-128) (-600 (-528))))) (-1490 (($ (-627 (-128))) 29)) (-2668 (($ $ (-128)) NIL) (($ (-128) $) NIL) (($ $ $) 30) (($ (-627 $)) NIL)) (-1477 (((-1134) $) 27) (((-842) $) NIL (|has| (-128) (-599 (-842))))) (-2494 (((-754) $) 14)) (-4146 (($ (-754)) 8)) (-3299 (((-111) (-1 (-111) (-128)) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| (-128) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-128) (-830)))) (-2292 (((-111) $ $) 22 (|has| (-128) (-1076)))) (-2340 (((-111) $ $) NIL (|has| (-128) (-830)))) (-2316 (((-111) $ $) NIL (|has| (-128) (-830)))) (-1383 (((-754) $) 20))) +(((-127) (-13 (-19 (-128)) (-599 (-1134)) (-10 -8 (-15 -4146 ($ (-754))) (-15 -1383 ((-754) $)) (-15 -2494 ((-754) $)) (-15 -2367 ((-754) $ (-754)))))) (T -127)) +((-4146 (*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-127)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-127)))) (-2494 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-127)))) (-2367 (*1 *2 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-127))))) +(-13 (-19 (-128)) (-599 (-1134)) (-10 -8 (-15 -4146 ($ (-754))) (-15 -1383 ((-754) $)) (-15 -2494 ((-754) $)) (-15 -2367 ((-754) $ (-754))))) +((-1465 (((-111) $ $) NIL)) (-3887 (($) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) 9)) (-1477 (((-842) $) 19) (((-754) $) 11) (((-141) $) 16) (($ (-754)) 10) (($ (-141)) 14)) (-1838 (($ (-754)) 7)) (-2906 (($ $ $) 24)) (-2895 (($ $ $) 23)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 21)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 22))) +(((-128) (-13 (-830) (-599 (-754)) (-599 (-141)) (-10 -8 (-15 -1838 ($ (-754))) (-15 -1477 ($ (-754))) (-15 -1477 ($ (-141))) (-15 -2895 ($ $ $)) (-15 -2906 ($ $ $)) (-15 -3887 ($))))) (T -128)) +((-1838 (*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-128)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-128)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-141)) (-5 *1 (-128)))) (-2895 (*1 *1 *1 *1) (-5 *1 (-128))) (-2906 (*1 *1 *1 *1) (-5 *1 (-128))) (-3887 (*1 *1) (-5 *1 (-128)))) +(-13 (-830) (-599 (-754)) (-599 (-141)) (-10 -8 (-15 -1838 ($ (-754))) (-15 -1477 ($ (-754))) (-15 -1477 ($ (-141))) (-15 -2895 ($ $ $)) (-15 -2906 ($ $ $)) (-15 -3887 ($)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15))) +(((-129) (-137)) (T -129)) +((-4136 (*1 *1 *1 *1) (|partial| -4 *1 (-129)))) +(-13 (-23) (-10 -8 (-15 -4136 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-1465 (((-111) $ $) 7)) (-2944 (((-1240) $ (-754)) 19)) (-2967 (((-754) $) 20)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18))) +(((-130) (-137)) (T -130)) +((-2967 (*1 *2 *1) (-12 (-4 *1 (-130)) (-5 *2 (-754)))) (-2944 (*1 *2 *1 *3) (-12 (-4 *1 (-130)) (-5 *3 (-754)) (-5 *2 (-1240))))) +(-13 (-830) (-10 -8 (-15 -2967 ((-754) $)) (-15 -2944 ((-1240) $ (-754))))) +(((-101) . T) ((-599 (-842)) . T) ((-830) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 18) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3122 (((-627 (-1111)) $) 10)) (-2292 (((-111) $ $) NIL))) +(((-131) (-13 (-1059) (-10 -8 (-15 -3122 ((-627 (-1111)) $))))) (T -131)) +((-3122 (*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-131))))) +(-13 (-1059) (-10 -8 (-15 -3122 ((-627 (-1111)) $)))) +((-1465 (((-111) $ $) 34)) (-3024 (((-111) $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-754) "failed") $) 40)) (-1703 (((-754) $) 38)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) 27)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3836 (((-111)) 41)) (-4053 (((-111) (-111)) 43)) (-1932 (((-111) $) 24)) (-4240 (((-111) $) 37)) (-1477 (((-842) $) 22) (($ (-754)) 14)) (-1922 (($) 11 T CONST)) (-1933 (($) 12 T CONST)) (-2222 (($ (-754)) 15)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 25)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 26)) (-2396 (((-3 $ "failed") $ $) 30)) (-2384 (($ $ $) 28)) (** (($ $ (-754)) NIL) (($ $ (-900)) NIL) (($ $ $) 36)) (* (($ (-754) $) 33) (($ (-900) $) NIL) (($ $ $) 31))) +(((-132) (-13 (-830) (-23) (-709) (-1017 (-754)) (-10 -8 (-6 (-4368 "*")) (-15 -2396 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2222 ($ (-754))) (-15 -1932 ((-111) $)) (-15 -4240 ((-111) $)) (-15 -3836 ((-111))) (-15 -4053 ((-111) (-111)))))) (T -132)) +((-2396 (*1 *1 *1 *1) (|partial| -5 *1 (-132))) (** (*1 *1 *1 *1) (-5 *1 (-132))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-132)))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-132)))) (-4240 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-132)))) (-3836 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-132)))) (-4053 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-132))))) +(-13 (-830) (-23) (-709) (-1017 (-754)) (-10 -8 (-6 (-4368 "*")) (-15 -2396 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2222 ($ (-754))) (-15 -1932 ((-111) $)) (-15 -4240 ((-111) $)) (-15 -3836 ((-111))) (-15 -4053 ((-111) (-111))))) +((-3974 (((-134 |#1| |#2| |#4|) (-627 |#4|) (-134 |#1| |#2| |#3|)) 14)) (-3516 (((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)) 18))) +(((-133 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3974 ((-134 |#1| |#2| |#4|) (-627 |#4|) (-134 |#1| |#2| |#3|))) (-15 -3516 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)))) (-552) (-754) (-169) (-169)) (T -133)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-552)) (-14 *6 (-754)) (-4 *7 (-169)) (-4 *8 (-169)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-133 *5 *6 *7 *8)))) (-3974 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-552)) (-14 *6 (-754)) (-4 *7 (-169)) (-4 *8 (-169)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-133 *5 *6 *7 *8))))) +(-10 -7 (-15 -3974 ((-134 |#1| |#2| |#4|) (-627 |#4|) (-134 |#1| |#2| |#3|))) (-15 -3516 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)))) +((-1465 (((-111) $ $) NIL)) (-2107 (($ (-627 |#3|)) 40)) (-3595 (($ $) 99) (($ $ (-552) (-552)) 98)) (-3887 (($) 17)) (-4039 (((-3 |#3| "failed") $) 60)) (-1703 ((|#3| $) NIL)) (-2143 (($ $ (-627 (-552))) 100)) (-3965 (((-627 |#3|) $) 36)) (-4154 (((-754) $) 44)) (-2735 (($ $ $) 93)) (-1793 (($) 43)) (-1595 (((-1134) $) NIL)) (-3461 (($) 16)) (-1498 (((-1096) $) NIL)) (-1985 ((|#3| $) 46) ((|#3| $ (-552)) 47) ((|#3| $ (-552) (-552)) 48) ((|#3| $ (-552) (-552) (-552)) 49) ((|#3| $ (-552) (-552) (-552) (-552)) 50) ((|#3| $ (-627 (-552))) 52)) (-3567 (((-754) $) 45)) (-2728 (($ $ (-552) $ (-552)) 94) (($ $ (-552) (-552)) 96)) (-1477 (((-842) $) 67) (($ |#3|) 68) (($ (-235 |#2| |#3|)) 75) (($ (-1118 |#2| |#3|)) 78) (($ (-627 |#3|)) 53) (($ (-627 $)) 58)) (-1922 (($) 69 T CONST)) (-1933 (($) 70 T CONST)) (-2292 (((-111) $ $) 80)) (-2396 (($ $) 86) (($ $ $) 84)) (-2384 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-552)) 89) (($ (-552) $) 88) (($ $ $) 95))) +(((-134 |#1| |#2| |#3|) (-13 (-458 |#3| (-754)) (-463 (-552) (-754)) (-10 -8 (-15 -1477 ($ (-235 |#2| |#3|))) (-15 -1477 ($ (-1118 |#2| |#3|))) (-15 -1477 ($ (-627 |#3|))) (-15 -1477 ($ (-627 $))) (-15 -4154 ((-754) $)) (-15 -1985 (|#3| $)) (-15 -1985 (|#3| $ (-552))) (-15 -1985 (|#3| $ (-552) (-552))) (-15 -1985 (|#3| $ (-552) (-552) (-552))) (-15 -1985 (|#3| $ (-552) (-552) (-552) (-552))) (-15 -1985 (|#3| $ (-627 (-552)))) (-15 -2735 ($ $ $)) (-15 * ($ $ $)) (-15 -2728 ($ $ (-552) $ (-552))) (-15 -2728 ($ $ (-552) (-552))) (-15 -3595 ($ $)) (-15 -3595 ($ $ (-552) (-552))) (-15 -2143 ($ $ (-627 (-552)))) (-15 -3461 ($)) (-15 -1793 ($)) (-15 -3965 ((-627 |#3|) $)) (-15 -2107 ($ (-627 |#3|))) (-15 -3887 ($)))) (-552) (-754) (-169)) (T -134)) +((-2735 (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) (-4 *4 (-169)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-235 *4 *5)) (-14 *4 (-754)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1118 *4 *5)) (-14 *4 (-754)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 *5)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-754)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-754)) (-4 *5 (-169)))) (-4154 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 *2) (-4 *5 (-169)))) (-1985 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-552)) (-14 *4 (-754)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-754)))) (-1985 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-754)))) (-1985 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-552)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-754)))) (-1985 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-552)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-754)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (-627 (-552))) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 (-552)) (-14 *5 (-754)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) (-4 *4 (-169)))) (-2728 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-754)) (-4 *5 (-169)))) (-2728 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-754)) (-4 *5 (-169)))) (-3595 (*1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) (-4 *4 (-169)))) (-3595 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-754)) (-4 *5 (-169)))) (-2143 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-754)) (-4 *5 (-169)))) (-3461 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) (-4 *4 (-169)))) (-1793 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) (-4 *4 (-169)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-627 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-754)) (-4 *5 (-169)))) (-2107 (*1 *1 *2) (-12 (-5 *2 (-627 *5)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) (-14 *4 (-754)))) (-3887 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) (-4 *4 (-169))))) +(-13 (-458 |#3| (-754)) (-463 (-552) (-754)) (-10 -8 (-15 -1477 ($ (-235 |#2| |#3|))) (-15 -1477 ($ (-1118 |#2| |#3|))) (-15 -1477 ($ (-627 |#3|))) (-15 -1477 ($ (-627 $))) (-15 -4154 ((-754) $)) (-15 -1985 (|#3| $)) (-15 -1985 (|#3| $ (-552))) (-15 -1985 (|#3| $ (-552) (-552))) (-15 -1985 (|#3| $ (-552) (-552) (-552))) (-15 -1985 (|#3| $ (-552) (-552) (-552) (-552))) (-15 -1985 (|#3| $ (-627 (-552)))) (-15 -2735 ($ $ $)) (-15 * ($ $ $)) (-15 -2728 ($ $ (-552) $ (-552))) (-15 -2728 ($ $ (-552) (-552))) (-15 -3595 ($ $)) (-15 -3595 ($ $ (-552) (-552))) (-15 -2143 ($ $ (-627 (-552)))) (-15 -3461 ($)) (-15 -1793 ($)) (-15 -3965 ((-627 |#3|) $)) (-15 -2107 ($ (-627 |#3|))) (-15 -3887 ($)))) +((-1465 (((-111) $ $) NIL)) (-3089 (((-1111) $) 11)) (-3078 (((-1111) $) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 19) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) +(((-135) (-13 (-1059) (-10 -8 (-15 -3078 ((-1111) $)) (-15 -3089 ((-1111) $))))) (T -135)) +((-3078 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-135)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-135))))) +(-13 (-1059) (-10 -8 (-15 -3078 ((-1111) $)) (-15 -3089 ((-1111) $)))) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-3342 (((-1152) $) 10)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 19) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3122 (((-627 (-1111)) $) 12)) (-2292 (((-111) $ $) NIL))) +(((-136) (-13 (-1059) (-10 -8 (-15 -3342 ((-1152) $)) (-15 -3122 ((-627 (-1111)) $))))) (T -136)) +((-3342 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-136)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-136))))) +(-13 (-1059) (-10 -8 (-15 -3342 ((-1152) $)) (-15 -3122 ((-627 (-1111)) $)))) +((-1477 (((-842) $) 7))) +(((-137) (-599 (-842))) (T -137)) +NIL +(-599 (-842)) +((-1465 (((-111) $ $) NIL)) (-1349 (($) 15 T CONST)) (-3065 (($) NIL (|has| (-141) (-362)))) (-3416 (($ $ $) 17) (($ $ (-141)) NIL) (($ (-141) $) NIL)) (-3694 (($ $ $) NIL)) (-3632 (((-111) $ $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-3307 (((-754)) NIL (|has| (-141) (-362)))) (-1342 (($) NIL) (($ (-627 (-141))) NIL)) (-4289 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-2265 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366))) (($ (-141) $) 51 (|has| $ (-6 -4366)))) (-4342 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366))) (($ (-141) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-2091 (((-141) (-1 (-141) (-141) (-141)) $) NIL (|has| $ (-6 -4366))) (((-141) (-1 (-141) (-141) (-141)) $ (-141)) NIL (|has| $ (-6 -4366))) (((-141) (-1 (-141) (-141) (-141)) $ (-141) (-141)) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-1279 (($) NIL (|has| (-141) (-362)))) (-3215 (((-627 (-141)) $) 60 (|has| $ (-6 -4366)))) (-1854 (((-111) $ $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-1816 (((-141) $) NIL (|has| (-141) (-830)))) (-3114 (((-627 (-141)) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-141) $) 26 (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-4093 (((-141) $) NIL (|has| (-141) (-830)))) (-3463 (($ (-1 (-141) (-141)) $) 59 (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-141) (-141)) $) 55)) (-3769 (($) 16 T CONST)) (-2886 (((-900) $) NIL (|has| (-141) (-362)))) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-3383 (($ $ $) 29)) (-4165 (((-141) $) 52)) (-3954 (($ (-141) $) 50)) (-4153 (($ (-900)) NIL (|has| (-141) (-362)))) (-3987 (($) 14 T CONST)) (-1498 (((-1096) $) NIL)) (-1503 (((-3 (-141) "failed") (-1 (-111) (-141)) $) NIL)) (-4133 (((-141) $) 53)) (-3509 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-141)) (-627 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-141) (-141)) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-288 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-627 (-288 (-141)))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) 48)) (-2694 (($) 13 T CONST)) (-2613 (($ $ $) 31) (($ $ (-141)) NIL)) (-3028 (($ (-627 (-141))) NIL) (($) NIL)) (-1509 (((-754) (-141) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076)))) (((-754) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-1134) $) 36) (((-528) $) NIL (|has| (-141) (-600 (-528)))) (((-627 (-141)) $) 34)) (-1490 (($ (-627 (-141))) NIL)) (-1901 (($ $) 32 (|has| (-141) (-362)))) (-1477 (((-842) $) 46)) (-1434 (($ (-1134)) 12) (($ (-627 (-141))) 43)) (-3550 (((-754) $) NIL)) (-4243 (($) 49) (($ (-627 (-141))) NIL)) (-2577 (($ (-627 (-141))) NIL)) (-3299 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-3866 (($) 19 T CONST)) (-4320 (($) 18 T CONST)) (-2292 (((-111) $ $) 22)) (-1383 (((-754) $) 47 (|has| $ (-6 -4366))))) +(((-138) (-13 (-1076) (-600 (-1134)) (-419 (-141)) (-600 (-627 (-141))) (-10 -8 (-15 -1434 ($ (-1134))) (-15 -1434 ($ (-627 (-141)))) (-15 -2694 ($) -3488) (-15 -3987 ($) -3488) (-15 -1349 ($) -3488) (-15 -3769 ($) -3488) (-15 -4320 ($) -3488) (-15 -3866 ($) -3488)))) (T -138)) +((-1434 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-138)))) (-1434 (*1 *1 *2) (-12 (-5 *2 (-627 (-141))) (-5 *1 (-138)))) (-2694 (*1 *1) (-5 *1 (-138))) (-3987 (*1 *1) (-5 *1 (-138))) (-1349 (*1 *1) (-5 *1 (-138))) (-3769 (*1 *1) (-5 *1 (-138))) (-4320 (*1 *1) (-5 *1 (-138))) (-3866 (*1 *1) (-5 *1 (-138)))) +(-13 (-1076) (-600 (-1134)) (-419 (-141)) (-600 (-627 (-141))) (-10 -8 (-15 -1434 ($ (-1134))) (-15 -1434 ($ (-627 (-141)))) (-15 -2694 ($) -3488) (-15 -3987 ($) -3488) (-15 -1349 ($) -3488) (-15 -3769 ($) -3488) (-15 -4320 ($) -3488) (-15 -3866 ($) -3488))) +((-1971 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3623 ((|#1| |#3|) 9)) (-2155 ((|#3| |#3|) 15))) +(((-139 |#1| |#2| |#3|) (-10 -7 (-15 -3623 (|#1| |#3|)) (-15 -2155 (|#3| |#3|)) (-15 -1971 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-544) (-971 |#1|) (-367 |#2|)) (T -139)) +((-1971 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-971 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-367 *5)))) (-2155 (*1 *2 *2) (-12 (-4 *3 (-544)) (-4 *4 (-971 *3)) (-5 *1 (-139 *3 *4 *2)) (-4 *2 (-367 *4)))) (-3623 (*1 *2 *3) (-12 (-4 *4 (-971 *2)) (-4 *2 (-544)) (-5 *1 (-139 *2 *4 *3)) (-4 *3 (-367 *4))))) +(-10 -7 (-15 -3623 (|#1| |#3|)) (-15 -2155 (|#3| |#3|)) (-15 -1971 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-1868 (($ $ $) 8)) (-2610 (($ $) 7)) (-3697 (($ $ $) 6))) +(((-140) (-137)) (T -140)) +((-1868 (*1 *1 *1 *1) (-4 *1 (-140))) (-2610 (*1 *1 *1) (-4 *1 (-140))) (-3697 (*1 *1 *1 *1) (-4 *1 (-140)))) +(-13 (-10 -8 (-15 -3697 ($ $ $)) (-15 -2610 ($ $)) (-15 -1868 ($ $ $)))) +((-1465 (((-111) $ $) NIL)) (-3388 (((-111) $) 30)) (-1349 (($ $) 43)) (-1345 (($) 17)) (-3307 (((-754)) 10)) (-1279 (($) 16)) (-2049 (($) 18)) (-2053 (((-754) $) 14)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-2385 (((-111) $) 32)) (-3769 (($ $) 44)) (-2886 (((-900) $) 15)) (-1595 (((-1134) $) 38)) (-4153 (($ (-900)) 13)) (-3663 (((-111) $) 28)) (-1498 (((-1096) $) NIL)) (-2231 (($) 19)) (-2779 (((-111) $) 26)) (-1477 (((-842) $) 21)) (-2046 (($ (-754)) 11) (($ (-1134)) 42)) (-3309 (((-111) $) 36)) (-1926 (((-111) $) 34)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 7)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 8))) +(((-141) (-13 (-824) (-10 -8 (-15 -2053 ((-754) $)) (-15 -2046 ($ (-754))) (-15 -2046 ($ (-1134))) (-15 -1345 ($)) (-15 -2049 ($)) (-15 -2231 ($)) (-15 -1349 ($ $)) (-15 -3769 ($ $)) (-15 -2779 ((-111) $)) (-15 -3663 ((-111) $)) (-15 -1926 ((-111) $)) (-15 -3388 ((-111) $)) (-15 -2385 ((-111) $)) (-15 -3309 ((-111) $))))) (T -141)) +((-2053 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-141)))) (-2046 (*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-141)))) (-2046 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-141)))) (-1345 (*1 *1) (-5 *1 (-141))) (-2049 (*1 *1) (-5 *1 (-141))) (-2231 (*1 *1) (-5 *1 (-141))) (-1349 (*1 *1 *1) (-5 *1 (-141))) (-3769 (*1 *1 *1) (-5 *1 (-141))) (-2779 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141)))) (-3663 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141)))) (-3388 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141)))) (-2385 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) +(-13 (-824) (-10 -8 (-15 -2053 ((-754) $)) (-15 -2046 ($ (-754))) (-15 -2046 ($ (-1134))) (-15 -1345 ($)) (-15 -2049 ($)) (-15 -2231 ($)) (-15 -1349 ($ $)) (-15 -3769 ($ $)) (-15 -2779 ((-111) $)) (-15 -3663 ((-111) $)) (-15 -1926 ((-111) $)) (-15 -3388 ((-111) $)) (-15 -2385 ((-111) $)) (-15 -3309 ((-111) $)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27)) (-3050 (((-3 $ "failed") $) 33)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-142) (-137)) (T -142)) +((-3050 (*1 *1 *1) (|partial| -4 *1 (-142)))) +(-13 (-1028) (-10 -8 (-15 -3050 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 $) . T) ((-709) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-2410 ((|#1| (-671 |#1|) |#1|) 19))) +(((-143 |#1|) (-10 -7 (-15 -2410 (|#1| (-671 |#1|) |#1|))) (-169)) (T -143)) +((-2410 (*1 *2 *3 *2) (-12 (-5 *3 (-671 *2)) (-4 *2 (-169)) (-5 *1 (-143 *2))))) +(-10 -7 (-15 -2410 (|#1| (-671 |#1|) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-144) (-137)) (T -144)) +NIL +(-13 (-1028)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 $) . T) ((-709) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-1599 (((-2 (|:| -4067 (-754)) (|:| -3069 (-401 |#2|)) (|:| |radicand| |#2|)) (-401 |#2|) (-754)) 70)) (-3201 (((-3 (-2 (|:| |radicand| (-401 |#2|)) (|:| |deg| (-754))) "failed") |#3|) 52)) (-3501 (((-2 (|:| -3069 (-401 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-3054 ((|#1| |#3| |#3|) 40)) (-3321 ((|#3| |#3| (-401 |#2|) (-401 |#2|)) 19)) (-2882 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| |deg| (-754))) |#3| |#3|) 49))) +(((-145 |#1| |#2| |#3|) (-10 -7 (-15 -3501 ((-2 (|:| -3069 (-401 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3201 ((-3 (-2 (|:| |radicand| (-401 |#2|)) (|:| |deg| (-754))) "failed") |#3|)) (-15 -1599 ((-2 (|:| -4067 (-754)) (|:| -3069 (-401 |#2|)) (|:| |radicand| |#2|)) (-401 |#2|) (-754))) (-15 -3054 (|#1| |#3| |#3|)) (-15 -3321 (|#3| |#3| (-401 |#2|) (-401 |#2|))) (-15 -2882 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| |deg| (-754))) |#3| |#3|))) (-1193) (-1211 |#1|) (-1211 (-401 |#2|))) (T -145)) +((-2882 (*1 *2 *3 *3) (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-401 *5)) (|:| |c2| (-401 *5)) (|:| |deg| (-754)))) (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1211 (-401 *5))))) (-3321 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-401 *5)) (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-5 *1 (-145 *4 *5 *2)) (-4 *2 (-1211 *3)))) (-3054 (*1 *2 *3 *3) (-12 (-4 *4 (-1211 *2)) (-4 *2 (-1193)) (-5 *1 (-145 *2 *4 *3)) (-4 *3 (-1211 (-401 *4))))) (-1599 (*1 *2 *3 *4) (-12 (-5 *3 (-401 *6)) (-4 *5 (-1193)) (-4 *6 (-1211 *5)) (-5 *2 (-2 (|:| -4067 (-754)) (|:| -3069 *3) (|:| |radicand| *6))) (-5 *1 (-145 *5 *6 *7)) (-5 *4 (-754)) (-4 *7 (-1211 *3)))) (-3201 (*1 *2 *3) (|partial| -12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| |radicand| (-401 *5)) (|:| |deg| (-754)))) (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1211 (-401 *5))))) (-3501 (*1 *2 *3) (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| -3069 (-401 *5)) (|:| |poly| *3))) (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1211 (-401 *5)))))) +(-10 -7 (-15 -3501 ((-2 (|:| -3069 (-401 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3201 ((-3 (-2 (|:| |radicand| (-401 |#2|)) (|:| |deg| (-754))) "failed") |#3|)) (-15 -1599 ((-2 (|:| -4067 (-754)) (|:| -3069 (-401 |#2|)) (|:| |radicand| |#2|)) (-401 |#2|) (-754))) (-15 -3054 (|#1| |#3| |#3|)) (-15 -3321 (|#3| |#3| (-401 |#2|) (-401 |#2|))) (-15 -2882 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| |deg| (-754))) |#3| |#3|))) +((-1964 (((-3 (-627 (-1148 |#2|)) "failed") (-627 (-1148 |#2|)) (-1148 |#2|)) 32))) +(((-146 |#1| |#2|) (-10 -7 (-15 -1964 ((-3 (-627 (-1148 |#2|)) "failed") (-627 (-1148 |#2|)) (-1148 |#2|)))) (-537) (-163 |#1|)) (T -146)) +((-1964 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-627 (-1148 *5))) (-5 *3 (-1148 *5)) (-4 *5 (-163 *4)) (-4 *4 (-537)) (-5 *1 (-146 *4 *5))))) +(-10 -7 (-15 -1964 ((-3 (-627 (-1148 |#2|)) "failed") (-627 (-1148 |#2|)) (-1148 |#2|)))) +((-2536 (($ (-1 (-111) |#2|) $) 29)) (-3370 (($ $) 36)) (-4342 (($ (-1 (-111) |#2|) $) 27) (($ |#2| $) 32)) (-2091 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1503 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 19)) (-3509 (((-111) (-1 (-111) |#2|) $) 16)) (-1509 (((-754) (-1 (-111) |#2|) $) 14) (((-754) |#2| $) NIL)) (-3299 (((-111) (-1 (-111) |#2|) $) 15)) (-1383 (((-754) $) 11))) +(((-147 |#1| |#2|) (-10 -8 (-15 -3370 (|#1| |#1|)) (-15 -4342 (|#1| |#2| |#1|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2536 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -4342 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1503 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -1509 ((-754) |#2| |#1|)) (-15 -1509 ((-754) (-1 (-111) |#2|) |#1|)) (-15 -3509 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -1383 ((-754) |#1|))) (-148 |#2|) (-1189)) (T -147)) +NIL +(-10 -8 (-15 -3370 (|#1| |#1|)) (-15 -4342 (|#1| |#2| |#1|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2536 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -4342 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1503 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -1509 ((-754) |#2| |#1|)) (-15 -1509 ((-754) (-1 (-111) |#2|) |#1|)) (-15 -3509 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -1383 ((-754) |#1|))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) 8)) (-2536 (($ (-1 (-111) |#1|) $) 44 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-3370 (($ $) 41 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4366))) (($ |#1| $) 42 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 48)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 40 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 49)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-148 |#1|) (-137) (-1189)) (T -148)) +((-1490 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-4 *1 (-148 *3)))) (-1503 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-111) *2)) (-4 *1 (-148 *2)) (-4 *2 (-1189)))) (-2091 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4366)) (-4 *1 (-148 *2)) (-4 *2 (-1189)))) (-2091 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4366)) (-4 *1 (-148 *2)) (-4 *2 (-1189)))) (-4342 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4366)) (-4 *1 (-148 *3)) (-4 *3 (-1189)))) (-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4366)) (-4 *1 (-148 *3)) (-4 *3 (-1189)))) (-2091 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1076)) (|has| *1 (-6 -4366)) (-4 *1 (-148 *2)) (-4 *2 (-1189)))) (-4342 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4366)) (-4 *1 (-148 *2)) (-4 *2 (-1189)) (-4 *2 (-1076)))) (-3370 (*1 *1 *1) (-12 (|has| *1 (-6 -4366)) (-4 *1 (-148 *2)) (-4 *2 (-1189)) (-4 *2 (-1076))))) +(-13 (-482 |t#1|) (-10 -8 (-15 -1490 ($ (-627 |t#1|))) (-15 -1503 ((-3 |t#1| "failed") (-1 (-111) |t#1|) $)) (IF (|has| $ (-6 -4366)) (PROGN (-15 -2091 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2091 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -4342 ($ (-1 (-111) |t#1|) $)) (-15 -2536 ($ (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1076)) (PROGN (-15 -2091 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -4342 ($ |t#1| $)) (-15 -3370 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) 86)) (-2624 (((-111) $) NIL)) (-1832 (($ |#2| (-627 (-900))) 56)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2352 (($ (-900)) 47)) (-2405 (((-132)) 23)) (-1477 (((-842) $) 69) (($ (-552)) 45) (($ |#2|) 46)) (-1889 ((|#2| $ (-627 (-900))) 59)) (-3995 (((-754)) 20)) (-1922 (($) 40 T CONST)) (-1933 (($) 43 T CONST)) (-2292 (((-111) $ $) 26)) (-2407 (($ $ |#2|) NIL)) (-2396 (($ $) 34) (($ $ $) 32)) (-2384 (($ $ $) 30)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) +(((-149 |#1| |#2| |#3|) (-13 (-1028) (-38 |#2|) (-1242 |#2|) (-10 -8 (-15 -2352 ($ (-900))) (-15 -1832 ($ |#2| (-627 (-900)))) (-15 -1889 (|#2| $ (-627 (-900)))) (-15 -2040 ((-3 $ "failed") $)))) (-900) (-357) (-972 |#1| |#2|)) (T -149)) +((-2040 (*1 *1 *1) (|partial| -12 (-5 *1 (-149 *2 *3 *4)) (-14 *2 (-900)) (-4 *3 (-357)) (-14 *4 (-972 *2 *3)))) (-2352 (*1 *1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-149 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-357)) (-14 *5 (-972 *3 *4)))) (-1832 (*1 *1 *2 *3) (-12 (-5 *3 (-627 (-900))) (-5 *1 (-149 *4 *2 *5)) (-14 *4 (-900)) (-4 *2 (-357)) (-14 *5 (-972 *4 *2)))) (-1889 (*1 *2 *1 *3) (-12 (-5 *3 (-627 (-900))) (-4 *2 (-357)) (-5 *1 (-149 *4 *2 *5)) (-14 *4 (-900)) (-14 *5 (-972 *4 *2))))) +(-13 (-1028) (-38 |#2|) (-1242 |#2|) (-10 -8 (-15 -2352 ($ (-900))) (-15 -1832 ($ |#2| (-627 (-900)))) (-15 -1889 (|#2| $ (-627 (-900)))) (-15 -2040 ((-3 $ "failed") $)))) +((-4200 (((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-627 (-627 (-922 (-220)))) (-220) (-220) (-220) (-220)) 38)) (-3207 (((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906) (-401 (-552)) (-401 (-552))) 63) (((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906)) 64)) (-3540 (((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-627 (-627 (-922 (-220))))) 67) (((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-627 (-922 (-220)))) 66) (((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906) (-401 (-552)) (-401 (-552))) 58) (((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906)) 59))) +(((-150) (-10 -7 (-15 -3540 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906))) (-15 -3540 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906) (-401 (-552)) (-401 (-552)))) (-15 -3207 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906))) (-15 -3207 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906) (-401 (-552)) (-401 (-552)))) (-15 -4200 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-627 (-627 (-922 (-220)))) (-220) (-220) (-220) (-220))) (-15 -3540 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-627 (-922 (-220))))) (-15 -3540 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-627 (-627 (-922 (-220)))))))) (T -150)) +((-3540 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) (-5 *1 (-150)) (-5 *3 (-627 (-627 (-922 (-220))))))) (-3540 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) (-5 *1 (-150)) (-5 *3 (-627 (-922 (-220)))))) (-4200 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-220)) (-5 *2 (-2 (|:| |brans| (-627 (-627 (-922 *4)))) (|:| |xValues| (-1070 *4)) (|:| |yValues| (-1070 *4)))) (-5 *1 (-150)) (-5 *3 (-627 (-627 (-922 *4)))))) (-3207 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-906)) (-5 *4 (-401 (-552))) (-5 *2 (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) (-5 *1 (-150)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) (-5 *1 (-150)))) (-3540 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-906)) (-5 *4 (-401 (-552))) (-5 *2 (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) (-5 *1 (-150)))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-906)) (-5 *2 (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) (-5 *1 (-150))))) +(-10 -7 (-15 -3540 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906))) (-15 -3540 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906) (-401 (-552)) (-401 (-552)))) (-15 -3207 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906))) (-15 -3207 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-906) (-401 (-552)) (-401 (-552)))) (-15 -4200 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-627 (-627 (-922 (-220)))) (-220) (-220) (-220) (-220))) (-15 -3540 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-627 (-922 (-220))))) (-15 -3540 ((-2 (|:| |brans| (-627 (-627 (-922 (-220))))) (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220)))) (-627 (-627 (-922 (-220))))))) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1280 (((-627 (-1111)) $) 15)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 24) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3122 (((-1111) $) 9)) (-2292 (((-111) $ $) NIL))) +(((-151) (-13 (-1059) (-10 -8 (-15 -1280 ((-627 (-1111)) $)) (-15 -3122 ((-1111) $))))) (T -151)) +((-1280 (*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-151)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-151))))) +(-13 (-1059) (-10 -8 (-15 -1280 ((-627 (-1111)) $)) (-15 -3122 ((-1111) $)))) +((-1806 (((-627 (-166 |#2|)) |#1| |#2|) 45))) +(((-152 |#1| |#2|) (-10 -7 (-15 -1806 ((-627 (-166 |#2|)) |#1| |#2|))) (-1211 (-166 (-552))) (-13 (-357) (-828))) (T -152)) +((-1806 (*1 *2 *3 *4) (-12 (-5 *2 (-627 (-166 *4))) (-5 *1 (-152 *3 *4)) (-4 *3 (-1211 (-166 (-552)))) (-4 *4 (-13 (-357) (-828)))))) +(-10 -7 (-15 -1806 ((-627 (-166 |#2|)) |#1| |#2|))) +((-1465 (((-111) $ $) NIL)) (-3089 (((-1188) $) 12)) (-3078 (((-1111) $) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 21) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) +(((-153) (-13 (-1059) (-10 -8 (-15 -3078 ((-1111) $)) (-15 -3089 ((-1188) $))))) (T -153)) +((-3078 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-153)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-153))))) +(-13 (-1059) (-10 -8 (-15 -3078 ((-1111) $)) (-15 -3089 ((-1188) $)))) +((-1465 (((-111) $ $) NIL)) (-4309 (($) 15)) (-3295 (($) 14)) (-1563 (((-900)) 22)) (-1595 (((-1134) $) NIL)) (-3808 (((-552) $) 19)) (-1498 (((-1096) $) NIL)) (-3534 (($) 16)) (-1552 (($ (-552)) 23)) (-1477 (((-842) $) 29)) (-1775 (($) 17)) (-2292 (((-111) $ $) 13)) (-2384 (($ $ $) 11)) (* (($ (-900) $) 21) (($ (-220) $) 8))) +(((-154) (-13 (-25) (-10 -8 (-15 * ($ (-900) $)) (-15 * ($ (-220) $)) (-15 -2384 ($ $ $)) (-15 -3295 ($)) (-15 -4309 ($)) (-15 -3534 ($)) (-15 -1775 ($)) (-15 -3808 ((-552) $)) (-15 -1563 ((-900))) (-15 -1552 ($ (-552)))))) (T -154)) +((-2384 (*1 *1 *1 *1) (-5 *1 (-154))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-900)) (-5 *1 (-154)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-154)))) (-3295 (*1 *1) (-5 *1 (-154))) (-4309 (*1 *1) (-5 *1 (-154))) (-3534 (*1 *1) (-5 *1 (-154))) (-1775 (*1 *1) (-5 *1 (-154))) (-3808 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-154)))) (-1563 (*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-154)))) (-1552 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-154))))) +(-13 (-25) (-10 -8 (-15 * ($ (-900) $)) (-15 * ($ (-220) $)) (-15 -2384 ($ $ $)) (-15 -3295 ($)) (-15 -4309 ($)) (-15 -3534 ($)) (-15 -1775 ($)) (-15 -3808 ((-552) $)) (-15 -1563 ((-900))) (-15 -1552 ($ (-552))))) +((-3523 ((|#2| |#2| (-1068 |#2|)) 88) ((|#2| |#2| (-1152)) 68)) (-2735 ((|#2| |#2| (-1068 |#2|)) 87) ((|#2| |#2| (-1152)) 67)) (-1868 ((|#2| |#2| |#2|) 27)) (-4148 (((-113) (-113)) 99)) (-4038 ((|#2| (-627 |#2|)) 117)) (-2521 ((|#2| (-627 |#2|)) 135)) (-2984 ((|#2| (-627 |#2|)) 125)) (-1724 ((|#2| |#2|) 123)) (-2135 ((|#2| (-627 |#2|)) 111)) (-3692 ((|#2| (-627 |#2|)) 112)) (-1442 ((|#2| (-627 |#2|)) 133)) (-3434 ((|#2| |#2| (-1152)) 56) ((|#2| |#2|) 55)) (-2610 ((|#2| |#2|) 23)) (-3697 ((|#2| |#2| |#2|) 26)) (-3749 (((-111) (-113)) 49)) (** ((|#2| |#2| |#2|) 41))) +(((-155 |#1| |#2|) (-10 -7 (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3697 (|#2| |#2| |#2|)) (-15 -1868 (|#2| |#2| |#2|)) (-15 -2610 (|#2| |#2|)) (-15 -3434 (|#2| |#2|)) (-15 -3434 (|#2| |#2| (-1152))) (-15 -3523 (|#2| |#2| (-1152))) (-15 -3523 (|#2| |#2| (-1068 |#2|))) (-15 -2735 (|#2| |#2| (-1152))) (-15 -2735 (|#2| |#2| (-1068 |#2|))) (-15 -1724 (|#2| |#2|)) (-15 -1442 (|#2| (-627 |#2|))) (-15 -2984 (|#2| (-627 |#2|))) (-15 -2521 (|#2| (-627 |#2|))) (-15 -2135 (|#2| (-627 |#2|))) (-15 -3692 (|#2| (-627 |#2|))) (-15 -4038 (|#2| (-627 |#2|)))) (-13 (-830) (-544)) (-424 |#1|)) (T -155)) +((-4038 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-830) (-544))))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-830) (-544))))) (-2135 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-830) (-544))))) (-2521 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-830) (-544))))) (-2984 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-830) (-544))))) (-1442 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) (-4 *4 (-13 (-830) (-544))))) (-1724 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (-2735 (*1 *2 *2 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-155 *4 *2)))) (-2735 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-155 *4 *2)) (-4 *2 (-424 *4)))) (-3523 (*1 *2 *2 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-155 *4 *2)))) (-3523 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-155 *4 *2)) (-4 *2 (-424 *4)))) (-3434 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-155 *4 *2)) (-4 *2 (-424 *4)))) (-3434 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (-2610 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (-1868 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (-3697 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) (-4 *2 (-424 *3)))) (-4148 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *4)) (-4 *4 (-424 *3)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) (-5 *1 (-155 *4 *5)) (-4 *5 (-424 *4))))) +(-10 -7 (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3697 (|#2| |#2| |#2|)) (-15 -1868 (|#2| |#2| |#2|)) (-15 -2610 (|#2| |#2|)) (-15 -3434 (|#2| |#2|)) (-15 -3434 (|#2| |#2| (-1152))) (-15 -3523 (|#2| |#2| (-1152))) (-15 -3523 (|#2| |#2| (-1068 |#2|))) (-15 -2735 (|#2| |#2| (-1152))) (-15 -2735 (|#2| |#2| (-1068 |#2|))) (-15 -1724 (|#2| |#2|)) (-15 -1442 (|#2| (-627 |#2|))) (-15 -2984 (|#2| (-627 |#2|))) (-15 -2521 (|#2| (-627 |#2|))) (-15 -2135 (|#2| (-627 |#2|))) (-15 -3692 (|#2| (-627 |#2|))) (-15 -4038 (|#2| (-627 |#2|)))) +((-3042 ((|#1| |#1| |#1|) 53)) (-1537 ((|#1| |#1| |#1|) 50)) (-1868 ((|#1| |#1| |#1|) 44)) (-1424 ((|#1| |#1|) 35)) (-2188 ((|#1| |#1| (-627 |#1|)) 43)) (-2610 ((|#1| |#1|) 37)) (-3697 ((|#1| |#1| |#1|) 40))) +(((-156 |#1|) (-10 -7 (-15 -3697 (|#1| |#1| |#1|)) (-15 -2610 (|#1| |#1|)) (-15 -2188 (|#1| |#1| (-627 |#1|))) (-15 -1424 (|#1| |#1|)) (-15 -1868 (|#1| |#1| |#1|)) (-15 -1537 (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1| |#1|))) (-537)) (T -156)) +((-3042 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537)))) (-1537 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537)))) (-1868 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537)))) (-1424 (*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537)))) (-2188 (*1 *2 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-537)) (-5 *1 (-156 *2)))) (-2610 (*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537)))) (-3697 (*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537))))) +(-10 -7 (-15 -3697 (|#1| |#1| |#1|)) (-15 -2610 (|#1| |#1|)) (-15 -2188 (|#1| |#1| (-627 |#1|))) (-15 -1424 (|#1| |#1|)) (-15 -1868 (|#1| |#1| |#1|)) (-15 -1537 (|#1| |#1| |#1|)) (-15 -3042 (|#1| |#1| |#1|))) +((-3523 (($ $ (-1152)) 12) (($ $ (-1068 $)) 11)) (-2735 (($ $ (-1152)) 10) (($ $ (-1068 $)) 9)) (-1868 (($ $ $) 8)) (-3434 (($ $) 14) (($ $ (-1152)) 13)) (-2610 (($ $) 7)) (-3697 (($ $ $) 6))) +(((-157) (-137)) (T -157)) +((-3434 (*1 *1 *1) (-4 *1 (-157))) (-3434 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1152)))) (-3523 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1152)))) (-3523 (*1 *1 *1 *2) (-12 (-5 *2 (-1068 *1)) (-4 *1 (-157)))) (-2735 (*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1152)))) (-2735 (*1 *1 *1 *2) (-12 (-5 *2 (-1068 *1)) (-4 *1 (-157))))) +(-13 (-140) (-10 -8 (-15 -3434 ($ $)) (-15 -3434 ($ $ (-1152))) (-15 -3523 ($ $ (-1152))) (-15 -3523 ($ $ (-1068 $))) (-15 -2735 ($ $ (-1152))) (-15 -2735 ($ $ (-1068 $))))) +(((-140) . T)) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 17) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3122 (((-627 (-1111)) $) 9)) (-2292 (((-111) $ $) NIL))) +(((-158) (-13 (-1059) (-10 -8 (-15 -3122 ((-627 (-1111)) $))))) (T -158)) +((-3122 (*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-158))))) +(-13 (-1059) (-10 -8 (-15 -3122 ((-627 (-1111)) $)))) +((-1465 (((-111) $ $) NIL)) (-2184 (($ (-552)) 13) (($ $ $) 14)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 17)) (-2292 (((-111) $ $) 9))) +(((-159) (-13 (-1076) (-10 -8 (-15 -2184 ($ (-552))) (-15 -2184 ($ $ $))))) (T -159)) +((-2184 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-159)))) (-2184 (*1 *1 *1 *1) (-5 *1 (-159)))) +(-13 (-1076) (-10 -8 (-15 -2184 ($ (-552))) (-15 -2184 ($ $ $)))) +((-4148 (((-113) (-1152)) 97))) +(((-160) (-10 -7 (-15 -4148 ((-113) (-1152))))) (T -160)) +((-4148 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-113)) (-5 *1 (-160))))) +(-10 -7 (-15 -4148 ((-113) (-1152)))) +((-2927 ((|#3| |#3|) 19))) +(((-161 |#1| |#2| |#3|) (-10 -7 (-15 -2927 (|#3| |#3|))) (-1028) (-1211 |#1|) (-1211 |#2|)) (T -161)) +((-2927 (*1 *2 *2) (-12 (-4 *3 (-1028)) (-4 *4 (-1211 *3)) (-5 *1 (-161 *3 *4 *2)) (-4 *2 (-1211 *4))))) +(-10 -7 (-15 -2927 (|#3| |#3|))) +((-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 217)) (-3385 ((|#2| $) 96)) (-1607 (($ $) 247)) (-1467 (($ $) 241)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 40)) (-1584 (($ $) 245)) (-1445 (($ $) 239)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-1703 (((-552) $) NIL) (((-401 (-552)) $) NIL) ((|#2| $) 139)) (-2813 (($ $ $) 222)) (-1800 (((-671 (-552)) (-671 $)) NIL) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) 155) (((-671 |#2|) (-671 $)) 149)) (-2091 (($ (-1148 |#2|)) 119) (((-3 $ "failed") (-401 (-1148 |#2|))) NIL)) (-2040 (((-3 $ "failed") $) 209)) (-2859 (((-3 (-401 (-552)) "failed") $) 199)) (-4229 (((-111) $) 194)) (-2411 (((-401 (-552)) $) 197)) (-4154 (((-900)) 89)) (-2789 (($ $ $) 224)) (-3890 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-2951 (($) 236)) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 186) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 191)) (-2349 ((|#2| $) 94)) (-4205 (((-1148 |#2|) $) 121)) (-3516 (($ (-1 |#2| |#2|) $) 102)) (-4135 (($ $) 238)) (-2079 (((-1148 |#2|) $) 120)) (-1951 (($ $) 202)) (-2547 (($) 97)) (-3676 (((-412 (-1148 $)) (-1148 $)) 88)) (-3644 (((-412 (-1148 $)) (-1148 $)) 57)) (-2761 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-3154 (($ $) 237)) (-2718 (((-754) $) 219)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 229)) (-1637 ((|#2| (-1235 $)) NIL) ((|#2|) 91)) (-2942 (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152)) NIL) (($ $ (-754)) NIL) (($ $) NIL)) (-1376 (((-1148 |#2|)) 114)) (-1596 (($ $) 246)) (-1456 (($ $) 240)) (-3133 (((-1235 |#2|) $ (-1235 $)) 128) (((-671 |#2|) (-1235 $) (-1235 $)) NIL) (((-1235 |#2|) $) 110) (((-671 |#2|) (-1235 $)) NIL)) (-3562 (((-1235 |#2|) $) NIL) (($ (-1235 |#2|)) NIL) (((-1148 |#2|) $) NIL) (($ (-1148 |#2|)) NIL) (((-871 (-552)) $) 177) (((-871 (-373)) $) 181) (((-166 (-373)) $) 167) (((-166 (-220)) $) 162) (((-528) $) 173)) (-2616 (($ $) 98)) (-1477 (((-842) $) 138) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-401 (-552))) NIL) (($ $) NIL)) (-2410 (((-1148 |#2|) $) 23)) (-3995 (((-754)) 100)) (-1673 (($ $) 250)) (-1534 (($ $) 244)) (-1652 (($ $) 248)) (-1513 (($ $) 242)) (-1731 ((|#2| $) 233)) (-1661 (($ $) 249)) (-1524 (($ $) 243)) (-3329 (($ $) 157)) (-2292 (((-111) $ $) 104)) (-2316 (((-111) $ $) 193)) (-2396 (($ $) 106) (($ $ $) NIL)) (-2384 (($ $ $) 105)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-401 (-552))) 267) (($ $ $) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-401 (-552)) $) NIL) (($ $ (-401 (-552))) NIL))) +(((-162 |#1| |#2|) (-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -1477 (|#1| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1887 ((-2 (|:| -2717 |#1|) (|:| -4353 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2718 ((-754) |#1|)) (-15 -3963 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -2789 (|#1| |#1| |#1|)) (-15 -2813 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -2316 ((-111) |#1| |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -3562 ((-166 (-220)) |#1|)) (-15 -3562 ((-166 (-373)) |#1|)) (-15 -1467 (|#1| |#1|)) (-15 -1445 (|#1| |#1|)) (-15 -1456 (|#1| |#1|)) (-15 -1524 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -1596 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1607 (|#1| |#1|)) (-15 -1661 (|#1| |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -1673 (|#1| |#1|)) (-15 -4135 (|#1| |#1|)) (-15 -3154 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2951 (|#1|)) (-15 ** (|#1| |#1| (-401 (-552)))) (-15 -3644 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -3676 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -1964 ((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|))) (-15 -2859 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2411 ((-401 (-552)) |#1|)) (-15 -4229 ((-111) |#1|)) (-15 -3890 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1731 (|#2| |#1|)) (-15 -3329 (|#1| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2616 (|#1| |#1|)) (-15 -2547 (|#1|)) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -4208 ((-868 (-373) |#1|) |#1| (-871 (-373)) (-868 (-373) |#1|))) (-15 -4208 ((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|))) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2091 ((-3 |#1| "failed") (-401 (-1148 |#2|)))) (-15 -2079 ((-1148 |#2|) |#1|)) (-15 -3562 (|#1| (-1148 |#2|))) (-15 -2091 (|#1| (-1148 |#2|))) (-15 -1376 ((-1148 |#2|))) (-15 -1800 ((-671 |#2|) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -3562 ((-1148 |#2|) |#1|)) (-15 -1637 (|#2|)) (-15 -3562 (|#1| (-1235 |#2|))) (-15 -3562 ((-1235 |#2|) |#1|)) (-15 -3133 ((-671 |#2|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1|)) (-15 -4205 ((-1148 |#2|) |#1|)) (-15 -2410 ((-1148 |#2|) |#1|)) (-15 -1637 (|#2| (-1235 |#1|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1| (-1235 |#1|))) (-15 -2349 (|#2| |#1|)) (-15 -3385 (|#2| |#1|)) (-15 -4154 ((-900))) (-15 -1477 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 -3995 ((-754))) (-15 ** (|#1| |#1| (-754))) (-15 -2040 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-900))) (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|)) (-15 -2384 (|#1| |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) (-163 |#2|) (-169)) (T -162)) +((-3995 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-754)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4)))) (-4154 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-900)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4)))) (-1637 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-162 *3 *2)) (-4 *3 (-163 *2)))) (-1376 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1148 *4)) (-5 *1 (-162 *3 *4)) (-4 *3 (-163 *4))))) +(-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -1477 (|#1| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1887 ((-2 (|:| -2717 |#1|) (|:| -4353 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2718 ((-754) |#1|)) (-15 -3963 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -2789 (|#1| |#1| |#1|)) (-15 -2813 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -2316 ((-111) |#1| |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -3562 ((-166 (-220)) |#1|)) (-15 -3562 ((-166 (-373)) |#1|)) (-15 -1467 (|#1| |#1|)) (-15 -1445 (|#1| |#1|)) (-15 -1456 (|#1| |#1|)) (-15 -1524 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -1596 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1607 (|#1| |#1|)) (-15 -1661 (|#1| |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -1673 (|#1| |#1|)) (-15 -4135 (|#1| |#1|)) (-15 -3154 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2951 (|#1|)) (-15 ** (|#1| |#1| (-401 (-552)))) (-15 -3644 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -3676 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -1964 ((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|))) (-15 -2859 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2411 ((-401 (-552)) |#1|)) (-15 -4229 ((-111) |#1|)) (-15 -3890 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1731 (|#2| |#1|)) (-15 -3329 (|#1| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2616 (|#1| |#1|)) (-15 -2547 (|#1|)) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -4208 ((-868 (-373) |#1|) |#1| (-871 (-373)) (-868 (-373) |#1|))) (-15 -4208 ((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|))) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2091 ((-3 |#1| "failed") (-401 (-1148 |#2|)))) (-15 -2079 ((-1148 |#2|) |#1|)) (-15 -3562 (|#1| (-1148 |#2|))) (-15 -2091 (|#1| (-1148 |#2|))) (-15 -1376 ((-1148 |#2|))) (-15 -1800 ((-671 |#2|) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -3562 ((-1148 |#2|) |#1|)) (-15 -1637 (|#2|)) (-15 -3562 (|#1| (-1235 |#2|))) (-15 -3562 ((-1235 |#2|) |#1|)) (-15 -3133 ((-671 |#2|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1|)) (-15 -4205 ((-1148 |#2|) |#1|)) (-15 -2410 ((-1148 |#2|) |#1|)) (-15 -1637 (|#2| (-1235 |#1|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1| (-1235 |#1|))) (-15 -2349 (|#2| |#1|)) (-15 -3385 (|#2| |#1|)) (-15 -4154 ((-900))) (-15 -1477 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 -3995 ((-754))) (-15 ** (|#1| |#1| (-754))) (-15 -2040 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-900))) (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|)) (-15 -2384 (|#1| |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 91 (-1559 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))))) (-3245 (($ $) 92 (-1559 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))))) (-4058 (((-111) $) 94 (-1559 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))))) (-3841 (((-671 |#1|) (-1235 $)) 44) (((-671 |#1|)) 59)) (-3385 ((|#1| $) 50)) (-1607 (($ $) 225 (|has| |#1| (-1174)))) (-1467 (($ $) 208 (|has| |#1| (-1174)))) (-2038 (((-1162 (-900) (-754)) (-552)) 144 (|has| |#1| (-343)))) (-4136 (((-3 $ "failed") $ $) 19)) (-2246 (((-412 (-1148 $)) (-1148 $)) 239 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) (-4014 (($ $) 111 (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-357))))) (-2487 (((-412 $) $) 112 (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-357))))) (-1737 (($ $) 238 (-12 (|has| |#1| (-981)) (|has| |#1| (-1174))))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 242 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) (-4224 (((-111) $ $) 102 (|has| |#1| (-301)))) (-3307 (((-754)) 85 (|has| |#1| (-362)))) (-1584 (($ $) 224 (|has| |#1| (-1174)))) (-1445 (($ $) 209 (|has| |#1| (-1174)))) (-1628 (($ $) 223 (|has| |#1| (-1174)))) (-1492 (($ $) 210 (|has| |#1| (-1174)))) (-3887 (($) 17 T CONST)) (-4039 (((-3 (-552) "failed") $) 166 (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) 164 (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 163)) (-1703 (((-552) $) 167 (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) 165 (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) 162)) (-2342 (($ (-1235 |#1|) (-1235 $)) 46) (($ (-1235 |#1|)) 62)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-343)))) (-2813 (($ $ $) 106 (|has| |#1| (-301)))) (-4088 (((-671 |#1|) $ (-1235 $)) 51) (((-671 |#1|) $) 57)) (-1800 (((-671 (-552)) (-671 $)) 161 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 160 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 159) (((-671 |#1|) (-671 $)) 158)) (-2091 (($ (-1148 |#1|)) 155) (((-3 $ "failed") (-401 (-1148 |#1|))) 152 (|has| |#1| (-357)))) (-2040 (((-3 $ "failed") $) 32)) (-1749 ((|#1| $) 250)) (-2859 (((-3 (-401 (-552)) "failed") $) 243 (|has| |#1| (-537)))) (-4229 (((-111) $) 245 (|has| |#1| (-537)))) (-2411 (((-401 (-552)) $) 244 (|has| |#1| (-537)))) (-4154 (((-900)) 52)) (-1279 (($) 88 (|has| |#1| (-362)))) (-2789 (($ $ $) 105 (|has| |#1| (-301)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 100 (|has| |#1| (-301)))) (-2740 (($) 146 (|has| |#1| (-343)))) (-1415 (((-111) $) 147 (|has| |#1| (-343)))) (-4294 (($ $ (-754)) 138 (|has| |#1| (-343))) (($ $) 137 (|has| |#1| (-343)))) (-1633 (((-111) $) 113 (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-357))))) (-3890 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1037)) (|has| |#1| (-1174))))) (-2951 (($) 235 (|has| |#1| (-1174)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 258 (|has| |#1| (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 257 (|has| |#1| (-865 (-373))))) (-2641 (((-900) $) 149 (|has| |#1| (-343))) (((-816 (-900)) $) 135 (|has| |#1| (-343)))) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 237 (-12 (|has| |#1| (-981)) (|has| |#1| (-1174))))) (-2349 ((|#1| $) 49)) (-4317 (((-3 $ "failed") $) 139 (|has| |#1| (-343)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 109 (|has| |#1| (-301)))) (-4205 (((-1148 |#1|) $) 42 (|has| |#1| (-357)))) (-1816 (($ $ $) 204 (|has| |#1| (-830)))) (-4093 (($ $ $) 203 (|has| |#1| (-830)))) (-3516 (($ (-1 |#1| |#1|) $) 259)) (-2886 (((-900) $) 87 (|has| |#1| (-362)))) (-4135 (($ $) 232 (|has| |#1| (-1174)))) (-2079 (((-1148 |#1|) $) 153)) (-1276 (($ (-627 $)) 98 (-1559 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) (($ $ $) 97 (-1559 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))))) (-1595 (((-1134) $) 9)) (-1951 (($ $) 114 (|has| |#1| (-357)))) (-3002 (($) 140 (|has| |#1| (-343)) CONST)) (-4153 (($ (-900)) 86 (|has| |#1| (-362)))) (-2547 (($) 254)) (-1759 ((|#1| $) 251)) (-1498 (((-1096) $) 10)) (-2220 (($) 157)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 99 (-1559 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))))) (-1323 (($ (-627 $)) 96 (-1559 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) (($ $ $) 95 (-1559 (|has| |#1| (-301)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))))) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) 143 (|has| |#1| (-343)))) (-3676 (((-412 (-1148 $)) (-1148 $)) 241 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) (-3644 (((-412 (-1148 $)) (-1148 $)) 240 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) (-1727 (((-412 $) $) 110 (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-357))))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-301))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 107 (|has| |#1| (-301)))) (-2761 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 90 (-1559 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 101 (|has| |#1| (-301)))) (-3154 (($ $) 233 (|has| |#1| (-1174)))) (-3321 (($ $ (-627 |#1|) (-627 |#1|)) 265 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 263 (|has| |#1| (-303 |#1|))) (($ $ (-627 (-288 |#1|))) 262 (|has| |#1| (-303 |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) 261 (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-1152) |#1|) 260 (|has| |#1| (-506 (-1152) |#1|)))) (-2718 (((-754) $) 103 (|has| |#1| (-301)))) (-1985 (($ $ |#1|) 266 (|has| |#1| (-280 |#1| |#1|)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 104 (|has| |#1| (-301)))) (-1637 ((|#1| (-1235 $)) 45) ((|#1|) 58)) (-4018 (((-754) $) 148 (|has| |#1| (-343))) (((-3 (-754) "failed") $ $) 136 (|has| |#1| (-343)))) (-2942 (($ $ (-1 |#1| |#1|) (-754)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-627 (-1152)) (-627 (-754))) 127 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 128 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 129 (|has| |#1| (-879 (-1152)))) (($ $ (-1152)) 130 (|has| |#1| (-879 (-1152)))) (($ $ (-754)) 132 (-1559 (-2520 (|has| |#1| (-357)) (|has| |#1| (-228))) (|has| |#1| (-228)) (-2520 (|has| |#1| (-228)) (|has| |#1| (-357))))) (($ $) 134 (-1559 (-2520 (|has| |#1| (-357)) (|has| |#1| (-228))) (|has| |#1| (-228)) (-2520 (|has| |#1| (-228)) (|has| |#1| (-357)))))) (-4070 (((-671 |#1|) (-1235 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-357)))) (-1376 (((-1148 |#1|)) 156)) (-1640 (($ $) 222 (|has| |#1| (-1174)))) (-1502 (($ $) 211 (|has| |#1| (-1174)))) (-3439 (($) 145 (|has| |#1| (-343)))) (-1615 (($ $) 221 (|has| |#1| (-1174)))) (-1479 (($ $) 212 (|has| |#1| (-1174)))) (-1596 (($ $) 220 (|has| |#1| (-1174)))) (-1456 (($ $) 213 (|has| |#1| (-1174)))) (-3133 (((-1235 |#1|) $ (-1235 $)) 48) (((-671 |#1|) (-1235 $) (-1235 $)) 47) (((-1235 |#1|) $) 64) (((-671 |#1|) (-1235 $)) 63)) (-3562 (((-1235 |#1|) $) 61) (($ (-1235 |#1|)) 60) (((-1148 |#1|) $) 168) (($ (-1148 |#1|)) 154) (((-871 (-552)) $) 256 (|has| |#1| (-600 (-871 (-552))))) (((-871 (-373)) $) 255 (|has| |#1| (-600 (-871 (-373))))) (((-166 (-373)) $) 207 (|has| |#1| (-1001))) (((-166 (-220)) $) 206 (|has| |#1| (-1001))) (((-528) $) 205 (|has| |#1| (-600 (-528))))) (-2616 (($ $) 253)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 142 (-1559 (-2520 (|has| $ (-142)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))) (|has| |#1| (-343))))) (-3040 (($ |#1| |#1|) 252)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 35) (($ (-401 (-552))) 84 (-1559 (|has| |#1| (-357)) (|has| |#1| (-1017 (-401 (-552)))))) (($ $) 89 (-1559 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))))) (-3050 (($ $) 141 (|has| |#1| (-343))) (((-3 $ "failed") $) 41 (-1559 (-2520 (|has| $ (-142)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))) (|has| |#1| (-142))))) (-2410 (((-1148 |#1|) $) 43)) (-3995 (((-754)) 28)) (-2957 (((-1235 $)) 65)) (-1673 (($ $) 231 (|has| |#1| (-1174)))) (-1534 (($ $) 219 (|has| |#1| (-1174)))) (-3778 (((-111) $ $) 93 (-1559 (|has| |#1| (-544)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888)))))) (-1652 (($ $) 230 (|has| |#1| (-1174)))) (-1513 (($ $) 218 (|has| |#1| (-1174)))) (-1697 (($ $) 229 (|has| |#1| (-1174)))) (-1561 (($ $) 217 (|has| |#1| (-1174)))) (-1731 ((|#1| $) 247 (|has| |#1| (-1174)))) (-3519 (($ $) 228 (|has| |#1| (-1174)))) (-1575 (($ $) 216 (|has| |#1| (-1174)))) (-1686 (($ $) 227 (|has| |#1| (-1174)))) (-1547 (($ $) 215 (|has| |#1| (-1174)))) (-1661 (($ $) 226 (|has| |#1| (-1174)))) (-1524 (($ $) 214 (|has| |#1| (-1174)))) (-3329 (($ $) 248 (|has| |#1| (-1037)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-1 |#1| |#1|) (-754)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-627 (-1152)) (-627 (-754))) 123 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 124 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 125 (|has| |#1| (-879 (-1152)))) (($ $ (-1152)) 126 (|has| |#1| (-879 (-1152)))) (($ $ (-754)) 131 (-1559 (-2520 (|has| |#1| (-357)) (|has| |#1| (-228))) (|has| |#1| (-228)) (-2520 (|has| |#1| (-228)) (|has| |#1| (-357))))) (($ $) 133 (-1559 (-2520 (|has| |#1| (-357)) (|has| |#1| (-228))) (|has| |#1| (-228)) (-2520 (|has| |#1| (-228)) (|has| |#1| (-357)))))) (-2351 (((-111) $ $) 201 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 200 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 202 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 199 (|has| |#1| (-830)))) (-2407 (($ $ $) 118 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-401 (-552))) 236 (-12 (|has| |#1| (-981)) (|has| |#1| (-1174)))) (($ $ $) 234 (|has| |#1| (-1174))) (($ $ (-552)) 115 (|has| |#1| (-357)))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-401 (-552)) $) 117 (|has| |#1| (-357))) (($ $ (-401 (-552))) 116 (|has| |#1| (-357))))) +(((-163 |#1|) (-137) (-169)) (T -163)) +((-2349 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-2547 (*1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-2616 (*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-3040 (*1 *1 *2 *2) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-1759 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-1749 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) (-2761 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) (-3329 (*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1037)))) (-1731 (*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1174)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-1037)) (-4 *3 (-1174)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-4229 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-111)))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-401 (-552))))) (-2859 (*1 *2 *1) (|partial| -12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-401 (-552)))))) +(-13 (-707 |t#1| (-1148 |t#1|)) (-405 |t#1|) (-226 |t#1|) (-332 |t#1|) (-394 |t#1|) (-863 |t#1|) (-371 |t#1|) (-169) (-10 -8 (-15 -2547 ($)) (-15 -2616 ($ $)) (-15 -3040 ($ |t#1| |t#1|)) (-15 -1759 (|t#1| $)) (-15 -1749 (|t#1| $)) (-15 -2349 (|t#1| $)) (IF (|has| |t#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-6 (-544)) (-15 -2761 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-301)) (-6 (-301)) |%noBranch|) (IF (|has| |t#1| (-6 -4365)) (-6 -4365) |%noBranch|) (IF (|has| |t#1| (-6 -4362)) (-6 -4362) |%noBranch|) (IF (|has| |t#1| (-357)) (-6 (-357)) |%noBranch|) (IF (|has| |t#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-1001)) (PROGN (-6 (-600 (-166 (-220)))) (-6 (-600 (-166 (-373))))) |%noBranch|) (IF (|has| |t#1| (-1037)) (-15 -3329 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1174)) (PROGN (-6 (-1174)) (-15 -1731 (|t#1| $)) (IF (|has| |t#1| (-981)) (-6 (-981)) |%noBranch|) (IF (|has| |t#1| (-1037)) (-15 -3890 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -4229 ((-111) $)) (-15 -2411 ((-401 (-552)) $)) (-15 -2859 ((-3 (-401 (-552)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-888)) (IF (|has| |t#1| (-301)) (-6 (-888)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-38 |#1|) . T) ((-38 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-35) |has| |#1| (-1174)) ((-94) |has| |#1| (-1174)) ((-101) . T) ((-110 #0# #0#) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-142) -1559 (|has| |#1| (-343)) (|has| |#1| (-142))) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) . T) ((-600 (-166 (-220))) |has| |#1| (-1001)) ((-600 (-166 (-373))) |has| |#1| (-1001)) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-600 (-871 (-373))) |has| |#1| (-600 (-871 (-373)))) ((-600 (-871 (-552))) |has| |#1| (-600 (-871 (-552)))) ((-600 #1=(-1148 |#1|)) . T) ((-226 |#1|) . T) ((-228) -1559 (|has| |#1| (-343)) (|has| |#1| (-228))) ((-238) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-278) |has| |#1| (-1174)) ((-280 |#1| $) |has| |#1| (-280 |#1| |#1|)) ((-284) -1559 (|has| |#1| (-544)) (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-301) -1559 (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-357) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-396) |has| |#1| (-343)) ((-362) -1559 (|has| |#1| (-362)) (|has| |#1| (-343))) ((-343) |has| |#1| (-343)) ((-364 |#1| #1#) . T) ((-403 |#1| #1#) . T) ((-332 |#1|) . T) ((-371 |#1|) . T) ((-394 |#1|) . T) ((-405 |#1|) . T) ((-445) -1559 (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-485) |has| |#1| (-1174)) ((-506 (-1152) |#1|) |has| |#1| (-506 (-1152) |#1|)) ((-506 |#1| |#1|) |has| |#1| (-303 |#1|)) ((-544) -1559 (|has| |#1| (-544)) (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-630 #0#) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-630 |#1|) . T) ((-630 $) . T) ((-623 (-552)) |has| |#1| (-623 (-552))) ((-623 |#1|) . T) ((-700 #0#) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-700 |#1|) . T) ((-700 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-707 |#1| #1#) . T) ((-709) . T) ((-830) |has| |#1| (-830)) ((-879 (-1152)) |has| |#1| (-879 (-1152))) ((-865 (-373)) |has| |#1| (-865 (-373))) ((-865 (-552)) |has| |#1| (-865 (-552))) ((-863 |#1|) . T) ((-888) -12 (|has| |#1| (-301)) (|has| |#1| (-888))) ((-899) -1559 (|has| |#1| (-343)) (|has| |#1| (-357)) (|has| |#1| (-301))) ((-981) -12 (|has| |#1| (-981)) (|has| |#1| (-1174))) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T) ((-1034 #0#) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-1034 |#1|) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1127) |has| |#1| (-343)) ((-1174) |has| |#1| (-1174)) ((-1177) |has| |#1| (-1174)) ((-1189) . T) ((-1193) -1559 (|has| |#1| (-343)) (|has| |#1| (-357)) (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) +((-1727 (((-412 |#2|) |#2|) 63))) +(((-164 |#1| |#2|) (-10 -7 (-15 -1727 ((-412 |#2|) |#2|))) (-301) (-1211 (-166 |#1|))) (T -164)) +((-1727 (*1 *2 *3) (-12 (-4 *4 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-164 *4 *3)) (-4 *3 (-1211 (-166 *4)))))) +(-10 -7 (-15 -1727 ((-412 |#2|) |#2|))) +((-3516 (((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)) 14))) +(((-165 |#1| |#2|) (-10 -7 (-15 -3516 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) (-169) (-169)) (T -165)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-5 *2 (-166 *6)) (-5 *1 (-165 *5 *6))))) +(-10 -7 (-15 -3516 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 33)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-544))))) (-3245 (($ $) NIL (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-544))))) (-4058 (((-111) $) NIL (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-544))))) (-3841 (((-671 |#1|) (-1235 $)) NIL) (((-671 |#1|)) NIL)) (-3385 ((|#1| $) NIL)) (-1607 (($ $) NIL (|has| |#1| (-1174)))) (-1467 (($ $) NIL (|has| |#1| (-1174)))) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| |#1| (-343)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) (-4014 (($ $) NIL (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-357))))) (-2487 (((-412 $) $) NIL (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-357))))) (-1737 (($ $) NIL (-12 (|has| |#1| (-981)) (|has| |#1| (-1174))))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) (-4224 (((-111) $ $) NIL (|has| |#1| (-301)))) (-3307 (((-754)) NIL (|has| |#1| (-362)))) (-1584 (($ $) NIL (|has| |#1| (-1174)))) (-1445 (($ $) NIL (|has| |#1| (-1174)))) (-1628 (($ $) NIL (|has| |#1| (-1174)))) (-1492 (($ $) NIL (|has| |#1| (-1174)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) NIL)) (-2342 (($ (-1235 |#1|) (-1235 $)) NIL) (($ (-1235 |#1|)) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-2813 (($ $ $) NIL (|has| |#1| (-301)))) (-4088 (((-671 |#1|) $ (-1235 $)) NIL) (((-671 |#1|) $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2091 (($ (-1148 |#1|)) NIL) (((-3 $ "failed") (-401 (-1148 |#1|))) NIL (|has| |#1| (-357)))) (-2040 (((-3 $ "failed") $) NIL)) (-1749 ((|#1| $) 13)) (-2859 (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-537)))) (-4229 (((-111) $) NIL (|has| |#1| (-537)))) (-2411 (((-401 (-552)) $) NIL (|has| |#1| (-537)))) (-4154 (((-900)) NIL)) (-1279 (($) NIL (|has| |#1| (-362)))) (-2789 (($ $ $) NIL (|has| |#1| (-301)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-301)))) (-2740 (($) NIL (|has| |#1| (-343)))) (-1415 (((-111) $) NIL (|has| |#1| (-343)))) (-4294 (($ $ (-754)) NIL (|has| |#1| (-343))) (($ $) NIL (|has| |#1| (-343)))) (-1633 (((-111) $) NIL (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-357))))) (-3890 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1037)) (|has| |#1| (-1174))))) (-2951 (($) NIL (|has| |#1| (-1174)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| |#1| (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| |#1| (-865 (-373))))) (-2641 (((-900) $) NIL (|has| |#1| (-343))) (((-816 (-900)) $) NIL (|has| |#1| (-343)))) (-2624 (((-111) $) 35)) (-1352 (($ $ (-552)) NIL (-12 (|has| |#1| (-981)) (|has| |#1| (-1174))))) (-2349 ((|#1| $) 46)) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-301)))) (-4205 (((-1148 |#1|) $) NIL (|has| |#1| (-357)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-2886 (((-900) $) NIL (|has| |#1| (-362)))) (-4135 (($ $) NIL (|has| |#1| (-1174)))) (-2079 (((-1148 |#1|) $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-301))) (($ $ $) NIL (|has| |#1| (-301)))) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| |#1| (-357)))) (-3002 (($) NIL (|has| |#1| (-343)) CONST)) (-4153 (($ (-900)) NIL (|has| |#1| (-362)))) (-2547 (($) NIL)) (-1759 ((|#1| $) 15)) (-1498 (((-1096) $) NIL)) (-2220 (($) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-301)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-301))) (($ $ $) NIL (|has| |#1| (-301)))) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| |#1| (-343)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| |#1| (-301)) (|has| |#1| (-888))))) (-1727 (((-412 $) $) NIL (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-357))))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-301))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-301)))) (-2761 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 47 (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-544))))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-301)))) (-3154 (($ $) NIL (|has| |#1| (-1174)))) (-3321 (($ $ (-627 |#1|) (-627 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-627 (-288 |#1|))) NIL (|has| |#1| (-303 |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) NIL (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-1152) |#1|) NIL (|has| |#1| (-506 (-1152) |#1|)))) (-2718 (((-754) $) NIL (|has| |#1| (-301)))) (-1985 (($ $ |#1|) NIL (|has| |#1| (-280 |#1| |#1|)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-301)))) (-1637 ((|#1| (-1235 $)) NIL) ((|#1|) NIL)) (-4018 (((-754) $) NIL (|has| |#1| (-343))) (((-3 (-754) "failed") $ $) NIL (|has| |#1| (-343)))) (-2942 (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $) NIL (|has| |#1| (-228)))) (-4070 (((-671 |#1|) (-1235 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-357)))) (-1376 (((-1148 |#1|)) NIL)) (-1640 (($ $) NIL (|has| |#1| (-1174)))) (-1502 (($ $) NIL (|has| |#1| (-1174)))) (-3439 (($) NIL (|has| |#1| (-343)))) (-1615 (($ $) NIL (|has| |#1| (-1174)))) (-1479 (($ $) NIL (|has| |#1| (-1174)))) (-1596 (($ $) NIL (|has| |#1| (-1174)))) (-1456 (($ $) NIL (|has| |#1| (-1174)))) (-3133 (((-1235 |#1|) $ (-1235 $)) NIL) (((-671 |#1|) (-1235 $) (-1235 $)) NIL) (((-1235 |#1|) $) NIL) (((-671 |#1|) (-1235 $)) NIL)) (-3562 (((-1235 |#1|) $) NIL) (($ (-1235 |#1|)) NIL) (((-1148 |#1|) $) NIL) (($ (-1148 |#1|)) NIL) (((-871 (-552)) $) NIL (|has| |#1| (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| |#1| (-600 (-871 (-373))))) (((-166 (-373)) $) NIL (|has| |#1| (-1001))) (((-166 (-220)) $) NIL (|has| |#1| (-1001))) (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-2616 (($ $) 45)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-343))))) (-3040 (($ |#1| |#1|) 37)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) 36) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-357)) (|has| |#1| (-1017 (-401 (-552)))))) (($ $) NIL (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-544))))) (-3050 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-2410 (((-1148 |#1|) $) NIL)) (-3995 (((-754)) NIL)) (-2957 (((-1235 $)) NIL)) (-1673 (($ $) NIL (|has| |#1| (-1174)))) (-1534 (($ $) NIL (|has| |#1| (-1174)))) (-3778 (((-111) $ $) NIL (-1559 (-12 (|has| |#1| (-301)) (|has| |#1| (-888))) (|has| |#1| (-544))))) (-1652 (($ $) NIL (|has| |#1| (-1174)))) (-1513 (($ $) NIL (|has| |#1| (-1174)))) (-1697 (($ $) NIL (|has| |#1| (-1174)))) (-1561 (($ $) NIL (|has| |#1| (-1174)))) (-1731 ((|#1| $) NIL (|has| |#1| (-1174)))) (-3519 (($ $) NIL (|has| |#1| (-1174)))) (-1575 (($ $) NIL (|has| |#1| (-1174)))) (-1686 (($ $) NIL (|has| |#1| (-1174)))) (-1547 (($ $) NIL (|has| |#1| (-1174)))) (-1661 (($ $) NIL (|has| |#1| (-1174)))) (-1524 (($ $) NIL (|has| |#1| (-1174)))) (-3329 (($ $) NIL (|has| |#1| (-1037)))) (-1922 (($) 28 T CONST)) (-1933 (($) 30 T CONST)) (-4157 (((-1134) $) 23 (|has| |#1| (-811))) (((-1134) $ (-111)) 25 (|has| |#1| (-811))) (((-1240) (-805) $) 26 (|has| |#1| (-811))) (((-1240) (-805) $ (-111)) 27 (|has| |#1| (-811)))) (-4251 (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $) NIL (|has| |#1| (-228)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2407 (($ $ $) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 39)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-401 (-552))) NIL (-12 (|has| |#1| (-981)) (|has| |#1| (-1174)))) (($ $ $) NIL (|has| |#1| (-1174))) (($ $ (-552)) NIL (|has| |#1| (-357)))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-401 (-552)) $) NIL (|has| |#1| (-357))) (($ $ (-401 (-552))) NIL (|has| |#1| (-357))))) +(((-166 |#1|) (-13 (-163 |#1|) (-10 -7 (IF (|has| |#1| (-811)) (-6 (-811)) |%noBranch|))) (-169)) (T -166)) +NIL +(-13 (-163 |#1|) (-10 -7 (IF (|has| |#1| (-811)) (-6 (-811)) |%noBranch|))) +((-3562 (((-871 |#1|) |#3|) 22))) +(((-167 |#1| |#2| |#3|) (-10 -7 (-15 -3562 ((-871 |#1|) |#3|))) (-1076) (-13 (-600 (-871 |#1|)) (-169)) (-163 |#2|)) (T -167)) +((-3562 (*1 *2 *3) (-12 (-4 *5 (-13 (-600 *2) (-169))) (-5 *2 (-871 *4)) (-5 *1 (-167 *4 *5 *3)) (-4 *4 (-1076)) (-4 *3 (-163 *5))))) +(-10 -7 (-15 -3562 ((-871 |#1|) |#3|))) +((-1465 (((-111) $ $) NIL)) (-2871 (((-111) $) 9)) (-4232 (((-111) $ (-111)) 11)) (-2655 (($) 12)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2973 (($ $) 13)) (-1477 (((-842) $) 17)) (-2691 (((-111) $) 8)) (-4267 (((-111) $ (-111)) 10)) (-2292 (((-111) $ $) NIL))) +(((-168) (-13 (-1076) (-10 -8 (-15 -2655 ($)) (-15 -2691 ((-111) $)) (-15 -2871 ((-111) $)) (-15 -4267 ((-111) $ (-111))) (-15 -4232 ((-111) $ (-111))) (-15 -2973 ($ $))))) (T -168)) +((-2655 (*1 *1) (-5 *1 (-168))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) (-4267 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) (-4232 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) (-2973 (*1 *1 *1) (-5 *1 (-168)))) +(-13 (-1076) (-10 -8 (-15 -2655 ($)) (-15 -2691 ((-111) $)) (-15 -2871 ((-111) $)) (-15 -4267 ((-111) $ (-111))) (-15 -4232 ((-111) $ (-111))) (-15 -2973 ($ $)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-169) (-137)) (T -169)) +NIL +(-13 (-1028) (-110 $ $) (-10 -7 (-6 (-4368 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 $) . T) ((-709) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-2219 (($ $) 6))) +(((-170) (-137)) (T -170)) +((-2219 (*1 *1 *1) (-4 *1 (-170)))) +(-13 (-10 -8 (-15 -2219 ($ $)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3471 ((|#1| $) 75)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-2813 (($ $ $) NIL)) (-2025 (($ $) 19)) (-3978 (($ |#1| (-1132 |#1|)) 48)) (-2040 (((-3 $ "failed") $) 117)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2475 (((-1132 |#1|) $) 82)) (-3568 (((-1132 |#1|) $) 79)) (-2234 (((-1132 |#1|) $) 80)) (-2624 (((-111) $) NIL)) (-4028 (((-1132 |#1|) $) 88)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1276 (($ (-627 $)) NIL) (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ (-627 $)) NIL) (($ $ $) NIL)) (-1727 (((-412 $) $) NIL)) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL)) (-4168 (($ $ (-552)) 91)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2485 (((-1132 |#1|) $) 89)) (-3736 (((-1132 (-401 |#1|)) $) 14)) (-2771 (($ (-401 |#1|)) 17) (($ |#1| (-1132 |#1|) (-1132 |#1|)) 38)) (-2890 (($ $) 93)) (-1477 (((-842) $) 127) (($ (-552)) 51) (($ |#1|) 52) (($ (-401 |#1|)) 36) (($ (-401 (-552))) NIL) (($ $) NIL)) (-3995 (((-754)) 64)) (-3778 (((-111) $ $) NIL)) (-2189 (((-1132 (-401 |#1|)) $) 18)) (-1922 (($) 25 T CONST)) (-1933 (($) 28 T CONST)) (-2292 (((-111) $ $) 35)) (-2407 (($ $ $) 115)) (-2396 (($ $) 106) (($ $ $) 103)) (-2384 (($ $ $) 101)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-401 |#1|) $) 111) (($ $ (-401 |#1|)) NIL) (($ (-401 (-552)) $) NIL) (($ $ (-401 (-552))) NIL))) +(((-171 |#1|) (-13 (-38 |#1|) (-38 (-401 |#1|)) (-357) (-10 -8 (-15 -2771 ($ (-401 |#1|))) (-15 -2771 ($ |#1| (-1132 |#1|) (-1132 |#1|))) (-15 -3978 ($ |#1| (-1132 |#1|))) (-15 -3568 ((-1132 |#1|) $)) (-15 -2234 ((-1132 |#1|) $)) (-15 -2475 ((-1132 |#1|) $)) (-15 -3471 (|#1| $)) (-15 -2025 ($ $)) (-15 -2189 ((-1132 (-401 |#1|)) $)) (-15 -3736 ((-1132 (-401 |#1|)) $)) (-15 -4028 ((-1132 |#1|) $)) (-15 -2485 ((-1132 |#1|) $)) (-15 -4168 ($ $ (-552))) (-15 -2890 ($ $)))) (-301)) (T -171)) +((-2771 (*1 *1 *2) (-12 (-5 *2 (-401 *3)) (-4 *3 (-301)) (-5 *1 (-171 *3)))) (-2771 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1132 *2)) (-4 *2 (-301)) (-5 *1 (-171 *2)))) (-3978 (*1 *1 *2 *3) (-12 (-5 *3 (-1132 *2)) (-4 *2 (-301)) (-5 *1 (-171 *2)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-2234 (*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-3471 (*1 *2 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301)))) (-2025 (*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-1132 (-401 *3))) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-1132 (-401 *3))) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-4028 (*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-2485 (*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-4168 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) (-2890 (*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301))))) +(-13 (-38 |#1|) (-38 (-401 |#1|)) (-357) (-10 -8 (-15 -2771 ($ (-401 |#1|))) (-15 -2771 ($ |#1| (-1132 |#1|) (-1132 |#1|))) (-15 -3978 ($ |#1| (-1132 |#1|))) (-15 -3568 ((-1132 |#1|) $)) (-15 -2234 ((-1132 |#1|) $)) (-15 -2475 ((-1132 |#1|) $)) (-15 -3471 (|#1| $)) (-15 -2025 ($ $)) (-15 -2189 ((-1132 (-401 |#1|)) $)) (-15 -3736 ((-1132 (-401 |#1|)) $)) (-15 -4028 ((-1132 |#1|) $)) (-15 -2485 ((-1132 |#1|) $)) (-15 -4168 ($ $ (-552))) (-15 -2890 ($ $)))) +((-2517 (($ (-108) $) 13)) (-2176 (((-3 (-108) "failed") (-1152) $) 12)) (-1477 (((-842) $) 16)) (-4057 (((-627 (-108)) $) 8))) +(((-172) (-13 (-599 (-842)) (-10 -8 (-15 -4057 ((-627 (-108)) $)) (-15 -2517 ($ (-108) $)) (-15 -2176 ((-3 (-108) "failed") (-1152) $))))) (T -172)) +((-4057 (*1 *2 *1) (-12 (-5 *2 (-627 (-108))) (-5 *1 (-172)))) (-2517 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-172)))) (-2176 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-108)) (-5 *1 (-172))))) +(-13 (-599 (-842)) (-10 -8 (-15 -4057 ((-627 (-108)) $)) (-15 -2517 ($ (-108) $)) (-15 -2176 ((-3 (-108) "failed") (-1152) $)))) +((-2473 (((-1 (-922 |#1|) (-922 |#1|)) |#1|) 40)) (-1510 (((-922 |#1|) (-922 |#1|)) 19)) (-2236 (((-1 (-922 |#1|) (-922 |#1|)) |#1|) 36)) (-2589 (((-922 |#1|) (-922 |#1|)) 17)) (-3232 (((-922 |#1|) (-922 |#1|)) 25)) (-1463 (((-922 |#1|) (-922 |#1|)) 24)) (-1626 (((-922 |#1|) (-922 |#1|)) 23)) (-2865 (((-1 (-922 |#1|) (-922 |#1|)) |#1|) 37)) (-1796 (((-1 (-922 |#1|) (-922 |#1|)) |#1|) 35)) (-1758 (((-1 (-922 |#1|) (-922 |#1|)) |#1|) 34)) (-2502 (((-922 |#1|) (-922 |#1|)) 18)) (-4081 (((-1 (-922 |#1|) (-922 |#1|)) |#1| |#1|) 43)) (-1682 (((-922 |#1|) (-922 |#1|)) 8)) (-1812 (((-1 (-922 |#1|) (-922 |#1|)) |#1|) 39)) (-1418 (((-1 (-922 |#1|) (-922 |#1|)) |#1|) 38))) +(((-173 |#1|) (-10 -7 (-15 -1682 ((-922 |#1|) (-922 |#1|))) (-15 -2589 ((-922 |#1|) (-922 |#1|))) (-15 -2502 ((-922 |#1|) (-922 |#1|))) (-15 -1510 ((-922 |#1|) (-922 |#1|))) (-15 -1626 ((-922 |#1|) (-922 |#1|))) (-15 -1463 ((-922 |#1|) (-922 |#1|))) (-15 -3232 ((-922 |#1|) (-922 |#1|))) (-15 -1758 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -1796 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -2236 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -2865 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -1418 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -1812 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -2473 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -4081 ((-1 (-922 |#1|) (-922 |#1|)) |#1| |#1|))) (-13 (-357) (-1174) (-981))) (T -173)) +((-4081 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1174) (-981))))) (-2473 (*1 *2 *3) (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1174) (-981))))) (-1812 (*1 *2 *3) (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1174) (-981))))) (-1418 (*1 *2 *3) (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1174) (-981))))) (-2865 (*1 *2 *3) (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1174) (-981))))) (-2236 (*1 *2 *3) (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1174) (-981))))) (-1796 (*1 *2 *3) (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1174) (-981))))) (-1758 (*1 *2 *3) (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) (-4 *3 (-13 (-357) (-1174) (-981))))) (-3232 (*1 *2 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) (-5 *1 (-173 *3)))) (-1463 (*1 *2 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) (-5 *1 (-173 *3)))) (-1626 (*1 *2 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) (-5 *1 (-173 *3)))) (-1510 (*1 *2 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) (-5 *1 (-173 *3)))) (-2502 (*1 *2 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) (-5 *1 (-173 *3)))) (-2589 (*1 *2 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) (-5 *1 (-173 *3)))) (-1682 (*1 *2 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) (-5 *1 (-173 *3))))) +(-10 -7 (-15 -1682 ((-922 |#1|) (-922 |#1|))) (-15 -2589 ((-922 |#1|) (-922 |#1|))) (-15 -2502 ((-922 |#1|) (-922 |#1|))) (-15 -1510 ((-922 |#1|) (-922 |#1|))) (-15 -1626 ((-922 |#1|) (-922 |#1|))) (-15 -1463 ((-922 |#1|) (-922 |#1|))) (-15 -3232 ((-922 |#1|) (-922 |#1|))) (-15 -1758 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -1796 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -2236 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -2865 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -1418 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -1812 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -2473 ((-1 (-922 |#1|) (-922 |#1|)) |#1|)) (-15 -4081 ((-1 (-922 |#1|) (-922 |#1|)) |#1| |#1|))) +((-2410 ((|#2| |#3|) 27))) +(((-174 |#1| |#2| |#3|) (-10 -7 (-15 -2410 (|#2| |#3|))) (-169) (-1211 |#1|) (-707 |#1| |#2|)) (T -174)) +((-2410 (*1 *2 *3) (-12 (-4 *4 (-169)) (-4 *2 (-1211 *4)) (-5 *1 (-174 *4 *2 *3)) (-4 *3 (-707 *4 *2))))) +(-10 -7 (-15 -2410 (|#2| |#3|))) +((-4208 (((-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|)) 47 (|has| (-931 |#2|) (-865 |#1|))))) +(((-175 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-931 |#2|) (-865 |#1|)) (-15 -4208 ((-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|))) |%noBranch|)) (-1076) (-13 (-865 |#1|) (-169)) (-163 |#2|)) (T -175)) +((-4208 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-868 *5 *3)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) (-4 *3 (-163 *6)) (-4 (-931 *6) (-865 *5)) (-4 *6 (-13 (-865 *5) (-169))) (-5 *1 (-175 *5 *6 *3))))) +(-10 -7 (IF (|has| (-931 |#2|) (-865 |#1|)) (-15 -4208 ((-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|))) |%noBranch|)) +((-2256 (((-627 |#1|) (-627 |#1|) |#1|) 38)) (-3819 (((-627 |#1|) |#1| (-627 |#1|)) 19)) (-3098 (((-627 |#1|) (-627 (-627 |#1|)) (-627 |#1|)) 33) ((|#1| (-627 |#1|) (-627 |#1|)) 31))) +(((-176 |#1|) (-10 -7 (-15 -3819 ((-627 |#1|) |#1| (-627 |#1|))) (-15 -3098 (|#1| (-627 |#1|) (-627 |#1|))) (-15 -3098 ((-627 |#1|) (-627 (-627 |#1|)) (-627 |#1|))) (-15 -2256 ((-627 |#1|) (-627 |#1|) |#1|))) (-301)) (T -176)) +((-2256 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-301)) (-5 *1 (-176 *3)))) (-3098 (*1 *2 *3 *2) (-12 (-5 *3 (-627 (-627 *4))) (-5 *2 (-627 *4)) (-4 *4 (-301)) (-5 *1 (-176 *4)))) (-3098 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *2)) (-5 *1 (-176 *2)) (-4 *2 (-301)))) (-3819 (*1 *2 *3 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-301)) (-5 *1 (-176 *3))))) +(-10 -7 (-15 -3819 ((-627 |#1|) |#1| (-627 |#1|))) (-15 -3098 (|#1| (-627 |#1|) (-627 |#1|))) (-15 -3098 ((-627 |#1|) (-627 (-627 |#1|)) (-627 |#1|))) (-15 -2256 ((-627 |#1|) (-627 |#1|) |#1|))) +((-1465 (((-111) $ $) NIL)) (-2816 (((-1188) $) 13)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2920 (((-1111) $) 10)) (-1477 (((-842) $) 22) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) +(((-177) (-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $)) (-15 -2816 ((-1188) $))))) (T -177)) +((-2920 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-177)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-177))))) +(-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $)) (-15 -2816 ((-1188) $)))) +((-3244 (((-2 (|:| |start| |#2|) (|:| -2101 (-412 |#2|))) |#2|) 61)) (-3642 ((|#1| |#1|) 54)) (-4137 (((-166 |#1|) |#2|) 84)) (-2651 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-2970 ((|#2| |#2|) 83)) (-3358 (((-412 |#2|) |#2| |#1|) 113) (((-412 |#2|) |#2| |#1| (-111)) 81)) (-2349 ((|#1| |#2|) 112)) (-3842 ((|#2| |#2|) 119)) (-1727 (((-412 |#2|) |#2|) 134) (((-412 |#2|) |#2| |#1|) 32) (((-412 |#2|) |#2| |#1| (-111)) 133)) (-1482 (((-627 (-2 (|:| -2101 (-627 |#2|)) (|:| -3722 |#1|))) |#2| |#2|) 132) (((-627 (-2 (|:| -2101 (-627 |#2|)) (|:| -3722 |#1|))) |#2| |#2| (-111)) 76)) (-1806 (((-627 (-166 |#1|)) |#2| |#1|) 40) (((-627 (-166 |#1|)) |#2|) 41))) +(((-178 |#1| |#2|) (-10 -7 (-15 -1806 ((-627 (-166 |#1|)) |#2|)) (-15 -1806 ((-627 (-166 |#1|)) |#2| |#1|)) (-15 -1482 ((-627 (-2 (|:| -2101 (-627 |#2|)) (|:| -3722 |#1|))) |#2| |#2| (-111))) (-15 -1482 ((-627 (-2 (|:| -2101 (-627 |#2|)) (|:| -3722 |#1|))) |#2| |#2|)) (-15 -1727 ((-412 |#2|) |#2| |#1| (-111))) (-15 -1727 ((-412 |#2|) |#2| |#1|)) (-15 -1727 ((-412 |#2|) |#2|)) (-15 -3842 (|#2| |#2|)) (-15 -2349 (|#1| |#2|)) (-15 -3358 ((-412 |#2|) |#2| |#1| (-111))) (-15 -3358 ((-412 |#2|) |#2| |#1|)) (-15 -2970 (|#2| |#2|)) (-15 -2651 (|#1| |#2| |#1|)) (-15 -2651 (|#1| |#2|)) (-15 -4137 ((-166 |#1|) |#2|)) (-15 -3642 (|#1| |#1|)) (-15 -3244 ((-2 (|:| |start| |#2|) (|:| -2101 (-412 |#2|))) |#2|))) (-13 (-357) (-828)) (-1211 (-166 |#1|))) (T -178)) +((-3244 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-2 (|:| |start| *3) (|:| -2101 (-412 *3)))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) (-3642 (*1 *2 *2) (-12 (-4 *2 (-13 (-357) (-828))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1211 (-166 *2))))) (-4137 (*1 *2 *3) (-12 (-5 *2 (-166 *4)) (-5 *1 (-178 *4 *3)) (-4 *4 (-13 (-357) (-828))) (-4 *3 (-1211 *2)))) (-2651 (*1 *2 *3) (-12 (-4 *2 (-13 (-357) (-828))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1211 (-166 *2))))) (-2651 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-357) (-828))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1211 (-166 *2))))) (-2970 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-828))) (-5 *1 (-178 *3 *2)) (-4 *2 (-1211 (-166 *3))))) (-3358 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-412 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) (-3358 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *4 (-13 (-357) (-828))) (-5 *2 (-412 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) (-2349 (*1 *2 *3) (-12 (-4 *2 (-13 (-357) (-828))) (-5 *1 (-178 *2 *3)) (-4 *3 (-1211 (-166 *2))))) (-3842 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-828))) (-5 *1 (-178 *3 *2)) (-4 *2 (-1211 (-166 *3))))) (-1727 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-412 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) (-1727 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-412 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) (-1727 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *4 (-13 (-357) (-828))) (-5 *2 (-412 *3)) (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) (-1482 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-627 (-2 (|:| -2101 (-627 *3)) (|:| -3722 *4)))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) (-1482 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-357) (-828))) (-5 *2 (-627 (-2 (|:| -2101 (-627 *3)) (|:| -3722 *5)))) (-5 *1 (-178 *5 *3)) (-4 *3 (-1211 (-166 *5))))) (-1806 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-627 (-166 *4))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) (-1806 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-627 (-166 *4))) (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4)))))) +(-10 -7 (-15 -1806 ((-627 (-166 |#1|)) |#2|)) (-15 -1806 ((-627 (-166 |#1|)) |#2| |#1|)) (-15 -1482 ((-627 (-2 (|:| -2101 (-627 |#2|)) (|:| -3722 |#1|))) |#2| |#2| (-111))) (-15 -1482 ((-627 (-2 (|:| -2101 (-627 |#2|)) (|:| -3722 |#1|))) |#2| |#2|)) (-15 -1727 ((-412 |#2|) |#2| |#1| (-111))) (-15 -1727 ((-412 |#2|) |#2| |#1|)) (-15 -1727 ((-412 |#2|) |#2|)) (-15 -3842 (|#2| |#2|)) (-15 -2349 (|#1| |#2|)) (-15 -3358 ((-412 |#2|) |#2| |#1| (-111))) (-15 -3358 ((-412 |#2|) |#2| |#1|)) (-15 -2970 (|#2| |#2|)) (-15 -2651 (|#1| |#2| |#1|)) (-15 -2651 (|#1| |#2|)) (-15 -4137 ((-166 |#1|) |#2|)) (-15 -3642 (|#1| |#1|)) (-15 -3244 ((-2 (|:| |start| |#2|) (|:| -2101 (-412 |#2|))) |#2|))) +((-3803 (((-3 |#2| "failed") |#2|) 14)) (-2250 (((-754) |#2|) 16)) (-4082 ((|#2| |#2| |#2|) 18))) +(((-179 |#1| |#2|) (-10 -7 (-15 -3803 ((-3 |#2| "failed") |#2|)) (-15 -2250 ((-754) |#2|)) (-15 -4082 (|#2| |#2| |#2|))) (-1189) (-656 |#1|)) (T -179)) +((-4082 (*1 *2 *2 *2) (-12 (-4 *3 (-1189)) (-5 *1 (-179 *3 *2)) (-4 *2 (-656 *3)))) (-2250 (*1 *2 *3) (-12 (-4 *4 (-1189)) (-5 *2 (-754)) (-5 *1 (-179 *4 *3)) (-4 *3 (-656 *4)))) (-3803 (*1 *2 *2) (|partial| -12 (-4 *3 (-1189)) (-5 *1 (-179 *3 *2)) (-4 *2 (-656 *3))))) +(-10 -7 (-15 -3803 ((-3 |#2| "failed") |#2|)) (-15 -2250 ((-754) |#2|)) (-15 -4082 (|#2| |#2| |#2|))) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2834 (((-1152) $) 10)) (-1477 (((-842) $) 17)) (-4279 (((-627 (-1157)) $) 12)) (-2292 (((-111) $ $) 15))) +(((-180) (-13 (-1076) (-10 -8 (-15 -2834 ((-1152) $)) (-15 -4279 ((-627 (-1157)) $))))) (T -180)) +((-2834 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-180)))) (-4279 (*1 *2 *1) (-12 (-5 *2 (-627 (-1157))) (-5 *1 (-180))))) +(-13 (-1076) (-10 -8 (-15 -2834 ((-1152) $)) (-15 -4279 ((-627 (-1157)) $)))) +((-1465 (((-111) $ $) NIL)) (-7 (($) 8 T CONST)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-8 (($) 7 T CONST)) (-1477 (((-842) $) 14)) (-9 (($) 6 T CONST)) (-2292 (((-111) $ $) 10))) +(((-181) (-13 (-1076) (-10 -8 (-15 -9 ($) -3488) (-15 -8 ($) -3488) (-15 -7 ($) -3488)))) (T -181)) +((-9 (*1 *1) (-5 *1 (-181))) (-8 (*1 *1) (-5 *1 (-181))) (-7 (*1 *1) (-5 *1 (-181)))) +(-13 (-1076) (-10 -8 (-15 -9 ($) -3488) (-15 -8 ($) -3488) (-15 -7 ($) -3488))) +((-1465 (((-111) $ $) NIL)) (-3112 (((-498) $) 8)) (-1595 (((-1134) $) NIL)) (-3342 (((-181) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 14)) (-2926 (((-1096) $) NIL)) (-2292 (((-111) $ $) 11))) +(((-182) (-13 (-1076) (-10 -8 (-15 -3112 ((-498) $)) (-15 -3342 ((-181) $)) (-15 -2926 ((-1096) $))))) (T -182)) +((-3112 (*1 *2 *1) (-12 (-5 *2 (-498)) (-5 *1 (-182)))) (-3342 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-182)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-182))))) +(-13 (-1076) (-10 -8 (-15 -3112 ((-498) $)) (-15 -3342 ((-181) $)) (-15 -2926 ((-1096) $)))) +((-2085 ((|#2| |#2|) 28)) (-3802 (((-111) |#2|) 19)) (-1749 (((-310 |#1|) |#2|) 12)) (-1759 (((-310 |#1|) |#2|) 14)) (-3472 ((|#2| |#2| (-1152)) 68) ((|#2| |#2|) 69)) (-2433 (((-166 (-310 |#1|)) |#2|) 10)) (-3339 ((|#2| |#2| (-1152)) 65) ((|#2| |#2|) 59))) +(((-183 |#1| |#2|) (-10 -7 (-15 -3472 (|#2| |#2|)) (-15 -3472 (|#2| |#2| (-1152))) (-15 -3339 (|#2| |#2|)) (-15 -3339 (|#2| |#2| (-1152))) (-15 -1749 ((-310 |#1|) |#2|)) (-15 -1759 ((-310 |#1|) |#2|)) (-15 -3802 ((-111) |#2|)) (-15 -2085 (|#2| |#2|)) (-15 -2433 ((-166 (-310 |#1|)) |#2|))) (-13 (-544) (-830) (-1017 (-552))) (-13 (-27) (-1174) (-424 (-166 |#1|)))) (T -183)) +((-2433 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-166 (-310 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 (-166 *4)))))) (-2085 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-830) (-1017 (-552)))) (-5 *1 (-183 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 (-166 *3)))))) (-3802 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-111)) (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 (-166 *4)))))) (-1759 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-310 *4)) (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 (-166 *4)))))) (-1749 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-310 *4)) (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 (-166 *4)))))) (-3339 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-5 *1 (-183 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 (-166 *4)))))) (-3339 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-830) (-1017 (-552)))) (-5 *1 (-183 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 (-166 *3)))))) (-3472 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-5 *1 (-183 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 (-166 *4)))))) (-3472 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-830) (-1017 (-552)))) (-5 *1 (-183 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 (-166 *3))))))) +(-10 -7 (-15 -3472 (|#2| |#2|)) (-15 -3472 (|#2| |#2| (-1152))) (-15 -3339 (|#2| |#2|)) (-15 -3339 (|#2| |#2| (-1152))) (-15 -1749 ((-310 |#1|) |#2|)) (-15 -1759 ((-310 |#1|) |#2|)) (-15 -3802 ((-111) |#2|)) (-15 -2085 (|#2| |#2|)) (-15 -2433 ((-166 (-310 |#1|)) |#2|))) +((-2824 (((-1235 (-671 (-931 |#1|))) (-1235 (-671 |#1|))) 24)) (-1477 (((-1235 (-671 (-401 (-931 |#1|)))) (-1235 (-671 |#1|))) 33))) +(((-184 |#1|) (-10 -7 (-15 -2824 ((-1235 (-671 (-931 |#1|))) (-1235 (-671 |#1|)))) (-15 -1477 ((-1235 (-671 (-401 (-931 |#1|)))) (-1235 (-671 |#1|))))) (-169)) (T -184)) +((-1477 (*1 *2 *3) (-12 (-5 *3 (-1235 (-671 *4))) (-4 *4 (-169)) (-5 *2 (-1235 (-671 (-401 (-931 *4))))) (-5 *1 (-184 *4)))) (-2824 (*1 *2 *3) (-12 (-5 *3 (-1235 (-671 *4))) (-4 *4 (-169)) (-5 *2 (-1235 (-671 (-931 *4)))) (-5 *1 (-184 *4))))) +(-10 -7 (-15 -2824 ((-1235 (-671 (-931 |#1|))) (-1235 (-671 |#1|)))) (-15 -1477 ((-1235 (-671 (-401 (-931 |#1|)))) (-1235 (-671 |#1|))))) +((-2086 (((-1154 (-401 (-552))) (-1154 (-401 (-552))) (-1154 (-401 (-552)))) 66)) (-4246 (((-1154 (-401 (-552))) (-627 (-552)) (-627 (-552))) 75)) (-3441 (((-1154 (-401 (-552))) (-552)) 40)) (-1327 (((-1154 (-401 (-552))) (-552)) 52)) (-3321 (((-401 (-552)) (-1154 (-401 (-552)))) 62)) (-3165 (((-1154 (-401 (-552))) (-552)) 32)) (-3211 (((-1154 (-401 (-552))) (-552)) 48)) (-1511 (((-1154 (-401 (-552))) (-552)) 46)) (-3442 (((-1154 (-401 (-552))) (-1154 (-401 (-552))) (-1154 (-401 (-552)))) 60)) (-2890 (((-1154 (-401 (-552))) (-552)) 25)) (-1698 (((-401 (-552)) (-1154 (-401 (-552))) (-1154 (-401 (-552)))) 64)) (-1746 (((-1154 (-401 (-552))) (-552)) 30)) (-2052 (((-1154 (-401 (-552))) (-627 (-552))) 72))) +(((-185) (-10 -7 (-15 -2890 ((-1154 (-401 (-552))) (-552))) (-15 -3441 ((-1154 (-401 (-552))) (-552))) (-15 -3165 ((-1154 (-401 (-552))) (-552))) (-15 -1746 ((-1154 (-401 (-552))) (-552))) (-15 -1511 ((-1154 (-401 (-552))) (-552))) (-15 -3211 ((-1154 (-401 (-552))) (-552))) (-15 -1327 ((-1154 (-401 (-552))) (-552))) (-15 -1698 ((-401 (-552)) (-1154 (-401 (-552))) (-1154 (-401 (-552))))) (-15 -3442 ((-1154 (-401 (-552))) (-1154 (-401 (-552))) (-1154 (-401 (-552))))) (-15 -3321 ((-401 (-552)) (-1154 (-401 (-552))))) (-15 -2086 ((-1154 (-401 (-552))) (-1154 (-401 (-552))) (-1154 (-401 (-552))))) (-15 -2052 ((-1154 (-401 (-552))) (-627 (-552)))) (-15 -4246 ((-1154 (-401 (-552))) (-627 (-552)) (-627 (-552)))))) (T -185)) +((-4246 (*1 *2 *3 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)))) (-2052 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)))) (-2086 (*1 *2 *2 *2) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-1154 (-401 (-552)))) (-5 *2 (-401 (-552))) (-5 *1 (-185)))) (-3442 (*1 *2 *2 *2) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)))) (-1698 (*1 *2 *3 *3) (-12 (-5 *3 (-1154 (-401 (-552)))) (-5 *2 (-401 (-552))) (-5 *1 (-185)))) (-1327 (*1 *2 *3) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) (-3211 (*1 *2 *3) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) (-1511 (*1 *2 *3) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) (-1746 (*1 *2 *3) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) (-3165 (*1 *2 *3) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) (-3441 (*1 *2 *3) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) (-2890 (*1 *2 *3) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552))))) +(-10 -7 (-15 -2890 ((-1154 (-401 (-552))) (-552))) (-15 -3441 ((-1154 (-401 (-552))) (-552))) (-15 -3165 ((-1154 (-401 (-552))) (-552))) (-15 -1746 ((-1154 (-401 (-552))) (-552))) (-15 -1511 ((-1154 (-401 (-552))) (-552))) (-15 -3211 ((-1154 (-401 (-552))) (-552))) (-15 -1327 ((-1154 (-401 (-552))) (-552))) (-15 -1698 ((-401 (-552)) (-1154 (-401 (-552))) (-1154 (-401 (-552))))) (-15 -3442 ((-1154 (-401 (-552))) (-1154 (-401 (-552))) (-1154 (-401 (-552))))) (-15 -3321 ((-401 (-552)) (-1154 (-401 (-552))))) (-15 -2086 ((-1154 (-401 (-552))) (-1154 (-401 (-552))) (-1154 (-401 (-552))))) (-15 -2052 ((-1154 (-401 (-552))) (-627 (-552)))) (-15 -4246 ((-1154 (-401 (-552))) (-627 (-552)) (-627 (-552))))) +((-2657 (((-412 (-1148 (-552))) (-552)) 28)) (-1773 (((-627 (-1148 (-552))) (-552)) 23)) (-3224 (((-1148 (-552)) (-552)) 21))) +(((-186) (-10 -7 (-15 -1773 ((-627 (-1148 (-552))) (-552))) (-15 -3224 ((-1148 (-552)) (-552))) (-15 -2657 ((-412 (-1148 (-552))) (-552))))) (T -186)) +((-2657 (*1 *2 *3) (-12 (-5 *2 (-412 (-1148 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))) (-3224 (*1 *2 *3) (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-186)) (-5 *3 (-552)))) (-1773 (*1 *2 *3) (-12 (-5 *2 (-627 (-1148 (-552)))) (-5 *1 (-186)) (-5 *3 (-552))))) +(-10 -7 (-15 -1773 ((-627 (-1148 (-552))) (-552))) (-15 -3224 ((-1148 (-552)) (-552))) (-15 -2657 ((-412 (-1148 (-552))) (-552)))) +((-1870 (((-1132 (-220)) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 105)) (-2218 (((-627 (-1134)) (-1132 (-220))) NIL)) (-1318 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 81)) (-1444 (((-627 (-220)) (-310 (-220)) (-1152) (-1070 (-823 (-220)))) NIL)) (-2445 (((-627 (-1134)) (-627 (-220))) NIL)) (-1798 (((-220) (-1070 (-823 (-220)))) 24)) (-1968 (((-220) (-1070 (-823 (-220)))) 25)) (-2825 (((-373) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 98)) (-3058 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 42)) (-2095 (((-1134) (-220)) NIL)) (-2337 (((-1134) (-627 (-1134))) 20)) (-1339 (((-1014) (-1152) (-1152) (-1014)) 13))) +(((-187) (-10 -7 (-15 -1318 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3058 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1798 ((-220) (-1070 (-823 (-220))))) (-15 -1968 ((-220) (-1070 (-823 (-220))))) (-15 -2825 ((-373) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1444 ((-627 (-220)) (-310 (-220)) (-1152) (-1070 (-823 (-220))))) (-15 -1870 ((-1132 (-220)) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2095 ((-1134) (-220))) (-15 -2445 ((-627 (-1134)) (-627 (-220)))) (-15 -2218 ((-627 (-1134)) (-1132 (-220)))) (-15 -2337 ((-1134) (-627 (-1134)))) (-15 -1339 ((-1014) (-1152) (-1152) (-1014))))) (T -187)) +((-1339 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1014)) (-5 *3 (-1152)) (-5 *1 (-187)))) (-2337 (*1 *2 *3) (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-1134)) (-5 *1 (-187)))) (-2218 (*1 *2 *3) (-12 (-5 *3 (-1132 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-187)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-627 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-187)))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1134)) (-5 *1 (-187)))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-1132 (-220))) (-5 *1 (-187)))) (-1444 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-220))) (-5 *4 (-1152)) (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-627 (-220))) (-5 *1 (-187)))) (-2825 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-373)) (-5 *1 (-187)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-187)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-187)))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-187)))) (-1318 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-187))))) +(-10 -7 (-15 -1318 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3058 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1798 ((-220) (-1070 (-823 (-220))))) (-15 -1968 ((-220) (-1070 (-823 (-220))))) (-15 -2825 ((-373) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1444 ((-627 (-220)) (-310 (-220)) (-1152) (-1070 (-823 (-220))))) (-15 -1870 ((-1132 (-220)) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2095 ((-1134) (-220))) (-15 -2445 ((-627 (-1134)) (-627 (-220)))) (-15 -2218 ((-627 (-1134)) (-1132 (-220)))) (-15 -2337 ((-1134) (-627 (-1134)))) (-15 -1339 ((-1014) (-1152) (-1152) (-1014)))) +((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 55) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 32) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) +(((-188) (-770)) (T -188)) +NIL +(-770) +((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 60) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 41) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) +(((-189) (-770)) (T -189)) +NIL +(-770) +((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 69) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 40) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) +(((-190) (-770)) (T -190)) +NIL +(-770) +((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 56) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 34) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) +(((-191) (-770)) (T -191)) +NIL +(-770) +((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 67) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 38) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) +(((-192) (-770)) (T -192)) +NIL +(-770) +((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 73) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 36) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) +(((-193) (-770)) (T -193)) +NIL +(-770) +((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 80) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 44) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) +(((-194) (-770)) (T -194)) +NIL +(-770) +((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 70) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 40) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) +(((-195) (-770)) (T -195)) +NIL +(-770) +((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 66)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 32)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) +(((-196) (-770)) (T -196)) +NIL +(-770) +((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 63)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 34)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) +(((-197) (-770)) (T -197)) +NIL +(-770) +((-1465 (((-111) $ $) NIL)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 90) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 78) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) +(((-198) (-770)) (T -198)) +NIL +(-770) +((-3793 (((-3 (-2 (|:| -3354 (-113)) (|:| |w| (-220))) "failed") (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 85)) (-2276 (((-552) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 42)) (-2488 (((-3 (-627 (-220)) "failed") (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 73))) +(((-199) (-10 -7 (-15 -3793 ((-3 (-2 (|:| -3354 (-113)) (|:| |w| (-220))) "failed") (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2488 ((-3 (-627 (-220)) "failed") (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2276 ((-552) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (T -199)) +((-2276 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-552)) (-5 *1 (-199)))) (-2488 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-627 (-220))) (-5 *1 (-199)))) (-3793 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| -3354 (-113)) (|:| |w| (-220)))) (-5 *1 (-199))))) +(-10 -7 (-15 -3793 ((-3 (-2 (|:| -3354 (-113)) (|:| |w| (-220))) "failed") (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2488 ((-3 (-627 (-220)) "failed") (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2276 ((-552) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) +((-2194 (((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 39)) (-3327 (((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 130)) (-1423 (((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-671 (-310 (-220)))) 89)) (-3849 (((-373) (-671 (-310 (-220)))) 113)) (-4220 (((-671 (-310 (-220))) (-1235 (-310 (-220))) (-627 (-1152))) 110)) (-3544 (((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 30)) (-2985 (((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 43)) (-3321 (((-671 (-310 (-220))) (-671 (-310 (-220))) (-627 (-1152)) (-1235 (-310 (-220)))) 102)) (-2133 (((-373) (-373) (-627 (-373))) 107) (((-373) (-373) (-373)) 105)) (-1785 (((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 36))) +(((-200) (-10 -7 (-15 -2133 ((-373) (-373) (-373))) (-15 -2133 ((-373) (-373) (-627 (-373)))) (-15 -3849 ((-373) (-671 (-310 (-220))))) (-15 -4220 ((-671 (-310 (-220))) (-1235 (-310 (-220))) (-627 (-1152)))) (-15 -3321 ((-671 (-310 (-220))) (-671 (-310 (-220))) (-627 (-1152)) (-1235 (-310 (-220))))) (-15 -1423 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-671 (-310 (-220))))) (-15 -3327 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2194 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2985 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1785 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3544 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (T -200)) +((-3544 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-373)) (-5 *1 (-200)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-373)) (-5 *1 (-200)))) (-2985 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-373)) (-5 *1 (-200)))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-373)) (-5 *1 (-200)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) (-5 *1 (-200)))) (-1423 (*1 *2 *3) (-12 (-5 *3 (-671 (-310 (-220)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) (-5 *1 (-200)))) (-3321 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-671 (-310 (-220)))) (-5 *3 (-627 (-1152))) (-5 *4 (-1235 (-310 (-220)))) (-5 *1 (-200)))) (-4220 (*1 *2 *3 *4) (-12 (-5 *3 (-1235 (-310 (-220)))) (-5 *4 (-627 (-1152))) (-5 *2 (-671 (-310 (-220)))) (-5 *1 (-200)))) (-3849 (*1 *2 *3) (-12 (-5 *3 (-671 (-310 (-220)))) (-5 *2 (-373)) (-5 *1 (-200)))) (-2133 (*1 *2 *2 *3) (-12 (-5 *3 (-627 (-373))) (-5 *2 (-373)) (-5 *1 (-200)))) (-2133 (*1 *2 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-200))))) +(-10 -7 (-15 -2133 ((-373) (-373) (-373))) (-15 -2133 ((-373) (-373) (-627 (-373)))) (-15 -3849 ((-373) (-671 (-310 (-220))))) (-15 -4220 ((-671 (-310 (-220))) (-1235 (-310 (-220))) (-627 (-1152)))) (-15 -3321 ((-671 (-310 (-220))) (-671 (-310 (-220))) (-627 (-1152)) (-1235 (-310 (-220))))) (-15 -1423 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-671 (-310 (-220))))) (-15 -3327 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2194 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2985 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1785 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3544 ((-373) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) +((-1465 (((-111) $ $) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 41)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2308 (((-1014) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 64)) (-2292 (((-111) $ $) NIL))) +(((-201) (-783)) (T -201)) +NIL +(-783) +((-1465 (((-111) $ $) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 41)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2308 (((-1014) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 62)) (-2292 (((-111) $ $) NIL))) +(((-202) (-783)) (T -202)) +NIL +(-783) +((-1465 (((-111) $ $) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 40)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2308 (((-1014) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 66)) (-2292 (((-111) $ $) NIL))) +(((-203) (-783)) (T -203)) +NIL +(-783) +((-1465 (((-111) $ $) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 46)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2308 (((-1014) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 75)) (-2292 (((-111) $ $) NIL))) +(((-204) (-783)) (T -204)) +NIL +(-783) +((-1671 (((-627 (-1152)) (-1152) (-754)) 23)) (-3636 (((-310 (-220)) (-310 (-220))) 31)) (-3331 (((-111) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) 74)) (-2302 (((-111) (-220) (-220) (-627 (-310 (-220)))) 45))) +(((-205) (-10 -7 (-15 -1671 ((-627 (-1152)) (-1152) (-754))) (-15 -3636 ((-310 (-220)) (-310 (-220)))) (-15 -2302 ((-111) (-220) (-220) (-627 (-310 (-220))))) (-15 -3331 ((-111) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220))))))) (T -205)) +((-3331 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) (-5 *2 (-111)) (-5 *1 (-205)))) (-2302 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-627 (-310 (-220)))) (-5 *3 (-220)) (-5 *2 (-111)) (-5 *1 (-205)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-310 (-220))) (-5 *1 (-205)))) (-1671 (*1 *2 *3 *4) (-12 (-5 *4 (-754)) (-5 *2 (-627 (-1152))) (-5 *1 (-205)) (-5 *3 (-1152))))) +(-10 -7 (-15 -1671 ((-627 (-1152)) (-1152) (-754))) (-15 -3636 ((-310 (-220)) (-310 (-220)))) (-15 -2302 ((-111) (-220) (-220) (-627 (-310 (-220))))) (-15 -3331 ((-111) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))))) +((-1465 (((-111) $ $) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) 26)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-3615 (((-1014) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) 57)) (-2292 (((-111) $ $) NIL))) +(((-206) (-874)) (T -206)) +NIL +(-874) +((-1465 (((-111) $ $) NIL)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) 21)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-3615 (((-1014) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) NIL)) (-2292 (((-111) $ $) NIL))) +(((-207) (-874)) (T -207)) +NIL +(-874) +((-1465 (((-111) $ $) NIL)) (-3421 ((|#2| $ (-754) |#2|) 11)) (-3413 ((|#2| $ (-754)) 10)) (-2655 (($) 8)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 18)) (-2292 (((-111) $ $) 13))) +(((-208 |#1| |#2|) (-13 (-1076) (-10 -8 (-15 -2655 ($)) (-15 -3413 (|#2| $ (-754))) (-15 -3421 (|#2| $ (-754) |#2|)))) (-900) (-1076)) (T -208)) +((-2655 (*1 *1) (-12 (-5 *1 (-208 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1076)))) (-3413 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *2 (-1076)) (-5 *1 (-208 *4 *2)) (-14 *4 (-900)))) (-3421 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-208 *4 *2)) (-14 *4 (-900)) (-4 *2 (-1076))))) +(-13 (-1076) (-10 -8 (-15 -2655 ($)) (-15 -3413 (|#2| $ (-754))) (-15 -3421 (|#2| $ (-754) |#2|)))) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-4103 (((-1240) $) 36) (((-1240) $ (-900) (-900)) 38)) (-1985 (($ $ (-968)) 19) (((-240 (-1134)) $ (-1152)) 15)) (-4291 (((-1240) $) 34)) (-1477 (((-842) $) 31) (($ (-627 |#1|)) 8)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $ $) 27)) (-2384 (($ $ $) 22))) +(((-209 |#1|) (-13 (-1076) (-10 -8 (-15 -1985 ($ $ (-968))) (-15 -1985 ((-240 (-1134)) $ (-1152))) (-15 -2384 ($ $ $)) (-15 -2396 ($ $ $)) (-15 -1477 ($ (-627 |#1|))) (-15 -4291 ((-1240) $)) (-15 -4103 ((-1240) $)) (-15 -4103 ((-1240) $ (-900) (-900))))) (-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) (-15 -4103 ((-1240) $))))) (T -209)) +((-1985 (*1 *1 *1 *2) (-12 (-5 *2 (-968)) (-5 *1 (-209 *3)) (-4 *3 (-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) (-15 -4103 ((-1240) $))))))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-240 (-1134))) (-5 *1 (-209 *4)) (-4 *4 (-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ *3)) (-15 -4291 ((-1240) $)) (-15 -4103 ((-1240) $))))))) (-2384 (*1 *1 *1 *1) (-12 (-5 *1 (-209 *2)) (-4 *2 (-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) (-15 -4103 ((-1240) $))))))) (-2396 (*1 *1 *1 *1) (-12 (-5 *1 (-209 *2)) (-4 *2 (-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) (-15 -4103 ((-1240) $))))))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) (-15 -4103 ((-1240) $))))) (-5 *1 (-209 *3)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-209 *3)) (-4 *3 (-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 (*2 $)) (-15 -4103 (*2 $))))))) (-4103 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-209 *3)) (-4 *3 (-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 (*2 $)) (-15 -4103 (*2 $))))))) (-4103 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1240)) (-5 *1 (-209 *4)) (-4 *4 (-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 (*2 $)) (-15 -4103 (*2 $)))))))) +(-13 (-1076) (-10 -8 (-15 -1985 ($ $ (-968))) (-15 -1985 ((-240 (-1134)) $ (-1152))) (-15 -2384 ($ $ $)) (-15 -2396 ($ $ $)) (-15 -1477 ($ (-627 |#1|))) (-15 -4291 ((-1240) $)) (-15 -4103 ((-1240) $)) (-15 -4103 ((-1240) $ (-900) (-900))))) +((-1987 ((|#2| |#4| (-1 |#2| |#2|)) 46))) +(((-210 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1987 (|#2| |#4| (-1 |#2| |#2|)))) (-357) (-1211 |#1|) (-1211 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -210)) +((-1987 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-357)) (-4 *6 (-1211 (-401 *2))) (-4 *2 (-1211 *5)) (-5 *1 (-210 *5 *2 *6 *3)) (-4 *3 (-336 *5 *2 *6))))) +(-10 -7 (-15 -1987 (|#2| |#4| (-1 |#2| |#2|)))) +((-2001 ((|#2| |#2| (-754) |#2|) 42)) (-3158 ((|#2| |#2| (-754) |#2|) 38)) (-3787 (((-627 |#2|) (-627 (-2 (|:| |deg| (-754)) (|:| -1451 |#2|)))) 57)) (-4340 (((-627 (-2 (|:| |deg| (-754)) (|:| -1451 |#2|))) |#2|) 53)) (-2300 (((-111) |#2|) 50)) (-1685 (((-412 |#2|) |#2|) 77)) (-1727 (((-412 |#2|) |#2|) 76)) (-4207 ((|#2| |#2| (-754) |#2|) 36)) (-3720 (((-2 (|:| |cont| |#1|) (|:| -2101 (-627 (-2 (|:| |irr| |#2|) (|:| -3594 (-552)))))) |#2| (-111)) 69))) +(((-211 |#1| |#2|) (-10 -7 (-15 -1727 ((-412 |#2|) |#2|)) (-15 -1685 ((-412 |#2|) |#2|)) (-15 -3720 ((-2 (|:| |cont| |#1|) (|:| -2101 (-627 (-2 (|:| |irr| |#2|) (|:| -3594 (-552)))))) |#2| (-111))) (-15 -4340 ((-627 (-2 (|:| |deg| (-754)) (|:| -1451 |#2|))) |#2|)) (-15 -3787 ((-627 |#2|) (-627 (-2 (|:| |deg| (-754)) (|:| -1451 |#2|))))) (-15 -4207 (|#2| |#2| (-754) |#2|)) (-15 -3158 (|#2| |#2| (-754) |#2|)) (-15 -2001 (|#2| |#2| (-754) |#2|)) (-15 -2300 ((-111) |#2|))) (-343) (-1211 |#1|)) (T -211)) +((-2300 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-111)) (-5 *1 (-211 *4 *3)) (-4 *3 (-1211 *4)))) (-2001 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-754)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) (-4 *2 (-1211 *4)))) (-3158 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-754)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) (-4 *2 (-1211 *4)))) (-4207 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-754)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) (-4 *2 (-1211 *4)))) (-3787 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| |deg| (-754)) (|:| -1451 *5)))) (-4 *5 (-1211 *4)) (-4 *4 (-343)) (-5 *2 (-627 *5)) (-5 *1 (-211 *4 *5)))) (-4340 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-627 (-2 (|:| |deg| (-754)) (|:| -1451 *3)))) (-5 *1 (-211 *4 *3)) (-4 *3 (-1211 *4)))) (-3720 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-343)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2101 (-627 (-2 (|:| |irr| *3) (|:| -3594 (-552))))))) (-5 *1 (-211 *5 *3)) (-4 *3 (-1211 *5)))) (-1685 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-412 *3)) (-5 *1 (-211 *4 *3)) (-4 *3 (-1211 *4)))) (-1727 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-412 *3)) (-5 *1 (-211 *4 *3)) (-4 *3 (-1211 *4))))) +(-10 -7 (-15 -1727 ((-412 |#2|) |#2|)) (-15 -1685 ((-412 |#2|) |#2|)) (-15 -3720 ((-2 (|:| |cont| |#1|) (|:| -2101 (-627 (-2 (|:| |irr| |#2|) (|:| -3594 (-552)))))) |#2| (-111))) (-15 -4340 ((-627 (-2 (|:| |deg| (-754)) (|:| -1451 |#2|))) |#2|)) (-15 -3787 ((-627 |#2|) (-627 (-2 (|:| |deg| (-754)) (|:| -1451 |#2|))))) (-15 -4207 (|#2| |#2| (-754) |#2|)) (-15 -3158 (|#2| |#2| (-754) |#2|)) (-15 -2001 (|#2| |#2| (-754) |#2|)) (-15 -2300 ((-111) |#2|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3471 (((-552) $) NIL (|has| (-552) (-301)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL (|has| (-552) (-803)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-1152) "failed") $) NIL (|has| (-552) (-1017 (-1152)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-552) (-1017 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-552) (-1017 (-552))))) (-1703 (((-552) $) NIL) (((-1152) $) NIL (|has| (-552) (-1017 (-1152)))) (((-401 (-552)) $) NIL (|has| (-552) (-1017 (-552)))) (((-552) $) NIL (|has| (-552) (-1017 (-552))))) (-2813 (($ $ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| (-552) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| (-552) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-671 (-552)) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-552) (-537)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2983 (((-111) $) NIL (|has| (-552) (-803)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| (-552) (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| (-552) (-865 (-373))))) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL)) (-2918 (((-552) $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| (-552) (-1127)))) (-1508 (((-111) $) NIL (|has| (-552) (-803)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| (-552) (-830)))) (-3516 (($ (-1 (-552) (-552)) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-552) (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL (|has| (-552) (-301))) (((-401 (-552)) $) NIL)) (-2060 (((-552) $) NIL (|has| (-552) (-537)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3321 (($ $ (-627 (-552)) (-627 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-552) (-552)) NIL (|has| (-552) (-303 (-552)))) (($ $ (-288 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-627 (-288 (-552)))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-627 (-1152)) (-627 (-552))) NIL (|has| (-552) (-506 (-1152) (-552)))) (($ $ (-1152) (-552)) NIL (|has| (-552) (-506 (-1152) (-552))))) (-2718 (((-754) $) NIL)) (-1985 (($ $ (-552)) NIL (|has| (-552) (-280 (-552) (-552))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $) NIL (|has| (-552) (-228))) (($ $ (-754)) NIL (|has| (-552) (-228))) (($ $ (-1152)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1 (-552) (-552)) (-754)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-1583 (($ $) NIL)) (-2929 (((-552) $) NIL)) (-2054 (($ (-401 (-552))) 9)) (-3562 (((-871 (-552)) $) NIL (|has| (-552) (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| (-552) (-600 (-871 (-373))))) (((-528) $) NIL (|has| (-552) (-600 (-528)))) (((-373) $) NIL (|has| (-552) (-1001))) (((-220) $) NIL (|has| (-552) (-1001)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| (-552) (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) 8) (($ (-552)) NIL) (($ (-1152)) NIL (|has| (-552) (-1017 (-1152)))) (((-401 (-552)) $) NIL) (((-983 10) $) 10)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| (-552) (-888))) (|has| (-552) (-142))))) (-3995 (((-754)) NIL)) (-3796 (((-552) $) NIL (|has| (-552) (-537)))) (-3778 (((-111) $ $) NIL)) (-3329 (($ $) NIL (|has| (-552) (-803)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $) NIL (|has| (-552) (-228))) (($ $ (-754)) NIL (|has| (-552) (-228))) (($ $ (-1152)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1 (-552) (-552)) (-754)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2351 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2316 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2407 (($ $ $) NIL) (($ (-552) (-552)) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ (-552) $) NIL) (($ $ (-552)) NIL))) +(((-212) (-13 (-971 (-552)) (-10 -8 (-15 -1477 ((-401 (-552)) $)) (-15 -1477 ((-983 10) $)) (-15 -4328 ((-401 (-552)) $)) (-15 -2054 ($ (-401 (-552))))))) (T -212)) +((-1477 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-212)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-983 10)) (-5 *1 (-212)))) (-4328 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-212)))) (-2054 (*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-212))))) +(-13 (-971 (-552)) (-10 -8 (-15 -1477 ((-401 (-552)) $)) (-15 -1477 ((-983 10) $)) (-15 -4328 ((-401 (-552)) $)) (-15 -2054 ($ (-401 (-552)))))) +((-1465 (((-111) $ $) NIL)) (-4199 (((-1094) $) 13)) (-1595 (((-1134) $) NIL)) (-3134 (((-476) $) 10)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 25) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3122 (((-1111) $) 15)) (-2292 (((-111) $ $) NIL))) +(((-213) (-13 (-1059) (-10 -8 (-15 -3134 ((-476) $)) (-15 -4199 ((-1094) $)) (-15 -3122 ((-1111) $))))) (T -213)) +((-3134 (*1 *2 *1) (-12 (-5 *2 (-476)) (-5 *1 (-213)))) (-4199 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-213)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-213))))) +(-13 (-1059) (-10 -8 (-15 -3134 ((-476) $)) (-15 -4199 ((-1094) $)) (-15 -3122 ((-1111) $)))) +((-2747 (((-3 (|:| |f1| (-823 |#2|)) (|:| |f2| (-627 (-823 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1068 (-823 |#2|)) (-1134)) 28) (((-3 (|:| |f1| (-823 |#2|)) (|:| |f2| (-627 (-823 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1068 (-823 |#2|))) 24)) (-3649 (((-3 (|:| |f1| (-823 |#2|)) (|:| |f2| (-627 (-823 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1152) (-823 |#2|) (-823 |#2|) (-111)) 17))) +(((-214 |#1| |#2|) (-10 -7 (-15 -2747 ((-3 (|:| |f1| (-823 |#2|)) (|:| |f2| (-627 (-823 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1068 (-823 |#2|)))) (-15 -2747 ((-3 (|:| |f1| (-823 |#2|)) (|:| |f2| (-627 (-823 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1068 (-823 |#2|)) (-1134))) (-15 -3649 ((-3 (|:| |f1| (-823 |#2|)) (|:| |f2| (-627 (-823 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1152) (-823 |#2|) (-823 |#2|) (-111)))) (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552))) (-13 (-1174) (-938) (-29 |#1|))) (T -214)) +((-3649 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1152)) (-5 *6 (-111)) (-4 *7 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-4 *3 (-13 (-1174) (-938) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-823 *3)) (|:| |f2| (-627 (-823 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *7 *3)) (-5 *5 (-823 *3)))) (-2747 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1068 (-823 *3))) (-5 *5 (-1134)) (-4 *3 (-13 (-1174) (-938) (-29 *6))) (-4 *6 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-3 (|:| |f1| (-823 *3)) (|:| |f2| (-627 (-823 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *6 *3)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *4 (-1068 (-823 *3))) (-4 *3 (-13 (-1174) (-938) (-29 *5))) (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-3 (|:| |f1| (-823 *3)) (|:| |f2| (-627 (-823 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-214 *5 *3))))) +(-10 -7 (-15 -2747 ((-3 (|:| |f1| (-823 |#2|)) (|:| |f2| (-627 (-823 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1068 (-823 |#2|)))) (-15 -2747 ((-3 (|:| |f1| (-823 |#2|)) (|:| |f2| (-627 (-823 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1068 (-823 |#2|)) (-1134))) (-15 -3649 ((-3 (|:| |f1| (-823 |#2|)) (|:| |f2| (-627 (-823 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1152) (-823 |#2|) (-823 |#2|) (-111)))) +((-2747 (((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-401 (-931 |#1|)))) (-1134)) 46) (((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-401 (-931 |#1|))))) 43) (((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-310 |#1|))) (-1134)) 47) (((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-310 |#1|)))) 20))) +(((-215 |#1|) (-10 -7 (-15 -2747 ((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-310 |#1|))))) (-15 -2747 ((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-310 |#1|))) (-1134))) (-15 -2747 ((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-401 (-931 |#1|)))))) (-15 -2747 ((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-401 (-931 |#1|)))) (-1134)))) (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (T -215)) +((-2747 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1068 (-823 (-401 (-931 *6))))) (-5 *5 (-1134)) (-5 *3 (-401 (-931 *6))) (-4 *6 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-3 (|:| |f1| (-823 (-310 *6))) (|:| |f2| (-627 (-823 (-310 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *6)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *4 (-1068 (-823 (-401 (-931 *5))))) (-5 *3 (-401 (-931 *5))) (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-3 (|:| |f1| (-823 (-310 *5))) (|:| |f2| (-627 (-823 (-310 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *5)))) (-2747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-401 (-931 *6))) (-5 *4 (-1068 (-823 (-310 *6)))) (-5 *5 (-1134)) (-4 *6 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-3 (|:| |f1| (-823 (-310 *6))) (|:| |f2| (-627 (-823 (-310 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *6)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1068 (-823 (-310 *5)))) (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-3 (|:| |f1| (-823 (-310 *5))) (|:| |f2| (-627 (-823 (-310 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-215 *5))))) +(-10 -7 (-15 -2747 ((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-310 |#1|))))) (-15 -2747 ((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-310 |#1|))) (-1134))) (-15 -2747 ((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-401 (-931 |#1|)))))) (-15 -2747 ((-3 (|:| |f1| (-823 (-310 |#1|))) (|:| |f2| (-627 (-823 (-310 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-401 (-931 |#1|)) (-1068 (-823 (-401 (-931 |#1|)))) (-1134)))) +((-2091 (((-2 (|:| -3144 (-1148 |#1|)) (|:| |deg| (-900))) (-1148 |#1|)) 21)) (-2496 (((-627 (-310 |#2|)) (-310 |#2|) (-900)) 42))) +(((-216 |#1| |#2|) (-10 -7 (-15 -2091 ((-2 (|:| -3144 (-1148 |#1|)) (|:| |deg| (-900))) (-1148 |#1|))) (-15 -2496 ((-627 (-310 |#2|)) (-310 |#2|) (-900)))) (-1028) (-13 (-544) (-830))) (T -216)) +((-2496 (*1 *2 *3 *4) (-12 (-5 *4 (-900)) (-4 *6 (-13 (-544) (-830))) (-5 *2 (-627 (-310 *6))) (-5 *1 (-216 *5 *6)) (-5 *3 (-310 *6)) (-4 *5 (-1028)))) (-2091 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-5 *2 (-2 (|:| -3144 (-1148 *4)) (|:| |deg| (-900)))) (-5 *1 (-216 *4 *5)) (-5 *3 (-1148 *4)) (-4 *5 (-13 (-544) (-830)))))) +(-10 -7 (-15 -2091 ((-2 (|:| -3144 (-1148 |#1|)) (|:| |deg| (-900))) (-1148 |#1|))) (-15 -2496 ((-627 (-310 |#2|)) (-310 |#2|) (-900)))) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1416 ((|#1| $) NIL)) (-2240 ((|#1| $) 25)) (-4031 (((-111) $ (-754)) NIL)) (-3887 (($) NIL T CONST)) (-3022 (($ $) NIL)) (-2519 (($ $) 31)) (-3468 ((|#1| |#1| $) NIL)) (-3846 ((|#1| $) NIL)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-3593 (((-754) $) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-4165 ((|#1| $) NIL)) (-3271 ((|#1| |#1| $) 28)) (-3510 ((|#1| |#1| $) 30)) (-3954 (($ |#1| $) NIL)) (-3476 (((-754) $) 27)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1412 ((|#1| $) NIL)) (-1787 ((|#1| $) 26)) (-3336 ((|#1| $) 24)) (-4133 ((|#1| $) NIL)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1549 ((|#1| |#1| $) NIL)) (-1275 (((-111) $) 9)) (-2373 (($) NIL)) (-4234 ((|#1| $) NIL)) (-3693 (($) NIL) (($ (-627 |#1|)) 16)) (-4170 (((-754) $) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-1849 ((|#1| $) 13)) (-2577 (($ (-627 |#1|)) NIL)) (-2905 ((|#1| $) NIL)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-217 |#1|) (-13 (-248 |#1|) (-10 -8 (-15 -3693 ($ (-627 |#1|))))) (-1076)) (T -217)) +((-3693 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-217 *3))))) +(-13 (-248 |#1|) (-10 -8 (-15 -3693 ($ (-627 |#1|))))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1691 (($ (-310 |#1|)) 23)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-3221 (((-111) $) NIL)) (-4039 (((-3 (-310 |#1|) "failed") $) NIL)) (-1703 (((-310 |#1|) $) NIL)) (-2014 (($ $) 31)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-3516 (($ (-1 (-310 |#1|) (-310 |#1|)) $) NIL)) (-1993 (((-310 |#1|) $) NIL)) (-3733 (($ $) 30)) (-1595 (((-1134) $) NIL)) (-2125 (((-111) $) NIL)) (-1498 (((-1096) $) NIL)) (-2220 (($ (-754)) NIL)) (-3241 (($ $) 32)) (-3567 (((-552) $) NIL)) (-1477 (((-842) $) 57) (($ (-552)) NIL) (($ (-310 |#1|)) NIL)) (-1889 (((-310 |#1|) $ $) NIL)) (-3995 (((-754)) NIL)) (-1922 (($) 25 T CONST)) (-1933 (($) 50 T CONST)) (-2292 (((-111) $ $) 28)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 19)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 24) (($ (-310 |#1|) $) 18))) +(((-218 |#1| |#2|) (-13 (-604 (-310 |#1|)) (-1017 (-310 |#1|)) (-10 -8 (-15 -1993 ((-310 |#1|) $)) (-15 -3733 ($ $)) (-15 -2014 ($ $)) (-15 -1889 ((-310 |#1|) $ $)) (-15 -2220 ($ (-754))) (-15 -2125 ((-111) $)) (-15 -3221 ((-111) $)) (-15 -3567 ((-552) $)) (-15 -3516 ($ (-1 (-310 |#1|) (-310 |#1|)) $)) (-15 -1691 ($ (-310 |#1|))) (-15 -3241 ($ $)))) (-13 (-1028) (-830)) (-627 (-1152))) (T -218)) +((-1993 (*1 *2 *1) (-12 (-5 *2 (-310 *3)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1028) (-830))) (-14 *4 (-627 (-1152))))) (-3733 (*1 *1 *1) (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1028) (-830))) (-14 *3 (-627 (-1152))))) (-2014 (*1 *1 *1) (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1028) (-830))) (-14 *3 (-627 (-1152))))) (-1889 (*1 *2 *1 *1) (-12 (-5 *2 (-310 *3)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1028) (-830))) (-14 *4 (-627 (-1152))))) (-2220 (*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1028) (-830))) (-14 *4 (-627 (-1152))))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1028) (-830))) (-14 *4 (-627 (-1152))))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1028) (-830))) (-14 *4 (-627 (-1152))))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1028) (-830))) (-14 *4 (-627 (-1152))))) (-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-310 *3) (-310 *3))) (-4 *3 (-13 (-1028) (-830))) (-5 *1 (-218 *3 *4)) (-14 *4 (-627 (-1152))))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-310 *3)) (-4 *3 (-13 (-1028) (-830))) (-5 *1 (-218 *3 *4)) (-14 *4 (-627 (-1152))))) (-3241 (*1 *1 *1) (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1028) (-830))) (-14 *3 (-627 (-1152)))))) +(-13 (-604 (-310 |#1|)) (-1017 (-310 |#1|)) (-10 -8 (-15 -1993 ((-310 |#1|) $)) (-15 -3733 ($ $)) (-15 -2014 ($ $)) (-15 -1889 ((-310 |#1|) $ $)) (-15 -2220 ($ (-754))) (-15 -2125 ((-111) $)) (-15 -3221 ((-111) $)) (-15 -3567 ((-552) $)) (-15 -3516 ($ (-1 (-310 |#1|) (-310 |#1|)) $)) (-15 -1691 ($ (-310 |#1|))) (-15 -3241 ($ $)))) +((-3266 (((-111) (-1134)) 22)) (-2855 (((-3 (-823 |#2|) "failed") (-598 |#2|) |#2| (-823 |#2|) (-823 |#2|) (-111)) 32)) (-2518 (((-3 (-111) "failed") (-1148 |#2|) (-823 |#2|) (-823 |#2|) (-111)) 73) (((-3 (-111) "failed") (-931 |#1|) (-1152) (-823 |#2|) (-823 |#2|) (-111)) 74))) +(((-219 |#1| |#2|) (-10 -7 (-15 -3266 ((-111) (-1134))) (-15 -2855 ((-3 (-823 |#2|) "failed") (-598 |#2|) |#2| (-823 |#2|) (-823 |#2|) (-111))) (-15 -2518 ((-3 (-111) "failed") (-931 |#1|) (-1152) (-823 |#2|) (-823 |#2|) (-111))) (-15 -2518 ((-3 (-111) "failed") (-1148 |#2|) (-823 |#2|) (-823 |#2|) (-111)))) (-13 (-445) (-830) (-1017 (-552)) (-623 (-552))) (-13 (-1174) (-29 |#1|))) (T -219)) +((-2518 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-111)) (-5 *3 (-1148 *6)) (-5 *4 (-823 *6)) (-4 *6 (-13 (-1174) (-29 *5))) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-219 *5 *6)))) (-2518 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-111)) (-5 *3 (-931 *6)) (-5 *4 (-1152)) (-5 *5 (-823 *7)) (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-4 *7 (-13 (-1174) (-29 *6))) (-5 *1 (-219 *6 *7)))) (-2855 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-823 *4)) (-5 *3 (-598 *4)) (-5 *5 (-111)) (-4 *4 (-13 (-1174) (-29 *6))) (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-219 *6 *4)))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-111)) (-5 *1 (-219 *4 *5)) (-4 *5 (-13 (-1174) (-29 *4)))))) +(-10 -7 (-15 -3266 ((-111) (-1134))) (-15 -2855 ((-3 (-823 |#2|) "failed") (-598 |#2|) |#2| (-823 |#2|) (-823 |#2|) (-111))) (-15 -2518 ((-3 (-111) "failed") (-931 |#1|) (-1152) (-823 |#2|) (-823 |#2|) (-111))) (-15 -2518 ((-3 (-111) "failed") (-1148 |#2|) (-823 |#2|) (-823 |#2|) (-111)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 87)) (-3471 (((-552) $) 98)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4019 (($ $) NIL)) (-1607 (($ $) 75)) (-1467 (($ $) 63)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1737 (($ $) 54)) (-4224 (((-111) $ $) NIL)) (-1584 (($ $) 73)) (-1445 (($ $) 61)) (-2422 (((-552) $) 115)) (-1628 (($ $) 78)) (-1492 (($ $) 65)) (-3887 (($) NIL T CONST)) (-2635 (($ $) NIL)) (-4039 (((-3 (-552) "failed") $) 114) (((-3 (-401 (-552)) "failed") $) 111)) (-1703 (((-552) $) 112) (((-401 (-552)) $) 109)) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) 91)) (-2640 (((-401 (-552)) $ (-754)) 107) (((-401 (-552)) $ (-754) (-754)) 106)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-3284 (((-900)) 27) (((-900) (-900)) NIL (|has| $ (-6 -4357)))) (-2983 (((-111) $) NIL)) (-2951 (($) 37)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL)) (-2641 (((-552) $) 33)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL)) (-2349 (($ $) NIL)) (-1508 (((-111) $) 86)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) 51) (($) 32 (-12 (-1681 (|has| $ (-6 -4349))) (-1681 (|has| $ (-6 -4357)))))) (-4093 (($ $ $) 50) (($) 31 (-12 (-1681 (|has| $ (-6 -4349))) (-1681 (|has| $ (-6 -4357)))))) (-2948 (((-552) $) 25)) (-3970 (($ $) 28)) (-2885 (($ $) 55)) (-4135 (($ $) 60)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3964 (((-900) (-552)) NIL (|has| $ (-6 -4357)))) (-1498 (((-1096) $) 89)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL)) (-2060 (($ $) NIL)) (-2103 (($ (-552) (-552)) NIL) (($ (-552) (-552) (-900)) 99)) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4067 (((-552) $) 26)) (-4111 (($) 36)) (-3154 (($ $) 59)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-3080 (((-900)) NIL) (((-900) (-900)) NIL (|has| $ (-6 -4357)))) (-2942 (($ $ (-754)) NIL) (($ $) 92)) (-2531 (((-900) (-552)) NIL (|has| $ (-6 -4357)))) (-1640 (($ $) 76)) (-1502 (($ $) 66)) (-1615 (($ $) 77)) (-1479 (($ $) 64)) (-1596 (($ $) 74)) (-1456 (($ $) 62)) (-3562 (((-373) $) 103) (((-220) $) 100) (((-871 (-373)) $) NIL) (((-528) $) 43)) (-1477 (((-842) $) 40) (($ (-552)) 58) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-552)) 58) (($ (-401 (-552))) NIL)) (-3995 (((-754)) NIL)) (-3796 (($ $) NIL)) (-3580 (((-900)) 30) (((-900) (-900)) NIL (|has| $ (-6 -4357)))) (-2705 (((-900)) 23)) (-1673 (($ $) 81)) (-1534 (($ $) 69) (($ $ $) 108)) (-3778 (((-111) $ $) NIL)) (-1652 (($ $) 79)) (-1513 (($ $) 67)) (-1697 (($ $) 84)) (-1561 (($ $) 72)) (-3519 (($ $) 82)) (-1575 (($ $) 70)) (-1686 (($ $) 83)) (-1547 (($ $) 71)) (-1661 (($ $) 80)) (-1524 (($ $) 68)) (-3329 (($ $) 116)) (-1922 (($) 34 T CONST)) (-1933 (($) 35 T CONST)) (-4157 (((-1134) $) 17) (((-1134) $ (-111)) 19) (((-1240) (-805) $) 20) (((-1240) (-805) $ (-111)) 21)) (-1393 (($ $) 95)) (-4251 (($ $ (-754)) NIL) (($ $) NIL)) (-1974 (($ $ $) 97)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 52)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 44)) (-2407 (($ $ $) 85) (($ $ (-552)) 53)) (-2396 (($ $) 45) (($ $ $) 47)) (-2384 (($ $ $) 46)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) 56) (($ $ (-401 (-552))) 128) (($ $ $) 57)) (* (($ (-900) $) 29) (($ (-754) $) NIL) (($ (-552) $) 49) (($ $ $) 48) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) +(((-220) (-13 (-398) (-228) (-811) (-1174) (-600 (-528)) (-10 -8 (-15 -2407 ($ $ (-552))) (-15 ** ($ $ $)) (-15 -4111 ($)) (-15 -3970 ($ $)) (-15 -2885 ($ $)) (-15 -1534 ($ $ $)) (-15 -1393 ($ $)) (-15 -1974 ($ $ $)) (-15 -2640 ((-401 (-552)) $ (-754))) (-15 -2640 ((-401 (-552)) $ (-754) (-754)))))) (T -220)) +((** (*1 *1 *1 *1) (-5 *1 (-220))) (-2407 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-220)))) (-4111 (*1 *1) (-5 *1 (-220))) (-3970 (*1 *1 *1) (-5 *1 (-220))) (-2885 (*1 *1 *1) (-5 *1 (-220))) (-1534 (*1 *1 *1 *1) (-5 *1 (-220))) (-1393 (*1 *1 *1) (-5 *1 (-220))) (-1974 (*1 *1 *1 *1) (-5 *1 (-220))) (-2640 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *2 (-401 (-552))) (-5 *1 (-220)))) (-2640 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-754)) (-5 *2 (-401 (-552))) (-5 *1 (-220))))) +(-13 (-398) (-228) (-811) (-1174) (-600 (-528)) (-10 -8 (-15 -2407 ($ $ (-552))) (-15 ** ($ $ $)) (-15 -4111 ($)) (-15 -3970 ($ $)) (-15 -2885 ($ $)) (-15 -1534 ($ $ $)) (-15 -1393 ($ $)) (-15 -1974 ($ $ $)) (-15 -2640 ((-401 (-552)) $ (-754))) (-15 -2640 ((-401 (-552)) $ (-754) (-754))))) +((-3958 (((-166 (-220)) (-754) (-166 (-220))) 11) (((-220) (-754) (-220)) 12)) (-1997 (((-166 (-220)) (-166 (-220))) 13) (((-220) (-220)) 14)) (-3634 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 19) (((-220) (-220) (-220)) 22)) (-3709 (((-166 (-220)) (-166 (-220))) 25) (((-220) (-220)) 24)) (-2804 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 43) (((-220) (-220) (-220)) 35)) (-3396 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 48) (((-220) (-220) (-220)) 45)) (-3075 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 15) (((-220) (-220) (-220)) 16)) (-1512 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 17) (((-220) (-220) (-220)) 18)) (-3794 (((-166 (-220)) (-166 (-220))) 60) (((-220) (-220)) 59)) (-2039 (((-220) (-220)) 54) (((-166 (-220)) (-166 (-220))) 58)) (-1393 (((-166 (-220)) (-166 (-220))) 8) (((-220) (-220)) 9)) (-1974 (((-166 (-220)) (-166 (-220)) (-166 (-220))) 30) (((-220) (-220) (-220)) 26))) +(((-221) (-10 -7 (-15 -1393 ((-220) (-220))) (-15 -1393 ((-166 (-220)) (-166 (-220)))) (-15 -1974 ((-220) (-220) (-220))) (-15 -1974 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -1997 ((-220) (-220))) (-15 -1997 ((-166 (-220)) (-166 (-220)))) (-15 -3709 ((-220) (-220))) (-15 -3709 ((-166 (-220)) (-166 (-220)))) (-15 -3958 ((-220) (-754) (-220))) (-15 -3958 ((-166 (-220)) (-754) (-166 (-220)))) (-15 -3075 ((-220) (-220) (-220))) (-15 -3075 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -2804 ((-220) (-220) (-220))) (-15 -2804 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -1512 ((-220) (-220) (-220))) (-15 -1512 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -3396 ((-220) (-220) (-220))) (-15 -3396 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -2039 ((-166 (-220)) (-166 (-220)))) (-15 -2039 ((-220) (-220))) (-15 -3794 ((-220) (-220))) (-15 -3794 ((-166 (-220)) (-166 (-220)))) (-15 -3634 ((-220) (-220) (-220))) (-15 -3634 ((-166 (-220)) (-166 (-220)) (-166 (-220)))))) (T -221)) +((-3634 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3634 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-3794 (*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3794 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-2039 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-2039 (*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3396 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3396 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-1512 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-1512 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-2804 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-2804 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-3075 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3075 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-3958 (*1 *2 *3 *2) (-12 (-5 *2 (-166 (-220))) (-5 *3 (-754)) (-5 *1 (-221)))) (-3958 (*1 *2 *3 *2) (-12 (-5 *2 (-220)) (-5 *3 (-754)) (-5 *1 (-221)))) (-3709 (*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-3709 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-1997 (*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-1997 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-1974 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-1974 (*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) (-1393 (*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) (-1393 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221))))) +(-10 -7 (-15 -1393 ((-220) (-220))) (-15 -1393 ((-166 (-220)) (-166 (-220)))) (-15 -1974 ((-220) (-220) (-220))) (-15 -1974 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -1997 ((-220) (-220))) (-15 -1997 ((-166 (-220)) (-166 (-220)))) (-15 -3709 ((-220) (-220))) (-15 -3709 ((-166 (-220)) (-166 (-220)))) (-15 -3958 ((-220) (-754) (-220))) (-15 -3958 ((-166 (-220)) (-754) (-166 (-220)))) (-15 -3075 ((-220) (-220) (-220))) (-15 -3075 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -2804 ((-220) (-220) (-220))) (-15 -2804 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -1512 ((-220) (-220) (-220))) (-15 -1512 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -3396 ((-220) (-220) (-220))) (-15 -3396 ((-166 (-220)) (-166 (-220)) (-166 (-220)))) (-15 -2039 ((-166 (-220)) (-166 (-220)))) (-15 -2039 ((-220) (-220))) (-15 -3794 ((-220) (-220))) (-15 -3794 ((-166 (-220)) (-166 (-220)))) (-15 -3634 ((-220) (-220) (-220))) (-15 -3634 ((-166 (-220)) (-166 (-220)) (-166 (-220))))) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2099 (($ (-754) (-754)) NIL)) (-2129 (($ $ $) NIL)) (-3595 (($ (-1235 |#1|)) NIL) (($ $) NIL)) (-3084 (($ |#1| |#1| |#1|) 32)) (-2311 (((-111) $) NIL)) (-2232 (($ $ (-552) (-552)) NIL)) (-3700 (($ $ (-552) (-552)) NIL)) (-1966 (($ $ (-552) (-552) (-552) (-552)) NIL)) (-2456 (($ $) NIL)) (-3944 (((-111) $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-1459 (($ $ (-552) (-552) $) NIL)) (-2950 ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-627 (-552)) (-627 (-552)) $) NIL)) (-1566 (($ $ (-552) (-1235 |#1|)) NIL)) (-1666 (($ $ (-552) (-1235 |#1|)) NIL)) (-2442 (($ |#1| |#1| |#1|) 31)) (-1665 (($ (-754) |#1|) NIL)) (-3887 (($) NIL T CONST)) (-1472 (($ $) NIL (|has| |#1| (-301)))) (-3884 (((-1235 |#1|) $ (-552)) NIL)) (-4253 (($ |#1|) 30)) (-3061 (($ |#1|) 29)) (-2621 (($ |#1|) 28)) (-4154 (((-754) $) NIL (|has| |#1| (-544)))) (-3473 ((|#1| $ (-552) (-552) |#1|) NIL)) (-3413 ((|#1| $ (-552) (-552)) NIL)) (-3215 (((-627 |#1|) $) NIL)) (-1610 (((-754) $) NIL (|has| |#1| (-544)))) (-2960 (((-627 (-1235 |#1|)) $) NIL (|has| |#1| (-544)))) (-3560 (((-754) $) NIL)) (-2655 (($ (-754) (-754) |#1|) NIL)) (-3572 (((-754) $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-1744 ((|#1| $) NIL (|has| |#1| (-6 (-4368 "*"))))) (-4083 (((-552) $) NIL)) (-3511 (((-552) $) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3479 (((-552) $) NIL)) (-2780 (((-552) $) NIL)) (-4176 (($ (-627 (-627 |#1|))) 11)) (-3463 (($ (-1 |#1| |#1|) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3127 (((-627 (-627 |#1|)) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-2952 (((-3 $ "failed") $) NIL (|has| |#1| (-357)))) (-4306 (($) 12)) (-3838 (($ $ $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1942 (($ $ |#1|) NIL)) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-627 (-552)) (-627 (-552))) NIL)) (-3202 (($ (-627 |#1|)) NIL) (($ (-627 $)) NIL)) (-4064 (((-111) $) NIL)) (-1530 ((|#1| $) NIL (|has| |#1| (-6 (-4368 "*"))))) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-2152 (((-1235 |#1|) $ (-552)) NIL)) (-1477 (($ (-1235 |#1|)) NIL) (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3847 (((-111) $) NIL)) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $ $) NIL) (($ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-552) $) NIL) (((-1235 |#1|) $ (-1235 |#1|)) 15) (((-1235 |#1|) (-1235 |#1|) $) NIL) (((-922 |#1|) $ (-922 |#1|)) 20)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-222 |#1|) (-13 (-669 |#1| (-1235 |#1|) (-1235 |#1|)) (-10 -8 (-15 * ((-922 |#1|) $ (-922 |#1|))) (-15 -4306 ($)) (-15 -2621 ($ |#1|)) (-15 -3061 ($ |#1|)) (-15 -4253 ($ |#1|)) (-15 -2442 ($ |#1| |#1| |#1|)) (-15 -3084 ($ |#1| |#1| |#1|)))) (-13 (-357) (-1174))) (T -222)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174))) (-5 *1 (-222 *3)))) (-4306 (*1 *1) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174))))) (-2621 (*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174))))) (-3061 (*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174))))) (-4253 (*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174))))) (-2442 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174))))) (-3084 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174)))))) +(-13 (-669 |#1| (-1235 |#1|) (-1235 |#1|)) (-10 -8 (-15 * ((-922 |#1|) $ (-922 |#1|))) (-15 -4306 ($)) (-15 -2621 ($ |#1|)) (-15 -3061 ($ |#1|)) (-15 -4253 ($ |#1|)) (-15 -2442 ($ |#1| |#1| |#1|)) (-15 -3084 ($ |#1| |#1| |#1|)))) +((-4289 (($ (-1 (-111) |#2|) $) 16)) (-2265 (($ |#2| $) NIL) (($ (-1 (-111) |#2|) $) 25)) (-3028 (($) NIL) (($ (-627 |#2|)) 11)) (-2292 (((-111) $ $) 23))) +(((-223 |#1| |#2|) (-10 -8 (-15 -4289 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2265 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2265 (|#1| |#2| |#1|)) (-15 -3028 (|#1| (-627 |#2|))) (-15 -3028 (|#1|)) (-15 -2292 ((-111) |#1| |#1|))) (-224 |#2|) (-1076)) (T -223)) +NIL +(-10 -8 (-15 -4289 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2265 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2265 (|#1| |#2| |#1|)) (-15 -3028 (|#1| (-627 |#2|))) (-15 -3028 (|#1|)) (-15 -2292 ((-111) |#1| |#1|))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) 8)) (-4289 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-3370 (($ $) 58 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2265 (($ |#1| $) 47 (|has| $ (-6 -4366))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4366)))) (-4342 (($ |#1| $) 57 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4366)))) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-4165 ((|#1| $) 39)) (-3954 (($ |#1| $) 40)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-3028 (($) 49) (($ (-627 |#1|)) 48)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 59 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 50)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) 42)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-224 |#1|) (-137) (-1076)) (T -224)) +NIL +(-13 (-230 |t#1|)) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-230 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) +((-2942 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-754)) 11) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152)) 19) (($ $ (-754)) NIL) (($ $) 16)) (-4251 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-754)) 14) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152)) NIL) (($ $ (-754)) NIL) (($ $) NIL))) +(((-225 |#1| |#2|) (-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -4251 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -4251 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -4251 (|#1| |#1| (-1152))) (-15 -4251 (|#1| |#1| (-627 (-1152)))) (-15 -4251 (|#1| |#1| (-1152) (-754))) (-15 -4251 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -4251 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -4251 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|)))) (-226 |#2|) (-1028)) (T -225)) +NIL +(-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -4251 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -4251 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -4251 (|#1| |#1| (-1152))) (-15 -4251 (|#1| |#1| (-627 (-1152)))) (-15 -4251 (|#1| |#1| (-1152) (-754))) (-15 -4251 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -4251 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -4251 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2942 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-754)) 49) (($ $ (-627 (-1152)) (-627 (-754))) 42 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 41 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 40 (|has| |#1| (-879 (-1152)))) (($ $ (-1152)) 39 (|has| |#1| (-879 (-1152)))) (($ $ (-754)) 37 (|has| |#1| (-228))) (($ $) 35 (|has| |#1| (-228)))) (-1477 (((-842) $) 11) (($ (-552)) 27)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-754)) 47) (($ $ (-627 (-1152)) (-627 (-754))) 46 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 45 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 44 (|has| |#1| (-879 (-1152)))) (($ $ (-1152)) 43 (|has| |#1| (-879 (-1152)))) (($ $ (-754)) 38 (|has| |#1| (-228))) (($ $) 36 (|has| |#1| (-228)))) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-226 |#1|) (-137) (-1028)) (T -226)) +((-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-226 *3)) (-4 *3 (-1028)))) (-2942 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-754)) (-4 *1 (-226 *4)) (-4 *4 (-1028)))) (-4251 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-226 *3)) (-4 *3 (-1028)))) (-4251 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-754)) (-4 *1 (-226 *4)) (-4 *4 (-1028))))) +(-13 (-1028) (-10 -8 (-15 -2942 ($ $ (-1 |t#1| |t#1|))) (-15 -2942 ($ $ (-1 |t#1| |t#1|) (-754))) (-15 -4251 ($ $ (-1 |t#1| |t#1|))) (-15 -4251 ($ $ (-1 |t#1| |t#1|) (-754))) (IF (|has| |t#1| (-228)) (-6 (-228)) |%noBranch|) (IF (|has| |t#1| (-879 (-1152))) (-6 (-879 (-1152))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-228) |has| |#1| (-228)) ((-630 $) . T) ((-709) . T) ((-879 (-1152)) |has| |#1| (-879 (-1152))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-2942 (($ $) NIL) (($ $ (-754)) 10)) (-4251 (($ $) 8) (($ $ (-754)) 12))) +(((-227 |#1|) (-10 -8 (-15 -4251 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-754))) (-15 -4251 (|#1| |#1|)) (-15 -2942 (|#1| |#1|))) (-228)) (T -227)) +NIL +(-10 -8 (-15 -4251 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-754))) (-15 -4251 (|#1| |#1|)) (-15 -2942 (|#1| |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2942 (($ $) 36) (($ $ (-754)) 34)) (-1477 (((-842) $) 11) (($ (-552)) 27)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $) 35) (($ $ (-754)) 33)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-228) (-137)) (T -228)) +((-2942 (*1 *1 *1) (-4 *1 (-228))) (-4251 (*1 *1 *1) (-4 *1 (-228))) (-2942 (*1 *1 *1 *2) (-12 (-4 *1 (-228)) (-5 *2 (-754)))) (-4251 (*1 *1 *1 *2) (-12 (-4 *1 (-228)) (-5 *2 (-754))))) +(-13 (-1028) (-10 -8 (-15 -2942 ($ $)) (-15 -4251 ($ $)) (-15 -2942 ($ $ (-754))) (-15 -4251 ($ $ (-754))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 $) . T) ((-709) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-3028 (($) 12) (($ (-627 |#2|)) NIL)) (-2973 (($ $) 14)) (-1490 (($ (-627 |#2|)) 10)) (-1477 (((-842) $) 21))) +(((-229 |#1| |#2|) (-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -3028 (|#1| (-627 |#2|))) (-15 -3028 (|#1|)) (-15 -1490 (|#1| (-627 |#2|))) (-15 -2973 (|#1| |#1|))) (-230 |#2|) (-1076)) (T -229)) +NIL +(-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -3028 (|#1| (-627 |#2|))) (-15 -3028 (|#1|)) (-15 -1490 (|#1| (-627 |#2|))) (-15 -2973 (|#1| |#1|))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) 8)) (-4289 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-3370 (($ $) 58 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2265 (($ |#1| $) 47 (|has| $ (-6 -4366))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4366)))) (-4342 (($ |#1| $) 57 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4366)))) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-4165 ((|#1| $) 39)) (-3954 (($ |#1| $) 40)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-3028 (($) 49) (($ (-627 |#1|)) 48)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 59 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 50)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) 42)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-230 |#1|) (-137) (-1076)) (T -230)) +((-3028 (*1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1076)))) (-3028 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-4 *1 (-230 *3)))) (-2265 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4366)) (-4 *1 (-230 *2)) (-4 *2 (-1076)))) (-2265 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4366)) (-4 *1 (-230 *3)) (-4 *3 (-1076)))) (-4289 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4366)) (-4 *1 (-230 *3)) (-4 *3 (-1076))))) +(-13 (-106 |t#1|) (-148 |t#1|) (-10 -8 (-15 -3028 ($)) (-15 -3028 ($ (-627 |t#1|))) (IF (|has| $ (-6 -4366)) (PROGN (-15 -2265 ($ |t#1| $)) (-15 -2265 ($ (-1 (-111) |t#1|) $)) (-15 -4289 ($ (-1 (-111) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) +((-2688 (((-2 (|:| |varOrder| (-627 (-1152))) (|:| |inhom| (-3 (-627 (-1235 (-754))) "failed")) (|:| |hom| (-627 (-1235 (-754))))) (-288 (-931 (-552)))) 27))) +(((-231) (-10 -7 (-15 -2688 ((-2 (|:| |varOrder| (-627 (-1152))) (|:| |inhom| (-3 (-627 (-1235 (-754))) "failed")) (|:| |hom| (-627 (-1235 (-754))))) (-288 (-931 (-552))))))) (T -231)) +((-2688 (*1 *2 *3) (-12 (-5 *3 (-288 (-931 (-552)))) (-5 *2 (-2 (|:| |varOrder| (-627 (-1152))) (|:| |inhom| (-3 (-627 (-1235 (-754))) "failed")) (|:| |hom| (-627 (-1235 (-754)))))) (-5 *1 (-231))))) +(-10 -7 (-15 -2688 ((-2 (|:| |varOrder| (-627 (-1152))) (|:| |inhom| (-3 (-627 (-1235 (-754))) "failed")) (|:| |hom| (-627 (-1235 (-754))))) (-288 (-931 (-552)))))) +((-3307 (((-754)) 51)) (-1800 (((-2 (|:| -2515 (-671 |#3|)) (|:| |vec| (-1235 |#3|))) (-671 $) (-1235 $)) 49) (((-671 |#3|) (-671 $)) 41) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-671 (-552)) (-671 $)) NIL)) (-2405 (((-132)) 57)) (-2942 (($ $ (-1 |#3| |#3|) (-754)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152)) NIL) (($ $ (-754)) NIL) (($ $) NIL)) (-1477 (((-1235 |#3|) $) NIL) (($ |#3|) NIL) (((-842) $) NIL) (($ (-552)) 12) (($ (-401 (-552))) NIL)) (-3995 (((-754)) 15)) (-2407 (($ $ |#3|) 54))) +(((-232 |#1| |#2| |#3|) (-10 -8 (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|)) (-15 -3995 ((-754))) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1477 (|#1| |#3|)) (-15 -2942 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2942 (|#1| |#1| (-1 |#3| |#3|) (-754))) (-15 -1800 ((-671 |#3|) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#3|)) (|:| |vec| (-1235 |#3|))) (-671 |#1|) (-1235 |#1|))) (-15 -3307 ((-754))) (-15 -2407 (|#1| |#1| |#3|)) (-15 -2405 ((-132))) (-15 -1477 ((-1235 |#3|) |#1|))) (-233 |#2| |#3|) (-754) (-1189)) (T -232)) +((-2405 (*1 *2) (-12 (-14 *4 (-754)) (-4 *5 (-1189)) (-5 *2 (-132)) (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5)))) (-3307 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1189)) (-5 *2 (-754)) (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5)))) (-3995 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1189)) (-5 *2 (-754)) (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5))))) +(-10 -8 (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|)) (-15 -3995 ((-754))) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1477 (|#1| |#3|)) (-15 -2942 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2942 (|#1| |#1| (-1 |#3| |#3|) (-754))) (-15 -1800 ((-671 |#3|) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#3|)) (|:| |vec| (-1235 |#3|))) (-671 |#1|) (-1235 |#1|))) (-15 -3307 ((-754))) (-15 -2407 (|#1| |#1| |#3|)) (-15 -2405 ((-132))) (-15 -1477 ((-1235 |#3|) |#1|))) +((-1465 (((-111) $ $) 19 (|has| |#2| (-1076)))) (-3024 (((-111) $) 72 (|has| |#2| (-129)))) (-3969 (($ (-900)) 125 (|has| |#2| (-1028)))) (-3305 (((-1240) $ (-552) (-552)) 40 (|has| $ (-6 -4367)))) (-2796 (($ $ $) 121 (|has| |#2| (-776)))) (-4136 (((-3 $ "failed") $ $) 74 (|has| |#2| (-129)))) (-4031 (((-111) $ (-754)) 8)) (-3307 (((-754)) 107 (|has| |#2| (-362)))) (-2422 (((-552) $) 119 (|has| |#2| (-828)))) (-2950 ((|#2| $ (-552) |#2|) 52 (|has| $ (-6 -4367)))) (-3887 (($) 7 T CONST)) (-4039 (((-3 (-552) "failed") $) 67 (-2520 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076)))) (((-3 (-401 (-552)) "failed") $) 64 (-2520 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1076)))) (-1703 (((-552) $) 68 (-2520 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076)))) (((-401 (-552)) $) 65 (-2520 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) ((|#2| $) 60 (|has| |#2| (-1076)))) (-1800 (((-671 (-552)) (-671 $)) 106 (-2520 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 105 (-2520 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) 104 (|has| |#2| (-1028))) (((-671 |#2|) (-671 $)) 103 (|has| |#2| (-1028)))) (-2040 (((-3 $ "failed") $) 79 (|has| |#2| (-709)))) (-1279 (($) 110 (|has| |#2| (-362)))) (-3473 ((|#2| $ (-552) |#2|) 53 (|has| $ (-6 -4367)))) (-3413 ((|#2| $ (-552)) 51)) (-2983 (((-111) $) 117 (|has| |#2| (-828)))) (-3215 (((-627 |#2|) $) 30 (|has| $ (-6 -4366)))) (-2624 (((-111) $) 81 (|has| |#2| (-709)))) (-1508 (((-111) $) 118 (|has| |#2| (-828)))) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 43 (|has| (-552) (-830)))) (-1816 (($ $ $) 116 (-1559 (|has| |#2| (-828)) (|has| |#2| (-776))))) (-3114 (((-627 |#2|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#2| $) 27 (-12 (|has| |#2| (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 44 (|has| (-552) (-830)))) (-4093 (($ $ $) 115 (-1559 (|has| |#2| (-828)) (|has| |#2| (-776))))) (-3463 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#2| |#2|) $) 35)) (-2886 (((-900) $) 109 (|has| |#2| (-362)))) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#2| (-1076)))) (-3892 (((-627 (-552)) $) 46)) (-2358 (((-111) (-552) $) 47)) (-4153 (($ (-900)) 108 (|has| |#2| (-362)))) (-1498 (((-1096) $) 21 (|has| |#2| (-1076)))) (-3340 ((|#2| $) 42 (|has| (-552) (-830)))) (-1942 (($ $ |#2|) 41 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#2|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#2|))) 26 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) 25 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) 23 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#2| $) 45 (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#2| $ (-552) |#2|) 50) ((|#2| $ (-552)) 49)) (-2395 ((|#2| $ $) 124 (|has| |#2| (-1028)))) (-1767 (($ (-1235 |#2|)) 126)) (-2405 (((-132)) 123 (|has| |#2| (-357)))) (-2942 (($ $) 98 (-2520 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-754)) 96 (-2520 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-1152)) 94 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152))) 93 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1152) (-754)) 92 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152)) (-627 (-754))) 91 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1 |#2| |#2|) (-754)) 84 (|has| |#2| (-1028))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1028)))) (-1509 (((-754) (-1 (-111) |#2|) $) 31 (|has| $ (-6 -4366))) (((-754) |#2| $) 28 (-12 (|has| |#2| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-1235 |#2|) $) 127) (($ (-552)) 66 (-1559 (-2520 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076))) (|has| |#2| (-1028)))) (($ (-401 (-552))) 63 (-2520 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) (($ |#2|) 62 (|has| |#2| (-1076))) (((-842) $) 18 (|has| |#2| (-599 (-842))))) (-3995 (((-754)) 102 (|has| |#2| (-1028)))) (-3299 (((-111) (-1 (-111) |#2|) $) 33 (|has| $ (-6 -4366)))) (-3329 (($ $) 120 (|has| |#2| (-828)))) (-1922 (($) 71 (|has| |#2| (-129)) CONST)) (-1933 (($) 82 (|has| |#2| (-709)) CONST)) (-4251 (($ $) 97 (-2520 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-754)) 95 (-2520 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-1152)) 90 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152))) 89 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1152) (-754)) 88 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152)) (-627 (-754))) 87 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1 |#2| |#2|) (-754)) 86 (|has| |#2| (-1028))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1028)))) (-2351 (((-111) $ $) 113 (-1559 (|has| |#2| (-828)) (|has| |#2| (-776))))) (-2329 (((-111) $ $) 112 (-1559 (|has| |#2| (-828)) (|has| |#2| (-776))))) (-2292 (((-111) $ $) 20 (|has| |#2| (-1076)))) (-2340 (((-111) $ $) 114 (-1559 (|has| |#2| (-828)) (|has| |#2| (-776))))) (-2316 (((-111) $ $) 111 (-1559 (|has| |#2| (-828)) (|has| |#2| (-776))))) (-2407 (($ $ |#2|) 122 (|has| |#2| (-357)))) (-2396 (($ $ $) 100 (|has| |#2| (-1028))) (($ $) 99 (|has| |#2| (-1028)))) (-2384 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-754)) 80 (|has| |#2| (-709))) (($ $ (-900)) 77 (|has| |#2| (-709)))) (* (($ (-552) $) 101 (|has| |#2| (-1028))) (($ $ $) 78 (|has| |#2| (-709))) (($ $ |#2|) 76 (|has| |#2| (-709))) (($ |#2| $) 75 (|has| |#2| (-709))) (($ (-754) $) 73 (|has| |#2| (-129))) (($ (-900) $) 70 (|has| |#2| (-25)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-233 |#1| |#2|) (-137) (-754) (-1189)) (T -233)) +((-1767 (*1 *1 *2) (-12 (-5 *2 (-1235 *4)) (-4 *4 (-1189)) (-4 *1 (-233 *3 *4)))) (-3969 (*1 *1 *2) (-12 (-5 *2 (-900)) (-4 *1 (-233 *3 *4)) (-4 *4 (-1028)) (-4 *4 (-1189)))) (-2395 (*1 *2 *1 *1) (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1189)) (-4 *2 (-1028)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1189)) (-4 *2 (-709)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1189)) (-4 *2 (-709))))) +(-13 (-590 (-552) |t#2|) (-599 (-1235 |t#2|)) (-10 -8 (-6 -4366) (-15 -1767 ($ (-1235 |t#2|))) (IF (|has| |t#2| (-1076)) (-6 (-405 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1028)) (PROGN (-6 (-110 |t#2| |t#2|)) (-6 (-226 |t#2|)) (-6 (-371 |t#2|)) (-15 -3969 ($ (-900))) (-15 -2395 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-129)) (-6 (-129)) |%noBranch|) (IF (|has| |t#2| (-709)) (PROGN (-6 (-709)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-362)) (-6 (-362)) |%noBranch|) (IF (|has| |t#2| (-169)) (PROGN (-6 (-38 |t#2|)) (-6 (-169))) |%noBranch|) (IF (|has| |t#2| (-6 -4363)) (-6 -4363) |%noBranch|) (IF (|has| |t#2| (-828)) (-6 (-828)) |%noBranch|) (IF (|has| |t#2| (-776)) (-6 (-776)) |%noBranch|) (IF (|has| |t#2| (-357)) (-6 (-1242 |t#2|)) |%noBranch|))) +(((-21) -1559 (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-357)) (|has| |#2| (-169))) ((-23) -1559 (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-776)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-129))) ((-25) -1559 (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-776)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) -1559 (|has| |#2| (-1076)) (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-776)) (|has| |#2| (-709)) (|has| |#2| (-362)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-110 |#2| |#2|) -1559 (|has| |#2| (-1028)) (|has| |#2| (-357)) (|has| |#2| (-169))) ((-110 $ $) |has| |#2| (-169)) ((-129) -1559 (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-776)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-129))) ((-599 (-842)) -1559 (|has| |#2| (-1076)) (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-776)) (|has| |#2| (-709)) (|has| |#2| (-362)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-599 (-842))) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-599 (-1235 |#2|)) . T) ((-169) |has| |#2| (-169)) ((-226 |#2|) |has| |#2| (-1028)) ((-228) -12 (|has| |#2| (-228)) (|has| |#2| (-1028))) ((-280 #0=(-552) |#2|) . T) ((-282 #0# |#2|) . T) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((-362) |has| |#2| (-362)) ((-371 |#2|) |has| |#2| (-1028)) ((-405 |#2|) |has| |#2| (-1076)) ((-482 |#2|) . T) ((-590 #0# |#2|) . T) ((-506 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((-630 |#2|) -1559 (|has| |#2| (-1028)) (|has| |#2| (-357)) (|has| |#2| (-169))) ((-630 $) -1559 (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-169))) ((-623 (-552)) -12 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028))) ((-623 |#2|) |has| |#2| (-1028)) ((-700 |#2|) -1559 (|has| |#2| (-357)) (|has| |#2| (-169))) ((-709) -1559 (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-709)) (|has| |#2| (-169))) ((-774) |has| |#2| (-828)) ((-775) -1559 (|has| |#2| (-828)) (|has| |#2| (-776))) ((-776) |has| |#2| (-776)) ((-777) -1559 (|has| |#2| (-828)) (|has| |#2| (-776))) ((-778) -1559 (|has| |#2| (-828)) (|has| |#2| (-776))) ((-828) |has| |#2| (-828)) ((-830) -1559 (|has| |#2| (-828)) (|has| |#2| (-776))) ((-879 (-1152)) -12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028))) ((-1017 (-401 (-552))) -12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076))) ((-1017 (-552)) -12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076))) ((-1017 |#2|) |has| |#2| (-1076)) ((-1034 |#2|) -1559 (|has| |#2| (-1028)) (|has| |#2| (-357)) (|has| |#2| (-169))) ((-1034 $) |has| |#2| (-169)) ((-1028) -1559 (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-169))) ((-1035) -1559 (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-169))) ((-1088) -1559 (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-709)) (|has| |#2| (-169))) ((-1076) -1559 (|has| |#2| (-1076)) (|has| |#2| (-1028)) (|has| |#2| (-828)) (|has| |#2| (-776)) (|has| |#2| (-709)) (|has| |#2| (-362)) (|has| |#2| (-357)) (|has| |#2| (-169)) (|has| |#2| (-129)) (|has| |#2| (-25))) ((-1189) . T) ((-1242 |#2|) |has| |#2| (-357))) +((-2169 (((-235 |#1| |#3|) (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|) 21)) (-2091 ((|#3| (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|) 23)) (-3516 (((-235 |#1| |#3|) (-1 |#3| |#2|) (-235 |#1| |#2|)) 18))) +(((-234 |#1| |#2| |#3|) (-10 -7 (-15 -2169 ((-235 |#1| |#3|) (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -2091 (|#3| (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -3516 ((-235 |#1| |#3|) (-1 |#3| |#2|) (-235 |#1| |#2|)))) (-754) (-1189) (-1189)) (T -234)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-235 *5 *6)) (-14 *5 (-754)) (-4 *6 (-1189)) (-4 *7 (-1189)) (-5 *2 (-235 *5 *7)) (-5 *1 (-234 *5 *6 *7)))) (-2091 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-235 *5 *6)) (-14 *5 (-754)) (-4 *6 (-1189)) (-4 *2 (-1189)) (-5 *1 (-234 *5 *6 *2)))) (-2169 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-235 *6 *7)) (-14 *6 (-754)) (-4 *7 (-1189)) (-4 *5 (-1189)) (-5 *2 (-235 *6 *5)) (-5 *1 (-234 *6 *7 *5))))) +(-10 -7 (-15 -2169 ((-235 |#1| |#3|) (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -2091 (|#3| (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -3516 ((-235 |#1| |#3|) (-1 |#3| |#2|) (-235 |#1| |#2|)))) +((-1465 (((-111) $ $) NIL (|has| |#2| (-1076)))) (-3024 (((-111) $) NIL (|has| |#2| (-129)))) (-3969 (($ (-900)) 56 (|has| |#2| (-1028)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-2796 (($ $ $) 60 (|has| |#2| (-776)))) (-4136 (((-3 $ "failed") $ $) 49 (|has| |#2| (-129)))) (-4031 (((-111) $ (-754)) 17)) (-3307 (((-754)) NIL (|has| |#2| (-362)))) (-2422 (((-552) $) NIL (|has| |#2| (-828)))) (-2950 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (-12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1076)))) (-1703 (((-552) $) NIL (-12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076)))) (((-401 (-552)) $) NIL (-12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) ((|#2| $) 27 (|has| |#2| (-1076)))) (-1800 (((-671 (-552)) (-671 $)) NIL (-12 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (-12 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL (|has| |#2| (-1028))) (((-671 |#2|) (-671 $)) NIL (|has| |#2| (-1028)))) (-2040 (((-3 $ "failed") $) 53 (|has| |#2| (-709)))) (-1279 (($) NIL (|has| |#2| (-362)))) (-3473 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#2| $ (-552)) 51)) (-2983 (((-111) $) NIL (|has| |#2| (-828)))) (-3215 (((-627 |#2|) $) 15 (|has| $ (-6 -4366)))) (-2624 (((-111) $) NIL (|has| |#2| (-709)))) (-1508 (((-111) $) NIL (|has| |#2| (-828)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) 20 (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-3114 (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2285 (((-552) $) 50 (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-3463 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#2| |#2|) $) 41)) (-2886 (((-900) $) NIL (|has| |#2| (-362)))) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#2| (-1076)))) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-4153 (($ (-900)) NIL (|has| |#2| (-362)))) (-1498 (((-1096) $) NIL (|has| |#2| (-1076)))) (-3340 ((|#2| $) NIL (|has| (-552) (-830)))) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#2|) $) 24 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-552)) 21)) (-2395 ((|#2| $ $) NIL (|has| |#2| (-1028)))) (-1767 (($ (-1235 |#2|)) 18)) (-2405 (((-132)) NIL (|has| |#2| (-357)))) (-2942 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1 |#2| |#2|) (-754)) NIL (|has| |#2| (-1028))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1028)))) (-1509 (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-1235 |#2|) $) 10) (($ (-552)) NIL (-1559 (-12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076))) (|has| |#2| (-1028)))) (($ (-401 (-552))) NIL (-12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) (($ |#2|) 13 (|has| |#2| (-1076))) (((-842) $) NIL (|has| |#2| (-599 (-842))))) (-3995 (((-754)) NIL (|has| |#2| (-1028)))) (-3299 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3329 (($ $) NIL (|has| |#2| (-828)))) (-1922 (($) 35 (|has| |#2| (-129)) CONST)) (-1933 (($) 38 (|has| |#2| (-709)) CONST)) (-4251 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1 |#2| |#2|) (-754)) NIL (|has| |#2| (-1028))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1028)))) (-2351 (((-111) $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2329 (((-111) $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2292 (((-111) $ $) 26 (|has| |#2| (-1076)))) (-2340 (((-111) $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2316 (((-111) $ $) 58 (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2407 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-2396 (($ $ $) NIL (|has| |#2| (-1028))) (($ $) NIL (|has| |#2| (-1028)))) (-2384 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-754)) NIL (|has| |#2| (-709))) (($ $ (-900)) NIL (|has| |#2| (-709)))) (* (($ (-552) $) NIL (|has| |#2| (-1028))) (($ $ $) 44 (|has| |#2| (-709))) (($ $ |#2|) 42 (|has| |#2| (-709))) (($ |#2| $) 43 (|has| |#2| (-709))) (($ (-754) $) NIL (|has| |#2| (-129))) (($ (-900) $) NIL (|has| |#2| (-25)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-235 |#1| |#2|) (-233 |#1| |#2|) (-754) (-1189)) (T -235)) +NIL +(-233 |#1| |#2|) +((-2510 (((-552) (-627 (-1134))) 24) (((-552) (-1134)) 19)) (-3335 (((-1240) (-627 (-1134))) 29) (((-1240) (-1134)) 28)) (-1348 (((-1134)) 14)) (-2879 (((-1134) (-552) (-1134)) 16)) (-3174 (((-627 (-1134)) (-627 (-1134)) (-552) (-1134)) 25) (((-1134) (-1134) (-552) (-1134)) 23)) (-3854 (((-627 (-1134)) (-627 (-1134))) 13) (((-627 (-1134)) (-1134)) 11))) +(((-236) (-10 -7 (-15 -3854 ((-627 (-1134)) (-1134))) (-15 -3854 ((-627 (-1134)) (-627 (-1134)))) (-15 -1348 ((-1134))) (-15 -2879 ((-1134) (-552) (-1134))) (-15 -3174 ((-1134) (-1134) (-552) (-1134))) (-15 -3174 ((-627 (-1134)) (-627 (-1134)) (-552) (-1134))) (-15 -3335 ((-1240) (-1134))) (-15 -3335 ((-1240) (-627 (-1134)))) (-15 -2510 ((-552) (-1134))) (-15 -2510 ((-552) (-627 (-1134)))))) (T -236)) +((-2510 (*1 *2 *3) (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-552)) (-5 *1 (-236)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-552)) (-5 *1 (-236)))) (-3335 (*1 *2 *3) (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-1240)) (-5 *1 (-236)))) (-3335 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-236)))) (-3174 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-627 (-1134))) (-5 *3 (-552)) (-5 *4 (-1134)) (-5 *1 (-236)))) (-3174 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1134)) (-5 *3 (-552)) (-5 *1 (-236)))) (-2879 (*1 *2 *3 *2) (-12 (-5 *2 (-1134)) (-5 *3 (-552)) (-5 *1 (-236)))) (-1348 (*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-236)))) (-3854 (*1 *2 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-236)))) (-3854 (*1 *2 *3) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-236)) (-5 *3 (-1134))))) +(-10 -7 (-15 -3854 ((-627 (-1134)) (-1134))) (-15 -3854 ((-627 (-1134)) (-627 (-1134)))) (-15 -1348 ((-1134))) (-15 -2879 ((-1134) (-552) (-1134))) (-15 -3174 ((-1134) (-1134) (-552) (-1134))) (-15 -3174 ((-627 (-1134)) (-627 (-1134)) (-552) (-1134))) (-15 -3335 ((-1240) (-1134))) (-15 -3335 ((-1240) (-627 (-1134)))) (-15 -2510 ((-552) (-1134))) (-15 -2510 ((-552) (-627 (-1134))))) +((** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) 16)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ (-401 (-552)) $) 23) (($ $ (-401 (-552))) NIL))) +(((-237 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-552))) (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 ** (|#1| |#1| (-754))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-900))) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|))) (-238)) (T -237)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-552))) (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 ** (|#1| |#1| (-754))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-900))) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 37)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 41)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 38)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ (-401 (-552)) $) 40) (($ $ (-401 (-552))) 39))) +(((-238) (-137)) (T -238)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-552)))) (-1951 (*1 *1 *1) (-4 *1 (-238)))) +(-13 (-284) (-38 (-401 (-552))) (-10 -8 (-15 ** ($ $ (-552))) (-15 -1951 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-284) . T) ((-630 #0#) . T) ((-630 $) . T) ((-700 #0#) . T) ((-709) . T) ((-1034 #0#) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4288 ((|#1| $) 48)) (-1700 (($ $) 57)) (-4031 (((-111) $ (-754)) 8)) (-2472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4367)))) (-3918 (($ $ $) 53 (|has| $ (-6 -4367)))) (-4141 (($ $ $) 52 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 41 (|has| $ (-6 -4367)))) (-3887 (($) 7 T CONST)) (-1591 (($ $) 56)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) 50)) (-3726 (((-111) $ $) 42 (|has| |#1| (-1076)))) (-1953 (($ $) 55)) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1823 (((-627 |#1|) $) 45)) (-3810 (((-111) $) 49)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1294 ((|#1| $) 59)) (-3134 (($ $) 58)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ "value") 47)) (-1848 (((-552) $ $) 44)) (-2978 (((-111) $) 46)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3151 (($ $ $) 54 (|has| $ (-6 -4367)))) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) 51)) (-3415 (((-111) $ $) 43 (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-239 |#1|) (-137) (-1189)) (T -239)) +((-1294 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1189)))) (-3134 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1189)))) (-1700 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1189)))) (-1591 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1189)))) (-1953 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1189)))) (-3151 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-239 *2)) (-4 *2 (-1189)))) (-3918 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-239 *2)) (-4 *2 (-1189)))) (-4141 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-239 *2)) (-4 *2 (-1189))))) +(-13 (-989 |t#1|) (-10 -8 (-15 -1294 (|t#1| $)) (-15 -3134 ($ $)) (-15 -1700 ($ $)) (-15 -1591 ($ $)) (-15 -1953 ($ $)) (IF (|has| $ (-6 -4367)) (PROGN (-15 -3151 ($ $ $)) (-15 -3918 ($ $ $)) (-15 -4141 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-989 |#1|) . T) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4288 ((|#1| $) NIL)) (-4155 ((|#1| $) NIL)) (-1700 (($ $) NIL)) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-3900 (($ $ (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) $) NIL (|has| |#1| (-830))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-2701 (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830)))) (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-4298 (($ $) 10 (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2472 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-1474 (($ $ $) NIL (|has| $ (-6 -4367)))) (-2801 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-1612 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4367))) (($ $ "rest" $) NIL (|has| $ (-6 -4367))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) NIL (|has| $ (-6 -4367)))) (-4289 (($ (-1 (-111) |#1|) $) NIL)) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-4143 ((|#1| $) NIL)) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3351 (($ $) NIL) (($ $ (-754)) NIL)) (-2820 (($ $) NIL (|has| |#1| (-1076)))) (-3370 (($ $) 7 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2265 (($ |#1| $) NIL (|has| |#1| (-1076))) (($ (-1 (-111) |#1|) $) NIL)) (-4342 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3473 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) NIL)) (-3592 (((-111) $) NIL)) (-2967 (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076))) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) (-1 (-111) |#1|) $) NIL)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) NIL)) (-3726 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2655 (($ (-754) |#1|) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-1438 (($ $ $) NIL (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3759 (($ $ $) NIL (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1299 (($ |#1|) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1823 (((-627 |#1|) $) NIL)) (-3810 (((-111) $) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1294 ((|#1| $) NIL) (($ $ (-754)) NIL)) (-3954 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3252 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3340 ((|#1| $) NIL) (($ $ (-754)) NIL)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4367)))) (-2361 (((-111) $) NIL)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1202 (-552))) NIL) ((|#1| $ (-552)) NIL) ((|#1| $ (-552) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-754) $ "count") 16)) (-1848 (((-552) $ $) NIL)) (-3010 (($ $ (-1202 (-552))) NIL) (($ $ (-552)) NIL)) (-3907 (($ $ (-1202 (-552))) NIL) (($ $ (-552)) NIL)) (-3512 (($ (-627 |#1|)) 22)) (-2978 (((-111) $) NIL)) (-1805 (($ $) NIL)) (-3384 (($ $) NIL (|has| $ (-6 -4367)))) (-3543 (((-754) $) NIL)) (-4149 (($ $) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) NIL)) (-3151 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2668 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-627 $)) NIL) (($ $ |#1|) NIL)) (-1477 (($ (-627 |#1|)) 17) (((-627 |#1|) $) 18) (((-842) $) 21 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) NIL)) (-3415 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1383 (((-754) $) 14 (|has| $ (-6 -4366))))) +(((-240 |#1|) (-13 (-648 |#1|) (-10 -8 (-15 -1477 ($ (-627 |#1|))) (-15 -1477 ((-627 |#1|) $)) (-15 -3512 ($ (-627 |#1|))) (-15 -1985 ($ $ "unique")) (-15 -1985 ($ $ "sort")) (-15 -1985 ((-754) $ "count")))) (-830)) (T -240)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-240 *3)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-240 *3)) (-4 *3 (-830)))) (-3512 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-240 *3)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-240 *3)) (-4 *3 (-830)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-240 *3)) (-4 *3 (-830)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-754)) (-5 *1 (-240 *4)) (-4 *4 (-830))))) +(-13 (-648 |#1|) (-10 -8 (-15 -1477 ($ (-627 |#1|))) (-15 -1477 ((-627 |#1|) $)) (-15 -3512 ($ (-627 |#1|))) (-15 -1985 ($ $ "unique")) (-15 -1985 ($ $ "sort")) (-15 -1985 ((-754) $ "count")))) +((-2398 (((-3 (-754) "failed") |#1| |#1| (-754)) 27))) +(((-241 |#1|) (-10 -7 (-15 -2398 ((-3 (-754) "failed") |#1| |#1| (-754)))) (-13 (-709) (-362) (-10 -7 (-15 ** (|#1| |#1| (-552)))))) (T -241)) +((-2398 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-754)) (-4 *3 (-13 (-709) (-362) (-10 -7 (-15 ** (*3 *3 (-552)))))) (-5 *1 (-241 *3))))) +(-10 -7 (-15 -2398 ((-3 (-754) "failed") |#1| |#1| (-754)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-844 |#1|)) $) NIL)) (-1694 (((-1148 $) $ (-844 |#1|)) NIL) (((-1148 |#2|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3245 (($ $) NIL (|has| |#2| (-544)))) (-4058 (((-111) $) NIL (|has| |#2| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-844 |#1|))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-4014 (($ $) NIL (|has| |#2| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#2| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1017 (-552)))) (((-3 (-844 |#1|) "failed") $) NIL)) (-1703 ((|#2| $) NIL) (((-401 (-552)) $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#2| (-1017 (-552)))) (((-844 |#1|) $) NIL)) (-3116 (($ $ $ (-844 |#1|)) NIL (|has| |#2| (-169)))) (-3893 (($ $ (-627 (-552))) NIL)) (-2014 (($ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#2| (-445))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#2| (-888)))) (-2061 (($ $ |#2| (-235 (-1383 |#1|) (-754)) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-844 |#1|) (-865 (-373))) (|has| |#2| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-844 |#1|) (-865 (-552))) (|has| |#2| (-865 (-552)))))) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-1842 (($ (-1148 |#2|) (-844 |#1|)) NIL) (($ (-1148 $) (-844 |#1|)) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#2| (-235 (-1383 |#1|) (-754))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-844 |#1|)) NIL)) (-3465 (((-235 (-1383 |#1|) (-754)) $) NIL) (((-754) $ (-844 |#1|)) NIL) (((-627 (-754)) $ (-627 (-844 |#1|))) NIL)) (-1816 (($ $ $) NIL (|has| |#2| (-830)))) (-4093 (($ $ $) NIL (|has| |#2| (-830)))) (-3813 (($ (-1 (-235 (-1383 |#1|) (-754)) (-235 (-1383 |#1|) (-754))) $) NIL)) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-2685 (((-3 (-844 |#1|) "failed") $) NIL)) (-1981 (($ $) NIL)) (-1993 ((|#2| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-1595 (((-1134) $) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-844 |#1|)) (|:| -4067 (-754))) "failed") $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 ((|#2| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#2| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#2| (-888)))) (-2761 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-844 |#1|) |#2|) NIL) (($ $ (-627 (-844 |#1|)) (-627 |#2|)) NIL) (($ $ (-844 |#1|) $) NIL) (($ $ (-627 (-844 |#1|)) (-627 $)) NIL)) (-1637 (($ $ (-844 |#1|)) NIL (|has| |#2| (-169)))) (-2942 (($ $ (-844 |#1|)) NIL) (($ $ (-627 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-3567 (((-235 (-1383 |#1|) (-754)) $) NIL) (((-754) $ (-844 |#1|)) NIL) (((-627 (-754)) $ (-627 (-844 |#1|))) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-844 |#1|) (-600 (-871 (-373)))) (|has| |#2| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-844 |#1|) (-600 (-871 (-552)))) (|has| |#2| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-844 |#1|) (-600 (-528))) (|has| |#2| (-600 (-528)))))) (-3495 ((|#2| $) NIL (|has| |#2| (-445))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-844 |#1|)) NIL) (($ (-401 (-552))) NIL (-1559 (|has| |#2| (-38 (-401 (-552)))) (|has| |#2| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#2| (-544)))) (-1493 (((-627 |#2|) $) NIL)) (-1889 ((|#2| $ (-235 (-1383 |#1|) (-754))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#2| (-888))) (|has| |#2| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#2| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#2| (-544)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-844 |#1|)) NIL) (($ $ (-627 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-2351 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2407 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#2| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#2| (-38 (-401 (-552))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-242 |#1| |#2|) (-13 (-928 |#2| (-235 (-1383 |#1|) (-754)) (-844 |#1|)) (-10 -8 (-15 -3893 ($ $ (-627 (-552)))))) (-627 (-1152)) (-1028)) (T -242)) +((-3893 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-242 *3 *4)) (-14 *3 (-627 (-1152))) (-4 *4 (-1028))))) +(-13 (-928 |#2| (-235 (-1383 |#1|) (-754)) (-844 |#1|)) (-10 -8 (-15 -3893 ($ $ (-627 (-552)))))) +((-1465 (((-111) $ $) NIL)) (-3407 (((-1240) $) 15)) (-2500 (((-180) $) 9)) (-3985 (($ (-180)) 10)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 7)) (-2292 (((-111) $ $) 13))) +(((-243) (-13 (-1076) (-10 -8 (-15 -2500 ((-180) $)) (-15 -3985 ($ (-180))) (-15 -3407 ((-1240) $))))) (T -243)) +((-2500 (*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-243)))) (-3985 (*1 *1 *2) (-12 (-5 *2 (-180)) (-5 *1 (-243)))) (-3407 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-243))))) +(-13 (-1076) (-10 -8 (-15 -2500 ((-180) $)) (-15 -3985 ($ (-180))) (-15 -3407 ((-1240) $)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3969 (($ (-900)) NIL (|has| |#4| (-1028)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-2796 (($ $ $) NIL (|has| |#4| (-776)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-3307 (((-754)) NIL (|has| |#4| (-362)))) (-2422 (((-552) $) NIL (|has| |#4| (-828)))) (-2950 ((|#4| $ (-552) |#4|) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1076))) (((-3 (-552) "failed") $) NIL (-12 (|has| |#4| (-1017 (-552))) (|has| |#4| (-1076)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| |#4| (-1017 (-401 (-552)))) (|has| |#4| (-1076))))) (-1703 ((|#4| $) NIL (|has| |#4| (-1076))) (((-552) $) NIL (-12 (|has| |#4| (-1017 (-552))) (|has| |#4| (-1076)))) (((-401 (-552)) $) NIL (-12 (|has| |#4| (-1017 (-401 (-552)))) (|has| |#4| (-1076))))) (-1800 (((-2 (|:| -2515 (-671 |#4|)) (|:| |vec| (-1235 |#4|))) (-671 $) (-1235 $)) NIL (|has| |#4| (-1028))) (((-671 |#4|) (-671 $)) NIL (|has| |#4| (-1028))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (-12 (|has| |#4| (-623 (-552))) (|has| |#4| (-1028)))) (((-671 (-552)) (-671 $)) NIL (-12 (|has| |#4| (-623 (-552))) (|has| |#4| (-1028))))) (-2040 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| |#4| (-228)) (|has| |#4| (-1028))) (-12 (|has| |#4| (-623 (-552))) (|has| |#4| (-1028))) (|has| |#4| (-709)) (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))))) (-1279 (($) NIL (|has| |#4| (-362)))) (-3473 ((|#4| $ (-552) |#4|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#4| $ (-552)) NIL)) (-2983 (((-111) $) NIL (|has| |#4| (-828)))) (-3215 (((-627 |#4|) $) NIL (|has| $ (-6 -4366)))) (-2624 (((-111) $) NIL (-1559 (-12 (|has| |#4| (-228)) (|has| |#4| (-1028))) (-12 (|has| |#4| (-623 (-552))) (|has| |#4| (-1028))) (|has| |#4| (-709)) (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))))) (-1508 (((-111) $) NIL (|has| |#4| (-828)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (-1559 (|has| |#4| (-776)) (|has| |#4| (-828))))) (-3114 (((-627 |#4|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (-1559 (|has| |#4| (-776)) (|has| |#4| (-828))))) (-3463 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) NIL)) (-2886 (((-900) $) NIL (|has| |#4| (-362)))) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-4153 (($ (-900)) NIL (|has| |#4| (-362)))) (-1498 (((-1096) $) NIL)) (-3340 ((|#4| $) NIL (|has| (-552) (-830)))) (-1942 (($ $ |#4|) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 |#4|) (-627 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-2083 (((-627 |#4|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#4| $ (-552) |#4|) NIL) ((|#4| $ (-552)) 12)) (-2395 ((|#4| $ $) NIL (|has| |#4| (-1028)))) (-1767 (($ (-1235 |#4|)) NIL)) (-2405 (((-132)) NIL (|has| |#4| (-357)))) (-2942 (($ $ (-1 |#4| |#4|) (-754)) NIL (|has| |#4| (-1028))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1028))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#4| (-228)) (|has| |#4| (-1028)))) (($ $) NIL (-12 (|has| |#4| (-228)) (|has| |#4| (-1028))))) (-1509 (((-754) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366))) (((-754) |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-1235 |#4|) $) NIL) (((-842) $) NIL) (($ |#4|) NIL (|has| |#4| (-1076))) (($ (-552)) NIL (-1559 (-12 (|has| |#4| (-1017 (-552))) (|has| |#4| (-1076))) (|has| |#4| (-1028)))) (($ (-401 (-552))) NIL (-12 (|has| |#4| (-1017 (-401 (-552)))) (|has| |#4| (-1076))))) (-3995 (((-754)) NIL (|has| |#4| (-1028)))) (-3299 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3329 (($ $) NIL (|has| |#4| (-828)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL (-1559 (-12 (|has| |#4| (-228)) (|has| |#4| (-1028))) (-12 (|has| |#4| (-623 (-552))) (|has| |#4| (-1028))) (|has| |#4| (-709)) (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))) CONST)) (-4251 (($ $ (-1 |#4| |#4|) (-754)) NIL (|has| |#4| (-1028))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1028))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#4| (-228)) (|has| |#4| (-1028)))) (($ $) NIL (-12 (|has| |#4| (-228)) (|has| |#4| (-1028))))) (-2351 (((-111) $ $) NIL (-1559 (|has| |#4| (-776)) (|has| |#4| (-828))))) (-2329 (((-111) $ $) NIL (-1559 (|has| |#4| (-776)) (|has| |#4| (-828))))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (-1559 (|has| |#4| (-776)) (|has| |#4| (-828))))) (-2316 (((-111) $ $) NIL (-1559 (|has| |#4| (-776)) (|has| |#4| (-828))))) (-2407 (($ $ |#4|) NIL (|has| |#4| (-357)))) (-2396 (($ $ $) NIL) (($ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-754)) NIL (-1559 (-12 (|has| |#4| (-228)) (|has| |#4| (-1028))) (-12 (|has| |#4| (-623 (-552))) (|has| |#4| (-1028))) (|has| |#4| (-709)) (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028))))) (($ $ (-900)) NIL (-1559 (-12 (|has| |#4| (-228)) (|has| |#4| (-1028))) (-12 (|has| |#4| (-623 (-552))) (|has| |#4| (-1028))) (|has| |#4| (-709)) (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))))) (* (($ |#2| $) 14) (($ (-552) $) NIL) (($ (-754) $) NIL) (($ (-900) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-709))) (($ |#4| $) NIL (|has| |#4| (-709))) (($ $ $) NIL (-1559 (-12 (|has| |#4| (-228)) (|has| |#4| (-1028))) (-12 (|has| |#4| (-623 (-552))) (|has| |#4| (-1028))) (|has| |#4| (-709)) (-12 (|has| |#4| (-879 (-1152))) (|has| |#4| (-1028)))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-244 |#1| |#2| |#3| |#4|) (-13 (-233 |#1| |#4|) (-630 |#2|) (-630 |#3|)) (-900) (-1028) (-1099 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-630 |#2|)) (T -244)) +NIL +(-13 (-233 |#1| |#4|) (-630 |#2|) (-630 |#3|)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3969 (($ (-900)) NIL (|has| |#3| (-1028)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-2796 (($ $ $) NIL (|has| |#3| (-776)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-3307 (((-754)) NIL (|has| |#3| (-362)))) (-2422 (((-552) $) NIL (|has| |#3| (-828)))) (-2950 ((|#3| $ (-552) |#3|) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1076))) (((-3 (-552) "failed") $) NIL (-12 (|has| |#3| (-1017 (-552))) (|has| |#3| (-1076)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| |#3| (-1017 (-401 (-552)))) (|has| |#3| (-1076))))) (-1703 ((|#3| $) NIL (|has| |#3| (-1076))) (((-552) $) NIL (-12 (|has| |#3| (-1017 (-552))) (|has| |#3| (-1076)))) (((-401 (-552)) $) NIL (-12 (|has| |#3| (-1017 (-401 (-552)))) (|has| |#3| (-1076))))) (-1800 (((-2 (|:| -2515 (-671 |#3|)) (|:| |vec| (-1235 |#3|))) (-671 $) (-1235 $)) NIL (|has| |#3| (-1028))) (((-671 |#3|) (-671 $)) NIL (|has| |#3| (-1028))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (-12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028)))) (((-671 (-552)) (-671 $)) NIL (-12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028))))) (-2040 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| |#3| (-228)) (|has| |#3| (-1028))) (-12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028))) (|has| |#3| (-709)) (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))))) (-1279 (($) NIL (|has| |#3| (-362)))) (-3473 ((|#3| $ (-552) |#3|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#3| $ (-552)) NIL)) (-2983 (((-111) $) NIL (|has| |#3| (-828)))) (-3215 (((-627 |#3|) $) NIL (|has| $ (-6 -4366)))) (-2624 (((-111) $) NIL (-1559 (-12 (|has| |#3| (-228)) (|has| |#3| (-1028))) (-12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028))) (|has| |#3| (-709)) (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))))) (-1508 (((-111) $) NIL (|has| |#3| (-828)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-3114 (((-627 |#3|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#3| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-3463 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#3| |#3|) $) NIL)) (-2886 (((-900) $) NIL (|has| |#3| (-362)))) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-4153 (($ (-900)) NIL (|has| |#3| (-362)))) (-1498 (((-1096) $) NIL)) (-3340 ((|#3| $) NIL (|has| (-552) (-830)))) (-1942 (($ $ |#3|) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#3|))) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ (-288 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ (-627 |#3|) (-627 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#3| (-1076))))) (-2083 (((-627 |#3|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#3| $ (-552) |#3|) NIL) ((|#3| $ (-552)) 11)) (-2395 ((|#3| $ $) NIL (|has| |#3| (-1028)))) (-1767 (($ (-1235 |#3|)) NIL)) (-2405 (((-132)) NIL (|has| |#3| (-357)))) (-2942 (($ $ (-1 |#3| |#3|) (-754)) NIL (|has| |#3| (-1028))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1028))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1028)))) (($ $) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1028))))) (-1509 (((-754) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4366))) (((-754) |#3| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#3| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-1235 |#3|) $) NIL) (((-842) $) NIL) (($ |#3|) NIL (|has| |#3| (-1076))) (($ (-552)) NIL (-1559 (-12 (|has| |#3| (-1017 (-552))) (|has| |#3| (-1076))) (|has| |#3| (-1028)))) (($ (-401 (-552))) NIL (-12 (|has| |#3| (-1017 (-401 (-552)))) (|has| |#3| (-1076))))) (-3995 (((-754)) NIL (|has| |#3| (-1028)))) (-3299 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4366)))) (-3329 (($ $) NIL (|has| |#3| (-828)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL (-1559 (-12 (|has| |#3| (-228)) (|has| |#3| (-1028))) (-12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028))) (|has| |#3| (-709)) (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) CONST)) (-4251 (($ $ (-1 |#3| |#3|) (-754)) NIL (|has| |#3| (-1028))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1028))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1028)))) (($ $) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1028))))) (-2351 (((-111) $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-2329 (((-111) $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-2316 (((-111) $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-2407 (($ $ |#3|) NIL (|has| |#3| (-357)))) (-2396 (($ $ $) NIL) (($ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-754)) NIL (-1559 (-12 (|has| |#3| (-228)) (|has| |#3| (-1028))) (-12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028))) (|has| |#3| (-709)) (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028))))) (($ $ (-900)) NIL (-1559 (-12 (|has| |#3| (-228)) (|has| |#3| (-1028))) (-12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028))) (|has| |#3| (-709)) (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))))) (* (($ |#2| $) 13) (($ (-552) $) NIL) (($ (-754) $) NIL) (($ (-900) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-709))) (($ |#3| $) NIL (|has| |#3| (-709))) (($ $ $) NIL (-1559 (-12 (|has| |#3| (-228)) (|has| |#3| (-1028))) (-12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028))) (|has| |#3| (-709)) (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-245 |#1| |#2| |#3|) (-13 (-233 |#1| |#3|) (-630 |#2|)) (-754) (-1028) (-630 |#2|)) (T -245)) +NIL +(-13 (-233 |#1| |#3|) (-630 |#2|)) +((-3996 (((-627 (-754)) $) 47) (((-627 (-754)) $ |#3|) 50)) (-2671 (((-754) $) 49) (((-754) $ |#3|) 52)) (-2252 (($ $) 65)) (-4039 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-2641 (((-754) $ |#3|) 39) (((-754) $) 36)) (-4250 (((-1 $ (-754)) |#3|) 15) (((-1 $ (-754)) $) 77)) (-4033 ((|#4| $) 58)) (-3675 (((-111) $) 56)) (-2549 (($ $) 64)) (-3321 (($ $ (-627 (-288 $))) 97) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-627 |#4|) (-627 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-627 |#4|) (-627 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-627 |#3|) (-627 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-627 |#3|) (-627 |#2|)) 84)) (-2942 (($ $ |#4|) NIL) (($ $ (-627 |#4|)) NIL) (($ $ |#4| (-754)) NIL) (($ $ (-627 |#4|) (-627 (-754))) NIL) (($ $) NIL) (($ $ (-754)) NIL) (($ $ (-1152)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2544 (((-627 |#3|) $) 75)) (-3567 ((|#5| $) NIL) (((-754) $ |#4|) NIL) (((-627 (-754)) $ (-627 |#4|)) NIL) (((-754) $ |#3|) 44)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-401 (-552))) NIL) (($ $) NIL))) +(((-246 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1477 (|#1| |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -3321 (|#1| |#1| (-627 |#3|) (-627 |#2|))) (-15 -3321 (|#1| |#1| |#3| |#2|)) (-15 -3321 (|#1| |#1| (-627 |#3|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#3| |#1|)) (-15 -4250 ((-1 |#1| (-754)) |#1|)) (-15 -2252 (|#1| |#1|)) (-15 -2549 (|#1| |#1|)) (-15 -4033 (|#4| |#1|)) (-15 -3675 ((-111) |#1|)) (-15 -2671 ((-754) |#1| |#3|)) (-15 -3996 ((-627 (-754)) |#1| |#3|)) (-15 -2671 ((-754) |#1|)) (-15 -3996 ((-627 (-754)) |#1|)) (-15 -3567 ((-754) |#1| |#3|)) (-15 -2641 ((-754) |#1|)) (-15 -2641 ((-754) |#1| |#3|)) (-15 -2544 ((-627 |#3|) |#1|)) (-15 -4250 ((-1 |#1| (-754)) |#3|)) (-15 -4039 ((-3 |#3| "failed") |#1|)) (-15 -1477 (|#1| |#3|)) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1|)) (-15 -3567 ((-627 (-754)) |#1| (-627 |#4|))) (-15 -3567 ((-754) |#1| |#4|)) (-15 -4039 ((-3 |#4| "failed") |#1|)) (-15 -1477 (|#1| |#4|)) (-15 -3321 (|#1| |#1| (-627 |#4|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#4| |#1|)) (-15 -3321 (|#1| |#1| (-627 |#4|) (-627 |#2|))) (-15 -3321 (|#1| |#1| |#4| |#2|)) (-15 -3321 (|#1| |#1| (-627 |#1|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| (-288 |#1|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -3567 (|#5| |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -2942 (|#1| |#1| (-627 |#4|) (-627 (-754)))) (-15 -2942 (|#1| |#1| |#4| (-754))) (-15 -2942 (|#1| |#1| (-627 |#4|))) (-15 -2942 (|#1| |#1| |#4|)) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) (-247 |#2| |#3| |#4| |#5|) (-1028) (-830) (-260 |#3|) (-776)) (T -246)) +NIL +(-10 -8 (-15 -1477 (|#1| |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -3321 (|#1| |#1| (-627 |#3|) (-627 |#2|))) (-15 -3321 (|#1| |#1| |#3| |#2|)) (-15 -3321 (|#1| |#1| (-627 |#3|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#3| |#1|)) (-15 -4250 ((-1 |#1| (-754)) |#1|)) (-15 -2252 (|#1| |#1|)) (-15 -2549 (|#1| |#1|)) (-15 -4033 (|#4| |#1|)) (-15 -3675 ((-111) |#1|)) (-15 -2671 ((-754) |#1| |#3|)) (-15 -3996 ((-627 (-754)) |#1| |#3|)) (-15 -2671 ((-754) |#1|)) (-15 -3996 ((-627 (-754)) |#1|)) (-15 -3567 ((-754) |#1| |#3|)) (-15 -2641 ((-754) |#1|)) (-15 -2641 ((-754) |#1| |#3|)) (-15 -2544 ((-627 |#3|) |#1|)) (-15 -4250 ((-1 |#1| (-754)) |#3|)) (-15 -4039 ((-3 |#3| "failed") |#1|)) (-15 -1477 (|#1| |#3|)) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1|)) (-15 -3567 ((-627 (-754)) |#1| (-627 |#4|))) (-15 -3567 ((-754) |#1| |#4|)) (-15 -4039 ((-3 |#4| "failed") |#1|)) (-15 -1477 (|#1| |#4|)) (-15 -3321 (|#1| |#1| (-627 |#4|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#4| |#1|)) (-15 -3321 (|#1| |#1| (-627 |#4|) (-627 |#2|))) (-15 -3321 (|#1| |#1| |#4| |#2|)) (-15 -3321 (|#1| |#1| (-627 |#1|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| (-288 |#1|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -3567 (|#5| |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -2942 (|#1| |#1| (-627 |#4|) (-627 (-754)))) (-15 -2942 (|#1| |#1| |#4| (-754))) (-15 -2942 (|#1| |#1| (-627 |#4|))) (-15 -2942 (|#1| |#1| |#4|)) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3996 (((-627 (-754)) $) 212) (((-627 (-754)) $ |#2|) 210)) (-2671 (((-754) $) 211) (((-754) $ |#2|) 209)) (-1853 (((-627 |#3|) $) 108)) (-1694 (((-1148 $) $ |#3|) 123) (((-1148 |#1|) $) 122)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 85 (|has| |#1| (-544)))) (-3245 (($ $) 86 (|has| |#1| (-544)))) (-4058 (((-111) $) 88 (|has| |#1| (-544)))) (-3278 (((-754) $) 110) (((-754) $ (-627 |#3|)) 109)) (-4136 (((-3 $ "failed") $ $) 19)) (-2246 (((-412 (-1148 $)) (-1148 $)) 98 (|has| |#1| (-888)))) (-4014 (($ $) 96 (|has| |#1| (-445)))) (-2487 (((-412 $) $) 95 (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 101 (|has| |#1| (-888)))) (-2252 (($ $) 205)) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#1| "failed") $) 162) (((-3 (-401 (-552)) "failed") $) 160 (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) 158 (|has| |#1| (-1017 (-552)))) (((-3 |#3| "failed") $) 134) (((-3 |#2| "failed") $) 219)) (-1703 ((|#1| $) 163) (((-401 (-552)) $) 159 (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) 157 (|has| |#1| (-1017 (-552)))) ((|#3| $) 133) ((|#2| $) 218)) (-3116 (($ $ $ |#3|) 106 (|has| |#1| (-169)))) (-2014 (($ $) 152)) (-1800 (((-671 (-552)) (-671 $)) 132 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 131 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 130) (((-671 |#1|) (-671 $)) 129)) (-2040 (((-3 $ "failed") $) 32)) (-1375 (($ $) 174 (|has| |#1| (-445))) (($ $ |#3|) 103 (|has| |#1| (-445)))) (-2003 (((-627 $) $) 107)) (-1633 (((-111) $) 94 (|has| |#1| (-888)))) (-2061 (($ $ |#1| |#4| $) 170)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 82 (-12 (|has| |#3| (-865 (-373))) (|has| |#1| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 81 (-12 (|has| |#3| (-865 (-552))) (|has| |#1| (-865 (-552)))))) (-2641 (((-754) $ |#2|) 215) (((-754) $) 214)) (-2624 (((-111) $) 30)) (-3522 (((-754) $) 167)) (-1842 (($ (-1148 |#1|) |#3|) 115) (($ (-1148 $) |#3|) 114)) (-3056 (((-627 $) $) 124)) (-3267 (((-111) $) 150)) (-1832 (($ |#1| |#4|) 151) (($ $ |#3| (-754)) 117) (($ $ (-627 |#3|) (-627 (-754))) 116)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ |#3|) 118)) (-3465 ((|#4| $) 168) (((-754) $ |#3|) 120) (((-627 (-754)) $ (-627 |#3|)) 119)) (-1816 (($ $ $) 77 (|has| |#1| (-830)))) (-4093 (($ $ $) 76 (|has| |#1| (-830)))) (-3813 (($ (-1 |#4| |#4|) $) 169)) (-3516 (($ (-1 |#1| |#1|) $) 149)) (-4250 (((-1 $ (-754)) |#2|) 217) (((-1 $ (-754)) $) 204 (|has| |#1| (-228)))) (-2685 (((-3 |#3| "failed") $) 121)) (-1981 (($ $) 147)) (-1993 ((|#1| $) 146)) (-4033 ((|#3| $) 207)) (-1276 (($ (-627 $)) 92 (|has| |#1| (-445))) (($ $ $) 91 (|has| |#1| (-445)))) (-1595 (((-1134) $) 9)) (-3675 (((-111) $) 208)) (-4035 (((-3 (-627 $) "failed") $) 112)) (-2746 (((-3 (-627 $) "failed") $) 113)) (-3815 (((-3 (-2 (|:| |var| |#3|) (|:| -4067 (-754))) "failed") $) 111)) (-2549 (($ $) 206)) (-1498 (((-1096) $) 10)) (-1960 (((-111) $) 164)) (-1970 ((|#1| $) 165)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 93 (|has| |#1| (-445)))) (-1323 (($ (-627 $)) 90 (|has| |#1| (-445))) (($ $ $) 89 (|has| |#1| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) 100 (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) 99 (|has| |#1| (-888)))) (-1727 (((-412 $) $) 97 (|has| |#1| (-888)))) (-2761 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-3321 (($ $ (-627 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-627 $) (-627 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-627 |#3|) (-627 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-627 |#3|) (-627 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-228))) (($ $ (-627 |#2|) (-627 $)) 202 (|has| |#1| (-228))) (($ $ |#2| |#1|) 201 (|has| |#1| (-228))) (($ $ (-627 |#2|) (-627 |#1|)) 200 (|has| |#1| (-228)))) (-1637 (($ $ |#3|) 105 (|has| |#1| (-169)))) (-2942 (($ $ |#3|) 40) (($ $ (-627 |#3|)) 39) (($ $ |#3| (-754)) 38) (($ $ (-627 |#3|) (-627 (-754))) 37) (($ $) 236 (|has| |#1| (-228))) (($ $ (-754)) 234 (|has| |#1| (-228))) (($ $ (-1152)) 232 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 231 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 230 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) 229 (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-2544 (((-627 |#2|) $) 216)) (-3567 ((|#4| $) 148) (((-754) $ |#3|) 128) (((-627 (-754)) $ (-627 |#3|)) 127) (((-754) $ |#2|) 213)) (-3562 (((-871 (-373)) $) 80 (-12 (|has| |#3| (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373)))))) (((-871 (-552)) $) 79 (-12 (|has| |#3| (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552)))))) (((-528) $) 78 (-12 (|has| |#3| (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3495 ((|#1| $) 173 (|has| |#1| (-445))) (($ $ |#3|) 104 (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 102 (-2520 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-401 (-552))) 70 (-1559 (|has| |#1| (-1017 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))))) (($ $) 83 (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) 166)) (-1889 ((|#1| $ |#4|) 153) (($ $ |#3| (-754)) 126) (($ $ (-627 |#3|) (-627 (-754))) 125)) (-3050 (((-3 $ "failed") $) 71 (-1559 (-2520 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) 28)) (-3417 (($ $ $ (-754)) 171 (|has| |#1| (-169)))) (-3778 (((-111) $ $) 87 (|has| |#1| (-544)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ |#3|) 36) (($ $ (-627 |#3|)) 35) (($ $ |#3| (-754)) 34) (($ $ (-627 |#3|) (-627 (-754))) 33) (($ $) 235 (|has| |#1| (-228))) (($ $ (-754)) 233 (|has| |#1| (-228))) (($ $ (-1152)) 228 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 227 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 226 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) 225 (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2351 (((-111) $ $) 74 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 73 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 75 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 72 (|has| |#1| (-830)))) (-2407 (($ $ |#1|) 154 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 156 (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) 155 (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-247 |#1| |#2| |#3| |#4|) (-137) (-1028) (-830) (-260 |t#2|) (-776)) (T -247)) +((-4250 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-4 *3 (-830)) (-4 *5 (-260 *3)) (-4 *6 (-776)) (-5 *2 (-1 *1 (-754))) (-4 *1 (-247 *4 *3 *5 *6)))) (-2544 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-627 *4)))) (-2641 (*1 *2 *1 *3) (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1028)) (-4 *3 (-830)) (-4 *5 (-260 *3)) (-4 *6 (-776)) (-5 *2 (-754)))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-754)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1028)) (-4 *3 (-830)) (-4 *5 (-260 *3)) (-4 *6 (-776)) (-5 *2 (-754)))) (-3996 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-627 (-754))))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-754)))) (-3996 (*1 *2 *1 *3) (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1028)) (-4 *3 (-830)) (-4 *5 (-260 *3)) (-4 *6 (-776)) (-5 *2 (-627 (-754))))) (-2671 (*1 *2 *1 *3) (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1028)) (-4 *3 (-830)) (-4 *5 (-260 *3)) (-4 *6 (-776)) (-5 *2 (-754)))) (-3675 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-111)))) (-4033 (*1 *2 *1) (-12 (-4 *1 (-247 *3 *4 *2 *5)) (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-776)) (-4 *2 (-260 *4)))) (-2549 (*1 *1 *1) (-12 (-4 *1 (-247 *2 *3 *4 *5)) (-4 *2 (-1028)) (-4 *3 (-830)) (-4 *4 (-260 *3)) (-4 *5 (-776)))) (-2252 (*1 *1 *1) (-12 (-4 *1 (-247 *2 *3 *4 *5)) (-4 *2 (-1028)) (-4 *3 (-830)) (-4 *4 (-260 *3)) (-4 *5 (-776)))) (-4250 (*1 *2 *1) (-12 (-4 *3 (-228)) (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-1 *1 (-754))) (-4 *1 (-247 *3 *4 *5 *6))))) +(-13 (-928 |t#1| |t#4| |t#3|) (-226 |t#1|) (-1017 |t#2|) (-10 -8 (-15 -4250 ((-1 $ (-754)) |t#2|)) (-15 -2544 ((-627 |t#2|) $)) (-15 -2641 ((-754) $ |t#2|)) (-15 -2641 ((-754) $)) (-15 -3567 ((-754) $ |t#2|)) (-15 -3996 ((-627 (-754)) $)) (-15 -2671 ((-754) $)) (-15 -3996 ((-627 (-754)) $ |t#2|)) (-15 -2671 ((-754) $ |t#2|)) (-15 -3675 ((-111) $)) (-15 -4033 (|t#3| $)) (-15 -2549 ($ $)) (-15 -2252 ($ $)) (IF (|has| |t#1| (-228)) (PROGN (-6 (-506 |t#2| |t#1|)) (-6 (-506 |t#2| $)) (-6 (-303 $)) (-15 -4250 ((-1 $ (-754)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-600 (-528)) -12 (|has| |#1| (-600 (-528))) (|has| |#3| (-600 (-528)))) ((-600 (-871 (-373))) -12 (|has| |#1| (-600 (-871 (-373)))) (|has| |#3| (-600 (-871 (-373))))) ((-600 (-871 (-552))) -12 (|has| |#1| (-600 (-871 (-552)))) (|has| |#3| (-600 (-871 (-552))))) ((-226 |#1|) . T) ((-228) |has| |#1| (-228)) ((-284) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-303 $) . T) ((-320 |#1| |#4|) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-445) -1559 (|has| |#1| (-888)) (|has| |#1| (-445))) ((-506 |#2| |#1|) |has| |#1| (-228)) ((-506 |#2| $) |has| |#1| (-228)) ((-506 |#3| |#1|) . T) ((-506 |#3| $) . T) ((-506 $ $) . T) ((-544) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-630 #0#) |has| |#1| (-38 (-401 (-552)))) ((-630 |#1|) . T) ((-630 $) . T) ((-623 (-552)) |has| |#1| (-623 (-552))) ((-623 |#1|) . T) ((-700 #0#) |has| |#1| (-38 (-401 (-552)))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-709) . T) ((-830) |has| |#1| (-830)) ((-879 (-1152)) |has| |#1| (-879 (-1152))) ((-879 |#3|) . T) ((-865 (-373)) -12 (|has| |#1| (-865 (-373))) (|has| |#3| (-865 (-373)))) ((-865 (-552)) -12 (|has| |#1| (-865 (-552))) (|has| |#3| (-865 (-552)))) ((-928 |#1| |#4| |#3|) . T) ((-888) |has| |#1| (-888)) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T) ((-1017 |#2|) . T) ((-1017 |#3|) . T) ((-1034 #0#) |has| |#1| (-38 (-401 (-552)))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) |has| |#1| (-888))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-1416 ((|#1| $) 54)) (-2240 ((|#1| $) 44)) (-4031 (((-111) $ (-754)) 8)) (-3887 (($) 7 T CONST)) (-3022 (($ $) 60)) (-2519 (($ $) 48)) (-3468 ((|#1| |#1| $) 46)) (-3846 ((|#1| $) 45)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-3593 (((-754) $) 61)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-4165 ((|#1| $) 39)) (-3271 ((|#1| |#1| $) 52)) (-3510 ((|#1| |#1| $) 51)) (-3954 (($ |#1| $) 40)) (-3476 (((-754) $) 55)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-1412 ((|#1| $) 62)) (-1787 ((|#1| $) 50)) (-3336 ((|#1| $) 49)) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1549 ((|#1| |#1| $) 58)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-4234 ((|#1| $) 59)) (-3693 (($) 57) (($ (-627 |#1|)) 56)) (-4170 (((-754) $) 43)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-1849 ((|#1| $) 53)) (-2577 (($ (-627 |#1|)) 42)) (-2905 ((|#1| $) 63)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-248 |#1|) (-137) (-1189)) (T -248)) +((-3693 (*1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189)))) (-3693 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-4 *1 (-248 *3)))) (-3476 (*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-1189)) (-5 *2 (-754)))) (-1416 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189)))) (-3271 (*1 *2 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189)))) (-3510 (*1 *2 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189)))) (-3336 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189)))) (-2519 (*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189))))) +(-13 (-1097 |t#1|) (-974 |t#1|) (-10 -8 (-15 -3693 ($)) (-15 -3693 ($ (-627 |t#1|))) (-15 -3476 ((-754) $)) (-15 -1416 (|t#1| $)) (-15 -1849 (|t#1| $)) (-15 -3271 (|t#1| |t#1| $)) (-15 -3510 (|t#1| |t#1| $)) (-15 -1787 (|t#1| $)) (-15 -3336 (|t#1| $)) (-15 -2519 ($ $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-974 |#1|) . T) ((-1076) |has| |#1| (-1076)) ((-1097 |#1|) . T) ((-1189) . T)) +((-3409 (((-1 (-922 (-220)) (-220) (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220) (-220))) 139)) (-3046 (((-1109 (-220)) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373))) 160) (((-1109 (-220)) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373)) (-627 (-257))) 158) (((-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373))) 163) (((-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257))) 159) (((-1109 (-220)) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373))) 150) (((-1109 (-220)) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257))) 149) (((-1109 (-220)) (-1 (-922 (-220)) (-220)) (-1070 (-373))) 129) (((-1109 (-220)) (-1 (-922 (-220)) (-220)) (-1070 (-373)) (-627 (-257))) 127) (((-1109 (-220)) (-858 (-1 (-220) (-220))) (-1070 (-373))) 128) (((-1109 (-220)) (-858 (-1 (-220) (-220))) (-1070 (-373)) (-627 (-257))) 125)) (-3005 (((-1237) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373))) 162) (((-1237) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373)) (-627 (-257))) 161) (((-1237) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373))) 165) (((-1237) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257))) 164) (((-1237) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373))) 152) (((-1237) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257))) 151) (((-1237) (-1 (-922 (-220)) (-220)) (-1070 (-373))) 135) (((-1237) (-1 (-922 (-220)) (-220)) (-1070 (-373)) (-627 (-257))) 134) (((-1237) (-858 (-1 (-220) (-220))) (-1070 (-373))) 133) (((-1237) (-858 (-1 (-220) (-220))) (-1070 (-373)) (-627 (-257))) 132) (((-1236) (-856 (-1 (-220) (-220))) (-1070 (-373))) 100) (((-1236) (-856 (-1 (-220) (-220))) (-1070 (-373)) (-627 (-257))) 99) (((-1236) (-1 (-220) (-220)) (-1070 (-373))) 96) (((-1236) (-1 (-220) (-220)) (-1070 (-373)) (-627 (-257))) 95))) +(((-249) (-10 -7 (-15 -3005 ((-1236) (-1 (-220) (-220)) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1236) (-1 (-220) (-220)) (-1070 (-373)))) (-15 -3005 ((-1236) (-856 (-1 (-220) (-220))) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1236) (-856 (-1 (-220) (-220))) (-1070 (-373)))) (-15 -3005 ((-1237) (-858 (-1 (-220) (-220))) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-858 (-1 (-220) (-220))) (-1070 (-373)))) (-15 -3005 ((-1237) (-1 (-922 (-220)) (-220)) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-1 (-922 (-220)) (-220)) (-1070 (-373)))) (-15 -3046 ((-1109 (-220)) (-858 (-1 (-220) (-220))) (-1070 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-858 (-1 (-220) (-220))) (-1070 (-373)))) (-15 -3046 ((-1109 (-220)) (-1 (-922 (-220)) (-220)) (-1070 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-1 (-922 (-220)) (-220)) (-1070 (-373)))) (-15 -3005 ((-1237) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373)))) (-15 -3046 ((-1109 (-220)) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373)))) (-15 -3005 ((-1237) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373)))) (-15 -3046 ((-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373)))) (-15 -3005 ((-1237) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373)))) (-15 -3046 ((-1109 (-220)) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373)))) (-15 -3409 ((-1 (-922 (-220)) (-220) (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220) (-220)))))) (T -249)) +((-3409 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-922 (-220)) (-220) (-220))) (-5 *3 (-1 (-220) (-220) (-220) (-220))) (-5 *1 (-249)))) (-3046 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-861 (-1 (-220) (-220) (-220)))) (-5 *4 (-1070 (-373))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) (-3046 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-861 (-1 (-220) (-220) (-220)))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-861 (-1 (-220) (-220) (-220)))) (-5 *4 (-1070 (-373))) (-5 *2 (-1237)) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-861 (-1 (-220) (-220) (-220)))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-249)))) (-3046 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-373))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) (-3046 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-373))) (-5 *2 (-1237)) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-249)))) (-3046 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1070 (-373))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) (-3046 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1070 (-373))) (-5 *2 (-1237)) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-249)))) (-3046 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-922 (-220)) (-220))) (-5 *4 (-1070 (-373))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) (-3046 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-922 (-220)) (-220))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) (-3046 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) (-3046 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-858 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-922 (-220)) (-220))) (-5 *4 (-1070 (-373))) (-5 *2 (-1237)) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-922 (-220)) (-220))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4) (-12 (-5 *3 (-858 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) (-5 *2 (-1237)) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-858 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4) (-12 (-5 *3 (-856 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) (-5 *2 (-1236)) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-856 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1236)) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-220) (-220))) (-5 *4 (-1070 (-373))) (-5 *2 (-1236)) (-5 *1 (-249)))) (-3005 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-220) (-220))) (-5 *4 (-1070 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1236)) (-5 *1 (-249))))) +(-10 -7 (-15 -3005 ((-1236) (-1 (-220) (-220)) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1236) (-1 (-220) (-220)) (-1070 (-373)))) (-15 -3005 ((-1236) (-856 (-1 (-220) (-220))) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1236) (-856 (-1 (-220) (-220))) (-1070 (-373)))) (-15 -3005 ((-1237) (-858 (-1 (-220) (-220))) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-858 (-1 (-220) (-220))) (-1070 (-373)))) (-15 -3005 ((-1237) (-1 (-922 (-220)) (-220)) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-1 (-922 (-220)) (-220)) (-1070 (-373)))) (-15 -3046 ((-1109 (-220)) (-858 (-1 (-220) (-220))) (-1070 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-858 (-1 (-220) (-220))) (-1070 (-373)))) (-15 -3046 ((-1109 (-220)) (-1 (-922 (-220)) (-220)) (-1070 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-1 (-922 (-220)) (-220)) (-1070 (-373)))) (-15 -3005 ((-1237) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373)))) (-15 -3046 ((-1109 (-220)) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-1 (-220) (-220) (-220)) (-1070 (-373)) (-1070 (-373)))) (-15 -3005 ((-1237) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373)))) (-15 -3046 ((-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-373)) (-1070 (-373)))) (-15 -3005 ((-1237) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373)))) (-15 -3046 ((-1109 (-220)) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-861 (-1 (-220) (-220) (-220))) (-1070 (-373)) (-1070 (-373)))) (-15 -3409 ((-1 (-922 (-220)) (-220) (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220) (-220))))) +((-3005 (((-1236) (-288 |#2|) (-1152) (-1152) (-627 (-257))) 96))) +(((-250 |#1| |#2|) (-10 -7 (-15 -3005 ((-1236) (-288 |#2|) (-1152) (-1152) (-627 (-257))))) (-13 (-544) (-830) (-1017 (-552))) (-424 |#1|)) (T -250)) +((-3005 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-1152)) (-5 *5 (-627 (-257))) (-4 *7 (-424 *6)) (-4 *6 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-1236)) (-5 *1 (-250 *6 *7))))) +(-10 -7 (-15 -3005 ((-1236) (-288 |#2|) (-1152) (-1152) (-627 (-257))))) +((-4263 (((-552) (-552)) 50)) (-3973 (((-552) (-552)) 51)) (-1437 (((-220) (-220)) 52)) (-2686 (((-1237) (-1 (-166 (-220)) (-166 (-220))) (-1070 (-220)) (-1070 (-220))) 49)) (-3004 (((-1237) (-1 (-166 (-220)) (-166 (-220))) (-1070 (-220)) (-1070 (-220)) (-111)) 47))) +(((-251) (-10 -7 (-15 -3004 ((-1237) (-1 (-166 (-220)) (-166 (-220))) (-1070 (-220)) (-1070 (-220)) (-111))) (-15 -2686 ((-1237) (-1 (-166 (-220)) (-166 (-220))) (-1070 (-220)) (-1070 (-220)))) (-15 -4263 ((-552) (-552))) (-15 -3973 ((-552) (-552))) (-15 -1437 ((-220) (-220))))) (T -251)) +((-1437 (*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-251)))) (-3973 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-251)))) (-4263 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-251)))) (-2686 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-166 (-220)) (-166 (-220)))) (-5 *4 (-1070 (-220))) (-5 *2 (-1237)) (-5 *1 (-251)))) (-3004 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-166 (-220)) (-166 (-220)))) (-5 *4 (-1070 (-220))) (-5 *5 (-111)) (-5 *2 (-1237)) (-5 *1 (-251))))) +(-10 -7 (-15 -3004 ((-1237) (-1 (-166 (-220)) (-166 (-220))) (-1070 (-220)) (-1070 (-220)) (-111))) (-15 -2686 ((-1237) (-1 (-166 (-220)) (-166 (-220))) (-1070 (-220)) (-1070 (-220)))) (-15 -4263 ((-552) (-552))) (-15 -3973 ((-552) (-552))) (-15 -1437 ((-220) (-220)))) +((-1477 (((-1068 (-373)) (-1068 (-310 |#1|))) 16))) +(((-252 |#1|) (-10 -7 (-15 -1477 ((-1068 (-373)) (-1068 (-310 |#1|))))) (-13 (-830) (-544) (-600 (-373)))) (T -252)) +((-1477 (*1 *2 *3) (-12 (-5 *3 (-1068 (-310 *4))) (-4 *4 (-13 (-830) (-544) (-600 (-373)))) (-5 *2 (-1068 (-373))) (-5 *1 (-252 *4))))) +(-10 -7 (-15 -1477 ((-1068 (-373)) (-1068 (-310 |#1|))))) +((-3046 (((-1109 (-220)) (-861 |#1|) (-1068 (-373)) (-1068 (-373))) 71) (((-1109 (-220)) (-861 |#1|) (-1068 (-373)) (-1068 (-373)) (-627 (-257))) 70) (((-1109 (-220)) |#1| (-1068 (-373)) (-1068 (-373))) 61) (((-1109 (-220)) |#1| (-1068 (-373)) (-1068 (-373)) (-627 (-257))) 60) (((-1109 (-220)) (-858 |#1|) (-1068 (-373))) 52) (((-1109 (-220)) (-858 |#1|) (-1068 (-373)) (-627 (-257))) 51)) (-3005 (((-1237) (-861 |#1|) (-1068 (-373)) (-1068 (-373))) 74) (((-1237) (-861 |#1|) (-1068 (-373)) (-1068 (-373)) (-627 (-257))) 73) (((-1237) |#1| (-1068 (-373)) (-1068 (-373))) 64) (((-1237) |#1| (-1068 (-373)) (-1068 (-373)) (-627 (-257))) 63) (((-1237) (-858 |#1|) (-1068 (-373))) 56) (((-1237) (-858 |#1|) (-1068 (-373)) (-627 (-257))) 55) (((-1236) (-856 |#1|) (-1068 (-373))) 43) (((-1236) (-856 |#1|) (-1068 (-373)) (-627 (-257))) 42) (((-1236) |#1| (-1068 (-373))) 35) (((-1236) |#1| (-1068 (-373)) (-627 (-257))) 34))) +(((-253 |#1|) (-10 -7 (-15 -3005 ((-1236) |#1| (-1068 (-373)) (-627 (-257)))) (-15 -3005 ((-1236) |#1| (-1068 (-373)))) (-15 -3005 ((-1236) (-856 |#1|) (-1068 (-373)) (-627 (-257)))) (-15 -3005 ((-1236) (-856 |#1|) (-1068 (-373)))) (-15 -3005 ((-1237) (-858 |#1|) (-1068 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-858 |#1|) (-1068 (-373)))) (-15 -3046 ((-1109 (-220)) (-858 |#1|) (-1068 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-858 |#1|) (-1068 (-373)))) (-15 -3005 ((-1237) |#1| (-1068 (-373)) (-1068 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) |#1| (-1068 (-373)) (-1068 (-373)))) (-15 -3046 ((-1109 (-220)) |#1| (-1068 (-373)) (-1068 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) |#1| (-1068 (-373)) (-1068 (-373)))) (-15 -3005 ((-1237) (-861 |#1|) (-1068 (-373)) (-1068 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-861 |#1|) (-1068 (-373)) (-1068 (-373)))) (-15 -3046 ((-1109 (-220)) (-861 |#1|) (-1068 (-373)) (-1068 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-861 |#1|) (-1068 (-373)) (-1068 (-373))))) (-13 (-600 (-528)) (-1076))) (T -253)) +((-3046 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-861 *5)) (-5 *4 (-1068 (-373))) (-4 *5 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1109 (-220))) (-5 *1 (-253 *5)))) (-3046 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-861 *6)) (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) (-4 *6 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1109 (-220))) (-5 *1 (-253 *6)))) (-3005 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-861 *5)) (-5 *4 (-1068 (-373))) (-4 *5 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1237)) (-5 *1 (-253 *5)))) (-3005 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-861 *6)) (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) (-4 *6 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1237)) (-5 *1 (-253 *6)))) (-3046 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1068 (-373))) (-5 *2 (-1109 (-220))) (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1076))))) (-3046 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1076))))) (-3005 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1068 (-373))) (-5 *2 (-1237)) (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1076))))) (-3005 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1076))))) (-3046 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-1068 (-373))) (-4 *5 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1109 (-220))) (-5 *1 (-253 *5)))) (-3046 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-858 *6)) (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) (-4 *6 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1109 (-220))) (-5 *1 (-253 *6)))) (-3005 (*1 *2 *3 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-1068 (-373))) (-4 *5 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1237)) (-5 *1 (-253 *5)))) (-3005 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-858 *6)) (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) (-4 *6 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1237)) (-5 *1 (-253 *6)))) (-3005 (*1 *2 *3 *4) (-12 (-5 *3 (-856 *5)) (-5 *4 (-1068 (-373))) (-4 *5 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1236)) (-5 *1 (-253 *5)))) (-3005 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-856 *6)) (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) (-4 *6 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1236)) (-5 *1 (-253 *6)))) (-3005 (*1 *2 *3 *4) (-12 (-5 *4 (-1068 (-373))) (-5 *2 (-1236)) (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1076))))) (-3005 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1236)) (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1076)))))) +(-10 -7 (-15 -3005 ((-1236) |#1| (-1068 (-373)) (-627 (-257)))) (-15 -3005 ((-1236) |#1| (-1068 (-373)))) (-15 -3005 ((-1236) (-856 |#1|) (-1068 (-373)) (-627 (-257)))) (-15 -3005 ((-1236) (-856 |#1|) (-1068 (-373)))) (-15 -3005 ((-1237) (-858 |#1|) (-1068 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-858 |#1|) (-1068 (-373)))) (-15 -3046 ((-1109 (-220)) (-858 |#1|) (-1068 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-858 |#1|) (-1068 (-373)))) (-15 -3005 ((-1237) |#1| (-1068 (-373)) (-1068 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) |#1| (-1068 (-373)) (-1068 (-373)))) (-15 -3046 ((-1109 (-220)) |#1| (-1068 (-373)) (-1068 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) |#1| (-1068 (-373)) (-1068 (-373)))) (-15 -3005 ((-1237) (-861 |#1|) (-1068 (-373)) (-1068 (-373)) (-627 (-257)))) (-15 -3005 ((-1237) (-861 |#1|) (-1068 (-373)) (-1068 (-373)))) (-15 -3046 ((-1109 (-220)) (-861 |#1|) (-1068 (-373)) (-1068 (-373)) (-627 (-257)))) (-15 -3046 ((-1109 (-220)) (-861 |#1|) (-1068 (-373)) (-1068 (-373))))) +((-3005 (((-1237) (-627 (-220)) (-627 (-220)) (-627 (-220)) (-627 (-257))) 23) (((-1237) (-627 (-220)) (-627 (-220)) (-627 (-220))) 24) (((-1236) (-627 (-922 (-220))) (-627 (-257))) 16) (((-1236) (-627 (-922 (-220)))) 17) (((-1236) (-627 (-220)) (-627 (-220)) (-627 (-257))) 20) (((-1236) (-627 (-220)) (-627 (-220))) 21))) +(((-254) (-10 -7 (-15 -3005 ((-1236) (-627 (-220)) (-627 (-220)))) (-15 -3005 ((-1236) (-627 (-220)) (-627 (-220)) (-627 (-257)))) (-15 -3005 ((-1236) (-627 (-922 (-220))))) (-15 -3005 ((-1236) (-627 (-922 (-220))) (-627 (-257)))) (-15 -3005 ((-1237) (-627 (-220)) (-627 (-220)) (-627 (-220)))) (-15 -3005 ((-1237) (-627 (-220)) (-627 (-220)) (-627 (-220)) (-627 (-257)))))) (T -254)) +((-3005 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-627 (-220))) (-5 *4 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-254)))) (-3005 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-627 (-220))) (-5 *2 (-1237)) (-5 *1 (-254)))) (-3005 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-922 (-220)))) (-5 *4 (-627 (-257))) (-5 *2 (-1236)) (-5 *1 (-254)))) (-3005 (*1 *2 *3) (-12 (-5 *3 (-627 (-922 (-220)))) (-5 *2 (-1236)) (-5 *1 (-254)))) (-3005 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-627 (-220))) (-5 *4 (-627 (-257))) (-5 *2 (-1236)) (-5 *1 (-254)))) (-3005 (*1 *2 *3 *3) (-12 (-5 *3 (-627 (-220))) (-5 *2 (-1236)) (-5 *1 (-254))))) +(-10 -7 (-15 -3005 ((-1236) (-627 (-220)) (-627 (-220)))) (-15 -3005 ((-1236) (-627 (-220)) (-627 (-220)) (-627 (-257)))) (-15 -3005 ((-1236) (-627 (-922 (-220))))) (-15 -3005 ((-1236) (-627 (-922 (-220))) (-627 (-257)))) (-15 -3005 ((-1237) (-627 (-220)) (-627 (-220)) (-627 (-220)))) (-15 -3005 ((-1237) (-627 (-220)) (-627 (-220)) (-627 (-220)) (-627 (-257))))) +((-2745 (((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) (-627 (-257)) (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) 26)) (-2924 (((-900) (-627 (-257)) (-900)) 53)) (-3189 (((-900) (-627 (-257)) (-900)) 52)) (-1516 (((-627 (-373)) (-627 (-257)) (-627 (-373))) 69)) (-3168 (((-373) (-627 (-257)) (-373)) 58)) (-3617 (((-900) (-627 (-257)) (-900)) 54)) (-3438 (((-111) (-627 (-257)) (-111)) 28)) (-2320 (((-1134) (-627 (-257)) (-1134)) 20)) (-1896 (((-1134) (-627 (-257)) (-1134)) 27)) (-1345 (((-1109 (-220)) (-627 (-257))) 47)) (-1894 (((-627 (-1070 (-373))) (-627 (-257)) (-627 (-1070 (-373)))) 41)) (-3141 (((-853) (-627 (-257)) (-853)) 33)) (-2797 (((-853) (-627 (-257)) (-853)) 34)) (-1624 (((-1 (-922 (-220)) (-922 (-220))) (-627 (-257)) (-1 (-922 (-220)) (-922 (-220)))) 64)) (-3303 (((-111) (-627 (-257)) (-111)) 16)) (-3529 (((-111) (-627 (-257)) (-111)) 15))) +(((-255) (-10 -7 (-15 -3529 ((-111) (-627 (-257)) (-111))) (-15 -3303 ((-111) (-627 (-257)) (-111))) (-15 -2745 ((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) (-627 (-257)) (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -2320 ((-1134) (-627 (-257)) (-1134))) (-15 -1896 ((-1134) (-627 (-257)) (-1134))) (-15 -3438 ((-111) (-627 (-257)) (-111))) (-15 -3141 ((-853) (-627 (-257)) (-853))) (-15 -2797 ((-853) (-627 (-257)) (-853))) (-15 -1894 ((-627 (-1070 (-373))) (-627 (-257)) (-627 (-1070 (-373))))) (-15 -3189 ((-900) (-627 (-257)) (-900))) (-15 -2924 ((-900) (-627 (-257)) (-900))) (-15 -1345 ((-1109 (-220)) (-627 (-257)))) (-15 -3617 ((-900) (-627 (-257)) (-900))) (-15 -3168 ((-373) (-627 (-257)) (-373))) (-15 -1624 ((-1 (-922 (-220)) (-922 (-220))) (-627 (-257)) (-1 (-922 (-220)) (-922 (-220))))) (-15 -1516 ((-627 (-373)) (-627 (-257)) (-627 (-373)))))) (T -255)) +((-1516 (*1 *2 *3 *2) (-12 (-5 *2 (-627 (-373))) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-1624 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-922 (-220)) (-922 (-220)))) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-3168 (*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-3617 (*1 *2 *3 *2) (-12 (-5 *2 (-900)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-1345 (*1 *2 *3) (-12 (-5 *3 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-255)))) (-2924 (*1 *2 *3 *2) (-12 (-5 *2 (-900)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-3189 (*1 *2 *3 *2) (-12 (-5 *2 (-900)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-1894 (*1 *2 *3 *2) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-2797 (*1 *2 *3 *2) (-12 (-5 *2 (-853)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-3141 (*1 *2 *3 *2) (-12 (-5 *2 (-853)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-3438 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-1896 (*1 *2 *3 *2) (-12 (-5 *2 (-1134)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-2320 (*1 *2 *3 *2) (-12 (-5 *2 (-1134)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-2745 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-3303 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) (-3529 (*1 *2 *3 *2) (-12 (-5 *2 (-111)) (-5 *3 (-627 (-257))) (-5 *1 (-255))))) +(-10 -7 (-15 -3529 ((-111) (-627 (-257)) (-111))) (-15 -3303 ((-111) (-627 (-257)) (-111))) (-15 -2745 ((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) (-627 (-257)) (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -2320 ((-1134) (-627 (-257)) (-1134))) (-15 -1896 ((-1134) (-627 (-257)) (-1134))) (-15 -3438 ((-111) (-627 (-257)) (-111))) (-15 -3141 ((-853) (-627 (-257)) (-853))) (-15 -2797 ((-853) (-627 (-257)) (-853))) (-15 -1894 ((-627 (-1070 (-373))) (-627 (-257)) (-627 (-1070 (-373))))) (-15 -3189 ((-900) (-627 (-257)) (-900))) (-15 -2924 ((-900) (-627 (-257)) (-900))) (-15 -1345 ((-1109 (-220)) (-627 (-257)))) (-15 -3617 ((-900) (-627 (-257)) (-900))) (-15 -3168 ((-373) (-627 (-257)) (-373))) (-15 -1624 ((-1 (-922 (-220)) (-922 (-220))) (-627 (-257)) (-1 (-922 (-220)) (-922 (-220))))) (-15 -1516 ((-627 (-373)) (-627 (-257)) (-627 (-373))))) +((-3628 (((-3 |#1| "failed") (-627 (-257)) (-1152)) 17))) +(((-256 |#1|) (-10 -7 (-15 -3628 ((-3 |#1| "failed") (-627 (-257)) (-1152)))) (-1189)) (T -256)) +((-3628 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-627 (-257))) (-5 *4 (-1152)) (-5 *1 (-256 *2)) (-4 *2 (-1189))))) +(-10 -7 (-15 -3628 ((-3 |#1| "failed") (-627 (-257)) (-1152)))) +((-1465 (((-111) $ $) NIL)) (-2745 (($ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) 15)) (-2924 (($ (-900)) 76)) (-3189 (($ (-900)) 75)) (-2717 (($ (-627 (-373))) 82)) (-3168 (($ (-373)) 58)) (-3617 (($ (-900)) 77)) (-3438 (($ (-111)) 23)) (-2320 (($ (-1134)) 18)) (-1896 (($ (-1134)) 19)) (-1345 (($ (-1109 (-220))) 71)) (-1894 (($ (-627 (-1070 (-373)))) 67)) (-1707 (($ (-627 (-1070 (-373)))) 59) (($ (-627 (-1070 (-401 (-552))))) 66)) (-1859 (($ (-373)) 29) (($ (-853)) 33)) (-3097 (((-111) (-627 $) (-1152)) 91)) (-3628 (((-3 (-52) "failed") (-627 $) (-1152)) 93)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3301 (($ (-373)) 34) (($ (-853)) 35)) (-3133 (($ (-1 (-922 (-220)) (-922 (-220)))) 57)) (-1624 (($ (-1 (-922 (-220)) (-922 (-220)))) 78)) (-1544 (($ (-1 (-220) (-220))) 39) (($ (-1 (-220) (-220) (-220))) 43) (($ (-1 (-220) (-220) (-220) (-220))) 47)) (-1477 (((-842) $) 87)) (-3540 (($ (-111)) 24) (($ (-627 (-1070 (-373)))) 52)) (-3529 (($ (-111)) 25)) (-2292 (((-111) $ $) 89))) +(((-257) (-13 (-1076) (-10 -8 (-15 -3529 ($ (-111))) (-15 -3540 ($ (-111))) (-15 -2745 ($ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -2320 ($ (-1134))) (-15 -1896 ($ (-1134))) (-15 -3438 ($ (-111))) (-15 -3540 ($ (-627 (-1070 (-373))))) (-15 -3133 ($ (-1 (-922 (-220)) (-922 (-220))))) (-15 -1859 ($ (-373))) (-15 -1859 ($ (-853))) (-15 -3301 ($ (-373))) (-15 -3301 ($ (-853))) (-15 -1544 ($ (-1 (-220) (-220)))) (-15 -1544 ($ (-1 (-220) (-220) (-220)))) (-15 -1544 ($ (-1 (-220) (-220) (-220) (-220)))) (-15 -3168 ($ (-373))) (-15 -1707 ($ (-627 (-1070 (-373))))) (-15 -1707 ($ (-627 (-1070 (-401 (-552)))))) (-15 -1894 ($ (-627 (-1070 (-373))))) (-15 -1345 ($ (-1109 (-220)))) (-15 -3189 ($ (-900))) (-15 -2924 ($ (-900))) (-15 -3617 ($ (-900))) (-15 -1624 ($ (-1 (-922 (-220)) (-922 (-220))))) (-15 -2717 ($ (-627 (-373)))) (-15 -3628 ((-3 (-52) "failed") (-627 $) (-1152))) (-15 -3097 ((-111) (-627 $) (-1152)))))) (T -257)) +((-3529 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257)))) (-3540 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) (-5 *1 (-257)))) (-2320 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-257)))) (-1896 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-257)))) (-3438 (*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257)))) (-3540 (*1 *1 *2) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *1 (-257)))) (-3133 (*1 *1 *2) (-12 (-5 *2 (-1 (-922 (-220)) (-922 (-220)))) (-5 *1 (-257)))) (-1859 (*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257)))) (-1859 (*1 *1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-257)))) (-3301 (*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257)))) (-3301 (*1 *1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-257)))) (-1544 (*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-257)))) (-1544 (*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220) (-220))) (-5 *1 (-257)))) (-1544 (*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220) (-220) (-220))) (-5 *1 (-257)))) (-3168 (*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257)))) (-1707 (*1 *1 *2) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *1 (-257)))) (-1707 (*1 *1 *2) (-12 (-5 *2 (-627 (-1070 (-401 (-552))))) (-5 *1 (-257)))) (-1894 (*1 *1 *2) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *1 (-257)))) (-1345 (*1 *1 *2) (-12 (-5 *2 (-1109 (-220))) (-5 *1 (-257)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-257)))) (-2924 (*1 *1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-257)))) (-3617 (*1 *1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-257)))) (-1624 (*1 *1 *2) (-12 (-5 *2 (-1 (-922 (-220)) (-922 (-220)))) (-5 *1 (-257)))) (-2717 (*1 *1 *2) (-12 (-5 *2 (-627 (-373))) (-5 *1 (-257)))) (-3628 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-627 (-257))) (-5 *4 (-1152)) (-5 *2 (-52)) (-5 *1 (-257)))) (-3097 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-257))) (-5 *4 (-1152)) (-5 *2 (-111)) (-5 *1 (-257))))) +(-13 (-1076) (-10 -8 (-15 -3529 ($ (-111))) (-15 -3540 ($ (-111))) (-15 -2745 ($ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -2320 ($ (-1134))) (-15 -1896 ($ (-1134))) (-15 -3438 ($ (-111))) (-15 -3540 ($ (-627 (-1070 (-373))))) (-15 -3133 ($ (-1 (-922 (-220)) (-922 (-220))))) (-15 -1859 ($ (-373))) (-15 -1859 ($ (-853))) (-15 -3301 ($ (-373))) (-15 -3301 ($ (-853))) (-15 -1544 ($ (-1 (-220) (-220)))) (-15 -1544 ($ (-1 (-220) (-220) (-220)))) (-15 -1544 ($ (-1 (-220) (-220) (-220) (-220)))) (-15 -3168 ($ (-373))) (-15 -1707 ($ (-627 (-1070 (-373))))) (-15 -1707 ($ (-627 (-1070 (-401 (-552)))))) (-15 -1894 ($ (-627 (-1070 (-373))))) (-15 -1345 ($ (-1109 (-220)))) (-15 -3189 ($ (-900))) (-15 -2924 ($ (-900))) (-15 -3617 ($ (-900))) (-15 -1624 ($ (-1 (-922 (-220)) (-922 (-220))))) (-15 -2717 ($ (-627 (-373)))) (-15 -3628 ((-3 (-52) "failed") (-627 $) (-1152))) (-15 -3097 ((-111) (-627 $) (-1152))))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3996 (((-627 (-754)) $) NIL) (((-627 (-754)) $ |#2|) NIL)) (-2671 (((-754) $) NIL) (((-754) $ |#2|) NIL)) (-1853 (((-627 |#3|) $) NIL)) (-1694 (((-1148 $) $ |#3|) NIL) (((-1148 |#1|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 |#3|)) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4014 (($ $) NIL (|has| |#1| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-2252 (($ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1101 |#1| |#2|) "failed") $) 21)) (-1703 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1017 (-552)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1101 |#1| |#2|) $) NIL)) (-3116 (($ $ $ |#3|) NIL (|has| |#1| (-169)))) (-2014 (($ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#1| (-445))) (($ $ |#3|) NIL (|has| |#1| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#1| (-888)))) (-2061 (($ $ |#1| (-523 |#3|) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| |#1| (-865 (-373))) (|has| |#3| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| |#1| (-865 (-552))) (|has| |#3| (-865 (-552)))))) (-2641 (((-754) $ |#2|) NIL) (((-754) $) 10)) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-1842 (($ (-1148 |#1|) |#3|) NIL) (($ (-1148 $) |#3|) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-523 |#3|)) NIL) (($ $ |#3| (-754)) NIL) (($ $ (-627 |#3|) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ |#3|) NIL)) (-3465 (((-523 |#3|) $) NIL) (((-754) $ |#3|) NIL) (((-627 (-754)) $ (-627 |#3|)) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3813 (($ (-1 (-523 |#3|) (-523 |#3|)) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-4250 (((-1 $ (-754)) |#2|) NIL) (((-1 $ (-754)) $) NIL (|has| |#1| (-228)))) (-2685 (((-3 |#3| "failed") $) NIL)) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-4033 ((|#3| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1595 (((-1134) $) NIL)) (-3675 (((-111) $) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| |#3|) (|:| -4067 (-754))) "failed") $) NIL)) (-2549 (($ $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 ((|#1| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-888)))) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-627 |#3|) (-627 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-627 |#3|) (-627 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-228))) (($ $ (-627 |#2|) (-627 $)) NIL (|has| |#1| (-228))) (($ $ |#2| |#1|) NIL (|has| |#1| (-228))) (($ $ (-627 |#2|) (-627 |#1|)) NIL (|has| |#1| (-228)))) (-1637 (($ $ |#3|) NIL (|has| |#1| (-169)))) (-2942 (($ $ |#3|) NIL) (($ $ (-627 |#3|)) NIL) (($ $ |#3| (-754)) NIL) (($ $ (-627 |#3|) (-627 (-754))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2544 (((-627 |#2|) $) NIL)) (-3567 (((-523 |#3|) $) NIL) (((-754) $ |#3|) NIL) (((-627 (-754)) $ (-627 |#3|)) NIL) (((-754) $ |#2|) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| |#1| (-600 (-871 (-373)))) (|has| |#3| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| |#1| (-600 (-871 (-552)))) (|has| |#3| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| |#1| (-600 (-528))) (|has| |#3| (-600 (-528)))))) (-3495 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ |#3|) NIL (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1101 |#1| |#2|)) 30) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-523 |#3|)) NIL) (($ $ |#3| (-754)) NIL) (($ $ (-627 |#3|) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#1| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ |#3|) NIL) (($ $ (-627 |#3|)) NIL) (($ $ |#3| (-754)) NIL) (($ $ (-627 |#3|) (-627 (-754))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-258 |#1| |#2| |#3|) (-13 (-247 |#1| |#2| |#3| (-523 |#3|)) (-1017 (-1101 |#1| |#2|))) (-1028) (-830) (-260 |#2|)) (T -258)) +NIL +(-13 (-247 |#1| |#2| |#3| (-523 |#3|)) (-1017 (-1101 |#1| |#2|))) +((-2671 (((-754) $) 30)) (-4039 (((-3 |#2| "failed") $) 17)) (-1703 ((|#2| $) 27)) (-2942 (($ $) 12) (($ $ (-754)) 15)) (-1477 (((-842) $) 26) (($ |#2|) 10)) (-2292 (((-111) $ $) 20)) (-2316 (((-111) $ $) 29))) +(((-259 |#1| |#2|) (-10 -8 (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1|)) (-15 -2671 ((-754) |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -2316 ((-111) |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) (-260 |#2|) (-830)) (T -259)) +NIL +(-10 -8 (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1|)) (-15 -2671 ((-754) |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -2316 ((-111) |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) +((-1465 (((-111) $ $) 7)) (-2671 (((-754) $) 22)) (-4344 ((|#1| $) 23)) (-4039 (((-3 |#1| "failed") $) 27)) (-1703 ((|#1| $) 26)) (-2641 (((-754) $) 24)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-4250 (($ |#1| (-754)) 25)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2942 (($ $) 21) (($ $ (-754)) 20)) (-1477 (((-842) $) 11) (($ |#1|) 28)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18))) +(((-260 |#1|) (-137) (-830)) (T -260)) +((-1477 (*1 *1 *2) (-12 (-4 *1 (-260 *2)) (-4 *2 (-830)))) (-4250 (*1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-260 *2)) (-4 *2 (-830)))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-830)) (-5 *2 (-754)))) (-4344 (*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-830)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-830)) (-5 *2 (-754)))) (-2942 (*1 *1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-830)))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-260 *3)) (-4 *3 (-830))))) +(-13 (-830) (-1017 |t#1|) (-10 -8 (-15 -4250 ($ |t#1| (-754))) (-15 -2641 ((-754) $)) (-15 -4344 (|t#1| $)) (-15 -2671 ((-754) $)) (-15 -2942 ($ $)) (-15 -2942 ($ $ (-754))) (-15 -1477 ($ |t#1|)))) +(((-101) . T) ((-599 (-842)) . T) ((-830) . T) ((-1017 |#1|) . T) ((-1076) . T)) +((-1853 (((-627 (-1152)) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) 41)) (-1671 (((-627 (-1152)) (-310 (-220)) (-754)) 80)) (-2590 (((-3 (-310 (-220)) "failed") (-310 (-220))) 51)) (-2134 (((-310 (-220)) (-310 (-220))) 67)) (-4257 (((-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220))))) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 26)) (-3678 (((-111) (-627 (-310 (-220)))) 84)) (-3242 (((-111) (-310 (-220))) 24)) (-4262 (((-627 (-1134)) (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))))) 106)) (-1605 (((-627 (-310 (-220))) (-627 (-310 (-220)))) 88)) (-1756 (((-627 (-310 (-220))) (-627 (-310 (-220)))) 86)) (-3146 (((-671 (-220)) (-627 (-310 (-220))) (-754)) 95)) (-2943 (((-111) (-310 (-220))) 20) (((-111) (-627 (-310 (-220)))) 85)) (-2710 (((-627 (-220)) (-627 (-823 (-220))) (-220)) 14)) (-1457 (((-373) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) 101)) (-1630 (((-1014) (-1152) (-1014)) 34))) +(((-261) (-10 -7 (-15 -2710 ((-627 (-220)) (-627 (-823 (-220))) (-220))) (-15 -4257 ((-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220))))) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220))))))) (-15 -2590 ((-3 (-310 (-220)) "failed") (-310 (-220)))) (-15 -2134 ((-310 (-220)) (-310 (-220)))) (-15 -3678 ((-111) (-627 (-310 (-220))))) (-15 -2943 ((-111) (-627 (-310 (-220))))) (-15 -2943 ((-111) (-310 (-220)))) (-15 -3146 ((-671 (-220)) (-627 (-310 (-220))) (-754))) (-15 -1756 ((-627 (-310 (-220))) (-627 (-310 (-220))))) (-15 -1605 ((-627 (-310 (-220))) (-627 (-310 (-220))))) (-15 -3242 ((-111) (-310 (-220)))) (-15 -1853 ((-627 (-1152)) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) (-15 -1671 ((-627 (-1152)) (-310 (-220)) (-754))) (-15 -1630 ((-1014) (-1152) (-1014))) (-15 -1457 ((-373) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) (-15 -4262 ((-627 (-1134)) (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))))))) (T -261)) +((-4262 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))))) (-5 *2 (-627 (-1134))) (-5 *1 (-261)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) (-5 *2 (-373)) (-5 *1 (-261)))) (-1630 (*1 *2 *3 *2) (-12 (-5 *2 (-1014)) (-5 *3 (-1152)) (-5 *1 (-261)))) (-1671 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-220))) (-5 *4 (-754)) (-5 *2 (-627 (-1152))) (-5 *1 (-261)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) (-5 *2 (-627 (-1152))) (-5 *1 (-261)))) (-3242 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-111)) (-5 *1 (-261)))) (-1605 (*1 *2 *2) (-12 (-5 *2 (-627 (-310 (-220)))) (-5 *1 (-261)))) (-1756 (*1 *2 *2) (-12 (-5 *2 (-627 (-310 (-220)))) (-5 *1 (-261)))) (-3146 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-310 (-220)))) (-5 *4 (-754)) (-5 *2 (-671 (-220))) (-5 *1 (-261)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-111)) (-5 *1 (-261)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-627 (-310 (-220)))) (-5 *2 (-111)) (-5 *1 (-261)))) (-3678 (*1 *2 *3) (-12 (-5 *3 (-627 (-310 (-220)))) (-5 *2 (-111)) (-5 *1 (-261)))) (-2134 (*1 *2 *2) (-12 (-5 *2 (-310 (-220))) (-5 *1 (-261)))) (-2590 (*1 *2 *2) (|partial| -12 (-5 *2 (-310 (-220))) (-5 *1 (-261)))) (-4257 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (-5 *1 (-261)))) (-2710 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-823 (-220)))) (-5 *4 (-220)) (-5 *2 (-627 *4)) (-5 *1 (-261))))) +(-10 -7 (-15 -2710 ((-627 (-220)) (-627 (-823 (-220))) (-220))) (-15 -4257 ((-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220))))) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220))))))) (-15 -2590 ((-3 (-310 (-220)) "failed") (-310 (-220)))) (-15 -2134 ((-310 (-220)) (-310 (-220)))) (-15 -3678 ((-111) (-627 (-310 (-220))))) (-15 -2943 ((-111) (-627 (-310 (-220))))) (-15 -2943 ((-111) (-310 (-220)))) (-15 -3146 ((-671 (-220)) (-627 (-310 (-220))) (-754))) (-15 -1756 ((-627 (-310 (-220))) (-627 (-310 (-220))))) (-15 -1605 ((-627 (-310 (-220))) (-627 (-310 (-220))))) (-15 -3242 ((-111) (-310 (-220)))) (-15 -1853 ((-627 (-1152)) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) (-15 -1671 ((-627 (-1152)) (-310 (-220)) (-754))) (-15 -1630 ((-1014) (-1152) (-1014))) (-15 -1457 ((-373) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) (-15 -4262 ((-627 (-1134)) (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))))))) +((-1465 (((-111) $ $) NIL)) (-3466 (((-1014) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) NIL) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 44)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 26) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) +(((-262) (-819)) (T -262)) +NIL +(-819) +((-1465 (((-111) $ $) NIL)) (-3466 (((-1014) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) 58) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 54)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 34) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) 36)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) +(((-263) (-819)) (T -263)) +NIL +(-819) +((-1465 (((-111) $ $) NIL)) (-3466 (((-1014) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) 76) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 73)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 44) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) 55)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) +(((-264) (-819)) (T -264)) +NIL +(-819) +((-1465 (((-111) $ $) NIL)) (-3466 (((-1014) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) NIL) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 50)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 31) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) +(((-265) (-819)) (T -265)) +NIL +(-819) +((-1465 (((-111) $ $) NIL)) (-3466 (((-1014) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) NIL) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 50)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 28) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) +(((-266) (-819)) (T -266)) +NIL +(-819) +((-1465 (((-111) $ $) NIL)) (-3466 (((-1014) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) NIL) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 73)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 28) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) +(((-267) (-819)) (T -267)) +NIL +(-819) +((-1465 (((-111) $ $) NIL)) (-3466 (((-1014) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) NIL) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 77)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 25) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2292 (((-111) $ $) NIL))) +(((-268) (-819)) (T -268)) +NIL +(-819) +((-1465 (((-111) $ $) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2202 (((-627 (-552)) $) 19)) (-3567 (((-754) $) 17)) (-1477 (((-842) $) 23) (($ (-627 (-552))) 15)) (-3839 (($ (-754)) 20)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 9)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 11))) +(((-269) (-13 (-830) (-10 -8 (-15 -1477 ($ (-627 (-552)))) (-15 -3567 ((-754) $)) (-15 -2202 ((-627 (-552)) $)) (-15 -3839 ($ (-754)))))) (T -269)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-269)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-269)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-269)))) (-3839 (*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-269))))) +(-13 (-830) (-10 -8 (-15 -1477 ($ (-627 (-552)))) (-15 -3567 ((-754) $)) (-15 -2202 ((-627 (-552)) $)) (-15 -3839 ($ (-754))))) +((-1607 ((|#2| |#2|) 77)) (-1467 ((|#2| |#2|) 65)) (-3881 (((-3 |#2| "failed") |#2| (-627 (-2 (|:| |func| |#2|) (|:| |pole| (-111))))) 116)) (-1584 ((|#2| |#2|) 75)) (-1445 ((|#2| |#2|) 63)) (-1628 ((|#2| |#2|) 79)) (-1492 ((|#2| |#2|) 67)) (-2951 ((|#2|) 46)) (-4148 (((-113) (-113)) 95)) (-4135 ((|#2| |#2|) 61)) (-2346 (((-111) |#2|) 134)) (-3090 ((|#2| |#2|) 181)) (-1468 ((|#2| |#2|) 157)) (-3477 ((|#2|) 59)) (-1928 ((|#2|) 58)) (-3770 ((|#2| |#2|) 177)) (-3209 ((|#2| |#2|) 153)) (-4274 ((|#2| |#2|) 185)) (-2131 ((|#2| |#2|) 161)) (-3574 ((|#2| |#2|) 149)) (-3171 ((|#2| |#2|) 151)) (-1813 ((|#2| |#2|) 187)) (-3020 ((|#2| |#2|) 163)) (-2783 ((|#2| |#2|) 183)) (-2971 ((|#2| |#2|) 159)) (-3492 ((|#2| |#2|) 179)) (-1717 ((|#2| |#2|) 155)) (-1929 ((|#2| |#2|) 193)) (-3765 ((|#2| |#2|) 169)) (-1527 ((|#2| |#2|) 189)) (-2498 ((|#2| |#2|) 165)) (-2278 ((|#2| |#2|) 197)) (-1733 ((|#2| |#2|) 173)) (-4112 ((|#2| |#2|) 199)) (-2160 ((|#2| |#2|) 175)) (-3650 ((|#2| |#2|) 195)) (-3356 ((|#2| |#2|) 171)) (-3294 ((|#2| |#2|) 191)) (-2185 ((|#2| |#2|) 167)) (-3154 ((|#2| |#2|) 62)) (-1640 ((|#2| |#2|) 80)) (-1502 ((|#2| |#2|) 68)) (-1615 ((|#2| |#2|) 78)) (-1479 ((|#2| |#2|) 66)) (-1596 ((|#2| |#2|) 76)) (-1456 ((|#2| |#2|) 64)) (-3749 (((-111) (-113)) 93)) (-1673 ((|#2| |#2|) 83)) (-1534 ((|#2| |#2|) 71)) (-1652 ((|#2| |#2|) 81)) (-1513 ((|#2| |#2|) 69)) (-1697 ((|#2| |#2|) 85)) (-1561 ((|#2| |#2|) 73)) (-3519 ((|#2| |#2|) 86)) (-1575 ((|#2| |#2|) 74)) (-1686 ((|#2| |#2|) 84)) (-1547 ((|#2| |#2|) 72)) (-1661 ((|#2| |#2|) 82)) (-1524 ((|#2| |#2|) 70))) +(((-270 |#1| |#2|) (-10 -7 (-15 -3154 (|#2| |#2|)) (-15 -4135 (|#2| |#2|)) (-15 -1445 (|#2| |#2|)) (-15 -1456 (|#2| |#2|)) (-15 -1467 (|#2| |#2|)) (-15 -1479 (|#2| |#2|)) (-15 -1492 (|#2| |#2|)) (-15 -1502 (|#2| |#2|)) (-15 -1513 (|#2| |#2|)) (-15 -1524 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1561 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1584 (|#2| |#2|)) (-15 -1596 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -1615 (|#2| |#2|)) (-15 -1628 (|#2| |#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1652 (|#2| |#2|)) (-15 -1661 (|#2| |#2|)) (-15 -1673 (|#2| |#2|)) (-15 -1686 (|#2| |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -3519 (|#2| |#2|)) (-15 -2951 (|#2|)) (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 -1928 (|#2|)) (-15 -3477 (|#2|)) (-15 -3171 (|#2| |#2|)) (-15 -3574 (|#2| |#2|)) (-15 -3209 (|#2| |#2|)) (-15 -1717 (|#2| |#2|)) (-15 -1468 (|#2| |#2|)) (-15 -2971 (|#2| |#2|)) (-15 -2131 (|#2| |#2|)) (-15 -3020 (|#2| |#2|)) (-15 -2498 (|#2| |#2|)) (-15 -2185 (|#2| |#2|)) (-15 -3765 (|#2| |#2|)) (-15 -3356 (|#2| |#2|)) (-15 -1733 (|#2| |#2|)) (-15 -2160 (|#2| |#2|)) (-15 -3770 (|#2| |#2|)) (-15 -3492 (|#2| |#2|)) (-15 -3090 (|#2| |#2|)) (-15 -2783 (|#2| |#2|)) (-15 -4274 (|#2| |#2|)) (-15 -1813 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -3294 (|#2| |#2|)) (-15 -1929 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -2278 (|#2| |#2|)) (-15 -4112 (|#2| |#2|)) (-15 -3881 ((-3 |#2| "failed") |#2| (-627 (-2 (|:| |func| |#2|) (|:| |pole| (-111)))))) (-15 -2346 ((-111) |#2|))) (-13 (-830) (-544)) (-13 (-424 |#1|) (-981))) (T -270)) +((-2346 (*1 *2 *3) (-12 (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) (-5 *1 (-270 *4 *3)) (-4 *3 (-13 (-424 *4) (-981))))) (-3881 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-627 (-2 (|:| |func| *2) (|:| |pole| (-111))))) (-4 *2 (-13 (-424 *4) (-981))) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-270 *4 *2)))) (-4112 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-2278 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3650 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1929 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3294 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1813 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-4274 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-2783 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3090 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3492 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3770 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-2160 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1733 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3356 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3765 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-2185 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-2498 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3020 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-2131 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-2971 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1468 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1717 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3209 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3574 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3171 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3477 (*1 *2) (-12 (-4 *2 (-13 (-424 *3) (-981))) (-5 *1 (-270 *3 *2)) (-4 *3 (-13 (-830) (-544))))) (-1928 (*1 *2) (-12 (-4 *2 (-13 (-424 *3) (-981))) (-5 *1 (-270 *3 *2)) (-4 *3 (-13 (-830) (-544))))) (-4148 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *4)) (-4 *4 (-13 (-424 *3) (-981))))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-424 *4) (-981))))) (-2951 (*1 *2) (-12 (-4 *2 (-13 (-424 *3) (-981))) (-5 *1 (-270 *3 *2)) (-4 *3 (-13 (-830) (-544))))) (-3519 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1697 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1686 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1673 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1661 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1652 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1640 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1628 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1615 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1596 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1561 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1524 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1513 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1502 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1479 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1467 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-1445 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-4135 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981))))) (-3154 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-424 *3) (-981)))))) +(-10 -7 (-15 -3154 (|#2| |#2|)) (-15 -4135 (|#2| |#2|)) (-15 -1445 (|#2| |#2|)) (-15 -1456 (|#2| |#2|)) (-15 -1467 (|#2| |#2|)) (-15 -1479 (|#2| |#2|)) (-15 -1492 (|#2| |#2|)) (-15 -1502 (|#2| |#2|)) (-15 -1513 (|#2| |#2|)) (-15 -1524 (|#2| |#2|)) (-15 -1534 (|#2| |#2|)) (-15 -1547 (|#2| |#2|)) (-15 -1561 (|#2| |#2|)) (-15 -1575 (|#2| |#2|)) (-15 -1584 (|#2| |#2|)) (-15 -1596 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -1615 (|#2| |#2|)) (-15 -1628 (|#2| |#2|)) (-15 -1640 (|#2| |#2|)) (-15 -1652 (|#2| |#2|)) (-15 -1661 (|#2| |#2|)) (-15 -1673 (|#2| |#2|)) (-15 -1686 (|#2| |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -3519 (|#2| |#2|)) (-15 -2951 (|#2|)) (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 -1928 (|#2|)) (-15 -3477 (|#2|)) (-15 -3171 (|#2| |#2|)) (-15 -3574 (|#2| |#2|)) (-15 -3209 (|#2| |#2|)) (-15 -1717 (|#2| |#2|)) (-15 -1468 (|#2| |#2|)) (-15 -2971 (|#2| |#2|)) (-15 -2131 (|#2| |#2|)) (-15 -3020 (|#2| |#2|)) (-15 -2498 (|#2| |#2|)) (-15 -2185 (|#2| |#2|)) (-15 -3765 (|#2| |#2|)) (-15 -3356 (|#2| |#2|)) (-15 -1733 (|#2| |#2|)) (-15 -2160 (|#2| |#2|)) (-15 -3770 (|#2| |#2|)) (-15 -3492 (|#2| |#2|)) (-15 -3090 (|#2| |#2|)) (-15 -2783 (|#2| |#2|)) (-15 -4274 (|#2| |#2|)) (-15 -1813 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -3294 (|#2| |#2|)) (-15 -1929 (|#2| |#2|)) (-15 -3650 (|#2| |#2|)) (-15 -2278 (|#2| |#2|)) (-15 -4112 (|#2| |#2|)) (-15 -3881 ((-3 |#2| "failed") |#2| (-627 (-2 (|:| |func| |#2|) (|:| |pole| (-111)))))) (-15 -2346 ((-111) |#2|))) +((-3310 (((-3 |#2| "failed") (-627 (-598 |#2|)) |#2| (-1152)) 135)) (-3360 ((|#2| (-401 (-552)) |#2|) 51)) (-3724 ((|#2| |#2| (-598 |#2|)) 128)) (-2073 (((-2 (|:| |func| |#2|) (|:| |kers| (-627 (-598 |#2|))) (|:| |vals| (-627 |#2|))) |#2| (-1152)) 127)) (-3609 ((|#2| |#2| (-1152)) 20) ((|#2| |#2|) 23)) (-1319 ((|#2| |#2| (-1152)) 141) ((|#2| |#2|) 139))) +(((-271 |#1| |#2|) (-10 -7 (-15 -1319 (|#2| |#2|)) (-15 -1319 (|#2| |#2| (-1152))) (-15 -2073 ((-2 (|:| |func| |#2|) (|:| |kers| (-627 (-598 |#2|))) (|:| |vals| (-627 |#2|))) |#2| (-1152))) (-15 -3609 (|#2| |#2|)) (-15 -3609 (|#2| |#2| (-1152))) (-15 -3310 ((-3 |#2| "failed") (-627 (-598 |#2|)) |#2| (-1152))) (-15 -3724 (|#2| |#2| (-598 |#2|))) (-15 -3360 (|#2| (-401 (-552)) |#2|))) (-13 (-544) (-830) (-1017 (-552)) (-623 (-552))) (-13 (-27) (-1174) (-424 |#1|))) (T -271)) +((-3360 (*1 *2 *3 *2) (-12 (-5 *3 (-401 (-552))) (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4))))) (-3724 (*1 *2 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4))) (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-271 *4 *2)))) (-3310 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-627 (-598 *2))) (-5 *4 (-1152)) (-4 *2 (-13 (-27) (-1174) (-424 *5))) (-4 *5 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-271 *5 *2)))) (-3609 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4))))) (-3609 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3))))) (-2073 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-627 (-598 *3))) (|:| |vals| (-627 *3)))) (-5 *1 (-271 *5 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))))) (-1319 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4))))) (-1319 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3)))))) +(-10 -7 (-15 -1319 (|#2| |#2|)) (-15 -1319 (|#2| |#2| (-1152))) (-15 -2073 ((-2 (|:| |func| |#2|) (|:| |kers| (-627 (-598 |#2|))) (|:| |vals| (-627 |#2|))) |#2| (-1152))) (-15 -3609 (|#2| |#2|)) (-15 -3609 (|#2| |#2| (-1152))) (-15 -3310 ((-3 |#2| "failed") (-627 (-598 |#2|)) |#2| (-1152))) (-15 -3724 (|#2| |#2| (-598 |#2|))) (-15 -3360 (|#2| (-401 (-552)) |#2|))) +((-2034 (((-3 |#3| "failed") |#3|) 110)) (-1607 ((|#3| |#3|) 131)) (-3118 (((-3 |#3| "failed") |#3|) 82)) (-1467 ((|#3| |#3|) 121)) (-1656 (((-3 |#3| "failed") |#3|) 58)) (-1584 ((|#3| |#3|) 129)) (-3940 (((-3 |#3| "failed") |#3|) 46)) (-1445 ((|#3| |#3|) 119)) (-3105 (((-3 |#3| "failed") |#3|) 112)) (-1628 ((|#3| |#3|) 133)) (-3578 (((-3 |#3| "failed") |#3|) 84)) (-1492 ((|#3| |#3|) 123)) (-3121 (((-3 |#3| "failed") |#3| (-754)) 36)) (-4310 (((-3 |#3| "failed") |#3|) 74)) (-4135 ((|#3| |#3|) 118)) (-1588 (((-3 |#3| "failed") |#3|) 44)) (-3154 ((|#3| |#3|) 117)) (-2207 (((-3 |#3| "failed") |#3|) 113)) (-1640 ((|#3| |#3|) 134)) (-3440 (((-3 |#3| "failed") |#3|) 85)) (-1502 ((|#3| |#3|) 124)) (-1687 (((-3 |#3| "failed") |#3|) 111)) (-1615 ((|#3| |#3|) 132)) (-1851 (((-3 |#3| "failed") |#3|) 83)) (-1479 ((|#3| |#3|) 122)) (-3392 (((-3 |#3| "failed") |#3|) 60)) (-1596 ((|#3| |#3|) 130)) (-2289 (((-3 |#3| "failed") |#3|) 48)) (-1456 ((|#3| |#3|) 120)) (-4101 (((-3 |#3| "failed") |#3|) 66)) (-1673 ((|#3| |#3|) 137)) (-2193 (((-3 |#3| "failed") |#3|) 104)) (-1534 ((|#3| |#3|) 142)) (-1944 (((-3 |#3| "failed") |#3|) 62)) (-1652 ((|#3| |#3|) 135)) (-2104 (((-3 |#3| "failed") |#3|) 50)) (-1513 ((|#3| |#3|) 125)) (-2818 (((-3 |#3| "failed") |#3|) 70)) (-1697 ((|#3| |#3|) 139)) (-3546 (((-3 |#3| "failed") |#3|) 54)) (-1561 ((|#3| |#3|) 127)) (-2448 (((-3 |#3| "failed") |#3|) 72)) (-3519 ((|#3| |#3|) 140)) (-3162 (((-3 |#3| "failed") |#3|) 56)) (-1575 ((|#3| |#3|) 128)) (-2088 (((-3 |#3| "failed") |#3|) 68)) (-1686 ((|#3| |#3|) 138)) (-2012 (((-3 |#3| "failed") |#3|) 107)) (-1547 ((|#3| |#3|) 143)) (-3489 (((-3 |#3| "failed") |#3|) 64)) (-1661 ((|#3| |#3|) 136)) (-3748 (((-3 |#3| "failed") |#3|) 52)) (-1524 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-401 (-552))) 40 (|has| |#1| (-357))))) +(((-272 |#1| |#2| |#3|) (-13 (-962 |#3|) (-10 -7 (IF (|has| |#1| (-357)) (-15 ** (|#3| |#3| (-401 (-552)))) |%noBranch|) (-15 -3154 (|#3| |#3|)) (-15 -4135 (|#3| |#3|)) (-15 -1445 (|#3| |#3|)) (-15 -1456 (|#3| |#3|)) (-15 -1467 (|#3| |#3|)) (-15 -1479 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)) (-15 -1502 (|#3| |#3|)) (-15 -1513 (|#3| |#3|)) (-15 -1524 (|#3| |#3|)) (-15 -1534 (|#3| |#3|)) (-15 -1547 (|#3| |#3|)) (-15 -1561 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1584 (|#3| |#3|)) (-15 -1596 (|#3| |#3|)) (-15 -1607 (|#3| |#3|)) (-15 -1615 (|#3| |#3|)) (-15 -1628 (|#3| |#3|)) (-15 -1640 (|#3| |#3|)) (-15 -1652 (|#3| |#3|)) (-15 -1661 (|#3| |#3|)) (-15 -1673 (|#3| |#3|)) (-15 -1686 (|#3| |#3|)) (-15 -1697 (|#3| |#3|)) (-15 -3519 (|#3| |#3|)))) (-38 (-401 (-552))) (-1226 |#1|) (-1197 |#1| |#2|)) (T -272)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-401 (-552))) (-4 *4 (-357)) (-4 *4 (-38 *3)) (-4 *5 (-1226 *4)) (-5 *1 (-272 *4 *5 *2)) (-4 *2 (-1197 *4 *5)))) (-3154 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-4135 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1445 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1467 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1479 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1502 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1513 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1524 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1561 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1596 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1615 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1628 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1640 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1652 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1661 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1673 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1686 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-1697 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) (-3519 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4))))) +(-13 (-962 |#3|) (-10 -7 (IF (|has| |#1| (-357)) (-15 ** (|#3| |#3| (-401 (-552)))) |%noBranch|) (-15 -3154 (|#3| |#3|)) (-15 -4135 (|#3| |#3|)) (-15 -1445 (|#3| |#3|)) (-15 -1456 (|#3| |#3|)) (-15 -1467 (|#3| |#3|)) (-15 -1479 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)) (-15 -1502 (|#3| |#3|)) (-15 -1513 (|#3| |#3|)) (-15 -1524 (|#3| |#3|)) (-15 -1534 (|#3| |#3|)) (-15 -1547 (|#3| |#3|)) (-15 -1561 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1584 (|#3| |#3|)) (-15 -1596 (|#3| |#3|)) (-15 -1607 (|#3| |#3|)) (-15 -1615 (|#3| |#3|)) (-15 -1628 (|#3| |#3|)) (-15 -1640 (|#3| |#3|)) (-15 -1652 (|#3| |#3|)) (-15 -1661 (|#3| |#3|)) (-15 -1673 (|#3| |#3|)) (-15 -1686 (|#3| |#3|)) (-15 -1697 (|#3| |#3|)) (-15 -3519 (|#3| |#3|)))) +((-2034 (((-3 |#3| "failed") |#3|) 66)) (-1607 ((|#3| |#3|) 129)) (-3118 (((-3 |#3| "failed") |#3|) 50)) (-1467 ((|#3| |#3|) 117)) (-1656 (((-3 |#3| "failed") |#3|) 62)) (-1584 ((|#3| |#3|) 127)) (-3940 (((-3 |#3| "failed") |#3|) 46)) (-1445 ((|#3| |#3|) 115)) (-3105 (((-3 |#3| "failed") |#3|) 70)) (-1628 ((|#3| |#3|) 131)) (-3578 (((-3 |#3| "failed") |#3|) 54)) (-1492 ((|#3| |#3|) 119)) (-3121 (((-3 |#3| "failed") |#3| (-754)) 35)) (-4310 (((-3 |#3| "failed") |#3|) 44)) (-4135 ((|#3| |#3|) 104)) (-1588 (((-3 |#3| "failed") |#3|) 42)) (-3154 ((|#3| |#3|) 114)) (-2207 (((-3 |#3| "failed") |#3|) 72)) (-1640 ((|#3| |#3|) 132)) (-3440 (((-3 |#3| "failed") |#3|) 56)) (-1502 ((|#3| |#3|) 120)) (-1687 (((-3 |#3| "failed") |#3|) 68)) (-1615 ((|#3| |#3|) 130)) (-1851 (((-3 |#3| "failed") |#3|) 52)) (-1479 ((|#3| |#3|) 118)) (-3392 (((-3 |#3| "failed") |#3|) 64)) (-1596 ((|#3| |#3|) 128)) (-2289 (((-3 |#3| "failed") |#3|) 48)) (-1456 ((|#3| |#3|) 116)) (-4101 (((-3 |#3| "failed") |#3|) 74)) (-1673 ((|#3| |#3|) 135)) (-2193 (((-3 |#3| "failed") |#3|) 58)) (-1534 ((|#3| |#3|) 123)) (-1944 (((-3 |#3| "failed") |#3|) 105)) (-1652 ((|#3| |#3|) 133)) (-2104 (((-3 |#3| "failed") |#3|) 94)) (-1513 ((|#3| |#3|) 121)) (-2818 (((-3 |#3| "failed") |#3|) 109)) (-1697 ((|#3| |#3|) 137)) (-3546 (((-3 |#3| "failed") |#3|) 101)) (-1561 ((|#3| |#3|) 125)) (-2448 (((-3 |#3| "failed") |#3|) 110)) (-3519 ((|#3| |#3|) 138)) (-3162 (((-3 |#3| "failed") |#3|) 103)) (-1575 ((|#3| |#3|) 126)) (-2088 (((-3 |#3| "failed") |#3|) 76)) (-1686 ((|#3| |#3|) 136)) (-2012 (((-3 |#3| "failed") |#3|) 60)) (-1547 ((|#3| |#3|) 124)) (-3489 (((-3 |#3| "failed") |#3|) 106)) (-1661 ((|#3| |#3|) 134)) (-3748 (((-3 |#3| "failed") |#3|) 97)) (-1524 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-401 (-552))) 40 (|has| |#1| (-357))))) +(((-273 |#1| |#2| |#3| |#4|) (-13 (-962 |#3|) (-10 -7 (IF (|has| |#1| (-357)) (-15 ** (|#3| |#3| (-401 (-552)))) |%noBranch|) (-15 -3154 (|#3| |#3|)) (-15 -4135 (|#3| |#3|)) (-15 -1445 (|#3| |#3|)) (-15 -1456 (|#3| |#3|)) (-15 -1467 (|#3| |#3|)) (-15 -1479 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)) (-15 -1502 (|#3| |#3|)) (-15 -1513 (|#3| |#3|)) (-15 -1524 (|#3| |#3|)) (-15 -1534 (|#3| |#3|)) (-15 -1547 (|#3| |#3|)) (-15 -1561 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1584 (|#3| |#3|)) (-15 -1596 (|#3| |#3|)) (-15 -1607 (|#3| |#3|)) (-15 -1615 (|#3| |#3|)) (-15 -1628 (|#3| |#3|)) (-15 -1640 (|#3| |#3|)) (-15 -1652 (|#3| |#3|)) (-15 -1661 (|#3| |#3|)) (-15 -1673 (|#3| |#3|)) (-15 -1686 (|#3| |#3|)) (-15 -1697 (|#3| |#3|)) (-15 -3519 (|#3| |#3|)))) (-38 (-401 (-552))) (-1195 |#1|) (-1218 |#1| |#2|) (-962 |#2|)) (T -273)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-401 (-552))) (-4 *4 (-357)) (-4 *4 (-38 *3)) (-4 *5 (-1195 *4)) (-5 *1 (-273 *4 *5 *2 *6)) (-4 *2 (-1218 *4 *5)) (-4 *6 (-962 *5)))) (-3154 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-4135 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1445 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1467 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1479 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1502 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1513 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1524 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1534 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1547 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1561 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1575 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1596 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1615 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1628 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1640 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1652 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1661 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1673 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1686 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-1697 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) (-3519 (*1 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4))))) +(-13 (-962 |#3|) (-10 -7 (IF (|has| |#1| (-357)) (-15 ** (|#3| |#3| (-401 (-552)))) |%noBranch|) (-15 -3154 (|#3| |#3|)) (-15 -4135 (|#3| |#3|)) (-15 -1445 (|#3| |#3|)) (-15 -1456 (|#3| |#3|)) (-15 -1467 (|#3| |#3|)) (-15 -1479 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)) (-15 -1502 (|#3| |#3|)) (-15 -1513 (|#3| |#3|)) (-15 -1524 (|#3| |#3|)) (-15 -1534 (|#3| |#3|)) (-15 -1547 (|#3| |#3|)) (-15 -1561 (|#3| |#3|)) (-15 -1575 (|#3| |#3|)) (-15 -1584 (|#3| |#3|)) (-15 -1596 (|#3| |#3|)) (-15 -1607 (|#3| |#3|)) (-15 -1615 (|#3| |#3|)) (-15 -1628 (|#3| |#3|)) (-15 -1640 (|#3| |#3|)) (-15 -1652 (|#3| |#3|)) (-15 -1661 (|#3| |#3|)) (-15 -1673 (|#3| |#3|)) (-15 -1686 (|#3| |#3|)) (-15 -1697 (|#3| |#3|)) (-15 -3519 (|#3| |#3|)))) +((-3868 (((-111) $) 19)) (-3669 (((-180) $) 7)) (-1882 (((-3 (-1152) "failed") $) 14)) (-1295 (((-3 (-627 $) "failed") $) NIL)) (-3185 (((-3 (-1152) "failed") $) 21)) (-4152 (((-3 (-1080) "failed") $) 17)) (-2020 (((-111) $) 15)) (-1477 (((-842) $) NIL)) (-2005 (((-111) $) 9))) +(((-274) (-13 (-599 (-842)) (-10 -8 (-15 -3669 ((-180) $)) (-15 -2020 ((-111) $)) (-15 -4152 ((-3 (-1080) "failed") $)) (-15 -3868 ((-111) $)) (-15 -3185 ((-3 (-1152) "failed") $)) (-15 -2005 ((-111) $)) (-15 -1882 ((-3 (-1152) "failed") $)) (-15 -1295 ((-3 (-627 $) "failed") $))))) (T -274)) +((-3669 (*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-274)))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274)))) (-4152 (*1 *2 *1) (|partial| -12 (-5 *2 (-1080)) (-5 *1 (-274)))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274)))) (-3185 (*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-274)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274)))) (-1882 (*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-274)))) (-1295 (*1 *2 *1) (|partial| -12 (-5 *2 (-627 (-274))) (-5 *1 (-274))))) +(-13 (-599 (-842)) (-10 -8 (-15 -3669 ((-180) $)) (-15 -2020 ((-111) $)) (-15 -4152 ((-3 (-1080) "failed") $)) (-15 -3868 ((-111) $)) (-15 -3185 ((-3 (-1152) "failed") $)) (-15 -2005 ((-111) $)) (-15 -1882 ((-3 (-1152) "failed") $)) (-15 -1295 ((-3 (-627 $) "failed") $)))) +((-2536 (($ (-1 (-111) |#2|) $) 24)) (-3370 (($ $) 36)) (-2265 (($ (-1 (-111) |#2|) $) NIL) (($ |#2| $) 34)) (-4342 (($ |#2| $) 32) (($ (-1 (-111) |#2|) $) 18)) (-1438 (($ (-1 (-111) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-3252 (($ |#2| $ (-552)) 20) (($ $ $ (-552)) 22)) (-3907 (($ $ (-552)) 11) (($ $ (-1202 (-552))) 14)) (-3151 (($ $ |#2|) 30) (($ $ $) NIL)) (-2668 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-627 $)) NIL))) +(((-275 |#1| |#2|) (-10 -8 (-15 -1438 (|#1| |#1| |#1|)) (-15 -2265 (|#1| |#2| |#1|)) (-15 -1438 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -2265 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3151 (|#1| |#1| |#1|)) (-15 -3151 (|#1| |#1| |#2|)) (-15 -3252 (|#1| |#1| |#1| (-552))) (-15 -3252 (|#1| |#2| |#1| (-552))) (-15 -3907 (|#1| |#1| (-1202 (-552)))) (-15 -3907 (|#1| |#1| (-552))) (-15 -2668 (|#1| (-627 |#1|))) (-15 -2668 (|#1| |#1| |#1|)) (-15 -2668 (|#1| |#2| |#1|)) (-15 -2668 (|#1| |#1| |#2|)) (-15 -4342 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2536 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -4342 (|#1| |#2| |#1|)) (-15 -3370 (|#1| |#1|))) (-276 |#2|) (-1189)) (T -275)) +NIL +(-10 -8 (-15 -1438 (|#1| |#1| |#1|)) (-15 -2265 (|#1| |#2| |#1|)) (-15 -1438 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -2265 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3151 (|#1| |#1| |#1|)) (-15 -3151 (|#1| |#1| |#2|)) (-15 -3252 (|#1| |#1| |#1| (-552))) (-15 -3252 (|#1| |#2| |#1| (-552))) (-15 -3907 (|#1| |#1| (-1202 (-552)))) (-15 -3907 (|#1| |#1| (-552))) (-15 -2668 (|#1| (-627 |#1|))) (-15 -2668 (|#1| |#1| |#1|)) (-15 -2668 (|#1| |#2| |#1|)) (-15 -2668 (|#1| |#1| |#2|)) (-15 -4342 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2536 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -4342 (|#1| |#2| |#1|)) (-15 -3370 (|#1| |#1|))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-3305 (((-1240) $ (-552) (-552)) 40 (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) 8)) (-2950 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) 58 (|has| $ (-6 -4367)))) (-4289 (($ (-1 (-111) |#1|) $) 85)) (-2536 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-2820 (($ $) 83 (|has| |#1| (-1076)))) (-3370 (($ $) 78 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2265 (($ (-1 (-111) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1076)))) (-4342 (($ |#1| $) 77 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 51)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2655 (($ (-754) |#1|) 69)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 43 (|has| (-552) (-830)))) (-1438 (($ (-1 (-111) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 44 (|has| (-552) (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-3954 (($ |#1| $ (-552)) 88) (($ $ $ (-552)) 87)) (-3252 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-3892 (((-627 (-552)) $) 46)) (-2358 (((-111) (-552) $) 47)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3340 ((|#1| $) 42 (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-1942 (($ $ |#1|) 41 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1202 (-552))) 63)) (-3010 (($ $ (-552)) 91) (($ $ (-1202 (-552))) 90)) (-3907 (($ $ (-552)) 62) (($ $ (-1202 (-552))) 61)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 79 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 70)) (-3151 (($ $ |#1|) 93) (($ $ $) 92)) (-2668 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-627 $)) 65)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-276 |#1|) (-137) (-1189)) (T -276)) +((-3151 (*1 *1 *1 *2) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1189)))) (-3151 (*1 *1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1189)))) (-3010 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-276 *3)) (-4 *3 (-1189)))) (-3010 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 (-552))) (-4 *1 (-276 *3)) (-4 *3 (-1189)))) (-2265 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-276 *3)) (-4 *3 (-1189)))) (-3954 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-276 *2)) (-4 *2 (-1189)))) (-3954 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-276 *3)) (-4 *3 (-1189)))) (-1438 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-276 *3)) (-4 *3 (-1189)))) (-4289 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-276 *3)) (-4 *3 (-1189)))) (-2265 (*1 *1 *2 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1189)) (-4 *2 (-1076)))) (-2820 (*1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1189)) (-4 *2 (-1076)))) (-1438 (*1 *1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1189)) (-4 *2 (-830))))) +(-13 (-633 |t#1|) (-10 -8 (-6 -4367) (-15 -3151 ($ $ |t#1|)) (-15 -3151 ($ $ $)) (-15 -3010 ($ $ (-552))) (-15 -3010 ($ $ (-1202 (-552)))) (-15 -2265 ($ (-1 (-111) |t#1|) $)) (-15 -3954 ($ |t#1| $ (-552))) (-15 -3954 ($ $ $ (-552))) (-15 -1438 ($ (-1 (-111) |t#1| |t#1|) $ $)) (-15 -4289 ($ (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1076)) (PROGN (-15 -2265 ($ |t#1| $)) (-15 -2820 ($ $))) |%noBranch|) (IF (|has| |t#1| (-830)) (-15 -1438 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-633 |#1|) . T) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) ((** (($ $ $) 10))) -(((-278 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-279)) (T -278)) +(((-277 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-278)) (T -277)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-2458 (($ $) 6)) (-2863 (($ $) 7)) (** (($ $ $) 8))) -(((-279) (-138)) (T -279)) -((** (*1 *1 *1 *1) (-4 *1 (-279))) (-2863 (*1 *1 *1) (-4 *1 (-279))) (-2458 (*1 *1 *1) (-4 *1 (-279)))) -(-13 (-10 -8 (-15 -2458 ($ $)) (-15 -2863 ($ $)) (-15 ** ($ $ $)))) -((-2914 (((-625 (-1129 |#1|)) (-1129 |#1|) |#1|) 35)) (-2895 ((|#2| |#2| |#1|) 38)) (-2904 ((|#2| |#2| |#1|) 40)) (-4260 ((|#2| |#2| |#1|) 39))) -(((-280 |#1| |#2|) (-10 -7 (-15 -2895 (|#2| |#2| |#1|)) (-15 -4260 (|#2| |#2| |#1|)) (-15 -2904 (|#2| |#2| |#1|)) (-15 -2914 ((-625 (-1129 |#1|)) (-1129 |#1|) |#1|))) (-358) (-1223 |#1|)) (T -280)) -((-2914 (*1 *2 *3 *4) (-12 (-4 *4 (-358)) (-5 *2 (-625 (-1129 *4))) (-5 *1 (-280 *4 *5)) (-5 *3 (-1129 *4)) (-4 *5 (-1223 *4)))) (-2904 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1223 *3)))) (-4260 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1223 *3)))) (-2895 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1223 *3))))) -(-10 -7 (-15 -2895 (|#2| |#2| |#1|)) (-15 -4260 (|#2| |#2| |#1|)) (-15 -2904 (|#2| |#2| |#1|)) (-15 -2914 ((-625 (-1129 |#1|)) (-1129 |#1|) |#1|))) -((-2154 ((|#2| $ |#1|) 6))) -(((-281 |#1| |#2|) (-138) (-1073) (-1186)) (T -281)) -((-2154 (*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1186))))) -(-13 (-10 -8 (-15 -2154 (|t#2| $ |t#1|)))) -((-3692 ((|#3| $ |#2| |#3|) 12)) (-3631 ((|#3| $ |#2|) 10))) -(((-282 |#1| |#2| |#3|) (-10 -8 (-15 -3692 (|#3| |#1| |#2| |#3|)) (-15 -3631 (|#3| |#1| |#2|))) (-283 |#2| |#3|) (-1073) (-1186)) (T -282)) -NIL -(-10 -8 (-15 -3692 (|#3| |#1| |#2| |#3|)) (-15 -3631 (|#3| |#1| |#2|))) -((-1851 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4354)))) (-3692 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) 11)) (-2154 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-283 |#1| |#2|) (-138) (-1073) (-1186)) (T -283)) -((-2154 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1186)))) (-3631 (*1 *2 *1 *3) (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1186)))) (-1851 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1186)))) (-3692 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1186))))) -(-13 (-281 |t#1| |t#2|) (-10 -8 (-15 -2154 (|t#2| $ |t#1| |t#2|)) (-15 -3631 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4354)) (PROGN (-15 -1851 (|t#2| $ |t#1| |t#2|)) (-15 -3692 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-281 |#1| |#2|) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 35)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 40)) (-3528 (($ $) 38)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2408 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-2851 (($ $ $) 33)) (-2163 (($ |#2| |#3|) 19)) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-3650 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1531 ((|#3| $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 20)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3575 (((-3 $ "failed") $ $) NIL)) (-2397 (((-751) $) 34)) (-2154 ((|#2| $ |#2|) 42)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 24)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-4141 (((-751)) NIL)) (-3518 (((-112) $ $) NIL)) (-2089 (($) 29 T CONST)) (-2100 (($) 36 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 37))) -(((-284 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-302) (-10 -8 (-15 -1531 (|#3| $)) (-15 -1683 (|#2| $)) (-15 -2163 ($ |#2| |#3|)) (-15 -3575 ((-3 $ "failed") $ $)) (-15 -4174 ((-3 $ "failed") $)) (-15 -4092 ($ $)) (-15 -2154 (|#2| $ |#2|)))) (-170) (-1208 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -284)) -((-4174 (*1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1208 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1531 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-284 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1208 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-1683 (*1 *2 *1) (-12 (-4 *2 (-1208 *3)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2163 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-284 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1208 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3575 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1208 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4092 (*1 *1 *1) (-12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1208 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2154 (*1 *2 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1208 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) -(-13 (-302) (-10 -8 (-15 -1531 (|#3| $)) (-15 -1683 (|#2| $)) (-15 -2163 ($ |#2| |#3|)) (-15 -3575 ((-3 $ "failed") $ $)) (-15 -4174 ((-3 $ "failed") $)) (-15 -4092 ($ $)) (-15 -2154 (|#2| $ |#2|)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-285) (-138)) (T -285)) -NIL -(-13 (-1025) (-111 $ $) (-10 -7 (-6 -4346))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-2961 (($ (-1149) (-1149) (-1077) $) 17)) (-2937 (($ (-1149) (-625 (-941)) $) 22)) (-2982 (((-625 (-1058)) $) 10)) (-2972 (((-3 (-1077) "failed") (-1149) (-1149) $) 16)) (-2947 (((-3 (-625 (-941)) "failed") (-1149) $) 21)) (-3600 (($) 7)) (-3377 (($) 23)) (-1683 (((-839) $) 27)) (-2926 (($) 24))) -(((-286) (-13 (-597 (-839)) (-10 -8 (-15 -3600 ($)) (-15 -2982 ((-625 (-1058)) $)) (-15 -2972 ((-3 (-1077) "failed") (-1149) (-1149) $)) (-15 -2961 ($ (-1149) (-1149) (-1077) $)) (-15 -2947 ((-3 (-625 (-941)) "failed") (-1149) $)) (-15 -2937 ($ (-1149) (-625 (-941)) $)) (-15 -3377 ($)) (-15 -2926 ($))))) (T -286)) -((-3600 (*1 *1) (-5 *1 (-286))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-625 (-1058))) (-5 *1 (-286)))) (-2972 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-1077)) (-5 *1 (-286)))) (-2961 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1149)) (-5 *3 (-1077)) (-5 *1 (-286)))) (-2947 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-625 (-941))) (-5 *1 (-286)))) (-2937 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-941))) (-5 *1 (-286)))) (-3377 (*1 *1) (-5 *1 (-286))) (-2926 (*1 *1) (-5 *1 (-286)))) -(-13 (-597 (-839)) (-10 -8 (-15 -3600 ($)) (-15 -2982 ((-625 (-1058)) $)) (-15 -2972 ((-3 (-1077) "failed") (-1149) (-1149) $)) (-15 -2961 ($ (-1149) (-1149) (-1077) $)) (-15 -2947 ((-3 (-625 (-941)) "failed") (-1149) $)) (-15 -2937 ($ (-1149) (-625 (-941)) $)) (-15 -3377 ($)) (-15 -2926 ($)))) -((-3029 (((-625 (-2 (|:| |eigval| (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (|:| |geneigvec| (-625 (-669 (-402 (-928 |#1|))))))) (-669 (-402 (-928 |#1|)))) 85)) (-3018 (((-625 (-669 (-402 (-928 |#1|)))) (-2 (|:| |eigval| (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-625 (-669 (-402 (-928 |#1|)))))) (-669 (-402 (-928 |#1|)))) 80) (((-625 (-669 (-402 (-928 |#1|)))) (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|))) (-669 (-402 (-928 |#1|))) (-751) (-751)) 38)) (-3040 (((-625 (-2 (|:| |eigval| (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-625 (-669 (-402 (-928 |#1|))))))) (-669 (-402 (-928 |#1|)))) 82)) (-3006 (((-625 (-669 (-402 (-928 |#1|)))) (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|))) (-669 (-402 (-928 |#1|)))) 62)) (-2995 (((-625 (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (-669 (-402 (-928 |#1|)))) 61)) (-3974 (((-928 |#1|) (-669 (-402 (-928 |#1|)))) 50) (((-928 |#1|) (-669 (-402 (-928 |#1|))) (-1149)) 51))) -(((-287 |#1|) (-10 -7 (-15 -3974 ((-928 |#1|) (-669 (-402 (-928 |#1|))) (-1149))) (-15 -3974 ((-928 |#1|) (-669 (-402 (-928 |#1|))))) (-15 -2995 ((-625 (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (-669 (-402 (-928 |#1|))))) (-15 -3006 ((-625 (-669 (-402 (-928 |#1|)))) (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|))) (-669 (-402 (-928 |#1|))))) (-15 -3018 ((-625 (-669 (-402 (-928 |#1|)))) (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|))) (-669 (-402 (-928 |#1|))) (-751) (-751))) (-15 -3018 ((-625 (-669 (-402 (-928 |#1|)))) (-2 (|:| |eigval| (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-625 (-669 (-402 (-928 |#1|)))))) (-669 (-402 (-928 |#1|))))) (-15 -3029 ((-625 (-2 (|:| |eigval| (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (|:| |geneigvec| (-625 (-669 (-402 (-928 |#1|))))))) (-669 (-402 (-928 |#1|))))) (-15 -3040 ((-625 (-2 (|:| |eigval| (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-625 (-669 (-402 (-928 |#1|))))))) (-669 (-402 (-928 |#1|)))))) (-446)) (T -287)) -((-3040 (*1 *2 *3) (-12 (-4 *4 (-446)) (-5 *2 (-625 (-2 (|:| |eigval| (-3 (-402 (-928 *4)) (-1138 (-1149) (-928 *4)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-625 (-669 (-402 (-928 *4)))))))) (-5 *1 (-287 *4)) (-5 *3 (-669 (-402 (-928 *4)))))) (-3029 (*1 *2 *3) (-12 (-4 *4 (-446)) (-5 *2 (-625 (-2 (|:| |eigval| (-3 (-402 (-928 *4)) (-1138 (-1149) (-928 *4)))) (|:| |geneigvec| (-625 (-669 (-402 (-928 *4)))))))) (-5 *1 (-287 *4)) (-5 *3 (-669 (-402 (-928 *4)))))) (-3018 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-402 (-928 *5)) (-1138 (-1149) (-928 *5)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-625 *4)))) (-4 *5 (-446)) (-5 *2 (-625 (-669 (-402 (-928 *5))))) (-5 *1 (-287 *5)) (-5 *4 (-669 (-402 (-928 *5)))))) (-3018 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-402 (-928 *6)) (-1138 (-1149) (-928 *6)))) (-5 *5 (-751)) (-4 *6 (-446)) (-5 *2 (-625 (-669 (-402 (-928 *6))))) (-5 *1 (-287 *6)) (-5 *4 (-669 (-402 (-928 *6)))))) (-3006 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-402 (-928 *5)) (-1138 (-1149) (-928 *5)))) (-4 *5 (-446)) (-5 *2 (-625 (-669 (-402 (-928 *5))))) (-5 *1 (-287 *5)) (-5 *4 (-669 (-402 (-928 *5)))))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-928 *4)))) (-4 *4 (-446)) (-5 *2 (-625 (-3 (-402 (-928 *4)) (-1138 (-1149) (-928 *4))))) (-5 *1 (-287 *4)))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-928 *4)))) (-5 *2 (-928 *4)) (-5 *1 (-287 *4)) (-4 *4 (-446)))) (-3974 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-402 (-928 *5)))) (-5 *4 (-1149)) (-5 *2 (-928 *5)) (-5 *1 (-287 *5)) (-4 *5 (-446))))) -(-10 -7 (-15 -3974 ((-928 |#1|) (-669 (-402 (-928 |#1|))) (-1149))) (-15 -3974 ((-928 |#1|) (-669 (-402 (-928 |#1|))))) (-15 -2995 ((-625 (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (-669 (-402 (-928 |#1|))))) (-15 -3006 ((-625 (-669 (-402 (-928 |#1|)))) (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|))) (-669 (-402 (-928 |#1|))))) (-15 -3018 ((-625 (-669 (-402 (-928 |#1|)))) (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|))) (-669 (-402 (-928 |#1|))) (-751) (-751))) (-15 -3018 ((-625 (-669 (-402 (-928 |#1|)))) (-2 (|:| |eigval| (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-625 (-669 (-402 (-928 |#1|)))))) (-669 (-402 (-928 |#1|))))) (-15 -3029 ((-625 (-2 (|:| |eigval| (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (|:| |geneigvec| (-625 (-669 (-402 (-928 |#1|))))))) (-669 (-402 (-928 |#1|))))) (-15 -3040 ((-625 (-2 (|:| |eigval| (-3 (-402 (-928 |#1|)) (-1138 (-1149) (-928 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-625 (-669 (-402 (-928 |#1|))))))) (-669 (-402 (-928 |#1|)))))) -((-1996 (((-289 |#2|) (-1 |#2| |#1|) (-289 |#1|)) 14))) -(((-288 |#1| |#2|) (-10 -7 (-15 -1996 ((-289 |#2|) (-1 |#2| |#1|) (-289 |#1|)))) (-1186) (-1186)) (T -288)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-289 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-289 *6)) (-5 *1 (-288 *5 *6))))) -(-10 -7 (-15 -1996 ((-289 |#2|) (-1 |#2| |#1|) (-289 |#1|)))) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3641 (((-112) $) NIL (|has| |#1| (-21)))) (-1904 (($ $) 12)) (-2077 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3831 (($ $ $) 94 (|has| |#1| (-297)))) (-3101 (($) NIL (-1523 (|has| |#1| (-21)) (|has| |#1| (-707))) CONST)) (-3080 (($ $) 50 (|has| |#1| (-21)))) (-3061 (((-3 $ "failed") $) 61 (|has| |#1| (-707)))) (-2662 ((|#1| $) 11)) (-4174 (((-3 $ "failed") $) 59 (|has| |#1| (-707)))) (-3650 (((-112) $) NIL (|has| |#1| (-707)))) (-1996 (($ (-1 |#1| |#1|) $) 14)) (-2651 ((|#1| $) 10)) (-3088 (($ $) 49 (|has| |#1| (-21)))) (-3071 (((-3 $ "failed") $) 60 (|has| |#1| (-707)))) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-4092 (($ $) 63 (-1523 (|has| |#1| (-358)) (|has| |#1| (-467))))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-3051 (((-625 $) $) 84 (|has| |#1| (-544)))) (-4073 (($ $ $) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 $)) 28 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-1149) |#1|) 17 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) 21 (|has| |#1| (-507 (-1149) |#1|)))) (-2438 (($ |#1| |#1|) 9)) (-3904 (((-133)) 89 (|has| |#1| (-358)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) 86 (|has| |#1| (-876 (-1149))))) (-2410 (($ $ $) NIL (|has| |#1| (-467)))) (-3828 (($ $ $) NIL (|has| |#1| (-467)))) (-1683 (($ (-552)) NIL (|has| |#1| (-1025))) (((-112) $) 36 (|has| |#1| (-1073))) (((-839) $) 35 (|has| |#1| (-1073)))) (-4141 (((-751)) 66 (|has| |#1| (-1025)))) (-2089 (($) 46 (|has| |#1| (-21)) CONST)) (-2100 (($) 56 (|has| |#1| (-707)) CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149))))) (-2281 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1073)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 91 (-1523 (|has| |#1| (-358)) (|has| |#1| (-467))))) (-2393 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-2382 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-552)) NIL (|has| |#1| (-467))) (($ $ (-751)) NIL (|has| |#1| (-707))) (($ $ (-897)) NIL (|has| |#1| (-1085)))) (* (($ $ |#1|) 54 (|has| |#1| (-1085))) (($ |#1| $) 53 (|has| |#1| (-1085))) (($ $ $) 52 (|has| |#1| (-1085))) (($ (-552) $) 69 (|has| |#1| (-21))) (($ (-751) $) NIL (|has| |#1| (-21))) (($ (-897) $) NIL (|has| |#1| (-25))))) -(((-289 |#1|) (-13 (-1186) (-10 -8 (-15 -2281 ($ |#1| |#1|)) (-15 -2438 ($ |#1| |#1|)) (-15 -1904 ($ $)) (-15 -2651 (|#1| $)) (-15 -2662 (|#1| $)) (-15 -1996 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-507 (-1149) |#1|)) (-6 (-507 (-1149) |#1|)) |%noBranch|) (IF (|has| |#1| (-1073)) (PROGN (-6 (-1073)) (-6 (-597 (-112))) (IF (|has| |#1| (-304 |#1|)) (PROGN (-15 -4073 ($ $ $)) (-15 -4073 ($ $ (-625 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2382 ($ |#1| $)) (-15 -2382 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3088 ($ $)) (-15 -3080 ($ $)) (-15 -2393 ($ |#1| $)) (-15 -2393 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1085)) (PROGN (-6 (-1085)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-707)) (PROGN (-6 (-707)) (-15 -3071 ((-3 $ "failed") $)) (-15 -3061 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-467)) (PROGN (-6 (-467)) (-15 -3071 ((-3 $ "failed") $)) (-15 -3061 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-6 (-1025)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-698 |#1|)) |%noBranch|) (IF (|has| |#1| (-544)) (-15 -3051 ((-625 $) $)) |%noBranch|) (IF (|has| |#1| (-876 (-1149))) (-6 (-876 (-1149))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-1239 |#1|)) (-15 -2404 ($ $ $)) (-15 -4092 ($ $))) |%noBranch|) (IF (|has| |#1| (-297)) (-15 -3831 ($ $ $)) |%noBranch|))) (-1186)) (T -289)) -((-2281 (*1 *1 *2 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1186)))) (-2438 (*1 *1 *2 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1186)))) (-1904 (*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1186)))) (-2651 (*1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1186)))) (-2662 (*1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1186)))) (-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1186)) (-5 *1 (-289 *3)))) (-4073 (*1 *1 *1 *1) (-12 (-4 *2 (-304 *2)) (-4 *2 (-1073)) (-4 *2 (-1186)) (-5 *1 (-289 *2)))) (-4073 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-289 *3))) (-4 *3 (-304 *3)) (-4 *3 (-1073)) (-4 *3 (-1186)) (-5 *1 (-289 *3)))) (-2382 (*1 *1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-25)) (-4 *2 (-1186)))) (-2382 (*1 *1 *1 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-25)) (-4 *2 (-1186)))) (-3088 (*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1186)))) (-3080 (*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1186)))) (-2393 (*1 *1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1186)))) (-2393 (*1 *1 *1 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1186)))) (-3071 (*1 *1 *1) (|partial| -12 (-5 *1 (-289 *2)) (-4 *2 (-707)) (-4 *2 (-1186)))) (-3061 (*1 *1 *1) (|partial| -12 (-5 *1 (-289 *2)) (-4 *2 (-707)) (-4 *2 (-1186)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-625 (-289 *3))) (-5 *1 (-289 *3)) (-4 *3 (-544)) (-4 *3 (-1186)))) (-3831 (*1 *1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-297)) (-4 *2 (-1186)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1085)) (-4 *2 (-1186)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1085)) (-4 *2 (-1186)))) (-2404 (*1 *1 *1 *1) (-1523 (-12 (-5 *1 (-289 *2)) (-4 *2 (-358)) (-4 *2 (-1186))) (-12 (-5 *1 (-289 *2)) (-4 *2 (-467)) (-4 *2 (-1186))))) (-4092 (*1 *1 *1) (-1523 (-12 (-5 *1 (-289 *2)) (-4 *2 (-358)) (-4 *2 (-1186))) (-12 (-5 *1 (-289 *2)) (-4 *2 (-467)) (-4 *2 (-1186)))))) -(-13 (-1186) (-10 -8 (-15 -2281 ($ |#1| |#1|)) (-15 -2438 ($ |#1| |#1|)) (-15 -1904 ($ $)) (-15 -2651 (|#1| $)) (-15 -2662 (|#1| $)) (-15 -1996 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-507 (-1149) |#1|)) (-6 (-507 (-1149) |#1|)) |%noBranch|) (IF (|has| |#1| (-1073)) (PROGN (-6 (-1073)) (-6 (-597 (-112))) (IF (|has| |#1| (-304 |#1|)) (PROGN (-15 -4073 ($ $ $)) (-15 -4073 ($ $ (-625 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2382 ($ |#1| $)) (-15 -2382 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3088 ($ $)) (-15 -3080 ($ $)) (-15 -2393 ($ |#1| $)) (-15 -2393 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1085)) (PROGN (-6 (-1085)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-707)) (PROGN (-6 (-707)) (-15 -3071 ((-3 $ "failed") $)) (-15 -3061 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-467)) (PROGN (-6 (-467)) (-15 -3071 ((-3 $ "failed") $)) (-15 -3061 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-6 (-1025)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-698 |#1|)) |%noBranch|) (IF (|has| |#1| (-544)) (-15 -3051 ((-625 $) $)) |%noBranch|) (IF (|has| |#1| (-876 (-1149))) (-6 (-876 (-1149))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-1239 |#1|)) (-15 -2404 ($ $ $)) (-15 -4092 ($ $))) |%noBranch|) (IF (|has| |#1| (-297)) (-15 -3831 ($ $ $)) |%noBranch|))) -((-1671 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2509 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#2| $ |#1| |#2|) NIL)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3128 (((-3 |#2| "failed") |#1| $) NIL)) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1938 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) NIL)) (-1416 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) NIL)) (-3799 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 ((|#1| $) NIL (|has| |#1| (-827)))) (-3730 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-2537 ((|#1| $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-3712 (((-625 |#1|) $) NIL)) (-1370 (((-112) |#1| $) NIL)) (-2953 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-3966 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-2554 (((-625 |#1|) $) NIL)) (-2564 (((-112) |#1| $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2924 ((|#2| $) NIL (|has| |#1| (-827)))) (-2380 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL)) (-2518 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4255 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1683 (((-839) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839))) (|has| |#2| (-597 (-839)))))) (-2977 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-290 |#1| |#2|) (-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) (-1073) (-1073)) (T -290)) -NIL -(-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) -((-1939 (((-307) (-1131) (-625 (-1131))) 16) (((-307) (-1131) (-1131)) 15) (((-307) (-625 (-1131))) 14) (((-307) (-1131)) 12))) -(((-291) (-10 -7 (-15 -1939 ((-307) (-1131))) (-15 -1939 ((-307) (-625 (-1131)))) (-15 -1939 ((-307) (-1131) (-1131))) (-15 -1939 ((-307) (-1131) (-625 (-1131)))))) (T -291)) -((-1939 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-1131))) (-5 *3 (-1131)) (-5 *2 (-307)) (-5 *1 (-291)))) (-1939 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-307)) (-5 *1 (-291)))) (-1939 (*1 *2 *3) (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-307)) (-5 *1 (-291)))) (-1939 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-307)) (-5 *1 (-291))))) -(-10 -7 (-15 -1939 ((-307) (-1131))) (-15 -1939 ((-307) (-625 (-1131)))) (-15 -1939 ((-307) (-1131) (-1131))) (-15 -1939 ((-307) (-1131) (-625 (-1131))))) -((-1996 ((|#2| (-1 |#2| |#1|) (-1131) (-596 |#1|)) 18))) -(((-292 |#1| |#2|) (-10 -7 (-15 -1996 (|#2| (-1 |#2| |#1|) (-1131) (-596 |#1|)))) (-297) (-1186)) (T -292)) -((-1996 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1131)) (-5 *5 (-596 *6)) (-4 *6 (-297)) (-4 *2 (-1186)) (-5 *1 (-292 *6 *2))))) -(-10 -7 (-15 -1996 (|#2| (-1 |#2| |#1|) (-1131) (-596 |#1|)))) -((-1996 ((|#2| (-1 |#2| |#1|) (-596 |#1|)) 17))) -(((-293 |#1| |#2|) (-10 -7 (-15 -1996 (|#2| (-1 |#2| |#1|) (-596 |#1|)))) (-297) (-297)) (T -293)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-596 *5)) (-4 *5 (-297)) (-4 *2 (-297)) (-5 *1 (-293 *5 *2))))) -(-10 -7 (-15 -1996 (|#2| (-1 |#2| |#1|) (-596 |#1|)))) -((-4019 (((-112) (-221)) 10))) -(((-294 |#1| |#2|) (-10 -7 (-15 -4019 ((-112) (-221)))) (-221) (-221)) (T -294)) -((-4019 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-294 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -4019 ((-112) (-221)))) -((-1993 (((-1129 (-221)) (-311 (-221)) (-625 (-1149)) (-1067 (-820 (-221)))) 93)) (-2004 (((-1129 (-221)) (-1232 (-311 (-221))) (-625 (-1149)) (-1067 (-820 (-221)))) 107) (((-1129 (-221)) (-311 (-221)) (-625 (-1149)) (-1067 (-820 (-221)))) 61)) (-2222 (((-625 (-1131)) (-1129 (-221))) NIL)) (-1983 (((-625 (-221)) (-311 (-221)) (-1149) (-1067 (-820 (-221)))) 58)) (-2011 (((-625 (-221)) (-928 (-402 (-552))) (-1149) (-1067 (-820 (-221)))) 49)) (-2212 (((-625 (-1131)) (-625 (-221))) NIL)) (-2234 (((-221) (-1067 (-820 (-221)))) 25)) (-2245 (((-221) (-1067 (-820 (-221)))) 26)) (-1976 (((-112) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 54)) (-2190 (((-1131) (-221)) NIL))) -(((-295) (-10 -7 (-15 -2234 ((-221) (-1067 (-820 (-221))))) (-15 -2245 ((-221) (-1067 (-820 (-221))))) (-15 -1976 ((-112) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1983 ((-625 (-221)) (-311 (-221)) (-1149) (-1067 (-820 (-221))))) (-15 -1993 ((-1129 (-221)) (-311 (-221)) (-625 (-1149)) (-1067 (-820 (-221))))) (-15 -2004 ((-1129 (-221)) (-311 (-221)) (-625 (-1149)) (-1067 (-820 (-221))))) (-15 -2004 ((-1129 (-221)) (-1232 (-311 (-221))) (-625 (-1149)) (-1067 (-820 (-221))))) (-15 -2011 ((-625 (-221)) (-928 (-402 (-552))) (-1149) (-1067 (-820 (-221))))) (-15 -2190 ((-1131) (-221))) (-15 -2212 ((-625 (-1131)) (-625 (-221)))) (-15 -2222 ((-625 (-1131)) (-1129 (-221)))))) (T -295)) -((-2222 (*1 *2 *3) (-12 (-5 *3 (-1129 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-295)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-625 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-295)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-295)))) (-2011 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-928 (-402 (-552)))) (-5 *4 (-1149)) (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-625 (-221))) (-5 *1 (-295)))) (-2004 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1232 (-311 (-221)))) (-5 *4 (-625 (-1149))) (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-1129 (-221))) (-5 *1 (-295)))) (-2004 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-221))) (-5 *4 (-625 (-1149))) (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-1129 (-221))) (-5 *1 (-295)))) (-1993 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-221))) (-5 *4 (-625 (-1149))) (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-1129 (-221))) (-5 *1 (-295)))) (-1983 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-221))) (-5 *4 (-1149)) (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-625 (-221))) (-5 *1 (-295)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-112)) (-5 *1 (-295)))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-295)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-295))))) -(-10 -7 (-15 -2234 ((-221) (-1067 (-820 (-221))))) (-15 -2245 ((-221) (-1067 (-820 (-221))))) (-15 -1976 ((-112) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1983 ((-625 (-221)) (-311 (-221)) (-1149) (-1067 (-820 (-221))))) (-15 -1993 ((-1129 (-221)) (-311 (-221)) (-625 (-1149)) (-1067 (-820 (-221))))) (-15 -2004 ((-1129 (-221)) (-311 (-221)) (-625 (-1149)) (-1067 (-820 (-221))))) (-15 -2004 ((-1129 (-221)) (-1232 (-311 (-221))) (-625 (-1149)) (-1067 (-820 (-221))))) (-15 -2011 ((-625 (-221)) (-928 (-402 (-552))) (-1149) (-1067 (-820 (-221))))) (-15 -2190 ((-1131) (-221))) (-15 -2212 ((-625 (-1131)) (-625 (-221)))) (-15 -2222 ((-625 (-1131)) (-1129 (-221))))) -((-3715 (((-625 (-596 $)) $) 30)) (-3831 (($ $ (-289 $)) 81) (($ $ (-625 (-289 $))) 123) (($ $ (-625 (-596 $)) (-625 $)) NIL)) (-1893 (((-3 (-596 $) "failed") $) 113)) (-1895 (((-596 $) $) 112)) (-2411 (($ $) 19) (($ (-625 $)) 56)) (-1940 (((-625 (-114)) $) 38)) (-1563 (((-114) (-114)) 91)) (-3932 (((-112) $) 131)) (-1996 (($ (-1 $ $) (-596 $)) 89)) (-1952 (((-3 (-596 $) "failed") $) 93)) (-1425 (($ (-114) $) 61) (($ (-114) (-625 $)) 100)) (-1721 (((-112) $ (-114)) 117) (((-112) $ (-1149)) 116)) (-2207 (((-751) $) 46)) (-1929 (((-112) $ $) 59) (((-112) $ (-1149)) 51)) (-3943 (((-112) $) 129)) (-4073 (($ $ (-596 $) $) NIL) (($ $ (-625 (-596 $)) (-625 $)) NIL) (($ $ (-625 (-289 $))) 121) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ $))) 84) (($ $ (-625 (-1149)) (-625 (-1 $ (-625 $)))) NIL) (($ $ (-1149) (-1 $ (-625 $))) 69) (($ $ (-1149) (-1 $ $)) 75) (($ $ (-625 (-114)) (-625 (-1 $ $))) 83) (($ $ (-625 (-114)) (-625 (-1 $ (-625 $)))) 85) (($ $ (-114) (-1 $ (-625 $))) 71) (($ $ (-114) (-1 $ $)) 77)) (-2154 (($ (-114) $) 62) (($ (-114) $ $) 63) (($ (-114) $ $ $) 64) (($ (-114) $ $ $ $) 65) (($ (-114) (-625 $)) 109)) (-1963 (($ $) 53) (($ $ $) 119)) (-3779 (($ $) 17) (($ (-625 $)) 55)) (-1572 (((-112) (-114)) 22))) -(((-296 |#1|) (-10 -8 (-15 -3932 ((-112) |#1|)) (-15 -3943 ((-112) |#1|)) (-15 -4073 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -4073 (|#1| |#1| (-114) (-1 |#1| (-625 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-114)) (-625 (-1 |#1| (-625 |#1|))))) (-15 -4073 (|#1| |#1| (-625 (-114)) (-625 (-1 |#1| |#1|)))) (-15 -4073 (|#1| |#1| (-1149) (-1 |#1| |#1|))) (-15 -4073 (|#1| |#1| (-1149) (-1 |#1| (-625 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-1 |#1| (-625 |#1|))))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-1 |#1| |#1|)))) (-15 -1929 ((-112) |#1| (-1149))) (-15 -1929 ((-112) |#1| |#1|)) (-15 -1996 (|#1| (-1 |#1| |#1|) (-596 |#1|))) (-15 -1425 (|#1| (-114) (-625 |#1|))) (-15 -1425 (|#1| (-114) |#1|)) (-15 -1721 ((-112) |#1| (-1149))) (-15 -1721 ((-112) |#1| (-114))) (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 -1940 ((-625 (-114)) |#1|)) (-15 -3715 ((-625 (-596 |#1|)) |#1|)) (-15 -1952 ((-3 (-596 |#1|) "failed") |#1|)) (-15 -2207 ((-751) |#1|)) (-15 -1963 (|#1| |#1| |#1|)) (-15 -1963 (|#1| |#1|)) (-15 -2411 (|#1| (-625 |#1|))) (-15 -2411 (|#1| |#1|)) (-15 -3779 (|#1| (-625 |#1|))) (-15 -3779 (|#1| |#1|)) (-15 -3831 (|#1| |#1| (-625 (-596 |#1|)) (-625 |#1|))) (-15 -3831 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -3831 (|#1| |#1| (-289 |#1|))) (-15 -2154 (|#1| (-114) (-625 |#1|))) (-15 -2154 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1|)) (-15 -4073 (|#1| |#1| (-625 |#1|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| (-289 |#1|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-596 |#1|)) (-625 |#1|))) (-15 -4073 (|#1| |#1| (-596 |#1|) |#1|)) (-15 -1895 ((-596 |#1|) |#1|)) (-15 -1893 ((-3 (-596 |#1|) "failed") |#1|))) (-297)) (T -296)) -((-1563 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-296 *3)) (-4 *3 (-297)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-296 *4)) (-4 *4 (-297))))) -(-10 -8 (-15 -3932 ((-112) |#1|)) (-15 -3943 ((-112) |#1|)) (-15 -4073 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -4073 (|#1| |#1| (-114) (-1 |#1| (-625 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-114)) (-625 (-1 |#1| (-625 |#1|))))) (-15 -4073 (|#1| |#1| (-625 (-114)) (-625 (-1 |#1| |#1|)))) (-15 -4073 (|#1| |#1| (-1149) (-1 |#1| |#1|))) (-15 -4073 (|#1| |#1| (-1149) (-1 |#1| (-625 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-1 |#1| (-625 |#1|))))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-1 |#1| |#1|)))) (-15 -1929 ((-112) |#1| (-1149))) (-15 -1929 ((-112) |#1| |#1|)) (-15 -1996 (|#1| (-1 |#1| |#1|) (-596 |#1|))) (-15 -1425 (|#1| (-114) (-625 |#1|))) (-15 -1425 (|#1| (-114) |#1|)) (-15 -1721 ((-112) |#1| (-1149))) (-15 -1721 ((-112) |#1| (-114))) (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 -1940 ((-625 (-114)) |#1|)) (-15 -3715 ((-625 (-596 |#1|)) |#1|)) (-15 -1952 ((-3 (-596 |#1|) "failed") |#1|)) (-15 -2207 ((-751) |#1|)) (-15 -1963 (|#1| |#1| |#1|)) (-15 -1963 (|#1| |#1|)) (-15 -2411 (|#1| (-625 |#1|))) (-15 -2411 (|#1| |#1|)) (-15 -3779 (|#1| (-625 |#1|))) (-15 -3779 (|#1| |#1|)) (-15 -3831 (|#1| |#1| (-625 (-596 |#1|)) (-625 |#1|))) (-15 -3831 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -3831 (|#1| |#1| (-289 |#1|))) (-15 -2154 (|#1| (-114) (-625 |#1|))) (-15 -2154 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1|)) (-15 -4073 (|#1| |#1| (-625 |#1|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| (-289 |#1|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-596 |#1|)) (-625 |#1|))) (-15 -4073 (|#1| |#1| (-596 |#1|) |#1|)) (-15 -1895 ((-596 |#1|) |#1|)) (-15 -1893 ((-3 (-596 |#1|) "failed") |#1|))) -((-1671 (((-112) $ $) 7)) (-3715 (((-625 (-596 $)) $) 44)) (-3831 (($ $ (-289 $)) 56) (($ $ (-625 (-289 $))) 55) (($ $ (-625 (-596 $)) (-625 $)) 54)) (-1893 (((-3 (-596 $) "failed") $) 69)) (-1895 (((-596 $) $) 68)) (-2411 (($ $) 51) (($ (-625 $)) 50)) (-1940 (((-625 (-114)) $) 43)) (-1563 (((-114) (-114)) 42)) (-3932 (((-112) $) 22 (|has| $ (-1014 (-552))))) (-1917 (((-1145 $) (-596 $)) 25 (|has| $ (-1025)))) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-1996 (($ (-1 $ $) (-596 $)) 36)) (-1952 (((-3 (-596 $) "failed") $) 46)) (-2883 (((-1131) $) 9)) (-3783 (((-625 (-596 $)) $) 45)) (-1425 (($ (-114) $) 38) (($ (-114) (-625 $)) 37)) (-1721 (((-112) $ (-114)) 40) (((-112) $ (-1149)) 39)) (-2207 (((-751) $) 47)) (-2831 (((-1093) $) 10)) (-1929 (((-112) $ $) 35) (((-112) $ (-1149)) 34)) (-3943 (((-112) $) 23 (|has| $ (-1014 (-552))))) (-4073 (($ $ (-596 $) $) 67) (($ $ (-625 (-596 $)) (-625 $)) 66) (($ $ (-625 (-289 $))) 65) (($ $ (-289 $)) 64) (($ $ $ $) 63) (($ $ (-625 $) (-625 $)) 62) (($ $ (-625 (-1149)) (-625 (-1 $ $))) 33) (($ $ (-625 (-1149)) (-625 (-1 $ (-625 $)))) 32) (($ $ (-1149) (-1 $ (-625 $))) 31) (($ $ (-1149) (-1 $ $)) 30) (($ $ (-625 (-114)) (-625 (-1 $ $))) 29) (($ $ (-625 (-114)) (-625 (-1 $ (-625 $)))) 28) (($ $ (-114) (-1 $ (-625 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-2154 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-625 $)) 57)) (-1963 (($ $) 49) (($ $ $) 48)) (-3610 (($ $) 24 (|has| $ (-1025)))) (-1683 (((-839) $) 11) (($ (-596 $)) 70)) (-3779 (($ $) 53) (($ (-625 $)) 52)) (-1572 (((-112) (-114)) 41)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18))) -(((-297) (-138)) (T -297)) -((-2154 (*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-2154 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-2154 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-2154 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-2154 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-625 *1)) (-4 *1 (-297)))) (-3831 (*1 *1 *1 *2) (-12 (-5 *2 (-289 *1)) (-4 *1 (-297)))) (-3831 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-289 *1))) (-4 *1 (-297)))) (-3831 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-596 *1))) (-5 *3 (-625 *1)) (-4 *1 (-297)))) (-3779 (*1 *1 *1) (-4 *1 (-297))) (-3779 (*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-297)))) (-2411 (*1 *1 *1) (-4 *1 (-297))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-297)))) (-1963 (*1 *1 *1) (-4 *1 (-297))) (-1963 (*1 *1 *1 *1) (-4 *1 (-297))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-751)))) (-1952 (*1 *2 *1) (|partial| -12 (-5 *2 (-596 *1)) (-4 *1 (-297)))) (-3783 (*1 *2 *1) (-12 (-5 *2 (-625 (-596 *1))) (-4 *1 (-297)))) (-3715 (*1 *2 *1) (-12 (-5 *2 (-625 (-596 *1))) (-4 *1 (-297)))) (-1940 (*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-625 (-114))))) (-1563 (*1 *2 *2) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-1572 (*1 *2 *3) (-12 (-4 *1 (-297)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1721 (*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1721 (*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1149)) (-5 *2 (-112)))) (-1425 (*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) (-1425 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-625 *1)) (-4 *1 (-297)))) (-1996 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-596 *1)) (-4 *1 (-297)))) (-1929 (*1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-112)))) (-1929 (*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1149)) (-5 *2 (-112)))) (-4073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-625 (-1 *1 *1))) (-4 *1 (-297)))) (-4073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-625 (-1 *1 (-625 *1)))) (-4 *1 (-297)))) (-4073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1 *1 (-625 *1))) (-4 *1 (-297)))) (-4073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297)))) (-4073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-114))) (-5 *3 (-625 (-1 *1 *1))) (-4 *1 (-297)))) (-4073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-114))) (-5 *3 (-625 (-1 *1 (-625 *1)))) (-4 *1 (-297)))) (-4073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-625 *1))) (-4 *1 (-297)))) (-4073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297)))) (-1917 (*1 *2 *3) (-12 (-5 *3 (-596 *1)) (-4 *1 (-1025)) (-4 *1 (-297)) (-5 *2 (-1145 *1)))) (-3610 (*1 *1 *1) (-12 (-4 *1 (-1025)) (-4 *1 (-297)))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-1014 (-552))) (-4 *1 (-297)) (-5 *2 (-112)))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-1014 (-552))) (-4 *1 (-297)) (-5 *2 (-112))))) -(-13 (-827) (-1014 (-596 $)) (-507 (-596 $) $) (-304 $) (-10 -8 (-15 -2154 ($ (-114) $)) (-15 -2154 ($ (-114) $ $)) (-15 -2154 ($ (-114) $ $ $)) (-15 -2154 ($ (-114) $ $ $ $)) (-15 -2154 ($ (-114) (-625 $))) (-15 -3831 ($ $ (-289 $))) (-15 -3831 ($ $ (-625 (-289 $)))) (-15 -3831 ($ $ (-625 (-596 $)) (-625 $))) (-15 -3779 ($ $)) (-15 -3779 ($ (-625 $))) (-15 -2411 ($ $)) (-15 -2411 ($ (-625 $))) (-15 -1963 ($ $)) (-15 -1963 ($ $ $)) (-15 -2207 ((-751) $)) (-15 -1952 ((-3 (-596 $) "failed") $)) (-15 -3783 ((-625 (-596 $)) $)) (-15 -3715 ((-625 (-596 $)) $)) (-15 -1940 ((-625 (-114)) $)) (-15 -1563 ((-114) (-114))) (-15 -1572 ((-112) (-114))) (-15 -1721 ((-112) $ (-114))) (-15 -1721 ((-112) $ (-1149))) (-15 -1425 ($ (-114) $)) (-15 -1425 ($ (-114) (-625 $))) (-15 -1996 ($ (-1 $ $) (-596 $))) (-15 -1929 ((-112) $ $)) (-15 -1929 ((-112) $ (-1149))) (-15 -4073 ($ $ (-625 (-1149)) (-625 (-1 $ $)))) (-15 -4073 ($ $ (-625 (-1149)) (-625 (-1 $ (-625 $))))) (-15 -4073 ($ $ (-1149) (-1 $ (-625 $)))) (-15 -4073 ($ $ (-1149) (-1 $ $))) (-15 -4073 ($ $ (-625 (-114)) (-625 (-1 $ $)))) (-15 -4073 ($ $ (-625 (-114)) (-625 (-1 $ (-625 $))))) (-15 -4073 ($ $ (-114) (-1 $ (-625 $)))) (-15 -4073 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1025)) (PROGN (-15 -1917 ((-1145 $) (-596 $))) (-15 -3610 ($ $))) |%noBranch|) (IF (|has| $ (-1014 (-552))) (PROGN (-15 -3943 ((-112) $)) (-15 -3932 ((-112) $))) |%noBranch|))) -(((-101) . T) ((-597 (-839)) . T) ((-304 $) . T) ((-507 (-596 $) $) . T) ((-507 $ $) . T) ((-827) . T) ((-1014 (-596 $)) . T) ((-1073) . T)) -((-2364 (((-625 |#1|) (-625 |#1|)) 10))) -(((-298 |#1|) (-10 -7 (-15 -2364 ((-625 |#1|) (-625 |#1|)))) (-825)) (T -298)) -((-2364 (*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-825)) (-5 *1 (-298 *3))))) -(-10 -7 (-15 -2364 ((-625 |#1|) (-625 |#1|)))) -((-1996 (((-669 |#2|) (-1 |#2| |#1|) (-669 |#1|)) 17))) -(((-299 |#1| |#2|) (-10 -7 (-15 -1996 ((-669 |#2|) (-1 |#2| |#1|) (-669 |#1|)))) (-1025) (-1025)) (T -299)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-669 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-5 *2 (-669 *6)) (-5 *1 (-299 *5 *6))))) -(-10 -7 (-15 -1996 ((-669 |#2|) (-1 |#2| |#1|) (-669 |#1|)))) -((-2178 (((-1232 (-311 (-374))) (-1232 (-311 (-221)))) 105)) (-2048 (((-1067 (-820 (-221))) (-1067 (-820 (-374)))) 40)) (-2222 (((-625 (-1131)) (-1129 (-221))) 87)) (-2297 (((-311 (-374)) (-928 (-221))) 50)) (-2312 (((-221) (-928 (-221))) 46)) (-2254 (((-1131) (-374)) 169)) (-2039 (((-820 (-221)) (-820 (-374))) 34)) (-2104 (((-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552))) (-1232 (-311 (-221)))) 143)) (-2263 (((-1011) (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011)))) 181) (((-1011) (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))))) 179)) (-2351 (((-669 (-221)) (-625 (-221)) (-751)) 14)) (-2158 (((-1232 (-679)) (-625 (-221))) 94)) (-2212 (((-625 (-1131)) (-625 (-221))) 75)) (-2151 (((-3 (-311 (-221)) "failed") (-311 (-221))) 120)) (-4019 (((-112) (-221) (-1067 (-820 (-221)))) 109)) (-2285 (((-1011) (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))) 198)) (-2234 (((-221) (-1067 (-820 (-221)))) 107)) (-2245 (((-221) (-1067 (-820 (-221)))) 108)) (-2338 (((-221) (-402 (-552))) 27)) (-2201 (((-1131) (-374)) 73)) (-2020 (((-221) (-374)) 17)) (-2093 (((-374) (-1232 (-311 (-221)))) 154)) (-2029 (((-311 (-221)) (-311 (-374))) 23)) (-2072 (((-402 (-552)) (-311 (-221))) 53)) (-2113 (((-311 (-402 (-552))) (-311 (-221))) 69)) (-2168 (((-311 (-374)) (-311 (-221))) 98)) (-2082 (((-221) (-311 (-221))) 54)) (-2134 (((-625 (-221)) (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) 64)) (-2122 (((-1067 (-820 (-221))) (-1067 (-820 (-221)))) 61)) (-2190 (((-1131) (-221)) 72)) (-2143 (((-679) (-221)) 90)) (-2061 (((-402 (-552)) (-221)) 55)) (-2325 (((-311 (-374)) (-221)) 49)) (-2042 (((-625 (-1067 (-820 (-221)))) (-625 (-1067 (-820 (-374))))) 43)) (-3402 (((-1011) (-625 (-1011))) 165) (((-1011) (-1011) (-1011)) 162)) (-2274 (((-1011) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) -(((-300) (-10 -7 (-15 -2020 ((-221) (-374))) (-15 -2029 ((-311 (-221)) (-311 (-374)))) (-15 -2039 ((-820 (-221)) (-820 (-374)))) (-15 -2048 ((-1067 (-820 (-221))) (-1067 (-820 (-374))))) (-15 -2042 ((-625 (-1067 (-820 (-221)))) (-625 (-1067 (-820 (-374)))))) (-15 -2061 ((-402 (-552)) (-221))) (-15 -2072 ((-402 (-552)) (-311 (-221)))) (-15 -2082 ((-221) (-311 (-221)))) (-15 -2151 ((-3 (-311 (-221)) "failed") (-311 (-221)))) (-15 -2093 ((-374) (-1232 (-311 (-221))))) (-15 -2104 ((-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552))) (-1232 (-311 (-221))))) (-15 -2113 ((-311 (-402 (-552))) (-311 (-221)))) (-15 -2122 ((-1067 (-820 (-221))) (-1067 (-820 (-221))))) (-15 -2134 ((-625 (-221)) (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))))) (-15 -2143 ((-679) (-221))) (-15 -2158 ((-1232 (-679)) (-625 (-221)))) (-15 -2168 ((-311 (-374)) (-311 (-221)))) (-15 -2178 ((-1232 (-311 (-374))) (-1232 (-311 (-221))))) (-15 -4019 ((-112) (-221) (-1067 (-820 (-221))))) (-15 -2190 ((-1131) (-221))) (-15 -2201 ((-1131) (-374))) (-15 -2212 ((-625 (-1131)) (-625 (-221)))) (-15 -2222 ((-625 (-1131)) (-1129 (-221)))) (-15 -2234 ((-221) (-1067 (-820 (-221))))) (-15 -2245 ((-221) (-1067 (-820 (-221))))) (-15 -3402 ((-1011) (-1011) (-1011))) (-15 -3402 ((-1011) (-625 (-1011)))) (-15 -2254 ((-1131) (-374))) (-15 -2263 ((-1011) (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))))) (-15 -2263 ((-1011) (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011))))) (-15 -2274 ((-1011) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2285 ((-1011) (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))) (-15 -2297 ((-311 (-374)) (-928 (-221)))) (-15 -2312 ((-221) (-928 (-221)))) (-15 -2325 ((-311 (-374)) (-221))) (-15 -2338 ((-221) (-402 (-552)))) (-15 -2351 ((-669 (-221)) (-625 (-221)) (-751))))) (T -300)) -((-2351 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-221))) (-5 *4 (-751)) (-5 *2 (-669 (-221))) (-5 *1 (-300)))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-402 (-552))) (-5 *2 (-221)) (-5 *1 (-300)))) (-2325 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-311 (-374))) (-5 *1 (-300)))) (-2312 (*1 *2 *3) (-12 (-5 *3 (-928 (-221))) (-5 *2 (-221)) (-5 *1 (-300)))) (-2297 (*1 *2 *3) (-12 (-5 *3 (-928 (-221))) (-5 *2 (-311 (-374))) (-5 *1 (-300)))) (-2285 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))) (-5 *2 (-1011)) (-5 *1 (-300)))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1011)) (-5 *1 (-300)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011)))) (-5 *2 (-1011)) (-5 *1 (-300)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))))) (-5 *2 (-1011)) (-5 *1 (-300)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1131)) (-5 *1 (-300)))) (-3402 (*1 *2 *3) (-12 (-5 *3 (-625 (-1011))) (-5 *2 (-1011)) (-5 *1 (-300)))) (-3402 (*1 *2 *2 *2) (-12 (-5 *2 (-1011)) (-5 *1 (-300)))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-300)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-300)))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-1129 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-300)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-625 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-300)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1131)) (-5 *1 (-300)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-300)))) (-4019 (*1 *2 *3 *4) (-12 (-5 *4 (-1067 (-820 (-221)))) (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-300)))) (-2178 (*1 *2 *3) (-12 (-5 *3 (-1232 (-311 (-221)))) (-5 *2 (-1232 (-311 (-374)))) (-5 *1 (-300)))) (-2168 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-311 (-374))) (-5 *1 (-300)))) (-2158 (*1 *2 *3) (-12 (-5 *3 (-625 (-221))) (-5 *2 (-1232 (-679))) (-5 *1 (-300)))) (-2143 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-679)) (-5 *1 (-300)))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-5 *2 (-625 (-221))) (-5 *1 (-300)))) (-2122 (*1 *2 *2) (-12 (-5 *2 (-1067 (-820 (-221)))) (-5 *1 (-300)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-311 (-402 (-552)))) (-5 *1 (-300)))) (-2104 (*1 *2 *3) (-12 (-5 *3 (-1232 (-311 (-221)))) (-5 *2 (-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552)))) (-5 *1 (-300)))) (-2093 (*1 *2 *3) (-12 (-5 *3 (-1232 (-311 (-221)))) (-5 *2 (-374)) (-5 *1 (-300)))) (-2151 (*1 *2 *2) (|partial| -12 (-5 *2 (-311 (-221))) (-5 *1 (-300)))) (-2082 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-221)) (-5 *1 (-300)))) (-2072 (*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-402 (-552))) (-5 *1 (-300)))) (-2061 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-402 (-552))) (-5 *1 (-300)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-625 (-1067 (-820 (-374))))) (-5 *2 (-625 (-1067 (-820 (-221))))) (-5 *1 (-300)))) (-2048 (*1 *2 *3) (-12 (-5 *3 (-1067 (-820 (-374)))) (-5 *2 (-1067 (-820 (-221)))) (-5 *1 (-300)))) (-2039 (*1 *2 *3) (-12 (-5 *3 (-820 (-374))) (-5 *2 (-820 (-221))) (-5 *1 (-300)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-311 (-374))) (-5 *2 (-311 (-221))) (-5 *1 (-300)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-221)) (-5 *1 (-300))))) -(-10 -7 (-15 -2020 ((-221) (-374))) (-15 -2029 ((-311 (-221)) (-311 (-374)))) (-15 -2039 ((-820 (-221)) (-820 (-374)))) (-15 -2048 ((-1067 (-820 (-221))) (-1067 (-820 (-374))))) (-15 -2042 ((-625 (-1067 (-820 (-221)))) (-625 (-1067 (-820 (-374)))))) (-15 -2061 ((-402 (-552)) (-221))) (-15 -2072 ((-402 (-552)) (-311 (-221)))) (-15 -2082 ((-221) (-311 (-221)))) (-15 -2151 ((-3 (-311 (-221)) "failed") (-311 (-221)))) (-15 -2093 ((-374) (-1232 (-311 (-221))))) (-15 -2104 ((-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552))) (-1232 (-311 (-221))))) (-15 -2113 ((-311 (-402 (-552))) (-311 (-221)))) (-15 -2122 ((-1067 (-820 (-221))) (-1067 (-820 (-221))))) (-15 -2134 ((-625 (-221)) (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))))) (-15 -2143 ((-679) (-221))) (-15 -2158 ((-1232 (-679)) (-625 (-221)))) (-15 -2168 ((-311 (-374)) (-311 (-221)))) (-15 -2178 ((-1232 (-311 (-374))) (-1232 (-311 (-221))))) (-15 -4019 ((-112) (-221) (-1067 (-820 (-221))))) (-15 -2190 ((-1131) (-221))) (-15 -2201 ((-1131) (-374))) (-15 -2212 ((-625 (-1131)) (-625 (-221)))) (-15 -2222 ((-625 (-1131)) (-1129 (-221)))) (-15 -2234 ((-221) (-1067 (-820 (-221))))) (-15 -2245 ((-221) (-1067 (-820 (-221))))) (-15 -3402 ((-1011) (-1011) (-1011))) (-15 -3402 ((-1011) (-625 (-1011)))) (-15 -2254 ((-1131) (-374))) (-15 -2263 ((-1011) (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))))) (-15 -2263 ((-1011) (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011))))) (-15 -2274 ((-1011) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2285 ((-1011) (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))) (-15 -2297 ((-311 (-374)) (-928 (-221)))) (-15 -2312 ((-221) (-928 (-221)))) (-15 -2325 ((-311 (-374)) (-221))) (-15 -2338 ((-221) (-402 (-552)))) (-15 -2351 ((-669 (-221)) (-625 (-221)) (-751)))) -((-2408 (((-112) $ $) 11)) (-2851 (($ $ $) 15)) (-2826 (($ $ $) 14)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 44)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 53)) (-2633 (($ $ $) 21) (($ (-625 $)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-2802 (((-3 $ "failed") $ $) 17)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 46))) -(((-301 |#1|) (-10 -8 (-15 -2375 ((-3 (-625 |#1|) "failed") (-625 |#1|) |#1|)) (-15 -2385 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2385 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3212 |#1|)) |#1| |#1|)) (-15 -2851 (|#1| |#1| |#1|)) (-15 -2826 (|#1| |#1| |#1|)) (-15 -2408 ((-112) |#1| |#1|)) (-15 -1468 ((-3 (-625 |#1|) "failed") (-625 |#1|) |#1|)) (-15 -1480 ((-2 (|:| -3340 (-625 |#1|)) (|:| -3212 |#1|)) (-625 |#1|))) (-15 -2633 (|#1| (-625 |#1|))) (-15 -2633 (|#1| |#1| |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#1|))) (-302)) (T -301)) -NIL -(-10 -8 (-15 -2375 ((-3 (-625 |#1|) "failed") (-625 |#1|) |#1|)) (-15 -2385 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2385 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3212 |#1|)) |#1| |#1|)) (-15 -2851 (|#1| |#1| |#1|)) (-15 -2826 (|#1| |#1| |#1|)) (-15 -2408 ((-112) |#1| |#1|)) (-15 -1468 ((-3 (-625 |#1|) "failed") (-625 |#1|) |#1|)) (-15 -1480 ((-2 (|:| -3340 (-625 |#1|)) (|:| -3212 |#1|)) (-625 |#1|))) (-15 -2633 (|#1| (-625 |#1|))) (-15 -2633 (|#1| |#1| |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-2408 (((-112) $ $) 57)) (-3101 (($) 17 T CONST)) (-2851 (($ $ $) 53)) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-3650 (((-112) $) 30)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-2397 (((-751) $) 56)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-302) (-138)) (T -302)) -((-2408 (*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-751)))) (-3481 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-302)))) (-2826 (*1 *1 *1 *1) (-4 *1 (-302))) (-2851 (*1 *1 *1 *1) (-4 *1 (-302))) (-2385 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3212 *1))) (-4 *1 (-302)))) (-2385 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-302)))) (-2375 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-625 *1)) (-4 *1 (-302))))) -(-13 (-896) (-10 -8 (-15 -2408 ((-112) $ $)) (-15 -2397 ((-751) $)) (-15 -3481 ((-2 (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -2826 ($ $ $)) (-15 -2851 ($ $ $)) (-15 -2385 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $)) (-15 -2385 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2375 ((-3 (-625 $) "failed") (-625 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-544) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-896) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-4073 (($ $ (-625 |#2|) (-625 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-289 |#2|)) 11) (($ $ (-625 (-289 |#2|))) NIL))) -(((-303 |#1| |#2|) (-10 -8 (-15 -4073 (|#1| |#1| (-625 (-289 |#2|)))) (-15 -4073 (|#1| |#1| (-289 |#2|))) (-15 -4073 (|#1| |#1| |#2| |#2|)) (-15 -4073 (|#1| |#1| (-625 |#2|) (-625 |#2|)))) (-304 |#2|) (-1073)) (T -303)) -NIL -(-10 -8 (-15 -4073 (|#1| |#1| (-625 (-289 |#2|)))) (-15 -4073 (|#1| |#1| (-289 |#2|))) (-15 -4073 (|#1| |#1| |#2| |#2|)) (-15 -4073 (|#1| |#1| (-625 |#2|) (-625 |#2|)))) -((-4073 (($ $ (-625 |#1|) (-625 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-289 |#1|)) 11) (($ $ (-625 (-289 |#1|))) 10))) -(((-304 |#1|) (-138) (-1073)) (T -304)) -((-4073 (*1 *1 *1 *2) (-12 (-5 *2 (-289 *3)) (-4 *1 (-304 *3)) (-4 *3 (-1073)))) (-4073 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-289 *3))) (-4 *1 (-304 *3)) (-4 *3 (-1073))))) -(-13 (-507 |t#1| |t#1|) (-10 -8 (-15 -4073 ($ $ (-289 |t#1|))) (-15 -4073 ($ $ (-625 (-289 |t#1|)))))) -(((-507 |#1| |#1|) . T)) -((-4073 ((|#1| (-1 |#1| (-552)) (-1151 (-402 (-552)))) 25))) -(((-305 |#1|) (-10 -7 (-15 -4073 (|#1| (-1 |#1| (-552)) (-1151 (-402 (-552)))))) (-38 (-402 (-552)))) (T -305)) -((-4073 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-552))) (-5 *4 (-1151 (-402 (-552)))) (-5 *1 (-305 *2)) (-4 *2 (-38 (-402 (-552))))))) -(-10 -7 (-15 -4073 (|#1| (-1 |#1| (-552)) (-1151 (-402 (-552)))))) -((-1671 (((-112) $ $) NIL)) (-3671 (((-552) $) 12)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3632 (((-1108) $) 9)) (-1683 (((-839) $) 21) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL))) -(((-306) (-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $)) (-15 -3671 ((-552) $))))) (T -306)) -((-3632 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-306)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-306))))) -(-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $)) (-15 -3671 ((-552) $)))) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 7)) (-2281 (((-112) $ $) 9))) -(((-307) (-1073)) (T -307)) -NIL -(-1073) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 62)) (-4177 (((-1218 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-302)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-885)))) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-885)))) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-800)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-1218 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1149) "failed") $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-1149)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-552)))) (((-3 (-1217 |#2| |#3| |#4|) "failed") $) 25)) (-1895 (((-1218 |#1| |#2| |#3| |#4|) $) NIL) (((-1149) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-1149)))) (((-402 (-552)) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-552)))) (((-552) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-552)))) (((-1217 |#2| |#3| |#4|) $) NIL)) (-2851 (($ $ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-1218 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1232 (-1218 |#1| |#2| |#3| |#4|)))) (-669 $) (-1232 $)) NIL) (((-669 (-1218 |#1| |#2| |#3| |#4|)) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-537)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3620 (((-112) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-800)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-862 (-374))))) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL)) (-1356 (((-1218 |#1| |#2| |#3| |#4|) $) 21)) (-4034 (((-3 $ "failed") $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1124)))) (-3630 (((-112) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-800)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-3332 (($ $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-1996 (($ (-1 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|)) $) NIL)) (-2267 (((-3 (-820 |#2|) "failed") $) 78)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-302)))) (-4189 (((-1218 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-537)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-885)))) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-4073 (($ $ (-625 (-1218 |#1| |#2| |#3| |#4|)) (-625 (-1218 |#1| |#2| |#3| |#4|))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-304 (-1218 |#1| |#2| |#3| |#4|)))) (($ $ (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-304 (-1218 |#1| |#2| |#3| |#4|)))) (($ $ (-289 (-1218 |#1| |#2| |#3| |#4|))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-304 (-1218 |#1| |#2| |#3| |#4|)))) (($ $ (-625 (-289 (-1218 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-304 (-1218 |#1| |#2| |#3| |#4|)))) (($ $ (-625 (-1149)) (-625 (-1218 |#1| |#2| |#3| |#4|))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-507 (-1149) (-1218 |#1| |#2| |#3| |#4|)))) (($ $ (-1149) (-1218 |#1| |#2| |#3| |#4|)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-507 (-1149) (-1218 |#1| |#2| |#3| |#4|))))) (-2397 (((-751) $) NIL)) (-2154 (($ $ (-1218 |#1| |#2| |#3| |#4|)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-281 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-751)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-1149)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-1 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|)) (-751)) NIL) (($ $ (-1 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|))) NIL)) (-2265 (($ $) NIL)) (-1368 (((-1218 |#1| |#2| |#3| |#4|) $) 17)) (-2042 (((-868 (-552)) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-598 (-868 (-374))))) (((-528) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-598 (-528)))) (((-374) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-998))) (((-221) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-998)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-1218 |#1| |#2| |#3| |#4|) (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ (-1218 |#1| |#2| |#3| |#4|)) 29) (($ (-1149)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-1149)))) (($ (-1217 |#2| |#3| |#4|)) 36)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| (-1218 |#1| |#2| |#3| |#4|) (-885))) (|has| (-1218 |#1| |#2| |#3| |#4|) (-143))))) (-4141 (((-751)) NIL)) (-4199 (((-1218 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-537)))) (-3518 (((-112) $ $) NIL)) (-1727 (($ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-800)))) (-2089 (($) 41 T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-751)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-1149)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-1 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|)) (-751)) NIL) (($ $ (-1 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|))) NIL)) (-2346 (((-112) $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-2307 (((-112) $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-2404 (($ $ $) 34) (($ (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|)) 31)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ (-1218 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1218 |#1| |#2| |#3| |#4|)) NIL))) -(((-308 |#1| |#2| |#3| |#4|) (-13 (-968 (-1218 |#1| |#2| |#3| |#4|)) (-1014 (-1217 |#2| |#3| |#4|)) (-10 -8 (-15 -2267 ((-3 (-820 |#2|) "failed") $)) (-15 -1683 ($ (-1217 |#2| |#3| |#4|))))) (-13 (-827) (-1014 (-552)) (-621 (-552)) (-446)) (-13 (-27) (-1171) (-425 |#1|)) (-1149) |#2|) (T -308)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1217 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-425 *3))) (-14 *5 (-1149)) (-14 *6 *4) (-4 *3 (-13 (-827) (-1014 (-552)) (-621 (-552)) (-446))) (-5 *1 (-308 *3 *4 *5 *6)))) (-2267 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-827) (-1014 (-552)) (-621 (-552)) (-446))) (-5 *2 (-820 *4)) (-5 *1 (-308 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-425 *3))) (-14 *5 (-1149)) (-14 *6 *4)))) -(-13 (-968 (-1218 |#1| |#2| |#3| |#4|)) (-1014 (-1217 |#2| |#3| |#4|)) (-10 -8 (-15 -2267 ((-3 (-820 |#2|) "failed") $)) (-15 -1683 ($ (-1217 |#2| |#3| |#4|))))) -((-1996 (((-311 |#2|) (-1 |#2| |#1|) (-311 |#1|)) 13))) -(((-309 |#1| |#2|) (-10 -7 (-15 -1996 ((-311 |#2|) (-1 |#2| |#1|) (-311 |#1|)))) (-827) (-827)) (T -309)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-311 *5)) (-4 *5 (-827)) (-4 *6 (-827)) (-5 *2 (-311 *6)) (-5 *1 (-309 *5 *6))))) -(-10 -7 (-15 -1996 ((-311 |#2|) (-1 |#2| |#1|) (-311 |#1|)))) -((-4041 (((-52) |#2| (-289 |#2|) (-751)) 33) (((-52) |#2| (-289 |#2|)) 24) (((-52) |#2| (-751)) 28) (((-52) |#2|) 25) (((-52) (-1149)) 21)) (-3615 (((-52) |#2| (-289 |#2|) (-402 (-552))) 51) (((-52) |#2| (-289 |#2|)) 48) (((-52) |#2| (-402 (-552))) 50) (((-52) |#2|) 49) (((-52) (-1149)) 47)) (-4066 (((-52) |#2| (-289 |#2|) (-402 (-552))) 46) (((-52) |#2| (-289 |#2|)) 43) (((-52) |#2| (-402 (-552))) 45) (((-52) |#2|) 44) (((-52) (-1149)) 42)) (-4053 (((-52) |#2| (-289 |#2|) (-552)) 39) (((-52) |#2| (-289 |#2|)) 35) (((-52) |#2| (-552)) 38) (((-52) |#2|) 36) (((-52) (-1149)) 34))) -(((-310 |#1| |#2|) (-10 -7 (-15 -4041 ((-52) (-1149))) (-15 -4041 ((-52) |#2|)) (-15 -4041 ((-52) |#2| (-751))) (-15 -4041 ((-52) |#2| (-289 |#2|))) (-15 -4041 ((-52) |#2| (-289 |#2|) (-751))) (-15 -4053 ((-52) (-1149))) (-15 -4053 ((-52) |#2|)) (-15 -4053 ((-52) |#2| (-552))) (-15 -4053 ((-52) |#2| (-289 |#2|))) (-15 -4053 ((-52) |#2| (-289 |#2|) (-552))) (-15 -4066 ((-52) (-1149))) (-15 -4066 ((-52) |#2|)) (-15 -4066 ((-52) |#2| (-402 (-552)))) (-15 -4066 ((-52) |#2| (-289 |#2|))) (-15 -4066 ((-52) |#2| (-289 |#2|) (-402 (-552)))) (-15 -3615 ((-52) (-1149))) (-15 -3615 ((-52) |#2|)) (-15 -3615 ((-52) |#2| (-402 (-552)))) (-15 -3615 ((-52) |#2| (-289 |#2|))) (-15 -3615 ((-52) |#2| (-289 |#2|) (-402 (-552))))) (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))) (-13 (-27) (-1171) (-425 |#1|))) (T -310)) -((-3615 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-289 *3)) (-5 *5 (-402 (-552))) (-4 *3 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-3615 (*1 *2 *3 *4) (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) (-3615 (*1 *2 *3 *4) (-12 (-5 *4 (-402 (-552))) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))))) (-3615 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *4))))) (-3615 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-425 *4))))) (-4066 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-289 *3)) (-5 *5 (-402 (-552))) (-4 *3 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-4066 (*1 *2 *3 *4) (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) (-4066 (*1 *2 *3 *4) (-12 (-5 *4 (-402 (-552))) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))))) (-4066 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *4))))) (-4066 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-425 *4))))) (-4053 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-446) (-827) (-1014 *5) (-621 *5))) (-5 *5 (-552)) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-4053 (*1 *2 *3 *4) (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) (-4053 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-4 *5 (-13 (-446) (-827) (-1014 *4) (-621 *4))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))))) (-4053 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *4))))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-425 *4))))) (-4041 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-289 *3)) (-5 *5 (-751)) (-4 *3 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) (-4041 (*1 *2 *3 *4) (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) (-4041 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))))) (-4041 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *4))))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-425 *4)))))) -(-10 -7 (-15 -4041 ((-52) (-1149))) (-15 -4041 ((-52) |#2|)) (-15 -4041 ((-52) |#2| (-751))) (-15 -4041 ((-52) |#2| (-289 |#2|))) (-15 -4041 ((-52) |#2| (-289 |#2|) (-751))) (-15 -4053 ((-52) (-1149))) (-15 -4053 ((-52) |#2|)) (-15 -4053 ((-52) |#2| (-552))) (-15 -4053 ((-52) |#2| (-289 |#2|))) (-15 -4053 ((-52) |#2| (-289 |#2|) (-552))) (-15 -4066 ((-52) (-1149))) (-15 -4066 ((-52) |#2|)) (-15 -4066 ((-52) |#2| (-402 (-552)))) (-15 -4066 ((-52) |#2| (-289 |#2|))) (-15 -4066 ((-52) |#2| (-289 |#2|) (-402 (-552)))) (-15 -3615 ((-52) (-1149))) (-15 -3615 ((-52) |#2|)) (-15 -3615 ((-52) |#2| (-402 (-552)))) (-15 -3615 ((-52) |#2| (-289 |#2|))) (-15 -3615 ((-52) |#2| (-289 |#2|) (-402 (-552))))) -((-1671 (((-112) $ $) NIL)) (-1993 (((-625 $) $ (-1149)) NIL (|has| |#1| (-544))) (((-625 $) $) NIL (|has| |#1| (-544))) (((-625 $) (-1145 $) (-1149)) NIL (|has| |#1| (-544))) (((-625 $) (-1145 $)) NIL (|has| |#1| (-544))) (((-625 $) (-928 $)) NIL (|has| |#1| (-544)))) (-3428 (($ $ (-1149)) NIL (|has| |#1| (-544))) (($ $) NIL (|has| |#1| (-544))) (($ (-1145 $) (-1149)) NIL (|has| |#1| (-544))) (($ (-1145 $)) NIL (|has| |#1| (-544))) (($ (-928 $)) NIL (|has| |#1| (-544)))) (-3641 (((-112) $) 27 (-1523 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025)))))) (-3982 (((-625 (-1149)) $) 351)) (-3793 (((-402 (-1145 $)) $ (-596 $)) NIL (|has| |#1| (-544)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-3715 (((-625 (-596 $)) $) NIL)) (-3728 (($ $) 161 (|has| |#1| (-544)))) (-3604 (($ $) 137 (|has| |#1| (-544)))) (-1331 (($ $ (-1065 $)) 222 (|has| |#1| (-544))) (($ $ (-1149)) 218 (|has| |#1| (-544)))) (-2077 (((-3 $ "failed") $ $) NIL (-1523 (|has| |#1| (-21)) (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025)))))) (-3831 (($ $ (-289 $)) NIL) (($ $ (-625 (-289 $))) 368) (($ $ (-625 (-596 $)) (-625 $)) 412)) (-4296 (((-413 (-1145 $)) (-1145 $)) 295 (-12 (|has| |#1| (-446)) (|has| |#1| (-544))))) (-2194 (($ $) NIL (|has| |#1| (-544)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-544)))) (-3837 (($ $) NIL (|has| |#1| (-544)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3710 (($ $) 157 (|has| |#1| (-544)))) (-3581 (($ $) 133 (|has| |#1| (-544)))) (-2417 (($ $ (-552)) 72 (|has| |#1| (-544)))) (-3749 (($ $) 165 (|has| |#1| (-544)))) (-3627 (($ $) 141 (|has| |#1| (-544)))) (-3101 (($) NIL (-1523 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))) (|has| |#1| (-1085))) CONST)) (-3438 (((-625 $) $ (-1149)) NIL (|has| |#1| (-544))) (((-625 $) $) NIL (|has| |#1| (-544))) (((-625 $) (-1145 $) (-1149)) NIL (|has| |#1| (-544))) (((-625 $) (-1145 $)) NIL (|has| |#1| (-544))) (((-625 $) (-928 $)) NIL (|has| |#1| (-544)))) (-3588 (($ $ (-1149)) NIL (|has| |#1| (-544))) (($ $) NIL (|has| |#1| (-544))) (($ (-1145 $) (-1149)) 124 (|has| |#1| (-544))) (($ (-1145 $)) NIL (|has| |#1| (-544))) (($ (-928 $)) NIL (|has| |#1| (-544)))) (-1893 (((-3 (-596 $) "failed") $) 17) (((-3 (-1149) "failed") $) NIL) (((-3 |#1| "failed") $) 421) (((-3 (-48) "failed") $) 323 (-12 (|has| |#1| (-544)) (|has| |#1| (-1014 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-928 |#1|)) "failed") $) NIL (|has| |#1| (-544))) (((-3 (-928 |#1|) "failed") $) NIL (|has| |#1| (-1025))) (((-3 (-402 (-552)) "failed") $) 46 (-1523 (-12 (|has| |#1| (-544)) (|has| |#1| (-1014 (-552)))) (|has| |#1| (-1014 (-402 (-552))))))) (-1895 (((-596 $) $) 11) (((-1149) $) NIL) ((|#1| $) 403) (((-48) $) NIL (-12 (|has| |#1| (-544)) (|has| |#1| (-1014 (-552))))) (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-928 |#1|)) $) NIL (|has| |#1| (-544))) (((-928 |#1|) $) NIL (|has| |#1| (-1025))) (((-402 (-552)) $) 306 (-1523 (-12 (|has| |#1| (-544)) (|has| |#1| (-1014 (-552)))) (|has| |#1| (-1014 (-402 (-552))))))) (-2851 (($ $ $) NIL (|has| |#1| (-544)))) (-1794 (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 117 (|has| |#1| (-1025))) (((-669 |#1|) (-669 $)) 107 (|has| |#1| (-1025))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025)))) (((-669 (-552)) (-669 $)) NIL (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))))) (-2163 (($ $) 89 (|has| |#1| (-544)))) (-4174 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))) (|has| |#1| (-1085))))) (-2826 (($ $ $) NIL (|has| |#1| (-544)))) (-4244 (($ $ (-1065 $)) 226 (|has| |#1| (-544))) (($ $ (-1149)) 224 (|has| |#1| (-544)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-544)))) (-2951 (((-112) $) NIL (|has| |#1| (-544)))) (-1759 (($ $ $) 192 (|has| |#1| (-544)))) (-1385 (($) 127 (|has| |#1| (-544)))) (-1302 (($ $ $) 212 (|has| |#1| (-544)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 374 (|has| |#1| (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 381 (|has| |#1| (-862 (-374))))) (-2411 (($ $) NIL) (($ (-625 $)) NIL)) (-1940 (((-625 (-114)) $) NIL)) (-1563 (((-114) (-114)) 267)) (-3650 (((-112) $) 25 (-1523 (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))) (|has| |#1| (-1085))))) (-3932 (((-112) $) NIL (|has| $ (-1014 (-552))))) (-2276 (($ $) 71 (|has| |#1| (-1025)))) (-1356 (((-1098 |#1| (-596 $)) $) 84 (|has| |#1| (-1025)))) (-2427 (((-112) $) 64 (|has| |#1| (-544)))) (-2429 (($ $ (-552)) NIL (|has| |#1| (-544)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-544)))) (-1917 (((-1145 $) (-596 $)) 268 (|has| $ (-1025)))) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-1996 (($ (-1 $ $) (-596 $)) 408)) (-1952 (((-3 (-596 $) "failed") $) NIL)) (-2458 (($ $) 131 (|has| |#1| (-544)))) (-3654 (($ $) 237 (|has| |#1| (-544)))) (-2605 (($ (-625 $)) NIL (|has| |#1| (-544))) (($ $ $) NIL (|has| |#1| (-544)))) (-2883 (((-1131) $) NIL)) (-3783 (((-625 (-596 $)) $) 49)) (-1425 (($ (-114) $) NIL) (($ (-114) (-625 $)) 413)) (-4172 (((-3 (-625 $) "failed") $) NIL (|has| |#1| (-1085)))) (-4194 (((-3 (-2 (|:| |val| $) (|:| -3564 (-552))) "failed") $) NIL (|has| |#1| (-1025)))) (-4160 (((-3 (-625 $) "failed") $) 416 (|has| |#1| (-25)))) (-2692 (((-3 (-2 (|:| -3340 (-552)) (|:| |var| (-596 $))) "failed") $) 420 (|has| |#1| (-25)))) (-4182 (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $) NIL (|has| |#1| (-1085))) (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $ (-114)) NIL (|has| |#1| (-1025))) (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $ (-1149)) NIL (|has| |#1| (-1025)))) (-1721 (((-112) $ (-114)) NIL) (((-112) $ (-1149)) 53)) (-4092 (($ $) NIL (-1523 (|has| |#1| (-467)) (|has| |#1| (-544))))) (-4269 (($ $ (-1149)) 241 (|has| |#1| (-544))) (($ $ (-1065 $)) 243 (|has| |#1| (-544)))) (-2207 (((-751) $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) 43)) (-4117 ((|#1| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 288 (|has| |#1| (-544)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-544))) (($ $ $) NIL (|has| |#1| (-544)))) (-1929 (((-112) $ $) NIL) (((-112) $ (-1149)) NIL)) (-1342 (($ $ (-1149)) 216 (|has| |#1| (-544))) (($ $) 214 (|has| |#1| (-544)))) (-1279 (($ $) 208 (|has| |#1| (-544)))) (-4286 (((-413 (-1145 $)) (-1145 $)) 293 (-12 (|has| |#1| (-446)) (|has| |#1| (-544))))) (-3824 (((-413 $) $) NIL (|has| |#1| (-544)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-544))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-544)))) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-544)))) (-2863 (($ $) 129 (|has| |#1| (-544)))) (-3943 (((-112) $) NIL (|has| $ (-1014 (-552))))) (-4073 (($ $ (-596 $) $) NIL) (($ $ (-625 (-596 $)) (-625 $)) 407) (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ $))) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ (-625 $)))) NIL) (($ $ (-1149) (-1 $ (-625 $))) NIL) (($ $ (-1149) (-1 $ $)) NIL) (($ $ (-625 (-114)) (-625 (-1 $ $))) 361) (($ $ (-625 (-114)) (-625 (-1 $ (-625 $)))) NIL) (($ $ (-114) (-1 $ (-625 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1149)) NIL (|has| |#1| (-598 (-528)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-598 (-528)))) (($ $) NIL (|has| |#1| (-598 (-528)))) (($ $ (-114) $ (-1149)) 349 (|has| |#1| (-598 (-528)))) (($ $ (-625 (-114)) (-625 $) (-1149)) 348 (|has| |#1| (-598 (-528)))) (($ $ (-625 (-1149)) (-625 (-751)) (-625 (-1 $ $))) NIL (|has| |#1| (-1025))) (($ $ (-625 (-1149)) (-625 (-751)) (-625 (-1 $ (-625 $)))) NIL (|has| |#1| (-1025))) (($ $ (-1149) (-751) (-1 $ (-625 $))) NIL (|has| |#1| (-1025))) (($ $ (-1149) (-751) (-1 $ $)) NIL (|has| |#1| (-1025)))) (-2397 (((-751) $) NIL (|has| |#1| (-544)))) (-2349 (($ $) 229 (|has| |#1| (-544)))) (-2154 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-625 $)) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-544)))) (-1963 (($ $) NIL) (($ $ $) NIL)) (-3569 (($ $) 239 (|has| |#1| (-544)))) (-1749 (($ $) 190 (|has| |#1| (-544)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-1025))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-1025))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-1025))) (($ $ (-1149)) NIL (|has| |#1| (-1025)))) (-2265 (($ $) 73 (|has| |#1| (-544)))) (-1368 (((-1098 |#1| (-596 $)) $) 86 (|has| |#1| (-544)))) (-3610 (($ $) 304 (|has| $ (-1025)))) (-3759 (($ $) 167 (|has| |#1| (-544)))) (-3638 (($ $) 143 (|has| |#1| (-544)))) (-3738 (($ $) 163 (|has| |#1| (-544)))) (-3614 (($ $) 139 (|has| |#1| (-544)))) (-3721 (($ $) 159 (|has| |#1| (-544)))) (-3593 (($ $) 135 (|has| |#1| (-544)))) (-2042 (((-868 (-552)) $) NIL (|has| |#1| (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| |#1| (-598 (-868 (-374))))) (($ (-413 $)) NIL (|has| |#1| (-544))) (((-528) $) 346 (|has| |#1| (-598 (-528))))) (-2410 (($ $ $) NIL (|has| |#1| (-467)))) (-3828 (($ $ $) NIL (|has| |#1| (-467)))) (-1683 (((-839) $) 406) (($ (-596 $)) 397) (($ (-1149)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-544))) (($ (-48)) 299 (-12 (|has| |#1| (-544)) (|has| |#1| (-1014 (-552))))) (($ (-1098 |#1| (-596 $))) 88 (|has| |#1| (-1025))) (($ (-402 |#1|)) NIL (|has| |#1| (-544))) (($ (-928 (-402 |#1|))) NIL (|has| |#1| (-544))) (($ (-402 (-928 (-402 |#1|)))) NIL (|has| |#1| (-544))) (($ (-402 (-928 |#1|))) NIL (|has| |#1| (-544))) (($ (-928 |#1|)) NIL (|has| |#1| (-1025))) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-544)) (|has| |#1| (-1014 (-402 (-552)))))) (($ (-552)) 34 (-1523 (|has| |#1| (-1014 (-552))) (|has| |#1| (-1025))))) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL (|has| |#1| (-1025)))) (-3779 (($ $) NIL) (($ (-625 $)) NIL)) (-3901 (($ $ $) 210 (|has| |#1| (-544)))) (-1792 (($ $ $) 196 (|has| |#1| (-544)))) (-1815 (($ $ $) 200 (|has| |#1| (-544)))) (-1780 (($ $ $) 194 (|has| |#1| (-544)))) (-1804 (($ $ $) 198 (|has| |#1| (-544)))) (-1572 (((-112) (-114)) 9)) (-3789 (($ $) 173 (|has| |#1| (-544)))) (-3670 (($ $) 149 (|has| |#1| (-544)))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) 169 (|has| |#1| (-544)))) (-3648 (($ $) 145 (|has| |#1| (-544)))) (-3809 (($ $) 177 (|has| |#1| (-544)))) (-3691 (($ $) 153 (|has| |#1| (-544)))) (-3844 (($ (-1149) $) NIL) (($ (-1149) $ $) NIL) (($ (-1149) $ $ $) NIL) (($ (-1149) $ $ $ $) NIL) (($ (-1149) (-625 $)) NIL)) (-1836 (($ $) 204 (|has| |#1| (-544)))) (-1825 (($ $) 202 (|has| |#1| (-544)))) (-3742 (($ $) 179 (|has| |#1| (-544)))) (-3700 (($ $) 155 (|has| |#1| (-544)))) (-3797 (($ $) 175 (|has| |#1| (-544)))) (-3681 (($ $) 151 (|has| |#1| (-544)))) (-3778 (($ $) 171 (|has| |#1| (-544)))) (-3659 (($ $) 147 (|has| |#1| (-544)))) (-1727 (($ $) 182 (|has| |#1| (-544)))) (-2089 (($) 20 (-1523 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025)))) CONST)) (-1594 (($ $) 233 (|has| |#1| (-544)))) (-2100 (($) 22 (-1523 (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))) (|has| |#1| (-1085))) CONST)) (-1769 (($ $) 184 (|has| |#1| (-544))) (($ $ $) 186 (|has| |#1| (-544)))) (-1606 (($ $) 231 (|has| |#1| (-544)))) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-1025))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-1025))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-1025))) (($ $ (-1149)) NIL (|has| |#1| (-1025)))) (-1582 (($ $) 235 (|has| |#1| (-544)))) (-1739 (($ $ $) 188 (|has| |#1| (-544)))) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 81)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 80)) (-2404 (($ (-1098 |#1| (-596 $)) (-1098 |#1| (-596 $))) 98 (|has| |#1| (-544))) (($ $ $) 42 (-1523 (|has| |#1| (-467)) (|has| |#1| (-544))))) (-2393 (($ $ $) 40 (-1523 (|has| |#1| (-21)) (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))))) (($ $) 29 (-1523 (|has| |#1| (-21)) (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025)))))) (-2382 (($ $ $) 38 (-1523 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025)))))) (** (($ $ $) 66 (|has| |#1| (-544))) (($ $ (-402 (-552))) 301 (|has| |#1| (-544))) (($ $ (-552)) 76 (-1523 (|has| |#1| (-467)) (|has| |#1| (-544)))) (($ $ (-751)) 74 (-1523 (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))) (|has| |#1| (-1085)))) (($ $ (-897)) 78 (-1523 (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))) (|has| |#1| (-1085))))) (* (($ (-402 (-552)) $) NIL (|has| |#1| (-544))) (($ $ (-402 (-552))) NIL (|has| |#1| (-544))) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))) (($ $ $) 36 (-1523 (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))) (|has| |#1| (-1085)))) (($ (-552) $) 32 (-1523 (|has| |#1| (-21)) (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))))) (($ (-751) $) NIL (-1523 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))))) (($ (-897) $) NIL (-1523 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))))))) -(((-311 |#1|) (-13 (-425 |#1|) (-10 -8 (IF (|has| |#1| (-544)) (PROGN (-6 (-29 |#1|)) (-6 (-1171)) (-6 (-158)) (-6 (-611)) (-6 (-1112)) (-15 -2163 ($ $)) (-15 -2427 ((-112) $)) (-15 -2417 ($ $ (-552))) (IF (|has| |#1| (-446)) (PROGN (-15 -4286 ((-413 (-1145 $)) (-1145 $))) (-15 -4296 ((-413 (-1145 $)) (-1145 $)))) |%noBranch|) (IF (|has| |#1| (-1014 (-552))) (-6 (-1014 (-48))) |%noBranch|)) |%noBranch|))) (-827)) (T -311)) -((-2163 (*1 *1 *1) (-12 (-5 *1 (-311 *2)) (-4 *2 (-544)) (-4 *2 (-827)))) (-2427 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-311 *3)) (-4 *3 (-544)) (-4 *3 (-827)))) (-2417 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-311 *3)) (-4 *3 (-544)) (-4 *3 (-827)))) (-4286 (*1 *2 *3) (-12 (-5 *2 (-413 (-1145 *1))) (-5 *1 (-311 *4)) (-5 *3 (-1145 *1)) (-4 *4 (-446)) (-4 *4 (-544)) (-4 *4 (-827)))) (-4296 (*1 *2 *3) (-12 (-5 *2 (-413 (-1145 *1))) (-5 *1 (-311 *4)) (-5 *3 (-1145 *1)) (-4 *4 (-446)) (-4 *4 (-544)) (-4 *4 (-827))))) -(-13 (-425 |#1|) (-10 -8 (IF (|has| |#1| (-544)) (PROGN (-6 (-29 |#1|)) (-6 (-1171)) (-6 (-158)) (-6 (-611)) (-6 (-1112)) (-15 -2163 ($ $)) (-15 -2427 ((-112) $)) (-15 -2417 ($ $ (-552))) (IF (|has| |#1| (-446)) (PROGN (-15 -4286 ((-413 (-1145 $)) (-1145 $))) (-15 -4296 ((-413 (-1145 $)) (-1145 $)))) |%noBranch|) (IF (|has| |#1| (-1014 (-552))) (-6 (-1014 (-48))) |%noBranch|)) |%noBranch|))) -((-2436 (((-52) |#2| (-114) (-289 |#2|) (-625 |#2|)) 88) (((-52) |#2| (-114) (-289 |#2|) (-289 |#2|)) 84) (((-52) |#2| (-114) (-289 |#2|) |#2|) 86) (((-52) (-289 |#2|) (-114) (-289 |#2|) |#2|) 87) (((-52) (-625 |#2|) (-625 (-114)) (-289 |#2|) (-625 (-289 |#2|))) 80) (((-52) (-625 |#2|) (-625 (-114)) (-289 |#2|) (-625 |#2|)) 82) (((-52) (-625 (-289 |#2|)) (-625 (-114)) (-289 |#2|) (-625 |#2|)) 83) (((-52) (-625 (-289 |#2|)) (-625 (-114)) (-289 |#2|) (-625 (-289 |#2|))) 81) (((-52) (-289 |#2|) (-114) (-289 |#2|) (-625 |#2|)) 89) (((-52) (-289 |#2|) (-114) (-289 |#2|) (-289 |#2|)) 85))) -(((-312 |#1| |#2|) (-10 -7 (-15 -2436 ((-52) (-289 |#2|) (-114) (-289 |#2|) (-289 |#2|))) (-15 -2436 ((-52) (-289 |#2|) (-114) (-289 |#2|) (-625 |#2|))) (-15 -2436 ((-52) (-625 (-289 |#2|)) (-625 (-114)) (-289 |#2|) (-625 (-289 |#2|)))) (-15 -2436 ((-52) (-625 (-289 |#2|)) (-625 (-114)) (-289 |#2|) (-625 |#2|))) (-15 -2436 ((-52) (-625 |#2|) (-625 (-114)) (-289 |#2|) (-625 |#2|))) (-15 -2436 ((-52) (-625 |#2|) (-625 (-114)) (-289 |#2|) (-625 (-289 |#2|)))) (-15 -2436 ((-52) (-289 |#2|) (-114) (-289 |#2|) |#2|)) (-15 -2436 ((-52) |#2| (-114) (-289 |#2|) |#2|)) (-15 -2436 ((-52) |#2| (-114) (-289 |#2|) (-289 |#2|))) (-15 -2436 ((-52) |#2| (-114) (-289 |#2|) (-625 |#2|)))) (-13 (-827) (-544) (-598 (-528))) (-425 |#1|)) (T -312)) -((-2436 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-5 *6 (-625 *3)) (-4 *3 (-425 *7)) (-4 *7 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) (-5 *1 (-312 *7 *3)))) (-2436 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-4 *3 (-425 *6)) (-4 *6 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *3)))) (-2436 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-4 *3 (-425 *6)) (-4 *6 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *3)))) (-2436 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-289 *5)) (-5 *4 (-114)) (-4 *5 (-425 *6)) (-4 *6 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *5)))) (-2436 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 (-114))) (-5 *6 (-625 (-289 *8))) (-4 *8 (-425 *7)) (-5 *5 (-289 *8)) (-4 *7 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) (-5 *1 (-312 *7 *8)))) (-2436 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-625 *7)) (-5 *4 (-625 (-114))) (-5 *5 (-289 *7)) (-4 *7 (-425 *6)) (-4 *6 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *7)))) (-2436 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-625 (-289 *8))) (-5 *4 (-625 (-114))) (-5 *5 (-289 *8)) (-5 *6 (-625 *8)) (-4 *8 (-425 *7)) (-4 *7 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) (-5 *1 (-312 *7 *8)))) (-2436 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-625 (-289 *7))) (-5 *4 (-625 (-114))) (-5 *5 (-289 *7)) (-4 *7 (-425 *6)) (-4 *6 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *7)))) (-2436 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-289 *7)) (-5 *4 (-114)) (-5 *5 (-625 *7)) (-4 *7 (-425 *6)) (-4 *6 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) (-5 *1 (-312 *6 *7)))) (-2436 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-289 *6)) (-5 *4 (-114)) (-4 *6 (-425 *5)) (-4 *5 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) (-5 *1 (-312 *5 *6))))) -(-10 -7 (-15 -2436 ((-52) (-289 |#2|) (-114) (-289 |#2|) (-289 |#2|))) (-15 -2436 ((-52) (-289 |#2|) (-114) (-289 |#2|) (-625 |#2|))) (-15 -2436 ((-52) (-625 (-289 |#2|)) (-625 (-114)) (-289 |#2|) (-625 (-289 |#2|)))) (-15 -2436 ((-52) (-625 (-289 |#2|)) (-625 (-114)) (-289 |#2|) (-625 |#2|))) (-15 -2436 ((-52) (-625 |#2|) (-625 (-114)) (-289 |#2|) (-625 |#2|))) (-15 -2436 ((-52) (-625 |#2|) (-625 (-114)) (-289 |#2|) (-625 (-289 |#2|)))) (-15 -2436 ((-52) (-289 |#2|) (-114) (-289 |#2|) |#2|)) (-15 -2436 ((-52) |#2| (-114) (-289 |#2|) |#2|)) (-15 -2436 ((-52) |#2| (-114) (-289 |#2|) (-289 |#2|))) (-15 -2436 ((-52) |#2| (-114) (-289 |#2|) (-625 |#2|)))) -((-2459 (((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-221) (-552) (-1131)) 46) (((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-221) (-552)) 47) (((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-1 (-221) (-221)) (-552) (-1131)) 43) (((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-1 (-221) (-221)) (-552)) 44)) (-2447 (((-1 (-221) (-221)) (-221)) 45))) -(((-313) (-10 -7 (-15 -2447 ((-1 (-221) (-221)) (-221))) (-15 -2459 ((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-1 (-221) (-221)) (-552))) (-15 -2459 ((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-1 (-221) (-221)) (-552) (-1131))) (-15 -2459 ((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-221) (-552))) (-15 -2459 ((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-221) (-552) (-1131))))) (T -313)) -((-2459 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-311 (-552))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1067 (-221))) (-5 *6 (-221)) (-5 *7 (-552)) (-5 *8 (-1131)) (-5 *2 (-1181 (-902))) (-5 *1 (-313)))) (-2459 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-311 (-552))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1067 (-221))) (-5 *6 (-221)) (-5 *7 (-552)) (-5 *2 (-1181 (-902))) (-5 *1 (-313)))) (-2459 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-311 (-552))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1067 (-221))) (-5 *6 (-552)) (-5 *7 (-1131)) (-5 *2 (-1181 (-902))) (-5 *1 (-313)))) (-2459 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-311 (-552))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1067 (-221))) (-5 *6 (-552)) (-5 *2 (-1181 (-902))) (-5 *1 (-313)))) (-2447 (*1 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-313)) (-5 *3 (-221))))) -(-10 -7 (-15 -2447 ((-1 (-221) (-221)) (-221))) (-15 -2459 ((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-1 (-221) (-221)) (-552))) (-15 -2459 ((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-1 (-221) (-221)) (-552) (-1131))) (-15 -2459 ((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-221) (-552))) (-15 -2459 ((-1181 (-902)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-221) (-552) (-1131)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 25)) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2162 (($ $ (-402 (-552))) NIL) (($ $ (-402 (-552)) (-402 (-552))) NIL)) (-2182 (((-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|))) $) 20)) (-3728 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL (|has| |#1| (-358)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-358)))) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3710 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-751) (-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|)))) NIL)) (-3749 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) 32)) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-2951 (((-112) $) NIL (|has| |#1| (-358)))) (-3592 (((-112) $) NIL)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-402 (-552)) $) NIL) (((-402 (-552)) $ (-402 (-552))) 16)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2216 (($ $ (-897)) NIL) (($ $ (-402 (-552))) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-402 (-552))) NIL) (($ $ (-1055) (-402 (-552))) NIL) (($ $ (-625 (-1055)) (-625 (-402 (-552)))) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2458 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| |#1| (-358)))) (-2481 (($ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-935)) (|has| |#1| (-1171)))))) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2147 (($ $ (-402 (-552))) NIL)) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-2468 (((-402 (-552)) $) 17)) (-3792 (($ (-1217 |#1| |#2| |#3|)) 11)) (-3564 (((-1217 |#1| |#2| |#3|) $) 12)) (-2863 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))))) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ (-402 (-552))) NIL) (($ $ $) NIL (|has| (-402 (-552)) (-1085)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-4276 (((-402 (-552)) $) NIL)) (-3759 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) 10)) (-1683 (((-839) $) 38) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-3637 ((|#1| $ (-402 (-552))) 30)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-2845 ((|#1| $) NIL)) (-3789 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-402 (-552))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 27)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 33)) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))))) -(((-314 |#1| |#2| |#3|) (-13 (-1213 |#1|) (-772) (-10 -8 (-15 -3792 ($ (-1217 |#1| |#2| |#3|))) (-15 -3564 ((-1217 |#1| |#2| |#3|) $)) (-15 -2468 ((-402 (-552)) $)))) (-13 (-358) (-827)) (-1149) |#1|) (T -314)) -((-3792 (*1 *1 *2) (-12 (-5 *2 (-1217 *3 *4 *5)) (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149)) (-14 *5 *3) (-5 *1 (-314 *3 *4 *5)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-1217 *3 *4 *5)) (-5 *1 (-314 *3 *4 *5)) (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149)) (-14 *5 *3))) (-2468 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-314 *3 *4 *5)) (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149)) (-14 *5 *3)))) -(-13 (-1213 |#1|) (-772) (-10 -8 (-15 -3792 ($ (-1217 |#1| |#2| |#3|))) (-15 -3564 ((-1217 |#1| |#2| |#3|) $)) (-15 -2468 ((-402 (-552)) $)))) -((-2429 (((-2 (|:| -3564 (-751)) (|:| -3340 |#1|) (|:| |radicand| (-625 |#1|))) (-413 |#1|) (-751)) 24)) (-2458 (((-625 (-2 (|:| -3340 (-751)) (|:| |logand| |#1|))) (-413 |#1|)) 28))) -(((-315 |#1|) (-10 -7 (-15 -2429 ((-2 (|:| -3564 (-751)) (|:| -3340 |#1|) (|:| |radicand| (-625 |#1|))) (-413 |#1|) (-751))) (-15 -2458 ((-625 (-2 (|:| -3340 (-751)) (|:| |logand| |#1|))) (-413 |#1|)))) (-544)) (T -315)) -((-2458 (*1 *2 *3) (-12 (-5 *3 (-413 *4)) (-4 *4 (-544)) (-5 *2 (-625 (-2 (|:| -3340 (-751)) (|:| |logand| *4)))) (-5 *1 (-315 *4)))) (-2429 (*1 *2 *3 *4) (-12 (-5 *3 (-413 *5)) (-4 *5 (-544)) (-5 *2 (-2 (|:| -3564 (-751)) (|:| -3340 *5) (|:| |radicand| (-625 *5)))) (-5 *1 (-315 *5)) (-5 *4 (-751))))) -(-10 -7 (-15 -2429 ((-2 (|:| -3564 (-751)) (|:| -3340 |#1|) (|:| |radicand| (-625 |#1|))) (-413 |#1|) (-751))) (-15 -2458 ((-625 (-2 (|:| -3340 (-751)) (|:| |logand| |#1|))) (-413 |#1|)))) -((-3982 (((-625 |#2|) (-1145 |#4|)) 43)) (-1296 ((|#3| (-552)) 46)) (-2498 (((-1145 |#4|) (-1145 |#3|)) 30)) (-1284 (((-1145 |#4|) (-1145 |#4|) (-552)) 56)) (-2489 (((-1145 |#3|) (-1145 |#4|)) 21)) (-4276 (((-625 (-751)) (-1145 |#4|) (-625 |#2|)) 40)) (-2477 (((-1145 |#3|) (-1145 |#4|) (-625 |#2|) (-625 |#3|)) 35))) -(((-316 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2477 ((-1145 |#3|) (-1145 |#4|) (-625 |#2|) (-625 |#3|))) (-15 -4276 ((-625 (-751)) (-1145 |#4|) (-625 |#2|))) (-15 -3982 ((-625 |#2|) (-1145 |#4|))) (-15 -2489 ((-1145 |#3|) (-1145 |#4|))) (-15 -2498 ((-1145 |#4|) (-1145 |#3|))) (-15 -1284 ((-1145 |#4|) (-1145 |#4|) (-552))) (-15 -1296 (|#3| (-552)))) (-773) (-827) (-1025) (-925 |#3| |#1| |#2|)) (T -316)) -((-1296 (*1 *2 *3) (-12 (-5 *3 (-552)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1025)) (-5 *1 (-316 *4 *5 *2 *6)) (-4 *6 (-925 *2 *4 *5)))) (-1284 (*1 *2 *2 *3) (-12 (-5 *2 (-1145 *7)) (-5 *3 (-552)) (-4 *7 (-925 *6 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-5 *1 (-316 *4 *5 *6 *7)))) (-2498 (*1 *2 *3) (-12 (-5 *3 (-1145 *6)) (-4 *6 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-1145 *7)) (-5 *1 (-316 *4 *5 *6 *7)) (-4 *7 (-925 *6 *4 *5)))) (-2489 (*1 *2 *3) (-12 (-5 *3 (-1145 *7)) (-4 *7 (-925 *6 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-5 *2 (-1145 *6)) (-5 *1 (-316 *4 *5 *6 *7)))) (-3982 (*1 *2 *3) (-12 (-5 *3 (-1145 *7)) (-4 *7 (-925 *6 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-5 *2 (-625 *5)) (-5 *1 (-316 *4 *5 *6 *7)))) (-4276 (*1 *2 *3 *4) (-12 (-5 *3 (-1145 *8)) (-5 *4 (-625 *6)) (-4 *6 (-827)) (-4 *8 (-925 *7 *5 *6)) (-4 *5 (-773)) (-4 *7 (-1025)) (-5 *2 (-625 (-751))) (-5 *1 (-316 *5 *6 *7 *8)))) (-2477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1145 *9)) (-5 *4 (-625 *7)) (-5 *5 (-625 *8)) (-4 *7 (-827)) (-4 *8 (-1025)) (-4 *9 (-925 *8 *6 *7)) (-4 *6 (-773)) (-5 *2 (-1145 *8)) (-5 *1 (-316 *6 *7 *8 *9))))) -(-10 -7 (-15 -2477 ((-1145 |#3|) (-1145 |#4|) (-625 |#2|) (-625 |#3|))) (-15 -4276 ((-625 (-751)) (-1145 |#4|) (-625 |#2|))) (-15 -3982 ((-625 |#2|) (-1145 |#4|))) (-15 -2489 ((-1145 |#3|) (-1145 |#4|))) (-15 -2498 ((-1145 |#4|) (-1145 |#3|))) (-15 -1284 ((-1145 |#4|) (-1145 |#4|) (-552))) (-15 -1296 (|#3| (-552)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 14)) (-2182 (((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-552)))) $) 18)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2894 (((-751) $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-3461 ((|#1| $ (-552)) NIL)) (-1326 (((-552) $ (-552)) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1817 (($ (-1 |#1| |#1|) $) NIL)) (-1315 (($ (-1 (-552) (-552)) $) 10)) (-2883 (((-1131) $) NIL)) (-1307 (($ $ $) NIL (|has| (-552) (-772)))) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL) (($ |#1|) NIL)) (-3637 (((-552) |#1| $) NIL)) (-2089 (($) 15 T CONST)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) 21 (|has| |#1| (-827)))) (-2393 (($ $) 11) (($ $ $) 20)) (-2382 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ (-552)) NIL) (($ (-552) |#1|) 19))) -(((-317 |#1|) (-13 (-21) (-698 (-552)) (-318 |#1| (-552)) (-10 -7 (IF (|has| |#1| (-827)) (-6 (-827)) |%noBranch|))) (-1073)) (T -317)) -NIL -(-13 (-21) (-698 (-552)) (-318 |#1| (-552)) (-10 -7 (IF (|has| |#1| (-827)) (-6 (-827)) |%noBranch|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2182 (((-625 (-2 (|:| |gen| |#1|) (|:| -2863 |#2|))) $) 27)) (-2077 (((-3 $ "failed") $ $) 19)) (-2894 (((-751) $) 28)) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#1| "failed") $) 32)) (-1895 ((|#1| $) 31)) (-3461 ((|#1| $ (-552)) 25)) (-1326 ((|#2| $ (-552)) 26)) (-1817 (($ (-1 |#1| |#1|) $) 22)) (-1315 (($ (-1 |#2| |#2|) $) 23)) (-2883 (((-1131) $) 9)) (-1307 (($ $ $) 21 (|has| |#2| (-772)))) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ |#1|) 33)) (-3637 ((|#2| |#1| $) 24)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2382 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ |#2| |#1|) 29))) -(((-318 |#1| |#2|) (-138) (-1073) (-130)) (T -318)) -((-2382 (*1 *1 *2 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-130)))) (-2894 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-130)) (-5 *2 (-751)))) (-2182 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-130)) (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 *4)))))) (-1326 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-318 *4 *2)) (-4 *4 (-1073)) (-4 *2 (-130)))) (-3461 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-318 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1073)))) (-3637 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-130)))) (-1315 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-130)))) (-1817 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-130)))) (-1307 (*1 *1 *1 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-130)) (-4 *3 (-772))))) -(-13 (-130) (-1014 |t#1|) (-10 -8 (-15 -2382 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2894 ((-751) $)) (-15 -2182 ((-625 (-2 (|:| |gen| |t#1|) (|:| -2863 |t#2|))) $)) (-15 -1326 (|t#2| $ (-552))) (-15 -3461 (|t#1| $ (-552))) (-15 -3637 (|t#2| |t#1| $)) (-15 -1315 ($ (-1 |t#2| |t#2|) $)) (-15 -1817 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-772)) (-15 -1307 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-1014 |#1|) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2182 (((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-751)))) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2894 (((-751) $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-3461 ((|#1| $ (-552)) NIL)) (-1326 (((-751) $ (-552)) NIL)) (-1817 (($ (-1 |#1| |#1|) $) NIL)) (-1315 (($ (-1 (-751) (-751)) $) NIL)) (-2883 (((-1131) $) NIL)) (-1307 (($ $ $) NIL (|has| (-751) (-772)))) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL) (($ |#1|) NIL)) (-3637 (((-751) |#1| $) NIL)) (-2089 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-751) |#1|) NIL))) -(((-319 |#1|) (-318 |#1| (-751)) (-1073)) (T -319)) -NIL -(-318 |#1| (-751)) -((-1294 (($ $) 53)) (-1347 (($ $ |#2| |#3| $) 14)) (-1357 (($ (-1 |#3| |#3|) $) 33)) (-4105 (((-112) $) 24)) (-4117 ((|#2| $) 26)) (-2802 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-4108 ((|#2| $) 49)) (-2512 (((-625 |#2|) $) 36)) (-1336 (($ $ $ (-751)) 20)) (-2404 (($ $ |#2|) 40))) -(((-320 |#1| |#2| |#3|) (-10 -8 (-15 -1294 (|#1| |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1336 (|#1| |#1| |#1| (-751))) (-15 -1347 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1357 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2512 ((-625 |#2|) |#1|)) (-15 -4117 (|#2| |#1|)) (-15 -4105 ((-112) |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2404 (|#1| |#1| |#2|))) (-321 |#2| |#3|) (-1025) (-772)) (T -320)) -NIL -(-10 -8 (-15 -1294 (|#1| |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1336 (|#1| |#1| |#1| (-751))) (-15 -1347 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1357 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2512 ((-625 |#2|) |#1|)) (-15 -4117 (|#2| |#1|)) (-15 -4105 ((-112) |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2404 (|#1| |#1| |#2|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3528 (($ $) 50 (|has| |#1| (-544)))) (-3509 (((-112) $) 52 (|has| |#1| (-544)))) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-1893 (((-3 (-552) "failed") $) 88 (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) 86 (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 85)) (-1895 (((-552) $) 89 (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) 87 (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) 84)) (-4169 (($ $) 58)) (-4174 (((-3 $ "failed") $) 32)) (-1294 (($ $) 73 (|has| |#1| (-446)))) (-1347 (($ $ |#1| |#2| $) 77)) (-3650 (((-112) $) 30)) (-3723 (((-751) $) 80)) (-4201 (((-112) $) 60)) (-3957 (($ |#1| |#2|) 59)) (-4134 ((|#2| $) 79)) (-1357 (($ (-1 |#2| |#2|) $) 78)) (-1996 (($ (-1 |#1| |#1|) $) 61)) (-4131 (($ $) 63)) (-4144 ((|#1| $) 64)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4105 (((-112) $) 83)) (-4117 ((|#1| $) 82)) (-2802 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-544)))) (-4276 ((|#2| $) 62)) (-4108 ((|#1| $) 74 (|has| |#1| (-446)))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45) (($ (-402 (-552))) 55 (-1523 (|has| |#1| (-1014 (-402 (-552)))) (|has| |#1| (-38 (-402 (-552))))))) (-2512 (((-625 |#1|) $) 81)) (-3637 ((|#1| $ |#2|) 57)) (-4243 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-1336 (($ $ $ (-751)) 76 (|has| |#1| (-170)))) (-3518 (((-112) $ $) 51 (|has| |#1| (-544)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 56 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-552)) $) 54 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 53 (|has| |#1| (-38 (-402 (-552))))))) -(((-321 |#1| |#2|) (-138) (-1025) (-772)) (T -321)) -((-4105 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-112)))) (-4117 (*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-625 *3)))) (-3723 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-751)))) (-4134 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-1357 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)))) (-1347 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) (-1336 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-4 *3 (-170)))) (-2802 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *2 (-544)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)) (-4 *2 (-446)))) (-1294 (*1 *1 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *2 (-446))))) -(-13 (-47 |t#1| |t#2|) (-406 |t#1|) (-10 -8 (-15 -4105 ((-112) $)) (-15 -4117 (|t#1| $)) (-15 -2512 ((-625 |t#1|) $)) (-15 -3723 ((-751) $)) (-15 -4134 (|t#2| $)) (-15 -1357 ($ (-1 |t#2| |t#2|) $)) (-15 -1347 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-170)) (-15 -1336 ($ $ $ (-751))) |%noBranch|) (IF (|has| |t#1| (-544)) (-15 -2802 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-15 -4108 (|t#1| $)) (-15 -1294 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-552)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-285) |has| |#1| (-544)) ((-406 |#1|) . T) ((-544) |has| |#1| (-544)) ((-628 #0#) |has| |#1| (-38 (-402 (-552)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #0#) |has| |#1| (-38 (-402 (-552)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-544)) ((-707) . T) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T) ((-1031 #0#) |has| |#1| (-38 (-402 (-552)))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-4107 (((-112) (-112)) NIL)) (-1851 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354)))) (-2873 (($ (-1 (-112) |#1|) $) NIL)) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-3238 (($ $) NIL (|has| |#1| (-1073)))) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1938 (($ |#1| $) NIL (|has| |#1| (-1073))) (($ (-1 (-112) |#1|) $) NIL)) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) NIL)) (-2483 (((-552) (-1 (-112) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073)))) (-4119 (($ $ (-552)) NIL)) (-4133 (((-751) $) NIL)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2183 (($ (-751) |#1|) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3260 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3966 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3994 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-4146 (($ (-625 |#1|)) NIL)) (-2924 ((|#1| $) NIL (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-2884 (($ $ (-1199 (-552))) NIL) (($ $ (-552)) NIL)) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) NIL)) (-2342 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3402 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-625 $)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-322 |#1|) (-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -4146 ($ (-625 |#1|))) (-15 -4133 ((-751) $)) (-15 -4119 ($ $ (-552))) (-15 -4107 ((-112) (-112))))) (-1186)) (T -322)) -((-4146 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-322 *3)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-322 *3)) (-4 *3 (-1186)))) (-4119 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-322 *3)) (-4 *3 (-1186)))) (-4107 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-322 *3)) (-4 *3 (-1186))))) -(-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -4146 ($ (-625 |#1|))) (-15 -4133 ((-751) $)) (-15 -4119 ($ $ (-552))) (-15 -4107 ((-112) (-112))))) -((-4156 (((-112) $) 42)) (-4116 (((-751)) 22)) (-1650 ((|#2| $) 46) (($ $ (-897)) 101)) (-2894 (((-751)) 102)) (-2670 (($ (-1232 |#2|)) 20)) (-4328 (((-112) $) 115)) (-4209 ((|#2| $) 48) (($ $ (-897)) 99)) (-1291 (((-1145 |#2|) $) NIL) (((-1145 $) $ (-897)) 95)) (-1378 (((-1145 |#2|) $) 82)) (-1369 (((-1145 |#2|) $) 79) (((-3 (-1145 |#2|) "failed") $ $) 76)) (-1386 (($ $ (-1145 |#2|)) 53)) (-4130 (((-813 (-897))) 28) (((-897)) 43)) (-3904 (((-133)) 25)) (-4276 (((-813 (-897)) $) 30) (((-897) $) 117)) (-1397 (($) 108)) (-2780 (((-1232 |#2|) $) NIL) (((-669 |#2|) (-1232 $)) 39)) (-4243 (($ $) NIL) (((-3 $ "failed") $) 85)) (-4168 (((-112) $) 41))) -(((-323 |#1| |#2|) (-10 -8 (-15 -4243 ((-3 |#1| "failed") |#1|)) (-15 -2894 ((-751))) (-15 -4243 (|#1| |#1|)) (-15 -1369 ((-3 (-1145 |#2|) "failed") |#1| |#1|)) (-15 -1369 ((-1145 |#2|) |#1|)) (-15 -1378 ((-1145 |#2|) |#1|)) (-15 -1386 (|#1| |#1| (-1145 |#2|))) (-15 -4328 ((-112) |#1|)) (-15 -1397 (|#1|)) (-15 -1650 (|#1| |#1| (-897))) (-15 -4209 (|#1| |#1| (-897))) (-15 -1291 ((-1145 |#1|) |#1| (-897))) (-15 -1650 (|#2| |#1|)) (-15 -4209 (|#2| |#1|)) (-15 -4276 ((-897) |#1|)) (-15 -4130 ((-897))) (-15 -1291 ((-1145 |#2|) |#1|)) (-15 -2670 (|#1| (-1232 |#2|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1|)) (-15 -4116 ((-751))) (-15 -4130 ((-813 (-897)))) (-15 -4276 ((-813 (-897)) |#1|)) (-15 -4156 ((-112) |#1|)) (-15 -4168 ((-112) |#1|)) (-15 -3904 ((-133)))) (-324 |#2|) (-358)) (T -323)) -((-3904 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-133)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-4130 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-813 (-897))) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-4116 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-751)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-4130 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-897)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-2894 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-751)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4))))) -(-10 -8 (-15 -4243 ((-3 |#1| "failed") |#1|)) (-15 -2894 ((-751))) (-15 -4243 (|#1| |#1|)) (-15 -1369 ((-3 (-1145 |#2|) "failed") |#1| |#1|)) (-15 -1369 ((-1145 |#2|) |#1|)) (-15 -1378 ((-1145 |#2|) |#1|)) (-15 -1386 (|#1| |#1| (-1145 |#2|))) (-15 -4328 ((-112) |#1|)) (-15 -1397 (|#1|)) (-15 -1650 (|#1| |#1| (-897))) (-15 -4209 (|#1| |#1| (-897))) (-15 -1291 ((-1145 |#1|) |#1| (-897))) (-15 -1650 (|#2| |#1|)) (-15 -4209 (|#2| |#1|)) (-15 -4276 ((-897) |#1|)) (-15 -4130 ((-897))) (-15 -1291 ((-1145 |#2|) |#1|)) (-15 -2670 (|#1| (-1232 |#2|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1|)) (-15 -4116 ((-751))) (-15 -4130 ((-813 (-897)))) (-15 -4276 ((-813 (-897)) |#1|)) (-15 -4156 ((-112) |#1|)) (-15 -4168 ((-112) |#1|)) (-15 -3904 ((-133)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-4156 (((-112) $) 91)) (-4116 (((-751)) 87)) (-1650 ((|#1| $) 137) (($ $ (-897)) 134 (|has| |#1| (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) 119 (|has| |#1| (-363)))) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 70)) (-1330 (((-413 $) $) 69)) (-2408 (((-112) $ $) 57)) (-2894 (((-751)) 109 (|has| |#1| (-363)))) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#1| "failed") $) 98)) (-1895 ((|#1| $) 97)) (-2670 (($ (-1232 |#1|)) 143)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-363)))) (-2851 (($ $ $) 53)) (-4174 (((-3 $ "failed") $) 32)) (-3702 (($) 106 (|has| |#1| (-363)))) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-4279 (($) 121 (|has| |#1| (-363)))) (-3872 (((-112) $) 122 (|has| |#1| (-363)))) (-3554 (($ $ (-751)) 84 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) 83 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2951 (((-112) $) 68)) (-2172 (((-897) $) 124 (|has| |#1| (-363))) (((-813 (-897)) $) 81 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3650 (((-112) $) 30)) (-1280 (($) 132 (|has| |#1| (-363)))) (-4328 (((-112) $) 131 (|has| |#1| (-363)))) (-4209 ((|#1| $) 138) (($ $ (-897)) 135 (|has| |#1| (-363)))) (-4034 (((-3 $ "failed") $) 110 (|has| |#1| (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-1291 (((-1145 |#1|) $) 142) (((-1145 $) $ (-897)) 136 (|has| |#1| (-363)))) (-4318 (((-897) $) 107 (|has| |#1| (-363)))) (-1378 (((-1145 |#1|) $) 128 (|has| |#1| (-363)))) (-1369 (((-1145 |#1|) $) 127 (|has| |#1| (-363))) (((-3 (-1145 |#1|) "failed") $ $) 126 (|has| |#1| (-363)))) (-1386 (($ $ (-1145 |#1|)) 129 (|has| |#1| (-363)))) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 67)) (-2071 (($) 111 (|has| |#1| (-363)) CONST)) (-3123 (($ (-897)) 108 (|has| |#1| (-363)))) (-4143 (((-112) $) 90)) (-2831 (((-1093) $) 10)) (-3212 (($) 130 (|has| |#1| (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) 118 (|has| |#1| (-363)))) (-3824 (((-413 $) $) 71)) (-4130 (((-813 (-897))) 88) (((-897)) 140)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-2397 (((-751) $) 56)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-3563 (((-751) $) 123 (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) 82 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3904 (((-133)) 96)) (-3072 (($ $) 115 (|has| |#1| (-363))) (($ $ (-751)) 113 (|has| |#1| (-363)))) (-4276 (((-813 (-897)) $) 89) (((-897) $) 139)) (-3610 (((-1145 |#1|)) 141)) (-3798 (($) 120 (|has| |#1| (-363)))) (-1397 (($) 133 (|has| |#1| (-363)))) (-2780 (((-1232 |#1|) $) 145) (((-669 |#1|) (-1232 $)) 144)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 117 (|has| |#1| (-363)))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-402 (-552))) 63) (($ |#1|) 99)) (-4243 (($ $) 116 (|has| |#1| (-363))) (((-3 $ "failed") $) 80 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4141 (((-751)) 28)) (-1270 (((-1232 $)) 147) (((-1232 $) (-897)) 146)) (-3518 (((-112) $ $) 37)) (-4168 (((-112) $) 92)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-4104 (($ $) 86 (|has| |#1| (-363))) (($ $ (-751)) 85 (|has| |#1| (-363)))) (-3768 (($ $) 114 (|has| |#1| (-363))) (($ $ (-751)) 112 (|has| |#1| (-363)))) (-2281 (((-112) $ $) 6)) (-2404 (($ $ $) 62) (($ $ |#1|) 95)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 66)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 65) (($ (-402 (-552)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) -(((-324 |#1|) (-138) (-358)) (T -324)) -((-1270 (*1 *2) (-12 (-4 *3 (-358)) (-5 *2 (-1232 *1)) (-4 *1 (-324 *3)))) (-1270 (*1 *2 *3) (-12 (-5 *3 (-897)) (-4 *4 (-358)) (-5 *2 (-1232 *1)) (-4 *1 (-324 *4)))) (-2780 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1232 *3)))) (-2780 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-324 *4)) (-4 *4 (-358)) (-5 *2 (-669 *4)))) (-2670 (*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-358)) (-4 *1 (-324 *3)))) (-1291 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1145 *3)))) (-3610 (*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1145 *3)))) (-4130 (*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-897)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-897)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358)))) (-1650 (*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358)))) (-1291 (*1 *2 *1 *3) (-12 (-5 *3 (-897)) (-4 *4 (-363)) (-4 *4 (-358)) (-5 *2 (-1145 *1)) (-4 *1 (-324 *4)))) (-4209 (*1 *1 *1 *2) (-12 (-5 *2 (-897)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)))) (-1650 (*1 *1 *1 *2) (-12 (-5 *2 (-897)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)))) (-1397 (*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) (-1280 (*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) (-4328 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-112)))) (-3212 (*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) (-1386 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *3)) (-4 *3 (-363)) (-4 *1 (-324 *3)) (-4 *3 (-358)))) (-1378 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1145 *3)))) (-1369 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1145 *3)))) (-1369 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1145 *3))))) -(-13 (-1251 |t#1|) (-1014 |t#1|) (-10 -8 (-15 -1270 ((-1232 $))) (-15 -1270 ((-1232 $) (-897))) (-15 -2780 ((-1232 |t#1|) $)) (-15 -2780 ((-669 |t#1|) (-1232 $))) (-15 -2670 ($ (-1232 |t#1|))) (-15 -1291 ((-1145 |t#1|) $)) (-15 -3610 ((-1145 |t#1|))) (-15 -4130 ((-897))) (-15 -4276 ((-897) $)) (-15 -4209 (|t#1| $)) (-15 -1650 (|t#1| $)) (IF (|has| |t#1| (-363)) (PROGN (-6 (-344)) (-15 -1291 ((-1145 $) $ (-897))) (-15 -4209 ($ $ (-897))) (-15 -1650 ($ $ (-897))) (-15 -1397 ($)) (-15 -1280 ($)) (-15 -4328 ((-112) $)) (-15 -3212 ($)) (-15 -1386 ($ $ (-1145 |t#1|))) (-15 -1378 ((-1145 |t#1|) $)) (-15 -1369 ((-1145 |t#1|) $)) (-15 -1369 ((-3 (-1145 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1523 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) . T) ((-229) |has| |#1| (-363)) ((-239) . T) ((-285) . T) ((-302) . T) ((-1251 |#1|) . T) ((-358) . T) ((-397) -1523 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-363) |has| |#1| (-363)) ((-344) |has| |#1| (-363)) ((-446) . T) ((-544) . T) ((-628 #0#) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #0#) . T) ((-698 |#1|) . T) ((-698 $) . T) ((-707) . T) ((-896) . T) ((-1014 |#1|) . T) ((-1031 #0#) . T) ((-1031 |#1|) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1124) |has| |#1| (-363)) ((-1190) . T) ((-1239 |#1|) . T)) -((-1671 (((-112) $ $) NIL)) (-1493 (($ (-1148) $) 88)) (-3316 (($) 77)) (-1406 (((-1093) (-1093)) 11)) (-3198 (($) 78)) (-1460 (($) 90) (($ (-311 (-679))) 98) (($ (-311 (-681))) 94) (($ (-311 (-674))) 102) (($ (-311 (-374))) 109) (($ (-311 (-552))) 105) (($ (-311 (-167 (-374)))) 113)) (-1483 (($ (-1148) $) 89)) (-1439 (($ (-625 (-839))) 79)) (-1427 (((-1237) $) 75)) (-3423 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1472 (($ (-1093)) 51)) (-1417 (((-1077) $) 25)) (-1503 (($ (-1065 (-928 (-552))) $) 85) (($ (-1065 (-928 (-552))) (-928 (-552)) $) 86)) (-1560 (($ (-1093)) 87)) (-2185 (($ (-1148) $) 115) (($ (-1148) $ $) 116)) (-2272 (($ (-1149) (-625 (-1149))) 76)) (-3376 (($ (-1131)) 82) (($ (-625 (-1131))) 80)) (-1683 (((-839) $) 118)) (-4185 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1149)) (|:| |arrayIndex| (-625 (-928 (-552)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2149 (-839)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1149)) (|:| |rand| (-839)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1148)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1916 (-112)) (|:| -3800 (-2 (|:| |ints2Floats?| (-112)) (|:| -2149 (-839)))))) (|:| |blockBranch| (-625 $)) (|:| |commentBranch| (-625 (-1131))) (|:| |callBranch| (-1131)) (|:| |forBranch| (-2 (|:| -3315 (-1065 (-928 (-552)))) (|:| |span| (-928 (-552))) (|:| -1300 $))) (|:| |labelBranch| (-1093)) (|:| |loopBranch| (-2 (|:| |switch| (-1148)) (|:| -1300 $))) (|:| |commonBranch| (-2 (|:| -1288 (-1149)) (|:| |contents| (-625 (-1149))))) (|:| |printBranch| (-625 (-839)))) $) 44)) (-2761 (($ (-1131)) 187)) (-1450 (($ (-625 $)) 114)) (-2539 (($ (-1149) (-1131)) 120) (($ (-1149) (-311 (-681))) 160) (($ (-1149) (-311 (-679))) 161) (($ (-1149) (-311 (-674))) 162) (($ (-1149) (-669 (-681))) 123) (($ (-1149) (-669 (-679))) 126) (($ (-1149) (-669 (-674))) 129) (($ (-1149) (-1232 (-681))) 132) (($ (-1149) (-1232 (-679))) 135) (($ (-1149) (-1232 (-674))) 138) (($ (-1149) (-669 (-311 (-681)))) 141) (($ (-1149) (-669 (-311 (-679)))) 144) (($ (-1149) (-669 (-311 (-674)))) 147) (($ (-1149) (-1232 (-311 (-681)))) 150) (($ (-1149) (-1232 (-311 (-679)))) 153) (($ (-1149) (-1232 (-311 (-674)))) 156) (($ (-1149) (-625 (-928 (-552))) (-311 (-681))) 157) (($ (-1149) (-625 (-928 (-552))) (-311 (-679))) 158) (($ (-1149) (-625 (-928 (-552))) (-311 (-674))) 159) (($ (-1149) (-311 (-552))) 184) (($ (-1149) (-311 (-374))) 185) (($ (-1149) (-311 (-167 (-374)))) 186) (($ (-1149) (-669 (-311 (-552)))) 165) (($ (-1149) (-669 (-311 (-374)))) 168) (($ (-1149) (-669 (-311 (-167 (-374))))) 171) (($ (-1149) (-1232 (-311 (-552)))) 174) (($ (-1149) (-1232 (-311 (-374)))) 177) (($ (-1149) (-1232 (-311 (-167 (-374))))) 180) (($ (-1149) (-625 (-928 (-552))) (-311 (-552))) 181) (($ (-1149) (-625 (-928 (-552))) (-311 (-374))) 182) (($ (-1149) (-625 (-928 (-552))) (-311 (-167 (-374)))) 183)) (-2281 (((-112) $ $) NIL))) -(((-325) (-13 (-1073) (-10 -8 (-15 -1683 ((-839) $)) (-15 -1503 ($ (-1065 (-928 (-552))) $)) (-15 -1503 ($ (-1065 (-928 (-552))) (-928 (-552)) $)) (-15 -1493 ($ (-1148) $)) (-15 -1483 ($ (-1148) $)) (-15 -1472 ($ (-1093))) (-15 -1560 ($ (-1093))) (-15 -3376 ($ (-1131))) (-15 -3376 ($ (-625 (-1131)))) (-15 -2761 ($ (-1131))) (-15 -1460 ($)) (-15 -1460 ($ (-311 (-679)))) (-15 -1460 ($ (-311 (-681)))) (-15 -1460 ($ (-311 (-674)))) (-15 -1460 ($ (-311 (-374)))) (-15 -1460 ($ (-311 (-552)))) (-15 -1460 ($ (-311 (-167 (-374))))) (-15 -2185 ($ (-1148) $)) (-15 -2185 ($ (-1148) $ $)) (-15 -2539 ($ (-1149) (-1131))) (-15 -2539 ($ (-1149) (-311 (-681)))) (-15 -2539 ($ (-1149) (-311 (-679)))) (-15 -2539 ($ (-1149) (-311 (-674)))) (-15 -2539 ($ (-1149) (-669 (-681)))) (-15 -2539 ($ (-1149) (-669 (-679)))) (-15 -2539 ($ (-1149) (-669 (-674)))) (-15 -2539 ($ (-1149) (-1232 (-681)))) (-15 -2539 ($ (-1149) (-1232 (-679)))) (-15 -2539 ($ (-1149) (-1232 (-674)))) (-15 -2539 ($ (-1149) (-669 (-311 (-681))))) (-15 -2539 ($ (-1149) (-669 (-311 (-679))))) (-15 -2539 ($ (-1149) (-669 (-311 (-674))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-681))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-679))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-674))))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-681)))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-679)))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-674)))) (-15 -2539 ($ (-1149) (-311 (-552)))) (-15 -2539 ($ (-1149) (-311 (-374)))) (-15 -2539 ($ (-1149) (-311 (-167 (-374))))) (-15 -2539 ($ (-1149) (-669 (-311 (-552))))) (-15 -2539 ($ (-1149) (-669 (-311 (-374))))) (-15 -2539 ($ (-1149) (-669 (-311 (-167 (-374)))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-552))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-374))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-167 (-374)))))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-552)))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-374)))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-167 (-374))))) (-15 -1450 ($ (-625 $))) (-15 -3316 ($)) (-15 -3198 ($)) (-15 -1439 ($ (-625 (-839)))) (-15 -2272 ($ (-1149) (-625 (-1149)))) (-15 -3423 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -4185 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1149)) (|:| |arrayIndex| (-625 (-928 (-552)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2149 (-839)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1149)) (|:| |rand| (-839)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1148)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1916 (-112)) (|:| -3800 (-2 (|:| |ints2Floats?| (-112)) (|:| -2149 (-839)))))) (|:| |blockBranch| (-625 $)) (|:| |commentBranch| (-625 (-1131))) (|:| |callBranch| (-1131)) (|:| |forBranch| (-2 (|:| -3315 (-1065 (-928 (-552)))) (|:| |span| (-928 (-552))) (|:| -1300 $))) (|:| |labelBranch| (-1093)) (|:| |loopBranch| (-2 (|:| |switch| (-1148)) (|:| -1300 $))) (|:| |commonBranch| (-2 (|:| -1288 (-1149)) (|:| |contents| (-625 (-1149))))) (|:| |printBranch| (-625 (-839)))) $)) (-15 -1427 ((-1237) $)) (-15 -1417 ((-1077) $)) (-15 -1406 ((-1093) (-1093)))))) (T -325)) -((-1683 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-325)))) (-1503 (*1 *1 *2 *1) (-12 (-5 *2 (-1065 (-928 (-552)))) (-5 *1 (-325)))) (-1503 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1065 (-928 (-552)))) (-5 *3 (-928 (-552))) (-5 *1 (-325)))) (-1493 (*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))) (-1483 (*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))) (-1472 (*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325)))) (-1560 (*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325)))) (-3376 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-325)))) (-3376 (*1 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-325)))) (-2761 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-325)))) (-1460 (*1 *1) (-5 *1 (-325))) (-1460 (*1 *1 *2) (-12 (-5 *2 (-311 (-679))) (-5 *1 (-325)))) (-1460 (*1 *1 *2) (-12 (-5 *2 (-311 (-681))) (-5 *1 (-325)))) (-1460 (*1 *1 *2) (-12 (-5 *2 (-311 (-674))) (-5 *1 (-325)))) (-1460 (*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-5 *1 (-325)))) (-1460 (*1 *1 *2) (-12 (-5 *2 (-311 (-552))) (-5 *1 (-325)))) (-1460 (*1 *1 *2) (-12 (-5 *2 (-311 (-167 (-374)))) (-5 *1 (-325)))) (-2185 (*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))) (-2185 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1131)) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-681))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-679))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-674))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-681))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-679))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-674))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-681))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-679))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-674))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-681)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-679)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-674)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-681)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-679)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-674)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552)))) (-5 *4 (-311 (-681))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552)))) (-5 *4 (-311 (-679))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552)))) (-5 *4 (-311 (-674))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-552))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-374))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-167 (-374)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-552)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-374)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-167 (-374))))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-552)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-374)))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-167 (-374))))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552)))) (-5 *4 (-311 (-552))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552)))) (-5 *4 (-311 (-374))) (-5 *1 (-325)))) (-2539 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552)))) (-5 *4 (-311 (-167 (-374)))) (-5 *1 (-325)))) (-1450 (*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-5 *1 (-325)))) (-3316 (*1 *1) (-5 *1 (-325))) (-3198 (*1 *1) (-5 *1 (-325))) (-1439 (*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-325)))) (-2272 (*1 *1 *2 *3) (-12 (-5 *3 (-625 (-1149))) (-5 *2 (-1149)) (-5 *1 (-325)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-325)))) (-4185 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1149)) (|:| |arrayIndex| (-625 (-928 (-552)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2149 (-839)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1149)) (|:| |rand| (-839)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1148)) (|:| |thenClause| (-325)) (|:| |elseClause| (-325)))) (|:| |returnBranch| (-2 (|:| -1916 (-112)) (|:| -3800 (-2 (|:| |ints2Floats?| (-112)) (|:| -2149 (-839)))))) (|:| |blockBranch| (-625 (-325))) (|:| |commentBranch| (-625 (-1131))) (|:| |callBranch| (-1131)) (|:| |forBranch| (-2 (|:| -3315 (-1065 (-928 (-552)))) (|:| |span| (-928 (-552))) (|:| -1300 (-325)))) (|:| |labelBranch| (-1093)) (|:| |loopBranch| (-2 (|:| |switch| (-1148)) (|:| -1300 (-325)))) (|:| |commonBranch| (-2 (|:| -1288 (-1149)) (|:| |contents| (-625 (-1149))))) (|:| |printBranch| (-625 (-839))))) (-5 *1 (-325)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-325)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-325)))) (-1406 (*1 *2 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325))))) -(-13 (-1073) (-10 -8 (-15 -1683 ((-839) $)) (-15 -1503 ($ (-1065 (-928 (-552))) $)) (-15 -1503 ($ (-1065 (-928 (-552))) (-928 (-552)) $)) (-15 -1493 ($ (-1148) $)) (-15 -1483 ($ (-1148) $)) (-15 -1472 ($ (-1093))) (-15 -1560 ($ (-1093))) (-15 -3376 ($ (-1131))) (-15 -3376 ($ (-625 (-1131)))) (-15 -2761 ($ (-1131))) (-15 -1460 ($)) (-15 -1460 ($ (-311 (-679)))) (-15 -1460 ($ (-311 (-681)))) (-15 -1460 ($ (-311 (-674)))) (-15 -1460 ($ (-311 (-374)))) (-15 -1460 ($ (-311 (-552)))) (-15 -1460 ($ (-311 (-167 (-374))))) (-15 -2185 ($ (-1148) $)) (-15 -2185 ($ (-1148) $ $)) (-15 -2539 ($ (-1149) (-1131))) (-15 -2539 ($ (-1149) (-311 (-681)))) (-15 -2539 ($ (-1149) (-311 (-679)))) (-15 -2539 ($ (-1149) (-311 (-674)))) (-15 -2539 ($ (-1149) (-669 (-681)))) (-15 -2539 ($ (-1149) (-669 (-679)))) (-15 -2539 ($ (-1149) (-669 (-674)))) (-15 -2539 ($ (-1149) (-1232 (-681)))) (-15 -2539 ($ (-1149) (-1232 (-679)))) (-15 -2539 ($ (-1149) (-1232 (-674)))) (-15 -2539 ($ (-1149) (-669 (-311 (-681))))) (-15 -2539 ($ (-1149) (-669 (-311 (-679))))) (-15 -2539 ($ (-1149) (-669 (-311 (-674))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-681))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-679))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-674))))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-681)))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-679)))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-674)))) (-15 -2539 ($ (-1149) (-311 (-552)))) (-15 -2539 ($ (-1149) (-311 (-374)))) (-15 -2539 ($ (-1149) (-311 (-167 (-374))))) (-15 -2539 ($ (-1149) (-669 (-311 (-552))))) (-15 -2539 ($ (-1149) (-669 (-311 (-374))))) (-15 -2539 ($ (-1149) (-669 (-311 (-167 (-374)))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-552))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-374))))) (-15 -2539 ($ (-1149) (-1232 (-311 (-167 (-374)))))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-552)))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-374)))) (-15 -2539 ($ (-1149) (-625 (-928 (-552))) (-311 (-167 (-374))))) (-15 -1450 ($ (-625 $))) (-15 -3316 ($)) (-15 -3198 ($)) (-15 -1439 ($ (-625 (-839)))) (-15 -2272 ($ (-1149) (-625 (-1149)))) (-15 -3423 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -4185 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1149)) (|:| |arrayIndex| (-625 (-928 (-552)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2149 (-839)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1149)) (|:| |rand| (-839)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1148)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1916 (-112)) (|:| -3800 (-2 (|:| |ints2Floats?| (-112)) (|:| -2149 (-839)))))) (|:| |blockBranch| (-625 $)) (|:| |commentBranch| (-625 (-1131))) (|:| |callBranch| (-1131)) (|:| |forBranch| (-2 (|:| -3315 (-1065 (-928 (-552)))) (|:| |span| (-928 (-552))) (|:| -1300 $))) (|:| |labelBranch| (-1093)) (|:| |loopBranch| (-2 (|:| |switch| (-1148)) (|:| -1300 $))) (|:| |commonBranch| (-2 (|:| -1288 (-1149)) (|:| |contents| (-625 (-1149))))) (|:| |printBranch| (-625 (-839)))) $)) (-15 -1427 ((-1237) $)) (-15 -1417 ((-1077) $)) (-15 -1406 ((-1093) (-1093))))) -((-1671 (((-112) $ $) NIL)) (-1516 (((-112) $) 11)) (-3581 (($ |#1|) 8)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3593 (($ |#1|) 9)) (-1683 (((-839) $) 17)) (-1388 ((|#1| $) 12)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 19))) -(((-326 |#1|) (-13 (-827) (-10 -8 (-15 -3581 ($ |#1|)) (-15 -3593 ($ |#1|)) (-15 -1516 ((-112) $)) (-15 -1388 (|#1| $)))) (-827)) (T -326)) -((-3581 (*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827)))) (-3593 (*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827)))) (-1516 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-827)))) (-1388 (*1 *2 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827))))) -(-13 (-827) (-10 -8 (-15 -3581 ($ |#1|)) (-15 -3593 ($ |#1|)) (-15 -1516 ((-112) $)) (-15 -1388 (|#1| $)))) -((-1528 (((-325) (-1149) (-928 (-552))) 23)) (-1539 (((-325) (-1149) (-928 (-552))) 27)) (-4013 (((-325) (-1149) (-1065 (-928 (-552))) (-1065 (-928 (-552)))) 26) (((-325) (-1149) (-928 (-552)) (-928 (-552))) 24)) (-1550 (((-325) (-1149) (-928 (-552))) 31))) -(((-327) (-10 -7 (-15 -1528 ((-325) (-1149) (-928 (-552)))) (-15 -4013 ((-325) (-1149) (-928 (-552)) (-928 (-552)))) (-15 -4013 ((-325) (-1149) (-1065 (-928 (-552))) (-1065 (-928 (-552))))) (-15 -1539 ((-325) (-1149) (-928 (-552)))) (-15 -1550 ((-325) (-1149) (-928 (-552)))))) (T -327)) -((-1550 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-928 (-552))) (-5 *2 (-325)) (-5 *1 (-327)))) (-1539 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-928 (-552))) (-5 *2 (-325)) (-5 *1 (-327)))) (-4013 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-1065 (-928 (-552)))) (-5 *2 (-325)) (-5 *1 (-327)))) (-4013 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-928 (-552))) (-5 *2 (-325)) (-5 *1 (-327)))) (-1528 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-928 (-552))) (-5 *2 (-325)) (-5 *1 (-327))))) -(-10 -7 (-15 -1528 ((-325) (-1149) (-928 (-552)))) (-15 -4013 ((-325) (-1149) (-928 (-552)) (-928 (-552)))) (-15 -4013 ((-325) (-1149) (-1065 (-928 (-552))) (-1065 (-928 (-552))))) (-15 -1539 ((-325) (-1149) (-928 (-552)))) (-15 -1550 ((-325) (-1149) (-928 (-552))))) -((-1996 (((-331 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-331 |#1| |#2| |#3| |#4|)) 33))) -(((-328 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1996 ((-331 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-331 |#1| |#2| |#3| |#4|)))) (-358) (-1208 |#1|) (-1208 (-402 |#2|)) (-337 |#1| |#2| |#3|) (-358) (-1208 |#5|) (-1208 (-402 |#6|)) (-337 |#5| |#6| |#7|)) (T -328)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-331 *5 *6 *7 *8)) (-4 *5 (-358)) (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *9 (-358)) (-4 *10 (-1208 *9)) (-4 *11 (-1208 (-402 *10))) (-5 *2 (-331 *9 *10 *11 *12)) (-5 *1 (-328 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-337 *9 *10 *11))))) -(-10 -7 (-15 -1996 ((-331 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-331 |#1| |#2| |#3| |#4|)))) -((-1581 (((-112) $) 14))) -(((-329 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1581 ((-112) |#1|))) (-330 |#2| |#3| |#4| |#5|) (-358) (-1208 |#2|) (-1208 (-402 |#3|)) (-337 |#2| |#3| |#4|)) (T -329)) -NIL -(-10 -8 (-15 -1581 ((-112) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2163 (($ $) 26)) (-1581 (((-112) $) 25)) (-2883 (((-1131) $) 9)) (-3935 (((-408 |#2| (-402 |#2|) |#3| |#4|) $) 32)) (-2831 (((-1093) $) 10)) (-3212 (((-3 |#4| "failed") $) 24)) (-1593 (($ (-408 |#2| (-402 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-552)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3950 (((-2 (|:| -2150 (-408 |#2| (-402 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20))) -(((-330 |#1| |#2| |#3| |#4|) (-138) (-358) (-1208 |t#1|) (-1208 (-402 |t#2|)) (-337 |t#1| |t#2| |t#3|)) (T -330)) -((-3935 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-408 *4 (-402 *4) *5 *6)))) (-1593 (*1 *1 *2) (-12 (-5 *2 (-408 *4 (-402 *4) *5 *6)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-4 *3 (-358)) (-4 *1 (-330 *3 *4 *5 *6)))) (-1593 (*1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-4 *1 (-330 *3 *4 *5 *2)) (-4 *2 (-337 *3 *4 *5)))) (-1593 (*1 *1 *2 *2) (-12 (-4 *2 (-358)) (-4 *3 (-1208 *2)) (-4 *4 (-1208 (-402 *3))) (-4 *1 (-330 *2 *3 *4 *5)) (-4 *5 (-337 *2 *3 *4)))) (-1593 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-552)) (-4 *2 (-358)) (-4 *4 (-1208 *2)) (-4 *5 (-1208 (-402 *4))) (-4 *1 (-330 *2 *4 *5 *6)) (-4 *6 (-337 *2 *4 *5)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-2 (|:| -2150 (-408 *4 (-402 *4) *5 *6)) (|:| |principalPart| *6))))) (-2163 (*1 *1 *1) (-12 (-4 *1 (-330 *2 *3 *4 *5)) (-4 *2 (-358)) (-4 *3 (-1208 *2)) (-4 *4 (-1208 (-402 *3))) (-4 *5 (-337 *2 *3 *4)))) (-1581 (*1 *2 *1) (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-112)))) (-3212 (*1 *2 *1) (|partial| -12 (-4 *1 (-330 *3 *4 *5 *2)) (-4 *3 (-358)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-4 *2 (-337 *3 *4 *5)))) (-1593 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-358)) (-4 *3 (-1208 *4)) (-4 *5 (-1208 (-402 *3))) (-4 *1 (-330 *4 *3 *5 *2)) (-4 *2 (-337 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -3935 ((-408 |t#2| (-402 |t#2|) |t#3| |t#4|) $)) (-15 -1593 ($ (-408 |t#2| (-402 |t#2|) |t#3| |t#4|))) (-15 -1593 ($ |t#4|)) (-15 -1593 ($ |t#1| |t#1|)) (-15 -1593 ($ |t#1| |t#1| (-552))) (-15 -3950 ((-2 (|:| -2150 (-408 |t#2| (-402 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2163 ($ $)) (-15 -1581 ((-112) $)) (-15 -3212 ((-3 |t#4| "failed") $)) (-15 -1593 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2163 (($ $) 33)) (-1581 (((-112) $) NIL)) (-2883 (((-1131) $) NIL)) (-1561 (((-1232 |#4|) $) 125)) (-3935 (((-408 |#2| (-402 |#2|) |#3| |#4|) $) 31)) (-2831 (((-1093) $) NIL)) (-3212 (((-3 |#4| "failed") $) 36)) (-1571 (((-1232 |#4|) $) 118)) (-1593 (($ (-408 |#2| (-402 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-552)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3950 (((-2 (|:| -2150 (-408 |#2| (-402 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-1683 (((-839) $) 17)) (-2089 (($) 14 T CONST)) (-2281 (((-112) $ $) 20)) (-2393 (($ $) 27) (($ $ $) NIL)) (-2382 (($ $ $) 25)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 23))) -(((-331 |#1| |#2| |#3| |#4|) (-13 (-330 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1571 ((-1232 |#4|) $)) (-15 -1561 ((-1232 |#4|) $)))) (-358) (-1208 |#1|) (-1208 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -331)) -((-1571 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-1232 *6)) (-5 *1 (-331 *3 *4 *5 *6)) (-4 *6 (-337 *3 *4 *5)))) (-1561 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-1232 *6)) (-5 *1 (-331 *3 *4 *5 *6)) (-4 *6 (-337 *3 *4 *5))))) -(-13 (-330 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1571 ((-1232 |#4|) $)) (-15 -1561 ((-1232 |#4|) $)))) -((-4073 (($ $ (-1149) |#2|) NIL) (($ $ (-625 (-1149)) (-625 |#2|)) 20) (($ $ (-625 (-289 |#2|))) 15) (($ $ (-289 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-625 |#2|) (-625 |#2|)) NIL)) (-2154 (($ $ |#2|) 11))) -(((-332 |#1| |#2|) (-10 -8 (-15 -2154 (|#1| |#1| |#2|)) (-15 -4073 (|#1| |#1| (-625 |#2|) (-625 |#2|))) (-15 -4073 (|#1| |#1| |#2| |#2|)) (-15 -4073 (|#1| |#1| (-289 |#2|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#2|)))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 |#2|))) (-15 -4073 (|#1| |#1| (-1149) |#2|))) (-333 |#2|) (-1073)) (T -332)) -NIL -(-10 -8 (-15 -2154 (|#1| |#1| |#2|)) (-15 -4073 (|#1| |#1| (-625 |#2|) (-625 |#2|))) (-15 -4073 (|#1| |#1| |#2| |#2|)) (-15 -4073 (|#1| |#1| (-289 |#2|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#2|)))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 |#2|))) (-15 -4073 (|#1| |#1| (-1149) |#2|))) -((-1996 (($ (-1 |#1| |#1|) $) 6)) (-4073 (($ $ (-1149) |#1|) 17 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) 16 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-625 (-289 |#1|))) 15 (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) 14 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-304 |#1|))) (($ $ (-625 |#1|) (-625 |#1|)) 12 (|has| |#1| (-304 |#1|)))) (-2154 (($ $ |#1|) 11 (|has| |#1| (-281 |#1| |#1|))))) -(((-333 |#1|) (-138) (-1073)) (T -333)) -((-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3)) (-4 *3 (-1073))))) -(-13 (-10 -8 (-15 -1996 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-281 |t#1| |t#1|)) (-6 (-281 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-304 |t#1|)) (-6 (-304 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-507 (-1149) |t#1|)) (-6 (-507 (-1149) |t#1|)) |%noBranch|))) -(((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-507 (-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-304 |#1|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-1149)) $) NIL)) (-1605 (((-112)) 91) (((-112) (-112)) 92)) (-3715 (((-625 (-596 $)) $) NIL)) (-3728 (($ $) NIL)) (-3604 (($ $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3831 (($ $ (-289 $)) NIL) (($ $ (-625 (-289 $))) NIL) (($ $ (-625 (-596 $)) (-625 $)) NIL)) (-3837 (($ $) NIL)) (-3710 (($ $) NIL)) (-3581 (($ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-596 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-311 |#3|)) 71) (((-3 $ "failed") (-1149)) 97) (((-3 $ "failed") (-311 (-552))) 59 (|has| |#3| (-1014 (-552)))) (((-3 $ "failed") (-402 (-928 (-552)))) 65 (|has| |#3| (-1014 (-552)))) (((-3 $ "failed") (-928 (-552))) 60 (|has| |#3| (-1014 (-552)))) (((-3 $ "failed") (-311 (-374))) 89 (|has| |#3| (-1014 (-374)))) (((-3 $ "failed") (-402 (-928 (-374)))) 83 (|has| |#3| (-1014 (-374)))) (((-3 $ "failed") (-928 (-374))) 78 (|has| |#3| (-1014 (-374))))) (-1895 (((-596 $) $) NIL) ((|#3| $) NIL) (($ (-311 |#3|)) 72) (($ (-1149)) 98) (($ (-311 (-552))) 61 (|has| |#3| (-1014 (-552)))) (($ (-402 (-928 (-552)))) 66 (|has| |#3| (-1014 (-552)))) (($ (-928 (-552))) 62 (|has| |#3| (-1014 (-552)))) (($ (-311 (-374))) 90 (|has| |#3| (-1014 (-374)))) (($ (-402 (-928 (-374)))) 84 (|has| |#3| (-1014 (-374)))) (($ (-928 (-374))) 80 (|has| |#3| (-1014 (-374))))) (-4174 (((-3 $ "failed") $) NIL)) (-1385 (($) 10)) (-2411 (($ $) NIL) (($ (-625 $)) NIL)) (-1940 (((-625 (-114)) $) NIL)) (-1563 (((-114) (-114)) NIL)) (-3650 (((-112) $) NIL)) (-3932 (((-112) $) NIL (|has| $ (-1014 (-552))))) (-1917 (((-1145 $) (-596 $)) NIL (|has| $ (-1025)))) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-1996 (($ (-1 $ $) (-596 $)) NIL)) (-1952 (((-3 (-596 $) "failed") $) NIL)) (-4138 (($ $) 94)) (-2458 (($ $) NIL)) (-2883 (((-1131) $) NIL)) (-3783 (((-625 (-596 $)) $) NIL)) (-1425 (($ (-114) $) 93) (($ (-114) (-625 $)) NIL)) (-1721 (((-112) $ (-114)) NIL) (((-112) $ (-1149)) NIL)) (-2207 (((-751) $) NIL)) (-2831 (((-1093) $) NIL)) (-1929 (((-112) $ $) NIL) (((-112) $ (-1149)) NIL)) (-2863 (($ $) NIL)) (-3943 (((-112) $) NIL (|has| $ (-1014 (-552))))) (-4073 (($ $ (-596 $) $) NIL) (($ $ (-625 (-596 $)) (-625 $)) NIL) (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ $))) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ (-625 $)))) NIL) (($ $ (-1149) (-1 $ (-625 $))) NIL) (($ $ (-1149) (-1 $ $)) NIL) (($ $ (-625 (-114)) (-625 (-1 $ $))) NIL) (($ $ (-625 (-114)) (-625 (-1 $ (-625 $)))) NIL) (($ $ (-114) (-1 $ (-625 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2154 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-625 $)) NIL)) (-1963 (($ $) NIL) (($ $ $) NIL)) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149)) NIL)) (-3610 (($ $) NIL (|has| $ (-1025)))) (-3721 (($ $) NIL)) (-3593 (($ $) NIL)) (-1683 (((-839) $) NIL) (($ (-596 $)) NIL) (($ |#3|) NIL) (($ (-552)) NIL) (((-311 |#3|) $) 96)) (-4141 (((-751)) NIL)) (-3779 (($ $) NIL) (($ (-625 $)) NIL)) (-1572 (((-112) (-114)) NIL)) (-3670 (($ $) NIL)) (-3648 (($ $) NIL)) (-3659 (($ $) NIL)) (-1727 (($ $) NIL)) (-2089 (($) 95 T CONST)) (-2100 (($) 24 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149)) NIL)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2393 (($ $ $) NIL) (($ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-897)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-552) $) NIL) (($ (-751) $) NIL) (($ (-897) $) NIL))) -(((-334 |#1| |#2| |#3|) (-13 (-297) (-38 |#3|) (-1014 |#3|) (-876 (-1149)) (-10 -8 (-15 -1895 ($ (-311 |#3|))) (-15 -1893 ((-3 $ "failed") (-311 |#3|))) (-15 -1895 ($ (-1149))) (-15 -1893 ((-3 $ "failed") (-1149))) (-15 -1683 ((-311 |#3|) $)) (IF (|has| |#3| (-1014 (-552))) (PROGN (-15 -1895 ($ (-311 (-552)))) (-15 -1893 ((-3 $ "failed") (-311 (-552)))) (-15 -1895 ($ (-402 (-928 (-552))))) (-15 -1893 ((-3 $ "failed") (-402 (-928 (-552))))) (-15 -1895 ($ (-928 (-552)))) (-15 -1893 ((-3 $ "failed") (-928 (-552))))) |%noBranch|) (IF (|has| |#3| (-1014 (-374))) (PROGN (-15 -1895 ($ (-311 (-374)))) (-15 -1893 ((-3 $ "failed") (-311 (-374)))) (-15 -1895 ($ (-402 (-928 (-374))))) (-15 -1893 ((-3 $ "failed") (-402 (-928 (-374))))) (-15 -1895 ($ (-928 (-374)))) (-15 -1893 ((-3 $ "failed") (-928 (-374))))) |%noBranch|) (-15 -1727 ($ $)) (-15 -3837 ($ $)) (-15 -2863 ($ $)) (-15 -2458 ($ $)) (-15 -4138 ($ $)) (-15 -3581 ($ $)) (-15 -3593 ($ $)) (-15 -3604 ($ $)) (-15 -3648 ($ $)) (-15 -3659 ($ $)) (-15 -3670 ($ $)) (-15 -3710 ($ $)) (-15 -3721 ($ $)) (-15 -3728 ($ $)) (-15 -1385 ($)) (-15 -3982 ((-625 (-1149)) $)) (-15 -1605 ((-112))) (-15 -1605 ((-112) (-112))))) (-625 (-1149)) (-625 (-1149)) (-382)) (T -334)) -((-1895 (*1 *1 *2) (-12 (-5 *2 (-311 *5)) (-4 *5 (-382)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-311 *5)) (-4 *5 (-382)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 *2)) (-14 *4 (-625 *2)) (-4 *5 (-382)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 *2)) (-14 *4 (-625 *2)) (-4 *5 (-382)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-311 *5)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-311 (-552))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-552))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-402 (-928 (-552)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-928 (-552)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-928 (-552))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-928 (-552))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-374))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-402 (-928 (-374)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-928 (-374)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-928 (-374))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-928 (-374))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1727 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3837 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-2863 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-2458 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-4138 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3581 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3593 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3604 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3648 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3659 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3670 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3710 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3721 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3728 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-1385 (*1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) (-3982 (*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-334 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-382)))) (-1605 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) (-1605 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382))))) -(-13 (-297) (-38 |#3|) (-1014 |#3|) (-876 (-1149)) (-10 -8 (-15 -1895 ($ (-311 |#3|))) (-15 -1893 ((-3 $ "failed") (-311 |#3|))) (-15 -1895 ($ (-1149))) (-15 -1893 ((-3 $ "failed") (-1149))) (-15 -1683 ((-311 |#3|) $)) (IF (|has| |#3| (-1014 (-552))) (PROGN (-15 -1895 ($ (-311 (-552)))) (-15 -1893 ((-3 $ "failed") (-311 (-552)))) (-15 -1895 ($ (-402 (-928 (-552))))) (-15 -1893 ((-3 $ "failed") (-402 (-928 (-552))))) (-15 -1895 ($ (-928 (-552)))) (-15 -1893 ((-3 $ "failed") (-928 (-552))))) |%noBranch|) (IF (|has| |#3| (-1014 (-374))) (PROGN (-15 -1895 ($ (-311 (-374)))) (-15 -1893 ((-3 $ "failed") (-311 (-374)))) (-15 -1895 ($ (-402 (-928 (-374))))) (-15 -1893 ((-3 $ "failed") (-402 (-928 (-374))))) (-15 -1895 ($ (-928 (-374)))) (-15 -1893 ((-3 $ "failed") (-928 (-374))))) |%noBranch|) (-15 -1727 ($ $)) (-15 -3837 ($ $)) (-15 -2863 ($ $)) (-15 -2458 ($ $)) (-15 -4138 ($ $)) (-15 -3581 ($ $)) (-15 -3593 ($ $)) (-15 -3604 ($ $)) (-15 -3648 ($ $)) (-15 -3659 ($ $)) (-15 -3670 ($ $)) (-15 -3710 ($ $)) (-15 -3721 ($ $)) (-15 -3728 ($ $)) (-15 -1385 ($)) (-15 -3982 ((-625 (-1149)) $)) (-15 -1605 ((-112))) (-15 -1605 ((-112) (-112))))) -((-1996 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-335 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1996 (|#8| (-1 |#5| |#1|) |#4|))) (-1190) (-1208 |#1|) (-1208 (-402 |#2|)) (-337 |#1| |#2| |#3|) (-1190) (-1208 |#5|) (-1208 (-402 |#6|)) (-337 |#5| |#6| |#7|)) (T -335)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1190)) (-4 *8 (-1190)) (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6))) (-4 *9 (-1208 *8)) (-4 *2 (-337 *8 *9 *10)) (-5 *1 (-335 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-337 *5 *6 *7)) (-4 *10 (-1208 (-402 *9)))))) -(-10 -7 (-15 -1996 (|#8| (-1 |#5| |#1|) |#4|))) -((-1706 (((-2 (|:| |num| (-1232 |#3|)) (|:| |den| |#3|)) $) 38)) (-2670 (($ (-1232 (-402 |#3|)) (-1232 $)) NIL) (($ (-1232 (-402 |#3|))) NIL) (($ (-1232 |#3|) |#3|) 161)) (-1760 (((-1232 $) (-1232 $)) 145)) (-1615 (((-625 (-625 |#2|))) 119)) (-3701 (((-112) |#2| |#2|) 73)) (-1294 (($ $) 139)) (-1682 (((-751)) 31)) (-1770 (((-1232 $) (-1232 $)) 198)) (-1626 (((-625 (-928 |#2|)) (-1149)) 110)) (-1805 (((-112) $) 158)) (-1793 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 202)) (-1649 (((-3 |#3| "failed")) 50)) (-3722 (((-751)) 170)) (-2154 ((|#2| $ |#2| |#2|) 132)) (-1661 (((-3 |#3| "failed")) 68)) (-3072 (($ $ (-1 (-402 |#3|) (-402 |#3|)) (-751)) NIL) (($ $ (-1 (-402 |#3|) (-402 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)) (-1781 (((-1232 $) (-1232 $)) 151)) (-1639 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-3711 (((-112)) 33))) -(((-336 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -1615 ((-625 (-625 |#2|)))) (-15 -1626 ((-625 (-928 |#2|)) (-1149))) (-15 -1639 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1649 ((-3 |#3| "failed"))) (-15 -1661 ((-3 |#3| "failed"))) (-15 -2154 (|#2| |#1| |#2| |#2|)) (-15 -1294 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1793 ((-112) |#1| |#3|)) (-15 -1793 ((-112) |#1| |#2|)) (-15 -2670 (|#1| (-1232 |#3|) |#3|)) (-15 -1706 ((-2 (|:| |num| (-1232 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1760 ((-1232 |#1|) (-1232 |#1|))) (-15 -1770 ((-1232 |#1|) (-1232 |#1|))) (-15 -1781 ((-1232 |#1|) (-1232 |#1|))) (-15 -1793 ((-112) |#1|)) (-15 -1805 ((-112) |#1|)) (-15 -3701 ((-112) |#2| |#2|)) (-15 -3711 ((-112))) (-15 -3722 ((-751))) (-15 -1682 ((-751))) (-15 -3072 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)))) (-15 -3072 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)) (-751))) (-15 -2670 (|#1| (-1232 (-402 |#3|)))) (-15 -2670 (|#1| (-1232 (-402 |#3|)) (-1232 |#1|)))) (-337 |#2| |#3| |#4|) (-1190) (-1208 |#2|) (-1208 (-402 |#3|))) (T -336)) -((-1682 (*1 *2) (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) (-5 *2 (-751)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) (-3722 (*1 *2) (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) (-5 *2 (-751)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) (-3711 (*1 *2) (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) (-5 *2 (-112)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) (-3701 (*1 *2 *3 *3) (-12 (-4 *3 (-1190)) (-4 *5 (-1208 *3)) (-4 *6 (-1208 (-402 *5))) (-5 *2 (-112)) (-5 *1 (-336 *4 *3 *5 *6)) (-4 *4 (-337 *3 *5 *6)))) (-1661 (*1 *2) (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1208 (-402 *2))) (-4 *2 (-1208 *4)) (-5 *1 (-336 *3 *4 *2 *5)) (-4 *3 (-337 *4 *2 *5)))) (-1649 (*1 *2) (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1208 (-402 *2))) (-4 *2 (-1208 *4)) (-5 *1 (-336 *3 *4 *2 *5)) (-4 *3 (-337 *4 *2 *5)))) (-1626 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *5 (-1190)) (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6))) (-5 *2 (-625 (-928 *5))) (-5 *1 (-336 *4 *5 *6 *7)) (-4 *4 (-337 *5 *6 *7)))) (-1615 (*1 *2) (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) (-5 *2 (-625 (-625 *4))) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6))))) -(-10 -8 (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -1615 ((-625 (-625 |#2|)))) (-15 -1626 ((-625 (-928 |#2|)) (-1149))) (-15 -1639 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1649 ((-3 |#3| "failed"))) (-15 -1661 ((-3 |#3| "failed"))) (-15 -2154 (|#2| |#1| |#2| |#2|)) (-15 -1294 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1793 ((-112) |#1| |#3|)) (-15 -1793 ((-112) |#1| |#2|)) (-15 -2670 (|#1| (-1232 |#3|) |#3|)) (-15 -1706 ((-2 (|:| |num| (-1232 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1760 ((-1232 |#1|) (-1232 |#1|))) (-15 -1770 ((-1232 |#1|) (-1232 |#1|))) (-15 -1781 ((-1232 |#1|) (-1232 |#1|))) (-15 -1793 ((-112) |#1|)) (-15 -1805 ((-112) |#1|)) (-15 -3701 ((-112) |#2| |#2|)) (-15 -3711 ((-112))) (-15 -3722 ((-751))) (-15 -1682 ((-751))) (-15 -3072 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)))) (-15 -3072 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)) (-751))) (-15 -2670 (|#1| (-1232 (-402 |#3|)))) (-15 -2670 (|#1| (-1232 (-402 |#3|)) (-1232 |#1|)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-1706 (((-2 (|:| |num| (-1232 |#2|)) (|:| |den| |#2|)) $) 193)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 91 (|has| (-402 |#2|) (-358)))) (-3528 (($ $) 92 (|has| (-402 |#2|) (-358)))) (-3509 (((-112) $) 94 (|has| (-402 |#2|) (-358)))) (-2570 (((-669 (-402 |#2|)) (-1232 $)) 44) (((-669 (-402 |#2|))) 59)) (-1650 (((-402 |#2|) $) 50)) (-3811 (((-1159 (-897) (-751)) (-552)) 144 (|has| (-402 |#2|) (-344)))) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 111 (|has| (-402 |#2|) (-358)))) (-1330 (((-413 $) $) 112 (|has| (-402 |#2|) (-358)))) (-2408 (((-112) $ $) 102 (|has| (-402 |#2|) (-358)))) (-2894 (((-751)) 85 (|has| (-402 |#2|) (-363)))) (-1861 (((-112)) 210)) (-1852 (((-112) |#1|) 209) (((-112) |#2|) 208)) (-3101 (($) 17 T CONST)) (-1893 (((-3 (-552) "failed") $) 166 (|has| (-402 |#2|) (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) 164 (|has| (-402 |#2|) (-1014 (-402 (-552))))) (((-3 (-402 |#2|) "failed") $) 163)) (-1895 (((-552) $) 167 (|has| (-402 |#2|) (-1014 (-552)))) (((-402 (-552)) $) 165 (|has| (-402 |#2|) (-1014 (-402 (-552))))) (((-402 |#2|) $) 162)) (-2670 (($ (-1232 (-402 |#2|)) (-1232 $)) 46) (($ (-1232 (-402 |#2|))) 62) (($ (-1232 |#2|) |#2|) 192)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-402 |#2|) (-344)))) (-2851 (($ $ $) 106 (|has| (-402 |#2|) (-358)))) (-2559 (((-669 (-402 |#2|)) $ (-1232 $)) 51) (((-669 (-402 |#2|)) $) 57)) (-1794 (((-669 (-552)) (-669 $)) 161 (|has| (-402 |#2|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 160 (|has| (-402 |#2|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-402 |#2|))) (|:| |vec| (-1232 (-402 |#2|)))) (-669 $) (-1232 $)) 159) (((-669 (-402 |#2|)) (-669 $)) 158)) (-1760 (((-1232 $) (-1232 $)) 198)) (-2163 (($ |#3|) 155) (((-3 $ "failed") (-402 |#3|)) 152 (|has| (-402 |#2|) (-358)))) (-4174 (((-3 $ "failed") $) 32)) (-1615 (((-625 (-625 |#1|))) 179 (|has| |#1| (-363)))) (-3701 (((-112) |#1| |#1|) 214)) (-3442 (((-897)) 52)) (-3702 (($) 88 (|has| (-402 |#2|) (-363)))) (-1839 (((-112)) 207)) (-1826 (((-112) |#1|) 206) (((-112) |#2|) 205)) (-2826 (($ $ $) 105 (|has| (-402 |#2|) (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 100 (|has| (-402 |#2|) (-358)))) (-1294 (($ $) 185)) (-4279 (($) 146 (|has| (-402 |#2|) (-344)))) (-3872 (((-112) $) 147 (|has| (-402 |#2|) (-344)))) (-3554 (($ $ (-751)) 138 (|has| (-402 |#2|) (-344))) (($ $) 137 (|has| (-402 |#2|) (-344)))) (-2951 (((-112) $) 113 (|has| (-402 |#2|) (-358)))) (-2172 (((-897) $) 149 (|has| (-402 |#2|) (-344))) (((-813 (-897)) $) 135 (|has| (-402 |#2|) (-344)))) (-3650 (((-112) $) 30)) (-1682 (((-751)) 217)) (-1770 (((-1232 $) (-1232 $)) 199)) (-4209 (((-402 |#2|) $) 49)) (-1626 (((-625 (-928 |#1|)) (-1149)) 180 (|has| |#1| (-358)))) (-4034 (((-3 $ "failed") $) 139 (|has| (-402 |#2|) (-344)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 109 (|has| (-402 |#2|) (-358)))) (-1291 ((|#3| $) 42 (|has| (-402 |#2|) (-358)))) (-4318 (((-897) $) 87 (|has| (-402 |#2|) (-363)))) (-2148 ((|#3| $) 153)) (-2605 (($ (-625 $)) 98 (|has| (-402 |#2|) (-358))) (($ $ $) 97 (|has| (-402 |#2|) (-358)))) (-2883 (((-1131) $) 9)) (-1718 (((-669 (-402 |#2|))) 194)) (-1740 (((-669 (-402 |#2|))) 196)) (-4092 (($ $) 114 (|has| (-402 |#2|) (-358)))) (-1684 (($ (-1232 |#2|) |#2|) 190)) (-1729 (((-669 (-402 |#2|))) 195)) (-1750 (((-669 (-402 |#2|))) 197)) (-1672 (((-2 (|:| |num| (-669 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-1696 (((-2 (|:| |num| (-1232 |#2|)) (|:| |den| |#2|)) $) 191)) (-1816 (((-1232 $)) 203)) (-3993 (((-1232 $)) 204)) (-1805 (((-112) $) 202)) (-1793 (((-112) $) 201) (((-112) $ |#1|) 188) (((-112) $ |#2|) 187)) (-2071 (($) 140 (|has| (-402 |#2|) (-344)) CONST)) (-3123 (($ (-897)) 86 (|has| (-402 |#2|) (-363)))) (-1649 (((-3 |#2| "failed")) 182)) (-2831 (((-1093) $) 10)) (-3722 (((-751)) 216)) (-3212 (($) 157)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 99 (|has| (-402 |#2|) (-358)))) (-2633 (($ (-625 $)) 96 (|has| (-402 |#2|) (-358))) (($ $ $) 95 (|has| (-402 |#2|) (-358)))) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) 143 (|has| (-402 |#2|) (-344)))) (-3824 (((-413 $) $) 110 (|has| (-402 |#2|) (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| (-402 |#2|) (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 107 (|has| (-402 |#2|) (-358)))) (-2802 (((-3 $ "failed") $ $) 90 (|has| (-402 |#2|) (-358)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 101 (|has| (-402 |#2|) (-358)))) (-2397 (((-751) $) 103 (|has| (-402 |#2|) (-358)))) (-2154 ((|#1| $ |#1| |#1|) 184)) (-1661 (((-3 |#2| "failed")) 183)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 104 (|has| (-402 |#2|) (-358)))) (-3217 (((-402 |#2|) (-1232 $)) 45) (((-402 |#2|)) 58)) (-3563 (((-751) $) 148 (|has| (-402 |#2|) (-344))) (((-3 (-751) "failed") $ $) 136 (|has| (-402 |#2|) (-344)))) (-3072 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) 120 (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) 119 (|has| (-402 |#2|) (-358))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-625 (-1149)) (-625 (-751))) 127 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3743 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-1149) (-751)) 128 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3743 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-625 (-1149))) 129 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3743 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-1149)) 130 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3743 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-751)) 132 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3743 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) 134 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3743 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-3640 (((-669 (-402 |#2|)) (-1232 $) (-1 (-402 |#2|) (-402 |#2|))) 151 (|has| (-402 |#2|) (-358)))) (-3610 ((|#3|) 156)) (-3798 (($) 145 (|has| (-402 |#2|) (-344)))) (-2780 (((-1232 (-402 |#2|)) $ (-1232 $)) 48) (((-669 (-402 |#2|)) (-1232 $) (-1232 $)) 47) (((-1232 (-402 |#2|)) $) 64) (((-669 (-402 |#2|)) (-1232 $)) 63)) (-2042 (((-1232 (-402 |#2|)) $) 61) (($ (-1232 (-402 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 142 (|has| (-402 |#2|) (-344)))) (-1781 (((-1232 $) (-1232 $)) 200)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ (-402 |#2|)) 35) (($ (-402 (-552))) 84 (-1523 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-1014 (-402 (-552)))))) (($ $) 89 (|has| (-402 |#2|) (-358)))) (-4243 (($ $) 141 (|has| (-402 |#2|) (-344))) (((-3 $ "failed") $) 41 (|has| (-402 |#2|) (-143)))) (-3974 ((|#3| $) 43)) (-4141 (((-751)) 28)) (-1882 (((-112)) 213)) (-1872 (((-112) |#1|) 212) (((-112) |#2|) 211)) (-1270 (((-1232 $)) 65)) (-3518 (((-112) $ $) 93 (|has| (-402 |#2|) (-358)))) (-1639 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-3711 (((-112)) 215)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) 122 (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) 121 (|has| (-402 |#2|) (-358))) (($ $ (-625 (-1149)) (-625 (-751))) 123 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3743 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-1149) (-751)) 124 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3743 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-625 (-1149))) 125 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3743 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-1149)) 126 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3743 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-751)) 131 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3743 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) 133 (-1523 (-3743 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3743 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-2281 (((-112) $ $) 6)) (-2404 (($ $ $) 118 (|has| (-402 |#2|) (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 115 (|has| (-402 |#2|) (-358)))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 |#2|)) 37) (($ (-402 |#2|) $) 36) (($ (-402 (-552)) $) 117 (|has| (-402 |#2|) (-358))) (($ $ (-402 (-552))) 116 (|has| (-402 |#2|) (-358))))) -(((-337 |#1| |#2| |#3|) (-138) (-1190) (-1208 |t#1|) (-1208 (-402 |t#2|))) (T -337)) -((-1682 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-751)))) (-3722 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-751)))) (-3711 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-3701 (*1 *2 *3 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-1882 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-1872 (*1 *2 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-1872 (*1 *2 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1208 *4)) (-4 *5 (-1208 (-402 *3))) (-5 *2 (-112)))) (-1861 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-1852 (*1 *2 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-1852 (*1 *2 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1208 *4)) (-4 *5 (-1208 (-402 *3))) (-5 *2 (-112)))) (-1839 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-1826 (*1 *2 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-1826 (*1 *2 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1208 *4)) (-4 *5 (-1208 (-402 *3))) (-5 *2 (-112)))) (-3993 (*1 *2) (-12 (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-1232 *1)) (-4 *1 (-337 *3 *4 *5)))) (-1816 (*1 *2) (-12 (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-1232 *1)) (-4 *1 (-337 *3 *4 *5)))) (-1805 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-1793 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-1781 (*1 *2 *2) (-12 (-5 *2 (-1232 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))))) (-1770 (*1 *2 *2) (-12 (-5 *2 (-1232 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))))) (-1760 (*1 *2 *2) (-12 (-5 *2 (-1232 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))))) (-1750 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-669 (-402 *4))))) (-1740 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-669 (-402 *4))))) (-1729 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-669 (-402 *4))))) (-1718 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-669 (-402 *4))))) (-1706 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-2 (|:| |num| (-1232 *4)) (|:| |den| *4))))) (-2670 (*1 *1 *2 *3) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-1208 *4)) (-4 *4 (-1190)) (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1208 (-402 *3))))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-2 (|:| |num| (-1232 *4)) (|:| |den| *4))))) (-1684 (*1 *1 *2 *3) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-1208 *4)) (-4 *4 (-1190)) (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1208 (-402 *3))))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) (-5 *2 (-2 (|:| |num| (-669 *5)) (|:| |den| *5))))) (-1793 (*1 *2 *1 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) (-1793 (*1 *2 *1 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1208 *4)) (-4 *5 (-1208 (-402 *3))) (-5 *2 (-112)))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))))) (-1294 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1190)) (-4 *3 (-1208 *2)) (-4 *4 (-1208 (-402 *3))))) (-2154 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1190)) (-4 *3 (-1208 *2)) (-4 *4 (-1208 (-402 *3))))) (-1661 (*1 *2) (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1190)) (-4 *4 (-1208 (-402 *2))) (-4 *2 (-1208 *3)))) (-1649 (*1 *2) (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1190)) (-4 *4 (-1208 (-402 *2))) (-4 *2 (-1208 *3)))) (-1639 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1208 *4)) (-4 *4 (-1190)) (-4 *6 (-1208 (-402 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-337 *4 *5 *6)))) (-1626 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) (-4 *4 (-358)) (-5 *2 (-625 (-928 *4))))) (-1615 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) (-4 *3 (-363)) (-5 *2 (-625 (-625 *3)))))) -(-13 (-705 (-402 |t#2|) |t#3|) (-10 -8 (-15 -1682 ((-751))) (-15 -3722 ((-751))) (-15 -3711 ((-112))) (-15 -3701 ((-112) |t#1| |t#1|)) (-15 -1882 ((-112))) (-15 -1872 ((-112) |t#1|)) (-15 -1872 ((-112) |t#2|)) (-15 -1861 ((-112))) (-15 -1852 ((-112) |t#1|)) (-15 -1852 ((-112) |t#2|)) (-15 -1839 ((-112))) (-15 -1826 ((-112) |t#1|)) (-15 -1826 ((-112) |t#2|)) (-15 -3993 ((-1232 $))) (-15 -1816 ((-1232 $))) (-15 -1805 ((-112) $)) (-15 -1793 ((-112) $)) (-15 -1781 ((-1232 $) (-1232 $))) (-15 -1770 ((-1232 $) (-1232 $))) (-15 -1760 ((-1232 $) (-1232 $))) (-15 -1750 ((-669 (-402 |t#2|)))) (-15 -1740 ((-669 (-402 |t#2|)))) (-15 -1729 ((-669 (-402 |t#2|)))) (-15 -1718 ((-669 (-402 |t#2|)))) (-15 -1706 ((-2 (|:| |num| (-1232 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2670 ($ (-1232 |t#2|) |t#2|)) (-15 -1696 ((-2 (|:| |num| (-1232 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1684 ($ (-1232 |t#2|) |t#2|)) (-15 -1672 ((-2 (|:| |num| (-669 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1793 ((-112) $ |t#1|)) (-15 -1793 ((-112) $ |t#2|)) (-15 -3072 ($ $ (-1 |t#2| |t#2|))) (-15 -1294 ($ $)) (-15 -2154 (|t#1| $ |t#1| |t#1|)) (-15 -1661 ((-3 |t#2| "failed"))) (-15 -1649 ((-3 |t#2| "failed"))) (-15 -1639 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-358)) (-15 -1626 ((-625 (-928 |t#1|)) (-1149))) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -1615 ((-625 (-625 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-38 #1=(-402 |#2|)) . T) ((-38 $) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-101) . T) ((-111 #0# #0#) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-143))) ((-145) |has| (-402 |#2|) (-145)) ((-597 (-839)) . T) ((-170) . T) ((-598 |#3|) . T) ((-227 #1#) |has| (-402 |#2|) (-358)) ((-229) -1523 (|has| (-402 |#2|) (-344)) (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358)))) ((-239) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-285) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-302) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-358) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-397) |has| (-402 |#2|) (-344)) ((-363) -1523 (|has| (-402 |#2|) (-363)) (|has| (-402 |#2|) (-344))) ((-344) |has| (-402 |#2|) (-344)) ((-365 #1# |#3|) . T) ((-404 #1# |#3|) . T) ((-372 #1#) . T) ((-406 #1#) . T) ((-446) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-544) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-628 #0#) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-628 #1#) . T) ((-628 $) . T) ((-621 #1#) . T) ((-621 (-552)) |has| (-402 |#2|) (-621 (-552))) ((-698 #0#) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-698 #1#) . T) ((-698 $) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-705 #1# |#3|) . T) ((-707) . T) ((-876 (-1149)) -12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) ((-896) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-1014 (-402 (-552))) |has| (-402 |#2|) (-1014 (-402 (-552)))) ((-1014 #1#) . T) ((-1014 (-552)) |has| (-402 |#2|) (-1014 (-552))) ((-1031 #0#) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358))) ((-1031 #1#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1124) |has| (-402 |#2|) (-344)) ((-1190) -1523 (|has| (-402 |#2|) (-344)) (|has| (-402 |#2|) (-358)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 (((-886 |#1|) $) NIL) (($ $ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| (-886 |#1|) (-363)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) NIL (|has| (-886 |#1|) (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-886 |#1|) "failed") $) NIL)) (-1895 (((-886 |#1|) $) NIL)) (-2670 (($ (-1232 (-886 |#1|))) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-886 |#1|) (-363)))) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-886 |#1|) (-363)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) NIL (|has| (-886 |#1|) (-363)))) (-3872 (((-112) $) NIL (|has| (-886 |#1|) (-363)))) (-3554 (($ $ (-751)) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363)))) (($ $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-2951 (((-112) $) NIL)) (-2172 (((-897) $) NIL (|has| (-886 |#1|) (-363))) (((-813 (-897)) $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-3650 (((-112) $) NIL)) (-1280 (($) NIL (|has| (-886 |#1|) (-363)))) (-4328 (((-112) $) NIL (|has| (-886 |#1|) (-363)))) (-4209 (((-886 |#1|) $) NIL) (($ $ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-4034 (((-3 $ "failed") $) NIL (|has| (-886 |#1|) (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 (-886 |#1|)) $) NIL) (((-1145 $) $ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-4318 (((-897) $) NIL (|has| (-886 |#1|) (-363)))) (-1378 (((-1145 (-886 |#1|)) $) NIL (|has| (-886 |#1|) (-363)))) (-1369 (((-1145 (-886 |#1|)) $) NIL (|has| (-886 |#1|) (-363))) (((-3 (-1145 (-886 |#1|)) "failed") $ $) NIL (|has| (-886 |#1|) (-363)))) (-1386 (($ $ (-1145 (-886 |#1|))) NIL (|has| (-886 |#1|) (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-886 |#1|) (-363)) CONST)) (-3123 (($ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-4143 (((-112) $) NIL)) (-2831 (((-1093) $) NIL)) (-3729 (((-934 (-1093))) NIL)) (-3212 (($) NIL (|has| (-886 |#1|) (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| (-886 |#1|) (-363)))) (-3824 (((-413 $) $) NIL)) (-4130 (((-813 (-897))) NIL) (((-897)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-751) $) NIL (|has| (-886 |#1|) (-363))) (((-3 (-751) "failed") $ $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-3904 (((-133)) NIL)) (-3072 (($ $) NIL (|has| (-886 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-886 |#1|) (-363)))) (-4276 (((-813 (-897)) $) NIL) (((-897) $) NIL)) (-3610 (((-1145 (-886 |#1|))) NIL)) (-3798 (($) NIL (|has| (-886 |#1|) (-363)))) (-1397 (($) NIL (|has| (-886 |#1|) (-363)))) (-2780 (((-1232 (-886 |#1|)) $) NIL) (((-669 (-886 |#1|)) (-1232 $)) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| (-886 |#1|) (-363)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ (-886 |#1|)) NIL)) (-4243 (($ $) NIL (|has| (-886 |#1|) (-363))) (((-3 $ "failed") $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-4141 (((-751)) NIL)) (-1270 (((-1232 $)) NIL) (((-1232 $) (-897)) NIL)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-4104 (($ $) NIL (|has| (-886 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-886 |#1|) (-363)))) (-3768 (($ $) NIL (|has| (-886 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-886 |#1|) (-363)))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL) (($ $ (-886 |#1|)) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ $ (-886 |#1|)) NIL) (($ (-886 |#1|) $) NIL))) -(((-338 |#1| |#2|) (-13 (-324 (-886 |#1|)) (-10 -7 (-15 -3729 ((-934 (-1093)))))) (-897) (-897)) (T -338)) -((-3729 (*1 *2) (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-338 *3 *4)) (-14 *3 (-897)) (-14 *4 (-897))))) -(-13 (-324 (-886 |#1|)) (-10 -7 (-15 -3729 ((-934 (-1093)))))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 44)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 ((|#1| $) NIL) (($ $ (-897)) NIL (|has| |#1| (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) 41 (|has| |#1| (-363)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) NIL (|has| |#1| (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) 115)) (-1895 ((|#1| $) 86)) (-2670 (($ (-1232 |#1|)) 104)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-363)))) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) 98 (|has| |#1| (-363)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) 129 (|has| |#1| (-363)))) (-3872 (((-112) $) 48 (|has| |#1| (-363)))) (-3554 (($ $ (-751)) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2951 (((-112) $) NIL)) (-2172 (((-897) $) 45 (|has| |#1| (-363))) (((-813 (-897)) $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3650 (((-112) $) NIL)) (-1280 (($) 131 (|has| |#1| (-363)))) (-4328 (((-112) $) NIL (|has| |#1| (-363)))) (-4209 ((|#1| $) NIL) (($ $ (-897)) NIL (|has| |#1| (-363)))) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 |#1|) $) 90) (((-1145 $) $ (-897)) NIL (|has| |#1| (-363)))) (-4318 (((-897) $) 139 (|has| |#1| (-363)))) (-1378 (((-1145 |#1|) $) NIL (|has| |#1| (-363)))) (-1369 (((-1145 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1145 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-1386 (($ $ (-1145 |#1|)) NIL (|has| |#1| (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 146)) (-2071 (($) NIL (|has| |#1| (-363)) CONST)) (-3123 (($ (-897)) 71 (|has| |#1| (-363)))) (-4143 (((-112) $) 118)) (-2831 (((-1093) $) NIL)) (-3729 (((-934 (-1093))) 42)) (-3212 (($) 127 (|has| |#1| (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) 93 (|has| |#1| (-363)))) (-3824 (((-413 $) $) NIL)) (-4130 (((-813 (-897))) 67) (((-897)) 68)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-751) $) 130 (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) 125 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3904 (((-133)) NIL)) (-3072 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4276 (((-813 (-897)) $) NIL) (((-897) $) NIL)) (-3610 (((-1145 |#1|)) 96)) (-3798 (($) 128 (|has| |#1| (-363)))) (-1397 (($) 136 (|has| |#1| (-363)))) (-2780 (((-1232 |#1|) $) 59) (((-669 |#1|) (-1232 $)) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-1683 (((-839) $) 142) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ |#1|) 75)) (-4243 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4141 (((-751)) 138)) (-1270 (((-1232 $)) 117) (((-1232 $) (-897)) 73)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) 49 T CONST)) (-2100 (($) 46 T CONST)) (-4104 (($ $) 81 (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3768 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-2281 (((-112) $ $) 47)) (-2404 (($ $ $) 144) (($ $ |#1|) 145)) (-2393 (($ $) 126) (($ $ $) NIL)) (-2382 (($ $ $) 61)) (** (($ $ (-897)) 148) (($ $ (-751)) 149) (($ $ (-552)) 147)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 77) (($ $ $) 76) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143))) -(((-339 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -3729 ((-934 (-1093)))))) (-344) (-1145 |#1|)) (T -339)) -((-3729 (*1 *2) (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-339 *3 *4)) (-4 *3 (-344)) (-14 *4 (-1145 *3))))) -(-13 (-324 |#1|) (-10 -7 (-15 -3729 ((-934 (-1093)))))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 ((|#1| $) NIL) (($ $ (-897)) NIL (|has| |#1| (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| |#1| (-363)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) NIL (|has| |#1| (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-2670 (($ (-1232 |#1|)) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)))) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| |#1| (-363)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) NIL (|has| |#1| (-363)))) (-3872 (((-112) $) NIL (|has| |#1| (-363)))) (-3554 (($ $ (-751)) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2951 (((-112) $) NIL)) (-2172 (((-897) $) NIL (|has| |#1| (-363))) (((-813 (-897)) $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3650 (((-112) $) NIL)) (-1280 (($) NIL (|has| |#1| (-363)))) (-4328 (((-112) $) NIL (|has| |#1| (-363)))) (-4209 ((|#1| $) NIL) (($ $ (-897)) NIL (|has| |#1| (-363)))) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 |#1|) $) NIL) (((-1145 $) $ (-897)) NIL (|has| |#1| (-363)))) (-4318 (((-897) $) NIL (|has| |#1| (-363)))) (-1378 (((-1145 |#1|) $) NIL (|has| |#1| (-363)))) (-1369 (((-1145 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1145 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-1386 (($ $ (-1145 |#1|)) NIL (|has| |#1| (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| |#1| (-363)) CONST)) (-3123 (($ (-897)) NIL (|has| |#1| (-363)))) (-4143 (((-112) $) NIL)) (-2831 (((-1093) $) NIL)) (-3729 (((-934 (-1093))) NIL)) (-3212 (($) NIL (|has| |#1| (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| |#1| (-363)))) (-3824 (((-413 $) $) NIL)) (-4130 (((-813 (-897))) NIL) (((-897)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-751) $) NIL (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3904 (((-133)) NIL)) (-3072 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4276 (((-813 (-897)) $) NIL) (((-897) $) NIL)) (-3610 (((-1145 |#1|)) NIL)) (-3798 (($) NIL (|has| |#1| (-363)))) (-1397 (($) NIL (|has| |#1| (-363)))) (-2780 (((-1232 |#1|) $) NIL) (((-669 |#1|) (-1232 $)) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ |#1|) NIL)) (-4243 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4141 (((-751)) NIL)) (-1270 (((-1232 $)) NIL) (((-1232 $) (-897)) NIL)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-4104 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3768 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-340 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -3729 ((-934 (-1093)))))) (-344) (-897)) (T -340)) -((-3729 (*1 *2) (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-340 *3 *4)) (-4 *3 (-344)) (-14 *4 (-897))))) -(-13 (-324 |#1|) (-10 -7 (-15 -3729 ((-934 (-1093)))))) -((-3832 (((-751) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093)))))) 42)) (-3739 (((-934 (-1093)) (-1145 |#1|)) 85)) (-3750 (((-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))) (-1145 |#1|)) 78)) (-3760 (((-669 |#1|) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093)))))) 86)) (-3770 (((-3 (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))) "failed") (-897)) 13)) (-3780 (((-3 (-1145 |#1|) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093)))))) (-897)) 18))) -(((-341 |#1|) (-10 -7 (-15 -3739 ((-934 (-1093)) (-1145 |#1|))) (-15 -3750 ((-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))) (-1145 |#1|))) (-15 -3760 ((-669 |#1|) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))))) (-15 -3832 ((-751) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))))) (-15 -3770 ((-3 (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))) "failed") (-897))) (-15 -3780 ((-3 (-1145 |#1|) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093)))))) (-897)))) (-344)) (T -341)) -((-3780 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-3 (-1145 *4) (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093))))))) (-5 *1 (-341 *4)) (-4 *4 (-344)))) (-3770 (*1 *2 *3) (|partial| -12 (-5 *3 (-897)) (-5 *2 (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093)))))) (-5 *1 (-341 *4)) (-4 *4 (-344)))) (-3832 (*1 *2 *3) (-12 (-5 *3 (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093)))))) (-4 *4 (-344)) (-5 *2 (-751)) (-5 *1 (-341 *4)))) (-3760 (*1 *2 *3) (-12 (-5 *3 (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093)))))) (-4 *4 (-344)) (-5 *2 (-669 *4)) (-5 *1 (-341 *4)))) (-3750 (*1 *2 *3) (-12 (-5 *3 (-1145 *4)) (-4 *4 (-344)) (-5 *2 (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093)))))) (-5 *1 (-341 *4)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-1145 *4)) (-4 *4 (-344)) (-5 *2 (-934 (-1093))) (-5 *1 (-341 *4))))) -(-10 -7 (-15 -3739 ((-934 (-1093)) (-1145 |#1|))) (-15 -3750 ((-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))) (-1145 |#1|))) (-15 -3760 ((-669 |#1|) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))))) (-15 -3832 ((-751) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))))) (-15 -3770 ((-3 (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))) "failed") (-897))) (-15 -3780 ((-3 (-1145 |#1|) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093)))))) (-897)))) -((-1683 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) -(((-342 |#1| |#2| |#3|) (-10 -7 (-15 -1683 (|#3| |#1|)) (-15 -1683 (|#1| |#3|))) (-324 |#2|) (-344) (-324 |#2|)) (T -342)) -((-1683 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *2 (-324 *4)) (-5 *1 (-342 *2 *4 *3)) (-4 *3 (-324 *4)))) (-1683 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *2 (-324 *4)) (-5 *1 (-342 *3 *4 *2)) (-4 *3 (-324 *4))))) -(-10 -7 (-15 -1683 (|#3| |#1|)) (-15 -1683 (|#1| |#3|))) -((-3872 (((-112) $) 51)) (-2172 (((-813 (-897)) $) 21) (((-897) $) 52)) (-4034 (((-3 $ "failed") $) 16)) (-2071 (($) 9)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 93)) (-3563 (((-3 (-751) "failed") $ $) 71) (((-751) $) 60)) (-3072 (($ $ (-751)) NIL) (($ $) 8)) (-3798 (($) 44)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 34)) (-4243 (((-3 $ "failed") $) 38) (($ $) 37))) -(((-343 |#1|) (-10 -8 (-15 -2172 ((-897) |#1|)) (-15 -3563 ((-751) |#1|)) (-15 -3872 ((-112) |#1|)) (-15 -3798 (|#1|)) (-15 -4253 ((-3 (-1232 |#1|) "failed") (-669 |#1|))) (-15 -4243 (|#1| |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -2071 (|#1|)) (-15 -4034 ((-3 |#1| "failed") |#1|)) (-15 -3563 ((-3 (-751) "failed") |#1| |#1|)) (-15 -2172 ((-813 (-897)) |#1|)) (-15 -4243 ((-3 |#1| "failed") |#1|)) (-15 -4306 ((-1145 |#1|) (-1145 |#1|) (-1145 |#1|)))) (-344)) (T -343)) -NIL -(-10 -8 (-15 -2172 ((-897) |#1|)) (-15 -3563 ((-751) |#1|)) (-15 -3872 ((-112) |#1|)) (-15 -3798 (|#1|)) (-15 -4253 ((-3 (-1232 |#1|) "failed") (-669 |#1|))) (-15 -4243 (|#1| |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -2071 (|#1|)) (-15 -4034 ((-3 |#1| "failed") |#1|)) (-15 -3563 ((-3 (-751) "failed") |#1| |#1|)) (-15 -2172 ((-813 (-897)) |#1|)) (-15 -4243 ((-3 |#1| "failed") |#1|)) (-15 -4306 ((-1145 |#1|) (-1145 |#1|) (-1145 |#1|)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-3811 (((-1159 (-897) (-751)) (-552)) 90)) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 70)) (-1330 (((-413 $) $) 69)) (-2408 (((-112) $ $) 57)) (-2894 (((-751)) 100)) (-3101 (($) 17 T CONST)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-2851 (($ $ $) 53)) (-4174 (((-3 $ "failed") $) 32)) (-3702 (($) 103)) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-4279 (($) 88)) (-3872 (((-112) $) 87)) (-3554 (($ $) 76) (($ $ (-751)) 75)) (-2951 (((-112) $) 68)) (-2172 (((-813 (-897)) $) 78) (((-897) $) 85)) (-3650 (((-112) $) 30)) (-4034 (((-3 $ "failed") $) 99)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-4318 (((-897) $) 102)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 67)) (-2071 (($) 98 T CONST)) (-3123 (($ (-897)) 101)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) 91)) (-3824 (((-413 $) $) 71)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-2397 (((-751) $) 56)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-3563 (((-3 (-751) "failed") $ $) 77) (((-751) $) 86)) (-3072 (($ $ (-751)) 96) (($ $) 94)) (-3798 (($) 89)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 92)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-402 (-552))) 63)) (-4243 (((-3 $ "failed") $) 79) (($ $) 93)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-751)) 97) (($ $) 95)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ $) 62)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 66)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 65) (($ (-402 (-552)) $) 64))) -(((-344) (-138)) (T -344)) -((-4243 (*1 *1 *1) (-4 *1 (-344))) (-4253 (*1 *2 *3) (|partial| -12 (-5 *3 (-669 *1)) (-4 *1 (-344)) (-5 *2 (-1232 *1)))) (-3820 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))))) (-3811 (*1 *2 *3) (-12 (-4 *1 (-344)) (-5 *3 (-552)) (-5 *2 (-1159 (-897) (-751))))) (-3798 (*1 *1) (-4 *1 (-344))) (-4279 (*1 *1) (-4 *1 (-344))) (-3872 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-112)))) (-3563 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-751)))) (-2172 (*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-897)))) (-3790 (*1 *2) (-12 (-4 *1 (-344)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-397) (-363) (-1124) (-229) (-10 -8 (-15 -4243 ($ $)) (-15 -4253 ((-3 (-1232 $) "failed") (-669 $))) (-15 -3820 ((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552)))))) (-15 -3811 ((-1159 (-897) (-751)) (-552))) (-15 -3798 ($)) (-15 -4279 ($)) (-15 -3872 ((-112) $)) (-15 -3563 ((-751) $)) (-15 -2172 ((-897) $)) (-15 -3790 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-597 (-839)) . T) ((-170) . T) ((-229) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-397) . T) ((-363) . T) ((-446) . T) ((-544) . T) ((-628 #0#) . T) ((-628 $) . T) ((-698 #0#) . T) ((-698 $) . T) ((-707) . T) ((-896) . T) ((-1031 #0#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1124) . T) ((-1190) . T)) -((-4006 (((-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) |#1|) 53)) (-3993 (((-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|)))) 51))) -(((-345 |#1| |#2| |#3|) (-10 -7 (-15 -3993 ((-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))))) (-15 -4006 ((-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) |#1|))) (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $)))) (-1208 |#1|) (-404 |#1| |#2|)) (T -345)) -((-4006 (*1 *2 *3) (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) (-4 *4 (-1208 *3)) (-5 *2 (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-5 *1 (-345 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3993 (*1 *2) (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) (-4 *4 (-1208 *3)) (-5 *2 (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-5 *1 (-345 *3 *4 *5)) (-4 *5 (-404 *3 *4))))) -(-10 -7 (-15 -3993 ((-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))))) (-15 -4006 ((-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) |#1|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 (((-886 |#1|) $) NIL) (($ $ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| (-886 |#1|) (-363)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-3832 (((-751)) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) NIL (|has| (-886 |#1|) (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-886 |#1|) "failed") $) NIL)) (-1895 (((-886 |#1|) $) NIL)) (-2670 (($ (-1232 (-886 |#1|))) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-886 |#1|) (-363)))) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-886 |#1|) (-363)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) NIL (|has| (-886 |#1|) (-363)))) (-3872 (((-112) $) NIL (|has| (-886 |#1|) (-363)))) (-3554 (($ $ (-751)) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363)))) (($ $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-2951 (((-112) $) NIL)) (-2172 (((-897) $) NIL (|has| (-886 |#1|) (-363))) (((-813 (-897)) $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-3650 (((-112) $) NIL)) (-1280 (($) NIL (|has| (-886 |#1|) (-363)))) (-4328 (((-112) $) NIL (|has| (-886 |#1|) (-363)))) (-4209 (((-886 |#1|) $) NIL) (($ $ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-4034 (((-3 $ "failed") $) NIL (|has| (-886 |#1|) (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 (-886 |#1|)) $) NIL) (((-1145 $) $ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-4318 (((-897) $) NIL (|has| (-886 |#1|) (-363)))) (-1378 (((-1145 (-886 |#1|)) $) NIL (|has| (-886 |#1|) (-363)))) (-1369 (((-1145 (-886 |#1|)) $) NIL (|has| (-886 |#1|) (-363))) (((-3 (-1145 (-886 |#1|)) "failed") $ $) NIL (|has| (-886 |#1|) (-363)))) (-1386 (($ $ (-1145 (-886 |#1|))) NIL (|has| (-886 |#1|) (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-886 |#1|) (-363)) CONST)) (-3123 (($ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-4143 (((-112) $) NIL)) (-2831 (((-1093) $) NIL)) (-3859 (((-1232 (-625 (-2 (|:| -3800 (-886 |#1|)) (|:| -3123 (-1093)))))) NIL)) (-3845 (((-669 (-886 |#1|))) NIL)) (-3212 (($) NIL (|has| (-886 |#1|) (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| (-886 |#1|) (-363)))) (-3824 (((-413 $) $) NIL)) (-4130 (((-813 (-897))) NIL) (((-897)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-751) $) NIL (|has| (-886 |#1|) (-363))) (((-3 (-751) "failed") $ $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-3904 (((-133)) NIL)) (-3072 (($ $) NIL (|has| (-886 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-886 |#1|) (-363)))) (-4276 (((-813 (-897)) $) NIL) (((-897) $) NIL)) (-3610 (((-1145 (-886 |#1|))) NIL)) (-3798 (($) NIL (|has| (-886 |#1|) (-363)))) (-1397 (($) NIL (|has| (-886 |#1|) (-363)))) (-2780 (((-1232 (-886 |#1|)) $) NIL) (((-669 (-886 |#1|)) (-1232 $)) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| (-886 |#1|) (-363)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ (-886 |#1|)) NIL)) (-4243 (($ $) NIL (|has| (-886 |#1|) (-363))) (((-3 $ "failed") $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-4141 (((-751)) NIL)) (-1270 (((-1232 $)) NIL) (((-1232 $) (-897)) NIL)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-4104 (($ $) NIL (|has| (-886 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-886 |#1|) (-363)))) (-3768 (($ $) NIL (|has| (-886 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-886 |#1|) (-363)))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL) (($ $ (-886 |#1|)) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ $ (-886 |#1|)) NIL) (($ (-886 |#1|) $) NIL))) -(((-346 |#1| |#2|) (-13 (-324 (-886 |#1|)) (-10 -7 (-15 -3859 ((-1232 (-625 (-2 (|:| -3800 (-886 |#1|)) (|:| -3123 (-1093))))))) (-15 -3845 ((-669 (-886 |#1|)))) (-15 -3832 ((-751))))) (-897) (-897)) (T -346)) -((-3859 (*1 *2) (-12 (-5 *2 (-1232 (-625 (-2 (|:| -3800 (-886 *3)) (|:| -3123 (-1093)))))) (-5 *1 (-346 *3 *4)) (-14 *3 (-897)) (-14 *4 (-897)))) (-3845 (*1 *2) (-12 (-5 *2 (-669 (-886 *3))) (-5 *1 (-346 *3 *4)) (-14 *3 (-897)) (-14 *4 (-897)))) (-3832 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-346 *3 *4)) (-14 *3 (-897)) (-14 *4 (-897))))) -(-13 (-324 (-886 |#1|)) (-10 -7 (-15 -3859 ((-1232 (-625 (-2 (|:| -3800 (-886 |#1|)) (|:| -3123 (-1093))))))) (-15 -3845 ((-669 (-886 |#1|)))) (-15 -3832 ((-751))))) -((-1671 (((-112) $ $) 61)) (-3641 (((-112) $) 74)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 ((|#1| $) 92) (($ $ (-897)) 90 (|has| |#1| (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) 148 (|has| |#1| (-363)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-3832 (((-751)) 89)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) 162 (|has| |#1| (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) 112)) (-1895 ((|#1| $) 91)) (-2670 (($ (-1232 |#1|)) 58)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-363)))) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) 158 (|has| |#1| (-363)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) 149 (|has| |#1| (-363)))) (-3872 (((-112) $) NIL (|has| |#1| (-363)))) (-3554 (($ $ (-751)) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2951 (((-112) $) NIL)) (-2172 (((-897) $) NIL (|has| |#1| (-363))) (((-813 (-897)) $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3650 (((-112) $) NIL)) (-1280 (($) 98 (|has| |#1| (-363)))) (-4328 (((-112) $) 175 (|has| |#1| (-363)))) (-4209 ((|#1| $) 94) (($ $ (-897)) 93 (|has| |#1| (-363)))) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 |#1|) $) 189) (((-1145 $) $ (-897)) NIL (|has| |#1| (-363)))) (-4318 (((-897) $) 134 (|has| |#1| (-363)))) (-1378 (((-1145 |#1|) $) 73 (|has| |#1| (-363)))) (-1369 (((-1145 |#1|) $) 70 (|has| |#1| (-363))) (((-3 (-1145 |#1|) "failed") $ $) 82 (|has| |#1| (-363)))) (-1386 (($ $ (-1145 |#1|)) 69 (|has| |#1| (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 192)) (-2071 (($) NIL (|has| |#1| (-363)) CONST)) (-3123 (($ (-897)) 137 (|has| |#1| (-363)))) (-4143 (((-112) $) 108)) (-2831 (((-1093) $) NIL)) (-3859 (((-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093)))))) 83)) (-3845 (((-669 |#1|)) 87)) (-3212 (($) 96 (|has| |#1| (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) 150 (|has| |#1| (-363)))) (-3824 (((-413 $) $) NIL)) (-4130 (((-813 (-897))) NIL) (((-897)) 151)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-751) $) NIL (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3904 (((-133)) NIL)) (-3072 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4276 (((-813 (-897)) $) NIL) (((-897) $) 62)) (-3610 (((-1145 |#1|)) 152)) (-3798 (($) 133 (|has| |#1| (-363)))) (-1397 (($) NIL (|has| |#1| (-363)))) (-2780 (((-1232 |#1|) $) 106) (((-669 |#1|) (-1232 $)) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-1683 (((-839) $) 124) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ |#1|) 57)) (-4243 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4141 (((-751)) 156)) (-1270 (((-1232 $)) 172) (((-1232 $) (-897)) 101)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) 117 T CONST)) (-2100 (($) 33 T CONST)) (-4104 (($ $) 107 (|has| |#1| (-363))) (($ $ (-751)) 99 (|has| |#1| (-363)))) (-3768 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-2281 (((-112) $ $) 183)) (-2404 (($ $ $) 104) (($ $ |#1|) 105)) (-2393 (($ $) 177) (($ $ $) 181)) (-2382 (($ $ $) 179)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) 138)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 186) (($ $ $) 142) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) -(((-347 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -3859 ((-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))))) (-15 -3845 ((-669 |#1|))) (-15 -3832 ((-751))))) (-344) (-3 (-1145 |#1|) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))))) (T -347)) -((-3859 (*1 *2) (-12 (-5 *2 (-1232 (-625 (-2 (|:| -3800 *3) (|:| -3123 (-1093)))))) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1145 *3) *2)))) (-3845 (*1 *2) (-12 (-5 *2 (-669 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1145 *3) (-1232 (-625 (-2 (|:| -3800 *3) (|:| -3123 (-1093))))))))) (-3832 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1145 *3) (-1232 (-625 (-2 (|:| -3800 *3) (|:| -3123 (-1093)))))))))) -(-13 (-324 |#1|) (-10 -7 (-15 -3859 ((-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))))) (-15 -3845 ((-669 |#1|))) (-15 -3832 ((-751))))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 ((|#1| $) NIL) (($ $ (-897)) NIL (|has| |#1| (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| |#1| (-363)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-3832 (((-751)) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) NIL (|has| |#1| (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-2670 (($ (-1232 |#1|)) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)))) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| |#1| (-363)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) NIL (|has| |#1| (-363)))) (-3872 (((-112) $) NIL (|has| |#1| (-363)))) (-3554 (($ $ (-751)) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2951 (((-112) $) NIL)) (-2172 (((-897) $) NIL (|has| |#1| (-363))) (((-813 (-897)) $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3650 (((-112) $) NIL)) (-1280 (($) NIL (|has| |#1| (-363)))) (-4328 (((-112) $) NIL (|has| |#1| (-363)))) (-4209 ((|#1| $) NIL) (($ $ (-897)) NIL (|has| |#1| (-363)))) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 |#1|) $) NIL) (((-1145 $) $ (-897)) NIL (|has| |#1| (-363)))) (-4318 (((-897) $) NIL (|has| |#1| (-363)))) (-1378 (((-1145 |#1|) $) NIL (|has| |#1| (-363)))) (-1369 (((-1145 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1145 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-1386 (($ $ (-1145 |#1|)) NIL (|has| |#1| (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| |#1| (-363)) CONST)) (-3123 (($ (-897)) NIL (|has| |#1| (-363)))) (-4143 (((-112) $) NIL)) (-2831 (((-1093) $) NIL)) (-3859 (((-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093)))))) NIL)) (-3845 (((-669 |#1|)) NIL)) (-3212 (($) NIL (|has| |#1| (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| |#1| (-363)))) (-3824 (((-413 $) $) NIL)) (-4130 (((-813 (-897))) NIL) (((-897)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-751) $) NIL (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3904 (((-133)) NIL)) (-3072 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4276 (((-813 (-897)) $) NIL) (((-897) $) NIL)) (-3610 (((-1145 |#1|)) NIL)) (-3798 (($) NIL (|has| |#1| (-363)))) (-1397 (($) NIL (|has| |#1| (-363)))) (-2780 (((-1232 |#1|) $) NIL) (((-669 |#1|) (-1232 $)) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ |#1|) NIL)) (-4243 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4141 (((-751)) NIL)) (-1270 (((-1232 $)) NIL) (((-1232 $) (-897)) NIL)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-4104 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3768 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-348 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -3859 ((-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))))) (-15 -3845 ((-669 |#1|))) (-15 -3832 ((-751))))) (-344) (-897)) (T -348)) -((-3859 (*1 *2) (-12 (-5 *2 (-1232 (-625 (-2 (|:| -3800 *3) (|:| -3123 (-1093)))))) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-897)))) (-3845 (*1 *2) (-12 (-5 *2 (-669 *3)) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-897)))) (-3832 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-897))))) -(-13 (-324 |#1|) (-10 -7 (-15 -3859 ((-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))))) (-15 -3845 ((-669 |#1|))) (-15 -3832 ((-751))))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 (((-886 |#1|) $) NIL) (($ $ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| (-886 |#1|) (-363)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) NIL (|has| (-886 |#1|) (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-886 |#1|) "failed") $) NIL)) (-1895 (((-886 |#1|) $) NIL)) (-2670 (($ (-1232 (-886 |#1|))) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-886 |#1|) (-363)))) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-886 |#1|) (-363)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) NIL (|has| (-886 |#1|) (-363)))) (-3872 (((-112) $) NIL (|has| (-886 |#1|) (-363)))) (-3554 (($ $ (-751)) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363)))) (($ $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-2951 (((-112) $) NIL)) (-2172 (((-897) $) NIL (|has| (-886 |#1|) (-363))) (((-813 (-897)) $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-3650 (((-112) $) NIL)) (-1280 (($) NIL (|has| (-886 |#1|) (-363)))) (-4328 (((-112) $) NIL (|has| (-886 |#1|) (-363)))) (-4209 (((-886 |#1|) $) NIL) (($ $ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-4034 (((-3 $ "failed") $) NIL (|has| (-886 |#1|) (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 (-886 |#1|)) $) NIL) (((-1145 $) $ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-4318 (((-897) $) NIL (|has| (-886 |#1|) (-363)))) (-1378 (((-1145 (-886 |#1|)) $) NIL (|has| (-886 |#1|) (-363)))) (-1369 (((-1145 (-886 |#1|)) $) NIL (|has| (-886 |#1|) (-363))) (((-3 (-1145 (-886 |#1|)) "failed") $ $) NIL (|has| (-886 |#1|) (-363)))) (-1386 (($ $ (-1145 (-886 |#1|))) NIL (|has| (-886 |#1|) (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-886 |#1|) (-363)) CONST)) (-3123 (($ (-897)) NIL (|has| (-886 |#1|) (-363)))) (-4143 (((-112) $) NIL)) (-2831 (((-1093) $) NIL)) (-3212 (($) NIL (|has| (-886 |#1|) (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| (-886 |#1|) (-363)))) (-3824 (((-413 $) $) NIL)) (-4130 (((-813 (-897))) NIL) (((-897)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-751) $) NIL (|has| (-886 |#1|) (-363))) (((-3 (-751) "failed") $ $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-3904 (((-133)) NIL)) (-3072 (($ $) NIL (|has| (-886 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-886 |#1|) (-363)))) (-4276 (((-813 (-897)) $) NIL) (((-897) $) NIL)) (-3610 (((-1145 (-886 |#1|))) NIL)) (-3798 (($) NIL (|has| (-886 |#1|) (-363)))) (-1397 (($) NIL (|has| (-886 |#1|) (-363)))) (-2780 (((-1232 (-886 |#1|)) $) NIL) (((-669 (-886 |#1|)) (-1232 $)) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| (-886 |#1|) (-363)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ (-886 |#1|)) NIL)) (-4243 (($ $) NIL (|has| (-886 |#1|) (-363))) (((-3 $ "failed") $) NIL (-1523 (|has| (-886 |#1|) (-143)) (|has| (-886 |#1|) (-363))))) (-4141 (((-751)) NIL)) (-1270 (((-1232 $)) NIL) (((-1232 $) (-897)) NIL)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-4104 (($ $) NIL (|has| (-886 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-886 |#1|) (-363)))) (-3768 (($ $) NIL (|has| (-886 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-886 |#1|) (-363)))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL) (($ $ (-886 |#1|)) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ $ (-886 |#1|)) NIL) (($ (-886 |#1|) $) NIL))) -(((-349 |#1| |#2|) (-324 (-886 |#1|)) (-897) (-897)) (T -349)) -NIL -(-324 (-886 |#1|)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 ((|#1| $) NIL) (($ $ (-897)) NIL (|has| |#1| (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) 120 (|has| |#1| (-363)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) 140 (|has| |#1| (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) 93)) (-1895 ((|#1| $) 90)) (-2670 (($ (-1232 |#1|)) 85)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-363)))) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) 82 (|has| |#1| (-363)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) 42 (|has| |#1| (-363)))) (-3872 (((-112) $) NIL (|has| |#1| (-363)))) (-3554 (($ $ (-751)) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2951 (((-112) $) NIL)) (-2172 (((-897) $) NIL (|has| |#1| (-363))) (((-813 (-897)) $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3650 (((-112) $) NIL)) (-1280 (($) 121 (|has| |#1| (-363)))) (-4328 (((-112) $) 74 (|has| |#1| (-363)))) (-4209 ((|#1| $) 39) (($ $ (-897)) 43 (|has| |#1| (-363)))) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 |#1|) $) 65) (((-1145 $) $ (-897)) NIL (|has| |#1| (-363)))) (-4318 (((-897) $) 97 (|has| |#1| (-363)))) (-1378 (((-1145 |#1|) $) NIL (|has| |#1| (-363)))) (-1369 (((-1145 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1145 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-1386 (($ $ (-1145 |#1|)) NIL (|has| |#1| (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| |#1| (-363)) CONST)) (-3123 (($ (-897)) 95 (|has| |#1| (-363)))) (-4143 (((-112) $) 142)) (-2831 (((-1093) $) NIL)) (-3212 (($) 36 (|has| |#1| (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) 115 (|has| |#1| (-363)))) (-3824 (((-413 $) $) NIL)) (-4130 (((-813 (-897))) NIL) (((-897)) 139)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-751) $) NIL (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3904 (((-133)) NIL)) (-3072 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4276 (((-813 (-897)) $) NIL) (((-897) $) 59)) (-3610 (((-1145 |#1|)) 88)) (-3798 (($) 126 (|has| |#1| (-363)))) (-1397 (($) NIL (|has| |#1| (-363)))) (-2780 (((-1232 |#1|) $) 53) (((-669 |#1|) (-1232 $)) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-1683 (((-839) $) 138) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ |#1|) 87)) (-4243 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4141 (((-751)) 144)) (-1270 (((-1232 $)) 109) (((-1232 $) (-897)) 49)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) 111 T CONST)) (-2100 (($) 32 T CONST)) (-4104 (($ $) 68 (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3768 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-2281 (((-112) $ $) 107)) (-2404 (($ $ $) 99) (($ $ |#1|) 100)) (-2393 (($ $) 80) (($ $ $) 105)) (-2382 (($ $ $) 103)) (** (($ $ (-897)) NIL) (($ $ (-751)) 44) (($ $ (-552)) 130)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 78) (($ $ $) 56) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) -(((-350 |#1| |#2|) (-324 |#1|) (-344) (-1145 |#1|)) (T -350)) -NIL -(-324 |#1|) -((-4074 ((|#1| (-1145 |#2|)) 52))) -(((-351 |#1| |#2|) (-10 -7 (-15 -4074 (|#1| (-1145 |#2|)))) (-13 (-397) (-10 -7 (-15 -1683 (|#1| |#2|)) (-15 -4318 ((-897) |#1|)) (-15 -1270 ((-1232 |#1|) (-897))) (-15 -4104 (|#1| |#1|)))) (-344)) (T -351)) -((-4074 (*1 *2 *3) (-12 (-5 *3 (-1145 *4)) (-4 *4 (-344)) (-4 *2 (-13 (-397) (-10 -7 (-15 -1683 (*2 *4)) (-15 -4318 ((-897) *2)) (-15 -1270 ((-1232 *2) (-897))) (-15 -4104 (*2 *2))))) (-5 *1 (-351 *2 *4))))) -(-10 -7 (-15 -4074 (|#1| (-1145 |#2|)))) -((-4060 (((-934 (-1145 |#1|)) (-1145 |#1|)) 36)) (-3702 (((-1145 |#1|) (-897) (-897)) 113) (((-1145 |#1|) (-897)) 112)) (-3872 (((-112) (-1145 |#1|)) 84)) (-3899 (((-897) (-897)) 71)) (-3912 (((-897) (-897)) 74)) (-3886 (((-897) (-897)) 69)) (-4328 (((-112) (-1145 |#1|)) 88)) (-4000 (((-3 (-1145 |#1|) "failed") (-1145 |#1|)) 101)) (-4035 (((-3 (-1145 |#1|) "failed") (-1145 |#1|)) 104)) (-4023 (((-3 (-1145 |#1|) "failed") (-1145 |#1|)) 103)) (-4012 (((-3 (-1145 |#1|) "failed") (-1145 |#1|)) 102)) (-3988 (((-3 (-1145 |#1|) "failed") (-1145 |#1|)) 98)) (-4047 (((-1145 |#1|) (-1145 |#1|)) 62)) (-3939 (((-1145 |#1|) (-897)) 107)) (-3976 (((-1145 |#1|) (-897)) 110)) (-3964 (((-1145 |#1|) (-897)) 109)) (-3951 (((-1145 |#1|) (-897)) 108)) (-3926 (((-1145 |#1|) (-897)) 105))) -(((-352 |#1|) (-10 -7 (-15 -3872 ((-112) (-1145 |#1|))) (-15 -4328 ((-112) (-1145 |#1|))) (-15 -3886 ((-897) (-897))) (-15 -3899 ((-897) (-897))) (-15 -3912 ((-897) (-897))) (-15 -3926 ((-1145 |#1|) (-897))) (-15 -3939 ((-1145 |#1|) (-897))) (-15 -3951 ((-1145 |#1|) (-897))) (-15 -3964 ((-1145 |#1|) (-897))) (-15 -3976 ((-1145 |#1|) (-897))) (-15 -3988 ((-3 (-1145 |#1|) "failed") (-1145 |#1|))) (-15 -4000 ((-3 (-1145 |#1|) "failed") (-1145 |#1|))) (-15 -4012 ((-3 (-1145 |#1|) "failed") (-1145 |#1|))) (-15 -4023 ((-3 (-1145 |#1|) "failed") (-1145 |#1|))) (-15 -4035 ((-3 (-1145 |#1|) "failed") (-1145 |#1|))) (-15 -3702 ((-1145 |#1|) (-897))) (-15 -3702 ((-1145 |#1|) (-897) (-897))) (-15 -4047 ((-1145 |#1|) (-1145 |#1|))) (-15 -4060 ((-934 (-1145 |#1|)) (-1145 |#1|)))) (-344)) (T -352)) -((-4060 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-934 (-1145 *4))) (-5 *1 (-352 *4)) (-5 *3 (-1145 *4)))) (-4047 (*1 *2 *2) (-12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-3702 (*1 *2 *3 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-4035 (*1 *2 *2) (|partial| -12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-4023 (*1 *2 *2) (|partial| -12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-4012 (*1 *2 *2) (|partial| -12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-4000 (*1 *2 *2) (|partial| -12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-3988 (*1 *2 *2) (|partial| -12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3)))) (-3976 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3951 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3939 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3926 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4)) (-4 *4 (-344)))) (-3912 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-352 *3)) (-4 *3 (-344)))) (-3899 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-352 *3)) (-4 *3 (-344)))) (-3886 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-352 *3)) (-4 *3 (-344)))) (-4328 (*1 *2 *3) (-12 (-5 *3 (-1145 *4)) (-4 *4 (-344)) (-5 *2 (-112)) (-5 *1 (-352 *4)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-1145 *4)) (-4 *4 (-344)) (-5 *2 (-112)) (-5 *1 (-352 *4))))) -(-10 -7 (-15 -3872 ((-112) (-1145 |#1|))) (-15 -4328 ((-112) (-1145 |#1|))) (-15 -3886 ((-897) (-897))) (-15 -3899 ((-897) (-897))) (-15 -3912 ((-897) (-897))) (-15 -3926 ((-1145 |#1|) (-897))) (-15 -3939 ((-1145 |#1|) (-897))) (-15 -3951 ((-1145 |#1|) (-897))) (-15 -3964 ((-1145 |#1|) (-897))) (-15 -3976 ((-1145 |#1|) (-897))) (-15 -3988 ((-3 (-1145 |#1|) "failed") (-1145 |#1|))) (-15 -4000 ((-3 (-1145 |#1|) "failed") (-1145 |#1|))) (-15 -4012 ((-3 (-1145 |#1|) "failed") (-1145 |#1|))) (-15 -4023 ((-3 (-1145 |#1|) "failed") (-1145 |#1|))) (-15 -4035 ((-3 (-1145 |#1|) "failed") (-1145 |#1|))) (-15 -3702 ((-1145 |#1|) (-897))) (-15 -3702 ((-1145 |#1|) (-897) (-897))) (-15 -4047 ((-1145 |#1|) (-1145 |#1|))) (-15 -4060 ((-934 (-1145 |#1|)) (-1145 |#1|)))) -((-4264 (((-3 (-625 |#3|) "failed") (-625 |#3|) |#3|) 34))) -(((-353 |#1| |#2| |#3|) (-10 -7 (-15 -4264 ((-3 (-625 |#3|) "failed") (-625 |#3|) |#3|))) (-344) (-1208 |#1|) (-1208 |#2|)) (T -353)) -((-4264 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-625 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-1208 *4)) (-4 *4 (-344)) (-5 *1 (-353 *4 *5 *3))))) -(-10 -7 (-15 -4264 ((-3 (-625 |#3|) "failed") (-625 |#3|) |#3|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 ((|#1| $) NIL) (($ $ (-897)) NIL (|has| |#1| (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| |#1| (-363)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) NIL (|has| |#1| (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-2670 (($ (-1232 |#1|)) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)))) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| |#1| (-363)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) NIL (|has| |#1| (-363)))) (-3872 (((-112) $) NIL (|has| |#1| (-363)))) (-3554 (($ $ (-751)) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2951 (((-112) $) NIL)) (-2172 (((-897) $) NIL (|has| |#1| (-363))) (((-813 (-897)) $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3650 (((-112) $) NIL)) (-1280 (($) NIL (|has| |#1| (-363)))) (-4328 (((-112) $) NIL (|has| |#1| (-363)))) (-4209 ((|#1| $) NIL) (($ $ (-897)) NIL (|has| |#1| (-363)))) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 |#1|) $) NIL) (((-1145 $) $ (-897)) NIL (|has| |#1| (-363)))) (-4318 (((-897) $) NIL (|has| |#1| (-363)))) (-1378 (((-1145 |#1|) $) NIL (|has| |#1| (-363)))) (-1369 (((-1145 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1145 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-1386 (($ $ (-1145 |#1|)) NIL (|has| |#1| (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| |#1| (-363)) CONST)) (-3123 (($ (-897)) NIL (|has| |#1| (-363)))) (-4143 (((-112) $) NIL)) (-2831 (((-1093) $) NIL)) (-3212 (($) NIL (|has| |#1| (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| |#1| (-363)))) (-3824 (((-413 $) $) NIL)) (-4130 (((-813 (-897))) NIL) (((-897)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-751) $) NIL (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3904 (((-133)) NIL)) (-3072 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4276 (((-813 (-897)) $) NIL) (((-897) $) NIL)) (-3610 (((-1145 |#1|)) NIL)) (-3798 (($) NIL (|has| |#1| (-363)))) (-1397 (($) NIL (|has| |#1| (-363)))) (-2780 (((-1232 |#1|) $) NIL) (((-669 |#1|) (-1232 $)) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ |#1|) NIL)) (-4243 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4141 (((-751)) NIL)) (-1270 (((-1232 $)) NIL) (((-1232 $) (-897)) NIL)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-4104 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3768 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-354 |#1| |#2|) (-324 |#1|) (-344) (-897)) (T -354)) -NIL -(-324 |#1|) -((-1518 (((-112) (-625 (-928 |#1|))) 34)) (-1540 (((-625 (-928 |#1|)) (-625 (-928 |#1|))) 46)) (-1529 (((-3 (-625 (-928 |#1|)) "failed") (-625 (-928 |#1|))) 41))) -(((-355 |#1| |#2|) (-10 -7 (-15 -1518 ((-112) (-625 (-928 |#1|)))) (-15 -1529 ((-3 (-625 (-928 |#1|)) "failed") (-625 (-928 |#1|)))) (-15 -1540 ((-625 (-928 |#1|)) (-625 (-928 |#1|))))) (-446) (-625 (-1149))) (T -355)) -((-1540 (*1 *2 *2) (-12 (-5 *2 (-625 (-928 *3))) (-4 *3 (-446)) (-5 *1 (-355 *3 *4)) (-14 *4 (-625 (-1149))))) (-1529 (*1 *2 *2) (|partial| -12 (-5 *2 (-625 (-928 *3))) (-4 *3 (-446)) (-5 *1 (-355 *3 *4)) (-14 *4 (-625 (-1149))))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-446)) (-5 *2 (-112)) (-5 *1 (-355 *4 *5)) (-14 *5 (-625 (-1149)))))) -(-10 -7 (-15 -1518 ((-112) (-625 (-928 |#1|)))) (-15 -1529 ((-3 (-625 (-928 |#1|)) "failed") (-625 (-928 |#1|)))) (-15 -1540 ((-625 (-928 |#1|)) (-625 (-928 |#1|))))) -((-1671 (((-112) $ $) NIL)) (-2894 (((-751) $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) 15)) (-3461 ((|#1| $ (-552)) NIL)) (-3472 (((-552) $ (-552)) NIL)) (-1817 (($ (-1 |#1| |#1|) $) 32)) (-1827 (($ (-1 (-552) (-552)) $) 24)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 26)) (-2831 (((-1093) $) NIL)) (-3449 (((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-552)))) $) 28)) (-2410 (($ $ $) NIL)) (-3828 (($ $ $) NIL)) (-1683 (((-839) $) 38) (($ |#1|) NIL)) (-2100 (($) 9 T CONST)) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL) (($ |#1| (-552)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) -(((-356 |#1|) (-13 (-467) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-552))) (-15 -2894 ((-751) $)) (-15 -3472 ((-552) $ (-552))) (-15 -3461 (|#1| $ (-552))) (-15 -1827 ($ (-1 (-552) (-552)) $)) (-15 -1817 ($ (-1 |#1| |#1|) $)) (-15 -3449 ((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-552)))) $)))) (-1073)) (T -356)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1073)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1073)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-356 *2)) (-4 *2 (-1073)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-356 *3)) (-4 *3 (-1073)))) (-3472 (*1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-356 *3)) (-4 *3 (-1073)))) (-3461 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-356 *2)) (-4 *2 (-1073)))) (-1827 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-552) (-552))) (-5 *1 (-356 *3)) (-4 *3 (-1073)))) (-1817 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1073)) (-5 *1 (-356 *3)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 (-552))))) (-5 *1 (-356 *3)) (-4 *3 (-1073))))) -(-13 (-467) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-552))) (-15 -2894 ((-751) $)) (-15 -3472 ((-552) $ (-552))) (-15 -3461 (|#1| $ (-552))) (-15 -1827 ($ (-1 (-552) (-552)) $)) (-15 -1817 ($ (-1 |#1| |#1|) $)) (-15 -3449 ((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-552)))) $)))) -((-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 13)) (-3528 (($ $) 14)) (-1330 (((-413 $) $) 30)) (-2951 (((-112) $) 26)) (-4092 (($ $) 19)) (-2633 (($ $ $) 23) (($ (-625 $)) NIL)) (-3824 (((-413 $) $) 31)) (-2802 (((-3 $ "failed") $ $) 22)) (-2397 (((-751) $) 25)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 35)) (-3518 (((-112) $ $) 16)) (-2404 (($ $ $) 33))) -(((-357 |#1|) (-10 -8 (-15 -2404 (|#1| |#1| |#1|)) (-15 -4092 (|#1| |#1|)) (-15 -2951 ((-112) |#1|)) (-15 -1330 ((-413 |#1|) |#1|)) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -3481 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -2397 ((-751) |#1|)) (-15 -2633 (|#1| (-625 |#1|))) (-15 -2633 (|#1| |#1| |#1|)) (-15 -3518 ((-112) |#1| |#1|)) (-15 -3528 (|#1| |#1|)) (-15 -3537 ((-2 (|:| -3618 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#1|))) (-358)) (T -357)) -NIL -(-10 -8 (-15 -2404 (|#1| |#1| |#1|)) (-15 -4092 (|#1| |#1|)) (-15 -2951 ((-112) |#1|)) (-15 -1330 ((-413 |#1|) |#1|)) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -3481 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -2397 ((-751) |#1|)) (-15 -2633 (|#1| (-625 |#1|))) (-15 -2633 (|#1| |#1| |#1|)) (-15 -3518 ((-112) |#1| |#1|)) (-15 -3528 (|#1| |#1|)) (-15 -3537 ((-2 (|:| -3618 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 70)) (-1330 (((-413 $) $) 69)) (-2408 (((-112) $ $) 57)) (-3101 (($) 17 T CONST)) (-2851 (($ $ $) 53)) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-2951 (((-112) $) 68)) (-3650 (((-112) $) 30)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 67)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-3824 (((-413 $) $) 71)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-2397 (((-751) $) 56)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-402 (-552))) 63)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ $) 62)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 66)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 65) (($ (-402 (-552)) $) 64))) -(((-358) (-138)) (T -358)) -((-2404 (*1 *1 *1 *1) (-4 *1 (-358)))) -(-13 (-302) (-1190) (-239) (-10 -8 (-15 -2404 ($ $ $)) (-6 -4351) (-6 -4345))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-446) . T) ((-544) . T) ((-628 #0#) . T) ((-628 $) . T) ((-698 #0#) . T) ((-698 $) . T) ((-707) . T) ((-896) . T) ((-1031 #0#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) . T)) -((-1671 (((-112) $ $) 7)) (-4086 ((|#2| $ |#2|) 13)) (-4137 (($ $ (-1131)) 18)) (-4099 ((|#2| $) 14)) (-2508 (($ |#1|) 20) (($ |#1| (-1131)) 19)) (-1288 ((|#1| $) 16)) (-2883 (((-1131) $) 9)) (-4111 (((-1131) $) 15)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-4125 (($ $) 17)) (-2281 (((-112) $ $) 6))) -(((-359 |#1| |#2|) (-138) (-1073) (-1073)) (T -359)) -((-2508 (*1 *1 *2) (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))) (-2508 (*1 *1 *2 *3) (-12 (-5 *3 (-1131)) (-4 *1 (-359 *2 *4)) (-4 *2 (-1073)) (-4 *4 (-1073)))) (-4137 (*1 *1 *1 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-359 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)))) (-4125 (*1 *1 *1) (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))) (-1288 (*1 *2 *1) (-12 (-4 *1 (-359 *2 *3)) (-4 *3 (-1073)) (-4 *2 (-1073)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-5 *2 (-1131)))) (-4099 (*1 *2 *1) (-12 (-4 *1 (-359 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073)))) (-4086 (*1 *2 *1 *2) (-12 (-4 *1 (-359 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073))))) -(-13 (-1073) (-10 -8 (-15 -2508 ($ |t#1|)) (-15 -2508 ($ |t#1| (-1131))) (-15 -4137 ($ $ (-1131))) (-15 -4125 ($ $)) (-15 -1288 (|t#1| $)) (-15 -4111 ((-1131) $)) (-15 -4099 (|t#2| $)) (-15 -4086 (|t#2| $ |t#2|)))) -(((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-4086 ((|#1| $ |#1|) 30)) (-4137 (($ $ (-1131)) 22)) (-4076 (((-3 |#1| "failed") $) 29)) (-4099 ((|#1| $) 27)) (-2508 (($ (-383)) 21) (($ (-383) (-1131)) 20)) (-1288 (((-383) $) 24)) (-2883 (((-1131) $) NIL)) (-4111 (((-1131) $) 25)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 19)) (-4125 (($ $) 23)) (-2281 (((-112) $ $) 18))) -(((-360 |#1|) (-13 (-359 (-383) |#1|) (-10 -8 (-15 -4076 ((-3 |#1| "failed") $)))) (-1073)) (T -360)) -((-4076 (*1 *2 *1) (|partial| -12 (-5 *1 (-360 *2)) (-4 *2 (-1073))))) -(-13 (-359 (-383) |#1|) (-10 -8 (-15 -4076 ((-3 |#1| "failed") $)))) -((-2770 (((-1232 (-669 |#2|)) (-1232 $)) 61)) (-2629 (((-669 |#2|) (-1232 $)) 120)) (-3192 ((|#2| $) 32)) (-2612 (((-669 |#2|) $ (-1232 $)) 123)) (-3598 (((-3 $ "failed") $) 75)) (-3174 ((|#2| $) 35)) (-4175 (((-1145 |#2|) $) 83)) (-2648 ((|#2| (-1232 $)) 106)) (-3159 (((-1145 |#2|) $) 28)) (-4303 (((-112)) 100)) (-2670 (($ (-1232 |#2|) (-1232 $)) 113)) (-4174 (((-3 $ "failed") $) 79)) (-4228 (((-112)) 95)) (-4207 (((-112)) 90)) (-4250 (((-112)) 53)) (-2640 (((-669 |#2|) (-1232 $)) 118)) (-3199 ((|#2| $) 31)) (-2619 (((-669 |#2|) $ (-1232 $)) 122)) (-3609 (((-3 $ "failed") $) 73)) (-3182 ((|#2| $) 34)) (-4187 (((-1145 |#2|) $) 82)) (-2658 ((|#2| (-1232 $)) 104)) (-3166 (((-1145 |#2|) $) 26)) (-4312 (((-112)) 99)) (-4218 (((-112)) 92)) (-4239 (((-112)) 51)) (-4261 (((-112)) 87)) (-4293 (((-112)) 101)) (-2780 (((-1232 |#2|) $ (-1232 $)) NIL) (((-669 |#2|) (-1232 $) (-1232 $)) 111)) (-3148 (((-112)) 97)) (-4197 (((-625 (-1232 |#2|))) 86)) (-4333 (((-112)) 98)) (-3137 (((-112)) 96)) (-4322 (((-112)) 46)) (-4283 (((-112)) 102))) -(((-361 |#1| |#2|) (-10 -8 (-15 -4175 ((-1145 |#2|) |#1|)) (-15 -4187 ((-1145 |#2|) |#1|)) (-15 -4197 ((-625 (-1232 |#2|)))) (-15 -3598 ((-3 |#1| "failed") |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1|)) (-15 -4174 ((-3 |#1| "failed") |#1|)) (-15 -4207 ((-112))) (-15 -4218 ((-112))) (-15 -4228 ((-112))) (-15 -4239 ((-112))) (-15 -4250 ((-112))) (-15 -4261 ((-112))) (-15 -4283 ((-112))) (-15 -4293 ((-112))) (-15 -4303 ((-112))) (-15 -4312 ((-112))) (-15 -4322 ((-112))) (-15 -4333 ((-112))) (-15 -3137 ((-112))) (-15 -3148 ((-112))) (-15 -3159 ((-1145 |#2|) |#1|)) (-15 -3166 ((-1145 |#2|) |#1|)) (-15 -2629 ((-669 |#2|) (-1232 |#1|))) (-15 -2640 ((-669 |#2|) (-1232 |#1|))) (-15 -2648 (|#2| (-1232 |#1|))) (-15 -2658 (|#2| (-1232 |#1|))) (-15 -2670 (|#1| (-1232 |#2|) (-1232 |#1|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1| (-1232 |#1|))) (-15 -3174 (|#2| |#1|)) (-15 -3182 (|#2| |#1|)) (-15 -3192 (|#2| |#1|)) (-15 -3199 (|#2| |#1|)) (-15 -2612 ((-669 |#2|) |#1| (-1232 |#1|))) (-15 -2619 ((-669 |#2|) |#1| (-1232 |#1|))) (-15 -2770 ((-1232 (-669 |#2|)) (-1232 |#1|)))) (-362 |#2|) (-170)) (T -361)) -((-3148 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-3137 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4333 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4322 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4312 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4303 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4293 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4283 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4261 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4250 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4239 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4228 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4218 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4207 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-4197 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-625 (-1232 *4))) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4))))) -(-10 -8 (-15 -4175 ((-1145 |#2|) |#1|)) (-15 -4187 ((-1145 |#2|) |#1|)) (-15 -4197 ((-625 (-1232 |#2|)))) (-15 -3598 ((-3 |#1| "failed") |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1|)) (-15 -4174 ((-3 |#1| "failed") |#1|)) (-15 -4207 ((-112))) (-15 -4218 ((-112))) (-15 -4228 ((-112))) (-15 -4239 ((-112))) (-15 -4250 ((-112))) (-15 -4261 ((-112))) (-15 -4283 ((-112))) (-15 -4293 ((-112))) (-15 -4303 ((-112))) (-15 -4312 ((-112))) (-15 -4322 ((-112))) (-15 -4333 ((-112))) (-15 -3137 ((-112))) (-15 -3148 ((-112))) (-15 -3159 ((-1145 |#2|) |#1|)) (-15 -3166 ((-1145 |#2|) |#1|)) (-15 -2629 ((-669 |#2|) (-1232 |#1|))) (-15 -2640 ((-669 |#2|) (-1232 |#1|))) (-15 -2648 (|#2| (-1232 |#1|))) (-15 -2658 (|#2| (-1232 |#1|))) (-15 -2670 (|#1| (-1232 |#2|) (-1232 |#1|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1| (-1232 |#1|))) (-15 -3174 (|#2| |#1|)) (-15 -3182 (|#2| |#1|)) (-15 -3192 (|#2| |#1|)) (-15 -3199 (|#2| |#1|)) (-15 -2612 ((-669 |#2|) |#1| (-1232 |#1|))) (-15 -2619 ((-669 |#2|) |#1| (-1232 |#1|))) (-15 -2770 ((-1232 (-669 |#2|)) (-1232 |#1|)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3618 (((-3 $ "failed")) 37 (|has| |#1| (-544)))) (-2077 (((-3 $ "failed") $ $) 19)) (-2770 (((-1232 (-669 |#1|)) (-1232 $)) 78)) (-3208 (((-1232 $)) 81)) (-3101 (($) 17 T CONST)) (-1456 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) 40 (|has| |#1| (-544)))) (-4152 (((-3 $ "failed")) 38 (|has| |#1| (-544)))) (-2629 (((-669 |#1|) (-1232 $)) 65)) (-3192 ((|#1| $) 74)) (-2612 (((-669 |#1|) $ (-1232 $)) 76)) (-3598 (((-3 $ "failed") $) 45 (|has| |#1| (-544)))) (-3629 (($ $ (-897)) 28)) (-3174 ((|#1| $) 72)) (-4175 (((-1145 |#1|) $) 42 (|has| |#1| (-544)))) (-2648 ((|#1| (-1232 $)) 67)) (-3159 (((-1145 |#1|) $) 63)) (-4303 (((-112)) 57)) (-2670 (($ (-1232 |#1|) (-1232 $)) 69)) (-4174 (((-3 $ "failed") $) 47 (|has| |#1| (-544)))) (-3442 (((-897)) 80)) (-4272 (((-112)) 54)) (-2712 (($ $ (-897)) 33)) (-4228 (((-112)) 50)) (-4207 (((-112)) 48)) (-4250 (((-112)) 52)) (-1467 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) 41 (|has| |#1| (-544)))) (-4164 (((-3 $ "failed")) 39 (|has| |#1| (-544)))) (-2640 (((-669 |#1|) (-1232 $)) 66)) (-3199 ((|#1| $) 75)) (-2619 (((-669 |#1|) $ (-1232 $)) 77)) (-3609 (((-3 $ "failed") $) 46 (|has| |#1| (-544)))) (-3619 (($ $ (-897)) 29)) (-3182 ((|#1| $) 73)) (-4187 (((-1145 |#1|) $) 43 (|has| |#1| (-544)))) (-2658 ((|#1| (-1232 $)) 68)) (-3166 (((-1145 |#1|) $) 64)) (-4312 (((-112)) 58)) (-2883 (((-1131) $) 9)) (-4218 (((-112)) 49)) (-4239 (((-112)) 51)) (-4261 (((-112)) 53)) (-2831 (((-1093) $) 10)) (-4293 (((-112)) 56)) (-2780 (((-1232 |#1|) $ (-1232 $)) 71) (((-669 |#1|) (-1232 $) (-1232 $)) 70)) (-2533 (((-625 (-928 |#1|)) (-1232 $)) 79)) (-3828 (($ $ $) 25)) (-3148 (((-112)) 62)) (-1683 (((-839) $) 11)) (-4197 (((-625 (-1232 |#1|))) 44 (|has| |#1| (-544)))) (-3842 (($ $ $ $) 26)) (-4333 (((-112)) 60)) (-3818 (($ $ $) 24)) (-3137 (((-112)) 61)) (-4322 (((-112)) 59)) (-4283 (((-112)) 55)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 30)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-362 |#1|) (-138) (-170)) (T -362)) -((-3208 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1232 *1)) (-4 *1 (-362 *3)))) (-3442 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-897)))) (-2533 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-625 (-928 *4))))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-1232 (-669 *4))))) (-2619 (*1 *2 *1 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-2780 (*1 *2 *1 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-1232 *4)))) (-2780 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-2670 (*1 *1 *2 *3) (-12 (-5 *2 (-1232 *4)) (-5 *3 (-1232 *1)) (-4 *4 (-170)) (-4 *1 (-362 *4)))) (-2658 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-2640 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-2629 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-3166 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1145 *3)))) (-3159 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1145 *3)))) (-3148 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3137 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4333 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4322 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4312 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4303 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4293 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4283 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4272 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4261 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4250 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4239 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4228 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4218 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4207 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-4174 (*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-544)))) (-3609 (*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-544)))) (-3598 (*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-544)))) (-4197 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-544)) (-5 *2 (-625 (-1232 *3))))) (-4187 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-544)) (-5 *2 (-1145 *3)))) (-4175 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-544)) (-5 *2 (-1145 *3)))) (-1467 (*1 *2) (|partial| -12 (-4 *3 (-544)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1270 (-625 *1)))) (-4 *1 (-362 *3)))) (-1456 (*1 *2) (|partial| -12 (-4 *3 (-544)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1270 (-625 *1)))) (-4 *1 (-362 *3)))) (-4164 (*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-544)) (-4 *2 (-170)))) (-4152 (*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-544)) (-4 *2 (-170)))) (-3618 (*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-544)) (-4 *2 (-170))))) -(-13 (-725 |t#1|) (-10 -8 (-15 -3208 ((-1232 $))) (-15 -3442 ((-897))) (-15 -2533 ((-625 (-928 |t#1|)) (-1232 $))) (-15 -2770 ((-1232 (-669 |t#1|)) (-1232 $))) (-15 -2619 ((-669 |t#1|) $ (-1232 $))) (-15 -2612 ((-669 |t#1|) $ (-1232 $))) (-15 -3199 (|t#1| $)) (-15 -3192 (|t#1| $)) (-15 -3182 (|t#1| $)) (-15 -3174 (|t#1| $)) (-15 -2780 ((-1232 |t#1|) $ (-1232 $))) (-15 -2780 ((-669 |t#1|) (-1232 $) (-1232 $))) (-15 -2670 ($ (-1232 |t#1|) (-1232 $))) (-15 -2658 (|t#1| (-1232 $))) (-15 -2648 (|t#1| (-1232 $))) (-15 -2640 ((-669 |t#1|) (-1232 $))) (-15 -2629 ((-669 |t#1|) (-1232 $))) (-15 -3166 ((-1145 |t#1|) $)) (-15 -3159 ((-1145 |t#1|) $)) (-15 -3148 ((-112))) (-15 -3137 ((-112))) (-15 -4333 ((-112))) (-15 -4322 ((-112))) (-15 -4312 ((-112))) (-15 -4303 ((-112))) (-15 -4293 ((-112))) (-15 -4283 ((-112))) (-15 -4272 ((-112))) (-15 -4261 ((-112))) (-15 -4250 ((-112))) (-15 -4239 ((-112))) (-15 -4228 ((-112))) (-15 -4218 ((-112))) (-15 -4207 ((-112))) (IF (|has| |t#1| (-544)) (PROGN (-15 -4174 ((-3 $ "failed") $)) (-15 -3609 ((-3 $ "failed") $)) (-15 -3598 ((-3 $ "failed") $)) (-15 -4197 ((-625 (-1232 |t#1|)))) (-15 -4187 ((-1145 |t#1|) $)) (-15 -4175 ((-1145 |t#1|) $)) (-15 -1467 ((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed"))) (-15 -1456 ((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed"))) (-15 -4164 ((-3 $ "failed"))) (-15 -4152 ((-3 $ "failed"))) (-15 -3618 ((-3 $ "failed"))) (-6 -4350)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-698 |#1|) . T) ((-701) . T) ((-725 |#1|) . T) ((-742) . T) ((-1031 |#1|) . T) ((-1073) . T)) -((-1671 (((-112) $ $) 7)) (-2894 (((-751)) 16)) (-3702 (($) 13)) (-4318 (((-897) $) 14)) (-2883 (((-1131) $) 9)) (-3123 (($ (-897)) 15)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 6))) -(((-363) (-138)) (T -363)) -((-2894 (*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-751)))) (-3123 (*1 *1 *2) (-12 (-5 *2 (-897)) (-4 *1 (-363)))) (-4318 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-897)))) (-3702 (*1 *1) (-4 *1 (-363)))) -(-13 (-1073) (-10 -8 (-15 -2894 ((-751))) (-15 -3123 ($ (-897))) (-15 -4318 ((-897) $)) (-15 -3702 ($)))) -(((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-2570 (((-669 |#2|) (-1232 $)) 40)) (-2670 (($ (-1232 |#2|) (-1232 $)) 34)) (-2559 (((-669 |#2|) $ (-1232 $)) 42)) (-3217 ((|#2| (-1232 $)) 13)) (-2780 (((-1232 |#2|) $ (-1232 $)) NIL) (((-669 |#2|) (-1232 $) (-1232 $)) 25))) -(((-364 |#1| |#2| |#3|) (-10 -8 (-15 -2570 ((-669 |#2|) (-1232 |#1|))) (-15 -3217 (|#2| (-1232 |#1|))) (-15 -2670 (|#1| (-1232 |#2|) (-1232 |#1|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1| (-1232 |#1|))) (-15 -2559 ((-669 |#2|) |#1| (-1232 |#1|)))) (-365 |#2| |#3|) (-170) (-1208 |#2|)) (T -364)) -NIL -(-10 -8 (-15 -2570 ((-669 |#2|) (-1232 |#1|))) (-15 -3217 (|#2| (-1232 |#1|))) (-15 -2670 (|#1| (-1232 |#2|) (-1232 |#1|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1| (-1232 |#1|))) (-15 -2559 ((-669 |#2|) |#1| (-1232 |#1|)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2570 (((-669 |#1|) (-1232 $)) 44)) (-1650 ((|#1| $) 50)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2670 (($ (-1232 |#1|) (-1232 $)) 46)) (-2559 (((-669 |#1|) $ (-1232 $)) 51)) (-4174 (((-3 $ "failed") $) 32)) (-3442 (((-897)) 52)) (-3650 (((-112) $) 30)) (-4209 ((|#1| $) 49)) (-1291 ((|#2| $) 42 (|has| |#1| (-358)))) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3217 ((|#1| (-1232 $)) 45)) (-2780 (((-1232 |#1|) $ (-1232 $)) 48) (((-669 |#1|) (-1232 $) (-1232 $)) 47)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 35)) (-4243 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-3974 ((|#2| $) 43)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-365 |#1| |#2|) (-138) (-170) (-1208 |t#1|)) (T -365)) -((-3442 (*1 *2) (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1208 *3)) (-5 *2 (-897)))) (-2559 (*1 *2 *1 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1208 *4)) (-5 *2 (-669 *4)))) (-1650 (*1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1208 *2)) (-4 *2 (-170)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1208 *2)) (-4 *2 (-170)))) (-2780 (*1 *2 *1 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1208 *4)) (-5 *2 (-1232 *4)))) (-2780 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1208 *4)) (-5 *2 (-669 *4)))) (-2670 (*1 *1 *2 *3) (-12 (-5 *2 (-1232 *4)) (-5 *3 (-1232 *1)) (-4 *4 (-170)) (-4 *1 (-365 *4 *5)) (-4 *5 (-1208 *4)))) (-3217 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-365 *2 *4)) (-4 *4 (-1208 *2)) (-4 *2 (-170)))) (-2570 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1208 *4)) (-5 *2 (-669 *4)))) (-3974 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1208 *3)))) (-1291 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *3 (-358)) (-4 *2 (-1208 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3442 ((-897))) (-15 -2559 ((-669 |t#1|) $ (-1232 $))) (-15 -1650 (|t#1| $)) (-15 -4209 (|t#1| $)) (-15 -2780 ((-1232 |t#1|) $ (-1232 $))) (-15 -2780 ((-669 |t#1|) (-1232 $) (-1232 $))) (-15 -2670 ($ (-1232 |t#1|) (-1232 $))) (-15 -3217 (|t#1| (-1232 $))) (-15 -2570 ((-669 |t#1|) (-1232 $))) (-15 -3974 (|t#2| $)) (IF (|has| |t#1| (-358)) (-15 -1291 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) . T) ((-707) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-1454 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2163 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-1996 ((|#4| (-1 |#3| |#1|) |#2|) 21))) -(((-366 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1996 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2163 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1454 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1186) (-368 |#1|) (-1186) (-368 |#3|)) (T -366)) -((-1454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1186)) (-4 *5 (-1186)) (-4 *2 (-368 *5)) (-5 *1 (-366 *6 *4 *5 *2)) (-4 *4 (-368 *6)))) (-2163 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1186)) (-4 *2 (-1186)) (-5 *1 (-366 *5 *4 *2 *6)) (-4 *4 (-368 *5)) (-4 *6 (-368 *2)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-4 *2 (-368 *6)) (-5 *1 (-366 *5 *4 *6 *2)) (-4 *4 (-368 *5))))) -(-10 -7 (-15 -1996 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2163 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1454 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-3237 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3218 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1800 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2306 (($ $) 25)) (-2483 (((-552) (-1 (-112) |#2|) $) NIL) (((-552) |#2| $) 11) (((-552) |#2| $ (-552)) NIL)) (-3280 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-367 |#1| |#2|) (-10 -8 (-15 -3218 (|#1| |#1|)) (-15 -3218 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3237 ((-112) |#1|)) (-15 -1800 (|#1| |#1|)) (-15 -3280 (|#1| |#1| |#1|)) (-15 -2483 ((-552) |#2| |#1| (-552))) (-15 -2483 ((-552) |#2| |#1|)) (-15 -2483 ((-552) (-1 (-112) |#2|) |#1|)) (-15 -3237 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1800 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2306 (|#1| |#1|)) (-15 -3280 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-368 |#2|) (-1186)) (T -367)) -NIL -(-10 -8 (-15 -3218 (|#1| |#1|)) (-15 -3218 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3237 ((-112) |#1|)) (-15 -1800 (|#1| |#1|)) (-15 -3280 (|#1| |#1| |#1|)) (-15 -2483 ((-552) |#2| |#1| (-552))) (-15 -2483 ((-552) |#2| |#1|)) (-15 -2483 ((-552) (-1 (-112) |#2|) |#1|)) (-15 -3237 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1800 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2306 (|#1| |#1|)) (-15 -3280 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-2509 (((-1237) $ (-552) (-552)) 40 (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| |#1| (-827)) (|has| $ (-6 -4354))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) 8)) (-1851 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) 58 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-1883 (($ $) 90 (|has| $ (-6 -4354)))) (-2306 (($ $) 100)) (-2959 (($ $) 78 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#1| $) 77 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 51)) (-2483 (((-552) (-1 (-112) |#1|) $) 97) (((-552) |#1| $) 96 (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) 95 (|has| |#1| (-1073)))) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2183 (($ (-751) |#1|) 69)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 43 (|has| (-552) (-827)))) (-3658 (($ $ $) 87 (|has| |#1| (-827)))) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 44 (|has| (-552) (-827)))) (-3332 (($ $ $) 86 (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-2554 (((-625 (-552)) $) 46)) (-2564 (((-112) (-552) $) 47)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2924 ((|#1| $) 42 (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2518 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1199 (-552))) 63)) (-4001 (($ $ (-552)) 62) (($ $ (-1199 (-552))) 61)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3228 (($ $ $ (-552)) 91 (|has| $ (-6 -4354)))) (-1871 (($ $) 13)) (-2042 (((-528) $) 79 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 70)) (-3402 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-625 $)) 65)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) 84 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 83 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-2334 (((-112) $ $) 85 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 82 (|has| |#1| (-827)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-368 |#1|) (-138) (-1186)) (T -368)) -((-3280 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-368 *3)) (-4 *3 (-1186)))) (-2306 (*1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1186)))) (-1800 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-368 *3)) (-4 *3 (-1186)))) (-3237 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-368 *4)) (-4 *4 (-1186)) (-5 *2 (-112)))) (-2483 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-368 *4)) (-4 *4 (-1186)) (-5 *2 (-552)))) (-2483 (*1 *2 *3 *1) (-12 (-4 *1 (-368 *3)) (-4 *3 (-1186)) (-4 *3 (-1073)) (-5 *2 (-552)))) (-2483 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-368 *3)) (-4 *3 (-1186)) (-4 *3 (-1073)))) (-3280 (*1 *1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1186)) (-4 *2 (-827)))) (-1800 (*1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1186)) (-4 *2 (-827)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-368 *3)) (-4 *3 (-1186)) (-4 *3 (-827)) (-5 *2 (-112)))) (-3228 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-552)) (|has| *1 (-6 -4354)) (-4 *1 (-368 *3)) (-4 *3 (-1186)))) (-1883 (*1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-368 *2)) (-4 *2 (-1186)))) (-3218 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4354)) (-4 *1 (-368 *3)) (-4 *3 (-1186)))) (-3218 (*1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-368 *2)) (-4 *2 (-1186)) (-4 *2 (-827))))) -(-13 (-631 |t#1|) (-10 -8 (-6 -4353) (-15 -3280 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2306 ($ $)) (-15 -1800 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -3237 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -2483 ((-552) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1073)) (PROGN (-15 -2483 ((-552) |t#1| $)) (-15 -2483 ((-552) |t#1| $ (-552)))) |%noBranch|) (IF (|has| |t#1| (-827)) (PROGN (-6 (-827)) (-15 -3280 ($ $ $)) (-15 -1800 ($ $)) (-15 -3237 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4354)) (PROGN (-15 -3228 ($ $ $ (-552))) (-15 -1883 ($ $)) (-15 -3218 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-827)) (-15 -3218 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-101) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827))) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-281 #0=(-552) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-588 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-631 |#1|) . T) ((-827) |has| |#1| (-827)) ((-1073) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827))) ((-1186) . T)) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3202 (((-625 |#1|) $) 32)) (-4266 (($ $ (-751)) 33)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4211 (((-1256 |#1| |#2|) (-1256 |#1| |#2|) $) 36)) (-4191 (($ $) 34)) (-4222 (((-1256 |#1| |#2|) (-1256 |#1| |#2|) $) 37)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4073 (($ $ |#1| $) 31) (($ $ (-625 |#1|) (-625 $)) 30)) (-4276 (((-751) $) 38)) (-1695 (($ $ $) 29)) (-1683 (((-839) $) 11) (($ |#1|) 41) (((-1247 |#1| |#2|) $) 40) (((-1256 |#1| |#2|) $) 39)) (-3340 ((|#2| (-1256 |#1| |#2|) $) 42)) (-2089 (($) 18 T CONST)) (-3246 (($ (-652 |#1|)) 35)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#2|) 28 (|has| |#2| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) -(((-369 |#1| |#2|) (-138) (-827) (-170)) (T -369)) -((-3340 (*1 *2 *3 *1) (-12 (-5 *3 (-1256 *4 *2)) (-4 *1 (-369 *4 *2)) (-4 *4 (-827)) (-4 *2 (-170)))) (-1683 (*1 *1 *2) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170)))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *2 (-1247 *3 *4)))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *2 (-1256 *3 *4)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *2 (-751)))) (-4222 (*1 *2 *2 *1) (-12 (-5 *2 (-1256 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-4211 (*1 *2 *2 *1) (-12 (-5 *2 (-1256 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-3246 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-4 *1 (-369 *3 *4)) (-4 *4 (-170)))) (-4191 (*1 *1 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170)))) (-4266 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *2 (-625 *3)))) (-4073 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170)))) (-4073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *3 (-625 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-827)) (-4 *5 (-170))))) -(-13 (-616 |t#2|) (-10 -8 (-15 -3340 (|t#2| (-1256 |t#1| |t#2|) $)) (-15 -1683 ($ |t#1|)) (-15 -1683 ((-1247 |t#1| |t#2|) $)) (-15 -1683 ((-1256 |t#1| |t#2|) $)) (-15 -4276 ((-751) $)) (-15 -4222 ((-1256 |t#1| |t#2|) (-1256 |t#1| |t#2|) $)) (-15 -4211 ((-1256 |t#1| |t#2|) (-1256 |t#1| |t#2|) $)) (-15 -3246 ($ (-652 |t#1|))) (-15 -4191 ($ $)) (-15 -4266 ($ $ (-751))) (-15 -3202 ((-625 |t#1|) $)) (-15 -4073 ($ $ |t#1| $)) (-15 -4073 ($ $ (-625 |t#1|) (-625 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#2|) . T) ((-616 |#2|) . T) ((-698 |#2|) . T) ((-1031 |#2|) . T) ((-1073) . T)) -((-3273 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 24)) (-3255 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3264 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22))) -(((-370 |#1| |#2|) (-10 -7 (-15 -3255 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3264 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3273 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1186) (-13 (-368 |#1|) (-10 -7 (-6 -4354)))) (T -370)) -((-3273 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1186)) (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4354)))))) (-3264 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1186)) (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4354)))))) (-3255 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1186)) (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4354))))))) -(-10 -7 (-15 -3255 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3264 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3273 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-1794 (((-669 |#2|) (-669 $)) NIL) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 22) (((-669 (-552)) (-669 $)) 14))) -(((-371 |#1| |#2|) (-10 -8 (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-669 |#2|) (-669 |#1|)))) (-372 |#2|) (-1025)) (T -371)) -NIL -(-10 -8 (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-669 |#2|) (-669 |#1|)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-1794 (((-669 |#1|) (-669 $)) 34) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 33) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 41 (|has| |#1| (-621 (-552)))) (((-669 (-552)) (-669 $)) 40 (|has| |#1| (-621 (-552))))) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-372 |#1|) (-138) (-1025)) (T -372)) -NIL -(-13 (-621 |t#1|) (-10 -7 (IF (|has| |t#1| (-621 (-552))) (-6 (-621 (-552))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 $) . T) ((-621 (-552)) |has| |#1| (-621 (-552))) ((-621 |#1|) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-3359 (((-625 (-289 (-928 (-167 |#1|)))) (-289 (-402 (-928 (-167 (-552))))) |#1|) 51) (((-625 (-289 (-928 (-167 |#1|)))) (-402 (-928 (-167 (-552)))) |#1|) 50) (((-625 (-625 (-289 (-928 (-167 |#1|))))) (-625 (-289 (-402 (-928 (-167 (-552)))))) |#1|) 47) (((-625 (-625 (-289 (-928 (-167 |#1|))))) (-625 (-402 (-928 (-167 (-552))))) |#1|) 41)) (-3368 (((-625 (-625 (-167 |#1|))) (-625 (-402 (-928 (-167 (-552))))) (-625 (-1149)) |#1|) 30) (((-625 (-167 |#1|)) (-402 (-928 (-167 (-552)))) |#1|) 18))) -(((-373 |#1|) (-10 -7 (-15 -3359 ((-625 (-625 (-289 (-928 (-167 |#1|))))) (-625 (-402 (-928 (-167 (-552))))) |#1|)) (-15 -3359 ((-625 (-625 (-289 (-928 (-167 |#1|))))) (-625 (-289 (-402 (-928 (-167 (-552)))))) |#1|)) (-15 -3359 ((-625 (-289 (-928 (-167 |#1|)))) (-402 (-928 (-167 (-552)))) |#1|)) (-15 -3359 ((-625 (-289 (-928 (-167 |#1|)))) (-289 (-402 (-928 (-167 (-552))))) |#1|)) (-15 -3368 ((-625 (-167 |#1|)) (-402 (-928 (-167 (-552)))) |#1|)) (-15 -3368 ((-625 (-625 (-167 |#1|))) (-625 (-402 (-928 (-167 (-552))))) (-625 (-1149)) |#1|))) (-13 (-358) (-825))) (T -373)) -((-3368 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 (-402 (-928 (-167 (-552)))))) (-5 *4 (-625 (-1149))) (-5 *2 (-625 (-625 (-167 *5)))) (-5 *1 (-373 *5)) (-4 *5 (-13 (-358) (-825))))) (-3368 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 (-167 (-552))))) (-5 *2 (-625 (-167 *4))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-825))))) (-3359 (*1 *2 *3 *4) (-12 (-5 *3 (-289 (-402 (-928 (-167 (-552)))))) (-5 *2 (-625 (-289 (-928 (-167 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-825))))) (-3359 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 (-167 (-552))))) (-5 *2 (-625 (-289 (-928 (-167 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-825))))) (-3359 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-289 (-402 (-928 (-167 (-552))))))) (-5 *2 (-625 (-625 (-289 (-928 (-167 *4)))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-825))))) (-3359 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-402 (-928 (-167 (-552)))))) (-5 *2 (-625 (-625 (-289 (-928 (-167 *4)))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-825)))))) -(-10 -7 (-15 -3359 ((-625 (-625 (-289 (-928 (-167 |#1|))))) (-625 (-402 (-928 (-167 (-552))))) |#1|)) (-15 -3359 ((-625 (-625 (-289 (-928 (-167 |#1|))))) (-625 (-289 (-402 (-928 (-167 (-552)))))) |#1|)) (-15 -3359 ((-625 (-289 (-928 (-167 |#1|)))) (-402 (-928 (-167 (-552)))) |#1|)) (-15 -3359 ((-625 (-289 (-928 (-167 |#1|)))) (-289 (-402 (-928 (-167 (-552))))) |#1|)) (-15 -3368 ((-625 (-167 |#1|)) (-402 (-928 (-167 (-552)))) |#1|)) (-15 -3368 ((-625 (-625 (-167 |#1|))) (-625 (-402 (-928 (-167 (-552))))) (-625 (-1149)) |#1|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 33)) (-4177 (((-552) $) 55)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2162 (($ $) 110)) (-3728 (($ $) 82)) (-3604 (($ $) 71)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-3837 (($ $) 44)) (-2408 (((-112) $ $) NIL)) (-3710 (($ $) 80)) (-3581 (($ $) 69)) (-4127 (((-552) $) 64)) (-3420 (($ $ (-552)) 62)) (-3749 (($ $) NIL)) (-3627 (($ $) NIL)) (-3101 (($) NIL T CONST)) (-4154 (($ $) 112)) (-1893 (((-3 (-552) "failed") $) 189) (((-3 (-402 (-552)) "failed") $) 185)) (-1895 (((-552) $) 187) (((-402 (-552)) $) 183)) (-2851 (($ $ $) NIL)) (-3350 (((-552) $ $) 102)) (-4174 (((-3 $ "failed") $) 114)) (-3341 (((-402 (-552)) $ (-751)) 190) (((-402 (-552)) $ (-751) (-751)) 182)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-1923 (((-897)) 73) (((-897) (-897)) 98 (|has| $ (-6 -4344)))) (-3620 (((-112) $) 106)) (-1385 (($) 40)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL)) (-3283 (((-1237) (-751)) 152)) (-3292 (((-1237)) 157) (((-1237) (-751)) 158)) (-3312 (((-1237)) 159) (((-1237) (-751)) 160)) (-3302 (((-1237)) 155) (((-1237) (-751)) 156)) (-2172 (((-552) $) 58)) (-3650 (((-112) $) 104)) (-2429 (($ $ (-552)) NIL)) (-3895 (($ $) 48)) (-4209 (($ $) NIL)) (-3630 (((-112) $) 35)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL) (($) NIL (-12 (-2960 (|has| $ (-6 -4336))) (-2960 (|has| $ (-6 -4344)))))) (-3332 (($ $ $) NIL) (($) 99 (-12 (-2960 (|has| $ (-6 -4336))) (-2960 (|has| $ (-6 -4344)))))) (-2594 (((-552) $) 17)) (-3331 (($) 87) (($ $) 92)) (-4138 (($) 91) (($ $) 93)) (-2458 (($ $) 83)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 116)) (-3586 (((-897) (-552)) 43 (|has| $ (-6 -4344)))) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) 53)) (-4189 (($ $) 109)) (-2189 (($ (-552) (-552)) 107) (($ (-552) (-552) (-897)) 108)) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3564 (((-552) $) 19)) (-3323 (($) 94)) (-2863 (($ $) 79)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1542 (((-897)) 100) (((-897) (-897)) 101 (|has| $ (-6 -4344)))) (-3072 (($ $ (-751)) NIL) (($ $) 115)) (-3574 (((-897) (-552)) 47 (|has| $ (-6 -4344)))) (-3759 (($ $) NIL)) (-3638 (($ $) NIL)) (-3738 (($ $) NIL)) (-3614 (($ $) NIL)) (-3721 (($ $) 81)) (-3593 (($ $) 70)) (-2042 (((-374) $) 175) (((-221) $) 177) (((-868 (-374)) $) NIL) (((-1131) $) 162) (((-528) $) 173) (($ (-221)) 181)) (-1683 (((-839) $) 164) (($ (-552)) 186) (($ $) NIL) (($ (-402 (-552))) NIL) (($ (-552)) 186) (($ (-402 (-552))) NIL) (((-221) $) 178)) (-4141 (((-751)) NIL)) (-4199 (($ $) 111)) (-3597 (((-897)) 54) (((-897) (-897)) 66 (|has| $ (-6 -4344)))) (-3929 (((-897)) 103)) (-3789 (($ $) 86)) (-3670 (($ $) 46) (($ $ $) 52)) (-3518 (((-112) $ $) NIL)) (-3769 (($ $) 84)) (-3648 (($ $) 37)) (-3809 (($ $) NIL)) (-3691 (($ $) NIL)) (-3742 (($ $) NIL)) (-3700 (($ $) NIL)) (-3797 (($ $) NIL)) (-3681 (($ $) NIL)) (-3778 (($ $) 85)) (-3659 (($ $) 49)) (-1727 (($ $) 51)) (-2089 (($) 34 T CONST)) (-2100 (($) 38 T CONST)) (-3010 (((-1131) $) 27) (((-1131) $ (-112)) 29) (((-1237) (-802) $) 30) (((-1237) (-802) $ (-112)) 31)) (-3768 (($ $ (-751)) NIL) (($ $) NIL)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 39)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 42)) (-2404 (($ $ $) 45) (($ $ (-552)) 41)) (-2393 (($ $) 36) (($ $ $) 50)) (-2382 (($ $ $) 61)) (** (($ $ (-897)) 67) (($ $ (-751)) NIL) (($ $ (-552)) 88) (($ $ (-402 (-552))) 125) (($ $ $) 117)) (* (($ (-897) $) 65) (($ (-751) $) NIL) (($ (-552) $) 68) (($ $ $) 60) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL))) -(((-374) (-13 (-399) (-229) (-598 (-1131)) (-808) (-597 (-221)) (-1171) (-598 (-528)) (-10 -8 (-15 -2404 ($ $ (-552))) (-15 ** ($ $ $)) (-15 -3895 ($ $)) (-15 -3350 ((-552) $ $)) (-15 -3420 ($ $ (-552))) (-15 -3341 ((-402 (-552)) $ (-751))) (-15 -3341 ((-402 (-552)) $ (-751) (-751))) (-15 -3331 ($)) (-15 -4138 ($)) (-15 -3323 ($)) (-15 -3670 ($ $ $)) (-15 -3331 ($ $)) (-15 -4138 ($ $)) (-15 -2042 ($ (-221))) (-15 -3312 ((-1237))) (-15 -3312 ((-1237) (-751))) (-15 -3302 ((-1237))) (-15 -3302 ((-1237) (-751))) (-15 -3292 ((-1237))) (-15 -3292 ((-1237) (-751))) (-15 -3283 ((-1237) (-751))) (-6 -4344) (-6 -4336)))) (T -374)) -((** (*1 *1 *1 *1) (-5 *1 (-374))) (-2404 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-374)))) (-3895 (*1 *1 *1) (-5 *1 (-374))) (-3350 (*1 *2 *1 *1) (-12 (-5 *2 (-552)) (-5 *1 (-374)))) (-3420 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-374)))) (-3341 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-552))) (-5 *1 (-374)))) (-3341 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-552))) (-5 *1 (-374)))) (-3331 (*1 *1) (-5 *1 (-374))) (-4138 (*1 *1) (-5 *1 (-374))) (-3323 (*1 *1) (-5 *1 (-374))) (-3670 (*1 *1 *1 *1) (-5 *1 (-374))) (-3331 (*1 *1 *1) (-5 *1 (-374))) (-4138 (*1 *1 *1) (-5 *1 (-374))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-374)))) (-3312 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-374)))) (-3312 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-374)))) (-3302 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-374)))) (-3302 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-374)))) (-3292 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-374)))) (-3292 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-374)))) (-3283 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-374))))) -(-13 (-399) (-229) (-598 (-1131)) (-808) (-597 (-221)) (-1171) (-598 (-528)) (-10 -8 (-15 -2404 ($ $ (-552))) (-15 ** ($ $ $)) (-15 -3895 ($ $)) (-15 -3350 ((-552) $ $)) (-15 -3420 ($ $ (-552))) (-15 -3341 ((-402 (-552)) $ (-751))) (-15 -3341 ((-402 (-552)) $ (-751) (-751))) (-15 -3331 ($)) (-15 -4138 ($)) (-15 -3323 ($)) (-15 -3670 ($ $ $)) (-15 -3331 ($ $)) (-15 -4138 ($ $)) (-15 -2042 ($ (-221))) (-15 -3312 ((-1237))) (-15 -3312 ((-1237) (-751))) (-15 -3302 ((-1237))) (-15 -3302 ((-1237) (-751))) (-15 -3292 ((-1237))) (-15 -3292 ((-1237) (-751))) (-15 -3283 ((-1237) (-751))) (-6 -4344) (-6 -4336))) -((-1728 (((-625 (-289 (-928 |#1|))) (-289 (-402 (-928 (-552)))) |#1|) 46) (((-625 (-289 (-928 |#1|))) (-402 (-928 (-552))) |#1|) 45) (((-625 (-625 (-289 (-928 |#1|)))) (-625 (-289 (-402 (-928 (-552))))) |#1|) 42) (((-625 (-625 (-289 (-928 |#1|)))) (-625 (-402 (-928 (-552)))) |#1|) 36)) (-3378 (((-625 |#1|) (-402 (-928 (-552))) |#1|) 20) (((-625 (-625 |#1|)) (-625 (-402 (-928 (-552)))) (-625 (-1149)) |#1|) 30))) -(((-375 |#1|) (-10 -7 (-15 -1728 ((-625 (-625 (-289 (-928 |#1|)))) (-625 (-402 (-928 (-552)))) |#1|)) (-15 -1728 ((-625 (-625 (-289 (-928 |#1|)))) (-625 (-289 (-402 (-928 (-552))))) |#1|)) (-15 -1728 ((-625 (-289 (-928 |#1|))) (-402 (-928 (-552))) |#1|)) (-15 -1728 ((-625 (-289 (-928 |#1|))) (-289 (-402 (-928 (-552)))) |#1|)) (-15 -3378 ((-625 (-625 |#1|)) (-625 (-402 (-928 (-552)))) (-625 (-1149)) |#1|)) (-15 -3378 ((-625 |#1|) (-402 (-928 (-552))) |#1|))) (-13 (-825) (-358))) (T -375)) -((-3378 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 (-552)))) (-5 *2 (-625 *4)) (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358))))) (-3378 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 (-402 (-928 (-552))))) (-5 *4 (-625 (-1149))) (-5 *2 (-625 (-625 *5))) (-5 *1 (-375 *5)) (-4 *5 (-13 (-825) (-358))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-289 (-402 (-928 (-552))))) (-5 *2 (-625 (-289 (-928 *4)))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 (-552)))) (-5 *2 (-625 (-289 (-928 *4)))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-289 (-402 (-928 (-552)))))) (-5 *2 (-625 (-625 (-289 (-928 *4))))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-402 (-928 (-552))))) (-5 *2 (-625 (-625 (-289 (-928 *4))))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358)))))) -(-10 -7 (-15 -1728 ((-625 (-625 (-289 (-928 |#1|)))) (-625 (-402 (-928 (-552)))) |#1|)) (-15 -1728 ((-625 (-625 (-289 (-928 |#1|)))) (-625 (-289 (-402 (-928 (-552))))) |#1|)) (-15 -1728 ((-625 (-289 (-928 |#1|))) (-402 (-928 (-552))) |#1|)) (-15 -1728 ((-625 (-289 (-928 |#1|))) (-289 (-402 (-928 (-552)))) |#1|)) (-15 -3378 ((-625 (-625 |#1|)) (-625 (-402 (-928 (-552)))) (-625 (-1149)) |#1|)) (-15 -3378 ((-625 |#1|) (-402 (-928 (-552))) |#1|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) 26)) (-1895 ((|#2| $) 28)) (-4169 (($ $) NIL)) (-3723 (((-751) $) 10)) (-4148 (((-625 $) $) 20)) (-4201 (((-112) $) NIL)) (-2243 (($ |#2| |#1|) 18)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-3388 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-4131 ((|#2| $) 15)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 45) (($ |#2|) 27)) (-2512 (((-625 |#1|) $) 17)) (-3637 ((|#1| $ |#2|) 47)) (-2089 (($) 29 T CONST)) (-2032 (((-625 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) -(((-376 |#1| |#2|) (-13 (-377 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1025) (-827)) (T -376)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-376 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-827))))) -(-13 (-377 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#2| "failed") $) 44)) (-1895 ((|#2| $) 43)) (-4169 (($ $) 30)) (-3723 (((-751) $) 34)) (-4148 (((-625 $) $) 35)) (-4201 (((-112) $) 38)) (-2243 (($ |#2| |#1|) 39)) (-1996 (($ (-1 |#1| |#1|) $) 40)) (-3388 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-4131 ((|#2| $) 33)) (-4144 ((|#1| $) 32)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ |#2|) 45)) (-2512 (((-625 |#1|) $) 36)) (-3637 ((|#1| $ |#2|) 41)) (-2089 (($) 18 T CONST)) (-2032 (((-625 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) -(((-377 |#1| |#2|) (-138) (-1025) (-1073)) (T -377)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1073)))) (-3637 (*1 *2 *1 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1073)) (-4 *2 (-1025)))) (-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073)))) (-2243 (*1 *1 *2 *3) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1073)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073)) (-5 *2 (-112)))) (-2032 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073)) (-5 *2 (-625 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073)) (-5 *2 (-625 *3)))) (-4148 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-1073)) (-5 *2 (-625 *1)) (-4 *1 (-377 *3 *4)))) (-3723 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073)) (-5 *2 (-751)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1073)))) (-4144 (*1 *2 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1073)) (-4 *2 (-1025)))) (-3388 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4169 (*1 *1 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1073))))) -(-13 (-111 |t#1| |t#1|) (-1014 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3637 (|t#1| $ |t#2|)) (-15 -1996 ($ (-1 |t#1| |t#1|) $)) (-15 -2243 ($ |t#2| |t#1|)) (-15 -4201 ((-112) $)) (-15 -2032 ((-625 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2512 ((-625 |t#1|) $)) (-15 -4148 ((-625 $) $)) (-15 -3723 ((-751) $)) (-15 -4131 (|t#2| $)) (-15 -4144 (|t#1| $)) (-15 -3388 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4169 ($ $)) (IF (|has| |t#1| (-170)) (-6 (-698 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-698 |#1|) |has| |#1| (-170)) ((-1014 |#2|) . T) ((-1031 |#1|) . T) ((-1073) . T)) -((-2927 (((-1237) $) 7)) (-1683 (((-839) $) 8) (($ (-669 (-679))) 14) (($ (-625 (-325))) 13) (($ (-325)) 12) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 11))) -(((-378) (-138)) (T -378)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-669 (-679))) (-4 *1 (-378)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-4 *1 (-378)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-378)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) (-4 *1 (-378))))) -(-13 (-390) (-10 -8 (-15 -1683 ($ (-669 (-679)))) (-15 -1683 ($ (-625 (-325)))) (-15 -1683 ($ (-325))) (-15 -1683 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325)))))))) -(((-597 (-839)) . T) ((-390) . T) ((-1186) . T)) -((-1893 (((-3 $ "failed") (-669 (-311 (-374)))) 21) (((-3 $ "failed") (-669 (-311 (-552)))) 19) (((-3 $ "failed") (-669 (-928 (-374)))) 17) (((-3 $ "failed") (-669 (-928 (-552)))) 15) (((-3 $ "failed") (-669 (-402 (-928 (-374))))) 13) (((-3 $ "failed") (-669 (-402 (-928 (-552))))) 11)) (-1895 (($ (-669 (-311 (-374)))) 22) (($ (-669 (-311 (-552)))) 20) (($ (-669 (-928 (-374)))) 18) (($ (-669 (-928 (-552)))) 16) (($ (-669 (-402 (-928 (-374))))) 14) (($ (-669 (-402 (-928 (-552))))) 12)) (-2927 (((-1237) $) 7)) (-1683 (((-839) $) 8) (($ (-625 (-325))) 25) (($ (-325)) 24) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 23))) -(((-379) (-138)) (T -379)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-4 *1 (-379)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-379)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) (-4 *1 (-379)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-669 (-311 (-374)))) (-4 *1 (-379)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-311 (-374)))) (-4 *1 (-379)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-669 (-311 (-552)))) (-4 *1 (-379)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-311 (-552)))) (-4 *1 (-379)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-669 (-928 (-374)))) (-4 *1 (-379)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-928 (-374)))) (-4 *1 (-379)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-669 (-928 (-552)))) (-4 *1 (-379)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-928 (-552)))) (-4 *1 (-379)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-669 (-402 (-928 (-374))))) (-4 *1 (-379)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-402 (-928 (-374))))) (-4 *1 (-379)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-669 (-402 (-928 (-552))))) (-4 *1 (-379)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-402 (-928 (-552))))) (-4 *1 (-379))))) -(-13 (-390) (-10 -8 (-15 -1683 ($ (-625 (-325)))) (-15 -1683 ($ (-325))) (-15 -1683 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325)))))) (-15 -1895 ($ (-669 (-311 (-374))))) (-15 -1893 ((-3 $ "failed") (-669 (-311 (-374))))) (-15 -1895 ($ (-669 (-311 (-552))))) (-15 -1893 ((-3 $ "failed") (-669 (-311 (-552))))) (-15 -1895 ($ (-669 (-928 (-374))))) (-15 -1893 ((-3 $ "failed") (-669 (-928 (-374))))) (-15 -1895 ($ (-669 (-928 (-552))))) (-15 -1893 ((-3 $ "failed") (-669 (-928 (-552))))) (-15 -1895 ($ (-669 (-402 (-928 (-374)))))) (-15 -1893 ((-3 $ "failed") (-669 (-402 (-928 (-374)))))) (-15 -1895 ($ (-669 (-402 (-928 (-552)))))) (-15 -1893 ((-3 $ "failed") (-669 (-402 (-928 (-552)))))))) -(((-597 (-839)) . T) ((-390) . T) ((-1186) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-4169 (($ $) NIL)) (-3957 (($ |#1| |#2|) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-4094 ((|#2| $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 28)) (-2089 (($) 12 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) -(((-380 |#1| |#2|) (-13 (-111 |#1| |#1|) (-502 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-698 |#1|)) |%noBranch|))) (-1025) (-827)) (T -380)) -NIL -(-13 (-111 |#1| |#1|) (-502 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-698 |#1|)) |%noBranch|))) -((-1671 (((-112) $ $) NIL)) (-2894 (((-751) $) 59)) (-3101 (($) NIL T CONST)) (-4211 (((-3 $ "failed") $ $) 61)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3482 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-3650 (((-112) $) 15)) (-3461 ((|#1| $ (-552)) NIL)) (-3472 (((-751) $ (-552)) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1817 (($ (-1 |#1| |#1|) $) 38)) (-1827 (($ (-1 (-751) (-751)) $) 35)) (-4222 (((-3 $ "failed") $ $) 50)) (-2883 (((-1131) $) NIL)) (-3492 (($ $ $) 26)) (-3502 (($ $ $) 24)) (-2831 (((-1093) $) NIL)) (-3449 (((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-751)))) $) 32)) (-3481 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-1683 (((-839) $) 22) (($ |#1|) NIL)) (-2100 (($) 9 T CONST)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) 41)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) 63 (|has| |#1| (-827)))) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ |#1| (-751)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) -(((-381 |#1|) (-13 (-707) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-751))) (-15 -3502 ($ $ $)) (-15 -3492 ($ $ $)) (-15 -4222 ((-3 $ "failed") $ $)) (-15 -4211 ((-3 $ "failed") $ $)) (-15 -3481 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3482 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2894 ((-751) $)) (-15 -3449 ((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-751)))) $)) (-15 -3472 ((-751) $ (-552))) (-15 -3461 (|#1| $ (-552))) (-15 -1827 ($ (-1 (-751) (-751)) $)) (-15 -1817 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-827)) (-6 (-827)) |%noBranch|))) (-1073)) (T -381)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1073)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1073)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-381 *2)) (-4 *2 (-1073)))) (-3502 (*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1073)))) (-3492 (*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1073)))) (-4222 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1073)))) (-4211 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1073)))) (-3481 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-381 *3)) (|:| |rm| (-381 *3)))) (-5 *1 (-381 *3)) (-4 *3 (-1073)))) (-3482 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-381 *3)) (|:| |mm| (-381 *3)) (|:| |rm| (-381 *3)))) (-5 *1 (-381 *3)) (-4 *3 (-1073)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-381 *3)) (-4 *3 (-1073)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 (-751))))) (-5 *1 (-381 *3)) (-4 *3 (-1073)))) (-3472 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-751)) (-5 *1 (-381 *4)) (-4 *4 (-1073)))) (-3461 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-381 *2)) (-4 *2 (-1073)))) (-1827 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-751) (-751))) (-5 *1 (-381 *3)) (-4 *3 (-1073)))) (-1817 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1073)) (-5 *1 (-381 *3))))) -(-13 (-707) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-751))) (-15 -3502 ($ $ $)) (-15 -3492 ($ $ $)) (-15 -4222 ((-3 $ "failed") $ $)) (-15 -4211 ((-3 $ "failed") $ $)) (-15 -3481 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3482 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2894 ((-751) $)) (-15 -3449 ((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-751)))) $)) (-15 -3472 ((-751) $ (-552))) (-15 -3461 (|#1| $ (-552))) (-15 -1827 ($ (-1 (-751) (-751)) $)) (-15 -1817 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-827)) (-6 (-827)) |%noBranch|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-1893 (((-3 (-552) "failed") $) 45)) (-1895 (((-552) $) 44)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-3658 (($ $ $) 52)) (-3332 (($ $ $) 51)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-2802 (((-3 $ "failed") $ $) 40)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-552)) 46)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2346 (((-112) $ $) 49)) (-2320 (((-112) $ $) 48)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 50)) (-2307 (((-112) $ $) 47)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-382) (-138)) (T -382)) -NIL -(-13 (-544) (-827) (-1014 (-552))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-285) . T) ((-544) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-827) . T) ((-1014 (-552)) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-3399 (((-112) $) 20)) (-3408 (((-112) $) 19)) (-2183 (($ (-1131) (-1131) (-1131)) 21)) (-1288 (((-1131) $) 16)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2994 (($ (-1131) (-1131) (-1131)) 14)) (-3429 (((-1131) $) 17)) (-3416 (((-112) $) 18)) (-1930 (((-1131) $) 15)) (-1683 (((-839) $) 12) (($ (-1131)) 13) (((-1131) $) 9)) (-2281 (((-112) $ $) 7))) -(((-383) (-384)) (T -383)) -NIL -(-384) -((-1671 (((-112) $ $) 7)) (-3399 (((-112) $) 14)) (-3408 (((-112) $) 15)) (-2183 (($ (-1131) (-1131) (-1131)) 13)) (-1288 (((-1131) $) 18)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-2994 (($ (-1131) (-1131) (-1131)) 20)) (-3429 (((-1131) $) 17)) (-3416 (((-112) $) 16)) (-1930 (((-1131) $) 19)) (-1683 (((-839) $) 11) (($ (-1131)) 22) (((-1131) $) 21)) (-2281 (((-112) $ $) 6))) -(((-384) (-138)) (T -384)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384)))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))) (-2994 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384)))) (-1930 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))) (-1288 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))) (-3429 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))) (-3416 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))) (-3399 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))) (-2183 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384))))) -(-13 (-1073) (-10 -8 (-15 -1683 ($ (-1131))) (-15 -1683 ((-1131) $)) (-15 -2994 ($ (-1131) (-1131) (-1131))) (-15 -1930 ((-1131) $)) (-15 -1288 ((-1131) $)) (-15 -3429 ((-1131) $)) (-15 -3416 ((-112) $)) (-15 -3408 ((-112) $)) (-15 -3399 ((-112) $)) (-15 -2183 ($ (-1131) (-1131) (-1131))))) -(((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3439 (((-839) $) 50)) (-3101 (($) NIL T CONST)) (-3629 (($ $ (-897)) NIL)) (-2712 (($ $ (-897)) NIL)) (-3619 (($ $ (-897)) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3212 (($ (-751)) 26)) (-3904 (((-751)) 17)) (-3452 (((-839) $) 52)) (-3828 (($ $ $) NIL)) (-1683 (((-839) $) NIL)) (-3842 (($ $ $ $) NIL)) (-3818 (($ $ $) NIL)) (-2089 (($) 20 T CONST)) (-2281 (((-112) $ $) 28)) (-2393 (($ $) 34) (($ $ $) 36)) (-2382 (($ $ $) 37)) (** (($ $ (-897)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) -(((-385 |#1| |#2| |#3|) (-13 (-725 |#3|) (-10 -8 (-15 -3904 ((-751))) (-15 -3452 ((-839) $)) (-15 -3439 ((-839) $)) (-15 -3212 ($ (-751))))) (-751) (-751) (-170)) (T -385)) -((-3904 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))) (-3452 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-751)) (-14 *4 (-751)) (-4 *5 (-170)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-751)) (-14 *4 (-751)) (-4 *5 (-170)))) (-3212 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170))))) -(-13 (-725 |#3|) (-10 -8 (-15 -3904 ((-751))) (-15 -3452 ((-839) $)) (-15 -3439 ((-839) $)) (-15 -3212 ($ (-751))))) -((-3485 (((-1131)) 10)) (-3475 (((-1120 (-1131))) 28)) (-2905 (((-1237) (-1131)) 25) (((-1237) (-383)) 24)) (-2915 (((-1237)) 26)) (-3464 (((-1120 (-1131))) 27))) -(((-386) (-10 -7 (-15 -3464 ((-1120 (-1131)))) (-15 -3475 ((-1120 (-1131)))) (-15 -2915 ((-1237))) (-15 -2905 ((-1237) (-383))) (-15 -2905 ((-1237) (-1131))) (-15 -3485 ((-1131))))) (T -386)) -((-3485 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-386)))) (-2905 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-386)))) (-2905 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1237)) (-5 *1 (-386)))) (-2915 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-386)))) (-3475 (*1 *2) (-12 (-5 *2 (-1120 (-1131))) (-5 *1 (-386)))) (-3464 (*1 *2) (-12 (-5 *2 (-1120 (-1131))) (-5 *1 (-386))))) -(-10 -7 (-15 -3464 ((-1120 (-1131)))) (-15 -3475 ((-1120 (-1131)))) (-15 -2915 ((-1237))) (-15 -2905 ((-1237) (-383))) (-15 -2905 ((-1237) (-1131))) (-15 -3485 ((-1131)))) -((-2172 (((-751) (-331 |#1| |#2| |#3| |#4|)) 16))) -(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2172 ((-751) (-331 |#1| |#2| |#3| |#4|)))) (-13 (-363) (-358)) (-1208 |#1|) (-1208 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -387)) -((-2172 (*1 *2 *3) (-12 (-5 *3 (-331 *4 *5 *6 *7)) (-4 *4 (-13 (-363) (-358))) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) (-4 *7 (-337 *4 *5 *6)) (-5 *2 (-751)) (-5 *1 (-387 *4 *5 *6 *7))))) -(-10 -7 (-15 -2172 ((-751) (-331 |#1| |#2| |#3| |#4|)))) -((-1683 (((-389) |#1|) 11))) -(((-388 |#1|) (-10 -7 (-15 -1683 ((-389) |#1|))) (-1073)) (T -388)) -((-1683 (*1 *2 *3) (-12 (-5 *2 (-389)) (-5 *1 (-388 *3)) (-4 *3 (-1073))))) -(-10 -7 (-15 -1683 ((-389) |#1|))) -((-1671 (((-112) $ $) NIL)) (-4003 (((-625 (-1131)) $ (-625 (-1131))) 38)) (-3496 (((-625 (-1131)) $ (-625 (-1131))) 39)) (-4026 (((-625 (-1131)) $ (-625 (-1131))) 40)) (-4037 (((-625 (-1131)) $) 35)) (-2183 (($) 23)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1730 (((-625 (-1131)) $) 36)) (-4049 (((-625 (-1131)) $) 37)) (-1407 (((-1237) $ (-552)) 33) (((-1237) $) 34)) (-2042 (($ (-839) (-552)) 30)) (-1683 (((-839) $) 42) (($ (-839)) 25)) (-2281 (((-112) $ $) NIL))) -(((-389) (-13 (-1073) (-10 -8 (-15 -1683 ($ (-839))) (-15 -2042 ($ (-839) (-552))) (-15 -1407 ((-1237) $ (-552))) (-15 -1407 ((-1237) $)) (-15 -4049 ((-625 (-1131)) $)) (-15 -1730 ((-625 (-1131)) $)) (-15 -2183 ($)) (-15 -4037 ((-625 (-1131)) $)) (-15 -4026 ((-625 (-1131)) $ (-625 (-1131)))) (-15 -3496 ((-625 (-1131)) $ (-625 (-1131)))) (-15 -4003 ((-625 (-1131)) $ (-625 (-1131))))))) (T -389)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-389)))) (-2042 (*1 *1 *2 *3) (-12 (-5 *2 (-839)) (-5 *3 (-552)) (-5 *1 (-389)))) (-1407 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-389)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-389)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389)))) (-1730 (*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389)))) (-2183 (*1 *1) (-5 *1 (-389))) (-4037 (*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389)))) (-4026 (*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389)))) (-3496 (*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389)))) (-4003 (*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389))))) -(-13 (-1073) (-10 -8 (-15 -1683 ($ (-839))) (-15 -2042 ($ (-839) (-552))) (-15 -1407 ((-1237) $ (-552))) (-15 -1407 ((-1237) $)) (-15 -4049 ((-625 (-1131)) $)) (-15 -1730 ((-625 (-1131)) $)) (-15 -2183 ($)) (-15 -4037 ((-625 (-1131)) $)) (-15 -4026 ((-625 (-1131)) $ (-625 (-1131)))) (-15 -3496 ((-625 (-1131)) $ (-625 (-1131)))) (-15 -4003 ((-625 (-1131)) $ (-625 (-1131)))))) -((-2927 (((-1237) $) 7)) (-1683 (((-839) $) 8))) -(((-390) (-138)) (T -390)) -((-2927 (*1 *2 *1) (-12 (-4 *1 (-390)) (-5 *2 (-1237))))) -(-13 (-1186) (-597 (-839)) (-10 -8 (-15 -2927 ((-1237) $)))) -(((-597 (-839)) . T) ((-1186) . T)) -((-1893 (((-3 $ "failed") (-311 (-374))) 21) (((-3 $ "failed") (-311 (-552))) 19) (((-3 $ "failed") (-928 (-374))) 17) (((-3 $ "failed") (-928 (-552))) 15) (((-3 $ "failed") (-402 (-928 (-374)))) 13) (((-3 $ "failed") (-402 (-928 (-552)))) 11)) (-1895 (($ (-311 (-374))) 22) (($ (-311 (-552))) 20) (($ (-928 (-374))) 18) (($ (-928 (-552))) 16) (($ (-402 (-928 (-374)))) 14) (($ (-402 (-928 (-552)))) 12)) (-2927 (((-1237) $) 7)) (-1683 (((-839) $) 8) (($ (-625 (-325))) 25) (($ (-325)) 24) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 23))) -(((-391) (-138)) (T -391)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-4 *1 (-391)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-391)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) (-4 *1 (-391)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-4 *1 (-391)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-374))) (-4 *1 (-391)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-311 (-552))) (-4 *1 (-391)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-552))) (-4 *1 (-391)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-928 (-374))) (-4 *1 (-391)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-928 (-374))) (-4 *1 (-391)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-928 (-552))) (-4 *1 (-391)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-928 (-552))) (-4 *1 (-391)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-402 (-928 (-374)))) (-4 *1 (-391)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-928 (-374)))) (-4 *1 (-391)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-402 (-928 (-552)))) (-4 *1 (-391)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-928 (-552)))) (-4 *1 (-391))))) -(-13 (-390) (-10 -8 (-15 -1683 ($ (-625 (-325)))) (-15 -1683 ($ (-325))) (-15 -1683 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325)))))) (-15 -1895 ($ (-311 (-374)))) (-15 -1893 ((-3 $ "failed") (-311 (-374)))) (-15 -1895 ($ (-311 (-552)))) (-15 -1893 ((-3 $ "failed") (-311 (-552)))) (-15 -1895 ($ (-928 (-374)))) (-15 -1893 ((-3 $ "failed") (-928 (-374)))) (-15 -1895 ($ (-928 (-552)))) (-15 -1893 ((-3 $ "failed") (-928 (-552)))) (-15 -1895 ($ (-402 (-928 (-374))))) (-15 -1893 ((-3 $ "failed") (-402 (-928 (-374))))) (-15 -1895 ($ (-402 (-928 (-552))))) (-15 -1893 ((-3 $ "failed") (-402 (-928 (-552))))))) -(((-597 (-839)) . T) ((-390) . T) ((-1186) . T)) -((-3514 (((-625 (-1131)) (-625 (-1131))) 9)) (-2927 (((-1237) (-383)) 27)) (-3505 (((-1077) (-1149) (-625 (-1149)) (-1152) (-625 (-1149))) 60) (((-1077) (-1149) (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149)))) (-625 (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149))))) (-625 (-1149)) (-1149)) 35) (((-1077) (-1149) (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149)))) (-625 (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149))))) (-625 (-1149))) 34))) -(((-392) (-10 -7 (-15 -3505 ((-1077) (-1149) (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149)))) (-625 (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149))))) (-625 (-1149)))) (-15 -3505 ((-1077) (-1149) (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149)))) (-625 (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149))))) (-625 (-1149)) (-1149))) (-15 -3505 ((-1077) (-1149) (-625 (-1149)) (-1152) (-625 (-1149)))) (-15 -2927 ((-1237) (-383))) (-15 -3514 ((-625 (-1131)) (-625 (-1131)))))) (T -392)) -((-3514 (*1 *2 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-392)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1237)) (-5 *1 (-392)))) (-3505 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-625 (-1149))) (-5 *5 (-1152)) (-5 *3 (-1149)) (-5 *2 (-1077)) (-5 *1 (-392)))) (-3505 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-625 (-625 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-625 (-3 (|:| |array| (-625 *3)) (|:| |scalar| (-1149))))) (-5 *6 (-625 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1077)) (-5 *1 (-392)))) (-3505 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-625 (-625 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-625 (-3 (|:| |array| (-625 *3)) (|:| |scalar| (-1149))))) (-5 *6 (-625 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1077)) (-5 *1 (-392))))) -(-10 -7 (-15 -3505 ((-1077) (-1149) (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149)))) (-625 (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149))))) (-625 (-1149)))) (-15 -3505 ((-1077) (-1149) (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149)))) (-625 (-625 (-3 (|:| |array| (-625 (-1149))) (|:| |scalar| (-1149))))) (-625 (-1149)) (-1149))) (-15 -3505 ((-1077) (-1149) (-625 (-1149)) (-1152) (-625 (-1149)))) (-15 -2927 ((-1237) (-383))) (-15 -3514 ((-625 (-1131)) (-625 (-1131))))) -((-2927 (((-1237) $) 38)) (-1683 (((-839) $) 98) (($ (-325)) 100) (($ (-625 (-325))) 99) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 97) (($ (-311 (-681))) 54) (($ (-311 (-679))) 73) (($ (-311 (-674))) 86) (($ (-289 (-311 (-681)))) 68) (($ (-289 (-311 (-679)))) 81) (($ (-289 (-311 (-674)))) 94) (($ (-311 (-552))) 104) (($ (-311 (-374))) 117) (($ (-311 (-167 (-374)))) 130) (($ (-289 (-311 (-552)))) 112) (($ (-289 (-311 (-374)))) 125) (($ (-289 (-311 (-167 (-374))))) 138))) -(((-393 |#1| |#2| |#3| |#4|) (-13 (-390) (-10 -8 (-15 -1683 ($ (-325))) (-15 -1683 ($ (-625 (-325)))) (-15 -1683 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325)))))) (-15 -1683 ($ (-311 (-681)))) (-15 -1683 ($ (-311 (-679)))) (-15 -1683 ($ (-311 (-674)))) (-15 -1683 ($ (-289 (-311 (-681))))) (-15 -1683 ($ (-289 (-311 (-679))))) (-15 -1683 ($ (-289 (-311 (-674))))) (-15 -1683 ($ (-311 (-552)))) (-15 -1683 ($ (-311 (-374)))) (-15 -1683 ($ (-311 (-167 (-374))))) (-15 -1683 ($ (-289 (-311 (-552))))) (-15 -1683 ($ (-289 (-311 (-374))))) (-15 -1683 ($ (-289 (-311 (-167 (-374)))))))) (-1149) (-3 (|:| |fst| (-429)) (|:| -2781 "void")) (-625 (-1149)) (-1153)) (T -393)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-311 (-681))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-311 (-679))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-311 (-674))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-681)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-679)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-674)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-311 (-552))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-311 (-167 (-374)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-552)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-374)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-289 (-311 (-167 (-374))))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-14 *5 (-625 (-1149))) (-14 *6 (-1153))))) -(-13 (-390) (-10 -8 (-15 -1683 ($ (-325))) (-15 -1683 ($ (-625 (-325)))) (-15 -1683 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325)))))) (-15 -1683 ($ (-311 (-681)))) (-15 -1683 ($ (-311 (-679)))) (-15 -1683 ($ (-311 (-674)))) (-15 -1683 ($ (-289 (-311 (-681))))) (-15 -1683 ($ (-289 (-311 (-679))))) (-15 -1683 ($ (-289 (-311 (-674))))) (-15 -1683 ($ (-311 (-552)))) (-15 -1683 ($ (-311 (-374)))) (-15 -1683 ($ (-311 (-167 (-374))))) (-15 -1683 ($ (-289 (-311 (-552))))) (-15 -1683 ($ (-289 (-311 (-374))))) (-15 -1683 ($ (-289 (-311 (-167 (-374)))))))) -((-1671 (((-112) $ $) NIL)) (-3533 ((|#2| $) 36)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3543 (($ (-402 |#2|)) 85)) (-3523 (((-625 (-2 (|:| -3564 (-751)) (|:| -2845 |#2|) (|:| |num| |#2|))) $) 37)) (-3072 (($ $) 32) (($ $ (-751)) 34)) (-2042 (((-402 |#2|) $) 46)) (-1695 (($ (-625 (-2 (|:| -3564 (-751)) (|:| -2845 |#2|) (|:| |num| |#2|)))) 31)) (-1683 (((-839) $) 120)) (-3768 (($ $) 33) (($ $ (-751)) 35)) (-2281 (((-112) $ $) NIL)) (-2382 (($ |#2| $) 39))) -(((-394 |#1| |#2|) (-13 (-1073) (-598 (-402 |#2|)) (-10 -8 (-15 -2382 ($ |#2| $)) (-15 -3543 ($ (-402 |#2|))) (-15 -3533 (|#2| $)) (-15 -3523 ((-625 (-2 (|:| -3564 (-751)) (|:| -2845 |#2|) (|:| |num| |#2|))) $)) (-15 -1695 ($ (-625 (-2 (|:| -3564 (-751)) (|:| -2845 |#2|) (|:| |num| |#2|))))) (-15 -3072 ($ $)) (-15 -3768 ($ $)) (-15 -3072 ($ $ (-751))) (-15 -3768 ($ $ (-751))))) (-13 (-358) (-145)) (-1208 |#1|)) (T -394)) -((-2382 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *2)) (-4 *2 (-1208 *3)))) (-3543 (*1 *1 *2) (-12 (-5 *2 (-402 *4)) (-4 *4 (-1208 *3)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)))) (-3533 (*1 *2 *1) (-12 (-4 *2 (-1208 *3)) (-5 *1 (-394 *3 *2)) (-4 *3 (-13 (-358) (-145))))) (-3523 (*1 *2 *1) (-12 (-4 *3 (-13 (-358) (-145))) (-5 *2 (-625 (-2 (|:| -3564 (-751)) (|:| -2845 *4) (|:| |num| *4)))) (-5 *1 (-394 *3 *4)) (-4 *4 (-1208 *3)))) (-1695 (*1 *1 *2) (-12 (-5 *2 (-625 (-2 (|:| -3564 (-751)) (|:| -2845 *4) (|:| |num| *4)))) (-4 *4 (-1208 *3)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)))) (-3072 (*1 *1 *1) (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3)) (-4 *3 (-1208 *2)))) (-3768 (*1 *1 *1) (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3)) (-4 *3 (-1208 *2)))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)) (-4 *4 (-1208 *3)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)) (-4 *4 (-1208 *3))))) -(-13 (-1073) (-598 (-402 |#2|)) (-10 -8 (-15 -2382 ($ |#2| $)) (-15 -3543 ($ (-402 |#2|))) (-15 -3533 (|#2| $)) (-15 -3523 ((-625 (-2 (|:| -3564 (-751)) (|:| -2845 |#2|) (|:| |num| |#2|))) $)) (-15 -1695 ($ (-625 (-2 (|:| -3564 (-751)) (|:| -2845 |#2|) (|:| |num| |#2|))))) (-15 -3072 ($ $)) (-15 -3768 ($ $)) (-15 -3072 ($ $ (-751))) (-15 -3768 ($ $ (-751))))) -((-1671 (((-112) $ $) 9 (-1523 (|has| |#1| (-862 (-552))) (|has| |#1| (-862 (-374)))))) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 15 (|has| |#1| (-862 (-374)))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 14 (|has| |#1| (-862 (-552))))) (-2883 (((-1131) $) 13 (-1523 (|has| |#1| (-862 (-552))) (|has| |#1| (-862 (-374)))))) (-2831 (((-1093) $) 12 (-1523 (|has| |#1| (-862 (-552))) (|has| |#1| (-862 (-374)))))) (-1683 (((-839) $) 11 (-1523 (|has| |#1| (-862 (-552))) (|has| |#1| (-862 (-374)))))) (-2281 (((-112) $ $) 10 (-1523 (|has| |#1| (-862 (-552))) (|has| |#1| (-862 (-374))))))) -(((-395 |#1|) (-138) (-1186)) (T -395)) -NIL -(-13 (-1186) (-10 -7 (IF (|has| |t#1| (-862 (-552))) (-6 (-862 (-552))) |%noBranch|) (IF (|has| |t#1| (-862 (-374))) (-6 (-862 (-374))) |%noBranch|))) -(((-101) -1523 (|has| |#1| (-862 (-552))) (|has| |#1| (-862 (-374)))) ((-597 (-839)) -1523 (|has| |#1| (-862 (-552))) (|has| |#1| (-862 (-374)))) ((-862 (-374)) |has| |#1| (-862 (-374))) ((-862 (-552)) |has| |#1| (-862 (-552))) ((-1073) -1523 (|has| |#1| (-862 (-552))) (|has| |#1| (-862 (-374)))) ((-1186) . T)) -((-3554 (($ $) 10) (($ $ (-751)) 11))) -(((-396 |#1|) (-10 -8 (-15 -3554 (|#1| |#1| (-751))) (-15 -3554 (|#1| |#1|))) (-397)) (T -396)) -NIL -(-10 -8 (-15 -3554 (|#1| |#1| (-751))) (-15 -3554 (|#1| |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 70)) (-1330 (((-413 $) $) 69)) (-2408 (((-112) $ $) 57)) (-3101 (($) 17 T CONST)) (-2851 (($ $ $) 53)) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-3554 (($ $) 76) (($ $ (-751)) 75)) (-2951 (((-112) $) 68)) (-2172 (((-813 (-897)) $) 78)) (-3650 (((-112) $) 30)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 67)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-3824 (((-413 $) $) 71)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-2397 (((-751) $) 56)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-3563 (((-3 (-751) "failed") $ $) 77)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-402 (-552))) 63)) (-4243 (((-3 $ "failed") $) 79)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ $) 62)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 66)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 65) (($ (-402 (-552)) $) 64))) -(((-397) (-138)) (T -397)) -((-2172 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-813 (-897))))) (-3563 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-397)) (-5 *2 (-751)))) (-3554 (*1 *1 *1) (-4 *1 (-397))) (-3554 (*1 *1 *1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-751))))) -(-13 (-358) (-143) (-10 -8 (-15 -2172 ((-813 (-897)) $)) (-15 -3563 ((-3 (-751) "failed") $ $)) (-15 -3554 ($ $)) (-15 -3554 ($ $ (-751))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-597 (-839)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-544) . T) ((-628 #0#) . T) ((-628 $) . T) ((-698 #0#) . T) ((-698 $) . T) ((-707) . T) ((-896) . T) ((-1031 #0#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) . T)) -((-2189 (($ (-552) (-552)) 11) (($ (-552) (-552) (-897)) NIL)) (-1542 (((-897)) 16) (((-897) (-897)) NIL))) -(((-398 |#1|) (-10 -8 (-15 -1542 ((-897) (-897))) (-15 -1542 ((-897))) (-15 -2189 (|#1| (-552) (-552) (-897))) (-15 -2189 (|#1| (-552) (-552)))) (-399)) (T -398)) -((-1542 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-398 *3)) (-4 *3 (-399)))) (-1542 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-398 *3)) (-4 *3 (-399))))) -(-10 -8 (-15 -1542 ((-897) (-897))) (-15 -1542 ((-897))) (-15 -2189 (|#1| (-552) (-552) (-897))) (-15 -2189 (|#1| (-552) (-552)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-4177 (((-552) $) 86)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2162 (($ $) 84)) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 70)) (-1330 (((-413 $) $) 69)) (-3837 (($ $) 94)) (-2408 (((-112) $ $) 57)) (-4127 (((-552) $) 111)) (-3101 (($) 17 T CONST)) (-4154 (($ $) 83)) (-1893 (((-3 (-552) "failed") $) 99) (((-3 (-402 (-552)) "failed") $) 96)) (-1895 (((-552) $) 98) (((-402 (-552)) $) 95)) (-2851 (($ $ $) 53)) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-2951 (((-112) $) 68)) (-1923 (((-897)) 127) (((-897) (-897)) 124 (|has| $ (-6 -4344)))) (-3620 (((-112) $) 109)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 90)) (-2172 (((-552) $) 133)) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 93)) (-4209 (($ $) 89)) (-3630 (((-112) $) 110)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-3658 (($ $ $) 108) (($) 121 (-12 (-2960 (|has| $ (-6 -4344))) (-2960 (|has| $ (-6 -4336)))))) (-3332 (($ $ $) 107) (($) 120 (-12 (-2960 (|has| $ (-6 -4344))) (-2960 (|has| $ (-6 -4336)))))) (-2594 (((-552) $) 130)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 67)) (-3586 (((-897) (-552)) 123 (|has| $ (-6 -4344)))) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-4166 (($ $) 85)) (-4189 (($ $) 87)) (-2189 (($ (-552) (-552)) 135) (($ (-552) (-552) (-897)) 134)) (-3824 (((-413 $) $) 71)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-3564 (((-552) $) 131)) (-2397 (((-751) $) 56)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-1542 (((-897)) 128) (((-897) (-897)) 125 (|has| $ (-6 -4344)))) (-3574 (((-897) (-552)) 122 (|has| $ (-6 -4344)))) (-2042 (((-374) $) 102) (((-221) $) 101) (((-868 (-374)) $) 91)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-402 (-552))) 63) (($ (-552)) 100) (($ (-402 (-552))) 97)) (-4141 (((-751)) 28)) (-4199 (($ $) 88)) (-3597 (((-897)) 129) (((-897) (-897)) 126 (|has| $ (-6 -4344)))) (-3929 (((-897)) 132)) (-3518 (((-112) $ $) 37)) (-1727 (($ $) 112)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2346 (((-112) $ $) 105)) (-2320 (((-112) $ $) 104)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 106)) (-2307 (((-112) $ $) 103)) (-2404 (($ $ $) 62)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 66) (($ $ (-402 (-552))) 92)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 65) (($ (-402 (-552)) $) 64))) -(((-399) (-138)) (T -399)) -((-2189 (*1 *1 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-399)))) (-2189 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-897)) (-4 *1 (-399)))) (-2172 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-552)))) (-3929 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-897)))) (-3564 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-552)))) (-2594 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-552)))) (-3597 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-897)))) (-1542 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-897)))) (-1923 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-897)))) (-3597 (*1 *2 *2) (-12 (-5 *2 (-897)) (|has| *1 (-6 -4344)) (-4 *1 (-399)))) (-1542 (*1 *2 *2) (-12 (-5 *2 (-897)) (|has| *1 (-6 -4344)) (-4 *1 (-399)))) (-1923 (*1 *2 *2) (-12 (-5 *2 (-897)) (|has| *1 (-6 -4344)) (-4 *1 (-399)))) (-3586 (*1 *2 *3) (-12 (-5 *3 (-552)) (|has| *1 (-6 -4344)) (-4 *1 (-399)) (-5 *2 (-897)))) (-3574 (*1 *2 *3) (-12 (-5 *3 (-552)) (|has| *1 (-6 -4344)) (-4 *1 (-399)) (-5 *2 (-897)))) (-3658 (*1 *1) (-12 (-4 *1 (-399)) (-2960 (|has| *1 (-6 -4344))) (-2960 (|has| *1 (-6 -4336))))) (-3332 (*1 *1) (-12 (-4 *1 (-399)) (-2960 (|has| *1 (-6 -4344))) (-2960 (|has| *1 (-6 -4336)))))) -(-13 (-1034) (-10 -8 (-6 -2874) (-15 -2189 ($ (-552) (-552))) (-15 -2189 ($ (-552) (-552) (-897))) (-15 -2172 ((-552) $)) (-15 -3929 ((-897))) (-15 -3564 ((-552) $)) (-15 -2594 ((-552) $)) (-15 -3597 ((-897))) (-15 -1542 ((-897))) (-15 -1923 ((-897))) (IF (|has| $ (-6 -4344)) (PROGN (-15 -3597 ((-897) (-897))) (-15 -1542 ((-897) (-897))) (-15 -1923 ((-897) (-897))) (-15 -3586 ((-897) (-552))) (-15 -3574 ((-897) (-552)))) |%noBranch|) (IF (|has| $ (-6 -4336)) |%noBranch| (IF (|has| $ (-6 -4344)) |%noBranch| (PROGN (-15 -3658 ($)) (-15 -3332 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-597 (-839)) . T) ((-170) . T) ((-598 (-221)) . T) ((-598 (-374)) . T) ((-598 (-868 (-374))) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-544) . T) ((-628 #0#) . T) ((-628 $) . T) ((-698 #0#) . T) ((-698 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-775) . T) ((-825) . T) ((-827) . T) ((-862 (-374)) . T) ((-896) . T) ((-978) . T) ((-998) . T) ((-1034) . T) ((-1014 (-402 (-552))) . T) ((-1014 (-552)) . T) ((-1031 #0#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) . T)) -((-1996 (((-413 |#2|) (-1 |#2| |#1|) (-413 |#1|)) 20))) -(((-400 |#1| |#2|) (-10 -7 (-15 -1996 ((-413 |#2|) (-1 |#2| |#1|) (-413 |#1|)))) (-544) (-544)) (T -400)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-413 *5)) (-4 *5 (-544)) (-4 *6 (-544)) (-5 *2 (-413 *6)) (-5 *1 (-400 *5 *6))))) -(-10 -7 (-15 -1996 ((-413 |#2|) (-1 |#2| |#1|) (-413 |#1|)))) -((-1996 (((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|)) 13))) -(((-401 |#1| |#2|) (-10 -7 (-15 -1996 ((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|)))) (-544) (-544)) (T -401)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-402 *5)) (-4 *5 (-544)) (-4 *6 (-544)) (-5 *2 (-402 *6)) (-5 *1 (-401 *5 *6))))) -(-10 -7 (-15 -1996 ((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 13)) (-4177 ((|#1| $) 21 (|has| |#1| (-302)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL (|has| |#1| (-800)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) 17) (((-3 (-1149) "failed") $) NIL (|has| |#1| (-1014 (-1149)))) (((-3 (-402 (-552)) "failed") $) 70 (|has| |#1| (-1014 (-552)))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552))))) (-1895 ((|#1| $) 15) (((-1149) $) NIL (|has| |#1| (-1014 (-1149)))) (((-402 (-552)) $) 67 (|has| |#1| (-1014 (-552)))) (((-552) $) NIL (|has| |#1| (-1014 (-552))))) (-2851 (($ $ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) 50)) (-3702 (($) NIL (|has| |#1| (-537)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3620 (((-112) $) NIL (|has| |#1| (-800)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| |#1| (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| |#1| (-862 (-374))))) (-3650 (((-112) $) 64)) (-2276 (($ $) NIL)) (-1356 ((|#1| $) 71)) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-1124)))) (-3630 (((-112) $) NIL (|has| |#1| (-800)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| |#1| (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 97)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL (|has| |#1| (-302)))) (-4189 ((|#1| $) 28 (|has| |#1| (-537)))) (-4275 (((-413 (-1145 $)) (-1145 $)) 135 (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) 131 (|has| |#1| (-885)))) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-4073 (($ $ (-625 |#1|) (-625 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-625 (-289 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) NIL (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-507 (-1149) |#1|)))) (-2397 (((-751) $) NIL)) (-2154 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2265 (($ $) NIL)) (-1368 ((|#1| $) 73)) (-2042 (((-868 (-552)) $) NIL (|has| |#1| (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| |#1| (-598 (-868 (-374))))) (((-528) $) NIL (|has| |#1| (-598 (-528)))) (((-374) $) NIL (|has| |#1| (-998))) (((-221) $) NIL (|has| |#1| (-998)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 115 (-12 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ |#1|) 10) (($ (-1149)) NIL (|has| |#1| (-1014 (-1149))))) (-4243 (((-3 $ "failed") $) 99 (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) 100)) (-4199 ((|#1| $) 26 (|has| |#1| (-537)))) (-3518 (((-112) $ $) NIL)) (-1727 (($ $) NIL (|has| |#1| (-800)))) (-2089 (($) 22 T CONST)) (-2100 (($) 8 T CONST)) (-3010 (((-1131) $) 43 (-12 (|has| |#1| (-537)) (|has| |#1| (-808)))) (((-1131) $ (-112)) 44 (-12 (|has| |#1| (-537)) (|has| |#1| (-808)))) (((-1237) (-802) $) 45 (-12 (|has| |#1| (-537)) (|has| |#1| (-808)))) (((-1237) (-802) $ (-112)) 46 (-12 (|has| |#1| (-537)) (|has| |#1| (-808))))) (-3768 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) 56)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) 24 (|has| |#1| (-827)))) (-2404 (($ $ $) 126) (($ |#1| |#1|) 52)) (-2393 (($ $) 25) (($ $ $) 55)) (-2382 (($ $ $) 53)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) 125)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 60) (($ $ $) 57) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) -(((-402 |#1|) (-13 (-968 |#1|) (-10 -7 (IF (|has| |#1| (-537)) (IF (|has| |#1| (-808)) (-6 (-808)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4340)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-6 -4351)) (-6 -4340) |%noBranch|) |%noBranch|) |%noBranch|))) (-544)) (T -402)) -NIL -(-13 (-968 |#1|) (-10 -7 (IF (|has| |#1| (-537)) (IF (|has| |#1| (-808)) (-6 (-808)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4340)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-6 -4351)) (-6 -4340) |%noBranch|) |%noBranch|) |%noBranch|))) -((-2570 (((-669 |#2|) (-1232 $)) NIL) (((-669 |#2|)) 18)) (-2670 (($ (-1232 |#2|) (-1232 $)) NIL) (($ (-1232 |#2|)) 24)) (-2559 (((-669 |#2|) $ (-1232 $)) NIL) (((-669 |#2|) $) 38)) (-1291 ((|#3| $) 60)) (-3217 ((|#2| (-1232 $)) NIL) ((|#2|) 20)) (-2780 (((-1232 |#2|) $ (-1232 $)) NIL) (((-669 |#2|) (-1232 $) (-1232 $)) NIL) (((-1232 |#2|) $) 22) (((-669 |#2|) (-1232 $)) 36)) (-2042 (((-1232 |#2|) $) 11) (($ (-1232 |#2|)) 13)) (-3974 ((|#3| $) 52))) -(((-403 |#1| |#2| |#3|) (-10 -8 (-15 -2559 ((-669 |#2|) |#1|)) (-15 -3217 (|#2|)) (-15 -2570 ((-669 |#2|))) (-15 -2042 (|#1| (-1232 |#2|))) (-15 -2042 ((-1232 |#2|) |#1|)) (-15 -2670 (|#1| (-1232 |#2|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1|)) (-15 -1291 (|#3| |#1|)) (-15 -3974 (|#3| |#1|)) (-15 -2570 ((-669 |#2|) (-1232 |#1|))) (-15 -3217 (|#2| (-1232 |#1|))) (-15 -2670 (|#1| (-1232 |#2|) (-1232 |#1|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1| (-1232 |#1|))) (-15 -2559 ((-669 |#2|) |#1| (-1232 |#1|)))) (-404 |#2| |#3|) (-170) (-1208 |#2|)) (T -403)) -((-2570 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1208 *4)) (-5 *2 (-669 *4)) (-5 *1 (-403 *3 *4 *5)) (-4 *3 (-404 *4 *5)))) (-3217 (*1 *2) (-12 (-4 *4 (-1208 *2)) (-4 *2 (-170)) (-5 *1 (-403 *3 *2 *4)) (-4 *3 (-404 *2 *4))))) -(-10 -8 (-15 -2559 ((-669 |#2|) |#1|)) (-15 -3217 (|#2|)) (-15 -2570 ((-669 |#2|))) (-15 -2042 (|#1| (-1232 |#2|))) (-15 -2042 ((-1232 |#2|) |#1|)) (-15 -2670 (|#1| (-1232 |#2|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1|)) (-15 -1291 (|#3| |#1|)) (-15 -3974 (|#3| |#1|)) (-15 -2570 ((-669 |#2|) (-1232 |#1|))) (-15 -3217 (|#2| (-1232 |#1|))) (-15 -2670 (|#1| (-1232 |#2|) (-1232 |#1|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1| (-1232 |#1|))) (-15 -2559 ((-669 |#2|) |#1| (-1232 |#1|)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2570 (((-669 |#1|) (-1232 $)) 44) (((-669 |#1|)) 59)) (-1650 ((|#1| $) 50)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2670 (($ (-1232 |#1|) (-1232 $)) 46) (($ (-1232 |#1|)) 62)) (-2559 (((-669 |#1|) $ (-1232 $)) 51) (((-669 |#1|) $) 57)) (-4174 (((-3 $ "failed") $) 32)) (-3442 (((-897)) 52)) (-3650 (((-112) $) 30)) (-4209 ((|#1| $) 49)) (-1291 ((|#2| $) 42 (|has| |#1| (-358)))) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3217 ((|#1| (-1232 $)) 45) ((|#1|) 58)) (-2780 (((-1232 |#1|) $ (-1232 $)) 48) (((-669 |#1|) (-1232 $) (-1232 $)) 47) (((-1232 |#1|) $) 64) (((-669 |#1|) (-1232 $)) 63)) (-2042 (((-1232 |#1|) $) 61) (($ (-1232 |#1|)) 60)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 35)) (-4243 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-3974 ((|#2| $) 43)) (-4141 (((-751)) 28)) (-1270 (((-1232 $)) 65)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-404 |#1| |#2|) (-138) (-170) (-1208 |t#1|)) (T -404)) -((-1270 (*1 *2) (-12 (-4 *3 (-170)) (-4 *4 (-1208 *3)) (-5 *2 (-1232 *1)) (-4 *1 (-404 *3 *4)))) (-2780 (*1 *2 *1) (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1208 *3)) (-5 *2 (-1232 *3)))) (-2780 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-404 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1208 *4)) (-5 *2 (-669 *4)))) (-2670 (*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-170)) (-4 *1 (-404 *3 *4)) (-4 *4 (-1208 *3)))) (-2042 (*1 *2 *1) (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1208 *3)) (-5 *2 (-1232 *3)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-170)) (-4 *1 (-404 *3 *4)) (-4 *4 (-1208 *3)))) (-2570 (*1 *2) (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1208 *3)) (-5 *2 (-669 *3)))) (-3217 (*1 *2) (-12 (-4 *1 (-404 *2 *3)) (-4 *3 (-1208 *2)) (-4 *2 (-170)))) (-2559 (*1 *2 *1) (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1208 *3)) (-5 *2 (-669 *3))))) -(-13 (-365 |t#1| |t#2|) (-10 -8 (-15 -1270 ((-1232 $))) (-15 -2780 ((-1232 |t#1|) $)) (-15 -2780 ((-669 |t#1|) (-1232 $))) (-15 -2670 ($ (-1232 |t#1|))) (-15 -2042 ((-1232 |t#1|) $)) (-15 -2042 ($ (-1232 |t#1|))) (-15 -2570 ((-669 |t#1|))) (-15 -3217 (|t#1|)) (-15 -2559 ((-669 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-365 |#1| |#2|) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) . T) ((-707) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-1893 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) 27) (((-3 (-552) "failed") $) 19)) (-1895 ((|#2| $) NIL) (((-402 (-552)) $) 24) (((-552) $) 14)) (-1683 (($ |#2|) NIL) (($ (-402 (-552))) 22) (($ (-552)) 11))) -(((-405 |#1| |#2|) (-10 -8 (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1683 (|#1| (-552))) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| |#2|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1895 (|#2| |#1|))) (-406 |#2|) (-1186)) (T -405)) -NIL -(-10 -8 (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1683 (|#1| (-552))) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| |#2|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1895 (|#2| |#1|))) -((-1893 (((-3 |#1| "failed") $) 7) (((-3 (-402 (-552)) "failed") $) 16 (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) 13 (|has| |#1| (-1014 (-552))))) (-1895 ((|#1| $) 8) (((-402 (-552)) $) 15 (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) 12 (|has| |#1| (-1014 (-552))))) (-1683 (($ |#1|) 6) (($ (-402 (-552))) 17 (|has| |#1| (-1014 (-402 (-552))))) (($ (-552)) 14 (|has| |#1| (-1014 (-552)))))) -(((-406 |#1|) (-138) (-1186)) (T -406)) -NIL -(-13 (-1014 |t#1|) (-10 -7 (IF (|has| |t#1| (-1014 (-552))) (-6 (-1014 (-552))) |%noBranch|) (IF (|has| |t#1| (-1014 (-402 (-552)))) (-6 (-1014 (-402 (-552)))) |%noBranch|))) -(((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T)) -((-1996 (((-408 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-408 |#1| |#2| |#3| |#4|)) 33))) -(((-407 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1996 ((-408 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-408 |#1| |#2| |#3| |#4|)))) (-302) (-968 |#1|) (-1208 |#2|) (-13 (-404 |#2| |#3|) (-1014 |#2|)) (-302) (-968 |#5|) (-1208 |#6|) (-13 (-404 |#6| |#7|) (-1014 |#6|))) (T -407)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-408 *5 *6 *7 *8)) (-4 *5 (-302)) (-4 *6 (-968 *5)) (-4 *7 (-1208 *6)) (-4 *8 (-13 (-404 *6 *7) (-1014 *6))) (-4 *9 (-302)) (-4 *10 (-968 *9)) (-4 *11 (-1208 *10)) (-5 *2 (-408 *9 *10 *11 *12)) (-5 *1 (-407 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-404 *10 *11) (-1014 *10)))))) -(-10 -7 (-15 -1996 ((-408 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-408 |#1| |#2| |#3| |#4|)))) -((-1671 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL)) (-2579 ((|#4| (-751) (-1232 |#4|)) 56)) (-3650 (((-112) $) NIL)) (-1356 (((-1232 |#4|) $) 17)) (-4209 ((|#2| $) 54)) (-2589 (($ $) 139)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 100)) (-3935 (($ (-1232 |#4|)) 99)) (-2831 (((-1093) $) NIL)) (-1368 ((|#1| $) 18)) (-2410 (($ $ $) NIL)) (-3828 (($ $ $) NIL)) (-1683 (((-839) $) 134)) (-1270 (((-1232 |#4|) $) 129)) (-2100 (($) 11 T CONST)) (-2281 (((-112) $ $) 40)) (-2404 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) 122)) (* (($ $ $) 121))) -(((-408 |#1| |#2| |#3| |#4|) (-13 (-467) (-10 -8 (-15 -3935 ($ (-1232 |#4|))) (-15 -1270 ((-1232 |#4|) $)) (-15 -4209 (|#2| $)) (-15 -1356 ((-1232 |#4|) $)) (-15 -1368 (|#1| $)) (-15 -2589 ($ $)) (-15 -2579 (|#4| (-751) (-1232 |#4|))))) (-302) (-968 |#1|) (-1208 |#2|) (-13 (-404 |#2| |#3|) (-1014 |#2|))) (T -408)) -((-3935 (*1 *1 *2) (-12 (-5 *2 (-1232 *6)) (-4 *6 (-13 (-404 *4 *5) (-1014 *4))) (-4 *4 (-968 *3)) (-4 *5 (-1208 *4)) (-4 *3 (-302)) (-5 *1 (-408 *3 *4 *5 *6)))) (-1270 (*1 *2 *1) (-12 (-4 *3 (-302)) (-4 *4 (-968 *3)) (-4 *5 (-1208 *4)) (-5 *2 (-1232 *6)) (-5 *1 (-408 *3 *4 *5 *6)) (-4 *6 (-13 (-404 *4 *5) (-1014 *4))))) (-4209 (*1 *2 *1) (-12 (-4 *4 (-1208 *2)) (-4 *2 (-968 *3)) (-5 *1 (-408 *3 *2 *4 *5)) (-4 *3 (-302)) (-4 *5 (-13 (-404 *2 *4) (-1014 *2))))) (-1356 (*1 *2 *1) (-12 (-4 *3 (-302)) (-4 *4 (-968 *3)) (-4 *5 (-1208 *4)) (-5 *2 (-1232 *6)) (-5 *1 (-408 *3 *4 *5 *6)) (-4 *6 (-13 (-404 *4 *5) (-1014 *4))))) (-1368 (*1 *2 *1) (-12 (-4 *3 (-968 *2)) (-4 *4 (-1208 *3)) (-4 *2 (-302)) (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-404 *3 *4) (-1014 *3))))) (-2589 (*1 *1 *1) (-12 (-4 *2 (-302)) (-4 *3 (-968 *2)) (-4 *4 (-1208 *3)) (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-404 *3 *4) (-1014 *3))))) (-2579 (*1 *2 *3 *4) (-12 (-5 *3 (-751)) (-5 *4 (-1232 *2)) (-4 *5 (-302)) (-4 *6 (-968 *5)) (-4 *2 (-13 (-404 *6 *7) (-1014 *6))) (-5 *1 (-408 *5 *6 *7 *2)) (-4 *7 (-1208 *6))))) -(-13 (-467) (-10 -8 (-15 -3935 ($ (-1232 |#4|))) (-15 -1270 ((-1232 |#4|) $)) (-15 -4209 (|#2| $)) (-15 -1356 ((-1232 |#4|) $)) (-15 -1368 (|#1| $)) (-15 -2589 ($ $)) (-15 -2579 (|#4| (-751) (-1232 |#4|))))) -((-1671 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-4209 ((|#2| $) 61)) (-2602 (($ (-1232 |#4|)) 25) (($ (-408 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1014 |#2|)))) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 34)) (-1270 (((-1232 |#4|) $) 26)) (-2100 (($) 23 T CONST)) (-2281 (((-112) $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ $ $) 72))) -(((-409 |#1| |#2| |#3| |#4| |#5|) (-13 (-707) (-10 -8 (-15 -1270 ((-1232 |#4|) $)) (-15 -4209 (|#2| $)) (-15 -2602 ($ (-1232 |#4|))) (IF (|has| |#4| (-1014 |#2|)) (-15 -2602 ($ (-408 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-302) (-968 |#1|) (-1208 |#2|) (-404 |#2| |#3|) (-1232 |#4|)) (T -409)) -((-1270 (*1 *2 *1) (-12 (-4 *3 (-302)) (-4 *4 (-968 *3)) (-4 *5 (-1208 *4)) (-5 *2 (-1232 *6)) (-5 *1 (-409 *3 *4 *5 *6 *7)) (-4 *6 (-404 *4 *5)) (-14 *7 *2))) (-4209 (*1 *2 *1) (-12 (-4 *4 (-1208 *2)) (-4 *2 (-968 *3)) (-5 *1 (-409 *3 *2 *4 *5 *6)) (-4 *3 (-302)) (-4 *5 (-404 *2 *4)) (-14 *6 (-1232 *5)))) (-2602 (*1 *1 *2) (-12 (-5 *2 (-1232 *6)) (-4 *6 (-404 *4 *5)) (-4 *4 (-968 *3)) (-4 *5 (-1208 *4)) (-4 *3 (-302)) (-5 *1 (-409 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2602 (*1 *1 *2) (-12 (-5 *2 (-408 *3 *4 *5 *6)) (-4 *6 (-1014 *4)) (-4 *3 (-302)) (-4 *4 (-968 *3)) (-4 *5 (-1208 *4)) (-4 *6 (-404 *4 *5)) (-14 *7 (-1232 *6)) (-5 *1 (-409 *3 *4 *5 *6 *7))))) -(-13 (-707) (-10 -8 (-15 -1270 ((-1232 |#4|) $)) (-15 -4209 (|#2| $)) (-15 -2602 ($ (-1232 |#4|))) (IF (|has| |#4| (-1014 |#2|)) (-15 -2602 ($ (-408 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-1996 ((|#3| (-1 |#4| |#2|) |#1|) 26))) -(((-410 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1996 (|#3| (-1 |#4| |#2|) |#1|))) (-412 |#2|) (-170) (-412 |#4|) (-170)) (T -410)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-412 *6)) (-5 *1 (-410 *4 *5 *2 *6)) (-4 *4 (-412 *5))))) -(-10 -7 (-15 -1996 (|#3| (-1 |#4| |#2|) |#1|))) -((-3618 (((-3 $ "failed")) 86)) (-2770 (((-1232 (-669 |#2|)) (-1232 $)) NIL) (((-1232 (-669 |#2|))) 91)) (-1456 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) 85)) (-4152 (((-3 $ "failed")) 84)) (-2629 (((-669 |#2|) (-1232 $)) NIL) (((-669 |#2|)) 102)) (-2612 (((-669 |#2|) $ (-1232 $)) NIL) (((-669 |#2|) $) 110)) (-1392 (((-1145 (-928 |#2|))) 55)) (-2648 ((|#2| (-1232 $)) NIL) ((|#2|) 106)) (-2670 (($ (-1232 |#2|) (-1232 $)) NIL) (($ (-1232 |#2|)) 112)) (-1467 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) 83)) (-4164 (((-3 $ "failed")) 75)) (-2640 (((-669 |#2|) (-1232 $)) NIL) (((-669 |#2|)) 100)) (-2619 (((-669 |#2|) $ (-1232 $)) NIL) (((-669 |#2|) $) 108)) (-1433 (((-1145 (-928 |#2|))) 54)) (-2658 ((|#2| (-1232 $)) NIL) ((|#2|) 104)) (-2780 (((-1232 |#2|) $ (-1232 $)) NIL) (((-669 |#2|) (-1232 $) (-1232 $)) NIL) (((-1232 |#2|) $) 111) (((-669 |#2|) (-1232 $)) 118)) (-2042 (((-1232 |#2|) $) 96) (($ (-1232 |#2|)) 98)) (-2533 (((-625 (-928 |#2|)) (-1232 $)) NIL) (((-625 (-928 |#2|))) 94)) (-2872 (($ (-669 |#2|) $) 90))) -(((-411 |#1| |#2|) (-10 -8 (-15 -2872 (|#1| (-669 |#2|) |#1|)) (-15 -1392 ((-1145 (-928 |#2|)))) (-15 -1433 ((-1145 (-928 |#2|)))) (-15 -2612 ((-669 |#2|) |#1|)) (-15 -2619 ((-669 |#2|) |#1|)) (-15 -2629 ((-669 |#2|))) (-15 -2640 ((-669 |#2|))) (-15 -2648 (|#2|)) (-15 -2658 (|#2|)) (-15 -2042 (|#1| (-1232 |#2|))) (-15 -2042 ((-1232 |#2|) |#1|)) (-15 -2670 (|#1| (-1232 |#2|))) (-15 -2533 ((-625 (-928 |#2|)))) (-15 -2770 ((-1232 (-669 |#2|)))) (-15 -2780 ((-669 |#2|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1|)) (-15 -3618 ((-3 |#1| "failed"))) (-15 -4152 ((-3 |#1| "failed"))) (-15 -4164 ((-3 |#1| "failed"))) (-15 -1456 ((-3 (-2 (|:| |particular| |#1|) (|:| -1270 (-625 |#1|))) "failed"))) (-15 -1467 ((-3 (-2 (|:| |particular| |#1|) (|:| -1270 (-625 |#1|))) "failed"))) (-15 -2629 ((-669 |#2|) (-1232 |#1|))) (-15 -2640 ((-669 |#2|) (-1232 |#1|))) (-15 -2648 (|#2| (-1232 |#1|))) (-15 -2658 (|#2| (-1232 |#1|))) (-15 -2670 (|#1| (-1232 |#2|) (-1232 |#1|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1| (-1232 |#1|))) (-15 -2612 ((-669 |#2|) |#1| (-1232 |#1|))) (-15 -2619 ((-669 |#2|) |#1| (-1232 |#1|))) (-15 -2770 ((-1232 (-669 |#2|)) (-1232 |#1|))) (-15 -2533 ((-625 (-928 |#2|)) (-1232 |#1|)))) (-412 |#2|) (-170)) (T -411)) -((-2770 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1232 (-669 *4))) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))) (-2533 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-625 (-928 *4))) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))) (-2658 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-411 *3 *2)) (-4 *3 (-412 *2)))) (-2648 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-411 *3 *2)) (-4 *3 (-412 *2)))) (-2640 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-669 *4)) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))) (-2629 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-669 *4)) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))) (-1433 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1145 (-928 *4))) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4)))) (-1392 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1145 (-928 *4))) (-5 *1 (-411 *3 *4)) (-4 *3 (-412 *4))))) -(-10 -8 (-15 -2872 (|#1| (-669 |#2|) |#1|)) (-15 -1392 ((-1145 (-928 |#2|)))) (-15 -1433 ((-1145 (-928 |#2|)))) (-15 -2612 ((-669 |#2|) |#1|)) (-15 -2619 ((-669 |#2|) |#1|)) (-15 -2629 ((-669 |#2|))) (-15 -2640 ((-669 |#2|))) (-15 -2648 (|#2|)) (-15 -2658 (|#2|)) (-15 -2042 (|#1| (-1232 |#2|))) (-15 -2042 ((-1232 |#2|) |#1|)) (-15 -2670 (|#1| (-1232 |#2|))) (-15 -2533 ((-625 (-928 |#2|)))) (-15 -2770 ((-1232 (-669 |#2|)))) (-15 -2780 ((-669 |#2|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1|)) (-15 -3618 ((-3 |#1| "failed"))) (-15 -4152 ((-3 |#1| "failed"))) (-15 -4164 ((-3 |#1| "failed"))) (-15 -1456 ((-3 (-2 (|:| |particular| |#1|) (|:| -1270 (-625 |#1|))) "failed"))) (-15 -1467 ((-3 (-2 (|:| |particular| |#1|) (|:| -1270 (-625 |#1|))) "failed"))) (-15 -2629 ((-669 |#2|) (-1232 |#1|))) (-15 -2640 ((-669 |#2|) (-1232 |#1|))) (-15 -2648 (|#2| (-1232 |#1|))) (-15 -2658 (|#2| (-1232 |#1|))) (-15 -2670 (|#1| (-1232 |#2|) (-1232 |#1|))) (-15 -2780 ((-669 |#2|) (-1232 |#1|) (-1232 |#1|))) (-15 -2780 ((-1232 |#2|) |#1| (-1232 |#1|))) (-15 -2612 ((-669 |#2|) |#1| (-1232 |#1|))) (-15 -2619 ((-669 |#2|) |#1| (-1232 |#1|))) (-15 -2770 ((-1232 (-669 |#2|)) (-1232 |#1|))) (-15 -2533 ((-625 (-928 |#2|)) (-1232 |#1|)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3618 (((-3 $ "failed")) 37 (|has| |#1| (-544)))) (-2077 (((-3 $ "failed") $ $) 19)) (-2770 (((-1232 (-669 |#1|)) (-1232 $)) 78) (((-1232 (-669 |#1|))) 100)) (-3208 (((-1232 $)) 81)) (-3101 (($) 17 T CONST)) (-1456 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) 40 (|has| |#1| (-544)))) (-4152 (((-3 $ "failed")) 38 (|has| |#1| (-544)))) (-2629 (((-669 |#1|) (-1232 $)) 65) (((-669 |#1|)) 92)) (-3192 ((|#1| $) 74)) (-2612 (((-669 |#1|) $ (-1232 $)) 76) (((-669 |#1|) $) 90)) (-3598 (((-3 $ "failed") $) 45 (|has| |#1| (-544)))) (-1392 (((-1145 (-928 |#1|))) 88 (|has| |#1| (-358)))) (-3629 (($ $ (-897)) 28)) (-3174 ((|#1| $) 72)) (-4175 (((-1145 |#1|) $) 42 (|has| |#1| (-544)))) (-2648 ((|#1| (-1232 $)) 67) ((|#1|) 94)) (-3159 (((-1145 |#1|) $) 63)) (-4303 (((-112)) 57)) (-2670 (($ (-1232 |#1|) (-1232 $)) 69) (($ (-1232 |#1|)) 98)) (-4174 (((-3 $ "failed") $) 47 (|has| |#1| (-544)))) (-3442 (((-897)) 80)) (-4272 (((-112)) 54)) (-2712 (($ $ (-897)) 33)) (-4228 (((-112)) 50)) (-4207 (((-112)) 48)) (-4250 (((-112)) 52)) (-1467 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) 41 (|has| |#1| (-544)))) (-4164 (((-3 $ "failed")) 39 (|has| |#1| (-544)))) (-2640 (((-669 |#1|) (-1232 $)) 66) (((-669 |#1|)) 93)) (-3199 ((|#1| $) 75)) (-2619 (((-669 |#1|) $ (-1232 $)) 77) (((-669 |#1|) $) 91)) (-3609 (((-3 $ "failed") $) 46 (|has| |#1| (-544)))) (-1433 (((-1145 (-928 |#1|))) 89 (|has| |#1| (-358)))) (-3619 (($ $ (-897)) 29)) (-3182 ((|#1| $) 73)) (-4187 (((-1145 |#1|) $) 43 (|has| |#1| (-544)))) (-2658 ((|#1| (-1232 $)) 68) ((|#1|) 95)) (-3166 (((-1145 |#1|) $) 64)) (-4312 (((-112)) 58)) (-2883 (((-1131) $) 9)) (-4218 (((-112)) 49)) (-4239 (((-112)) 51)) (-4261 (((-112)) 53)) (-2831 (((-1093) $) 10)) (-4293 (((-112)) 56)) (-2154 ((|#1| $ (-552)) 101)) (-2780 (((-1232 |#1|) $ (-1232 $)) 71) (((-669 |#1|) (-1232 $) (-1232 $)) 70) (((-1232 |#1|) $) 103) (((-669 |#1|) (-1232 $)) 102)) (-2042 (((-1232 |#1|) $) 97) (($ (-1232 |#1|)) 96)) (-2533 (((-625 (-928 |#1|)) (-1232 $)) 79) (((-625 (-928 |#1|))) 99)) (-3828 (($ $ $) 25)) (-3148 (((-112)) 62)) (-1683 (((-839) $) 11)) (-1270 (((-1232 $)) 104)) (-4197 (((-625 (-1232 |#1|))) 44 (|has| |#1| (-544)))) (-3842 (($ $ $ $) 26)) (-4333 (((-112)) 60)) (-2872 (($ (-669 |#1|) $) 87)) (-3818 (($ $ $) 24)) (-3137 (((-112)) 61)) (-4322 (((-112)) 59)) (-4283 (((-112)) 55)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 30)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-412 |#1|) (-138) (-170)) (T -412)) -((-1270 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1232 *1)) (-4 *1 (-412 *3)))) (-2780 (*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1232 *3)))) (-2780 (*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-412 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-412 *2)) (-4 *2 (-170)))) (-2770 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1232 (-669 *3))))) (-2533 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-625 (-928 *3))))) (-2670 (*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-170)) (-4 *1 (-412 *3)))) (-2042 (*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1232 *3)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-170)) (-4 *1 (-412 *3)))) (-2658 (*1 *2) (-12 (-4 *1 (-412 *2)) (-4 *2 (-170)))) (-2648 (*1 *2) (-12 (-4 *1 (-412 *2)) (-4 *2 (-170)))) (-2640 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))) (-2629 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))) (-2619 (*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))) (-2612 (*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))) (-1433 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-4 *3 (-358)) (-5 *2 (-1145 (-928 *3))))) (-1392 (*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-4 *3 (-358)) (-5 *2 (-1145 (-928 *3))))) (-2872 (*1 *1 *2 *1) (-12 (-5 *2 (-669 *3)) (-4 *1 (-412 *3)) (-4 *3 (-170))))) -(-13 (-362 |t#1|) (-10 -8 (-15 -1270 ((-1232 $))) (-15 -2780 ((-1232 |t#1|) $)) (-15 -2780 ((-669 |t#1|) (-1232 $))) (-15 -2154 (|t#1| $ (-552))) (-15 -2770 ((-1232 (-669 |t#1|)))) (-15 -2533 ((-625 (-928 |t#1|)))) (-15 -2670 ($ (-1232 |t#1|))) (-15 -2042 ((-1232 |t#1|) $)) (-15 -2042 ($ (-1232 |t#1|))) (-15 -2658 (|t#1|)) (-15 -2648 (|t#1|)) (-15 -2640 ((-669 |t#1|))) (-15 -2629 ((-669 |t#1|))) (-15 -2619 ((-669 |t#1|) $)) (-15 -2612 ((-669 |t#1|) $)) (IF (|has| |t#1| (-358)) (PROGN (-15 -1433 ((-1145 (-928 |t#1|)))) (-15 -1392 ((-1145 (-928 |t#1|))))) |%noBranch|) (-15 -2872 ($ (-669 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-362 |#1|) . T) ((-628 |#1|) . T) ((-698 |#1|) . T) ((-701) . T) ((-725 |#1|) . T) ((-742) . T) ((-1031 |#1|) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 42)) (-3608 (($ $) 57)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 146)) (-3528 (($ $) NIL)) (-3509 (((-112) $) 36)) (-3618 ((|#1| $) 13)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL (|has| |#1| (-1190)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-1190)))) (-3639 (($ |#1| (-552)) 31)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 116)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) 55)) (-4174 (((-3 $ "failed") $) 131)) (-2555 (((-3 (-402 (-552)) "failed") $) 63 (|has| |#1| (-537)))) (-2546 (((-112) $) 59 (|has| |#1| (-537)))) (-2538 (((-402 (-552)) $) 70 (|has| |#1| (-537)))) (-3649 (($ |#1| (-552)) 33)) (-2951 (((-112) $) 152 (|has| |#1| (-1190)))) (-3650 (((-112) $) 43)) (-3110 (((-751) $) 38)) (-3660 (((-3 "nil" "sqfr" "irred" "prime") $ (-552)) 137)) (-3461 ((|#1| $ (-552)) 136)) (-3672 (((-552) $ (-552)) 135)) (-2550 (($ |#1| (-552)) 30)) (-1996 (($ (-1 |#1| |#1|) $) 143)) (-3085 (($ |#1| (-625 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552))))) 58)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2883 (((-1131) $) NIL)) (-3682 (($ |#1| (-552)) 32)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) 147 (|has| |#1| (-446)))) (-3628 (($ |#1| (-552) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-3449 (((-625 (-2 (|:| -3824 |#1|) (|:| -3564 (-552)))) $) 54)) (-3734 (((-625 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))) $) 12)) (-3824 (((-413 $) $) NIL (|has| |#1| (-1190)))) (-2802 (((-3 $ "failed") $ $) 138)) (-3564 (((-552) $) 132)) (-3455 ((|#1| $) 56)) (-4073 (($ $ (-625 |#1|) (-625 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-625 (-289 |#1|))) 79 (|has| |#1| (-304 |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) 85 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) $) NIL (|has| |#1| (-507 (-1149) $))) (($ $ (-625 (-1149)) (-625 $)) 86 (|has| |#1| (-507 (-1149) $))) (($ $ (-625 (-289 $))) 82 (|has| |#1| (-304 $))) (($ $ (-289 $)) NIL (|has| |#1| (-304 $))) (($ $ $ $) NIL (|has| |#1| (-304 $))) (($ $ (-625 $) (-625 $)) NIL (|has| |#1| (-304 $)))) (-2154 (($ $ |#1|) 71 (|has| |#1| (-281 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-281 $ $)))) (-3072 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-2042 (((-528) $) 27 (|has| |#1| (-598 (-528)))) (((-374) $) 92 (|has| |#1| (-998))) (((-221) $) 95 (|has| |#1| (-998)))) (-1683 (((-839) $) 114) (($ (-552)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-402 (-552))) NIL (|has| |#1| (-1014 (-402 (-552)))))) (-4141 (((-751)) 48)) (-3518 (((-112) $ $) NIL)) (-2089 (($) 40 T CONST)) (-2100 (($) 39 T CONST)) (-3768 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2281 (((-112) $ $) 96)) (-2393 (($ $) 128) (($ $ $) NIL)) (-2382 (($ $ $) 140)) (** (($ $ (-897)) NIL) (($ $ (-751)) 102)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL))) -(((-413 |#1|) (-13 (-544) (-227 |#1|) (-38 |#1|) (-333 |#1|) (-406 |#1|) (-10 -8 (-15 -3455 (|#1| $)) (-15 -3564 ((-552) $)) (-15 -3085 ($ |#1| (-625 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))))) (-15 -3734 ((-625 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))) $)) (-15 -2550 ($ |#1| (-552))) (-15 -3449 ((-625 (-2 (|:| -3824 |#1|) (|:| -3564 (-552)))) $)) (-15 -3682 ($ |#1| (-552))) (-15 -3672 ((-552) $ (-552))) (-15 -3461 (|#1| $ (-552))) (-15 -3660 ((-3 "nil" "sqfr" "irred" "prime") $ (-552))) (-15 -3110 ((-751) $)) (-15 -3649 ($ |#1| (-552))) (-15 -3639 ($ |#1| (-552))) (-15 -3628 ($ |#1| (-552) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3618 (|#1| $)) (-15 -3608 ($ $)) (-15 -1996 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-446)) (-6 (-446)) |%noBranch|) (IF (|has| |#1| (-998)) (-6 (-998)) |%noBranch|) (IF (|has| |#1| (-1190)) (-6 (-1190)) |%noBranch|) (IF (|has| |#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -2546 ((-112) $)) (-15 -2538 ((-402 (-552)) $)) (-15 -2555 ((-3 (-402 (-552)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-281 $ $)) (-6 (-281 $ $)) |%noBranch|) (IF (|has| |#1| (-304 $)) (-6 (-304 $)) |%noBranch|) (IF (|has| |#1| (-507 (-1149) $)) (-6 (-507 (-1149) $)) |%noBranch|))) (-544)) (T -413)) -((-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-544)) (-5 *1 (-413 *3)))) (-3455 (*1 *2 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-544)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-413 *3)) (-4 *3 (-544)))) (-3085 (*1 *1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-552))))) (-4 *2 (-544)) (-5 *1 (-413 *2)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-552))))) (-5 *1 (-413 *3)) (-4 *3 (-544)))) (-2550 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-413 *2)) (-4 *2 (-544)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| -3824 *3) (|:| -3564 (-552))))) (-5 *1 (-413 *3)) (-4 *3 (-544)))) (-3682 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-413 *2)) (-4 *2 (-544)))) (-3672 (*1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-413 *3)) (-4 *3 (-544)))) (-3461 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-413 *2)) (-4 *2 (-544)))) (-3660 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-413 *4)) (-4 *4 (-544)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-413 *3)) (-4 *3 (-544)))) (-3649 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-413 *2)) (-4 *2 (-544)))) (-3639 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-413 *2)) (-4 *2 (-544)))) (-3628 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-552)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-413 *2)) (-4 *2 (-544)))) (-3618 (*1 *2 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-544)))) (-3608 (*1 *1 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-544)))) (-2546 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-413 *3)) (-4 *3 (-537)) (-4 *3 (-544)))) (-2538 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-413 *3)) (-4 *3 (-537)) (-4 *3 (-544)))) (-2555 (*1 *2 *1) (|partial| -12 (-5 *2 (-402 (-552))) (-5 *1 (-413 *3)) (-4 *3 (-537)) (-4 *3 (-544))))) -(-13 (-544) (-227 |#1|) (-38 |#1|) (-333 |#1|) (-406 |#1|) (-10 -8 (-15 -3455 (|#1| $)) (-15 -3564 ((-552) $)) (-15 -3085 ($ |#1| (-625 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))))) (-15 -3734 ((-625 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))) $)) (-15 -2550 ($ |#1| (-552))) (-15 -3449 ((-625 (-2 (|:| -3824 |#1|) (|:| -3564 (-552)))) $)) (-15 -3682 ($ |#1| (-552))) (-15 -3672 ((-552) $ (-552))) (-15 -3461 (|#1| $ (-552))) (-15 -3660 ((-3 "nil" "sqfr" "irred" "prime") $ (-552))) (-15 -3110 ((-751) $)) (-15 -3649 ($ |#1| (-552))) (-15 -3639 ($ |#1| (-552))) (-15 -3628 ($ |#1| (-552) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3618 (|#1| $)) (-15 -3608 ($ $)) (-15 -1996 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-446)) (-6 (-446)) |%noBranch|) (IF (|has| |#1| (-998)) (-6 (-998)) |%noBranch|) (IF (|has| |#1| (-1190)) (-6 (-1190)) |%noBranch|) (IF (|has| |#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -2546 ((-112) $)) (-15 -2538 ((-402 (-552)) $)) (-15 -2555 ((-3 (-402 (-552)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-281 $ $)) (-6 (-281 $ $)) |%noBranch|) (IF (|has| |#1| (-304 $)) (-6 (-304 $)) |%noBranch|) (IF (|has| |#1| (-507 (-1149) $)) (-6 (-507 (-1149) $)) |%noBranch|))) -((-4230 (((-413 |#1|) (-413 |#1|) (-1 (-413 |#1|) |#1|)) 21)) (-2682 (((-413 |#1|) (-413 |#1|) (-413 |#1|)) 16))) -(((-414 |#1|) (-10 -7 (-15 -4230 ((-413 |#1|) (-413 |#1|) (-1 (-413 |#1|) |#1|))) (-15 -2682 ((-413 |#1|) (-413 |#1|) (-413 |#1|)))) (-544)) (T -414)) -((-2682 (*1 *2 *2 *2) (-12 (-5 *2 (-413 *3)) (-4 *3 (-544)) (-5 *1 (-414 *3)))) (-4230 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-413 *4) *4)) (-4 *4 (-544)) (-5 *2 (-413 *4)) (-5 *1 (-414 *4))))) -(-10 -7 (-15 -4230 ((-413 |#1|) (-413 |#1|) (-1 (-413 |#1|) |#1|))) (-15 -2682 ((-413 |#1|) (-413 |#1|) (-413 |#1|)))) -((-2730 ((|#2| |#2|) 166)) (-2702 (((-3 (|:| |%expansion| (-308 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112)) 57))) -(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2702 ((-3 (|:| |%expansion| (-308 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112))) (-15 -2730 (|#2| |#2|))) (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))) (-13 (-27) (-1171) (-425 |#1|)) (-1149) |#2|) (T -415)) -((-2730 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-415 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1171) (-425 *3))) (-14 *4 (-1149)) (-14 *5 *2))) (-2702 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-3 (|:| |%expansion| (-308 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131)))))) (-5 *1 (-415 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1171) (-425 *5))) (-14 *6 (-1149)) (-14 *7 *3)))) -(-10 -7 (-15 -2702 ((-3 (|:| |%expansion| (-308 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112))) (-15 -2730 (|#2| |#2|))) -((-1996 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1996 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1025) (-827)) (-425 |#1|) (-13 (-1025) (-827)) (-425 |#3|)) (T -416)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1025) (-827))) (-4 *6 (-13 (-1025) (-827))) (-4 *2 (-425 *6)) (-5 *1 (-416 *5 *4 *6 *2)) (-4 *4 (-425 *5))))) -(-10 -7 (-15 -1996 (|#4| (-1 |#3| |#1|) |#2|))) -((-2730 ((|#2| |#2|) 90)) (-2711 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131)) 48)) (-2721 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131)) 154))) -(((-417 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2711 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131))) (-15 -2721 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131))) (-15 -2730 (|#2| |#2|))) (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))) (-13 (-27) (-1171) (-425 |#1|) (-10 -8 (-15 -1683 ($ |#3|)))) (-825) (-13 (-1210 |#2| |#3|) (-358) (-1171) (-10 -8 (-15 -3072 ($ $)) (-15 -2481 ($ $)))) (-959 |#4|) (-1149)) (T -417)) -((-2730 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-4 *2 (-13 (-27) (-1171) (-425 *3) (-10 -8 (-15 -1683 ($ *4))))) (-4 *4 (-825)) (-4 *5 (-13 (-1210 *2 *4) (-358) (-1171) (-10 -8 (-15 -3072 ($ $)) (-15 -2481 ($ $))))) (-5 *1 (-417 *3 *2 *4 *5 *6 *7)) (-4 *6 (-959 *5)) (-14 *7 (-1149)))) (-2721 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-4 *3 (-13 (-27) (-1171) (-425 *6) (-10 -8 (-15 -1683 ($ *7))))) (-4 *7 (-825)) (-4 *8 (-13 (-1210 *3 *7) (-358) (-1171) (-10 -8 (-15 -3072 ($ $)) (-15 -2481 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131)))))) (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1131)) (-4 *9 (-959 *8)) (-14 *10 (-1149)))) (-2711 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-4 *3 (-13 (-27) (-1171) (-425 *6) (-10 -8 (-15 -1683 ($ *7))))) (-4 *7 (-825)) (-4 *8 (-13 (-1210 *3 *7) (-358) (-1171) (-10 -8 (-15 -3072 ($ $)) (-15 -2481 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131)))))) (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1131)) (-4 *9 (-959 *8)) (-14 *10 (-1149))))) -(-10 -7 (-15 -2711 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131))) (-15 -2721 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131))) (-15 -2730 (|#2| |#2|))) -((-1454 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2163 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1996 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1996 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2163 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1454 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1073) (-420 |#1|) (-1073) (-420 |#3|)) (T -418)) -((-1454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1073)) (-4 *5 (-1073)) (-4 *2 (-420 *5)) (-5 *1 (-418 *6 *4 *5 *2)) (-4 *4 (-420 *6)))) (-2163 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1073)) (-4 *2 (-1073)) (-5 *1 (-418 *5 *4 *2 *6)) (-4 *4 (-420 *5)) (-4 *6 (-420 *2)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-420 *6)) (-5 *1 (-418 *5 *4 *6 *2)) (-4 *4 (-420 *5))))) -(-10 -7 (-15 -1996 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2163 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1454 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2740 (($) 44)) (-3419 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-2837 (($ $ $) 39)) (-2823 (((-112) $ $) 28)) (-2894 (((-751)) 47)) (-1517 (($ (-625 |#2|)) 20) (($) NIL)) (-3702 (($) 53)) (-2871 (((-112) $ $) 13)) (-3658 ((|#2| $) 61)) (-3332 ((|#2| $) 59)) (-4318 (((-897) $) 55)) (-2860 (($ $ $) 35)) (-3123 (($ (-897)) 50)) (-2849 (($ $ |#2|) NIL) (($ $ $) 38)) (-2840 (((-751) (-1 (-112) |#2|) $) NIL) (((-751) |#2| $) 26)) (-1695 (($ (-625 |#2|)) 24)) (-2749 (($ $) 46)) (-1683 (((-839) $) 33)) (-2758 (((-751) $) 21)) (-3761 (($ (-625 |#2|)) 19) (($) NIL)) (-2281 (((-112) $ $) 16))) -(((-419 |#1| |#2|) (-10 -8 (-15 -2894 ((-751))) (-15 -3123 (|#1| (-897))) (-15 -4318 ((-897) |#1|)) (-15 -3702 (|#1|)) (-15 -3658 (|#2| |#1|)) (-15 -3332 (|#2| |#1|)) (-15 -2740 (|#1|)) (-15 -2749 (|#1| |#1|)) (-15 -2758 ((-751) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2871 ((-112) |#1| |#1|)) (-15 -3761 (|#1|)) (-15 -3761 (|#1| (-625 |#2|))) (-15 -1517 (|#1|)) (-15 -1517 (|#1| (-625 |#2|))) (-15 -2860 (|#1| |#1| |#1|)) (-15 -2849 (|#1| |#1| |#1|)) (-15 -2849 (|#1| |#1| |#2|)) (-15 -2837 (|#1| |#1| |#1|)) (-15 -2823 ((-112) |#1| |#1|)) (-15 -3419 (|#1| |#1| |#1|)) (-15 -3419 (|#1| |#1| |#2|)) (-15 -3419 (|#1| |#2| |#1|)) (-15 -1695 (|#1| (-625 |#2|))) (-15 -2840 ((-751) |#2| |#1|)) (-15 -2840 ((-751) (-1 (-112) |#2|) |#1|))) (-420 |#2|) (-1073)) (T -419)) -((-2894 (*1 *2) (-12 (-4 *4 (-1073)) (-5 *2 (-751)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4))))) -(-10 -8 (-15 -2894 ((-751))) (-15 -3123 (|#1| (-897))) (-15 -4318 ((-897) |#1|)) (-15 -3702 (|#1|)) (-15 -3658 (|#2| |#1|)) (-15 -3332 (|#2| |#1|)) (-15 -2740 (|#1|)) (-15 -2749 (|#1| |#1|)) (-15 -2758 ((-751) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2871 ((-112) |#1| |#1|)) (-15 -3761 (|#1|)) (-15 -3761 (|#1| (-625 |#2|))) (-15 -1517 (|#1|)) (-15 -1517 (|#1| (-625 |#2|))) (-15 -2860 (|#1| |#1| |#1|)) (-15 -2849 (|#1| |#1| |#1|)) (-15 -2849 (|#1| |#1| |#2|)) (-15 -2837 (|#1| |#1| |#1|)) (-15 -2823 ((-112) |#1| |#1|)) (-15 -3419 (|#1| |#1| |#1|)) (-15 -3419 (|#1| |#1| |#2|)) (-15 -3419 (|#1| |#2| |#1|)) (-15 -1695 (|#1| (-625 |#2|))) (-15 -2840 ((-751) |#2| |#1|)) (-15 -2840 ((-751) (-1 (-112) |#2|) |#1|))) -((-1671 (((-112) $ $) 19)) (-2740 (($) 67 (|has| |#1| (-363)))) (-3419 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2837 (($ $ $) 78)) (-2823 (((-112) $ $) 79)) (-3495 (((-112) $ (-751)) 8)) (-2894 (((-751)) 61 (|has| |#1| (-363)))) (-1517 (($ (-625 |#1|)) 74) (($) 73)) (-2873 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-2959 (($ $) 58 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1938 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-1416 (($ |#1| $) 57 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-3702 (($) 64 (|has| |#1| (-363)))) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2871 (((-112) $ $) 70)) (-2909 (((-112) $ (-751)) 9)) (-3658 ((|#1| $) 65 (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3332 ((|#1| $) 66 (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-4318 (((-897) $) 63 (|has| |#1| (-363)))) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22)) (-2860 (($ $ $) 75)) (-2953 ((|#1| $) 39)) (-3966 (($ |#1| $) 40)) (-3123 (($ (-897)) 62 (|has| |#1| (-363)))) (-2831 (((-1093) $) 21)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2849 (($ $ |#1|) 77) (($ $ $) 76)) (-4255 (($) 49) (($ (-625 |#1|)) 48)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 59 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 50)) (-2749 (($ $) 68 (|has| |#1| (-363)))) (-1683 (((-839) $) 18)) (-2758 (((-751) $) 69)) (-3761 (($ (-625 |#1|)) 72) (($) 71)) (-2977 (($ (-625 |#1|)) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20)) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-420 |#1|) (-138) (-1073)) (T -420)) -((-2758 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-1073)) (-5 *2 (-751)))) (-2749 (*1 *1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1073)) (-4 *2 (-363)))) (-2740 (*1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-363)) (-4 *2 (-1073)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1073)) (-4 *2 (-827)))) (-3658 (*1 *2 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1073)) (-4 *2 (-827))))) -(-13 (-225 |t#1|) (-1071 |t#1|) (-10 -8 (-6 -4353) (-15 -2758 ((-751) $)) (IF (|has| |t#1| (-363)) (PROGN (-6 (-363)) (-15 -2749 ($ $)) (-15 -2740 ($))) |%noBranch|) (IF (|has| |t#1| (-827)) (PROGN (-15 -3332 (|t#1| $)) (-15 -3658 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-597 (-839)) . T) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-225 |#1|) . T) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-363) |has| |#1| (-363)) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1071 |#1|) . T) ((-1073) . T) ((-1186) . T)) -((-2768 (((-571 |#2|) |#2| (-1149)) 36)) (-2793 (((-571 |#2|) |#2| (-1149)) 20)) (-2030 ((|#2| |#2| (-1149)) 25))) -(((-421 |#1| |#2|) (-10 -7 (-15 -2793 ((-571 |#2|) |#2| (-1149))) (-15 -2768 ((-571 |#2|) |#2| (-1149))) (-15 -2030 (|#2| |#2| (-1149)))) (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))) (-13 (-1171) (-29 |#1|))) (T -421)) -((-2030 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-421 *4 *2)) (-4 *2 (-13 (-1171) (-29 *4))))) (-2768 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-571 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1171) (-29 *5))))) (-2793 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-571 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1171) (-29 *5)))))) -(-10 -7 (-15 -2793 ((-571 |#2|) |#2| (-1149))) (-15 -2768 ((-571 |#2|) |#2| (-1149))) (-15 -2030 (|#2| |#2| (-1149)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-2789 (($ |#2| |#1|) 35)) (-2778 (($ |#2| |#1|) 33)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-326 |#2|)) 25)) (-4141 (((-751)) NIL)) (-2089 (($) 10 T CONST)) (-2100 (($) 16 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 34)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-422 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4340)) (IF (|has| |#1| (-6 -4340)) (-6 -4340) |%noBranch|) |%noBranch|) (-15 -1683 ($ |#1|)) (-15 -1683 ($ (-326 |#2|))) (-15 -2789 ($ |#2| |#1|)) (-15 -2778 ($ |#2| |#1|)))) (-13 (-170) (-38 (-402 (-552)))) (-13 (-827) (-21))) (T -422)) -((-1683 (*1 *1 *2) (-12 (-5 *1 (-422 *2 *3)) (-4 *2 (-13 (-170) (-38 (-402 (-552))))) (-4 *3 (-13 (-827) (-21))))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-326 *4)) (-4 *4 (-13 (-827) (-21))) (-5 *1 (-422 *3 *4)) (-4 *3 (-13 (-170) (-38 (-402 (-552))))))) (-2789 (*1 *1 *2 *3) (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-552))))) (-4 *2 (-13 (-827) (-21))))) (-2778 (*1 *1 *2 *3) (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-552))))) (-4 *2 (-13 (-827) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4340)) (IF (|has| |#1| (-6 -4340)) (-6 -4340) |%noBranch|) |%noBranch|) (-15 -1683 ($ |#1|)) (-15 -1683 ($ (-326 |#2|))) (-15 -2789 ($ |#2| |#1|)) (-15 -2778 ($ |#2| |#1|)))) -((-2481 (((-3 |#2| (-625 |#2|)) |#2| (-1149)) 109))) -(((-423 |#1| |#2|) (-10 -7 (-15 -2481 ((-3 |#2| (-625 |#2|)) |#2| (-1149)))) (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))) (-13 (-1171) (-935) (-29 |#1|))) (T -423)) -((-2481 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-3 *3 (-625 *3))) (-5 *1 (-423 *5 *3)) (-4 *3 (-13 (-1171) (-935) (-29 *5)))))) -(-10 -7 (-15 -2481 ((-3 |#2| (-625 |#2|)) |#2| (-1149)))) -((-3982 (((-625 (-1149)) $) 72)) (-3793 (((-402 (-1145 $)) $ (-596 $)) 273)) (-3831 (($ $ (-289 $)) NIL) (($ $ (-625 (-289 $))) NIL) (($ $ (-625 (-596 $)) (-625 $)) 237)) (-1893 (((-3 (-596 $) "failed") $) NIL) (((-3 (-1149) "failed") $) 75) (((-3 (-552) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-402 (-928 |#2|)) "failed") $) 324) (((-3 (-928 |#2|) "failed") $) 235) (((-3 (-402 (-552)) "failed") $) NIL)) (-1895 (((-596 $) $) NIL) (((-1149) $) 30) (((-552) $) NIL) ((|#2| $) 231) (((-402 (-928 |#2|)) $) 305) (((-928 |#2|) $) 232) (((-402 (-552)) $) NIL)) (-1563 (((-114) (-114)) 47)) (-2276 (($ $) 87)) (-1952 (((-3 (-596 $) "failed") $) 228)) (-3783 (((-625 (-596 $)) $) 229)) (-4172 (((-3 (-625 $) "failed") $) 247)) (-4194 (((-3 (-2 (|:| |val| $) (|:| -3564 (-552))) "failed") $) 254)) (-4160 (((-3 (-625 $) "failed") $) 245)) (-2692 (((-3 (-2 (|:| -3340 (-552)) (|:| |var| (-596 $))) "failed") $) 264)) (-4182 (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $) 251) (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $ (-114)) 217) (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $ (-1149)) 219)) (-4105 (((-112) $) 19)) (-4117 ((|#2| $) 21)) (-4073 (($ $ (-596 $) $) NIL) (($ $ (-625 (-596 $)) (-625 $)) 236) (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ $))) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ (-625 $)))) 96) (($ $ (-1149) (-1 $ (-625 $))) NIL) (($ $ (-1149) (-1 $ $)) NIL) (($ $ (-625 (-114)) (-625 (-1 $ $))) NIL) (($ $ (-625 (-114)) (-625 (-1 $ (-625 $)))) NIL) (($ $ (-114) (-1 $ (-625 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1149)) 57) (($ $ (-625 (-1149))) 240) (($ $) 241) (($ $ (-114) $ (-1149)) 60) (($ $ (-625 (-114)) (-625 $) (-1149)) 67) (($ $ (-625 (-1149)) (-625 (-751)) (-625 (-1 $ $))) 107) (($ $ (-625 (-1149)) (-625 (-751)) (-625 (-1 $ (-625 $)))) 242) (($ $ (-1149) (-751) (-1 $ (-625 $))) 94) (($ $ (-1149) (-751) (-1 $ $)) 93)) (-2154 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-625 $)) 106)) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149)) 238)) (-2265 (($ $) 284)) (-2042 (((-868 (-552)) $) 257) (((-868 (-374)) $) 261) (($ (-413 $)) 320) (((-528) $) NIL)) (-1683 (((-839) $) 239) (($ (-596 $)) 84) (($ (-1149)) 26) (($ |#2|) NIL) (($ (-1098 |#2| (-596 $))) NIL) (($ (-402 |#2|)) 289) (($ (-928 (-402 |#2|))) 329) (($ (-402 (-928 (-402 |#2|)))) 301) (($ (-402 (-928 |#2|))) 295) (($ $) NIL) (($ (-928 |#2|)) 185) (($ (-402 (-552))) 334) (($ (-552)) NIL)) (-4141 (((-751)) 79)) (-1572 (((-112) (-114)) 41)) (-3844 (($ (-1149) $) 33) (($ (-1149) $ $) 34) (($ (-1149) $ $ $) 35) (($ (-1149) $ $ $ $) 36) (($ (-1149) (-625 $)) 39)) (* (($ (-402 (-552)) $) NIL) (($ $ (-402 (-552))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-552) $) NIL) (($ (-751) $) NIL) (($ (-897) $) NIL))) -(((-424 |#1| |#2|) (-10 -8 (-15 * (|#1| (-897) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4141 ((-751))) (-15 -1683 (|#1| (-552))) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -2042 ((-528) |#1|)) (-15 -1895 ((-928 |#2|) |#1|)) (-15 -1893 ((-3 (-928 |#2|) "failed") |#1|)) (-15 -1683 (|#1| (-928 |#2|))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1683 (|#1| |#1|)) (-15 * (|#1| |#1| (-402 (-552)))) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 -1895 ((-402 (-928 |#2|)) |#1|)) (-15 -1893 ((-3 (-402 (-928 |#2|)) "failed") |#1|)) (-15 -1683 (|#1| (-402 (-928 |#2|)))) (-15 -3793 ((-402 (-1145 |#1|)) |#1| (-596 |#1|))) (-15 -1683 (|#1| (-402 (-928 (-402 |#2|))))) (-15 -1683 (|#1| (-928 (-402 |#2|)))) (-15 -1683 (|#1| (-402 |#2|))) (-15 -2265 (|#1| |#1|)) (-15 -2042 (|#1| (-413 |#1|))) (-15 -4073 (|#1| |#1| (-1149) (-751) (-1 |#1| |#1|))) (-15 -4073 (|#1| |#1| (-1149) (-751) (-1 |#1| (-625 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-751)) (-625 (-1 |#1| (-625 |#1|))))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-751)) (-625 (-1 |#1| |#1|)))) (-15 -4194 ((-3 (-2 (|:| |val| |#1|) (|:| -3564 (-552))) "failed") |#1|)) (-15 -4182 ((-3 (-2 (|:| |var| (-596 |#1|)) (|:| -3564 (-552))) "failed") |#1| (-1149))) (-15 -4182 ((-3 (-2 (|:| |var| (-596 |#1|)) (|:| -3564 (-552))) "failed") |#1| (-114))) (-15 -2276 (|#1| |#1|)) (-15 -1683 (|#1| (-1098 |#2| (-596 |#1|)))) (-15 -2692 ((-3 (-2 (|:| -3340 (-552)) (|:| |var| (-596 |#1|))) "failed") |#1|)) (-15 -4160 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -4182 ((-3 (-2 (|:| |var| (-596 |#1|)) (|:| -3564 (-552))) "failed") |#1|)) (-15 -4172 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -4073 (|#1| |#1| (-625 (-114)) (-625 |#1|) (-1149))) (-15 -4073 (|#1| |#1| (-114) |#1| (-1149))) (-15 -4073 (|#1| |#1|)) (-15 -4073 (|#1| |#1| (-625 (-1149)))) (-15 -4073 (|#1| |#1| (-1149))) (-15 -3844 (|#1| (-1149) (-625 |#1|))) (-15 -3844 (|#1| (-1149) |#1| |#1| |#1| |#1|)) (-15 -3844 (|#1| (-1149) |#1| |#1| |#1|)) (-15 -3844 (|#1| (-1149) |#1| |#1|)) (-15 -3844 (|#1| (-1149) |#1|)) (-15 -3982 ((-625 (-1149)) |#1|)) (-15 -4117 (|#2| |#1|)) (-15 -4105 ((-112) |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -1895 ((-1149) |#1|)) (-15 -1893 ((-3 (-1149) "failed") |#1|)) (-15 -1683 (|#1| (-1149))) (-15 -4073 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -4073 (|#1| |#1| (-114) (-1 |#1| (-625 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-114)) (-625 (-1 |#1| (-625 |#1|))))) (-15 -4073 (|#1| |#1| (-625 (-114)) (-625 (-1 |#1| |#1|)))) (-15 -4073 (|#1| |#1| (-1149) (-1 |#1| |#1|))) (-15 -4073 (|#1| |#1| (-1149) (-1 |#1| (-625 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-1 |#1| (-625 |#1|))))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-1 |#1| |#1|)))) (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 -3783 ((-625 (-596 |#1|)) |#1|)) (-15 -1952 ((-3 (-596 |#1|) "failed") |#1|)) (-15 -3831 (|#1| |#1| (-625 (-596 |#1|)) (-625 |#1|))) (-15 -3831 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -3831 (|#1| |#1| (-289 |#1|))) (-15 -2154 (|#1| (-114) (-625 |#1|))) (-15 -2154 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1|)) (-15 -4073 (|#1| |#1| (-625 |#1|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| (-289 |#1|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-596 |#1|)) (-625 |#1|))) (-15 -4073 (|#1| |#1| (-596 |#1|) |#1|)) (-15 -1895 ((-596 |#1|) |#1|)) (-15 -1893 ((-3 (-596 |#1|) "failed") |#1|)) (-15 -1683 (|#1| (-596 |#1|))) (-15 -1683 ((-839) |#1|))) (-425 |#2|) (-827)) (T -424)) -((-1563 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-827)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-424 *4 *5)) (-4 *4 (-425 *5)))) (-4141 (*1 *2) (-12 (-4 *4 (-827)) (-5 *2 (-751)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4))))) -(-10 -8 (-15 * (|#1| (-897) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4141 ((-751))) (-15 -1683 (|#1| (-552))) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -2042 ((-528) |#1|)) (-15 -1895 ((-928 |#2|) |#1|)) (-15 -1893 ((-3 (-928 |#2|) "failed") |#1|)) (-15 -1683 (|#1| (-928 |#2|))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1683 (|#1| |#1|)) (-15 * (|#1| |#1| (-402 (-552)))) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 -1895 ((-402 (-928 |#2|)) |#1|)) (-15 -1893 ((-3 (-402 (-928 |#2|)) "failed") |#1|)) (-15 -1683 (|#1| (-402 (-928 |#2|)))) (-15 -3793 ((-402 (-1145 |#1|)) |#1| (-596 |#1|))) (-15 -1683 (|#1| (-402 (-928 (-402 |#2|))))) (-15 -1683 (|#1| (-928 (-402 |#2|)))) (-15 -1683 (|#1| (-402 |#2|))) (-15 -2265 (|#1| |#1|)) (-15 -2042 (|#1| (-413 |#1|))) (-15 -4073 (|#1| |#1| (-1149) (-751) (-1 |#1| |#1|))) (-15 -4073 (|#1| |#1| (-1149) (-751) (-1 |#1| (-625 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-751)) (-625 (-1 |#1| (-625 |#1|))))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-751)) (-625 (-1 |#1| |#1|)))) (-15 -4194 ((-3 (-2 (|:| |val| |#1|) (|:| -3564 (-552))) "failed") |#1|)) (-15 -4182 ((-3 (-2 (|:| |var| (-596 |#1|)) (|:| -3564 (-552))) "failed") |#1| (-1149))) (-15 -4182 ((-3 (-2 (|:| |var| (-596 |#1|)) (|:| -3564 (-552))) "failed") |#1| (-114))) (-15 -2276 (|#1| |#1|)) (-15 -1683 (|#1| (-1098 |#2| (-596 |#1|)))) (-15 -2692 ((-3 (-2 (|:| -3340 (-552)) (|:| |var| (-596 |#1|))) "failed") |#1|)) (-15 -4160 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -4182 ((-3 (-2 (|:| |var| (-596 |#1|)) (|:| -3564 (-552))) "failed") |#1|)) (-15 -4172 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -4073 (|#1| |#1| (-625 (-114)) (-625 |#1|) (-1149))) (-15 -4073 (|#1| |#1| (-114) |#1| (-1149))) (-15 -4073 (|#1| |#1|)) (-15 -4073 (|#1| |#1| (-625 (-1149)))) (-15 -4073 (|#1| |#1| (-1149))) (-15 -3844 (|#1| (-1149) (-625 |#1|))) (-15 -3844 (|#1| (-1149) |#1| |#1| |#1| |#1|)) (-15 -3844 (|#1| (-1149) |#1| |#1| |#1|)) (-15 -3844 (|#1| (-1149) |#1| |#1|)) (-15 -3844 (|#1| (-1149) |#1|)) (-15 -3982 ((-625 (-1149)) |#1|)) (-15 -4117 (|#2| |#1|)) (-15 -4105 ((-112) |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -1895 ((-1149) |#1|)) (-15 -1893 ((-3 (-1149) "failed") |#1|)) (-15 -1683 (|#1| (-1149))) (-15 -4073 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -4073 (|#1| |#1| (-114) (-1 |#1| (-625 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-114)) (-625 (-1 |#1| (-625 |#1|))))) (-15 -4073 (|#1| |#1| (-625 (-114)) (-625 (-1 |#1| |#1|)))) (-15 -4073 (|#1| |#1| (-1149) (-1 |#1| |#1|))) (-15 -4073 (|#1| |#1| (-1149) (-1 |#1| (-625 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-1 |#1| (-625 |#1|))))) (-15 -4073 (|#1| |#1| (-625 (-1149)) (-625 (-1 |#1| |#1|)))) (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 -3783 ((-625 (-596 |#1|)) |#1|)) (-15 -1952 ((-3 (-596 |#1|) "failed") |#1|)) (-15 -3831 (|#1| |#1| (-625 (-596 |#1|)) (-625 |#1|))) (-15 -3831 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -3831 (|#1| |#1| (-289 |#1|))) (-15 -2154 (|#1| (-114) (-625 |#1|))) (-15 -2154 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1| |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1| |#1|)) (-15 -2154 (|#1| (-114) |#1|)) (-15 -4073 (|#1| |#1| (-625 |#1|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| (-289 |#1|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -4073 (|#1| |#1| (-625 (-596 |#1|)) (-625 |#1|))) (-15 -4073 (|#1| |#1| (-596 |#1|) |#1|)) (-15 -1895 ((-596 |#1|) |#1|)) (-15 -1893 ((-3 (-596 |#1|) "failed") |#1|)) (-15 -1683 (|#1| (-596 |#1|))) (-15 -1683 ((-839) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 113 (|has| |#1| (-25)))) (-3982 (((-625 (-1149)) $) 200)) (-3793 (((-402 (-1145 $)) $ (-596 $)) 168 (|has| |#1| (-544)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 140 (|has| |#1| (-544)))) (-3528 (($ $) 141 (|has| |#1| (-544)))) (-3509 (((-112) $) 143 (|has| |#1| (-544)))) (-3715 (((-625 (-596 $)) $) 44)) (-2077 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-3831 (($ $ (-289 $)) 56) (($ $ (-625 (-289 $))) 55) (($ $ (-625 (-596 $)) (-625 $)) 54)) (-2194 (($ $) 160 (|has| |#1| (-544)))) (-1330 (((-413 $) $) 161 (|has| |#1| (-544)))) (-2408 (((-112) $ $) 151 (|has| |#1| (-544)))) (-3101 (($) 101 (-1523 (|has| |#1| (-1085)) (|has| |#1| (-25))) CONST)) (-1893 (((-3 (-596 $) "failed") $) 69) (((-3 (-1149) "failed") $) 213) (((-3 (-552) "failed") $) 206 (|has| |#1| (-1014 (-552)))) (((-3 |#1| "failed") $) 204) (((-3 (-402 (-928 |#1|)) "failed") $) 166 (|has| |#1| (-544))) (((-3 (-928 |#1|) "failed") $) 120 (|has| |#1| (-1025))) (((-3 (-402 (-552)) "failed") $) 95 (-1523 (-12 (|has| |#1| (-1014 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1014 (-402 (-552))))))) (-1895 (((-596 $) $) 68) (((-1149) $) 212) (((-552) $) 207 (|has| |#1| (-1014 (-552)))) ((|#1| $) 203) (((-402 (-928 |#1|)) $) 165 (|has| |#1| (-544))) (((-928 |#1|) $) 119 (|has| |#1| (-1025))) (((-402 (-552)) $) 94 (-1523 (-12 (|has| |#1| (-1014 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1014 (-402 (-552))))))) (-2851 (($ $ $) 155 (|has| |#1| (-544)))) (-1794 (((-669 (-552)) (-669 $)) 134 (-3743 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 133 (-3743 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 132 (|has| |#1| (-1025))) (((-669 |#1|) (-669 $)) 131 (|has| |#1| (-1025)))) (-4174 (((-3 $ "failed") $) 103 (|has| |#1| (-1085)))) (-2826 (($ $ $) 154 (|has| |#1| (-544)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 149 (|has| |#1| (-544)))) (-2951 (((-112) $) 162 (|has| |#1| (-544)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 209 (|has| |#1| (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 208 (|has| |#1| (-862 (-374))))) (-2411 (($ $) 51) (($ (-625 $)) 50)) (-1940 (((-625 (-114)) $) 43)) (-1563 (((-114) (-114)) 42)) (-3650 (((-112) $) 102 (|has| |#1| (-1085)))) (-3932 (((-112) $) 22 (|has| $ (-1014 (-552))))) (-2276 (($ $) 183 (|has| |#1| (-1025)))) (-1356 (((-1098 |#1| (-596 $)) $) 184 (|has| |#1| (-1025)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 158 (|has| |#1| (-544)))) (-1917 (((-1145 $) (-596 $)) 25 (|has| $ (-1025)))) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-1996 (($ (-1 $ $) (-596 $)) 36)) (-1952 (((-3 (-596 $) "failed") $) 46)) (-2605 (($ (-625 $)) 147 (|has| |#1| (-544))) (($ $ $) 146 (|has| |#1| (-544)))) (-2883 (((-1131) $) 9)) (-3783 (((-625 (-596 $)) $) 45)) (-1425 (($ (-114) $) 38) (($ (-114) (-625 $)) 37)) (-4172 (((-3 (-625 $) "failed") $) 189 (|has| |#1| (-1085)))) (-4194 (((-3 (-2 (|:| |val| $) (|:| -3564 (-552))) "failed") $) 180 (|has| |#1| (-1025)))) (-4160 (((-3 (-625 $) "failed") $) 187 (|has| |#1| (-25)))) (-2692 (((-3 (-2 (|:| -3340 (-552)) (|:| |var| (-596 $))) "failed") $) 186 (|has| |#1| (-25)))) (-4182 (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $) 188 (|has| |#1| (-1085))) (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $ (-114)) 182 (|has| |#1| (-1025))) (((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $ (-1149)) 181 (|has| |#1| (-1025)))) (-1721 (((-112) $ (-114)) 40) (((-112) $ (-1149)) 39)) (-4092 (($ $) 105 (-1523 (|has| |#1| (-467)) (|has| |#1| (-544))))) (-2207 (((-751) $) 47)) (-2831 (((-1093) $) 10)) (-4105 (((-112) $) 202)) (-4117 ((|#1| $) 201)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 148 (|has| |#1| (-544)))) (-2633 (($ (-625 $)) 145 (|has| |#1| (-544))) (($ $ $) 144 (|has| |#1| (-544)))) (-1929 (((-112) $ $) 35) (((-112) $ (-1149)) 34)) (-3824 (((-413 $) $) 159 (|has| |#1| (-544)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-544))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 156 (|has| |#1| (-544)))) (-2802 (((-3 $ "failed") $ $) 139 (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 150 (|has| |#1| (-544)))) (-3943 (((-112) $) 23 (|has| $ (-1014 (-552))))) (-4073 (($ $ (-596 $) $) 67) (($ $ (-625 (-596 $)) (-625 $)) 66) (($ $ (-625 (-289 $))) 65) (($ $ (-289 $)) 64) (($ $ $ $) 63) (($ $ (-625 $) (-625 $)) 62) (($ $ (-625 (-1149)) (-625 (-1 $ $))) 33) (($ $ (-625 (-1149)) (-625 (-1 $ (-625 $)))) 32) (($ $ (-1149) (-1 $ (-625 $))) 31) (($ $ (-1149) (-1 $ $)) 30) (($ $ (-625 (-114)) (-625 (-1 $ $))) 29) (($ $ (-625 (-114)) (-625 (-1 $ (-625 $)))) 28) (($ $ (-114) (-1 $ (-625 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1149)) 194 (|has| |#1| (-598 (-528)))) (($ $ (-625 (-1149))) 193 (|has| |#1| (-598 (-528)))) (($ $) 192 (|has| |#1| (-598 (-528)))) (($ $ (-114) $ (-1149)) 191 (|has| |#1| (-598 (-528)))) (($ $ (-625 (-114)) (-625 $) (-1149)) 190 (|has| |#1| (-598 (-528)))) (($ $ (-625 (-1149)) (-625 (-751)) (-625 (-1 $ $))) 179 (|has| |#1| (-1025))) (($ $ (-625 (-1149)) (-625 (-751)) (-625 (-1 $ (-625 $)))) 178 (|has| |#1| (-1025))) (($ $ (-1149) (-751) (-1 $ (-625 $))) 177 (|has| |#1| (-1025))) (($ $ (-1149) (-751) (-1 $ $)) 176 (|has| |#1| (-1025)))) (-2397 (((-751) $) 152 (|has| |#1| (-544)))) (-2154 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-625 $)) 57)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 153 (|has| |#1| (-544)))) (-1963 (($ $) 49) (($ $ $) 48)) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) 125 (|has| |#1| (-1025))) (($ $ (-1149) (-751)) 124 (|has| |#1| (-1025))) (($ $ (-625 (-1149))) 123 (|has| |#1| (-1025))) (($ $ (-1149)) 122 (|has| |#1| (-1025)))) (-2265 (($ $) 173 (|has| |#1| (-544)))) (-1368 (((-1098 |#1| (-596 $)) $) 174 (|has| |#1| (-544)))) (-3610 (($ $) 24 (|has| $ (-1025)))) (-2042 (((-868 (-552)) $) 211 (|has| |#1| (-598 (-868 (-552))))) (((-868 (-374)) $) 210 (|has| |#1| (-598 (-868 (-374))))) (($ (-413 $)) 175 (|has| |#1| (-544))) (((-528) $) 97 (|has| |#1| (-598 (-528))))) (-2410 (($ $ $) 108 (|has| |#1| (-467)))) (-3828 (($ $ $) 109 (|has| |#1| (-467)))) (-1683 (((-839) $) 11) (($ (-596 $)) 70) (($ (-1149)) 214) (($ |#1|) 205) (($ (-1098 |#1| (-596 $))) 185 (|has| |#1| (-1025))) (($ (-402 |#1|)) 171 (|has| |#1| (-544))) (($ (-928 (-402 |#1|))) 170 (|has| |#1| (-544))) (($ (-402 (-928 (-402 |#1|)))) 169 (|has| |#1| (-544))) (($ (-402 (-928 |#1|))) 167 (|has| |#1| (-544))) (($ $) 138 (|has| |#1| (-544))) (($ (-928 |#1|)) 121 (|has| |#1| (-1025))) (($ (-402 (-552))) 96 (-1523 (|has| |#1| (-544)) (-12 (|has| |#1| (-1014 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1014 (-402 (-552)))))) (($ (-552)) 93 (-1523 (|has| |#1| (-1025)) (|has| |#1| (-1014 (-552)))))) (-4243 (((-3 $ "failed") $) 135 (|has| |#1| (-143)))) (-4141 (((-751)) 130 (|has| |#1| (-1025)))) (-3779 (($ $) 53) (($ (-625 $)) 52)) (-1572 (((-112) (-114)) 41)) (-3518 (((-112) $ $) 142 (|has| |#1| (-544)))) (-3844 (($ (-1149) $) 199) (($ (-1149) $ $) 198) (($ (-1149) $ $ $) 197) (($ (-1149) $ $ $ $) 196) (($ (-1149) (-625 $)) 195)) (-2089 (($) 112 (|has| |#1| (-25)) CONST)) (-2100 (($) 100 (|has| |#1| (-1085)) CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) 129 (|has| |#1| (-1025))) (($ $ (-1149) (-751)) 128 (|has| |#1| (-1025))) (($ $ (-625 (-1149))) 127 (|has| |#1| (-1025))) (($ $ (-1149)) 126 (|has| |#1| (-1025)))) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)) (-2404 (($ (-1098 |#1| (-596 $)) (-1098 |#1| (-596 $))) 172 (|has| |#1| (-544))) (($ $ $) 106 (-1523 (|has| |#1| (-467)) (|has| |#1| (-544))))) (-2393 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-2382 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-552)) 107 (-1523 (|has| |#1| (-467)) (|has| |#1| (-544)))) (($ $ (-751)) 104 (|has| |#1| (-1085))) (($ $ (-897)) 99 (|has| |#1| (-1085)))) (* (($ (-402 (-552)) $) 164 (|has| |#1| (-544))) (($ $ (-402 (-552))) 163 (|has| |#1| (-544))) (($ |#1| $) 137 (|has| |#1| (-170))) (($ $ |#1|) 136 (|has| |#1| (-170))) (($ (-552) $) 118 (|has| |#1| (-21))) (($ (-751) $) 114 (|has| |#1| (-25))) (($ (-897) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1085))))) -(((-425 |#1|) (-138) (-827)) (T -425)) -((-4105 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-827)) (-5 *2 (-112)))) (-4117 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-827)))) (-3982 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-827)) (-5 *2 (-625 (-1149))))) (-3844 (*1 *1 *2 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-425 *3)) (-4 *3 (-827)))) (-3844 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-425 *3)) (-4 *3 (-827)))) (-3844 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-425 *3)) (-4 *3 (-827)))) (-3844 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-425 *3)) (-4 *3 (-827)))) (-3844 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-625 *1)) (-4 *1 (-425 *4)) (-4 *4 (-827)))) (-4073 (*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-4 *1 (-425 *3)) (-4 *3 (-827)) (-4 *3 (-598 (-528))))) (-4073 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-1149))) (-4 *1 (-425 *3)) (-4 *3 (-827)) (-4 *3 (-598 (-528))))) (-4073 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-827)) (-4 *2 (-598 (-528))))) (-4073 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1149)) (-4 *1 (-425 *4)) (-4 *4 (-827)) (-4 *4 (-598 (-528))))) (-4073 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-625 (-114))) (-5 *3 (-625 *1)) (-5 *4 (-1149)) (-4 *1 (-425 *5)) (-4 *5 (-827)) (-4 *5 (-598 (-528))))) (-4172 (*1 *2 *1) (|partial| -12 (-4 *3 (-1085)) (-4 *3 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-425 *3)))) (-4182 (*1 *2 *1) (|partial| -12 (-4 *3 (-1085)) (-4 *3 (-827)) (-5 *2 (-2 (|:| |var| (-596 *1)) (|:| -3564 (-552)))) (-4 *1 (-425 *3)))) (-4160 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-425 *3)))) (-2692 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-827)) (-5 *2 (-2 (|:| -3340 (-552)) (|:| |var| (-596 *1)))) (-4 *1 (-425 *3)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1098 *3 (-596 *1))) (-4 *3 (-1025)) (-4 *3 (-827)) (-4 *1 (-425 *3)))) (-1356 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *3 (-827)) (-5 *2 (-1098 *3 (-596 *1))) (-4 *1 (-425 *3)))) (-2276 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-827)) (-4 *2 (-1025)))) (-4182 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1025)) (-4 *4 (-827)) (-5 *2 (-2 (|:| |var| (-596 *1)) (|:| -3564 (-552)))) (-4 *1 (-425 *4)))) (-4182 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1149)) (-4 *4 (-1025)) (-4 *4 (-827)) (-5 *2 (-2 (|:| |var| (-596 *1)) (|:| -3564 (-552)))) (-4 *1 (-425 *4)))) (-4194 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-827)) (-5 *2 (-2 (|:| |val| *1) (|:| -3564 (-552)))) (-4 *1 (-425 *3)))) (-4073 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-625 (-751))) (-5 *4 (-625 (-1 *1 *1))) (-4 *1 (-425 *5)) (-4 *5 (-827)) (-4 *5 (-1025)))) (-4073 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-625 (-751))) (-5 *4 (-625 (-1 *1 (-625 *1)))) (-4 *1 (-425 *5)) (-4 *5 (-827)) (-4 *5 (-1025)))) (-4073 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *4 (-1 *1 (-625 *1))) (-4 *1 (-425 *5)) (-4 *5 (-827)) (-4 *5 (-1025)))) (-4073 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *4 (-1 *1 *1)) (-4 *1 (-425 *5)) (-4 *5 (-827)) (-4 *5 (-1025)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-413 *1)) (-4 *1 (-425 *3)) (-4 *3 (-544)) (-4 *3 (-827)))) (-1368 (*1 *2 *1) (-12 (-4 *3 (-544)) (-4 *3 (-827)) (-5 *2 (-1098 *3 (-596 *1))) (-4 *1 (-425 *3)))) (-2265 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-827)) (-4 *2 (-544)))) (-2404 (*1 *1 *2 *2) (-12 (-5 *2 (-1098 *3 (-596 *1))) (-4 *3 (-544)) (-4 *3 (-827)) (-4 *1 (-425 *3)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-402 *3)) (-4 *3 (-544)) (-4 *3 (-827)) (-4 *1 (-425 *3)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-928 (-402 *3))) (-4 *3 (-544)) (-4 *3 (-827)) (-4 *1 (-425 *3)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-402 (-928 (-402 *3)))) (-4 *3 (-544)) (-4 *3 (-827)) (-4 *1 (-425 *3)))) (-3793 (*1 *2 *1 *3) (-12 (-5 *3 (-596 *1)) (-4 *1 (-425 *4)) (-4 *4 (-827)) (-4 *4 (-544)) (-5 *2 (-402 (-1145 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-425 *3)) (-4 *3 (-827)) (-4 *3 (-1085))))) -(-13 (-297) (-1014 (-1149)) (-860 |t#1|) (-395 |t#1|) (-406 |t#1|) (-10 -8 (-15 -4105 ((-112) $)) (-15 -4117 (|t#1| $)) (-15 -3982 ((-625 (-1149)) $)) (-15 -3844 ($ (-1149) $)) (-15 -3844 ($ (-1149) $ $)) (-15 -3844 ($ (-1149) $ $ $)) (-15 -3844 ($ (-1149) $ $ $ $)) (-15 -3844 ($ (-1149) (-625 $))) (IF (|has| |t#1| (-598 (-528))) (PROGN (-6 (-598 (-528))) (-15 -4073 ($ $ (-1149))) (-15 -4073 ($ $ (-625 (-1149)))) (-15 -4073 ($ $)) (-15 -4073 ($ $ (-114) $ (-1149))) (-15 -4073 ($ $ (-625 (-114)) (-625 $) (-1149)))) |%noBranch|) (IF (|has| |t#1| (-1085)) (PROGN (-6 (-707)) (-15 ** ($ $ (-751))) (-15 -4172 ((-3 (-625 $) "failed") $)) (-15 -4182 ((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-467)) (-6 (-467)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -4160 ((-3 (-625 $) "failed") $)) (-15 -2692 ((-3 (-2 (|:| -3340 (-552)) (|:| |var| (-596 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1025)) (PROGN (-6 (-1025)) (-6 (-1014 (-928 |t#1|))) (-6 (-876 (-1149))) (-6 (-372 |t#1|)) (-15 -1683 ($ (-1098 |t#1| (-596 $)))) (-15 -1356 ((-1098 |t#1| (-596 $)) $)) (-15 -2276 ($ $)) (-15 -4182 ((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $ (-114))) (-15 -4182 ((-3 (-2 (|:| |var| (-596 $)) (|:| -3564 (-552))) "failed") $ (-1149))) (-15 -4194 ((-3 (-2 (|:| |val| $) (|:| -3564 (-552))) "failed") $)) (-15 -4073 ($ $ (-625 (-1149)) (-625 (-751)) (-625 (-1 $ $)))) (-15 -4073 ($ $ (-625 (-1149)) (-625 (-751)) (-625 (-1 $ (-625 $))))) (-15 -4073 ($ $ (-1149) (-751) (-1 $ (-625 $)))) (-15 -4073 ($ $ (-1149) (-751) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-6 (-358)) (-6 (-1014 (-402 (-928 |t#1|)))) (-15 -2042 ($ (-413 $))) (-15 -1368 ((-1098 |t#1| (-596 $)) $)) (-15 -2265 ($ $)) (-15 -2404 ($ (-1098 |t#1| (-596 $)) (-1098 |t#1| (-596 $)))) (-15 -1683 ($ (-402 |t#1|))) (-15 -1683 ($ (-928 (-402 |t#1|)))) (-15 -1683 ($ (-402 (-928 (-402 |t#1|))))) (-15 -3793 ((-402 (-1145 $)) $ (-596 $))) (IF (|has| |t#1| (-1014 (-552))) (-6 (-1014 (-402 (-552)))) |%noBranch|)) |%noBranch|))) -(((-21) -1523 (|has| |#1| (-1025)) (|has| |#1| (-544)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-23) -1523 (|has| |#1| (-1025)) (|has| |#1| (-544)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1523 (|has| |#1| (-1025)) (|has| |#1| (-544)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-402 (-552))) |has| |#1| (-544)) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-544)) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) |has| |#1| (-544)) ((-130) -1523 (|has| |#1| (-1025)) (|has| |#1| (-544)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) |has| |#1| (-544)) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-598 (-868 (-374))) |has| |#1| (-598 (-868 (-374)))) ((-598 (-868 (-552))) |has| |#1| (-598 (-868 (-552)))) ((-239) |has| |#1| (-544)) ((-285) |has| |#1| (-544)) ((-302) |has| |#1| (-544)) ((-304 $) . T) ((-297) . T) ((-358) |has| |#1| (-544)) ((-372 |#1|) |has| |#1| (-1025)) ((-395 |#1|) . T) ((-406 |#1|) . T) ((-446) |has| |#1| (-544)) ((-467) |has| |#1| (-467)) ((-507 (-596 $) $) . T) ((-507 $ $) . T) ((-544) |has| |#1| (-544)) ((-628 #0#) |has| |#1| (-544)) ((-628 |#1|) |has| |#1| (-170)) ((-628 $) -1523 (|has| |#1| (-1025)) (|has| |#1| (-544)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-621 (-552)) -12 (|has| |#1| (-621 (-552))) (|has| |#1| (-1025))) ((-621 |#1|) |has| |#1| (-1025)) ((-698 #0#) |has| |#1| (-544)) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-544)) ((-707) -1523 (|has| |#1| (-1085)) (|has| |#1| (-1025)) (|has| |#1| (-544)) (|has| |#1| (-467)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-827) . T) ((-876 (-1149)) |has| |#1| (-1025)) ((-862 (-374)) |has| |#1| (-862 (-374))) ((-862 (-552)) |has| |#1| (-862 (-552))) ((-860 |#1|) . T) ((-896) |has| |#1| (-544)) ((-1014 (-402 (-552))) -1523 (|has| |#1| (-1014 (-402 (-552)))) (-12 (|has| |#1| (-544)) (|has| |#1| (-1014 (-552))))) ((-1014 (-402 (-928 |#1|))) |has| |#1| (-544)) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 (-596 $)) . T) ((-1014 (-928 |#1|)) |has| |#1| (-1025)) ((-1014 (-1149)) . T) ((-1014 |#1|) . T) ((-1031 #0#) |has| |#1| (-544)) ((-1031 |#1|) |has| |#1| (-170)) ((-1031 $) |has| |#1| (-544)) ((-1025) -1523 (|has| |#1| (-1025)) (|has| |#1| (-544)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1032) -1523 (|has| |#1| (-1025)) (|has| |#1| (-544)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1085) -1523 (|has| |#1| (-1085)) (|has| |#1| (-1025)) (|has| |#1| (-544)) (|has| |#1| (-467)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1073) . T) ((-1186) . T) ((-1190) |has| |#1| (-544))) -((-1759 ((|#2| |#2| |#2|) 33)) (-1563 (((-114) (-114)) 44)) (-2809 ((|#2| |#2|) 66)) (-2798 ((|#2| |#2|) 69)) (-1749 ((|#2| |#2|) 32)) (-1792 ((|#2| |#2| |#2|) 35)) (-1815 ((|#2| |#2| |#2|) 37)) (-1780 ((|#2| |#2| |#2|) 34)) (-1804 ((|#2| |#2| |#2|) 36)) (-1572 (((-112) (-114)) 42)) (-1836 ((|#2| |#2|) 39)) (-1825 ((|#2| |#2|) 38)) (-1727 ((|#2| |#2|) 27)) (-1769 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-1739 ((|#2| |#2| |#2|) 31))) -(((-426 |#1| |#2|) (-10 -7 (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 -1727 (|#2| |#2|)) (-15 -1769 (|#2| |#2|)) (-15 -1769 (|#2| |#2| |#2|)) (-15 -1739 (|#2| |#2| |#2|)) (-15 -1749 (|#2| |#2|)) (-15 -1759 (|#2| |#2| |#2|)) (-15 -1780 (|#2| |#2| |#2|)) (-15 -1792 (|#2| |#2| |#2|)) (-15 -1804 (|#2| |#2| |#2|)) (-15 -1815 (|#2| |#2| |#2|)) (-15 -1825 (|#2| |#2|)) (-15 -1836 (|#2| |#2|)) (-15 -2798 (|#2| |#2|)) (-15 -2809 (|#2| |#2|))) (-13 (-827) (-544)) (-425 |#1|)) (T -426)) -((-2809 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-2798 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1836 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1825 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1815 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1804 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1792 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1780 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1759 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1749 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1739 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1769 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1769 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1727 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) (-4 *2 (-425 *3)))) (-1563 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *4)) (-4 *4 (-425 *3)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112)) (-5 *1 (-426 *4 *5)) (-4 *5 (-425 *4))))) -(-10 -7 (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 -1727 (|#2| |#2|)) (-15 -1769 (|#2| |#2|)) (-15 -1769 (|#2| |#2| |#2|)) (-15 -1739 (|#2| |#2| |#2|)) (-15 -1749 (|#2| |#2|)) (-15 -1759 (|#2| |#2| |#2|)) (-15 -1780 (|#2| |#2| |#2|)) (-15 -1792 (|#2| |#2| |#2|)) (-15 -1804 (|#2| |#2| |#2|)) (-15 -1815 (|#2| |#2| |#2|)) (-15 -1825 (|#2| |#2|)) (-15 -1836 (|#2| |#2|)) (-15 -2798 (|#2| |#2|)) (-15 -2809 (|#2| |#2|))) -((-4279 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1145 |#2|)) (|:| |pol2| (-1145 |#2|)) (|:| |prim| (-1145 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-625 (-1145 |#2|))) (|:| |prim| (-1145 |#2|))) (-625 |#2|)) 61))) -(((-427 |#1| |#2|) (-10 -7 (-15 -4279 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-625 (-1145 |#2|))) (|:| |prim| (-1145 |#2|))) (-625 |#2|))) (IF (|has| |#2| (-27)) (-15 -4279 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1145 |#2|)) (|:| |pol2| (-1145 |#2|)) (|:| |prim| (-1145 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-544) (-827) (-145)) (-425 |#1|)) (T -427)) -((-4279 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-544) (-827) (-145))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1145 *3)) (|:| |pol2| (-1145 *3)) (|:| |prim| (-1145 *3)))) (-5 *1 (-427 *4 *3)) (-4 *3 (-27)) (-4 *3 (-425 *4)))) (-4279 (*1 *2 *3) (-12 (-5 *3 (-625 *5)) (-4 *5 (-425 *4)) (-4 *4 (-13 (-544) (-827) (-145))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-625 (-1145 *5))) (|:| |prim| (-1145 *5)))) (-5 *1 (-427 *4 *5))))) -(-10 -7 (-15 -4279 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-625 (-1145 |#2|))) (|:| |prim| (-1145 |#2|))) (-625 |#2|))) (IF (|has| |#2| (-27)) (-15 -4279 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1145 |#2|)) (|:| |pol2| (-1145 |#2|)) (|:| |prim| (-1145 |#2|))) |#2| |#2|)) |%noBranch|)) -((-2835 (((-1237)) 19)) (-2821 (((-1145 (-402 (-552))) |#2| (-596 |#2|)) 41) (((-402 (-552)) |#2|) 25))) -(((-428 |#1| |#2|) (-10 -7 (-15 -2821 ((-402 (-552)) |#2|)) (-15 -2821 ((-1145 (-402 (-552))) |#2| (-596 |#2|))) (-15 -2835 ((-1237)))) (-13 (-827) (-544) (-1014 (-552))) (-425 |#1|)) (T -428)) -((-2835 (*1 *2) (-12 (-4 *3 (-13 (-827) (-544) (-1014 (-552)))) (-5 *2 (-1237)) (-5 *1 (-428 *3 *4)) (-4 *4 (-425 *3)))) (-2821 (*1 *2 *3 *4) (-12 (-5 *4 (-596 *3)) (-4 *3 (-425 *5)) (-4 *5 (-13 (-827) (-544) (-1014 (-552)))) (-5 *2 (-1145 (-402 (-552)))) (-5 *1 (-428 *5 *3)))) (-2821 (*1 *2 *3) (-12 (-4 *4 (-13 (-827) (-544) (-1014 (-552)))) (-5 *2 (-402 (-552))) (-5 *1 (-428 *4 *3)) (-4 *3 (-425 *4))))) -(-10 -7 (-15 -2821 ((-402 (-552)) |#2|)) (-15 -2821 ((-1145 (-402 (-552))) |#2| (-596 |#2|))) (-15 -2835 ((-1237)))) -((-3301 (((-112) $) 28)) (-2847 (((-112) $) 30)) (-2970 (((-112) $) 31)) (-2869 (((-112) $) 34)) (-2891 (((-112) $) 29)) (-2881 (((-112) $) 33)) (-1683 (((-839) $) 18) (($ (-1131)) 27) (($ (-1149)) 23) (((-1149) $) 22) (((-1077) $) 21)) (-2858 (((-112) $) 32)) (-2281 (((-112) $ $) 15))) -(((-429) (-13 (-597 (-839)) (-10 -8 (-15 -1683 ($ (-1131))) (-15 -1683 ($ (-1149))) (-15 -1683 ((-1149) $)) (-15 -1683 ((-1077) $)) (-15 -3301 ((-112) $)) (-15 -2891 ((-112) $)) (-15 -2970 ((-112) $)) (-15 -2881 ((-112) $)) (-15 -2869 ((-112) $)) (-15 -2858 ((-112) $)) (-15 -2847 ((-112) $)) (-15 -2281 ((-112) $ $))))) (T -429)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-429)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-429)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-429)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-429)))) (-3301 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-2281 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) -(-13 (-597 (-839)) (-10 -8 (-15 -1683 ($ (-1131))) (-15 -1683 ($ (-1149))) (-15 -1683 ((-1149) $)) (-15 -1683 ((-1077) $)) (-15 -3301 ((-112) $)) (-15 -2891 ((-112) $)) (-15 -2970 ((-112) $)) (-15 -2881 ((-112) $)) (-15 -2869 ((-112) $)) (-15 -2858 ((-112) $)) (-15 -2847 ((-112) $)) (-15 -2281 ((-112) $ $)))) -((-2911 (((-3 (-413 (-1145 (-402 (-552)))) "failed") |#3|) 70)) (-2901 (((-413 |#3|) |#3|) 34)) (-2933 (((-3 (-413 (-1145 (-48))) "failed") |#3|) 46 (|has| |#2| (-1014 (-48))))) (-2921 (((-3 (|:| |overq| (-1145 (-402 (-552)))) (|:| |overan| (-1145 (-48))) (|:| -3547 (-112))) |#3|) 37))) -(((-430 |#1| |#2| |#3|) (-10 -7 (-15 -2901 ((-413 |#3|) |#3|)) (-15 -2911 ((-3 (-413 (-1145 (-402 (-552)))) "failed") |#3|)) (-15 -2921 ((-3 (|:| |overq| (-1145 (-402 (-552)))) (|:| |overan| (-1145 (-48))) (|:| -3547 (-112))) |#3|)) (IF (|has| |#2| (-1014 (-48))) (-15 -2933 ((-3 (-413 (-1145 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-544) (-827) (-1014 (-552))) (-425 |#1|) (-1208 |#2|)) (T -430)) -((-2933 (*1 *2 *3) (|partial| -12 (-4 *5 (-1014 (-48))) (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-4 *5 (-425 *4)) (-5 *2 (-413 (-1145 (-48)))) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1208 *5)))) (-2921 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-4 *5 (-425 *4)) (-5 *2 (-3 (|:| |overq| (-1145 (-402 (-552)))) (|:| |overan| (-1145 (-48))) (|:| -3547 (-112)))) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1208 *5)))) (-2911 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-4 *5 (-425 *4)) (-5 *2 (-413 (-1145 (-402 (-552))))) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1208 *5)))) (-2901 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-4 *5 (-425 *4)) (-5 *2 (-413 *3)) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1208 *5))))) -(-10 -7 (-15 -2901 ((-413 |#3|) |#3|)) (-15 -2911 ((-3 (-413 (-1145 (-402 (-552)))) "failed") |#3|)) (-15 -2921 ((-3 (|:| |overq| (-1145 (-402 (-552)))) (|:| |overan| (-1145 (-48))) (|:| -3547 (-112))) |#3|)) (IF (|has| |#2| (-1014 (-48))) (-15 -2933 ((-3 (-413 (-1145 (-48))) "failed") |#3|)) |%noBranch|)) -((-1671 (((-112) $ $) NIL)) (-4086 (((-1131) $ (-1131)) NIL)) (-4137 (($ $ (-1131)) NIL)) (-4099 (((-1131) $) NIL)) (-3077 (((-383) (-383) (-383)) 17) (((-383) (-383)) 15)) (-2508 (($ (-383)) NIL) (($ (-383) (-1131)) NIL)) (-1288 (((-383) $) NIL)) (-2883 (((-1131) $) NIL)) (-4111 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3067 (((-1237) (-1131)) 9)) (-3057 (((-1237) (-1131)) 10)) (-3046 (((-1237)) 11)) (-1683 (((-839) $) NIL)) (-4125 (($ $) 35)) (-2281 (((-112) $ $) NIL))) -(((-431) (-13 (-359 (-383) (-1131)) (-10 -7 (-15 -3077 ((-383) (-383) (-383))) (-15 -3077 ((-383) (-383))) (-15 -3067 ((-1237) (-1131))) (-15 -3057 ((-1237) (-1131))) (-15 -3046 ((-1237)))))) (T -431)) -((-3077 (*1 *2 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-431)))) (-3077 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-431)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-431)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-431)))) (-3046 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-431))))) -(-13 (-359 (-383) (-1131)) (-10 -7 (-15 -3077 ((-383) (-383) (-383))) (-15 -3077 ((-383) (-383))) (-15 -3067 ((-1237) (-1131))) (-15 -3057 ((-1237) (-1131))) (-15 -3046 ((-1237))))) -((-1671 (((-112) $ $) NIL)) (-3036 (((-3 (|:| |fst| (-429)) (|:| -2781 "void")) $) 11)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3013 (($) 32)) (-2978 (($) 38)) (-2989 (($) 34)) (-2954 (($) 36)) (-3001 (($) 33)) (-2967 (($) 35)) (-2943 (($) 37)) (-3025 (((-112) $) 8)) (-2002 (((-625 (-928 (-552))) $) 19)) (-1695 (($ (-3 (|:| |fst| (-429)) (|:| -2781 "void")) (-625 (-1149)) (-112)) 27) (($ (-3 (|:| |fst| (-429)) (|:| -2781 "void")) (-625 (-928 (-552))) (-112)) 28)) (-1683 (((-839) $) 23) (($ (-429)) 29)) (-2281 (((-112) $ $) NIL))) -(((-432) (-13 (-1073) (-10 -8 (-15 -1683 ((-839) $)) (-15 -1683 ($ (-429))) (-15 -3036 ((-3 (|:| |fst| (-429)) (|:| -2781 "void")) $)) (-15 -2002 ((-625 (-928 (-552))) $)) (-15 -3025 ((-112) $)) (-15 -1695 ($ (-3 (|:| |fst| (-429)) (|:| -2781 "void")) (-625 (-1149)) (-112))) (-15 -1695 ($ (-3 (|:| |fst| (-429)) (|:| -2781 "void")) (-625 (-928 (-552))) (-112))) (-15 -3013 ($)) (-15 -3001 ($)) (-15 -2989 ($)) (-15 -2978 ($)) (-15 -2967 ($)) (-15 -2954 ($)) (-15 -2943 ($))))) (T -432)) -((-1683 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-432)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-429)) (-5 *1 (-432)))) (-3036 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-5 *1 (-432)))) (-2002 (*1 *2 *1) (-12 (-5 *2 (-625 (-928 (-552)))) (-5 *1 (-432)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-432)))) (-1695 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-5 *3 (-625 (-1149))) (-5 *4 (-112)) (-5 *1 (-432)))) (-1695 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-5 *3 (-625 (-928 (-552)))) (-5 *4 (-112)) (-5 *1 (-432)))) (-3013 (*1 *1) (-5 *1 (-432))) (-3001 (*1 *1) (-5 *1 (-432))) (-2989 (*1 *1) (-5 *1 (-432))) (-2978 (*1 *1) (-5 *1 (-432))) (-2967 (*1 *1) (-5 *1 (-432))) (-2954 (*1 *1) (-5 *1 (-432))) (-2943 (*1 *1) (-5 *1 (-432)))) -(-13 (-1073) (-10 -8 (-15 -1683 ((-839) $)) (-15 -1683 ($ (-429))) (-15 -3036 ((-3 (|:| |fst| (-429)) (|:| -2781 "void")) $)) (-15 -2002 ((-625 (-928 (-552))) $)) (-15 -3025 ((-112) $)) (-15 -1695 ($ (-3 (|:| |fst| (-429)) (|:| -2781 "void")) (-625 (-1149)) (-112))) (-15 -1695 ($ (-3 (|:| |fst| (-429)) (|:| -2781 "void")) (-625 (-928 (-552))) (-112))) (-15 -3013 ($)) (-15 -3001 ($)) (-15 -2989 ($)) (-15 -2978 ($)) (-15 -2967 ($)) (-15 -2954 ($)) (-15 -2943 ($)))) -((-1671 (((-112) $ $) NIL)) (-1288 (((-1149) $) 8)) (-2883 (((-1131) $) 16)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 13))) -(((-433 |#1|) (-13 (-1073) (-10 -8 (-15 -1288 ((-1149) $)))) (-1149)) (T -433)) -((-1288 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-433 *3)) (-14 *3 *2)))) -(-13 (-1073) (-10 -8 (-15 -1288 ((-1149) $)))) -((-2927 (((-1237) $) 7)) (-1683 (((-839) $) 8) (($ (-1232 (-679))) 14) (($ (-625 (-325))) 13) (($ (-325)) 12) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 11))) -(((-434) (-138)) (T -434)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-679))) (-4 *1 (-434)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-4 *1 (-434)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-434)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) (-4 *1 (-434))))) -(-13 (-390) (-10 -8 (-15 -1683 ($ (-1232 (-679)))) (-15 -1683 ($ (-625 (-325)))) (-15 -1683 ($ (-325))) (-15 -1683 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325)))))))) -(((-597 (-839)) . T) ((-390) . T) ((-1186) . T)) -((-1893 (((-3 $ "failed") (-1232 (-311 (-374)))) 21) (((-3 $ "failed") (-1232 (-311 (-552)))) 19) (((-3 $ "failed") (-1232 (-928 (-374)))) 17) (((-3 $ "failed") (-1232 (-928 (-552)))) 15) (((-3 $ "failed") (-1232 (-402 (-928 (-374))))) 13) (((-3 $ "failed") (-1232 (-402 (-928 (-552))))) 11)) (-1895 (($ (-1232 (-311 (-374)))) 22) (($ (-1232 (-311 (-552)))) 20) (($ (-1232 (-928 (-374)))) 18) (($ (-1232 (-928 (-552)))) 16) (($ (-1232 (-402 (-928 (-374))))) 14) (($ (-1232 (-402 (-928 (-552))))) 12)) (-2927 (((-1237) $) 7)) (-1683 (((-839) $) 8) (($ (-625 (-325))) 25) (($ (-325)) 24) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) 23))) -(((-435) (-138)) (T -435)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-4 *1 (-435)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-435)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) (-4 *1 (-435)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-1232 (-311 (-374)))) (-4 *1 (-435)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-1232 (-311 (-374)))) (-4 *1 (-435)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-1232 (-311 (-552)))) (-4 *1 (-435)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-1232 (-311 (-552)))) (-4 *1 (-435)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-1232 (-928 (-374)))) (-4 *1 (-435)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-1232 (-928 (-374)))) (-4 *1 (-435)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-1232 (-928 (-552)))) (-4 *1 (-435)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-1232 (-928 (-552)))) (-4 *1 (-435)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-1232 (-402 (-928 (-374))))) (-4 *1 (-435)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-1232 (-402 (-928 (-374))))) (-4 *1 (-435)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-1232 (-402 (-928 (-552))))) (-4 *1 (-435)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-1232 (-402 (-928 (-552))))) (-4 *1 (-435))))) -(-13 (-390) (-10 -8 (-15 -1683 ($ (-625 (-325)))) (-15 -1683 ($ (-325))) (-15 -1683 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325)))))) (-15 -1895 ($ (-1232 (-311 (-374))))) (-15 -1893 ((-3 $ "failed") (-1232 (-311 (-374))))) (-15 -1895 ($ (-1232 (-311 (-552))))) (-15 -1893 ((-3 $ "failed") (-1232 (-311 (-552))))) (-15 -1895 ($ (-1232 (-928 (-374))))) (-15 -1893 ((-3 $ "failed") (-1232 (-928 (-374))))) (-15 -1895 ($ (-1232 (-928 (-552))))) (-15 -1893 ((-3 $ "failed") (-1232 (-928 (-552))))) (-15 -1895 ($ (-1232 (-402 (-928 (-374)))))) (-15 -1893 ((-3 $ "failed") (-1232 (-402 (-928 (-374)))))) (-15 -1895 ($ (-1232 (-402 (-928 (-552)))))) (-15 -1893 ((-3 $ "failed") (-1232 (-402 (-928 (-552)))))))) -(((-597 (-839)) . T) ((-390) . T) ((-1186) . T)) -((-1947 (((-112)) 17)) (-1960 (((-112) (-112)) 18)) (-1972 (((-112)) 13)) (-1980 (((-112) (-112)) 14)) (-2000 (((-112)) 15)) (-2010 (((-112) (-112)) 16)) (-3102 (((-897) (-897)) 21) (((-897)) 20)) (-3110 (((-751) (-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552))))) 42)) (-3093 (((-897) (-897)) 23) (((-897)) 22)) (-3119 (((-2 (|:| -2462 (-552)) (|:| -3449 (-625 |#1|))) |#1|) 62)) (-3085 (((-413 |#1|) (-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552))))))) 126)) (-3023 (((-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))) |#1| (-112)) 152)) (-3011 (((-413 |#1|) |#1| (-751) (-751)) 165) (((-413 |#1|) |#1| (-625 (-751)) (-751)) 162) (((-413 |#1|) |#1| (-625 (-751))) 164) (((-413 |#1|) |#1| (-751)) 163) (((-413 |#1|) |#1|) 161)) (-2119 (((-3 |#1| "failed") (-897) |#1| (-625 (-751)) (-751) (-112)) 167) (((-3 |#1| "failed") (-897) |#1| (-625 (-751)) (-751)) 168) (((-3 |#1| "failed") (-897) |#1| (-625 (-751))) 170) (((-3 |#1| "failed") (-897) |#1| (-751)) 169) (((-3 |#1| "failed") (-897) |#1|) 171)) (-3824 (((-413 |#1|) |#1| (-751) (-751)) 160) (((-413 |#1|) |#1| (-625 (-751)) (-751)) 156) (((-413 |#1|) |#1| (-625 (-751))) 158) (((-413 |#1|) |#1| (-751)) 157) (((-413 |#1|) |#1|) 155)) (-1989 (((-112) |#1|) 37)) (-2110 (((-718 (-751)) (-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552))))) 67)) (-2017 (((-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))) |#1| (-112) (-1075 (-751)) (-751)) 154))) -(((-436 |#1|) (-10 -7 (-15 -3085 ((-413 |#1|) (-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))))) (-15 -2110 ((-718 (-751)) (-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552)))))) (-15 -3093 ((-897))) (-15 -3093 ((-897) (-897))) (-15 -3102 ((-897))) (-15 -3102 ((-897) (-897))) (-15 -3110 ((-751) (-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552)))))) (-15 -3119 ((-2 (|:| -2462 (-552)) (|:| -3449 (-625 |#1|))) |#1|)) (-15 -1947 ((-112))) (-15 -1960 ((-112) (-112))) (-15 -1972 ((-112))) (-15 -1980 ((-112) (-112))) (-15 -1989 ((-112) |#1|)) (-15 -2000 ((-112))) (-15 -2010 ((-112) (-112))) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -3824 ((-413 |#1|) |#1| (-751))) (-15 -3824 ((-413 |#1|) |#1| (-625 (-751)))) (-15 -3824 ((-413 |#1|) |#1| (-625 (-751)) (-751))) (-15 -3824 ((-413 |#1|) |#1| (-751) (-751))) (-15 -3011 ((-413 |#1|) |#1|)) (-15 -3011 ((-413 |#1|) |#1| (-751))) (-15 -3011 ((-413 |#1|) |#1| (-625 (-751)))) (-15 -3011 ((-413 |#1|) |#1| (-625 (-751)) (-751))) (-15 -3011 ((-413 |#1|) |#1| (-751) (-751))) (-15 -2119 ((-3 |#1| "failed") (-897) |#1|)) (-15 -2119 ((-3 |#1| "failed") (-897) |#1| (-751))) (-15 -2119 ((-3 |#1| "failed") (-897) |#1| (-625 (-751)))) (-15 -2119 ((-3 |#1| "failed") (-897) |#1| (-625 (-751)) (-751))) (-15 -2119 ((-3 |#1| "failed") (-897) |#1| (-625 (-751)) (-751) (-112))) (-15 -3023 ((-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))) |#1| (-112))) (-15 -2017 ((-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))) |#1| (-112) (-1075 (-751)) (-751)))) (-1208 (-552))) (T -436)) -((-2017 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1075 (-751))) (-5 *6 (-751)) (-5 *2 (-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| *3) (|:| -3515 (-552))))))) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3023 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| *3) (|:| -3515 (-552))))))) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-2119 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-897)) (-5 *4 (-625 (-751))) (-5 *5 (-751)) (-5 *6 (-112)) (-5 *1 (-436 *2)) (-4 *2 (-1208 (-552))))) (-2119 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-897)) (-5 *4 (-625 (-751))) (-5 *5 (-751)) (-5 *1 (-436 *2)) (-4 *2 (-1208 (-552))))) (-2119 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-897)) (-5 *4 (-625 (-751))) (-5 *1 (-436 *2)) (-4 *2 (-1208 (-552))))) (-2119 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-897)) (-5 *4 (-751)) (-5 *1 (-436 *2)) (-4 *2 (-1208 (-552))))) (-2119 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-897)) (-5 *1 (-436 *2)) (-4 *2 (-1208 (-552))))) (-3011 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-751)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3011 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-625 (-751))) (-5 *5 (-751)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3011 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-751))) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3011 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3011 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3824 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-751)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3824 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-625 (-751))) (-5 *5 (-751)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-751))) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3824 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-2010 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-2000 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-1989 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-1980 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-1972 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-1960 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-1947 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3119 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2462 (-552)) (|:| -3449 (-625 *3)))) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| -3824 *4) (|:| -4276 (-552))))) (-4 *4 (-1208 (-552))) (-5 *2 (-751)) (-5 *1 (-436 *4)))) (-3102 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3102 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3093 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-3093 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) (-2110 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| -3824 *4) (|:| -4276 (-552))))) (-4 *4 (-1208 (-552))) (-5 *2 (-718 (-751))) (-5 *1 (-436 *4)))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| *4) (|:| -3515 (-552))))))) (-4 *4 (-1208 (-552))) (-5 *2 (-413 *4)) (-5 *1 (-436 *4))))) -(-10 -7 (-15 -3085 ((-413 |#1|) (-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))))) (-15 -2110 ((-718 (-751)) (-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552)))))) (-15 -3093 ((-897))) (-15 -3093 ((-897) (-897))) (-15 -3102 ((-897))) (-15 -3102 ((-897) (-897))) (-15 -3110 ((-751) (-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552)))))) (-15 -3119 ((-2 (|:| -2462 (-552)) (|:| -3449 (-625 |#1|))) |#1|)) (-15 -1947 ((-112))) (-15 -1960 ((-112) (-112))) (-15 -1972 ((-112))) (-15 -1980 ((-112) (-112))) (-15 -1989 ((-112) |#1|)) (-15 -2000 ((-112))) (-15 -2010 ((-112) (-112))) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -3824 ((-413 |#1|) |#1| (-751))) (-15 -3824 ((-413 |#1|) |#1| (-625 (-751)))) (-15 -3824 ((-413 |#1|) |#1| (-625 (-751)) (-751))) (-15 -3824 ((-413 |#1|) |#1| (-751) (-751))) (-15 -3011 ((-413 |#1|) |#1|)) (-15 -3011 ((-413 |#1|) |#1| (-751))) (-15 -3011 ((-413 |#1|) |#1| (-625 (-751)))) (-15 -3011 ((-413 |#1|) |#1| (-625 (-751)) (-751))) (-15 -3011 ((-413 |#1|) |#1| (-751) (-751))) (-15 -2119 ((-3 |#1| "failed") (-897) |#1|)) (-15 -2119 ((-3 |#1| "failed") (-897) |#1| (-751))) (-15 -2119 ((-3 |#1| "failed") (-897) |#1| (-625 (-751)))) (-15 -2119 ((-3 |#1| "failed") (-897) |#1| (-625 (-751)) (-751))) (-15 -2119 ((-3 |#1| "failed") (-897) |#1| (-625 (-751)) (-751) (-112))) (-15 -3023 ((-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))) |#1| (-112))) (-15 -2017 ((-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))) |#1| (-112) (-1075 (-751)) (-751)))) -((-2056 (((-552) |#2|) 48) (((-552) |#2| (-751)) 47)) (-2044 (((-552) |#2|) 55)) (-2067 ((|#3| |#2|) 25)) (-4209 ((|#3| |#2| (-897)) 14)) (-3456 ((|#3| |#2|) 15)) (-2078 ((|#3| |#2|) 9)) (-2207 ((|#3| |#2|) 10)) (-2035 ((|#3| |#2| (-897)) 62) ((|#3| |#2|) 30)) (-2026 (((-552) |#2|) 57))) -(((-437 |#1| |#2| |#3|) (-10 -7 (-15 -2026 ((-552) |#2|)) (-15 -2035 (|#3| |#2|)) (-15 -2035 (|#3| |#2| (-897))) (-15 -2044 ((-552) |#2|)) (-15 -2056 ((-552) |#2| (-751))) (-15 -2056 ((-552) |#2|)) (-15 -4209 (|#3| |#2| (-897))) (-15 -2067 (|#3| |#2|)) (-15 -2078 (|#3| |#2|)) (-15 -2207 (|#3| |#2|)) (-15 -3456 (|#3| |#2|))) (-1025) (-1208 |#1|) (-13 (-399) (-1014 |#1|) (-358) (-1171) (-279))) (T -437)) -((-3456 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1208 *4)))) (-2207 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1208 *4)))) (-2078 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1208 *4)))) (-2067 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1208 *4)))) (-4209 (*1 *2 *3 *4) (-12 (-5 *4 (-897)) (-4 *5 (-1025)) (-4 *2 (-13 (-399) (-1014 *5) (-358) (-1171) (-279))) (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1208 *5)))) (-2056 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-5 *2 (-552)) (-5 *1 (-437 *4 *3 *5)) (-4 *3 (-1208 *4)) (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))))) (-2056 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-1025)) (-5 *2 (-552)) (-5 *1 (-437 *5 *3 *6)) (-4 *3 (-1208 *5)) (-4 *6 (-13 (-399) (-1014 *5) (-358) (-1171) (-279))))) (-2044 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-5 *2 (-552)) (-5 *1 (-437 *4 *3 *5)) (-4 *3 (-1208 *4)) (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))))) (-2035 (*1 *2 *3 *4) (-12 (-5 *4 (-897)) (-4 *5 (-1025)) (-4 *2 (-13 (-399) (-1014 *5) (-358) (-1171) (-279))) (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1208 *5)))) (-2035 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1208 *4)))) (-2026 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-5 *2 (-552)) (-5 *1 (-437 *4 *3 *5)) (-4 *3 (-1208 *4)) (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279)))))) -(-10 -7 (-15 -2026 ((-552) |#2|)) (-15 -2035 (|#3| |#2|)) (-15 -2035 (|#3| |#2| (-897))) (-15 -2044 ((-552) |#2|)) (-15 -2056 ((-552) |#2| (-751))) (-15 -2056 ((-552) |#2|)) (-15 -4209 (|#3| |#2| (-897))) (-15 -2067 (|#3| |#2|)) (-15 -2078 (|#3| |#2|)) (-15 -2207 (|#3| |#2|)) (-15 -3456 (|#3| |#2|))) -((-1449 ((|#2| (-1232 |#1|)) 36)) (-2099 ((|#2| |#2| |#1|) 49)) (-2088 ((|#2| |#2| |#1|) 41)) (-2306 ((|#2| |#2|) 38)) (-3507 (((-112) |#2|) 30)) (-2129 (((-625 |#2|) (-897) (-413 |#2|)) 17)) (-2119 ((|#2| (-897) (-413 |#2|)) 21)) (-2110 (((-718 (-751)) (-413 |#2|)) 25))) -(((-438 |#1| |#2|) (-10 -7 (-15 -3507 ((-112) |#2|)) (-15 -1449 (|#2| (-1232 |#1|))) (-15 -2306 (|#2| |#2|)) (-15 -2088 (|#2| |#2| |#1|)) (-15 -2099 (|#2| |#2| |#1|)) (-15 -2110 ((-718 (-751)) (-413 |#2|))) (-15 -2119 (|#2| (-897) (-413 |#2|))) (-15 -2129 ((-625 |#2|) (-897) (-413 |#2|)))) (-1025) (-1208 |#1|)) (T -438)) -((-2129 (*1 *2 *3 *4) (-12 (-5 *3 (-897)) (-5 *4 (-413 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-1025)) (-5 *2 (-625 *6)) (-5 *1 (-438 *5 *6)))) (-2119 (*1 *2 *3 *4) (-12 (-5 *3 (-897)) (-5 *4 (-413 *2)) (-4 *2 (-1208 *5)) (-5 *1 (-438 *5 *2)) (-4 *5 (-1025)))) (-2110 (*1 *2 *3) (-12 (-5 *3 (-413 *5)) (-4 *5 (-1208 *4)) (-4 *4 (-1025)) (-5 *2 (-718 (-751))) (-5 *1 (-438 *4 *5)))) (-2099 (*1 *2 *2 *3) (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1208 *3)))) (-2088 (*1 *2 *2 *3) (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1208 *3)))) (-2306 (*1 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1208 *3)))) (-1449 (*1 *2 *3) (-12 (-5 *3 (-1232 *4)) (-4 *4 (-1025)) (-4 *2 (-1208 *4)) (-5 *1 (-438 *4 *2)))) (-3507 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-5 *2 (-112)) (-5 *1 (-438 *4 *3)) (-4 *3 (-1208 *4))))) -(-10 -7 (-15 -3507 ((-112) |#2|)) (-15 -1449 (|#2| (-1232 |#1|))) (-15 -2306 (|#2| |#2|)) (-15 -2088 (|#2| |#2| |#1|)) (-15 -2099 (|#2| |#2| |#1|)) (-15 -2110 ((-718 (-751)) (-413 |#2|))) (-15 -2119 (|#2| (-897) (-413 |#2|))) (-15 -2129 ((-625 |#2|) (-897) (-413 |#2|)))) -((-2165 (((-751)) 41)) (-2209 (((-751)) 23 (|has| |#1| (-399))) (((-751) (-751)) 22 (|has| |#1| (-399)))) (-2197 (((-552) |#1|) 18 (|has| |#1| (-399)))) (-2186 (((-552) |#1|) 20 (|has| |#1| (-399)))) (-2153 (((-751)) 40) (((-751) (-751)) 39)) (-2140 ((|#1| (-751) (-552)) 29)) (-2175 (((-1237)) 43))) -(((-439 |#1|) (-10 -7 (-15 -2140 (|#1| (-751) (-552))) (-15 -2153 ((-751) (-751))) (-15 -2153 ((-751))) (-15 -2165 ((-751))) (-15 -2175 ((-1237))) (IF (|has| |#1| (-399)) (PROGN (-15 -2186 ((-552) |#1|)) (-15 -2197 ((-552) |#1|)) (-15 -2209 ((-751) (-751))) (-15 -2209 ((-751)))) |%noBranch|)) (-1025)) (T -439)) -((-2209 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))) (-2209 (*1 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))) (-2197 (*1 *2 *3) (-12 (-5 *2 (-552)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))) (-2186 (*1 *2 *3) (-12 (-5 *2 (-552)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))) (-2175 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))) (-2165 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))) (-2153 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))) (-2153 (*1 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))) (-2140 (*1 *2 *3 *4) (-12 (-5 *3 (-751)) (-5 *4 (-552)) (-5 *1 (-439 *2)) (-4 *2 (-1025))))) -(-10 -7 (-15 -2140 (|#1| (-751) (-552))) (-15 -2153 ((-751) (-751))) (-15 -2153 ((-751))) (-15 -2165 ((-751))) (-15 -2175 ((-1237))) (IF (|has| |#1| (-399)) (PROGN (-15 -2186 ((-552) |#1|)) (-15 -2197 ((-552) |#1|)) (-15 -2209 ((-751) (-751))) (-15 -2209 ((-751)))) |%noBranch|)) -((-2218 (((-625 (-552)) (-552)) 61)) (-2951 (((-112) (-167 (-552))) 65)) (-3824 (((-413 (-167 (-552))) (-167 (-552))) 60))) -(((-440) (-10 -7 (-15 -3824 ((-413 (-167 (-552))) (-167 (-552)))) (-15 -2218 ((-625 (-552)) (-552))) (-15 -2951 ((-112) (-167 (-552)))))) (T -440)) -((-2951 (*1 *2 *3) (-12 (-5 *3 (-167 (-552))) (-5 *2 (-112)) (-5 *1 (-440)))) (-2218 (*1 *2 *3) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-440)) (-5 *3 (-552)))) (-3824 (*1 *2 *3) (-12 (-5 *2 (-413 (-167 (-552)))) (-5 *1 (-440)) (-5 *3 (-167 (-552)))))) -(-10 -7 (-15 -3824 ((-413 (-167 (-552))) (-167 (-552)))) (-15 -2218 ((-625 (-552)) (-552))) (-15 -2951 ((-112) (-167 (-552))))) -((-2231 ((|#4| |#4| (-625 |#4|)) 61)) (-2240 (((-625 |#4|) (-625 |#4|) (-1131) (-1131)) 17) (((-625 |#4|) (-625 |#4|) (-1131)) 16) (((-625 |#4|) (-625 |#4|)) 11))) -(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2231 (|#4| |#4| (-625 |#4|))) (-15 -2240 ((-625 |#4|) (-625 |#4|))) (-15 -2240 ((-625 |#4|) (-625 |#4|) (-1131))) (-15 -2240 ((-625 |#4|) (-625 |#4|) (-1131) (-1131)))) (-302) (-773) (-827) (-925 |#1| |#2| |#3|)) (T -441)) -((-2240 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-625 *7)) (-5 *3 (-1131)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-302)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-441 *4 *5 *6 *7)))) (-2240 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *7)) (-5 *3 (-1131)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-302)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-441 *4 *5 *6 *7)))) (-2240 (*1 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-441 *3 *4 *5 *6)))) (-2231 (*1 *2 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *4 *5 *6)) (-4 *4 (-302)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-441 *4 *5 *6 *2))))) -(-10 -7 (-15 -2231 (|#4| |#4| (-625 |#4|))) (-15 -2240 ((-625 |#4|) (-625 |#4|))) (-15 -2240 ((-625 |#4|) (-625 |#4|) (-1131))) (-15 -2240 ((-625 |#4|) (-625 |#4|) (-1131) (-1131)))) -((-2260 (((-625 (-625 |#4|)) (-625 |#4|) (-112)) 73) (((-625 (-625 |#4|)) (-625 |#4|)) 72) (((-625 (-625 |#4|)) (-625 |#4|) (-625 |#4|) (-112)) 66) (((-625 (-625 |#4|)) (-625 |#4|) (-625 |#4|)) 67)) (-2251 (((-625 (-625 |#4|)) (-625 |#4|) (-112)) 42) (((-625 (-625 |#4|)) (-625 |#4|)) 63))) -(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2251 ((-625 (-625 |#4|)) (-625 |#4|))) (-15 -2251 ((-625 (-625 |#4|)) (-625 |#4|) (-112))) (-15 -2260 ((-625 (-625 |#4|)) (-625 |#4|) (-625 |#4|))) (-15 -2260 ((-625 (-625 |#4|)) (-625 |#4|) (-625 |#4|) (-112))) (-15 -2260 ((-625 (-625 |#4|)) (-625 |#4|))) (-15 -2260 ((-625 (-625 |#4|)) (-625 |#4|) (-112)))) (-13 (-302) (-145)) (-773) (-827) (-925 |#1| |#2| |#3|)) (T -442)) -((-2260 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-925 *5 *6 *7)) (-5 *2 (-625 (-625 *8))) (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-625 *8)))) (-2260 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-925 *4 *5 *6)) (-5 *2 (-625 (-625 *7))) (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-625 *7)))) (-2260 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-925 *5 *6 *7)) (-5 *2 (-625 (-625 *8))) (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-625 *8)))) (-2260 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-925 *4 *5 *6)) (-5 *2 (-625 (-625 *7))) (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-625 *7)))) (-2251 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-925 *5 *6 *7)) (-5 *2 (-625 (-625 *8))) (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-625 *8)))) (-2251 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-925 *4 *5 *6)) (-5 *2 (-625 (-625 *7))) (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-625 *7))))) -(-10 -7 (-15 -2251 ((-625 (-625 |#4|)) (-625 |#4|))) (-15 -2251 ((-625 (-625 |#4|)) (-625 |#4|) (-112))) (-15 -2260 ((-625 (-625 |#4|)) (-625 |#4|) (-625 |#4|))) (-15 -2260 ((-625 (-625 |#4|)) (-625 |#4|) (-625 |#4|) (-112))) (-15 -2260 ((-625 (-625 |#4|)) (-625 |#4|))) (-15 -2260 ((-625 (-625 |#4|)) (-625 |#4|) (-112)))) -((-2523 (((-751) |#4|) 12)) (-2403 (((-625 (-2 (|:| |totdeg| (-751)) (|:| -4256 |#4|))) |#4| (-751) (-625 (-2 (|:| |totdeg| (-751)) (|:| -4256 |#4|)))) 31)) (-2424 (((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-2414 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-2280 ((|#4| |#4| (-625 |#4|)) 40)) (-2381 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-625 |#4|)) 70)) (-2455 (((-1237) |#4|) 42)) (-2484 (((-1237) (-625 |#4|)) 51)) (-2465 (((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552)) 48)) (-2495 (((-1237) (-552)) 79)) (-2433 (((-625 |#4|) (-625 |#4|)) 77)) (-2514 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-751)) (|:| -4256 |#4|)) |#4| (-751)) 25)) (-2444 (((-552) |#4|) 78)) (-2392 ((|#4| |#4|) 29)) (-2293 (((-625 |#4|) (-625 |#4|) (-552) (-552)) 56)) (-2473 (((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552) (-552)) 89)) (-2504 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2304 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-2371 (((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-2360 (((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2319 (((-112) |#2| |#2|) 57)) (-2345 (((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2333 (((-112) |#2| |#2| |#2| |#2|) 60)) (-2269 ((|#4| |#4| (-625 |#4|)) 71))) -(((-443 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2269 (|#4| |#4| (-625 |#4|))) (-15 -2280 (|#4| |#4| (-625 |#4|))) (-15 -2293 ((-625 |#4|) (-625 |#4|) (-552) (-552))) (-15 -2304 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2319 ((-112) |#2| |#2|)) (-15 -2333 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2345 ((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2360 ((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2371 ((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2381 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-625 |#4|))) (-15 -2392 (|#4| |#4|)) (-15 -2403 ((-625 (-2 (|:| |totdeg| (-751)) (|:| -4256 |#4|))) |#4| (-751) (-625 (-2 (|:| |totdeg| (-751)) (|:| -4256 |#4|))))) (-15 -2414 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2424 ((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2433 ((-625 |#4|) (-625 |#4|))) (-15 -2444 ((-552) |#4|)) (-15 -2455 ((-1237) |#4|)) (-15 -2465 ((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552))) (-15 -2473 ((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552) (-552))) (-15 -2484 ((-1237) (-625 |#4|))) (-15 -2495 ((-1237) (-552))) (-15 -2504 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2514 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-751)) (|:| -4256 |#4|)) |#4| (-751))) (-15 -2523 ((-751) |#4|))) (-446) (-773) (-827) (-925 |#1| |#2| |#3|)) (T -443)) -((-2523 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-751)) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-925 *4 *5 *6)))) (-2514 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-751)) (|:| -4256 *4))) (-5 *5 (-751)) (-4 *4 (-925 *6 *7 *8)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-443 *6 *7 *8 *4)))) (-2504 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-773)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-443 *4 *5 *6 *7)))) (-2495 (*1 *2 *3) (-12 (-5 *3 (-552)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1237)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-925 *4 *5 *6)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1237)) (-5 *1 (-443 *4 *5 *6 *7)))) (-2473 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-751)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-773)) (-4 *4 (-925 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-827)) (-5 *1 (-443 *5 *6 *7 *4)))) (-2465 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-751)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-773)) (-4 *4 (-925 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-827)) (-5 *1 (-443 *5 *6 *7 *4)))) (-2455 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1237)) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-925 *4 *5 *6)))) (-2444 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-552)) (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-925 *4 *5 *6)))) (-2433 (*1 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-443 *3 *4 *5 *6)))) (-2424 (*1 *2 *2 *2) (-12 (-5 *2 (-625 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-751)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-773)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-827)) (-5 *1 (-443 *3 *4 *5 *6)))) (-2414 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-773)) (-4 *2 (-925 *4 *5 *6)) (-5 *1 (-443 *4 *5 *6 *2)) (-4 *4 (-446)) (-4 *6 (-827)))) (-2403 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-625 (-2 (|:| |totdeg| (-751)) (|:| -4256 *3)))) (-5 *4 (-751)) (-4 *3 (-925 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-443 *5 *6 *7 *3)))) (-2392 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-443 *3 *4 *5 *2)) (-4 *2 (-925 *3 *4 *5)))) (-2381 (*1 *2 *3 *4) (-12 (-5 *4 (-625 *3)) (-4 *3 (-925 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-443 *5 *6 *7 *3)))) (-2371 (*1 *2 *3 *2) (-12 (-5 *2 (-625 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-751)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-773)) (-4 *6 (-925 *4 *3 *5)) (-4 *4 (-446)) (-4 *5 (-827)) (-5 *1 (-443 *4 *3 *5 *6)))) (-2360 (*1 *2 *2) (-12 (-5 *2 (-625 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-751)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-773)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-827)) (-5 *1 (-443 *3 *4 *5 *6)))) (-2345 (*1 *2 *3 *2) (-12 (-5 *2 (-625 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-773)) (-4 *3 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827)) (-5 *1 (-443 *4 *5 *6 *3)))) (-2333 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-446)) (-4 *3 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-443 *4 *3 *5 *6)) (-4 *6 (-925 *4 *3 *5)))) (-2319 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *3 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-443 *4 *3 *5 *6)) (-4 *6 (-925 *4 *3 *5)))) (-2304 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-773)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-443 *4 *5 *6 *7)))) (-2293 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-625 *7)) (-5 *3 (-552)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-443 *4 *5 *6 *7)))) (-2280 (*1 *2 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-443 *4 *5 *6 *2)))) (-2269 (*1 *2 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-443 *4 *5 *6 *2))))) -(-10 -7 (-15 -2269 (|#4| |#4| (-625 |#4|))) (-15 -2280 (|#4| |#4| (-625 |#4|))) (-15 -2293 ((-625 |#4|) (-625 |#4|) (-552) (-552))) (-15 -2304 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2319 ((-112) |#2| |#2|)) (-15 -2333 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2345 ((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2360 ((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2371 ((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2381 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-625 |#4|))) (-15 -2392 (|#4| |#4|)) (-15 -2403 ((-625 (-2 (|:| |totdeg| (-751)) (|:| -4256 |#4|))) |#4| (-751) (-625 (-2 (|:| |totdeg| (-751)) (|:| -4256 |#4|))))) (-15 -2414 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2424 ((-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-625 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2433 ((-625 |#4|) (-625 |#4|))) (-15 -2444 ((-552) |#4|)) (-15 -2455 ((-1237) |#4|)) (-15 -2465 ((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552))) (-15 -2473 ((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552) (-552))) (-15 -2484 ((-1237) (-625 |#4|))) (-15 -2495 ((-1237) (-552))) (-15 -2504 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2514 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-751)) (|:| -4256 |#4|)) |#4| (-751))) (-15 -2523 ((-751) |#4|))) -((-2949 ((|#4| |#4| (-625 |#4|)) 22 (|has| |#1| (-358)))) (-1540 (((-625 |#4|) (-625 |#4|) (-1131) (-1131)) 41) (((-625 |#4|) (-625 |#4|) (-1131)) 40) (((-625 |#4|) (-625 |#4|)) 35))) -(((-444 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1540 ((-625 |#4|) (-625 |#4|))) (-15 -1540 ((-625 |#4|) (-625 |#4|) (-1131))) (-15 -1540 ((-625 |#4|) (-625 |#4|) (-1131) (-1131))) (IF (|has| |#1| (-358)) (-15 -2949 (|#4| |#4| (-625 |#4|))) |%noBranch|)) (-446) (-773) (-827) (-925 |#1| |#2| |#3|)) (T -444)) -((-2949 (*1 *2 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *4 *5 *6)) (-4 *4 (-358)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-444 *4 *5 *6 *2)))) (-1540 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-625 *7)) (-5 *3 (-1131)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-444 *4 *5 *6 *7)))) (-1540 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *7)) (-5 *3 (-1131)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-444 *4 *5 *6 *7)))) (-1540 (*1 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-444 *3 *4 *5 *6))))) -(-10 -7 (-15 -1540 ((-625 |#4|) (-625 |#4|))) (-15 -1540 ((-625 |#4|) (-625 |#4|) (-1131))) (-15 -1540 ((-625 |#4|) (-625 |#4|) (-1131) (-1131))) (IF (|has| |#1| (-358)) (-15 -2949 (|#4| |#4| (-625 |#4|))) |%noBranch|)) -((-2605 (($ $ $) 14) (($ (-625 $)) 21)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 41)) (-2633 (($ $ $) NIL) (($ (-625 $)) 22))) -(((-445 |#1|) (-10 -8 (-15 -4306 ((-1145 |#1|) (-1145 |#1|) (-1145 |#1|))) (-15 -2605 (|#1| (-625 |#1|))) (-15 -2605 (|#1| |#1| |#1|)) (-15 -2633 (|#1| (-625 |#1|))) (-15 -2633 (|#1| |#1| |#1|))) (-446)) (T -445)) -NIL -(-10 -8 (-15 -4306 ((-1145 |#1|) (-1145 |#1|) (-1145 |#1|))) (-15 -2605 (|#1| (-625 |#1|))) (-15 -2605 (|#1| |#1| |#1|)) (-15 -2633 (|#1| (-625 |#1|))) (-15 -2633 (|#1| |#1| |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-2802 (((-3 $ "failed") $ $) 40)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-446) (-138)) (T -446)) -((-2633 (*1 *1 *1 *1) (-4 *1 (-446))) (-2633 (*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-446)))) (-2605 (*1 *1 *1 *1) (-4 *1 (-446))) (-2605 (*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-446)))) (-4306 (*1 *2 *2 *2) (-12 (-5 *2 (-1145 *1)) (-4 *1 (-446))))) -(-13 (-544) (-10 -8 (-15 -2633 ($ $ $)) (-15 -2633 ($ (-625 $))) (-15 -2605 ($ $ $)) (-15 -2605 ($ (-625 $))) (-15 -4306 ((-1145 $) (-1145 $) (-1145 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-285) . T) ((-544) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3618 (((-3 $ "failed")) NIL (|has| (-402 (-928 |#1|)) (-544)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2770 (((-1232 (-669 (-402 (-928 |#1|)))) (-1232 $)) NIL) (((-1232 (-669 (-402 (-928 |#1|))))) NIL)) (-3208 (((-1232 $)) NIL)) (-3101 (($) NIL T CONST)) (-1456 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) NIL)) (-4152 (((-3 $ "failed")) NIL (|has| (-402 (-928 |#1|)) (-544)))) (-2629 (((-669 (-402 (-928 |#1|))) (-1232 $)) NIL) (((-669 (-402 (-928 |#1|)))) NIL)) (-3192 (((-402 (-928 |#1|)) $) NIL)) (-2612 (((-669 (-402 (-928 |#1|))) $ (-1232 $)) NIL) (((-669 (-402 (-928 |#1|))) $) NIL)) (-3598 (((-3 $ "failed") $) NIL (|has| (-402 (-928 |#1|)) (-544)))) (-1392 (((-1145 (-928 (-402 (-928 |#1|))))) NIL (|has| (-402 (-928 |#1|)) (-358))) (((-1145 (-402 (-928 |#1|)))) 84 (|has| |#1| (-544)))) (-3629 (($ $ (-897)) NIL)) (-3174 (((-402 (-928 |#1|)) $) NIL)) (-4175 (((-1145 (-402 (-928 |#1|))) $) 82 (|has| (-402 (-928 |#1|)) (-544)))) (-2648 (((-402 (-928 |#1|)) (-1232 $)) NIL) (((-402 (-928 |#1|))) NIL)) (-3159 (((-1145 (-402 (-928 |#1|))) $) NIL)) (-4303 (((-112)) NIL)) (-2670 (($ (-1232 (-402 (-928 |#1|))) (-1232 $)) 103) (($ (-1232 (-402 (-928 |#1|)))) NIL)) (-4174 (((-3 $ "failed") $) NIL (|has| (-402 (-928 |#1|)) (-544)))) (-3442 (((-897)) NIL)) (-4272 (((-112)) NIL)) (-2712 (($ $ (-897)) NIL)) (-4228 (((-112)) NIL)) (-4207 (((-112)) NIL)) (-4250 (((-112)) NIL)) (-1467 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) NIL)) (-4164 (((-3 $ "failed")) NIL (|has| (-402 (-928 |#1|)) (-544)))) (-2640 (((-669 (-402 (-928 |#1|))) (-1232 $)) NIL) (((-669 (-402 (-928 |#1|)))) NIL)) (-3199 (((-402 (-928 |#1|)) $) NIL)) (-2619 (((-669 (-402 (-928 |#1|))) $ (-1232 $)) NIL) (((-669 (-402 (-928 |#1|))) $) NIL)) (-3609 (((-3 $ "failed") $) NIL (|has| (-402 (-928 |#1|)) (-544)))) (-1433 (((-1145 (-928 (-402 (-928 |#1|))))) NIL (|has| (-402 (-928 |#1|)) (-358))) (((-1145 (-402 (-928 |#1|)))) 83 (|has| |#1| (-544)))) (-3619 (($ $ (-897)) NIL)) (-3182 (((-402 (-928 |#1|)) $) NIL)) (-4187 (((-1145 (-402 (-928 |#1|))) $) 77 (|has| (-402 (-928 |#1|)) (-544)))) (-2658 (((-402 (-928 |#1|)) (-1232 $)) NIL) (((-402 (-928 |#1|))) NIL)) (-3166 (((-1145 (-402 (-928 |#1|))) $) NIL)) (-4312 (((-112)) NIL)) (-2883 (((-1131) $) NIL)) (-4218 (((-112)) NIL)) (-4239 (((-112)) NIL)) (-4261 (((-112)) NIL)) (-2831 (((-1093) $) NIL)) (-1332 (((-402 (-928 |#1|)) $ $) 71 (|has| |#1| (-544)))) (-1374 (((-402 (-928 |#1|)) $) 93 (|has| |#1| (-544)))) (-1363 (((-402 (-928 |#1|)) $) 95 (|has| |#1| (-544)))) (-1383 (((-1145 (-402 (-928 |#1|))) $) 88 (|has| |#1| (-544)))) (-1322 (((-402 (-928 |#1|))) 72 (|has| |#1| (-544)))) (-1351 (((-402 (-928 |#1|)) $ $) 64 (|has| |#1| (-544)))) (-1412 (((-402 (-928 |#1|)) $) 92 (|has| |#1| (-544)))) (-1402 (((-402 (-928 |#1|)) $) 94 (|has| |#1| (-544)))) (-1421 (((-1145 (-402 (-928 |#1|))) $) 87 (|has| |#1| (-544)))) (-1343 (((-402 (-928 |#1|))) 68 (|has| |#1| (-544)))) (-1446 (($) 101) (($ (-1149)) 107) (($ (-1232 (-1149))) 106) (($ (-1232 $)) 96) (($ (-1149) (-1232 $)) 105) (($ (-1232 (-1149)) (-1232 $)) 104)) (-4293 (((-112)) NIL)) (-2154 (((-402 (-928 |#1|)) $ (-552)) NIL)) (-2780 (((-1232 (-402 (-928 |#1|))) $ (-1232 $)) 98) (((-669 (-402 (-928 |#1|))) (-1232 $) (-1232 $)) NIL) (((-1232 (-402 (-928 |#1|))) $) 40) (((-669 (-402 (-928 |#1|))) (-1232 $)) NIL)) (-2042 (((-1232 (-402 (-928 |#1|))) $) NIL) (($ (-1232 (-402 (-928 |#1|)))) 37)) (-2533 (((-625 (-928 (-402 (-928 |#1|)))) (-1232 $)) NIL) (((-625 (-928 (-402 (-928 |#1|))))) NIL) (((-625 (-928 |#1|)) (-1232 $)) 99 (|has| |#1| (-544))) (((-625 (-928 |#1|))) 100 (|has| |#1| (-544)))) (-3828 (($ $ $) NIL)) (-3148 (((-112)) NIL)) (-1683 (((-839) $) NIL) (($ (-1232 (-402 (-928 |#1|)))) NIL)) (-1270 (((-1232 $)) 60)) (-4197 (((-625 (-1232 (-402 (-928 |#1|))))) NIL (|has| (-402 (-928 |#1|)) (-544)))) (-3842 (($ $ $ $) NIL)) (-4333 (((-112)) NIL)) (-2872 (($ (-669 (-402 (-928 |#1|))) $) NIL)) (-3818 (($ $ $) NIL)) (-3137 (((-112)) NIL)) (-4322 (((-112)) NIL)) (-4283 (((-112)) NIL)) (-2089 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) 97)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 56) (($ $ (-402 (-928 |#1|))) NIL) (($ (-402 (-928 |#1|)) $) NIL) (($ (-1115 |#2| (-402 (-928 |#1|))) $) NIL))) -(((-447 |#1| |#2| |#3| |#4|) (-13 (-412 (-402 (-928 |#1|))) (-628 (-1115 |#2| (-402 (-928 |#1|)))) (-10 -8 (-15 -1683 ($ (-1232 (-402 (-928 |#1|))))) (-15 -1467 ((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed"))) (-15 -1456 ((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed"))) (-15 -1446 ($)) (-15 -1446 ($ (-1149))) (-15 -1446 ($ (-1232 (-1149)))) (-15 -1446 ($ (-1232 $))) (-15 -1446 ($ (-1149) (-1232 $))) (-15 -1446 ($ (-1232 (-1149)) (-1232 $))) (IF (|has| |#1| (-544)) (PROGN (-15 -1433 ((-1145 (-402 (-928 |#1|))))) (-15 -1421 ((-1145 (-402 (-928 |#1|))) $)) (-15 -1412 ((-402 (-928 |#1|)) $)) (-15 -1402 ((-402 (-928 |#1|)) $)) (-15 -1392 ((-1145 (-402 (-928 |#1|))))) (-15 -1383 ((-1145 (-402 (-928 |#1|))) $)) (-15 -1374 ((-402 (-928 |#1|)) $)) (-15 -1363 ((-402 (-928 |#1|)) $)) (-15 -1351 ((-402 (-928 |#1|)) $ $)) (-15 -1343 ((-402 (-928 |#1|)))) (-15 -1332 ((-402 (-928 |#1|)) $ $)) (-15 -1322 ((-402 (-928 |#1|)))) (-15 -2533 ((-625 (-928 |#1|)) (-1232 $))) (-15 -2533 ((-625 (-928 |#1|))))) |%noBranch|))) (-170) (-897) (-625 (-1149)) (-1232 (-669 |#1|))) (T -447)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1232 (-402 (-928 *3)))) (-4 *3 (-170)) (-14 *6 (-1232 (-669 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))))) (-1467 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-447 *3 *4 *5 *6)) (|:| -1270 (-625 (-447 *3 *4 *5 *6))))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1456 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-447 *3 *4 *5 *6)) (|:| -1270 (-625 (-447 *3 *4 *5 *6))))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1446 (*1 *1) (-12 (-5 *1 (-447 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-897)) (-14 *4 (-625 (-1149))) (-14 *5 (-1232 (-669 *2))))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 *2)) (-14 *6 (-1232 (-669 *3))))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-1232 (-1149))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1446 (*1 *1 *2) (-12 (-5 *2 (-1232 (-447 *3 *4 *5 *6))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1446 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-447 *4 *5 *6 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-897)) (-14 *6 (-625 *2)) (-14 *7 (-1232 (-669 *4))))) (-1446 (*1 *1 *2 *3) (-12 (-5 *2 (-1232 (-1149))) (-5 *3 (-1232 (-447 *4 *5 *6 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-897)) (-14 *6 (-625 (-1149))) (-14 *7 (-1232 (-669 *4))))) (-1433 (*1 *2) (-12 (-5 *2 (-1145 (-402 (-928 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-1145 (-402 (-928 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1392 (*1 *2) (-12 (-5 *2 (-1145 (-402 (-928 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-1145 (-402 (-928 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1374 (*1 *2 *1) (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1363 (*1 *2 *1) (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1351 (*1 *2 *1 *1) (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1343 (*1 *2) (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1332 (*1 *2 *1 *1) (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-1322 (*1 *2) (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) (-2533 (*1 *2 *3) (-12 (-5 *3 (-1232 (-447 *4 *5 *6 *7))) (-5 *2 (-625 (-928 *4))) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-544)) (-4 *4 (-170)) (-14 *5 (-897)) (-14 *6 (-625 (-1149))) (-14 *7 (-1232 (-669 *4))))) (-2533 (*1 *2) (-12 (-5 *2 (-625 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3)))))) -(-13 (-412 (-402 (-928 |#1|))) (-628 (-1115 |#2| (-402 (-928 |#1|)))) (-10 -8 (-15 -1683 ($ (-1232 (-402 (-928 |#1|))))) (-15 -1467 ((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed"))) (-15 -1456 ((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed"))) (-15 -1446 ($)) (-15 -1446 ($ (-1149))) (-15 -1446 ($ (-1232 (-1149)))) (-15 -1446 ($ (-1232 $))) (-15 -1446 ($ (-1149) (-1232 $))) (-15 -1446 ($ (-1232 (-1149)) (-1232 $))) (IF (|has| |#1| (-544)) (PROGN (-15 -1433 ((-1145 (-402 (-928 |#1|))))) (-15 -1421 ((-1145 (-402 (-928 |#1|))) $)) (-15 -1412 ((-402 (-928 |#1|)) $)) (-15 -1402 ((-402 (-928 |#1|)) $)) (-15 -1392 ((-1145 (-402 (-928 |#1|))))) (-15 -1383 ((-1145 (-402 (-928 |#1|))) $)) (-15 -1374 ((-402 (-928 |#1|)) $)) (-15 -1363 ((-402 (-928 |#1|)) $)) (-15 -1351 ((-402 (-928 |#1|)) $ $)) (-15 -1343 ((-402 (-928 |#1|)))) (-15 -1332 ((-402 (-928 |#1|)) $ $)) (-15 -1322 ((-402 (-928 |#1|)))) (-15 -2533 ((-625 (-928 |#1|)) (-1232 $))) (-15 -2533 ((-625 (-928 |#1|))))) |%noBranch|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 13)) (-3982 (((-625 (-841 |#1|)) $) 75)) (-3793 (((-1145 $) $ (-841 |#1|)) 46) (((-1145 |#2|) $) 118)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3528 (($ $) NIL (|has| |#2| (-544)))) (-3509 (((-112) $) NIL (|has| |#2| (-544)))) (-4121 (((-751) $) 21) (((-751) $ (-625 (-841 |#1|))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-2194 (($ $) NIL (|has| |#2| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#2| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) 44) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1014 (-552)))) (((-3 (-841 |#1|) "failed") $) NIL)) (-1895 ((|#2| $) 42) (((-402 (-552)) $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#2| (-1014 (-552)))) (((-841 |#1|) $) NIL)) (-3207 (($ $ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-1801 (($ $ (-625 (-552))) 80)) (-4169 (($ $) 68)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#2| (-885)))) (-1347 (($ $ |#2| |#3| $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-374))) (|has| |#2| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-552))) (|has| |#2| (-862 (-552)))))) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) 58)) (-3970 (($ (-1145 |#2|) (-841 |#1|)) 123) (($ (-1145 $) (-841 |#1|)) 52)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) 59)) (-3957 (($ |#2| |#3|) 28) (($ $ (-841 |#1|) (-751)) 30) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-841 |#1|)) NIL)) (-4134 ((|#3| $) NIL) (((-751) $ (-841 |#1|)) 50) (((-625 (-751)) $ (-625 (-841 |#1|))) 57)) (-3658 (($ $ $) NIL (|has| |#2| (-827)))) (-3332 (($ $ $) NIL (|has| |#2| (-827)))) (-1357 (($ (-1 |#3| |#3|) $) NIL)) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-1942 (((-3 (-841 |#1|) "failed") $) 39)) (-4131 (($ $) NIL)) (-4144 ((|#2| $) 41)) (-2605 (($ (-625 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-2883 (((-1131) $) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-841 |#1|)) (|:| -3564 (-751))) "failed") $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) 40)) (-4117 ((|#2| $) 116)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#2| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#2| (-446))) (($ $ $) 128 (|has| |#2| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#2| (-885)))) (-2802 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-841 |#1|) |#2|) 87) (($ $ (-625 (-841 |#1|)) (-625 |#2|)) 90) (($ $ (-841 |#1|) $) 85) (($ $ (-625 (-841 |#1|)) (-625 $)) 106)) (-3217 (($ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-3072 (($ $ (-841 |#1|)) 53) (($ $ (-625 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-4276 ((|#3| $) 67) (((-751) $ (-841 |#1|)) 37) (((-625 (-751)) $ (-625 (-841 |#1|))) 56)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-868 (-374)))) (|has| |#2| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-868 (-552)))) (|has| |#2| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-841 |#1|) (-598 (-528))) (|has| |#2| (-598 (-528)))))) (-4108 ((|#2| $) 125 (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-885))))) (-1683 (((-839) $) 145) (($ (-552)) NIL) (($ |#2|) 86) (($ (-841 |#1|)) 31) (($ (-402 (-552))) NIL (-1523 (|has| |#2| (-38 (-402 (-552)))) (|has| |#2| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#2| (-544)))) (-2512 (((-625 |#2|) $) NIL)) (-3637 ((|#2| $ |#3|) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#2| (-885))) (|has| |#2| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#2| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#2| (-544)))) (-2089 (($) 17 T CONST)) (-2100 (($) 25 T CONST)) (-3768 (($ $ (-841 |#1|)) NIL) (($ $ (-625 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-2346 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2404 (($ $ |#2|) 64 (|has| |#2| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 111)) (** (($ $ (-897)) NIL) (($ $ (-751)) 109)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 29) (($ $ (-402 (-552))) NIL (|has| |#2| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#2| (-38 (-402 (-552))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) -(((-448 |#1| |#2| |#3|) (-13 (-925 |#2| |#3| (-841 |#1|)) (-10 -8 (-15 -1801 ($ $ (-625 (-552)))))) (-625 (-1149)) (-1025) (-234 (-1471 |#1|) (-751))) (T -448)) -((-1801 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-14 *3 (-625 (-1149))) (-5 *1 (-448 *3 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-234 (-1471 *3) (-751)))))) -(-13 (-925 |#2| |#3| (-841 |#1|)) (-10 -8 (-15 -1801 ($ $ (-625 (-552)))))) -((-1512 (((-112) |#1| (-625 |#2|)) 69)) (-1489 (((-3 (-1232 (-625 |#2|)) "failed") (-751) |#1| (-625 |#2|)) 78)) (-1499 (((-3 (-625 |#2|) "failed") |#2| |#1| (-1232 (-625 |#2|))) 80)) (-3297 ((|#2| |#2| |#1|) 28)) (-1479 (((-751) |#2| (-625 |#2|)) 20))) -(((-449 |#1| |#2|) (-10 -7 (-15 -3297 (|#2| |#2| |#1|)) (-15 -1479 ((-751) |#2| (-625 |#2|))) (-15 -1489 ((-3 (-1232 (-625 |#2|)) "failed") (-751) |#1| (-625 |#2|))) (-15 -1499 ((-3 (-625 |#2|) "failed") |#2| |#1| (-1232 (-625 |#2|)))) (-15 -1512 ((-112) |#1| (-625 |#2|)))) (-302) (-1208 |#1|)) (T -449)) -((-1512 (*1 *2 *3 *4) (-12 (-5 *4 (-625 *5)) (-4 *5 (-1208 *3)) (-4 *3 (-302)) (-5 *2 (-112)) (-5 *1 (-449 *3 *5)))) (-1499 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1232 (-625 *3))) (-4 *4 (-302)) (-5 *2 (-625 *3)) (-5 *1 (-449 *4 *3)) (-4 *3 (-1208 *4)))) (-1489 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-751)) (-4 *4 (-302)) (-4 *6 (-1208 *4)) (-5 *2 (-1232 (-625 *6))) (-5 *1 (-449 *4 *6)) (-5 *5 (-625 *6)))) (-1479 (*1 *2 *3 *4) (-12 (-5 *4 (-625 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-302)) (-5 *2 (-751)) (-5 *1 (-449 *5 *3)))) (-3297 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1208 *3))))) -(-10 -7 (-15 -3297 (|#2| |#2| |#1|)) (-15 -1479 ((-751) |#2| (-625 |#2|))) (-15 -1489 ((-3 (-1232 (-625 |#2|)) "failed") (-751) |#1| (-625 |#2|))) (-15 -1499 ((-3 (-625 |#2|) "failed") |#2| |#1| (-1232 (-625 |#2|)))) (-15 -1512 ((-112) |#1| (-625 |#2|)))) -((-3824 (((-413 |#5|) |#5|) 24))) -(((-450 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3824 ((-413 |#5|) |#5|))) (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)) (-15 -2195 ((-3 $ "failed") (-1149))))) (-773) (-544) (-544) (-925 |#4| |#2| |#1|)) (T -450)) -((-3824 (*1 *2 *3) (-12 (-4 *4 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)) (-15 -2195 ((-3 $ "failed") (-1149)))))) (-4 *5 (-773)) (-4 *7 (-544)) (-5 *2 (-413 *3)) (-5 *1 (-450 *4 *5 *6 *7 *3)) (-4 *6 (-544)) (-4 *3 (-925 *7 *5 *4))))) -(-10 -7 (-15 -3824 ((-413 |#5|) |#5|))) -((-4221 ((|#3|) 37)) (-4306 (((-1145 |#4|) (-1145 |#4|) (-1145 |#4|)) 33))) -(((-451 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4306 ((-1145 |#4|) (-1145 |#4|) (-1145 |#4|))) (-15 -4221 (|#3|))) (-773) (-827) (-885) (-925 |#3| |#1| |#2|)) (T -451)) -((-4221 (*1 *2) (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-885)) (-5 *1 (-451 *3 *4 *2 *5)) (-4 *5 (-925 *2 *3 *4)))) (-4306 (*1 *2 *2 *2) (-12 (-5 *2 (-1145 *6)) (-4 *6 (-925 *5 *3 *4)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-885)) (-5 *1 (-451 *3 *4 *5 *6))))) -(-10 -7 (-15 -4306 ((-1145 |#4|) (-1145 |#4|) (-1145 |#4|))) (-15 -4221 (|#3|))) -((-3824 (((-413 (-1145 |#1|)) (-1145 |#1|)) 43))) -(((-452 |#1|) (-10 -7 (-15 -3824 ((-413 (-1145 |#1|)) (-1145 |#1|)))) (-302)) (T -452)) -((-3824 (*1 *2 *3) (-12 (-4 *4 (-302)) (-5 *2 (-413 (-1145 *4))) (-5 *1 (-452 *4)) (-5 *3 (-1145 *4))))) -(-10 -7 (-15 -3824 ((-413 (-1145 |#1|)) (-1145 |#1|)))) -((-4041 (((-52) |#2| (-1149) (-289 |#2|) (-1199 (-751))) 42) (((-52) (-1 |#2| (-552)) (-289 |#2|) (-1199 (-751))) 41) (((-52) |#2| (-1149) (-289 |#2|)) 35) (((-52) (-1 |#2| (-552)) (-289 |#2|)) 28)) (-3615 (((-52) |#2| (-1149) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552))) 80) (((-52) (-1 |#2| (-402 (-552))) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552))) 79) (((-52) |#2| (-1149) (-289 |#2|) (-1199 (-552))) 78) (((-52) (-1 |#2| (-552)) (-289 |#2|) (-1199 (-552))) 77) (((-52) |#2| (-1149) (-289 |#2|)) 72) (((-52) (-1 |#2| (-552)) (-289 |#2|)) 71)) (-4066 (((-52) |#2| (-1149) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552))) 66) (((-52) (-1 |#2| (-402 (-552))) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552))) 64)) (-4053 (((-52) |#2| (-1149) (-289 |#2|) (-1199 (-552))) 48) (((-52) (-1 |#2| (-552)) (-289 |#2|) (-1199 (-552))) 47))) -(((-453 |#1| |#2|) (-10 -7 (-15 -4041 ((-52) (-1 |#2| (-552)) (-289 |#2|))) (-15 -4041 ((-52) |#2| (-1149) (-289 |#2|))) (-15 -4041 ((-52) (-1 |#2| (-552)) (-289 |#2|) (-1199 (-751)))) (-15 -4041 ((-52) |#2| (-1149) (-289 |#2|) (-1199 (-751)))) (-15 -4053 ((-52) (-1 |#2| (-552)) (-289 |#2|) (-1199 (-552)))) (-15 -4053 ((-52) |#2| (-1149) (-289 |#2|) (-1199 (-552)))) (-15 -4066 ((-52) (-1 |#2| (-402 (-552))) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552)))) (-15 -4066 ((-52) |#2| (-1149) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552)))) (-15 -3615 ((-52) (-1 |#2| (-552)) (-289 |#2|))) (-15 -3615 ((-52) |#2| (-1149) (-289 |#2|))) (-15 -3615 ((-52) (-1 |#2| (-552)) (-289 |#2|) (-1199 (-552)))) (-15 -3615 ((-52) |#2| (-1149) (-289 |#2|) (-1199 (-552)))) (-15 -3615 ((-52) (-1 |#2| (-402 (-552))) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552)))) (-15 -3615 ((-52) |#2| (-1149) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552))))) (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))) (-13 (-27) (-1171) (-425 |#1|))) (T -453)) -((-3615 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-5 *6 (-1199 (-402 (-552)))) (-5 *7 (-402 (-552))) (-4 *3 (-13 (-27) (-1171) (-425 *8))) (-4 *8 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *8 *3)))) (-3615 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-402 (-552)))) (-5 *4 (-289 *8)) (-5 *5 (-1199 (-402 (-552)))) (-5 *6 (-402 (-552))) (-4 *8 (-13 (-27) (-1171) (-425 *7))) (-4 *7 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *7 *8)))) (-3615 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-5 *6 (-1199 (-552))) (-4 *3 (-13 (-27) (-1171) (-425 *7))) (-4 *7 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *7 *3)))) (-3615 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-289 *7)) (-5 *5 (-1199 (-552))) (-4 *7 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *6 *7)))) (-3615 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *6 *3)))) (-3615 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-552))) (-5 *4 (-289 *6)) (-4 *6 (-13 (-27) (-1171) (-425 *5))) (-4 *5 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *5 *6)))) (-4066 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-5 *6 (-1199 (-402 (-552)))) (-5 *7 (-402 (-552))) (-4 *3 (-13 (-27) (-1171) (-425 *8))) (-4 *8 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *8 *3)))) (-4066 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-402 (-552)))) (-5 *4 (-289 *8)) (-5 *5 (-1199 (-402 (-552)))) (-5 *6 (-402 (-552))) (-4 *8 (-13 (-27) (-1171) (-425 *7))) (-4 *7 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *7 *8)))) (-4053 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-5 *6 (-1199 (-552))) (-4 *3 (-13 (-27) (-1171) (-425 *7))) (-4 *7 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *7 *3)))) (-4053 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-289 *7)) (-5 *5 (-1199 (-552))) (-4 *7 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *6 *7)))) (-4041 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-5 *6 (-1199 (-751))) (-4 *3 (-13 (-27) (-1171) (-425 *7))) (-4 *7 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *7 *3)))) (-4041 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-289 *7)) (-5 *5 (-1199 (-751))) (-4 *7 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *6 *7)))) (-4041 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *6 *3)))) (-4041 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-552))) (-5 *4 (-289 *6)) (-4 *6 (-13 (-27) (-1171) (-425 *5))) (-4 *5 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-52)) (-5 *1 (-453 *5 *6))))) -(-10 -7 (-15 -4041 ((-52) (-1 |#2| (-552)) (-289 |#2|))) (-15 -4041 ((-52) |#2| (-1149) (-289 |#2|))) (-15 -4041 ((-52) (-1 |#2| (-552)) (-289 |#2|) (-1199 (-751)))) (-15 -4041 ((-52) |#2| (-1149) (-289 |#2|) (-1199 (-751)))) (-15 -4053 ((-52) (-1 |#2| (-552)) (-289 |#2|) (-1199 (-552)))) (-15 -4053 ((-52) |#2| (-1149) (-289 |#2|) (-1199 (-552)))) (-15 -4066 ((-52) (-1 |#2| (-402 (-552))) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552)))) (-15 -4066 ((-52) |#2| (-1149) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552)))) (-15 -3615 ((-52) (-1 |#2| (-552)) (-289 |#2|))) (-15 -3615 ((-52) |#2| (-1149) (-289 |#2|))) (-15 -3615 ((-52) (-1 |#2| (-552)) (-289 |#2|) (-1199 (-552)))) (-15 -3615 ((-52) |#2| (-1149) (-289 |#2|) (-1199 (-552)))) (-15 -3615 ((-52) (-1 |#2| (-402 (-552))) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552)))) (-15 -3615 ((-52) |#2| (-1149) (-289 |#2|) (-1199 (-402 (-552))) (-402 (-552))))) -((-3297 ((|#2| |#2| |#1|) 15)) (-1535 (((-625 |#2|) |#2| (-625 |#2|) |#1| (-897)) 69)) (-1524 (((-2 (|:| |plist| (-625 |#2|)) (|:| |modulo| |#1|)) |#2| (-625 |#2|) |#1| (-897)) 60))) -(((-454 |#1| |#2|) (-10 -7 (-15 -1524 ((-2 (|:| |plist| (-625 |#2|)) (|:| |modulo| |#1|)) |#2| (-625 |#2|) |#1| (-897))) (-15 -1535 ((-625 |#2|) |#2| (-625 |#2|) |#1| (-897))) (-15 -3297 (|#2| |#2| |#1|))) (-302) (-1208 |#1|)) (T -454)) -((-3297 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1208 *3)))) (-1535 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-625 *3)) (-5 *5 (-897)) (-4 *3 (-1208 *4)) (-4 *4 (-302)) (-5 *1 (-454 *4 *3)))) (-1524 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-897)) (-4 *5 (-302)) (-4 *3 (-1208 *5)) (-5 *2 (-2 (|:| |plist| (-625 *3)) (|:| |modulo| *5))) (-5 *1 (-454 *5 *3)) (-5 *4 (-625 *3))))) -(-10 -7 (-15 -1524 ((-2 (|:| |plist| (-625 |#2|)) (|:| |modulo| |#1|)) |#2| (-625 |#2|) |#1| (-897))) (-15 -1535 ((-625 |#2|) |#2| (-625 |#2|) |#1| (-897))) (-15 -3297 (|#2| |#2| |#1|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 28)) (-2787 (($ |#3|) 25)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-4169 (($ $) 32)) (-1545 (($ |#2| |#4| $) 33)) (-3957 (($ |#2| (-694 |#3| |#4| |#5|)) 24)) (-4131 (((-694 |#3| |#4| |#5|) $) 15)) (-1567 ((|#3| $) 19)) (-1577 ((|#4| $) 17)) (-4144 ((|#2| $) 29)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-1556 (($ |#2| |#3| |#4|) 26)) (-2089 (($) 36 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 34)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-455 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-698 |#6|) (-698 |#2|) (-10 -8 (-15 -4144 (|#2| $)) (-15 -4131 ((-694 |#3| |#4| |#5|) $)) (-15 -1577 (|#4| $)) (-15 -1567 (|#3| $)) (-15 -4169 ($ $)) (-15 -3957 ($ |#2| (-694 |#3| |#4| |#5|))) (-15 -2787 ($ |#3|)) (-15 -1556 ($ |#2| |#3| |#4|)) (-15 -1545 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-625 (-1149)) (-170) (-827) (-234 (-1471 |#1|) (-751)) (-1 (-112) (-2 (|:| -3123 |#3|) (|:| -3564 |#4|)) (-2 (|:| -3123 |#3|) (|:| -3564 |#4|))) (-925 |#2| |#4| (-841 |#1|))) (T -455)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-625 (-1149))) (-4 *4 (-170)) (-4 *6 (-234 (-1471 *3) (-751))) (-14 *7 (-1 (-112) (-2 (|:| -3123 *5) (|:| -3564 *6)) (-2 (|:| -3123 *5) (|:| -3564 *6)))) (-5 *1 (-455 *3 *4 *5 *6 *7 *2)) (-4 *5 (-827)) (-4 *2 (-925 *4 *6 (-841 *3))))) (-4144 (*1 *2 *1) (-12 (-14 *3 (-625 (-1149))) (-4 *5 (-234 (-1471 *3) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -3123 *4) (|:| -3564 *5)) (-2 (|:| -3123 *4) (|:| -3564 *5)))) (-4 *2 (-170)) (-5 *1 (-455 *3 *2 *4 *5 *6 *7)) (-4 *4 (-827)) (-4 *7 (-925 *2 *5 (-841 *3))))) (-4131 (*1 *2 *1) (-12 (-14 *3 (-625 (-1149))) (-4 *4 (-170)) (-4 *6 (-234 (-1471 *3) (-751))) (-14 *7 (-1 (-112) (-2 (|:| -3123 *5) (|:| -3564 *6)) (-2 (|:| -3123 *5) (|:| -3564 *6)))) (-5 *2 (-694 *5 *6 *7)) (-5 *1 (-455 *3 *4 *5 *6 *7 *8)) (-4 *5 (-827)) (-4 *8 (-925 *4 *6 (-841 *3))))) (-1577 (*1 *2 *1) (-12 (-14 *3 (-625 (-1149))) (-4 *4 (-170)) (-14 *6 (-1 (-112) (-2 (|:| -3123 *5) (|:| -3564 *2)) (-2 (|:| -3123 *5) (|:| -3564 *2)))) (-4 *2 (-234 (-1471 *3) (-751))) (-5 *1 (-455 *3 *4 *5 *2 *6 *7)) (-4 *5 (-827)) (-4 *7 (-925 *4 *2 (-841 *3))))) (-1567 (*1 *2 *1) (-12 (-14 *3 (-625 (-1149))) (-4 *4 (-170)) (-4 *5 (-234 (-1471 *3) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -3123 *2) (|:| -3564 *5)) (-2 (|:| -3123 *2) (|:| -3564 *5)))) (-4 *2 (-827)) (-5 *1 (-455 *3 *4 *2 *5 *6 *7)) (-4 *7 (-925 *4 *5 (-841 *3))))) (-4169 (*1 *1 *1) (-12 (-14 *2 (-625 (-1149))) (-4 *3 (-170)) (-4 *5 (-234 (-1471 *2) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -3123 *4) (|:| -3564 *5)) (-2 (|:| -3123 *4) (|:| -3564 *5)))) (-5 *1 (-455 *2 *3 *4 *5 *6 *7)) (-4 *4 (-827)) (-4 *7 (-925 *3 *5 (-841 *2))))) (-3957 (*1 *1 *2 *3) (-12 (-5 *3 (-694 *5 *6 *7)) (-4 *5 (-827)) (-4 *6 (-234 (-1471 *4) (-751))) (-14 *7 (-1 (-112) (-2 (|:| -3123 *5) (|:| -3564 *6)) (-2 (|:| -3123 *5) (|:| -3564 *6)))) (-14 *4 (-625 (-1149))) (-4 *2 (-170)) (-5 *1 (-455 *4 *2 *5 *6 *7 *8)) (-4 *8 (-925 *2 *6 (-841 *4))))) (-2787 (*1 *1 *2) (-12 (-14 *3 (-625 (-1149))) (-4 *4 (-170)) (-4 *5 (-234 (-1471 *3) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -3123 *2) (|:| -3564 *5)) (-2 (|:| -3123 *2) (|:| -3564 *5)))) (-5 *1 (-455 *3 *4 *2 *5 *6 *7)) (-4 *2 (-827)) (-4 *7 (-925 *4 *5 (-841 *3))))) (-1556 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-625 (-1149))) (-4 *2 (-170)) (-4 *4 (-234 (-1471 *5) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -3123 *3) (|:| -3564 *4)) (-2 (|:| -3123 *3) (|:| -3564 *4)))) (-5 *1 (-455 *5 *2 *3 *4 *6 *7)) (-4 *3 (-827)) (-4 *7 (-925 *2 *4 (-841 *5))))) (-1545 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-625 (-1149))) (-4 *2 (-170)) (-4 *3 (-234 (-1471 *4) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -3123 *5) (|:| -3564 *3)) (-2 (|:| -3123 *5) (|:| -3564 *3)))) (-5 *1 (-455 *4 *2 *5 *3 *6 *7)) (-4 *5 (-827)) (-4 *7 (-925 *2 *3 (-841 *4)))))) -(-13 (-698 |#6|) (-698 |#2|) (-10 -8 (-15 -4144 (|#2| $)) (-15 -4131 ((-694 |#3| |#4| |#5|) $)) (-15 -1577 (|#4| $)) (-15 -1567 (|#3| $)) (-15 -4169 ($ $)) (-15 -3957 ($ |#2| (-694 |#3| |#4| |#5|))) (-15 -2787 ($ |#3|)) (-15 -1556 ($ |#2| |#3| |#4|)) (-15 -1545 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-1589 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) -(((-456 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1589 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-773) (-827) (-544) (-925 |#3| |#1| |#2|) (-13 (-1014 (-402 (-552))) (-358) (-10 -8 (-15 -1683 ($ |#4|)) (-15 -1356 (|#4| $)) (-15 -1368 (|#4| $))))) (T -456)) -((-1589 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-827)) (-4 *5 (-773)) (-4 *6 (-544)) (-4 *7 (-925 *6 *5 *3)) (-5 *1 (-456 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1014 (-402 (-552))) (-358) (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $)))))))) -(-10 -7 (-15 -1589 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-1671 (((-112) $ $) NIL)) (-3982 (((-625 |#3|) $) 41)) (-3707 (((-112) $) NIL)) (-3613 (((-112) $) NIL (|has| |#1| (-544)))) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-3488 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-3667 (((-112) $) NIL (|has| |#1| (-544)))) (-3688 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3678 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3697 (((-112) $) NIL (|has| |#1| (-544)))) (-3624 (((-625 |#4|) (-625 |#4|) $) NIL (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) NIL (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) 47)) (-1895 (($ (-625 |#4|)) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-1416 (($ |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4353)))) (-3799 (((-625 |#4|) $) 18 (|has| $ (-6 -4353)))) (-3565 ((|#3| $) 45)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#4|) $) 14 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-3683 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) 21)) (-2615 (((-625 |#3|) $) NIL)) (-2608 (((-112) |#3| $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-2831 (((-1093) $) NIL)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1888 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 39)) (-3600 (($) 17)) (-2840 (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) 16)) (-2042 (((-528) $) NIL (|has| |#4| (-598 (-528)))) (($ (-625 |#4|)) 49)) (-1695 (($ (-625 |#4|)) 13)) (-3718 (($ $ |#3|) NIL)) (-2595 (($ $ |#3|) NIL)) (-2584 (($ $ |#3|) NIL)) (-1683 (((-839) $) 38) (((-625 |#4|) $) 48)) (-1900 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 30)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-457 |#1| |#2| |#3| |#4|) (-13 (-952 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2042 ($ (-625 |#4|))) (-6 -4353) (-6 -4354))) (-1025) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -457)) -((-2042 (*1 *1 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-457 *3 *4 *5 *6))))) -(-13 (-952 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2042 ($ (-625 |#4|))) (-6 -4353) (-6 -4354))) -((-2089 (($) 11)) (-2100 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-458 |#1| |#2| |#3|) (-10 -8 (-15 -2100 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2089 (|#1|))) (-459 |#2| |#3|) (-170) (-23)) (T -458)) -NIL -(-10 -8 (-15 -2100 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2089 (|#1|))) -((-1671 (((-112) $ $) 7)) (-1893 (((-3 |#1| "failed") $) 26)) (-1895 ((|#1| $) 25)) (-4244 (($ $ $) 23)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4276 ((|#2| $) 19)) (-1683 (((-839) $) 11) (($ |#1|) 27)) (-2089 (($) 18 T CONST)) (-2100 (($) 24 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 15) (($ $ $) 13)) (-2382 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-459 |#1| |#2|) (-138) (-170) (-23)) (T -459)) -((-2100 (*1 *1) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4244 (*1 *1 *1 *1) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))) -(-13 (-464 |t#1| |t#2|) (-1014 |t#1|) (-10 -8 (-15 (-2100) ($) -1426) (-15 -4244 ($ $ $)))) -(((-101) . T) ((-597 (-839)) . T) ((-464 |#1| |#2|) . T) ((-1014 |#1|) . T) ((-1073) . T)) -((-1600 (((-1232 (-1232 (-552))) (-1232 (-1232 (-552))) (-897)) 18)) (-1611 (((-1232 (-1232 (-552))) (-897)) 16))) -(((-460) (-10 -7 (-15 -1600 ((-1232 (-1232 (-552))) (-1232 (-1232 (-552))) (-897))) (-15 -1611 ((-1232 (-1232 (-552))) (-897))))) (T -460)) -((-1611 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1232 (-1232 (-552)))) (-5 *1 (-460)))) (-1600 (*1 *2 *2 *3) (-12 (-5 *2 (-1232 (-1232 (-552)))) (-5 *3 (-897)) (-5 *1 (-460))))) -(-10 -7 (-15 -1600 ((-1232 (-1232 (-552))) (-1232 (-1232 (-552))) (-897))) (-15 -1611 ((-1232 (-1232 (-552))) (-897)))) -((-1790 (((-552) (-552)) 30) (((-552)) 22)) (-1834 (((-552) (-552)) 26) (((-552)) 18)) (-1813 (((-552) (-552)) 28) (((-552)) 20)) (-1634 (((-112) (-112)) 12) (((-112)) 10)) (-1622 (((-112) (-112)) 11) (((-112)) 9)) (-1645 (((-112) (-112)) 24) (((-112)) 15))) -(((-461) (-10 -7 (-15 -1622 ((-112))) (-15 -1634 ((-112))) (-15 -1622 ((-112) (-112))) (-15 -1634 ((-112) (-112))) (-15 -1645 ((-112))) (-15 -1813 ((-552))) (-15 -1834 ((-552))) (-15 -1790 ((-552))) (-15 -1645 ((-112) (-112))) (-15 -1813 ((-552) (-552))) (-15 -1834 ((-552) (-552))) (-15 -1790 ((-552) (-552))))) (T -461)) -((-1790 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) (-1834 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) (-1813 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) (-1645 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-1790 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) (-1834 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) (-1813 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) (-1645 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-1634 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-1622 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-1634 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-1622 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461))))) -(-10 -7 (-15 -1622 ((-112))) (-15 -1634 ((-112))) (-15 -1622 ((-112) (-112))) (-15 -1634 ((-112) (-112))) (-15 -1645 ((-112))) (-15 -1813 ((-552))) (-15 -1834 ((-552))) (-15 -1790 ((-552))) (-15 -1645 ((-112) (-112))) (-15 -1813 ((-552) (-552))) (-15 -1834 ((-552) (-552))) (-15 -1790 ((-552) (-552)))) -((-1671 (((-112) $ $) NIL)) (-4124 (((-625 (-374)) $) 28) (((-625 (-374)) $ (-625 (-374))) 96)) (-1702 (((-625 (-1067 (-374))) $) 16) (((-625 (-1067 (-374))) $ (-625 (-1067 (-374)))) 94)) (-1667 (((-625 (-625 (-919 (-221)))) (-625 (-625 (-919 (-221)))) (-625 (-850))) 45)) (-1713 (((-625 (-625 (-919 (-221)))) $) 90)) (-3582 (((-1237) $ (-919 (-221)) (-850)) 108)) (-1724 (($ $) 89) (($ (-625 (-625 (-919 (-221))))) 99) (($ (-625 (-625 (-919 (-221)))) (-625 (-850)) (-625 (-850)) (-625 (-897))) 98) (($ (-625 (-625 (-919 (-221)))) (-625 (-850)) (-625 (-850)) (-625 (-897)) (-625 (-258))) 100)) (-2883 (((-1131) $) NIL)) (-2971 (((-552) $) 71)) (-2831 (((-1093) $) NIL)) (-1736 (($) 97)) (-1657 (((-625 (-221)) (-625 (-625 (-919 (-221))))) 56)) (-1691 (((-1237) $ (-625 (-919 (-221))) (-850) (-850) (-897)) 102) (((-1237) $ (-919 (-221))) 104) (((-1237) $ (-919 (-221)) (-850) (-850) (-897)) 103)) (-1683 (((-839) $) 114) (($ (-625 (-625 (-919 (-221))))) 109)) (-1679 (((-1237) $ (-919 (-221))) 107)) (-2281 (((-112) $ $) NIL))) -(((-462) (-13 (-1073) (-10 -8 (-15 -1736 ($)) (-15 -1724 ($ $)) (-15 -1724 ($ (-625 (-625 (-919 (-221)))))) (-15 -1724 ($ (-625 (-625 (-919 (-221)))) (-625 (-850)) (-625 (-850)) (-625 (-897)))) (-15 -1724 ($ (-625 (-625 (-919 (-221)))) (-625 (-850)) (-625 (-850)) (-625 (-897)) (-625 (-258)))) (-15 -1713 ((-625 (-625 (-919 (-221)))) $)) (-15 -2971 ((-552) $)) (-15 -1702 ((-625 (-1067 (-374))) $)) (-15 -1702 ((-625 (-1067 (-374))) $ (-625 (-1067 (-374))))) (-15 -4124 ((-625 (-374)) $)) (-15 -4124 ((-625 (-374)) $ (-625 (-374)))) (-15 -1691 ((-1237) $ (-625 (-919 (-221))) (-850) (-850) (-897))) (-15 -1691 ((-1237) $ (-919 (-221)))) (-15 -1691 ((-1237) $ (-919 (-221)) (-850) (-850) (-897))) (-15 -1679 ((-1237) $ (-919 (-221)))) (-15 -3582 ((-1237) $ (-919 (-221)) (-850))) (-15 -1683 ($ (-625 (-625 (-919 (-221)))))) (-15 -1683 ((-839) $)) (-15 -1667 ((-625 (-625 (-919 (-221)))) (-625 (-625 (-919 (-221)))) (-625 (-850)))) (-15 -1657 ((-625 (-221)) (-625 (-625 (-919 (-221))))))))) (T -462)) -((-1683 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-462)))) (-1736 (*1 *1) (-5 *1 (-462))) (-1724 (*1 *1 *1) (-5 *1 (-462))) (-1724 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *1 (-462)))) (-1724 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *3 (-625 (-850))) (-5 *4 (-625 (-897))) (-5 *1 (-462)))) (-1724 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *3 (-625 (-850))) (-5 *4 (-625 (-897))) (-5 *5 (-625 (-258))) (-5 *1 (-462)))) (-1713 (*1 *2 *1) (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *1 (-462)))) (-2971 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-462)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *1 (-462)))) (-1702 (*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *1 (-462)))) (-4124 (*1 *2 *1) (-12 (-5 *2 (-625 (-374))) (-5 *1 (-462)))) (-4124 (*1 *2 *1 *2) (-12 (-5 *2 (-625 (-374))) (-5 *1 (-462)))) (-1691 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-625 (-919 (-221)))) (-5 *4 (-850)) (-5 *5 (-897)) (-5 *2 (-1237)) (-5 *1 (-462)))) (-1691 (*1 *2 *1 *3) (-12 (-5 *3 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-462)))) (-1691 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-919 (-221))) (-5 *4 (-850)) (-5 *5 (-897)) (-5 *2 (-1237)) (-5 *1 (-462)))) (-1679 (*1 *2 *1 *3) (-12 (-5 *3 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-462)))) (-3582 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-919 (-221))) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-462)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *1 (-462)))) (-1667 (*1 *2 *2 *3) (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *3 (-625 (-850))) (-5 *1 (-462)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *2 (-625 (-221))) (-5 *1 (-462))))) -(-13 (-1073) (-10 -8 (-15 -1736 ($)) (-15 -1724 ($ $)) (-15 -1724 ($ (-625 (-625 (-919 (-221)))))) (-15 -1724 ($ (-625 (-625 (-919 (-221)))) (-625 (-850)) (-625 (-850)) (-625 (-897)))) (-15 -1724 ($ (-625 (-625 (-919 (-221)))) (-625 (-850)) (-625 (-850)) (-625 (-897)) (-625 (-258)))) (-15 -1713 ((-625 (-625 (-919 (-221)))) $)) (-15 -2971 ((-552) $)) (-15 -1702 ((-625 (-1067 (-374))) $)) (-15 -1702 ((-625 (-1067 (-374))) $ (-625 (-1067 (-374))))) (-15 -4124 ((-625 (-374)) $)) (-15 -4124 ((-625 (-374)) $ (-625 (-374)))) (-15 -1691 ((-1237) $ (-625 (-919 (-221))) (-850) (-850) (-897))) (-15 -1691 ((-1237) $ (-919 (-221)))) (-15 -1691 ((-1237) $ (-919 (-221)) (-850) (-850) (-897))) (-15 -1679 ((-1237) $ (-919 (-221)))) (-15 -3582 ((-1237) $ (-919 (-221)) (-850))) (-15 -1683 ($ (-625 (-625 (-919 (-221)))))) (-15 -1683 ((-839) $)) (-15 -1667 ((-625 (-625 (-919 (-221)))) (-625 (-625 (-919 (-221)))) (-625 (-850)))) (-15 -1657 ((-625 (-221)) (-625 (-625 (-919 (-221)))))))) -((-2393 (($ $) NIL) (($ $ $) 11))) -(((-463 |#1| |#2| |#3|) (-10 -8 (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|))) (-464 |#2| |#3|) (-170) (-23)) (T -463)) -NIL -(-10 -8 (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|))) -((-1671 (((-112) $ $) 7)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4276 ((|#2| $) 19)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 15) (($ $ $) 13)) (-2382 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-464 |#1| |#2|) (-138) (-170) (-23)) (T -464)) -((-4276 (*1 *2 *1) (-12 (-4 *1 (-464 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) (-2089 (*1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-2393 (*1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-2382 (*1 *1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-2393 (*1 *1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))) -(-13 (-1073) (-10 -8 (-15 -4276 (|t#2| $)) (-15 (-2089) ($) -1426) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2393 ($ $)) (-15 -2382 ($ $ $)) (-15 -2393 ($ $ $)))) -(((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-1756 (((-3 (-625 (-475 |#1| |#2|)) "failed") (-625 (-475 |#1| |#2|)) (-625 (-841 |#1|))) 92)) (-1746 (((-625 (-625 (-243 |#1| |#2|))) (-625 (-243 |#1| |#2|)) (-625 (-841 |#1|))) 90)) (-1766 (((-2 (|:| |dpolys| (-625 (-243 |#1| |#2|))) (|:| |coords| (-625 (-552)))) (-625 (-243 |#1| |#2|)) (-625 (-841 |#1|))) 61))) -(((-465 |#1| |#2| |#3|) (-10 -7 (-15 -1746 ((-625 (-625 (-243 |#1| |#2|))) (-625 (-243 |#1| |#2|)) (-625 (-841 |#1|)))) (-15 -1756 ((-3 (-625 (-475 |#1| |#2|)) "failed") (-625 (-475 |#1| |#2|)) (-625 (-841 |#1|)))) (-15 -1766 ((-2 (|:| |dpolys| (-625 (-243 |#1| |#2|))) (|:| |coords| (-625 (-552)))) (-625 (-243 |#1| |#2|)) (-625 (-841 |#1|))))) (-625 (-1149)) (-446) (-446)) (T -465)) -((-1766 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-841 *5))) (-14 *5 (-625 (-1149))) (-4 *6 (-446)) (-5 *2 (-2 (|:| |dpolys| (-625 (-243 *5 *6))) (|:| |coords| (-625 (-552))))) (-5 *1 (-465 *5 *6 *7)) (-5 *3 (-625 (-243 *5 *6))) (-4 *7 (-446)))) (-1756 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-625 (-475 *4 *5))) (-5 *3 (-625 (-841 *4))) (-14 *4 (-625 (-1149))) (-4 *5 (-446)) (-5 *1 (-465 *4 *5 *6)) (-4 *6 (-446)))) (-1746 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-841 *5))) (-14 *5 (-625 (-1149))) (-4 *6 (-446)) (-5 *2 (-625 (-625 (-243 *5 *6)))) (-5 *1 (-465 *5 *6 *7)) (-5 *3 (-625 (-243 *5 *6))) (-4 *7 (-446))))) -(-10 -7 (-15 -1746 ((-625 (-625 (-243 |#1| |#2|))) (-625 (-243 |#1| |#2|)) (-625 (-841 |#1|)))) (-15 -1756 ((-3 (-625 (-475 |#1| |#2|)) "failed") (-625 (-475 |#1| |#2|)) (-625 (-841 |#1|)))) (-15 -1766 ((-2 (|:| |dpolys| (-625 (-243 |#1| |#2|))) (|:| |coords| (-625 (-552)))) (-625 (-243 |#1| |#2|)) (-625 (-841 |#1|))))) -((-4174 (((-3 $ "failed") $) 11)) (-2410 (($ $ $) 18)) (-3828 (($ $ $) 19)) (-2404 (($ $ $) 9)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) 17))) -(((-466 |#1|) (-10 -8 (-15 -3828 (|#1| |#1| |#1|)) (-15 -2410 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -2404 (|#1| |#1| |#1|)) (-15 -4174 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-897)))) (-467)) (T -466)) -NIL -(-10 -8 (-15 -3828 (|#1| |#1| |#1|)) (-15 -2410 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -2404 (|#1| |#1| |#1|)) (-15 -4174 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-897)))) -((-1671 (((-112) $ $) 7)) (-3101 (($) 18 T CONST)) (-4174 (((-3 $ "failed") $) 15)) (-3650 (((-112) $) 17)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 24)) (-2831 (((-1093) $) 10)) (-2410 (($ $ $) 21)) (-3828 (($ $ $) 20)) (-1683 (((-839) $) 11)) (-2100 (($) 19 T CONST)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ $) 23)) (** (($ $ (-897)) 13) (($ $ (-751)) 16) (($ $ (-552)) 22)) (* (($ $ $) 14))) -(((-467) (-138)) (T -467)) -((-4092 (*1 *1 *1) (-4 *1 (-467))) (-2404 (*1 *1 *1 *1) (-4 *1 (-467))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-467)) (-5 *2 (-552)))) (-2410 (*1 *1 *1 *1) (-4 *1 (-467))) (-3828 (*1 *1 *1 *1) (-4 *1 (-467)))) -(-13 (-707) (-10 -8 (-15 -4092 ($ $)) (-15 -2404 ($ $ $)) (-15 ** ($ $ (-552))) (-6 -4350) (-15 -2410 ($ $ $)) (-15 -3828 ($ $ $)))) -(((-101) . T) ((-597 (-839)) . T) ((-707) . T) ((-1085) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) 17)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2162 (($ $ (-402 (-552))) NIL) (($ $ (-402 (-552)) (-402 (-552))) NIL)) (-2182 (((-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|))) $) NIL)) (-3728 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL (|has| |#1| (-358)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-358)))) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3710 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-751) (-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|)))) NIL)) (-3749 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-2951 (((-112) $) NIL (|has| |#1| (-358)))) (-3592 (((-112) $) NIL)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-402 (-552)) $) NIL) (((-402 (-552)) $ (-402 (-552))) NIL)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2216 (($ $ (-897)) NIL) (($ $ (-402 (-552))) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-402 (-552))) NIL) (($ $ (-1055) (-402 (-552))) NIL) (($ $ (-625 (-1055)) (-625 (-402 (-552)))) NIL)) (-1996 (($ (-1 |#1| |#1|) $) 22)) (-2458 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| |#1| (-358)))) (-2481 (($ $) 26 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) 33 (-1523 (-12 (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-935)) (|has| |#1| (-1171))))) (($ $ (-1228 |#2|)) 27 (|has| |#1| (-38 (-402 (-552)))))) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2147 (($ $ (-402 (-552))) NIL)) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-2863 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))))) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ (-402 (-552))) NIL) (($ $ $) NIL (|has| (-402 (-552)) (-1085)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) 25 (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $ (-1228 |#2|)) 15)) (-4276 (((-402 (-552)) $) NIL)) (-3759 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1228 |#2|)) NIL) (($ (-1217 |#1| |#2| |#3|)) 9) (($ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-3637 ((|#1| $ (-402 (-552))) NIL)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-2845 ((|#1| $) 18)) (-3789 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-402 (-552))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) 24)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))))) -(((-468 |#1| |#2| |#3|) (-13 (-1213 |#1|) (-10 -8 (-15 -1683 ($ (-1228 |#2|))) (-15 -1683 ($ (-1217 |#1| |#2| |#3|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -468)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1217 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3) (-5 *1 (-468 *3 *4 *5)))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-2481 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3)))) -(-13 (-1213 |#1|) (-10 -8 (-15 -1683 ($ (-1228 |#2|))) (-15 -1683 ($ (-1217 |#1| |#2| |#3|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|))) -((-1671 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2509 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#2| $ |#1| |#2|) 18)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3128 (((-3 |#2| "failed") |#1| $) 19)) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1938 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) 16)) (-1416 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) NIL)) (-3799 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 ((|#1| $) NIL (|has| |#1| (-827)))) (-3730 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-2537 ((|#1| $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-3712 (((-625 |#1|) $) NIL)) (-1370 (((-112) |#1| $) NIL)) (-2953 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-3966 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-2554 (((-625 |#1|) $) NIL)) (-2564 (((-112) |#1| $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2924 ((|#2| $) NIL (|has| |#1| (-827)))) (-2380 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL)) (-2518 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-4255 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1683 (((-839) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839))) (|has| |#2| (-597 (-839)))))) (-2977 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-469 |#1| |#2| |#3| |#4|) (-1162 |#1| |#2|) (-1073) (-1073) (-1162 |#1| |#2|) |#2|) (T -469)) -NIL -(-1162 |#1| |#2|) -((-1671 (((-112) $ $) NIL)) (-3680 (((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 |#4|)))) (-625 |#4|)) NIL)) (-3690 (((-625 $) (-625 |#4|)) NIL)) (-3982 (((-625 |#3|) $) NIL)) (-3707 (((-112) $) NIL)) (-3613 (((-112) $) NIL (|has| |#1| (-544)))) (-2656 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3748 ((|#4| |#4| $) NIL)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-3488 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3101 (($) NIL T CONST)) (-3667 (((-112) $) 26 (|has| |#1| (-544)))) (-3688 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3678 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3697 (((-112) $) NIL (|has| |#1| (-544)))) (-3757 (((-625 |#4|) (-625 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3624 (((-625 |#4|) (-625 |#4|) $) NIL (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) NIL (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) NIL)) (-1895 (($ (-625 |#4|)) NIL)) (-2936 (((-3 $ "failed") $) 39)) (-3720 ((|#4| |#4| $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-1416 (($ |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-2668 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3699 ((|#4| |#4| $) NIL)) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2689 (((-2 (|:| -1387 (-625 |#4|)) (|:| -2508 (-625 |#4|))) $) NIL)) (-3799 (((-625 |#4|) $) 16 (|has| $ (-6 -4353)))) (-2678 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3565 ((|#3| $) 33)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#4|) $) 17 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-3683 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) 21)) (-2615 (((-625 |#3|) $) NIL)) (-2608 (((-112) |#3| $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-1437 (((-3 |#4| "failed") $) 37)) (-2699 (((-625 |#4|) $) NIL)) (-3777 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3727 ((|#4| |#4| $) NIL)) (-2719 (((-112) $ $) NIL)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-3788 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3737 ((|#4| |#4| $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 (((-3 |#4| "failed") $) 35)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3657 (((-3 $ "failed") $ |#4|) 47)) (-2147 (($ $ |#4|) NIL)) (-1888 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 15)) (-3600 (($) 13)) (-4276 (((-751) $) NIL)) (-2840 (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) 12)) (-2042 (((-528) $) NIL (|has| |#4| (-598 (-528))))) (-1695 (($ (-625 |#4|)) 20)) (-3718 (($ $ |#3|) 42)) (-2595 (($ $ |#3|) 44)) (-3709 (($ $) NIL)) (-2584 (($ $ |#3|) NIL)) (-1683 (((-839) $) 31) (((-625 |#4|) $) 40)) (-3647 (((-751) $) NIL (|has| |#3| (-363)))) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3767 (((-112) $ (-1 (-112) |#4| (-625 |#4|))) NIL)) (-1900 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3669 (((-625 |#3|) $) NIL)) (-4168 (((-112) |#3| $) NIL)) (-2281 (((-112) $ $) NIL)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-470 |#1| |#2| |#3| |#4|) (-1179 |#1| |#2| |#3| |#4|) (-544) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -470)) -NIL -(-1179 |#1| |#2| |#3| |#4|) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL)) (-1895 (((-552) $) NIL) (((-402 (-552)) $) NIL)) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-1385 (($) 18)) (-3650 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-2042 (((-374) $) 22) (((-221) $) 25) (((-402 (-1145 (-552))) $) 19) (((-528) $) 52)) (-1683 (((-839) $) 50) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (((-221) $) 24) (((-374) $) 21)) (-4141 (((-751)) NIL)) (-3518 (((-112) $ $) NIL)) (-2089 (($) 36 T CONST)) (-2100 (($) 11 T CONST)) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL))) -(((-471) (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))) (-998) (-597 (-221)) (-597 (-374)) (-598 (-402 (-1145 (-552)))) (-598 (-528)) (-10 -8 (-15 -1385 ($))))) (T -471)) -((-1385 (*1 *1) (-5 *1 (-471)))) -(-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))) (-998) (-597 (-221)) (-597 (-374)) (-598 (-402 (-1145 (-552)))) (-598 (-528)) (-10 -8 (-15 -1385 ($)))) -((-1671 (((-112) $ $) NIL)) (-2662 (((-1108) $) 11)) (-2651 (((-1108) $) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL))) -(((-472) (-13 (-1056) (-10 -8 (-15 -2651 ((-1108) $)) (-15 -2662 ((-1108) $))))) (T -472)) -((-2651 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-472)))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-472))))) -(-13 (-1056) (-10 -8 (-15 -2651 ((-1108) $)) (-15 -2662 ((-1108) $)))) -((-1671 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2509 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#2| $ |#1| |#2|) 16)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3128 (((-3 |#2| "failed") |#1| $) 20)) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1938 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) 18)) (-1416 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) NIL)) (-3799 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 ((|#1| $) NIL (|has| |#1| (-827)))) (-3730 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-2537 ((|#1| $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-3712 (((-625 |#1|) $) 13)) (-1370 (((-112) |#1| $) NIL)) (-2953 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-3966 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-2554 (((-625 |#1|) $) NIL)) (-2564 (((-112) |#1| $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2924 ((|#2| $) NIL (|has| |#1| (-827)))) (-2380 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL)) (-2518 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) 19)) (-2154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4255 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1683 (((-839) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839))) (|has| |#2| (-597 (-839)))))) (-2977 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 11 (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-1471 (((-751) $) 15 (|has| $ (-6 -4353))))) -(((-473 |#1| |#2| |#3|) (-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) (-1073) (-1073) (-1131)) (T -473)) -NIL -(-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) -((-1777 (((-552) (-552) (-552)) 7)) (-1788 (((-112) (-552) (-552) (-552) (-552)) 11)) (-3421 (((-1232 (-625 (-552))) (-751) (-751)) 23))) -(((-474) (-10 -7 (-15 -1777 ((-552) (-552) (-552))) (-15 -1788 ((-112) (-552) (-552) (-552) (-552))) (-15 -3421 ((-1232 (-625 (-552))) (-751) (-751))))) (T -474)) -((-3421 (*1 *2 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1232 (-625 (-552)))) (-5 *1 (-474)))) (-1788 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-112)) (-5 *1 (-474)))) (-1777 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-474))))) -(-10 -7 (-15 -1777 ((-552) (-552) (-552))) (-15 -1788 ((-112) (-552) (-552) (-552) (-552))) (-15 -3421 ((-1232 (-625 (-552))) (-751) (-751)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-841 |#1|)) $) NIL)) (-3793 (((-1145 $) $ (-841 |#1|)) NIL) (((-1145 |#2|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3528 (($ $) NIL (|has| |#2| (-544)))) (-3509 (((-112) $) NIL (|has| |#2| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-841 |#1|))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-2194 (($ $) NIL (|has| |#2| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#2| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1014 (-552)))) (((-3 (-841 |#1|) "failed") $) NIL)) (-1895 ((|#2| $) NIL) (((-402 (-552)) $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#2| (-1014 (-552)))) (((-841 |#1|) $) NIL)) (-3207 (($ $ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-1801 (($ $ (-625 (-552))) NIL)) (-4169 (($ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#2| (-885)))) (-1347 (($ $ |#2| (-476 (-1471 |#1|) (-751)) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-374))) (|has| |#2| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-552))) (|has| |#2| (-862 (-552)))))) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-3970 (($ (-1145 |#2|) (-841 |#1|)) NIL) (($ (-1145 $) (-841 |#1|)) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#2| (-476 (-1471 |#1|) (-751))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-841 |#1|)) NIL)) (-4134 (((-476 (-1471 |#1|) (-751)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-625 (-751)) $ (-625 (-841 |#1|))) NIL)) (-3658 (($ $ $) NIL (|has| |#2| (-827)))) (-3332 (($ $ $) NIL (|has| |#2| (-827)))) (-1357 (($ (-1 (-476 (-1471 |#1|) (-751)) (-476 (-1471 |#1|) (-751))) $) NIL)) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-1942 (((-3 (-841 |#1|) "failed") $) NIL)) (-4131 (($ $) NIL)) (-4144 ((|#2| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-2883 (((-1131) $) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-841 |#1|)) (|:| -3564 (-751))) "failed") $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 ((|#2| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#2| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#2| (-885)))) (-2802 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-841 |#1|) |#2|) NIL) (($ $ (-625 (-841 |#1|)) (-625 |#2|)) NIL) (($ $ (-841 |#1|) $) NIL) (($ $ (-625 (-841 |#1|)) (-625 $)) NIL)) (-3217 (($ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-3072 (($ $ (-841 |#1|)) NIL) (($ $ (-625 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-4276 (((-476 (-1471 |#1|) (-751)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-625 (-751)) $ (-625 (-841 |#1|))) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-868 (-374)))) (|has| |#2| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-868 (-552)))) (|has| |#2| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-841 |#1|) (-598 (-528))) (|has| |#2| (-598 (-528)))))) (-4108 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-841 |#1|)) NIL) (($ (-402 (-552))) NIL (-1523 (|has| |#2| (-38 (-402 (-552)))) (|has| |#2| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#2| (-544)))) (-2512 (((-625 |#2|) $) NIL)) (-3637 ((|#2| $ (-476 (-1471 |#1|) (-751))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#2| (-885))) (|has| |#2| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#2| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#2| (-544)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-841 |#1|)) NIL) (($ $ (-625 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-2346 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2404 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL (|has| |#2| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#2| (-38 (-402 (-552))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-475 |#1| |#2|) (-13 (-925 |#2| (-476 (-1471 |#1|) (-751)) (-841 |#1|)) (-10 -8 (-15 -1801 ($ $ (-625 (-552)))))) (-625 (-1149)) (-1025)) (T -475)) -((-1801 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-475 *3 *4)) (-14 *3 (-625 (-1149))) (-4 *4 (-1025))))) -(-13 (-925 |#2| (-476 (-1471 |#1|) (-751)) (-841 |#1|)) (-10 -8 (-15 -1801 ($ $ (-625 (-552)))))) -((-1671 (((-112) $ $) NIL (|has| |#2| (-1073)))) (-3641 (((-112) $) NIL (|has| |#2| (-130)))) (-2787 (($ (-897)) NIL (|has| |#2| (-1025)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-1282 (($ $ $) NIL (|has| |#2| (-773)))) (-2077 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-3495 (((-112) $ (-751)) NIL)) (-2894 (((-751)) NIL (|has| |#2| (-363)))) (-4127 (((-552) $) NIL (|has| |#2| (-825)))) (-1851 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (-12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073)))) (((-3 (-402 (-552)) "failed") $) NIL (-12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1073)))) (-1895 (((-552) $) NIL (-12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073)))) (((-402 (-552)) $) NIL (-12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) ((|#2| $) NIL (|has| |#2| (-1073)))) (-1794 (((-669 (-552)) (-669 $)) NIL (-12 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (-12 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL (|has| |#2| (-1025))) (((-669 |#2|) (-669 $)) NIL (|has| |#2| (-1025)))) (-4174 (((-3 $ "failed") $) NIL (|has| |#2| (-707)))) (-3702 (($) NIL (|has| |#2| (-363)))) (-3692 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#2| $ (-552)) 11)) (-3620 (((-112) $) NIL (|has| |#2| (-825)))) (-3799 (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3650 (((-112) $) NIL (|has| |#2| (-707)))) (-3630 (((-112) $) NIL (|has| |#2| (-825)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3730 (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3683 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-4318 (((-897) $) NIL (|has| |#2| (-363)))) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#2| (-1073)))) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-3123 (($ (-897)) NIL (|has| |#2| (-363)))) (-2831 (((-1093) $) NIL (|has| |#2| (-1073)))) (-2924 ((|#2| $) NIL (|has| (-552) (-827)))) (-2518 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-552)) NIL)) (-1443 ((|#2| $ $) NIL (|has| |#2| (-1025)))) (-3878 (($ (-1232 |#2|)) NIL)) (-3904 (((-133)) NIL (|has| |#2| (-358)))) (-3072 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2840 (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-1232 |#2|) $) NIL) (($ (-552)) NIL (-1523 (-12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073))) (|has| |#2| (-1025)))) (($ (-402 (-552))) NIL (-12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) (($ |#2|) NIL (|has| |#2| (-1073))) (((-839) $) NIL (|has| |#2| (-597 (-839))))) (-4141 (((-751)) NIL (|has| |#2| (-1025)))) (-1900 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-1727 (($ $) NIL (|has| |#2| (-825)))) (-2089 (($) NIL (|has| |#2| (-130)) CONST)) (-2100 (($) NIL (|has| |#2| (-707)) CONST)) (-3768 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2346 (((-112) $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2320 (((-112) $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2281 (((-112) $ $) NIL (|has| |#2| (-1073)))) (-2334 (((-112) $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2307 (((-112) $ $) 15 (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2404 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-2393 (($ $ $) NIL (|has| |#2| (-1025))) (($ $) NIL (|has| |#2| (-1025)))) (-2382 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-751)) NIL (|has| |#2| (-707))) (($ $ (-897)) NIL (|has| |#2| (-707)))) (* (($ (-552) $) NIL (|has| |#2| (-1025))) (($ $ $) NIL (|has| |#2| (-707))) (($ $ |#2|) NIL (|has| |#2| (-707))) (($ |#2| $) NIL (|has| |#2| (-707))) (($ (-751) $) NIL (|has| |#2| (-130))) (($ (-897) $) NIL (|has| |#2| (-25)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-476 |#1| |#2|) (-234 |#1| |#2|) (-751) (-773)) (T -476)) -NIL -(-234 |#1| |#2|) -((-1671 (((-112) $ $) NIL)) (-3393 (((-625 (-499)) $) 11)) (-1288 (((-499) $) 10)) (-2883 (((-1131) $) NIL)) (-1812 (($ (-499) (-625 (-499))) 9)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 20) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL))) -(((-477) (-13 (-1056) (-10 -8 (-15 -1812 ($ (-499) (-625 (-499)))) (-15 -1288 ((-499) $)) (-15 -3393 ((-625 (-499)) $))))) (T -477)) -((-1812 (*1 *1 *2 *3) (-12 (-5 *3 (-625 (-499))) (-5 *2 (-499)) (-5 *1 (-477)))) (-1288 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-477)))) (-3393 (*1 *2 *1) (-12 (-5 *2 (-625 (-499))) (-5 *1 (-477))))) -(-13 (-1056) (-10 -8 (-15 -1812 ($ (-499) (-625 (-499)))) (-15 -1288 ((-499) $)) (-15 -3393 ((-625 (-499)) $)))) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) NIL)) (-3101 (($) NIL T CONST)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-3260 (($ $ $) 32)) (-3280 (($ $ $) 31)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3332 ((|#1| $) 26)) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2953 ((|#1| $) 27)) (-3966 (($ |#1| $) 10)) (-1822 (($ (-625 |#1|)) 12)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2966 ((|#1| $) 23)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) 9)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) 29)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1471 (((-751) $) 21 (|has| $ (-6 -4353))))) -(((-478 |#1|) (-13 (-944 |#1|) (-10 -8 (-15 -1822 ($ (-625 |#1|))))) (-827)) (T -478)) -((-1822 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-478 *3))))) -(-13 (-944 |#1|) (-10 -8 (-15 -1822 ($ (-625 |#1|))))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2163 (($ $) 69)) (-1581 (((-112) $) NIL)) (-2883 (((-1131) $) NIL)) (-3935 (((-408 |#2| (-402 |#2|) |#3| |#4|) $) 44)) (-2831 (((-1093) $) NIL)) (-3212 (((-3 |#4| "failed") $) 107)) (-1593 (($ (-408 |#2| (-402 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-552)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3950 (((-2 (|:| -2150 (-408 |#2| (-402 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-1683 (((-839) $) 102)) (-2089 (($) 33 T CONST)) (-2281 (((-112) $ $) 109)) (-2393 (($ $) 72) (($ $ $) NIL)) (-2382 (($ $ $) 70)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 73))) -(((-479 |#1| |#2| |#3| |#4|) (-330 |#1| |#2| |#3| |#4|) (-358) (-1208 |#1|) (-1208 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -479)) -NIL -(-330 |#1| |#2| |#3| |#4|) -((-1867 (((-552) (-625 (-552))) 30)) (-1833 ((|#1| (-625 |#1|)) 56)) (-1857 (((-625 |#1|) (-625 |#1|)) 57)) (-1846 (((-625 |#1|) (-625 |#1|)) 59)) (-2633 ((|#1| (-625 |#1|)) 58)) (-4108 (((-625 (-552)) (-625 |#1|)) 33))) -(((-480 |#1|) (-10 -7 (-15 -2633 (|#1| (-625 |#1|))) (-15 -1833 (|#1| (-625 |#1|))) (-15 -1846 ((-625 |#1|) (-625 |#1|))) (-15 -1857 ((-625 |#1|) (-625 |#1|))) (-15 -4108 ((-625 (-552)) (-625 |#1|))) (-15 -1867 ((-552) (-625 (-552))))) (-1208 (-552))) (T -480)) -((-1867 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-552)) (-5 *1 (-480 *4)) (-4 *4 (-1208 *2)))) (-4108 (*1 *2 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-1208 (-552))) (-5 *2 (-625 (-552))) (-5 *1 (-480 *4)))) (-1857 (*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1208 (-552))) (-5 *1 (-480 *3)))) (-1846 (*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1208 (-552))) (-5 *1 (-480 *3)))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1208 (-552))))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1208 (-552)))))) -(-10 -7 (-15 -2633 (|#1| (-625 |#1|))) (-15 -1833 (|#1| (-625 |#1|))) (-15 -1846 ((-625 |#1|) (-625 |#1|))) (-15 -1857 ((-625 |#1|) (-625 |#1|))) (-15 -4108 ((-625 (-552)) (-625 |#1|))) (-15 -1867 ((-552) (-625 (-552))))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4177 (((-552) $) NIL (|has| (-552) (-302)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL (|has| (-552) (-800)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-1149) "failed") $) NIL (|has| (-552) (-1014 (-1149)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| (-552) (-1014 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-552) (-1014 (-552))))) (-1895 (((-552) $) NIL) (((-1149) $) NIL (|has| (-552) (-1014 (-1149)))) (((-402 (-552)) $) NIL (|has| (-552) (-1014 (-552)))) (((-552) $) NIL (|has| (-552) (-1014 (-552))))) (-2851 (($ $ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| (-552) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| (-552) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-669 (-552)) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-552) (-537)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3620 (((-112) $) NIL (|has| (-552) (-800)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| (-552) (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| (-552) (-862 (-374))))) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL)) (-1356 (((-552) $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| (-552) (-1124)))) (-3630 (((-112) $) NIL (|has| (-552) (-800)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| (-552) (-827)))) (-1996 (($ (-1 (-552) (-552)) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-552) (-1124)) CONST)) (-1878 (($ (-402 (-552))) 9)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL (|has| (-552) (-302))) (((-402 (-552)) $) NIL)) (-4189 (((-552) $) NIL (|has| (-552) (-537)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-4073 (($ $ (-625 (-552)) (-625 (-552))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-552) (-552)) NIL (|has| (-552) (-304 (-552)))) (($ $ (-289 (-552))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-625 (-289 (-552)))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-625 (-1149)) (-625 (-552))) NIL (|has| (-552) (-507 (-1149) (-552)))) (($ $ (-1149) (-552)) NIL (|has| (-552) (-507 (-1149) (-552))))) (-2397 (((-751) $) NIL)) (-2154 (($ $ (-552)) NIL (|has| (-552) (-281 (-552) (-552))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $) NIL (|has| (-552) (-229))) (($ $ (-751)) NIL (|has| (-552) (-229))) (($ $ (-1149)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1 (-552) (-552)) (-751)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2265 (($ $) NIL)) (-1368 (((-552) $) NIL)) (-2042 (((-868 (-552)) $) NIL (|has| (-552) (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| (-552) (-598 (-868 (-374))))) (((-528) $) NIL (|has| (-552) (-598 (-528)))) (((-374) $) NIL (|has| (-552) (-998))) (((-221) $) NIL (|has| (-552) (-998)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-552) (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) 8) (($ (-552)) NIL) (($ (-1149)) NIL (|has| (-552) (-1014 (-1149)))) (((-402 (-552)) $) NIL) (((-980 16) $) 10)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| (-552) (-885))) (|has| (-552) (-143))))) (-4141 (((-751)) NIL)) (-4199 (((-552) $) NIL (|has| (-552) (-537)))) (-3518 (((-112) $ $) NIL)) (-1727 (($ $) NIL (|has| (-552) (-800)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $) NIL (|has| (-552) (-229))) (($ $ (-751)) NIL (|has| (-552) (-229))) (($ $ (-1149)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1 (-552) (-552)) (-751)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2346 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2307 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2404 (($ $ $) NIL) (($ (-552) (-552)) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ (-552) $) NIL) (($ $ (-552)) NIL))) -(((-481) (-13 (-968 (-552)) (-10 -8 (-15 -1683 ((-402 (-552)) $)) (-15 -1683 ((-980 16) $)) (-15 -4166 ((-402 (-552)) $)) (-15 -1878 ($ (-402 (-552))))))) (T -481)) -((-1683 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-481)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-980 16)) (-5 *1 (-481)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-481)))) (-1878 (*1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-481))))) -(-13 (-968 (-552)) (-10 -8 (-15 -1683 ((-402 (-552)) $)) (-15 -1683 ((-980 16) $)) (-15 -4166 ((-402 (-552)) $)) (-15 -1878 ($ (-402 (-552)))))) -((-3730 (((-625 |#2|) $) 23)) (-2893 (((-112) |#2| $) 28)) (-1888 (((-112) (-1 (-112) |#2|) $) 21)) (-4073 (($ $ (-625 (-289 |#2|))) 13) (($ $ (-289 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-625 |#2|) (-625 |#2|)) NIL)) (-2840 (((-751) (-1 (-112) |#2|) $) 22) (((-751) |#2| $) 26)) (-1683 (((-839) $) 37)) (-1900 (((-112) (-1 (-112) |#2|) $) 20)) (-2281 (((-112) $ $) 31)) (-1471 (((-751) $) 17))) -(((-482 |#1| |#2|) (-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -4073 (|#1| |#1| (-625 |#2|) (-625 |#2|))) (-15 -4073 (|#1| |#1| |#2| |#2|)) (-15 -4073 (|#1| |#1| (-289 |#2|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#2|)))) (-15 -2893 ((-112) |#2| |#1|)) (-15 -2840 ((-751) |#2| |#1|)) (-15 -3730 ((-625 |#2|) |#1|)) (-15 -2840 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -1888 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-751) |#1|))) (-483 |#2|) (-1186)) (T -482)) -NIL -(-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -4073 (|#1| |#1| (-625 |#2|) (-625 |#2|))) (-15 -4073 (|#1| |#1| |#2| |#2|)) (-15 -4073 (|#1| |#1| (-289 |#2|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#2|)))) (-15 -2893 ((-112) |#2| |#1|)) (-15 -2840 ((-751) |#2| |#1|)) (-15 -3730 ((-625 |#2|) |#1|)) (-15 -2840 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -1888 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-751) |#1|))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) 8)) (-3101 (($) 7 T CONST)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-483 |#1|) (-138) (-1186)) (T -483)) -((-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-483 *3)) (-4 *3 (-1186)))) (-3683 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4354)) (-4 *1 (-483 *3)) (-4 *3 (-1186)))) (-1900 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4)) (-4 *4 (-1186)) (-5 *2 (-112)))) (-1888 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4)) (-4 *4 (-1186)) (-5 *2 (-112)))) (-2840 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4)) (-4 *4 (-1186)) (-5 *2 (-751)))) (-3799 (*1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1186)) (-5 *2 (-625 *3)))) (-3730 (*1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1186)) (-5 *2 (-625 *3)))) (-2840 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1186)) (-4 *3 (-1073)) (-5 *2 (-751)))) (-2893 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1186)) (-4 *3 (-1073)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-597 (-839))) (-6 (-597 (-839))) |%noBranch|) (IF (|has| |t#1| (-1073)) (-6 (-1073)) |%noBranch|) (IF (|has| |t#1| (-1073)) (IF (|has| |t#1| (-304 |t#1|)) (-6 (-304 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1996 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4354)) (-15 -3683 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4353)) (PROGN (-15 -1900 ((-112) (-1 (-112) |t#1|) $)) (-15 -1888 ((-112) (-1 (-112) |t#1|) $)) (-15 -2840 ((-751) (-1 (-112) |t#1|) $)) (-15 -3799 ((-625 |t#1|) $)) (-15 -3730 ((-625 |t#1|) $)) (IF (|has| |t#1| (-1073)) (PROGN (-15 -2840 ((-751) |t#1| $)) (-15 -2893 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T)) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-1913 (($ (-1131)) 8)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 14) (((-1131) $) 11)) (-2281 (((-112) $ $) 10))) -(((-484) (-13 (-1073) (-597 (-1131)) (-10 -8 (-15 -1913 ($ (-1131)))))) (T -484)) -((-1913 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-484))))) -(-13 (-1073) (-597 (-1131)) (-10 -8 (-15 -1913 ($ (-1131))))) -((-3728 (($ $) 15)) (-3710 (($ $) 24)) (-3749 (($ $) 12)) (-3759 (($ $) 10)) (-3738 (($ $) 17)) (-3721 (($ $) 22))) -(((-485 |#1|) (-10 -8 (-15 -3721 (|#1| |#1|)) (-15 -3738 (|#1| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3749 (|#1| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -3728 (|#1| |#1|))) (-486)) (T -485)) -NIL -(-10 -8 (-15 -3721 (|#1| |#1|)) (-15 -3738 (|#1| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3749 (|#1| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -3728 (|#1| |#1|))) -((-3728 (($ $) 11)) (-3710 (($ $) 10)) (-3749 (($ $) 9)) (-3759 (($ $) 8)) (-3738 (($ $) 7)) (-3721 (($ $) 6))) -(((-486) (-138)) (T -486)) -((-3728 (*1 *1 *1) (-4 *1 (-486))) (-3710 (*1 *1 *1) (-4 *1 (-486))) (-3749 (*1 *1 *1) (-4 *1 (-486))) (-3759 (*1 *1 *1) (-4 *1 (-486))) (-3738 (*1 *1 *1) (-4 *1 (-486))) (-3721 (*1 *1 *1) (-4 *1 (-486)))) -(-13 (-10 -8 (-15 -3721 ($ $)) (-15 -3738 ($ $)) (-15 -3759 ($ $)) (-15 -3749 ($ $)) (-15 -3710 ($ $)) (-15 -3728 ($ $)))) -((-3824 (((-413 |#4|) |#4| (-1 (-413 |#2|) |#2|)) 42))) -(((-487 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3824 ((-413 |#4|) |#4| (-1 (-413 |#2|) |#2|)))) (-358) (-1208 |#1|) (-13 (-358) (-145) (-705 |#1| |#2|)) (-1208 |#3|)) (T -487)) -((-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358)) (-4 *7 (-13 (-358) (-145) (-705 *5 *6))) (-5 *2 (-413 *3)) (-5 *1 (-487 *5 *6 *7 *3)) (-4 *3 (-1208 *7))))) -(-10 -7 (-15 -3824 ((-413 |#4|) |#4| (-1 (-413 |#2|) |#2|)))) -((-1671 (((-112) $ $) NIL)) (-1993 (((-625 $) (-1145 $) (-1149)) NIL) (((-625 $) (-1145 $)) NIL) (((-625 $) (-928 $)) NIL)) (-3428 (($ (-1145 $) (-1149)) NIL) (($ (-1145 $)) NIL) (($ (-928 $)) NIL)) (-3641 (((-112) $) 39)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-1925 (((-112) $ $) 64)) (-3715 (((-625 (-596 $)) $) 48)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3831 (($ $ (-289 $)) NIL) (($ $ (-625 (-289 $))) NIL) (($ $ (-625 (-596 $)) (-625 $)) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-3837 (($ $) NIL)) (-2408 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-3438 (((-625 $) (-1145 $) (-1149)) NIL) (((-625 $) (-1145 $)) NIL) (((-625 $) (-928 $)) NIL)) (-3588 (($ (-1145 $) (-1149)) NIL) (($ (-1145 $)) NIL) (($ (-928 $)) NIL)) (-1893 (((-3 (-596 $) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL)) (-1895 (((-596 $) $) NIL) (((-552) $) NIL) (((-402 (-552)) $) 50)) (-2851 (($ $ $) NIL)) (-1794 (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-669 (-552)) (-669 $)) NIL) (((-2 (|:| -2351 (-669 (-402 (-552)))) (|:| |vec| (-1232 (-402 (-552))))) (-669 $) (-1232 $)) NIL) (((-669 (-402 (-552))) (-669 $)) NIL)) (-2163 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-2411 (($ $) NIL) (($ (-625 $)) NIL)) (-1940 (((-625 (-114)) $) NIL)) (-1563 (((-114) (-114)) NIL)) (-3650 (((-112) $) 42)) (-3932 (((-112) $) NIL (|has| $ (-1014 (-552))))) (-1356 (((-1098 (-552) (-596 $)) $) 37)) (-2429 (($ $ (-552)) NIL)) (-4209 (((-1145 $) (-1145 $) (-596 $)) 78) (((-1145 $) (-1145 $) (-625 (-596 $))) 55) (($ $ (-596 $)) 67) (($ $ (-625 (-596 $))) 68)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1917 (((-1145 $) (-596 $)) 65 (|has| $ (-1025)))) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-1996 (($ (-1 $ $) (-596 $)) NIL)) (-1952 (((-3 (-596 $) "failed") $) NIL)) (-2605 (($ (-625 $)) NIL) (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-3783 (((-625 (-596 $)) $) NIL)) (-1425 (($ (-114) $) NIL) (($ (-114) (-625 $)) NIL)) (-1721 (((-112) $ (-114)) NIL) (((-112) $ (-1149)) NIL)) (-4092 (($ $) NIL)) (-2207 (((-751) $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ (-625 $)) NIL) (($ $ $) NIL)) (-1929 (((-112) $ $) NIL) (((-112) $ (-1149)) NIL)) (-3824 (((-413 $) $) NIL)) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3943 (((-112) $) NIL (|has| $ (-1014 (-552))))) (-4073 (($ $ (-596 $) $) NIL) (($ $ (-625 (-596 $)) (-625 $)) NIL) (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ $))) NIL) (($ $ (-625 (-1149)) (-625 (-1 $ (-625 $)))) NIL) (($ $ (-1149) (-1 $ (-625 $))) NIL) (($ $ (-1149) (-1 $ $)) NIL) (($ $ (-625 (-114)) (-625 (-1 $ $))) NIL) (($ $ (-625 (-114)) (-625 (-1 $ (-625 $)))) NIL) (($ $ (-114) (-1 $ (-625 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-2397 (((-751) $) NIL)) (-2154 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-625 $)) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1963 (($ $) NIL) (($ $ $) NIL)) (-3072 (($ $ (-751)) NIL) (($ $) 36)) (-1368 (((-1098 (-552) (-596 $)) $) 20)) (-3610 (($ $) NIL (|has| $ (-1025)))) (-2042 (((-374) $) 92) (((-221) $) 100) (((-167 (-374)) $) 108)) (-1683 (((-839) $) NIL) (($ (-596 $)) NIL) (($ (-402 (-552))) NIL) (($ $) NIL) (($ (-552)) NIL) (($ (-1098 (-552) (-596 $))) 21)) (-4141 (((-751)) NIL)) (-3779 (($ $) NIL) (($ (-625 $)) NIL)) (-1572 (((-112) (-114)) 84)) (-3518 (((-112) $ $) NIL)) (-2089 (($) 10 T CONST)) (-2100 (($) 22 T CONST)) (-3768 (($ $ (-751)) NIL) (($ $) NIL)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 24)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2404 (($ $ $) 44)) (-2393 (($ $ $) NIL) (($ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-402 (-552))) NIL) (($ $ (-552)) 46) (($ $ (-751)) NIL) (($ $ (-897)) NIL)) (* (($ (-402 (-552)) $) NIL) (($ $ (-402 (-552))) NIL) (($ $ $) 27) (($ (-552) $) NIL) (($ (-751) $) NIL) (($ (-897) $) NIL))) -(((-488) (-13 (-297) (-27) (-1014 (-552)) (-1014 (-402 (-552))) (-621 (-552)) (-998) (-621 (-402 (-552))) (-145) (-598 (-167 (-374))) (-229) (-10 -8 (-15 -1683 ($ (-1098 (-552) (-596 $)))) (-15 -1356 ((-1098 (-552) (-596 $)) $)) (-15 -1368 ((-1098 (-552) (-596 $)) $)) (-15 -2163 ($ $)) (-15 -1925 ((-112) $ $)) (-15 -4209 ((-1145 $) (-1145 $) (-596 $))) (-15 -4209 ((-1145 $) (-1145 $) (-625 (-596 $)))) (-15 -4209 ($ $ (-596 $))) (-15 -4209 ($ $ (-625 (-596 $))))))) (T -488)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1098 (-552) (-596 (-488)))) (-5 *1 (-488)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-1098 (-552) (-596 (-488)))) (-5 *1 (-488)))) (-1368 (*1 *2 *1) (-12 (-5 *2 (-1098 (-552) (-596 (-488)))) (-5 *1 (-488)))) (-2163 (*1 *1 *1) (-5 *1 (-488))) (-1925 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-488)))) (-4209 (*1 *2 *2 *3) (-12 (-5 *2 (-1145 (-488))) (-5 *3 (-596 (-488))) (-5 *1 (-488)))) (-4209 (*1 *2 *2 *3) (-12 (-5 *2 (-1145 (-488))) (-5 *3 (-625 (-596 (-488)))) (-5 *1 (-488)))) (-4209 (*1 *1 *1 *2) (-12 (-5 *2 (-596 (-488))) (-5 *1 (-488)))) (-4209 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-596 (-488)))) (-5 *1 (-488))))) -(-13 (-297) (-27) (-1014 (-552)) (-1014 (-402 (-552))) (-621 (-552)) (-998) (-621 (-402 (-552))) (-145) (-598 (-167 (-374))) (-229) (-10 -8 (-15 -1683 ($ (-1098 (-552) (-596 $)))) (-15 -1356 ((-1098 (-552) (-596 $)) $)) (-15 -1368 ((-1098 (-552) (-596 $)) $)) (-15 -2163 ($ $)) (-15 -1925 ((-112) $ $)) (-15 -4209 ((-1145 $) (-1145 $) (-596 $))) (-15 -4209 ((-1145 $) (-1145 $) (-625 (-596 $)))) (-15 -4209 ($ $ (-596 $))) (-15 -4209 ($ $ (-625 (-596 $)))))) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-552) |#1|) 25 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) 22 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 21)) (-2483 (((-552) (-1 (-112) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073)))) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2183 (($ (-751) |#1|) 14)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) 12 (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) 23 (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2924 ((|#1| $) NIL (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) 10 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) 13)) (-2154 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) 24) (($ $ (-1199 (-552))) NIL)) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) NIL)) (-3402 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-625 $)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-1471 (((-751) $) 9 (|has| $ (-6 -4353))))) -(((-489 |#1| |#2|) (-19 |#1|) (-1186) (-552)) (T -489)) +((-4135 (($ $) 6)) (-3154 (($ $) 7)) (** (($ $ $) 8))) +(((-278) (-137)) (T -278)) +((** (*1 *1 *1 *1) (-4 *1 (-278))) (-3154 (*1 *1 *1) (-4 *1 (-278))) (-4135 (*1 *1 *1) (-4 *1 (-278)))) +(-13 (-10 -8 (-15 -4135 ($ $)) (-15 -3154 ($ $)) (-15 ** ($ $ $)))) +((-3853 (((-627 (-1132 |#1|)) (-1132 |#1|) |#1|) 35)) (-2751 ((|#2| |#2| |#1|) 38)) (-4166 ((|#2| |#2| |#1|) 40)) (-2723 ((|#2| |#2| |#1|) 39))) +(((-279 |#1| |#2|) (-10 -7 (-15 -2751 (|#2| |#2| |#1|)) (-15 -2723 (|#2| |#2| |#1|)) (-15 -4166 (|#2| |#2| |#1|)) (-15 -3853 ((-627 (-1132 |#1|)) (-1132 |#1|) |#1|))) (-357) (-1226 |#1|)) (T -279)) +((-3853 (*1 *2 *3 *4) (-12 (-4 *4 (-357)) (-5 *2 (-627 (-1132 *4))) (-5 *1 (-279 *4 *5)) (-5 *3 (-1132 *4)) (-4 *5 (-1226 *4)))) (-4166 (*1 *2 *2 *3) (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1226 *3)))) (-2723 (*1 *2 *2 *3) (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1226 *3)))) (-2751 (*1 *2 *2 *3) (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1226 *3))))) +(-10 -7 (-15 -2751 (|#2| |#2| |#1|)) (-15 -2723 (|#2| |#2| |#1|)) (-15 -4166 (|#2| |#2| |#1|)) (-15 -3853 ((-627 (-1132 |#1|)) (-1132 |#1|) |#1|))) +((-1985 ((|#2| $ |#1|) 6))) +(((-280 |#1| |#2|) (-137) (-1076) (-1189)) (T -280)) +((-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-280 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1189))))) +(-13 (-10 -8 (-15 -1985 (|t#2| $ |t#1|)))) +((-3473 ((|#3| $ |#2| |#3|) 12)) (-3413 ((|#3| $ |#2|) 10))) +(((-281 |#1| |#2| |#3|) (-10 -8 (-15 -3473 (|#3| |#1| |#2| |#3|)) (-15 -3413 (|#3| |#1| |#2|))) (-282 |#2| |#3|) (-1076) (-1189)) (T -281)) +NIL +(-10 -8 (-15 -3473 (|#3| |#1| |#2| |#3|)) (-15 -3413 (|#3| |#1| |#2|))) +((-2950 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4367)))) (-3473 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) 11)) (-1985 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-282 |#1| |#2|) (-137) (-1076) (-1189)) (T -282)) +((-1985 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-282 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1189)))) (-3413 (*1 *2 *1 *3) (-12 (-4 *1 (-282 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1189)))) (-2950 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-282 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1189)))) (-3473 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-282 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1189))))) +(-13 (-280 |t#1| |t#2|) (-10 -8 (-15 -1985 (|t#2| $ |t#1| |t#2|)) (-15 -3413 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4367)) (PROGN (-15 -2950 (|t#2| $ |t#1| |t#2|)) (-15 -3473 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-280 |#1| |#2|) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 35)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 40)) (-3245 (($ $) 38)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4224 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-2813 (($ $ $) 33)) (-2091 (($ |#2| |#3|) 19)) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2624 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3484 ((|#3| $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 20)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3677 (((-3 $ "failed") $ $) NIL)) (-2718 (((-754) $) 34)) (-1985 ((|#2| $ |#2|) 42)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 24)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3995 (((-754)) NIL)) (-3778 (((-111) $ $) NIL)) (-1922 (($) 29 T CONST)) (-1933 (($) 36 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 37))) +(((-283 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-301) (-10 -8 (-15 -3484 (|#3| $)) (-15 -1477 (|#2| $)) (-15 -2091 ($ |#2| |#3|)) (-15 -3677 ((-3 $ "failed") $ $)) (-15 -2040 ((-3 $ "failed") $)) (-15 -1951 ($ $)) (-15 -1985 (|#2| $ |#2|)))) (-169) (-1211 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -283)) +((-2040 (*1 *1 *1) (|partial| -12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1211 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3484 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-23)) (-5 *1 (-283 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1211 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-1477 (*1 *2 *1) (-12 (-4 *2 (-1211 *3)) (-5 *1 (-283 *3 *2 *4 *5 *6 *7)) (-4 *3 (-169)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2091 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-283 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1211 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3677 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1211 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1951 (*1 *1 *1) (-12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1211 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1985 (*1 *2 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-283 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1211 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) +(-13 (-301) (-10 -8 (-15 -3484 (|#3| $)) (-15 -1477 (|#2| $)) (-15 -2091 ($ |#2| |#3|)) (-15 -3677 ((-3 $ "failed") $ $)) (-15 -2040 ((-3 $ "failed") $)) (-15 -1951 ($ $)) (-15 -1985 (|#2| $ |#2|)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-284) (-137)) (T -284)) +NIL +(-13 (-1028) (-110 $ $) (-10 -7 (-6 -4359))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 $) . T) ((-709) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-2179 (($ (-1152) (-1152) (-1080) $) 17)) (-1976 (($ (-1152) (-627 (-944)) $) 22)) (-3652 (((-627 (-1061)) $) 10)) (-1334 (((-3 (-1080) "failed") (-1152) (-1152) $) 16)) (-2287 (((-3 (-627 (-944)) "failed") (-1152) $) 21)) (-2373 (($) 7)) (-2111 (($) 23)) (-1477 (((-842) $) 27)) (-2317 (($) 24))) +(((-285) (-13 (-599 (-842)) (-10 -8 (-15 -2373 ($)) (-15 -3652 ((-627 (-1061)) $)) (-15 -1334 ((-3 (-1080) "failed") (-1152) (-1152) $)) (-15 -2179 ($ (-1152) (-1152) (-1080) $)) (-15 -2287 ((-3 (-627 (-944)) "failed") (-1152) $)) (-15 -1976 ($ (-1152) (-627 (-944)) $)) (-15 -2111 ($)) (-15 -2317 ($))))) (T -285)) +((-2373 (*1 *1) (-5 *1 (-285))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-627 (-1061))) (-5 *1 (-285)))) (-1334 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-1080)) (-5 *1 (-285)))) (-2179 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1152)) (-5 *3 (-1080)) (-5 *1 (-285)))) (-2287 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-627 (-944))) (-5 *1 (-285)))) (-1976 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-944))) (-5 *1 (-285)))) (-2111 (*1 *1) (-5 *1 (-285))) (-2317 (*1 *1) (-5 *1 (-285)))) +(-13 (-599 (-842)) (-10 -8 (-15 -2373 ($)) (-15 -3652 ((-627 (-1061)) $)) (-15 -1334 ((-3 (-1080) "failed") (-1152) (-1152) $)) (-15 -2179 ($ (-1152) (-1152) (-1080) $)) (-15 -2287 ((-3 (-627 (-944)) "failed") (-1152) $)) (-15 -1976 ($ (-1152) (-627 (-944)) $)) (-15 -2111 ($)) (-15 -2317 ($)))) +((-2128 (((-627 (-2 (|:| |eigval| (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (|:| |geneigvec| (-627 (-671 (-401 (-931 |#1|))))))) (-671 (-401 (-931 |#1|)))) 85)) (-2669 (((-627 (-671 (-401 (-931 |#1|)))) (-2 (|:| |eigval| (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (|:| |eigmult| (-754)) (|:| |eigvec| (-627 (-671 (-401 (-931 |#1|)))))) (-671 (-401 (-931 |#1|)))) 80) (((-627 (-671 (-401 (-931 |#1|)))) (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|))) (-671 (-401 (-931 |#1|))) (-754) (-754)) 38)) (-3717 (((-627 (-2 (|:| |eigval| (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (|:| |eigmult| (-754)) (|:| |eigvec| (-627 (-671 (-401 (-931 |#1|))))))) (-671 (-401 (-931 |#1|)))) 82)) (-1965 (((-627 (-671 (-401 (-931 |#1|)))) (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|))) (-671 (-401 (-931 |#1|)))) 62)) (-2215 (((-627 (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (-671 (-401 (-931 |#1|)))) 61)) (-2410 (((-931 |#1|) (-671 (-401 (-931 |#1|)))) 50) (((-931 |#1|) (-671 (-401 (-931 |#1|))) (-1152)) 51))) +(((-286 |#1|) (-10 -7 (-15 -2410 ((-931 |#1|) (-671 (-401 (-931 |#1|))) (-1152))) (-15 -2410 ((-931 |#1|) (-671 (-401 (-931 |#1|))))) (-15 -2215 ((-627 (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (-671 (-401 (-931 |#1|))))) (-15 -1965 ((-627 (-671 (-401 (-931 |#1|)))) (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|))) (-671 (-401 (-931 |#1|))))) (-15 -2669 ((-627 (-671 (-401 (-931 |#1|)))) (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|))) (-671 (-401 (-931 |#1|))) (-754) (-754))) (-15 -2669 ((-627 (-671 (-401 (-931 |#1|)))) (-2 (|:| |eigval| (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (|:| |eigmult| (-754)) (|:| |eigvec| (-627 (-671 (-401 (-931 |#1|)))))) (-671 (-401 (-931 |#1|))))) (-15 -2128 ((-627 (-2 (|:| |eigval| (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (|:| |geneigvec| (-627 (-671 (-401 (-931 |#1|))))))) (-671 (-401 (-931 |#1|))))) (-15 -3717 ((-627 (-2 (|:| |eigval| (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (|:| |eigmult| (-754)) (|:| |eigvec| (-627 (-671 (-401 (-931 |#1|))))))) (-671 (-401 (-931 |#1|)))))) (-445)) (T -286)) +((-3717 (*1 *2 *3) (-12 (-4 *4 (-445)) (-5 *2 (-627 (-2 (|:| |eigval| (-3 (-401 (-931 *4)) (-1141 (-1152) (-931 *4)))) (|:| |eigmult| (-754)) (|:| |eigvec| (-627 (-671 (-401 (-931 *4)))))))) (-5 *1 (-286 *4)) (-5 *3 (-671 (-401 (-931 *4)))))) (-2128 (*1 *2 *3) (-12 (-4 *4 (-445)) (-5 *2 (-627 (-2 (|:| |eigval| (-3 (-401 (-931 *4)) (-1141 (-1152) (-931 *4)))) (|:| |geneigvec| (-627 (-671 (-401 (-931 *4)))))))) (-5 *1 (-286 *4)) (-5 *3 (-671 (-401 (-931 *4)))))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-401 (-931 *5)) (-1141 (-1152) (-931 *5)))) (|:| |eigmult| (-754)) (|:| |eigvec| (-627 *4)))) (-4 *5 (-445)) (-5 *2 (-627 (-671 (-401 (-931 *5))))) (-5 *1 (-286 *5)) (-5 *4 (-671 (-401 (-931 *5)))))) (-2669 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-401 (-931 *6)) (-1141 (-1152) (-931 *6)))) (-5 *5 (-754)) (-4 *6 (-445)) (-5 *2 (-627 (-671 (-401 (-931 *6))))) (-5 *1 (-286 *6)) (-5 *4 (-671 (-401 (-931 *6)))))) (-1965 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-401 (-931 *5)) (-1141 (-1152) (-931 *5)))) (-4 *5 (-445)) (-5 *2 (-627 (-671 (-401 (-931 *5))))) (-5 *1 (-286 *5)) (-5 *4 (-671 (-401 (-931 *5)))))) (-2215 (*1 *2 *3) (-12 (-5 *3 (-671 (-401 (-931 *4)))) (-4 *4 (-445)) (-5 *2 (-627 (-3 (-401 (-931 *4)) (-1141 (-1152) (-931 *4))))) (-5 *1 (-286 *4)))) (-2410 (*1 *2 *3) (-12 (-5 *3 (-671 (-401 (-931 *4)))) (-5 *2 (-931 *4)) (-5 *1 (-286 *4)) (-4 *4 (-445)))) (-2410 (*1 *2 *3 *4) (-12 (-5 *3 (-671 (-401 (-931 *5)))) (-5 *4 (-1152)) (-5 *2 (-931 *5)) (-5 *1 (-286 *5)) (-4 *5 (-445))))) +(-10 -7 (-15 -2410 ((-931 |#1|) (-671 (-401 (-931 |#1|))) (-1152))) (-15 -2410 ((-931 |#1|) (-671 (-401 (-931 |#1|))))) (-15 -2215 ((-627 (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (-671 (-401 (-931 |#1|))))) (-15 -1965 ((-627 (-671 (-401 (-931 |#1|)))) (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|))) (-671 (-401 (-931 |#1|))))) (-15 -2669 ((-627 (-671 (-401 (-931 |#1|)))) (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|))) (-671 (-401 (-931 |#1|))) (-754) (-754))) (-15 -2669 ((-627 (-671 (-401 (-931 |#1|)))) (-2 (|:| |eigval| (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (|:| |eigmult| (-754)) (|:| |eigvec| (-627 (-671 (-401 (-931 |#1|)))))) (-671 (-401 (-931 |#1|))))) (-15 -2128 ((-627 (-2 (|:| |eigval| (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (|:| |geneigvec| (-627 (-671 (-401 (-931 |#1|))))))) (-671 (-401 (-931 |#1|))))) (-15 -3717 ((-627 (-2 (|:| |eigval| (-3 (-401 (-931 |#1|)) (-1141 (-1152) (-931 |#1|)))) (|:| |eigmult| (-754)) (|:| |eigvec| (-627 (-671 (-401 (-931 |#1|))))))) (-671 (-401 (-931 |#1|)))))) +((-3516 (((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)) 14))) +(((-287 |#1| |#2|) (-10 -7 (-15 -3516 ((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)))) (-1189) (-1189)) (T -287)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-288 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-288 *6)) (-5 *1 (-287 *5 *6))))) +(-10 -7 (-15 -3516 ((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)))) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3024 (((-111) $) NIL (|has| |#1| (-21)))) (-2927 (($ $) 12)) (-4136 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2620 (($ $ $) 94 (|has| |#1| (-296)))) (-3887 (($) NIL (-1559 (|has| |#1| (-21)) (|has| |#1| (-709))) CONST)) (-4002 (($ $) 50 (|has| |#1| (-21)))) (-1667 (((-3 $ "failed") $) 61 (|has| |#1| (-709)))) (-3089 ((|#1| $) 11)) (-2040 (((-3 $ "failed") $) 59 (|has| |#1| (-709)))) (-2624 (((-111) $) NIL (|has| |#1| (-709)))) (-3516 (($ (-1 |#1| |#1|) $) 14)) (-3078 ((|#1| $) 10)) (-3338 (($ $) 49 (|has| |#1| (-21)))) (-1351 (((-3 $ "failed") $) 60 (|has| |#1| (-709)))) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1951 (($ $) 63 (-1559 (|has| |#1| (-357)) (|has| |#1| (-466))))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3291 (((-627 $) $) 84 (|has| |#1| (-544)))) (-3321 (($ $ $) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 $)) 28 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-1152) |#1|) 17 (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) 21 (|has| |#1| (-506 (-1152) |#1|)))) (-3262 (($ |#1| |#1|) 9)) (-2405 (((-132)) 89 (|has| |#1| (-357)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152)) 86 (|has| |#1| (-879 (-1152))))) (-2616 (($ $ $) NIL (|has| |#1| (-466)))) (-2493 (($ $ $) NIL (|has| |#1| (-466)))) (-1477 (($ (-552)) NIL (|has| |#1| (-1028))) (((-111) $) 36 (|has| |#1| (-1076))) (((-842) $) 35 (|has| |#1| (-1076)))) (-3995 (((-754)) 66 (|has| |#1| (-1028)))) (-1922 (($) 46 (|has| |#1| (-21)) CONST)) (-1933 (($) 56 (|has| |#1| (-709)) CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152))))) (-2292 (($ |#1| |#1|) 8) (((-111) $ $) 31 (|has| |#1| (-1076)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) 91 (-1559 (|has| |#1| (-357)) (|has| |#1| (-466))))) (-2396 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-2384 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-552)) NIL (|has| |#1| (-466))) (($ $ (-754)) NIL (|has| |#1| (-709))) (($ $ (-900)) NIL (|has| |#1| (-1088)))) (* (($ $ |#1|) 54 (|has| |#1| (-1088))) (($ |#1| $) 53 (|has| |#1| (-1088))) (($ $ $) 52 (|has| |#1| (-1088))) (($ (-552) $) 69 (|has| |#1| (-21))) (($ (-754) $) NIL (|has| |#1| (-21))) (($ (-900) $) NIL (|has| |#1| (-25))))) +(((-288 |#1|) (-13 (-1189) (-10 -8 (-15 -2292 ($ |#1| |#1|)) (-15 -3262 ($ |#1| |#1|)) (-15 -2927 ($ $)) (-15 -3078 (|#1| $)) (-15 -3089 (|#1| $)) (-15 -3516 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-506 (-1152) |#1|)) (-6 (-506 (-1152) |#1|)) |%noBranch|) (IF (|has| |#1| (-1076)) (PROGN (-6 (-1076)) (-6 (-599 (-111))) (IF (|has| |#1| (-303 |#1|)) (PROGN (-15 -3321 ($ $ $)) (-15 -3321 ($ $ (-627 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2384 ($ |#1| $)) (-15 -2384 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3338 ($ $)) (-15 -4002 ($ $)) (-15 -2396 ($ |#1| $)) (-15 -2396 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1088)) (PROGN (-6 (-1088)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-709)) (PROGN (-6 (-709)) (-15 -1351 ((-3 $ "failed") $)) (-15 -1667 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-466)) (PROGN (-6 (-466)) (-15 -1351 ((-3 $ "failed") $)) (-15 -1667 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1028)) (PROGN (-6 (-1028)) (-6 (-110 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-700 |#1|)) |%noBranch|) (IF (|has| |#1| (-544)) (-15 -3291 ((-627 $) $)) |%noBranch|) (IF (|has| |#1| (-879 (-1152))) (-6 (-879 (-1152))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-6 (-1242 |#1|)) (-15 -2407 ($ $ $)) (-15 -1951 ($ $))) |%noBranch|) (IF (|has| |#1| (-296)) (-15 -2620 ($ $ $)) |%noBranch|))) (-1189)) (T -288)) +((-2292 (*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1189)))) (-3262 (*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1189)))) (-2927 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1189)))) (-3078 (*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1189)))) (-3089 (*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1189)))) (-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1189)) (-5 *1 (-288 *3)))) (-3321 (*1 *1 *1 *1) (-12 (-4 *2 (-303 *2)) (-4 *2 (-1076)) (-4 *2 (-1189)) (-5 *1 (-288 *2)))) (-3321 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-288 *3))) (-4 *3 (-303 *3)) (-4 *3 (-1076)) (-4 *3 (-1189)) (-5 *1 (-288 *3)))) (-2384 (*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1189)))) (-2384 (*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1189)))) (-3338 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1189)))) (-4002 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1189)))) (-2396 (*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1189)))) (-2396 (*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1189)))) (-1351 (*1 *1 *1) (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-709)) (-4 *2 (-1189)))) (-1667 (*1 *1 *1) (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-709)) (-4 *2 (-1189)))) (-3291 (*1 *2 *1) (-12 (-5 *2 (-627 (-288 *3))) (-5 *1 (-288 *3)) (-4 *3 (-544)) (-4 *3 (-1189)))) (-2620 (*1 *1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-296)) (-4 *2 (-1189)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1088)) (-4 *2 (-1189)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1088)) (-4 *2 (-1189)))) (-2407 (*1 *1 *1 *1) (-1559 (-12 (-5 *1 (-288 *2)) (-4 *2 (-357)) (-4 *2 (-1189))) (-12 (-5 *1 (-288 *2)) (-4 *2 (-466)) (-4 *2 (-1189))))) (-1951 (*1 *1 *1) (-1559 (-12 (-5 *1 (-288 *2)) (-4 *2 (-357)) (-4 *2 (-1189))) (-12 (-5 *1 (-288 *2)) (-4 *2 (-466)) (-4 *2 (-1189)))))) +(-13 (-1189) (-10 -8 (-15 -2292 ($ |#1| |#1|)) (-15 -3262 ($ |#1| |#1|)) (-15 -2927 ($ $)) (-15 -3078 (|#1| $)) (-15 -3089 (|#1| $)) (-15 -3516 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-506 (-1152) |#1|)) (-6 (-506 (-1152) |#1|)) |%noBranch|) (IF (|has| |#1| (-1076)) (PROGN (-6 (-1076)) (-6 (-599 (-111))) (IF (|has| |#1| (-303 |#1|)) (PROGN (-15 -3321 ($ $ $)) (-15 -3321 ($ $ (-627 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2384 ($ |#1| $)) (-15 -2384 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3338 ($ $)) (-15 -4002 ($ $)) (-15 -2396 ($ |#1| $)) (-15 -2396 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1088)) (PROGN (-6 (-1088)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-709)) (PROGN (-6 (-709)) (-15 -1351 ((-3 $ "failed") $)) (-15 -1667 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-466)) (PROGN (-6 (-466)) (-15 -1351 ((-3 $ "failed") $)) (-15 -1667 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1028)) (PROGN (-6 (-1028)) (-6 (-110 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-700 |#1|)) |%noBranch|) (IF (|has| |#1| (-544)) (-15 -3291 ((-627 $) $)) |%noBranch|) (IF (|has| |#1| (-879 (-1152))) (-6 (-879 (-1152))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-6 (-1242 |#1|)) (-15 -2407 ($ $ $)) (-15 -1951 ($ $))) |%noBranch|) (IF (|has| |#1| (-296)) (-15 -2620 ($ $ $)) |%noBranch|))) +((-1465 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3305 (((-1240) $ |#1| |#1|) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#2| $ |#1| |#2|) NIL)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3602 (((-3 |#2| "failed") |#1| $) NIL)) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2265 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-3 |#2| "failed") |#1| $) NIL)) (-4342 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) NIL)) (-3215 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 ((|#1| $) NIL (|has| |#1| (-830)))) (-3114 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2285 ((|#1| $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4367))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1296 (((-627 |#1|) $) NIL)) (-3619 (((-111) |#1| $) NIL)) (-4165 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3954 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3892 (((-627 |#1|) $) NIL)) (-2358 (((-111) |#1| $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-3340 ((|#2| $) NIL (|has| |#1| (-830)))) (-1503 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL)) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3028 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076)))) (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1477 (((-842) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842))) (|has| |#2| (-599 (-842)))))) (-2577 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-289 |#1| |#2|) (-13 (-1165 |#1| |#2|) (-10 -7 (-6 -4366))) (-1076) (-1076)) (T -289)) +NIL +(-13 (-1165 |#1| |#2|) (-10 -7 (-6 -4366))) +((-3722 (((-306) (-1134) (-627 (-1134))) 16) (((-306) (-1134) (-1134)) 15) (((-306) (-627 (-1134))) 14) (((-306) (-1134)) 12))) +(((-290) (-10 -7 (-15 -3722 ((-306) (-1134))) (-15 -3722 ((-306) (-627 (-1134)))) (-15 -3722 ((-306) (-1134) (-1134))) (-15 -3722 ((-306) (-1134) (-627 (-1134)))))) (T -290)) +((-3722 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-1134))) (-5 *3 (-1134)) (-5 *2 (-306)) (-5 *1 (-290)))) (-3722 (*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-306)) (-5 *1 (-290)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-306)) (-5 *1 (-290)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-306)) (-5 *1 (-290))))) +(-10 -7 (-15 -3722 ((-306) (-1134))) (-15 -3722 ((-306) (-627 (-1134)))) (-15 -3722 ((-306) (-1134) (-1134))) (-15 -3722 ((-306) (-1134) (-627 (-1134))))) +((-3516 ((|#2| (-1 |#2| |#1|) (-1134) (-598 |#1|)) 18))) +(((-291 |#1| |#2|) (-10 -7 (-15 -3516 (|#2| (-1 |#2| |#1|) (-1134) (-598 |#1|)))) (-296) (-1189)) (T -291)) +((-3516 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1134)) (-5 *5 (-598 *6)) (-4 *6 (-296)) (-4 *2 (-1189)) (-5 *1 (-291 *6 *2))))) +(-10 -7 (-15 -3516 (|#2| (-1 |#2| |#1|) (-1134) (-598 |#1|)))) +((-3516 ((|#2| (-1 |#2| |#1|) (-598 |#1|)) 17))) +(((-292 |#1| |#2|) (-10 -7 (-15 -3516 (|#2| (-1 |#2| |#1|) (-598 |#1|)))) (-296) (-296)) (T -292)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-598 *5)) (-4 *5 (-296)) (-4 *2 (-296)) (-5 *1 (-292 *5 *2))))) +(-10 -7 (-15 -3516 (|#2| (-1 |#2| |#1|) (-598 |#1|)))) +((-3805 (((-111) (-220)) 10))) +(((-293 |#1| |#2|) (-10 -7 (-15 -3805 ((-111) (-220)))) (-220) (-220)) (T -293)) +((-3805 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-111)) (-5 *1 (-293 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -3805 ((-111) (-220)))) +((-3213 (((-1132 (-220)) (-310 (-220)) (-627 (-1152)) (-1070 (-823 (-220)))) 93)) (-1870 (((-1132 (-220)) (-1235 (-310 (-220))) (-627 (-1152)) (-1070 (-823 (-220)))) 107) (((-1132 (-220)) (-310 (-220)) (-627 (-1152)) (-1070 (-823 (-220)))) 61)) (-2218 (((-627 (-1134)) (-1132 (-220))) NIL)) (-1444 (((-627 (-220)) (-310 (-220)) (-1152) (-1070 (-823 (-220)))) 58)) (-1579 (((-627 (-220)) (-931 (-401 (-552))) (-1152) (-1070 (-823 (-220)))) 49)) (-2445 (((-627 (-1134)) (-627 (-220))) NIL)) (-1798 (((-220) (-1070 (-823 (-220)))) 25)) (-1968 (((-220) (-1070 (-823 (-220)))) 26)) (-2848 (((-111) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 54)) (-2095 (((-1134) (-220)) NIL))) +(((-294) (-10 -7 (-15 -1798 ((-220) (-1070 (-823 (-220))))) (-15 -1968 ((-220) (-1070 (-823 (-220))))) (-15 -2848 ((-111) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1444 ((-627 (-220)) (-310 (-220)) (-1152) (-1070 (-823 (-220))))) (-15 -3213 ((-1132 (-220)) (-310 (-220)) (-627 (-1152)) (-1070 (-823 (-220))))) (-15 -1870 ((-1132 (-220)) (-310 (-220)) (-627 (-1152)) (-1070 (-823 (-220))))) (-15 -1870 ((-1132 (-220)) (-1235 (-310 (-220))) (-627 (-1152)) (-1070 (-823 (-220))))) (-15 -1579 ((-627 (-220)) (-931 (-401 (-552))) (-1152) (-1070 (-823 (-220))))) (-15 -2095 ((-1134) (-220))) (-15 -2445 ((-627 (-1134)) (-627 (-220)))) (-15 -2218 ((-627 (-1134)) (-1132 (-220)))))) (T -294)) +((-2218 (*1 *2 *3) (-12 (-5 *3 (-1132 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-294)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-627 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-294)))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1134)) (-5 *1 (-294)))) (-1579 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-931 (-401 (-552)))) (-5 *4 (-1152)) (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-627 (-220))) (-5 *1 (-294)))) (-1870 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1235 (-310 (-220)))) (-5 *4 (-627 (-1152))) (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-1132 (-220))) (-5 *1 (-294)))) (-1870 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-220))) (-5 *4 (-627 (-1152))) (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-1132 (-220))) (-5 *1 (-294)))) (-3213 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-220))) (-5 *4 (-627 (-1152))) (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-1132 (-220))) (-5 *1 (-294)))) (-1444 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-220))) (-5 *4 (-1152)) (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-627 (-220))) (-5 *1 (-294)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-111)) (-5 *1 (-294)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-294)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-294))))) +(-10 -7 (-15 -1798 ((-220) (-1070 (-823 (-220))))) (-15 -1968 ((-220) (-1070 (-823 (-220))))) (-15 -2848 ((-111) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1444 ((-627 (-220)) (-310 (-220)) (-1152) (-1070 (-823 (-220))))) (-15 -3213 ((-1132 (-220)) (-310 (-220)) (-627 (-1152)) (-1070 (-823 (-220))))) (-15 -1870 ((-1132 (-220)) (-310 (-220)) (-627 (-1152)) (-1070 (-823 (-220))))) (-15 -1870 ((-1132 (-220)) (-1235 (-310 (-220))) (-627 (-1152)) (-1070 (-823 (-220))))) (-15 -1579 ((-627 (-220)) (-931 (-401 (-552))) (-1152) (-1070 (-823 (-220))))) (-15 -2095 ((-1134) (-220))) (-15 -2445 ((-627 (-1134)) (-627 (-220)))) (-15 -2218 ((-627 (-1134)) (-1132 (-220))))) +((-3443 (((-627 (-598 $)) $) 30)) (-2620 (($ $ (-288 $)) 81) (($ $ (-627 (-288 $))) 123) (($ $ (-627 (-598 $)) (-627 $)) NIL)) (-4039 (((-3 (-598 $) "failed") $) 113)) (-1703 (((-598 $) $) 112)) (-3820 (($ $) 19) (($ (-627 $)) 56)) (-3795 (((-627 (-113)) $) 38)) (-4148 (((-113) (-113)) 91)) (-1394 (((-111) $) 131)) (-3516 (($ (-1 $ $) (-598 $)) 89)) (-3362 (((-3 (-598 $) "failed") $) 93)) (-2991 (($ (-113) $) 61) (($ (-113) (-627 $)) 100)) (-2070 (((-111) $ (-113)) 117) (((-111) $ (-1152)) 116)) (-3476 (((-754) $) 46)) (-4094 (((-111) $ $) 59) (((-111) $ (-1152)) 51)) (-1507 (((-111) $) 129)) (-3321 (($ $ (-598 $) $) NIL) (($ $ (-627 (-598 $)) (-627 $)) NIL) (($ $ (-627 (-288 $))) 121) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ $))) 84) (($ $ (-627 (-1152)) (-627 (-1 $ (-627 $)))) NIL) (($ $ (-1152) (-1 $ (-627 $))) 69) (($ $ (-1152) (-1 $ $)) 75) (($ $ (-627 (-113)) (-627 (-1 $ $))) 83) (($ $ (-627 (-113)) (-627 (-1 $ (-627 $)))) 85) (($ $ (-113) (-1 $ (-627 $))) 71) (($ $ (-113) (-1 $ $)) 77)) (-1985 (($ (-113) $) 62) (($ (-113) $ $) 63) (($ (-113) $ $ $) 64) (($ (-113) $ $ $ $) 65) (($ (-113) (-627 $)) 109)) (-2911 (($ $) 53) (($ $ $) 119)) (-3092 (($ $) 17) (($ (-627 $)) 55)) (-3749 (((-111) (-113)) 22))) +(((-295 |#1|) (-10 -8 (-15 -1394 ((-111) |#1|)) (-15 -1507 ((-111) |#1|)) (-15 -3321 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -3321 (|#1| |#1| (-113) (-1 |#1| (-627 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-113)) (-627 (-1 |#1| (-627 |#1|))))) (-15 -3321 (|#1| |#1| (-627 (-113)) (-627 (-1 |#1| |#1|)))) (-15 -3321 (|#1| |#1| (-1152) (-1 |#1| |#1|))) (-15 -3321 (|#1| |#1| (-1152) (-1 |#1| (-627 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-1 |#1| (-627 |#1|))))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-1 |#1| |#1|)))) (-15 -4094 ((-111) |#1| (-1152))) (-15 -4094 ((-111) |#1| |#1|)) (-15 -3516 (|#1| (-1 |#1| |#1|) (-598 |#1|))) (-15 -2991 (|#1| (-113) (-627 |#1|))) (-15 -2991 (|#1| (-113) |#1|)) (-15 -2070 ((-111) |#1| (-1152))) (-15 -2070 ((-111) |#1| (-113))) (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 -3795 ((-627 (-113)) |#1|)) (-15 -3443 ((-627 (-598 |#1|)) |#1|)) (-15 -3362 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -3476 ((-754) |#1|)) (-15 -2911 (|#1| |#1| |#1|)) (-15 -2911 (|#1| |#1|)) (-15 -3820 (|#1| (-627 |#1|))) (-15 -3820 (|#1| |#1|)) (-15 -3092 (|#1| (-627 |#1|))) (-15 -3092 (|#1| |#1|)) (-15 -2620 (|#1| |#1| (-627 (-598 |#1|)) (-627 |#1|))) (-15 -2620 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -2620 (|#1| |#1| (-288 |#1|))) (-15 -1985 (|#1| (-113) (-627 |#1|))) (-15 -1985 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1| |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1|)) (-15 -3321 (|#1| |#1| (-627 |#1|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| (-288 |#1|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-598 |#1|)) (-627 |#1|))) (-15 -3321 (|#1| |#1| (-598 |#1|) |#1|)) (-15 -1703 ((-598 |#1|) |#1|)) (-15 -4039 ((-3 (-598 |#1|) "failed") |#1|))) (-296)) (T -295)) +((-4148 (*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-295 *3)) (-4 *3 (-296)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-295 *4)) (-4 *4 (-296))))) +(-10 -8 (-15 -1394 ((-111) |#1|)) (-15 -1507 ((-111) |#1|)) (-15 -3321 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -3321 (|#1| |#1| (-113) (-1 |#1| (-627 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-113)) (-627 (-1 |#1| (-627 |#1|))))) (-15 -3321 (|#1| |#1| (-627 (-113)) (-627 (-1 |#1| |#1|)))) (-15 -3321 (|#1| |#1| (-1152) (-1 |#1| |#1|))) (-15 -3321 (|#1| |#1| (-1152) (-1 |#1| (-627 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-1 |#1| (-627 |#1|))))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-1 |#1| |#1|)))) (-15 -4094 ((-111) |#1| (-1152))) (-15 -4094 ((-111) |#1| |#1|)) (-15 -3516 (|#1| (-1 |#1| |#1|) (-598 |#1|))) (-15 -2991 (|#1| (-113) (-627 |#1|))) (-15 -2991 (|#1| (-113) |#1|)) (-15 -2070 ((-111) |#1| (-1152))) (-15 -2070 ((-111) |#1| (-113))) (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 -3795 ((-627 (-113)) |#1|)) (-15 -3443 ((-627 (-598 |#1|)) |#1|)) (-15 -3362 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -3476 ((-754) |#1|)) (-15 -2911 (|#1| |#1| |#1|)) (-15 -2911 (|#1| |#1|)) (-15 -3820 (|#1| (-627 |#1|))) (-15 -3820 (|#1| |#1|)) (-15 -3092 (|#1| (-627 |#1|))) (-15 -3092 (|#1| |#1|)) (-15 -2620 (|#1| |#1| (-627 (-598 |#1|)) (-627 |#1|))) (-15 -2620 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -2620 (|#1| |#1| (-288 |#1|))) (-15 -1985 (|#1| (-113) (-627 |#1|))) (-15 -1985 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1| |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1|)) (-15 -3321 (|#1| |#1| (-627 |#1|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| (-288 |#1|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-598 |#1|)) (-627 |#1|))) (-15 -3321 (|#1| |#1| (-598 |#1|) |#1|)) (-15 -1703 ((-598 |#1|) |#1|)) (-15 -4039 ((-3 (-598 |#1|) "failed") |#1|))) +((-1465 (((-111) $ $) 7)) (-3443 (((-627 (-598 $)) $) 44)) (-2620 (($ $ (-288 $)) 56) (($ $ (-627 (-288 $))) 55) (($ $ (-627 (-598 $)) (-627 $)) 54)) (-4039 (((-3 (-598 $) "failed") $) 69)) (-1703 (((-598 $) $) 68)) (-3820 (($ $) 51) (($ (-627 $)) 50)) (-3795 (((-627 (-113)) $) 43)) (-4148 (((-113) (-113)) 42)) (-1394 (((-111) $) 22 (|has| $ (-1017 (-552))))) (-2602 (((-1148 $) (-598 $)) 25 (|has| $ (-1028)))) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-3516 (($ (-1 $ $) (-598 $)) 36)) (-3362 (((-3 (-598 $) "failed") $) 46)) (-1595 (((-1134) $) 9)) (-1684 (((-627 (-598 $)) $) 45)) (-2991 (($ (-113) $) 38) (($ (-113) (-627 $)) 37)) (-2070 (((-111) $ (-113)) 40) (((-111) $ (-1152)) 39)) (-3476 (((-754) $) 47)) (-1498 (((-1096) $) 10)) (-4094 (((-111) $ $) 35) (((-111) $ (-1152)) 34)) (-1507 (((-111) $) 23 (|has| $ (-1017 (-552))))) (-3321 (($ $ (-598 $) $) 67) (($ $ (-627 (-598 $)) (-627 $)) 66) (($ $ (-627 (-288 $))) 65) (($ $ (-288 $)) 64) (($ $ $ $) 63) (($ $ (-627 $) (-627 $)) 62) (($ $ (-627 (-1152)) (-627 (-1 $ $))) 33) (($ $ (-627 (-1152)) (-627 (-1 $ (-627 $)))) 32) (($ $ (-1152) (-1 $ (-627 $))) 31) (($ $ (-1152) (-1 $ $)) 30) (($ $ (-627 (-113)) (-627 (-1 $ $))) 29) (($ $ (-627 (-113)) (-627 (-1 $ (-627 $)))) 28) (($ $ (-113) (-1 $ (-627 $))) 27) (($ $ (-113) (-1 $ $)) 26)) (-1985 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-627 $)) 57)) (-2911 (($ $) 49) (($ $ $) 48)) (-1376 (($ $) 24 (|has| $ (-1028)))) (-1477 (((-842) $) 11) (($ (-598 $)) 70)) (-3092 (($ $) 53) (($ (-627 $)) 52)) (-3749 (((-111) (-113)) 41)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18))) +(((-296) (-137)) (T -296)) +((-1985 (*1 *1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-1985 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-1985 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-1985 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-1985 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-627 *1)) (-4 *1 (-296)))) (-2620 (*1 *1 *1 *2) (-12 (-5 *2 (-288 *1)) (-4 *1 (-296)))) (-2620 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-288 *1))) (-4 *1 (-296)))) (-2620 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-598 *1))) (-5 *3 (-627 *1)) (-4 *1 (-296)))) (-3092 (*1 *1 *1) (-4 *1 (-296))) (-3092 (*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-296)))) (-3820 (*1 *1 *1) (-4 *1 (-296))) (-3820 (*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-296)))) (-2911 (*1 *1 *1) (-4 *1 (-296))) (-2911 (*1 *1 *1 *1) (-4 *1 (-296))) (-3476 (*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-754)))) (-3362 (*1 *2 *1) (|partial| -12 (-5 *2 (-598 *1)) (-4 *1 (-296)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-627 (-598 *1))) (-4 *1 (-296)))) (-3443 (*1 *2 *1) (-12 (-5 *2 (-627 (-598 *1))) (-4 *1 (-296)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-627 (-113))))) (-4148 (*1 *2 *2) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-3749 (*1 *2 *3) (-12 (-4 *1 (-296)) (-5 *3 (-113)) (-5 *2 (-111)))) (-2070 (*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-113)) (-5 *2 (-111)))) (-2070 (*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-1152)) (-5 *2 (-111)))) (-2991 (*1 *1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) (-2991 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-627 *1)) (-4 *1 (-296)))) (-3516 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-598 *1)) (-4 *1 (-296)))) (-4094 (*1 *2 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-111)))) (-4094 (*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-1152)) (-5 *2 (-111)))) (-3321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-627 (-1 *1 *1))) (-4 *1 (-296)))) (-3321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-627 (-1 *1 (-627 *1)))) (-4 *1 (-296)))) (-3321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1 *1 (-627 *1))) (-4 *1 (-296)))) (-3321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1 *1 *1)) (-4 *1 (-296)))) (-3321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-113))) (-5 *3 (-627 (-1 *1 *1))) (-4 *1 (-296)))) (-3321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-113))) (-5 *3 (-627 (-1 *1 (-627 *1)))) (-4 *1 (-296)))) (-3321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-627 *1))) (-4 *1 (-296)))) (-3321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-296)))) (-2602 (*1 *2 *3) (-12 (-5 *3 (-598 *1)) (-4 *1 (-1028)) (-4 *1 (-296)) (-5 *2 (-1148 *1)))) (-1376 (*1 *1 *1) (-12 (-4 *1 (-1028)) (-4 *1 (-296)))) (-1507 (*1 *2 *1) (-12 (-4 *1 (-1017 (-552))) (-4 *1 (-296)) (-5 *2 (-111)))) (-1394 (*1 *2 *1) (-12 (-4 *1 (-1017 (-552))) (-4 *1 (-296)) (-5 *2 (-111))))) +(-13 (-830) (-1017 (-598 $)) (-506 (-598 $) $) (-303 $) (-10 -8 (-15 -1985 ($ (-113) $)) (-15 -1985 ($ (-113) $ $)) (-15 -1985 ($ (-113) $ $ $)) (-15 -1985 ($ (-113) $ $ $ $)) (-15 -1985 ($ (-113) (-627 $))) (-15 -2620 ($ $ (-288 $))) (-15 -2620 ($ $ (-627 (-288 $)))) (-15 -2620 ($ $ (-627 (-598 $)) (-627 $))) (-15 -3092 ($ $)) (-15 -3092 ($ (-627 $))) (-15 -3820 ($ $)) (-15 -3820 ($ (-627 $))) (-15 -2911 ($ $)) (-15 -2911 ($ $ $)) (-15 -3476 ((-754) $)) (-15 -3362 ((-3 (-598 $) "failed") $)) (-15 -1684 ((-627 (-598 $)) $)) (-15 -3443 ((-627 (-598 $)) $)) (-15 -3795 ((-627 (-113)) $)) (-15 -4148 ((-113) (-113))) (-15 -3749 ((-111) (-113))) (-15 -2070 ((-111) $ (-113))) (-15 -2070 ((-111) $ (-1152))) (-15 -2991 ($ (-113) $)) (-15 -2991 ($ (-113) (-627 $))) (-15 -3516 ($ (-1 $ $) (-598 $))) (-15 -4094 ((-111) $ $)) (-15 -4094 ((-111) $ (-1152))) (-15 -3321 ($ $ (-627 (-1152)) (-627 (-1 $ $)))) (-15 -3321 ($ $ (-627 (-1152)) (-627 (-1 $ (-627 $))))) (-15 -3321 ($ $ (-1152) (-1 $ (-627 $)))) (-15 -3321 ($ $ (-1152) (-1 $ $))) (-15 -3321 ($ $ (-627 (-113)) (-627 (-1 $ $)))) (-15 -3321 ($ $ (-627 (-113)) (-627 (-1 $ (-627 $))))) (-15 -3321 ($ $ (-113) (-1 $ (-627 $)))) (-15 -3321 ($ $ (-113) (-1 $ $))) (IF (|has| $ (-1028)) (PROGN (-15 -2602 ((-1148 $) (-598 $))) (-15 -1376 ($ $))) |%noBranch|) (IF (|has| $ (-1017 (-552))) (PROGN (-15 -1507 ((-111) $)) (-15 -1394 ((-111) $))) |%noBranch|))) +(((-101) . T) ((-599 (-842)) . T) ((-303 $) . T) ((-506 (-598 $) $) . T) ((-506 $ $) . T) ((-830) . T) ((-1017 (-598 $)) . T) ((-1076) . T)) +((-4005 (((-627 |#1|) (-627 |#1|)) 10))) +(((-297 |#1|) (-10 -7 (-15 -4005 ((-627 |#1|) (-627 |#1|)))) (-828)) (T -297)) +((-4005 (*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-828)) (-5 *1 (-297 *3))))) +(-10 -7 (-15 -4005 ((-627 |#1|) (-627 |#1|)))) +((-3516 (((-671 |#2|) (-1 |#2| |#1|) (-671 |#1|)) 17))) +(((-298 |#1| |#2|) (-10 -7 (-15 -3516 ((-671 |#2|) (-1 |#2| |#1|) (-671 |#1|)))) (-1028) (-1028)) (T -298)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-671 *5)) (-4 *5 (-1028)) (-4 *6 (-1028)) (-5 *2 (-671 *6)) (-5 *1 (-298 *5 *6))))) +(-10 -7 (-15 -3516 ((-671 |#2|) (-1 |#2| |#1|) (-671 |#1|)))) +((-3454 (((-1235 (-310 (-373))) (-1235 (-310 (-220)))) 105)) (-2972 (((-1070 (-823 (-220))) (-1070 (-823 (-373)))) 40)) (-2218 (((-627 (-1134)) (-1132 (-220))) 87)) (-2294 (((-310 (-373)) (-931 (-220))) 50)) (-3816 (((-220) (-931 (-220))) 46)) (-4110 (((-1134) (-373)) 169)) (-1366 (((-823 (-220)) (-823 (-373))) 34)) (-2884 (((-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552))) (-1235 (-310 (-220)))) 143)) (-4206 (((-1014) (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014)))) 181) (((-1014) (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))))) 179)) (-2515 (((-671 (-220)) (-627 (-220)) (-754)) 14)) (-1803 (((-1235 (-681)) (-627 (-220))) 94)) (-2445 (((-627 (-1134)) (-627 (-220))) 75)) (-3425 (((-3 (-310 (-220)) "failed") (-310 (-220))) 120)) (-3805 (((-111) (-220) (-1070 (-823 (-220)))) 109)) (-3745 (((-1014) (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))) 198)) (-1798 (((-220) (-1070 (-823 (-220)))) 107)) (-1968 (((-220) (-1070 (-823 (-220)))) 108)) (-2263 (((-220) (-401 (-552))) 27)) (-3811 (((-1134) (-373)) 73)) (-3243 (((-220) (-373)) 17)) (-1457 (((-373) (-1235 (-310 (-220)))) 154)) (-1693 (((-310 (-220)) (-310 (-373))) 23)) (-4216 (((-401 (-552)) (-310 (-220))) 53)) (-1354 (((-310 (-401 (-552))) (-310 (-220))) 69)) (-3376 (((-310 (-373)) (-310 (-220))) 98)) (-1708 (((-220) (-310 (-220))) 54)) (-1413 (((-627 (-220)) (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) 64)) (-1730 (((-1070 (-823 (-220))) (-1070 (-823 (-220)))) 61)) (-2095 (((-1134) (-220)) 72)) (-2084 (((-681) (-220)) 90)) (-2699 (((-401 (-552)) (-220)) 55)) (-2379 (((-310 (-373)) (-220)) 49)) (-3562 (((-627 (-1070 (-823 (-220)))) (-627 (-1070 (-823 (-373))))) 43)) (-2668 (((-1014) (-627 (-1014))) 165) (((-1014) (-1014) (-1014)) 162)) (-2031 (((-1014) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) +(((-299) (-10 -7 (-15 -3243 ((-220) (-373))) (-15 -1693 ((-310 (-220)) (-310 (-373)))) (-15 -1366 ((-823 (-220)) (-823 (-373)))) (-15 -2972 ((-1070 (-823 (-220))) (-1070 (-823 (-373))))) (-15 -3562 ((-627 (-1070 (-823 (-220)))) (-627 (-1070 (-823 (-373)))))) (-15 -2699 ((-401 (-552)) (-220))) (-15 -4216 ((-401 (-552)) (-310 (-220)))) (-15 -1708 ((-220) (-310 (-220)))) (-15 -3425 ((-3 (-310 (-220)) "failed") (-310 (-220)))) (-15 -1457 ((-373) (-1235 (-310 (-220))))) (-15 -2884 ((-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552))) (-1235 (-310 (-220))))) (-15 -1354 ((-310 (-401 (-552))) (-310 (-220)))) (-15 -1730 ((-1070 (-823 (-220))) (-1070 (-823 (-220))))) (-15 -1413 ((-627 (-220)) (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))))) (-15 -2084 ((-681) (-220))) (-15 -1803 ((-1235 (-681)) (-627 (-220)))) (-15 -3376 ((-310 (-373)) (-310 (-220)))) (-15 -3454 ((-1235 (-310 (-373))) (-1235 (-310 (-220))))) (-15 -3805 ((-111) (-220) (-1070 (-823 (-220))))) (-15 -2095 ((-1134) (-220))) (-15 -3811 ((-1134) (-373))) (-15 -2445 ((-627 (-1134)) (-627 (-220)))) (-15 -2218 ((-627 (-1134)) (-1132 (-220)))) (-15 -1798 ((-220) (-1070 (-823 (-220))))) (-15 -1968 ((-220) (-1070 (-823 (-220))))) (-15 -2668 ((-1014) (-1014) (-1014))) (-15 -2668 ((-1014) (-627 (-1014)))) (-15 -4110 ((-1134) (-373))) (-15 -4206 ((-1014) (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))))) (-15 -4206 ((-1014) (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014))))) (-15 -2031 ((-1014) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3745 ((-1014) (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))) (-15 -2294 ((-310 (-373)) (-931 (-220)))) (-15 -3816 ((-220) (-931 (-220)))) (-15 -2379 ((-310 (-373)) (-220))) (-15 -2263 ((-220) (-401 (-552)))) (-15 -2515 ((-671 (-220)) (-627 (-220)) (-754))))) (T -299)) +((-2515 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-220))) (-5 *4 (-754)) (-5 *2 (-671 (-220))) (-5 *1 (-299)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-401 (-552))) (-5 *2 (-220)) (-5 *1 (-299)))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-310 (-373))) (-5 *1 (-299)))) (-3816 (*1 *2 *3) (-12 (-5 *3 (-931 (-220))) (-5 *2 (-220)) (-5 *1 (-299)))) (-2294 (*1 *2 *3) (-12 (-5 *3 (-931 (-220))) (-5 *2 (-310 (-373))) (-5 *1 (-299)))) (-3745 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))) (-5 *2 (-1014)) (-5 *1 (-299)))) (-2031 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1014)) (-5 *1 (-299)))) (-4206 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014)))) (-5 *2 (-1014)) (-5 *1 (-299)))) (-4206 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))))) (-5 *2 (-1014)) (-5 *1 (-299)))) (-4110 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1134)) (-5 *1 (-299)))) (-2668 (*1 *2 *3) (-12 (-5 *3 (-627 (-1014))) (-5 *2 (-1014)) (-5 *1 (-299)))) (-2668 (*1 *2 *2 *2) (-12 (-5 *2 (-1014)) (-5 *1 (-299)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-299)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-299)))) (-2218 (*1 *2 *3) (-12 (-5 *3 (-1132 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-299)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-627 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-299)))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1134)) (-5 *1 (-299)))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1134)) (-5 *1 (-299)))) (-3805 (*1 *2 *3 *4) (-12 (-5 *4 (-1070 (-823 (-220)))) (-5 *3 (-220)) (-5 *2 (-111)) (-5 *1 (-299)))) (-3454 (*1 *2 *3) (-12 (-5 *3 (-1235 (-310 (-220)))) (-5 *2 (-1235 (-310 (-373)))) (-5 *1 (-299)))) (-3376 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-310 (-373))) (-5 *1 (-299)))) (-1803 (*1 *2 *3) (-12 (-5 *3 (-627 (-220))) (-5 *2 (-1235 (-681))) (-5 *1 (-299)))) (-2084 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-681)) (-5 *1 (-299)))) (-1413 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-5 *2 (-627 (-220))) (-5 *1 (-299)))) (-1730 (*1 *2 *2) (-12 (-5 *2 (-1070 (-823 (-220)))) (-5 *1 (-299)))) (-1354 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-310 (-401 (-552)))) (-5 *1 (-299)))) (-2884 (*1 *2 *3) (-12 (-5 *3 (-1235 (-310 (-220)))) (-5 *2 (-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552)))) (-5 *1 (-299)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-1235 (-310 (-220)))) (-5 *2 (-373)) (-5 *1 (-299)))) (-3425 (*1 *2 *2) (|partial| -12 (-5 *2 (-310 (-220))) (-5 *1 (-299)))) (-1708 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-220)) (-5 *1 (-299)))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-401 (-552))) (-5 *1 (-299)))) (-2699 (*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-401 (-552))) (-5 *1 (-299)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-627 (-1070 (-823 (-373))))) (-5 *2 (-627 (-1070 (-823 (-220))))) (-5 *1 (-299)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-1070 (-823 (-373)))) (-5 *2 (-1070 (-823 (-220)))) (-5 *1 (-299)))) (-1366 (*1 *2 *3) (-12 (-5 *3 (-823 (-373))) (-5 *2 (-823 (-220))) (-5 *1 (-299)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-310 (-373))) (-5 *2 (-310 (-220))) (-5 *1 (-299)))) (-3243 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-220)) (-5 *1 (-299))))) +(-10 -7 (-15 -3243 ((-220) (-373))) (-15 -1693 ((-310 (-220)) (-310 (-373)))) (-15 -1366 ((-823 (-220)) (-823 (-373)))) (-15 -2972 ((-1070 (-823 (-220))) (-1070 (-823 (-373))))) (-15 -3562 ((-627 (-1070 (-823 (-220)))) (-627 (-1070 (-823 (-373)))))) (-15 -2699 ((-401 (-552)) (-220))) (-15 -4216 ((-401 (-552)) (-310 (-220)))) (-15 -1708 ((-220) (-310 (-220)))) (-15 -3425 ((-3 (-310 (-220)) "failed") (-310 (-220)))) (-15 -1457 ((-373) (-1235 (-310 (-220))))) (-15 -2884 ((-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552))) (-1235 (-310 (-220))))) (-15 -1354 ((-310 (-401 (-552))) (-310 (-220)))) (-15 -1730 ((-1070 (-823 (-220))) (-1070 (-823 (-220))))) (-15 -1413 ((-627 (-220)) (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))))) (-15 -2084 ((-681) (-220))) (-15 -1803 ((-1235 (-681)) (-627 (-220)))) (-15 -3376 ((-310 (-373)) (-310 (-220)))) (-15 -3454 ((-1235 (-310 (-373))) (-1235 (-310 (-220))))) (-15 -3805 ((-111) (-220) (-1070 (-823 (-220))))) (-15 -2095 ((-1134) (-220))) (-15 -3811 ((-1134) (-373))) (-15 -2445 ((-627 (-1134)) (-627 (-220)))) (-15 -2218 ((-627 (-1134)) (-1132 (-220)))) (-15 -1798 ((-220) (-1070 (-823 (-220))))) (-15 -1968 ((-220) (-1070 (-823 (-220))))) (-15 -2668 ((-1014) (-1014) (-1014))) (-15 -2668 ((-1014) (-627 (-1014)))) (-15 -4110 ((-1134) (-373))) (-15 -4206 ((-1014) (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))))) (-15 -4206 ((-1014) (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014))))) (-15 -2031 ((-1014) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3745 ((-1014) (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))) (-15 -2294 ((-310 (-373)) (-931 (-220)))) (-15 -3816 ((-220) (-931 (-220)))) (-15 -2379 ((-310 (-373)) (-220))) (-15 -2263 ((-220) (-401 (-552)))) (-15 -2515 ((-671 (-220)) (-627 (-220)) (-754)))) +((-4224 (((-111) $ $) 11)) (-2813 (($ $ $) 15)) (-2789 (($ $ $) 14)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 44)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 53)) (-1323 (($ $ $) 21) (($ (-627 $)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-2761 (((-3 $ "failed") $ $) 17)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 46))) +(((-300 |#1|) (-10 -8 (-15 -2556 ((-3 (-627 |#1|) "failed") (-627 |#1|) |#1|)) (-15 -3347 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3347 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2220 |#1|)) |#1| |#1|)) (-15 -2813 (|#1| |#1| |#1|)) (-15 -2789 (|#1| |#1| |#1|)) (-15 -4224 ((-111) |#1| |#1|)) (-15 -1491 ((-3 (-627 |#1|) "failed") (-627 |#1|) |#1|)) (-15 -3009 ((-2 (|:| -3069 (-627 |#1|)) (|:| -2220 |#1|)) (-627 |#1|))) (-15 -1323 (|#1| (-627 |#1|))) (-15 -1323 (|#1| |#1| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#1|))) (-301)) (T -300)) +NIL +(-10 -8 (-15 -2556 ((-3 (-627 |#1|) "failed") (-627 |#1|) |#1|)) (-15 -3347 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3347 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2220 |#1|)) |#1| |#1|)) (-15 -2813 (|#1| |#1| |#1|)) (-15 -2789 (|#1| |#1| |#1|)) (-15 -4224 ((-111) |#1| |#1|)) (-15 -1491 ((-3 (-627 |#1|) "failed") (-627 |#1|) |#1|)) (-15 -3009 ((-2 (|:| -3069 (-627 |#1|)) (|:| -2220 |#1|)) (-627 |#1|))) (-15 -1323 (|#1| (-627 |#1|))) (-15 -1323 (|#1| |#1| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-4224 (((-111) $ $) 57)) (-3887 (($) 17 T CONST)) (-2813 (($ $ $) 53)) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-2624 (((-111) $) 30)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-2718 (((-754) $) 56)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-301) (-137)) (T -301)) +((-4224 (*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-111)))) (-2718 (*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-754)))) (-3963 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-301)))) (-2789 (*1 *1 *1 *1) (-4 *1 (-301))) (-2813 (*1 *1 *1 *1) (-4 *1 (-301))) (-3347 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2220 *1))) (-4 *1 (-301)))) (-3347 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-301)))) (-2556 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-627 *1)) (-4 *1 (-301))))) +(-13 (-899) (-10 -8 (-15 -4224 ((-111) $ $)) (-15 -2718 ((-754) $)) (-15 -3963 ((-2 (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -2789 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -3347 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $)) (-15 -3347 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2556 ((-3 (-627 $) "failed") (-627 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-284) . T) ((-445) . T) ((-544) . T) ((-630 $) . T) ((-700 $) . T) ((-709) . T) ((-899) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-3321 (($ $ (-627 |#2|) (-627 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-288 |#2|)) 11) (($ $ (-627 (-288 |#2|))) NIL))) +(((-302 |#1| |#2|) (-10 -8 (-15 -3321 (|#1| |#1| (-627 (-288 |#2|)))) (-15 -3321 (|#1| |#1| (-288 |#2|))) (-15 -3321 (|#1| |#1| |#2| |#2|)) (-15 -3321 (|#1| |#1| (-627 |#2|) (-627 |#2|)))) (-303 |#2|) (-1076)) (T -302)) +NIL +(-10 -8 (-15 -3321 (|#1| |#1| (-627 (-288 |#2|)))) (-15 -3321 (|#1| |#1| (-288 |#2|))) (-15 -3321 (|#1| |#1| |#2| |#2|)) (-15 -3321 (|#1| |#1| (-627 |#2|) (-627 |#2|)))) +((-3321 (($ $ (-627 |#1|) (-627 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-288 |#1|)) 11) (($ $ (-627 (-288 |#1|))) 10))) +(((-303 |#1|) (-137) (-1076)) (T -303)) +((-3321 (*1 *1 *1 *2) (-12 (-5 *2 (-288 *3)) (-4 *1 (-303 *3)) (-4 *3 (-1076)))) (-3321 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-288 *3))) (-4 *1 (-303 *3)) (-4 *3 (-1076))))) +(-13 (-506 |t#1| |t#1|) (-10 -8 (-15 -3321 ($ $ (-288 |t#1|))) (-15 -3321 ($ $ (-627 (-288 |t#1|)))))) +(((-506 |#1| |#1|) . T)) +((-3321 ((|#1| (-1 |#1| (-552)) (-1154 (-401 (-552)))) 25))) +(((-304 |#1|) (-10 -7 (-15 -3321 (|#1| (-1 |#1| (-552)) (-1154 (-401 (-552)))))) (-38 (-401 (-552)))) (T -304)) +((-3321 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-552))) (-5 *4 (-1154 (-401 (-552)))) (-5 *1 (-304 *2)) (-4 *2 (-38 (-401 (-552))))))) +(-10 -7 (-15 -3321 (|#1| (-1 |#1| (-552)) (-1154 (-401 (-552)))))) +((-1465 (((-111) $ $) NIL)) (-2071 (((-552) $) 12)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2920 (((-1111) $) 9)) (-1477 (((-842) $) 21) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) +(((-305) (-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $)) (-15 -2071 ((-552) $))))) (T -305)) +((-2920 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-305)))) (-2071 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-305))))) +(-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $)) (-15 -2071 ((-552) $)))) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 7)) (-2292 (((-111) $ $) 9))) +(((-306) (-1076)) (T -306)) +NIL +(-1076) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 62)) (-3471 (((-1221 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-301)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-888)))) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-888)))) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-803)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-1221 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1152) "failed") $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1017 (-1152)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1017 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1017 (-552)))) (((-3 (-1220 |#2| |#3| |#4|) "failed") $) 25)) (-1703 (((-1221 |#1| |#2| |#3| |#4|) $) NIL) (((-1152) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1017 (-1152)))) (((-401 (-552)) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1017 (-552)))) (((-552) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1017 (-552)))) (((-1220 |#2| |#3| |#4|) $) NIL)) (-2813 (($ $ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-1221 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1235 (-1221 |#1| |#2| |#3| |#4|)))) (-671 $) (-1235 $)) NIL) (((-671 (-1221 |#1| |#2| |#3| |#4|)) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-537)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2983 (((-111) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-803)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-865 (-373))))) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL)) (-2918 (((-1221 |#1| |#2| |#3| |#4|) $) 21)) (-4317 (((-3 $ "failed") $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1127)))) (-1508 (((-111) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-803)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-830)))) (-4093 (($ $ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-830)))) (-3516 (($ (-1 (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|)) $) NIL)) (-1973 (((-3 (-823 |#2|) "failed") $) 78)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-301)))) (-2060 (((-1221 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-537)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-888)))) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3321 (($ $ (-627 (-1221 |#1| |#2| |#3| |#4|)) (-627 (-1221 |#1| |#2| |#3| |#4|))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-303 (-1221 |#1| |#2| |#3| |#4|)))) (($ $ (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-303 (-1221 |#1| |#2| |#3| |#4|)))) (($ $ (-288 (-1221 |#1| |#2| |#3| |#4|))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-303 (-1221 |#1| |#2| |#3| |#4|)))) (($ $ (-627 (-288 (-1221 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-303 (-1221 |#1| |#2| |#3| |#4|)))) (($ $ (-627 (-1152)) (-627 (-1221 |#1| |#2| |#3| |#4|))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-506 (-1152) (-1221 |#1| |#2| |#3| |#4|)))) (($ $ (-1152) (-1221 |#1| |#2| |#3| |#4|)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-506 (-1152) (-1221 |#1| |#2| |#3| |#4|))))) (-2718 (((-754) $) NIL)) (-1985 (($ $ (-1221 |#1| |#2| |#3| |#4|)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-280 (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-228))) (($ $ (-754)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-228))) (($ $ (-1152)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-879 (-1152)))) (($ $ (-1 (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|)) (-754)) NIL) (($ $ (-1 (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|))) NIL)) (-1583 (($ $) NIL)) (-2929 (((-1221 |#1| |#2| |#3| |#4|) $) 17)) (-3562 (((-871 (-552)) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-600 (-871 (-373))))) (((-528) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-600 (-528)))) (((-373) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1001))) (((-220) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1001)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| (-1221 |#1| |#2| |#3| |#4|) (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-1221 |#1| |#2| |#3| |#4|)) 29) (($ (-1152)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-1017 (-1152)))) (($ (-1220 |#2| |#3| |#4|)) 36)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| (-1221 |#1| |#2| |#3| |#4|) (-888))) (|has| (-1221 |#1| |#2| |#3| |#4|) (-142))))) (-3995 (((-754)) NIL)) (-3796 (((-1221 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-537)))) (-3778 (((-111) $ $) NIL)) (-3329 (($ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-803)))) (-1922 (($) 41 T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-228))) (($ $ (-754)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-228))) (($ $ (-1152)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-879 (-1152)))) (($ $ (-1 (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|)) (-754)) NIL) (($ $ (-1 (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|))) NIL)) (-2351 (((-111) $ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-830)))) (-2316 (((-111) $ $) NIL (|has| (-1221 |#1| |#2| |#3| |#4|) (-830)))) (-2407 (($ $ $) 34) (($ (-1221 |#1| |#2| |#3| |#4|) (-1221 |#1| |#2| |#3| |#4|)) 31)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ (-1221 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1221 |#1| |#2| |#3| |#4|)) NIL))) +(((-307 |#1| |#2| |#3| |#4|) (-13 (-971 (-1221 |#1| |#2| |#3| |#4|)) (-1017 (-1220 |#2| |#3| |#4|)) (-10 -8 (-15 -1973 ((-3 (-823 |#2|) "failed") $)) (-15 -1477 ($ (-1220 |#2| |#3| |#4|))))) (-13 (-830) (-1017 (-552)) (-623 (-552)) (-445)) (-13 (-27) (-1174) (-424 |#1|)) (-1152) |#2|) (T -307)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1220 *4 *5 *6)) (-4 *4 (-13 (-27) (-1174) (-424 *3))) (-14 *5 (-1152)) (-14 *6 *4) (-4 *3 (-13 (-830) (-1017 (-552)) (-623 (-552)) (-445))) (-5 *1 (-307 *3 *4 *5 *6)))) (-1973 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-830) (-1017 (-552)) (-623 (-552)) (-445))) (-5 *2 (-823 *4)) (-5 *1 (-307 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1174) (-424 *3))) (-14 *5 (-1152)) (-14 *6 *4)))) +(-13 (-971 (-1221 |#1| |#2| |#3| |#4|)) (-1017 (-1220 |#2| |#3| |#4|)) (-10 -8 (-15 -1973 ((-3 (-823 |#2|) "failed") $)) (-15 -1477 ($ (-1220 |#2| |#3| |#4|))))) +((-3516 (((-310 |#2|) (-1 |#2| |#1|) (-310 |#1|)) 13))) +(((-308 |#1| |#2|) (-10 -7 (-15 -3516 ((-310 |#2|) (-1 |#2| |#1|) (-310 |#1|)))) (-830) (-830)) (T -308)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-310 *5)) (-4 *5 (-830)) (-4 *6 (-830)) (-5 *2 (-310 *6)) (-5 *1 (-308 *5 *6))))) +(-10 -7 (-15 -3516 ((-310 |#2|) (-1 |#2| |#1|) (-310 |#1|)))) +((-1909 (((-52) |#2| (-288 |#2|) (-754)) 33) (((-52) |#2| (-288 |#2|)) 24) (((-52) |#2| (-754)) 28) (((-52) |#2|) 25) (((-52) (-1152)) 21)) (-1777 (((-52) |#2| (-288 |#2|) (-401 (-552))) 51) (((-52) |#2| (-288 |#2|)) 48) (((-52) |#2| (-401 (-552))) 50) (((-52) |#2|) 49) (((-52) (-1152)) 47)) (-1930 (((-52) |#2| (-288 |#2|) (-401 (-552))) 46) (((-52) |#2| (-288 |#2|)) 43) (((-52) |#2| (-401 (-552))) 45) (((-52) |#2|) 44) (((-52) (-1152)) 42)) (-1920 (((-52) |#2| (-288 |#2|) (-552)) 39) (((-52) |#2| (-288 |#2|)) 35) (((-52) |#2| (-552)) 38) (((-52) |#2|) 36) (((-52) (-1152)) 34))) +(((-309 |#1| |#2|) (-10 -7 (-15 -1909 ((-52) (-1152))) (-15 -1909 ((-52) |#2|)) (-15 -1909 ((-52) |#2| (-754))) (-15 -1909 ((-52) |#2| (-288 |#2|))) (-15 -1909 ((-52) |#2| (-288 |#2|) (-754))) (-15 -1920 ((-52) (-1152))) (-15 -1920 ((-52) |#2|)) (-15 -1920 ((-52) |#2| (-552))) (-15 -1920 ((-52) |#2| (-288 |#2|))) (-15 -1920 ((-52) |#2| (-288 |#2|) (-552))) (-15 -1930 ((-52) (-1152))) (-15 -1930 ((-52) |#2|)) (-15 -1930 ((-52) |#2| (-401 (-552)))) (-15 -1930 ((-52) |#2| (-288 |#2|))) (-15 -1930 ((-52) |#2| (-288 |#2|) (-401 (-552)))) (-15 -1777 ((-52) (-1152))) (-15 -1777 ((-52) |#2|)) (-15 -1777 ((-52) |#2| (-401 (-552)))) (-15 -1777 ((-52) |#2| (-288 |#2|))) (-15 -1777 ((-52) |#2| (-288 |#2|) (-401 (-552))))) (-13 (-445) (-830) (-1017 (-552)) (-623 (-552))) (-13 (-27) (-1174) (-424 |#1|))) (T -309)) +((-1777 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-401 (-552))) (-4 *3 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *4 (-401 (-552))) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))))) (-1777 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *4))))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1174) (-424 *4))))) (-1930 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-401 (-552))) (-4 *3 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) (-1930 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) (-1930 (*1 *2 *3 *4) (-12 (-5 *4 (-401 (-552))) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))))) (-1930 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *4))))) (-1930 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1174) (-424 *4))))) (-1920 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-445) (-830) (-1017 *5) (-623 *5))) (-5 *5 (-552)) (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) (-1920 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) (-1920 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-4 *5 (-13 (-445) (-830) (-1017 *4) (-623 *4))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))))) (-1920 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *4))))) (-1920 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1174) (-424 *4))))) (-1909 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-754)) (-4 *3 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) (-1909 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) (-1909 (*1 *2 *3 *4) (-12 (-5 *4 (-754)) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))))) (-1909 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *4))))) (-1909 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1174) (-424 *4)))))) +(-10 -7 (-15 -1909 ((-52) (-1152))) (-15 -1909 ((-52) |#2|)) (-15 -1909 ((-52) |#2| (-754))) (-15 -1909 ((-52) |#2| (-288 |#2|))) (-15 -1909 ((-52) |#2| (-288 |#2|) (-754))) (-15 -1920 ((-52) (-1152))) (-15 -1920 ((-52) |#2|)) (-15 -1920 ((-52) |#2| (-552))) (-15 -1920 ((-52) |#2| (-288 |#2|))) (-15 -1920 ((-52) |#2| (-288 |#2|) (-552))) (-15 -1930 ((-52) (-1152))) (-15 -1930 ((-52) |#2|)) (-15 -1930 ((-52) |#2| (-401 (-552)))) (-15 -1930 ((-52) |#2| (-288 |#2|))) (-15 -1930 ((-52) |#2| (-288 |#2|) (-401 (-552)))) (-15 -1777 ((-52) (-1152))) (-15 -1777 ((-52) |#2|)) (-15 -1777 ((-52) |#2| (-401 (-552)))) (-15 -1777 ((-52) |#2| (-288 |#2|))) (-15 -1777 ((-52) |#2| (-288 |#2|) (-401 (-552))))) +((-1465 (((-111) $ $) NIL)) (-3213 (((-627 $) $ (-1152)) NIL (|has| |#1| (-544))) (((-627 $) $) NIL (|has| |#1| (-544))) (((-627 $) (-1148 $) (-1152)) NIL (|has| |#1| (-544))) (((-627 $) (-1148 $)) NIL (|has| |#1| (-544))) (((-627 $) (-931 $)) NIL (|has| |#1| (-544)))) (-2682 (($ $ (-1152)) NIL (|has| |#1| (-544))) (($ $) NIL (|has| |#1| (-544))) (($ (-1148 $) (-1152)) NIL (|has| |#1| (-544))) (($ (-1148 $)) NIL (|has| |#1| (-544))) (($ (-931 $)) NIL (|has| |#1| (-544)))) (-3024 (((-111) $) 27 (-1559 (|has| |#1| (-25)) (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028)))))) (-1853 (((-627 (-1152)) $) 351)) (-1694 (((-401 (-1148 $)) $ (-598 $)) NIL (|has| |#1| (-544)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-3443 (((-627 (-598 $)) $) NIL)) (-1607 (($ $) 161 (|has| |#1| (-544)))) (-1467 (($ $) 137 (|has| |#1| (-544)))) (-3523 (($ $ (-1068 $)) 222 (|has| |#1| (-544))) (($ $ (-1152)) 218 (|has| |#1| (-544)))) (-4136 (((-3 $ "failed") $ $) NIL (-1559 (|has| |#1| (-21)) (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028)))))) (-2620 (($ $ (-288 $)) NIL) (($ $ (-627 (-288 $))) 368) (($ $ (-627 (-598 $)) (-627 $)) 412)) (-2246 (((-412 (-1148 $)) (-1148 $)) 295 (-12 (|has| |#1| (-445)) (|has| |#1| (-544))))) (-4014 (($ $) NIL (|has| |#1| (-544)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-544)))) (-1737 (($ $) NIL (|has| |#1| (-544)))) (-4224 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1584 (($ $) 157 (|has| |#1| (-544)))) (-1445 (($ $) 133 (|has| |#1| (-544)))) (-3929 (($ $ (-552)) 72 (|has| |#1| (-544)))) (-1628 (($ $) 165 (|has| |#1| (-544)))) (-1492 (($ $) 141 (|has| |#1| (-544)))) (-3887 (($) NIL (-1559 (|has| |#1| (-25)) (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))) (|has| |#1| (-1088))) CONST)) (-1304 (((-627 $) $ (-1152)) NIL (|has| |#1| (-544))) (((-627 $) $) NIL (|has| |#1| (-544))) (((-627 $) (-1148 $) (-1152)) NIL (|has| |#1| (-544))) (((-627 $) (-1148 $)) NIL (|has| |#1| (-544))) (((-627 $) (-931 $)) NIL (|has| |#1| (-544)))) (-3348 (($ $ (-1152)) NIL (|has| |#1| (-544))) (($ $) NIL (|has| |#1| (-544))) (($ (-1148 $) (-1152)) 124 (|has| |#1| (-544))) (($ (-1148 $)) NIL (|has| |#1| (-544))) (($ (-931 $)) NIL (|has| |#1| (-544)))) (-4039 (((-3 (-598 $) "failed") $) 17) (((-3 (-1152) "failed") $) NIL) (((-3 |#1| "failed") $) 421) (((-3 (-48) "failed") $) 323 (-12 (|has| |#1| (-544)) (|has| |#1| (-1017 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-931 |#1|)) "failed") $) NIL (|has| |#1| (-544))) (((-3 (-931 |#1|) "failed") $) NIL (|has| |#1| (-1028))) (((-3 (-401 (-552)) "failed") $) 46 (-1559 (-12 (|has| |#1| (-544)) (|has| |#1| (-1017 (-552)))) (|has| |#1| (-1017 (-401 (-552))))))) (-1703 (((-598 $) $) 11) (((-1152) $) NIL) ((|#1| $) 403) (((-48) $) NIL (-12 (|has| |#1| (-544)) (|has| |#1| (-1017 (-552))))) (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-931 |#1|)) $) NIL (|has| |#1| (-544))) (((-931 |#1|) $) NIL (|has| |#1| (-1028))) (((-401 (-552)) $) 306 (-1559 (-12 (|has| |#1| (-544)) (|has| |#1| (-1017 (-552)))) (|has| |#1| (-1017 (-401 (-552))))))) (-2813 (($ $ $) NIL (|has| |#1| (-544)))) (-1800 (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 117 (|has| |#1| (-1028))) (((-671 |#1|) (-671 $)) 107 (|has| |#1| (-1028))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028)))) (((-671 (-552)) (-671 $)) NIL (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))))) (-2091 (($ $) 89 (|has| |#1| (-544)))) (-2040 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))) (|has| |#1| (-1088))))) (-2789 (($ $ $) NIL (|has| |#1| (-544)))) (-2735 (($ $ (-1068 $)) 226 (|has| |#1| (-544))) (($ $ (-1152)) 224 (|has| |#1| (-544)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-544)))) (-1633 (((-111) $) NIL (|has| |#1| (-544)))) (-3958 (($ $ $) 192 (|has| |#1| (-544)))) (-2951 (($) 127 (|has| |#1| (-544)))) (-1868 (($ $ $) 212 (|has| |#1| (-544)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 374 (|has| |#1| (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 381 (|has| |#1| (-865 (-373))))) (-3820 (($ $) NIL) (($ (-627 $)) NIL)) (-3795 (((-627 (-113)) $) NIL)) (-4148 (((-113) (-113)) 267)) (-2624 (((-111) $) 25 (-1559 (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))) (|has| |#1| (-1088))))) (-1394 (((-111) $) NIL (|has| $ (-1017 (-552))))) (-3798 (($ $) 71 (|has| |#1| (-1028)))) (-2918 (((-1101 |#1| (-598 $)) $) 84 (|has| |#1| (-1028)))) (-2388 (((-111) $) 64 (|has| |#1| (-544)))) (-1352 (($ $ (-552)) NIL (|has| |#1| (-544)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-544)))) (-2602 (((-1148 $) (-598 $)) 268 (|has| $ (-1028)))) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3516 (($ (-1 $ $) (-598 $)) 408)) (-3362 (((-3 (-598 $) "failed") $) NIL)) (-4135 (($ $) 131 (|has| |#1| (-544)))) (-2059 (($ $) 237 (|has| |#1| (-544)))) (-1276 (($ (-627 $)) NIL (|has| |#1| (-544))) (($ $ $) NIL (|has| |#1| (-544)))) (-1595 (((-1134) $) NIL)) (-1684 (((-627 (-598 $)) $) 49)) (-2991 (($ (-113) $) NIL) (($ (-113) (-627 $)) 413)) (-4035 (((-3 (-627 $) "failed") $) NIL (|has| |#1| (-1088)))) (-1382 (((-3 (-2 (|:| |val| $) (|:| -4067 (-552))) "failed") $) NIL (|has| |#1| (-1028)))) (-2746 (((-3 (-627 $) "failed") $) 416 (|has| |#1| (-25)))) (-2545 (((-3 (-2 (|:| -3069 (-552)) (|:| |var| (-598 $))) "failed") $) 420 (|has| |#1| (-25)))) (-3815 (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $) NIL (|has| |#1| (-1088))) (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $ (-113)) NIL (|has| |#1| (-1028))) (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $ (-1152)) NIL (|has| |#1| (-1028)))) (-2070 (((-111) $ (-113)) NIL) (((-111) $ (-1152)) 53)) (-1951 (($ $) NIL (-1559 (|has| |#1| (-466)) (|has| |#1| (-544))))) (-3096 (($ $ (-1152)) 241 (|has| |#1| (-544))) (($ $ (-1068 $)) 243 (|has| |#1| (-544)))) (-3476 (((-754) $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) 43)) (-1970 ((|#1| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 288 (|has| |#1| (-544)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-544))) (($ $ $) NIL (|has| |#1| (-544)))) (-4094 (((-111) $ $) NIL) (((-111) $ (-1152)) NIL)) (-3434 (($ $ (-1152)) 216 (|has| |#1| (-544))) (($ $) 214 (|has| |#1| (-544)))) (-2610 (($ $) 208 (|has| |#1| (-544)))) (-3644 (((-412 (-1148 $)) (-1148 $)) 293 (-12 (|has| |#1| (-445)) (|has| |#1| (-544))))) (-1727 (((-412 $) $) NIL (|has| |#1| (-544)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-544))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-544)))) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-544)))) (-3154 (($ $) 129 (|has| |#1| (-544)))) (-1507 (((-111) $) NIL (|has| $ (-1017 (-552))))) (-3321 (($ $ (-598 $) $) NIL) (($ $ (-627 (-598 $)) (-627 $)) 407) (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ $))) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ (-627 $)))) NIL) (($ $ (-1152) (-1 $ (-627 $))) NIL) (($ $ (-1152) (-1 $ $)) NIL) (($ $ (-627 (-113)) (-627 (-1 $ $))) 361) (($ $ (-627 (-113)) (-627 (-1 $ (-627 $)))) NIL) (($ $ (-113) (-1 $ (-627 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1152)) NIL (|has| |#1| (-600 (-528)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-600 (-528)))) (($ $) NIL (|has| |#1| (-600 (-528)))) (($ $ (-113) $ (-1152)) 349 (|has| |#1| (-600 (-528)))) (($ $ (-627 (-113)) (-627 $) (-1152)) 348 (|has| |#1| (-600 (-528)))) (($ $ (-627 (-1152)) (-627 (-754)) (-627 (-1 $ $))) NIL (|has| |#1| (-1028))) (($ $ (-627 (-1152)) (-627 (-754)) (-627 (-1 $ (-627 $)))) NIL (|has| |#1| (-1028))) (($ $ (-1152) (-754) (-1 $ (-627 $))) NIL (|has| |#1| (-1028))) (($ $ (-1152) (-754) (-1 $ $)) NIL (|has| |#1| (-1028)))) (-2718 (((-754) $) NIL (|has| |#1| (-544)))) (-1398 (($ $) 229 (|has| |#1| (-544)))) (-1985 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-627 $)) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-544)))) (-2911 (($ $) NIL) (($ $ $) NIL)) (-1430 (($ $) 239 (|has| |#1| (-544)))) (-3709 (($ $) 190 (|has| |#1| (-544)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-1028))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-1028))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-1028))) (($ $ (-1152)) NIL (|has| |#1| (-1028)))) (-1583 (($ $) 73 (|has| |#1| (-544)))) (-2929 (((-1101 |#1| (-598 $)) $) 86 (|has| |#1| (-544)))) (-1376 (($ $) 304 (|has| $ (-1028)))) (-1640 (($ $) 167 (|has| |#1| (-544)))) (-1502 (($ $) 143 (|has| |#1| (-544)))) (-1615 (($ $) 163 (|has| |#1| (-544)))) (-1479 (($ $) 139 (|has| |#1| (-544)))) (-1596 (($ $) 159 (|has| |#1| (-544)))) (-1456 (($ $) 135 (|has| |#1| (-544)))) (-3562 (((-871 (-552)) $) NIL (|has| |#1| (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| |#1| (-600 (-871 (-373))))) (($ (-412 $)) NIL (|has| |#1| (-544))) (((-528) $) 346 (|has| |#1| (-600 (-528))))) (-2616 (($ $ $) NIL (|has| |#1| (-466)))) (-2493 (($ $ $) NIL (|has| |#1| (-466)))) (-1477 (((-842) $) 406) (($ (-598 $)) 397) (($ (-1152)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-544))) (($ (-48)) 299 (-12 (|has| |#1| (-544)) (|has| |#1| (-1017 (-552))))) (($ (-1101 |#1| (-598 $))) 88 (|has| |#1| (-1028))) (($ (-401 |#1|)) NIL (|has| |#1| (-544))) (($ (-931 (-401 |#1|))) NIL (|has| |#1| (-544))) (($ (-401 (-931 (-401 |#1|)))) NIL (|has| |#1| (-544))) (($ (-401 (-931 |#1|))) NIL (|has| |#1| (-544))) (($ (-931 |#1|)) NIL (|has| |#1| (-1028))) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-544)) (|has| |#1| (-1017 (-401 (-552)))))) (($ (-552)) 34 (-1559 (|has| |#1| (-1017 (-552))) (|has| |#1| (-1028))))) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL (|has| |#1| (-1028)))) (-3092 (($ $) NIL) (($ (-627 $)) NIL)) (-3697 (($ $ $) 210 (|has| |#1| (-544)))) (-2804 (($ $ $) 196 (|has| |#1| (-544)))) (-3396 (($ $ $) 200 (|has| |#1| (-544)))) (-3075 (($ $ $) 194 (|has| |#1| (-544)))) (-1512 (($ $ $) 198 (|has| |#1| (-544)))) (-3749 (((-111) (-113)) 9)) (-1673 (($ $) 173 (|has| |#1| (-544)))) (-1534 (($ $) 149 (|has| |#1| (-544)))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) 169 (|has| |#1| (-544)))) (-1513 (($ $) 145 (|has| |#1| (-544)))) (-1697 (($ $) 177 (|has| |#1| (-544)))) (-1561 (($ $) 153 (|has| |#1| (-544)))) (-1729 (($ (-1152) $) NIL) (($ (-1152) $ $) NIL) (($ (-1152) $ $ $) NIL) (($ (-1152) $ $ $ $) NIL) (($ (-1152) (-627 $)) NIL)) (-3794 (($ $) 204 (|has| |#1| (-544)))) (-2039 (($ $) 202 (|has| |#1| (-544)))) (-3519 (($ $) 179 (|has| |#1| (-544)))) (-1575 (($ $) 155 (|has| |#1| (-544)))) (-1686 (($ $) 175 (|has| |#1| (-544)))) (-1547 (($ $) 151 (|has| |#1| (-544)))) (-1661 (($ $) 171 (|has| |#1| (-544)))) (-1524 (($ $) 147 (|has| |#1| (-544)))) (-3329 (($ $) 182 (|has| |#1| (-544)))) (-1922 (($) 20 (-1559 (|has| |#1| (-25)) (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028)))) CONST)) (-3903 (($ $) 233 (|has| |#1| (-544)))) (-1933 (($) 22 (-1559 (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))) (|has| |#1| (-1088))) CONST)) (-1393 (($ $) 184 (|has| |#1| (-544))) (($ $ $) 186 (|has| |#1| (-544)))) (-2499 (($ $) 231 (|has| |#1| (-544)))) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-1028))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-1028))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-1028))) (($ $ (-1152)) NIL (|has| |#1| (-1028)))) (-4173 (($ $) 235 (|has| |#1| (-544)))) (-1974 (($ $ $) 188 (|has| |#1| (-544)))) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 81)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 80)) (-2407 (($ (-1101 |#1| (-598 $)) (-1101 |#1| (-598 $))) 98 (|has| |#1| (-544))) (($ $ $) 42 (-1559 (|has| |#1| (-466)) (|has| |#1| (-544))))) (-2396 (($ $ $) 40 (-1559 (|has| |#1| (-21)) (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))))) (($ $) 29 (-1559 (|has| |#1| (-21)) (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028)))))) (-2384 (($ $ $) 38 (-1559 (|has| |#1| (-25)) (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028)))))) (** (($ $ $) 66 (|has| |#1| (-544))) (($ $ (-401 (-552))) 301 (|has| |#1| (-544))) (($ $ (-552)) 76 (-1559 (|has| |#1| (-466)) (|has| |#1| (-544)))) (($ $ (-754)) 74 (-1559 (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))) (|has| |#1| (-1088)))) (($ $ (-900)) 78 (-1559 (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))) (|has| |#1| (-1088))))) (* (($ (-401 (-552)) $) NIL (|has| |#1| (-544))) (($ $ (-401 (-552))) NIL (|has| |#1| (-544))) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))) (($ $ $) 36 (-1559 (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))) (|has| |#1| (-1088)))) (($ (-552) $) 32 (-1559 (|has| |#1| (-21)) (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))))) (($ (-754) $) NIL (-1559 (|has| |#1| (-25)) (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))))) (($ (-900) $) NIL (-1559 (|has| |#1| (-25)) (-12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))))))) +(((-310 |#1|) (-13 (-424 |#1|) (-10 -8 (IF (|has| |#1| (-544)) (PROGN (-6 (-29 |#1|)) (-6 (-1174)) (-6 (-157)) (-6 (-613)) (-6 (-1115)) (-15 -2091 ($ $)) (-15 -2388 ((-111) $)) (-15 -3929 ($ $ (-552))) (IF (|has| |#1| (-445)) (PROGN (-15 -3644 ((-412 (-1148 $)) (-1148 $))) (-15 -2246 ((-412 (-1148 $)) (-1148 $)))) |%noBranch|) (IF (|has| |#1| (-1017 (-552))) (-6 (-1017 (-48))) |%noBranch|)) |%noBranch|))) (-830)) (T -310)) +((-2091 (*1 *1 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-544)) (-4 *2 (-830)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-310 *3)) (-4 *3 (-544)) (-4 *3 (-830)))) (-3929 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-310 *3)) (-4 *3 (-544)) (-4 *3 (-830)))) (-3644 (*1 *2 *3) (-12 (-5 *2 (-412 (-1148 *1))) (-5 *1 (-310 *4)) (-5 *3 (-1148 *1)) (-4 *4 (-445)) (-4 *4 (-544)) (-4 *4 (-830)))) (-2246 (*1 *2 *3) (-12 (-5 *2 (-412 (-1148 *1))) (-5 *1 (-310 *4)) (-5 *3 (-1148 *1)) (-4 *4 (-445)) (-4 *4 (-544)) (-4 *4 (-830))))) +(-13 (-424 |#1|) (-10 -8 (IF (|has| |#1| (-544)) (PROGN (-6 (-29 |#1|)) (-6 (-1174)) (-6 (-157)) (-6 (-613)) (-6 (-1115)) (-15 -2091 ($ $)) (-15 -2388 ((-111) $)) (-15 -3929 ($ $ (-552))) (IF (|has| |#1| (-445)) (PROGN (-15 -3644 ((-412 (-1148 $)) (-1148 $))) (-15 -2246 ((-412 (-1148 $)) (-1148 $)))) |%noBranch|) (IF (|has| |#1| (-1017 (-552))) (-6 (-1017 (-48))) |%noBranch|)) |%noBranch|))) +((-1915 (((-52) |#2| (-113) (-288 |#2|) (-627 |#2|)) 88) (((-52) |#2| (-113) (-288 |#2|) (-288 |#2|)) 84) (((-52) |#2| (-113) (-288 |#2|) |#2|) 86) (((-52) (-288 |#2|) (-113) (-288 |#2|) |#2|) 87) (((-52) (-627 |#2|) (-627 (-113)) (-288 |#2|) (-627 (-288 |#2|))) 80) (((-52) (-627 |#2|) (-627 (-113)) (-288 |#2|) (-627 |#2|)) 82) (((-52) (-627 (-288 |#2|)) (-627 (-113)) (-288 |#2|) (-627 |#2|)) 83) (((-52) (-627 (-288 |#2|)) (-627 (-113)) (-288 |#2|) (-627 (-288 |#2|))) 81) (((-52) (-288 |#2|) (-113) (-288 |#2|) (-627 |#2|)) 89) (((-52) (-288 |#2|) (-113) (-288 |#2|) (-288 |#2|)) 85))) +(((-311 |#1| |#2|) (-10 -7 (-15 -1915 ((-52) (-288 |#2|) (-113) (-288 |#2|) (-288 |#2|))) (-15 -1915 ((-52) (-288 |#2|) (-113) (-288 |#2|) (-627 |#2|))) (-15 -1915 ((-52) (-627 (-288 |#2|)) (-627 (-113)) (-288 |#2|) (-627 (-288 |#2|)))) (-15 -1915 ((-52) (-627 (-288 |#2|)) (-627 (-113)) (-288 |#2|) (-627 |#2|))) (-15 -1915 ((-52) (-627 |#2|) (-627 (-113)) (-288 |#2|) (-627 |#2|))) (-15 -1915 ((-52) (-627 |#2|) (-627 (-113)) (-288 |#2|) (-627 (-288 |#2|)))) (-15 -1915 ((-52) (-288 |#2|) (-113) (-288 |#2|) |#2|)) (-15 -1915 ((-52) |#2| (-113) (-288 |#2|) |#2|)) (-15 -1915 ((-52) |#2| (-113) (-288 |#2|) (-288 |#2|))) (-15 -1915 ((-52) |#2| (-113) (-288 |#2|) (-627 |#2|)))) (-13 (-830) (-544) (-600 (-528))) (-424 |#1|)) (T -311)) +((-1915 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-5 *6 (-627 *3)) (-4 *3 (-424 *7)) (-4 *7 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *7 *3)))) (-1915 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-424 *6)) (-4 *6 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *3)))) (-1915 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-424 *6)) (-4 *6 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *3)))) (-1915 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-288 *5)) (-5 *4 (-113)) (-4 *5 (-424 *6)) (-4 *6 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *5)))) (-1915 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 (-113))) (-5 *6 (-627 (-288 *8))) (-4 *8 (-424 *7)) (-5 *5 (-288 *8)) (-4 *7 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *7 *8)))) (-1915 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-627 *7)) (-5 *4 (-627 (-113))) (-5 *5 (-288 *7)) (-4 *7 (-424 *6)) (-4 *6 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) (-1915 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-627 (-288 *8))) (-5 *4 (-627 (-113))) (-5 *5 (-288 *8)) (-5 *6 (-627 *8)) (-4 *8 (-424 *7)) (-4 *7 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *7 *8)))) (-1915 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-627 (-288 *7))) (-5 *4 (-627 (-113))) (-5 *5 (-288 *7)) (-4 *7 (-424 *6)) (-4 *6 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) (-1915 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-627 *7)) (-4 *7 (-424 *6)) (-4 *6 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) (-1915 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-288 *6)) (-5 *4 (-113)) (-4 *6 (-424 *5)) (-4 *5 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) (-5 *1 (-311 *5 *6))))) +(-10 -7 (-15 -1915 ((-52) (-288 |#2|) (-113) (-288 |#2|) (-288 |#2|))) (-15 -1915 ((-52) (-288 |#2|) (-113) (-288 |#2|) (-627 |#2|))) (-15 -1915 ((-52) (-627 (-288 |#2|)) (-627 (-113)) (-288 |#2|) (-627 (-288 |#2|)))) (-15 -1915 ((-52) (-627 (-288 |#2|)) (-627 (-113)) (-288 |#2|) (-627 |#2|))) (-15 -1915 ((-52) (-627 |#2|) (-627 (-113)) (-288 |#2|) (-627 |#2|))) (-15 -1915 ((-52) (-627 |#2|) (-627 (-113)) (-288 |#2|) (-627 (-288 |#2|)))) (-15 -1915 ((-52) (-288 |#2|) (-113) (-288 |#2|) |#2|)) (-15 -1915 ((-52) |#2| (-113) (-288 |#2|) |#2|)) (-15 -1915 ((-52) |#2| (-113) (-288 |#2|) (-288 |#2|))) (-15 -1915 ((-52) |#2| (-113) (-288 |#2|) (-627 |#2|)))) +((-3959 (((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-220) (-552) (-1134)) 46) (((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-220) (-552)) 47) (((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-1 (-220) (-220)) (-552) (-1134)) 43) (((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-1 (-220) (-220)) (-552)) 44)) (-4210 (((-1 (-220) (-220)) (-220)) 45))) +(((-312) (-10 -7 (-15 -4210 ((-1 (-220) (-220)) (-220))) (-15 -3959 ((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-1 (-220) (-220)) (-552))) (-15 -3959 ((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-1 (-220) (-220)) (-552) (-1134))) (-15 -3959 ((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-220) (-552))) (-15 -3959 ((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-220) (-552) (-1134))))) (T -312)) +((-3959 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) (-5 *5 (-1070 (-220))) (-5 *6 (-220)) (-5 *7 (-552)) (-5 *8 (-1134)) (-5 *2 (-1184 (-905))) (-5 *1 (-312)))) (-3959 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) (-5 *5 (-1070 (-220))) (-5 *6 (-220)) (-5 *7 (-552)) (-5 *2 (-1184 (-905))) (-5 *1 (-312)))) (-3959 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) (-5 *5 (-1070 (-220))) (-5 *6 (-552)) (-5 *7 (-1134)) (-5 *2 (-1184 (-905))) (-5 *1 (-312)))) (-3959 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) (-5 *5 (-1070 (-220))) (-5 *6 (-552)) (-5 *2 (-1184 (-905))) (-5 *1 (-312)))) (-4210 (*1 *2 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-312)) (-5 *3 (-220))))) +(-10 -7 (-15 -4210 ((-1 (-220) (-220)) (-220))) (-15 -3959 ((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-1 (-220) (-220)) (-552))) (-15 -3959 ((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-1 (-220) (-220)) (-552) (-1134))) (-15 -3959 ((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-220) (-552))) (-15 -3959 ((-1184 (-905)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-220) (-552) (-1134)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 25)) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4019 (($ $ (-401 (-552))) NIL) (($ $ (-401 (-552)) (-401 (-552))) NIL)) (-4245 (((-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|))) $) 20)) (-1607 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL (|has| |#1| (-357)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1584 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-754) (-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|)))) NIL)) (-1628 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) 32)) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1633 (((-111) $) NIL (|has| |#1| (-357)))) (-2391 (((-111) $) NIL)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-401 (-552)) $) NIL) (((-401 (-552)) $ (-401 (-552))) 16)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3322 (($ $ (-900)) NIL) (($ $ (-401 (-552))) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-401 (-552))) NIL) (($ $ (-1058) (-401 (-552))) NIL) (($ $ (-627 (-1058)) (-627 (-401 (-552)))) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| |#1| (-357)))) (-2747 (($ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-938)) (|has| |#1| (-1174)))))) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4168 (($ $ (-401 (-552))) NIL)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-2463 (((-401 (-552)) $) 17)) (-2210 (($ (-1220 |#1| |#2| |#3|)) 11)) (-4067 (((-1220 |#1| |#2| |#3|) $) 12)) (-3154 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))))) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ (-401 (-552))) NIL) (($ $ $) NIL (|has| (-401 (-552)) (-1088)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-3567 (((-401 (-552)) $) NIL)) (-1640 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) 10)) (-1477 (((-842) $) 38) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-1889 ((|#1| $ (-401 (-552))) 30)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-3174 ((|#1| $) NIL)) (-1673 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-401 (-552))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 27)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 33)) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-313 |#1| |#2| |#3|) (-13 (-1216 |#1|) (-775) (-10 -8 (-15 -2210 ($ (-1220 |#1| |#2| |#3|))) (-15 -4067 ((-1220 |#1| |#2| |#3|) $)) (-15 -2463 ((-401 (-552)) $)))) (-13 (-357) (-830)) (-1152) |#1|) (T -313)) +((-2210 (*1 *1 *2) (-12 (-5 *2 (-1220 *3 *4 *5)) (-4 *3 (-13 (-357) (-830))) (-14 *4 (-1152)) (-14 *5 *3) (-5 *1 (-313 *3 *4 *5)))) (-4067 (*1 *2 *1) (-12 (-5 *2 (-1220 *3 *4 *5)) (-5 *1 (-313 *3 *4 *5)) (-4 *3 (-13 (-357) (-830))) (-14 *4 (-1152)) (-14 *5 *3))) (-2463 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-313 *3 *4 *5)) (-4 *3 (-13 (-357) (-830))) (-14 *4 (-1152)) (-14 *5 *3)))) +(-13 (-1216 |#1|) (-775) (-10 -8 (-15 -2210 ($ (-1220 |#1| |#2| |#3|))) (-15 -4067 ((-1220 |#1| |#2| |#3|) $)) (-15 -2463 ((-401 (-552)) $)))) +((-1352 (((-2 (|:| -4067 (-754)) (|:| -3069 |#1|) (|:| |radicand| (-627 |#1|))) (-412 |#1|) (-754)) 24)) (-4135 (((-627 (-2 (|:| -3069 (-754)) (|:| |logand| |#1|))) (-412 |#1|)) 28))) +(((-314 |#1|) (-10 -7 (-15 -1352 ((-2 (|:| -4067 (-754)) (|:| -3069 |#1|) (|:| |radicand| (-627 |#1|))) (-412 |#1|) (-754))) (-15 -4135 ((-627 (-2 (|:| -3069 (-754)) (|:| |logand| |#1|))) (-412 |#1|)))) (-544)) (T -314)) +((-4135 (*1 *2 *3) (-12 (-5 *3 (-412 *4)) (-4 *4 (-544)) (-5 *2 (-627 (-2 (|:| -3069 (-754)) (|:| |logand| *4)))) (-5 *1 (-314 *4)))) (-1352 (*1 *2 *3 *4) (-12 (-5 *3 (-412 *5)) (-4 *5 (-544)) (-5 *2 (-2 (|:| -4067 (-754)) (|:| -3069 *5) (|:| |radicand| (-627 *5)))) (-5 *1 (-314 *5)) (-5 *4 (-754))))) +(-10 -7 (-15 -1352 ((-2 (|:| -4067 (-754)) (|:| -3069 |#1|) (|:| |radicand| (-627 |#1|))) (-412 |#1|) (-754))) (-15 -4135 ((-627 (-2 (|:| -3069 (-754)) (|:| |logand| |#1|))) (-412 |#1|)))) +((-1853 (((-627 |#2|) (-1148 |#4|)) 43)) (-1538 ((|#3| (-552)) 46)) (-1404 (((-1148 |#4|) (-1148 |#3|)) 30)) (-2945 (((-1148 |#4|) (-1148 |#4|) (-552)) 56)) (-1752 (((-1148 |#3|) (-1148 |#4|)) 21)) (-3567 (((-627 (-754)) (-1148 |#4|) (-627 |#2|)) 40)) (-3289 (((-1148 |#3|) (-1148 |#4|) (-627 |#2|) (-627 |#3|)) 35))) +(((-315 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3289 ((-1148 |#3|) (-1148 |#4|) (-627 |#2|) (-627 |#3|))) (-15 -3567 ((-627 (-754)) (-1148 |#4|) (-627 |#2|))) (-15 -1853 ((-627 |#2|) (-1148 |#4|))) (-15 -1752 ((-1148 |#3|) (-1148 |#4|))) (-15 -1404 ((-1148 |#4|) (-1148 |#3|))) (-15 -2945 ((-1148 |#4|) (-1148 |#4|) (-552))) (-15 -1538 (|#3| (-552)))) (-776) (-830) (-1028) (-928 |#3| |#1| |#2|)) (T -315)) +((-1538 (*1 *2 *3) (-12 (-5 *3 (-552)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1028)) (-5 *1 (-315 *4 *5 *2 *6)) (-4 *6 (-928 *2 *4 *5)))) (-2945 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 *7)) (-5 *3 (-552)) (-4 *7 (-928 *6 *4 *5)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) (-5 *1 (-315 *4 *5 *6 *7)))) (-1404 (*1 *2 *3) (-12 (-5 *3 (-1148 *6)) (-4 *6 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-1148 *7)) (-5 *1 (-315 *4 *5 *6 *7)) (-4 *7 (-928 *6 *4 *5)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-1148 *7)) (-4 *7 (-928 *6 *4 *5)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) (-5 *2 (-1148 *6)) (-5 *1 (-315 *4 *5 *6 *7)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-1148 *7)) (-4 *7 (-928 *6 *4 *5)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) (-5 *2 (-627 *5)) (-5 *1 (-315 *4 *5 *6 *7)))) (-3567 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 *8)) (-5 *4 (-627 *6)) (-4 *6 (-830)) (-4 *8 (-928 *7 *5 *6)) (-4 *5 (-776)) (-4 *7 (-1028)) (-5 *2 (-627 (-754))) (-5 *1 (-315 *5 *6 *7 *8)))) (-3289 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1148 *9)) (-5 *4 (-627 *7)) (-5 *5 (-627 *8)) (-4 *7 (-830)) (-4 *8 (-1028)) (-4 *9 (-928 *8 *6 *7)) (-4 *6 (-776)) (-5 *2 (-1148 *8)) (-5 *1 (-315 *6 *7 *8 *9))))) +(-10 -7 (-15 -3289 ((-1148 |#3|) (-1148 |#4|) (-627 |#2|) (-627 |#3|))) (-15 -3567 ((-627 (-754)) (-1148 |#4|) (-627 |#2|))) (-15 -1853 ((-627 |#2|) (-1148 |#4|))) (-15 -1752 ((-1148 |#3|) (-1148 |#4|))) (-15 -1404 ((-1148 |#4|) (-1148 |#3|))) (-15 -2945 ((-1148 |#4|) (-1148 |#4|) (-552))) (-15 -1538 (|#3| (-552)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 14)) (-4245 (((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-552)))) $) 18)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3307 (((-754) $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-2792 ((|#1| $ (-552)) NIL)) (-3547 (((-552) $ (-552)) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-2356 (($ (-1 |#1| |#1|) $) NIL)) (-1820 (($ (-1 (-552) (-552)) $) 10)) (-1595 (((-1134) $) NIL)) (-3217 (($ $ $) NIL (|has| (-552) (-775)))) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL) (($ |#1|) NIL)) (-1889 (((-552) |#1| $) NIL)) (-1922 (($) 15 T CONST)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) 21 (|has| |#1| (-830)))) (-2396 (($ $) 11) (($ $ $) 20)) (-2384 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ (-552)) NIL) (($ (-552) |#1|) 19))) +(((-316 |#1|) (-13 (-21) (-700 (-552)) (-317 |#1| (-552)) (-10 -7 (IF (|has| |#1| (-830)) (-6 (-830)) |%noBranch|))) (-1076)) (T -316)) +NIL +(-13 (-21) (-700 (-552)) (-317 |#1| (-552)) (-10 -7 (IF (|has| |#1| (-830)) (-6 (-830)) |%noBranch|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4245 (((-627 (-2 (|:| |gen| |#1|) (|:| -3154 |#2|))) $) 27)) (-4136 (((-3 $ "failed") $ $) 19)) (-3307 (((-754) $) 28)) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#1| "failed") $) 32)) (-1703 ((|#1| $) 31)) (-2792 ((|#1| $ (-552)) 25)) (-3547 ((|#2| $ (-552)) 26)) (-2356 (($ (-1 |#1| |#1|) $) 22)) (-1820 (($ (-1 |#2| |#2|) $) 23)) (-1595 (((-1134) $) 9)) (-3217 (($ $ $) 21 (|has| |#2| (-775)))) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ |#1|) 33)) (-1889 ((|#2| |#1| $) 24)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2384 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ |#2| |#1|) 29))) +(((-317 |#1| |#2|) (-137) (-1076) (-129)) (T -317)) +((-2384 (*1 *1 *2 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-129)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-129)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-129)) (-5 *2 (-754)))) (-4245 (*1 *2 *1) (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-129)) (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 *4)))))) (-3547 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-317 *4 *2)) (-4 *4 (-1076)) (-4 *2 (-129)))) (-2792 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-317 *2 *4)) (-4 *4 (-129)) (-4 *2 (-1076)))) (-1889 (*1 *2 *3 *1) (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-129)))) (-1820 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-129)))) (-2356 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-129)))) (-3217 (*1 *1 *1 *1) (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-129)) (-4 *3 (-775))))) +(-13 (-129) (-1017 |t#1|) (-10 -8 (-15 -2384 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3307 ((-754) $)) (-15 -4245 ((-627 (-2 (|:| |gen| |t#1|) (|:| -3154 |t#2|))) $)) (-15 -3547 (|t#2| $ (-552))) (-15 -2792 (|t#1| $ (-552))) (-15 -1889 (|t#2| |t#1| $)) (-15 -1820 ($ (-1 |t#2| |t#2|) $)) (-15 -2356 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-775)) (-15 -3217 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-1017 |#1|) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4245 (((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-754)))) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3307 (((-754) $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-2792 ((|#1| $ (-552)) NIL)) (-3547 (((-754) $ (-552)) NIL)) (-2356 (($ (-1 |#1| |#1|) $) NIL)) (-1820 (($ (-1 (-754) (-754)) $) NIL)) (-1595 (((-1134) $) NIL)) (-3217 (($ $ $) NIL (|has| (-754) (-775)))) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL) (($ |#1|) NIL)) (-1889 (((-754) |#1| $) NIL)) (-1922 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2384 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-754) |#1|) NIL))) +(((-318 |#1|) (-317 |#1| (-754)) (-1076)) (T -318)) +NIL +(-317 |#1| (-754)) +((-1375 (($ $) 53)) (-2061 (($ $ |#2| |#3| $) 14)) (-3813 (($ (-1 |#3| |#3|) $) 33)) (-1960 (((-111) $) 24)) (-1970 ((|#2| $) 26)) (-2761 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-3495 ((|#2| $) 49)) (-1493 (((-627 |#2|) $) 36)) (-3417 (($ $ $ (-754)) 20)) (-2407 (($ $ |#2|) 40))) +(((-319 |#1| |#2| |#3|) (-10 -8 (-15 -1375 (|#1| |#1|)) (-15 -3495 (|#2| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3417 (|#1| |#1| |#1| (-754))) (-15 -2061 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3813 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1493 ((-627 |#2|) |#1|)) (-15 -1970 (|#2| |#1|)) (-15 -1960 ((-111) |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2407 (|#1| |#1| |#2|))) (-320 |#2| |#3|) (-1028) (-775)) (T -319)) +NIL +(-10 -8 (-15 -1375 (|#1| |#1|)) (-15 -3495 (|#2| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3417 (|#1| |#1| |#1| (-754))) (-15 -2061 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3813 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1493 ((-627 |#2|) |#1|)) (-15 -1970 (|#2| |#1|)) (-15 -1960 ((-111) |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2407 (|#1| |#1| |#2|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3245 (($ $) 50 (|has| |#1| (-544)))) (-4058 (((-111) $) 52 (|has| |#1| (-544)))) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-4039 (((-3 (-552) "failed") $) 88 (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) 86 (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 85)) (-1703 (((-552) $) 89 (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) 87 (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) 84)) (-2014 (($ $) 58)) (-2040 (((-3 $ "failed") $) 32)) (-1375 (($ $) 73 (|has| |#1| (-445)))) (-2061 (($ $ |#1| |#2| $) 77)) (-2624 (((-111) $) 30)) (-3522 (((-754) $) 80)) (-3267 (((-111) $) 60)) (-1832 (($ |#1| |#2|) 59)) (-3465 ((|#2| $) 79)) (-3813 (($ (-1 |#2| |#2|) $) 78)) (-3516 (($ (-1 |#1| |#1|) $) 61)) (-1981 (($ $) 63)) (-1993 ((|#1| $) 64)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1960 (((-111) $) 83)) (-1970 ((|#1| $) 82)) (-2761 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-544)))) (-3567 ((|#2| $) 62)) (-3495 ((|#1| $) 74 (|has| |#1| (-445)))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45) (($ (-401 (-552))) 55 (-1559 (|has| |#1| (-1017 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552))))))) (-1493 (((-627 |#1|) $) 81)) (-1889 ((|#1| $ |#2|) 57)) (-3050 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3417 (($ $ $ (-754)) 76 (|has| |#1| (-169)))) (-3778 (((-111) $ $) 51 (|has| |#1| (-544)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 56 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) +(((-320 |#1| |#2|) (-137) (-1028) (-775)) (T -320)) +((-1960 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) (-5 *2 (-111)))) (-1970 (*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)))) (-1493 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) (-5 *2 (-627 *3)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) (-5 *2 (-754)))) (-3465 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) (-3813 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)))) (-2061 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)))) (-3417 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) (-4 *3 (-169)))) (-2761 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)) (-4 *2 (-544)))) (-3495 (*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)) (-4 *2 (-445)))) (-1375 (*1 *1 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)) (-4 *2 (-445))))) +(-13 (-47 |t#1| |t#2|) (-405 |t#1|) (-10 -8 (-15 -1960 ((-111) $)) (-15 -1970 (|t#1| $)) (-15 -1493 ((-627 |t#1|) $)) (-15 -3522 ((-754) $)) (-15 -3465 (|t#2| $)) (-15 -3813 ($ (-1 |t#2| |t#2|) $)) (-15 -2061 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-169)) (-15 -3417 ($ $ $ (-754))) |%noBranch|) (IF (|has| |t#1| (-544)) (-15 -2761 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-445)) (PROGN (-15 -3495 (|t#1| $)) (-15 -1375 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-284) |has| |#1| (-544)) ((-405 |#1|) . T) ((-544) |has| |#1| (-544)) ((-630 #0#) |has| |#1| (-38 (-401 (-552)))) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #0#) |has| |#1| (-38 (-401 (-552)))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) |has| |#1| (-544)) ((-709) . T) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T) ((-1034 #0#) |has| |#1| (-38 (-401 (-552)))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-3083 (((-111) (-111)) NIL)) (-2950 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367)))) (-4289 (($ (-1 (-111) |#1|) $) NIL)) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-2820 (($ $) NIL (|has| |#1| (-1076)))) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2265 (($ |#1| $) NIL (|has| |#1| (-1076))) (($ (-1 (-111) |#1|) $) NIL)) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) NIL)) (-2967 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076)))) (-2729 (($ $ (-552)) NIL)) (-1387 (((-754) $) NIL)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-2655 (($ (-754) |#1|) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-1438 (($ $ $) NIL (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-3954 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3252 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3181 (($ (-627 |#1|)) NIL)) (-3340 ((|#1| $) NIL (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-3010 (($ $ (-1202 (-552))) NIL) (($ $ (-552)) NIL)) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) NIL)) (-3151 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2668 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-627 $)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-321 |#1|) (-13 (-19 |#1|) (-276 |#1|) (-10 -8 (-15 -3181 ($ (-627 |#1|))) (-15 -1387 ((-754) $)) (-15 -2729 ($ $ (-552))) (-15 -3083 ((-111) (-111))))) (-1189)) (T -321)) +((-3181 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-321 *3)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-321 *3)) (-4 *3 (-1189)))) (-2729 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-321 *3)) (-4 *3 (-1189)))) (-3083 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-321 *3)) (-4 *3 (-1189))))) +(-13 (-19 |#1|) (-276 |#1|) (-10 -8 (-15 -3181 ($ (-627 |#1|))) (-15 -1387 ((-754) $)) (-15 -2729 ($ $ (-552))) (-15 -3083 ((-111) (-111))))) +((-1991 (((-111) $) 42)) (-4010 (((-754)) 22)) (-3385 ((|#2| $) 46) (($ $ (-900)) 101)) (-3307 (((-754)) 102)) (-2342 (($ (-1235 |#2|)) 20)) (-2492 (((-111) $) 115)) (-2349 ((|#2| $) 48) (($ $ (-900)) 99)) (-4205 (((-1148 |#2|) $) NIL) (((-1148 $) $ (-900)) 95)) (-1980 (((-1148 |#2|) $) 82)) (-2259 (((-1148 |#2|) $) 79) (((-3 (-1148 |#2|) "failed") $ $) 76)) (-3520 (($ $ (-1148 |#2|)) 53)) (-3804 (((-816 (-900))) 28) (((-900)) 43)) (-2405 (((-132)) 25)) (-3567 (((-816 (-900)) $) 30) (((-900) $) 117)) (-3231 (($) 108)) (-3133 (((-1235 |#2|) $) NIL) (((-671 |#2|) (-1235 $)) 39)) (-3050 (($ $) NIL) (((-3 $ "failed") $) 85)) (-3528 (((-111) $) 41))) +(((-322 |#1| |#2|) (-10 -8 (-15 -3050 ((-3 |#1| "failed") |#1|)) (-15 -3307 ((-754))) (-15 -3050 (|#1| |#1|)) (-15 -2259 ((-3 (-1148 |#2|) "failed") |#1| |#1|)) (-15 -2259 ((-1148 |#2|) |#1|)) (-15 -1980 ((-1148 |#2|) |#1|)) (-15 -3520 (|#1| |#1| (-1148 |#2|))) (-15 -2492 ((-111) |#1|)) (-15 -3231 (|#1|)) (-15 -3385 (|#1| |#1| (-900))) (-15 -2349 (|#1| |#1| (-900))) (-15 -4205 ((-1148 |#1|) |#1| (-900))) (-15 -3385 (|#2| |#1|)) (-15 -2349 (|#2| |#1|)) (-15 -3567 ((-900) |#1|)) (-15 -3804 ((-900))) (-15 -4205 ((-1148 |#2|) |#1|)) (-15 -2342 (|#1| (-1235 |#2|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1|)) (-15 -4010 ((-754))) (-15 -3804 ((-816 (-900)))) (-15 -3567 ((-816 (-900)) |#1|)) (-15 -1991 ((-111) |#1|)) (-15 -3528 ((-111) |#1|)) (-15 -2405 ((-132)))) (-323 |#2|) (-357)) (T -322)) +((-2405 (*1 *2) (-12 (-4 *4 (-357)) (-5 *2 (-132)) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4)))) (-3804 (*1 *2) (-12 (-4 *4 (-357)) (-5 *2 (-816 (-900))) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4)))) (-4010 (*1 *2) (-12 (-4 *4 (-357)) (-5 *2 (-754)) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4)))) (-3804 (*1 *2) (-12 (-4 *4 (-357)) (-5 *2 (-900)) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4)))) (-3307 (*1 *2) (-12 (-4 *4 (-357)) (-5 *2 (-754)) (-5 *1 (-322 *3 *4)) (-4 *3 (-323 *4))))) +(-10 -8 (-15 -3050 ((-3 |#1| "failed") |#1|)) (-15 -3307 ((-754))) (-15 -3050 (|#1| |#1|)) (-15 -2259 ((-3 (-1148 |#2|) "failed") |#1| |#1|)) (-15 -2259 ((-1148 |#2|) |#1|)) (-15 -1980 ((-1148 |#2|) |#1|)) (-15 -3520 (|#1| |#1| (-1148 |#2|))) (-15 -2492 ((-111) |#1|)) (-15 -3231 (|#1|)) (-15 -3385 (|#1| |#1| (-900))) (-15 -2349 (|#1| |#1| (-900))) (-15 -4205 ((-1148 |#1|) |#1| (-900))) (-15 -3385 (|#2| |#1|)) (-15 -2349 (|#2| |#1|)) (-15 -3567 ((-900) |#1|)) (-15 -3804 ((-900))) (-15 -4205 ((-1148 |#2|) |#1|)) (-15 -2342 (|#1| (-1235 |#2|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1|)) (-15 -4010 ((-754))) (-15 -3804 ((-816 (-900)))) (-15 -3567 ((-816 (-900)) |#1|)) (-15 -1991 ((-111) |#1|)) (-15 -3528 ((-111) |#1|)) (-15 -2405 ((-132)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-1991 (((-111) $) 91)) (-4010 (((-754)) 87)) (-3385 ((|#1| $) 137) (($ $ (-900)) 134 (|has| |#1| (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) 119 (|has| |#1| (-362)))) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 70)) (-2487 (((-412 $) $) 69)) (-4224 (((-111) $ $) 57)) (-3307 (((-754)) 109 (|has| |#1| (-362)))) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#1| "failed") $) 98)) (-1703 ((|#1| $) 97)) (-2342 (($ (-1235 |#1|)) 143)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-362)))) (-2813 (($ $ $) 53)) (-2040 (((-3 $ "failed") $) 32)) (-1279 (($) 106 (|has| |#1| (-362)))) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-2740 (($) 121 (|has| |#1| (-362)))) (-1415 (((-111) $) 122 (|has| |#1| (-362)))) (-4294 (($ $ (-754)) 84 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) 83 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1633 (((-111) $) 68)) (-2641 (((-900) $) 124 (|has| |#1| (-362))) (((-816 (-900)) $) 81 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2624 (((-111) $) 30)) (-2611 (($) 132 (|has| |#1| (-362)))) (-2492 (((-111) $) 131 (|has| |#1| (-362)))) (-2349 ((|#1| $) 138) (($ $ (-900)) 135 (|has| |#1| (-362)))) (-4317 (((-3 $ "failed") $) 110 (|has| |#1| (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-4205 (((-1148 |#1|) $) 142) (((-1148 $) $ (-900)) 136 (|has| |#1| (-362)))) (-2886 (((-900) $) 107 (|has| |#1| (-362)))) (-1980 (((-1148 |#1|) $) 128 (|has| |#1| (-362)))) (-2259 (((-1148 |#1|) $) 127 (|has| |#1| (-362))) (((-3 (-1148 |#1|) "failed") $ $) 126 (|has| |#1| (-362)))) (-3520 (($ $ (-1148 |#1|)) 129 (|has| |#1| (-362)))) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 67)) (-3002 (($) 111 (|has| |#1| (-362)) CONST)) (-4153 (($ (-900)) 108 (|has| |#1| (-362)))) (-2249 (((-111) $) 90)) (-1498 (((-1096) $) 10)) (-2220 (($) 130 (|has| |#1| (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) 118 (|has| |#1| (-362)))) (-1727 (((-412 $) $) 71)) (-3804 (((-816 (-900))) 88) (((-900)) 140)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-2718 (((-754) $) 56)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-4018 (((-754) $) 123 (|has| |#1| (-362))) (((-3 (-754) "failed") $ $) 82 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2405 (((-132)) 96)) (-2942 (($ $) 115 (|has| |#1| (-362))) (($ $ (-754)) 113 (|has| |#1| (-362)))) (-3567 (((-816 (-900)) $) 89) (((-900) $) 139)) (-1376 (((-1148 |#1|)) 141)) (-3439 (($) 120 (|has| |#1| (-362)))) (-3231 (($) 133 (|has| |#1| (-362)))) (-3133 (((-1235 |#1|) $) 145) (((-671 |#1|) (-1235 $)) 144)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 117 (|has| |#1| (-362)))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63) (($ |#1|) 99)) (-3050 (($ $) 116 (|has| |#1| (-362))) (((-3 $ "failed") $) 80 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3995 (((-754)) 28)) (-2957 (((-1235 $)) 147) (((-1235 $) (-900)) 146)) (-3778 (((-111) $ $) 37)) (-3528 (((-111) $) 92)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-3406 (($ $) 86 (|has| |#1| (-362))) (($ $ (-754)) 85 (|has| |#1| (-362)))) (-4251 (($ $) 114 (|has| |#1| (-362))) (($ $ (-754)) 112 (|has| |#1| (-362)))) (-2292 (((-111) $ $) 6)) (-2407 (($ $ $) 62) (($ $ |#1|) 95)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 66)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) +(((-323 |#1|) (-137) (-357)) (T -323)) +((-2957 (*1 *2) (-12 (-4 *3 (-357)) (-5 *2 (-1235 *1)) (-4 *1 (-323 *3)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-900)) (-4 *4 (-357)) (-5 *2 (-1235 *1)) (-4 *1 (-323 *4)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1235 *3)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-323 *4)) (-4 *4 (-357)) (-5 *2 (-671 *4)))) (-2342 (*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-357)) (-4 *1 (-323 *3)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1148 *3)))) (-1376 (*1 *2) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1148 *3)))) (-3804 (*1 *2) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-900)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-900)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-357)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-357)))) (-4205 (*1 *2 *1 *3) (-12 (-5 *3 (-900)) (-4 *4 (-362)) (-4 *4 (-357)) (-5 *2 (-1148 *1)) (-4 *1 (-323 *4)))) (-2349 (*1 *1 *1 *2) (-12 (-5 *2 (-900)) (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)))) (-3385 (*1 *1 *1 *2) (-12 (-5 *2 (-900)) (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)))) (-3231 (*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357)))) (-2611 (*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357)))) (-2492 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) (-5 *2 (-111)))) (-2220 (*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357)))) (-3520 (*1 *1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-362)) (-4 *1 (-323 *3)) (-4 *3 (-357)))) (-1980 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) (-5 *2 (-1148 *3)))) (-2259 (*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) (-5 *2 (-1148 *3)))) (-2259 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) (-5 *2 (-1148 *3))))) +(-13 (-1254 |t#1|) (-1017 |t#1|) (-10 -8 (-15 -2957 ((-1235 $))) (-15 -2957 ((-1235 $) (-900))) (-15 -3133 ((-1235 |t#1|) $)) (-15 -3133 ((-671 |t#1|) (-1235 $))) (-15 -2342 ($ (-1235 |t#1|))) (-15 -4205 ((-1148 |t#1|) $)) (-15 -1376 ((-1148 |t#1|))) (-15 -3804 ((-900))) (-15 -3567 ((-900) $)) (-15 -2349 (|t#1| $)) (-15 -3385 (|t#1| $)) (IF (|has| |t#1| (-362)) (PROGN (-6 (-343)) (-15 -4205 ((-1148 $) $ (-900))) (-15 -2349 ($ $ (-900))) (-15 -3385 ($ $ (-900))) (-15 -3231 ($)) (-15 -2611 ($)) (-15 -2492 ((-111) $)) (-15 -2220 ($)) (-15 -3520 ($ $ (-1148 |t#1|))) (-15 -1980 ((-1148 |t#1|) $)) (-15 -2259 ((-1148 |t#1|) $)) (-15 -2259 ((-3 (-1148 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-142) -1559 (|has| |#1| (-362)) (|has| |#1| (-142))) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) . T) ((-228) |has| |#1| (-362)) ((-238) . T) ((-284) . T) ((-301) . T) ((-1254 |#1|) . T) ((-357) . T) ((-396) -1559 (|has| |#1| (-362)) (|has| |#1| (-142))) ((-362) |has| |#1| (-362)) ((-343) |has| |#1| (-362)) ((-445) . T) ((-544) . T) ((-630 #0#) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #0#) . T) ((-700 |#1|) . T) ((-700 $) . T) ((-709) . T) ((-899) . T) ((-1017 |#1|) . T) ((-1034 #0#) . T) ((-1034 |#1|) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1127) |has| |#1| (-362)) ((-1193) . T) ((-1242 |#1|) . T)) +((-1465 (((-111) $ $) NIL)) (-3660 (($ (-1151) $) 88)) (-2310 (($) 77)) (-1631 (((-1096) (-1096)) 11)) (-1568 (($) 78)) (-1709 (($) 90) (($ (-310 (-681))) 98) (($ (-310 (-683))) 94) (($ (-310 (-676))) 102) (($ (-310 (-373))) 109) (($ (-310 (-552))) 105) (($ (-310 (-166 (-373)))) 113)) (-2064 (($ (-1151) $) 89)) (-2465 (($ (-627 (-842))) 79)) (-2119 (((-1240) $) 75)) (-1621 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2381 (($ (-1096)) 51)) (-3374 (((-1080) $) 25)) (-3250 (($ (-1068 (-931 (-552))) $) 85) (($ (-1068 (-931 (-552))) (-931 (-552)) $) 86)) (-1818 (($ (-1096)) 87)) (-4334 (($ (-1151) $) 115) (($ (-1151) $ $) 116)) (-3781 (($ (-1152) (-627 (-1152))) 76)) (-4283 (($ (-1134)) 82) (($ (-627 (-1134))) 80)) (-1477 (((-842) $) 118)) (-1577 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1152)) (|:| |arrayIndex| (-627 (-931 (-552)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -4301 (-842)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1152)) (|:| |rand| (-842)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1151)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1275 (-111)) (|:| -4288 (-2 (|:| |ints2Floats?| (-111)) (|:| -4301 (-842)))))) (|:| |blockBranch| (-627 $)) (|:| |commentBranch| (-627 (-1134))) (|:| |callBranch| (-1134)) (|:| |forBranch| (-2 (|:| -1707 (-1068 (-931 (-552)))) (|:| |span| (-931 (-552))) (|:| -3122 $))) (|:| |labelBranch| (-1096)) (|:| |loopBranch| (-2 (|:| |switch| (-1151)) (|:| -3122 $))) (|:| |commonBranch| (-2 (|:| -3112 (-1152)) (|:| |contents| (-627 (-1152))))) (|:| |printBranch| (-627 (-842)))) $) 44)) (-1674 (($ (-1134)) 187)) (-4268 (($ (-627 $)) 114)) (-2522 (($ (-1152) (-1134)) 120) (($ (-1152) (-310 (-683))) 160) (($ (-1152) (-310 (-681))) 161) (($ (-1152) (-310 (-676))) 162) (($ (-1152) (-671 (-683))) 123) (($ (-1152) (-671 (-681))) 126) (($ (-1152) (-671 (-676))) 129) (($ (-1152) (-1235 (-683))) 132) (($ (-1152) (-1235 (-681))) 135) (($ (-1152) (-1235 (-676))) 138) (($ (-1152) (-671 (-310 (-683)))) 141) (($ (-1152) (-671 (-310 (-681)))) 144) (($ (-1152) (-671 (-310 (-676)))) 147) (($ (-1152) (-1235 (-310 (-683)))) 150) (($ (-1152) (-1235 (-310 (-681)))) 153) (($ (-1152) (-1235 (-310 (-676)))) 156) (($ (-1152) (-627 (-931 (-552))) (-310 (-683))) 157) (($ (-1152) (-627 (-931 (-552))) (-310 (-681))) 158) (($ (-1152) (-627 (-931 (-552))) (-310 (-676))) 159) (($ (-1152) (-310 (-552))) 184) (($ (-1152) (-310 (-373))) 185) (($ (-1152) (-310 (-166 (-373)))) 186) (($ (-1152) (-671 (-310 (-552)))) 165) (($ (-1152) (-671 (-310 (-373)))) 168) (($ (-1152) (-671 (-310 (-166 (-373))))) 171) (($ (-1152) (-1235 (-310 (-552)))) 174) (($ (-1152) (-1235 (-310 (-373)))) 177) (($ (-1152) (-1235 (-310 (-166 (-373))))) 180) (($ (-1152) (-627 (-931 (-552))) (-310 (-552))) 181) (($ (-1152) (-627 (-931 (-552))) (-310 (-373))) 182) (($ (-1152) (-627 (-931 (-552))) (-310 (-166 (-373)))) 183)) (-2292 (((-111) $ $) NIL))) +(((-324) (-13 (-1076) (-10 -8 (-15 -1477 ((-842) $)) (-15 -3250 ($ (-1068 (-931 (-552))) $)) (-15 -3250 ($ (-1068 (-931 (-552))) (-931 (-552)) $)) (-15 -3660 ($ (-1151) $)) (-15 -2064 ($ (-1151) $)) (-15 -2381 ($ (-1096))) (-15 -1818 ($ (-1096))) (-15 -4283 ($ (-1134))) (-15 -4283 ($ (-627 (-1134)))) (-15 -1674 ($ (-1134))) (-15 -1709 ($)) (-15 -1709 ($ (-310 (-681)))) (-15 -1709 ($ (-310 (-683)))) (-15 -1709 ($ (-310 (-676)))) (-15 -1709 ($ (-310 (-373)))) (-15 -1709 ($ (-310 (-552)))) (-15 -1709 ($ (-310 (-166 (-373))))) (-15 -4334 ($ (-1151) $)) (-15 -4334 ($ (-1151) $ $)) (-15 -2522 ($ (-1152) (-1134))) (-15 -2522 ($ (-1152) (-310 (-683)))) (-15 -2522 ($ (-1152) (-310 (-681)))) (-15 -2522 ($ (-1152) (-310 (-676)))) (-15 -2522 ($ (-1152) (-671 (-683)))) (-15 -2522 ($ (-1152) (-671 (-681)))) (-15 -2522 ($ (-1152) (-671 (-676)))) (-15 -2522 ($ (-1152) (-1235 (-683)))) (-15 -2522 ($ (-1152) (-1235 (-681)))) (-15 -2522 ($ (-1152) (-1235 (-676)))) (-15 -2522 ($ (-1152) (-671 (-310 (-683))))) (-15 -2522 ($ (-1152) (-671 (-310 (-681))))) (-15 -2522 ($ (-1152) (-671 (-310 (-676))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-683))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-681))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-676))))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-683)))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-681)))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-676)))) (-15 -2522 ($ (-1152) (-310 (-552)))) (-15 -2522 ($ (-1152) (-310 (-373)))) (-15 -2522 ($ (-1152) (-310 (-166 (-373))))) (-15 -2522 ($ (-1152) (-671 (-310 (-552))))) (-15 -2522 ($ (-1152) (-671 (-310 (-373))))) (-15 -2522 ($ (-1152) (-671 (-310 (-166 (-373)))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-552))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-373))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-166 (-373)))))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-552)))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-373)))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-166 (-373))))) (-15 -4268 ($ (-627 $))) (-15 -2310 ($)) (-15 -1568 ($)) (-15 -2465 ($ (-627 (-842)))) (-15 -3781 ($ (-1152) (-627 (-1152)))) (-15 -1621 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1577 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1152)) (|:| |arrayIndex| (-627 (-931 (-552)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -4301 (-842)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1152)) (|:| |rand| (-842)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1151)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1275 (-111)) (|:| -4288 (-2 (|:| |ints2Floats?| (-111)) (|:| -4301 (-842)))))) (|:| |blockBranch| (-627 $)) (|:| |commentBranch| (-627 (-1134))) (|:| |callBranch| (-1134)) (|:| |forBranch| (-2 (|:| -1707 (-1068 (-931 (-552)))) (|:| |span| (-931 (-552))) (|:| -3122 $))) (|:| |labelBranch| (-1096)) (|:| |loopBranch| (-2 (|:| |switch| (-1151)) (|:| -3122 $))) (|:| |commonBranch| (-2 (|:| -3112 (-1152)) (|:| |contents| (-627 (-1152))))) (|:| |printBranch| (-627 (-842)))) $)) (-15 -2119 ((-1240) $)) (-15 -3374 ((-1080) $)) (-15 -1631 ((-1096) (-1096)))))) (T -324)) +((-1477 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-324)))) (-3250 (*1 *1 *2 *1) (-12 (-5 *2 (-1068 (-931 (-552)))) (-5 *1 (-324)))) (-3250 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1068 (-931 (-552)))) (-5 *3 (-931 (-552))) (-5 *1 (-324)))) (-3660 (*1 *1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-324)))) (-2064 (*1 *1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-324)))) (-2381 (*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-324)))) (-1818 (*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-324)))) (-4283 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-324)))) (-4283 (*1 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-324)))) (-1674 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-324)))) (-1709 (*1 *1) (-5 *1 (-324))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-310 (-681))) (-5 *1 (-324)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-310 (-683))) (-5 *1 (-324)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-310 (-676))) (-5 *1 (-324)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-5 *1 (-324)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-310 (-552))) (-5 *1 (-324)))) (-1709 (*1 *1 *2) (-12 (-5 *2 (-310 (-166 (-373)))) (-5 *1 (-324)))) (-4334 (*1 *1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-324)))) (-4334 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1134)) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-683))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-681))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-676))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-683))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-681))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-676))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-683))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-681))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-676))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-683)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-681)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-676)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-683)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-681)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-676)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) (-5 *4 (-310 (-683))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) (-5 *4 (-310 (-681))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) (-5 *4 (-310 (-676))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-552))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-373))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-166 (-373)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-552)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-373)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-166 (-373))))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-552)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-373)))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-166 (-373))))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) (-5 *4 (-310 (-552))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) (-5 *4 (-310 (-373))) (-5 *1 (-324)))) (-2522 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) (-5 *4 (-310 (-166 (-373)))) (-5 *1 (-324)))) (-4268 (*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-5 *1 (-324)))) (-2310 (*1 *1) (-5 *1 (-324))) (-1568 (*1 *1) (-5 *1 (-324))) (-2465 (*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-324)))) (-3781 (*1 *1 *2 *3) (-12 (-5 *3 (-627 (-1152))) (-5 *2 (-1152)) (-5 *1 (-324)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-324)))) (-1577 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1152)) (|:| |arrayIndex| (-627 (-931 (-552)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -4301 (-842)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1152)) (|:| |rand| (-842)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1151)) (|:| |thenClause| (-324)) (|:| |elseClause| (-324)))) (|:| |returnBranch| (-2 (|:| -1275 (-111)) (|:| -4288 (-2 (|:| |ints2Floats?| (-111)) (|:| -4301 (-842)))))) (|:| |blockBranch| (-627 (-324))) (|:| |commentBranch| (-627 (-1134))) (|:| |callBranch| (-1134)) (|:| |forBranch| (-2 (|:| -1707 (-1068 (-931 (-552)))) (|:| |span| (-931 (-552))) (|:| -3122 (-324)))) (|:| |labelBranch| (-1096)) (|:| |loopBranch| (-2 (|:| |switch| (-1151)) (|:| -3122 (-324)))) (|:| |commonBranch| (-2 (|:| -3112 (-1152)) (|:| |contents| (-627 (-1152))))) (|:| |printBranch| (-627 (-842))))) (-5 *1 (-324)))) (-2119 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-324)))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-324)))) (-1631 (*1 *2 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-324))))) +(-13 (-1076) (-10 -8 (-15 -1477 ((-842) $)) (-15 -3250 ($ (-1068 (-931 (-552))) $)) (-15 -3250 ($ (-1068 (-931 (-552))) (-931 (-552)) $)) (-15 -3660 ($ (-1151) $)) (-15 -2064 ($ (-1151) $)) (-15 -2381 ($ (-1096))) (-15 -1818 ($ (-1096))) (-15 -4283 ($ (-1134))) (-15 -4283 ($ (-627 (-1134)))) (-15 -1674 ($ (-1134))) (-15 -1709 ($)) (-15 -1709 ($ (-310 (-681)))) (-15 -1709 ($ (-310 (-683)))) (-15 -1709 ($ (-310 (-676)))) (-15 -1709 ($ (-310 (-373)))) (-15 -1709 ($ (-310 (-552)))) (-15 -1709 ($ (-310 (-166 (-373))))) (-15 -4334 ($ (-1151) $)) (-15 -4334 ($ (-1151) $ $)) (-15 -2522 ($ (-1152) (-1134))) (-15 -2522 ($ (-1152) (-310 (-683)))) (-15 -2522 ($ (-1152) (-310 (-681)))) (-15 -2522 ($ (-1152) (-310 (-676)))) (-15 -2522 ($ (-1152) (-671 (-683)))) (-15 -2522 ($ (-1152) (-671 (-681)))) (-15 -2522 ($ (-1152) (-671 (-676)))) (-15 -2522 ($ (-1152) (-1235 (-683)))) (-15 -2522 ($ (-1152) (-1235 (-681)))) (-15 -2522 ($ (-1152) (-1235 (-676)))) (-15 -2522 ($ (-1152) (-671 (-310 (-683))))) (-15 -2522 ($ (-1152) (-671 (-310 (-681))))) (-15 -2522 ($ (-1152) (-671 (-310 (-676))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-683))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-681))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-676))))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-683)))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-681)))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-676)))) (-15 -2522 ($ (-1152) (-310 (-552)))) (-15 -2522 ($ (-1152) (-310 (-373)))) (-15 -2522 ($ (-1152) (-310 (-166 (-373))))) (-15 -2522 ($ (-1152) (-671 (-310 (-552))))) (-15 -2522 ($ (-1152) (-671 (-310 (-373))))) (-15 -2522 ($ (-1152) (-671 (-310 (-166 (-373)))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-552))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-373))))) (-15 -2522 ($ (-1152) (-1235 (-310 (-166 (-373)))))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-552)))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-373)))) (-15 -2522 ($ (-1152) (-627 (-931 (-552))) (-310 (-166 (-373))))) (-15 -4268 ($ (-627 $))) (-15 -2310 ($)) (-15 -1568 ($)) (-15 -2465 ($ (-627 (-842)))) (-15 -3781 ($ (-1152) (-627 (-1152)))) (-15 -1621 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1577 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1152)) (|:| |arrayIndex| (-627 (-931 (-552)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-111)) (|:| -4301 (-842)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1152)) (|:| |rand| (-842)) (|:| |ints2Floats?| (-111)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1151)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1275 (-111)) (|:| -4288 (-2 (|:| |ints2Floats?| (-111)) (|:| -4301 (-842)))))) (|:| |blockBranch| (-627 $)) (|:| |commentBranch| (-627 (-1134))) (|:| |callBranch| (-1134)) (|:| |forBranch| (-2 (|:| -1707 (-1068 (-931 (-552)))) (|:| |span| (-931 (-552))) (|:| -3122 $))) (|:| |labelBranch| (-1096)) (|:| |loopBranch| (-2 (|:| |switch| (-1151)) (|:| -3122 $))) (|:| |commonBranch| (-2 (|:| -3112 (-1152)) (|:| |contents| (-627 (-1152))))) (|:| |printBranch| (-627 (-842)))) $)) (-15 -2119 ((-1240) $)) (-15 -3374 ((-1080) $)) (-15 -1631 ((-1096) (-1096))))) +((-1465 (((-111) $ $) NIL)) (-2857 (((-111) $) 11)) (-1445 (($ |#1|) 8)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1456 (($ |#1|) 9)) (-1477 (((-842) $) 17)) (-1731 ((|#1| $) 12)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 19))) +(((-325 |#1|) (-13 (-830) (-10 -8 (-15 -1445 ($ |#1|)) (-15 -1456 ($ |#1|)) (-15 -2857 ((-111) $)) (-15 -1731 (|#1| $)))) (-830)) (T -325)) +((-1445 (*1 *1 *2) (-12 (-5 *1 (-325 *2)) (-4 *2 (-830)))) (-1456 (*1 *1 *2) (-12 (-5 *1 (-325 *2)) (-4 *2 (-830)))) (-2857 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-325 *3)) (-4 *3 (-830)))) (-1731 (*1 *2 *1) (-12 (-5 *1 (-325 *2)) (-4 *2 (-830))))) +(-13 (-830) (-10 -8 (-15 -1445 ($ |#1|)) (-15 -1456 ($ |#1|)) (-15 -2857 ((-111) $)) (-15 -1731 (|#1| $)))) +((-4265 (((-324) (-1152) (-931 (-552))) 23)) (-1622 (((-324) (-1152) (-931 (-552))) 27)) (-3786 (((-324) (-1152) (-1068 (-931 (-552))) (-1068 (-931 (-552)))) 26) (((-324) (-1152) (-931 (-552)) (-931 (-552))) 24)) (-3197 (((-324) (-1152) (-931 (-552))) 31))) +(((-326) (-10 -7 (-15 -4265 ((-324) (-1152) (-931 (-552)))) (-15 -3786 ((-324) (-1152) (-931 (-552)) (-931 (-552)))) (-15 -3786 ((-324) (-1152) (-1068 (-931 (-552))) (-1068 (-931 (-552))))) (-15 -1622 ((-324) (-1152) (-931 (-552)))) (-15 -3197 ((-324) (-1152) (-931 (-552)))))) (T -326)) +((-3197 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-931 (-552))) (-5 *2 (-324)) (-5 *1 (-326)))) (-1622 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-931 (-552))) (-5 *2 (-324)) (-5 *1 (-326)))) (-3786 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-1068 (-931 (-552)))) (-5 *2 (-324)) (-5 *1 (-326)))) (-3786 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-931 (-552))) (-5 *2 (-324)) (-5 *1 (-326)))) (-4265 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-931 (-552))) (-5 *2 (-324)) (-5 *1 (-326))))) +(-10 -7 (-15 -4265 ((-324) (-1152) (-931 (-552)))) (-15 -3786 ((-324) (-1152) (-931 (-552)) (-931 (-552)))) (-15 -3786 ((-324) (-1152) (-1068 (-931 (-552))) (-1068 (-931 (-552))))) (-15 -1622 ((-324) (-1152) (-931 (-552)))) (-15 -3197 ((-324) (-1152) (-931 (-552))))) +((-3516 (((-330 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-330 |#1| |#2| |#3| |#4|)) 33))) +(((-327 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3516 ((-330 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-330 |#1| |#2| |#3| |#4|)))) (-357) (-1211 |#1|) (-1211 (-401 |#2|)) (-336 |#1| |#2| |#3|) (-357) (-1211 |#5|) (-1211 (-401 |#6|)) (-336 |#5| |#6| |#7|)) (T -327)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-330 *5 *6 *7 *8)) (-4 *5 (-357)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) (-4 *9 (-357)) (-4 *10 (-1211 *9)) (-4 *11 (-1211 (-401 *10))) (-5 *2 (-330 *9 *10 *11 *12)) (-5 *1 (-327 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-336 *9 *10 *11))))) +(-10 -7 (-15 -3516 ((-330 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-330 |#1| |#2| |#3| |#4|)))) +((-2112 (((-111) $) 14))) +(((-328 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2112 ((-111) |#1|))) (-329 |#2| |#3| |#4| |#5|) (-357) (-1211 |#2|) (-1211 (-401 |#3|)) (-336 |#2| |#3| |#4|)) (T -328)) +NIL +(-10 -8 (-15 -2112 ((-111) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2091 (($ $) 26)) (-2112 (((-111) $) 25)) (-1595 (((-1134) $) 9)) (-3103 (((-407 |#2| (-401 |#2|) |#3| |#4|) $) 32)) (-1498 (((-1096) $) 10)) (-2220 (((-3 |#4| "failed") $) 24)) (-3654 (($ (-407 |#2| (-401 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-552)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-4004 (((-2 (|:| -2618 (-407 |#2| (-401 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20))) +(((-329 |#1| |#2| |#3| |#4|) (-137) (-357) (-1211 |t#1|) (-1211 (-401 |t#2|)) (-336 |t#1| |t#2| |t#3|)) (T -329)) +((-3103 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-5 *2 (-407 *4 (-401 *4) *5 *6)))) (-3654 (*1 *1 *2) (-12 (-5 *2 (-407 *4 (-401 *4) *5 *6)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-4 *3 (-357)) (-4 *1 (-329 *3 *4 *5 *6)))) (-3654 (*1 *1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-4 *1 (-329 *3 *4 *5 *2)) (-4 *2 (-336 *3 *4 *5)))) (-3654 (*1 *1 *2 *2) (-12 (-4 *2 (-357)) (-4 *3 (-1211 *2)) (-4 *4 (-1211 (-401 *3))) (-4 *1 (-329 *2 *3 *4 *5)) (-4 *5 (-336 *2 *3 *4)))) (-3654 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-552)) (-4 *2 (-357)) (-4 *4 (-1211 *2)) (-4 *5 (-1211 (-401 *4))) (-4 *1 (-329 *2 *4 *5 *6)) (-4 *6 (-336 *2 *4 *5)))) (-4004 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-5 *2 (-2 (|:| -2618 (-407 *4 (-401 *4) *5 *6)) (|:| |principalPart| *6))))) (-2091 (*1 *1 *1) (-12 (-4 *1 (-329 *2 *3 *4 *5)) (-4 *2 (-357)) (-4 *3 (-1211 *2)) (-4 *4 (-1211 (-401 *3))) (-4 *5 (-336 *2 *3 *4)))) (-2112 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-5 *2 (-111)))) (-2220 (*1 *2 *1) (|partial| -12 (-4 *1 (-329 *3 *4 *5 *2)) (-4 *3 (-357)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-4 *2 (-336 *3 *4 *5)))) (-3654 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-357)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-401 *3))) (-4 *1 (-329 *4 *3 *5 *2)) (-4 *2 (-336 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -3103 ((-407 |t#2| (-401 |t#2|) |t#3| |t#4|) $)) (-15 -3654 ($ (-407 |t#2| (-401 |t#2|) |t#3| |t#4|))) (-15 -3654 ($ |t#4|)) (-15 -3654 ($ |t#1| |t#1|)) (-15 -3654 ($ |t#1| |t#1| (-552))) (-15 -4004 ((-2 (|:| -2618 (-407 |t#2| (-401 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2091 ($ $)) (-15 -2112 ((-111) $)) (-15 -2220 ((-3 |t#4| "failed") $)) (-15 -3654 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2091 (($ $) 33)) (-2112 (((-111) $) NIL)) (-1595 (((-1134) $) NIL)) (-2883 (((-1235 |#4|) $) 125)) (-3103 (((-407 |#2| (-401 |#2|) |#3| |#4|) $) 31)) (-1498 (((-1096) $) NIL)) (-2220 (((-3 |#4| "failed") $) 36)) (-2430 (((-1235 |#4|) $) 118)) (-3654 (($ (-407 |#2| (-401 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-552)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-4004 (((-2 (|:| -2618 (-407 |#2| (-401 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-1477 (((-842) $) 17)) (-1922 (($) 14 T CONST)) (-2292 (((-111) $ $) 20)) (-2396 (($ $) 27) (($ $ $) NIL)) (-2384 (($ $ $) 25)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 23))) +(((-330 |#1| |#2| |#3| |#4|) (-13 (-329 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2430 ((-1235 |#4|) $)) (-15 -2883 ((-1235 |#4|) $)))) (-357) (-1211 |#1|) (-1211 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -330)) +((-2430 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-1235 *6)) (-5 *1 (-330 *3 *4 *5 *6)) (-4 *6 (-336 *3 *4 *5)))) (-2883 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-1235 *6)) (-5 *1 (-330 *3 *4 *5 *6)) (-4 *6 (-336 *3 *4 *5))))) +(-13 (-329 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2430 ((-1235 |#4|) $)) (-15 -2883 ((-1235 |#4|) $)))) +((-3321 (($ $ (-1152) |#2|) NIL) (($ $ (-627 (-1152)) (-627 |#2|)) 20) (($ $ (-627 (-288 |#2|))) 15) (($ $ (-288 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-627 |#2|) (-627 |#2|)) NIL)) (-1985 (($ $ |#2|) 11))) +(((-331 |#1| |#2|) (-10 -8 (-15 -1985 (|#1| |#1| |#2|)) (-15 -3321 (|#1| |#1| (-627 |#2|) (-627 |#2|))) (-15 -3321 (|#1| |#1| |#2| |#2|)) (-15 -3321 (|#1| |#1| (-288 |#2|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#2|)))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 |#2|))) (-15 -3321 (|#1| |#1| (-1152) |#2|))) (-332 |#2|) (-1076)) (T -331)) +NIL +(-10 -8 (-15 -1985 (|#1| |#1| |#2|)) (-15 -3321 (|#1| |#1| (-627 |#2|) (-627 |#2|))) (-15 -3321 (|#1| |#1| |#2| |#2|)) (-15 -3321 (|#1| |#1| (-288 |#2|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#2|)))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 |#2|))) (-15 -3321 (|#1| |#1| (-1152) |#2|))) +((-3516 (($ (-1 |#1| |#1|) $) 6)) (-3321 (($ $ (-1152) |#1|) 17 (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) 16 (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-627 (-288 |#1|))) 15 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 14 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-303 |#1|))) (($ $ (-627 |#1|) (-627 |#1|)) 12 (|has| |#1| (-303 |#1|)))) (-1985 (($ $ |#1|) 11 (|has| |#1| (-280 |#1| |#1|))))) +(((-332 |#1|) (-137) (-1076)) (T -332)) +((-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-332 *3)) (-4 *3 (-1076))))) +(-13 (-10 -8 (-15 -3516 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-280 |t#1| |t#1|)) (-6 (-280 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-303 |t#1|)) (-6 (-303 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-506 (-1152) |t#1|)) (-6 (-506 (-1152) |t#1|)) |%noBranch|))) +(((-280 |#1| $) |has| |#1| (-280 |#1| |#1|)) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-506 (-1152) |#1|) |has| |#1| (-506 (-1152) |#1|)) ((-506 |#1| |#1|) |has| |#1| (-303 |#1|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-1152)) $) NIL)) (-3254 (((-111)) 91) (((-111) (-111)) 92)) (-3443 (((-627 (-598 $)) $) NIL)) (-1607 (($ $) NIL)) (-1467 (($ $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2620 (($ $ (-288 $)) NIL) (($ $ (-627 (-288 $))) NIL) (($ $ (-627 (-598 $)) (-627 $)) NIL)) (-1737 (($ $) NIL)) (-1584 (($ $) NIL)) (-1445 (($ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-598 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-310 |#3|)) 71) (((-3 $ "failed") (-1152)) 97) (((-3 $ "failed") (-310 (-552))) 59 (|has| |#3| (-1017 (-552)))) (((-3 $ "failed") (-401 (-931 (-552)))) 65 (|has| |#3| (-1017 (-552)))) (((-3 $ "failed") (-931 (-552))) 60 (|has| |#3| (-1017 (-552)))) (((-3 $ "failed") (-310 (-373))) 89 (|has| |#3| (-1017 (-373)))) (((-3 $ "failed") (-401 (-931 (-373)))) 83 (|has| |#3| (-1017 (-373)))) (((-3 $ "failed") (-931 (-373))) 78 (|has| |#3| (-1017 (-373))))) (-1703 (((-598 $) $) NIL) ((|#3| $) NIL) (($ (-310 |#3|)) 72) (($ (-1152)) 98) (($ (-310 (-552))) 61 (|has| |#3| (-1017 (-552)))) (($ (-401 (-931 (-552)))) 66 (|has| |#3| (-1017 (-552)))) (($ (-931 (-552))) 62 (|has| |#3| (-1017 (-552)))) (($ (-310 (-373))) 90 (|has| |#3| (-1017 (-373)))) (($ (-401 (-931 (-373)))) 84 (|has| |#3| (-1017 (-373)))) (($ (-931 (-373))) 80 (|has| |#3| (-1017 (-373))))) (-2040 (((-3 $ "failed") $) NIL)) (-2951 (($) 10)) (-3820 (($ $) NIL) (($ (-627 $)) NIL)) (-3795 (((-627 (-113)) $) NIL)) (-4148 (((-113) (-113)) NIL)) (-2624 (((-111) $) NIL)) (-1394 (((-111) $) NIL (|has| $ (-1017 (-552))))) (-2602 (((-1148 $) (-598 $)) NIL (|has| $ (-1028)))) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3516 (($ (-1 $ $) (-598 $)) NIL)) (-3362 (((-3 (-598 $) "failed") $) NIL)) (-2885 (($ $) 94)) (-4135 (($ $) NIL)) (-1595 (((-1134) $) NIL)) (-1684 (((-627 (-598 $)) $) NIL)) (-2991 (($ (-113) $) 93) (($ (-113) (-627 $)) NIL)) (-2070 (((-111) $ (-113)) NIL) (((-111) $ (-1152)) NIL)) (-3476 (((-754) $) NIL)) (-1498 (((-1096) $) NIL)) (-4094 (((-111) $ $) NIL) (((-111) $ (-1152)) NIL)) (-3154 (($ $) NIL)) (-1507 (((-111) $) NIL (|has| $ (-1017 (-552))))) (-3321 (($ $ (-598 $) $) NIL) (($ $ (-627 (-598 $)) (-627 $)) NIL) (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ $))) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ (-627 $)))) NIL) (($ $ (-1152) (-1 $ (-627 $))) NIL) (($ $ (-1152) (-1 $ $)) NIL) (($ $ (-627 (-113)) (-627 (-1 $ $))) NIL) (($ $ (-627 (-113)) (-627 (-1 $ (-627 $)))) NIL) (($ $ (-113) (-1 $ (-627 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1985 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-627 $)) NIL)) (-2911 (($ $) NIL) (($ $ $) NIL)) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152)) NIL)) (-1376 (($ $) NIL (|has| $ (-1028)))) (-1596 (($ $) NIL)) (-1456 (($ $) NIL)) (-1477 (((-842) $) NIL) (($ (-598 $)) NIL) (($ |#3|) NIL) (($ (-552)) NIL) (((-310 |#3|) $) 96)) (-3995 (((-754)) NIL)) (-3092 (($ $) NIL) (($ (-627 $)) NIL)) (-3749 (((-111) (-113)) NIL)) (-1534 (($ $) NIL)) (-1513 (($ $) NIL)) (-1524 (($ $) NIL)) (-3329 (($ $) NIL)) (-1922 (($) 95 T CONST)) (-1933 (($) 24 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152)) NIL)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-2396 (($ $ $) NIL) (($ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-754)) NIL) (($ $ (-900)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-552) $) NIL) (($ (-754) $) NIL) (($ (-900) $) NIL))) +(((-333 |#1| |#2| |#3|) (-13 (-296) (-38 |#3|) (-1017 |#3|) (-879 (-1152)) (-10 -8 (-15 -1703 ($ (-310 |#3|))) (-15 -4039 ((-3 $ "failed") (-310 |#3|))) (-15 -1703 ($ (-1152))) (-15 -4039 ((-3 $ "failed") (-1152))) (-15 -1477 ((-310 |#3|) $)) (IF (|has| |#3| (-1017 (-552))) (PROGN (-15 -1703 ($ (-310 (-552)))) (-15 -4039 ((-3 $ "failed") (-310 (-552)))) (-15 -1703 ($ (-401 (-931 (-552))))) (-15 -4039 ((-3 $ "failed") (-401 (-931 (-552))))) (-15 -1703 ($ (-931 (-552)))) (-15 -4039 ((-3 $ "failed") (-931 (-552))))) |%noBranch|) (IF (|has| |#3| (-1017 (-373))) (PROGN (-15 -1703 ($ (-310 (-373)))) (-15 -4039 ((-3 $ "failed") (-310 (-373)))) (-15 -1703 ($ (-401 (-931 (-373))))) (-15 -4039 ((-3 $ "failed") (-401 (-931 (-373))))) (-15 -1703 ($ (-931 (-373)))) (-15 -4039 ((-3 $ "failed") (-931 (-373))))) |%noBranch|) (-15 -3329 ($ $)) (-15 -1737 ($ $)) (-15 -3154 ($ $)) (-15 -4135 ($ $)) (-15 -2885 ($ $)) (-15 -1445 ($ $)) (-15 -1456 ($ $)) (-15 -1467 ($ $)) (-15 -1513 ($ $)) (-15 -1524 ($ $)) (-15 -1534 ($ $)) (-15 -1584 ($ $)) (-15 -1596 ($ $)) (-15 -1607 ($ $)) (-15 -2951 ($)) (-15 -1853 ((-627 (-1152)) $)) (-15 -3254 ((-111))) (-15 -3254 ((-111) (-111))))) (-627 (-1152)) (-627 (-1152)) (-381)) (T -333)) +((-1703 (*1 *1 *2) (-12 (-5 *2 (-310 *5)) (-4 *5 (-381)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 *5)) (-4 *5 (-381)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 *2)) (-14 *4 (-627 *2)) (-4 *5 (-381)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 *2)) (-14 *4 (-627 *2)) (-4 *5 (-381)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-310 *5)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-310 (-552))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-552))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-401 (-931 (-552)))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-401 (-931 (-552)))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-931 (-552))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-931 (-552))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-373))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-401 (-931 (-373)))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-401 (-931 (-373)))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-931 (-373))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-931 (-373))) (-5 *1 (-333 *3 *4 *5)) (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-3329 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1737 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-3154 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-4135 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-2885 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1445 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1456 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1467 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1513 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1524 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1534 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1584 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1596 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1607 (*1 *1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-2951 (*1 *1) (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-333 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-381)))) (-3254 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381))))) +(-13 (-296) (-38 |#3|) (-1017 |#3|) (-879 (-1152)) (-10 -8 (-15 -1703 ($ (-310 |#3|))) (-15 -4039 ((-3 $ "failed") (-310 |#3|))) (-15 -1703 ($ (-1152))) (-15 -4039 ((-3 $ "failed") (-1152))) (-15 -1477 ((-310 |#3|) $)) (IF (|has| |#3| (-1017 (-552))) (PROGN (-15 -1703 ($ (-310 (-552)))) (-15 -4039 ((-3 $ "failed") (-310 (-552)))) (-15 -1703 ($ (-401 (-931 (-552))))) (-15 -4039 ((-3 $ "failed") (-401 (-931 (-552))))) (-15 -1703 ($ (-931 (-552)))) (-15 -4039 ((-3 $ "failed") (-931 (-552))))) |%noBranch|) (IF (|has| |#3| (-1017 (-373))) (PROGN (-15 -1703 ($ (-310 (-373)))) (-15 -4039 ((-3 $ "failed") (-310 (-373)))) (-15 -1703 ($ (-401 (-931 (-373))))) (-15 -4039 ((-3 $ "failed") (-401 (-931 (-373))))) (-15 -1703 ($ (-931 (-373)))) (-15 -4039 ((-3 $ "failed") (-931 (-373))))) |%noBranch|) (-15 -3329 ($ $)) (-15 -1737 ($ $)) (-15 -3154 ($ $)) (-15 -4135 ($ $)) (-15 -2885 ($ $)) (-15 -1445 ($ $)) (-15 -1456 ($ $)) (-15 -1467 ($ $)) (-15 -1513 ($ $)) (-15 -1524 ($ $)) (-15 -1534 ($ $)) (-15 -1584 ($ $)) (-15 -1596 ($ $)) (-15 -1607 ($ $)) (-15 -2951 ($)) (-15 -1853 ((-627 (-1152)) $)) (-15 -3254 ((-111))) (-15 -3254 ((-111) (-111))))) +((-3516 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-334 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3516 (|#8| (-1 |#5| |#1|) |#4|))) (-1193) (-1211 |#1|) (-1211 (-401 |#2|)) (-336 |#1| |#2| |#3|) (-1193) (-1211 |#5|) (-1211 (-401 |#6|)) (-336 |#5| |#6| |#7|)) (T -334)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1193)) (-4 *8 (-1193)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) (-4 *9 (-1211 *8)) (-4 *2 (-336 *8 *9 *10)) (-5 *1 (-334 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-336 *5 *6 *7)) (-4 *10 (-1211 (-401 *9)))))) +(-10 -7 (-15 -3516 (|#8| (-1 |#5| |#1|) |#4|))) +((-2238 (((-2 (|:| |num| (-1235 |#3|)) (|:| |den| |#3|)) $) 38)) (-2342 (($ (-1235 (-401 |#3|)) (-1235 $)) NIL) (($ (-1235 (-401 |#3|))) NIL) (($ (-1235 |#3|) |#3|) 161)) (-1913 (((-1235 $) (-1235 $)) 145)) (-3814 (((-627 (-627 |#2|))) 119)) (-3862 (((-111) |#2| |#2|) 73)) (-1375 (($ $) 139)) (-4080 (((-754)) 31)) (-1380 (((-1235 $) (-1235 $)) 198)) (-2370 (((-627 (-931 |#2|)) (-1152)) 110)) (-3177 (((-111) $) 158)) (-1505 (((-111) $) 25) (((-111) $ |#2|) 29) (((-111) $ |#3|) 202)) (-3945 (((-3 |#3| "failed")) 50)) (-2161 (((-754)) 170)) (-1985 ((|#2| $ |#2| |#2|) 132)) (-1758 (((-3 |#3| "failed")) 68)) (-2942 (($ $ (-1 (-401 |#3|) (-401 |#3|)) (-754)) NIL) (($ $ (-1 (-401 |#3|) (-401 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152)) NIL) (($ $ (-754)) NIL) (($ $) NIL)) (-2912 (((-1235 $) (-1235 $)) 151)) (-4090 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-2419 (((-111)) 33))) +(((-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -3814 ((-627 (-627 |#2|)))) (-15 -2370 ((-627 (-931 |#2|)) (-1152))) (-15 -4090 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3945 ((-3 |#3| "failed"))) (-15 -1758 ((-3 |#3| "failed"))) (-15 -1985 (|#2| |#1| |#2| |#2|)) (-15 -1375 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1505 ((-111) |#1| |#3|)) (-15 -1505 ((-111) |#1| |#2|)) (-15 -2342 (|#1| (-1235 |#3|) |#3|)) (-15 -2238 ((-2 (|:| |num| (-1235 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1913 ((-1235 |#1|) (-1235 |#1|))) (-15 -1380 ((-1235 |#1|) (-1235 |#1|))) (-15 -2912 ((-1235 |#1|) (-1235 |#1|))) (-15 -1505 ((-111) |#1|)) (-15 -3177 ((-111) |#1|)) (-15 -3862 ((-111) |#2| |#2|)) (-15 -2419 ((-111))) (-15 -2161 ((-754))) (-15 -4080 ((-754))) (-15 -2942 (|#1| |#1| (-1 (-401 |#3|) (-401 |#3|)))) (-15 -2942 (|#1| |#1| (-1 (-401 |#3|) (-401 |#3|)) (-754))) (-15 -2342 (|#1| (-1235 (-401 |#3|)))) (-15 -2342 (|#1| (-1235 (-401 |#3|)) (-1235 |#1|)))) (-336 |#2| |#3| |#4|) (-1193) (-1211 |#2|) (-1211 (-401 |#3|))) (T -335)) +((-4080 (*1 *2) (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) (-5 *2 (-754)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) (-2161 (*1 *2) (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) (-5 *2 (-754)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) (-2419 (*1 *2) (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) (-5 *2 (-111)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) (-3862 (*1 *2 *3 *3) (-12 (-4 *3 (-1193)) (-4 *5 (-1211 *3)) (-4 *6 (-1211 (-401 *5))) (-5 *2 (-111)) (-5 *1 (-335 *4 *3 *5 *6)) (-4 *4 (-336 *3 *5 *6)))) (-1758 (*1 *2) (|partial| -12 (-4 *4 (-1193)) (-4 *5 (-1211 (-401 *2))) (-4 *2 (-1211 *4)) (-5 *1 (-335 *3 *4 *2 *5)) (-4 *3 (-336 *4 *2 *5)))) (-3945 (*1 *2) (|partial| -12 (-4 *4 (-1193)) (-4 *5 (-1211 (-401 *2))) (-4 *2 (-1211 *4)) (-5 *1 (-335 *3 *4 *2 *5)) (-4 *3 (-336 *4 *2 *5)))) (-2370 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *5 (-1193)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) (-5 *2 (-627 (-931 *5))) (-5 *1 (-335 *4 *5 *6 *7)) (-4 *4 (-336 *5 *6 *7)))) (-3814 (*1 *2) (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) (-5 *2 (-627 (-627 *4))) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6))))) +(-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -3814 ((-627 (-627 |#2|)))) (-15 -2370 ((-627 (-931 |#2|)) (-1152))) (-15 -4090 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3945 ((-3 |#3| "failed"))) (-15 -1758 ((-3 |#3| "failed"))) (-15 -1985 (|#2| |#1| |#2| |#2|)) (-15 -1375 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1505 ((-111) |#1| |#3|)) (-15 -1505 ((-111) |#1| |#2|)) (-15 -2342 (|#1| (-1235 |#3|) |#3|)) (-15 -2238 ((-2 (|:| |num| (-1235 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1913 ((-1235 |#1|) (-1235 |#1|))) (-15 -1380 ((-1235 |#1|) (-1235 |#1|))) (-15 -2912 ((-1235 |#1|) (-1235 |#1|))) (-15 -1505 ((-111) |#1|)) (-15 -3177 ((-111) |#1|)) (-15 -3862 ((-111) |#2| |#2|)) (-15 -2419 ((-111))) (-15 -2161 ((-754))) (-15 -4080 ((-754))) (-15 -2942 (|#1| |#1| (-1 (-401 |#3|) (-401 |#3|)))) (-15 -2942 (|#1| |#1| (-1 (-401 |#3|) (-401 |#3|)) (-754))) (-15 -2342 (|#1| (-1235 (-401 |#3|)))) (-15 -2342 (|#1| (-1235 (-401 |#3|)) (-1235 |#1|)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-2238 (((-2 (|:| |num| (-1235 |#2|)) (|:| |den| |#2|)) $) 193)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 91 (|has| (-401 |#2|) (-357)))) (-3245 (($ $) 92 (|has| (-401 |#2|) (-357)))) (-4058 (((-111) $) 94 (|has| (-401 |#2|) (-357)))) (-3841 (((-671 (-401 |#2|)) (-1235 $)) 44) (((-671 (-401 |#2|))) 59)) (-3385 (((-401 |#2|) $) 50)) (-2038 (((-1162 (-900) (-754)) (-552)) 144 (|has| (-401 |#2|) (-343)))) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 111 (|has| (-401 |#2|) (-357)))) (-2487 (((-412 $) $) 112 (|has| (-401 |#2|) (-357)))) (-4224 (((-111) $ $) 102 (|has| (-401 |#2|) (-357)))) (-3307 (((-754)) 85 (|has| (-401 |#2|) (-362)))) (-3865 (((-111)) 210)) (-2145 (((-111) |#1|) 209) (((-111) |#2|) 208)) (-3887 (($) 17 T CONST)) (-4039 (((-3 (-552) "failed") $) 166 (|has| (-401 |#2|) (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) 164 (|has| (-401 |#2|) (-1017 (-401 (-552))))) (((-3 (-401 |#2|) "failed") $) 163)) (-1703 (((-552) $) 167 (|has| (-401 |#2|) (-1017 (-552)))) (((-401 (-552)) $) 165 (|has| (-401 |#2|) (-1017 (-401 (-552))))) (((-401 |#2|) $) 162)) (-2342 (($ (-1235 (-401 |#2|)) (-1235 $)) 46) (($ (-1235 (-401 |#2|))) 62) (($ (-1235 |#2|) |#2|) 192)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-401 |#2|) (-343)))) (-2813 (($ $ $) 106 (|has| (-401 |#2|) (-357)))) (-4088 (((-671 (-401 |#2|)) $ (-1235 $)) 51) (((-671 (-401 |#2|)) $) 57)) (-1800 (((-671 (-552)) (-671 $)) 161 (|has| (-401 |#2|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 160 (|has| (-401 |#2|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-401 |#2|))) (|:| |vec| (-1235 (-401 |#2|)))) (-671 $) (-1235 $)) 159) (((-671 (-401 |#2|)) (-671 $)) 158)) (-1913 (((-1235 $) (-1235 $)) 198)) (-2091 (($ |#3|) 155) (((-3 $ "failed") (-401 |#3|)) 152 (|has| (-401 |#2|) (-357)))) (-2040 (((-3 $ "failed") $) 32)) (-3814 (((-627 (-627 |#1|))) 179 (|has| |#1| (-362)))) (-3862 (((-111) |#1| |#1|) 214)) (-4154 (((-900)) 52)) (-1279 (($) 88 (|has| (-401 |#2|) (-362)))) (-2257 (((-111)) 207)) (-3521 (((-111) |#1|) 206) (((-111) |#2|) 205)) (-2789 (($ $ $) 105 (|has| (-401 |#2|) (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 100 (|has| (-401 |#2|) (-357)))) (-1375 (($ $) 185)) (-2740 (($) 146 (|has| (-401 |#2|) (-343)))) (-1415 (((-111) $) 147 (|has| (-401 |#2|) (-343)))) (-4294 (($ $ (-754)) 138 (|has| (-401 |#2|) (-343))) (($ $) 137 (|has| (-401 |#2|) (-343)))) (-1633 (((-111) $) 113 (|has| (-401 |#2|) (-357)))) (-2641 (((-900) $) 149 (|has| (-401 |#2|) (-343))) (((-816 (-900)) $) 135 (|has| (-401 |#2|) (-343)))) (-2624 (((-111) $) 30)) (-4080 (((-754)) 217)) (-1380 (((-1235 $) (-1235 $)) 199)) (-2349 (((-401 |#2|) $) 49)) (-2370 (((-627 (-931 |#1|)) (-1152)) 180 (|has| |#1| (-357)))) (-4317 (((-3 $ "failed") $) 139 (|has| (-401 |#2|) (-343)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 109 (|has| (-401 |#2|) (-357)))) (-4205 ((|#3| $) 42 (|has| (-401 |#2|) (-357)))) (-2886 (((-900) $) 87 (|has| (-401 |#2|) (-362)))) (-2079 ((|#3| $) 153)) (-1276 (($ (-627 $)) 98 (|has| (-401 |#2|) (-357))) (($ $ $) 97 (|has| (-401 |#2|) (-357)))) (-1595 (((-1134) $) 9)) (-1486 (((-671 (-401 |#2|))) 194)) (-2659 (((-671 (-401 |#2|))) 196)) (-1951 (($ $) 114 (|has| (-401 |#2|) (-357)))) (-3093 (($ (-1235 |#2|) |#2|) 190)) (-3210 (((-671 (-401 |#2|))) 195)) (-2216 (((-671 (-401 |#2|))) 197)) (-1606 (((-2 (|:| |num| (-671 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-2559 (((-2 (|:| |num| (-1235 |#2|)) (|:| |den| |#2|)) $) 191)) (-1668 (((-1235 $)) 203)) (-3402 (((-1235 $)) 204)) (-3177 (((-111) $) 202)) (-1505 (((-111) $) 201) (((-111) $ |#1|) 188) (((-111) $ |#2|) 187)) (-3002 (($) 140 (|has| (-401 |#2|) (-343)) CONST)) (-4153 (($ (-900)) 86 (|has| (-401 |#2|) (-362)))) (-3945 (((-3 |#2| "failed")) 182)) (-1498 (((-1096) $) 10)) (-2161 (((-754)) 216)) (-2220 (($) 157)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 99 (|has| (-401 |#2|) (-357)))) (-1323 (($ (-627 $)) 96 (|has| (-401 |#2|) (-357))) (($ $ $) 95 (|has| (-401 |#2|) (-357)))) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) 143 (|has| (-401 |#2|) (-343)))) (-1727 (((-412 $) $) 110 (|has| (-401 |#2|) (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| (-401 |#2|) (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 107 (|has| (-401 |#2|) (-357)))) (-2761 (((-3 $ "failed") $ $) 90 (|has| (-401 |#2|) (-357)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 101 (|has| (-401 |#2|) (-357)))) (-2718 (((-754) $) 103 (|has| (-401 |#2|) (-357)))) (-1985 ((|#1| $ |#1| |#1|) 184)) (-1758 (((-3 |#2| "failed")) 183)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 104 (|has| (-401 |#2|) (-357)))) (-1637 (((-401 |#2|) (-1235 $)) 45) (((-401 |#2|)) 58)) (-4018 (((-754) $) 148 (|has| (-401 |#2|) (-343))) (((-3 (-754) "failed") $ $) 136 (|has| (-401 |#2|) (-343)))) (-2942 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-754)) 120 (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) 119 (|has| (-401 |#2|) (-357))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-627 (-1152)) (-627 (-754))) 127 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152)))) (-2520 (|has| (-401 |#2|) (-879 (-1152))) (|has| (-401 |#2|) (-357))))) (($ $ (-1152) (-754)) 128 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152)))) (-2520 (|has| (-401 |#2|) (-879 (-1152))) (|has| (-401 |#2|) (-357))))) (($ $ (-627 (-1152))) 129 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152)))) (-2520 (|has| (-401 |#2|) (-879 (-1152))) (|has| (-401 |#2|) (-357))))) (($ $ (-1152)) 130 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152)))) (-2520 (|has| (-401 |#2|) (-879 (-1152))) (|has| (-401 |#2|) (-357))))) (($ $ (-754)) 132 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-228))) (-2520 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) 134 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-228))) (-2520 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-4070 (((-671 (-401 |#2|)) (-1235 $) (-1 (-401 |#2|) (-401 |#2|))) 151 (|has| (-401 |#2|) (-357)))) (-1376 ((|#3|) 156)) (-3439 (($) 145 (|has| (-401 |#2|) (-343)))) (-3133 (((-1235 (-401 |#2|)) $ (-1235 $)) 48) (((-671 (-401 |#2|)) (-1235 $) (-1235 $)) 47) (((-1235 (-401 |#2|)) $) 64) (((-671 (-401 |#2|)) (-1235 $)) 63)) (-3562 (((-1235 (-401 |#2|)) $) 61) (($ (-1235 (-401 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 142 (|has| (-401 |#2|) (-343)))) (-2912 (((-1235 $) (-1235 $)) 200)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ (-401 |#2|)) 35) (($ (-401 (-552))) 84 (-1559 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-1017 (-401 (-552)))))) (($ $) 89 (|has| (-401 |#2|) (-357)))) (-3050 (($ $) 141 (|has| (-401 |#2|) (-343))) (((-3 $ "failed") $) 41 (|has| (-401 |#2|) (-142)))) (-2410 ((|#3| $) 43)) (-3995 (((-754)) 28)) (-4073 (((-111)) 213)) (-2423 (((-111) |#1|) 212) (((-111) |#2|) 211)) (-2957 (((-1235 $)) 65)) (-3778 (((-111) $ $) 93 (|has| (-401 |#2|) (-357)))) (-4090 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-2419 (((-111)) 215)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-754)) 122 (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) 121 (|has| (-401 |#2|) (-357))) (($ $ (-627 (-1152)) (-627 (-754))) 123 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152)))) (-2520 (|has| (-401 |#2|) (-879 (-1152))) (|has| (-401 |#2|) (-357))))) (($ $ (-1152) (-754)) 124 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152)))) (-2520 (|has| (-401 |#2|) (-879 (-1152))) (|has| (-401 |#2|) (-357))))) (($ $ (-627 (-1152))) 125 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152)))) (-2520 (|has| (-401 |#2|) (-879 (-1152))) (|has| (-401 |#2|) (-357))))) (($ $ (-1152)) 126 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152)))) (-2520 (|has| (-401 |#2|) (-879 (-1152))) (|has| (-401 |#2|) (-357))))) (($ $ (-754)) 131 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-228))) (-2520 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) 133 (-1559 (-2520 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-228))) (-2520 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-2292 (((-111) $ $) 6)) (-2407 (($ $ $) 118 (|has| (-401 |#2|) (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 115 (|has| (-401 |#2|) (-357)))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 |#2|)) 37) (($ (-401 |#2|) $) 36) (($ (-401 (-552)) $) 117 (|has| (-401 |#2|) (-357))) (($ $ (-401 (-552))) 116 (|has| (-401 |#2|) (-357))))) +(((-336 |#1| |#2| |#3|) (-137) (-1193) (-1211 |t#1|) (-1211 (-401 |t#2|))) (T -336)) +((-4080 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-754)))) (-2161 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-754)))) (-2419 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-3862 (*1 *2 *3 *3) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-4073 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-2423 (*1 *2 *3) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-2423 (*1 *2 *3) (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1193)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-401 *3))) (-5 *2 (-111)))) (-3865 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-2145 (*1 *2 *3) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-2145 (*1 *2 *3) (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1193)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-401 *3))) (-5 *2 (-111)))) (-2257 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-3521 (*1 *2 *3) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-3521 (*1 *2 *3) (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1193)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-401 *3))) (-5 *2 (-111)))) (-3402 (*1 *2) (-12 (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-1235 *1)) (-4 *1 (-336 *3 *4 *5)))) (-1668 (*1 *2) (-12 (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-1235 *1)) (-4 *1 (-336 *3 *4 *5)))) (-3177 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-1505 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-2912 (*1 *2 *2) (-12 (-5 *2 (-1235 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))))) (-1380 (*1 *2 *2) (-12 (-5 *2 (-1235 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))))) (-1913 (*1 *2 *2) (-12 (-5 *2 (-1235 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))))) (-2216 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-671 (-401 *4))))) (-2659 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-671 (-401 *4))))) (-3210 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-671 (-401 *4))))) (-1486 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-671 (-401 *4))))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-2 (|:| |num| (-1235 *4)) (|:| |den| *4))))) (-2342 (*1 *1 *2 *3) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-1211 *4)) (-4 *4 (-1193)) (-4 *1 (-336 *4 *3 *5)) (-4 *5 (-1211 (-401 *3))))) (-2559 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-2 (|:| |num| (-1235 *4)) (|:| |den| *4))))) (-3093 (*1 *1 *2 *3) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-1211 *4)) (-4 *4 (-1193)) (-4 *1 (-336 *4 *3 *5)) (-4 *5 (-1211 (-401 *3))))) (-1606 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-336 *4 *5 *6)) (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) (-5 *2 (-2 (|:| |num| (-671 *5)) (|:| |den| *5))))) (-1505 (*1 *2 *1 *3) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) (-1505 (*1 *2 *1 *3) (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1193)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-401 *3))) (-5 *2 (-111)))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))))) (-1375 (*1 *1 *1) (-12 (-4 *1 (-336 *2 *3 *4)) (-4 *2 (-1193)) (-4 *3 (-1211 *2)) (-4 *4 (-1211 (-401 *3))))) (-1985 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-336 *2 *3 *4)) (-4 *2 (-1193)) (-4 *3 (-1211 *2)) (-4 *4 (-1211 (-401 *3))))) (-1758 (*1 *2) (|partial| -12 (-4 *1 (-336 *3 *2 *4)) (-4 *3 (-1193)) (-4 *4 (-1211 (-401 *2))) (-4 *2 (-1211 *3)))) (-3945 (*1 *2) (|partial| -12 (-4 *1 (-336 *3 *2 *4)) (-4 *3 (-1193)) (-4 *4 (-1211 (-401 *2))) (-4 *2 (-1211 *3)))) (-4090 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-1193)) (-4 *6 (-1211 (-401 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-336 *4 *5 *6)))) (-2370 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *1 (-336 *4 *5 *6)) (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) (-4 *4 (-357)) (-5 *2 (-627 (-931 *4))))) (-3814 (*1 *2) (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) (-4 *3 (-362)) (-5 *2 (-627 (-627 *3)))))) +(-13 (-707 (-401 |t#2|) |t#3|) (-10 -8 (-15 -4080 ((-754))) (-15 -2161 ((-754))) (-15 -2419 ((-111))) (-15 -3862 ((-111) |t#1| |t#1|)) (-15 -4073 ((-111))) (-15 -2423 ((-111) |t#1|)) (-15 -2423 ((-111) |t#2|)) (-15 -3865 ((-111))) (-15 -2145 ((-111) |t#1|)) (-15 -2145 ((-111) |t#2|)) (-15 -2257 ((-111))) (-15 -3521 ((-111) |t#1|)) (-15 -3521 ((-111) |t#2|)) (-15 -3402 ((-1235 $))) (-15 -1668 ((-1235 $))) (-15 -3177 ((-111) $)) (-15 -1505 ((-111) $)) (-15 -2912 ((-1235 $) (-1235 $))) (-15 -1380 ((-1235 $) (-1235 $))) (-15 -1913 ((-1235 $) (-1235 $))) (-15 -2216 ((-671 (-401 |t#2|)))) (-15 -2659 ((-671 (-401 |t#2|)))) (-15 -3210 ((-671 (-401 |t#2|)))) (-15 -1486 ((-671 (-401 |t#2|)))) (-15 -2238 ((-2 (|:| |num| (-1235 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2342 ($ (-1235 |t#2|) |t#2|)) (-15 -2559 ((-2 (|:| |num| (-1235 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3093 ($ (-1235 |t#2|) |t#2|)) (-15 -1606 ((-2 (|:| |num| (-671 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1505 ((-111) $ |t#1|)) (-15 -1505 ((-111) $ |t#2|)) (-15 -2942 ($ $ (-1 |t#2| |t#2|))) (-15 -1375 ($ $)) (-15 -1985 (|t#1| $ |t#1| |t#1|)) (-15 -1758 ((-3 |t#2| "failed"))) (-15 -3945 ((-3 |t#2| "failed"))) (-15 -4090 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-357)) (-15 -2370 ((-627 (-931 |t#1|)) (-1152))) |%noBranch|) (IF (|has| |t#1| (-362)) (-15 -3814 ((-627 (-627 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-38 #1=(-401 |#2|)) . T) ((-38 $) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-101) . T) ((-110 #0# #0#) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-142) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-142))) ((-144) |has| (-401 |#2|) (-144)) ((-599 (-842)) . T) ((-169) . T) ((-600 |#3|) . T) ((-226 #1#) |has| (-401 |#2|) (-357)) ((-228) -1559 (|has| (-401 |#2|) (-343)) (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357)))) ((-238) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-284) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-301) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-357) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-396) |has| (-401 |#2|) (-343)) ((-362) -1559 (|has| (-401 |#2|) (-362)) (|has| (-401 |#2|) (-343))) ((-343) |has| (-401 |#2|) (-343)) ((-364 #1# |#3|) . T) ((-403 #1# |#3|) . T) ((-371 #1#) . T) ((-405 #1#) . T) ((-445) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-544) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-630 #0#) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-630 #1#) . T) ((-630 $) . T) ((-623 #1#) . T) ((-623 (-552)) |has| (-401 |#2|) (-623 (-552))) ((-700 #0#) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-700 #1#) . T) ((-700 $) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-707 #1# |#3|) . T) ((-709) . T) ((-879 (-1152)) -12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152)))) ((-899) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-1017 (-401 (-552))) |has| (-401 |#2|) (-1017 (-401 (-552)))) ((-1017 #1#) . T) ((-1017 (-552)) |has| (-401 |#2|) (-1017 (-552))) ((-1034 #0#) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357))) ((-1034 #1#) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1127) |has| (-401 |#2|) (-343)) ((-1193) -1559 (|has| (-401 |#2|) (-343)) (|has| (-401 |#2|) (-357)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 (((-889 |#1|) $) NIL) (($ $ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| (-889 |#1|) (-362)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) NIL (|has| (-889 |#1|) (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-889 |#1|) "failed") $) NIL)) (-1703 (((-889 |#1|) $) NIL)) (-2342 (($ (-1235 (-889 |#1|))) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-889 |#1|) (-362)))) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-889 |#1|) (-362)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) NIL (|has| (-889 |#1|) (-362)))) (-1415 (((-111) $) NIL (|has| (-889 |#1|) (-362)))) (-4294 (($ $ (-754)) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362)))) (($ $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-1633 (((-111) $) NIL)) (-2641 (((-900) $) NIL (|has| (-889 |#1|) (-362))) (((-816 (-900)) $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-2624 (((-111) $) NIL)) (-2611 (($) NIL (|has| (-889 |#1|) (-362)))) (-2492 (((-111) $) NIL (|has| (-889 |#1|) (-362)))) (-2349 (((-889 |#1|) $) NIL) (($ $ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-4317 (((-3 $ "failed") $) NIL (|has| (-889 |#1|) (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 (-889 |#1|)) $) NIL) (((-1148 $) $ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-2886 (((-900) $) NIL (|has| (-889 |#1|) (-362)))) (-1980 (((-1148 (-889 |#1|)) $) NIL (|has| (-889 |#1|) (-362)))) (-2259 (((-1148 (-889 |#1|)) $) NIL (|has| (-889 |#1|) (-362))) (((-3 (-1148 (-889 |#1|)) "failed") $ $) NIL (|has| (-889 |#1|) (-362)))) (-3520 (($ $ (-1148 (-889 |#1|))) NIL (|has| (-889 |#1|) (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-889 |#1|) (-362)) CONST)) (-4153 (($ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-2249 (((-111) $) NIL)) (-1498 (((-1096) $) NIL)) (-2766 (((-937 (-1096))) NIL)) (-2220 (($) NIL (|has| (-889 |#1|) (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| (-889 |#1|) (-362)))) (-1727 (((-412 $) $) NIL)) (-3804 (((-816 (-900))) NIL) (((-900)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-754) $) NIL (|has| (-889 |#1|) (-362))) (((-3 (-754) "failed") $ $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-2405 (((-132)) NIL)) (-2942 (($ $) NIL (|has| (-889 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-889 |#1|) (-362)))) (-3567 (((-816 (-900)) $) NIL) (((-900) $) NIL)) (-1376 (((-1148 (-889 |#1|))) NIL)) (-3439 (($) NIL (|has| (-889 |#1|) (-362)))) (-3231 (($) NIL (|has| (-889 |#1|) (-362)))) (-3133 (((-1235 (-889 |#1|)) $) NIL) (((-671 (-889 |#1|)) (-1235 $)) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| (-889 |#1|) (-362)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-889 |#1|)) NIL)) (-3050 (($ $) NIL (|has| (-889 |#1|) (-362))) (((-3 $ "failed") $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-3995 (((-754)) NIL)) (-2957 (((-1235 $)) NIL) (((-1235 $) (-900)) NIL)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-3406 (($ $) NIL (|has| (-889 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-889 |#1|) (-362)))) (-4251 (($ $) NIL (|has| (-889 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-889 |#1|) (-362)))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL) (($ $ (-889 |#1|)) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ (-889 |#1|)) NIL) (($ (-889 |#1|) $) NIL))) +(((-337 |#1| |#2|) (-13 (-323 (-889 |#1|)) (-10 -7 (-15 -2766 ((-937 (-1096)))))) (-900) (-900)) (T -337)) +((-2766 (*1 *2) (-12 (-5 *2 (-937 (-1096))) (-5 *1 (-337 *3 *4)) (-14 *3 (-900)) (-14 *4 (-900))))) +(-13 (-323 (-889 |#1|)) (-10 -7 (-15 -2766 ((-937 (-1096)))))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 44)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 ((|#1| $) NIL) (($ $ (-900)) NIL (|has| |#1| (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) 41 (|has| |#1| (-362)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) NIL (|has| |#1| (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) 115)) (-1703 ((|#1| $) 86)) (-2342 (($ (-1235 |#1|)) 104)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-362)))) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) 98 (|has| |#1| (-362)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) 129 (|has| |#1| (-362)))) (-1415 (((-111) $) 48 (|has| |#1| (-362)))) (-4294 (($ $ (-754)) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1633 (((-111) $) NIL)) (-2641 (((-900) $) 45 (|has| |#1| (-362))) (((-816 (-900)) $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2624 (((-111) $) NIL)) (-2611 (($) 131 (|has| |#1| (-362)))) (-2492 (((-111) $) NIL (|has| |#1| (-362)))) (-2349 ((|#1| $) NIL) (($ $ (-900)) NIL (|has| |#1| (-362)))) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 |#1|) $) 90) (((-1148 $) $ (-900)) NIL (|has| |#1| (-362)))) (-2886 (((-900) $) 139 (|has| |#1| (-362)))) (-1980 (((-1148 |#1|) $) NIL (|has| |#1| (-362)))) (-2259 (((-1148 |#1|) $) NIL (|has| |#1| (-362))) (((-3 (-1148 |#1|) "failed") $ $) NIL (|has| |#1| (-362)))) (-3520 (($ $ (-1148 |#1|)) NIL (|has| |#1| (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 146)) (-3002 (($) NIL (|has| |#1| (-362)) CONST)) (-4153 (($ (-900)) 71 (|has| |#1| (-362)))) (-2249 (((-111) $) 118)) (-1498 (((-1096) $) NIL)) (-2766 (((-937 (-1096))) 42)) (-2220 (($) 127 (|has| |#1| (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) 93 (|has| |#1| (-362)))) (-1727 (((-412 $) $) NIL)) (-3804 (((-816 (-900))) 67) (((-900)) 68)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-754) $) 130 (|has| |#1| (-362))) (((-3 (-754) "failed") $ $) 125 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2405 (((-132)) NIL)) (-2942 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-3567 (((-816 (-900)) $) NIL) (((-900) $) NIL)) (-1376 (((-1148 |#1|)) 96)) (-3439 (($) 128 (|has| |#1| (-362)))) (-3231 (($) 136 (|has| |#1| (-362)))) (-3133 (((-1235 |#1|) $) 59) (((-671 |#1|) (-1235 $)) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| |#1| (-362)))) (-1477 (((-842) $) 142) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) 75)) (-3050 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3995 (((-754)) 138)) (-2957 (((-1235 $)) 117) (((-1235 $) (-900)) 73)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) 49 T CONST)) (-1933 (($) 46 T CONST)) (-3406 (($ $) 81 (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-4251 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-2292 (((-111) $ $) 47)) (-2407 (($ $ $) 144) (($ $ |#1|) 145)) (-2396 (($ $) 126) (($ $ $) NIL)) (-2384 (($ $ $) 61)) (** (($ $ (-900)) 148) (($ $ (-754)) 149) (($ $ (-552)) 147)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 77) (($ $ $) 76) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143))) +(((-338 |#1| |#2|) (-13 (-323 |#1|) (-10 -7 (-15 -2766 ((-937 (-1096)))))) (-343) (-1148 |#1|)) (T -338)) +((-2766 (*1 *2) (-12 (-5 *2 (-937 (-1096))) (-5 *1 (-338 *3 *4)) (-4 *3 (-343)) (-14 *4 (-1148 *3))))) +(-13 (-323 |#1|) (-10 -7 (-15 -2766 ((-937 (-1096)))))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 ((|#1| $) NIL) (($ $ (-900)) NIL (|has| |#1| (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| |#1| (-362)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) NIL (|has| |#1| (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-2342 (($ (-1235 |#1|)) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-362)))) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| |#1| (-362)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) NIL (|has| |#1| (-362)))) (-1415 (((-111) $) NIL (|has| |#1| (-362)))) (-4294 (($ $ (-754)) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1633 (((-111) $) NIL)) (-2641 (((-900) $) NIL (|has| |#1| (-362))) (((-816 (-900)) $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2624 (((-111) $) NIL)) (-2611 (($) NIL (|has| |#1| (-362)))) (-2492 (((-111) $) NIL (|has| |#1| (-362)))) (-2349 ((|#1| $) NIL) (($ $ (-900)) NIL (|has| |#1| (-362)))) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 |#1|) $) NIL) (((-1148 $) $ (-900)) NIL (|has| |#1| (-362)))) (-2886 (((-900) $) NIL (|has| |#1| (-362)))) (-1980 (((-1148 |#1|) $) NIL (|has| |#1| (-362)))) (-2259 (((-1148 |#1|) $) NIL (|has| |#1| (-362))) (((-3 (-1148 |#1|) "failed") $ $) NIL (|has| |#1| (-362)))) (-3520 (($ $ (-1148 |#1|)) NIL (|has| |#1| (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| |#1| (-362)) CONST)) (-4153 (($ (-900)) NIL (|has| |#1| (-362)))) (-2249 (((-111) $) NIL)) (-1498 (((-1096) $) NIL)) (-2766 (((-937 (-1096))) NIL)) (-2220 (($) NIL (|has| |#1| (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| |#1| (-362)))) (-1727 (((-412 $) $) NIL)) (-3804 (((-816 (-900))) NIL) (((-900)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-754) $) NIL (|has| |#1| (-362))) (((-3 (-754) "failed") $ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2405 (((-132)) NIL)) (-2942 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-3567 (((-816 (-900)) $) NIL) (((-900) $) NIL)) (-1376 (((-1148 |#1|)) NIL)) (-3439 (($) NIL (|has| |#1| (-362)))) (-3231 (($) NIL (|has| |#1| (-362)))) (-3133 (((-1235 |#1|) $) NIL) (((-671 |#1|) (-1235 $)) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| |#1| (-362)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) NIL)) (-3050 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3995 (((-754)) NIL)) (-2957 (((-1235 $)) NIL) (((-1235 $) (-900)) NIL)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-3406 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-4251 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-339 |#1| |#2|) (-13 (-323 |#1|) (-10 -7 (-15 -2766 ((-937 (-1096)))))) (-343) (-900)) (T -339)) +((-2766 (*1 *2) (-12 (-5 *2 (-937 (-1096))) (-5 *1 (-339 *3 *4)) (-4 *3 (-343)) (-14 *4 (-900))))) +(-13 (-323 |#1|) (-10 -7 (-15 -2766 ((-937 (-1096)))))) +((-3246 (((-754) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096)))))) 42)) (-1390 (((-937 (-1096)) (-1148 |#1|)) 85)) (-1487 (((-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))) (-1148 |#1|)) 78)) (-2318 (((-671 |#1|) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096)))))) 86)) (-4092 (((-3 (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))) "failed") (-900)) 13)) (-1941 (((-3 (-1148 |#1|) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096)))))) (-900)) 18))) +(((-340 |#1|) (-10 -7 (-15 -1390 ((-937 (-1096)) (-1148 |#1|))) (-15 -1487 ((-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))) (-1148 |#1|))) (-15 -2318 ((-671 |#1|) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))))) (-15 -3246 ((-754) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))))) (-15 -4092 ((-3 (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))) "failed") (-900))) (-15 -1941 ((-3 (-1148 |#1|) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096)))))) (-900)))) (-343)) (T -340)) +((-1941 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-3 (-1148 *4) (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096))))))) (-5 *1 (-340 *4)) (-4 *4 (-343)))) (-4092 (*1 *2 *3) (|partial| -12 (-5 *3 (-900)) (-5 *2 (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096)))))) (-5 *1 (-340 *4)) (-4 *4 (-343)))) (-3246 (*1 *2 *3) (-12 (-5 *3 (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096)))))) (-4 *4 (-343)) (-5 *2 (-754)) (-5 *1 (-340 *4)))) (-2318 (*1 *2 *3) (-12 (-5 *3 (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096)))))) (-4 *4 (-343)) (-5 *2 (-671 *4)) (-5 *1 (-340 *4)))) (-1487 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-343)) (-5 *2 (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096)))))) (-5 *1 (-340 *4)))) (-1390 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-343)) (-5 *2 (-937 (-1096))) (-5 *1 (-340 *4))))) +(-10 -7 (-15 -1390 ((-937 (-1096)) (-1148 |#1|))) (-15 -1487 ((-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))) (-1148 |#1|))) (-15 -2318 ((-671 |#1|) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))))) (-15 -3246 ((-754) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))))) (-15 -4092 ((-3 (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))) "failed") (-900))) (-15 -1941 ((-3 (-1148 |#1|) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096)))))) (-900)))) +((-1477 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) +(((-341 |#1| |#2| |#3|) (-10 -7 (-15 -1477 (|#3| |#1|)) (-15 -1477 (|#1| |#3|))) (-323 |#2|) (-343) (-323 |#2|)) (T -341)) +((-1477 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *2 (-323 *4)) (-5 *1 (-341 *2 *4 *3)) (-4 *3 (-323 *4)))) (-1477 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *2 (-323 *4)) (-5 *1 (-341 *3 *4 *2)) (-4 *3 (-323 *4))))) +(-10 -7 (-15 -1477 (|#3| |#1|)) (-15 -1477 (|#1| |#3|))) +((-1415 (((-111) $) 51)) (-2641 (((-816 (-900)) $) 21) (((-900) $) 52)) (-4317 (((-3 $ "failed") $) 16)) (-3002 (($) 9)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 93)) (-4018 (((-3 (-754) "failed") $ $) 71) (((-754) $) 60)) (-2942 (($ $ (-754)) NIL) (($ $) 8)) (-3439 (($) 44)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 34)) (-3050 (((-3 $ "failed") $) 38) (($ $) 37))) +(((-342 |#1|) (-10 -8 (-15 -2641 ((-900) |#1|)) (-15 -4018 ((-754) |#1|)) (-15 -1415 ((-111) |#1|)) (-15 -3439 (|#1|)) (-15 -3319 ((-3 (-1235 |#1|) "failed") (-671 |#1|))) (-15 -3050 (|#1| |#1|)) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -3002 (|#1|)) (-15 -4317 ((-3 |#1| "failed") |#1|)) (-15 -4018 ((-3 (-754) "failed") |#1| |#1|)) (-15 -2641 ((-816 (-900)) |#1|)) (-15 -3050 ((-3 |#1| "failed") |#1|)) (-15 -3128 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)))) (-343)) (T -342)) +NIL +(-10 -8 (-15 -2641 ((-900) |#1|)) (-15 -4018 ((-754) |#1|)) (-15 -1415 ((-111) |#1|)) (-15 -3439 (|#1|)) (-15 -3319 ((-3 (-1235 |#1|) "failed") (-671 |#1|))) (-15 -3050 (|#1| |#1|)) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -3002 (|#1|)) (-15 -4317 ((-3 |#1| "failed") |#1|)) (-15 -4018 ((-3 (-754) "failed") |#1| |#1|)) (-15 -2641 ((-816 (-900)) |#1|)) (-15 -3050 ((-3 |#1| "failed") |#1|)) (-15 -3128 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-2038 (((-1162 (-900) (-754)) (-552)) 90)) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 70)) (-2487 (((-412 $) $) 69)) (-4224 (((-111) $ $) 57)) (-3307 (((-754)) 100)) (-3887 (($) 17 T CONST)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-2813 (($ $ $) 53)) (-2040 (((-3 $ "failed") $) 32)) (-1279 (($) 103)) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-2740 (($) 88)) (-1415 (((-111) $) 87)) (-4294 (($ $) 76) (($ $ (-754)) 75)) (-1633 (((-111) $) 68)) (-2641 (((-816 (-900)) $) 78) (((-900) $) 85)) (-2624 (((-111) $) 30)) (-4317 (((-3 $ "failed") $) 99)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-2886 (((-900) $) 102)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 67)) (-3002 (($) 98 T CONST)) (-4153 (($ (-900)) 101)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) 91)) (-1727 (((-412 $) $) 71)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-2718 (((-754) $) 56)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-4018 (((-3 (-754) "failed") $ $) 77) (((-754) $) 86)) (-2942 (($ $ (-754)) 96) (($ $) 94)) (-3439 (($) 89)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 92)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63)) (-3050 (((-3 $ "failed") $) 79) (($ $) 93)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-754)) 97) (($ $) 95)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ $) 62)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 66)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64))) +(((-343) (-137)) (T -343)) +((-3050 (*1 *1 *1) (-4 *1 (-343))) (-3319 (*1 *2 *3) (|partial| -12 (-5 *3 (-671 *1)) (-4 *1 (-343)) (-5 *2 (-1235 *1)))) (-3703 (*1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))))) (-2038 (*1 *2 *3) (-12 (-4 *1 (-343)) (-5 *3 (-552)) (-5 *2 (-1162 (-900) (-754))))) (-3439 (*1 *1) (-4 *1 (-343))) (-2740 (*1 *1) (-4 *1 (-343))) (-1415 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-111)))) (-4018 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-754)))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-900)))) (-3727 (*1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-396) (-362) (-1127) (-228) (-10 -8 (-15 -3050 ($ $)) (-15 -3319 ((-3 (-1235 $) "failed") (-671 $))) (-15 -3703 ((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552)))))) (-15 -2038 ((-1162 (-900) (-754)) (-552))) (-15 -3439 ($)) (-15 -2740 ($)) (-15 -1415 ((-111) $)) (-15 -4018 ((-754) $)) (-15 -2641 ((-900) $)) (-15 -3727 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-142) . T) ((-599 (-842)) . T) ((-169) . T) ((-228) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-396) . T) ((-362) . T) ((-445) . T) ((-544) . T) ((-630 #0#) . T) ((-630 $) . T) ((-700 #0#) . T) ((-700 $) . T) ((-709) . T) ((-899) . T) ((-1034 #0#) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1127) . T) ((-1193) . T)) +((-2993 (((-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) |#1|) 53)) (-3402 (((-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|)))) 51))) +(((-344 |#1| |#2| |#3|) (-10 -7 (-15 -3402 ((-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))))) (-15 -2993 ((-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) |#1|))) (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $)))) (-1211 |#1|) (-403 |#1| |#2|)) (T -344)) +((-2993 (*1 *2 *3) (-12 (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) (-4 *4 (-1211 *3)) (-5 *2 (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-3402 (*1 *2) (-12 (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) (-4 *4 (-1211 *3)) (-5 *2 (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) +(-10 -7 (-15 -3402 ((-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))))) (-15 -2993 ((-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) |#1|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 (((-889 |#1|) $) NIL) (($ $ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| (-889 |#1|) (-362)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-3246 (((-754)) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) NIL (|has| (-889 |#1|) (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-889 |#1|) "failed") $) NIL)) (-1703 (((-889 |#1|) $) NIL)) (-2342 (($ (-1235 (-889 |#1|))) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-889 |#1|) (-362)))) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-889 |#1|) (-362)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) NIL (|has| (-889 |#1|) (-362)))) (-1415 (((-111) $) NIL (|has| (-889 |#1|) (-362)))) (-4294 (($ $ (-754)) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362)))) (($ $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-1633 (((-111) $) NIL)) (-2641 (((-900) $) NIL (|has| (-889 |#1|) (-362))) (((-816 (-900)) $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-2624 (((-111) $) NIL)) (-2611 (($) NIL (|has| (-889 |#1|) (-362)))) (-2492 (((-111) $) NIL (|has| (-889 |#1|) (-362)))) (-2349 (((-889 |#1|) $) NIL) (($ $ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-4317 (((-3 $ "failed") $) NIL (|has| (-889 |#1|) (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 (-889 |#1|)) $) NIL) (((-1148 $) $ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-2886 (((-900) $) NIL (|has| (-889 |#1|) (-362)))) (-1980 (((-1148 (-889 |#1|)) $) NIL (|has| (-889 |#1|) (-362)))) (-2259 (((-1148 (-889 |#1|)) $) NIL (|has| (-889 |#1|) (-362))) (((-3 (-1148 (-889 |#1|)) "failed") $ $) NIL (|has| (-889 |#1|) (-362)))) (-3520 (($ $ (-1148 (-889 |#1|))) NIL (|has| (-889 |#1|) (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-889 |#1|) (-362)) CONST)) (-4153 (($ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-2249 (((-111) $) NIL)) (-1498 (((-1096) $) NIL)) (-2822 (((-1235 (-627 (-2 (|:| -4288 (-889 |#1|)) (|:| -4153 (-1096)))))) NIL)) (-2938 (((-671 (-889 |#1|))) NIL)) (-2220 (($) NIL (|has| (-889 |#1|) (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| (-889 |#1|) (-362)))) (-1727 (((-412 $) $) NIL)) (-3804 (((-816 (-900))) NIL) (((-900)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-754) $) NIL (|has| (-889 |#1|) (-362))) (((-3 (-754) "failed") $ $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-2405 (((-132)) NIL)) (-2942 (($ $) NIL (|has| (-889 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-889 |#1|) (-362)))) (-3567 (((-816 (-900)) $) NIL) (((-900) $) NIL)) (-1376 (((-1148 (-889 |#1|))) NIL)) (-3439 (($) NIL (|has| (-889 |#1|) (-362)))) (-3231 (($) NIL (|has| (-889 |#1|) (-362)))) (-3133 (((-1235 (-889 |#1|)) $) NIL) (((-671 (-889 |#1|)) (-1235 $)) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| (-889 |#1|) (-362)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-889 |#1|)) NIL)) (-3050 (($ $) NIL (|has| (-889 |#1|) (-362))) (((-3 $ "failed") $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-3995 (((-754)) NIL)) (-2957 (((-1235 $)) NIL) (((-1235 $) (-900)) NIL)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-3406 (($ $) NIL (|has| (-889 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-889 |#1|) (-362)))) (-4251 (($ $) NIL (|has| (-889 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-889 |#1|) (-362)))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL) (($ $ (-889 |#1|)) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ (-889 |#1|)) NIL) (($ (-889 |#1|) $) NIL))) +(((-345 |#1| |#2|) (-13 (-323 (-889 |#1|)) (-10 -7 (-15 -2822 ((-1235 (-627 (-2 (|:| -4288 (-889 |#1|)) (|:| -4153 (-1096))))))) (-15 -2938 ((-671 (-889 |#1|)))) (-15 -3246 ((-754))))) (-900) (-900)) (T -345)) +((-2822 (*1 *2) (-12 (-5 *2 (-1235 (-627 (-2 (|:| -4288 (-889 *3)) (|:| -4153 (-1096)))))) (-5 *1 (-345 *3 *4)) (-14 *3 (-900)) (-14 *4 (-900)))) (-2938 (*1 *2) (-12 (-5 *2 (-671 (-889 *3))) (-5 *1 (-345 *3 *4)) (-14 *3 (-900)) (-14 *4 (-900)))) (-3246 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-345 *3 *4)) (-14 *3 (-900)) (-14 *4 (-900))))) +(-13 (-323 (-889 |#1|)) (-10 -7 (-15 -2822 ((-1235 (-627 (-2 (|:| -4288 (-889 |#1|)) (|:| -4153 (-1096))))))) (-15 -2938 ((-671 (-889 |#1|)))) (-15 -3246 ((-754))))) +((-1465 (((-111) $ $) 61)) (-3024 (((-111) $) 74)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 ((|#1| $) 92) (($ $ (-900)) 90 (|has| |#1| (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) 148 (|has| |#1| (-362)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-3246 (((-754)) 89)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) 162 (|has| |#1| (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) 112)) (-1703 ((|#1| $) 91)) (-2342 (($ (-1235 |#1|)) 58)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-362)))) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) 158 (|has| |#1| (-362)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) 149 (|has| |#1| (-362)))) (-1415 (((-111) $) NIL (|has| |#1| (-362)))) (-4294 (($ $ (-754)) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1633 (((-111) $) NIL)) (-2641 (((-900) $) NIL (|has| |#1| (-362))) (((-816 (-900)) $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2624 (((-111) $) NIL)) (-2611 (($) 98 (|has| |#1| (-362)))) (-2492 (((-111) $) 175 (|has| |#1| (-362)))) (-2349 ((|#1| $) 94) (($ $ (-900)) 93 (|has| |#1| (-362)))) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 |#1|) $) 189) (((-1148 $) $ (-900)) NIL (|has| |#1| (-362)))) (-2886 (((-900) $) 134 (|has| |#1| (-362)))) (-1980 (((-1148 |#1|) $) 73 (|has| |#1| (-362)))) (-2259 (((-1148 |#1|) $) 70 (|has| |#1| (-362))) (((-3 (-1148 |#1|) "failed") $ $) 82 (|has| |#1| (-362)))) (-3520 (($ $ (-1148 |#1|)) 69 (|has| |#1| (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 192)) (-3002 (($) NIL (|has| |#1| (-362)) CONST)) (-4153 (($ (-900)) 137 (|has| |#1| (-362)))) (-2249 (((-111) $) 108)) (-1498 (((-1096) $) NIL)) (-2822 (((-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096)))))) 83)) (-2938 (((-671 |#1|)) 87)) (-2220 (($) 96 (|has| |#1| (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) 150 (|has| |#1| (-362)))) (-1727 (((-412 $) $) NIL)) (-3804 (((-816 (-900))) NIL) (((-900)) 151)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-754) $) NIL (|has| |#1| (-362))) (((-3 (-754) "failed") $ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2405 (((-132)) NIL)) (-2942 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-3567 (((-816 (-900)) $) NIL) (((-900) $) 62)) (-1376 (((-1148 |#1|)) 152)) (-3439 (($) 133 (|has| |#1| (-362)))) (-3231 (($) NIL (|has| |#1| (-362)))) (-3133 (((-1235 |#1|) $) 106) (((-671 |#1|) (-1235 $)) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| |#1| (-362)))) (-1477 (((-842) $) 124) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) 57)) (-3050 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3995 (((-754)) 156)) (-2957 (((-1235 $)) 172) (((-1235 $) (-900)) 101)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) 117 T CONST)) (-1933 (($) 33 T CONST)) (-3406 (($ $) 107 (|has| |#1| (-362))) (($ $ (-754)) 99 (|has| |#1| (-362)))) (-4251 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-2292 (((-111) $ $) 183)) (-2407 (($ $ $) 104) (($ $ |#1|) 105)) (-2396 (($ $) 177) (($ $ $) 181)) (-2384 (($ $ $) 179)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) 138)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 186) (($ $ $) 142) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) +(((-346 |#1| |#2|) (-13 (-323 |#1|) (-10 -7 (-15 -2822 ((-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))))) (-15 -2938 ((-671 |#1|))) (-15 -3246 ((-754))))) (-343) (-3 (-1148 |#1|) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))))) (T -346)) +((-2822 (*1 *2) (-12 (-5 *2 (-1235 (-627 (-2 (|:| -4288 *3) (|:| -4153 (-1096)))))) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1148 *3) *2)))) (-2938 (*1 *2) (-12 (-5 *2 (-671 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1148 *3) (-1235 (-627 (-2 (|:| -4288 *3) (|:| -4153 (-1096))))))))) (-3246 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1148 *3) (-1235 (-627 (-2 (|:| -4288 *3) (|:| -4153 (-1096)))))))))) +(-13 (-323 |#1|) (-10 -7 (-15 -2822 ((-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))))) (-15 -2938 ((-671 |#1|))) (-15 -3246 ((-754))))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 ((|#1| $) NIL) (($ $ (-900)) NIL (|has| |#1| (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| |#1| (-362)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-3246 (((-754)) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) NIL (|has| |#1| (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-2342 (($ (-1235 |#1|)) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-362)))) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| |#1| (-362)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) NIL (|has| |#1| (-362)))) (-1415 (((-111) $) NIL (|has| |#1| (-362)))) (-4294 (($ $ (-754)) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1633 (((-111) $) NIL)) (-2641 (((-900) $) NIL (|has| |#1| (-362))) (((-816 (-900)) $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2624 (((-111) $) NIL)) (-2611 (($) NIL (|has| |#1| (-362)))) (-2492 (((-111) $) NIL (|has| |#1| (-362)))) (-2349 ((|#1| $) NIL) (($ $ (-900)) NIL (|has| |#1| (-362)))) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 |#1|) $) NIL) (((-1148 $) $ (-900)) NIL (|has| |#1| (-362)))) (-2886 (((-900) $) NIL (|has| |#1| (-362)))) (-1980 (((-1148 |#1|) $) NIL (|has| |#1| (-362)))) (-2259 (((-1148 |#1|) $) NIL (|has| |#1| (-362))) (((-3 (-1148 |#1|) "failed") $ $) NIL (|has| |#1| (-362)))) (-3520 (($ $ (-1148 |#1|)) NIL (|has| |#1| (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| |#1| (-362)) CONST)) (-4153 (($ (-900)) NIL (|has| |#1| (-362)))) (-2249 (((-111) $) NIL)) (-1498 (((-1096) $) NIL)) (-2822 (((-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096)))))) NIL)) (-2938 (((-671 |#1|)) NIL)) (-2220 (($) NIL (|has| |#1| (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| |#1| (-362)))) (-1727 (((-412 $) $) NIL)) (-3804 (((-816 (-900))) NIL) (((-900)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-754) $) NIL (|has| |#1| (-362))) (((-3 (-754) "failed") $ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2405 (((-132)) NIL)) (-2942 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-3567 (((-816 (-900)) $) NIL) (((-900) $) NIL)) (-1376 (((-1148 |#1|)) NIL)) (-3439 (($) NIL (|has| |#1| (-362)))) (-3231 (($) NIL (|has| |#1| (-362)))) (-3133 (((-1235 |#1|) $) NIL) (((-671 |#1|) (-1235 $)) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| |#1| (-362)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) NIL)) (-3050 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3995 (((-754)) NIL)) (-2957 (((-1235 $)) NIL) (((-1235 $) (-900)) NIL)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-3406 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-4251 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-347 |#1| |#2|) (-13 (-323 |#1|) (-10 -7 (-15 -2822 ((-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))))) (-15 -2938 ((-671 |#1|))) (-15 -3246 ((-754))))) (-343) (-900)) (T -347)) +((-2822 (*1 *2) (-12 (-5 *2 (-1235 (-627 (-2 (|:| -4288 *3) (|:| -4153 (-1096)))))) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-900)))) (-2938 (*1 *2) (-12 (-5 *2 (-671 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-900)))) (-3246 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-900))))) +(-13 (-323 |#1|) (-10 -7 (-15 -2822 ((-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))))) (-15 -2938 ((-671 |#1|))) (-15 -3246 ((-754))))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 (((-889 |#1|) $) NIL) (($ $ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| (-889 |#1|) (-362)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) NIL (|has| (-889 |#1|) (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-889 |#1|) "failed") $) NIL)) (-1703 (((-889 |#1|) $) NIL)) (-2342 (($ (-1235 (-889 |#1|))) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-889 |#1|) (-362)))) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-889 |#1|) (-362)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) NIL (|has| (-889 |#1|) (-362)))) (-1415 (((-111) $) NIL (|has| (-889 |#1|) (-362)))) (-4294 (($ $ (-754)) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362)))) (($ $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-1633 (((-111) $) NIL)) (-2641 (((-900) $) NIL (|has| (-889 |#1|) (-362))) (((-816 (-900)) $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-2624 (((-111) $) NIL)) (-2611 (($) NIL (|has| (-889 |#1|) (-362)))) (-2492 (((-111) $) NIL (|has| (-889 |#1|) (-362)))) (-2349 (((-889 |#1|) $) NIL) (($ $ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-4317 (((-3 $ "failed") $) NIL (|has| (-889 |#1|) (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 (-889 |#1|)) $) NIL) (((-1148 $) $ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-2886 (((-900) $) NIL (|has| (-889 |#1|) (-362)))) (-1980 (((-1148 (-889 |#1|)) $) NIL (|has| (-889 |#1|) (-362)))) (-2259 (((-1148 (-889 |#1|)) $) NIL (|has| (-889 |#1|) (-362))) (((-3 (-1148 (-889 |#1|)) "failed") $ $) NIL (|has| (-889 |#1|) (-362)))) (-3520 (($ $ (-1148 (-889 |#1|))) NIL (|has| (-889 |#1|) (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-889 |#1|) (-362)) CONST)) (-4153 (($ (-900)) NIL (|has| (-889 |#1|) (-362)))) (-2249 (((-111) $) NIL)) (-1498 (((-1096) $) NIL)) (-2220 (($) NIL (|has| (-889 |#1|) (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| (-889 |#1|) (-362)))) (-1727 (((-412 $) $) NIL)) (-3804 (((-816 (-900))) NIL) (((-900)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-754) $) NIL (|has| (-889 |#1|) (-362))) (((-3 (-754) "failed") $ $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-2405 (((-132)) NIL)) (-2942 (($ $) NIL (|has| (-889 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-889 |#1|) (-362)))) (-3567 (((-816 (-900)) $) NIL) (((-900) $) NIL)) (-1376 (((-1148 (-889 |#1|))) NIL)) (-3439 (($) NIL (|has| (-889 |#1|) (-362)))) (-3231 (($) NIL (|has| (-889 |#1|) (-362)))) (-3133 (((-1235 (-889 |#1|)) $) NIL) (((-671 (-889 |#1|)) (-1235 $)) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| (-889 |#1|) (-362)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-889 |#1|)) NIL)) (-3050 (($ $) NIL (|has| (-889 |#1|) (-362))) (((-3 $ "failed") $) NIL (-1559 (|has| (-889 |#1|) (-142)) (|has| (-889 |#1|) (-362))))) (-3995 (((-754)) NIL)) (-2957 (((-1235 $)) NIL) (((-1235 $) (-900)) NIL)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-3406 (($ $) NIL (|has| (-889 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-889 |#1|) (-362)))) (-4251 (($ $) NIL (|has| (-889 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-889 |#1|) (-362)))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL) (($ $ (-889 |#1|)) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ (-889 |#1|)) NIL) (($ (-889 |#1|) $) NIL))) +(((-348 |#1| |#2|) (-323 (-889 |#1|)) (-900) (-900)) (T -348)) +NIL +(-323 (-889 |#1|)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 ((|#1| $) NIL) (($ $ (-900)) NIL (|has| |#1| (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) 120 (|has| |#1| (-362)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) 140 (|has| |#1| (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) 93)) (-1703 ((|#1| $) 90)) (-2342 (($ (-1235 |#1|)) 85)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-362)))) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) 82 (|has| |#1| (-362)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) 42 (|has| |#1| (-362)))) (-1415 (((-111) $) NIL (|has| |#1| (-362)))) (-4294 (($ $ (-754)) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1633 (((-111) $) NIL)) (-2641 (((-900) $) NIL (|has| |#1| (-362))) (((-816 (-900)) $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2624 (((-111) $) NIL)) (-2611 (($) 121 (|has| |#1| (-362)))) (-2492 (((-111) $) 74 (|has| |#1| (-362)))) (-2349 ((|#1| $) 39) (($ $ (-900)) 43 (|has| |#1| (-362)))) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 |#1|) $) 65) (((-1148 $) $ (-900)) NIL (|has| |#1| (-362)))) (-2886 (((-900) $) 97 (|has| |#1| (-362)))) (-1980 (((-1148 |#1|) $) NIL (|has| |#1| (-362)))) (-2259 (((-1148 |#1|) $) NIL (|has| |#1| (-362))) (((-3 (-1148 |#1|) "failed") $ $) NIL (|has| |#1| (-362)))) (-3520 (($ $ (-1148 |#1|)) NIL (|has| |#1| (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| |#1| (-362)) CONST)) (-4153 (($ (-900)) 95 (|has| |#1| (-362)))) (-2249 (((-111) $) 142)) (-1498 (((-1096) $) NIL)) (-2220 (($) 36 (|has| |#1| (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) 115 (|has| |#1| (-362)))) (-1727 (((-412 $) $) NIL)) (-3804 (((-816 (-900))) NIL) (((-900)) 139)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-754) $) NIL (|has| |#1| (-362))) (((-3 (-754) "failed") $ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2405 (((-132)) NIL)) (-2942 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-3567 (((-816 (-900)) $) NIL) (((-900) $) 59)) (-1376 (((-1148 |#1|)) 88)) (-3439 (($) 126 (|has| |#1| (-362)))) (-3231 (($) NIL (|has| |#1| (-362)))) (-3133 (((-1235 |#1|) $) 53) (((-671 |#1|) (-1235 $)) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| |#1| (-362)))) (-1477 (((-842) $) 138) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) 87)) (-3050 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3995 (((-754)) 144)) (-2957 (((-1235 $)) 109) (((-1235 $) (-900)) 49)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) 111 T CONST)) (-1933 (($) 32 T CONST)) (-3406 (($ $) 68 (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-4251 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-2292 (((-111) $ $) 107)) (-2407 (($ $ $) 99) (($ $ |#1|) 100)) (-2396 (($ $) 80) (($ $ $) 105)) (-2384 (($ $ $) 103)) (** (($ $ (-900)) NIL) (($ $ (-754)) 44) (($ $ (-552)) 130)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 78) (($ $ $) 56) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) +(((-349 |#1| |#2|) (-323 |#1|) (-343) (-1148 |#1|)) (T -349)) +NIL +(-323 |#1|) +((-3251 ((|#1| (-1148 |#2|)) 52))) +(((-350 |#1| |#2|) (-10 -7 (-15 -3251 (|#1| (-1148 |#2|)))) (-13 (-396) (-10 -7 (-15 -1477 (|#1| |#2|)) (-15 -2886 ((-900) |#1|)) (-15 -2957 ((-1235 |#1|) (-900))) (-15 -3406 (|#1| |#1|)))) (-343)) (T -350)) +((-3251 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-343)) (-4 *2 (-13 (-396) (-10 -7 (-15 -1477 (*2 *4)) (-15 -2886 ((-900) *2)) (-15 -2957 ((-1235 *2) (-900))) (-15 -3406 (*2 *2))))) (-5 *1 (-350 *2 *4))))) +(-10 -7 (-15 -3251 (|#1| (-1148 |#2|)))) +((-1356 (((-937 (-1148 |#1|)) (-1148 |#1|)) 36)) (-1279 (((-1148 |#1|) (-900) (-900)) 113) (((-1148 |#1|) (-900)) 112)) (-1415 (((-111) (-1148 |#1|)) 84)) (-3821 (((-900) (-900)) 71)) (-2703 (((-900) (-900)) 74)) (-3137 (((-900) (-900)) 69)) (-2492 (((-111) (-1148 |#1|)) 88)) (-2627 (((-3 (-1148 |#1|) "failed") (-1148 |#1|)) 101)) (-3688 (((-3 (-1148 |#1|) "failed") (-1148 |#1|)) 104)) (-1956 (((-3 (-1148 |#1|) "failed") (-1148 |#1|)) 103)) (-4330 (((-3 (-1148 |#1|) "failed") (-1148 |#1|)) 102)) (-2863 (((-3 (-1148 |#1|) "failed") (-1148 |#1|)) 98)) (-2474 (((-1148 |#1|) (-1148 |#1|)) 62)) (-2307 (((-1148 |#1|) (-900)) 107)) (-2968 (((-1148 |#1|) (-900)) 110)) (-4255 (((-1148 |#1|) (-900)) 109)) (-4115 (((-1148 |#1|) (-900)) 108)) (-1569 (((-1148 |#1|) (-900)) 105))) +(((-351 |#1|) (-10 -7 (-15 -1415 ((-111) (-1148 |#1|))) (-15 -2492 ((-111) (-1148 |#1|))) (-15 -3137 ((-900) (-900))) (-15 -3821 ((-900) (-900))) (-15 -2703 ((-900) (-900))) (-15 -1569 ((-1148 |#1|) (-900))) (-15 -2307 ((-1148 |#1|) (-900))) (-15 -4115 ((-1148 |#1|) (-900))) (-15 -4255 ((-1148 |#1|) (-900))) (-15 -2968 ((-1148 |#1|) (-900))) (-15 -2863 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -2627 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -4330 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -1956 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -3688 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -1279 ((-1148 |#1|) (-900))) (-15 -1279 ((-1148 |#1|) (-900) (-900))) (-15 -2474 ((-1148 |#1|) (-1148 |#1|))) (-15 -1356 ((-937 (-1148 |#1|)) (-1148 |#1|)))) (-343)) (T -351)) +((-1356 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-937 (-1148 *4))) (-5 *1 (-351 *4)) (-5 *3 (-1148 *4)))) (-2474 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-1279 (*1 *2 *3 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-1279 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-3688 (*1 *2 *2) (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-1956 (*1 *2 *2) (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-4330 (*1 *2 *2) (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-2627 (*1 *2 *2) (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-2863 (*1 *2 *2) (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3)))) (-2968 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-2307 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-1569 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) (-4 *4 (-343)))) (-2703 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-351 *3)) (-4 *3 (-343)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-351 *3)) (-4 *3 (-343)))) (-3137 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-351 *3)) (-4 *3 (-343)))) (-2492 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-343)) (-5 *2 (-111)) (-5 *1 (-351 *4)))) (-1415 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-343)) (-5 *2 (-111)) (-5 *1 (-351 *4))))) +(-10 -7 (-15 -1415 ((-111) (-1148 |#1|))) (-15 -2492 ((-111) (-1148 |#1|))) (-15 -3137 ((-900) (-900))) (-15 -3821 ((-900) (-900))) (-15 -2703 ((-900) (-900))) (-15 -1569 ((-1148 |#1|) (-900))) (-15 -2307 ((-1148 |#1|) (-900))) (-15 -4115 ((-1148 |#1|) (-900))) (-15 -4255 ((-1148 |#1|) (-900))) (-15 -2968 ((-1148 |#1|) (-900))) (-15 -2863 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -2627 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -4330 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -1956 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -3688 ((-3 (-1148 |#1|) "failed") (-1148 |#1|))) (-15 -1279 ((-1148 |#1|) (-900))) (-15 -1279 ((-1148 |#1|) (-900) (-900))) (-15 -2474 ((-1148 |#1|) (-1148 |#1|))) (-15 -1356 ((-937 (-1148 |#1|)) (-1148 |#1|)))) +((-1964 (((-3 (-627 |#3|) "failed") (-627 |#3|) |#3|) 34))) +(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -1964 ((-3 (-627 |#3|) "failed") (-627 |#3|) |#3|))) (-343) (-1211 |#1|) (-1211 |#2|)) (T -352)) +((-1964 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-627 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-343)) (-5 *1 (-352 *4 *5 *3))))) +(-10 -7 (-15 -1964 ((-3 (-627 |#3|) "failed") (-627 |#3|) |#3|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 ((|#1| $) NIL) (($ $ (-900)) NIL (|has| |#1| (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| |#1| (-362)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) NIL (|has| |#1| (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-2342 (($ (-1235 |#1|)) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-362)))) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| |#1| (-362)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) NIL (|has| |#1| (-362)))) (-1415 (((-111) $) NIL (|has| |#1| (-362)))) (-4294 (($ $ (-754)) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1633 (((-111) $) NIL)) (-2641 (((-900) $) NIL (|has| |#1| (-362))) (((-816 (-900)) $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2624 (((-111) $) NIL)) (-2611 (($) NIL (|has| |#1| (-362)))) (-2492 (((-111) $) NIL (|has| |#1| (-362)))) (-2349 ((|#1| $) NIL) (($ $ (-900)) NIL (|has| |#1| (-362)))) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 |#1|) $) NIL) (((-1148 $) $ (-900)) NIL (|has| |#1| (-362)))) (-2886 (((-900) $) NIL (|has| |#1| (-362)))) (-1980 (((-1148 |#1|) $) NIL (|has| |#1| (-362)))) (-2259 (((-1148 |#1|) $) NIL (|has| |#1| (-362))) (((-3 (-1148 |#1|) "failed") $ $) NIL (|has| |#1| (-362)))) (-3520 (($ $ (-1148 |#1|)) NIL (|has| |#1| (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| |#1| (-362)) CONST)) (-4153 (($ (-900)) NIL (|has| |#1| (-362)))) (-2249 (((-111) $) NIL)) (-1498 (((-1096) $) NIL)) (-2220 (($) NIL (|has| |#1| (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| |#1| (-362)))) (-1727 (((-412 $) $) NIL)) (-3804 (((-816 (-900))) NIL) (((-900)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-754) $) NIL (|has| |#1| (-362))) (((-3 (-754) "failed") $ $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2405 (((-132)) NIL)) (-2942 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-3567 (((-816 (-900)) $) NIL) (((-900) $) NIL)) (-1376 (((-1148 |#1|)) NIL)) (-3439 (($) NIL (|has| |#1| (-362)))) (-3231 (($) NIL (|has| |#1| (-362)))) (-3133 (((-1235 |#1|) $) NIL) (((-671 |#1|) (-1235 $)) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| |#1| (-362)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) NIL)) (-3050 (($ $) NIL (|has| |#1| (-362))) (((-3 $ "failed") $) NIL (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3995 (((-754)) NIL)) (-2957 (((-1235 $)) NIL) (((-1235 $) (-900)) NIL)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-3406 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-4251 (($ $) NIL (|has| |#1| (-362))) (($ $ (-754)) NIL (|has| |#1| (-362)))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-353 |#1| |#2|) (-323 |#1|) (-343) (-900)) (T -353)) +NIL +(-323 |#1|) +((-3583 (((-111) (-627 (-931 |#1|))) 34)) (-2875 (((-627 (-931 |#1|)) (-627 (-931 |#1|))) 46)) (-3287 (((-3 (-627 (-931 |#1|)) "failed") (-627 (-931 |#1|))) 41))) +(((-354 |#1| |#2|) (-10 -7 (-15 -3583 ((-111) (-627 (-931 |#1|)))) (-15 -3287 ((-3 (-627 (-931 |#1|)) "failed") (-627 (-931 |#1|)))) (-15 -2875 ((-627 (-931 |#1|)) (-627 (-931 |#1|))))) (-445) (-627 (-1152))) (T -354)) +((-2875 (*1 *2 *2) (-12 (-5 *2 (-627 (-931 *3))) (-4 *3 (-445)) (-5 *1 (-354 *3 *4)) (-14 *4 (-627 (-1152))))) (-3287 (*1 *2 *2) (|partial| -12 (-5 *2 (-627 (-931 *3))) (-4 *3 (-445)) (-5 *1 (-354 *3 *4)) (-14 *4 (-627 (-1152))))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-445)) (-5 *2 (-111)) (-5 *1 (-354 *4 *5)) (-14 *5 (-627 (-1152)))))) +(-10 -7 (-15 -3583 ((-111) (-627 (-931 |#1|)))) (-15 -3287 ((-3 (-627 (-931 |#1|)) "failed") (-627 (-931 |#1|)))) (-15 -2875 ((-627 (-931 |#1|)) (-627 (-931 |#1|))))) +((-1465 (((-111) $ $) NIL)) (-3307 (((-754) $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) 15)) (-2792 ((|#1| $ (-552)) NIL)) (-1389 (((-552) $ (-552)) NIL)) (-2356 (($ (-1 |#1| |#1|) $) 32)) (-4086 (($ (-1 (-552) (-552)) $) 24)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 26)) (-1498 (((-1096) $) NIL)) (-2101 (((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-552)))) $) 28)) (-2616 (($ $ $) NIL)) (-2493 (($ $ $) NIL)) (-1477 (((-842) $) 38) (($ |#1|) NIL)) (-1933 (($) 9 T CONST)) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL) (($ |#1| (-552)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) +(((-355 |#1|) (-13 (-466) (-1017 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-552))) (-15 -3307 ((-754) $)) (-15 -1389 ((-552) $ (-552))) (-15 -2792 (|#1| $ (-552))) (-15 -4086 ($ (-1 (-552) (-552)) $)) (-15 -2356 ($ (-1 |#1| |#1|) $)) (-15 -2101 ((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-552)))) $)))) (-1076)) (T -355)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-355 *2)) (-4 *2 (-1076)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-355 *2)) (-4 *2 (-1076)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-355 *2)) (-4 *2 (-1076)))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-355 *3)) (-4 *3 (-1076)))) (-1389 (*1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-355 *3)) (-4 *3 (-1076)))) (-2792 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-355 *2)) (-4 *2 (-1076)))) (-4086 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-552) (-552))) (-5 *1 (-355 *3)) (-4 *3 (-1076)))) (-2356 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1076)) (-5 *1 (-355 *3)))) (-2101 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 (-552))))) (-5 *1 (-355 *3)) (-4 *3 (-1076))))) +(-13 (-466) (-1017 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-552))) (-15 -3307 ((-754) $)) (-15 -1389 ((-552) $ (-552))) (-15 -2792 (|#1| $ (-552))) (-15 -4086 ($ (-1 (-552) (-552)) $)) (-15 -2356 ($ (-1 |#1| |#1|) $)) (-15 -2101 ((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-552)))) $)))) +((-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 13)) (-3245 (($ $) 14)) (-2487 (((-412 $) $) 30)) (-1633 (((-111) $) 26)) (-1951 (($ $) 19)) (-1323 (($ $ $) 23) (($ (-627 $)) NIL)) (-1727 (((-412 $) $) 31)) (-2761 (((-3 $ "failed") $ $) 22)) (-2718 (((-754) $) 25)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 35)) (-3778 (((-111) $ $) 16)) (-2407 (($ $ $) 33))) +(((-356 |#1|) (-10 -8 (-15 -2407 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#1|)) (-15 -1633 ((-111) |#1|)) (-15 -2487 ((-412 |#1|) |#1|)) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -3963 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -2718 ((-754) |#1|)) (-15 -1323 (|#1| (-627 |#1|))) (-15 -1323 (|#1| |#1| |#1|)) (-15 -3778 ((-111) |#1| |#1|)) (-15 -3245 (|#1| |#1|)) (-15 -1887 ((-2 (|:| -2717 |#1|) (|:| -4353 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#1|))) (-357)) (T -356)) +NIL +(-10 -8 (-15 -2407 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#1|)) (-15 -1633 ((-111) |#1|)) (-15 -2487 ((-412 |#1|) |#1|)) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -3963 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -2718 ((-754) |#1|)) (-15 -1323 (|#1| (-627 |#1|))) (-15 -1323 (|#1| |#1| |#1|)) (-15 -3778 ((-111) |#1| |#1|)) (-15 -3245 (|#1| |#1|)) (-15 -1887 ((-2 (|:| -2717 |#1|) (|:| -4353 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 70)) (-2487 (((-412 $) $) 69)) (-4224 (((-111) $ $) 57)) (-3887 (($) 17 T CONST)) (-2813 (($ $ $) 53)) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-1633 (((-111) $) 68)) (-2624 (((-111) $) 30)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 67)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-1727 (((-412 $) $) 71)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-2718 (((-754) $) 56)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ $) 62)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 66)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64))) +(((-357) (-137)) (T -357)) +((-2407 (*1 *1 *1 *1) (-4 *1 (-357)))) +(-13 (-301) (-1193) (-238) (-10 -8 (-15 -2407 ($ $ $)) (-6 -4364) (-6 -4358))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-445) . T) ((-544) . T) ((-630 #0#) . T) ((-630 $) . T) ((-700 #0#) . T) ((-700 $) . T) ((-709) . T) ((-899) . T) ((-1034 #0#) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) . T)) +((-1465 (((-111) $ $) 7)) (-2035 ((|#2| $ |#2|) 13)) (-1496 (($ $ (-1134)) 18)) (-3689 ((|#2| $) 14)) (-2849 (($ |#1|) 20) (($ |#1| (-1134)) 19)) (-3112 ((|#1| $) 16)) (-1595 (((-1134) $) 9)) (-2548 (((-1134) $) 15)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2219 (($ $) 17)) (-2292 (((-111) $ $) 6))) +(((-358 |#1| |#2|) (-137) (-1076) (-1076)) (T -358)) +((-2849 (*1 *1 *2) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076)))) (-2849 (*1 *1 *2 *3) (-12 (-5 *3 (-1134)) (-4 *1 (-358 *2 *4)) (-4 *2 (-1076)) (-4 *4 (-1076)))) (-1496 (*1 *1 *1 *2) (-12 (-5 *2 (-1134)) (-4 *1 (-358 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)))) (-2219 (*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1076)) (-4 *2 (-1076)))) (-2548 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-5 *2 (-1134)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076)))) (-2035 (*1 *2 *1 *2) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076))))) +(-13 (-1076) (-10 -8 (-15 -2849 ($ |t#1|)) (-15 -2849 ($ |t#1| (-1134))) (-15 -1496 ($ $ (-1134))) (-15 -2219 ($ $)) (-15 -3112 (|t#1| $)) (-15 -2548 ((-1134) $)) (-15 -3689 (|t#2| $)) (-15 -2035 (|t#2| $ |t#2|)))) +(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-2035 ((|#1| $ |#1|) 30)) (-1496 (($ $ (-1134)) 22)) (-1783 (((-3 |#1| "failed") $) 29)) (-3689 ((|#1| $) 27)) (-2849 (($ (-382)) 21) (($ (-382) (-1134)) 20)) (-3112 (((-382) $) 24)) (-1595 (((-1134) $) NIL)) (-2548 (((-1134) $) 25)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 19)) (-2219 (($ $) 23)) (-2292 (((-111) $ $) 18))) +(((-359 |#1|) (-13 (-358 (-382) |#1|) (-10 -8 (-15 -1783 ((-3 |#1| "failed") $)))) (-1076)) (T -359)) +((-1783 (*1 *2 *1) (|partial| -12 (-5 *1 (-359 *2)) (-4 *2 (-1076))))) +(-13 (-358 (-382) |#1|) (-10 -8 (-15 -1783 ((-3 |#1| "failed") $)))) +((-3449 (((-1235 (-671 |#2|)) (-1235 $)) 61)) (-2877 (((-671 |#2|) (-1235 $)) 120)) (-2526 ((|#2| $) 32)) (-3029 (((-671 |#2|) $ (-1235 $)) 123)) (-1592 (((-3 $ "failed") $) 75)) (-2141 ((|#2| $) 35)) (-3343 (((-1148 |#2|) $) 83)) (-3119 ((|#2| (-1235 $)) 106)) (-1608 (((-1148 |#2|) $) 28)) (-1819 (((-111)) 100)) (-2342 (($ (-1235 |#2|) (-1235 $)) 113)) (-2040 (((-3 $ "failed") $) 79)) (-3363 (((-111)) 95)) (-1878 (((-111)) 90)) (-3728 (((-111)) 53)) (-1425 (((-671 |#2|) (-1235 $)) 118)) (-4131 ((|#2| $) 31)) (-2593 (((-671 |#2|) $ (-1235 $)) 122)) (-4336 (((-3 $ "failed") $) 73)) (-1856 ((|#2| $) 34)) (-1794 (((-1148 |#2|) $) 82)) (-2806 ((|#2| (-1235 $)) 104)) (-2798 (((-1148 |#2|) $) 26)) (-3485 (((-111)) 99)) (-3570 (((-111)) 92)) (-2011 (((-111)) 51)) (-2344 (((-111)) 87)) (-3361 (((-111)) 101)) (-3133 (((-1235 |#2|) $ (-1235 $)) NIL) (((-671 |#2|) (-1235 $) (-1235 $)) 111)) (-1822 (((-111)) 97)) (-1360 (((-627 (-1235 |#2|))) 86)) (-3656 (((-111)) 98)) (-3304 (((-111)) 96)) (-3258 (((-111)) 46)) (-3699 (((-111)) 102))) +(((-360 |#1| |#2|) (-10 -8 (-15 -3343 ((-1148 |#2|) |#1|)) (-15 -1794 ((-1148 |#2|) |#1|)) (-15 -1360 ((-627 (-1235 |#2|)))) (-15 -1592 ((-3 |#1| "failed") |#1|)) (-15 -4336 ((-3 |#1| "failed") |#1|)) (-15 -2040 ((-3 |#1| "failed") |#1|)) (-15 -1878 ((-111))) (-15 -3570 ((-111))) (-15 -3363 ((-111))) (-15 -2011 ((-111))) (-15 -3728 ((-111))) (-15 -2344 ((-111))) (-15 -3699 ((-111))) (-15 -3361 ((-111))) (-15 -1819 ((-111))) (-15 -3485 ((-111))) (-15 -3258 ((-111))) (-15 -3656 ((-111))) (-15 -3304 ((-111))) (-15 -1822 ((-111))) (-15 -1608 ((-1148 |#2|) |#1|)) (-15 -2798 ((-1148 |#2|) |#1|)) (-15 -2877 ((-671 |#2|) (-1235 |#1|))) (-15 -1425 ((-671 |#2|) (-1235 |#1|))) (-15 -3119 (|#2| (-1235 |#1|))) (-15 -2806 (|#2| (-1235 |#1|))) (-15 -2342 (|#1| (-1235 |#2|) (-1235 |#1|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1| (-1235 |#1|))) (-15 -2141 (|#2| |#1|)) (-15 -1856 (|#2| |#1|)) (-15 -2526 (|#2| |#1|)) (-15 -4131 (|#2| |#1|)) (-15 -3029 ((-671 |#2|) |#1| (-1235 |#1|))) (-15 -2593 ((-671 |#2|) |#1| (-1235 |#1|))) (-15 -3449 ((-1235 (-671 |#2|)) (-1235 |#1|)))) (-361 |#2|) (-169)) (T -360)) +((-1822 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3304 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3656 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3258 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3485 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1819 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3361 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3699 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-2344 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3728 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-2011 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3363 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-3570 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1878 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4)))) (-1360 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-627 (-1235 *4))) (-5 *1 (-360 *3 *4)) (-4 *3 (-361 *4))))) +(-10 -8 (-15 -3343 ((-1148 |#2|) |#1|)) (-15 -1794 ((-1148 |#2|) |#1|)) (-15 -1360 ((-627 (-1235 |#2|)))) (-15 -1592 ((-3 |#1| "failed") |#1|)) (-15 -4336 ((-3 |#1| "failed") |#1|)) (-15 -2040 ((-3 |#1| "failed") |#1|)) (-15 -1878 ((-111))) (-15 -3570 ((-111))) (-15 -3363 ((-111))) (-15 -2011 ((-111))) (-15 -3728 ((-111))) (-15 -2344 ((-111))) (-15 -3699 ((-111))) (-15 -3361 ((-111))) (-15 -1819 ((-111))) (-15 -3485 ((-111))) (-15 -3258 ((-111))) (-15 -3656 ((-111))) (-15 -3304 ((-111))) (-15 -1822 ((-111))) (-15 -1608 ((-1148 |#2|) |#1|)) (-15 -2798 ((-1148 |#2|) |#1|)) (-15 -2877 ((-671 |#2|) (-1235 |#1|))) (-15 -1425 ((-671 |#2|) (-1235 |#1|))) (-15 -3119 (|#2| (-1235 |#1|))) (-15 -2806 (|#2| (-1235 |#1|))) (-15 -2342 (|#1| (-1235 |#2|) (-1235 |#1|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1| (-1235 |#1|))) (-15 -2141 (|#2| |#1|)) (-15 -1856 (|#2| |#1|)) (-15 -2526 (|#2| |#1|)) (-15 -4131 (|#2| |#1|)) (-15 -3029 ((-671 |#2|) |#1| (-1235 |#1|))) (-15 -2593 ((-671 |#2|) |#1| (-1235 |#1|))) (-15 -3449 ((-1235 (-671 |#2|)) (-1235 |#1|)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-2717 (((-3 $ "failed")) 37 (|has| |#1| (-544)))) (-4136 (((-3 $ "failed") $ $) 19)) (-3449 (((-1235 (-671 |#1|)) (-1235 $)) 78)) (-2946 (((-1235 $)) 81)) (-3887 (($) 17 T CONST)) (-2478 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) 40 (|has| |#1| (-544)))) (-3994 (((-3 $ "failed")) 38 (|has| |#1| (-544)))) (-2877 (((-671 |#1|) (-1235 $)) 65)) (-2526 ((|#1| $) 74)) (-3029 (((-671 |#1|) $ (-1235 $)) 76)) (-1592 (((-3 $ "failed") $) 45 (|has| |#1| (-544)))) (-1407 (($ $ (-900)) 28)) (-2141 ((|#1| $) 72)) (-3343 (((-1148 |#1|) $) 42 (|has| |#1| (-544)))) (-3119 ((|#1| (-1235 $)) 67)) (-1608 (((-1148 |#1|) $) 63)) (-1819 (((-111)) 57)) (-2342 (($ (-1235 |#1|) (-1235 $)) 69)) (-2040 (((-3 $ "failed") $) 47 (|has| |#1| (-544)))) (-4154 (((-900)) 80)) (-3972 (((-111)) 54)) (-1410 (($ $ (-900)) 33)) (-3363 (((-111)) 50)) (-1878 (((-111)) 48)) (-3728 (((-111)) 52)) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) 41 (|has| |#1| (-544)))) (-2513 (((-3 $ "failed")) 39 (|has| |#1| (-544)))) (-1425 (((-671 |#1|) (-1235 $)) 66)) (-4131 ((|#1| $) 75)) (-2593 (((-671 |#1|) $ (-1235 $)) 77)) (-4336 (((-3 $ "failed") $) 46 (|has| |#1| (-544)))) (-2896 (($ $ (-900)) 29)) (-1856 ((|#1| $) 73)) (-1794 (((-1148 |#1|) $) 43 (|has| |#1| (-544)))) (-2806 ((|#1| (-1235 $)) 68)) (-2798 (((-1148 |#1|) $) 64)) (-3485 (((-111)) 58)) (-1595 (((-1134) $) 9)) (-3570 (((-111)) 49)) (-2011 (((-111)) 51)) (-2344 (((-111)) 53)) (-1498 (((-1096) $) 10)) (-3361 (((-111)) 56)) (-3133 (((-1235 |#1|) $ (-1235 $)) 71) (((-671 |#1|) (-1235 $) (-1235 $)) 70)) (-2539 (((-627 (-931 |#1|)) (-1235 $)) 79)) (-2493 (($ $ $) 25)) (-1822 (((-111)) 62)) (-1477 (((-842) $) 11)) (-1360 (((-627 (-1235 |#1|))) 44 (|has| |#1| (-544)))) (-4297 (($ $ $ $) 26)) (-3656 (((-111)) 60)) (-2743 (($ $ $) 24)) (-3304 (((-111)) 61)) (-3258 (((-111)) 59)) (-3699 (((-111)) 55)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 30)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-361 |#1|) (-137) (-169)) (T -361)) +((-2946 (*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1235 *1)) (-4 *1 (-361 *3)))) (-4154 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-900)))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-627 (-931 *4))))) (-3449 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-1235 (-671 *4))))) (-2593 (*1 *2 *1 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-671 *4)))) (-3029 (*1 *2 *1 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-671 *4)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-2526 (*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-2141 (*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-3133 (*1 *2 *1 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-1235 *4)))) (-3133 (*1 *2 *3 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-671 *4)))) (-2342 (*1 *1 *2 *3) (-12 (-5 *2 (-1235 *4)) (-5 *3 (-1235 *1)) (-4 *4 (-169)) (-4 *1 (-361 *4)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *2)) (-4 *2 (-169)))) (-1425 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-671 *4)))) (-2877 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) (-5 *2 (-671 *4)))) (-2798 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-1148 *3)))) (-1608 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-1148 *3)))) (-1822 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3304 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3656 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3258 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3485 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-1819 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3361 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3699 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3972 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-2344 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3728 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-2011 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3363 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-3570 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-1878 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111)))) (-2040 (*1 *1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) (-4336 (*1 *1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) (-1592 (*1 *1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) (-1360 (*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-544)) (-5 *2 (-627 (-1235 *3))))) (-1794 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-544)) (-5 *2 (-1148 *3)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-544)) (-5 *2 (-1148 *3)))) (-4034 (*1 *2) (|partial| -12 (-4 *3 (-544)) (-4 *3 (-169)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2957 (-627 *1)))) (-4 *1 (-361 *3)))) (-2478 (*1 *2) (|partial| -12 (-4 *3 (-544)) (-4 *3 (-169)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2957 (-627 *1)))) (-4 *1 (-361 *3)))) (-2513 (*1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-544)) (-4 *2 (-169)))) (-3994 (*1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-544)) (-4 *2 (-169)))) (-2717 (*1 *1) (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-544)) (-4 *2 (-169))))) +(-13 (-727 |t#1|) (-10 -8 (-15 -2946 ((-1235 $))) (-15 -4154 ((-900))) (-15 -2539 ((-627 (-931 |t#1|)) (-1235 $))) (-15 -3449 ((-1235 (-671 |t#1|)) (-1235 $))) (-15 -2593 ((-671 |t#1|) $ (-1235 $))) (-15 -3029 ((-671 |t#1|) $ (-1235 $))) (-15 -4131 (|t#1| $)) (-15 -2526 (|t#1| $)) (-15 -1856 (|t#1| $)) (-15 -2141 (|t#1| $)) (-15 -3133 ((-1235 |t#1|) $ (-1235 $))) (-15 -3133 ((-671 |t#1|) (-1235 $) (-1235 $))) (-15 -2342 ($ (-1235 |t#1|) (-1235 $))) (-15 -2806 (|t#1| (-1235 $))) (-15 -3119 (|t#1| (-1235 $))) (-15 -1425 ((-671 |t#1|) (-1235 $))) (-15 -2877 ((-671 |t#1|) (-1235 $))) (-15 -2798 ((-1148 |t#1|) $)) (-15 -1608 ((-1148 |t#1|) $)) (-15 -1822 ((-111))) (-15 -3304 ((-111))) (-15 -3656 ((-111))) (-15 -3258 ((-111))) (-15 -3485 ((-111))) (-15 -1819 ((-111))) (-15 -3361 ((-111))) (-15 -3699 ((-111))) (-15 -3972 ((-111))) (-15 -2344 ((-111))) (-15 -3728 ((-111))) (-15 -2011 ((-111))) (-15 -3363 ((-111))) (-15 -3570 ((-111))) (-15 -1878 ((-111))) (IF (|has| |t#1| (-544)) (PROGN (-15 -2040 ((-3 $ "failed") $)) (-15 -4336 ((-3 $ "failed") $)) (-15 -1592 ((-3 $ "failed") $)) (-15 -1360 ((-627 (-1235 |t#1|)))) (-15 -1794 ((-1148 |t#1|) $)) (-15 -3343 ((-1148 |t#1|) $)) (-15 -4034 ((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed"))) (-15 -2478 ((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed"))) (-15 -2513 ((-3 $ "failed"))) (-15 -3994 ((-3 $ "failed"))) (-15 -2717 ((-3 $ "failed"))) (-6 -4363)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-700 |#1|) . T) ((-703) . T) ((-727 |#1|) . T) ((-744) . T) ((-1034 |#1|) . T) ((-1076) . T)) +((-1465 (((-111) $ $) 7)) (-3307 (((-754)) 16)) (-1279 (($) 13)) (-2886 (((-900) $) 14)) (-1595 (((-1134) $) 9)) (-4153 (($ (-900)) 15)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 6))) +(((-362) (-137)) (T -362)) +((-3307 (*1 *2) (-12 (-4 *1 (-362)) (-5 *2 (-754)))) (-4153 (*1 *1 *2) (-12 (-5 *2 (-900)) (-4 *1 (-362)))) (-2886 (*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-900)))) (-1279 (*1 *1) (-4 *1 (-362)))) +(-13 (-1076) (-10 -8 (-15 -3307 ((-754))) (-15 -4153 ($ (-900))) (-15 -2886 ((-900) $)) (-15 -1279 ($)))) +(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-3841 (((-671 |#2|) (-1235 $)) 40)) (-2342 (($ (-1235 |#2|) (-1235 $)) 34)) (-4088 (((-671 |#2|) $ (-1235 $)) 42)) (-1637 ((|#2| (-1235 $)) 13)) (-3133 (((-1235 |#2|) $ (-1235 $)) NIL) (((-671 |#2|) (-1235 $) (-1235 $)) 25))) +(((-363 |#1| |#2| |#3|) (-10 -8 (-15 -3841 ((-671 |#2|) (-1235 |#1|))) (-15 -1637 (|#2| (-1235 |#1|))) (-15 -2342 (|#1| (-1235 |#2|) (-1235 |#1|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1| (-1235 |#1|))) (-15 -4088 ((-671 |#2|) |#1| (-1235 |#1|)))) (-364 |#2| |#3|) (-169) (-1211 |#2|)) (T -363)) +NIL +(-10 -8 (-15 -3841 ((-671 |#2|) (-1235 |#1|))) (-15 -1637 (|#2| (-1235 |#1|))) (-15 -2342 (|#1| (-1235 |#2|) (-1235 |#1|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1| (-1235 |#1|))) (-15 -4088 ((-671 |#2|) |#1| (-1235 |#1|)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3841 (((-671 |#1|) (-1235 $)) 44)) (-3385 ((|#1| $) 50)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2342 (($ (-1235 |#1|) (-1235 $)) 46)) (-4088 (((-671 |#1|) $ (-1235 $)) 51)) (-2040 (((-3 $ "failed") $) 32)) (-4154 (((-900)) 52)) (-2624 (((-111) $) 30)) (-2349 ((|#1| $) 49)) (-4205 ((|#2| $) 42 (|has| |#1| (-357)))) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1637 ((|#1| (-1235 $)) 45)) (-3133 (((-1235 |#1|) $ (-1235 $)) 48) (((-671 |#1|) (-1235 $) (-1235 $)) 47)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 35)) (-3050 (((-3 $ "failed") $) 41 (|has| |#1| (-142)))) (-2410 ((|#2| $) 43)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-364 |#1| |#2|) (-137) (-169) (-1211 |t#1|)) (T -364)) +((-4154 (*1 *2) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1211 *3)) (-5 *2 (-900)))) (-4088 (*1 *2 *1 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1211 *2)) (-4 *2 (-169)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1211 *2)) (-4 *2 (-169)))) (-3133 (*1 *2 *1 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1211 *4)) (-5 *2 (-1235 *4)))) (-3133 (*1 *2 *3 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) (-2342 (*1 *1 *2 *3) (-12 (-5 *2 (-1235 *4)) (-5 *3 (-1235 *1)) (-4 *4 (-169)) (-4 *1 (-364 *4 *5)) (-4 *5 (-1211 *4)))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-364 *2 *4)) (-4 *4 (-1211 *2)) (-4 *2 (-169)))) (-3841 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1211 *3)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-169)) (-4 *3 (-357)) (-4 *2 (-1211 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -4154 ((-900))) (-15 -4088 ((-671 |t#1|) $ (-1235 $))) (-15 -3385 (|t#1| $)) (-15 -2349 (|t#1| $)) (-15 -3133 ((-1235 |t#1|) $ (-1235 $))) (-15 -3133 ((-671 |t#1|) (-1235 $) (-1235 $))) (-15 -2342 ($ (-1235 |t#1|) (-1235 $))) (-15 -1637 (|t#1| (-1235 $))) (-15 -3841 ((-671 |t#1|) (-1235 $))) (-15 -2410 (|t#2| $)) (IF (|has| |t#1| (-357)) (-15 -4205 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-700 |#1|) . T) ((-709) . T) ((-1034 |#1|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-2169 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2091 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-3516 ((|#4| (-1 |#3| |#1|) |#2|) 21))) +(((-365 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2091 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2169 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1189) (-367 |#1|) (-1189) (-367 |#3|)) (T -365)) +((-2169 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1189)) (-4 *5 (-1189)) (-4 *2 (-367 *5)) (-5 *1 (-365 *6 *4 *5 *2)) (-4 *4 (-367 *6)))) (-2091 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1189)) (-4 *2 (-1189)) (-5 *1 (-365 *5 *4 *2 *6)) (-4 *4 (-367 *5)) (-4 *6 (-367 *2)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-4 *2 (-367 *6)) (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-367 *5))))) +(-10 -7 (-15 -3516 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2091 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2169 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-1439 (((-111) (-1 (-111) |#2| |#2|) $) NIL) (((-111) $) 18)) (-2701 (($ (-1 (-111) |#2| |#2|) $) NIL) (($ $) 28)) (-4298 (($ (-1 (-111) |#2| |#2|) $) 27) (($ $) 22)) (-3429 (($ $) 25)) (-2967 (((-552) (-1 (-111) |#2|) $) NIL) (((-552) |#2| $) 11) (((-552) |#2| $ (-552)) NIL)) (-3759 (($ (-1 (-111) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-366 |#1| |#2|) (-10 -8 (-15 -2701 (|#1| |#1|)) (-15 -2701 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -1439 ((-111) |#1|)) (-15 -4298 (|#1| |#1|)) (-15 -3759 (|#1| |#1| |#1|)) (-15 -2967 ((-552) |#2| |#1| (-552))) (-15 -2967 ((-552) |#2| |#1|)) (-15 -2967 ((-552) (-1 (-111) |#2|) |#1|)) (-15 -1439 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -4298 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -3429 (|#1| |#1|)) (-15 -3759 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|))) (-367 |#2|) (-1189)) (T -366)) +NIL +(-10 -8 (-15 -2701 (|#1| |#1|)) (-15 -2701 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -1439 ((-111) |#1|)) (-15 -4298 (|#1| |#1|)) (-15 -3759 (|#1| |#1| |#1|)) (-15 -2967 ((-552) |#2| |#1| (-552))) (-15 -2967 ((-552) |#2| |#1|)) (-15 -2967 ((-552) (-1 (-111) |#2|) |#1|)) (-15 -1439 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -4298 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -3429 (|#1| |#1|)) (-15 -3759 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-3305 (((-1240) $ (-552) (-552)) 40 (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4367))) (($ $) 88 (-12 (|has| |#1| (-830)) (|has| $ (-6 -4367))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) 8)) (-2950 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) 58 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-2519 (($ $) 90 (|has| $ (-6 -4367)))) (-3429 (($ $) 100)) (-3370 (($ $) 78 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#1| $) 77 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 51)) (-2967 (((-552) (-1 (-111) |#1|) $) 97) (((-552) |#1| $) 96 (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) 95 (|has| |#1| (-1076)))) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2655 (($ (-754) |#1|) 69)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 43 (|has| (-552) (-830)))) (-1816 (($ $ $) 87 (|has| |#1| (-830)))) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 44 (|has| (-552) (-830)))) (-4093 (($ $ $) 86 (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-3892 (((-627 (-552)) $) 46)) (-2358 (((-111) (-552) $) 47)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3340 ((|#1| $) 42 (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-1942 (($ $ |#1|) 41 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1202 (-552))) 63)) (-3907 (($ $ (-552)) 62) (($ $ (-1202 (-552))) 61)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4105 (($ $ $ (-552)) 91 (|has| $ (-6 -4367)))) (-2973 (($ $) 13)) (-3562 (((-528) $) 79 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 70)) (-2668 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-627 $)) 65)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) 84 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 83 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-2340 (((-111) $ $) 85 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 82 (|has| |#1| (-830)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-367 |#1|) (-137) (-1189)) (T -367)) +((-3759 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1189)))) (-3429 (*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1189)))) (-4298 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1189)))) (-1439 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *1 (-367 *4)) (-4 *4 (-1189)) (-5 *2 (-111)))) (-2967 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (-4 *1 (-367 *4)) (-4 *4 (-1189)) (-5 *2 (-552)))) (-2967 (*1 *2 *3 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-1189)) (-4 *3 (-1076)) (-5 *2 (-552)))) (-2967 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-367 *3)) (-4 *3 (-1189)) (-4 *3 (-1076)))) (-3759 (*1 *1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1189)) (-4 *2 (-830)))) (-4298 (*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1189)) (-4 *2 (-830)))) (-1439 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-1189)) (-4 *3 (-830)) (-5 *2 (-111)))) (-4105 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-552)) (|has| *1 (-6 -4367)) (-4 *1 (-367 *3)) (-4 *3 (-1189)))) (-2519 (*1 *1 *1) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-367 *2)) (-4 *2 (-1189)))) (-2701 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3 *3)) (|has| *1 (-6 -4367)) (-4 *1 (-367 *3)) (-4 *3 (-1189)))) (-2701 (*1 *1 *1) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-367 *2)) (-4 *2 (-1189)) (-4 *2 (-830))))) +(-13 (-633 |t#1|) (-10 -8 (-6 -4366) (-15 -3759 ($ (-1 (-111) |t#1| |t#1|) $ $)) (-15 -3429 ($ $)) (-15 -4298 ($ (-1 (-111) |t#1| |t#1|) $)) (-15 -1439 ((-111) (-1 (-111) |t#1| |t#1|) $)) (-15 -2967 ((-552) (-1 (-111) |t#1|) $)) (IF (|has| |t#1| (-1076)) (PROGN (-15 -2967 ((-552) |t#1| $)) (-15 -2967 ((-552) |t#1| $ (-552)))) |%noBranch|) (IF (|has| |t#1| (-830)) (PROGN (-6 (-830)) (-15 -3759 ($ $ $)) (-15 -4298 ($ $)) (-15 -1439 ((-111) $))) |%noBranch|) (IF (|has| $ (-6 -4367)) (PROGN (-15 -4105 ($ $ $ (-552))) (-15 -2519 ($ $)) (-15 -2701 ($ (-1 (-111) |t#1| |t#1|) $)) (IF (|has| |t#1| (-830)) (-15 -2701 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-101) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830))) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-633 |#1|) . T) ((-830) |has| |#1| (-830)) ((-1076) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830))) ((-1189) . T)) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1671 (((-627 |#1|) $) 32)) (-1963 (($ $ (-754)) 33)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1899 (((-1259 |#1| |#2|) (-1259 |#1| |#2|) $) 36)) (-3627 (($ $) 34)) (-1543 (((-1259 |#1| |#2|) (-1259 |#1| |#2|) $) 37)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3321 (($ $ |#1| $) 31) (($ $ (-627 |#1|) (-627 $)) 30)) (-3567 (((-754) $) 38)) (-1490 (($ $ $) 29)) (-1477 (((-842) $) 11) (($ |#1|) 41) (((-1250 |#1| |#2|) $) 40) (((-1259 |#1| |#2|) $) 39)) (-3069 ((|#2| (-1259 |#1| |#2|) $) 42)) (-1922 (($) 18 T CONST)) (-3014 (($ (-654 |#1|)) 35)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#2|) 28 (|has| |#2| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) +(((-368 |#1| |#2|) (-137) (-830) (-169)) (T -368)) +((-3069 (*1 *2 *3 *1) (-12 (-5 *3 (-1259 *4 *2)) (-4 *1 (-368 *4 *2)) (-4 *4 (-830)) (-4 *2 (-169)))) (-1477 (*1 *1 *2) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-830)) (-4 *3 (-169)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) (-5 *2 (-1250 *3 *4)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) (-5 *2 (-1259 *3 *4)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) (-5 *2 (-754)))) (-1543 (*1 *2 *2 *1) (-12 (-5 *2 (-1259 *3 *4)) (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)))) (-1899 (*1 *2 *2 *1) (-12 (-5 *2 (-1259 *3 *4)) (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)))) (-3014 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-830)) (-4 *1 (-368 *3 *4)) (-4 *4 (-169)))) (-3627 (*1 *1 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-830)) (-4 *3 (-169)))) (-1963 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)))) (-1671 (*1 *2 *1) (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) (-5 *2 (-627 *3)))) (-3321 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-830)) (-4 *3 (-169)))) (-3321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 *4)) (-5 *3 (-627 *1)) (-4 *1 (-368 *4 *5)) (-4 *4 (-830)) (-4 *5 (-169))))) +(-13 (-618 |t#2|) (-10 -8 (-15 -3069 (|t#2| (-1259 |t#1| |t#2|) $)) (-15 -1477 ($ |t#1|)) (-15 -1477 ((-1250 |t#1| |t#2|) $)) (-15 -1477 ((-1259 |t#1| |t#2|) $)) (-15 -3567 ((-754) $)) (-15 -1543 ((-1259 |t#1| |t#2|) (-1259 |t#1| |t#2|) $)) (-15 -1899 ((-1259 |t#1| |t#2|) (-1259 |t#1| |t#2|) $)) (-15 -3014 ($ (-654 |t#1|))) (-15 -3627 ($ $)) (-15 -1963 ($ $ (-754))) (-15 -1671 ((-627 |t#1|) $)) (-15 -3321 ($ $ |t#1| $)) (-15 -3321 ($ $ (-627 |t#1|) (-627 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#2|) . T) ((-618 |#2|) . T) ((-700 |#2|) . T) ((-1034 |#2|) . T) ((-1076) . T)) +((-2036 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 24)) (-2708 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 13)) (-2254 ((|#2| (-1 (-111) |#1| |#1|) |#2|) 22))) +(((-369 |#1| |#2|) (-10 -7 (-15 -2708 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -2254 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -2036 (|#2| (-1 (-111) |#1| |#1|) |#2|))) (-1189) (-13 (-367 |#1|) (-10 -7 (-6 -4367)))) (T -369)) +((-2036 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1189)) (-5 *1 (-369 *4 *2)) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4367)))))) (-2254 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1189)) (-5 *1 (-369 *4 *2)) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4367)))))) (-2708 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1189)) (-5 *1 (-369 *4 *2)) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4367))))))) +(-10 -7 (-15 -2708 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -2254 (|#2| (-1 (-111) |#1| |#1|) |#2|)) (-15 -2036 (|#2| (-1 (-111) |#1| |#1|) |#2|))) +((-1800 (((-671 |#2|) (-671 $)) NIL) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 22) (((-671 (-552)) (-671 $)) 14))) +(((-370 |#1| |#2|) (-10 -8 (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-671 |#2|) (-671 |#1|)))) (-371 |#2|) (-1028)) (T -370)) +NIL +(-10 -8 (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-671 |#2|) (-671 |#1|)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1800 (((-671 |#1|) (-671 $)) 34) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 33) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 41 (|has| |#1| (-623 (-552)))) (((-671 (-552)) (-671 $)) 40 (|has| |#1| (-623 (-552))))) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-371 |#1|) (-137) (-1028)) (T -371)) +NIL +(-13 (-623 |t#1|) (-10 -7 (IF (|has| |t#1| (-623 (-552))) (-6 (-623 (-552))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 $) . T) ((-623 (-552)) |has| |#1| (-623 (-552))) ((-623 |#1|) . T) ((-709) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-2932 (((-627 (-288 (-931 (-166 |#1|)))) (-288 (-401 (-931 (-166 (-552))))) |#1|) 51) (((-627 (-288 (-931 (-166 |#1|)))) (-401 (-931 (-166 (-552)))) |#1|) 50) (((-627 (-627 (-288 (-931 (-166 |#1|))))) (-627 (-288 (-401 (-931 (-166 (-552)))))) |#1|) 47) (((-627 (-627 (-288 (-931 (-166 |#1|))))) (-627 (-401 (-931 (-166 (-552))))) |#1|) 41)) (-2667 (((-627 (-627 (-166 |#1|))) (-627 (-401 (-931 (-166 (-552))))) (-627 (-1152)) |#1|) 30) (((-627 (-166 |#1|)) (-401 (-931 (-166 (-552)))) |#1|) 18))) +(((-372 |#1|) (-10 -7 (-15 -2932 ((-627 (-627 (-288 (-931 (-166 |#1|))))) (-627 (-401 (-931 (-166 (-552))))) |#1|)) (-15 -2932 ((-627 (-627 (-288 (-931 (-166 |#1|))))) (-627 (-288 (-401 (-931 (-166 (-552)))))) |#1|)) (-15 -2932 ((-627 (-288 (-931 (-166 |#1|)))) (-401 (-931 (-166 (-552)))) |#1|)) (-15 -2932 ((-627 (-288 (-931 (-166 |#1|)))) (-288 (-401 (-931 (-166 (-552))))) |#1|)) (-15 -2667 ((-627 (-166 |#1|)) (-401 (-931 (-166 (-552)))) |#1|)) (-15 -2667 ((-627 (-627 (-166 |#1|))) (-627 (-401 (-931 (-166 (-552))))) (-627 (-1152)) |#1|))) (-13 (-357) (-828))) (T -372)) +((-2667 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 (-401 (-931 (-166 (-552)))))) (-5 *4 (-627 (-1152))) (-5 *2 (-627 (-627 (-166 *5)))) (-5 *1 (-372 *5)) (-4 *5 (-13 (-357) (-828))))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 (-166 (-552))))) (-5 *2 (-627 (-166 *4))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-828))))) (-2932 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-401 (-931 (-166 (-552)))))) (-5 *2 (-627 (-288 (-931 (-166 *4))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-828))))) (-2932 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 (-166 (-552))))) (-5 *2 (-627 (-288 (-931 (-166 *4))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-828))))) (-2932 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-288 (-401 (-931 (-166 (-552))))))) (-5 *2 (-627 (-627 (-288 (-931 (-166 *4)))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-828))))) (-2932 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-401 (-931 (-166 (-552)))))) (-5 *2 (-627 (-627 (-288 (-931 (-166 *4)))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-828)))))) +(-10 -7 (-15 -2932 ((-627 (-627 (-288 (-931 (-166 |#1|))))) (-627 (-401 (-931 (-166 (-552))))) |#1|)) (-15 -2932 ((-627 (-627 (-288 (-931 (-166 |#1|))))) (-627 (-288 (-401 (-931 (-166 (-552)))))) |#1|)) (-15 -2932 ((-627 (-288 (-931 (-166 |#1|)))) (-401 (-931 (-166 (-552)))) |#1|)) (-15 -2932 ((-627 (-288 (-931 (-166 |#1|)))) (-288 (-401 (-931 (-166 (-552))))) |#1|)) (-15 -2667 ((-627 (-166 |#1|)) (-401 (-931 (-166 (-552)))) |#1|)) (-15 -2667 ((-627 (-627 (-166 |#1|))) (-627 (-401 (-931 (-166 (-552))))) (-627 (-1152)) |#1|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 33)) (-3471 (((-552) $) 55)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4019 (($ $) 110)) (-1607 (($ $) 82)) (-1467 (($ $) 71)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1737 (($ $) 44)) (-4224 (((-111) $ $) NIL)) (-1584 (($ $) 80)) (-1445 (($ $) 69)) (-2422 (((-552) $) 64)) (-1452 (($ $ (-552)) 62)) (-1628 (($ $) NIL)) (-1492 (($ $) NIL)) (-3887 (($) NIL T CONST)) (-2635 (($ $) 112)) (-4039 (((-3 (-552) "failed") $) 189) (((-3 (-401 (-552)) "failed") $) 185)) (-1703 (((-552) $) 187) (((-401 (-552)) $) 183)) (-2813 (($ $ $) NIL)) (-1274 (((-552) $ $) 102)) (-2040 (((-3 $ "failed") $) 114)) (-2640 (((-401 (-552)) $ (-754)) 190) (((-401 (-552)) $ (-754) (-754)) 182)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-3284 (((-900)) 73) (((-900) (-900)) 98 (|has| $ (-6 -4357)))) (-2983 (((-111) $) 106)) (-2951 (($) 40)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL)) (-3679 (((-1240) (-754)) 152)) (-4095 (((-1240)) 157) (((-1240) (-754)) 158)) (-2402 (((-1240)) 159) (((-1240) (-754)) 160)) (-3840 (((-1240)) 155) (((-1240) (-754)) 156)) (-2641 (((-552) $) 58)) (-2624 (((-111) $) 104)) (-1352 (($ $ (-552)) NIL)) (-1319 (($ $) 48)) (-2349 (($ $) NIL)) (-1508 (((-111) $) 35)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL) (($) NIL (-12 (-1681 (|has| $ (-6 -4349))) (-1681 (|has| $ (-6 -4357)))))) (-4093 (($ $ $) NIL) (($) 99 (-12 (-1681 (|has| $ (-6 -4349))) (-1681 (|has| $ (-6 -4357)))))) (-2948 (((-552) $) 17)) (-3970 (($) 87) (($ $) 92)) (-2885 (($) 91) (($ $) 93)) (-4135 (($ $) 83)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 116)) (-3964 (((-900) (-552)) 43 (|has| $ (-6 -4357)))) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) 53)) (-2060 (($ $) 109)) (-2103 (($ (-552) (-552)) 107) (($ (-552) (-552) (-900)) 108)) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4067 (((-552) $) 19)) (-4111 (($) 94)) (-3154 (($ $) 79)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-3080 (((-900)) 100) (((-900) (-900)) 101 (|has| $ (-6 -4357)))) (-2942 (($ $ (-754)) NIL) (($ $) 115)) (-2531 (((-900) (-552)) 47 (|has| $ (-6 -4357)))) (-1640 (($ $) NIL)) (-1502 (($ $) NIL)) (-1615 (($ $) NIL)) (-1479 (($ $) NIL)) (-1596 (($ $) 81)) (-1456 (($ $) 70)) (-3562 (((-373) $) 175) (((-220) $) 177) (((-871 (-373)) $) NIL) (((-1134) $) 162) (((-528) $) 173) (($ (-220)) 181)) (-1477 (((-842) $) 164) (($ (-552)) 186) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-552)) 186) (($ (-401 (-552))) NIL) (((-220) $) 178)) (-3995 (((-754)) NIL)) (-3796 (($ $) 111)) (-3580 (((-900)) 54) (((-900) (-900)) 66 (|has| $ (-6 -4357)))) (-2705 (((-900)) 103)) (-1673 (($ $) 86)) (-1534 (($ $) 46) (($ $ $) 52)) (-3778 (((-111) $ $) NIL)) (-1652 (($ $) 84)) (-1513 (($ $) 37)) (-1697 (($ $) NIL)) (-1561 (($ $) NIL)) (-3519 (($ $) NIL)) (-1575 (($ $) NIL)) (-1686 (($ $) NIL)) (-1547 (($ $) NIL)) (-1661 (($ $) 85)) (-1524 (($ $) 49)) (-3329 (($ $) 51)) (-1922 (($) 34 T CONST)) (-1933 (($) 38 T CONST)) (-4157 (((-1134) $) 27) (((-1134) $ (-111)) 29) (((-1240) (-805) $) 30) (((-1240) (-805) $ (-111)) 31)) (-4251 (($ $ (-754)) NIL) (($ $) NIL)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 39)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 42)) (-2407 (($ $ $) 45) (($ $ (-552)) 41)) (-2396 (($ $) 36) (($ $ $) 50)) (-2384 (($ $ $) 61)) (** (($ $ (-900)) 67) (($ $ (-754)) NIL) (($ $ (-552)) 88) (($ $ (-401 (-552))) 125) (($ $ $) 117)) (* (($ (-900) $) 65) (($ (-754) $) NIL) (($ (-552) $) 68) (($ $ $) 60) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) +(((-373) (-13 (-398) (-228) (-600 (-1134)) (-811) (-599 (-220)) (-1174) (-600 (-528)) (-10 -8 (-15 -2407 ($ $ (-552))) (-15 ** ($ $ $)) (-15 -1319 ($ $)) (-15 -1274 ((-552) $ $)) (-15 -1452 ($ $ (-552))) (-15 -2640 ((-401 (-552)) $ (-754))) (-15 -2640 ((-401 (-552)) $ (-754) (-754))) (-15 -3970 ($)) (-15 -2885 ($)) (-15 -4111 ($)) (-15 -1534 ($ $ $)) (-15 -3970 ($ $)) (-15 -2885 ($ $)) (-15 -3562 ($ (-220))) (-15 -2402 ((-1240))) (-15 -2402 ((-1240) (-754))) (-15 -3840 ((-1240))) (-15 -3840 ((-1240) (-754))) (-15 -4095 ((-1240))) (-15 -4095 ((-1240) (-754))) (-15 -3679 ((-1240) (-754))) (-6 -4357) (-6 -4349)))) (T -373)) +((** (*1 *1 *1 *1) (-5 *1 (-373))) (-2407 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-373)))) (-1319 (*1 *1 *1) (-5 *1 (-373))) (-1274 (*1 *2 *1 *1) (-12 (-5 *2 (-552)) (-5 *1 (-373)))) (-1452 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-373)))) (-2640 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *2 (-401 (-552))) (-5 *1 (-373)))) (-2640 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-754)) (-5 *2 (-401 (-552))) (-5 *1 (-373)))) (-3970 (*1 *1) (-5 *1 (-373))) (-2885 (*1 *1) (-5 *1 (-373))) (-4111 (*1 *1) (-5 *1 (-373))) (-1534 (*1 *1 *1 *1) (-5 *1 (-373))) (-3970 (*1 *1 *1) (-5 *1 (-373))) (-2885 (*1 *1 *1) (-5 *1 (-373))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-373)))) (-2402 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-373)))) (-2402 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-373)))) (-3840 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-373)))) (-3840 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-373)))) (-4095 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-373)))) (-4095 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-373)))) (-3679 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-373))))) +(-13 (-398) (-228) (-600 (-1134)) (-811) (-599 (-220)) (-1174) (-600 (-528)) (-10 -8 (-15 -2407 ($ $ (-552))) (-15 ** ($ $ $)) (-15 -1319 ($ $)) (-15 -1274 ((-552) $ $)) (-15 -1452 ($ $ (-552))) (-15 -2640 ((-401 (-552)) $ (-754))) (-15 -2640 ((-401 (-552)) $ (-754) (-754))) (-15 -3970 ($)) (-15 -2885 ($)) (-15 -4111 ($)) (-15 -1534 ($ $ $)) (-15 -3970 ($ $)) (-15 -2885 ($ $)) (-15 -3562 ($ (-220))) (-15 -2402 ((-1240))) (-15 -2402 ((-1240) (-754))) (-15 -3840 ((-1240))) (-15 -3840 ((-1240) (-754))) (-15 -4095 ((-1240))) (-15 -4095 ((-1240) (-754))) (-15 -3679 ((-1240) (-754))) (-6 -4357) (-6 -4349))) +((-1696 (((-627 (-288 (-931 |#1|))) (-288 (-401 (-931 (-552)))) |#1|) 46) (((-627 (-288 (-931 |#1|))) (-401 (-931 (-552))) |#1|) 45) (((-627 (-627 (-288 (-931 |#1|)))) (-627 (-288 (-401 (-931 (-552))))) |#1|) 42) (((-627 (-627 (-288 (-931 |#1|)))) (-627 (-401 (-931 (-552)))) |#1|) 36)) (-4187 (((-627 |#1|) (-401 (-931 (-552))) |#1|) 20) (((-627 (-627 |#1|)) (-627 (-401 (-931 (-552)))) (-627 (-1152)) |#1|) 30))) +(((-374 |#1|) (-10 -7 (-15 -1696 ((-627 (-627 (-288 (-931 |#1|)))) (-627 (-401 (-931 (-552)))) |#1|)) (-15 -1696 ((-627 (-627 (-288 (-931 |#1|)))) (-627 (-288 (-401 (-931 (-552))))) |#1|)) (-15 -1696 ((-627 (-288 (-931 |#1|))) (-401 (-931 (-552))) |#1|)) (-15 -1696 ((-627 (-288 (-931 |#1|))) (-288 (-401 (-931 (-552)))) |#1|)) (-15 -4187 ((-627 (-627 |#1|)) (-627 (-401 (-931 (-552)))) (-627 (-1152)) |#1|)) (-15 -4187 ((-627 |#1|) (-401 (-931 (-552))) |#1|))) (-13 (-828) (-357))) (T -374)) +((-4187 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 (-552)))) (-5 *2 (-627 *4)) (-5 *1 (-374 *4)) (-4 *4 (-13 (-828) (-357))))) (-4187 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 (-401 (-931 (-552))))) (-5 *4 (-627 (-1152))) (-5 *2 (-627 (-627 *5))) (-5 *1 (-374 *5)) (-4 *5 (-13 (-828) (-357))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-401 (-931 (-552))))) (-5 *2 (-627 (-288 (-931 *4)))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-828) (-357))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 (-552)))) (-5 *2 (-627 (-288 (-931 *4)))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-828) (-357))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-288 (-401 (-931 (-552)))))) (-5 *2 (-627 (-627 (-288 (-931 *4))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-828) (-357))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-401 (-931 (-552))))) (-5 *2 (-627 (-627 (-288 (-931 *4))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-828) (-357)))))) +(-10 -7 (-15 -1696 ((-627 (-627 (-288 (-931 |#1|)))) (-627 (-401 (-931 (-552)))) |#1|)) (-15 -1696 ((-627 (-627 (-288 (-931 |#1|)))) (-627 (-288 (-401 (-931 (-552))))) |#1|)) (-15 -1696 ((-627 (-288 (-931 |#1|))) (-401 (-931 (-552))) |#1|)) (-15 -1696 ((-627 (-288 (-931 |#1|))) (-288 (-401 (-931 (-552)))) |#1|)) (-15 -4187 ((-627 (-627 |#1|)) (-627 (-401 (-931 (-552)))) (-627 (-1152)) |#1|)) (-15 -4187 ((-627 |#1|) (-401 (-931 (-552))) |#1|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) 26)) (-1703 ((|#2| $) 28)) (-2014 (($ $) NIL)) (-3522 (((-754) $) 10)) (-3056 (((-627 $) $) 20)) (-3267 (((-111) $) NIL)) (-3755 (($ |#2| |#1|) 18)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3888 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-1981 ((|#2| $) 15)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 45) (($ |#2|) 27)) (-1493 (((-627 |#1|) $) 17)) (-1889 ((|#1| $ |#2|) 47)) (-1922 (($) 29 T CONST)) (-1880 (((-627 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) +(((-375 |#1| |#2|) (-13 (-376 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1028) (-830)) (T -375)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-375 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-830))))) +(-13 (-376 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#2| "failed") $) 44)) (-1703 ((|#2| $) 43)) (-2014 (($ $) 30)) (-3522 (((-754) $) 34)) (-3056 (((-627 $) $) 35)) (-3267 (((-111) $) 38)) (-3755 (($ |#2| |#1|) 39)) (-3516 (($ (-1 |#1| |#1|) $) 40)) (-3888 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-1981 ((|#2| $) 33)) (-1993 ((|#1| $) 32)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ |#2|) 45)) (-1493 (((-627 |#1|) $) 36)) (-1889 ((|#1| $ |#2|) 41)) (-1922 (($) 18 T CONST)) (-1880 (((-627 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) +(((-376 |#1| |#2|) (-137) (-1028) (-1076)) (T -376)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-1076)))) (-1889 (*1 *2 *1 *3) (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1076)) (-4 *2 (-1028)))) (-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)))) (-3755 (*1 *1 *2 *3) (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1076)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)) (-5 *2 (-111)))) (-1880 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)) (-5 *2 (-627 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1493 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)) (-5 *2 (-627 *3)))) (-3056 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-1076)) (-5 *2 (-627 *1)) (-4 *1 (-376 *3 *4)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)) (-5 *2 (-754)))) (-1981 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1076)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1076)) (-4 *2 (-1028)))) (-3888 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2014 (*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-1076))))) +(-13 (-110 |t#1| |t#1|) (-1017 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1889 (|t#1| $ |t#2|)) (-15 -3516 ($ (-1 |t#1| |t#1|) $)) (-15 -3755 ($ |t#2| |t#1|)) (-15 -3267 ((-111) $)) (-15 -1880 ((-627 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1493 ((-627 |t#1|) $)) (-15 -3056 ((-627 $) $)) (-15 -3522 ((-754) $)) (-15 -1981 (|t#2| $)) (-15 -1993 (|t#1| $)) (-15 -3888 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2014 ($ $)) (IF (|has| |t#1| (-169)) (-6 (-700 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-700 |#1|) |has| |#1| (-169)) ((-1017 |#2|) . T) ((-1034 |#1|) . T) ((-1076) . T)) +((-2802 (((-1240) $) 7)) (-1477 (((-842) $) 8) (($ (-671 (-681))) 14) (($ (-627 (-324))) 13) (($ (-324)) 12) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 11))) +(((-377) (-137)) (T -377)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-671 (-681))) (-4 *1 (-377)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-4 *1 (-377)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-377)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) (-4 *1 (-377))))) +(-13 (-389) (-10 -8 (-15 -1477 ($ (-671 (-681)))) (-15 -1477 ($ (-627 (-324)))) (-15 -1477 ($ (-324))) (-15 -1477 ($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324)))))))) +(((-599 (-842)) . T) ((-389) . T) ((-1189) . T)) +((-4039 (((-3 $ "failed") (-671 (-310 (-373)))) 21) (((-3 $ "failed") (-671 (-310 (-552)))) 19) (((-3 $ "failed") (-671 (-931 (-373)))) 17) (((-3 $ "failed") (-671 (-931 (-552)))) 15) (((-3 $ "failed") (-671 (-401 (-931 (-373))))) 13) (((-3 $ "failed") (-671 (-401 (-931 (-552))))) 11)) (-1703 (($ (-671 (-310 (-373)))) 22) (($ (-671 (-310 (-552)))) 20) (($ (-671 (-931 (-373)))) 18) (($ (-671 (-931 (-552)))) 16) (($ (-671 (-401 (-931 (-373))))) 14) (($ (-671 (-401 (-931 (-552))))) 12)) (-2802 (((-1240) $) 7)) (-1477 (((-842) $) 8) (($ (-627 (-324))) 25) (($ (-324)) 24) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 23))) +(((-378) (-137)) (T -378)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-4 *1 (-378)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-378)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) (-4 *1 (-378)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-671 (-310 (-373)))) (-4 *1 (-378)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-310 (-373)))) (-4 *1 (-378)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-671 (-310 (-552)))) (-4 *1 (-378)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-310 (-552)))) (-4 *1 (-378)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-671 (-931 (-373)))) (-4 *1 (-378)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-931 (-373)))) (-4 *1 (-378)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-671 (-931 (-552)))) (-4 *1 (-378)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-931 (-552)))) (-4 *1 (-378)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-671 (-401 (-931 (-373))))) (-4 *1 (-378)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-401 (-931 (-373))))) (-4 *1 (-378)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-671 (-401 (-931 (-552))))) (-4 *1 (-378)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-671 (-401 (-931 (-552))))) (-4 *1 (-378))))) +(-13 (-389) (-10 -8 (-15 -1477 ($ (-627 (-324)))) (-15 -1477 ($ (-324))) (-15 -1477 ($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324)))))) (-15 -1703 ($ (-671 (-310 (-373))))) (-15 -4039 ((-3 $ "failed") (-671 (-310 (-373))))) (-15 -1703 ($ (-671 (-310 (-552))))) (-15 -4039 ((-3 $ "failed") (-671 (-310 (-552))))) (-15 -1703 ($ (-671 (-931 (-373))))) (-15 -4039 ((-3 $ "failed") (-671 (-931 (-373))))) (-15 -1703 ($ (-671 (-931 (-552))))) (-15 -4039 ((-3 $ "failed") (-671 (-931 (-552))))) (-15 -1703 ($ (-671 (-401 (-931 (-373)))))) (-15 -4039 ((-3 $ "failed") (-671 (-401 (-931 (-373)))))) (-15 -1703 ($ (-671 (-401 (-931 (-552)))))) (-15 -4039 ((-3 $ "failed") (-671 (-401 (-931 (-552)))))))) +(((-599 (-842)) . T) ((-389) . T) ((-1189) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2014 (($ $) NIL)) (-1832 (($ |#1| |#2|) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1436 ((|#2| $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 28)) (-1922 (($) 12 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) +(((-379 |#1| |#2|) (-13 (-110 |#1| |#1|) (-501 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-169)) (-6 (-700 |#1|)) |%noBranch|))) (-1028) (-830)) (T -379)) +NIL +(-13 (-110 |#1| |#1|) (-501 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-169)) (-6 (-700 |#1|)) |%noBranch|))) +((-1465 (((-111) $ $) NIL)) (-3307 (((-754) $) 59)) (-3887 (($) NIL T CONST)) (-1899 (((-3 $ "failed") $ $) 61)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2930 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2624 (((-111) $) 15)) (-2792 ((|#1| $ (-552)) NIL)) (-1389 (((-754) $ (-552)) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-2356 (($ (-1 |#1| |#1|) $) 38)) (-4086 (($ (-1 (-754) (-754)) $) 35)) (-1543 (((-3 $ "failed") $ $) 50)) (-1595 (((-1134) $) NIL)) (-2345 (($ $ $) 26)) (-2093 (($ $ $) 24)) (-1498 (((-1096) $) NIL)) (-2101 (((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-754)))) $) 32)) (-3963 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-1477 (((-842) $) 22) (($ |#1|) NIL)) (-1933 (($) 9 T CONST)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) 41)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) 63 (|has| |#1| (-830)))) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ |#1| (-754)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) +(((-380 |#1|) (-13 (-709) (-1017 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-754))) (-15 -2093 ($ $ $)) (-15 -2345 ($ $ $)) (-15 -1543 ((-3 $ "failed") $ $)) (-15 -1899 ((-3 $ "failed") $ $)) (-15 -3963 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2930 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3307 ((-754) $)) (-15 -2101 ((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-754)))) $)) (-15 -1389 ((-754) $ (-552))) (-15 -2792 (|#1| $ (-552))) (-15 -4086 ($ (-1 (-754) (-754)) $)) (-15 -2356 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-830)) (-6 (-830)) |%noBranch|))) (-1076)) (T -380)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-754)) (-5 *1 (-380 *2)) (-4 *2 (-1076)))) (-2093 (*1 *1 *1 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) (-2345 (*1 *1 *1 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) (-1543 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) (-1899 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) (-3963 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-380 *3)) (|:| |rm| (-380 *3)))) (-5 *1 (-380 *3)) (-4 *3 (-1076)))) (-2930 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-380 *3)) (|:| |mm| (-380 *3)) (|:| |rm| (-380 *3)))) (-5 *1 (-380 *3)) (-4 *3 (-1076)))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-380 *3)) (-4 *3 (-1076)))) (-2101 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 (-754))))) (-5 *1 (-380 *3)) (-4 *3 (-1076)))) (-1389 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-754)) (-5 *1 (-380 *4)) (-4 *4 (-1076)))) (-2792 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-380 *2)) (-4 *2 (-1076)))) (-4086 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-754) (-754))) (-5 *1 (-380 *3)) (-4 *3 (-1076)))) (-2356 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1076)) (-5 *1 (-380 *3))))) +(-13 (-709) (-1017 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-754))) (-15 -2093 ($ $ $)) (-15 -2345 ($ $ $)) (-15 -1543 ((-3 $ "failed") $ $)) (-15 -1899 ((-3 $ "failed") $ $)) (-15 -3963 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2930 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3307 ((-754) $)) (-15 -2101 ((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-754)))) $)) (-15 -1389 ((-754) $ (-552))) (-15 -2792 (|#1| $ (-552))) (-15 -4086 ($ (-1 (-754) (-754)) $)) (-15 -2356 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-830)) (-6 (-830)) |%noBranch|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-4039 (((-3 (-552) "failed") $) 45)) (-1703 (((-552) $) 44)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1816 (($ $ $) 52)) (-4093 (($ $ $) 51)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2761 (((-3 $ "failed") $ $) 40)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-552)) 46)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2351 (((-111) $ $) 49)) (-2329 (((-111) $ $) 48)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 50)) (-2316 (((-111) $ $) 47)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-381) (-137)) (T -381)) +NIL +(-13 (-544) (-830) (-1017 (-552))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-284) . T) ((-544) . T) ((-630 $) . T) ((-700 $) . T) ((-709) . T) ((-830) . T) ((-1017 (-552)) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-2354 (((-111) $) 20)) (-3960 (((-111) $) 19)) (-2655 (($ (-1134) (-1134) (-1134)) 21)) (-3112 (((-1134) $) 16)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-4016 (($ (-1134) (-1134) (-1134)) 14)) (-2214 (((-1134) $) 17)) (-2426 (((-111) $) 18)) (-1572 (((-1134) $) 15)) (-1477 (((-842) $) 12) (($ (-1134)) 13) (((-1134) $) 9)) (-2292 (((-111) $ $) 7))) +(((-382) (-383)) (T -382)) +NIL +(-383) +((-1465 (((-111) $ $) 7)) (-2354 (((-111) $) 14)) (-3960 (((-111) $) 15)) (-2655 (($ (-1134) (-1134) (-1134)) 13)) (-3112 (((-1134) $) 18)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-4016 (($ (-1134) (-1134) (-1134)) 20)) (-2214 (((-1134) $) 17)) (-2426 (((-111) $) 16)) (-1572 (((-1134) $) 19)) (-1477 (((-842) $) 11) (($ (-1134)) 22) (((-1134) $) 21)) (-2292 (((-111) $ $) 6))) +(((-383) (-137)) (T -383)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-4 *1 (-383)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1134)))) (-4016 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1134)) (-4 *1 (-383)))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1134)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1134)))) (-2214 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1134)))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111)))) (-3960 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111)))) (-2354 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111)))) (-2655 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1134)) (-4 *1 (-383))))) +(-13 (-1076) (-10 -8 (-15 -1477 ($ (-1134))) (-15 -1477 ((-1134) $)) (-15 -4016 ($ (-1134) (-1134) (-1134))) (-15 -1572 ((-1134) $)) (-15 -3112 ((-1134) $)) (-15 -2214 ((-1134) $)) (-15 -2426 ((-111) $)) (-15 -3960 ((-111) $)) (-15 -2354 ((-111) $)) (-15 -2655 ($ (-1134) (-1134) (-1134))))) +(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1885 (((-842) $) 50)) (-3887 (($) NIL T CONST)) (-1407 (($ $ (-900)) NIL)) (-1410 (($ $ (-900)) NIL)) (-2896 (($ $ (-900)) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2220 (($ (-754)) 26)) (-2405 (((-754)) 17)) (-4062 (((-842) $) 52)) (-2493 (($ $ $) NIL)) (-1477 (((-842) $) NIL)) (-4297 (($ $ $ $) NIL)) (-2743 (($ $ $) NIL)) (-1922 (($) 20 T CONST)) (-2292 (((-111) $ $) 28)) (-2396 (($ $) 34) (($ $ $) 36)) (-2384 (($ $ $) 37)) (** (($ $ (-900)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) +(((-384 |#1| |#2| |#3|) (-13 (-727 |#3|) (-10 -8 (-15 -2405 ((-754))) (-15 -4062 ((-842) $)) (-15 -1885 ((-842) $)) (-15 -2220 ($ (-754))))) (-754) (-754) (-169)) (T -384)) +((-2405 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-169)))) (-4062 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 (-754)) (-14 *4 (-754)) (-4 *5 (-169)))) (-1885 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 (-754)) (-14 *4 (-754)) (-4 *5 (-169)))) (-2220 (*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-169))))) +(-13 (-727 |#3|) (-10 -8 (-15 -2405 ((-754))) (-15 -4062 ((-842) $)) (-15 -1885 ((-842) $)) (-15 -2220 ($ (-754))))) +((-3622 (((-1134)) 10)) (-1995 (((-1123 (-1134))) 28)) (-2769 (((-1240) (-1134)) 25) (((-1240) (-382)) 24)) (-2785 (((-1240)) 26)) (-2601 (((-1123 (-1134))) 27))) +(((-385) (-10 -7 (-15 -2601 ((-1123 (-1134)))) (-15 -1995 ((-1123 (-1134)))) (-15 -2785 ((-1240))) (-15 -2769 ((-1240) (-382))) (-15 -2769 ((-1240) (-1134))) (-15 -3622 ((-1134))))) (T -385)) +((-3622 (*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-385)))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-385)))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1240)) (-5 *1 (-385)))) (-2785 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-385)))) (-1995 (*1 *2) (-12 (-5 *2 (-1123 (-1134))) (-5 *1 (-385)))) (-2601 (*1 *2) (-12 (-5 *2 (-1123 (-1134))) (-5 *1 (-385))))) +(-10 -7 (-15 -2601 ((-1123 (-1134)))) (-15 -1995 ((-1123 (-1134)))) (-15 -2785 ((-1240))) (-15 -2769 ((-1240) (-382))) (-15 -2769 ((-1240) (-1134))) (-15 -3622 ((-1134)))) +((-2641 (((-754) (-330 |#1| |#2| |#3| |#4|)) 16))) +(((-386 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2641 ((-754) (-330 |#1| |#2| |#3| |#4|)))) (-13 (-362) (-357)) (-1211 |#1|) (-1211 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -386)) +((-2641 (*1 *2 *3) (-12 (-5 *3 (-330 *4 *5 *6 *7)) (-4 *4 (-13 (-362) (-357))) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) (-4 *7 (-336 *4 *5 *6)) (-5 *2 (-754)) (-5 *1 (-386 *4 *5 *6 *7))))) +(-10 -7 (-15 -2641 ((-754) (-330 |#1| |#2| |#3| |#4|)))) +((-1477 (((-388) |#1|) 11))) +(((-387 |#1|) (-10 -7 (-15 -1477 ((-388) |#1|))) (-1076)) (T -387)) +((-1477 (*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-387 *3)) (-4 *3 (-1076))))) +(-10 -7 (-15 -1477 ((-388) |#1|))) +((-1465 (((-111) $ $) NIL)) (-1312 (((-627 (-1134)) $ (-627 (-1134))) 38)) (-3549 (((-627 (-1134)) $ (-627 (-1134))) 39)) (-2417 (((-627 (-1134)) $ (-627 (-1134))) 40)) (-3249 (((-627 (-1134)) $) 35)) (-2655 (($) 23)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3525 (((-627 (-1134)) $) 36)) (-1711 (((-627 (-1134)) $) 37)) (-4291 (((-1240) $ (-552)) 33) (((-1240) $) 34)) (-3562 (($ (-842) (-552)) 30)) (-1477 (((-842) $) 42) (($ (-842)) 25)) (-2292 (((-111) $ $) NIL))) +(((-388) (-13 (-1076) (-10 -8 (-15 -1477 ($ (-842))) (-15 -3562 ($ (-842) (-552))) (-15 -4291 ((-1240) $ (-552))) (-15 -4291 ((-1240) $)) (-15 -1711 ((-627 (-1134)) $)) (-15 -3525 ((-627 (-1134)) $)) (-15 -2655 ($)) (-15 -3249 ((-627 (-1134)) $)) (-15 -2417 ((-627 (-1134)) $ (-627 (-1134)))) (-15 -3549 ((-627 (-1134)) $ (-627 (-1134)))) (-15 -1312 ((-627 (-1134)) $ (-627 (-1134))))))) (T -388)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-842)) (-5 *1 (-388)))) (-3562 (*1 *1 *2 *3) (-12 (-5 *2 (-842)) (-5 *3 (-552)) (-5 *1 (-388)))) (-4291 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-388)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-388)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388)))) (-2655 (*1 *1) (-5 *1 (-388))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388)))) (-2417 (*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388)))) (-3549 (*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388)))) (-1312 (*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388))))) +(-13 (-1076) (-10 -8 (-15 -1477 ($ (-842))) (-15 -3562 ($ (-842) (-552))) (-15 -4291 ((-1240) $ (-552))) (-15 -4291 ((-1240) $)) (-15 -1711 ((-627 (-1134)) $)) (-15 -3525 ((-627 (-1134)) $)) (-15 -2655 ($)) (-15 -3249 ((-627 (-1134)) $)) (-15 -2417 ((-627 (-1134)) $ (-627 (-1134)))) (-15 -3549 ((-627 (-1134)) $ (-627 (-1134)))) (-15 -1312 ((-627 (-1134)) $ (-627 (-1134)))))) +((-2802 (((-1240) $) 7)) (-1477 (((-842) $) 8))) +(((-389) (-137)) (T -389)) +((-2802 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1240))))) +(-13 (-1189) (-599 (-842)) (-10 -8 (-15 -2802 ((-1240) $)))) +(((-599 (-842)) . T) ((-1189) . T)) +((-4039 (((-3 $ "failed") (-310 (-373))) 21) (((-3 $ "failed") (-310 (-552))) 19) (((-3 $ "failed") (-931 (-373))) 17) (((-3 $ "failed") (-931 (-552))) 15) (((-3 $ "failed") (-401 (-931 (-373)))) 13) (((-3 $ "failed") (-401 (-931 (-552)))) 11)) (-1703 (($ (-310 (-373))) 22) (($ (-310 (-552))) 20) (($ (-931 (-373))) 18) (($ (-931 (-552))) 16) (($ (-401 (-931 (-373)))) 14) (($ (-401 (-931 (-552)))) 12)) (-2802 (((-1240) $) 7)) (-1477 (((-842) $) 8) (($ (-627 (-324))) 25) (($ (-324)) 24) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 23))) +(((-390) (-137)) (T -390)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-4 *1 (-390)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-390)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) (-4 *1 (-390)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-4 *1 (-390)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-373))) (-4 *1 (-390)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-310 (-552))) (-4 *1 (-390)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-552))) (-4 *1 (-390)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-931 (-373))) (-4 *1 (-390)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-931 (-373))) (-4 *1 (-390)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-931 (-552))) (-4 *1 (-390)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-931 (-552))) (-4 *1 (-390)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-401 (-931 (-373)))) (-4 *1 (-390)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-401 (-931 (-373)))) (-4 *1 (-390)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-401 (-931 (-552)))) (-4 *1 (-390)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-401 (-931 (-552)))) (-4 *1 (-390))))) +(-13 (-389) (-10 -8 (-15 -1477 ($ (-627 (-324)))) (-15 -1477 ($ (-324))) (-15 -1477 ($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324)))))) (-15 -1703 ($ (-310 (-373)))) (-15 -4039 ((-3 $ "failed") (-310 (-373)))) (-15 -1703 ($ (-310 (-552)))) (-15 -4039 ((-3 $ "failed") (-310 (-552)))) (-15 -1703 ($ (-931 (-373)))) (-15 -4039 ((-3 $ "failed") (-931 (-373)))) (-15 -1703 ($ (-931 (-552)))) (-15 -4039 ((-3 $ "failed") (-931 (-552)))) (-15 -1703 ($ (-401 (-931 (-373))))) (-15 -4039 ((-3 $ "failed") (-401 (-931 (-373))))) (-15 -1703 ($ (-401 (-931 (-552))))) (-15 -4039 ((-3 $ "failed") (-401 (-931 (-552))))))) +(((-599 (-842)) . T) ((-389) . T) ((-1189) . T)) +((-1869 (((-627 (-1134)) (-627 (-1134))) 9)) (-2802 (((-1240) (-382)) 27)) (-2283 (((-1080) (-1152) (-627 (-1152)) (-1155) (-627 (-1152))) 60) (((-1080) (-1152) (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152)))) (-627 (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152))))) (-627 (-1152)) (-1152)) 35) (((-1080) (-1152) (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152)))) (-627 (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152))))) (-627 (-1152))) 34))) +(((-391) (-10 -7 (-15 -2283 ((-1080) (-1152) (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152)))) (-627 (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152))))) (-627 (-1152)))) (-15 -2283 ((-1080) (-1152) (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152)))) (-627 (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152))))) (-627 (-1152)) (-1152))) (-15 -2283 ((-1080) (-1152) (-627 (-1152)) (-1155) (-627 (-1152)))) (-15 -2802 ((-1240) (-382))) (-15 -1869 ((-627 (-1134)) (-627 (-1134)))))) (T -391)) +((-1869 (*1 *2 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-391)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1240)) (-5 *1 (-391)))) (-2283 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-627 (-1152))) (-5 *5 (-1155)) (-5 *3 (-1152)) (-5 *2 (-1080)) (-5 *1 (-391)))) (-2283 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-627 (-627 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-627 (-3 (|:| |array| (-627 *3)) (|:| |scalar| (-1152))))) (-5 *6 (-627 (-1152))) (-5 *3 (-1152)) (-5 *2 (-1080)) (-5 *1 (-391)))) (-2283 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-627 (-627 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-627 (-3 (|:| |array| (-627 *3)) (|:| |scalar| (-1152))))) (-5 *6 (-627 (-1152))) (-5 *3 (-1152)) (-5 *2 (-1080)) (-5 *1 (-391))))) +(-10 -7 (-15 -2283 ((-1080) (-1152) (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152)))) (-627 (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152))))) (-627 (-1152)))) (-15 -2283 ((-1080) (-1152) (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152)))) (-627 (-627 (-3 (|:| |array| (-627 (-1152))) (|:| |scalar| (-1152))))) (-627 (-1152)) (-1152))) (-15 -2283 ((-1080) (-1152) (-627 (-1152)) (-1155) (-627 (-1152)))) (-15 -2802 ((-1240) (-382))) (-15 -1869 ((-627 (-1134)) (-627 (-1134))))) +((-2802 (((-1240) $) 38)) (-1477 (((-842) $) 98) (($ (-324)) 100) (($ (-627 (-324))) 99) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 97) (($ (-310 (-683))) 54) (($ (-310 (-681))) 73) (($ (-310 (-676))) 86) (($ (-288 (-310 (-683)))) 68) (($ (-288 (-310 (-681)))) 81) (($ (-288 (-310 (-676)))) 94) (($ (-310 (-552))) 104) (($ (-310 (-373))) 117) (($ (-310 (-166 (-373)))) 130) (($ (-288 (-310 (-552)))) 112) (($ (-288 (-310 (-373)))) 125) (($ (-288 (-310 (-166 (-373))))) 138))) +(((-392 |#1| |#2| |#3| |#4|) (-13 (-389) (-10 -8 (-15 -1477 ($ (-324))) (-15 -1477 ($ (-627 (-324)))) (-15 -1477 ($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324)))))) (-15 -1477 ($ (-310 (-683)))) (-15 -1477 ($ (-310 (-681)))) (-15 -1477 ($ (-310 (-676)))) (-15 -1477 ($ (-288 (-310 (-683))))) (-15 -1477 ($ (-288 (-310 (-681))))) (-15 -1477 ($ (-288 (-310 (-676))))) (-15 -1477 ($ (-310 (-552)))) (-15 -1477 ($ (-310 (-373)))) (-15 -1477 ($ (-310 (-166 (-373))))) (-15 -1477 ($ (-288 (-310 (-552))))) (-15 -1477 ($ (-288 (-310 (-373))))) (-15 -1477 ($ (-288 (-310 (-166 (-373)))))))) (-1152) (-3 (|:| |fst| (-428)) (|:| -3885 "void")) (-627 (-1152)) (-1156)) (T -392)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-324)) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-310 (-683))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-310 (-681))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-310 (-676))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-683)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-681)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-676)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-310 (-552))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-310 (-166 (-373)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-552)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-373)))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-288 (-310 (-166 (-373))))) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-14 *5 (-627 (-1152))) (-14 *6 (-1156))))) +(-13 (-389) (-10 -8 (-15 -1477 ($ (-324))) (-15 -1477 ($ (-627 (-324)))) (-15 -1477 ($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324)))))) (-15 -1477 ($ (-310 (-683)))) (-15 -1477 ($ (-310 (-681)))) (-15 -1477 ($ (-310 (-676)))) (-15 -1477 ($ (-288 (-310 (-683))))) (-15 -1477 ($ (-288 (-310 (-681))))) (-15 -1477 ($ (-288 (-310 (-676))))) (-15 -1477 ($ (-310 (-552)))) (-15 -1477 ($ (-310 (-373)))) (-15 -1477 ($ (-310 (-166 (-373))))) (-15 -1477 ($ (-288 (-310 (-552))))) (-15 -1477 ($ (-288 (-310 (-373))))) (-15 -1477 ($ (-288 (-310 (-166 (-373)))))))) +((-1465 (((-111) $ $) NIL)) (-3043 ((|#2| $) 36)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2596 (($ (-401 |#2|)) 85)) (-1469 (((-627 (-2 (|:| -4067 (-754)) (|:| -3174 |#2|) (|:| |num| |#2|))) $) 37)) (-2942 (($ $) 32) (($ $ (-754)) 34)) (-3562 (((-401 |#2|) $) 46)) (-1490 (($ (-627 (-2 (|:| -4067 (-754)) (|:| -3174 |#2|) (|:| |num| |#2|)))) 31)) (-1477 (((-842) $) 120)) (-4251 (($ $) 33) (($ $ (-754)) 35)) (-2292 (((-111) $ $) NIL)) (-2384 (($ |#2| $) 39))) +(((-393 |#1| |#2|) (-13 (-1076) (-600 (-401 |#2|)) (-10 -8 (-15 -2384 ($ |#2| $)) (-15 -2596 ($ (-401 |#2|))) (-15 -3043 (|#2| $)) (-15 -1469 ((-627 (-2 (|:| -4067 (-754)) (|:| -3174 |#2|) (|:| |num| |#2|))) $)) (-15 -1490 ($ (-627 (-2 (|:| -4067 (-754)) (|:| -3174 |#2|) (|:| |num| |#2|))))) (-15 -2942 ($ $)) (-15 -4251 ($ $)) (-15 -2942 ($ $ (-754))) (-15 -4251 ($ $ (-754))))) (-13 (-357) (-144)) (-1211 |#1|)) (T -393)) +((-2384 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *2)) (-4 *2 (-1211 *3)))) (-2596 (*1 *1 *2) (-12 (-5 *2 (-401 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)))) (-3043 (*1 *2 *1) (-12 (-4 *2 (-1211 *3)) (-5 *1 (-393 *3 *2)) (-4 *3 (-13 (-357) (-144))))) (-1469 (*1 *2 *1) (-12 (-4 *3 (-13 (-357) (-144))) (-5 *2 (-627 (-2 (|:| -4067 (-754)) (|:| -3174 *4) (|:| |num| *4)))) (-5 *1 (-393 *3 *4)) (-4 *4 (-1211 *3)))) (-1490 (*1 *1 *2) (-12 (-5 *2 (-627 (-2 (|:| -4067 (-754)) (|:| -3174 *4) (|:| |num| *4)))) (-4 *4 (-1211 *3)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)))) (-2942 (*1 *1 *1) (-12 (-4 *2 (-13 (-357) (-144))) (-5 *1 (-393 *2 *3)) (-4 *3 (-1211 *2)))) (-4251 (*1 *1 *1) (-12 (-4 *2 (-13 (-357) (-144))) (-5 *1 (-393 *2 *3)) (-4 *3 (-1211 *2)))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)) (-4 *4 (-1211 *3)))) (-4251 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)) (-4 *4 (-1211 *3))))) +(-13 (-1076) (-600 (-401 |#2|)) (-10 -8 (-15 -2384 ($ |#2| $)) (-15 -2596 ($ (-401 |#2|))) (-15 -3043 (|#2| $)) (-15 -1469 ((-627 (-2 (|:| -4067 (-754)) (|:| -3174 |#2|) (|:| |num| |#2|))) $)) (-15 -1490 ($ (-627 (-2 (|:| -4067 (-754)) (|:| -3174 |#2|) (|:| |num| |#2|))))) (-15 -2942 ($ $)) (-15 -4251 ($ $)) (-15 -2942 ($ $ (-754))) (-15 -4251 ($ $ (-754))))) +((-1465 (((-111) $ $) 9 (-1559 (|has| |#1| (-865 (-552))) (|has| |#1| (-865 (-373)))))) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 15 (|has| |#1| (-865 (-373)))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 14 (|has| |#1| (-865 (-552))))) (-1595 (((-1134) $) 13 (-1559 (|has| |#1| (-865 (-552))) (|has| |#1| (-865 (-373)))))) (-1498 (((-1096) $) 12 (-1559 (|has| |#1| (-865 (-552))) (|has| |#1| (-865 (-373)))))) (-1477 (((-842) $) 11 (-1559 (|has| |#1| (-865 (-552))) (|has| |#1| (-865 (-373)))))) (-2292 (((-111) $ $) 10 (-1559 (|has| |#1| (-865 (-552))) (|has| |#1| (-865 (-373))))))) +(((-394 |#1|) (-137) (-1189)) (T -394)) +NIL +(-13 (-1189) (-10 -7 (IF (|has| |t#1| (-865 (-552))) (-6 (-865 (-552))) |%noBranch|) (IF (|has| |t#1| (-865 (-373))) (-6 (-865 (-373))) |%noBranch|))) +(((-101) -1559 (|has| |#1| (-865 (-552))) (|has| |#1| (-865 (-373)))) ((-599 (-842)) -1559 (|has| |#1| (-865 (-552))) (|has| |#1| (-865 (-373)))) ((-865 (-373)) |has| |#1| (-865 (-373))) ((-865 (-552)) |has| |#1| (-865 (-552))) ((-1076) -1559 (|has| |#1| (-865 (-552))) (|has| |#1| (-865 (-373)))) ((-1189) . T)) +((-4294 (($ $) 10) (($ $ (-754)) 11))) +(((-395 |#1|) (-10 -8 (-15 -4294 (|#1| |#1| (-754))) (-15 -4294 (|#1| |#1|))) (-396)) (T -395)) +NIL +(-10 -8 (-15 -4294 (|#1| |#1| (-754))) (-15 -4294 (|#1| |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 70)) (-2487 (((-412 $) $) 69)) (-4224 (((-111) $ $) 57)) (-3887 (($) 17 T CONST)) (-2813 (($ $ $) 53)) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-4294 (($ $) 76) (($ $ (-754)) 75)) (-1633 (((-111) $) 68)) (-2641 (((-816 (-900)) $) 78)) (-2624 (((-111) $) 30)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 67)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-1727 (((-412 $) $) 71)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-2718 (((-754) $) 56)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-4018 (((-3 (-754) "failed") $ $) 77)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63)) (-3050 (((-3 $ "failed") $) 79)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ $) 62)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 66)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64))) +(((-396) (-137)) (T -396)) +((-2641 (*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-816 (-900))))) (-4018 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-396)) (-5 *2 (-754)))) (-4294 (*1 *1 *1) (-4 *1 (-396))) (-4294 (*1 *1 *1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-754))))) +(-13 (-357) (-142) (-10 -8 (-15 -2641 ((-816 (-900)) $)) (-15 -4018 ((-3 (-754) "failed") $ $)) (-15 -4294 ($ $)) (-15 -4294 ($ $ (-754))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-142) . T) ((-599 (-842)) . T) ((-169) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-445) . T) ((-544) . T) ((-630 #0#) . T) ((-630 $) . T) ((-700 #0#) . T) ((-700 $) . T) ((-709) . T) ((-899) . T) ((-1034 #0#) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) . T)) +((-2103 (($ (-552) (-552)) 11) (($ (-552) (-552) (-900)) NIL)) (-3080 (((-900)) 16) (((-900) (-900)) NIL))) +(((-397 |#1|) (-10 -8 (-15 -3080 ((-900) (-900))) (-15 -3080 ((-900))) (-15 -2103 (|#1| (-552) (-552) (-900))) (-15 -2103 (|#1| (-552) (-552)))) (-398)) (T -397)) +((-3080 (*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-397 *3)) (-4 *3 (-398)))) (-3080 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-397 *3)) (-4 *3 (-398))))) +(-10 -8 (-15 -3080 ((-900) (-900))) (-15 -3080 ((-900))) (-15 -2103 (|#1| (-552) (-552) (-900))) (-15 -2103 (|#1| (-552) (-552)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3471 (((-552) $) 86)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4019 (($ $) 84)) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 70)) (-2487 (((-412 $) $) 69)) (-1737 (($ $) 94)) (-4224 (((-111) $ $) 57)) (-2422 (((-552) $) 111)) (-3887 (($) 17 T CONST)) (-2635 (($ $) 83)) (-4039 (((-3 (-552) "failed") $) 99) (((-3 (-401 (-552)) "failed") $) 96)) (-1703 (((-552) $) 98) (((-401 (-552)) $) 95)) (-2813 (($ $ $) 53)) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-1633 (((-111) $) 68)) (-3284 (((-900)) 127) (((-900) (-900)) 124 (|has| $ (-6 -4357)))) (-2983 (((-111) $) 109)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 90)) (-2641 (((-552) $) 133)) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 93)) (-2349 (($ $) 89)) (-1508 (((-111) $) 110)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-1816 (($ $ $) 108) (($) 121 (-12 (-1681 (|has| $ (-6 -4357))) (-1681 (|has| $ (-6 -4349)))))) (-4093 (($ $ $) 107) (($) 120 (-12 (-1681 (|has| $ (-6 -4357))) (-1681 (|has| $ (-6 -4349)))))) (-2948 (((-552) $) 130)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 67)) (-3964 (((-900) (-552)) 123 (|has| $ (-6 -4357)))) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-4328 (($ $) 85)) (-2060 (($ $) 87)) (-2103 (($ (-552) (-552)) 135) (($ (-552) (-552) (-900)) 134)) (-1727 (((-412 $) $) 71)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-4067 (((-552) $) 131)) (-2718 (((-754) $) 56)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-3080 (((-900)) 128) (((-900) (-900)) 125 (|has| $ (-6 -4357)))) (-2531 (((-900) (-552)) 122 (|has| $ (-6 -4357)))) (-3562 (((-373) $) 102) (((-220) $) 101) (((-871 (-373)) $) 91)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63) (($ (-552)) 100) (($ (-401 (-552))) 97)) (-3995 (((-754)) 28)) (-3796 (($ $) 88)) (-3580 (((-900)) 129) (((-900) (-900)) 126 (|has| $ (-6 -4357)))) (-2705 (((-900)) 132)) (-3778 (((-111) $ $) 37)) (-3329 (($ $) 112)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2351 (((-111) $ $) 105)) (-2329 (((-111) $ $) 104)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 106)) (-2316 (((-111) $ $) 103)) (-2407 (($ $ $) 62)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 66) (($ $ (-401 (-552))) 92)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64))) +(((-398) (-137)) (T -398)) +((-2103 (*1 *1 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-398)))) (-2103 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-900)) (-4 *1 (-398)))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-552)))) (-2705 (*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-900)))) (-4067 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-552)))) (-2948 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-552)))) (-3580 (*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-900)))) (-3080 (*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-900)))) (-3284 (*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-900)))) (-3580 (*1 *2 *2) (-12 (-5 *2 (-900)) (|has| *1 (-6 -4357)) (-4 *1 (-398)))) (-3080 (*1 *2 *2) (-12 (-5 *2 (-900)) (|has| *1 (-6 -4357)) (-4 *1 (-398)))) (-3284 (*1 *2 *2) (-12 (-5 *2 (-900)) (|has| *1 (-6 -4357)) (-4 *1 (-398)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-552)) (|has| *1 (-6 -4357)) (-4 *1 (-398)) (-5 *2 (-900)))) (-2531 (*1 *2 *3) (-12 (-5 *3 (-552)) (|has| *1 (-6 -4357)) (-4 *1 (-398)) (-5 *2 (-900)))) (-1816 (*1 *1) (-12 (-4 *1 (-398)) (-1681 (|has| *1 (-6 -4357))) (-1681 (|has| *1 (-6 -4349))))) (-4093 (*1 *1) (-12 (-4 *1 (-398)) (-1681 (|has| *1 (-6 -4357))) (-1681 (|has| *1 (-6 -4349)))))) +(-13 (-1037) (-10 -8 (-6 -3030) (-15 -2103 ($ (-552) (-552))) (-15 -2103 ($ (-552) (-552) (-900))) (-15 -2641 ((-552) $)) (-15 -2705 ((-900))) (-15 -4067 ((-552) $)) (-15 -2948 ((-552) $)) (-15 -3580 ((-900))) (-15 -3080 ((-900))) (-15 -3284 ((-900))) (IF (|has| $ (-6 -4357)) (PROGN (-15 -3580 ((-900) (-900))) (-15 -3080 ((-900) (-900))) (-15 -3284 ((-900) (-900))) (-15 -3964 ((-900) (-552))) (-15 -2531 ((-900) (-552)))) |%noBranch|) (IF (|has| $ (-6 -4349)) |%noBranch| (IF (|has| $ (-6 -4357)) |%noBranch| (PROGN (-15 -1816 ($)) (-15 -4093 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-144) . T) ((-599 (-842)) . T) ((-169) . T) ((-600 (-220)) . T) ((-600 (-373)) . T) ((-600 (-871 (-373))) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-445) . T) ((-544) . T) ((-630 #0#) . T) ((-630 $) . T) ((-700 #0#) . T) ((-700 $) . T) ((-709) . T) ((-774) . T) ((-775) . T) ((-777) . T) ((-778) . T) ((-828) . T) ((-830) . T) ((-865 (-373)) . T) ((-899) . T) ((-981) . T) ((-1001) . T) ((-1037) . T) ((-1017 (-401 (-552))) . T) ((-1017 (-552)) . T) ((-1034 #0#) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) . T)) +((-3516 (((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)) 20))) +(((-399 |#1| |#2|) (-10 -7 (-15 -3516 ((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)))) (-544) (-544)) (T -399)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-412 *5)) (-4 *5 (-544)) (-4 *6 (-544)) (-5 *2 (-412 *6)) (-5 *1 (-399 *5 *6))))) +(-10 -7 (-15 -3516 ((-412 |#2|) (-1 |#2| |#1|) (-412 |#1|)))) +((-3516 (((-401 |#2|) (-1 |#2| |#1|) (-401 |#1|)) 13))) +(((-400 |#1| |#2|) (-10 -7 (-15 -3516 ((-401 |#2|) (-1 |#2| |#1|) (-401 |#1|)))) (-544) (-544)) (T -400)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-401 *5)) (-4 *5 (-544)) (-4 *6 (-544)) (-5 *2 (-401 *6)) (-5 *1 (-400 *5 *6))))) +(-10 -7 (-15 -3516 ((-401 |#2|) (-1 |#2| |#1|) (-401 |#1|)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 13)) (-3471 ((|#1| $) 21 (|has| |#1| (-301)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL (|has| |#1| (-803)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) 17) (((-3 (-1152) "failed") $) NIL (|has| |#1| (-1017 (-1152)))) (((-3 (-401 (-552)) "failed") $) 70 (|has| |#1| (-1017 (-552)))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552))))) (-1703 ((|#1| $) 15) (((-1152) $) NIL (|has| |#1| (-1017 (-1152)))) (((-401 (-552)) $) 67 (|has| |#1| (-1017 (-552)))) (((-552) $) NIL (|has| |#1| (-1017 (-552))))) (-2813 (($ $ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) 50)) (-1279 (($) NIL (|has| |#1| (-537)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2983 (((-111) $) NIL (|has| |#1| (-803)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| |#1| (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| |#1| (-865 (-373))))) (-2624 (((-111) $) 64)) (-3798 (($ $) NIL)) (-2918 ((|#1| $) 71)) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-1127)))) (-1508 (((-111) $) NIL (|has| |#1| (-803)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| |#1| (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 97)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL (|has| |#1| (-301)))) (-2060 ((|#1| $) 28 (|has| |#1| (-537)))) (-3676 (((-412 (-1148 $)) (-1148 $)) 135 (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) 131 (|has| |#1| (-888)))) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3321 (($ $ (-627 |#1|) (-627 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-627 (-288 |#1|))) NIL (|has| |#1| (-303 |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) NIL (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-1152) |#1|) NIL (|has| |#1| (-506 (-1152) |#1|)))) (-2718 (((-754) $) NIL)) (-1985 (($ $ |#1|) NIL (|has| |#1| (-280 |#1| |#1|)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-1583 (($ $) NIL)) (-2929 ((|#1| $) 73)) (-3562 (((-871 (-552)) $) NIL (|has| |#1| (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| |#1| (-600 (-871 (-373))))) (((-528) $) NIL (|has| |#1| (-600 (-528)))) (((-373) $) NIL (|has| |#1| (-1001))) (((-220) $) NIL (|has| |#1| (-1001)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 115 (-12 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) 10) (($ (-1152)) NIL (|has| |#1| (-1017 (-1152))))) (-3050 (((-3 $ "failed") $) 99 (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) 100)) (-3796 ((|#1| $) 26 (|has| |#1| (-537)))) (-3778 (((-111) $ $) NIL)) (-3329 (($ $) NIL (|has| |#1| (-803)))) (-1922 (($) 22 T CONST)) (-1933 (($) 8 T CONST)) (-4157 (((-1134) $) 43 (-12 (|has| |#1| (-537)) (|has| |#1| (-811)))) (((-1134) $ (-111)) 44 (-12 (|has| |#1| (-537)) (|has| |#1| (-811)))) (((-1240) (-805) $) 45 (-12 (|has| |#1| (-537)) (|has| |#1| (-811)))) (((-1240) (-805) $ (-111)) 46 (-12 (|has| |#1| (-537)) (|has| |#1| (-811))))) (-4251 (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) 56)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) 24 (|has| |#1| (-830)))) (-2407 (($ $ $) 126) (($ |#1| |#1|) 52)) (-2396 (($ $) 25) (($ $ $) 55)) (-2384 (($ $ $) 53)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) 125)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 60) (($ $ $) 57) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) +(((-401 |#1|) (-13 (-971 |#1|) (-10 -7 (IF (|has| |#1| (-537)) (IF (|has| |#1| (-811)) (-6 (-811)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4353)) (IF (|has| |#1| (-445)) (IF (|has| |#1| (-6 -4364)) (-6 -4353) |%noBranch|) |%noBranch|) |%noBranch|))) (-544)) (T -401)) +NIL +(-13 (-971 |#1|) (-10 -7 (IF (|has| |#1| (-537)) (IF (|has| |#1| (-811)) (-6 (-811)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4353)) (IF (|has| |#1| (-445)) (IF (|has| |#1| (-6 -4364)) (-6 -4353) |%noBranch|) |%noBranch|) |%noBranch|))) +((-3841 (((-671 |#2|) (-1235 $)) NIL) (((-671 |#2|)) 18)) (-2342 (($ (-1235 |#2|) (-1235 $)) NIL) (($ (-1235 |#2|)) 24)) (-4088 (((-671 |#2|) $ (-1235 $)) NIL) (((-671 |#2|) $) 38)) (-4205 ((|#3| $) 60)) (-1637 ((|#2| (-1235 $)) NIL) ((|#2|) 20)) (-3133 (((-1235 |#2|) $ (-1235 $)) NIL) (((-671 |#2|) (-1235 $) (-1235 $)) NIL) (((-1235 |#2|) $) 22) (((-671 |#2|) (-1235 $)) 36)) (-3562 (((-1235 |#2|) $) 11) (($ (-1235 |#2|)) 13)) (-2410 ((|#3| $) 52))) +(((-402 |#1| |#2| |#3|) (-10 -8 (-15 -4088 ((-671 |#2|) |#1|)) (-15 -1637 (|#2|)) (-15 -3841 ((-671 |#2|))) (-15 -3562 (|#1| (-1235 |#2|))) (-15 -3562 ((-1235 |#2|) |#1|)) (-15 -2342 (|#1| (-1235 |#2|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1|)) (-15 -4205 (|#3| |#1|)) (-15 -2410 (|#3| |#1|)) (-15 -3841 ((-671 |#2|) (-1235 |#1|))) (-15 -1637 (|#2| (-1235 |#1|))) (-15 -2342 (|#1| (-1235 |#2|) (-1235 |#1|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1| (-1235 |#1|))) (-15 -4088 ((-671 |#2|) |#1| (-1235 |#1|)))) (-403 |#2| |#3|) (-169) (-1211 |#2|)) (T -402)) +((-3841 (*1 *2) (-12 (-4 *4 (-169)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)) (-5 *1 (-402 *3 *4 *5)) (-4 *3 (-403 *4 *5)))) (-1637 (*1 *2) (-12 (-4 *4 (-1211 *2)) (-4 *2 (-169)) (-5 *1 (-402 *3 *2 *4)) (-4 *3 (-403 *2 *4))))) +(-10 -8 (-15 -4088 ((-671 |#2|) |#1|)) (-15 -1637 (|#2|)) (-15 -3841 ((-671 |#2|))) (-15 -3562 (|#1| (-1235 |#2|))) (-15 -3562 ((-1235 |#2|) |#1|)) (-15 -2342 (|#1| (-1235 |#2|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1|)) (-15 -4205 (|#3| |#1|)) (-15 -2410 (|#3| |#1|)) (-15 -3841 ((-671 |#2|) (-1235 |#1|))) (-15 -1637 (|#2| (-1235 |#1|))) (-15 -2342 (|#1| (-1235 |#2|) (-1235 |#1|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1| (-1235 |#1|))) (-15 -4088 ((-671 |#2|) |#1| (-1235 |#1|)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3841 (((-671 |#1|) (-1235 $)) 44) (((-671 |#1|)) 59)) (-3385 ((|#1| $) 50)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2342 (($ (-1235 |#1|) (-1235 $)) 46) (($ (-1235 |#1|)) 62)) (-4088 (((-671 |#1|) $ (-1235 $)) 51) (((-671 |#1|) $) 57)) (-2040 (((-3 $ "failed") $) 32)) (-4154 (((-900)) 52)) (-2624 (((-111) $) 30)) (-2349 ((|#1| $) 49)) (-4205 ((|#2| $) 42 (|has| |#1| (-357)))) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1637 ((|#1| (-1235 $)) 45) ((|#1|) 58)) (-3133 (((-1235 |#1|) $ (-1235 $)) 48) (((-671 |#1|) (-1235 $) (-1235 $)) 47) (((-1235 |#1|) $) 64) (((-671 |#1|) (-1235 $)) 63)) (-3562 (((-1235 |#1|) $) 61) (($ (-1235 |#1|)) 60)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 35)) (-3050 (((-3 $ "failed") $) 41 (|has| |#1| (-142)))) (-2410 ((|#2| $) 43)) (-3995 (((-754)) 28)) (-2957 (((-1235 $)) 65)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-403 |#1| |#2|) (-137) (-169) (-1211 |t#1|)) (T -403)) +((-2957 (*1 *2) (-12 (-4 *3 (-169)) (-4 *4 (-1211 *3)) (-5 *2 (-1235 *1)) (-4 *1 (-403 *3 *4)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1211 *3)) (-5 *2 (-1235 *3)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-403 *4 *5)) (-4 *4 (-169)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) (-2342 (*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-169)) (-4 *1 (-403 *3 *4)) (-4 *4 (-1211 *3)))) (-3562 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1211 *3)) (-5 *2 (-1235 *3)))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-169)) (-4 *1 (-403 *3 *4)) (-4 *4 (-1211 *3)))) (-3841 (*1 *2) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1211 *3)) (-5 *2 (-671 *3)))) (-1637 (*1 *2) (-12 (-4 *1 (-403 *2 *3)) (-4 *3 (-1211 *2)) (-4 *2 (-169)))) (-4088 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1211 *3)) (-5 *2 (-671 *3))))) +(-13 (-364 |t#1| |t#2|) (-10 -8 (-15 -2957 ((-1235 $))) (-15 -3133 ((-1235 |t#1|) $)) (-15 -3133 ((-671 |t#1|) (-1235 $))) (-15 -2342 ($ (-1235 |t#1|))) (-15 -3562 ((-1235 |t#1|) $)) (-15 -3562 ($ (-1235 |t#1|))) (-15 -3841 ((-671 |t#1|))) (-15 -1637 (|t#1|)) (-15 -4088 ((-671 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-364 |#1| |#2|) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-700 |#1|) . T) ((-709) . T) ((-1034 |#1|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-4039 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) 27) (((-3 (-552) "failed") $) 19)) (-1703 ((|#2| $) NIL) (((-401 (-552)) $) 24) (((-552) $) 14)) (-1477 (($ |#2|) NIL) (($ (-401 (-552))) 22) (($ (-552)) 11))) +(((-404 |#1| |#2|) (-10 -8 (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1477 (|#1| (-552))) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| |#2|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1703 (|#2| |#1|))) (-405 |#2|) (-1189)) (T -404)) +NIL +(-10 -8 (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1477 (|#1| (-552))) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| |#2|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1703 (|#2| |#1|))) +((-4039 (((-3 |#1| "failed") $) 7) (((-3 (-401 (-552)) "failed") $) 16 (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) 13 (|has| |#1| (-1017 (-552))))) (-1703 ((|#1| $) 8) (((-401 (-552)) $) 15 (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) 12 (|has| |#1| (-1017 (-552))))) (-1477 (($ |#1|) 6) (($ (-401 (-552))) 17 (|has| |#1| (-1017 (-401 (-552))))) (($ (-552)) 14 (|has| |#1| (-1017 (-552)))))) +(((-405 |#1|) (-137) (-1189)) (T -405)) +NIL +(-13 (-1017 |t#1|) (-10 -7 (IF (|has| |t#1| (-1017 (-552))) (-6 (-1017 (-552))) |%noBranch|) (IF (|has| |t#1| (-1017 (-401 (-552)))) (-6 (-1017 (-401 (-552)))) |%noBranch|))) +(((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T)) +((-3516 (((-407 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-407 |#1| |#2| |#3| |#4|)) 33))) +(((-406 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3516 ((-407 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-407 |#1| |#2| |#3| |#4|)))) (-301) (-971 |#1|) (-1211 |#2|) (-13 (-403 |#2| |#3|) (-1017 |#2|)) (-301) (-971 |#5|) (-1211 |#6|) (-13 (-403 |#6| |#7|) (-1017 |#6|))) (T -406)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-407 *5 *6 *7 *8)) (-4 *5 (-301)) (-4 *6 (-971 *5)) (-4 *7 (-1211 *6)) (-4 *8 (-13 (-403 *6 *7) (-1017 *6))) (-4 *9 (-301)) (-4 *10 (-971 *9)) (-4 *11 (-1211 *10)) (-5 *2 (-407 *9 *10 *11 *12)) (-5 *1 (-406 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-403 *10 *11) (-1017 *10)))))) +(-10 -7 (-15 -3516 ((-407 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-407 |#1| |#2| |#3| |#4|)))) +((-1465 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL)) (-3410 ((|#4| (-754) (-1235 |#4|)) 56)) (-2624 (((-111) $) NIL)) (-2918 (((-1235 |#4|) $) 17)) (-2349 ((|#2| $) 54)) (-1809 (($ $) 139)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 100)) (-3103 (($ (-1235 |#4|)) 99)) (-1498 (((-1096) $) NIL)) (-2929 ((|#1| $) 18)) (-2616 (($ $ $) NIL)) (-2493 (($ $ $) NIL)) (-1477 (((-842) $) 134)) (-2957 (((-1235 |#4|) $) 129)) (-1933 (($) 11 T CONST)) (-2292 (((-111) $ $) 40)) (-2407 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) 122)) (* (($ $ $) 121))) +(((-407 |#1| |#2| |#3| |#4|) (-13 (-466) (-10 -8 (-15 -3103 ($ (-1235 |#4|))) (-15 -2957 ((-1235 |#4|) $)) (-15 -2349 (|#2| $)) (-15 -2918 ((-1235 |#4|) $)) (-15 -2929 (|#1| $)) (-15 -1809 ($ $)) (-15 -3410 (|#4| (-754) (-1235 |#4|))))) (-301) (-971 |#1|) (-1211 |#2|) (-13 (-403 |#2| |#3|) (-1017 |#2|))) (T -407)) +((-3103 (*1 *1 *2) (-12 (-5 *2 (-1235 *6)) (-4 *6 (-13 (-403 *4 *5) (-1017 *4))) (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) (-4 *3 (-301)) (-5 *1 (-407 *3 *4 *5 *6)))) (-2957 (*1 *2 *1) (-12 (-4 *3 (-301)) (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) (-5 *2 (-1235 *6)) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1017 *4))))) (-2349 (*1 *2 *1) (-12 (-4 *4 (-1211 *2)) (-4 *2 (-971 *3)) (-5 *1 (-407 *3 *2 *4 *5)) (-4 *3 (-301)) (-4 *5 (-13 (-403 *2 *4) (-1017 *2))))) (-2918 (*1 *2 *1) (-12 (-4 *3 (-301)) (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) (-5 *2 (-1235 *6)) (-5 *1 (-407 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1017 *4))))) (-2929 (*1 *2 *1) (-12 (-4 *3 (-971 *2)) (-4 *4 (-1211 *3)) (-4 *2 (-301)) (-5 *1 (-407 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1017 *3))))) (-1809 (*1 *1 *1) (-12 (-4 *2 (-301)) (-4 *3 (-971 *2)) (-4 *4 (-1211 *3)) (-5 *1 (-407 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1017 *3))))) (-3410 (*1 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-1235 *2)) (-4 *5 (-301)) (-4 *6 (-971 *5)) (-4 *2 (-13 (-403 *6 *7) (-1017 *6))) (-5 *1 (-407 *5 *6 *7 *2)) (-4 *7 (-1211 *6))))) +(-13 (-466) (-10 -8 (-15 -3103 ($ (-1235 |#4|))) (-15 -2957 ((-1235 |#4|) $)) (-15 -2349 (|#2| $)) (-15 -2918 ((-1235 |#4|) $)) (-15 -2929 (|#1| $)) (-15 -1809 ($ $)) (-15 -3410 (|#4| (-754) (-1235 |#4|))))) +((-1465 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-2349 ((|#2| $) 61)) (-1532 (($ (-1235 |#4|)) 25) (($ (-407 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1017 |#2|)))) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 34)) (-2957 (((-1235 |#4|) $) 26)) (-1933 (($) 23 T CONST)) (-2292 (((-111) $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ $ $) 72))) +(((-408 |#1| |#2| |#3| |#4| |#5|) (-13 (-709) (-10 -8 (-15 -2957 ((-1235 |#4|) $)) (-15 -2349 (|#2| $)) (-15 -1532 ($ (-1235 |#4|))) (IF (|has| |#4| (-1017 |#2|)) (-15 -1532 ($ (-407 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-301) (-971 |#1|) (-1211 |#2|) (-403 |#2| |#3|) (-1235 |#4|)) (T -408)) +((-2957 (*1 *2 *1) (-12 (-4 *3 (-301)) (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) (-5 *2 (-1235 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7)) (-4 *6 (-403 *4 *5)) (-14 *7 *2))) (-2349 (*1 *2 *1) (-12 (-4 *4 (-1211 *2)) (-4 *2 (-971 *3)) (-5 *1 (-408 *3 *2 *4 *5 *6)) (-4 *3 (-301)) (-4 *5 (-403 *2 *4)) (-14 *6 (-1235 *5)))) (-1532 (*1 *1 *2) (-12 (-5 *2 (-1235 *6)) (-4 *6 (-403 *4 *5)) (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) (-4 *3 (-301)) (-5 *1 (-408 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1532 (*1 *1 *2) (-12 (-5 *2 (-407 *3 *4 *5 *6)) (-4 *6 (-1017 *4)) (-4 *3 (-301)) (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) (-4 *6 (-403 *4 *5)) (-14 *7 (-1235 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7))))) +(-13 (-709) (-10 -8 (-15 -2957 ((-1235 |#4|) $)) (-15 -2349 (|#2| $)) (-15 -1532 ($ (-1235 |#4|))) (IF (|has| |#4| (-1017 |#2|)) (-15 -1532 ($ (-407 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-3516 ((|#3| (-1 |#4| |#2|) |#1|) 26))) +(((-409 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 (|#3| (-1 |#4| |#2|) |#1|))) (-411 |#2|) (-169) (-411 |#4|) (-169)) (T -409)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-411 *6)) (-5 *1 (-409 *4 *5 *2 *6)) (-4 *4 (-411 *5))))) +(-10 -7 (-15 -3516 (|#3| (-1 |#4| |#2|) |#1|))) +((-2717 (((-3 $ "failed")) 86)) (-3449 (((-1235 (-671 |#2|)) (-1235 $)) NIL) (((-1235 (-671 |#2|))) 91)) (-2478 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) 85)) (-3994 (((-3 $ "failed")) 84)) (-2877 (((-671 |#2|) (-1235 $)) NIL) (((-671 |#2|)) 102)) (-3029 (((-671 |#2|) $ (-1235 $)) NIL) (((-671 |#2|) $) 110)) (-2856 (((-1148 (-931 |#2|))) 55)) (-3119 ((|#2| (-1235 $)) NIL) ((|#2|) 106)) (-2342 (($ (-1235 |#2|) (-1235 $)) NIL) (($ (-1235 |#2|)) 112)) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) 83)) (-2513 (((-3 $ "failed")) 75)) (-1425 (((-671 |#2|) (-1235 $)) NIL) (((-671 |#2|)) 100)) (-2593 (((-671 |#2|) $ (-1235 $)) NIL) (((-671 |#2|) $) 108)) (-1548 (((-1148 (-931 |#2|))) 54)) (-2806 ((|#2| (-1235 $)) NIL) ((|#2|) 104)) (-3133 (((-1235 |#2|) $ (-1235 $)) NIL) (((-671 |#2|) (-1235 $) (-1235 $)) NIL) (((-1235 |#2|) $) 111) (((-671 |#2|) (-1235 $)) 118)) (-3562 (((-1235 |#2|) $) 96) (($ (-1235 |#2|)) 98)) (-2539 (((-627 (-931 |#2|)) (-1235 $)) NIL) (((-627 (-931 |#2|))) 94)) (-3288 (($ (-671 |#2|) $) 90))) +(((-410 |#1| |#2|) (-10 -8 (-15 -3288 (|#1| (-671 |#2|) |#1|)) (-15 -2856 ((-1148 (-931 |#2|)))) (-15 -1548 ((-1148 (-931 |#2|)))) (-15 -3029 ((-671 |#2|) |#1|)) (-15 -2593 ((-671 |#2|) |#1|)) (-15 -2877 ((-671 |#2|))) (-15 -1425 ((-671 |#2|))) (-15 -3119 (|#2|)) (-15 -2806 (|#2|)) (-15 -3562 (|#1| (-1235 |#2|))) (-15 -3562 ((-1235 |#2|) |#1|)) (-15 -2342 (|#1| (-1235 |#2|))) (-15 -2539 ((-627 (-931 |#2|)))) (-15 -3449 ((-1235 (-671 |#2|)))) (-15 -3133 ((-671 |#2|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1|)) (-15 -2717 ((-3 |#1| "failed"))) (-15 -3994 ((-3 |#1| "failed"))) (-15 -2513 ((-3 |#1| "failed"))) (-15 -2478 ((-3 (-2 (|:| |particular| |#1|) (|:| -2957 (-627 |#1|))) "failed"))) (-15 -4034 ((-3 (-2 (|:| |particular| |#1|) (|:| -2957 (-627 |#1|))) "failed"))) (-15 -2877 ((-671 |#2|) (-1235 |#1|))) (-15 -1425 ((-671 |#2|) (-1235 |#1|))) (-15 -3119 (|#2| (-1235 |#1|))) (-15 -2806 (|#2| (-1235 |#1|))) (-15 -2342 (|#1| (-1235 |#2|) (-1235 |#1|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1| (-1235 |#1|))) (-15 -3029 ((-671 |#2|) |#1| (-1235 |#1|))) (-15 -2593 ((-671 |#2|) |#1| (-1235 |#1|))) (-15 -3449 ((-1235 (-671 |#2|)) (-1235 |#1|))) (-15 -2539 ((-627 (-931 |#2|)) (-1235 |#1|)))) (-411 |#2|) (-169)) (T -410)) +((-3449 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1235 (-671 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2539 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-627 (-931 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2806 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) (-3119 (*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) (-1425 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-671 *4)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2877 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-671 *4)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-1548 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1148 (-931 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2856 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-1148 (-931 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4))))) +(-10 -8 (-15 -3288 (|#1| (-671 |#2|) |#1|)) (-15 -2856 ((-1148 (-931 |#2|)))) (-15 -1548 ((-1148 (-931 |#2|)))) (-15 -3029 ((-671 |#2|) |#1|)) (-15 -2593 ((-671 |#2|) |#1|)) (-15 -2877 ((-671 |#2|))) (-15 -1425 ((-671 |#2|))) (-15 -3119 (|#2|)) (-15 -2806 (|#2|)) (-15 -3562 (|#1| (-1235 |#2|))) (-15 -3562 ((-1235 |#2|) |#1|)) (-15 -2342 (|#1| (-1235 |#2|))) (-15 -2539 ((-627 (-931 |#2|)))) (-15 -3449 ((-1235 (-671 |#2|)))) (-15 -3133 ((-671 |#2|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1|)) (-15 -2717 ((-3 |#1| "failed"))) (-15 -3994 ((-3 |#1| "failed"))) (-15 -2513 ((-3 |#1| "failed"))) (-15 -2478 ((-3 (-2 (|:| |particular| |#1|) (|:| -2957 (-627 |#1|))) "failed"))) (-15 -4034 ((-3 (-2 (|:| |particular| |#1|) (|:| -2957 (-627 |#1|))) "failed"))) (-15 -2877 ((-671 |#2|) (-1235 |#1|))) (-15 -1425 ((-671 |#2|) (-1235 |#1|))) (-15 -3119 (|#2| (-1235 |#1|))) (-15 -2806 (|#2| (-1235 |#1|))) (-15 -2342 (|#1| (-1235 |#2|) (-1235 |#1|))) (-15 -3133 ((-671 |#2|) (-1235 |#1|) (-1235 |#1|))) (-15 -3133 ((-1235 |#2|) |#1| (-1235 |#1|))) (-15 -3029 ((-671 |#2|) |#1| (-1235 |#1|))) (-15 -2593 ((-671 |#2|) |#1| (-1235 |#1|))) (-15 -3449 ((-1235 (-671 |#2|)) (-1235 |#1|))) (-15 -2539 ((-627 (-931 |#2|)) (-1235 |#1|)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-2717 (((-3 $ "failed")) 37 (|has| |#1| (-544)))) (-4136 (((-3 $ "failed") $ $) 19)) (-3449 (((-1235 (-671 |#1|)) (-1235 $)) 78) (((-1235 (-671 |#1|))) 100)) (-2946 (((-1235 $)) 81)) (-3887 (($) 17 T CONST)) (-2478 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) 40 (|has| |#1| (-544)))) (-3994 (((-3 $ "failed")) 38 (|has| |#1| (-544)))) (-2877 (((-671 |#1|) (-1235 $)) 65) (((-671 |#1|)) 92)) (-2526 ((|#1| $) 74)) (-3029 (((-671 |#1|) $ (-1235 $)) 76) (((-671 |#1|) $) 90)) (-1592 (((-3 $ "failed") $) 45 (|has| |#1| (-544)))) (-2856 (((-1148 (-931 |#1|))) 88 (|has| |#1| (-357)))) (-1407 (($ $ (-900)) 28)) (-2141 ((|#1| $) 72)) (-3343 (((-1148 |#1|) $) 42 (|has| |#1| (-544)))) (-3119 ((|#1| (-1235 $)) 67) ((|#1|) 94)) (-1608 (((-1148 |#1|) $) 63)) (-1819 (((-111)) 57)) (-2342 (($ (-1235 |#1|) (-1235 $)) 69) (($ (-1235 |#1|)) 98)) (-2040 (((-3 $ "failed") $) 47 (|has| |#1| (-544)))) (-4154 (((-900)) 80)) (-3972 (((-111)) 54)) (-1410 (($ $ (-900)) 33)) (-3363 (((-111)) 50)) (-1878 (((-111)) 48)) (-3728 (((-111)) 52)) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) 41 (|has| |#1| (-544)))) (-2513 (((-3 $ "failed")) 39 (|has| |#1| (-544)))) (-1425 (((-671 |#1|) (-1235 $)) 66) (((-671 |#1|)) 93)) (-4131 ((|#1| $) 75)) (-2593 (((-671 |#1|) $ (-1235 $)) 77) (((-671 |#1|) $) 91)) (-4336 (((-3 $ "failed") $) 46 (|has| |#1| (-544)))) (-1548 (((-1148 (-931 |#1|))) 89 (|has| |#1| (-357)))) (-2896 (($ $ (-900)) 29)) (-1856 ((|#1| $) 73)) (-1794 (((-1148 |#1|) $) 43 (|has| |#1| (-544)))) (-2806 ((|#1| (-1235 $)) 68) ((|#1|) 95)) (-2798 (((-1148 |#1|) $) 64)) (-3485 (((-111)) 58)) (-1595 (((-1134) $) 9)) (-3570 (((-111)) 49)) (-2011 (((-111)) 51)) (-2344 (((-111)) 53)) (-1498 (((-1096) $) 10)) (-3361 (((-111)) 56)) (-1985 ((|#1| $ (-552)) 101)) (-3133 (((-1235 |#1|) $ (-1235 $)) 71) (((-671 |#1|) (-1235 $) (-1235 $)) 70) (((-1235 |#1|) $) 103) (((-671 |#1|) (-1235 $)) 102)) (-3562 (((-1235 |#1|) $) 97) (($ (-1235 |#1|)) 96)) (-2539 (((-627 (-931 |#1|)) (-1235 $)) 79) (((-627 (-931 |#1|))) 99)) (-2493 (($ $ $) 25)) (-1822 (((-111)) 62)) (-1477 (((-842) $) 11)) (-2957 (((-1235 $)) 104)) (-1360 (((-627 (-1235 |#1|))) 44 (|has| |#1| (-544)))) (-4297 (($ $ $ $) 26)) (-3656 (((-111)) 60)) (-3288 (($ (-671 |#1|) $) 87)) (-2743 (($ $ $) 24)) (-3304 (((-111)) 61)) (-3258 (((-111)) 59)) (-3699 (((-111)) 55)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 30)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-411 |#1|) (-137) (-169)) (T -411)) +((-2957 (*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1235 *1)) (-4 *1 (-411 *3)))) (-3133 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1235 *3)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-411 *4)) (-4 *4 (-169)) (-5 *2 (-671 *4)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-411 *2)) (-4 *2 (-169)))) (-3449 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1235 (-671 *3))))) (-2539 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-627 (-931 *3))))) (-2342 (*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-169)) (-4 *1 (-411 *3)))) (-3562 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1235 *3)))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-169)) (-4 *1 (-411 *3)))) (-2806 (*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-169)))) (-3119 (*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-169)))) (-1425 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-671 *3)))) (-2877 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-671 *3)))) (-2593 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-671 *3)))) (-3029 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-671 *3)))) (-1548 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-4 *3 (-357)) (-5 *2 (-1148 (-931 *3))))) (-2856 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-4 *3 (-357)) (-5 *2 (-1148 (-931 *3))))) (-3288 (*1 *1 *2 *1) (-12 (-5 *2 (-671 *3)) (-4 *1 (-411 *3)) (-4 *3 (-169))))) +(-13 (-361 |t#1|) (-10 -8 (-15 -2957 ((-1235 $))) (-15 -3133 ((-1235 |t#1|) $)) (-15 -3133 ((-671 |t#1|) (-1235 $))) (-15 -1985 (|t#1| $ (-552))) (-15 -3449 ((-1235 (-671 |t#1|)))) (-15 -2539 ((-627 (-931 |t#1|)))) (-15 -2342 ($ (-1235 |t#1|))) (-15 -3562 ((-1235 |t#1|) $)) (-15 -3562 ($ (-1235 |t#1|))) (-15 -2806 (|t#1|)) (-15 -3119 (|t#1|)) (-15 -1425 ((-671 |t#1|))) (-15 -2877 ((-671 |t#1|))) (-15 -2593 ((-671 |t#1|) $)) (-15 -3029 ((-671 |t#1|) $)) (IF (|has| |t#1| (-357)) (PROGN (-15 -1548 ((-1148 (-931 |t#1|)))) (-15 -2856 ((-1148 (-931 |t#1|))))) |%noBranch|) (-15 -3288 ($ (-671 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-361 |#1|) . T) ((-630 |#1|) . T) ((-700 |#1|) . T) ((-703) . T) ((-727 |#1|) . T) ((-744) . T) ((-1034 |#1|) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 45)) (-3175 (($ $) 60)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 148)) (-3245 (($ $) NIL)) (-4058 (((-111) $) 39)) (-2717 ((|#1| $) 13)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL (|has| |#1| (-1193)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-1193)))) (-3927 (($ |#1| (-552)) 34)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 118)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) 58)) (-2040 (((-3 $ "failed") $) 133)) (-2859 (((-3 (-401 (-552)) "failed") $) 66 (|has| |#1| (-537)))) (-4229 (((-111) $) 62 (|has| |#1| (-537)))) (-2411 (((-401 (-552)) $) 73 (|has| |#1| (-537)))) (-1297 (($ |#1| (-552)) 36)) (-1633 (((-111) $) 154 (|has| |#1| (-1193)))) (-2624 (((-111) $) 46)) (-1937 (((-754) $) 41)) (-3976 (((-3 "nil" "sqfr" "irred" "prime") $ (-552)) 139)) (-2792 ((|#1| $ (-552)) 138)) (-2489 (((-552) $ (-552)) 137)) (-3686 (($ |#1| (-552)) 33)) (-3516 (($ (-1 |#1| |#1|) $) 145)) (-3055 (($ |#1| (-627 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552))))) 61)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1595 (((-1134) $) NIL)) (-2245 (($ |#1| (-552)) 35)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) 149 (|has| |#1| (-445)))) (-4235 (($ |#1| (-552) (-3 "nil" "sqfr" "irred" "prime")) 32)) (-2101 (((-627 (-2 (|:| -1727 |#1|) (|:| -4067 (-552)))) $) 57)) (-2186 (((-627 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))) $) 12)) (-1727 (((-412 $) $) NIL (|has| |#1| (-1193)))) (-2761 (((-3 $ "failed") $ $) 140)) (-4067 (((-552) $) 134)) (-2496 ((|#1| $) 59)) (-3321 (($ $ (-627 |#1|) (-627 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-627 (-288 |#1|))) 82 (|has| |#1| (-303 |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) 88 (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-1152) |#1|) NIL (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-1152) $) NIL (|has| |#1| (-506 (-1152) $))) (($ $ (-627 (-1152)) (-627 $)) 89 (|has| |#1| (-506 (-1152) $))) (($ $ (-627 (-288 $))) 85 (|has| |#1| (-303 $))) (($ $ (-288 $)) NIL (|has| |#1| (-303 $))) (($ $ $ $) NIL (|has| |#1| (-303 $))) (($ $ (-627 $) (-627 $)) NIL (|has| |#1| (-303 $)))) (-1985 (($ $ |#1|) 74 (|has| |#1| (-280 |#1| |#1|))) (($ $ $) 75 (|has| |#1| (-280 $ $)))) (-2942 (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) 144)) (-3562 (((-528) $) 30 (|has| |#1| (-600 (-528)))) (((-373) $) 95 (|has| |#1| (-1001))) (((-220) $) 98 (|has| |#1| (-1001)))) (-1477 (((-842) $) 116) (($ (-552)) 49) (($ $) NIL) (($ |#1|) 48) (($ (-401 (-552))) NIL (|has| |#1| (-1017 (-401 (-552)))))) (-3995 (((-754)) 51)) (-3778 (((-111) $ $) NIL)) (-1922 (($) 43 T CONST)) (-1933 (($) 42 T CONST)) (-4251 (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2292 (((-111) $ $) 99)) (-2396 (($ $) 130) (($ $ $) NIL)) (-2384 (($ $ $) 142)) (** (($ $ (-900)) NIL) (($ $ (-754)) 105)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 53) (($ $ $) 52) (($ |#1| $) 54) (($ $ |#1|) NIL))) +(((-412 |#1|) (-13 (-544) (-226 |#1|) (-38 |#1|) (-332 |#1|) (-405 |#1|) (-10 -8 (-15 -2496 (|#1| $)) (-15 -4067 ((-552) $)) (-15 -3055 ($ |#1| (-627 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))))) (-15 -2186 ((-627 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))) $)) (-15 -3686 ($ |#1| (-552))) (-15 -2101 ((-627 (-2 (|:| -1727 |#1|) (|:| -4067 (-552)))) $)) (-15 -2245 ($ |#1| (-552))) (-15 -2489 ((-552) $ (-552))) (-15 -2792 (|#1| $ (-552))) (-15 -3976 ((-3 "nil" "sqfr" "irred" "prime") $ (-552))) (-15 -1937 ((-754) $)) (-15 -1297 ($ |#1| (-552))) (-15 -3927 ($ |#1| (-552))) (-15 -4235 ($ |#1| (-552) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2717 (|#1| $)) (-15 -3175 ($ $)) (-15 -3516 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-445)) (-6 (-445)) |%noBranch|) (IF (|has| |#1| (-1001)) (-6 (-1001)) |%noBranch|) (IF (|has| |#1| (-1193)) (-6 (-1193)) |%noBranch|) (IF (|has| |#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -4229 ((-111) $)) (-15 -2411 ((-401 (-552)) $)) (-15 -2859 ((-3 (-401 (-552)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-280 $ $)) (-6 (-280 $ $)) |%noBranch|) (IF (|has| |#1| (-303 $)) (-6 (-303 $)) |%noBranch|) (IF (|has| |#1| (-506 (-1152) $)) (-6 (-506 (-1152) $)) |%noBranch|))) (-544)) (T -412)) +((-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-544)) (-5 *1 (-412 *3)))) (-2496 (*1 *2 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-4067 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-412 *3)) (-4 *3 (-544)))) (-3055 (*1 *1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-552))))) (-4 *2 (-544)) (-5 *1 (-412 *2)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-552))))) (-5 *1 (-412 *3)) (-4 *3 (-544)))) (-3686 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-2101 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| -1727 *3) (|:| -4067 (-552))))) (-5 *1 (-412 *3)) (-4 *3 (-544)))) (-2245 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-2489 (*1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-412 *3)) (-4 *3 (-544)))) (-2792 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-3976 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-412 *4)) (-4 *4 (-544)))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-412 *3)) (-4 *3 (-544)))) (-1297 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-3927 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-4235 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-552)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-2717 (*1 *2 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-3175 (*1 *1 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-544)))) (-4229 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-412 *3)) (-4 *3 (-537)) (-4 *3 (-544)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-412 *3)) (-4 *3 (-537)) (-4 *3 (-544)))) (-2859 (*1 *2 *1) (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-412 *3)) (-4 *3 (-537)) (-4 *3 (-544))))) +(-13 (-544) (-226 |#1|) (-38 |#1|) (-332 |#1|) (-405 |#1|) (-10 -8 (-15 -2496 (|#1| $)) (-15 -4067 ((-552) $)) (-15 -3055 ($ |#1| (-627 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))))) (-15 -2186 ((-627 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-552)))) $)) (-15 -3686 ($ |#1| (-552))) (-15 -2101 ((-627 (-2 (|:| -1727 |#1|) (|:| -4067 (-552)))) $)) (-15 -2245 ($ |#1| (-552))) (-15 -2489 ((-552) $ (-552))) (-15 -2792 (|#1| $ (-552))) (-15 -3976 ((-3 "nil" "sqfr" "irred" "prime") $ (-552))) (-15 -1937 ((-754) $)) (-15 -1297 ($ |#1| (-552))) (-15 -3927 ($ |#1| (-552))) (-15 -4235 ($ |#1| (-552) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2717 (|#1| $)) (-15 -3175 ($ $)) (-15 -3516 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-445)) (-6 (-445)) |%noBranch|) (IF (|has| |#1| (-1001)) (-6 (-1001)) |%noBranch|) (IF (|has| |#1| (-1193)) (-6 (-1193)) |%noBranch|) (IF (|has| |#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -4229 ((-111) $)) (-15 -2411 ((-401 (-552)) $)) (-15 -2859 ((-3 (-401 (-552)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-280 $ $)) (-6 (-280 $ $)) |%noBranch|) (IF (|has| |#1| (-303 $)) (-6 (-303 $)) |%noBranch|) (IF (|has| |#1| (-506 (-1152) $)) (-6 (-506 (-1152) $)) |%noBranch|))) +((-3938 (((-412 |#1|) (-412 |#1|) (-1 (-412 |#1|) |#1|)) 21)) (-2027 (((-412 |#1|) (-412 |#1|) (-412 |#1|)) 16))) +(((-413 |#1|) (-10 -7 (-15 -3938 ((-412 |#1|) (-412 |#1|) (-1 (-412 |#1|) |#1|))) (-15 -2027 ((-412 |#1|) (-412 |#1|) (-412 |#1|)))) (-544)) (T -413)) +((-2027 (*1 *2 *2 *2) (-12 (-5 *2 (-412 *3)) (-4 *3 (-544)) (-5 *1 (-413 *3)))) (-3938 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-412 *4) *4)) (-4 *4 (-544)) (-5 *2 (-412 *4)) (-5 *1 (-413 *4))))) +(-10 -7 (-15 -3938 ((-412 |#1|) (-412 |#1|) (-1 (-412 |#1|) |#1|))) (-15 -2027 ((-412 |#1|) (-412 |#1|) (-412 |#1|)))) +((-1272 ((|#2| |#2|) 166)) (-4084 (((-3 (|:| |%expansion| (-307 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134))))) |#2| (-111)) 57))) +(((-414 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4084 ((-3 (|:| |%expansion| (-307 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134))))) |#2| (-111))) (-15 -1272 (|#2| |#2|))) (-13 (-445) (-830) (-1017 (-552)) (-623 (-552))) (-13 (-27) (-1174) (-424 |#1|)) (-1152) |#2|) (T -414)) +((-1272 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-414 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1174) (-424 *3))) (-14 *4 (-1152)) (-14 *5 *2))) (-4084 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-3 (|:| |%expansion| (-307 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134)))))) (-5 *1 (-414 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1174) (-424 *5))) (-14 *6 (-1152)) (-14 *7 *3)))) +(-10 -7 (-15 -4084 ((-3 (|:| |%expansion| (-307 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134))))) |#2| (-111))) (-15 -1272 (|#2| |#2|))) +((-3516 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1028) (-830)) (-424 |#1|) (-13 (-1028) (-830)) (-424 |#3|)) (T -415)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1028) (-830))) (-4 *6 (-13 (-1028) (-830))) (-4 *2 (-424 *6)) (-5 *1 (-415 *5 *4 *6 *2)) (-4 *4 (-424 *5))))) +(-10 -7 (-15 -3516 (|#4| (-1 |#3| |#1|) |#2|))) +((-1272 ((|#2| |#2|) 90)) (-3912 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134))))) |#2| (-111) (-1134)) 48)) (-2670 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134))))) |#2| (-111) (-1134)) 154))) +(((-416 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3912 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134))))) |#2| (-111) (-1134))) (-15 -2670 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134))))) |#2| (-111) (-1134))) (-15 -1272 (|#2| |#2|))) (-13 (-445) (-830) (-1017 (-552)) (-623 (-552))) (-13 (-27) (-1174) (-424 |#1|) (-10 -8 (-15 -1477 ($ |#3|)))) (-828) (-13 (-1213 |#2| |#3|) (-357) (-1174) (-10 -8 (-15 -2942 ($ $)) (-15 -2747 ($ $)))) (-962 |#4|) (-1152)) (T -416)) +((-1272 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-4 *2 (-13 (-27) (-1174) (-424 *3) (-10 -8 (-15 -1477 ($ *4))))) (-4 *4 (-828)) (-4 *5 (-13 (-1213 *2 *4) (-357) (-1174) (-10 -8 (-15 -2942 ($ $)) (-15 -2747 ($ $))))) (-5 *1 (-416 *3 *2 *4 *5 *6 *7)) (-4 *6 (-962 *5)) (-14 *7 (-1152)))) (-2670 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-111)) (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-4 *3 (-13 (-27) (-1174) (-424 *6) (-10 -8 (-15 -1477 ($ *7))))) (-4 *7 (-828)) (-4 *8 (-13 (-1213 *3 *7) (-357) (-1174) (-10 -8 (-15 -2942 ($ $)) (-15 -2747 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134)))))) (-5 *1 (-416 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1134)) (-4 *9 (-962 *8)) (-14 *10 (-1152)))) (-3912 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-111)) (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-4 *3 (-13 (-27) (-1174) (-424 *6) (-10 -8 (-15 -1477 ($ *7))))) (-4 *7 (-828)) (-4 *8 (-13 (-1213 *3 *7) (-357) (-1174) (-10 -8 (-15 -2942 ($ $)) (-15 -2747 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134)))))) (-5 *1 (-416 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1134)) (-4 *9 (-962 *8)) (-14 *10 (-1152))))) +(-10 -7 (-15 -3912 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134))))) |#2| (-111) (-1134))) (-15 -2670 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134))))) |#2| (-111) (-1134))) (-15 -1272 (|#2| |#2|))) +((-2169 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2091 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3516 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2091 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2169 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1076) (-419 |#1|) (-1076) (-419 |#3|)) (T -417)) +((-2169 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1076)) (-4 *5 (-1076)) (-4 *2 (-419 *5)) (-5 *1 (-417 *6 *4 *5 *2)) (-4 *4 (-419 *6)))) (-2091 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1076)) (-4 *2 (-1076)) (-5 *1 (-417 *5 *4 *2 *6)) (-4 *4 (-419 *5)) (-4 *6 (-419 *2)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-419 *6)) (-5 *1 (-417 *5 *4 *6 *2)) (-4 *4 (-419 *5))))) +(-10 -7 (-15 -3516 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2091 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2169 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3065 (($) 44)) (-3416 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3694 (($ $ $) 39)) (-3632 (((-111) $ $) 28)) (-3307 (((-754)) 47)) (-1342 (($ (-627 |#2|)) 20) (($) NIL)) (-1279 (($) 53)) (-1854 (((-111) $ $) 13)) (-1816 ((|#2| $) 61)) (-4093 ((|#2| $) 59)) (-2886 (((-900) $) 55)) (-3383 (($ $ $) 35)) (-4153 (($ (-900)) 50)) (-2613 (($ $ |#2|) NIL) (($ $ $) 38)) (-1509 (((-754) (-1 (-111) |#2|) $) NIL) (((-754) |#2| $) 26)) (-1490 (($ (-627 |#2|)) 24)) (-1901 (($ $) 46)) (-1477 (((-842) $) 33)) (-3550 (((-754) $) 21)) (-4243 (($ (-627 |#2|)) 19) (($) NIL)) (-2292 (((-111) $ $) 16))) +(((-418 |#1| |#2|) (-10 -8 (-15 -3307 ((-754))) (-15 -4153 (|#1| (-900))) (-15 -2886 ((-900) |#1|)) (-15 -1279 (|#1|)) (-15 -1816 (|#2| |#1|)) (-15 -4093 (|#2| |#1|)) (-15 -3065 (|#1|)) (-15 -1901 (|#1| |#1|)) (-15 -3550 ((-754) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -1854 ((-111) |#1| |#1|)) (-15 -4243 (|#1|)) (-15 -4243 (|#1| (-627 |#2|))) (-15 -1342 (|#1|)) (-15 -1342 (|#1| (-627 |#2|))) (-15 -3383 (|#1| |#1| |#1|)) (-15 -2613 (|#1| |#1| |#1|)) (-15 -2613 (|#1| |#1| |#2|)) (-15 -3694 (|#1| |#1| |#1|)) (-15 -3632 ((-111) |#1| |#1|)) (-15 -3416 (|#1| |#1| |#1|)) (-15 -3416 (|#1| |#1| |#2|)) (-15 -3416 (|#1| |#2| |#1|)) (-15 -1490 (|#1| (-627 |#2|))) (-15 -1509 ((-754) |#2| |#1|)) (-15 -1509 ((-754) (-1 (-111) |#2|) |#1|))) (-419 |#2|) (-1076)) (T -418)) +((-3307 (*1 *2) (-12 (-4 *4 (-1076)) (-5 *2 (-754)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4))))) +(-10 -8 (-15 -3307 ((-754))) (-15 -4153 (|#1| (-900))) (-15 -2886 ((-900) |#1|)) (-15 -1279 (|#1|)) (-15 -1816 (|#2| |#1|)) (-15 -4093 (|#2| |#1|)) (-15 -3065 (|#1|)) (-15 -1901 (|#1| |#1|)) (-15 -3550 ((-754) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -1854 ((-111) |#1| |#1|)) (-15 -4243 (|#1|)) (-15 -4243 (|#1| (-627 |#2|))) (-15 -1342 (|#1|)) (-15 -1342 (|#1| (-627 |#2|))) (-15 -3383 (|#1| |#1| |#1|)) (-15 -2613 (|#1| |#1| |#1|)) (-15 -2613 (|#1| |#1| |#2|)) (-15 -3694 (|#1| |#1| |#1|)) (-15 -3632 ((-111) |#1| |#1|)) (-15 -3416 (|#1| |#1| |#1|)) (-15 -3416 (|#1| |#1| |#2|)) (-15 -3416 (|#1| |#2| |#1|)) (-15 -1490 (|#1| (-627 |#2|))) (-15 -1509 ((-754) |#2| |#1|)) (-15 -1509 ((-754) (-1 (-111) |#2|) |#1|))) +((-1465 (((-111) $ $) 19)) (-3065 (($) 67 (|has| |#1| (-362)))) (-3416 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3694 (($ $ $) 78)) (-3632 (((-111) $ $) 79)) (-4031 (((-111) $ (-754)) 8)) (-3307 (((-754)) 61 (|has| |#1| (-362)))) (-1342 (($ (-627 |#1|)) 74) (($) 73)) (-4289 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-3370 (($ $) 58 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2265 (($ |#1| $) 47 (|has| $ (-6 -4366))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4366)))) (-4342 (($ |#1| $) 57 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4366)))) (-1279 (($) 64 (|has| |#1| (-362)))) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1854 (((-111) $ $) 70)) (-1602 (((-111) $ (-754)) 9)) (-1816 ((|#1| $) 65 (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4093 ((|#1| $) 66 (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-2886 (((-900) $) 63 (|has| |#1| (-362)))) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22)) (-3383 (($ $ $) 75)) (-4165 ((|#1| $) 39)) (-3954 (($ |#1| $) 40)) (-4153 (($ (-900)) 62 (|has| |#1| (-362)))) (-1498 (((-1096) $) 21)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-2613 (($ $ |#1|) 77) (($ $ $) 76)) (-3028 (($) 49) (($ (-627 |#1|)) 48)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 59 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 50)) (-1901 (($ $) 68 (|has| |#1| (-362)))) (-1477 (((-842) $) 18)) (-3550 (((-754) $) 69)) (-4243 (($ (-627 |#1|)) 72) (($) 71)) (-2577 (($ (-627 |#1|)) 42)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20)) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-419 |#1|) (-137) (-1076)) (T -419)) +((-3550 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-1076)) (-5 *2 (-754)))) (-1901 (*1 *1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1076)) (-4 *2 (-362)))) (-3065 (*1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-362)) (-4 *2 (-1076)))) (-4093 (*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1076)) (-4 *2 (-830)))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1076)) (-4 *2 (-830))))) +(-13 (-224 |t#1|) (-1074 |t#1|) (-10 -8 (-6 -4366) (-15 -3550 ((-754) $)) (IF (|has| |t#1| (-362)) (PROGN (-6 (-362)) (-15 -1901 ($ $)) (-15 -3065 ($))) |%noBranch|) (IF (|has| |t#1| (-830)) (PROGN (-15 -4093 (|t#1| $)) (-15 -1816 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-599 (-842)) . T) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-224 |#1|) . T) ((-230 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-362) |has| |#1| (-362)) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1074 |#1|) . T) ((-1076) . T) ((-1189) . T)) +((-3216 (((-573 |#2|) |#2| (-1152)) 36)) (-3394 (((-573 |#2|) |#2| (-1152)) 20)) (-3067 ((|#2| |#2| (-1152)) 25))) +(((-420 |#1| |#2|) (-10 -7 (-15 -3394 ((-573 |#2|) |#2| (-1152))) (-15 -3216 ((-573 |#2|) |#2| (-1152))) (-15 -3067 (|#2| |#2| (-1152)))) (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552))) (-13 (-1174) (-29 |#1|))) (T -420)) +((-3067 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-420 *4 *2)) (-4 *2 (-13 (-1174) (-29 *4))))) (-3216 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-573 *3)) (-5 *1 (-420 *5 *3)) (-4 *3 (-13 (-1174) (-29 *5))))) (-3394 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-573 *3)) (-5 *1 (-420 *5 *3)) (-4 *3 (-13 (-1174) (-29 *5)))))) +(-10 -7 (-15 -3394 ((-573 |#2|) |#2| (-1152))) (-15 -3216 ((-573 |#2|) |#2| (-1152))) (-15 -3067 (|#2| |#2| (-1152)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-1330 (($ |#2| |#1|) 35)) (-1657 (($ |#2| |#1|) 33)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-325 |#2|)) 25)) (-3995 (((-754)) NIL)) (-1922 (($) 10 T CONST)) (-1933 (($) 16 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 34)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-421 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4353)) (IF (|has| |#1| (-6 -4353)) (-6 -4353) |%noBranch|) |%noBranch|) (-15 -1477 ($ |#1|)) (-15 -1477 ($ (-325 |#2|))) (-15 -1330 ($ |#2| |#1|)) (-15 -1657 ($ |#2| |#1|)))) (-13 (-169) (-38 (-401 (-552)))) (-13 (-830) (-21))) (T -421)) +((-1477 (*1 *1 *2) (-12 (-5 *1 (-421 *2 *3)) (-4 *2 (-13 (-169) (-38 (-401 (-552))))) (-4 *3 (-13 (-830) (-21))))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-325 *4)) (-4 *4 (-13 (-830) (-21))) (-5 *1 (-421 *3 *4)) (-4 *3 (-13 (-169) (-38 (-401 (-552))))))) (-1330 (*1 *1 *2 *3) (-12 (-5 *1 (-421 *3 *2)) (-4 *3 (-13 (-169) (-38 (-401 (-552))))) (-4 *2 (-13 (-830) (-21))))) (-1657 (*1 *1 *2 *3) (-12 (-5 *1 (-421 *3 *2)) (-4 *3 (-13 (-169) (-38 (-401 (-552))))) (-4 *2 (-13 (-830) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4353)) (IF (|has| |#1| (-6 -4353)) (-6 -4353) |%noBranch|) |%noBranch|) (-15 -1477 ($ |#1|)) (-15 -1477 ($ (-325 |#2|))) (-15 -1330 ($ |#2| |#1|)) (-15 -1657 ($ |#2| |#1|)))) +((-2747 (((-3 |#2| (-627 |#2|)) |#2| (-1152)) 109))) +(((-422 |#1| |#2|) (-10 -7 (-15 -2747 ((-3 |#2| (-627 |#2|)) |#2| (-1152)))) (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552))) (-13 (-1174) (-938) (-29 |#1|))) (T -422)) +((-2747 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-3 *3 (-627 *3))) (-5 *1 (-422 *5 *3)) (-4 *3 (-13 (-1174) (-938) (-29 *5)))))) +(-10 -7 (-15 -2747 ((-3 |#2| (-627 |#2|)) |#2| (-1152)))) +((-1853 (((-627 (-1152)) $) 72)) (-1694 (((-401 (-1148 $)) $ (-598 $)) 273)) (-2620 (($ $ (-288 $)) NIL) (($ $ (-627 (-288 $))) NIL) (($ $ (-627 (-598 $)) (-627 $)) 237)) (-4039 (((-3 (-598 $) "failed") $) NIL) (((-3 (-1152) "failed") $) 75) (((-3 (-552) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-401 (-931 |#2|)) "failed") $) 324) (((-3 (-931 |#2|) "failed") $) 235) (((-3 (-401 (-552)) "failed") $) NIL)) (-1703 (((-598 $) $) NIL) (((-1152) $) 30) (((-552) $) NIL) ((|#2| $) 231) (((-401 (-931 |#2|)) $) 305) (((-931 |#2|) $) 232) (((-401 (-552)) $) NIL)) (-4148 (((-113) (-113)) 47)) (-3798 (($ $) 87)) (-3362 (((-3 (-598 $) "failed") $) 228)) (-1684 (((-627 (-598 $)) $) 229)) (-4035 (((-3 (-627 $) "failed") $) 247)) (-1382 (((-3 (-2 (|:| |val| $) (|:| -4067 (-552))) "failed") $) 254)) (-2746 (((-3 (-627 $) "failed") $) 245)) (-2545 (((-3 (-2 (|:| -3069 (-552)) (|:| |var| (-598 $))) "failed") $) 264)) (-3815 (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $) 251) (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $ (-113)) 217) (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $ (-1152)) 219)) (-1960 (((-111) $) 19)) (-1970 ((|#2| $) 21)) (-3321 (($ $ (-598 $) $) NIL) (($ $ (-627 (-598 $)) (-627 $)) 236) (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ $))) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ (-627 $)))) 96) (($ $ (-1152) (-1 $ (-627 $))) NIL) (($ $ (-1152) (-1 $ $)) NIL) (($ $ (-627 (-113)) (-627 (-1 $ $))) NIL) (($ $ (-627 (-113)) (-627 (-1 $ (-627 $)))) NIL) (($ $ (-113) (-1 $ (-627 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1152)) 57) (($ $ (-627 (-1152))) 240) (($ $) 241) (($ $ (-113) $ (-1152)) 60) (($ $ (-627 (-113)) (-627 $) (-1152)) 67) (($ $ (-627 (-1152)) (-627 (-754)) (-627 (-1 $ $))) 107) (($ $ (-627 (-1152)) (-627 (-754)) (-627 (-1 $ (-627 $)))) 242) (($ $ (-1152) (-754) (-1 $ (-627 $))) 94) (($ $ (-1152) (-754) (-1 $ $)) 93)) (-1985 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-627 $)) 106)) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152)) 238)) (-1583 (($ $) 284)) (-3562 (((-871 (-552)) $) 257) (((-871 (-373)) $) 261) (($ (-412 $)) 320) (((-528) $) NIL)) (-1477 (((-842) $) 239) (($ (-598 $)) 84) (($ (-1152)) 26) (($ |#2|) NIL) (($ (-1101 |#2| (-598 $))) NIL) (($ (-401 |#2|)) 289) (($ (-931 (-401 |#2|))) 329) (($ (-401 (-931 (-401 |#2|)))) 301) (($ (-401 (-931 |#2|))) 295) (($ $) NIL) (($ (-931 |#2|)) 185) (($ (-401 (-552))) 334) (($ (-552)) NIL)) (-3995 (((-754)) 79)) (-3749 (((-111) (-113)) 41)) (-1729 (($ (-1152) $) 33) (($ (-1152) $ $) 34) (($ (-1152) $ $ $) 35) (($ (-1152) $ $ $ $) 36) (($ (-1152) (-627 $)) 39)) (* (($ (-401 (-552)) $) NIL) (($ $ (-401 (-552))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-552) $) NIL) (($ (-754) $) NIL) (($ (-900) $) NIL))) +(((-423 |#1| |#2|) (-10 -8 (-15 * (|#1| (-900) |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3995 ((-754))) (-15 -1477 (|#1| (-552))) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -3562 ((-528) |#1|)) (-15 -1703 ((-931 |#2|) |#1|)) (-15 -4039 ((-3 (-931 |#2|) "failed") |#1|)) (-15 -1477 (|#1| (-931 |#2|))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1477 (|#1| |#1|)) (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -1703 ((-401 (-931 |#2|)) |#1|)) (-15 -4039 ((-3 (-401 (-931 |#2|)) "failed") |#1|)) (-15 -1477 (|#1| (-401 (-931 |#2|)))) (-15 -1694 ((-401 (-1148 |#1|)) |#1| (-598 |#1|))) (-15 -1477 (|#1| (-401 (-931 (-401 |#2|))))) (-15 -1477 (|#1| (-931 (-401 |#2|)))) (-15 -1477 (|#1| (-401 |#2|))) (-15 -1583 (|#1| |#1|)) (-15 -3562 (|#1| (-412 |#1|))) (-15 -3321 (|#1| |#1| (-1152) (-754) (-1 |#1| |#1|))) (-15 -3321 (|#1| |#1| (-1152) (-754) (-1 |#1| (-627 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-754)) (-627 (-1 |#1| (-627 |#1|))))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-754)) (-627 (-1 |#1| |#1|)))) (-15 -1382 ((-3 (-2 (|:| |val| |#1|) (|:| -4067 (-552))) "failed") |#1|)) (-15 -3815 ((-3 (-2 (|:| |var| (-598 |#1|)) (|:| -4067 (-552))) "failed") |#1| (-1152))) (-15 -3815 ((-3 (-2 (|:| |var| (-598 |#1|)) (|:| -4067 (-552))) "failed") |#1| (-113))) (-15 -3798 (|#1| |#1|)) (-15 -1477 (|#1| (-1101 |#2| (-598 |#1|)))) (-15 -2545 ((-3 (-2 (|:| -3069 (-552)) (|:| |var| (-598 |#1|))) "failed") |#1|)) (-15 -2746 ((-3 (-627 |#1|) "failed") |#1|)) (-15 -3815 ((-3 (-2 (|:| |var| (-598 |#1|)) (|:| -4067 (-552))) "failed") |#1|)) (-15 -4035 ((-3 (-627 |#1|) "failed") |#1|)) (-15 -3321 (|#1| |#1| (-627 (-113)) (-627 |#1|) (-1152))) (-15 -3321 (|#1| |#1| (-113) |#1| (-1152))) (-15 -3321 (|#1| |#1|)) (-15 -3321 (|#1| |#1| (-627 (-1152)))) (-15 -3321 (|#1| |#1| (-1152))) (-15 -1729 (|#1| (-1152) (-627 |#1|))) (-15 -1729 (|#1| (-1152) |#1| |#1| |#1| |#1|)) (-15 -1729 (|#1| (-1152) |#1| |#1| |#1|)) (-15 -1729 (|#1| (-1152) |#1| |#1|)) (-15 -1729 (|#1| (-1152) |#1|)) (-15 -1853 ((-627 (-1152)) |#1|)) (-15 -1970 (|#2| |#1|)) (-15 -1960 ((-111) |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -1703 ((-1152) |#1|)) (-15 -4039 ((-3 (-1152) "failed") |#1|)) (-15 -1477 (|#1| (-1152))) (-15 -3321 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -3321 (|#1| |#1| (-113) (-1 |#1| (-627 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-113)) (-627 (-1 |#1| (-627 |#1|))))) (-15 -3321 (|#1| |#1| (-627 (-113)) (-627 (-1 |#1| |#1|)))) (-15 -3321 (|#1| |#1| (-1152) (-1 |#1| |#1|))) (-15 -3321 (|#1| |#1| (-1152) (-1 |#1| (-627 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-1 |#1| (-627 |#1|))))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-1 |#1| |#1|)))) (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 -1684 ((-627 (-598 |#1|)) |#1|)) (-15 -3362 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -2620 (|#1| |#1| (-627 (-598 |#1|)) (-627 |#1|))) (-15 -2620 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -2620 (|#1| |#1| (-288 |#1|))) (-15 -1985 (|#1| (-113) (-627 |#1|))) (-15 -1985 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1| |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1|)) (-15 -3321 (|#1| |#1| (-627 |#1|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| (-288 |#1|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-598 |#1|)) (-627 |#1|))) (-15 -3321 (|#1| |#1| (-598 |#1|) |#1|)) (-15 -1703 ((-598 |#1|) |#1|)) (-15 -4039 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -1477 (|#1| (-598 |#1|))) (-15 -1477 ((-842) |#1|))) (-424 |#2|) (-830)) (T -423)) +((-4148 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *4 (-830)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *5 (-830)) (-5 *2 (-111)) (-5 *1 (-423 *4 *5)) (-4 *4 (-424 *5)))) (-3995 (*1 *2) (-12 (-4 *4 (-830)) (-5 *2 (-754)) (-5 *1 (-423 *3 *4)) (-4 *3 (-424 *4))))) +(-10 -8 (-15 * (|#1| (-900) |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3995 ((-754))) (-15 -1477 (|#1| (-552))) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -3562 ((-528) |#1|)) (-15 -1703 ((-931 |#2|) |#1|)) (-15 -4039 ((-3 (-931 |#2|) "failed") |#1|)) (-15 -1477 (|#1| (-931 |#2|))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1477 (|#1| |#1|)) (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -1703 ((-401 (-931 |#2|)) |#1|)) (-15 -4039 ((-3 (-401 (-931 |#2|)) "failed") |#1|)) (-15 -1477 (|#1| (-401 (-931 |#2|)))) (-15 -1694 ((-401 (-1148 |#1|)) |#1| (-598 |#1|))) (-15 -1477 (|#1| (-401 (-931 (-401 |#2|))))) (-15 -1477 (|#1| (-931 (-401 |#2|)))) (-15 -1477 (|#1| (-401 |#2|))) (-15 -1583 (|#1| |#1|)) (-15 -3562 (|#1| (-412 |#1|))) (-15 -3321 (|#1| |#1| (-1152) (-754) (-1 |#1| |#1|))) (-15 -3321 (|#1| |#1| (-1152) (-754) (-1 |#1| (-627 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-754)) (-627 (-1 |#1| (-627 |#1|))))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-754)) (-627 (-1 |#1| |#1|)))) (-15 -1382 ((-3 (-2 (|:| |val| |#1|) (|:| -4067 (-552))) "failed") |#1|)) (-15 -3815 ((-3 (-2 (|:| |var| (-598 |#1|)) (|:| -4067 (-552))) "failed") |#1| (-1152))) (-15 -3815 ((-3 (-2 (|:| |var| (-598 |#1|)) (|:| -4067 (-552))) "failed") |#1| (-113))) (-15 -3798 (|#1| |#1|)) (-15 -1477 (|#1| (-1101 |#2| (-598 |#1|)))) (-15 -2545 ((-3 (-2 (|:| -3069 (-552)) (|:| |var| (-598 |#1|))) "failed") |#1|)) (-15 -2746 ((-3 (-627 |#1|) "failed") |#1|)) (-15 -3815 ((-3 (-2 (|:| |var| (-598 |#1|)) (|:| -4067 (-552))) "failed") |#1|)) (-15 -4035 ((-3 (-627 |#1|) "failed") |#1|)) (-15 -3321 (|#1| |#1| (-627 (-113)) (-627 |#1|) (-1152))) (-15 -3321 (|#1| |#1| (-113) |#1| (-1152))) (-15 -3321 (|#1| |#1|)) (-15 -3321 (|#1| |#1| (-627 (-1152)))) (-15 -3321 (|#1| |#1| (-1152))) (-15 -1729 (|#1| (-1152) (-627 |#1|))) (-15 -1729 (|#1| (-1152) |#1| |#1| |#1| |#1|)) (-15 -1729 (|#1| (-1152) |#1| |#1| |#1|)) (-15 -1729 (|#1| (-1152) |#1| |#1|)) (-15 -1729 (|#1| (-1152) |#1|)) (-15 -1853 ((-627 (-1152)) |#1|)) (-15 -1970 (|#2| |#1|)) (-15 -1960 ((-111) |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -1703 ((-1152) |#1|)) (-15 -4039 ((-3 (-1152) "failed") |#1|)) (-15 -1477 (|#1| (-1152))) (-15 -3321 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -3321 (|#1| |#1| (-113) (-1 |#1| (-627 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-113)) (-627 (-1 |#1| (-627 |#1|))))) (-15 -3321 (|#1| |#1| (-627 (-113)) (-627 (-1 |#1| |#1|)))) (-15 -3321 (|#1| |#1| (-1152) (-1 |#1| |#1|))) (-15 -3321 (|#1| |#1| (-1152) (-1 |#1| (-627 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-1 |#1| (-627 |#1|))))) (-15 -3321 (|#1| |#1| (-627 (-1152)) (-627 (-1 |#1| |#1|)))) (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 -1684 ((-627 (-598 |#1|)) |#1|)) (-15 -3362 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -2620 (|#1| |#1| (-627 (-598 |#1|)) (-627 |#1|))) (-15 -2620 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -2620 (|#1| |#1| (-288 |#1|))) (-15 -1985 (|#1| (-113) (-627 |#1|))) (-15 -1985 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1| |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1| |#1|)) (-15 -1985 (|#1| (-113) |#1|)) (-15 -3321 (|#1| |#1| (-627 |#1|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| (-288 |#1|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -3321 (|#1| |#1| (-627 (-598 |#1|)) (-627 |#1|))) (-15 -3321 (|#1| |#1| (-598 |#1|) |#1|)) (-15 -1703 ((-598 |#1|) |#1|)) (-15 -4039 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -1477 (|#1| (-598 |#1|))) (-15 -1477 ((-842) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 113 (|has| |#1| (-25)))) (-1853 (((-627 (-1152)) $) 200)) (-1694 (((-401 (-1148 $)) $ (-598 $)) 168 (|has| |#1| (-544)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 140 (|has| |#1| (-544)))) (-3245 (($ $) 141 (|has| |#1| (-544)))) (-4058 (((-111) $) 143 (|has| |#1| (-544)))) (-3443 (((-627 (-598 $)) $) 44)) (-4136 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-2620 (($ $ (-288 $)) 56) (($ $ (-627 (-288 $))) 55) (($ $ (-627 (-598 $)) (-627 $)) 54)) (-4014 (($ $) 160 (|has| |#1| (-544)))) (-2487 (((-412 $) $) 161 (|has| |#1| (-544)))) (-4224 (((-111) $ $) 151 (|has| |#1| (-544)))) (-3887 (($) 101 (-1559 (|has| |#1| (-1088)) (|has| |#1| (-25))) CONST)) (-4039 (((-3 (-598 $) "failed") $) 69) (((-3 (-1152) "failed") $) 213) (((-3 (-552) "failed") $) 206 (|has| |#1| (-1017 (-552)))) (((-3 |#1| "failed") $) 204) (((-3 (-401 (-931 |#1|)) "failed") $) 166 (|has| |#1| (-544))) (((-3 (-931 |#1|) "failed") $) 120 (|has| |#1| (-1028))) (((-3 (-401 (-552)) "failed") $) 95 (-1559 (-12 (|has| |#1| (-1017 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1017 (-401 (-552))))))) (-1703 (((-598 $) $) 68) (((-1152) $) 212) (((-552) $) 207 (|has| |#1| (-1017 (-552)))) ((|#1| $) 203) (((-401 (-931 |#1|)) $) 165 (|has| |#1| (-544))) (((-931 |#1|) $) 119 (|has| |#1| (-1028))) (((-401 (-552)) $) 94 (-1559 (-12 (|has| |#1| (-1017 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1017 (-401 (-552))))))) (-2813 (($ $ $) 155 (|has| |#1| (-544)))) (-1800 (((-671 (-552)) (-671 $)) 134 (-2520 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 133 (-2520 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 132 (|has| |#1| (-1028))) (((-671 |#1|) (-671 $)) 131 (|has| |#1| (-1028)))) (-2040 (((-3 $ "failed") $) 103 (|has| |#1| (-1088)))) (-2789 (($ $ $) 154 (|has| |#1| (-544)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 149 (|has| |#1| (-544)))) (-1633 (((-111) $) 162 (|has| |#1| (-544)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 209 (|has| |#1| (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 208 (|has| |#1| (-865 (-373))))) (-3820 (($ $) 51) (($ (-627 $)) 50)) (-3795 (((-627 (-113)) $) 43)) (-4148 (((-113) (-113)) 42)) (-2624 (((-111) $) 102 (|has| |#1| (-1088)))) (-1394 (((-111) $) 22 (|has| $ (-1017 (-552))))) (-3798 (($ $) 183 (|has| |#1| (-1028)))) (-2918 (((-1101 |#1| (-598 $)) $) 184 (|has| |#1| (-1028)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 158 (|has| |#1| (-544)))) (-2602 (((-1148 $) (-598 $)) 25 (|has| $ (-1028)))) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-3516 (($ (-1 $ $) (-598 $)) 36)) (-3362 (((-3 (-598 $) "failed") $) 46)) (-1276 (($ (-627 $)) 147 (|has| |#1| (-544))) (($ $ $) 146 (|has| |#1| (-544)))) (-1595 (((-1134) $) 9)) (-1684 (((-627 (-598 $)) $) 45)) (-2991 (($ (-113) $) 38) (($ (-113) (-627 $)) 37)) (-4035 (((-3 (-627 $) "failed") $) 189 (|has| |#1| (-1088)))) (-1382 (((-3 (-2 (|:| |val| $) (|:| -4067 (-552))) "failed") $) 180 (|has| |#1| (-1028)))) (-2746 (((-3 (-627 $) "failed") $) 187 (|has| |#1| (-25)))) (-2545 (((-3 (-2 (|:| -3069 (-552)) (|:| |var| (-598 $))) "failed") $) 186 (|has| |#1| (-25)))) (-3815 (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $) 188 (|has| |#1| (-1088))) (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $ (-113)) 182 (|has| |#1| (-1028))) (((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $ (-1152)) 181 (|has| |#1| (-1028)))) (-2070 (((-111) $ (-113)) 40) (((-111) $ (-1152)) 39)) (-1951 (($ $) 105 (-1559 (|has| |#1| (-466)) (|has| |#1| (-544))))) (-3476 (((-754) $) 47)) (-1498 (((-1096) $) 10)) (-1960 (((-111) $) 202)) (-1970 ((|#1| $) 201)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 148 (|has| |#1| (-544)))) (-1323 (($ (-627 $)) 145 (|has| |#1| (-544))) (($ $ $) 144 (|has| |#1| (-544)))) (-4094 (((-111) $ $) 35) (((-111) $ (-1152)) 34)) (-1727 (((-412 $) $) 159 (|has| |#1| (-544)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-544))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 156 (|has| |#1| (-544)))) (-2761 (((-3 $ "failed") $ $) 139 (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 150 (|has| |#1| (-544)))) (-1507 (((-111) $) 23 (|has| $ (-1017 (-552))))) (-3321 (($ $ (-598 $) $) 67) (($ $ (-627 (-598 $)) (-627 $)) 66) (($ $ (-627 (-288 $))) 65) (($ $ (-288 $)) 64) (($ $ $ $) 63) (($ $ (-627 $) (-627 $)) 62) (($ $ (-627 (-1152)) (-627 (-1 $ $))) 33) (($ $ (-627 (-1152)) (-627 (-1 $ (-627 $)))) 32) (($ $ (-1152) (-1 $ (-627 $))) 31) (($ $ (-1152) (-1 $ $)) 30) (($ $ (-627 (-113)) (-627 (-1 $ $))) 29) (($ $ (-627 (-113)) (-627 (-1 $ (-627 $)))) 28) (($ $ (-113) (-1 $ (-627 $))) 27) (($ $ (-113) (-1 $ $)) 26) (($ $ (-1152)) 194 (|has| |#1| (-600 (-528)))) (($ $ (-627 (-1152))) 193 (|has| |#1| (-600 (-528)))) (($ $) 192 (|has| |#1| (-600 (-528)))) (($ $ (-113) $ (-1152)) 191 (|has| |#1| (-600 (-528)))) (($ $ (-627 (-113)) (-627 $) (-1152)) 190 (|has| |#1| (-600 (-528)))) (($ $ (-627 (-1152)) (-627 (-754)) (-627 (-1 $ $))) 179 (|has| |#1| (-1028))) (($ $ (-627 (-1152)) (-627 (-754)) (-627 (-1 $ (-627 $)))) 178 (|has| |#1| (-1028))) (($ $ (-1152) (-754) (-1 $ (-627 $))) 177 (|has| |#1| (-1028))) (($ $ (-1152) (-754) (-1 $ $)) 176 (|has| |#1| (-1028)))) (-2718 (((-754) $) 152 (|has| |#1| (-544)))) (-1985 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-627 $)) 57)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 153 (|has| |#1| (-544)))) (-2911 (($ $) 49) (($ $ $) 48)) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) 125 (|has| |#1| (-1028))) (($ $ (-1152) (-754)) 124 (|has| |#1| (-1028))) (($ $ (-627 (-1152))) 123 (|has| |#1| (-1028))) (($ $ (-1152)) 122 (|has| |#1| (-1028)))) (-1583 (($ $) 173 (|has| |#1| (-544)))) (-2929 (((-1101 |#1| (-598 $)) $) 174 (|has| |#1| (-544)))) (-1376 (($ $) 24 (|has| $ (-1028)))) (-3562 (((-871 (-552)) $) 211 (|has| |#1| (-600 (-871 (-552))))) (((-871 (-373)) $) 210 (|has| |#1| (-600 (-871 (-373))))) (($ (-412 $)) 175 (|has| |#1| (-544))) (((-528) $) 97 (|has| |#1| (-600 (-528))))) (-2616 (($ $ $) 108 (|has| |#1| (-466)))) (-2493 (($ $ $) 109 (|has| |#1| (-466)))) (-1477 (((-842) $) 11) (($ (-598 $)) 70) (($ (-1152)) 214) (($ |#1|) 205) (($ (-1101 |#1| (-598 $))) 185 (|has| |#1| (-1028))) (($ (-401 |#1|)) 171 (|has| |#1| (-544))) (($ (-931 (-401 |#1|))) 170 (|has| |#1| (-544))) (($ (-401 (-931 (-401 |#1|)))) 169 (|has| |#1| (-544))) (($ (-401 (-931 |#1|))) 167 (|has| |#1| (-544))) (($ $) 138 (|has| |#1| (-544))) (($ (-931 |#1|)) 121 (|has| |#1| (-1028))) (($ (-401 (-552))) 96 (-1559 (|has| |#1| (-544)) (-12 (|has| |#1| (-1017 (-552))) (|has| |#1| (-544))) (|has| |#1| (-1017 (-401 (-552)))))) (($ (-552)) 93 (-1559 (|has| |#1| (-1028)) (|has| |#1| (-1017 (-552)))))) (-3050 (((-3 $ "failed") $) 135 (|has| |#1| (-142)))) (-3995 (((-754)) 130 (|has| |#1| (-1028)))) (-3092 (($ $) 53) (($ (-627 $)) 52)) (-3749 (((-111) (-113)) 41)) (-3778 (((-111) $ $) 142 (|has| |#1| (-544)))) (-1729 (($ (-1152) $) 199) (($ (-1152) $ $) 198) (($ (-1152) $ $ $) 197) (($ (-1152) $ $ $ $) 196) (($ (-1152) (-627 $)) 195)) (-1922 (($) 112 (|has| |#1| (-25)) CONST)) (-1933 (($) 100 (|has| |#1| (-1088)) CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) 129 (|has| |#1| (-1028))) (($ $ (-1152) (-754)) 128 (|has| |#1| (-1028))) (($ $ (-627 (-1152))) 127 (|has| |#1| (-1028))) (($ $ (-1152)) 126 (|has| |#1| (-1028)))) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18)) (-2407 (($ (-1101 |#1| (-598 $)) (-1101 |#1| (-598 $))) 172 (|has| |#1| (-544))) (($ $ $) 106 (-1559 (|has| |#1| (-466)) (|has| |#1| (-544))))) (-2396 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-2384 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-552)) 107 (-1559 (|has| |#1| (-466)) (|has| |#1| (-544)))) (($ $ (-754)) 104 (|has| |#1| (-1088))) (($ $ (-900)) 99 (|has| |#1| (-1088)))) (* (($ (-401 (-552)) $) 164 (|has| |#1| (-544))) (($ $ (-401 (-552))) 163 (|has| |#1| (-544))) (($ |#1| $) 137 (|has| |#1| (-169))) (($ $ |#1|) 136 (|has| |#1| (-169))) (($ (-552) $) 118 (|has| |#1| (-21))) (($ (-754) $) 114 (|has| |#1| (-25))) (($ (-900) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1088))))) +(((-424 |#1|) (-137) (-830)) (T -424)) +((-1960 (*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-830)) (-5 *2 (-111)))) (-1970 (*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-830)))) (-1853 (*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-830)) (-5 *2 (-627 (-1152))))) (-1729 (*1 *1 *2 *1) (-12 (-5 *2 (-1152)) (-4 *1 (-424 *3)) (-4 *3 (-830)))) (-1729 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1152)) (-4 *1 (-424 *3)) (-4 *3 (-830)))) (-1729 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1152)) (-4 *1 (-424 *3)) (-4 *3 (-830)))) (-1729 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1152)) (-4 *1 (-424 *3)) (-4 *3 (-830)))) (-1729 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-627 *1)) (-4 *1 (-424 *4)) (-4 *4 (-830)))) (-3321 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-424 *3)) (-4 *3 (-830)) (-4 *3 (-600 (-528))))) (-3321 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-1152))) (-4 *1 (-424 *3)) (-4 *3 (-830)) (-4 *3 (-600 (-528))))) (-3321 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-830)) (-4 *2 (-600 (-528))))) (-3321 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1152)) (-4 *1 (-424 *4)) (-4 *4 (-830)) (-4 *4 (-600 (-528))))) (-3321 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-627 (-113))) (-5 *3 (-627 *1)) (-5 *4 (-1152)) (-4 *1 (-424 *5)) (-4 *5 (-830)) (-4 *5 (-600 (-528))))) (-4035 (*1 *2 *1) (|partial| -12 (-4 *3 (-1088)) (-4 *3 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-424 *3)))) (-3815 (*1 *2 *1) (|partial| -12 (-4 *3 (-1088)) (-4 *3 (-830)) (-5 *2 (-2 (|:| |var| (-598 *1)) (|:| -4067 (-552)))) (-4 *1 (-424 *3)))) (-2746 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-424 *3)))) (-2545 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-830)) (-5 *2 (-2 (|:| -3069 (-552)) (|:| |var| (-598 *1)))) (-4 *1 (-424 *3)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1101 *3 (-598 *1))) (-4 *3 (-1028)) (-4 *3 (-830)) (-4 *1 (-424 *3)))) (-2918 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-4 *3 (-830)) (-5 *2 (-1101 *3 (-598 *1))) (-4 *1 (-424 *3)))) (-3798 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-830)) (-4 *2 (-1028)))) (-3815 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1028)) (-4 *4 (-830)) (-5 *2 (-2 (|:| |var| (-598 *1)) (|:| -4067 (-552)))) (-4 *1 (-424 *4)))) (-3815 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1152)) (-4 *4 (-1028)) (-4 *4 (-830)) (-5 *2 (-2 (|:| |var| (-598 *1)) (|:| -4067 (-552)))) (-4 *1 (-424 *4)))) (-1382 (*1 *2 *1) (|partial| -12 (-4 *3 (-1028)) (-4 *3 (-830)) (-5 *2 (-2 (|:| |val| *1) (|:| -4067 (-552)))) (-4 *1 (-424 *3)))) (-3321 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-627 (-754))) (-5 *4 (-627 (-1 *1 *1))) (-4 *1 (-424 *5)) (-4 *5 (-830)) (-4 *5 (-1028)))) (-3321 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-627 (-754))) (-5 *4 (-627 (-1 *1 (-627 *1)))) (-4 *1 (-424 *5)) (-4 *5 (-830)) (-4 *5 (-1028)))) (-3321 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1152)) (-5 *3 (-754)) (-5 *4 (-1 *1 (-627 *1))) (-4 *1 (-424 *5)) (-4 *5 (-830)) (-4 *5 (-1028)))) (-3321 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1152)) (-5 *3 (-754)) (-5 *4 (-1 *1 *1)) (-4 *1 (-424 *5)) (-4 *5 (-830)) (-4 *5 (-1028)))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-412 *1)) (-4 *1 (-424 *3)) (-4 *3 (-544)) (-4 *3 (-830)))) (-2929 (*1 *2 *1) (-12 (-4 *3 (-544)) (-4 *3 (-830)) (-5 *2 (-1101 *3 (-598 *1))) (-4 *1 (-424 *3)))) (-1583 (*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-830)) (-4 *2 (-544)))) (-2407 (*1 *1 *2 *2) (-12 (-5 *2 (-1101 *3 (-598 *1))) (-4 *3 (-544)) (-4 *3 (-830)) (-4 *1 (-424 *3)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-401 *3)) (-4 *3 (-544)) (-4 *3 (-830)) (-4 *1 (-424 *3)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-931 (-401 *3))) (-4 *3 (-544)) (-4 *3 (-830)) (-4 *1 (-424 *3)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-401 (-931 (-401 *3)))) (-4 *3 (-544)) (-4 *3 (-830)) (-4 *1 (-424 *3)))) (-1694 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *1)) (-4 *1 (-424 *4)) (-4 *4 (-830)) (-4 *4 (-544)) (-5 *2 (-401 (-1148 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-424 *3)) (-4 *3 (-830)) (-4 *3 (-1088))))) +(-13 (-296) (-1017 (-1152)) (-863 |t#1|) (-394 |t#1|) (-405 |t#1|) (-10 -8 (-15 -1960 ((-111) $)) (-15 -1970 (|t#1| $)) (-15 -1853 ((-627 (-1152)) $)) (-15 -1729 ($ (-1152) $)) (-15 -1729 ($ (-1152) $ $)) (-15 -1729 ($ (-1152) $ $ $)) (-15 -1729 ($ (-1152) $ $ $ $)) (-15 -1729 ($ (-1152) (-627 $))) (IF (|has| |t#1| (-600 (-528))) (PROGN (-6 (-600 (-528))) (-15 -3321 ($ $ (-1152))) (-15 -3321 ($ $ (-627 (-1152)))) (-15 -3321 ($ $)) (-15 -3321 ($ $ (-113) $ (-1152))) (-15 -3321 ($ $ (-627 (-113)) (-627 $) (-1152)))) |%noBranch|) (IF (|has| |t#1| (-1088)) (PROGN (-6 (-709)) (-15 ** ($ $ (-754))) (-15 -4035 ((-3 (-627 $) "failed") $)) (-15 -3815 ((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-466)) (-6 (-466)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2746 ((-3 (-627 $) "failed") $)) (-15 -2545 ((-3 (-2 (|:| -3069 (-552)) (|:| |var| (-598 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1028)) (PROGN (-6 (-1028)) (-6 (-1017 (-931 |t#1|))) (-6 (-879 (-1152))) (-6 (-371 |t#1|)) (-15 -1477 ($ (-1101 |t#1| (-598 $)))) (-15 -2918 ((-1101 |t#1| (-598 $)) $)) (-15 -3798 ($ $)) (-15 -3815 ((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $ (-113))) (-15 -3815 ((-3 (-2 (|:| |var| (-598 $)) (|:| -4067 (-552))) "failed") $ (-1152))) (-15 -1382 ((-3 (-2 (|:| |val| $) (|:| -4067 (-552))) "failed") $)) (-15 -3321 ($ $ (-627 (-1152)) (-627 (-754)) (-627 (-1 $ $)))) (-15 -3321 ($ $ (-627 (-1152)) (-627 (-754)) (-627 (-1 $ (-627 $))))) (-15 -3321 ($ $ (-1152) (-754) (-1 $ (-627 $)))) (-15 -3321 ($ $ (-1152) (-754) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-6 (-357)) (-6 (-1017 (-401 (-931 |t#1|)))) (-15 -3562 ($ (-412 $))) (-15 -2929 ((-1101 |t#1| (-598 $)) $)) (-15 -1583 ($ $)) (-15 -2407 ($ (-1101 |t#1| (-598 $)) (-1101 |t#1| (-598 $)))) (-15 -1477 ($ (-401 |t#1|))) (-15 -1477 ($ (-931 (-401 |t#1|)))) (-15 -1477 ($ (-401 (-931 (-401 |t#1|))))) (-15 -1694 ((-401 (-1148 $)) $ (-598 $))) (IF (|has| |t#1| (-1017 (-552))) (-6 (-1017 (-401 (-552)))) |%noBranch|)) |%noBranch|))) +(((-21) -1559 (|has| |#1| (-1028)) (|has| |#1| (-544)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142)) (|has| |#1| (-21))) ((-23) -1559 (|has| |#1| (-1028)) (|has| |#1| (-544)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1559 (|has| |#1| (-1028)) (|has| |#1| (-544)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-401 (-552))) |has| |#1| (-544)) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-544)) ((-110 |#1| |#1|) |has| |#1| (-169)) ((-110 $ $) |has| |#1| (-544)) ((-129) -1559 (|has| |#1| (-1028)) (|has| |#1| (-544)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142)) (|has| |#1| (-21))) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) |has| |#1| (-544)) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-600 (-871 (-373))) |has| |#1| (-600 (-871 (-373)))) ((-600 (-871 (-552))) |has| |#1| (-600 (-871 (-552)))) ((-238) |has| |#1| (-544)) ((-284) |has| |#1| (-544)) ((-301) |has| |#1| (-544)) ((-303 $) . T) ((-296) . T) ((-357) |has| |#1| (-544)) ((-371 |#1|) |has| |#1| (-1028)) ((-394 |#1|) . T) ((-405 |#1|) . T) ((-445) |has| |#1| (-544)) ((-466) |has| |#1| (-466)) ((-506 (-598 $) $) . T) ((-506 $ $) . T) ((-544) |has| |#1| (-544)) ((-630 #0#) |has| |#1| (-544)) ((-630 |#1|) |has| |#1| (-169)) ((-630 $) -1559 (|has| |#1| (-1028)) (|has| |#1| (-544)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142))) ((-623 (-552)) -12 (|has| |#1| (-623 (-552))) (|has| |#1| (-1028))) ((-623 |#1|) |has| |#1| (-1028)) ((-700 #0#) |has| |#1| (-544)) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) |has| |#1| (-544)) ((-709) -1559 (|has| |#1| (-1088)) (|has| |#1| (-1028)) (|has| |#1| (-544)) (|has| |#1| (-466)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142))) ((-830) . T) ((-879 (-1152)) |has| |#1| (-1028)) ((-865 (-373)) |has| |#1| (-865 (-373))) ((-865 (-552)) |has| |#1| (-865 (-552))) ((-863 |#1|) . T) ((-899) |has| |#1| (-544)) ((-1017 (-401 (-552))) -1559 (|has| |#1| (-1017 (-401 (-552)))) (-12 (|has| |#1| (-544)) (|has| |#1| (-1017 (-552))))) ((-1017 (-401 (-931 |#1|))) |has| |#1| (-544)) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 (-598 $)) . T) ((-1017 (-931 |#1|)) |has| |#1| (-1028)) ((-1017 (-1152)) . T) ((-1017 |#1|) . T) ((-1034 #0#) |has| |#1| (-544)) ((-1034 |#1|) |has| |#1| (-169)) ((-1034 $) |has| |#1| (-544)) ((-1028) -1559 (|has| |#1| (-1028)) (|has| |#1| (-544)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142))) ((-1035) -1559 (|has| |#1| (-1028)) (|has| |#1| (-544)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142))) ((-1088) -1559 (|has| |#1| (-1088)) (|has| |#1| (-1028)) (|has| |#1| (-544)) (|has| |#1| (-466)) (|has| |#1| (-169)) (|has| |#1| (-144)) (|has| |#1| (-142))) ((-1076) . T) ((-1189) . T) ((-1193) |has| |#1| (-544))) +((-3958 ((|#2| |#2| |#2|) 33)) (-4148 (((-113) (-113)) 44)) (-1471 ((|#2| |#2|) 66)) (-2939 ((|#2| |#2|) 69)) (-3709 ((|#2| |#2|) 32)) (-2804 ((|#2| |#2| |#2|) 35)) (-3396 ((|#2| |#2| |#2|) 37)) (-3075 ((|#2| |#2| |#2|) 34)) (-1512 ((|#2| |#2| |#2|) 36)) (-3749 (((-111) (-113)) 42)) (-3794 ((|#2| |#2|) 39)) (-2039 ((|#2| |#2|) 38)) (-3329 ((|#2| |#2|) 27)) (-1393 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-1974 ((|#2| |#2| |#2|) 31))) +(((-425 |#1| |#2|) (-10 -7 (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 -3329 (|#2| |#2|)) (-15 -1393 (|#2| |#2|)) (-15 -1393 (|#2| |#2| |#2|)) (-15 -1974 (|#2| |#2| |#2|)) (-15 -3709 (|#2| |#2|)) (-15 -3958 (|#2| |#2| |#2|)) (-15 -3075 (|#2| |#2| |#2|)) (-15 -2804 (|#2| |#2| |#2|)) (-15 -1512 (|#2| |#2| |#2|)) (-15 -3396 (|#2| |#2| |#2|)) (-15 -2039 (|#2| |#2|)) (-15 -3794 (|#2| |#2|)) (-15 -2939 (|#2| |#2|)) (-15 -1471 (|#2| |#2|))) (-13 (-830) (-544)) (-424 |#1|)) (T -425)) +((-1471 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-2939 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3794 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-2039 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3396 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-1512 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-2804 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3075 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3958 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3709 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-1974 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-1393 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-1393 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-3329 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) (-4 *2 (-424 *3)))) (-4148 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *4)) (-4 *4 (-424 *3)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) (-5 *1 (-425 *4 *5)) (-4 *5 (-424 *4))))) +(-10 -7 (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 -3329 (|#2| |#2|)) (-15 -1393 (|#2| |#2|)) (-15 -1393 (|#2| |#2| |#2|)) (-15 -1974 (|#2| |#2| |#2|)) (-15 -3709 (|#2| |#2|)) (-15 -3958 (|#2| |#2| |#2|)) (-15 -3075 (|#2| |#2| |#2|)) (-15 -2804 (|#2| |#2| |#2|)) (-15 -1512 (|#2| |#2| |#2|)) (-15 -3396 (|#2| |#2| |#2|)) (-15 -2039 (|#2| |#2|)) (-15 -3794 (|#2| |#2|)) (-15 -2939 (|#2| |#2|)) (-15 -1471 (|#2| |#2|))) +((-2740 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1148 |#2|)) (|:| |pol2| (-1148 |#2|)) (|:| |prim| (-1148 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-627 (-1148 |#2|))) (|:| |prim| (-1148 |#2|))) (-627 |#2|)) 61))) +(((-426 |#1| |#2|) (-10 -7 (-15 -2740 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-627 (-1148 |#2|))) (|:| |prim| (-1148 |#2|))) (-627 |#2|))) (IF (|has| |#2| (-27)) (-15 -2740 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1148 |#2|)) (|:| |pol2| (-1148 |#2|)) (|:| |prim| (-1148 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-544) (-830) (-144)) (-424 |#1|)) (T -426)) +((-2740 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-544) (-830) (-144))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1148 *3)) (|:| |pol2| (-1148 *3)) (|:| |prim| (-1148 *3)))) (-5 *1 (-426 *4 *3)) (-4 *3 (-27)) (-4 *3 (-424 *4)))) (-2740 (*1 *2 *3) (-12 (-5 *3 (-627 *5)) (-4 *5 (-424 *4)) (-4 *4 (-13 (-544) (-830) (-144))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-627 (-1148 *5))) (|:| |prim| (-1148 *5)))) (-5 *1 (-426 *4 *5))))) +(-10 -7 (-15 -2740 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-627 (-1148 |#2|))) (|:| |prim| (-1148 |#2|))) (-627 |#2|))) (IF (|has| |#2| (-27)) (-15 -2740 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1148 |#2|)) (|:| |pol2| (-1148 |#2|)) (|:| |prim| (-1148 |#2|))) |#2| |#2|)) |%noBranch|)) +((-2794 (((-1240)) 19)) (-2989 (((-1148 (-401 (-552))) |#2| (-598 |#2|)) 41) (((-401 (-552)) |#2|) 25))) +(((-427 |#1| |#2|) (-10 -7 (-15 -2989 ((-401 (-552)) |#2|)) (-15 -2989 ((-1148 (-401 (-552))) |#2| (-598 |#2|))) (-15 -2794 ((-1240)))) (-13 (-830) (-544) (-1017 (-552))) (-424 |#1|)) (T -427)) +((-2794 (*1 *2) (-12 (-4 *3 (-13 (-830) (-544) (-1017 (-552)))) (-5 *2 (-1240)) (-5 *1 (-427 *3 *4)) (-4 *4 (-424 *3)))) (-2989 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *3)) (-4 *3 (-424 *5)) (-4 *5 (-13 (-830) (-544) (-1017 (-552)))) (-5 *2 (-1148 (-401 (-552)))) (-5 *1 (-427 *5 *3)))) (-2989 (*1 *2 *3) (-12 (-4 *4 (-13 (-830) (-544) (-1017 (-552)))) (-5 *2 (-401 (-552))) (-5 *1 (-427 *4 *3)) (-4 *3 (-424 *4))))) +(-10 -7 (-15 -2989 ((-401 (-552)) |#2|)) (-15 -2989 ((-1148 (-401 (-552))) |#2| (-598 |#2|))) (-15 -2794 ((-1240)))) +((-3802 (((-111) $) 28)) (-1535 (((-111) $) 30)) (-2170 (((-111) $) 31)) (-2397 (((-111) $) 34)) (-1648 (((-111) $) 29)) (-3235 (((-111) $) 33)) (-1477 (((-842) $) 18) (($ (-1134)) 27) (($ (-1152)) 23) (((-1152) $) 22) (((-1080) $) 21)) (-3889 (((-111) $) 32)) (-2292 (((-111) $ $) 15))) +(((-428) (-13 (-599 (-842)) (-10 -8 (-15 -1477 ($ (-1134))) (-15 -1477 ($ (-1152))) (-15 -1477 ((-1152) $)) (-15 -1477 ((-1080) $)) (-15 -3802 ((-111) $)) (-15 -1648 ((-111) $)) (-15 -2170 ((-111) $)) (-15 -3235 ((-111) $)) (-15 -2397 ((-111) $)) (-15 -3889 ((-111) $)) (-15 -1535 ((-111) $)) (-15 -2292 ((-111) $ $))))) (T -428)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-428)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-428)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-428)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-428)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-1648 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-2170 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-2397 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-3889 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-1535 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) (-2292 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) +(-13 (-599 (-842)) (-10 -8 (-15 -1477 ($ (-1134))) (-15 -1477 ($ (-1152))) (-15 -1477 ((-1152) $)) (-15 -1477 ((-1080) $)) (-15 -3802 ((-111) $)) (-15 -1648 ((-111) $)) (-15 -2170 ((-111) $)) (-15 -3235 ((-111) $)) (-15 -2397 ((-111) $)) (-15 -3889 ((-111) $)) (-15 -1535 ((-111) $)) (-15 -2292 ((-111) $ $)))) +((-3585 (((-3 (-412 (-1148 (-401 (-552)))) "failed") |#3|) 70)) (-1357 (((-412 |#3|) |#3|) 34)) (-1710 (((-3 (-412 (-1148 (-48))) "failed") |#3|) 46 (|has| |#2| (-1017 (-48))))) (-3290 (((-3 (|:| |overq| (-1148 (-401 (-552)))) (|:| |overan| (-1148 (-48))) (|:| -2953 (-111))) |#3|) 37))) +(((-429 |#1| |#2| |#3|) (-10 -7 (-15 -1357 ((-412 |#3|) |#3|)) (-15 -3585 ((-3 (-412 (-1148 (-401 (-552)))) "failed") |#3|)) (-15 -3290 ((-3 (|:| |overq| (-1148 (-401 (-552)))) (|:| |overan| (-1148 (-48))) (|:| -2953 (-111))) |#3|)) (IF (|has| |#2| (-1017 (-48))) (-15 -1710 ((-3 (-412 (-1148 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-544) (-830) (-1017 (-552))) (-424 |#1|) (-1211 |#2|)) (T -429)) +((-1710 (*1 *2 *3) (|partial| -12 (-4 *5 (-1017 (-48))) (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-4 *5 (-424 *4)) (-5 *2 (-412 (-1148 (-48)))) (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1211 *5)))) (-3290 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-4 *5 (-424 *4)) (-5 *2 (-3 (|:| |overq| (-1148 (-401 (-552)))) (|:| |overan| (-1148 (-48))) (|:| -2953 (-111)))) (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1211 *5)))) (-3585 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-4 *5 (-424 *4)) (-5 *2 (-412 (-1148 (-401 (-552))))) (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1211 *5)))) (-1357 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-4 *5 (-424 *4)) (-5 *2 (-412 *3)) (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1211 *5))))) +(-10 -7 (-15 -1357 ((-412 |#3|) |#3|)) (-15 -3585 ((-3 (-412 (-1148 (-401 (-552)))) "failed") |#3|)) (-15 -3290 ((-3 (|:| |overq| (-1148 (-401 (-552)))) (|:| |overan| (-1148 (-48))) (|:| -2953 (-111))) |#3|)) (IF (|has| |#2| (-1017 (-48))) (-15 -1710 ((-3 (-412 (-1148 (-48))) "failed") |#3|)) |%noBranch|)) +((-1465 (((-111) $ $) NIL)) (-2035 (((-1134) $ (-1134)) NIL)) (-1496 (($ $ (-1134)) NIL)) (-3689 (((-1134) $) NIL)) (-3779 (((-382) (-382) (-382)) 17) (((-382) (-382)) 15)) (-2849 (($ (-382)) NIL) (($ (-382) (-1134)) NIL)) (-3112 (((-382) $) NIL)) (-1595 (((-1134) $) NIL)) (-2548 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2200 (((-1240) (-1134)) 9)) (-2629 (((-1240) (-1134)) 10)) (-3068 (((-1240)) 11)) (-1477 (((-842) $) NIL)) (-2219 (($ $) 35)) (-2292 (((-111) $ $) NIL))) +(((-430) (-13 (-358 (-382) (-1134)) (-10 -7 (-15 -3779 ((-382) (-382) (-382))) (-15 -3779 ((-382) (-382))) (-15 -2200 ((-1240) (-1134))) (-15 -2629 ((-1240) (-1134))) (-15 -3068 ((-1240)))))) (T -430)) +((-3779 (*1 *2 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-430)))) (-3779 (*1 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-430)))) (-2200 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-430)))) (-2629 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-430)))) (-3068 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-430))))) +(-13 (-358 (-382) (-1134)) (-10 -7 (-15 -3779 ((-382) (-382) (-382))) (-15 -3779 ((-382) (-382))) (-15 -2200 ((-1240) (-1134))) (-15 -2629 ((-1240) (-1134))) (-15 -3068 ((-1240))))) +((-1465 (((-111) $ $) NIL)) (-1558 (((-3 (|:| |fst| (-428)) (|:| -3885 "void")) $) 11)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1359 (($) 32)) (-3919 (($) 38)) (-1269 (($) 34)) (-1750 (($) 36)) (-1676 (($) 33)) (-1616 (($) 35)) (-3148 (($) 37)) (-1829 (((-111) $) 8)) (-1623 (((-627 (-931 (-552))) $) 19)) (-1490 (($ (-3 (|:| |fst| (-428)) (|:| -3885 "void")) (-627 (-1152)) (-111)) 27) (($ (-3 (|:| |fst| (-428)) (|:| -3885 "void")) (-627 (-931 (-552))) (-111)) 28)) (-1477 (((-842) $) 23) (($ (-428)) 29)) (-2292 (((-111) $ $) NIL))) +(((-431) (-13 (-1076) (-10 -8 (-15 -1477 ((-842) $)) (-15 -1477 ($ (-428))) (-15 -1558 ((-3 (|:| |fst| (-428)) (|:| -3885 "void")) $)) (-15 -1623 ((-627 (-931 (-552))) $)) (-15 -1829 ((-111) $)) (-15 -1490 ($ (-3 (|:| |fst| (-428)) (|:| -3885 "void")) (-627 (-1152)) (-111))) (-15 -1490 ($ (-3 (|:| |fst| (-428)) (|:| -3885 "void")) (-627 (-931 (-552))) (-111))) (-15 -1359 ($)) (-15 -1676 ($)) (-15 -1269 ($)) (-15 -3919 ($)) (-15 -1616 ($)) (-15 -1750 ($)) (-15 -3148 ($))))) (T -431)) +((-1477 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-431)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-428)) (-5 *1 (-431)))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-5 *1 (-431)))) (-1623 (*1 *2 *1) (-12 (-5 *2 (-627 (-931 (-552)))) (-5 *1 (-431)))) (-1829 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-431)))) (-1490 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-5 *3 (-627 (-1152))) (-5 *4 (-111)) (-5 *1 (-431)))) (-1490 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-5 *3 (-627 (-931 (-552)))) (-5 *4 (-111)) (-5 *1 (-431)))) (-1359 (*1 *1) (-5 *1 (-431))) (-1676 (*1 *1) (-5 *1 (-431))) (-1269 (*1 *1) (-5 *1 (-431))) (-3919 (*1 *1) (-5 *1 (-431))) (-1616 (*1 *1) (-5 *1 (-431))) (-1750 (*1 *1) (-5 *1 (-431))) (-3148 (*1 *1) (-5 *1 (-431)))) +(-13 (-1076) (-10 -8 (-15 -1477 ((-842) $)) (-15 -1477 ($ (-428))) (-15 -1558 ((-3 (|:| |fst| (-428)) (|:| -3885 "void")) $)) (-15 -1623 ((-627 (-931 (-552))) $)) (-15 -1829 ((-111) $)) (-15 -1490 ($ (-3 (|:| |fst| (-428)) (|:| -3885 "void")) (-627 (-1152)) (-111))) (-15 -1490 ($ (-3 (|:| |fst| (-428)) (|:| -3885 "void")) (-627 (-931 (-552))) (-111))) (-15 -1359 ($)) (-15 -1676 ($)) (-15 -1269 ($)) (-15 -3919 ($)) (-15 -1616 ($)) (-15 -1750 ($)) (-15 -3148 ($)))) +((-1465 (((-111) $ $) NIL)) (-3112 (((-1152) $) 8)) (-1595 (((-1134) $) 16)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 13))) +(((-432 |#1|) (-13 (-1076) (-10 -8 (-15 -3112 ((-1152) $)))) (-1152)) (T -432)) +((-3112 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-432 *3)) (-14 *3 *2)))) +(-13 (-1076) (-10 -8 (-15 -3112 ((-1152) $)))) +((-2802 (((-1240) $) 7)) (-1477 (((-842) $) 8) (($ (-1235 (-681))) 14) (($ (-627 (-324))) 13) (($ (-324)) 12) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 11))) +(((-433) (-137)) (T -433)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-681))) (-4 *1 (-433)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-4 *1 (-433)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-433)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) (-4 *1 (-433))))) +(-13 (-389) (-10 -8 (-15 -1477 ($ (-1235 (-681)))) (-15 -1477 ($ (-627 (-324)))) (-15 -1477 ($ (-324))) (-15 -1477 ($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324)))))))) +(((-599 (-842)) . T) ((-389) . T) ((-1189) . T)) +((-4039 (((-3 $ "failed") (-1235 (-310 (-373)))) 21) (((-3 $ "failed") (-1235 (-310 (-552)))) 19) (((-3 $ "failed") (-1235 (-931 (-373)))) 17) (((-3 $ "failed") (-1235 (-931 (-552)))) 15) (((-3 $ "failed") (-1235 (-401 (-931 (-373))))) 13) (((-3 $ "failed") (-1235 (-401 (-931 (-552))))) 11)) (-1703 (($ (-1235 (-310 (-373)))) 22) (($ (-1235 (-310 (-552)))) 20) (($ (-1235 (-931 (-373)))) 18) (($ (-1235 (-931 (-552)))) 16) (($ (-1235 (-401 (-931 (-373))))) 14) (($ (-1235 (-401 (-931 (-552))))) 12)) (-2802 (((-1240) $) 7)) (-1477 (((-842) $) 8) (($ (-627 (-324))) 25) (($ (-324)) 24) (($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) 23))) +(((-434) (-137)) (T -434)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-4 *1 (-434)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-434)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) (-4 *1 (-434)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-1235 (-310 (-373)))) (-4 *1 (-434)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-1235 (-310 (-373)))) (-4 *1 (-434)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-1235 (-310 (-552)))) (-4 *1 (-434)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-1235 (-310 (-552)))) (-4 *1 (-434)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-1235 (-931 (-373)))) (-4 *1 (-434)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-1235 (-931 (-373)))) (-4 *1 (-434)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-1235 (-931 (-552)))) (-4 *1 (-434)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-1235 (-931 (-552)))) (-4 *1 (-434)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-1235 (-401 (-931 (-373))))) (-4 *1 (-434)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-1235 (-401 (-931 (-373))))) (-4 *1 (-434)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-1235 (-401 (-931 (-552))))) (-4 *1 (-434)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-1235 (-401 (-931 (-552))))) (-4 *1 (-434))))) +(-13 (-389) (-10 -8 (-15 -1477 ($ (-627 (-324)))) (-15 -1477 ($ (-324))) (-15 -1477 ($ (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324)))))) (-15 -1703 ($ (-1235 (-310 (-373))))) (-15 -4039 ((-3 $ "failed") (-1235 (-310 (-373))))) (-15 -1703 ($ (-1235 (-310 (-552))))) (-15 -4039 ((-3 $ "failed") (-1235 (-310 (-552))))) (-15 -1703 ($ (-1235 (-931 (-373))))) (-15 -4039 ((-3 $ "failed") (-1235 (-931 (-373))))) (-15 -1703 ($ (-1235 (-931 (-552))))) (-15 -4039 ((-3 $ "failed") (-1235 (-931 (-552))))) (-15 -1703 ($ (-1235 (-401 (-931 (-373)))))) (-15 -4039 ((-3 $ "failed") (-1235 (-401 (-931 (-373)))))) (-15 -1703 ($ (-1235 (-401 (-931 (-552)))))) (-15 -4039 ((-3 $ "failed") (-1235 (-401 (-931 (-552)))))))) +(((-599 (-842)) . T) ((-389) . T) ((-1189) . T)) +((-3147 (((-111)) 17)) (-3730 (((-111) (-111)) 18)) (-2301 (((-111)) 13)) (-4132 (((-111) (-111)) 14)) (-2666 (((-111)) 15)) (-4345 (((-111) (-111)) 16)) (-2284 (((-900) (-900)) 21) (((-900)) 20)) (-1937 (((-754) (-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552))))) 42)) (-2732 (((-900) (-900)) 23) (((-900)) 22)) (-3497 (((-2 (|:| -2376 (-552)) (|:| -2101 (-627 |#1|))) |#1|) 62)) (-3055 (((-412 |#1|) (-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552))))))) 126)) (-1523 (((-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))) |#1| (-111)) 152)) (-1685 (((-412 |#1|) |#1| (-754) (-754)) 165) (((-412 |#1|) |#1| (-627 (-754)) (-754)) 162) (((-412 |#1|) |#1| (-627 (-754))) 164) (((-412 |#1|) |#1| (-754)) 163) (((-412 |#1|) |#1|) 161)) (-2637 (((-3 |#1| "failed") (-900) |#1| (-627 (-754)) (-754) (-111)) 167) (((-3 |#1| "failed") (-900) |#1| (-627 (-754)) (-754)) 168) (((-3 |#1| "failed") (-900) |#1| (-627 (-754))) 170) (((-3 |#1| "failed") (-900) |#1| (-754)) 169) (((-3 |#1| "failed") (-900) |#1|) 171)) (-1727 (((-412 |#1|) |#1| (-754) (-754)) 160) (((-412 |#1|) |#1| (-627 (-754)) (-754)) 156) (((-412 |#1|) |#1| (-627 (-754))) 158) (((-412 |#1|) |#1| (-754)) 157) (((-412 |#1|) |#1|) 155)) (-3999 (((-111) |#1|) 37)) (-4079 (((-720 (-754)) (-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552))))) 67)) (-2964 (((-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))) |#1| (-111) (-1078 (-754)) (-754)) 154))) +(((-435 |#1|) (-10 -7 (-15 -3055 ((-412 |#1|) (-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))))) (-15 -4079 ((-720 (-754)) (-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552)))))) (-15 -2732 ((-900))) (-15 -2732 ((-900) (-900))) (-15 -2284 ((-900))) (-15 -2284 ((-900) (-900))) (-15 -1937 ((-754) (-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552)))))) (-15 -3497 ((-2 (|:| -2376 (-552)) (|:| -2101 (-627 |#1|))) |#1|)) (-15 -3147 ((-111))) (-15 -3730 ((-111) (-111))) (-15 -2301 ((-111))) (-15 -4132 ((-111) (-111))) (-15 -3999 ((-111) |#1|)) (-15 -2666 ((-111))) (-15 -4345 ((-111) (-111))) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -1727 ((-412 |#1|) |#1| (-754))) (-15 -1727 ((-412 |#1|) |#1| (-627 (-754)))) (-15 -1727 ((-412 |#1|) |#1| (-627 (-754)) (-754))) (-15 -1727 ((-412 |#1|) |#1| (-754) (-754))) (-15 -1685 ((-412 |#1|) |#1|)) (-15 -1685 ((-412 |#1|) |#1| (-754))) (-15 -1685 ((-412 |#1|) |#1| (-627 (-754)))) (-15 -1685 ((-412 |#1|) |#1| (-627 (-754)) (-754))) (-15 -1685 ((-412 |#1|) |#1| (-754) (-754))) (-15 -2637 ((-3 |#1| "failed") (-900) |#1|)) (-15 -2637 ((-3 |#1| "failed") (-900) |#1| (-754))) (-15 -2637 ((-3 |#1| "failed") (-900) |#1| (-627 (-754)))) (-15 -2637 ((-3 |#1| "failed") (-900) |#1| (-627 (-754)) (-754))) (-15 -2637 ((-3 |#1| "failed") (-900) |#1| (-627 (-754)) (-754) (-111))) (-15 -1523 ((-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))) |#1| (-111))) (-15 -2964 ((-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))) |#1| (-111) (-1078 (-754)) (-754)))) (-1211 (-552))) (T -435)) +((-2964 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-111)) (-5 *5 (-1078 (-754))) (-5 *6 (-754)) (-5 *2 (-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| *3) (|:| -3594 (-552))))))) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1523 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *2 (-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| *3) (|:| -3594 (-552))))))) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-2637 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-900)) (-5 *4 (-627 (-754))) (-5 *5 (-754)) (-5 *6 (-111)) (-5 *1 (-435 *2)) (-4 *2 (-1211 (-552))))) (-2637 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-900)) (-5 *4 (-627 (-754))) (-5 *5 (-754)) (-5 *1 (-435 *2)) (-4 *2 (-1211 (-552))))) (-2637 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-900)) (-5 *4 (-627 (-754))) (-5 *1 (-435 *2)) (-4 *2 (-1211 (-552))))) (-2637 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-900)) (-5 *4 (-754)) (-5 *1 (-435 *2)) (-4 *2 (-1211 (-552))))) (-2637 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-900)) (-5 *1 (-435 *2)) (-4 *2 (-1211 (-552))))) (-1685 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-754)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1685 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-627 (-754))) (-5 *5 (-754)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1685 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-754))) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1685 (*1 *2 *3 *4) (-12 (-5 *4 (-754)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1685 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1727 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-754)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1727 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-627 (-754))) (-5 *5 (-754)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-754))) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-754)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1727 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-4345 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-2666 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-3999 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-4132 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-2301 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-3730 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-3147 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-3497 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2376 (-552)) (|:| -2101 (-627 *3)))) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| -1727 *4) (|:| -3567 (-552))))) (-4 *4 (-1211 (-552))) (-5 *2 (-754)) (-5 *1 (-435 *4)))) (-2284 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-2284 (*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-2732 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-2732 (*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) (-4079 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| -1727 *4) (|:| -3567 (-552))))) (-4 *4 (-1211 (-552))) (-5 *2 (-720 (-754))) (-5 *1 (-435 *4)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| *4) (|:| -3594 (-552))))))) (-4 *4 (-1211 (-552))) (-5 *2 (-412 *4)) (-5 *1 (-435 *4))))) +(-10 -7 (-15 -3055 ((-412 |#1|) (-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))))) (-15 -4079 ((-720 (-754)) (-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552)))))) (-15 -2732 ((-900))) (-15 -2732 ((-900) (-900))) (-15 -2284 ((-900))) (-15 -2284 ((-900) (-900))) (-15 -1937 ((-754) (-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552)))))) (-15 -3497 ((-2 (|:| -2376 (-552)) (|:| -2101 (-627 |#1|))) |#1|)) (-15 -3147 ((-111))) (-15 -3730 ((-111) (-111))) (-15 -2301 ((-111))) (-15 -4132 ((-111) (-111))) (-15 -3999 ((-111) |#1|)) (-15 -2666 ((-111))) (-15 -4345 ((-111) (-111))) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -1727 ((-412 |#1|) |#1| (-754))) (-15 -1727 ((-412 |#1|) |#1| (-627 (-754)))) (-15 -1727 ((-412 |#1|) |#1| (-627 (-754)) (-754))) (-15 -1727 ((-412 |#1|) |#1| (-754) (-754))) (-15 -1685 ((-412 |#1|) |#1|)) (-15 -1685 ((-412 |#1|) |#1| (-754))) (-15 -1685 ((-412 |#1|) |#1| (-627 (-754)))) (-15 -1685 ((-412 |#1|) |#1| (-627 (-754)) (-754))) (-15 -1685 ((-412 |#1|) |#1| (-754) (-754))) (-15 -2637 ((-3 |#1| "failed") (-900) |#1|)) (-15 -2637 ((-3 |#1| "failed") (-900) |#1| (-754))) (-15 -2637 ((-3 |#1| "failed") (-900) |#1| (-627 (-754)))) (-15 -2637 ((-3 |#1| "failed") (-900) |#1| (-627 (-754)) (-754))) (-15 -2637 ((-3 |#1| "failed") (-900) |#1| (-627 (-754)) (-754) (-111))) (-15 -1523 ((-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))) |#1| (-111))) (-15 -2964 ((-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))) |#1| (-111) (-1078 (-754)) (-754)))) +((-2375 (((-552) |#2|) 48) (((-552) |#2| (-754)) 47)) (-3818 (((-552) |#2|) 55)) (-2123 ((|#3| |#2|) 25)) (-2349 ((|#3| |#2| (-900)) 14)) (-3593 ((|#3| |#2|) 15)) (-2598 ((|#3| |#2|) 9)) (-3476 ((|#3| |#2|) 10)) (-4119 ((|#3| |#2| (-900)) 62) ((|#3| |#2|) 30)) (-2595 (((-552) |#2|) 57))) +(((-436 |#1| |#2| |#3|) (-10 -7 (-15 -2595 ((-552) |#2|)) (-15 -4119 (|#3| |#2|)) (-15 -4119 (|#3| |#2| (-900))) (-15 -3818 ((-552) |#2|)) (-15 -2375 ((-552) |#2| (-754))) (-15 -2375 ((-552) |#2|)) (-15 -2349 (|#3| |#2| (-900))) (-15 -2123 (|#3| |#2|)) (-15 -2598 (|#3| |#2|)) (-15 -3476 (|#3| |#2|)) (-15 -3593 (|#3| |#2|))) (-1028) (-1211 |#1|) (-13 (-398) (-1017 |#1|) (-357) (-1174) (-278))) (T -436)) +((-3593 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-4 *2 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))) (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1211 *4)))) (-3476 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-4 *2 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))) (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1211 *4)))) (-2598 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-4 *2 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))) (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1211 *4)))) (-2123 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-4 *2 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))) (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1211 *4)))) (-2349 (*1 *2 *3 *4) (-12 (-5 *4 (-900)) (-4 *5 (-1028)) (-4 *2 (-13 (-398) (-1017 *5) (-357) (-1174) (-278))) (-5 *1 (-436 *5 *3 *2)) (-4 *3 (-1211 *5)))) (-2375 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-5 *2 (-552)) (-5 *1 (-436 *4 *3 *5)) (-4 *3 (-1211 *4)) (-4 *5 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))))) (-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-754)) (-4 *5 (-1028)) (-5 *2 (-552)) (-5 *1 (-436 *5 *3 *6)) (-4 *3 (-1211 *5)) (-4 *6 (-13 (-398) (-1017 *5) (-357) (-1174) (-278))))) (-3818 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-5 *2 (-552)) (-5 *1 (-436 *4 *3 *5)) (-4 *3 (-1211 *4)) (-4 *5 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))))) (-4119 (*1 *2 *3 *4) (-12 (-5 *4 (-900)) (-4 *5 (-1028)) (-4 *2 (-13 (-398) (-1017 *5) (-357) (-1174) (-278))) (-5 *1 (-436 *5 *3 *2)) (-4 *3 (-1211 *5)))) (-4119 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-4 *2 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))) (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1211 *4)))) (-2595 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-5 *2 (-552)) (-5 *1 (-436 *4 *3 *5)) (-4 *3 (-1211 *4)) (-4 *5 (-13 (-398) (-1017 *4) (-357) (-1174) (-278)))))) +(-10 -7 (-15 -2595 ((-552) |#2|)) (-15 -4119 (|#3| |#2|)) (-15 -4119 (|#3| |#2| (-900))) (-15 -3818 ((-552) |#2|)) (-15 -2375 ((-552) |#2| (-754))) (-15 -2375 ((-552) |#2|)) (-15 -2349 (|#3| |#2| (-900))) (-15 -2123 (|#3| |#2|)) (-15 -2598 (|#3| |#2|)) (-15 -3476 (|#3| |#2|)) (-15 -3593 (|#3| |#2|))) +((-2327 ((|#2| (-1235 |#1|)) 36)) (-2490 ((|#2| |#2| |#1|) 49)) (-4181 ((|#2| |#2| |#1|) 41)) (-3429 ((|#2| |#2|) 38)) (-1283 (((-111) |#2|) 30)) (-4124 (((-627 |#2|) (-900) (-412 |#2|)) 17)) (-2637 ((|#2| (-900) (-412 |#2|)) 21)) (-4079 (((-720 (-754)) (-412 |#2|)) 25))) +(((-437 |#1| |#2|) (-10 -7 (-15 -1283 ((-111) |#2|)) (-15 -2327 (|#2| (-1235 |#1|))) (-15 -3429 (|#2| |#2|)) (-15 -4181 (|#2| |#2| |#1|)) (-15 -2490 (|#2| |#2| |#1|)) (-15 -4079 ((-720 (-754)) (-412 |#2|))) (-15 -2637 (|#2| (-900) (-412 |#2|))) (-15 -4124 ((-627 |#2|) (-900) (-412 |#2|)))) (-1028) (-1211 |#1|)) (T -437)) +((-4124 (*1 *2 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-412 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-1028)) (-5 *2 (-627 *6)) (-5 *1 (-437 *5 *6)))) (-2637 (*1 *2 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-412 *2)) (-4 *2 (-1211 *5)) (-5 *1 (-437 *5 *2)) (-4 *5 (-1028)))) (-4079 (*1 *2 *3) (-12 (-5 *3 (-412 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-1028)) (-5 *2 (-720 (-754))) (-5 *1 (-437 *4 *5)))) (-2490 (*1 *2 *2 *3) (-12 (-4 *3 (-1028)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1211 *3)))) (-4181 (*1 *2 *2 *3) (-12 (-4 *3 (-1028)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1211 *3)))) (-3429 (*1 *2 *2) (-12 (-4 *3 (-1028)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1211 *3)))) (-2327 (*1 *2 *3) (-12 (-5 *3 (-1235 *4)) (-4 *4 (-1028)) (-4 *2 (-1211 *4)) (-5 *1 (-437 *4 *2)))) (-1283 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-5 *2 (-111)) (-5 *1 (-437 *4 *3)) (-4 *3 (-1211 *4))))) +(-10 -7 (-15 -1283 ((-111) |#2|)) (-15 -2327 (|#2| (-1235 |#1|))) (-15 -3429 (|#2| |#2|)) (-15 -4181 (|#2| |#2| |#1|)) (-15 -2490 (|#2| |#2| |#1|)) (-15 -4079 ((-720 (-754)) (-412 |#2|))) (-15 -2637 (|#2| (-900) (-412 |#2|))) (-15 -4124 ((-627 |#2|) (-900) (-412 |#2|)))) +((-2636 (((-754)) 41)) (-3345 (((-754)) 23 (|has| |#1| (-398))) (((-754) (-754)) 22 (|has| |#1| (-398)))) (-1594 (((-552) |#1|) 18 (|has| |#1| (-398)))) (-1747 (((-552) |#1|) 20 (|has| |#1| (-398)))) (-2711 (((-754)) 40) (((-754) (-754)) 39)) (-1779 ((|#1| (-754) (-552)) 29)) (-1825 (((-1240)) 43))) +(((-438 |#1|) (-10 -7 (-15 -1779 (|#1| (-754) (-552))) (-15 -2711 ((-754) (-754))) (-15 -2711 ((-754))) (-15 -2636 ((-754))) (-15 -1825 ((-1240))) (IF (|has| |#1| (-398)) (PROGN (-15 -1747 ((-552) |#1|)) (-15 -1594 ((-552) |#1|)) (-15 -3345 ((-754) (-754))) (-15 -3345 ((-754)))) |%noBranch|)) (-1028)) (T -438)) +((-3345 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1028)))) (-3345 (*1 *2 *2) (-12 (-5 *2 (-754)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1028)))) (-1594 (*1 *2 *3) (-12 (-5 *2 (-552)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1028)))) (-1747 (*1 *2 *3) (-12 (-5 *2 (-552)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1028)))) (-1825 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-438 *3)) (-4 *3 (-1028)))) (-2636 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-438 *3)) (-4 *3 (-1028)))) (-2711 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-438 *3)) (-4 *3 (-1028)))) (-2711 (*1 *2 *2) (-12 (-5 *2 (-754)) (-5 *1 (-438 *3)) (-4 *3 (-1028)))) (-1779 (*1 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-552)) (-5 *1 (-438 *2)) (-4 *2 (-1028))))) +(-10 -7 (-15 -1779 (|#1| (-754) (-552))) (-15 -2711 ((-754) (-754))) (-15 -2711 ((-754))) (-15 -2636 ((-754))) (-15 -1825 ((-1240))) (IF (|has| |#1| (-398)) (PROGN (-15 -1747 ((-552) |#1|)) (-15 -1594 ((-552) |#1|)) (-15 -3345 ((-754) (-754))) (-15 -3345 ((-754)))) |%noBranch|)) +((-1916 (((-627 (-552)) (-552)) 61)) (-1633 (((-111) (-166 (-552))) 65)) (-1727 (((-412 (-166 (-552))) (-166 (-552))) 60))) +(((-439) (-10 -7 (-15 -1727 ((-412 (-166 (-552))) (-166 (-552)))) (-15 -1916 ((-627 (-552)) (-552))) (-15 -1633 ((-111) (-166 (-552)))))) (T -439)) +((-1633 (*1 *2 *3) (-12 (-5 *3 (-166 (-552))) (-5 *2 (-111)) (-5 *1 (-439)))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-439)) (-5 *3 (-552)))) (-1727 (*1 *2 *3) (-12 (-5 *2 (-412 (-166 (-552)))) (-5 *1 (-439)) (-5 *3 (-166 (-552)))))) +(-10 -7 (-15 -1727 ((-412 (-166 (-552))) (-166 (-552)))) (-15 -1916 ((-627 (-552)) (-552))) (-15 -1633 ((-111) (-166 (-552))))) +((-2355 ((|#4| |#4| (-627 |#4|)) 61)) (-2835 (((-627 |#4|) (-627 |#4|) (-1134) (-1134)) 17) (((-627 |#4|) (-627 |#4|) (-1134)) 16) (((-627 |#4|) (-627 |#4|)) 11))) +(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2355 (|#4| |#4| (-627 |#4|))) (-15 -2835 ((-627 |#4|) (-627 |#4|))) (-15 -2835 ((-627 |#4|) (-627 |#4|) (-1134))) (-15 -2835 ((-627 |#4|) (-627 |#4|) (-1134) (-1134)))) (-301) (-776) (-830) (-928 |#1| |#2| |#3|)) (T -440)) +((-2835 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-627 *7)) (-5 *3 (-1134)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-301)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-440 *4 *5 *6 *7)))) (-2835 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *7)) (-5 *3 (-1134)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-301)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-440 *4 *5 *6 *7)))) (-2835 (*1 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-301)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-440 *3 *4 *5 *6)))) (-2355 (*1 *2 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *4 *5 *6)) (-4 *4 (-301)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-440 *4 *5 *6 *2))))) +(-10 -7 (-15 -2355 (|#4| |#4| (-627 |#4|))) (-15 -2835 ((-627 |#4|) (-627 |#4|))) (-15 -2835 ((-627 |#4|) (-627 |#4|) (-1134))) (-15 -2835 ((-627 |#4|) (-627 |#4|) (-1134) (-1134)))) +((-1786 (((-627 (-627 |#4|)) (-627 |#4|) (-111)) 73) (((-627 (-627 |#4|)) (-627 |#4|)) 72) (((-627 (-627 |#4|)) (-627 |#4|) (-627 |#4|) (-111)) 66) (((-627 (-627 |#4|)) (-627 |#4|) (-627 |#4|)) 67)) (-2683 (((-627 (-627 |#4|)) (-627 |#4|) (-111)) 42) (((-627 (-627 |#4|)) (-627 |#4|)) 63))) +(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2683 ((-627 (-627 |#4|)) (-627 |#4|))) (-15 -2683 ((-627 (-627 |#4|)) (-627 |#4|) (-111))) (-15 -1786 ((-627 (-627 |#4|)) (-627 |#4|) (-627 |#4|))) (-15 -1786 ((-627 (-627 |#4|)) (-627 |#4|) (-627 |#4|) (-111))) (-15 -1786 ((-627 (-627 |#4|)) (-627 |#4|))) (-15 -1786 ((-627 (-627 |#4|)) (-627 |#4|) (-111)))) (-13 (-301) (-144)) (-776) (-830) (-928 |#1| |#2| |#3|)) (T -441)) +((-1786 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-928 *5 *6 *7)) (-5 *2 (-627 (-627 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-627 *8)))) (-1786 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-928 *4 *5 *6)) (-5 *2 (-627 (-627 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) (-1786 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-928 *5 *6 *7)) (-5 *2 (-627 (-627 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-627 *8)))) (-1786 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-928 *4 *5 *6)) (-5 *2 (-627 (-627 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) (-2683 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-928 *5 *6 *7)) (-5 *2 (-627 (-627 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-627 *8)))) (-2683 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-928 *4 *5 *6)) (-5 *2 (-627 (-627 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-627 *7))))) +(-10 -7 (-15 -2683 ((-627 (-627 |#4|)) (-627 |#4|))) (-15 -2683 ((-627 (-627 |#4|)) (-627 |#4|) (-111))) (-15 -1786 ((-627 (-627 |#4|)) (-627 |#4|) (-627 |#4|))) (-15 -1786 ((-627 (-627 |#4|)) (-627 |#4|) (-627 |#4|) (-111))) (-15 -1786 ((-627 (-627 |#4|)) (-627 |#4|))) (-15 -1786 ((-627 (-627 |#4|)) (-627 |#4|) (-111)))) +((-3923 (((-754) |#4|) 12)) (-2013 (((-627 (-2 (|:| |totdeg| (-754)) (|:| -3144 |#4|))) |#4| (-754) (-627 (-2 (|:| |totdeg| (-754)) (|:| -3144 |#4|)))) 31)) (-3193 (((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-3598 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1840 ((|#4| |#4| (-627 |#4|)) 40)) (-1867 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-627 |#4|)) 70)) (-3618 (((-1240) |#4|) 42)) (-2579 (((-1240) (-627 |#4|)) 51)) (-3318 (((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552)) 48)) (-4077 (((-1240) (-552)) 79)) (-2715 (((-627 |#4|) (-627 |#4|)) 77)) (-4195 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-754)) (|:| -3144 |#4|)) |#4| (-754)) 25)) (-4302 (((-552) |#4|) 78)) (-2538 ((|#4| |#4|) 29)) (-1461 (((-627 |#4|) (-627 |#4|) (-552) (-552)) 56)) (-2907 (((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552) (-552)) 89)) (-3777 (((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-4024 (((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-2150 (((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-1473 (((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3219 (((-111) |#2| |#2|) 57)) (-3579 (((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1845 (((-111) |#2| |#2| |#2| |#2|) 60)) (-2608 ((|#4| |#4| (-627 |#4|)) 71))) +(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2608 (|#4| |#4| (-627 |#4|))) (-15 -1840 (|#4| |#4| (-627 |#4|))) (-15 -1461 ((-627 |#4|) (-627 |#4|) (-552) (-552))) (-15 -4024 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3219 ((-111) |#2| |#2|)) (-15 -1845 ((-111) |#2| |#2| |#2| |#2|)) (-15 -3579 ((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1473 ((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2150 ((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1867 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-627 |#4|))) (-15 -2538 (|#4| |#4|)) (-15 -2013 ((-627 (-2 (|:| |totdeg| (-754)) (|:| -3144 |#4|))) |#4| (-754) (-627 (-2 (|:| |totdeg| (-754)) (|:| -3144 |#4|))))) (-15 -3598 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3193 ((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2715 ((-627 |#4|) (-627 |#4|))) (-15 -4302 ((-552) |#4|)) (-15 -3618 ((-1240) |#4|)) (-15 -3318 ((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552))) (-15 -2907 ((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552) (-552))) (-15 -2579 ((-1240) (-627 |#4|))) (-15 -4077 ((-1240) (-552))) (-15 -3777 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4195 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-754)) (|:| -3144 |#4|)) |#4| (-754))) (-15 -3923 ((-754) |#4|))) (-445) (-776) (-830) (-928 |#1| |#2| |#3|)) (T -442)) +((-3923 (*1 *2 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-754)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-928 *4 *5 *6)))) (-4195 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-754)) (|:| -3144 *4))) (-5 *5 (-754)) (-4 *4 (-928 *6 *7 *8)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-442 *6 *7 *8 *4)))) (-3777 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-754)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-776)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-442 *4 *5 *6 *7)))) (-4077 (*1 *2 *3) (-12 (-5 *3 (-552)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-1240)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-928 *4 *5 *6)))) (-2579 (*1 *2 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-1240)) (-5 *1 (-442 *4 *5 *6 *7)))) (-2907 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-754)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-776)) (-4 *4 (-928 *5 *6 *7)) (-4 *5 (-445)) (-4 *7 (-830)) (-5 *1 (-442 *5 *6 *7 *4)))) (-3318 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-754)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-776)) (-4 *4 (-928 *5 *6 *7)) (-4 *5 (-445)) (-4 *7 (-830)) (-5 *1 (-442 *5 *6 *7 *4)))) (-3618 (*1 *2 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-1240)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-928 *4 *5 *6)))) (-4302 (*1 *2 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-552)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-928 *4 *5 *6)))) (-2715 (*1 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-442 *3 *4 *5 *6)))) (-3193 (*1 *2 *2 *2) (-12 (-5 *2 (-627 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-754)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-776)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-445)) (-4 *5 (-830)) (-5 *1 (-442 *3 *4 *5 *6)))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-754)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-776)) (-4 *2 (-928 *4 *5 *6)) (-5 *1 (-442 *4 *5 *6 *2)) (-4 *4 (-445)) (-4 *6 (-830)))) (-2013 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-627 (-2 (|:| |totdeg| (-754)) (|:| -3144 *3)))) (-5 *4 (-754)) (-4 *3 (-928 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-442 *5 *6 *7 *3)))) (-2538 (*1 *2 *2) (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-442 *3 *4 *5 *2)) (-4 *2 (-928 *3 *4 *5)))) (-1867 (*1 *2 *3 *4) (-12 (-5 *4 (-627 *3)) (-4 *3 (-928 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-442 *5 *6 *7 *3)))) (-2150 (*1 *2 *3 *2) (-12 (-5 *2 (-627 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-754)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-776)) (-4 *6 (-928 *4 *3 *5)) (-4 *4 (-445)) (-4 *5 (-830)) (-5 *1 (-442 *4 *3 *5 *6)))) (-1473 (*1 *2 *2) (-12 (-5 *2 (-627 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-754)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-776)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-445)) (-4 *5 (-830)) (-5 *1 (-442 *3 *4 *5 *6)))) (-3579 (*1 *2 *3 *2) (-12 (-5 *2 (-627 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-754)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-776)) (-4 *3 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-830)) (-5 *1 (-442 *4 *5 *6 *3)))) (-1845 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-445)) (-4 *3 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-928 *4 *3 *5)))) (-3219 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *3 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-928 *4 *3 *5)))) (-4024 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-754)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-776)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-442 *4 *5 *6 *7)))) (-1461 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-627 *7)) (-5 *3 (-552)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-442 *4 *5 *6 *7)))) (-1840 (*1 *2 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-442 *4 *5 *6 *2)))) (-2608 (*1 *2 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-442 *4 *5 *6 *2))))) +(-10 -7 (-15 -2608 (|#4| |#4| (-627 |#4|))) (-15 -1840 (|#4| |#4| (-627 |#4|))) (-15 -1461 ((-627 |#4|) (-627 |#4|) (-552) (-552))) (-15 -4024 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3219 ((-111) |#2| |#2|)) (-15 -1845 ((-111) |#2| |#2| |#2| |#2|)) (-15 -3579 ((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1473 ((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2150 ((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1867 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-627 |#4|))) (-15 -2538 (|#4| |#4|)) (-15 -2013 ((-627 (-2 (|:| |totdeg| (-754)) (|:| -3144 |#4|))) |#4| (-754) (-627 (-2 (|:| |totdeg| (-754)) (|:| -3144 |#4|))))) (-15 -3598 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3193 ((-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-627 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2715 ((-627 |#4|) (-627 |#4|))) (-15 -4302 ((-552) |#4|)) (-15 -3618 ((-1240) |#4|)) (-15 -3318 ((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552))) (-15 -2907 ((-552) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-552) (-552) (-552) (-552))) (-15 -2579 ((-1240) (-627 |#4|))) (-15 -4077 ((-1240) (-552))) (-15 -3777 ((-111) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4195 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-754)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-754)) (|:| -3144 |#4|)) |#4| (-754))) (-15 -3923 ((-754) |#4|))) +((-2566 ((|#4| |#4| (-627 |#4|)) 22 (|has| |#1| (-357)))) (-2875 (((-627 |#4|) (-627 |#4|) (-1134) (-1134)) 41) (((-627 |#4|) (-627 |#4|) (-1134)) 40) (((-627 |#4|) (-627 |#4|)) 35))) +(((-443 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2875 ((-627 |#4|) (-627 |#4|))) (-15 -2875 ((-627 |#4|) (-627 |#4|) (-1134))) (-15 -2875 ((-627 |#4|) (-627 |#4|) (-1134) (-1134))) (IF (|has| |#1| (-357)) (-15 -2566 (|#4| |#4| (-627 |#4|))) |%noBranch|)) (-445) (-776) (-830) (-928 |#1| |#2| |#3|)) (T -443)) +((-2566 (*1 *2 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *4 *5 *6)) (-4 *4 (-357)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-443 *4 *5 *6 *2)))) (-2875 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-627 *7)) (-5 *3 (-1134)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-443 *4 *5 *6 *7)))) (-2875 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *7)) (-5 *3 (-1134)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-443 *4 *5 *6 *7)))) (-2875 (*1 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-443 *3 *4 *5 *6))))) +(-10 -7 (-15 -2875 ((-627 |#4|) (-627 |#4|))) (-15 -2875 ((-627 |#4|) (-627 |#4|) (-1134))) (-15 -2875 ((-627 |#4|) (-627 |#4|) (-1134) (-1134))) (IF (|has| |#1| (-357)) (-15 -2566 (|#4| |#4| (-627 |#4|))) |%noBranch|)) +((-1276 (($ $ $) 14) (($ (-627 $)) 21)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 41)) (-1323 (($ $ $) NIL) (($ (-627 $)) 22))) +(((-444 |#1|) (-10 -8 (-15 -3128 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -1276 (|#1| (-627 |#1|))) (-15 -1276 (|#1| |#1| |#1|)) (-15 -1323 (|#1| (-627 |#1|))) (-15 -1323 (|#1| |#1| |#1|))) (-445)) (T -444)) +NIL +(-10 -8 (-15 -3128 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -1276 (|#1| (-627 |#1|))) (-15 -1276 (|#1| |#1| |#1|)) (-15 -1323 (|#1| (-627 |#1|))) (-15 -1323 (|#1| |#1| |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-2761 (((-3 $ "failed") $ $) 40)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-445) (-137)) (T -445)) +((-1323 (*1 *1 *1 *1) (-4 *1 (-445))) (-1323 (*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-445)))) (-1276 (*1 *1 *1 *1) (-4 *1 (-445))) (-1276 (*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-445)))) (-3128 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-445))))) +(-13 (-544) (-10 -8 (-15 -1323 ($ $ $)) (-15 -1323 ($ (-627 $))) (-15 -1276 ($ $ $)) (-15 -1276 ($ (-627 $))) (-15 -3128 ((-1148 $) (-1148 $) (-1148 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-284) . T) ((-544) . T) ((-630 $) . T) ((-700 $) . T) ((-709) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2717 (((-3 $ "failed")) NIL (|has| (-401 (-931 |#1|)) (-544)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-3449 (((-1235 (-671 (-401 (-931 |#1|)))) (-1235 $)) NIL) (((-1235 (-671 (-401 (-931 |#1|))))) NIL)) (-2946 (((-1235 $)) NIL)) (-3887 (($) NIL T CONST)) (-2478 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) NIL)) (-3994 (((-3 $ "failed")) NIL (|has| (-401 (-931 |#1|)) (-544)))) (-2877 (((-671 (-401 (-931 |#1|))) (-1235 $)) NIL) (((-671 (-401 (-931 |#1|)))) NIL)) (-2526 (((-401 (-931 |#1|)) $) NIL)) (-3029 (((-671 (-401 (-931 |#1|))) $ (-1235 $)) NIL) (((-671 (-401 (-931 |#1|))) $) NIL)) (-1592 (((-3 $ "failed") $) NIL (|has| (-401 (-931 |#1|)) (-544)))) (-2856 (((-1148 (-931 (-401 (-931 |#1|))))) NIL (|has| (-401 (-931 |#1|)) (-357))) (((-1148 (-401 (-931 |#1|)))) 84 (|has| |#1| (-544)))) (-1407 (($ $ (-900)) NIL)) (-2141 (((-401 (-931 |#1|)) $) NIL)) (-3343 (((-1148 (-401 (-931 |#1|))) $) 82 (|has| (-401 (-931 |#1|)) (-544)))) (-3119 (((-401 (-931 |#1|)) (-1235 $)) NIL) (((-401 (-931 |#1|))) NIL)) (-1608 (((-1148 (-401 (-931 |#1|))) $) NIL)) (-1819 (((-111)) NIL)) (-2342 (($ (-1235 (-401 (-931 |#1|))) (-1235 $)) 103) (($ (-1235 (-401 (-931 |#1|)))) NIL)) (-2040 (((-3 $ "failed") $) NIL (|has| (-401 (-931 |#1|)) (-544)))) (-4154 (((-900)) NIL)) (-3972 (((-111)) NIL)) (-1410 (($ $ (-900)) NIL)) (-3363 (((-111)) NIL)) (-1878 (((-111)) NIL)) (-3728 (((-111)) NIL)) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) NIL)) (-2513 (((-3 $ "failed")) NIL (|has| (-401 (-931 |#1|)) (-544)))) (-1425 (((-671 (-401 (-931 |#1|))) (-1235 $)) NIL) (((-671 (-401 (-931 |#1|)))) NIL)) (-4131 (((-401 (-931 |#1|)) $) NIL)) (-2593 (((-671 (-401 (-931 |#1|))) $ (-1235 $)) NIL) (((-671 (-401 (-931 |#1|))) $) NIL)) (-4336 (((-3 $ "failed") $) NIL (|has| (-401 (-931 |#1|)) (-544)))) (-1548 (((-1148 (-931 (-401 (-931 |#1|))))) NIL (|has| (-401 (-931 |#1|)) (-357))) (((-1148 (-401 (-931 |#1|)))) 83 (|has| |#1| (-544)))) (-2896 (($ $ (-900)) NIL)) (-1856 (((-401 (-931 |#1|)) $) NIL)) (-1794 (((-1148 (-401 (-931 |#1|))) $) 77 (|has| (-401 (-931 |#1|)) (-544)))) (-2806 (((-401 (-931 |#1|)) (-1235 $)) NIL) (((-401 (-931 |#1|))) NIL)) (-2798 (((-1148 (-401 (-931 |#1|))) $) NIL)) (-3485 (((-111)) NIL)) (-1595 (((-1134) $) NIL)) (-3570 (((-111)) NIL)) (-2011 (((-111)) NIL)) (-2344 (((-111)) NIL)) (-1498 (((-1096) $) NIL)) (-2959 (((-401 (-931 |#1|)) $ $) 71 (|has| |#1| (-544)))) (-1542 (((-401 (-931 |#1|)) $) 93 (|has| |#1| (-544)))) (-3136 (((-401 (-931 |#1|)) $) 95 (|has| |#1| (-544)))) (-4305 (((-1148 (-401 (-931 |#1|))) $) 88 (|has| |#1| (-544)))) (-4236 (((-401 (-931 |#1|))) 72 (|has| |#1| (-544)))) (-1458 (((-401 (-931 |#1|)) $ $) 64 (|has| |#1| (-544)))) (-4049 (((-401 (-931 |#1|)) $) 92 (|has| |#1| (-544)))) (-2443 (((-401 (-931 |#1|)) $) 94 (|has| |#1| (-544)))) (-2819 (((-1148 (-401 (-931 |#1|))) $) 87 (|has| |#1| (-544)))) (-2757 (((-401 (-931 |#1|))) 68 (|has| |#1| (-544)))) (-3897 (($) 101) (($ (-1152)) 107) (($ (-1235 (-1152))) 106) (($ (-1235 $)) 96) (($ (-1152) (-1235 $)) 105) (($ (-1235 (-1152)) (-1235 $)) 104)) (-3361 (((-111)) NIL)) (-1985 (((-401 (-931 |#1|)) $ (-552)) NIL)) (-3133 (((-1235 (-401 (-931 |#1|))) $ (-1235 $)) 98) (((-671 (-401 (-931 |#1|))) (-1235 $) (-1235 $)) NIL) (((-1235 (-401 (-931 |#1|))) $) 40) (((-671 (-401 (-931 |#1|))) (-1235 $)) NIL)) (-3562 (((-1235 (-401 (-931 |#1|))) $) NIL) (($ (-1235 (-401 (-931 |#1|)))) 37)) (-2539 (((-627 (-931 (-401 (-931 |#1|)))) (-1235 $)) NIL) (((-627 (-931 (-401 (-931 |#1|))))) NIL) (((-627 (-931 |#1|)) (-1235 $)) 99 (|has| |#1| (-544))) (((-627 (-931 |#1|))) 100 (|has| |#1| (-544)))) (-2493 (($ $ $) NIL)) (-1822 (((-111)) NIL)) (-1477 (((-842) $) NIL) (($ (-1235 (-401 (-931 |#1|)))) NIL)) (-2957 (((-1235 $)) 60)) (-1360 (((-627 (-1235 (-401 (-931 |#1|))))) NIL (|has| (-401 (-931 |#1|)) (-544)))) (-4297 (($ $ $ $) NIL)) (-3656 (((-111)) NIL)) (-3288 (($ (-671 (-401 (-931 |#1|))) $) NIL)) (-2743 (($ $ $) NIL)) (-3304 (((-111)) NIL)) (-3258 (((-111)) NIL)) (-3699 (((-111)) NIL)) (-1922 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) 97)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 56) (($ $ (-401 (-931 |#1|))) NIL) (($ (-401 (-931 |#1|)) $) NIL) (($ (-1118 |#2| (-401 (-931 |#1|))) $) NIL))) +(((-446 |#1| |#2| |#3| |#4|) (-13 (-411 (-401 (-931 |#1|))) (-630 (-1118 |#2| (-401 (-931 |#1|)))) (-10 -8 (-15 -1477 ($ (-1235 (-401 (-931 |#1|))))) (-15 -4034 ((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed"))) (-15 -2478 ((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed"))) (-15 -3897 ($)) (-15 -3897 ($ (-1152))) (-15 -3897 ($ (-1235 (-1152)))) (-15 -3897 ($ (-1235 $))) (-15 -3897 ($ (-1152) (-1235 $))) (-15 -3897 ($ (-1235 (-1152)) (-1235 $))) (IF (|has| |#1| (-544)) (PROGN (-15 -1548 ((-1148 (-401 (-931 |#1|))))) (-15 -2819 ((-1148 (-401 (-931 |#1|))) $)) (-15 -4049 ((-401 (-931 |#1|)) $)) (-15 -2443 ((-401 (-931 |#1|)) $)) (-15 -2856 ((-1148 (-401 (-931 |#1|))))) (-15 -4305 ((-1148 (-401 (-931 |#1|))) $)) (-15 -1542 ((-401 (-931 |#1|)) $)) (-15 -3136 ((-401 (-931 |#1|)) $)) (-15 -1458 ((-401 (-931 |#1|)) $ $)) (-15 -2757 ((-401 (-931 |#1|)))) (-15 -2959 ((-401 (-931 |#1|)) $ $)) (-15 -4236 ((-401 (-931 |#1|)))) (-15 -2539 ((-627 (-931 |#1|)) (-1235 $))) (-15 -2539 ((-627 (-931 |#1|))))) |%noBranch|))) (-169) (-900) (-627 (-1152)) (-1235 (-671 |#1|))) (T -446)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1235 (-401 (-931 *3)))) (-4 *3 (-169)) (-14 *6 (-1235 (-671 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))))) (-4034 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-446 *3 *4 *5 *6)) (|:| -2957 (-627 (-446 *3 *4 *5 *6))))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-2478 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-446 *3 *4 *5 *6)) (|:| -2957 (-627 (-446 *3 *4 *5 *6))))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-3897 (*1 *1) (-12 (-5 *1 (-446 *2 *3 *4 *5)) (-4 *2 (-169)) (-14 *3 (-900)) (-14 *4 (-627 (-1152))) (-14 *5 (-1235 (-671 *2))))) (-3897 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 *2)) (-14 *6 (-1235 (-671 *3))))) (-3897 (*1 *1 *2) (-12 (-5 *2 (-1235 (-1152))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-3897 (*1 *1 *2) (-12 (-5 *2 (-1235 (-446 *3 *4 *5 *6))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-3897 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-446 *4 *5 *6 *7))) (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-900)) (-14 *6 (-627 *2)) (-14 *7 (-1235 (-671 *4))))) (-3897 (*1 *1 *2 *3) (-12 (-5 *2 (-1235 (-1152))) (-5 *3 (-1235 (-446 *4 *5 *6 *7))) (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-900)) (-14 *6 (-627 (-1152))) (-14 *7 (-1235 (-671 *4))))) (-1548 (*1 *2) (-12 (-5 *2 (-1148 (-401 (-931 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-2819 (*1 *2 *1) (-12 (-5 *2 (-1148 (-401 (-931 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-2443 (*1 *2 *1) (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-2856 (*1 *2) (-12 (-5 *2 (-1148 (-401 (-931 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-4305 (*1 *2 *1) (-12 (-5 *2 (-1148 (-401 (-931 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-1542 (*1 *2 *1) (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-3136 (*1 *2 *1) (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-1458 (*1 *2 *1 *1) (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-2757 (*1 *2) (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-2959 (*1 *2 *1 *1) (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-4236 (*1 *2) (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-1235 (-446 *4 *5 *6 *7))) (-5 *2 (-627 (-931 *4))) (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-544)) (-4 *4 (-169)) (-14 *5 (-900)) (-14 *6 (-627 (-1152))) (-14 *7 (-1235 (-671 *4))))) (-2539 (*1 *2) (-12 (-5 *2 (-627 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) +(-13 (-411 (-401 (-931 |#1|))) (-630 (-1118 |#2| (-401 (-931 |#1|)))) (-10 -8 (-15 -1477 ($ (-1235 (-401 (-931 |#1|))))) (-15 -4034 ((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed"))) (-15 -2478 ((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed"))) (-15 -3897 ($)) (-15 -3897 ($ (-1152))) (-15 -3897 ($ (-1235 (-1152)))) (-15 -3897 ($ (-1235 $))) (-15 -3897 ($ (-1152) (-1235 $))) (-15 -3897 ($ (-1235 (-1152)) (-1235 $))) (IF (|has| |#1| (-544)) (PROGN (-15 -1548 ((-1148 (-401 (-931 |#1|))))) (-15 -2819 ((-1148 (-401 (-931 |#1|))) $)) (-15 -4049 ((-401 (-931 |#1|)) $)) (-15 -2443 ((-401 (-931 |#1|)) $)) (-15 -2856 ((-1148 (-401 (-931 |#1|))))) (-15 -4305 ((-1148 (-401 (-931 |#1|))) $)) (-15 -1542 ((-401 (-931 |#1|)) $)) (-15 -3136 ((-401 (-931 |#1|)) $)) (-15 -1458 ((-401 (-931 |#1|)) $ $)) (-15 -2757 ((-401 (-931 |#1|)))) (-15 -2959 ((-401 (-931 |#1|)) $ $)) (-15 -4236 ((-401 (-931 |#1|)))) (-15 -2539 ((-627 (-931 |#1|)) (-1235 $))) (-15 -2539 ((-627 (-931 |#1|))))) |%noBranch|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 13)) (-1853 (((-627 (-844 |#1|)) $) 75)) (-1694 (((-1148 $) $ (-844 |#1|)) 46) (((-1148 |#2|) $) 118)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3245 (($ $) NIL (|has| |#2| (-544)))) (-4058 (((-111) $) NIL (|has| |#2| (-544)))) (-3278 (((-754) $) 21) (((-754) $ (-627 (-844 |#1|))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-4014 (($ $) NIL (|has| |#2| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#2| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) 44) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1017 (-552)))) (((-3 (-844 |#1|) "failed") $) NIL)) (-1703 ((|#2| $) 42) (((-401 (-552)) $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#2| (-1017 (-552)))) (((-844 |#1|) $) NIL)) (-3116 (($ $ $ (-844 |#1|)) NIL (|has| |#2| (-169)))) (-3893 (($ $ (-627 (-552))) 80)) (-2014 (($ $) 68)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#2| (-445))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#2| (-888)))) (-2061 (($ $ |#2| |#3| $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-844 |#1|) (-865 (-373))) (|has| |#2| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-844 |#1|) (-865 (-552))) (|has| |#2| (-865 (-552)))))) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) 58)) (-1842 (($ (-1148 |#2|) (-844 |#1|)) 123) (($ (-1148 $) (-844 |#1|)) 52)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) 59)) (-1832 (($ |#2| |#3|) 28) (($ $ (-844 |#1|) (-754)) 30) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-844 |#1|)) NIL)) (-3465 ((|#3| $) NIL) (((-754) $ (-844 |#1|)) 50) (((-627 (-754)) $ (-627 (-844 |#1|))) 57)) (-1816 (($ $ $) NIL (|has| |#2| (-830)))) (-4093 (($ $ $) NIL (|has| |#2| (-830)))) (-3813 (($ (-1 |#3| |#3|) $) NIL)) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-2685 (((-3 (-844 |#1|) "failed") $) 39)) (-1981 (($ $) NIL)) (-1993 ((|#2| $) 41)) (-1276 (($ (-627 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-1595 (((-1134) $) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-844 |#1|)) (|:| -4067 (-754))) "failed") $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) 40)) (-1970 ((|#2| $) 116)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#2| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#2| (-445))) (($ $ $) 128 (|has| |#2| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#2| (-888)))) (-2761 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-844 |#1|) |#2|) 87) (($ $ (-627 (-844 |#1|)) (-627 |#2|)) 90) (($ $ (-844 |#1|) $) 85) (($ $ (-627 (-844 |#1|)) (-627 $)) 106)) (-1637 (($ $ (-844 |#1|)) NIL (|has| |#2| (-169)))) (-2942 (($ $ (-844 |#1|)) 53) (($ $ (-627 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-3567 ((|#3| $) 67) (((-754) $ (-844 |#1|)) 37) (((-627 (-754)) $ (-627 (-844 |#1|))) 56)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-844 |#1|) (-600 (-871 (-373)))) (|has| |#2| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-844 |#1|) (-600 (-871 (-552)))) (|has| |#2| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-844 |#1|) (-600 (-528))) (|has| |#2| (-600 (-528)))))) (-3495 ((|#2| $) 125 (|has| |#2| (-445))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-888))))) (-1477 (((-842) $) 145) (($ (-552)) NIL) (($ |#2|) 86) (($ (-844 |#1|)) 31) (($ (-401 (-552))) NIL (-1559 (|has| |#2| (-38 (-401 (-552)))) (|has| |#2| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#2| (-544)))) (-1493 (((-627 |#2|) $) NIL)) (-1889 ((|#2| $ |#3|) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#2| (-888))) (|has| |#2| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#2| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#2| (-544)))) (-1922 (($) 17 T CONST)) (-1933 (($) 25 T CONST)) (-4251 (($ $ (-844 |#1|)) NIL) (($ $ (-627 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-2351 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2407 (($ $ |#2|) 64 (|has| |#2| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 111)) (** (($ $ (-900)) NIL) (($ $ (-754)) 109)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 29) (($ $ (-401 (-552))) NIL (|has| |#2| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#2| (-38 (-401 (-552))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) +(((-447 |#1| |#2| |#3|) (-13 (-928 |#2| |#3| (-844 |#1|)) (-10 -8 (-15 -3893 ($ $ (-627 (-552)))))) (-627 (-1152)) (-1028) (-233 (-1383 |#1|) (-754))) (T -447)) +((-3893 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-14 *3 (-627 (-1152))) (-5 *1 (-447 *3 *4 *5)) (-4 *4 (-1028)) (-4 *5 (-233 (-1383 *3) (-754)))))) +(-13 (-928 |#2| |#3| (-844 |#1|)) (-10 -8 (-15 -3893 ($ $ (-627 (-552)))))) +((-2446 (((-111) |#1| (-627 |#2|)) 69)) (-1367 (((-3 (-1235 (-627 |#2|)) "failed") (-754) |#1| (-627 |#2|)) 78)) (-2915 (((-3 (-627 |#2|) "failed") |#2| |#1| (-1235 (-627 |#2|))) 80)) (-3226 ((|#2| |#2| |#1|) 28)) (-1658 (((-754) |#2| (-627 |#2|)) 20))) +(((-448 |#1| |#2|) (-10 -7 (-15 -3226 (|#2| |#2| |#1|)) (-15 -1658 ((-754) |#2| (-627 |#2|))) (-15 -1367 ((-3 (-1235 (-627 |#2|)) "failed") (-754) |#1| (-627 |#2|))) (-15 -2915 ((-3 (-627 |#2|) "failed") |#2| |#1| (-1235 (-627 |#2|)))) (-15 -2446 ((-111) |#1| (-627 |#2|)))) (-301) (-1211 |#1|)) (T -448)) +((-2446 (*1 *2 *3 *4) (-12 (-5 *4 (-627 *5)) (-4 *5 (-1211 *3)) (-4 *3 (-301)) (-5 *2 (-111)) (-5 *1 (-448 *3 *5)))) (-2915 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1235 (-627 *3))) (-4 *4 (-301)) (-5 *2 (-627 *3)) (-5 *1 (-448 *4 *3)) (-4 *3 (-1211 *4)))) (-1367 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-754)) (-4 *4 (-301)) (-4 *6 (-1211 *4)) (-5 *2 (-1235 (-627 *6))) (-5 *1 (-448 *4 *6)) (-5 *5 (-627 *6)))) (-1658 (*1 *2 *3 *4) (-12 (-5 *4 (-627 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-301)) (-5 *2 (-754)) (-5 *1 (-448 *5 *3)))) (-3226 (*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-5 *1 (-448 *3 *2)) (-4 *2 (-1211 *3))))) +(-10 -7 (-15 -3226 (|#2| |#2| |#1|)) (-15 -1658 ((-754) |#2| (-627 |#2|))) (-15 -1367 ((-3 (-1235 (-627 |#2|)) "failed") (-754) |#1| (-627 |#2|))) (-15 -2915 ((-3 (-627 |#2|) "failed") |#2| |#1| (-1235 (-627 |#2|)))) (-15 -2446 ((-111) |#1| (-627 |#2|)))) +((-1727 (((-412 |#5|) |#5|) 24))) +(((-449 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1727 ((-412 |#5|) |#5|))) (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)) (-15 -4344 ((-3 $ "failed") (-1152))))) (-776) (-544) (-544) (-928 |#4| |#2| |#1|)) (T -449)) +((-1727 (*1 *2 *3) (-12 (-4 *4 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)) (-15 -4344 ((-3 $ "failed") (-1152)))))) (-4 *5 (-776)) (-4 *7 (-544)) (-5 *2 (-412 *3)) (-5 *1 (-449 *4 *5 *6 *7 *3)) (-4 *6 (-544)) (-4 *3 (-928 *7 *5 *4))))) +(-10 -7 (-15 -1727 ((-412 |#5|) |#5|))) +((-1821 ((|#3|) 37)) (-3128 (((-1148 |#4|) (-1148 |#4|) (-1148 |#4|)) 33))) +(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3128 ((-1148 |#4|) (-1148 |#4|) (-1148 |#4|))) (-15 -1821 (|#3|))) (-776) (-830) (-888) (-928 |#3| |#1| |#2|)) (T -450)) +((-1821 (*1 *2) (-12 (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-888)) (-5 *1 (-450 *3 *4 *2 *5)) (-4 *5 (-928 *2 *3 *4)))) (-3128 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *6)) (-4 *6 (-928 *5 *3 *4)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *5 (-888)) (-5 *1 (-450 *3 *4 *5 *6))))) +(-10 -7 (-15 -3128 ((-1148 |#4|) (-1148 |#4|) (-1148 |#4|))) (-15 -1821 (|#3|))) +((-1727 (((-412 (-1148 |#1|)) (-1148 |#1|)) 43))) +(((-451 |#1|) (-10 -7 (-15 -1727 ((-412 (-1148 |#1|)) (-1148 |#1|)))) (-301)) (T -451)) +((-1727 (*1 *2 *3) (-12 (-4 *4 (-301)) (-5 *2 (-412 (-1148 *4))) (-5 *1 (-451 *4)) (-5 *3 (-1148 *4))))) +(-10 -7 (-15 -1727 ((-412 (-1148 |#1|)) (-1148 |#1|)))) +((-1909 (((-52) |#2| (-1152) (-288 |#2|) (-1202 (-754))) 42) (((-52) (-1 |#2| (-552)) (-288 |#2|) (-1202 (-754))) 41) (((-52) |#2| (-1152) (-288 |#2|)) 35) (((-52) (-1 |#2| (-552)) (-288 |#2|)) 28)) (-1777 (((-52) |#2| (-1152) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552))) 80) (((-52) (-1 |#2| (-401 (-552))) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552))) 79) (((-52) |#2| (-1152) (-288 |#2|) (-1202 (-552))) 78) (((-52) (-1 |#2| (-552)) (-288 |#2|) (-1202 (-552))) 77) (((-52) |#2| (-1152) (-288 |#2|)) 72) (((-52) (-1 |#2| (-552)) (-288 |#2|)) 71)) (-1930 (((-52) |#2| (-1152) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552))) 66) (((-52) (-1 |#2| (-401 (-552))) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552))) 64)) (-1920 (((-52) |#2| (-1152) (-288 |#2|) (-1202 (-552))) 48) (((-52) (-1 |#2| (-552)) (-288 |#2|) (-1202 (-552))) 47))) +(((-452 |#1| |#2|) (-10 -7 (-15 -1909 ((-52) (-1 |#2| (-552)) (-288 |#2|))) (-15 -1909 ((-52) |#2| (-1152) (-288 |#2|))) (-15 -1909 ((-52) (-1 |#2| (-552)) (-288 |#2|) (-1202 (-754)))) (-15 -1909 ((-52) |#2| (-1152) (-288 |#2|) (-1202 (-754)))) (-15 -1920 ((-52) (-1 |#2| (-552)) (-288 |#2|) (-1202 (-552)))) (-15 -1920 ((-52) |#2| (-1152) (-288 |#2|) (-1202 (-552)))) (-15 -1930 ((-52) (-1 |#2| (-401 (-552))) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552)))) (-15 -1930 ((-52) |#2| (-1152) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552)))) (-15 -1777 ((-52) (-1 |#2| (-552)) (-288 |#2|))) (-15 -1777 ((-52) |#2| (-1152) (-288 |#2|))) (-15 -1777 ((-52) (-1 |#2| (-552)) (-288 |#2|) (-1202 (-552)))) (-15 -1777 ((-52) |#2| (-1152) (-288 |#2|) (-1202 (-552)))) (-15 -1777 ((-52) (-1 |#2| (-401 (-552))) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552)))) (-15 -1777 ((-52) |#2| (-1152) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552))))) (-13 (-544) (-830) (-1017 (-552)) (-623 (-552))) (-13 (-27) (-1174) (-424 |#1|))) (T -452)) +((-1777 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-5 *6 (-1202 (-401 (-552)))) (-5 *7 (-401 (-552))) (-4 *3 (-13 (-27) (-1174) (-424 *8))) (-4 *8 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *8 *3)))) (-1777 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-401 (-552)))) (-5 *4 (-288 *8)) (-5 *5 (-1202 (-401 (-552)))) (-5 *6 (-401 (-552))) (-4 *8 (-13 (-27) (-1174) (-424 *7))) (-4 *7 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *8)))) (-1777 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-5 *6 (-1202 (-552))) (-4 *3 (-13 (-27) (-1174) (-424 *7))) (-4 *7 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) (-1777 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-288 *7)) (-5 *5 (-1202 (-552))) (-4 *7 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) (-1777 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *3)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-552))) (-5 *4 (-288 *6)) (-4 *6 (-13 (-27) (-1174) (-424 *5))) (-4 *5 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *5 *6)))) (-1930 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-5 *6 (-1202 (-401 (-552)))) (-5 *7 (-401 (-552))) (-4 *3 (-13 (-27) (-1174) (-424 *8))) (-4 *8 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *8 *3)))) (-1930 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-401 (-552)))) (-5 *4 (-288 *8)) (-5 *5 (-1202 (-401 (-552)))) (-5 *6 (-401 (-552))) (-4 *8 (-13 (-27) (-1174) (-424 *7))) (-4 *7 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *8)))) (-1920 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-5 *6 (-1202 (-552))) (-4 *3 (-13 (-27) (-1174) (-424 *7))) (-4 *7 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) (-1920 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-288 *7)) (-5 *5 (-1202 (-552))) (-4 *7 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) (-1909 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-5 *6 (-1202 (-754))) (-4 *3 (-13 (-27) (-1174) (-424 *7))) (-4 *7 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) (-1909 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-288 *7)) (-5 *5 (-1202 (-754))) (-4 *7 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) (-1909 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *6 *3)))) (-1909 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-552))) (-5 *4 (-288 *6)) (-4 *6 (-13 (-27) (-1174) (-424 *5))) (-4 *5 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-52)) (-5 *1 (-452 *5 *6))))) +(-10 -7 (-15 -1909 ((-52) (-1 |#2| (-552)) (-288 |#2|))) (-15 -1909 ((-52) |#2| (-1152) (-288 |#2|))) (-15 -1909 ((-52) (-1 |#2| (-552)) (-288 |#2|) (-1202 (-754)))) (-15 -1909 ((-52) |#2| (-1152) (-288 |#2|) (-1202 (-754)))) (-15 -1920 ((-52) (-1 |#2| (-552)) (-288 |#2|) (-1202 (-552)))) (-15 -1920 ((-52) |#2| (-1152) (-288 |#2|) (-1202 (-552)))) (-15 -1930 ((-52) (-1 |#2| (-401 (-552))) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552)))) (-15 -1930 ((-52) |#2| (-1152) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552)))) (-15 -1777 ((-52) (-1 |#2| (-552)) (-288 |#2|))) (-15 -1777 ((-52) |#2| (-1152) (-288 |#2|))) (-15 -1777 ((-52) (-1 |#2| (-552)) (-288 |#2|) (-1202 (-552)))) (-15 -1777 ((-52) |#2| (-1152) (-288 |#2|) (-1202 (-552)))) (-15 -1777 ((-52) (-1 |#2| (-401 (-552))) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552)))) (-15 -1777 ((-52) |#2| (-1152) (-288 |#2|) (-1202 (-401 (-552))) (-401 (-552))))) +((-3226 ((|#2| |#2| |#1|) 15)) (-3545 (((-627 |#2|) |#2| (-627 |#2|) |#1| (-900)) 69)) (-2081 (((-2 (|:| |plist| (-627 |#2|)) (|:| |modulo| |#1|)) |#2| (-627 |#2|) |#1| (-900)) 60))) +(((-453 |#1| |#2|) (-10 -7 (-15 -2081 ((-2 (|:| |plist| (-627 |#2|)) (|:| |modulo| |#1|)) |#2| (-627 |#2|) |#1| (-900))) (-15 -3545 ((-627 |#2|) |#2| (-627 |#2|) |#1| (-900))) (-15 -3226 (|#2| |#2| |#1|))) (-301) (-1211 |#1|)) (T -453)) +((-3226 (*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1211 *3)))) (-3545 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-627 *3)) (-5 *5 (-900)) (-4 *3 (-1211 *4)) (-4 *4 (-301)) (-5 *1 (-453 *4 *3)))) (-2081 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-900)) (-4 *5 (-301)) (-4 *3 (-1211 *5)) (-5 *2 (-2 (|:| |plist| (-627 *3)) (|:| |modulo| *5))) (-5 *1 (-453 *5 *3)) (-5 *4 (-627 *3))))) +(-10 -7 (-15 -2081 ((-2 (|:| |plist| (-627 |#2|)) (|:| |modulo| |#1|)) |#2| (-627 |#2|) |#1| (-900))) (-15 -3545 ((-627 |#2|) |#2| (-627 |#2|) |#1| (-900))) (-15 -3226 (|#2| |#2| |#1|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 28)) (-3969 (($ |#3|) 25)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2014 (($ $) 32)) (-3934 (($ |#2| |#4| $) 33)) (-1832 (($ |#2| (-696 |#3| |#4| |#5|)) 24)) (-1981 (((-696 |#3| |#4| |#5|) $) 15)) (-3239 ((|#3| $) 19)) (-1721 ((|#4| $) 17)) (-1993 ((|#2| $) 29)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-2427 (($ |#2| |#3| |#4|) 26)) (-1922 (($) 36 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 34)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-454 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-700 |#6|) (-700 |#2|) (-10 -8 (-15 -1993 (|#2| $)) (-15 -1981 ((-696 |#3| |#4| |#5|) $)) (-15 -1721 (|#4| $)) (-15 -3239 (|#3| $)) (-15 -2014 ($ $)) (-15 -1832 ($ |#2| (-696 |#3| |#4| |#5|))) (-15 -3969 ($ |#3|)) (-15 -2427 ($ |#2| |#3| |#4|)) (-15 -3934 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-627 (-1152)) (-169) (-830) (-233 (-1383 |#1|) (-754)) (-1 (-111) (-2 (|:| -4153 |#3|) (|:| -4067 |#4|)) (-2 (|:| -4153 |#3|) (|:| -4067 |#4|))) (-928 |#2| |#4| (-844 |#1|))) (T -454)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-627 (-1152))) (-4 *4 (-169)) (-4 *6 (-233 (-1383 *3) (-754))) (-14 *7 (-1 (-111) (-2 (|:| -4153 *5) (|:| -4067 *6)) (-2 (|:| -4153 *5) (|:| -4067 *6)))) (-5 *1 (-454 *3 *4 *5 *6 *7 *2)) (-4 *5 (-830)) (-4 *2 (-928 *4 *6 (-844 *3))))) (-1993 (*1 *2 *1) (-12 (-14 *3 (-627 (-1152))) (-4 *5 (-233 (-1383 *3) (-754))) (-14 *6 (-1 (-111) (-2 (|:| -4153 *4) (|:| -4067 *5)) (-2 (|:| -4153 *4) (|:| -4067 *5)))) (-4 *2 (-169)) (-5 *1 (-454 *3 *2 *4 *5 *6 *7)) (-4 *4 (-830)) (-4 *7 (-928 *2 *5 (-844 *3))))) (-1981 (*1 *2 *1) (-12 (-14 *3 (-627 (-1152))) (-4 *4 (-169)) (-4 *6 (-233 (-1383 *3) (-754))) (-14 *7 (-1 (-111) (-2 (|:| -4153 *5) (|:| -4067 *6)) (-2 (|:| -4153 *5) (|:| -4067 *6)))) (-5 *2 (-696 *5 *6 *7)) (-5 *1 (-454 *3 *4 *5 *6 *7 *8)) (-4 *5 (-830)) (-4 *8 (-928 *4 *6 (-844 *3))))) (-1721 (*1 *2 *1) (-12 (-14 *3 (-627 (-1152))) (-4 *4 (-169)) (-14 *6 (-1 (-111) (-2 (|:| -4153 *5) (|:| -4067 *2)) (-2 (|:| -4153 *5) (|:| -4067 *2)))) (-4 *2 (-233 (-1383 *3) (-754))) (-5 *1 (-454 *3 *4 *5 *2 *6 *7)) (-4 *5 (-830)) (-4 *7 (-928 *4 *2 (-844 *3))))) (-3239 (*1 *2 *1) (-12 (-14 *3 (-627 (-1152))) (-4 *4 (-169)) (-4 *5 (-233 (-1383 *3) (-754))) (-14 *6 (-1 (-111) (-2 (|:| -4153 *2) (|:| -4067 *5)) (-2 (|:| -4153 *2) (|:| -4067 *5)))) (-4 *2 (-830)) (-5 *1 (-454 *3 *4 *2 *5 *6 *7)) (-4 *7 (-928 *4 *5 (-844 *3))))) (-2014 (*1 *1 *1) (-12 (-14 *2 (-627 (-1152))) (-4 *3 (-169)) (-4 *5 (-233 (-1383 *2) (-754))) (-14 *6 (-1 (-111) (-2 (|:| -4153 *4) (|:| -4067 *5)) (-2 (|:| -4153 *4) (|:| -4067 *5)))) (-5 *1 (-454 *2 *3 *4 *5 *6 *7)) (-4 *4 (-830)) (-4 *7 (-928 *3 *5 (-844 *2))))) (-1832 (*1 *1 *2 *3) (-12 (-5 *3 (-696 *5 *6 *7)) (-4 *5 (-830)) (-4 *6 (-233 (-1383 *4) (-754))) (-14 *7 (-1 (-111) (-2 (|:| -4153 *5) (|:| -4067 *6)) (-2 (|:| -4153 *5) (|:| -4067 *6)))) (-14 *4 (-627 (-1152))) (-4 *2 (-169)) (-5 *1 (-454 *4 *2 *5 *6 *7 *8)) (-4 *8 (-928 *2 *6 (-844 *4))))) (-3969 (*1 *1 *2) (-12 (-14 *3 (-627 (-1152))) (-4 *4 (-169)) (-4 *5 (-233 (-1383 *3) (-754))) (-14 *6 (-1 (-111) (-2 (|:| -4153 *2) (|:| -4067 *5)) (-2 (|:| -4153 *2) (|:| -4067 *5)))) (-5 *1 (-454 *3 *4 *2 *5 *6 *7)) (-4 *2 (-830)) (-4 *7 (-928 *4 *5 (-844 *3))))) (-2427 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-627 (-1152))) (-4 *2 (-169)) (-4 *4 (-233 (-1383 *5) (-754))) (-14 *6 (-1 (-111) (-2 (|:| -4153 *3) (|:| -4067 *4)) (-2 (|:| -4153 *3) (|:| -4067 *4)))) (-5 *1 (-454 *5 *2 *3 *4 *6 *7)) (-4 *3 (-830)) (-4 *7 (-928 *2 *4 (-844 *5))))) (-3934 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-627 (-1152))) (-4 *2 (-169)) (-4 *3 (-233 (-1383 *4) (-754))) (-14 *6 (-1 (-111) (-2 (|:| -4153 *5) (|:| -4067 *3)) (-2 (|:| -4153 *5) (|:| -4067 *3)))) (-5 *1 (-454 *4 *2 *5 *3 *6 *7)) (-4 *5 (-830)) (-4 *7 (-928 *2 *3 (-844 *4)))))) +(-13 (-700 |#6|) (-700 |#2|) (-10 -8 (-15 -1993 (|#2| $)) (-15 -1981 ((-696 |#3| |#4| |#5|) $)) (-15 -1721 (|#4| $)) (-15 -3239 (|#3| $)) (-15 -2014 ($ $)) (-15 -1832 ($ |#2| (-696 |#3| |#4| |#5|))) (-15 -3969 ($ |#3|)) (-15 -2427 ($ |#2| |#3| |#4|)) (-15 -3934 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-1391 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) +(((-455 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1391 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-776) (-830) (-544) (-928 |#3| |#1| |#2|) (-13 (-1017 (-401 (-552))) (-357) (-10 -8 (-15 -1477 ($ |#4|)) (-15 -2918 (|#4| $)) (-15 -2929 (|#4| $))))) (T -455)) +((-1391 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-830)) (-4 *5 (-776)) (-4 *6 (-544)) (-4 *7 (-928 *6 *5 *3)) (-5 *1 (-455 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1017 (-401 (-552))) (-357) (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $)))))))) +(-10 -7 (-15 -1391 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-1465 (((-111) $ $) NIL)) (-1853 (((-627 |#3|) $) 41)) (-2730 (((-111) $) NIL)) (-3648 (((-111) $) NIL (|has| |#1| (-544)))) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2536 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-3569 (((-111) $) NIL (|has| |#1| (-544)))) (-2330 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2165 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3188 (((-111) $) NIL (|has| |#1| (-544)))) (-4097 (((-627 |#4|) (-627 |#4|) $) NIL (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) NIL (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) 47)) (-1703 (($ (-627 |#4|)) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-4342 (($ |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4366)))) (-3215 (((-627 |#4|) $) 18 (|has| $ (-6 -4366)))) (-4147 ((|#3| $) 45)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#4|) $) 14 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) 26 (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-3463 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) 21)) (-4198 (((-627 |#3|) $) NIL)) (-1927 (((-111) |#3| $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-1498 (((-1096) $) NIL)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3509 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 39)) (-2373 (($) 17)) (-1509 (((-754) |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) (((-754) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) 16)) (-3562 (((-528) $) NIL (|has| |#4| (-600 (-528)))) (($ (-627 |#4|)) 49)) (-1490 (($ (-627 |#4|)) 13)) (-4237 (($ $ |#3|) NIL)) (-2286 (($ $ |#3|) NIL)) (-3911 (($ $ |#3|) NIL)) (-1477 (((-842) $) 38) (((-627 |#4|) $) 48)) (-3299 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 30)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-456 |#1| |#2| |#3| |#4|) (-13 (-955 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3562 ($ (-627 |#4|))) (-6 -4366) (-6 -4367))) (-1028) (-776) (-830) (-1042 |#1| |#2| |#3|)) (T -456)) +((-3562 (*1 *1 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-456 *3 *4 *5 *6))))) +(-13 (-955 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3562 ($ (-627 |#4|))) (-6 -4366) (-6 -4367))) +((-1922 (($) 11)) (-1933 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-457 |#1| |#2| |#3|) (-10 -8 (-15 -1933 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1922 (|#1|))) (-458 |#2| |#3|) (-169) (-23)) (T -457)) +NIL +(-10 -8 (-15 -1933 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1922 (|#1|))) +((-1465 (((-111) $ $) 7)) (-4039 (((-3 |#1| "failed") $) 26)) (-1703 ((|#1| $) 25)) (-2735 (($ $ $) 23)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3567 ((|#2| $) 19)) (-1477 (((-842) $) 11) (($ |#1|) 27)) (-1922 (($) 18 T CONST)) (-1933 (($) 24 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 15) (($ $ $) 13)) (-2384 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-458 |#1| |#2|) (-137) (-169) (-23)) (T -458)) +((-1933 (*1 *1) (-12 (-4 *1 (-458 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2735 (*1 *1 *1 *1) (-12 (-4 *1 (-458 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))) +(-13 (-463 |t#1| |t#2|) (-1017 |t#1|) (-10 -8 (-15 (-1933) ($) -3488) (-15 -2735 ($ $ $)))) +(((-101) . T) ((-599 (-842)) . T) ((-463 |#1| |#2|) . T) ((-1017 |#1|) . T) ((-1076) . T)) +((-2922 (((-1235 (-1235 (-552))) (-1235 (-1235 (-552))) (-900)) 18)) (-1517 (((-1235 (-1235 (-552))) (-900)) 16))) +(((-459) (-10 -7 (-15 -2922 ((-1235 (-1235 (-552))) (-1235 (-1235 (-552))) (-900))) (-15 -1517 ((-1235 (-1235 (-552))) (-900))))) (T -459)) +((-1517 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1235 (-1235 (-552)))) (-5 *1 (-459)))) (-2922 (*1 *2 *2 *3) (-12 (-5 *2 (-1235 (-1235 (-552)))) (-5 *3 (-900)) (-5 *1 (-459))))) +(-10 -7 (-15 -2922 ((-1235 (-1235 (-552))) (-1235 (-1235 (-552))) (-900))) (-15 -1517 ((-1235 (-1235 (-552))) (-900)))) +((-2511 (((-552) (-552)) 30) (((-552)) 22)) (-3614 (((-552) (-552)) 26) (((-552)) 18)) (-3173 (((-552) (-552)) 28) (((-552)) 20)) (-1789 (((-111) (-111)) 12) (((-111)) 10)) (-3187 (((-111) (-111)) 11) (((-111)) 9)) (-3529 (((-111) (-111)) 24) (((-111)) 15))) +(((-460) (-10 -7 (-15 -3187 ((-111))) (-15 -1789 ((-111))) (-15 -3187 ((-111) (-111))) (-15 -1789 ((-111) (-111))) (-15 -3529 ((-111))) (-15 -3173 ((-552))) (-15 -3614 ((-552))) (-15 -2511 ((-552))) (-15 -3529 ((-111) (-111))) (-15 -3173 ((-552) (-552))) (-15 -3614 ((-552) (-552))) (-15 -2511 ((-552) (-552))))) (T -460)) +((-2511 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) (-3614 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) (-3173 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) (-3529 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) (-2511 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) (-3614 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) (-3173 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) (-3529 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) (-1789 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) (-3187 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) (-1789 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) (-3187 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460))))) +(-10 -7 (-15 -3187 ((-111))) (-15 -1789 ((-111))) (-15 -3187 ((-111) (-111))) (-15 -1789 ((-111) (-111))) (-15 -3529 ((-111))) (-15 -3173 ((-552))) (-15 -3614 ((-552))) (-15 -2511 ((-552))) (-15 -3529 ((-111) (-111))) (-15 -3173 ((-552) (-552))) (-15 -3614 ((-552) (-552))) (-15 -2511 ((-552) (-552)))) +((-1465 (((-111) $ $) NIL)) (-1516 (((-627 (-373)) $) 28) (((-627 (-373)) $ (-627 (-373))) 96)) (-1894 (((-627 (-1070 (-373))) $) 16) (((-627 (-1070 (-373))) $ (-627 (-1070 (-373)))) 94)) (-2028 (((-627 (-627 (-922 (-220)))) (-627 (-627 (-922 (-220)))) (-627 (-853))) 45)) (-1590 (((-627 (-627 (-922 (-220)))) $) 90)) (-1745 (((-1240) $ (-922 (-220)) (-853)) 108)) (-3941 (($ $) 89) (($ (-627 (-627 (-922 (-220))))) 99) (($ (-627 (-627 (-922 (-220)))) (-627 (-853)) (-627 (-853)) (-627 (-900))) 98) (($ (-627 (-627 (-922 (-220)))) (-627 (-853)) (-627 (-853)) (-627 (-900)) (-627 (-257))) 100)) (-1595 (((-1134) $) NIL)) (-3998 (((-552) $) 71)) (-1498 (((-1096) $) NIL)) (-3474 (($) 97)) (-2264 (((-627 (-220)) (-627 (-627 (-922 (-220))))) 56)) (-2288 (((-1240) $ (-627 (-922 (-220))) (-853) (-853) (-900)) 102) (((-1240) $ (-922 (-220))) 104) (((-1240) $ (-922 (-220)) (-853) (-853) (-900)) 103)) (-1477 (((-842) $) 114) (($ (-627 (-627 (-922 (-220))))) 109)) (-3785 (((-1240) $ (-922 (-220))) 107)) (-2292 (((-111) $ $) NIL))) +(((-461) (-13 (-1076) (-10 -8 (-15 -3474 ($)) (-15 -3941 ($ $)) (-15 -3941 ($ (-627 (-627 (-922 (-220)))))) (-15 -3941 ($ (-627 (-627 (-922 (-220)))) (-627 (-853)) (-627 (-853)) (-627 (-900)))) (-15 -3941 ($ (-627 (-627 (-922 (-220)))) (-627 (-853)) (-627 (-853)) (-627 (-900)) (-627 (-257)))) (-15 -1590 ((-627 (-627 (-922 (-220)))) $)) (-15 -3998 ((-552) $)) (-15 -1894 ((-627 (-1070 (-373))) $)) (-15 -1894 ((-627 (-1070 (-373))) $ (-627 (-1070 (-373))))) (-15 -1516 ((-627 (-373)) $)) (-15 -1516 ((-627 (-373)) $ (-627 (-373)))) (-15 -2288 ((-1240) $ (-627 (-922 (-220))) (-853) (-853) (-900))) (-15 -2288 ((-1240) $ (-922 (-220)))) (-15 -2288 ((-1240) $ (-922 (-220)) (-853) (-853) (-900))) (-15 -3785 ((-1240) $ (-922 (-220)))) (-15 -1745 ((-1240) $ (-922 (-220)) (-853))) (-15 -1477 ($ (-627 (-627 (-922 (-220)))))) (-15 -1477 ((-842) $)) (-15 -2028 ((-627 (-627 (-922 (-220)))) (-627 (-627 (-922 (-220)))) (-627 (-853)))) (-15 -2264 ((-627 (-220)) (-627 (-627 (-922 (-220))))))))) (T -461)) +((-1477 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-461)))) (-3474 (*1 *1) (-5 *1 (-461))) (-3941 (*1 *1 *1) (-5 *1 (-461))) (-3941 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *1 (-461)))) (-3941 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *3 (-627 (-853))) (-5 *4 (-627 (-900))) (-5 *1 (-461)))) (-3941 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *3 (-627 (-853))) (-5 *4 (-627 (-900))) (-5 *5 (-627 (-257))) (-5 *1 (-461)))) (-1590 (*1 *2 *1) (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *1 (-461)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) (-1894 (*1 *2 *1) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *1 (-461)))) (-1894 (*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *1 (-461)))) (-1516 (*1 *2 *1) (-12 (-5 *2 (-627 (-373))) (-5 *1 (-461)))) (-1516 (*1 *2 *1 *2) (-12 (-5 *2 (-627 (-373))) (-5 *1 (-461)))) (-2288 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-627 (-922 (-220)))) (-5 *4 (-853)) (-5 *5 (-900)) (-5 *2 (-1240)) (-5 *1 (-461)))) (-2288 (*1 *2 *1 *3) (-12 (-5 *3 (-922 (-220))) (-5 *2 (-1240)) (-5 *1 (-461)))) (-2288 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-922 (-220))) (-5 *4 (-853)) (-5 *5 (-900)) (-5 *2 (-1240)) (-5 *1 (-461)))) (-3785 (*1 *2 *1 *3) (-12 (-5 *3 (-922 (-220))) (-5 *2 (-1240)) (-5 *1 (-461)))) (-1745 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922 (-220))) (-5 *4 (-853)) (-5 *2 (-1240)) (-5 *1 (-461)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *1 (-461)))) (-2028 (*1 *2 *2 *3) (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *3 (-627 (-853))) (-5 *1 (-461)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *2 (-627 (-220))) (-5 *1 (-461))))) +(-13 (-1076) (-10 -8 (-15 -3474 ($)) (-15 -3941 ($ $)) (-15 -3941 ($ (-627 (-627 (-922 (-220)))))) (-15 -3941 ($ (-627 (-627 (-922 (-220)))) (-627 (-853)) (-627 (-853)) (-627 (-900)))) (-15 -3941 ($ (-627 (-627 (-922 (-220)))) (-627 (-853)) (-627 (-853)) (-627 (-900)) (-627 (-257)))) (-15 -1590 ((-627 (-627 (-922 (-220)))) $)) (-15 -3998 ((-552) $)) (-15 -1894 ((-627 (-1070 (-373))) $)) (-15 -1894 ((-627 (-1070 (-373))) $ (-627 (-1070 (-373))))) (-15 -1516 ((-627 (-373)) $)) (-15 -1516 ((-627 (-373)) $ (-627 (-373)))) (-15 -2288 ((-1240) $ (-627 (-922 (-220))) (-853) (-853) (-900))) (-15 -2288 ((-1240) $ (-922 (-220)))) (-15 -2288 ((-1240) $ (-922 (-220)) (-853) (-853) (-900))) (-15 -3785 ((-1240) $ (-922 (-220)))) (-15 -1745 ((-1240) $ (-922 (-220)) (-853))) (-15 -1477 ($ (-627 (-627 (-922 (-220)))))) (-15 -1477 ((-842) $)) (-15 -2028 ((-627 (-627 (-922 (-220)))) (-627 (-627 (-922 (-220)))) (-627 (-853)))) (-15 -2264 ((-627 (-220)) (-627 (-627 (-922 (-220)))))))) +((-2396 (($ $) NIL) (($ $ $) 11))) +(((-462 |#1| |#2| |#3|) (-10 -8 (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|))) (-463 |#2| |#3|) (-169) (-23)) (T -462)) +NIL +(-10 -8 (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|))) +((-1465 (((-111) $ $) 7)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3567 ((|#2| $) 19)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 15) (($ $ $) 13)) (-2384 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-463 |#1| |#2|) (-137) (-169) (-23)) (T -463)) +((-3567 (*1 *2 *1) (-12 (-4 *1 (-463 *3 *2)) (-4 *3 (-169)) (-4 *2 (-23)))) (-1922 (*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2396 (*1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2384 (*1 *1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) (-2396 (*1 *1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23))))) +(-13 (-1076) (-10 -8 (-15 -3567 (|t#2| $)) (-15 (-1922) ($) -3488) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2396 ($ $)) (-15 -2384 ($ $ $)) (-15 -2396 ($ $ $)))) +(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-2758 (((-3 (-627 (-474 |#1| |#2|)) "failed") (-627 (-474 |#1| |#2|)) (-627 (-844 |#1|))) 92)) (-3066 (((-627 (-627 (-242 |#1| |#2|))) (-627 (-242 |#1| |#2|)) (-627 (-844 |#1|))) 90)) (-4242 (((-2 (|:| |dpolys| (-627 (-242 |#1| |#2|))) (|:| |coords| (-627 (-552)))) (-627 (-242 |#1| |#2|)) (-627 (-844 |#1|))) 61))) +(((-464 |#1| |#2| |#3|) (-10 -7 (-15 -3066 ((-627 (-627 (-242 |#1| |#2|))) (-627 (-242 |#1| |#2|)) (-627 (-844 |#1|)))) (-15 -2758 ((-3 (-627 (-474 |#1| |#2|)) "failed") (-627 (-474 |#1| |#2|)) (-627 (-844 |#1|)))) (-15 -4242 ((-2 (|:| |dpolys| (-627 (-242 |#1| |#2|))) (|:| |coords| (-627 (-552)))) (-627 (-242 |#1| |#2|)) (-627 (-844 |#1|))))) (-627 (-1152)) (-445) (-445)) (T -464)) +((-4242 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-844 *5))) (-14 *5 (-627 (-1152))) (-4 *6 (-445)) (-5 *2 (-2 (|:| |dpolys| (-627 (-242 *5 *6))) (|:| |coords| (-627 (-552))))) (-5 *1 (-464 *5 *6 *7)) (-5 *3 (-627 (-242 *5 *6))) (-4 *7 (-445)))) (-2758 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-627 (-474 *4 *5))) (-5 *3 (-627 (-844 *4))) (-14 *4 (-627 (-1152))) (-4 *5 (-445)) (-5 *1 (-464 *4 *5 *6)) (-4 *6 (-445)))) (-3066 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-844 *5))) (-14 *5 (-627 (-1152))) (-4 *6 (-445)) (-5 *2 (-627 (-627 (-242 *5 *6)))) (-5 *1 (-464 *5 *6 *7)) (-5 *3 (-627 (-242 *5 *6))) (-4 *7 (-445))))) +(-10 -7 (-15 -3066 ((-627 (-627 (-242 |#1| |#2|))) (-627 (-242 |#1| |#2|)) (-627 (-844 |#1|)))) (-15 -2758 ((-3 (-627 (-474 |#1| |#2|)) "failed") (-627 (-474 |#1| |#2|)) (-627 (-844 |#1|)))) (-15 -4242 ((-2 (|:| |dpolys| (-627 (-242 |#1| |#2|))) (|:| |coords| (-627 (-552)))) (-627 (-242 |#1| |#2|)) (-627 (-844 |#1|))))) +((-2040 (((-3 $ "failed") $) 11)) (-2616 (($ $ $) 18)) (-2493 (($ $ $) 19)) (-2407 (($ $ $) 9)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) 17))) +(((-465 |#1|) (-10 -8 (-15 -2493 (|#1| |#1| |#1|)) (-15 -2616 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -2407 (|#1| |#1| |#1|)) (-15 -2040 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-754))) (-15 ** (|#1| |#1| (-900)))) (-466)) (T -465)) +NIL +(-10 -8 (-15 -2493 (|#1| |#1| |#1|)) (-15 -2616 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -2407 (|#1| |#1| |#1|)) (-15 -2040 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-754))) (-15 ** (|#1| |#1| (-900)))) +((-1465 (((-111) $ $) 7)) (-3887 (($) 18 T CONST)) (-2040 (((-3 $ "failed") $) 15)) (-2624 (((-111) $) 17)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 24)) (-1498 (((-1096) $) 10)) (-2616 (($ $ $) 21)) (-2493 (($ $ $) 20)) (-1477 (((-842) $) 11)) (-1933 (($) 19 T CONST)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ $) 23)) (** (($ $ (-900)) 13) (($ $ (-754)) 16) (($ $ (-552)) 22)) (* (($ $ $) 14))) +(((-466) (-137)) (T -466)) +((-1951 (*1 *1 *1) (-4 *1 (-466))) (-2407 (*1 *1 *1 *1) (-4 *1 (-466))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-466)) (-5 *2 (-552)))) (-2616 (*1 *1 *1 *1) (-4 *1 (-466))) (-2493 (*1 *1 *1 *1) (-4 *1 (-466)))) +(-13 (-709) (-10 -8 (-15 -1951 ($ $)) (-15 -2407 ($ $ $)) (-15 ** ($ $ (-552))) (-6 -4363) (-15 -2616 ($ $ $)) (-15 -2493 ($ $ $)))) +(((-101) . T) ((-599 (-842)) . T) ((-709) . T) ((-1088) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) 17)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4019 (($ $ (-401 (-552))) NIL) (($ $ (-401 (-552)) (-401 (-552))) NIL)) (-4245 (((-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|))) $) NIL)) (-1607 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL (|has| |#1| (-357)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1584 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-754) (-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|)))) NIL)) (-1628 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1633 (((-111) $) NIL (|has| |#1| (-357)))) (-2391 (((-111) $) NIL)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-401 (-552)) $) NIL) (((-401 (-552)) $ (-401 (-552))) NIL)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3322 (($ $ (-900)) NIL) (($ $ (-401 (-552))) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-401 (-552))) NIL) (($ $ (-1058) (-401 (-552))) NIL) (($ $ (-627 (-1058)) (-627 (-401 (-552)))) NIL)) (-3516 (($ (-1 |#1| |#1|) $) 22)) (-4135 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| |#1| (-357)))) (-2747 (($ $) 26 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) 33 (-1559 (-12 (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-938)) (|has| |#1| (-1174))))) (($ $ (-1231 |#2|)) 27 (|has| |#1| (-38 (-401 (-552)))))) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4168 (($ $ (-401 (-552))) NIL)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3154 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))))) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ (-401 (-552))) NIL) (($ $ $) NIL (|has| (-401 (-552)) (-1088)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) 25 (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $ (-1231 |#2|)) 15)) (-3567 (((-401 (-552)) $) NIL)) (-1640 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1231 |#2|)) NIL) (($ (-1220 |#1| |#2| |#3|)) 9) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-1889 ((|#1| $ (-401 (-552))) NIL)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-3174 ((|#1| $) 18)) (-1673 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-401 (-552))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) 24)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-467 |#1| |#2| |#3|) (-13 (-1216 |#1|) (-10 -8 (-15 -1477 ($ (-1231 |#2|))) (-15 -1477 ($ (-1220 |#1| |#2| |#3|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) (-1028) (-1152) |#1|) (T -467)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-467 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1220 *3 *4 *5)) (-4 *3 (-1028)) (-14 *4 (-1152)) (-14 *5 *3) (-5 *1 (-467 *3 *4 *5)))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-467 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-467 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3)))) +(-13 (-1216 |#1|) (-10 -8 (-15 -1477 ($ (-1231 |#2|))) (-15 -1477 ($ (-1220 |#1| |#2| |#3|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) +((-1465 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3305 (((-1240) $ |#1| |#1|) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#2| $ |#1| |#2|) 18)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3602 (((-3 |#2| "failed") |#1| $) 19)) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2265 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-3 |#2| "failed") |#1| $) 16)) (-4342 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) NIL)) (-3215 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 ((|#1| $) NIL (|has| |#1| (-830)))) (-3114 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2285 ((|#1| $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4367))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1296 (((-627 |#1|) $) NIL)) (-3619 (((-111) |#1| $) NIL)) (-4165 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3954 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3892 (((-627 |#1|) $) NIL)) (-2358 (((-111) |#1| $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-3340 ((|#2| $) NIL (|has| |#1| (-830)))) (-1503 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL)) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3028 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076)))) (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1477 (((-842) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842))) (|has| |#2| (-599 (-842)))))) (-2577 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-468 |#1| |#2| |#3| |#4|) (-1165 |#1| |#2|) (-1076) (-1076) (-1165 |#1| |#2|) |#2|) (T -468)) +NIL +(-1165 |#1| |#2|) +((-1465 (((-111) $ $) NIL)) (-1764 (((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 |#4|)))) (-627 |#4|)) NIL)) (-1361 (((-627 $) (-627 |#4|)) NIL)) (-1853 (((-627 |#3|) $) NIL)) (-2730 (((-111) $) NIL)) (-3648 (((-111) $) NIL (|has| |#1| (-544)))) (-3691 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1553 ((|#4| |#4| $) NIL)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2536 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3887 (($) NIL T CONST)) (-3569 (((-111) $) 26 (|has| |#1| (-544)))) (-2330 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2165 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3188 (((-111) $) NIL (|has| |#1| (-544)))) (-3238 (((-627 |#4|) (-627 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4097 (((-627 |#4|) (-627 |#4|) $) NIL (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) NIL (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) NIL)) (-1703 (($ (-627 |#4|)) NIL)) (-3351 (((-3 $ "failed") $) 39)) (-4167 ((|#4| |#4| $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-4342 (($ |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-4104 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-2934 ((|#4| |#4| $) NIL)) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4366))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2415 (((-2 (|:| -4267 (-627 |#4|)) (|:| -2849 (-627 |#4|))) $) NIL)) (-3215 (((-627 |#4|) $) 16 (|has| $ (-6 -4366)))) (-3850 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4147 ((|#3| $) 33)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#4|) $) 17 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-3463 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) 21)) (-4198 (((-627 |#3|) $) NIL)) (-1927 (((-111) |#3| $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-1294 (((-3 |#4| "failed") $) 37)) (-4122 (((-627 |#4|) $) NIL)) (-2481 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3921 ((|#4| |#4| $) NIL)) (-2654 (((-111) $ $) NIL)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-2163 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4116 ((|#4| |#4| $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 (((-3 |#4| "failed") $) 35)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3672 (((-3 $ "failed") $ |#4|) 47)) (-4168 (($ $ |#4|) NIL)) (-3509 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 15)) (-2373 (($) 13)) (-3567 (((-754) $) NIL)) (-1509 (((-754) |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) (((-754) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) 12)) (-3562 (((-528) $) NIL (|has| |#4| (-600 (-528))))) (-1490 (($ (-627 |#4|)) 20)) (-4237 (($ $ |#3|) 42)) (-2286 (($ $ |#3|) 44)) (-2462 (($ $) NIL)) (-3911 (($ $ |#3|) NIL)) (-1477 (((-842) $) 31) (((-627 |#4|) $) 40)) (-1641 (((-754) $) NIL (|has| |#3| (-362)))) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2925 (((-111) $ (-1 (-111) |#4| (-627 |#4|))) NIL)) (-3299 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-2199 (((-627 |#3|) $) NIL)) (-3528 (((-111) |#3| $) NIL)) (-2292 (((-111) $ $) NIL)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-469 |#1| |#2| |#3| |#4|) (-1182 |#1| |#2| |#3| |#4|) (-544) (-776) (-830) (-1042 |#1| |#2| |#3|)) (T -469)) +NIL +(-1182 |#1| |#2| |#3| |#4|) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL)) (-1703 (((-552) $) NIL) (((-401 (-552)) $) NIL)) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2951 (($) 18)) (-2624 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-3562 (((-373) $) 22) (((-220) $) 25) (((-401 (-1148 (-552))) $) 19) (((-528) $) 52)) (-1477 (((-842) $) 50) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (((-220) $) 24) (((-373) $) 21)) (-3995 (((-754)) NIL)) (-3778 (((-111) $ $) NIL)) (-1922 (($) 36 T CONST)) (-1933 (($) 11 T CONST)) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) +(((-470) (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))) (-1001) (-599 (-220)) (-599 (-373)) (-600 (-401 (-1148 (-552)))) (-600 (-528)) (-10 -8 (-15 -2951 ($))))) (T -470)) +((-2951 (*1 *1) (-5 *1 (-470)))) +(-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))) (-1001) (-599 (-220)) (-599 (-373)) (-600 (-401 (-1148 (-552)))) (-600 (-528)) (-10 -8 (-15 -2951 ($)))) +((-1465 (((-111) $ $) NIL)) (-3089 (((-1111) $) 11)) (-3078 (((-1111) $) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 19) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) +(((-471) (-13 (-1059) (-10 -8 (-15 -3078 ((-1111) $)) (-15 -3089 ((-1111) $))))) (T -471)) +((-3078 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-471)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-471))))) +(-13 (-1059) (-10 -8 (-15 -3078 ((-1111) $)) (-15 -3089 ((-1111) $)))) +((-1465 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3305 (((-1240) $ |#1| |#1|) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#2| $ |#1| |#2|) 16)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3602 (((-3 |#2| "failed") |#1| $) 20)) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2265 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-3 |#2| "failed") |#1| $) 18)) (-4342 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) NIL)) (-3215 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 ((|#1| $) NIL (|has| |#1| (-830)))) (-3114 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2285 ((|#1| $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4367))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1296 (((-627 |#1|) $) 13)) (-3619 (((-111) |#1| $) NIL)) (-4165 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3954 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3892 (((-627 |#1|) $) NIL)) (-2358 (((-111) |#1| $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-3340 ((|#2| $) NIL (|has| |#1| (-830)))) (-1503 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL)) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) 19)) (-1985 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3028 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076)))) (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1477 (((-842) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842))) (|has| |#2| (-599 (-842)))))) (-2577 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 11 (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1383 (((-754) $) 15 (|has| $ (-6 -4366))))) +(((-472 |#1| |#2| |#3|) (-13 (-1165 |#1| |#2|) (-10 -7 (-6 -4366))) (-1076) (-1076) (-1134)) (T -472)) +NIL +(-13 (-1165 |#1| |#2|) (-10 -7 (-6 -4366))) +((-3740 (((-552) (-552) (-552)) 7)) (-4161 (((-111) (-552) (-552) (-552) (-552)) 11)) (-2458 (((-1235 (-627 (-552))) (-754) (-754)) 23))) +(((-473) (-10 -7 (-15 -3740 ((-552) (-552) (-552))) (-15 -4161 ((-111) (-552) (-552) (-552) (-552))) (-15 -2458 ((-1235 (-627 (-552))) (-754) (-754))))) (T -473)) +((-2458 (*1 *2 *3 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1235 (-627 (-552)))) (-5 *1 (-473)))) (-4161 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-111)) (-5 *1 (-473)))) (-3740 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-473))))) +(-10 -7 (-15 -3740 ((-552) (-552) (-552))) (-15 -4161 ((-111) (-552) (-552) (-552) (-552))) (-15 -2458 ((-1235 (-627 (-552))) (-754) (-754)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-844 |#1|)) $) NIL)) (-1694 (((-1148 $) $ (-844 |#1|)) NIL) (((-1148 |#2|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3245 (($ $) NIL (|has| |#2| (-544)))) (-4058 (((-111) $) NIL (|has| |#2| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-844 |#1|))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-4014 (($ $) NIL (|has| |#2| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#2| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1017 (-552)))) (((-3 (-844 |#1|) "failed") $) NIL)) (-1703 ((|#2| $) NIL) (((-401 (-552)) $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#2| (-1017 (-552)))) (((-844 |#1|) $) NIL)) (-3116 (($ $ $ (-844 |#1|)) NIL (|has| |#2| (-169)))) (-3893 (($ $ (-627 (-552))) NIL)) (-2014 (($ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#2| (-445))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#2| (-888)))) (-2061 (($ $ |#2| (-475 (-1383 |#1|) (-754)) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-844 |#1|) (-865 (-373))) (|has| |#2| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-844 |#1|) (-865 (-552))) (|has| |#2| (-865 (-552)))))) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-1842 (($ (-1148 |#2|) (-844 |#1|)) NIL) (($ (-1148 $) (-844 |#1|)) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#2| (-475 (-1383 |#1|) (-754))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-844 |#1|)) NIL)) (-3465 (((-475 (-1383 |#1|) (-754)) $) NIL) (((-754) $ (-844 |#1|)) NIL) (((-627 (-754)) $ (-627 (-844 |#1|))) NIL)) (-1816 (($ $ $) NIL (|has| |#2| (-830)))) (-4093 (($ $ $) NIL (|has| |#2| (-830)))) (-3813 (($ (-1 (-475 (-1383 |#1|) (-754)) (-475 (-1383 |#1|) (-754))) $) NIL)) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-2685 (((-3 (-844 |#1|) "failed") $) NIL)) (-1981 (($ $) NIL)) (-1993 ((|#2| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-1595 (((-1134) $) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-844 |#1|)) (|:| -4067 (-754))) "failed") $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 ((|#2| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#2| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#2| (-888)))) (-2761 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-844 |#1|) |#2|) NIL) (($ $ (-627 (-844 |#1|)) (-627 |#2|)) NIL) (($ $ (-844 |#1|) $) NIL) (($ $ (-627 (-844 |#1|)) (-627 $)) NIL)) (-1637 (($ $ (-844 |#1|)) NIL (|has| |#2| (-169)))) (-2942 (($ $ (-844 |#1|)) NIL) (($ $ (-627 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-3567 (((-475 (-1383 |#1|) (-754)) $) NIL) (((-754) $ (-844 |#1|)) NIL) (((-627 (-754)) $ (-627 (-844 |#1|))) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-844 |#1|) (-600 (-871 (-373)))) (|has| |#2| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-844 |#1|) (-600 (-871 (-552)))) (|has| |#2| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-844 |#1|) (-600 (-528))) (|has| |#2| (-600 (-528)))))) (-3495 ((|#2| $) NIL (|has| |#2| (-445))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-844 |#1|)) NIL) (($ (-401 (-552))) NIL (-1559 (|has| |#2| (-38 (-401 (-552)))) (|has| |#2| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#2| (-544)))) (-1493 (((-627 |#2|) $) NIL)) (-1889 ((|#2| $ (-475 (-1383 |#1|) (-754))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#2| (-888))) (|has| |#2| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#2| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#2| (-544)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-844 |#1|)) NIL) (($ $ (-627 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-2351 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2407 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#2| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#2| (-38 (-401 (-552))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-474 |#1| |#2|) (-13 (-928 |#2| (-475 (-1383 |#1|) (-754)) (-844 |#1|)) (-10 -8 (-15 -3893 ($ $ (-627 (-552)))))) (-627 (-1152)) (-1028)) (T -474)) +((-3893 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-474 *3 *4)) (-14 *3 (-627 (-1152))) (-4 *4 (-1028))))) +(-13 (-928 |#2| (-475 (-1383 |#1|) (-754)) (-844 |#1|)) (-10 -8 (-15 -3893 ($ $ (-627 (-552)))))) +((-1465 (((-111) $ $) NIL (|has| |#2| (-1076)))) (-3024 (((-111) $) NIL (|has| |#2| (-129)))) (-3969 (($ (-900)) NIL (|has| |#2| (-1028)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-2796 (($ $ $) NIL (|has| |#2| (-776)))) (-4136 (((-3 $ "failed") $ $) NIL (|has| |#2| (-129)))) (-4031 (((-111) $ (-754)) NIL)) (-3307 (((-754)) NIL (|has| |#2| (-362)))) (-2422 (((-552) $) NIL (|has| |#2| (-828)))) (-2950 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (-12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1076)))) (-1703 (((-552) $) NIL (-12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076)))) (((-401 (-552)) $) NIL (-12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) ((|#2| $) NIL (|has| |#2| (-1076)))) (-1800 (((-671 (-552)) (-671 $)) NIL (-12 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (-12 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL (|has| |#2| (-1028))) (((-671 |#2|) (-671 $)) NIL (|has| |#2| (-1028)))) (-2040 (((-3 $ "failed") $) NIL (|has| |#2| (-709)))) (-1279 (($) NIL (|has| |#2| (-362)))) (-3473 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#2| $ (-552)) 11)) (-2983 (((-111) $) NIL (|has| |#2| (-828)))) (-3215 (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-2624 (((-111) $) NIL (|has| |#2| (-709)))) (-1508 (((-111) $) NIL (|has| |#2| (-828)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-3114 (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-3463 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-2886 (((-900) $) NIL (|has| |#2| (-362)))) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#2| (-1076)))) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-4153 (($ (-900)) NIL (|has| |#2| (-362)))) (-1498 (((-1096) $) NIL (|has| |#2| (-1076)))) (-3340 ((|#2| $) NIL (|has| (-552) (-830)))) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-552)) NIL)) (-2395 ((|#2| $ $) NIL (|has| |#2| (-1028)))) (-1767 (($ (-1235 |#2|)) NIL)) (-2405 (((-132)) NIL (|has| |#2| (-357)))) (-2942 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1 |#2| |#2|) (-754)) NIL (|has| |#2| (-1028))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1028)))) (-1509 (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-1235 |#2|) $) NIL) (($ (-552)) NIL (-1559 (-12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076))) (|has| |#2| (-1028)))) (($ (-401 (-552))) NIL (-12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) (($ |#2|) NIL (|has| |#2| (-1076))) (((-842) $) NIL (|has| |#2| (-599 (-842))))) (-3995 (((-754)) NIL (|has| |#2| (-1028)))) (-3299 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3329 (($ $) NIL (|has| |#2| (-828)))) (-1922 (($) NIL (|has| |#2| (-129)) CONST)) (-1933 (($) NIL (|has| |#2| (-709)) CONST)) (-4251 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1 |#2| |#2|) (-754)) NIL (|has| |#2| (-1028))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1028)))) (-2351 (((-111) $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2329 (((-111) $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2292 (((-111) $ $) NIL (|has| |#2| (-1076)))) (-2340 (((-111) $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2316 (((-111) $ $) 15 (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2407 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-2396 (($ $ $) NIL (|has| |#2| (-1028))) (($ $) NIL (|has| |#2| (-1028)))) (-2384 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-754)) NIL (|has| |#2| (-709))) (($ $ (-900)) NIL (|has| |#2| (-709)))) (* (($ (-552) $) NIL (|has| |#2| (-1028))) (($ $ $) NIL (|has| |#2| (-709))) (($ $ |#2|) NIL (|has| |#2| (-709))) (($ |#2| $) NIL (|has| |#2| (-709))) (($ (-754) $) NIL (|has| |#2| (-129))) (($ (-900) $) NIL (|has| |#2| (-25)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-475 |#1| |#2|) (-233 |#1| |#2|) (-754) (-776)) (T -475)) +NIL +(-233 |#1| |#2|) +((-1465 (((-111) $ $) NIL)) (-2809 (((-627 (-498)) $) 11)) (-3112 (((-498) $) 10)) (-1595 (((-1134) $) NIL)) (-2382 (($ (-498) (-627 (-498))) 9)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 20) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) +(((-476) (-13 (-1059) (-10 -8 (-15 -2382 ($ (-498) (-627 (-498)))) (-15 -3112 ((-498) $)) (-15 -2809 ((-627 (-498)) $))))) (T -476)) +((-2382 (*1 *1 *2 *3) (-12 (-5 *3 (-627 (-498))) (-5 *2 (-498)) (-5 *1 (-476)))) (-3112 (*1 *2 *1) (-12 (-5 *2 (-498)) (-5 *1 (-476)))) (-2809 (*1 *2 *1) (-12 (-5 *2 (-627 (-498))) (-5 *1 (-476))))) +(-13 (-1059) (-10 -8 (-15 -2382 ($ (-498) (-627 (-498)))) (-15 -3112 ((-498) $)) (-15 -2809 ((-627 (-498)) $)))) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) NIL)) (-3887 (($) NIL T CONST)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-1438 (($ $ $) 32)) (-3759 (($ $ $) 31)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4093 ((|#1| $) 26)) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-4165 ((|#1| $) 27)) (-3954 (($ |#1| $) 10)) (-4203 (($ (-627 |#1|)) 12)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-4133 ((|#1| $) 23)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) 9)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) 29)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1383 (((-754) $) 21 (|has| $ (-6 -4366))))) +(((-477 |#1|) (-13 (-947 |#1|) (-10 -8 (-15 -4203 ($ (-627 |#1|))))) (-830)) (T -477)) +((-4203 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-477 *3))))) +(-13 (-947 |#1|) (-10 -8 (-15 -4203 ($ (-627 |#1|))))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2091 (($ $) 69)) (-2112 (((-111) $) NIL)) (-1595 (((-1134) $) NIL)) (-3103 (((-407 |#2| (-401 |#2|) |#3| |#4|) $) 44)) (-1498 (((-1096) $) NIL)) (-2220 (((-3 |#4| "failed") $) 107)) (-3654 (($ (-407 |#2| (-401 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-552)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-4004 (((-2 (|:| -2618 (-407 |#2| (-401 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-1477 (((-842) $) 102)) (-1922 (($) 33 T CONST)) (-2292 (((-111) $ $) 109)) (-2396 (($ $) 72) (($ $ $) NIL)) (-2384 (($ $ $) 70)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 73))) +(((-478 |#1| |#2| |#3| |#4|) (-329 |#1| |#2| |#3| |#4|) (-357) (-1211 |#1|) (-1211 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -478)) +NIL +(-329 |#1| |#2| |#3| |#4|) +((-3282 (((-552) (-627 (-552))) 30)) (-3049 ((|#1| (-627 |#1|)) 56)) (-3496 (((-627 |#1|) (-627 |#1|)) 57)) (-1701 (((-627 |#1|) (-627 |#1|)) 59)) (-1323 ((|#1| (-627 |#1|)) 58)) (-3495 (((-627 (-552)) (-627 |#1|)) 33))) +(((-479 |#1|) (-10 -7 (-15 -1323 (|#1| (-627 |#1|))) (-15 -3049 (|#1| (-627 |#1|))) (-15 -1701 ((-627 |#1|) (-627 |#1|))) (-15 -3496 ((-627 |#1|) (-627 |#1|))) (-15 -3495 ((-627 (-552)) (-627 |#1|))) (-15 -3282 ((-552) (-627 (-552))))) (-1211 (-552))) (T -479)) +((-3282 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-552)) (-5 *1 (-479 *4)) (-4 *4 (-1211 *2)))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-1211 (-552))) (-5 *2 (-627 (-552))) (-5 *1 (-479 *4)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1211 (-552))) (-5 *1 (-479 *3)))) (-1701 (*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1211 (-552))) (-5 *1 (-479 *3)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-5 *1 (-479 *2)) (-4 *2 (-1211 (-552))))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-5 *1 (-479 *2)) (-4 *2 (-1211 (-552)))))) +(-10 -7 (-15 -1323 (|#1| (-627 |#1|))) (-15 -3049 (|#1| (-627 |#1|))) (-15 -1701 ((-627 |#1|) (-627 |#1|))) (-15 -3496 ((-627 |#1|) (-627 |#1|))) (-15 -3495 ((-627 (-552)) (-627 |#1|))) (-15 -3282 ((-552) (-627 (-552))))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3471 (((-552) $) NIL (|has| (-552) (-301)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL (|has| (-552) (-803)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-1152) "failed") $) NIL (|has| (-552) (-1017 (-1152)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-552) (-1017 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-552) (-1017 (-552))))) (-1703 (((-552) $) NIL) (((-1152) $) NIL (|has| (-552) (-1017 (-1152)))) (((-401 (-552)) $) NIL (|has| (-552) (-1017 (-552)))) (((-552) $) NIL (|has| (-552) (-1017 (-552))))) (-2813 (($ $ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| (-552) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| (-552) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-671 (-552)) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-552) (-537)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2983 (((-111) $) NIL (|has| (-552) (-803)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| (-552) (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| (-552) (-865 (-373))))) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL)) (-2918 (((-552) $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| (-552) (-1127)))) (-1508 (((-111) $) NIL (|has| (-552) (-803)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| (-552) (-830)))) (-3516 (($ (-1 (-552) (-552)) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-552) (-1127)) CONST)) (-1862 (($ (-401 (-552))) 9)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL (|has| (-552) (-301))) (((-401 (-552)) $) NIL)) (-2060 (((-552) $) NIL (|has| (-552) (-537)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3321 (($ $ (-627 (-552)) (-627 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-552) (-552)) NIL (|has| (-552) (-303 (-552)))) (($ $ (-288 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-627 (-288 (-552)))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-627 (-1152)) (-627 (-552))) NIL (|has| (-552) (-506 (-1152) (-552)))) (($ $ (-1152) (-552)) NIL (|has| (-552) (-506 (-1152) (-552))))) (-2718 (((-754) $) NIL)) (-1985 (($ $ (-552)) NIL (|has| (-552) (-280 (-552) (-552))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $) NIL (|has| (-552) (-228))) (($ $ (-754)) NIL (|has| (-552) (-228))) (($ $ (-1152)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1 (-552) (-552)) (-754)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-1583 (($ $) NIL)) (-2929 (((-552) $) NIL)) (-3562 (((-871 (-552)) $) NIL (|has| (-552) (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| (-552) (-600 (-871 (-373))))) (((-528) $) NIL (|has| (-552) (-600 (-528)))) (((-373) $) NIL (|has| (-552) (-1001))) (((-220) $) NIL (|has| (-552) (-1001)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| (-552) (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) 8) (($ (-552)) NIL) (($ (-1152)) NIL (|has| (-552) (-1017 (-1152)))) (((-401 (-552)) $) NIL) (((-983 16) $) 10)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| (-552) (-888))) (|has| (-552) (-142))))) (-3995 (((-754)) NIL)) (-3796 (((-552) $) NIL (|has| (-552) (-537)))) (-3778 (((-111) $ $) NIL)) (-3329 (($ $) NIL (|has| (-552) (-803)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $) NIL (|has| (-552) (-228))) (($ $ (-754)) NIL (|has| (-552) (-228))) (($ $ (-1152)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1 (-552) (-552)) (-754)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2351 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2316 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2407 (($ $ $) NIL) (($ (-552) (-552)) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ (-552) $) NIL) (($ $ (-552)) NIL))) +(((-480) (-13 (-971 (-552)) (-10 -8 (-15 -1477 ((-401 (-552)) $)) (-15 -1477 ((-983 16) $)) (-15 -4328 ((-401 (-552)) $)) (-15 -1862 ($ (-401 (-552))))))) (T -480)) +((-1477 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-480)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-983 16)) (-5 *1 (-480)))) (-4328 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-480)))) (-1862 (*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-480))))) +(-13 (-971 (-552)) (-10 -8 (-15 -1477 ((-401 (-552)) $)) (-15 -1477 ((-983 16) $)) (-15 -4328 ((-401 (-552)) $)) (-15 -1862 ($ (-401 (-552)))))) +((-3114 (((-627 |#2|) $) 23)) (-3082 (((-111) |#2| $) 28)) (-3509 (((-111) (-1 (-111) |#2|) $) 21)) (-3321 (($ $ (-627 (-288 |#2|))) 13) (($ $ (-288 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-627 |#2|) (-627 |#2|)) NIL)) (-1509 (((-754) (-1 (-111) |#2|) $) 22) (((-754) |#2| $) 26)) (-1477 (((-842) $) 37)) (-3299 (((-111) (-1 (-111) |#2|) $) 20)) (-2292 (((-111) $ $) 31)) (-1383 (((-754) $) 17))) +(((-481 |#1| |#2|) (-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -3321 (|#1| |#1| (-627 |#2|) (-627 |#2|))) (-15 -3321 (|#1| |#1| |#2| |#2|)) (-15 -3321 (|#1| |#1| (-288 |#2|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#2|)))) (-15 -3082 ((-111) |#2| |#1|)) (-15 -1509 ((-754) |#2| |#1|)) (-15 -3114 ((-627 |#2|) |#1|)) (-15 -1509 ((-754) (-1 (-111) |#2|) |#1|)) (-15 -3509 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -1383 ((-754) |#1|))) (-482 |#2|) (-1189)) (T -481)) +NIL +(-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -3321 (|#1| |#1| (-627 |#2|) (-627 |#2|))) (-15 -3321 (|#1| |#1| |#2| |#2|)) (-15 -3321 (|#1| |#1| (-288 |#2|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#2|)))) (-15 -3082 ((-111) |#2| |#1|)) (-15 -1509 ((-754) |#2| |#1|)) (-15 -3114 ((-627 |#2|) |#1|)) (-15 -1509 ((-754) (-1 (-111) |#2|) |#1|)) (-15 -3509 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -1383 ((-754) |#1|))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) 8)) (-3887 (($) 7 T CONST)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-482 |#1|) (-137) (-1189)) (T -482)) +((-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-482 *3)) (-4 *3 (-1189)))) (-3463 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4367)) (-4 *1 (-482 *3)) (-4 *3 (-1189)))) (-3299 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4366)) (-4 *1 (-482 *4)) (-4 *4 (-1189)) (-5 *2 (-111)))) (-3509 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4366)) (-4 *1 (-482 *4)) (-4 *4 (-1189)) (-5 *2 (-111)))) (-1509 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4366)) (-4 *1 (-482 *4)) (-4 *4 (-1189)) (-5 *2 (-754)))) (-3215 (*1 *2 *1) (-12 (|has| *1 (-6 -4366)) (-4 *1 (-482 *3)) (-4 *3 (-1189)) (-5 *2 (-627 *3)))) (-3114 (*1 *2 *1) (-12 (|has| *1 (-6 -4366)) (-4 *1 (-482 *3)) (-4 *3 (-1189)) (-5 *2 (-627 *3)))) (-1509 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4366)) (-4 *1 (-482 *3)) (-4 *3 (-1189)) (-4 *3 (-1076)) (-5 *2 (-754)))) (-3082 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4366)) (-4 *1 (-482 *3)) (-4 *3 (-1189)) (-4 *3 (-1076)) (-5 *2 (-111))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-599 (-842))) (-6 (-599 (-842))) |%noBranch|) (IF (|has| |t#1| (-1076)) (-6 (-1076)) |%noBranch|) (IF (|has| |t#1| (-1076)) (IF (|has| |t#1| (-303 |t#1|)) (-6 (-303 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3516 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4367)) (-15 -3463 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4366)) (PROGN (-15 -3299 ((-111) (-1 (-111) |t#1|) $)) (-15 -3509 ((-111) (-1 (-111) |t#1|) $)) (-15 -1509 ((-754) (-1 (-111) |t#1|) $)) (-15 -3215 ((-627 |t#1|) $)) (-15 -3114 ((-627 |t#1|) $)) (IF (|has| |t#1| (-1076)) (PROGN (-15 -1509 ((-754) |t#1| $)) (-15 -3082 ((-111) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1795 (($ (-1134)) 8)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 14) (((-1134) $) 11)) (-2292 (((-111) $ $) 10))) +(((-483) (-13 (-1076) (-599 (-1134)) (-10 -8 (-15 -1795 ($ (-1134)))))) (T -483)) +((-1795 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-483))))) +(-13 (-1076) (-599 (-1134)) (-10 -8 (-15 -1795 ($ (-1134))))) +((-1607 (($ $) 15)) (-1584 (($ $) 24)) (-1628 (($ $) 12)) (-1640 (($ $) 10)) (-1615 (($ $) 17)) (-1596 (($ $) 22))) +(((-484 |#1|) (-10 -8 (-15 -1596 (|#1| |#1|)) (-15 -1615 (|#1| |#1|)) (-15 -1640 (|#1| |#1|)) (-15 -1628 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1607 (|#1| |#1|))) (-485)) (T -484)) +NIL +(-10 -8 (-15 -1596 (|#1| |#1|)) (-15 -1615 (|#1| |#1|)) (-15 -1640 (|#1| |#1|)) (-15 -1628 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1607 (|#1| |#1|))) +((-1607 (($ $) 11)) (-1584 (($ $) 10)) (-1628 (($ $) 9)) (-1640 (($ $) 8)) (-1615 (($ $) 7)) (-1596 (($ $) 6))) +(((-485) (-137)) (T -485)) +((-1607 (*1 *1 *1) (-4 *1 (-485))) (-1584 (*1 *1 *1) (-4 *1 (-485))) (-1628 (*1 *1 *1) (-4 *1 (-485))) (-1640 (*1 *1 *1) (-4 *1 (-485))) (-1615 (*1 *1 *1) (-4 *1 (-485))) (-1596 (*1 *1 *1) (-4 *1 (-485)))) +(-13 (-10 -8 (-15 -1596 ($ $)) (-15 -1615 ($ $)) (-15 -1640 ($ $)) (-15 -1628 ($ $)) (-15 -1584 ($ $)) (-15 -1607 ($ $)))) +((-1727 (((-412 |#4|) |#4| (-1 (-412 |#2|) |#2|)) 42))) +(((-486 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1727 ((-412 |#4|) |#4| (-1 (-412 |#2|) |#2|)))) (-357) (-1211 |#1|) (-13 (-357) (-144) (-707 |#1| |#2|)) (-1211 |#3|)) (T -486)) +((-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) (-4 *7 (-13 (-357) (-144) (-707 *5 *6))) (-5 *2 (-412 *3)) (-5 *1 (-486 *5 *6 *7 *3)) (-4 *3 (-1211 *7))))) +(-10 -7 (-15 -1727 ((-412 |#4|) |#4| (-1 (-412 |#2|) |#2|)))) +((-1465 (((-111) $ $) NIL)) (-3213 (((-627 $) (-1148 $) (-1152)) NIL) (((-627 $) (-1148 $)) NIL) (((-627 $) (-931 $)) NIL)) (-2682 (($ (-1148 $) (-1152)) NIL) (($ (-1148 $)) NIL) (($ (-931 $)) NIL)) (-3024 (((-111) $) 39)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-2303 (((-111) $ $) 64)) (-3443 (((-627 (-598 $)) $) 48)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2620 (($ $ (-288 $)) NIL) (($ $ (-627 (-288 $))) NIL) (($ $ (-627 (-598 $)) (-627 $)) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1737 (($ $) NIL)) (-4224 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-1304 (((-627 $) (-1148 $) (-1152)) NIL) (((-627 $) (-1148 $)) NIL) (((-627 $) (-931 $)) NIL)) (-3348 (($ (-1148 $) (-1152)) NIL) (($ (-1148 $)) NIL) (($ (-931 $)) NIL)) (-4039 (((-3 (-598 $) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL)) (-1703 (((-598 $) $) NIL) (((-552) $) NIL) (((-401 (-552)) $) 50)) (-2813 (($ $ $) NIL)) (-1800 (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-671 (-552)) (-671 $)) NIL) (((-2 (|:| -2515 (-671 (-401 (-552)))) (|:| |vec| (-1235 (-401 (-552))))) (-671 $) (-1235 $)) NIL) (((-671 (-401 (-552))) (-671 $)) NIL)) (-2091 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-3820 (($ $) NIL) (($ (-627 $)) NIL)) (-3795 (((-627 (-113)) $) NIL)) (-4148 (((-113) (-113)) NIL)) (-2624 (((-111) $) 42)) (-1394 (((-111) $) NIL (|has| $ (-1017 (-552))))) (-2918 (((-1101 (-552) (-598 $)) $) 37)) (-1352 (($ $ (-552)) NIL)) (-2349 (((-1148 $) (-1148 $) (-598 $)) 78) (((-1148 $) (-1148 $) (-627 (-598 $))) 55) (($ $ (-598 $)) 67) (($ $ (-627 (-598 $))) 68)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2602 (((-1148 $) (-598 $)) 65 (|has| $ (-1028)))) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3516 (($ (-1 $ $) (-598 $)) NIL)) (-3362 (((-3 (-598 $) "failed") $) NIL)) (-1276 (($ (-627 $)) NIL) (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1684 (((-627 (-598 $)) $) NIL)) (-2991 (($ (-113) $) NIL) (($ (-113) (-627 $)) NIL)) (-2070 (((-111) $ (-113)) NIL) (((-111) $ (-1152)) NIL)) (-1951 (($ $) NIL)) (-3476 (((-754) $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ (-627 $)) NIL) (($ $ $) NIL)) (-4094 (((-111) $ $) NIL) (((-111) $ (-1152)) NIL)) (-1727 (((-412 $) $) NIL)) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1507 (((-111) $) NIL (|has| $ (-1017 (-552))))) (-3321 (($ $ (-598 $) $) NIL) (($ $ (-627 (-598 $)) (-627 $)) NIL) (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ $))) NIL) (($ $ (-627 (-1152)) (-627 (-1 $ (-627 $)))) NIL) (($ $ (-1152) (-1 $ (-627 $))) NIL) (($ $ (-1152) (-1 $ $)) NIL) (($ $ (-627 (-113)) (-627 (-1 $ $))) NIL) (($ $ (-627 (-113)) (-627 (-1 $ (-627 $)))) NIL) (($ $ (-113) (-1 $ (-627 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-2718 (((-754) $) NIL)) (-1985 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-627 $)) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2911 (($ $) NIL) (($ $ $) NIL)) (-2942 (($ $ (-754)) NIL) (($ $) 36)) (-2929 (((-1101 (-552) (-598 $)) $) 20)) (-1376 (($ $) NIL (|has| $ (-1028)))) (-3562 (((-373) $) 92) (((-220) $) 100) (((-166 (-373)) $) 108)) (-1477 (((-842) $) NIL) (($ (-598 $)) NIL) (($ (-401 (-552))) NIL) (($ $) NIL) (($ (-552)) NIL) (($ (-1101 (-552) (-598 $))) 21)) (-3995 (((-754)) NIL)) (-3092 (($ $) NIL) (($ (-627 $)) NIL)) (-3749 (((-111) (-113)) 84)) (-3778 (((-111) $ $) NIL)) (-1922 (($) 10 T CONST)) (-1933 (($) 22 T CONST)) (-4251 (($ $ (-754)) NIL) (($ $) NIL)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 24)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-2407 (($ $ $) 44)) (-2396 (($ $ $) NIL) (($ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-401 (-552))) NIL) (($ $ (-552)) 46) (($ $ (-754)) NIL) (($ $ (-900)) NIL)) (* (($ (-401 (-552)) $) NIL) (($ $ (-401 (-552))) NIL) (($ $ $) 27) (($ (-552) $) NIL) (($ (-754) $) NIL) (($ (-900) $) NIL))) +(((-487) (-13 (-296) (-27) (-1017 (-552)) (-1017 (-401 (-552))) (-623 (-552)) (-1001) (-623 (-401 (-552))) (-144) (-600 (-166 (-373))) (-228) (-10 -8 (-15 -1477 ($ (-1101 (-552) (-598 $)))) (-15 -2918 ((-1101 (-552) (-598 $)) $)) (-15 -2929 ((-1101 (-552) (-598 $)) $)) (-15 -2091 ($ $)) (-15 -2303 ((-111) $ $)) (-15 -2349 ((-1148 $) (-1148 $) (-598 $))) (-15 -2349 ((-1148 $) (-1148 $) (-627 (-598 $)))) (-15 -2349 ($ $ (-598 $))) (-15 -2349 ($ $ (-627 (-598 $))))))) (T -487)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1101 (-552) (-598 (-487)))) (-5 *1 (-487)))) (-2918 (*1 *2 *1) (-12 (-5 *2 (-1101 (-552) (-598 (-487)))) (-5 *1 (-487)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-1101 (-552) (-598 (-487)))) (-5 *1 (-487)))) (-2091 (*1 *1 *1) (-5 *1 (-487))) (-2303 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-487)))) (-2349 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 (-487))) (-5 *3 (-598 (-487))) (-5 *1 (-487)))) (-2349 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 (-487))) (-5 *3 (-627 (-598 (-487)))) (-5 *1 (-487)))) (-2349 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-487))) (-5 *1 (-487)))) (-2349 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-598 (-487)))) (-5 *1 (-487))))) +(-13 (-296) (-27) (-1017 (-552)) (-1017 (-401 (-552))) (-623 (-552)) (-1001) (-623 (-401 (-552))) (-144) (-600 (-166 (-373))) (-228) (-10 -8 (-15 -1477 ($ (-1101 (-552) (-598 $)))) (-15 -2918 ((-1101 (-552) (-598 $)) $)) (-15 -2929 ((-1101 (-552) (-598 $)) $)) (-15 -2091 ($ $)) (-15 -2303 ((-111) $ $)) (-15 -2349 ((-1148 $) (-1148 $) (-598 $))) (-15 -2349 ((-1148 $) (-1148 $) (-627 (-598 $)))) (-15 -2349 ($ $ (-598 $))) (-15 -2349 ($ $ (-627 (-598 $)))))) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-552) |#1|) 25 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) 22 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 21)) (-2967 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076)))) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-2655 (($ (-754) |#1|) 14)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) 12 (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) 23 (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3340 ((|#1| $) NIL (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) 10 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) 13)) (-1985 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) 24) (($ $ (-1202 (-552))) NIL)) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) NIL)) (-2668 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-627 $)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1383 (((-754) $) 9 (|has| $ (-6 -4366))))) +(((-488 |#1| |#2|) (-19 |#1|) (-1189) (-552)) (T -488)) NIL (-19 |#1|) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-552) (-552) |#1|) NIL)) (-2701 (($ $ (-552) (-489 |#1| |#3|)) NIL)) (-2691 (($ $ (-552) (-489 |#1| |#2|)) NIL)) (-3101 (($) NIL T CONST)) (-4015 (((-489 |#1| |#3|) $ (-552)) NIL)) (-3692 ((|#1| $ (-552) (-552) |#1|) NIL)) (-3631 ((|#1| $ (-552) (-552)) NIL)) (-3799 (((-625 |#1|) $) NIL)) (-1773 (((-751) $) NIL)) (-2183 (($ (-751) (-751) |#1|) NIL)) (-1784 (((-751) $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-4063 (((-552) $) NIL)) (-4038 (((-552) $) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-4050 (((-552) $) NIL)) (-4027 (((-552) $) NIL)) (-3683 (($ (-1 |#1| |#1|) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2518 (($ $ |#1|) NIL)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-4004 (((-489 |#1| |#2|) $ (-552)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-490 |#1| |#2| |#3|) (-56 |#1| (-489 |#1| |#3|) (-489 |#1| |#2|)) (-1186) (-552) (-552)) (T -490)) -NIL -(-56 |#1| (-489 |#1| |#3|) (-489 |#1| |#2|)) -((-3745 (((-625 (-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-751) (-751)) 27)) (-3734 (((-625 (-1145 |#1|)) |#1| (-751) (-751) (-751)) 34)) (-3706 (((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-625 |#3|) (-625 (-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-751)) 85))) -(((-491 |#1| |#2| |#3|) (-10 -7 (-15 -3734 ((-625 (-1145 |#1|)) |#1| (-751) (-751) (-751))) (-15 -3745 ((-625 (-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-751) (-751))) (-15 -3706 ((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-625 |#3|) (-625 (-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-751)))) (-344) (-1208 |#1|) (-1208 |#2|)) (T -491)) -((-3706 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 (-2 (|:| -1270 (-669 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-669 *7))))) (-5 *5 (-751)) (-4 *8 (-1208 *7)) (-4 *7 (-1208 *6)) (-4 *6 (-344)) (-5 *2 (-2 (|:| -1270 (-669 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-669 *7)))) (-5 *1 (-491 *6 *7 *8)))) (-3745 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-751)) (-4 *5 (-344)) (-4 *6 (-1208 *5)) (-5 *2 (-625 (-2 (|:| -1270 (-669 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-669 *6))))) (-5 *1 (-491 *5 *6 *7)) (-5 *3 (-2 (|:| -1270 (-669 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-669 *6)))) (-4 *7 (-1208 *6)))) (-3734 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-751)) (-4 *3 (-344)) (-4 *5 (-1208 *3)) (-5 *2 (-625 (-1145 *3))) (-5 *1 (-491 *3 *5 *6)) (-4 *6 (-1208 *5))))) -(-10 -7 (-15 -3734 ((-625 (-1145 |#1|)) |#1| (-751) (-751) (-751))) (-15 -3745 ((-625 (-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-751) (-751))) (-15 -3706 ((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-625 |#3|) (-625 (-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-751)))) -((-3805 (((-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|)))) 62)) (-3754 ((|#1| (-669 |#1|) |#1| (-751)) 25)) (-3774 (((-751) (-751) (-751)) 30)) (-3795 (((-669 |#1|) (-669 |#1|) (-669 |#1|)) 42)) (-3785 (((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|) 50) (((-669 |#1|) (-669 |#1|) (-669 |#1|)) 47)) (-3764 ((|#1| (-669 |#1|) (-669 |#1|) |#1| (-552)) 29)) (-2435 ((|#1| (-669 |#1|)) 18))) -(((-492 |#1| |#2| |#3|) (-10 -7 (-15 -2435 (|#1| (-669 |#1|))) (-15 -3754 (|#1| (-669 |#1|) |#1| (-751))) (-15 -3764 (|#1| (-669 |#1|) (-669 |#1|) |#1| (-552))) (-15 -3774 ((-751) (-751) (-751))) (-15 -3785 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -3785 ((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|)) (-15 -3795 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -3805 ((-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|)))))) (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $)))) (-1208 |#1|) (-404 |#1| |#2|)) (T -492)) -((-3805 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) (-4 *4 (-1208 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3795 (*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) (-4 *4 (-1208 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3785 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) (-4 *4 (-1208 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3785 (*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) (-4 *4 (-1208 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3774 (*1 *2 *2 *2) (-12 (-5 *2 (-751)) (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) (-4 *4 (-1208 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3764 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-669 *2)) (-5 *4 (-552)) (-4 *2 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) (-4 *5 (-1208 *2)) (-5 *1 (-492 *2 *5 *6)) (-4 *6 (-404 *2 *5)))) (-3754 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-669 *2)) (-5 *4 (-751)) (-4 *2 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) (-4 *5 (-1208 *2)) (-5 *1 (-492 *2 *5 *6)) (-4 *6 (-404 *2 *5)))) (-2435 (*1 *2 *3) (-12 (-5 *3 (-669 *2)) (-4 *4 (-1208 *2)) (-4 *2 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) (-5 *1 (-492 *2 *4 *5)) (-4 *5 (-404 *2 *4))))) -(-10 -7 (-15 -2435 (|#1| (-669 |#1|))) (-15 -3754 (|#1| (-669 |#1|) |#1| (-751))) (-15 -3764 (|#1| (-669 |#1|) (-669 |#1|) |#1| (-552))) (-15 -3774 ((-751) (-751) (-751))) (-15 -3785 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -3785 ((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|)) (-15 -3795 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -3805 ((-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -1270 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|)))))) -((-1671 (((-112) $ $) NIL)) (-2488 (($ $) NIL)) (-2244 (($ $ $) 35)) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) $) NIL (|has| (-112) (-827))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3218 (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-112) (-827)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4354)))) (-1800 (($ $) NIL (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-1851 (((-112) $ (-1199 (-552)) (-112)) NIL (|has| $ (-6 -4354))) (((-112) $ (-552) (-112)) 36 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-1416 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-2163 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-3692 (((-112) $ (-552) (-112)) NIL (|has| $ (-6 -4354)))) (-3631 (((-112) $ (-552)) NIL)) (-2483 (((-552) (-112) $ (-552)) NIL (|has| (-112) (-1073))) (((-552) (-112) $) NIL (|has| (-112) (-1073))) (((-552) (-1 (-112) (-112)) $) NIL)) (-3799 (((-625 (-112)) $) NIL (|has| $ (-6 -4353)))) (-3152 (($ $ $) 33)) (-2960 (($ $) NIL)) (-2025 (($ $ $) NIL)) (-2183 (($ (-751) (-112)) 23)) (-2034 (($ $ $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) 8 (|has| (-552) (-827)))) (-3658 (($ $ $) NIL)) (-3280 (($ $ $) NIL (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-3730 (((-625 (-112)) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL)) (-3683 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-3994 (($ $ $ (-552)) NIL) (($ (-112) $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 (((-112) $) NIL (|has| (-552) (-827)))) (-2380 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2518 (($ $ (-112)) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-112)) (-625 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073)))) (($ $ (-289 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073)))) (($ $ (-625 (-289 (-112)))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073))))) (-1358 (((-625 (-112)) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) 24)) (-2154 (($ $ (-1199 (-552))) NIL) (((-112) $ (-552)) 18) (((-112) $ (-552) (-112)) NIL)) (-4001 (($ $ (-1199 (-552))) NIL) (($ $ (-552)) NIL)) (-2840 (((-751) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1073)))) (((-751) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) 25)) (-2042 (((-528) $) NIL (|has| (-112) (-598 (-528))))) (-1695 (($ (-625 (-112))) NIL)) (-3402 (($ (-625 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-1683 (((-839) $) 22)) (-1900 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-3743 (($ $ $) 31)) (-2827 (($ $ $) NIL)) (-3019 (($ $ $) 39)) (-3030 (($ $) 37)) (-3007 (($ $ $) 38)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 26)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 27)) (-2814 (($ $ $) NIL)) (-1471 (((-751) $) 10 (|has| $ (-6 -4353))))) -(((-493 |#1|) (-13 (-123) (-10 -8 (-15 -3030 ($ $)) (-15 -3019 ($ $ $)) (-15 -3007 ($ $ $)))) (-552)) (T -493)) -((-3030 (*1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-552)))) (-3019 (*1 *1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-552)))) (-3007 (*1 *1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-552))))) -(-13 (-123) (-10 -8 (-15 -3030 ($ $)) (-15 -3019 ($ $ $)) (-15 -3007 ($ $ $)))) -((-3826 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1145 |#4|)) 35)) (-3816 (((-1145 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1145 |#4|)) 22)) (-3840 (((-3 (-669 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-669 (-1145 |#4|))) 46)) (-3854 (((-1145 (-1145 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3816 (|#2| (-1 |#1| |#4|) (-1145 |#4|))) (-15 -3816 ((-1145 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3826 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1145 |#4|))) (-15 -3840 ((-3 (-669 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-669 (-1145 |#4|)))) (-15 -3854 ((-1145 (-1145 |#4|)) (-1 |#4| |#1|) |#3|))) (-1025) (-1208 |#1|) (-1208 |#2|) (-1025)) (T -494)) -((-3854 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *6 (-1208 *5)) (-5 *2 (-1145 (-1145 *7))) (-5 *1 (-494 *5 *6 *4 *7)) (-4 *4 (-1208 *6)))) (-3840 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-669 (-1145 *8))) (-4 *5 (-1025)) (-4 *8 (-1025)) (-4 *6 (-1208 *5)) (-5 *2 (-669 *6)) (-5 *1 (-494 *5 *6 *7 *8)) (-4 *7 (-1208 *6)))) (-3826 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1145 *7)) (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *2 (-1208 *5)) (-5 *1 (-494 *5 *2 *6 *7)) (-4 *6 (-1208 *2)))) (-3816 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *4 (-1208 *5)) (-5 *2 (-1145 *7)) (-5 *1 (-494 *5 *4 *6 *7)) (-4 *6 (-1208 *4)))) (-3816 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1145 *7)) (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *2 (-1208 *5)) (-5 *1 (-494 *5 *2 *6 *7)) (-4 *6 (-1208 *2))))) -(-10 -7 (-15 -3816 (|#2| (-1 |#1| |#4|) (-1145 |#4|))) (-15 -3816 ((-1145 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3826 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1145 |#4|))) (-15 -3840 ((-3 (-669 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-669 (-1145 |#4|)))) (-15 -3854 ((-1145 (-1145 |#4|)) (-1 |#4| |#1|) |#3|))) -((-1671 (((-112) $ $) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3867 (((-1237) $) 19)) (-2154 (((-1131) $ (-1149)) 23)) (-1407 (((-1237) $) 15)) (-1683 (((-839) $) 21) (($ (-1131)) 20)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 9)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 8))) -(((-495) (-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $)) (-15 -3867 ((-1237) $)) (-15 -1683 ($ (-1131)))))) (T -495)) -((-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1131)) (-5 *1 (-495)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-495)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-495)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-495))))) -(-13 (-827) (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $)) (-15 -3867 ((-1237) $)) (-15 -1683 ($ (-1131))))) -((-3076 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3055 ((|#1| |#4|) 10)) (-3066 ((|#3| |#4|) 17))) -(((-496 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3055 (|#1| |#4|)) (-15 -3066 (|#3| |#4|)) (-15 -3076 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-544) (-968 |#1|) (-368 |#1|) (-368 |#2|)) (T -496)) -((-3076 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-968 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-496 *4 *5 *6 *3)) (-4 *6 (-368 *4)) (-4 *3 (-368 *5)))) (-3066 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-968 *4)) (-4 *2 (-368 *4)) (-5 *1 (-496 *4 *5 *2 *3)) (-4 *3 (-368 *5)))) (-3055 (*1 *2 *3) (-12 (-4 *4 (-968 *2)) (-4 *2 (-544)) (-5 *1 (-496 *2 *4 *5 *3)) (-4 *5 (-368 *2)) (-4 *3 (-368 *4))))) -(-10 -7 (-15 -3055 (|#1| |#4|)) (-15 -3066 (|#3| |#4|)) (-15 -3076 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-1671 (((-112) $ $) NIL)) (-3996 (((-112) $ (-625 |#3|)) 105) (((-112) $) 106)) (-3641 (((-112) $) 149)) (-3893 (($ $ |#4|) 97) (($ $ |#4| (-625 |#3|)) 101)) (-3880 (((-1138 (-625 (-928 |#1|)) (-625 (-289 (-928 |#1|)))) (-625 |#4|)) 142 (|has| |#3| (-598 (-1149))))) (-3984 (($ $ $) 91) (($ $ |#4|) 89)) (-3650 (((-112) $) 148)) (-3946 (($ $) 109)) (-2883 (((-1131) $) NIL)) (-2860 (($ $ $) 83) (($ (-625 $)) 85)) (-4008 (((-112) |#4| $) 108)) (-4019 (((-112) $ $) 72)) (-3935 (($ (-625 |#4|)) 90)) (-2831 (((-1093) $) NIL)) (-3921 (($ (-625 |#4|)) 146)) (-3908 (((-112) $) 147)) (-1540 (($ $) 74)) (-4167 (((-625 |#4|) $) 63)) (-3972 (((-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $)) $ (-625 |#3|)) NIL)) (-4031 (((-112) |#4| $) 77)) (-3904 (((-552) $ (-625 |#3|)) 110) (((-552) $) 111)) (-1683 (((-839) $) 145) (($ (-625 |#4|)) 86)) (-3959 (($ (-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $))) NIL)) (-2281 (((-112) $ $) 73)) (-2382 (($ $ $) 93)) (** (($ $ (-751)) 96)) (* (($ $ $) 95))) -(((-497 |#1| |#2| |#3| |#4|) (-13 (-1073) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-751))) (-15 -2382 ($ $ $)) (-15 -3650 ((-112) $)) (-15 -3641 ((-112) $)) (-15 -4031 ((-112) |#4| $)) (-15 -4019 ((-112) $ $)) (-15 -4008 ((-112) |#4| $)) (-15 -3996 ((-112) $ (-625 |#3|))) (-15 -3996 ((-112) $)) (-15 -2860 ($ $ $)) (-15 -2860 ($ (-625 $))) (-15 -3984 ($ $ $)) (-15 -3984 ($ $ |#4|)) (-15 -1540 ($ $)) (-15 -3972 ((-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $)) $ (-625 |#3|))) (-15 -3959 ($ (-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $)))) (-15 -3904 ((-552) $ (-625 |#3|))) (-15 -3904 ((-552) $)) (-15 -3946 ($ $)) (-15 -3935 ($ (-625 |#4|))) (-15 -3921 ($ (-625 |#4|))) (-15 -3908 ((-112) $)) (-15 -4167 ((-625 |#4|) $)) (-15 -1683 ($ (-625 |#4|))) (-15 -3893 ($ $ |#4|)) (-15 -3893 ($ $ |#4| (-625 |#3|))) (IF (|has| |#3| (-598 (-1149))) (-15 -3880 ((-1138 (-625 (-928 |#1|)) (-625 (-289 (-928 |#1|)))) (-625 |#4|))) |%noBranch|))) (-358) (-773) (-827) (-925 |#1| |#2| |#3|)) (T -497)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) (-2382 (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4)))) (-3650 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) (-3641 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) (-4031 (*1 *2 *3 *1) (-12 (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-925 *4 *5 *6)))) (-4019 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) (-4008 (*1 *2 *3 *1) (-12 (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-925 *4 *5 *6)))) (-3996 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) (-5 *2 (-112)) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-925 *4 *5 *6)))) (-3996 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) (-2860 (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4)))) (-2860 (*1 *1 *2) (-12 (-5 *2 (-625 (-497 *3 *4 *5 *6))) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) (-3984 (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4)))) (-3984 (*1 *1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-925 *3 *4 *5)))) (-1540 (*1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4)))) (-3972 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) (-5 *2 (-2 (|:| |mval| (-669 *4)) (|:| |invmval| (-669 *4)) (|:| |genIdeal| (-497 *4 *5 *6 *7)))) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-925 *4 *5 *6)))) (-3959 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-669 *3)) (|:| |invmval| (-669 *3)) (|:| |genIdeal| (-497 *3 *4 *5 *6)))) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) (-3904 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) (-5 *2 (-552)) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-925 *4 *5 *6)))) (-3904 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-552)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) (-3946 (*1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4)))) (-3935 (*1 *1 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)))) (-3921 (*1 *1 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)))) (-3908 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) (-4167 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *6)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)))) (-3893 (*1 *1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-925 *3 *4 *5)))) (-3893 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-625 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) (-5 *1 (-497 *4 *5 *6 *2)) (-4 *2 (-925 *4 *5 *6)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-925 *4 *5 *6)) (-4 *6 (-598 (-1149))) (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1138 (-625 (-928 *4)) (-625 (-289 (-928 *4))))) (-5 *1 (-497 *4 *5 *6 *7))))) -(-13 (-1073) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-751))) (-15 -2382 ($ $ $)) (-15 -3650 ((-112) $)) (-15 -3641 ((-112) $)) (-15 -4031 ((-112) |#4| $)) (-15 -4019 ((-112) $ $)) (-15 -4008 ((-112) |#4| $)) (-15 -3996 ((-112) $ (-625 |#3|))) (-15 -3996 ((-112) $)) (-15 -2860 ($ $ $)) (-15 -2860 ($ (-625 $))) (-15 -3984 ($ $ $)) (-15 -3984 ($ $ |#4|)) (-15 -1540 ($ $)) (-15 -3972 ((-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $)) $ (-625 |#3|))) (-15 -3959 ($ (-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $)))) (-15 -3904 ((-552) $ (-625 |#3|))) (-15 -3904 ((-552) $)) (-15 -3946 ($ $)) (-15 -3935 ($ (-625 |#4|))) (-15 -3921 ($ (-625 |#4|))) (-15 -3908 ((-112) $)) (-15 -4167 ((-625 |#4|) $)) (-15 -1683 ($ (-625 |#4|))) (-15 -3893 ($ $ |#4|)) (-15 -3893 ($ $ |#4| (-625 |#3|))) (IF (|has| |#3| (-598 (-1149))) (-15 -3880 ((-1138 (-625 (-928 |#1|)) (-625 (-289 (-928 |#1|)))) (-625 |#4|))) |%noBranch|))) -((-4043 (((-112) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552))))) 150)) (-4055 (((-112) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552))))) 151)) (-1970 (((-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552))))) 108)) (-2951 (((-112) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552))))) NIL)) (-4068 (((-625 (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552))))) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552))))) 153)) (-4081 (((-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))) (-625 (-841 |#1|))) 165))) -(((-498 |#1| |#2|) (-10 -7 (-15 -4043 ((-112) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))))) (-15 -4055 ((-112) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))))) (-15 -2951 ((-112) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))))) (-15 -1970 ((-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))))) (-15 -4068 ((-625 (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552))))) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))))) (-15 -4081 ((-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))) (-625 (-841 |#1|))))) (-625 (-1149)) (-751)) (T -498)) -((-4081 (*1 *2 *2 *3) (-12 (-5 *2 (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4) (-243 *4 (-402 (-552))))) (-5 *3 (-625 (-841 *4))) (-14 *4 (-625 (-1149))) (-14 *5 (-751)) (-5 *1 (-498 *4 *5)))) (-4068 (*1 *2 *3) (-12 (-14 *4 (-625 (-1149))) (-14 *5 (-751)) (-5 *2 (-625 (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4) (-243 *4 (-402 (-552)))))) (-5 *1 (-498 *4 *5)) (-5 *3 (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4) (-243 *4 (-402 (-552))))))) (-1970 (*1 *2 *2) (-12 (-5 *2 (-497 (-402 (-552)) (-236 *4 (-751)) (-841 *3) (-243 *3 (-402 (-552))))) (-14 *3 (-625 (-1149))) (-14 *4 (-751)) (-5 *1 (-498 *3 *4)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4) (-243 *4 (-402 (-552))))) (-14 *4 (-625 (-1149))) (-14 *5 (-751)) (-5 *2 (-112)) (-5 *1 (-498 *4 *5)))) (-4055 (*1 *2 *3) (-12 (-5 *3 (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4) (-243 *4 (-402 (-552))))) (-14 *4 (-625 (-1149))) (-14 *5 (-751)) (-5 *2 (-112)) (-5 *1 (-498 *4 *5)))) (-4043 (*1 *2 *3) (-12 (-5 *3 (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4) (-243 *4 (-402 (-552))))) (-14 *4 (-625 (-1149))) (-14 *5 (-751)) (-5 *2 (-112)) (-5 *1 (-498 *4 *5))))) -(-10 -7 (-15 -4043 ((-112) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))))) (-15 -4055 ((-112) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))))) (-15 -2951 ((-112) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))))) (-15 -1970 ((-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))))) (-15 -4068 ((-625 (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552))))) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))))) (-15 -4081 ((-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))) (-497 (-402 (-552)) (-236 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-552)))) (-625 (-841 |#1|))))) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 11) (((-1154) $) NIL) (($ (-1154)) NIL) (((-1149) $) 8)) (-2281 (((-112) $ $) NIL))) -(((-499) (-13 (-1056) (-597 (-1149)))) (T -499)) -NIL -(-13 (-1056) (-597 (-1149))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-4169 (($ $) NIL)) (-3957 (($ |#1| |#2|) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-4094 ((|#2| $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2089 (($) 12 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) 11) (($ $ $) 24)) (-2382 (($ $ $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 18))) -(((-500 |#1| |#2|) (-13 (-21) (-502 |#1| |#2|)) (-21) (-827)) (T -500)) -NIL -(-13 (-21) (-502 |#1| |#2|)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 12)) (-3101 (($) NIL T CONST)) (-4169 (($ $) 28)) (-3957 (($ |#1| |#2|) 25)) (-1996 (($ (-1 |#1| |#1|) $) 27)) (-4094 ((|#2| $) NIL)) (-4144 ((|#1| $) 29)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2089 (($) 10 T CONST)) (-2281 (((-112) $ $) NIL)) (-2382 (($ $ $) 18)) (* (($ (-897) $) NIL) (($ (-751) $) 23))) -(((-501 |#1| |#2|) (-13 (-23) (-502 |#1| |#2|)) (-23) (-827)) (T -501)) -NIL -(-13 (-23) (-502 |#1| |#2|)) -((-1671 (((-112) $ $) 7)) (-4169 (($ $) 13)) (-3957 (($ |#1| |#2|) 16)) (-1996 (($ (-1 |#1| |#1|) $) 17)) (-4094 ((|#2| $) 14)) (-4144 ((|#1| $) 15)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 6))) -(((-502 |#1| |#2|) (-138) (-1073) (-827)) (T -502)) -((-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-502 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-827)))) (-3957 (*1 *1 *2 *3) (-12 (-4 *1 (-502 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-827)))) (-4144 (*1 *2 *1) (-12 (-4 *1 (-502 *2 *3)) (-4 *3 (-827)) (-4 *2 (-1073)))) (-4094 (*1 *2 *1) (-12 (-4 *1 (-502 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-827)))) (-4169 (*1 *1 *1) (-12 (-4 *1 (-502 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-827))))) -(-13 (-1073) (-10 -8 (-15 -1996 ($ (-1 |t#1| |t#1|) $)) (-15 -3957 ($ |t#1| |t#2|)) (-15 -4144 (|t#1| $)) (-15 -4094 (|t#2| $)) (-15 -4169 ($ $)))) -(((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3101 (($) NIL T CONST)) (-4169 (($ $) NIL)) (-3957 (($ |#1| |#2|) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-4094 ((|#2| $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2089 (($) NIL T CONST)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 13)) (-2382 (($ $ $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL))) -(((-503 |#1| |#2|) (-13 (-772) (-502 |#1| |#2|)) (-772) (-827)) (T -503)) -NIL -(-13 (-772) (-502 |#1| |#2|)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-1282 (($ $ $) 16)) (-2077 (((-3 $ "failed") $ $) 13)) (-3101 (($) NIL T CONST)) (-4169 (($ $) NIL)) (-3957 (($ |#1| |#2|) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-4094 ((|#2| $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL)) (-2089 (($) NIL T CONST)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL))) -(((-504 |#1| |#2|) (-13 (-773) (-502 |#1| |#2|)) (-773) (-827)) (T -504)) -NIL -(-13 (-773) (-502 |#1| |#2|)) -((-1671 (((-112) $ $) NIL)) (-4169 (($ $) 25)) (-3957 (($ |#1| |#2|) 22)) (-1996 (($ (-1 |#1| |#1|) $) 24)) (-4094 ((|#2| $) 27)) (-4144 ((|#1| $) 26)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 21)) (-2281 (((-112) $ $) 14))) -(((-505 |#1| |#2|) (-502 |#1| |#2|) (-1073) (-827)) (T -505)) -NIL -(-502 |#1| |#2|) -((-4073 (($ $ (-625 |#2|) (-625 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-506 |#1| |#2| |#3|) (-10 -8 (-15 -4073 (|#1| |#1| |#2| |#3|)) (-15 -4073 (|#1| |#1| (-625 |#2|) (-625 |#3|)))) (-507 |#2| |#3|) (-1073) (-1186)) (T -506)) -NIL -(-10 -8 (-15 -4073 (|#1| |#1| |#2| |#3|)) (-15 -4073 (|#1| |#1| (-625 |#2|) (-625 |#3|)))) -((-4073 (($ $ (-625 |#1|) (-625 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-507 |#1| |#2|) (-138) (-1073) (-1186)) (T -507)) -((-4073 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *3 (-625 *5)) (-4 *1 (-507 *4 *5)) (-4 *4 (-1073)) (-4 *5 (-1186)))) (-4073 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1186))))) -(-13 (-10 -8 (-15 -4073 ($ $ |t#1| |t#2|)) (-15 -4073 ($ $ (-625 |t#1|) (-625 |t#2|))))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 16)) (-2182 (((-625 (-2 (|:| |gen| |#1|) (|:| -2863 |#2|))) $) 18)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2894 (((-751) $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-3461 ((|#1| $ (-552)) 23)) (-1326 ((|#2| $ (-552)) 21)) (-1817 (($ (-1 |#1| |#1|) $) 46)) (-1315 (($ (-1 |#2| |#2|) $) 43)) (-2883 (((-1131) $) NIL)) (-1307 (($ $ $) 53 (|has| |#2| (-772)))) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 42) (($ |#1|) NIL)) (-3637 ((|#2| |#1| $) 49)) (-2089 (($) 11 T CONST)) (-2281 (((-112) $ $) 29)) (-2382 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-897) $) NIL) (($ (-751) $) 36) (($ |#2| |#1|) 31))) -(((-508 |#1| |#2| |#3|) (-318 |#1| |#2|) (-1073) (-130) |#2|) (T -508)) -NIL -(-318 |#1| |#2|) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-4107 (((-112) (-112)) 25)) (-1851 ((|#1| $ (-552) |#1|) 28 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354)))) (-2873 (($ (-1 (-112) |#1|) $) 52)) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-3238 (($ $) 56 (|has| |#1| (-1073)))) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1938 (($ |#1| $) NIL (|has| |#1| (-1073))) (($ (-1 (-112) |#1|) $) 44)) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) NIL)) (-2483 (((-552) (-1 (-112) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073)))) (-4119 (($ $ (-552)) 13)) (-4133 (((-751) $) 11)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2183 (($ (-751) |#1|) 23)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) 21 (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3260 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) 20 (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3966 (($ $ $ (-552)) 51) (($ |#1| $ (-552)) 37)) (-3994 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-4146 (($ (-625 |#1|)) 29)) (-2924 ((|#1| $) NIL (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) 19 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 40)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) 16)) (-2154 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) 33) (($ $ (-1199 (-552))) NIL)) (-2884 (($ $ (-1199 (-552))) 50) (($ $ (-552)) 45)) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) 41 (|has| $ (-6 -4354)))) (-1871 (($ $) 32)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) NIL)) (-2342 (($ $ $) 42) (($ $ |#1|) 39)) (-3402 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-625 $)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-1471 (((-751) $) 17 (|has| $ (-6 -4353))))) -(((-509 |#1| |#2|) (-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -4146 ($ (-625 |#1|))) (-15 -4133 ((-751) $)) (-15 -4119 ($ $ (-552))) (-15 -4107 ((-112) (-112))))) (-1186) (-552)) (T -509)) -((-4146 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-509 *3 *4)) (-14 *4 (-552)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1186)) (-14 *4 (-552)))) (-4119 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1186)) (-14 *4 *2))) (-4107 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1186)) (-14 *4 (-552))))) -(-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -4146 ($ (-625 |#1|))) (-15 -4133 ((-751) $)) (-15 -4119 ($ $ (-552))) (-15 -4107 ((-112) (-112))))) -((-1671 (((-112) $ $) NIL)) (-4171 (((-1108) $) 11)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4159 (((-1108) $) 13)) (-3848 (((-1108) $) 9)) (-1683 (((-839) $) 21) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL))) -(((-510) (-13 (-1056) (-10 -8 (-15 -3848 ((-1108) $)) (-15 -4171 ((-1108) $)) (-15 -4159 ((-1108) $))))) (T -510)) -((-3848 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510)))) (-4171 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510))))) -(-13 (-1056) (-10 -8 (-15 -3848 ((-1108) $)) (-15 -4171 ((-1108) $)) (-15 -4159 ((-1108) $)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 (((-567 |#1|) $) NIL) (($ $ (-897)) NIL (|has| (-567 |#1|) (-363)))) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| (-567 |#1|) (-363)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) NIL (|has| (-567 |#1|) (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-567 |#1|) "failed") $) NIL)) (-1895 (((-567 |#1|) $) NIL)) (-2670 (($ (-1232 (-567 |#1|))) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-567 |#1|) (-363)))) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-567 |#1|) (-363)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) NIL (|has| (-567 |#1|) (-363)))) (-3872 (((-112) $) NIL (|has| (-567 |#1|) (-363)))) (-3554 (($ $ (-751)) NIL (-1523 (|has| (-567 |#1|) (-143)) (|has| (-567 |#1|) (-363)))) (($ $) NIL (-1523 (|has| (-567 |#1|) (-143)) (|has| (-567 |#1|) (-363))))) (-2951 (((-112) $) NIL)) (-2172 (((-897) $) NIL (|has| (-567 |#1|) (-363))) (((-813 (-897)) $) NIL (-1523 (|has| (-567 |#1|) (-143)) (|has| (-567 |#1|) (-363))))) (-3650 (((-112) $) NIL)) (-1280 (($) NIL (|has| (-567 |#1|) (-363)))) (-4328 (((-112) $) NIL (|has| (-567 |#1|) (-363)))) (-4209 (((-567 |#1|) $) NIL) (($ $ (-897)) NIL (|has| (-567 |#1|) (-363)))) (-4034 (((-3 $ "failed") $) NIL (|has| (-567 |#1|) (-363)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 (-567 |#1|)) $) NIL) (((-1145 $) $ (-897)) NIL (|has| (-567 |#1|) (-363)))) (-4318 (((-897) $) NIL (|has| (-567 |#1|) (-363)))) (-1378 (((-1145 (-567 |#1|)) $) NIL (|has| (-567 |#1|) (-363)))) (-1369 (((-1145 (-567 |#1|)) $) NIL (|has| (-567 |#1|) (-363))) (((-3 (-1145 (-567 |#1|)) "failed") $ $) NIL (|has| (-567 |#1|) (-363)))) (-1386 (($ $ (-1145 (-567 |#1|))) NIL (|has| (-567 |#1|) (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-567 |#1|) (-363)) CONST)) (-3123 (($ (-897)) NIL (|has| (-567 |#1|) (-363)))) (-4143 (((-112) $) NIL)) (-2831 (((-1093) $) NIL)) (-3212 (($) NIL (|has| (-567 |#1|) (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| (-567 |#1|) (-363)))) (-3824 (((-413 $) $) NIL)) (-4130 (((-813 (-897))) NIL) (((-897)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-751) $) NIL (|has| (-567 |#1|) (-363))) (((-3 (-751) "failed") $ $) NIL (-1523 (|has| (-567 |#1|) (-143)) (|has| (-567 |#1|) (-363))))) (-3904 (((-133)) NIL)) (-3072 (($ $) NIL (|has| (-567 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-567 |#1|) (-363)))) (-4276 (((-813 (-897)) $) NIL) (((-897) $) NIL)) (-3610 (((-1145 (-567 |#1|))) NIL)) (-3798 (($) NIL (|has| (-567 |#1|) (-363)))) (-1397 (($) NIL (|has| (-567 |#1|) (-363)))) (-2780 (((-1232 (-567 |#1|)) $) NIL) (((-669 (-567 |#1|)) (-1232 $)) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| (-567 |#1|) (-363)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ (-567 |#1|)) NIL)) (-4243 (($ $) NIL (|has| (-567 |#1|) (-363))) (((-3 $ "failed") $) NIL (-1523 (|has| (-567 |#1|) (-143)) (|has| (-567 |#1|) (-363))))) (-4141 (((-751)) NIL)) (-1270 (((-1232 $)) NIL) (((-1232 $) (-897)) NIL)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-4104 (($ $) NIL (|has| (-567 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-567 |#1|) (-363)))) (-3768 (($ $) NIL (|has| (-567 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-567 |#1|) (-363)))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL) (($ $ (-567 |#1|)) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ $ (-567 |#1|)) NIL) (($ (-567 |#1|) $) NIL))) -(((-511 |#1| |#2|) (-324 (-567 |#1|)) (-897) (-897)) (T -511)) -NIL -(-324 (-567 |#1|)) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-552) (-552) |#1|) 35)) (-2701 (($ $ (-552) |#4|) NIL)) (-2691 (($ $ (-552) |#5|) NIL)) (-3101 (($) NIL T CONST)) (-4015 ((|#4| $ (-552)) NIL)) (-3692 ((|#1| $ (-552) (-552) |#1|) 34)) (-3631 ((|#1| $ (-552) (-552)) 32)) (-3799 (((-625 |#1|) $) NIL)) (-1773 (((-751) $) 28)) (-2183 (($ (-751) (-751) |#1|) 25)) (-1784 (((-751) $) 30)) (-2909 (((-112) $ (-751)) NIL)) (-4063 (((-552) $) 26)) (-4038 (((-552) $) 27)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-4050 (((-552) $) 29)) (-4027 (((-552) $) 31)) (-3683 (($ (-1 |#1| |#1|) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) 38 (|has| |#1| (-1073)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2518 (($ $ |#1|) NIL)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 14)) (-3600 (($) 16)) (-2154 ((|#1| $ (-552) (-552)) 33) ((|#1| $ (-552) (-552) |#1|) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-4004 ((|#5| $ (-552)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-512 |#1| |#2| |#3| |#4| |#5|) (-56 |#1| |#4| |#5|) (-1186) (-552) (-552) (-368 |#1|) (-368 |#1|)) (T -512)) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-552) (-552) |#1|) NIL)) (-1566 (($ $ (-552) (-488 |#1| |#3|)) NIL)) (-1666 (($ $ (-552) (-488 |#1| |#2|)) NIL)) (-3887 (($) NIL T CONST)) (-3884 (((-488 |#1| |#3|) $ (-552)) NIL)) (-3473 ((|#1| $ (-552) (-552) |#1|) NIL)) (-3413 ((|#1| $ (-552) (-552)) NIL)) (-3215 (((-627 |#1|) $) NIL)) (-3560 (((-754) $) NIL)) (-2655 (($ (-754) (-754) |#1|) NIL)) (-3572 (((-754) $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-4083 (((-552) $) NIL)) (-3511 (((-552) $) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3479 (((-552) $) NIL)) (-2780 (((-552) $) NIL)) (-3463 (($ (-1 |#1| |#1|) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1942 (($ $ |#1|) NIL)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-2152 (((-488 |#1| |#2|) $ (-552)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-489 |#1| |#2| |#3|) (-56 |#1| (-488 |#1| |#3|) (-488 |#1| |#2|)) (-1189) (-552) (-552)) (T -489)) +NIL +(-56 |#1| (-488 |#1| |#3|) (-488 |#1| |#2|)) +((-2555 (((-627 (-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) (-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) (-754) (-754)) 27)) (-2186 (((-627 (-1148 |#1|)) |#1| (-754) (-754) (-754)) 34)) (-3098 (((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) (-627 |#3|) (-627 (-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) (-754)) 85))) +(((-490 |#1| |#2| |#3|) (-10 -7 (-15 -2186 ((-627 (-1148 |#1|)) |#1| (-754) (-754) (-754))) (-15 -2555 ((-627 (-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) (-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) (-754) (-754))) (-15 -3098 ((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) (-627 |#3|) (-627 (-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) (-754)))) (-343) (-1211 |#1|) (-1211 |#2|)) (T -490)) +((-3098 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 (-2 (|:| -2957 (-671 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-671 *7))))) (-5 *5 (-754)) (-4 *8 (-1211 *7)) (-4 *7 (-1211 *6)) (-4 *6 (-343)) (-5 *2 (-2 (|:| -2957 (-671 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-671 *7)))) (-5 *1 (-490 *6 *7 *8)))) (-2555 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-754)) (-4 *5 (-343)) (-4 *6 (-1211 *5)) (-5 *2 (-627 (-2 (|:| -2957 (-671 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-671 *6))))) (-5 *1 (-490 *5 *6 *7)) (-5 *3 (-2 (|:| -2957 (-671 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-671 *6)))) (-4 *7 (-1211 *6)))) (-2186 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-754)) (-4 *3 (-343)) (-4 *5 (-1211 *3)) (-5 *2 (-627 (-1148 *3))) (-5 *1 (-490 *3 *5 *6)) (-4 *6 (-1211 *5))))) +(-10 -7 (-15 -2186 ((-627 (-1148 |#1|)) |#1| (-754) (-754) (-754))) (-15 -2555 ((-627 (-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) (-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) (-754) (-754))) (-15 -3098 ((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) (-627 |#3|) (-627 (-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) (-754)))) +((-1677 (((-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) (-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) (-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|)))) 62)) (-1285 ((|#1| (-671 |#1|) |#1| (-754)) 25)) (-2752 (((-754) (-754) (-754)) 30)) (-3143 (((-671 |#1|) (-671 |#1|) (-671 |#1|)) 42)) (-1453 (((-671 |#1|) (-671 |#1|) (-671 |#1|) |#1|) 50) (((-671 |#1|) (-671 |#1|) (-671 |#1|)) 47)) (-1879 ((|#1| (-671 |#1|) (-671 |#1|) |#1| (-552)) 29)) (-3877 ((|#1| (-671 |#1|)) 18))) +(((-491 |#1| |#2| |#3|) (-10 -7 (-15 -3877 (|#1| (-671 |#1|))) (-15 -1285 (|#1| (-671 |#1|) |#1| (-754))) (-15 -1879 (|#1| (-671 |#1|) (-671 |#1|) |#1| (-552))) (-15 -2752 ((-754) (-754) (-754))) (-15 -1453 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -1453 ((-671 |#1|) (-671 |#1|) (-671 |#1|) |#1|)) (-15 -3143 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -1677 ((-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) (-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) (-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|)))))) (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $)))) (-1211 |#1|) (-403 |#1| |#2|)) (T -491)) +((-1677 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) (-4 *4 (-1211 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-3143 (*1 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) (-4 *4 (-1211 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-1453 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-671 *3)) (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) (-4 *4 (-1211 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-1453 (*1 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) (-4 *4 (-1211 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2752 (*1 *2 *2 *2) (-12 (-5 *2 (-754)) (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) (-4 *4 (-1211 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-1879 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-671 *2)) (-5 *4 (-552)) (-4 *2 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) (-4 *5 (-1211 *2)) (-5 *1 (-491 *2 *5 *6)) (-4 *6 (-403 *2 *5)))) (-1285 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-671 *2)) (-5 *4 (-754)) (-4 *2 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) (-4 *5 (-1211 *2)) (-5 *1 (-491 *2 *5 *6)) (-4 *6 (-403 *2 *5)))) (-3877 (*1 *2 *3) (-12 (-5 *3 (-671 *2)) (-4 *4 (-1211 *2)) (-4 *2 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) (-5 *1 (-491 *2 *4 *5)) (-4 *5 (-403 *2 *4))))) +(-10 -7 (-15 -3877 (|#1| (-671 |#1|))) (-15 -1285 (|#1| (-671 |#1|) |#1| (-754))) (-15 -1879 (|#1| (-671 |#1|) (-671 |#1|) |#1| (-552))) (-15 -2752 ((-754) (-754) (-754))) (-15 -1453 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -1453 ((-671 |#1|) (-671 |#1|) (-671 |#1|) |#1|)) (-15 -3143 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -1677 ((-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) (-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|))) (-2 (|:| -2957 (-671 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-671 |#1|)))))) +((-1465 (((-111) $ $) NIL)) (-2831 (($ $) NIL)) (-2543 (($ $ $) 35)) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) $) NIL (|has| (-111) (-830))) (((-111) (-1 (-111) (-111) (-111)) $) NIL)) (-2701 (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| (-111) (-830)))) (($ (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4367)))) (-4298 (($ $) NIL (|has| (-111) (-830))) (($ (-1 (-111) (-111) (-111)) $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2950 (((-111) $ (-1202 (-552)) (-111)) NIL (|has| $ (-6 -4367))) (((-111) $ (-552) (-111)) 36 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-4342 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4366))) (($ (-111) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-2091 (((-111) (-1 (-111) (-111) (-111)) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-111) (-111)) $ (-111)) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-111) (-111)) $ (-111) (-111)) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-3473 (((-111) $ (-552) (-111)) NIL (|has| $ (-6 -4367)))) (-3413 (((-111) $ (-552)) NIL)) (-2967 (((-552) (-111) $ (-552)) NIL (|has| (-111) (-1076))) (((-552) (-111) $) NIL (|has| (-111) (-1076))) (((-552) (-1 (-111) (-111)) $) NIL)) (-3215 (((-627 (-111)) $) NIL (|has| $ (-6 -4366)))) (-1881 (($ $ $) 33)) (-1681 (($ $) NIL)) (-3682 (($ $ $) NIL)) (-2655 (($ (-754) (-111)) 23)) (-3170 (($ $ $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) 8 (|has| (-552) (-830)))) (-1816 (($ $ $) NIL)) (-3759 (($ $ $) NIL (|has| (-111) (-830))) (($ (-1 (-111) (-111) (-111)) $ $) NIL)) (-3114 (((-627 (-111)) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL)) (-3463 (($ (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-111) (-111) (-111)) $ $) 30) (($ (-1 (-111) (-111)) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-3252 (($ $ $ (-552)) NIL) (($ (-111) $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 (((-111) $) NIL (|has| (-552) (-830)))) (-1503 (((-3 (-111) "failed") (-1 (-111) (-111)) $) NIL)) (-1942 (($ $ (-111)) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-111)) (-627 (-111))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076)))) (($ $ (-111) (-111)) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076)))) (($ $ (-288 (-111))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076)))) (($ $ (-627 (-288 (-111)))) NIL (-12 (|has| (-111) (-303 (-111))) (|has| (-111) (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) (-111) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076))))) (-2083 (((-627 (-111)) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) 24)) (-1985 (($ $ (-1202 (-552))) NIL) (((-111) $ (-552)) 18) (((-111) $ (-552) (-111)) NIL)) (-3907 (($ $ (-1202 (-552))) NIL) (($ $ (-552)) NIL)) (-1509 (((-754) (-111) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-111) (-1076)))) (((-754) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4366)))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) 25)) (-3562 (((-528) $) NIL (|has| (-111) (-600 (-528))))) (-1490 (($ (-627 (-111))) NIL)) (-2668 (($ (-627 $)) NIL) (($ $ $) NIL) (($ (-111) $) NIL) (($ $ (-111)) NIL)) (-1477 (((-842) $) 22)) (-3299 (((-111) (-1 (-111) (-111)) $) NIL (|has| $ (-6 -4366)))) (-2520 (($ $ $) 31)) (-1872 (($ $ $) NIL)) (-2132 (($ $ $) 39)) (-2142 (($ $) 37)) (-2121 (($ $ $) 38)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 26)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 27)) (-1861 (($ $ $) NIL)) (-1383 (((-754) $) 10 (|has| $ (-6 -4366))))) +(((-492 |#1|) (-13 (-122) (-10 -8 (-15 -2142 ($ $)) (-15 -2132 ($ $ $)) (-15 -2121 ($ $ $)))) (-552)) (T -492)) +((-2142 (*1 *1 *1) (-12 (-5 *1 (-492 *2)) (-14 *2 (-552)))) (-2132 (*1 *1 *1 *1) (-12 (-5 *1 (-492 *2)) (-14 *2 (-552)))) (-2121 (*1 *1 *1 *1) (-12 (-5 *1 (-492 *2)) (-14 *2 (-552))))) +(-13 (-122) (-10 -8 (-15 -2142 ($ $)) (-15 -2132 ($ $ $)) (-15 -2121 ($ $ $)))) +((-3886 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1148 |#4|)) 35)) (-1440 (((-1148 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1148 |#4|)) 22)) (-2623 (((-3 (-671 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-671 (-1148 |#4|))) 46)) (-2386 (((-1148 (-1148 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-493 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1440 (|#2| (-1 |#1| |#4|) (-1148 |#4|))) (-15 -1440 ((-1148 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3886 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1148 |#4|))) (-15 -2623 ((-3 (-671 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-671 (-1148 |#4|)))) (-15 -2386 ((-1148 (-1148 |#4|)) (-1 |#4| |#1|) |#3|))) (-1028) (-1211 |#1|) (-1211 |#2|) (-1028)) (T -493)) +((-2386 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1028)) (-4 *7 (-1028)) (-4 *6 (-1211 *5)) (-5 *2 (-1148 (-1148 *7))) (-5 *1 (-493 *5 *6 *4 *7)) (-4 *4 (-1211 *6)))) (-2623 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-671 (-1148 *8))) (-4 *5 (-1028)) (-4 *8 (-1028)) (-4 *6 (-1211 *5)) (-5 *2 (-671 *6)) (-5 *1 (-493 *5 *6 *7 *8)) (-4 *7 (-1211 *6)))) (-3886 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1148 *7)) (-4 *5 (-1028)) (-4 *7 (-1028)) (-4 *2 (-1211 *5)) (-5 *1 (-493 *5 *2 *6 *7)) (-4 *6 (-1211 *2)))) (-1440 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1028)) (-4 *7 (-1028)) (-4 *4 (-1211 *5)) (-5 *2 (-1148 *7)) (-5 *1 (-493 *5 *4 *6 *7)) (-4 *6 (-1211 *4)))) (-1440 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1148 *7)) (-4 *5 (-1028)) (-4 *7 (-1028)) (-4 *2 (-1211 *5)) (-5 *1 (-493 *5 *2 *6 *7)) (-4 *6 (-1211 *2))))) +(-10 -7 (-15 -1440 (|#2| (-1 |#1| |#4|) (-1148 |#4|))) (-15 -1440 ((-1148 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3886 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1148 |#4|))) (-15 -2623 ((-3 (-671 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-671 (-1148 |#4|)))) (-15 -2386 ((-1148 (-1148 |#4|)) (-1 |#4| |#1|) |#3|))) +((-1465 (((-111) $ $) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-4103 (((-1240) $) 19)) (-1985 (((-1134) $ (-1152)) 23)) (-4291 (((-1240) $) 15)) (-1477 (((-842) $) 21) (($ (-1134)) 20)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 9)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 8))) +(((-494) (-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) (-15 -4103 ((-1240) $)) (-15 -1477 ($ (-1134)))))) (T -494)) +((-1985 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1134)) (-5 *1 (-494)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-494)))) (-4103 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-494)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-494))))) +(-13 (-830) (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) (-15 -4103 ((-1240) $)) (-15 -1477 ($ (-1134))))) +((-1971 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3623 ((|#1| |#4|) 10)) (-2155 ((|#3| |#4|) 17))) +(((-495 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3623 (|#1| |#4|)) (-15 -2155 (|#3| |#4|)) (-15 -1971 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-544) (-971 |#1|) (-367 |#1|) (-367 |#2|)) (T -495)) +((-1971 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-971 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *6 (-367 *4)) (-4 *3 (-367 *5)))) (-2155 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-971 *4)) (-4 *2 (-367 *4)) (-5 *1 (-495 *4 *5 *2 *3)) (-4 *3 (-367 *5)))) (-3623 (*1 *2 *3) (-12 (-4 *4 (-971 *2)) (-4 *2 (-544)) (-5 *1 (-495 *2 *4 *5 *3)) (-4 *5 (-367 *2)) (-4 *3 (-367 *4))))) +(-10 -7 (-15 -3623 (|#1| |#4|)) (-15 -2155 (|#3| |#4|)) (-15 -1971 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-1465 (((-111) $ $) NIL)) (-2198 (((-111) $ (-627 |#3|)) 105) (((-111) $) 106)) (-3024 (((-111) $) 149)) (-1564 (($ $ |#4|) 97) (($ $ |#4| (-627 |#3|)) 101)) (-3914 (((-1141 (-627 (-931 |#1|)) (-627 (-288 (-931 |#1|)))) (-627 |#4|)) 142 (|has| |#3| (-600 (-1152))))) (-2404 (($ $ $) 91) (($ $ |#4|) 89)) (-2624 (((-111) $) 148)) (-1904 (($ $) 109)) (-1595 (((-1134) $) NIL)) (-3383 (($ $ $) 83) (($ (-627 $)) 85)) (-2087 (((-111) |#4| $) 108)) (-3805 (((-111) $ $) 72)) (-3103 (($ (-627 |#4|)) 90)) (-1498 (((-1096) $) NIL)) (-4142 (($ (-627 |#4|)) 146)) (-3444 (((-111) $) 147)) (-2875 (($ $) 74)) (-1379 (((-627 |#4|) $) 63)) (-3742 (((-2 (|:| |mval| (-671 |#1|)) (|:| |invmval| (-671 |#1|)) (|:| |genIdeal| $)) $ (-627 |#3|)) NIL)) (-1371 (((-111) |#4| $) 77)) (-2405 (((-552) $ (-627 |#3|)) 110) (((-552) $) 111)) (-1477 (((-842) $) 145) (($ (-627 |#4|)) 86)) (-2009 (($ (-2 (|:| |mval| (-671 |#1|)) (|:| |invmval| (-671 |#1|)) (|:| |genIdeal| $))) NIL)) (-2292 (((-111) $ $) 73)) (-2384 (($ $ $) 93)) (** (($ $ (-754)) 96)) (* (($ $ $) 95))) +(((-496 |#1| |#2| |#3| |#4|) (-13 (-1076) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-754))) (-15 -2384 ($ $ $)) (-15 -2624 ((-111) $)) (-15 -3024 ((-111) $)) (-15 -1371 ((-111) |#4| $)) (-15 -3805 ((-111) $ $)) (-15 -2087 ((-111) |#4| $)) (-15 -2198 ((-111) $ (-627 |#3|))) (-15 -2198 ((-111) $)) (-15 -3383 ($ $ $)) (-15 -3383 ($ (-627 $))) (-15 -2404 ($ $ $)) (-15 -2404 ($ $ |#4|)) (-15 -2875 ($ $)) (-15 -3742 ((-2 (|:| |mval| (-671 |#1|)) (|:| |invmval| (-671 |#1|)) (|:| |genIdeal| $)) $ (-627 |#3|))) (-15 -2009 ($ (-2 (|:| |mval| (-671 |#1|)) (|:| |invmval| (-671 |#1|)) (|:| |genIdeal| $)))) (-15 -2405 ((-552) $ (-627 |#3|))) (-15 -2405 ((-552) $)) (-15 -1904 ($ $)) (-15 -3103 ($ (-627 |#4|))) (-15 -4142 ($ (-627 |#4|))) (-15 -3444 ((-111) $)) (-15 -1379 ((-627 |#4|) $)) (-15 -1477 ($ (-627 |#4|))) (-15 -1564 ($ $ |#4|)) (-15 -1564 ($ $ |#4| (-627 |#3|))) (IF (|has| |#3| (-600 (-1152))) (-15 -3914 ((-1141 (-627 (-931 |#1|)) (-627 (-288 (-931 |#1|)))) (-627 |#4|))) |%noBranch|))) (-357) (-776) (-830) (-928 |#1| |#2| |#3|)) (T -496)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) (-2384 (*1 *1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) (-2624 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) (-3024 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) (-1371 (*1 *2 *3 *1) (-12 (-4 *4 (-357)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-496 *4 *5 *6 *3)) (-4 *3 (-928 *4 *5 *6)))) (-3805 (*1 *2 *1 *1) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) (-2087 (*1 *2 *3 *1) (-12 (-4 *4 (-357)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-496 *4 *5 *6 *3)) (-4 *3 (-928 *4 *5 *6)))) (-2198 (*1 *2 *1 *3) (-12 (-5 *3 (-627 *6)) (-4 *6 (-830)) (-4 *4 (-357)) (-4 *5 (-776)) (-5 *2 (-111)) (-5 *1 (-496 *4 *5 *6 *7)) (-4 *7 (-928 *4 *5 *6)))) (-2198 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) (-3383 (*1 *1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) (-3383 (*1 *1 *2) (-12 (-5 *2 (-627 (-496 *3 *4 *5 *6))) (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) (-2404 (*1 *1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) (-2404 (*1 *1 *1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-928 *3 *4 *5)))) (-2875 (*1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) (-3742 (*1 *2 *1 *3) (-12 (-5 *3 (-627 *6)) (-4 *6 (-830)) (-4 *4 (-357)) (-4 *5 (-776)) (-5 *2 (-2 (|:| |mval| (-671 *4)) (|:| |invmval| (-671 *4)) (|:| |genIdeal| (-496 *4 *5 *6 *7)))) (-5 *1 (-496 *4 *5 *6 *7)) (-4 *7 (-928 *4 *5 *6)))) (-2009 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-671 *3)) (|:| |invmval| (-671 *3)) (|:| |genIdeal| (-496 *3 *4 *5 *6)))) (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) (-2405 (*1 *2 *1 *3) (-12 (-5 *3 (-627 *6)) (-4 *6 (-830)) (-4 *4 (-357)) (-4 *5 (-776)) (-5 *2 (-552)) (-5 *1 (-496 *4 *5 *6 *7)) (-4 *7 (-928 *4 *5 *6)))) (-2405 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-552)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) (-1904 (*1 *1 *1) (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) (-3103 (*1 *1 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *6)))) (-4142 (*1 *1 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *6)))) (-3444 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) (-1379 (*1 *2 *1) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *6)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *6)))) (-1564 (*1 *1 *1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-928 *3 *4 *5)))) (-1564 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-627 *6)) (-4 *6 (-830)) (-4 *4 (-357)) (-4 *5 (-776)) (-5 *1 (-496 *4 *5 *6 *2)) (-4 *2 (-928 *4 *5 *6)))) (-3914 (*1 *2 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-928 *4 *5 *6)) (-4 *6 (-600 (-1152))) (-4 *4 (-357)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-1141 (-627 (-931 *4)) (-627 (-288 (-931 *4))))) (-5 *1 (-496 *4 *5 *6 *7))))) +(-13 (-1076) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-754))) (-15 -2384 ($ $ $)) (-15 -2624 ((-111) $)) (-15 -3024 ((-111) $)) (-15 -1371 ((-111) |#4| $)) (-15 -3805 ((-111) $ $)) (-15 -2087 ((-111) |#4| $)) (-15 -2198 ((-111) $ (-627 |#3|))) (-15 -2198 ((-111) $)) (-15 -3383 ($ $ $)) (-15 -3383 ($ (-627 $))) (-15 -2404 ($ $ $)) (-15 -2404 ($ $ |#4|)) (-15 -2875 ($ $)) (-15 -3742 ((-2 (|:| |mval| (-671 |#1|)) (|:| |invmval| (-671 |#1|)) (|:| |genIdeal| $)) $ (-627 |#3|))) (-15 -2009 ($ (-2 (|:| |mval| (-671 |#1|)) (|:| |invmval| (-671 |#1|)) (|:| |genIdeal| $)))) (-15 -2405 ((-552) $ (-627 |#3|))) (-15 -2405 ((-552) $)) (-15 -1904 ($ $)) (-15 -3103 ($ (-627 |#4|))) (-15 -4142 ($ (-627 |#4|))) (-15 -3444 ((-111) $)) (-15 -1379 ((-627 |#4|) $)) (-15 -1477 ($ (-627 |#4|))) (-15 -1564 ($ $ |#4|)) (-15 -1564 ($ $ |#4| (-627 |#3|))) (IF (|has| |#3| (-600 (-1152))) (-15 -3914 ((-1141 (-627 (-931 |#1|)) (-627 (-288 (-931 |#1|)))) (-627 |#4|))) |%noBranch|))) +((-3255 (((-111) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552))))) 150)) (-2117 (((-111) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552))))) 151)) (-3744 (((-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552))))) 108)) (-1633 (((-111) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552))))) NIL)) (-3930 (((-627 (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552))))) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552))))) 153)) (-2728 (((-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))) (-627 (-844 |#1|))) 165))) +(((-497 |#1| |#2|) (-10 -7 (-15 -3255 ((-111) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -2117 ((-111) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -1633 ((-111) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -3744 ((-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -3930 ((-627 (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552))))) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -2728 ((-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))) (-627 (-844 |#1|))))) (-627 (-1152)) (-754)) (T -497)) +((-2728 (*1 *2 *2 *3) (-12 (-5 *2 (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) (-242 *4 (-401 (-552))))) (-5 *3 (-627 (-844 *4))) (-14 *4 (-627 (-1152))) (-14 *5 (-754)) (-5 *1 (-497 *4 *5)))) (-3930 (*1 *2 *3) (-12 (-14 *4 (-627 (-1152))) (-14 *5 (-754)) (-5 *2 (-627 (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) (-242 *4 (-401 (-552)))))) (-5 *1 (-497 *4 *5)) (-5 *3 (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) (-242 *4 (-401 (-552))))))) (-3744 (*1 *2 *2) (-12 (-5 *2 (-496 (-401 (-552)) (-235 *4 (-754)) (-844 *3) (-242 *3 (-401 (-552))))) (-14 *3 (-627 (-1152))) (-14 *4 (-754)) (-5 *1 (-497 *3 *4)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) (-242 *4 (-401 (-552))))) (-14 *4 (-627 (-1152))) (-14 *5 (-754)) (-5 *2 (-111)) (-5 *1 (-497 *4 *5)))) (-2117 (*1 *2 *3) (-12 (-5 *3 (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) (-242 *4 (-401 (-552))))) (-14 *4 (-627 (-1152))) (-14 *5 (-754)) (-5 *2 (-111)) (-5 *1 (-497 *4 *5)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) (-242 *4 (-401 (-552))))) (-14 *4 (-627 (-1152))) (-14 *5 (-754)) (-5 *2 (-111)) (-5 *1 (-497 *4 *5))))) +(-10 -7 (-15 -3255 ((-111) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -2117 ((-111) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -1633 ((-111) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -3744 ((-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -3930 ((-627 (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552))))) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))))) (-15 -2728 ((-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))) (-496 (-401 (-552)) (-235 |#2| (-754)) (-844 |#1|) (-242 |#1| (-401 (-552)))) (-627 (-844 |#1|))))) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 11) (((-1157) $) NIL) (($ (-1157)) NIL) (((-1152) $) 8)) (-2292 (((-111) $ $) NIL))) +(((-498) (-13 (-1059) (-599 (-1152)))) (T -498)) +NIL +(-13 (-1059) (-599 (-1152))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2014 (($ $) NIL)) (-1832 (($ |#1| |#2|) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1436 ((|#2| $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-1922 (($) 12 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) 11) (($ $ $) 24)) (-2384 (($ $ $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 18))) +(((-499 |#1| |#2|) (-13 (-21) (-501 |#1| |#2|)) (-21) (-830)) (T -499)) +NIL +(-13 (-21) (-501 |#1| |#2|)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 12)) (-3887 (($) NIL T CONST)) (-2014 (($ $) 28)) (-1832 (($ |#1| |#2|) 25)) (-3516 (($ (-1 |#1| |#1|) $) 27)) (-1436 ((|#2| $) NIL)) (-1993 ((|#1| $) 29)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-1922 (($) 10 T CONST)) (-2292 (((-111) $ $) NIL)) (-2384 (($ $ $) 18)) (* (($ (-900) $) NIL) (($ (-754) $) 23))) +(((-500 |#1| |#2|) (-13 (-23) (-501 |#1| |#2|)) (-23) (-830)) (T -500)) +NIL +(-13 (-23) (-501 |#1| |#2|)) +((-1465 (((-111) $ $) 7)) (-2014 (($ $) 13)) (-1832 (($ |#1| |#2|) 16)) (-3516 (($ (-1 |#1| |#1|) $) 17)) (-1436 ((|#2| $) 14)) (-1993 ((|#1| $) 15)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 6))) +(((-501 |#1| |#2|) (-137) (-1076) (-830)) (T -501)) +((-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-830)))) (-1832 (*1 *1 *2 *3) (-12 (-4 *1 (-501 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-830)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-501 *2 *3)) (-4 *3 (-830)) (-4 *2 (-1076)))) (-1436 (*1 *2 *1) (-12 (-4 *1 (-501 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-830)))) (-2014 (*1 *1 *1) (-12 (-4 *1 (-501 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-830))))) +(-13 (-1076) (-10 -8 (-15 -3516 ($ (-1 |t#1| |t#1|) $)) (-15 -1832 ($ |t#1| |t#2|)) (-15 -1993 (|t#1| $)) (-15 -1436 (|t#2| $)) (-15 -2014 ($ $)))) +(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3887 (($) NIL T CONST)) (-2014 (($ $) NIL)) (-1832 (($ |#1| |#2|) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1436 ((|#2| $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-1922 (($) NIL T CONST)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 13)) (-2384 (($ $ $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL))) +(((-502 |#1| |#2|) (-13 (-775) (-501 |#1| |#2|)) (-775) (-830)) (T -502)) +NIL +(-13 (-775) (-501 |#1| |#2|)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2796 (($ $ $) 16)) (-4136 (((-3 $ "failed") $ $) 13)) (-3887 (($) NIL T CONST)) (-2014 (($ $) NIL)) (-1832 (($ |#1| |#2|) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1436 ((|#2| $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL)) (-1922 (($) NIL T CONST)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-2384 (($ $ $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL))) +(((-503 |#1| |#2|) (-13 (-776) (-501 |#1| |#2|)) (-776) (-830)) (T -503)) +NIL +(-13 (-776) (-501 |#1| |#2|)) +((-1465 (((-111) $ $) NIL)) (-2014 (($ $) 25)) (-1832 (($ |#1| |#2|) 22)) (-3516 (($ (-1 |#1| |#1|) $) 24)) (-1436 ((|#2| $) 27)) (-1993 ((|#1| $) 26)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 21)) (-2292 (((-111) $ $) 14))) +(((-504 |#1| |#2|) (-501 |#1| |#2|) (-1076) (-830)) (T -504)) +NIL +(-501 |#1| |#2|) +((-3321 (($ $ (-627 |#2|) (-627 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-505 |#1| |#2| |#3|) (-10 -8 (-15 -3321 (|#1| |#1| |#2| |#3|)) (-15 -3321 (|#1| |#1| (-627 |#2|) (-627 |#3|)))) (-506 |#2| |#3|) (-1076) (-1189)) (T -505)) +NIL +(-10 -8 (-15 -3321 (|#1| |#1| |#2| |#3|)) (-15 -3321 (|#1| |#1| (-627 |#2|) (-627 |#3|)))) +((-3321 (($ $ (-627 |#1|) (-627 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-506 |#1| |#2|) (-137) (-1076) (-1189)) (T -506)) +((-3321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 *4)) (-5 *3 (-627 *5)) (-4 *1 (-506 *4 *5)) (-4 *4 (-1076)) (-4 *5 (-1189)))) (-3321 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-506 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1189))))) +(-13 (-10 -8 (-15 -3321 ($ $ |t#1| |t#2|)) (-15 -3321 ($ $ (-627 |t#1|) (-627 |t#2|))))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 16)) (-4245 (((-627 (-2 (|:| |gen| |#1|) (|:| -3154 |#2|))) $) 18)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3307 (((-754) $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-2792 ((|#1| $ (-552)) 23)) (-3547 ((|#2| $ (-552)) 21)) (-2356 (($ (-1 |#1| |#1|) $) 46)) (-1820 (($ (-1 |#2| |#2|) $) 43)) (-1595 (((-1134) $) NIL)) (-3217 (($ $ $) 53 (|has| |#2| (-775)))) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 42) (($ |#1|) NIL)) (-1889 ((|#2| |#1| $) 49)) (-1922 (($) 11 T CONST)) (-2292 (((-111) $ $) 29)) (-2384 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-900) $) NIL) (($ (-754) $) 36) (($ |#2| |#1|) 31))) +(((-507 |#1| |#2| |#3|) (-317 |#1| |#2|) (-1076) (-129) |#2|) (T -507)) +NIL +(-317 |#1| |#2|) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-3083 (((-111) (-111)) 25)) (-2950 ((|#1| $ (-552) |#1|) 28 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367)))) (-4289 (($ (-1 (-111) |#1|) $) 52)) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-2820 (($ $) 56 (|has| |#1| (-1076)))) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2265 (($ |#1| $) NIL (|has| |#1| (-1076))) (($ (-1 (-111) |#1|) $) 44)) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) NIL)) (-2967 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076)))) (-2729 (($ $ (-552)) 13)) (-1387 (((-754) $) 11)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-2655 (($ (-754) |#1|) 23)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) 21 (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-1438 (($ $ $) NIL (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $ $) 35)) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) 20 (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-3954 (($ $ $ (-552)) 51) (($ |#1| $ (-552)) 37)) (-3252 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3181 (($ (-627 |#1|)) 29)) (-3340 ((|#1| $) NIL (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) 19 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 40)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) 16)) (-1985 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) 33) (($ $ (-1202 (-552))) NIL)) (-3010 (($ $ (-1202 (-552))) 50) (($ $ (-552)) 45)) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) 41 (|has| $ (-6 -4367)))) (-2973 (($ $) 32)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) NIL)) (-3151 (($ $ $) 42) (($ $ |#1|) 39)) (-2668 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-627 $)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1383 (((-754) $) 17 (|has| $ (-6 -4366))))) +(((-508 |#1| |#2|) (-13 (-19 |#1|) (-276 |#1|) (-10 -8 (-15 -3181 ($ (-627 |#1|))) (-15 -1387 ((-754) $)) (-15 -2729 ($ $ (-552))) (-15 -3083 ((-111) (-111))))) (-1189) (-552)) (T -508)) +((-3181 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-508 *3 *4)) (-14 *4 (-552)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-508 *3 *4)) (-4 *3 (-1189)) (-14 *4 (-552)))) (-2729 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-508 *3 *4)) (-4 *3 (-1189)) (-14 *4 *2))) (-3083 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-508 *3 *4)) (-4 *3 (-1189)) (-14 *4 (-552))))) +(-13 (-19 |#1|) (-276 |#1|) (-10 -8 (-15 -3181 ($ (-627 |#1|))) (-15 -1387 ((-754) $)) (-15 -2729 ($ $ (-552))) (-15 -3083 ((-111) (-111))))) +((-1465 (((-111) $ $) NIL)) (-2947 (((-1111) $) 11)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3375 (((-1111) $) 13)) (-2242 (((-1111) $) 9)) (-1477 (((-842) $) 21) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) +(((-509) (-13 (-1059) (-10 -8 (-15 -2242 ((-1111) $)) (-15 -2947 ((-1111) $)) (-15 -3375 ((-1111) $))))) (T -509)) +((-2242 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-509)))) (-2947 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-509)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-509))))) +(-13 (-1059) (-10 -8 (-15 -2242 ((-1111) $)) (-15 -2947 ((-1111) $)) (-15 -3375 ((-1111) $)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 (((-569 |#1|) $) NIL) (($ $ (-900)) NIL (|has| (-569 |#1|) (-362)))) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| (-569 |#1|) (-362)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) NIL (|has| (-569 |#1|) (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-569 |#1|) "failed") $) NIL)) (-1703 (((-569 |#1|) $) NIL)) (-2342 (($ (-1235 (-569 |#1|))) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-569 |#1|) (-362)))) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-569 |#1|) (-362)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) NIL (|has| (-569 |#1|) (-362)))) (-1415 (((-111) $) NIL (|has| (-569 |#1|) (-362)))) (-4294 (($ $ (-754)) NIL (-1559 (|has| (-569 |#1|) (-142)) (|has| (-569 |#1|) (-362)))) (($ $) NIL (-1559 (|has| (-569 |#1|) (-142)) (|has| (-569 |#1|) (-362))))) (-1633 (((-111) $) NIL)) (-2641 (((-900) $) NIL (|has| (-569 |#1|) (-362))) (((-816 (-900)) $) NIL (-1559 (|has| (-569 |#1|) (-142)) (|has| (-569 |#1|) (-362))))) (-2624 (((-111) $) NIL)) (-2611 (($) NIL (|has| (-569 |#1|) (-362)))) (-2492 (((-111) $) NIL (|has| (-569 |#1|) (-362)))) (-2349 (((-569 |#1|) $) NIL) (($ $ (-900)) NIL (|has| (-569 |#1|) (-362)))) (-4317 (((-3 $ "failed") $) NIL (|has| (-569 |#1|) (-362)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 (-569 |#1|)) $) NIL) (((-1148 $) $ (-900)) NIL (|has| (-569 |#1|) (-362)))) (-2886 (((-900) $) NIL (|has| (-569 |#1|) (-362)))) (-1980 (((-1148 (-569 |#1|)) $) NIL (|has| (-569 |#1|) (-362)))) (-2259 (((-1148 (-569 |#1|)) $) NIL (|has| (-569 |#1|) (-362))) (((-3 (-1148 (-569 |#1|)) "failed") $ $) NIL (|has| (-569 |#1|) (-362)))) (-3520 (($ $ (-1148 (-569 |#1|))) NIL (|has| (-569 |#1|) (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-569 |#1|) (-362)) CONST)) (-4153 (($ (-900)) NIL (|has| (-569 |#1|) (-362)))) (-2249 (((-111) $) NIL)) (-1498 (((-1096) $) NIL)) (-2220 (($) NIL (|has| (-569 |#1|) (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| (-569 |#1|) (-362)))) (-1727 (((-412 $) $) NIL)) (-3804 (((-816 (-900))) NIL) (((-900)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-754) $) NIL (|has| (-569 |#1|) (-362))) (((-3 (-754) "failed") $ $) NIL (-1559 (|has| (-569 |#1|) (-142)) (|has| (-569 |#1|) (-362))))) (-2405 (((-132)) NIL)) (-2942 (($ $) NIL (|has| (-569 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-569 |#1|) (-362)))) (-3567 (((-816 (-900)) $) NIL) (((-900) $) NIL)) (-1376 (((-1148 (-569 |#1|))) NIL)) (-3439 (($) NIL (|has| (-569 |#1|) (-362)))) (-3231 (($) NIL (|has| (-569 |#1|) (-362)))) (-3133 (((-1235 (-569 |#1|)) $) NIL) (((-671 (-569 |#1|)) (-1235 $)) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| (-569 |#1|) (-362)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-569 |#1|)) NIL)) (-3050 (($ $) NIL (|has| (-569 |#1|) (-362))) (((-3 $ "failed") $) NIL (-1559 (|has| (-569 |#1|) (-142)) (|has| (-569 |#1|) (-362))))) (-3995 (((-754)) NIL)) (-2957 (((-1235 $)) NIL) (((-1235 $) (-900)) NIL)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-3406 (($ $) NIL (|has| (-569 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-569 |#1|) (-362)))) (-4251 (($ $) NIL (|has| (-569 |#1|) (-362))) (($ $ (-754)) NIL (|has| (-569 |#1|) (-362)))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL) (($ $ (-569 |#1|)) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ $ (-569 |#1|)) NIL) (($ (-569 |#1|) $) NIL))) +(((-510 |#1| |#2|) (-323 (-569 |#1|)) (-900) (-900)) (T -510)) +NIL +(-323 (-569 |#1|)) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-552) (-552) |#1|) 35)) (-1566 (($ $ (-552) |#4|) NIL)) (-1666 (($ $ (-552) |#5|) NIL)) (-3887 (($) NIL T CONST)) (-3884 ((|#4| $ (-552)) NIL)) (-3473 ((|#1| $ (-552) (-552) |#1|) 34)) (-3413 ((|#1| $ (-552) (-552)) 32)) (-3215 (((-627 |#1|) $) NIL)) (-3560 (((-754) $) 28)) (-2655 (($ (-754) (-754) |#1|) 25)) (-3572 (((-754) $) 30)) (-1602 (((-111) $ (-754)) NIL)) (-4083 (((-552) $) 26)) (-3511 (((-552) $) 27)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3479 (((-552) $) 29)) (-2780 (((-552) $) 31)) (-3463 (($ (-1 |#1| |#1|) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) 38 (|has| |#1| (-1076)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1942 (($ $ |#1|) NIL)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 14)) (-2373 (($) 16)) (-1985 ((|#1| $ (-552) (-552)) 33) ((|#1| $ (-552) (-552) |#1|) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-2152 ((|#5| $ (-552)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-511 |#1| |#2| |#3| |#4| |#5|) (-56 |#1| |#4| |#5|) (-1189) (-552) (-552) (-367 |#1|) (-367 |#1|)) (T -511)) NIL (-56 |#1| |#4| |#5|) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3800 ((|#1| $) NIL)) (-3897 ((|#1| $) NIL)) (-2101 (($ $) NIL)) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-2278 (($ $ (-552)) 59 (|has| $ (-6 -4354)))) (-3237 (((-112) $) NIL (|has| |#1| (-827))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3218 (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827)))) (($ (-1 (-112) |#1| |#1|) $) 57 (|has| $ (-6 -4354)))) (-1800 (($ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-2565 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-2301 (($ $ $) 23 (|has| $ (-6 -4354)))) (-2289 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-2317 ((|#1| $ |#1|) 21 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4354))) (($ $ "rest" $) 24 (|has| $ (-6 -4354))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) NIL (|has| $ (-6 -4354)))) (-2873 (($ (-1 (-112) |#1|) $) NIL)) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2673 ((|#1| $) NIL)) (-3101 (($) NIL T CONST)) (-1883 (($ $) 28 (|has| $ (-6 -4354)))) (-2306 (($ $) 29)) (-2936 (($ $) 18) (($ $ (-751)) 32)) (-3238 (($ $) 55 (|has| |#1| (-1073)))) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1938 (($ |#1| $) NIL (|has| |#1| (-1073))) (($ (-1 (-112) |#1|) $) NIL)) (-1416 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3692 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) NIL)) (-4011 (((-112) $) NIL)) (-2483 (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073))) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) (-1 (-112) |#1|) $) NIL)) (-3799 (((-625 |#1|) $) 27 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) NIL)) (-1371 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2183 (($ (-751) |#1|) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) 31 (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3260 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-3280 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 53 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2801 (($ |#1|) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-3183 (((-625 |#1|) $) NIL)) (-3367 (((-112) $) NIL)) (-2883 (((-1131) $) 51 (|has| |#1| (-1073)))) (-1437 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-3966 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3994 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2924 ((|#1| $) 13) (($ $ (-751)) NIL)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-4022 (((-112) $) NIL)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 12)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) 17)) (-3600 (($) 16)) (-2154 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1199 (-552))) NIL) ((|#1| $ (-552)) NIL) ((|#1| $ (-552) |#1|) NIL)) (-1389 (((-552) $ $) NIL)) (-2884 (($ $ (-1199 (-552))) NIL) (($ $ (-552)) NIL)) (-4001 (($ $ (-1199 (-552))) NIL) (($ $ (-552)) NIL)) (-2316 (((-112) $) 34)) (-2356 (($ $) NIL)) (-2330 (($ $) NIL (|has| $ (-6 -4354)))) (-2368 (((-751) $) NIL)) (-2379 (($ $) 36)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) 35)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 26)) (-2342 (($ $ $) 54) (($ $ |#1|) NIL)) (-3402 (($ $ $) NIL) (($ |#1| $) 10) (($ (-625 $)) NIL) (($ $ |#1|) NIL)) (-1683 (((-839) $) 46 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) NIL)) (-1380 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) 48 (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-1471 (((-751) $) 9 (|has| $ (-6 -4353))))) -(((-513 |#1| |#2|) (-646 |#1|) (-1186) (-552)) (T -513)) -NIL -(-646 |#1|) -((-3991 ((|#4| |#4|) 27)) (-3442 (((-751) |#4|) 32)) (-3979 (((-751) |#4|) 33)) (-3967 (((-625 |#3|) |#4|) 40 (|has| |#3| (-6 -4354)))) (-3150 (((-3 |#4| "failed") |#4|) 51)) (-4181 ((|#4| |#4|) 44)) (-2426 ((|#1| |#4|) 43))) -(((-514 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3991 (|#4| |#4|)) (-15 -3442 ((-751) |#4|)) (-15 -3979 ((-751) |#4|)) (IF (|has| |#3| (-6 -4354)) (-15 -3967 ((-625 |#3|) |#4|)) |%noBranch|) (-15 -2426 (|#1| |#4|)) (-15 -4181 (|#4| |#4|)) (-15 -3150 ((-3 |#4| "failed") |#4|))) (-358) (-368 |#1|) (-368 |#1|) (-667 |#1| |#2| |#3|)) (T -514)) -((-3150 (*1 *2 *2) (|partial| -12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))) (-4181 (*1 *2 *2) (-12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))) (-2426 (*1 *2 *3) (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-358)) (-5 *1 (-514 *2 *4 *5 *3)) (-4 *3 (-667 *2 *4 *5)))) (-3967 (*1 *2 *3) (-12 (|has| *6 (-6 -4354)) (-4 *4 (-358)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-625 *6)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))) (-3979 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-751)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))) (-3442 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-751)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5))))) -(-10 -7 (-15 -3991 (|#4| |#4|)) (-15 -3442 ((-751) |#4|)) (-15 -3979 ((-751) |#4|)) (IF (|has| |#3| (-6 -4354)) (-15 -3967 ((-625 |#3|) |#4|)) |%noBranch|) (-15 -2426 (|#1| |#4|)) (-15 -4181 (|#4| |#4|)) (-15 -3150 ((-3 |#4| "failed") |#4|))) -((-3991 ((|#8| |#4|) 20)) (-3967 (((-625 |#3|) |#4|) 29 (|has| |#7| (-6 -4354)))) (-3150 (((-3 |#8| "failed") |#4|) 23))) -(((-515 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3991 (|#8| |#4|)) (-15 -3150 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4354)) (-15 -3967 ((-625 |#3|) |#4|)) |%noBranch|)) (-544) (-368 |#1|) (-368 |#1|) (-667 |#1| |#2| |#3|) (-968 |#1|) (-368 |#5|) (-368 |#5|) (-667 |#5| |#6| |#7|)) (T -515)) -((-3967 (*1 *2 *3) (-12 (|has| *9 (-6 -4354)) (-4 *4 (-544)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-4 *7 (-968 *4)) (-4 *8 (-368 *7)) (-4 *9 (-368 *7)) (-5 *2 (-625 *6)) (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-667 *4 *5 *6)) (-4 *10 (-667 *7 *8 *9)))) (-3150 (*1 *2 *3) (|partial| -12 (-4 *4 (-544)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-4 *7 (-968 *4)) (-4 *2 (-667 *7 *8 *9)) (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-667 *4 *5 *6)) (-4 *8 (-368 *7)) (-4 *9 (-368 *7)))) (-3991 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-4 *7 (-968 *4)) (-4 *2 (-667 *7 *8 *9)) (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-667 *4 *5 *6)) (-4 *8 (-368 *7)) (-4 *9 (-368 *7))))) -(-10 -7 (-15 -3991 (|#8| |#4|)) (-15 -3150 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4354)) (-15 -3967 ((-625 |#3|) |#4|)) |%noBranch|)) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2983 (($ (-751) (-751)) NIL)) (-4219 (($ $ $) NIL)) (-2003 (($ (-586 |#1| |#3|)) NIL) (($ $) NIL)) (-4089 (((-112) $) NIL)) (-4208 (($ $ (-552) (-552)) 12)) (-4198 (($ $ (-552) (-552)) NIL)) (-4188 (($ $ (-552) (-552) (-552) (-552)) NIL)) (-4241 (($ $) NIL)) (-4114 (((-112) $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-4176 (($ $ (-552) (-552) $) NIL)) (-1851 ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-625 (-552)) (-625 (-552)) $) NIL)) (-2701 (($ $ (-552) (-586 |#1| |#3|)) NIL)) (-2691 (($ $ (-552) (-586 |#1| |#2|)) NIL)) (-2467 (($ (-751) |#1|) NIL)) (-3101 (($) NIL T CONST)) (-3991 (($ $) 21 (|has| |#1| (-302)))) (-4015 (((-586 |#1| |#3|) $ (-552)) NIL)) (-3442 (((-751) $) 24 (|has| |#1| (-544)))) (-3692 ((|#1| $ (-552) (-552) |#1|) NIL)) (-3631 ((|#1| $ (-552) (-552)) NIL)) (-3799 (((-625 |#1|) $) NIL)) (-3979 (((-751) $) 26 (|has| |#1| (-544)))) (-3967 (((-625 (-586 |#1| |#2|)) $) 29 (|has| |#1| (-544)))) (-1773 (((-751) $) NIL)) (-2183 (($ (-751) (-751) |#1|) NIL)) (-1784 (((-751) $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2416 ((|#1| $) 19 (|has| |#1| (-6 (-4355 "*"))))) (-4063 (((-552) $) 10)) (-4038 (((-552) $) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-4050 (((-552) $) 11)) (-4027 (((-552) $) NIL)) (-3907 (($ (-625 (-625 |#1|))) NIL)) (-3683 (($ (-1 |#1| |#1|) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3803 (((-625 (-625 |#1|)) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3150 (((-3 $ "failed") $) 33 (|has| |#1| (-358)))) (-4229 (($ $ $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2518 (($ $ |#1|) NIL)) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-625 (-552)) (-625 (-552))) NIL)) (-2457 (($ (-625 |#1|)) NIL) (($ (-625 $)) NIL)) (-4102 (((-112) $) NIL)) (-2426 ((|#1| $) 17 (|has| |#1| (-6 (-4355 "*"))))) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-4004 (((-586 |#1| |#2|) $ (-552)) NIL)) (-1683 (($ (-586 |#1| |#2|)) NIL) (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4077 (((-112) $) NIL)) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $ $) NIL) (($ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| |#1| (-358)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-552) $) NIL) (((-586 |#1| |#2|) $ (-586 |#1| |#2|)) NIL) (((-586 |#1| |#3|) (-586 |#1| |#3|) $) NIL)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-516 |#1| |#2| |#3|) (-667 |#1| (-586 |#1| |#3|) (-586 |#1| |#2|)) (-1025) (-552) (-552)) (T -516)) -NIL -(-667 |#1| (-586 |#1| |#3|) (-586 |#1| |#2|)) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-4193 (((-625 (-1185)) $) 13)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 20) (((-1154) $) NIL) (($ (-1154)) NIL) (($ (-625 (-1185))) 11)) (-2281 (((-112) $ $) NIL))) -(((-517) (-13 (-1056) (-10 -8 (-15 -1683 ($ (-625 (-1185)))) (-15 -4193 ((-625 (-1185)) $))))) (T -517)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-1185))) (-5 *1 (-517)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-625 (-1185))) (-5 *1 (-517))))) -(-13 (-1056) (-10 -8 (-15 -1683 ($ (-625 (-1185)))) (-15 -4193 ((-625 (-1185)) $)))) -((-1671 (((-112) $ $) NIL)) (-4203 (((-1108) $) 14)) (-2883 (((-1131) $) NIL)) (-4214 (((-1149) $) 11)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 21) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL))) -(((-518) (-13 (-1056) (-10 -8 (-15 -4214 ((-1149) $)) (-15 -4203 ((-1108) $))))) (T -518)) -((-4214 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-518)))) (-4203 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-518))))) -(-13 (-1056) (-10 -8 (-15 -4214 ((-1149) $)) (-15 -4203 ((-1108) $)))) -((-4224 (((-1093) $ (-128)) 17))) -(((-519 |#1|) (-10 -8 (-15 -4224 ((-1093) |#1| (-128)))) (-520)) (T -519)) -NIL -(-10 -8 (-15 -4224 ((-1093) |#1| (-128)))) -((-4224 (((-1093) $ (-128)) 7)) (-4235 (((-1093) $) 8)) (-4125 (($ $) 6))) -(((-520) (-138)) (T -520)) -((-4235 (*1 *2 *1) (-12 (-4 *1 (-520)) (-5 *2 (-1093)))) (-4224 (*1 *2 *1 *3) (-12 (-4 *1 (-520)) (-5 *3 (-128)) (-5 *2 (-1093))))) -(-13 (-171) (-10 -8 (-15 -4235 ((-1093) $)) (-15 -4224 ((-1093) $ (-128))))) -(((-171) . T)) -((-4268 (((-1145 |#1|) (-751)) 76)) (-1650 (((-1232 |#1|) (-1232 |#1|) (-897)) 69)) (-4246 (((-1237) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))) |#1|) 84)) (-4289 (((-1232 |#1|) (-1232 |#1|) (-751)) 36)) (-3702 (((-1232 |#1|) (-897)) 71)) (-4308 (((-1232 |#1|) (-1232 |#1|) (-552)) 24)) (-4256 (((-1145 |#1|) (-1232 |#1|)) 77)) (-1280 (((-1232 |#1|) (-897)) 95)) (-4328 (((-112) (-1232 |#1|)) 80)) (-4209 (((-1232 |#1|) (-1232 |#1|) (-897)) 62)) (-1291 (((-1145 |#1|) (-1232 |#1|)) 89)) (-4318 (((-897) (-1232 |#1|)) 59)) (-4092 (((-1232 |#1|) (-1232 |#1|)) 30)) (-3123 (((-1232 |#1|) (-897) (-897)) 97)) (-4299 (((-1232 |#1|) (-1232 |#1|) (-1093) (-1093)) 23)) (-4278 (((-1232 |#1|) (-1232 |#1|) (-751) (-1093)) 37)) (-1270 (((-1232 (-1232 |#1|)) (-897)) 94)) (-2404 (((-1232 |#1|) (-1232 |#1|) (-1232 |#1|)) 81)) (** (((-1232 |#1|) (-1232 |#1|) (-552)) 45)) (* (((-1232 |#1|) (-1232 |#1|) (-1232 |#1|)) 25))) -(((-521 |#1|) (-10 -7 (-15 -4246 ((-1237) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))) |#1|)) (-15 -3702 ((-1232 |#1|) (-897))) (-15 -3123 ((-1232 |#1|) (-897) (-897))) (-15 -4256 ((-1145 |#1|) (-1232 |#1|))) (-15 -4268 ((-1145 |#1|) (-751))) (-15 -4278 ((-1232 |#1|) (-1232 |#1|) (-751) (-1093))) (-15 -4289 ((-1232 |#1|) (-1232 |#1|) (-751))) (-15 -4299 ((-1232 |#1|) (-1232 |#1|) (-1093) (-1093))) (-15 -4308 ((-1232 |#1|) (-1232 |#1|) (-552))) (-15 ** ((-1232 |#1|) (-1232 |#1|) (-552))) (-15 * ((-1232 |#1|) (-1232 |#1|) (-1232 |#1|))) (-15 -2404 ((-1232 |#1|) (-1232 |#1|) (-1232 |#1|))) (-15 -4209 ((-1232 |#1|) (-1232 |#1|) (-897))) (-15 -1650 ((-1232 |#1|) (-1232 |#1|) (-897))) (-15 -4092 ((-1232 |#1|) (-1232 |#1|))) (-15 -4318 ((-897) (-1232 |#1|))) (-15 -4328 ((-112) (-1232 |#1|))) (-15 -1270 ((-1232 (-1232 |#1|)) (-897))) (-15 -1280 ((-1232 |#1|) (-897))) (-15 -1291 ((-1145 |#1|) (-1232 |#1|)))) (-344)) (T -521)) -((-1291 (*1 *2 *3) (-12 (-5 *3 (-1232 *4)) (-4 *4 (-344)) (-5 *2 (-1145 *4)) (-5 *1 (-521 *4)))) (-1280 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1232 *4)) (-5 *1 (-521 *4)) (-4 *4 (-344)))) (-1270 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1232 (-1232 *4))) (-5 *1 (-521 *4)) (-4 *4 (-344)))) (-4328 (*1 *2 *3) (-12 (-5 *3 (-1232 *4)) (-4 *4 (-344)) (-5 *2 (-112)) (-5 *1 (-521 *4)))) (-4318 (*1 *2 *3) (-12 (-5 *3 (-1232 *4)) (-4 *4 (-344)) (-5 *2 (-897)) (-5 *1 (-521 *4)))) (-4092 (*1 *2 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-344)) (-5 *1 (-521 *3)))) (-1650 (*1 *2 *2 *3) (-12 (-5 *2 (-1232 *4)) (-5 *3 (-897)) (-4 *4 (-344)) (-5 *1 (-521 *4)))) (-4209 (*1 *2 *2 *3) (-12 (-5 *2 (-1232 *4)) (-5 *3 (-897)) (-4 *4 (-344)) (-5 *1 (-521 *4)))) (-2404 (*1 *2 *2 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-344)) (-5 *1 (-521 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-344)) (-5 *1 (-521 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1232 *4)) (-5 *3 (-552)) (-4 *4 (-344)) (-5 *1 (-521 *4)))) (-4308 (*1 *2 *2 *3) (-12 (-5 *2 (-1232 *4)) (-5 *3 (-552)) (-4 *4 (-344)) (-5 *1 (-521 *4)))) (-4299 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1232 *4)) (-5 *3 (-1093)) (-4 *4 (-344)) (-5 *1 (-521 *4)))) (-4289 (*1 *2 *2 *3) (-12 (-5 *2 (-1232 *4)) (-5 *3 (-751)) (-4 *4 (-344)) (-5 *1 (-521 *4)))) (-4278 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1232 *5)) (-5 *3 (-751)) (-5 *4 (-1093)) (-4 *5 (-344)) (-5 *1 (-521 *5)))) (-4268 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1145 *4)) (-5 *1 (-521 *4)) (-4 *4 (-344)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-1232 *4)) (-4 *4 (-344)) (-5 *2 (-1145 *4)) (-5 *1 (-521 *4)))) (-3123 (*1 *2 *3 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1232 *4)) (-5 *1 (-521 *4)) (-4 *4 (-344)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1232 *4)) (-5 *1 (-521 *4)) (-4 *4 (-344)))) (-4246 (*1 *2 *3 *4) (-12 (-5 *3 (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093)))))) (-4 *4 (-344)) (-5 *2 (-1237)) (-5 *1 (-521 *4))))) -(-10 -7 (-15 -4246 ((-1237) (-1232 (-625 (-2 (|:| -3800 |#1|) (|:| -3123 (-1093))))) |#1|)) (-15 -3702 ((-1232 |#1|) (-897))) (-15 -3123 ((-1232 |#1|) (-897) (-897))) (-15 -4256 ((-1145 |#1|) (-1232 |#1|))) (-15 -4268 ((-1145 |#1|) (-751))) (-15 -4278 ((-1232 |#1|) (-1232 |#1|) (-751) (-1093))) (-15 -4289 ((-1232 |#1|) (-1232 |#1|) (-751))) (-15 -4299 ((-1232 |#1|) (-1232 |#1|) (-1093) (-1093))) (-15 -4308 ((-1232 |#1|) (-1232 |#1|) (-552))) (-15 ** ((-1232 |#1|) (-1232 |#1|) (-552))) (-15 * ((-1232 |#1|) (-1232 |#1|) (-1232 |#1|))) (-15 -2404 ((-1232 |#1|) (-1232 |#1|) (-1232 |#1|))) (-15 -4209 ((-1232 |#1|) (-1232 |#1|) (-897))) (-15 -1650 ((-1232 |#1|) (-1232 |#1|) (-897))) (-15 -4092 ((-1232 |#1|) (-1232 |#1|))) (-15 -4318 ((-897) (-1232 |#1|))) (-15 -4328 ((-112) (-1232 |#1|))) (-15 -1270 ((-1232 (-1232 |#1|)) (-897))) (-15 -1280 ((-1232 |#1|) (-897))) (-15 -1291 ((-1145 |#1|) (-1232 |#1|)))) -((-4224 (((-1093) $ (-128)) NIL)) (-4235 (((-1093) $) 21)) (-2341 (((-112) $) 19)) (-3170 (($ (-383)) 12) (($ (-1131)) 14)) (-1303 (((-112) $) 22)) (-1683 (((-839) $) 26)) (-4125 (($ $) 23))) -(((-522) (-13 (-520) (-597 (-839)) (-10 -8 (-15 -3170 ($ (-383))) (-15 -3170 ($ (-1131))) (-15 -1303 ((-112) $)) (-15 -2341 ((-112) $))))) (T -522)) -((-3170 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-522)))) (-3170 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-522)))) (-1303 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-522)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-522))))) -(-13 (-520) (-597 (-839)) (-10 -8 (-15 -3170 ($ (-383))) (-15 -3170 ($ (-1131))) (-15 -1303 ((-112) $)) (-15 -2341 ((-112) $)))) -((-3444 (((-1 |#1| |#1|) |#1|) 11)) (-3178 (((-1 |#1| |#1|)) 10))) -(((-523 |#1|) (-10 -7 (-15 -3178 ((-1 |#1| |#1|))) (-15 -3444 ((-1 |#1| |#1|) |#1|))) (-13 (-707) (-25))) (T -523)) -((-3444 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-523 *3)) (-4 *3 (-13 (-707) (-25))))) (-3178 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-523 *3)) (-4 *3 (-13 (-707) (-25)))))) -(-10 -7 (-15 -3178 ((-1 |#1| |#1|))) (-15 -3444 ((-1 |#1| |#1|) |#1|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-1282 (($ $ $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-4169 (($ $) NIL)) (-3957 (($ (-751) |#1|) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-1996 (($ (-1 (-751) (-751)) $) NIL)) (-4094 ((|#1| $) NIL)) (-4144 (((-751) $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 20)) (-2089 (($) NIL T CONST)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL))) -(((-524 |#1|) (-13 (-773) (-502 (-751) |#1|)) (-827)) (T -524)) -NIL -(-13 (-773) (-502 (-751) |#1|)) -((-3194 (((-625 |#2|) (-1145 |#1|) |#3|) 83)) (-3204 (((-625 (-2 (|:| |outval| |#2|) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 |#2|))))) (-669 |#1|) |#3| (-1 (-413 (-1145 |#1|)) (-1145 |#1|))) 100)) (-3187 (((-1145 |#1|) (-669 |#1|)) 95))) -(((-525 |#1| |#2| |#3|) (-10 -7 (-15 -3187 ((-1145 |#1|) (-669 |#1|))) (-15 -3194 ((-625 |#2|) (-1145 |#1|) |#3|)) (-15 -3204 ((-625 (-2 (|:| |outval| |#2|) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 |#2|))))) (-669 |#1|) |#3| (-1 (-413 (-1145 |#1|)) (-1145 |#1|))))) (-358) (-358) (-13 (-358) (-825))) (T -525)) -((-3204 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *6)) (-5 *5 (-1 (-413 (-1145 *6)) (-1145 *6))) (-4 *6 (-358)) (-5 *2 (-625 (-2 (|:| |outval| *7) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 *7)))))) (-5 *1 (-525 *6 *7 *4)) (-4 *7 (-358)) (-4 *4 (-13 (-358) (-825))))) (-3194 (*1 *2 *3 *4) (-12 (-5 *3 (-1145 *5)) (-4 *5 (-358)) (-5 *2 (-625 *6)) (-5 *1 (-525 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825))))) (-3187 (*1 *2 *3) (-12 (-5 *3 (-669 *4)) (-4 *4 (-358)) (-5 *2 (-1145 *4)) (-5 *1 (-525 *4 *5 *6)) (-4 *5 (-358)) (-4 *6 (-13 (-358) (-825)))))) -(-10 -7 (-15 -3187 ((-1145 |#1|) (-669 |#1|))) (-15 -3194 ((-625 |#2|) (-1145 |#1|) |#3|)) (-15 -3204 ((-625 (-2 (|:| |outval| |#2|) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 |#2|))))) (-669 |#1|) |#3| (-1 (-413 (-1145 |#1|)) (-1145 |#1|))))) -((-1828 (((-820 (-552))) 12)) (-1841 (((-820 (-552))) 14)) (-1396 (((-813 (-552))) 9))) -(((-526) (-10 -7 (-15 -1396 ((-813 (-552)))) (-15 -1828 ((-820 (-552)))) (-15 -1841 ((-820 (-552)))))) (T -526)) -((-1841 (*1 *2) (-12 (-5 *2 (-820 (-552))) (-5 *1 (-526)))) (-1828 (*1 *2) (-12 (-5 *2 (-820 (-552))) (-5 *1 (-526)))) (-1396 (*1 *2) (-12 (-5 *2 (-813 (-552))) (-5 *1 (-526))))) -(-10 -7 (-15 -1396 ((-813 (-552)))) (-15 -1828 ((-820 (-552)))) (-15 -1841 ((-820 (-552))))) -((-3241 (((-528) (-1149)) 15)) (-1509 ((|#1| (-528)) 20))) -(((-527 |#1|) (-10 -7 (-15 -3241 ((-528) (-1149))) (-15 -1509 (|#1| (-528)))) (-1186)) (T -527)) -((-1509 (*1 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-527 *2)) (-4 *2 (-1186)))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-528)) (-5 *1 (-527 *4)) (-4 *4 (-1186))))) -(-10 -7 (-15 -3241 ((-528) (-1149))) (-15 -1509 (|#1| (-528)))) -((-1671 (((-112) $ $) NIL)) (-3225 (((-1131) $) 48)) (-2981 (((-112) $) 43)) (-3621 (((-1149) $) 44)) (-2993 (((-112) $) 41)) (-4265 (((-1131) $) 42)) (-3214 (($ (-1131)) 49)) (-3016 (((-112) $) NIL)) (-3039 (((-112) $) NIL)) (-3004 (((-112) $) NIL)) (-2883 (((-1131) $) NIL)) (-4147 (($ $ (-625 (-1149))) 20)) (-1509 (((-52) $) 22)) (-2970 (((-112) $) NIL)) (-3642 (((-552) $) NIL)) (-2831 (((-1093) $) NIL)) (-2487 (($ $ (-625 (-1149)) (-1149)) 61)) (-2958 (((-112) $) NIL)) (-2189 (((-221) $) NIL)) (-3100 (($ $) 38)) (-2149 (((-839) $) NIL)) (-2772 (((-112) $ $) NIL)) (-2154 (($ $ (-552)) NIL) (($ $ (-625 (-552))) NIL)) (-3905 (((-625 $) $) 28)) (-2574 (((-1149) (-625 $)) 50)) (-2042 (($ (-625 $)) 57) (($ (-1131)) NIL) (($ (-1149)) 18) (($ (-552)) 8) (($ (-221)) 25) (($ (-839)) NIL) (((-1077) $) 11) (($ (-1077)) 12)) (-4024 (((-1149) (-1149) (-625 $)) 53)) (-1683 (((-839) $) 46)) (-2825 (($ $) 52)) (-2812 (($ $) 51)) (-3232 (($ $ (-625 $)) 58)) (-3028 (((-112) $) 27)) (-2089 (($) 9 T CONST)) (-2100 (($) 10 T CONST)) (-2281 (((-112) $ $) 62)) (-2404 (($ $ $) 67)) (-2382 (($ $ $) 63)) (** (($ $ (-751)) 66) (($ $ (-552)) 65)) (* (($ $ $) 64)) (-1471 (((-552) $) NIL))) -(((-528) (-13 (-1076 (-1131) (-1149) (-552) (-221) (-839)) (-598 (-1077)) (-10 -8 (-15 -1509 ((-52) $)) (-15 -2042 ($ (-1077))) (-15 -3232 ($ $ (-625 $))) (-15 -2487 ($ $ (-625 (-1149)) (-1149))) (-15 -4147 ($ $ (-625 (-1149)))) (-15 -2382 ($ $ $)) (-15 * ($ $ $)) (-15 -2404 ($ $ $)) (-15 ** ($ $ (-751))) (-15 ** ($ $ (-552))) (-15 0 ($) -1426) (-15 1 ($) -1426) (-15 -3100 ($ $)) (-15 -3225 ((-1131) $)) (-15 -3214 ($ (-1131))) (-15 -2574 ((-1149) (-625 $))) (-15 -4024 ((-1149) (-1149) (-625 $)))))) (T -528)) -((-1509 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-528)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-528)))) (-3232 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-528))) (-5 *1 (-528)))) (-2487 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-1149)) (-5 *1 (-528)))) (-4147 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-528)))) (-2382 (*1 *1 *1 *1) (-5 *1 (-528))) (* (*1 *1 *1 *1) (-5 *1 (-528))) (-2404 (*1 *1 *1 *1) (-5 *1 (-528))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-528)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-528)))) (-2089 (*1 *1) (-5 *1 (-528))) (-2100 (*1 *1) (-5 *1 (-528))) (-3100 (*1 *1 *1) (-5 *1 (-528))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-528)))) (-3214 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-528)))) (-2574 (*1 *2 *3) (-12 (-5 *3 (-625 (-528))) (-5 *2 (-1149)) (-5 *1 (-528)))) (-4024 (*1 *2 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-528))) (-5 *1 (-528))))) -(-13 (-1076 (-1131) (-1149) (-552) (-221) (-839)) (-598 (-1077)) (-10 -8 (-15 -1509 ((-52) $)) (-15 -2042 ($ (-1077))) (-15 -3232 ($ $ (-625 $))) (-15 -2487 ($ $ (-625 (-1149)) (-1149))) (-15 -4147 ($ $ (-625 (-1149)))) (-15 -2382 ($ $ $)) (-15 * ($ $ $)) (-15 -2404 ($ $ $)) (-15 ** ($ $ (-751))) (-15 ** ($ $ (-552))) (-15 (-2089) ($) -1426) (-15 (-2100) ($) -1426) (-15 -3100 ($ $)) (-15 -3225 ((-1131) $)) (-15 -3214 ($ (-1131))) (-15 -2574 ((-1149) (-625 $))) (-15 -4024 ((-1149) (-1149) (-625 $))))) -((-4071 ((|#2| |#2|) 17)) (-4046 ((|#2| |#2|) 13)) (-4084 ((|#2| |#2| (-552) (-552)) 20)) (-4059 ((|#2| |#2|) 15))) -(((-529 |#1| |#2|) (-10 -7 (-15 -4046 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4084 (|#2| |#2| (-552) (-552)))) (-13 (-544) (-145)) (-1223 |#1|)) (T -529)) -((-4084 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-552)) (-4 *4 (-13 (-544) (-145))) (-5 *1 (-529 *4 *2)) (-4 *2 (-1223 *4)))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-145))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1223 *3)))) (-4059 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-145))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1223 *3)))) (-4046 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-145))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1223 *3))))) -(-10 -7 (-15 -4046 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4084 (|#2| |#2| (-552) (-552)))) -((-3268 (((-625 (-289 (-928 |#2|))) (-625 |#2|) (-625 (-1149))) 32)) (-3250 (((-625 |#2|) (-928 |#1|) |#3|) 53) (((-625 |#2|) (-1145 |#1|) |#3|) 52)) (-3259 (((-625 (-625 |#2|)) (-625 (-928 |#1|)) (-625 (-928 |#1|)) (-625 (-1149)) |#3|) 91))) -(((-530 |#1| |#2| |#3|) (-10 -7 (-15 -3250 ((-625 |#2|) (-1145 |#1|) |#3|)) (-15 -3250 ((-625 |#2|) (-928 |#1|) |#3|)) (-15 -3259 ((-625 (-625 |#2|)) (-625 (-928 |#1|)) (-625 (-928 |#1|)) (-625 (-1149)) |#3|)) (-15 -3268 ((-625 (-289 (-928 |#2|))) (-625 |#2|) (-625 (-1149))))) (-446) (-358) (-13 (-358) (-825))) (T -530)) -((-3268 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *6)) (-5 *4 (-625 (-1149))) (-4 *6 (-358)) (-5 *2 (-625 (-289 (-928 *6)))) (-5 *1 (-530 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-13 (-358) (-825))))) (-3259 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-625 (-928 *6))) (-5 *4 (-625 (-1149))) (-4 *6 (-446)) (-5 *2 (-625 (-625 *7))) (-5 *1 (-530 *6 *7 *5)) (-4 *7 (-358)) (-4 *5 (-13 (-358) (-825))))) (-3250 (*1 *2 *3 *4) (-12 (-5 *3 (-928 *5)) (-4 *5 (-446)) (-5 *2 (-625 *6)) (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825))))) (-3250 (*1 *2 *3 *4) (-12 (-5 *3 (-1145 *5)) (-4 *5 (-446)) (-5 *2 (-625 *6)) (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825)))))) -(-10 -7 (-15 -3250 ((-625 |#2|) (-1145 |#1|) |#3|)) (-15 -3250 ((-625 |#2|) (-928 |#1|) |#3|)) (-15 -3259 ((-625 (-625 |#2|)) (-625 (-928 |#1|)) (-625 (-928 |#1|)) (-625 (-1149)) |#3|)) (-15 -3268 ((-625 (-289 (-928 |#2|))) (-625 |#2|) (-625 (-1149))))) -((-3297 ((|#2| |#2| |#1|) 17)) (-3277 ((|#2| (-625 |#2|)) 27)) (-3288 ((|#2| (-625 |#2|)) 46))) -(((-531 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3277 (|#2| (-625 |#2|))) (-15 -3288 (|#2| (-625 |#2|))) (-15 -3297 (|#2| |#2| |#1|))) (-302) (-1208 |#1|) |#1| (-1 |#1| |#1| (-751))) (T -531)) -((-3297 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-751))) (-5 *1 (-531 *3 *2 *4 *5)) (-4 *2 (-1208 *3)))) (-3288 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-1208 *4)) (-5 *1 (-531 *4 *2 *5 *6)) (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-751))))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-1208 *4)) (-5 *1 (-531 *4 *2 *5 *6)) (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-751)))))) -(-10 -7 (-15 -3277 (|#2| (-625 |#2|))) (-15 -3288 (|#2| (-625 |#2|))) (-15 -3297 (|#2| |#2| |#1|))) -((-3824 (((-413 (-1145 |#4|)) (-1145 |#4|) (-1 (-413 (-1145 |#3|)) (-1145 |#3|))) 80) (((-413 |#4|) |#4| (-1 (-413 (-1145 |#3|)) (-1145 |#3|))) 169))) -(((-532 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3824 ((-413 |#4|) |#4| (-1 (-413 (-1145 |#3|)) (-1145 |#3|)))) (-15 -3824 ((-413 (-1145 |#4|)) (-1145 |#4|) (-1 (-413 (-1145 |#3|)) (-1145 |#3|))))) (-827) (-773) (-13 (-302) (-145)) (-925 |#3| |#2| |#1|)) (T -532)) -((-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-413 (-1145 *7)) (-1145 *7))) (-4 *7 (-13 (-302) (-145))) (-4 *5 (-827)) (-4 *6 (-773)) (-4 *8 (-925 *7 *6 *5)) (-5 *2 (-413 (-1145 *8))) (-5 *1 (-532 *5 *6 *7 *8)) (-5 *3 (-1145 *8)))) (-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-413 (-1145 *7)) (-1145 *7))) (-4 *7 (-13 (-302) (-145))) (-4 *5 (-827)) (-4 *6 (-773)) (-5 *2 (-413 *3)) (-5 *1 (-532 *5 *6 *7 *3)) (-4 *3 (-925 *7 *6 *5))))) -(-10 -7 (-15 -3824 ((-413 |#4|) |#4| (-1 (-413 (-1145 |#3|)) (-1145 |#3|)))) (-15 -3824 ((-413 (-1145 |#4|)) (-1145 |#4|) (-1 (-413 (-1145 |#3|)) (-1145 |#3|))))) -((-4071 ((|#4| |#4|) 74)) (-4046 ((|#4| |#4|) 70)) (-4084 ((|#4| |#4| (-552) (-552)) 76)) (-4059 ((|#4| |#4|) 72))) -(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4046 (|#4| |#4|)) (-15 -4059 (|#4| |#4|)) (-15 -4071 (|#4| |#4|)) (-15 -4084 (|#4| |#4| (-552) (-552)))) (-13 (-358) (-363) (-598 (-552))) (-1208 |#1|) (-705 |#1| |#2|) (-1223 |#3|)) (T -533)) -((-4084 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-552)) (-4 *4 (-13 (-358) (-363) (-598 *3))) (-4 *5 (-1208 *4)) (-4 *6 (-705 *4 *5)) (-5 *1 (-533 *4 *5 *6 *2)) (-4 *2 (-1223 *6)))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-4 *4 (-1208 *3)) (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1223 *5)))) (-4059 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-4 *4 (-1208 *3)) (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1223 *5)))) (-4046 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-4 *4 (-1208 *3)) (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1223 *5))))) -(-10 -7 (-15 -4046 (|#4| |#4|)) (-15 -4059 (|#4| |#4|)) (-15 -4071 (|#4| |#4|)) (-15 -4084 (|#4| |#4| (-552) (-552)))) -((-4071 ((|#2| |#2|) 27)) (-4046 ((|#2| |#2|) 23)) (-4084 ((|#2| |#2| (-552) (-552)) 29)) (-4059 ((|#2| |#2|) 25))) -(((-534 |#1| |#2|) (-10 -7 (-15 -4046 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4084 (|#2| |#2| (-552) (-552)))) (-13 (-358) (-363) (-598 (-552))) (-1223 |#1|)) (T -534)) -((-4084 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-552)) (-4 *4 (-13 (-358) (-363) (-598 *3))) (-5 *1 (-534 *4 *2)) (-4 *2 (-1223 *4)))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1223 *3)))) (-4059 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1223 *3)))) (-4046 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1223 *3))))) -(-10 -7 (-15 -4046 (|#2| |#2|)) (-15 -4059 (|#2| |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4084 (|#2| |#2| (-552) (-552)))) -((-3307 (((-3 (-552) "failed") |#2| |#1| (-1 (-3 (-552) "failed") |#1|)) 14) (((-3 (-552) "failed") |#2| |#1| (-552) (-1 (-3 (-552) "failed") |#1|)) 13) (((-3 (-552) "failed") |#2| (-552) (-1 (-3 (-552) "failed") |#1|)) 26))) -(((-535 |#1| |#2|) (-10 -7 (-15 -3307 ((-3 (-552) "failed") |#2| (-552) (-1 (-3 (-552) "failed") |#1|))) (-15 -3307 ((-3 (-552) "failed") |#2| |#1| (-552) (-1 (-3 (-552) "failed") |#1|))) (-15 -3307 ((-3 (-552) "failed") |#2| |#1| (-1 (-3 (-552) "failed") |#1|)))) (-1025) (-1208 |#1|)) (T -535)) -((-3307 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-552) "failed") *4)) (-4 *4 (-1025)) (-5 *2 (-552)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1208 *4)))) (-3307 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-552) "failed") *4)) (-4 *4 (-1025)) (-5 *2 (-552)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1208 *4)))) (-3307 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-552) "failed") *5)) (-4 *5 (-1025)) (-5 *2 (-552)) (-5 *1 (-535 *5 *3)) (-4 *3 (-1208 *5))))) -(-10 -7 (-15 -3307 ((-3 (-552) "failed") |#2| (-552) (-1 (-3 (-552) "failed") |#1|))) (-15 -3307 ((-3 (-552) "failed") |#2| |#1| (-552) (-1 (-3 (-552) "failed") |#1|))) (-15 -3307 ((-3 (-552) "failed") |#2| |#1| (-1 (-3 (-552) "failed") |#1|)))) -((-3364 (($ $ $) 79)) (-1330 (((-413 $) $) 47)) (-1893 (((-3 (-552) "failed") $) 59)) (-1895 (((-552) $) 37)) (-2555 (((-3 (-402 (-552)) "failed") $) 74)) (-2546 (((-112) $) 24)) (-2538 (((-402 (-552)) $) 72)) (-2951 (((-112) $) 50)) (-3327 (($ $ $ $) 86)) (-3620 (((-112) $) 16)) (-1302 (($ $ $) 57)) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 69)) (-4034 (((-3 $ "failed") $) 64)) (-2059 (($ $) 23)) (-3317 (($ $ $) 84)) (-2071 (($) 60)) (-1279 (($ $) 53)) (-3824 (((-413 $) $) 45)) (-3943 (((-112) $) 14)) (-2397 (((-751) $) 28)) (-3072 (($ $ (-751)) NIL) (($ $) 10)) (-1871 (($ $) 17)) (-2042 (((-552) $) NIL) (((-528) $) 36) (((-868 (-552)) $) 40) (((-374) $) 31) (((-221) $) 33)) (-4141 (((-751)) 8)) (-3383 (((-112) $ $) 20)) (-3901 (($ $ $) 55))) -(((-536 |#1|) (-10 -8 (-15 -3317 (|#1| |#1| |#1|)) (-15 -3327 (|#1| |#1| |#1| |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -1871 (|#1| |#1|)) (-15 -2555 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -2538 ((-402 (-552)) |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -3364 (|#1| |#1| |#1|)) (-15 -3383 ((-112) |#1| |#1|)) (-15 -3943 ((-112) |#1|)) (-15 -2071 (|#1|)) (-15 -4034 ((-3 |#1| "failed") |#1|)) (-15 -2042 ((-221) |#1|)) (-15 -2042 ((-374) |#1|)) (-15 -1302 (|#1| |#1| |#1|)) (-15 -1279 (|#1| |#1|)) (-15 -3901 (|#1| |#1| |#1|)) (-15 -3841 ((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|))) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -2042 ((-552) |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3620 ((-112) |#1|)) (-15 -2397 ((-751) |#1|)) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -1330 ((-413 |#1|) |#1|)) (-15 -2951 ((-112) |#1|)) (-15 -4141 ((-751)))) (-537)) (T -536)) -((-4141 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-536 *3)) (-4 *3 (-537))))) -(-10 -8 (-15 -3317 (|#1| |#1| |#1|)) (-15 -3327 (|#1| |#1| |#1| |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -1871 (|#1| |#1|)) (-15 -2555 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -2538 ((-402 (-552)) |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -3364 (|#1| |#1| |#1|)) (-15 -3383 ((-112) |#1| |#1|)) (-15 -3943 ((-112) |#1|)) (-15 -2071 (|#1|)) (-15 -4034 ((-3 |#1| "failed") |#1|)) (-15 -2042 ((-221) |#1|)) (-15 -2042 ((-374) |#1|)) (-15 -1302 (|#1| |#1| |#1|)) (-15 -1279 (|#1| |#1|)) (-15 -3901 (|#1| |#1| |#1|)) (-15 -3841 ((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|))) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -2042 ((-552) |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3620 ((-112) |#1|)) (-15 -2397 ((-751) |#1|)) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -1330 ((-413 |#1|) |#1|)) (-15 -2951 ((-112) |#1|)) (-15 -4141 ((-751)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-3364 (($ $ $) 82)) (-2077 (((-3 $ "failed") $ $) 19)) (-3346 (($ $ $ $) 71)) (-2194 (($ $) 49)) (-1330 (((-413 $) $) 50)) (-2408 (((-112) $ $) 122)) (-4127 (((-552) $) 111)) (-3420 (($ $ $) 85)) (-3101 (($) 17 T CONST)) (-1893 (((-3 (-552) "failed") $) 103)) (-1895 (((-552) $) 102)) (-2851 (($ $ $) 126)) (-1794 (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 101) (((-669 (-552)) (-669 $)) 100)) (-4174 (((-3 $ "failed") $) 32)) (-2555 (((-3 (-402 (-552)) "failed") $) 79)) (-2546 (((-112) $) 81)) (-2538 (((-402 (-552)) $) 80)) (-3702 (($) 78) (($ $) 77)) (-2826 (($ $ $) 125)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 120)) (-2951 (((-112) $) 51)) (-3327 (($ $ $ $) 69)) (-3372 (($ $ $) 83)) (-3620 (((-112) $) 113)) (-1302 (($ $ $) 94)) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 97)) (-3650 (((-112) $) 30)) (-3932 (((-112) $) 89)) (-4034 (((-3 $ "failed") $) 91)) (-3630 (((-112) $) 112)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 129)) (-3336 (($ $ $ $) 70)) (-3658 (($ $ $) 114)) (-3332 (($ $ $) 115)) (-2059 (($ $) 73)) (-3456 (($ $) 86)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-3317 (($ $ $) 68)) (-2071 (($) 90 T CONST)) (-1971 (($ $) 75)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-1279 (($ $) 95)) (-3824 (((-413 $) $) 48)) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 128) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 127)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 121)) (-3943 (((-112) $) 88)) (-2397 (((-751) $) 123)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 124)) (-3072 (($ $ (-751)) 108) (($ $) 106)) (-2715 (($ $) 74)) (-1871 (($ $) 76)) (-2042 (((-552) $) 105) (((-528) $) 99) (((-868 (-552)) $) 98) (((-374) $) 93) (((-221) $) 92)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-552)) 104)) (-4141 (((-751)) 28)) (-3383 (((-112) $ $) 84)) (-3901 (($ $ $) 96)) (-3929 (($) 87)) (-3518 (((-112) $ $) 37)) (-3355 (($ $ $ $) 72)) (-1727 (($ $) 110)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-751)) 109) (($ $) 107)) (-2346 (((-112) $ $) 117)) (-2320 (((-112) $ $) 118)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 116)) (-2307 (((-112) $ $) 119)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-537) (-138)) (T -537)) -((-3932 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) (-3943 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) (-3929 (*1 *1) (-4 *1 (-537))) (-3456 (*1 *1 *1) (-4 *1 (-537))) (-3420 (*1 *1 *1 *1) (-4 *1 (-537))) (-3383 (*1 *2 *1 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) (-3372 (*1 *1 *1 *1) (-4 *1 (-537))) (-3364 (*1 *1 *1 *1) (-4 *1 (-537))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) (-2538 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-402 (-552))))) (-2555 (*1 *2 *1) (|partial| -12 (-4 *1 (-537)) (-5 *2 (-402 (-552))))) (-3702 (*1 *1) (-4 *1 (-537))) (-3702 (*1 *1 *1) (-4 *1 (-537))) (-1871 (*1 *1 *1) (-4 *1 (-537))) (-1971 (*1 *1 *1) (-4 *1 (-537))) (-2715 (*1 *1 *1) (-4 *1 (-537))) (-2059 (*1 *1 *1) (-4 *1 (-537))) (-3355 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-3346 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-3336 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-3327 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-3317 (*1 *1 *1 *1) (-4 *1 (-537)))) -(-13 (-1190) (-302) (-800) (-229) (-598 (-552)) (-1014 (-552)) (-621 (-552)) (-598 (-528)) (-598 (-868 (-552))) (-862 (-552)) (-141) (-998) (-145) (-1124) (-10 -8 (-15 -3932 ((-112) $)) (-15 -3943 ((-112) $)) (-6 -4352) (-15 -3929 ($)) (-15 -3456 ($ $)) (-15 -3420 ($ $ $)) (-15 -3383 ((-112) $ $)) (-15 -3372 ($ $ $)) (-15 -3364 ($ $ $)) (-15 -2546 ((-112) $)) (-15 -2538 ((-402 (-552)) $)) (-15 -2555 ((-3 (-402 (-552)) "failed") $)) (-15 -3702 ($)) (-15 -3702 ($ $)) (-15 -1871 ($ $)) (-15 -1971 ($ $)) (-15 -2715 ($ $)) (-15 -2059 ($ $)) (-15 -3355 ($ $ $ $)) (-15 -3346 ($ $ $ $)) (-15 -3336 ($ $ $ $)) (-15 -3327 ($ $ $ $)) (-15 -3317 ($ $ $)) (-6 -4351))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-597 (-839)) . T) ((-141) . T) ((-170) . T) ((-598 (-221)) . T) ((-598 (-374)) . T) ((-598 (-528)) . T) ((-598 (-552)) . T) ((-598 (-868 (-552))) . T) ((-229) . T) ((-285) . T) ((-302) . T) ((-446) . T) ((-544) . T) ((-628 $) . T) ((-621 (-552)) . T) ((-698 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-775) . T) ((-800) . T) ((-825) . T) ((-827) . T) ((-862 (-552)) . T) ((-896) . T) ((-998) . T) ((-1014 (-552)) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1124) . T) ((-1190) . T)) -((-1671 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2509 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#2| $ |#1| |#2|) NIL)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3128 (((-3 |#2| "failed") |#1| $) NIL)) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1938 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) NIL)) (-1416 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) NIL)) (-3799 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 ((|#1| $) NIL (|has| |#1| (-827)))) (-3730 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-2537 ((|#1| $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-3712 (((-625 |#1|) $) NIL)) (-1370 (((-112) |#1| $) NIL)) (-2953 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-3966 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-2554 (((-625 |#1|) $) NIL)) (-2564 (((-112) |#1| $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2924 ((|#2| $) NIL (|has| |#1| (-827)))) (-2380 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL)) (-2518 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4255 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1683 (((-839) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839))) (|has| |#2| (-597 (-839)))))) (-2977 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-538 |#1| |#2| |#3|) (-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) (-1073) (-1073) (-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353)))) (T -538)) -NIL -(-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) -((-3394 (((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|) (-1 (-1145 |#2|) (-1145 |#2|))) 51))) -(((-539 |#1| |#2|) (-10 -7 (-15 -3394 ((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|) (-1 (-1145 |#2|) (-1145 |#2|))))) (-13 (-827) (-544)) (-13 (-27) (-425 |#1|))) (T -539)) -((-3394 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-596 *3)) (-5 *5 (-1 (-1145 *3) (-1145 *3))) (-4 *3 (-13 (-27) (-425 *6))) (-4 *6 (-13 (-827) (-544))) (-5 *2 (-571 *3)) (-5 *1 (-539 *6 *3))))) -(-10 -7 (-15 -3394 ((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|) (-1 (-1145 |#2|) (-1145 |#2|))))) -((-3412 (((-571 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-3424 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-3404 (((-571 |#5|) |#5| (-1 |#3| |#3|)) 202))) -(((-540 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3404 ((-571 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3412 ((-571 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3424 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-827) (-544) (-1014 (-552))) (-13 (-27) (-425 |#1|)) (-1208 |#2|) (-1208 (-402 |#3|)) (-337 |#2| |#3| |#4|)) (T -540)) -((-3424 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-13 (-27) (-425 *4))) (-4 *4 (-13 (-827) (-544) (-1014 (-552)))) (-4 *7 (-1208 (-402 *6))) (-5 *1 (-540 *4 *5 *6 *7 *2)) (-4 *2 (-337 *5 *6 *7)))) (-3412 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1208 *6)) (-4 *6 (-13 (-27) (-425 *5))) (-4 *5 (-13 (-827) (-544) (-1014 (-552)))) (-4 *8 (-1208 (-402 *7))) (-5 *2 (-571 *3)) (-5 *1 (-540 *5 *6 *7 *8 *3)) (-4 *3 (-337 *6 *7 *8)))) (-3404 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1208 *6)) (-4 *6 (-13 (-27) (-425 *5))) (-4 *5 (-13 (-827) (-544) (-1014 (-552)))) (-4 *8 (-1208 (-402 *7))) (-5 *2 (-571 *3)) (-5 *1 (-540 *5 *6 *7 *8 *3)) (-4 *3 (-337 *6 *7 *8))))) -(-10 -7 (-15 -3404 ((-571 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3412 ((-571 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3424 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-3459 (((-112) (-552) (-552)) 10)) (-3434 (((-552) (-552)) 7)) (-3446 (((-552) (-552) (-552)) 8))) -(((-541) (-10 -7 (-15 -3434 ((-552) (-552))) (-15 -3446 ((-552) (-552) (-552))) (-15 -3459 ((-112) (-552) (-552))))) (T -541)) -((-3459 (*1 *2 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-112)) (-5 *1 (-541)))) (-3446 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-541)))) (-3434 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-541))))) -(-10 -7 (-15 -3434 ((-552) (-552))) (-15 -3446 ((-552) (-552) (-552))) (-15 -3459 ((-112) (-552) (-552)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-1924 ((|#1| $) 59)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-3728 (($ $) 89)) (-3604 (($ $) 72)) (-1282 ((|#1| $) 60)) (-2077 (((-3 $ "failed") $ $) 19)) (-3837 (($ $) 71)) (-3710 (($ $) 88)) (-3581 (($ $) 73)) (-3749 (($ $) 87)) (-3627 (($ $) 74)) (-3101 (($) 17 T CONST)) (-1893 (((-3 (-552) "failed") $) 67)) (-1895 (((-552) $) 66)) (-4174 (((-3 $ "failed") $) 32)) (-3490 (($ |#1| |#1|) 64)) (-3620 (((-112) $) 58)) (-1385 (($) 99)) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 70)) (-3630 (((-112) $) 57)) (-3658 (($ $ $) 105)) (-3332 (($ $ $) 104)) (-2458 (($ $) 96)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-3500 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-402 (-552))) 62)) (-3480 ((|#1| $) 61)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-2802 (((-3 $ "failed") $ $) 40)) (-2863 (($ $) 97)) (-3759 (($ $) 86)) (-3638 (($ $) 75)) (-3738 (($ $) 85)) (-3614 (($ $) 76)) (-3721 (($ $) 84)) (-3593 (($ $) 77)) (-3470 (((-112) $ |#1|) 56)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-552)) 68)) (-4141 (((-751)) 28)) (-3789 (($ $) 95)) (-3670 (($ $) 83)) (-3518 (((-112) $ $) 37)) (-3769 (($ $) 94)) (-3648 (($ $) 82)) (-3809 (($ $) 93)) (-3691 (($ $) 81)) (-3742 (($ $) 92)) (-3700 (($ $) 80)) (-3797 (($ $) 91)) (-3681 (($ $) 79)) (-3778 (($ $) 90)) (-3659 (($ $) 78)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2346 (((-112) $ $) 102)) (-2320 (((-112) $ $) 101)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 103)) (-2307 (((-112) $ $) 100)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ $) 98) (($ $ (-402 (-552))) 69)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-542 |#1|) (-138) (-13 (-399) (-1171))) (T -542)) -((-3500 (*1 *1 *2 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171))))) (-3490 (*1 *1 *2 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171))))) (-3500 (*1 *1 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171))))) (-3500 (*1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-4 *1 (-542 *3)) (-4 *3 (-13 (-399) (-1171))))) (-3480 (*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171))))) (-1282 (*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171))))) (-1924 (*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171))))) (-3620 (*1 *2 *1) (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112)))) (-3470 (*1 *2 *1 *3) (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112))))) -(-13 (-446) (-827) (-1171) (-978) (-1014 (-552)) (-10 -8 (-6 -2874) (-15 -3500 ($ |t#1| |t#1|)) (-15 -3490 ($ |t#1| |t#1|)) (-15 -3500 ($ |t#1|)) (-15 -3500 ($ (-402 (-552)))) (-15 -3480 (|t#1| $)) (-15 -1282 (|t#1| $)) (-15 -1924 (|t#1| $)) (-15 -3620 ((-112) $)) (-15 -3630 ((-112) $)) (-15 -3470 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-94) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-279) . T) ((-285) . T) ((-446) . T) ((-486) . T) ((-544) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-827) . T) ((-978) . T) ((-1014 (-552)) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1171) . T) ((-1174) . T)) -((-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 9)) (-3528 (($ $) 11)) (-3509 (((-112) $) 18)) (-4174 (((-3 $ "failed") $) 16)) (-3518 (((-112) $ $) 20))) -(((-543 |#1|) (-10 -8 (-15 -3509 ((-112) |#1|)) (-15 -3518 ((-112) |#1| |#1|)) (-15 -3528 (|#1| |#1|)) (-15 -3537 ((-2 (|:| -3618 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4174 ((-3 |#1| "failed") |#1|))) (-544)) (T -543)) -NIL -(-10 -8 (-15 -3509 ((-112) |#1|)) (-15 -3518 ((-112) |#1| |#1|)) (-15 -3528 (|#1| |#1|)) (-15 -3537 ((-2 (|:| -3618 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4174 ((-3 |#1| "failed") |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-2802 (((-3 $ "failed") $ $) 40)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-544) (-138)) (T -544)) -((-2802 (*1 *1 *1 *1) (|partial| -4 *1 (-544))) (-3537 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3618 *1) (|:| -4340 *1) (|:| |associate| *1))) (-4 *1 (-544)))) (-3528 (*1 *1 *1) (-4 *1 (-544))) (-3518 (*1 *2 *1 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112)))) (-3509 (*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112))))) -(-13 (-170) (-38 $) (-285) (-10 -8 (-15 -2802 ((-3 $ "failed") $ $)) (-15 -3537 ((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $)) (-15 -3528 ($ $)) (-15 -3518 ((-112) $ $)) (-15 -3509 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-285) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-3558 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1149) (-625 |#2|)) 37)) (-3579 (((-571 |#2|) |#2| (-1149)) 62)) (-3568 (((-3 |#2| "failed") |#2| (-1149)) 152)) (-3591 (((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1149) (-596 |#2|) (-625 (-596 |#2|))) 155)) (-3549 (((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1149) |#2|) 40))) -(((-545 |#1| |#2|) (-10 -7 (-15 -3549 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1149) |#2|)) (-15 -3558 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1149) (-625 |#2|))) (-15 -3568 ((-3 |#2| "failed") |#2| (-1149))) (-15 -3579 ((-571 |#2|) |#2| (-1149))) (-15 -3591 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1149) (-596 |#2|) (-625 (-596 |#2|))))) (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552))) (-13 (-27) (-1171) (-425 |#1|))) (T -545)) -((-3591 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1149)) (-5 *6 (-625 (-596 *3))) (-5 *5 (-596 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *7))) (-4 *7 (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-2 (|:| -3114 *3) (|:| |coeff| *3))) (-5 *1 (-545 *7 *3)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-571 *3)) (-5 *1 (-545 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))))) (-3568 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-545 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4))))) (-3558 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-625 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-545 *6 *3)))) (-3549 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-2 (|:| -3114 *3) (|:| |coeff| *3))) (-5 *1 (-545 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5)))))) -(-10 -7 (-15 -3549 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1149) |#2|)) (-15 -3558 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1149) (-625 |#2|))) (-15 -3568 ((-3 |#2| "failed") |#2| (-1149))) (-15 -3579 ((-571 |#2|) |#2| (-1149))) (-15 -3591 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1149) (-596 |#2|) (-625 (-596 |#2|))))) -((-1330 (((-413 |#1|) |#1|) 18)) (-3824 (((-413 |#1|) |#1|) 33)) (-3612 (((-3 |#1| "failed") |#1|) 44)) (-3602 (((-413 |#1|) |#1|) 51))) -(((-546 |#1|) (-10 -7 (-15 -3824 ((-413 |#1|) |#1|)) (-15 -1330 ((-413 |#1|) |#1|)) (-15 -3602 ((-413 |#1|) |#1|)) (-15 -3612 ((-3 |#1| "failed") |#1|))) (-537)) (T -546)) -((-3612 (*1 *2 *2) (|partial| -12 (-5 *1 (-546 *2)) (-4 *2 (-537)))) (-3602 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537)))) (-1330 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537)))) (-3824 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537))))) -(-10 -7 (-15 -3824 ((-413 |#1|) |#1|)) (-15 -1330 ((-413 |#1|) |#1|)) (-15 -3602 ((-413 |#1|) |#1|)) (-15 -3612 ((-3 |#1| "failed") |#1|))) -((-3623 (($) 9)) (-2352 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 35)) (-3712 (((-625 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $) 32)) (-3966 (($ (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3644 (($ (-625 (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-4120 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 39)) (-1358 (((-625 (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-3634 (((-1237)) 12))) -(((-547) (-10 -8 (-15 -3623 ($)) (-15 -3634 ((-1237))) (-15 -3712 ((-625 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -3644 ($ (-625 (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3966 ($ (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2352 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1358 ((-625 (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4120 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -547)) -((-4120 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-547)))) (-1358 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-547)))) (-2352 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-547)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-547)))) (-3644 (*1 *1 *2) (-12 (-5 *2 (-625 (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-547)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-5 *1 (-547)))) (-3634 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-547)))) (-3623 (*1 *1) (-5 *1 (-547)))) -(-10 -8 (-15 -3623 ($)) (-15 -3634 ((-1237))) (-15 -3712 ((-625 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -3644 ($ (-625 (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3966 ($ (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2352 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1358 ((-625 (-2 (|:| -2971 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4120 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1129 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3315 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) -((-3793 (((-1145 (-402 (-1145 |#2|))) |#2| (-596 |#2|) (-596 |#2|) (-1145 |#2|)) 32)) (-3677 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-596 |#2|) (-596 |#2|) (-625 |#2|) (-596 |#2|) |#2| (-402 (-1145 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-596 |#2|) (-596 |#2|) (-625 |#2|) |#2| (-1145 |#2|)) 110)) (-3653 (((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|) (-596 |#2|) |#2| (-402 (-1145 |#2|))) 80) (((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|) |#2| (-1145 |#2|)) 52)) (-3665 (((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-596 |#2|) (-596 |#2|) |#2| (-596 |#2|) |#2| (-402 (-1145 |#2|))) 87) (((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-596 |#2|) (-596 |#2|) |#2| |#2| (-1145 |#2|)) 109)) (-3687 (((-3 |#2| "failed") |#2| |#2| (-596 |#2|) (-596 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1149)) (-596 |#2|) |#2| (-402 (-1145 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-596 |#2|) (-596 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1149)) |#2| (-1145 |#2|)) 111)) (-3696 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1270 (-625 |#2|))) |#3| |#2| (-596 |#2|) (-596 |#2|) (-596 |#2|) |#2| (-402 (-1145 |#2|))) 128 (|has| |#3| (-636 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1270 (-625 |#2|))) |#3| |#2| (-596 |#2|) (-596 |#2|) |#2| (-1145 |#2|)) 127 (|has| |#3| (-636 |#2|)))) (-3970 ((|#2| (-1145 (-402 (-1145 |#2|))) (-596 |#2|) |#2|) 50)) (-2148 (((-1145 (-402 (-1145 |#2|))) (-1145 |#2|) (-596 |#2|)) 31))) -(((-548 |#1| |#2| |#3|) (-10 -7 (-15 -3653 ((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|) |#2| (-1145 |#2|))) (-15 -3653 ((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|) (-596 |#2|) |#2| (-402 (-1145 |#2|)))) (-15 -3665 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-596 |#2|) (-596 |#2|) |#2| |#2| (-1145 |#2|))) (-15 -3665 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-596 |#2|) (-596 |#2|) |#2| (-596 |#2|) |#2| (-402 (-1145 |#2|)))) (-15 -3677 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-596 |#2|) (-596 |#2|) (-625 |#2|) |#2| (-1145 |#2|))) (-15 -3677 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-596 |#2|) (-596 |#2|) (-625 |#2|) (-596 |#2|) |#2| (-402 (-1145 |#2|)))) (-15 -3687 ((-3 |#2| "failed") |#2| |#2| (-596 |#2|) (-596 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1149)) |#2| (-1145 |#2|))) (-15 -3687 ((-3 |#2| "failed") |#2| |#2| (-596 |#2|) (-596 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1149)) (-596 |#2|) |#2| (-402 (-1145 |#2|)))) (-15 -3793 ((-1145 (-402 (-1145 |#2|))) |#2| (-596 |#2|) (-596 |#2|) (-1145 |#2|))) (-15 -3970 (|#2| (-1145 (-402 (-1145 |#2|))) (-596 |#2|) |#2|)) (-15 -2148 ((-1145 (-402 (-1145 |#2|))) (-1145 |#2|) (-596 |#2|))) (IF (|has| |#3| (-636 |#2|)) (PROGN (-15 -3696 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1270 (-625 |#2|))) |#3| |#2| (-596 |#2|) (-596 |#2|) |#2| (-1145 |#2|))) (-15 -3696 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1270 (-625 |#2|))) |#3| |#2| (-596 |#2|) (-596 |#2|) (-596 |#2|) |#2| (-402 (-1145 |#2|))))) |%noBranch|)) (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))) (-13 (-425 |#1|) (-27) (-1171)) (-1073)) (T -548)) -((-3696 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-596 *4)) (-5 *6 (-402 (-1145 *4))) (-4 *4 (-13 (-425 *7) (-27) (-1171))) (-4 *7 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) (-5 *1 (-548 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1073)))) (-3696 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-596 *4)) (-5 *6 (-1145 *4)) (-4 *4 (-13 (-425 *7) (-27) (-1171))) (-4 *7 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) (-5 *1 (-548 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1073)))) (-2148 (*1 *2 *3 *4) (-12 (-5 *4 (-596 *6)) (-4 *6 (-13 (-425 *5) (-27) (-1171))) (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-1145 (-402 (-1145 *6)))) (-5 *1 (-548 *5 *6 *7)) (-5 *3 (-1145 *6)) (-4 *7 (-1073)))) (-3970 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1145 (-402 (-1145 *2)))) (-5 *4 (-596 *2)) (-4 *2 (-13 (-425 *5) (-27) (-1171))) (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *1 (-548 *5 *2 *6)) (-4 *6 (-1073)))) (-3793 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-596 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-1145 (-402 (-1145 *3)))) (-5 *1 (-548 *6 *3 *7)) (-5 *5 (-1145 *3)) (-4 *7 (-1073)))) (-3687 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-596 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1149))) (-5 *5 (-402 (-1145 *2))) (-4 *2 (-13 (-425 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *1 (-548 *6 *2 *7)) (-4 *7 (-1073)))) (-3687 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-596 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1149))) (-5 *5 (-1145 *2)) (-4 *2 (-13 (-425 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *1 (-548 *6 *2 *7)) (-4 *7 (-1073)))) (-3677 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-596 *3)) (-5 *5 (-625 *3)) (-5 *6 (-402 (-1145 *3))) (-4 *3 (-13 (-425 *7) (-27) (-1171))) (-4 *7 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-548 *7 *3 *8)) (-4 *8 (-1073)))) (-3677 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-596 *3)) (-5 *5 (-625 *3)) (-5 *6 (-1145 *3)) (-4 *3 (-13 (-425 *7) (-27) (-1171))) (-4 *7 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-548 *7 *3 *8)) (-4 *8 (-1073)))) (-3665 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-596 *3)) (-5 *5 (-402 (-1145 *3))) (-4 *3 (-13 (-425 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-2 (|:| -3114 *3) (|:| |coeff| *3))) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1073)))) (-3665 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-596 *3)) (-5 *5 (-1145 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-2 (|:| -3114 *3) (|:| |coeff| *3))) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1073)))) (-3653 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-596 *3)) (-5 *5 (-402 (-1145 *3))) (-4 *3 (-13 (-425 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-571 *3)) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1073)))) (-3653 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-596 *3)) (-5 *5 (-1145 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-571 *3)) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1073))))) -(-10 -7 (-15 -3653 ((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|) |#2| (-1145 |#2|))) (-15 -3653 ((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|) (-596 |#2|) |#2| (-402 (-1145 |#2|)))) (-15 -3665 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-596 |#2|) (-596 |#2|) |#2| |#2| (-1145 |#2|))) (-15 -3665 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-596 |#2|) (-596 |#2|) |#2| (-596 |#2|) |#2| (-402 (-1145 |#2|)))) (-15 -3677 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-596 |#2|) (-596 |#2|) (-625 |#2|) |#2| (-1145 |#2|))) (-15 -3677 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-596 |#2|) (-596 |#2|) (-625 |#2|) (-596 |#2|) |#2| (-402 (-1145 |#2|)))) (-15 -3687 ((-3 |#2| "failed") |#2| |#2| (-596 |#2|) (-596 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1149)) |#2| (-1145 |#2|))) (-15 -3687 ((-3 |#2| "failed") |#2| |#2| (-596 |#2|) (-596 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1149)) (-596 |#2|) |#2| (-402 (-1145 |#2|)))) (-15 -3793 ((-1145 (-402 (-1145 |#2|))) |#2| (-596 |#2|) (-596 |#2|) (-1145 |#2|))) (-15 -3970 (|#2| (-1145 (-402 (-1145 |#2|))) (-596 |#2|) |#2|)) (-15 -2148 ((-1145 (-402 (-1145 |#2|))) (-1145 |#2|) (-596 |#2|))) (IF (|has| |#3| (-636 |#2|)) (PROGN (-15 -3696 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1270 (-625 |#2|))) |#3| |#2| (-596 |#2|) (-596 |#2|) |#2| (-1145 |#2|))) (-15 -3696 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1270 (-625 |#2|))) |#3| |#2| (-596 |#2|) (-596 |#2|) (-596 |#2|) |#2| (-402 (-1145 |#2|))))) |%noBranch|)) -((-2653 (((-552) (-552) (-751)) 66)) (-2645 (((-552) (-552)) 65)) (-2635 (((-552) (-552)) 64)) (-2624 (((-552) (-552)) 69)) (-3961 (((-552) (-552) (-552)) 49)) (-2614 (((-552) (-552) (-552)) 46)) (-2607 (((-402 (-552)) (-552)) 20)) (-2593 (((-552) (-552)) 21)) (-2583 (((-552) (-552)) 58)) (-3922 (((-552) (-552)) 32)) (-3717 (((-625 (-552)) (-552)) 63)) (-3706 (((-552) (-552) (-552) (-552) (-552)) 44)) (-3868 (((-402 (-552)) (-552)) 41))) -(((-549) (-10 -7 (-15 -3868 ((-402 (-552)) (-552))) (-15 -3706 ((-552) (-552) (-552) (-552) (-552))) (-15 -3717 ((-625 (-552)) (-552))) (-15 -3922 ((-552) (-552))) (-15 -2583 ((-552) (-552))) (-15 -2593 ((-552) (-552))) (-15 -2607 ((-402 (-552)) (-552))) (-15 -2614 ((-552) (-552) (-552))) (-15 -3961 ((-552) (-552) (-552))) (-15 -2624 ((-552) (-552))) (-15 -2635 ((-552) (-552))) (-15 -2645 ((-552) (-552))) (-15 -2653 ((-552) (-552) (-751))))) (T -549)) -((-2653 (*1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-751)) (-5 *1 (-549)))) (-2645 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-2635 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-2624 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-3961 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-2614 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-2607 (*1 *2 *3) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-549)) (-5 *3 (-552)))) (-2593 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-2583 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-3922 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-3717 (*1 *2 *3) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-549)) (-5 *3 (-552)))) (-3706 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-3868 (*1 *2 *3) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-549)) (-5 *3 (-552))))) -(-10 -7 (-15 -3868 ((-402 (-552)) (-552))) (-15 -3706 ((-552) (-552) (-552) (-552) (-552))) (-15 -3717 ((-625 (-552)) (-552))) (-15 -3922 ((-552) (-552))) (-15 -2583 ((-552) (-552))) (-15 -2593 ((-552) (-552))) (-15 -2607 ((-402 (-552)) (-552))) (-15 -2614 ((-552) (-552) (-552))) (-15 -3961 ((-552) (-552) (-552))) (-15 -2624 ((-552) (-552))) (-15 -2635 ((-552) (-552))) (-15 -2645 ((-552) (-552))) (-15 -2653 ((-552) (-552) (-751)))) -((-2663 (((-2 (|:| |answer| |#4|) (|:| -3106 |#4|)) |#4| (-1 |#2| |#2|)) 52))) -(((-550 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2663 ((-2 (|:| |answer| |#4|) (|:| -3106 |#4|)) |#4| (-1 |#2| |#2|)))) (-358) (-1208 |#1|) (-1208 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -550)) -((-2663 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358)) (-4 *7 (-1208 (-402 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3106 *3))) (-5 *1 (-550 *5 *6 *7 *3)) (-4 *3 (-337 *5 *6 *7))))) -(-10 -7 (-15 -2663 ((-2 (|:| |answer| |#4|) (|:| -3106 |#4|)) |#4| (-1 |#2| |#2|)))) -((-2663 (((-2 (|:| |answer| (-402 |#2|)) (|:| -3106 (-402 |#2|)) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|)) 18))) -(((-551 |#1| |#2|) (-10 -7 (-15 -2663 ((-2 (|:| |answer| (-402 |#2|)) (|:| -3106 (-402 |#2|)) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|)))) (-358) (-1208 |#1|)) (T -551)) -((-2663 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |answer| (-402 *6)) (|:| -3106 (-402 *6)) (|:| |specpart| (-402 *6)) (|:| |polypart| *6))) (-5 *1 (-551 *5 *6)) (-5 *3 (-402 *6))))) -(-10 -7 (-15 -2663 ((-2 (|:| |answer| (-402 |#2|)) (|:| -3106 (-402 |#2|)) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 25)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 88)) (-3528 (($ $) 89)) (-3509 (((-112) $) NIL)) (-3364 (($ $ $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3346 (($ $ $ $) 43)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL)) (-3420 (($ $ $) 82)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL)) (-1895 (((-552) $) NIL)) (-2851 (($ $ $) 81)) (-1794 (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 62) (((-669 (-552)) (-669 $)) 58)) (-4174 (((-3 $ "failed") $) 85)) (-2555 (((-3 (-402 (-552)) "failed") $) NIL)) (-2546 (((-112) $) NIL)) (-2538 (((-402 (-552)) $) NIL)) (-3702 (($) 64) (($ $) 65)) (-2826 (($ $ $) 80)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3327 (($ $ $ $) NIL)) (-3372 (($ $ $) 55)) (-3620 (((-112) $) NIL)) (-1302 (($ $ $) NIL)) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL)) (-3650 (((-112) $) 26)) (-3932 (((-112) $) 75)) (-4034 (((-3 $ "failed") $) NIL)) (-3630 (((-112) $) 35)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3336 (($ $ $ $) 44)) (-3658 (($ $ $) 77)) (-3332 (($ $ $) 76)) (-2059 (($ $) NIL)) (-3456 (($ $) 41)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) 54)) (-3317 (($ $ $) NIL)) (-2071 (($) NIL T CONST)) (-1971 (($ $) 31)) (-2831 (((-1093) $) 34)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 119)) (-2633 (($ $ $) 86) (($ (-625 $)) NIL)) (-1279 (($ $) NIL)) (-3824 (((-413 $) $) 105)) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL)) (-2802 (((-3 $ "failed") $ $) 84)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3943 (((-112) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 79)) (-3072 (($ $ (-751)) NIL) (($ $) NIL)) (-2715 (($ $) 32)) (-1871 (($ $) 30)) (-2042 (((-552) $) 40) (((-528) $) 52) (((-868 (-552)) $) NIL) (((-374) $) 47) (((-221) $) 49) (((-1131) $) 53)) (-1683 (((-839) $) 38) (($ (-552)) 39) (($ $) NIL) (($ (-552)) 39)) (-4141 (((-751)) NIL)) (-3383 (((-112) $ $) NIL)) (-3901 (($ $ $) NIL)) (-3929 (($) 29)) (-3518 (((-112) $ $) NIL)) (-3355 (($ $ $ $) 42)) (-1727 (($ $) 63)) (-2089 (($) 27 T CONST)) (-2100 (($) 28 T CONST)) (-3010 (((-1131) $) 20) (((-1131) $ (-112)) 22) (((-1237) (-802) $) 23) (((-1237) (-802) $ (-112)) 24)) (-3768 (($ $ (-751)) NIL) (($ $) NIL)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 66)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 67)) (-2393 (($ $) 68) (($ $ $) 70)) (-2382 (($ $ $) 69)) (** (($ $ (-897)) NIL) (($ $ (-751)) 74)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 72) (($ $ $) 71))) -(((-552) (-13 (-537) (-598 (-1131)) (-808) (-10 -8 (-15 -3702 ($ $)) (-6 -4340) (-6 -4345) (-6 -4341) (-6 -4335)))) (T -552)) -((-3702 (*1 *1 *1) (-5 *1 (-552)))) -(-13 (-537) (-598 (-1131)) (-808) (-10 -8 (-15 -3702 ($ $)) (-6 -4340) (-6 -4345) (-6 -4341) (-6 -4335))) -((-3890 (((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011))) (-749) (-1037)) 108) (((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011))) (-749)) 110)) (-2481 (((-3 (-1011) "failed") (-311 (-374)) (-1065 (-820 (-374))) (-1149)) 172) (((-3 (-1011) "failed") (-311 (-374)) (-1065 (-820 (-374))) (-1131)) 171) (((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))) (-374) (-374) (-1037)) 176) (((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))) (-374) (-374)) 177) (((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))) (-374)) 178) (((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374))))) 179) (((-1011) (-311 (-374)) (-1067 (-820 (-374)))) 167) (((-1011) (-311 (-374)) (-1067 (-820 (-374))) (-374)) 166) (((-1011) (-311 (-374)) (-1067 (-820 (-374))) (-374) (-374)) 162) (((-1011) (-749)) 155) (((-1011) (-311 (-374)) (-1067 (-820 (-374))) (-374) (-374) (-1037)) 161))) -(((-553) (-10 -7 (-15 -2481 ((-1011) (-311 (-374)) (-1067 (-820 (-374))) (-374) (-374) (-1037))) (-15 -2481 ((-1011) (-749))) (-15 -2481 ((-1011) (-311 (-374)) (-1067 (-820 (-374))) (-374) (-374))) (-15 -2481 ((-1011) (-311 (-374)) (-1067 (-820 (-374))) (-374))) (-15 -2481 ((-1011) (-311 (-374)) (-1067 (-820 (-374))))) (-15 -2481 ((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))))) (-15 -2481 ((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))) (-374))) (-15 -2481 ((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))) (-374) (-374))) (-15 -2481 ((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))) (-374) (-374) (-1037))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011))) (-749))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011))) (-749) (-1037))) (-15 -2481 ((-3 (-1011) "failed") (-311 (-374)) (-1065 (-820 (-374))) (-1131))) (-15 -2481 ((-3 (-1011) "failed") (-311 (-374)) (-1065 (-820 (-374))) (-1149))))) (T -553)) -((-2481 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-311 (-374))) (-5 *4 (-1065 (-820 (-374)))) (-5 *5 (-1149)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-2481 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-311 (-374))) (-5 *4 (-1065 (-820 (-374)))) (-5 *5 (-1131)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-3890 (*1 *2 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-1037)) (-5 *2 (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011)))) (-5 *1 (-553)))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011)))) (-5 *1 (-553)))) (-2481 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-1067 (-820 (-374))))) (-5 *5 (-374)) (-5 *6 (-1037)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-2481 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-1067 (-820 (-374))))) (-5 *5 (-374)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-2481 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-1067 (-820 (-374))))) (-5 *5 (-374)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-1067 (-820 (-374))))) (-5 *2 (-1011)) (-5 *1 (-553)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1067 (-820 (-374)))) (-5 *2 (-1011)) (-5 *1 (-553)))) (-2481 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1067 (-820 (-374)))) (-5 *5 (-374)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-2481 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1067 (-820 (-374)))) (-5 *5 (-374)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-2481 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-2481 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1067 (-820 (-374)))) (-5 *5 (-374)) (-5 *6 (-1037)) (-5 *2 (-1011)) (-5 *1 (-553))))) -(-10 -7 (-15 -2481 ((-1011) (-311 (-374)) (-1067 (-820 (-374))) (-374) (-374) (-1037))) (-15 -2481 ((-1011) (-749))) (-15 -2481 ((-1011) (-311 (-374)) (-1067 (-820 (-374))) (-374) (-374))) (-15 -2481 ((-1011) (-311 (-374)) (-1067 (-820 (-374))) (-374))) (-15 -2481 ((-1011) (-311 (-374)) (-1067 (-820 (-374))))) (-15 -2481 ((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))))) (-15 -2481 ((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))) (-374))) (-15 -2481 ((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))) (-374) (-374))) (-15 -2481 ((-1011) (-311 (-374)) (-625 (-1067 (-820 (-374)))) (-374) (-374) (-1037))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011))) (-749))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011))) (-749) (-1037))) (-15 -2481 ((-3 (-1011) "failed") (-311 (-374)) (-1065 (-820 (-374))) (-1131))) (-15 -2481 ((-3 (-1011) "failed") (-311 (-374)) (-1065 (-820 (-374))) (-1149)))) -((-2696 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-596 |#2|) (-596 |#2|) (-625 |#2|)) 184)) (-2675 (((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|)) 98)) (-2686 (((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-596 |#2|) (-596 |#2|) |#2|) 180)) (-2706 (((-3 |#2| "failed") |#2| |#2| |#2| (-596 |#2|) (-596 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1149))) 189)) (-2716 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1270 (-625 |#2|))) |#3| |#2| (-596 |#2|) (-596 |#2|) (-1149)) 197 (|has| |#3| (-636 |#2|))))) -(((-554 |#1| |#2| |#3|) (-10 -7 (-15 -2675 ((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|))) (-15 -2686 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-596 |#2|) (-596 |#2|) |#2|)) (-15 -2696 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-596 |#2|) (-596 |#2|) (-625 |#2|))) (-15 -2706 ((-3 |#2| "failed") |#2| |#2| |#2| (-596 |#2|) (-596 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1149)))) (IF (|has| |#3| (-636 |#2|)) (-15 -2716 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1270 (-625 |#2|))) |#3| |#2| (-596 |#2|) (-596 |#2|) (-1149))) |%noBranch|)) (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552))) (-13 (-425 |#1|) (-27) (-1171)) (-1073)) (T -554)) -((-2716 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-596 *4)) (-5 *6 (-1149)) (-4 *4 (-13 (-425 *7) (-27) (-1171))) (-4 *7 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1073)))) (-2706 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-596 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1149))) (-4 *2 (-13 (-425 *5) (-27) (-1171))) (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *1 (-554 *5 *2 *6)) (-4 *6 (-1073)))) (-2696 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-596 *3)) (-5 *5 (-625 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1073)))) (-2686 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-596 *3)) (-4 *3 (-13 (-425 *5) (-27) (-1171))) (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-2 (|:| -3114 *3) (|:| |coeff| *3))) (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1073)))) (-2675 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-596 *3)) (-4 *3 (-13 (-425 *5) (-27) (-1171))) (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) (-5 *2 (-571 *3)) (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1073))))) -(-10 -7 (-15 -2675 ((-571 |#2|) |#2| (-596 |#2|) (-596 |#2|))) (-15 -2686 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-596 |#2|) (-596 |#2|) |#2|)) (-15 -2696 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-596 |#2|) (-596 |#2|) (-625 |#2|))) (-15 -2706 ((-3 |#2| "failed") |#2| |#2| |#2| (-596 |#2|) (-596 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1149)))) (IF (|has| |#3| (-636 |#2|)) (-15 -2716 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1270 (-625 |#2|))) |#3| |#2| (-596 |#2|) (-596 |#2|) (-1149))) |%noBranch|)) -((-2725 (((-2 (|:| -4075 |#2|) (|:| |nconst| |#2|)) |#2| (-1149)) 64)) (-2744 (((-3 |#2| "failed") |#2| (-1149) (-820 |#2|) (-820 |#2|)) 164 (-12 (|has| |#2| (-1112)) (|has| |#1| (-598 (-868 (-552)))) (|has| |#1| (-862 (-552))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)) 147 (-12 (|has| |#2| (-611)) (|has| |#1| (-598 (-868 (-552)))) (|has| |#1| (-862 (-552)))))) (-2734 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)) 148 (-12 (|has| |#2| (-611)) (|has| |#1| (-598 (-868 (-552)))) (|has| |#1| (-862 (-552))))))) -(((-555 |#1| |#2|) (-10 -7 (-15 -2725 ((-2 (|:| -4075 |#2|) (|:| |nconst| |#2|)) |#2| (-1149))) (IF (|has| |#1| (-598 (-868 (-552)))) (IF (|has| |#1| (-862 (-552))) (PROGN (IF (|has| |#2| (-611)) (PROGN (-15 -2734 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149))) (-15 -2744 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)))) |%noBranch|) (IF (|has| |#2| (-1112)) (-15 -2744 ((-3 |#2| "failed") |#2| (-1149) (-820 |#2|) (-820 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-827) (-1014 (-552)) (-446) (-621 (-552))) (-13 (-27) (-1171) (-425 |#1|))) (T -555)) -((-2744 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1149)) (-5 *4 (-820 *2)) (-4 *2 (-1112)) (-4 *2 (-13 (-27) (-1171) (-425 *5))) (-4 *5 (-598 (-868 (-552)))) (-4 *5 (-862 (-552))) (-4 *5 (-13 (-827) (-1014 (-552)) (-446) (-621 (-552)))) (-5 *1 (-555 *5 *2)))) (-2744 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-598 (-868 (-552)))) (-4 *5 (-862 (-552))) (-4 *5 (-13 (-827) (-1014 (-552)) (-446) (-621 (-552)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-611)) (-4 *3 (-13 (-27) (-1171) (-425 *5))))) (-2734 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-598 (-868 (-552)))) (-4 *5 (-862 (-552))) (-4 *5 (-13 (-827) (-1014 (-552)) (-446) (-621 (-552)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-611)) (-4 *3 (-13 (-27) (-1171) (-425 *5))))) (-2725 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-827) (-1014 (-552)) (-446) (-621 (-552)))) (-5 *2 (-2 (|:| -4075 *3) (|:| |nconst| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5)))))) -(-10 -7 (-15 -2725 ((-2 (|:| -4075 |#2|) (|:| |nconst| |#2|)) |#2| (-1149))) (IF (|has| |#1| (-598 (-868 (-552)))) (IF (|has| |#1| (-862 (-552))) (PROGN (IF (|has| |#2| (-611)) (PROGN (-15 -2734 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149))) (-15 -2744 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)))) |%noBranch|) (IF (|has| |#2| (-1112)) (-15 -2744 ((-3 |#2| "failed") |#2| (-1149) (-820 |#2|) (-820 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2773 (((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-625 (-402 |#2|))) 41)) (-2481 (((-571 (-402 |#2|)) (-402 |#2|)) 28)) (-2753 (((-3 (-402 |#2|) "failed") (-402 |#2|)) 17)) (-2763 (((-3 (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-402 |#2|)) 48))) -(((-556 |#1| |#2|) (-10 -7 (-15 -2481 ((-571 (-402 |#2|)) (-402 |#2|))) (-15 -2753 ((-3 (-402 |#2|) "failed") (-402 |#2|))) (-15 -2763 ((-3 (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-402 |#2|))) (-15 -2773 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-625 (-402 |#2|))))) (-13 (-358) (-145) (-1014 (-552))) (-1208 |#1|)) (T -556)) -((-2773 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-625 (-402 *6))) (-5 *3 (-402 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-556 *5 *6)))) (-2763 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1014 (-552)))) (-4 *5 (-1208 *4)) (-5 *2 (-2 (|:| -3114 (-402 *5)) (|:| |coeff| (-402 *5)))) (-5 *1 (-556 *4 *5)) (-5 *3 (-402 *5)))) (-2753 (*1 *2 *2) (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1208 *3)) (-4 *3 (-13 (-358) (-145) (-1014 (-552)))) (-5 *1 (-556 *3 *4)))) (-2481 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-552)))) (-4 *5 (-1208 *4)) (-5 *2 (-571 (-402 *5))) (-5 *1 (-556 *4 *5)) (-5 *3 (-402 *5))))) -(-10 -7 (-15 -2481 ((-571 (-402 |#2|)) (-402 |#2|))) (-15 -2753 ((-3 (-402 |#2|) "failed") (-402 |#2|))) (-15 -2763 ((-3 (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-402 |#2|))) (-15 -2773 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-625 (-402 |#2|))))) -((-2784 (((-3 (-552) "failed") |#1|) 14)) (-2970 (((-112) |#1|) 13)) (-3642 (((-552) |#1|) 9))) -(((-557 |#1|) (-10 -7 (-15 -3642 ((-552) |#1|)) (-15 -2970 ((-112) |#1|)) (-15 -2784 ((-3 (-552) "failed") |#1|))) (-1014 (-552))) (T -557)) -((-2784 (*1 *2 *3) (|partial| -12 (-5 *2 (-552)) (-5 *1 (-557 *3)) (-4 *3 (-1014 *2)))) (-2970 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-557 *3)) (-4 *3 (-1014 (-552))))) (-3642 (*1 *2 *3) (-12 (-5 *2 (-552)) (-5 *1 (-557 *3)) (-4 *3 (-1014 *2))))) -(-10 -7 (-15 -3642 ((-552) |#1|)) (-15 -2970 ((-112) |#1|)) (-15 -2784 ((-3 (-552) "failed") |#1|))) -((-2816 (((-3 (-2 (|:| |mainpart| (-402 (-928 |#1|))) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 (-928 |#1|))) (|:| |logand| (-402 (-928 |#1|))))))) "failed") (-402 (-928 |#1|)) (-1149) (-625 (-402 (-928 |#1|)))) 48)) (-2793 (((-571 (-402 (-928 |#1|))) (-402 (-928 |#1|)) (-1149)) 28)) (-2804 (((-3 (-402 (-928 |#1|)) "failed") (-402 (-928 |#1|)) (-1149)) 23)) (-2829 (((-3 (-2 (|:| -3114 (-402 (-928 |#1|))) (|:| |coeff| (-402 (-928 |#1|)))) "failed") (-402 (-928 |#1|)) (-1149) (-402 (-928 |#1|))) 35))) -(((-558 |#1|) (-10 -7 (-15 -2793 ((-571 (-402 (-928 |#1|))) (-402 (-928 |#1|)) (-1149))) (-15 -2804 ((-3 (-402 (-928 |#1|)) "failed") (-402 (-928 |#1|)) (-1149))) (-15 -2816 ((-3 (-2 (|:| |mainpart| (-402 (-928 |#1|))) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 (-928 |#1|))) (|:| |logand| (-402 (-928 |#1|))))))) "failed") (-402 (-928 |#1|)) (-1149) (-625 (-402 (-928 |#1|))))) (-15 -2829 ((-3 (-2 (|:| -3114 (-402 (-928 |#1|))) (|:| |coeff| (-402 (-928 |#1|)))) "failed") (-402 (-928 |#1|)) (-1149) (-402 (-928 |#1|))))) (-13 (-544) (-1014 (-552)) (-145))) (T -558)) -((-2829 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-13 (-544) (-1014 (-552)) (-145))) (-5 *2 (-2 (|:| -3114 (-402 (-928 *5))) (|:| |coeff| (-402 (-928 *5))))) (-5 *1 (-558 *5)) (-5 *3 (-402 (-928 *5))))) (-2816 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-625 (-402 (-928 *6)))) (-5 *3 (-402 (-928 *6))) (-4 *6 (-13 (-544) (-1014 (-552)) (-145))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-558 *6)))) (-2804 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-402 (-928 *4))) (-5 *3 (-1149)) (-4 *4 (-13 (-544) (-1014 (-552)) (-145))) (-5 *1 (-558 *4)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-544) (-1014 (-552)) (-145))) (-5 *2 (-571 (-402 (-928 *5)))) (-5 *1 (-558 *5)) (-5 *3 (-402 (-928 *5)))))) -(-10 -7 (-15 -2793 ((-571 (-402 (-928 |#1|))) (-402 (-928 |#1|)) (-1149))) (-15 -2804 ((-3 (-402 (-928 |#1|)) "failed") (-402 (-928 |#1|)) (-1149))) (-15 -2816 ((-3 (-2 (|:| |mainpart| (-402 (-928 |#1|))) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 (-928 |#1|))) (|:| |logand| (-402 (-928 |#1|))))))) "failed") (-402 (-928 |#1|)) (-1149) (-625 (-402 (-928 |#1|))))) (-15 -2829 ((-3 (-2 (|:| -3114 (-402 (-928 |#1|))) (|:| |coeff| (-402 (-928 |#1|)))) "failed") (-402 (-928 |#1|)) (-1149) (-402 (-928 |#1|))))) -((-1671 (((-112) $ $) 58)) (-3641 (((-112) $) 36)) (-1924 ((|#1| $) 30)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) 62)) (-3728 (($ $) 122)) (-3604 (($ $) 102)) (-1282 ((|#1| $) 28)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3837 (($ $) NIL)) (-3710 (($ $) 124)) (-3581 (($ $) 98)) (-3749 (($ $) 126)) (-3627 (($ $) 106)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) 77)) (-1895 (((-552) $) 79)) (-4174 (((-3 $ "failed") $) 61)) (-3490 (($ |#1| |#1|) 26)) (-3620 (((-112) $) 33)) (-1385 (($) 88)) (-3650 (((-112) $) 43)) (-2429 (($ $ (-552)) NIL)) (-3630 (((-112) $) 34)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2458 (($ $) 90)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-3500 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-402 (-552))) 76)) (-3480 ((|#1| $) 27)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) 64) (($ (-625 $)) NIL)) (-2802 (((-3 $ "failed") $ $) 63)) (-2863 (($ $) 92)) (-3759 (($ $) 130)) (-3638 (($ $) 104)) (-3738 (($ $) 132)) (-3614 (($ $) 108)) (-3721 (($ $) 128)) (-3593 (($ $) 100)) (-3470 (((-112) $ |#1|) 31)) (-1683 (((-839) $) 84) (($ (-552)) 66) (($ $) NIL) (($ (-552)) 66)) (-4141 (((-751)) 86)) (-3789 (($ $) 144)) (-3670 (($ $) 114)) (-3518 (((-112) $ $) NIL)) (-3769 (($ $) 142)) (-3648 (($ $) 110)) (-3809 (($ $) 140)) (-3691 (($ $) 120)) (-3742 (($ $) 138)) (-3700 (($ $) 118)) (-3797 (($ $) 136)) (-3681 (($ $) 116)) (-3778 (($ $) 134)) (-3659 (($ $) 112)) (-2089 (($) 21 T CONST)) (-2100 (($) 10 T CONST)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 37)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 35)) (-2393 (($ $) 41) (($ $ $) 42)) (-2382 (($ $ $) 40)) (** (($ $ (-897)) 54) (($ $ (-751)) NIL) (($ $ $) 94) (($ $ (-402 (-552))) 146)) (* (($ (-897) $) 51) (($ (-751) $) NIL) (($ (-552) $) 50) (($ $ $) 48))) -(((-559 |#1|) (-542 |#1|) (-13 (-399) (-1171))) (T -559)) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4288 ((|#1| $) NIL)) (-4155 ((|#1| $) NIL)) (-1700 (($ $) NIL)) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-3900 (($ $ (-552)) 59 (|has| $ (-6 -4367)))) (-1439 (((-111) $) NIL (|has| |#1| (-830))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-2701 (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830)))) (($ (-1 (-111) |#1| |#1|) $) 57 (|has| $ (-6 -4367)))) (-4298 (($ $) NIL (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2472 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-1474 (($ $ $) 23 (|has| $ (-6 -4367)))) (-2801 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-1612 ((|#1| $ |#1|) 21 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4367))) (($ $ "rest" $) 24 (|has| $ (-6 -4367))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) NIL (|has| $ (-6 -4367)))) (-4289 (($ (-1 (-111) |#1|) $) NIL)) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-4143 ((|#1| $) NIL)) (-3887 (($) NIL T CONST)) (-2519 (($ $) 28 (|has| $ (-6 -4367)))) (-3429 (($ $) 29)) (-3351 (($ $) 18) (($ $ (-754)) 32)) (-2820 (($ $) 55 (|has| |#1| (-1076)))) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2265 (($ |#1| $) NIL (|has| |#1| (-1076))) (($ (-1 (-111) |#1|) $) NIL)) (-4342 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3473 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) NIL)) (-3592 (((-111) $) NIL)) (-2967 (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076))) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) (-1 (-111) |#1|) $) NIL)) (-3215 (((-627 |#1|) $) 27 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) NIL)) (-3726 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2655 (($ (-754) |#1|) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) 31 (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-1438 (($ $ $) NIL (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $ $) 58)) (-3759 (($ $ $) NIL (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 53 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1299 (($ |#1|) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1823 (((-627 |#1|) $) NIL)) (-3810 (((-111) $) NIL)) (-1595 (((-1134) $) 51 (|has| |#1| (-1076)))) (-1294 ((|#1| $) NIL) (($ $ (-754)) NIL)) (-3954 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3252 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3340 ((|#1| $) 13) (($ $ (-754)) NIL)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4367)))) (-2361 (((-111) $) NIL)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 12)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) 17)) (-2373 (($) 16)) (-1985 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1202 (-552))) NIL) ((|#1| $ (-552)) NIL) ((|#1| $ (-552) |#1|) NIL)) (-1848 (((-552) $ $) NIL)) (-3010 (($ $ (-1202 (-552))) NIL) (($ $ (-552)) NIL)) (-3907 (($ $ (-1202 (-552))) NIL) (($ $ (-552)) NIL)) (-2978 (((-111) $) 34)) (-1805 (($ $) NIL)) (-3384 (($ $) NIL (|has| $ (-6 -4367)))) (-3543 (((-754) $) NIL)) (-4149 (($ $) 36)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) 35)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 26)) (-3151 (($ $ $) 54) (($ $ |#1|) NIL)) (-2668 (($ $ $) NIL) (($ |#1| $) 10) (($ (-627 $)) NIL) (($ $ |#1|) NIL)) (-1477 (((-842) $) 46 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) NIL)) (-3415 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) 48 (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1383 (((-754) $) 9 (|has| $ (-6 -4366))))) +(((-512 |#1| |#2|) (-648 |#1|) (-1189) (-552)) (T -512)) +NIL +(-648 |#1|) +((-1472 ((|#4| |#4|) 27)) (-4154 (((-754) |#4|) 32)) (-1610 (((-754) |#4|) 33)) (-2960 (((-627 |#3|) |#4|) 40 (|has| |#3| (-6 -4367)))) (-2952 (((-3 |#4| "failed") |#4|) 51)) (-2638 ((|#4| |#4|) 44)) (-1530 ((|#1| |#4|) 43))) +(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1472 (|#4| |#4|)) (-15 -4154 ((-754) |#4|)) (-15 -1610 ((-754) |#4|)) (IF (|has| |#3| (-6 -4367)) (-15 -2960 ((-627 |#3|) |#4|)) |%noBranch|) (-15 -1530 (|#1| |#4|)) (-15 -2638 (|#4| |#4|)) (-15 -2952 ((-3 |#4| "failed") |#4|))) (-357) (-367 |#1|) (-367 |#1|) (-669 |#1| |#2| |#3|)) (T -513)) +((-2952 (*1 *2 *2) (|partial| -12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-2638 (*1 *2 *2) (-12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-1530 (*1 *2 *3) (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-357)) (-5 *1 (-513 *2 *4 *5 *3)) (-4 *3 (-669 *2 *4 *5)))) (-2960 (*1 *2 *3) (-12 (|has| *6 (-6 -4367)) (-4 *4 (-357)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-627 *6)) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-1610 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-754)) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-4154 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-754)) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-1472 (*1 *2 *2) (-12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) +(-10 -7 (-15 -1472 (|#4| |#4|)) (-15 -4154 ((-754) |#4|)) (-15 -1610 ((-754) |#4|)) (IF (|has| |#3| (-6 -4367)) (-15 -2960 ((-627 |#3|) |#4|)) |%noBranch|) (-15 -1530 (|#1| |#4|)) (-15 -2638 (|#4| |#4|)) (-15 -2952 ((-3 |#4| "failed") |#4|))) +((-1472 ((|#8| |#4|) 20)) (-2960 (((-627 |#3|) |#4|) 29 (|has| |#7| (-6 -4367)))) (-2952 (((-3 |#8| "failed") |#4|) 23))) +(((-514 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1472 (|#8| |#4|)) (-15 -2952 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4367)) (-15 -2960 ((-627 |#3|) |#4|)) |%noBranch|)) (-544) (-367 |#1|) (-367 |#1|) (-669 |#1| |#2| |#3|) (-971 |#1|) (-367 |#5|) (-367 |#5|) (-669 |#5| |#6| |#7|)) (T -514)) +((-2960 (*1 *2 *3) (-12 (|has| *9 (-6 -4367)) (-4 *4 (-544)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-4 *7 (-971 *4)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7)) (-5 *2 (-627 *6)) (-5 *1 (-514 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-669 *4 *5 *6)) (-4 *10 (-669 *7 *8 *9)))) (-2952 (*1 *2 *3) (|partial| -12 (-4 *4 (-544)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-4 *7 (-971 *4)) (-4 *2 (-669 *7 *8 *9)) (-5 *1 (-514 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-669 *4 *5 *6)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7)))) (-1472 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-4 *7 (-971 *4)) (-4 *2 (-669 *7 *8 *9)) (-5 *1 (-514 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-669 *4 *5 *6)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7))))) +(-10 -7 (-15 -1472 (|#8| |#4|)) (-15 -2952 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4367)) (-15 -2960 ((-627 |#3|) |#4|)) |%noBranch|)) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2099 (($ (-754) (-754)) NIL)) (-2129 (($ $ $) NIL)) (-3595 (($ (-588 |#1| |#3|)) NIL) (($ $) NIL)) (-2311 (((-111) $) NIL)) (-2232 (($ $ (-552) (-552)) 12)) (-3700 (($ $ (-552) (-552)) NIL)) (-1966 (($ $ (-552) (-552) (-552) (-552)) NIL)) (-2456 (($ $) NIL)) (-3944 (((-111) $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-1459 (($ $ (-552) (-552) $) NIL)) (-2950 ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-627 (-552)) (-627 (-552)) $) NIL)) (-1566 (($ $ (-552) (-588 |#1| |#3|)) NIL)) (-1666 (($ $ (-552) (-588 |#1| |#2|)) NIL)) (-1665 (($ (-754) |#1|) NIL)) (-3887 (($) NIL T CONST)) (-1472 (($ $) 21 (|has| |#1| (-301)))) (-3884 (((-588 |#1| |#3|) $ (-552)) NIL)) (-4154 (((-754) $) 24 (|has| |#1| (-544)))) (-3473 ((|#1| $ (-552) (-552) |#1|) NIL)) (-3413 ((|#1| $ (-552) (-552)) NIL)) (-3215 (((-627 |#1|) $) NIL)) (-1610 (((-754) $) 26 (|has| |#1| (-544)))) (-2960 (((-627 (-588 |#1| |#2|)) $) 29 (|has| |#1| (-544)))) (-3560 (((-754) $) NIL)) (-2655 (($ (-754) (-754) |#1|) NIL)) (-3572 (((-754) $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-1744 ((|#1| $) 19 (|has| |#1| (-6 (-4368 "*"))))) (-4083 (((-552) $) 10)) (-3511 (((-552) $) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3479 (((-552) $) 11)) (-2780 (((-552) $) NIL)) (-4176 (($ (-627 (-627 |#1|))) NIL)) (-3463 (($ (-1 |#1| |#1|) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3127 (((-627 (-627 |#1|)) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-2952 (((-3 $ "failed") $) 33 (|has| |#1| (-357)))) (-3838 (($ $ $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1942 (($ $ |#1|) NIL)) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-627 (-552)) (-627 (-552))) NIL)) (-3202 (($ (-627 |#1|)) NIL) (($ (-627 $)) NIL)) (-4064 (((-111) $) NIL)) (-1530 ((|#1| $) 17 (|has| |#1| (-6 (-4368 "*"))))) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-2152 (((-588 |#1| |#2|) $ (-552)) NIL)) (-1477 (($ (-588 |#1| |#2|)) NIL) (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3847 (((-111) $) NIL)) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $ $) NIL) (($ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-552) $) NIL) (((-588 |#1| |#2|) $ (-588 |#1| |#2|)) NIL) (((-588 |#1| |#3|) (-588 |#1| |#3|) $) NIL)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-515 |#1| |#2| |#3|) (-669 |#1| (-588 |#1| |#3|) (-588 |#1| |#2|)) (-1028) (-552) (-552)) (T -515)) +NIL +(-669 |#1| (-588 |#1| |#3|) (-588 |#1| |#2|)) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-2100 (((-627 (-1188)) $) 13)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 20) (((-1157) $) NIL) (($ (-1157)) NIL) (($ (-627 (-1188))) 11)) (-2292 (((-111) $ $) NIL))) +(((-516) (-13 (-1059) (-10 -8 (-15 -1477 ($ (-627 (-1188)))) (-15 -2100 ((-627 (-1188)) $))))) (T -516)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-1188))) (-5 *1 (-516)))) (-2100 (*1 *2 *1) (-12 (-5 *2 (-627 (-1188))) (-5 *1 (-516))))) +(-13 (-1059) (-10 -8 (-15 -1477 ($ (-627 (-1188)))) (-15 -2100 ((-627 (-1188)) $)))) +((-1465 (((-111) $ $) NIL)) (-3731 (((-1111) $) 14)) (-1595 (((-1134) $) NIL)) (-1278 (((-1152) $) 11)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 21) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) +(((-517) (-13 (-1059) (-10 -8 (-15 -1278 ((-1152) $)) (-15 -3731 ((-1111) $))))) (T -517)) +((-1278 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-517)))) (-3731 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-517))))) +(-13 (-1059) (-10 -8 (-15 -1278 ((-1152) $)) (-15 -3731 ((-1111) $)))) +((-3166 (((-1096) $ (-127)) 17))) +(((-518 |#1|) (-10 -8 (-15 -3166 ((-1096) |#1| (-127)))) (-519)) (T -518)) +NIL +(-10 -8 (-15 -3166 ((-1096) |#1| (-127)))) +((-3166 (((-1096) $ (-127)) 7)) (-2764 (((-1096) $) 8)) (-2219 (($ $) 6))) +(((-519) (-137)) (T -519)) +((-2764 (*1 *2 *1) (-12 (-4 *1 (-519)) (-5 *2 (-1096)))) (-3166 (*1 *2 *1 *3) (-12 (-4 *1 (-519)) (-5 *3 (-127)) (-5 *2 (-1096))))) +(-13 (-170) (-10 -8 (-15 -2764 ((-1096) $)) (-15 -3166 ((-1096) $ (-127))))) +(((-170) . T)) +((-2845 (((-1148 |#1|) (-754)) 76)) (-3385 (((-1235 |#1|) (-1235 |#1|) (-900)) 69)) (-1377 (((-1240) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))) |#1|) 84)) (-2996 (((-1235 |#1|) (-1235 |#1|) (-754)) 36)) (-1279 (((-1235 |#1|) (-900)) 71)) (-4247 (((-1235 |#1|) (-1235 |#1|) (-552)) 24)) (-3144 (((-1148 |#1|) (-1235 |#1|)) 77)) (-2611 (((-1235 |#1|) (-900)) 95)) (-2492 (((-111) (-1235 |#1|)) 80)) (-2349 (((-1235 |#1|) (-1235 |#1|) (-900)) 62)) (-4205 (((-1148 |#1|) (-1235 |#1|)) 89)) (-2886 (((-900) (-1235 |#1|)) 59)) (-1951 (((-1235 |#1|) (-1235 |#1|)) 30)) (-4153 (((-1235 |#1|) (-900) (-900)) 97)) (-2631 (((-1235 |#1|) (-1235 |#1|) (-1096) (-1096)) 23)) (-1447 (((-1235 |#1|) (-1235 |#1|) (-754) (-1096)) 37)) (-2957 (((-1235 (-1235 |#1|)) (-900)) 94)) (-2407 (((-1235 |#1|) (-1235 |#1|) (-1235 |#1|)) 81)) (** (((-1235 |#1|) (-1235 |#1|) (-552)) 45)) (* (((-1235 |#1|) (-1235 |#1|) (-1235 |#1|)) 25))) +(((-520 |#1|) (-10 -7 (-15 -1377 ((-1240) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))) |#1|)) (-15 -1279 ((-1235 |#1|) (-900))) (-15 -4153 ((-1235 |#1|) (-900) (-900))) (-15 -3144 ((-1148 |#1|) (-1235 |#1|))) (-15 -2845 ((-1148 |#1|) (-754))) (-15 -1447 ((-1235 |#1|) (-1235 |#1|) (-754) (-1096))) (-15 -2996 ((-1235 |#1|) (-1235 |#1|) (-754))) (-15 -2631 ((-1235 |#1|) (-1235 |#1|) (-1096) (-1096))) (-15 -4247 ((-1235 |#1|) (-1235 |#1|) (-552))) (-15 ** ((-1235 |#1|) (-1235 |#1|) (-552))) (-15 * ((-1235 |#1|) (-1235 |#1|) (-1235 |#1|))) (-15 -2407 ((-1235 |#1|) (-1235 |#1|) (-1235 |#1|))) (-15 -2349 ((-1235 |#1|) (-1235 |#1|) (-900))) (-15 -3385 ((-1235 |#1|) (-1235 |#1|) (-900))) (-15 -1951 ((-1235 |#1|) (-1235 |#1|))) (-15 -2886 ((-900) (-1235 |#1|))) (-15 -2492 ((-111) (-1235 |#1|))) (-15 -2957 ((-1235 (-1235 |#1|)) (-900))) (-15 -2611 ((-1235 |#1|) (-900))) (-15 -4205 ((-1148 |#1|) (-1235 |#1|)))) (-343)) (T -520)) +((-4205 (*1 *2 *3) (-12 (-5 *3 (-1235 *4)) (-4 *4 (-343)) (-5 *2 (-1148 *4)) (-5 *1 (-520 *4)))) (-2611 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1235 *4)) (-5 *1 (-520 *4)) (-4 *4 (-343)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1235 (-1235 *4))) (-5 *1 (-520 *4)) (-4 *4 (-343)))) (-2492 (*1 *2 *3) (-12 (-5 *3 (-1235 *4)) (-4 *4 (-343)) (-5 *2 (-111)) (-5 *1 (-520 *4)))) (-2886 (*1 *2 *3) (-12 (-5 *3 (-1235 *4)) (-4 *4 (-343)) (-5 *2 (-900)) (-5 *1 (-520 *4)))) (-1951 (*1 *2 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-343)) (-5 *1 (-520 *3)))) (-3385 (*1 *2 *2 *3) (-12 (-5 *2 (-1235 *4)) (-5 *3 (-900)) (-4 *4 (-343)) (-5 *1 (-520 *4)))) (-2349 (*1 *2 *2 *3) (-12 (-5 *2 (-1235 *4)) (-5 *3 (-900)) (-4 *4 (-343)) (-5 *1 (-520 *4)))) (-2407 (*1 *2 *2 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-343)) (-5 *1 (-520 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-343)) (-5 *1 (-520 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1235 *4)) (-5 *3 (-552)) (-4 *4 (-343)) (-5 *1 (-520 *4)))) (-4247 (*1 *2 *2 *3) (-12 (-5 *2 (-1235 *4)) (-5 *3 (-552)) (-4 *4 (-343)) (-5 *1 (-520 *4)))) (-2631 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1235 *4)) (-5 *3 (-1096)) (-4 *4 (-343)) (-5 *1 (-520 *4)))) (-2996 (*1 *2 *2 *3) (-12 (-5 *2 (-1235 *4)) (-5 *3 (-754)) (-4 *4 (-343)) (-5 *1 (-520 *4)))) (-1447 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1235 *5)) (-5 *3 (-754)) (-5 *4 (-1096)) (-4 *5 (-343)) (-5 *1 (-520 *5)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1148 *4)) (-5 *1 (-520 *4)) (-4 *4 (-343)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-1235 *4)) (-4 *4 (-343)) (-5 *2 (-1148 *4)) (-5 *1 (-520 *4)))) (-4153 (*1 *2 *3 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1235 *4)) (-5 *1 (-520 *4)) (-4 *4 (-343)))) (-1279 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1235 *4)) (-5 *1 (-520 *4)) (-4 *4 (-343)))) (-1377 (*1 *2 *3 *4) (-12 (-5 *3 (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096)))))) (-4 *4 (-343)) (-5 *2 (-1240)) (-5 *1 (-520 *4))))) +(-10 -7 (-15 -1377 ((-1240) (-1235 (-627 (-2 (|:| -4288 |#1|) (|:| -4153 (-1096))))) |#1|)) (-15 -1279 ((-1235 |#1|) (-900))) (-15 -4153 ((-1235 |#1|) (-900) (-900))) (-15 -3144 ((-1148 |#1|) (-1235 |#1|))) (-15 -2845 ((-1148 |#1|) (-754))) (-15 -1447 ((-1235 |#1|) (-1235 |#1|) (-754) (-1096))) (-15 -2996 ((-1235 |#1|) (-1235 |#1|) (-754))) (-15 -2631 ((-1235 |#1|) (-1235 |#1|) (-1096) (-1096))) (-15 -4247 ((-1235 |#1|) (-1235 |#1|) (-552))) (-15 ** ((-1235 |#1|) (-1235 |#1|) (-552))) (-15 * ((-1235 |#1|) (-1235 |#1|) (-1235 |#1|))) (-15 -2407 ((-1235 |#1|) (-1235 |#1|) (-1235 |#1|))) (-15 -2349 ((-1235 |#1|) (-1235 |#1|) (-900))) (-15 -3385 ((-1235 |#1|) (-1235 |#1|) (-900))) (-15 -1951 ((-1235 |#1|) (-1235 |#1|))) (-15 -2886 ((-900) (-1235 |#1|))) (-15 -2492 ((-111) (-1235 |#1|))) (-15 -2957 ((-1235 (-1235 |#1|)) (-900))) (-15 -2611 ((-1235 |#1|) (-900))) (-15 -4205 ((-1148 |#1|) (-1235 |#1|)))) +((-3166 (((-1096) $ (-127)) NIL)) (-2764 (((-1096) $) 21)) (-2542 (((-1096) $ (-1096)) 25)) (-2967 (((-1096) $) 24)) (-1300 (((-111) $) 19)) (-2662 (($ (-382)) 12) (($ (-1134)) 14)) (-4098 (((-111) $) 22)) (-1477 (((-842) $) 28)) (-2219 (($ $) 23))) +(((-521) (-13 (-519) (-599 (-842)) (-10 -8 (-15 -2662 ($ (-382))) (-15 -2662 ($ (-1134))) (-15 -4098 ((-111) $)) (-15 -1300 ((-111) $)) (-15 -2967 ((-1096) $)) (-15 -2542 ((-1096) $ (-1096)))))) (T -521)) +((-2662 (*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-521)))) (-2662 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-521)))) (-4098 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-521)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-521)))) (-2967 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-521)))) (-2542 (*1 *2 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-521))))) +(-13 (-519) (-599 (-842)) (-10 -8 (-15 -2662 ($ (-382))) (-15 -2662 ($ (-1134))) (-15 -4098 ((-111) $)) (-15 -1300 ((-111) $)) (-15 -2967 ((-1096) $)) (-15 -2542 ((-1096) $ (-1096))))) +((-2484 (((-1 |#1| |#1|) |#1|) 11)) (-3422 (((-1 |#1| |#1|)) 10))) +(((-522 |#1|) (-10 -7 (-15 -3422 ((-1 |#1| |#1|))) (-15 -2484 ((-1 |#1| |#1|) |#1|))) (-13 (-709) (-25))) (T -522)) +((-2484 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-522 *3)) (-4 *3 (-13 (-709) (-25))))) (-3422 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-522 *3)) (-4 *3 (-13 (-709) (-25)))))) +(-10 -7 (-15 -3422 ((-1 |#1| |#1|))) (-15 -2484 ((-1 |#1| |#1|) |#1|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2796 (($ $ $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2014 (($ $) NIL)) (-1832 (($ (-754) |#1|) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3516 (($ (-1 (-754) (-754)) $) NIL)) (-1436 ((|#1| $) NIL)) (-1993 (((-754) $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 20)) (-1922 (($) NIL T CONST)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-2384 (($ $ $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL))) +(((-523 |#1|) (-13 (-776) (-501 (-754) |#1|)) (-830)) (T -523)) +NIL +(-13 (-776) (-501 (-754) |#1|)) +((-3620 (((-627 |#2|) (-1148 |#1|) |#3|) 83)) (-3368 (((-627 (-2 (|:| |outval| |#2|) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 |#2|))))) (-671 |#1|) |#3| (-1 (-412 (-1148 |#1|)) (-1148 |#1|))) 100)) (-1897 (((-1148 |#1|) (-671 |#1|)) 95))) +(((-524 |#1| |#2| |#3|) (-10 -7 (-15 -1897 ((-1148 |#1|) (-671 |#1|))) (-15 -3620 ((-627 |#2|) (-1148 |#1|) |#3|)) (-15 -3368 ((-627 (-2 (|:| |outval| |#2|) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 |#2|))))) (-671 |#1|) |#3| (-1 (-412 (-1148 |#1|)) (-1148 |#1|))))) (-357) (-357) (-13 (-357) (-828))) (T -524)) +((-3368 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *6)) (-5 *5 (-1 (-412 (-1148 *6)) (-1148 *6))) (-4 *6 (-357)) (-5 *2 (-627 (-2 (|:| |outval| *7) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 *7)))))) (-5 *1 (-524 *6 *7 *4)) (-4 *7 (-357)) (-4 *4 (-13 (-357) (-828))))) (-3620 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 *5)) (-4 *5 (-357)) (-5 *2 (-627 *6)) (-5 *1 (-524 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-828))))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-671 *4)) (-4 *4 (-357)) (-5 *2 (-1148 *4)) (-5 *1 (-524 *4 *5 *6)) (-4 *5 (-357)) (-4 *6 (-13 (-357) (-828)))))) +(-10 -7 (-15 -1897 ((-1148 |#1|) (-671 |#1|))) (-15 -3620 ((-627 |#2|) (-1148 |#1|) |#3|)) (-15 -3368 ((-627 (-2 (|:| |outval| |#2|) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 |#2|))))) (-671 |#1|) |#3| (-1 (-412 (-1148 |#1|)) (-1148 |#1|))))) +((-1525 (((-1096) $ (-127)) 24)) (-3928 (((-1096) $ (-128)) NIL)) (-3166 (((-1096) $ (-127)) 23)) (-2764 (((-1096) $) NIL)) (-3664 (((-111) $) 17)) (-2424 (((-3 $ "failed") (-567) (-933)) 10) (((-3 $ "failed") (-483) (-933)) 13)) (-1477 (((-842) $) 32)) (-2219 (($ $) 22))) +(((-525) (-13 (-750 (-567)) (-599 (-842)) (-10 -8 (-15 -2424 ((-3 $ "failed") (-483) (-933)))))) (T -525)) +((-2424 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-483)) (-5 *3 (-933)) (-5 *1 (-525))))) +(-13 (-750 (-567)) (-599 (-842)) (-10 -8 (-15 -2424 ((-3 $ "failed") (-483) (-933))))) +((-3596 (((-823 (-552))) 12)) (-3610 (((-823 (-552))) 14)) (-2962 (((-816 (-552))) 9))) +(((-526) (-10 -7 (-15 -2962 ((-816 (-552)))) (-15 -3596 ((-823 (-552)))) (-15 -3610 ((-823 (-552)))))) (T -526)) +((-3610 (*1 *2) (-12 (-5 *2 (-823 (-552))) (-5 *1 (-526)))) (-3596 (*1 *2) (-12 (-5 *2 (-823 (-552))) (-5 *1 (-526)))) (-2962 (*1 *2) (-12 (-5 *2 (-816 (-552))) (-5 *1 (-526))))) +(-10 -7 (-15 -2962 ((-816 (-552)))) (-15 -3596 ((-823 (-552)))) (-15 -3610 ((-823 (-552))))) +((-3499 (((-528) (-1152)) 15)) (-3072 ((|#1| (-528)) 20))) +(((-527 |#1|) (-10 -7 (-15 -3499 ((-528) (-1152))) (-15 -3072 (|#1| (-528)))) (-1189)) (T -527)) +((-3072 (*1 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-527 *2)) (-4 *2 (-1189)))) (-3499 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-528)) (-5 *1 (-527 *4)) (-4 *4 (-1189))))) +(-10 -7 (-15 -3499 ((-528) (-1152))) (-15 -3072 (|#1| (-528)))) +((-1465 (((-111) $ $) NIL)) (-1519 (((-1134) $) 47)) (-1891 (((-111) $) 43)) (-2909 (((-1152) $) 44)) (-2563 (((-111) $) 41)) (-2258 (((-1134) $) 42)) (-1938 (($ (-1134)) 48)) (-3631 (((-111) $) NIL)) (-2836 (((-111) $) NIL)) (-2043 (((-111) $) NIL)) (-1595 (((-1134) $) NIL)) (-3494 (($ $ (-627 (-1152))) 20)) (-3072 (((-52) $) 22)) (-2170 (((-111) $) NIL)) (-2933 (((-552) $) NIL)) (-1498 (((-1096) $) NIL)) (-4218 (($ $ (-627 (-1152)) (-1152)) 60)) (-2305 (((-111) $) NIL)) (-2103 (((-220) $) NIL)) (-1427 (($ $) 38)) (-4301 (((-842) $) NIL)) (-1651 (((-111) $ $) NIL)) (-1985 (($ $ (-552)) NIL) (($ $ (-627 (-552))) NIL)) (-1790 (((-627 $) $) 28)) (-1555 (((-1152) (-627 $)) 49)) (-3562 (($ (-627 $)) 56) (($ (-1134)) NIL) (($ (-1152)) 18) (($ (-552)) 8) (($ (-220)) 25) (($ (-842)) NIL) (((-1080) $) 11) (($ (-1080)) 12)) (-2390 (((-1152) (-1152) (-627 $)) 52)) (-1477 (((-842) $) 46)) (-1328 (($ $) 51)) (-1314 (($ $) 50)) (-3780 (($ $ (-627 $)) 57)) (-3233 (((-111) $) 27)) (-1922 (($) 9 T CONST)) (-1933 (($) 10 T CONST)) (-2292 (((-111) $ $) 61)) (-2407 (($ $ $) 66)) (-2384 (($ $ $) 62)) (** (($ $ (-754)) 65) (($ $ (-552)) 64)) (* (($ $ $) 63)) (-1383 (((-552) $) NIL))) +(((-528) (-13 (-1079 (-1134) (-1152) (-552) (-220) (-842)) (-600 (-1080)) (-10 -8 (-15 -3072 ((-52) $)) (-15 -3562 ($ (-1080))) (-15 -3780 ($ $ (-627 $))) (-15 -4218 ($ $ (-627 (-1152)) (-1152))) (-15 -3494 ($ $ (-627 (-1152)))) (-15 -2384 ($ $ $)) (-15 * ($ $ $)) (-15 -2407 ($ $ $)) (-15 ** ($ $ (-754))) (-15 ** ($ $ (-552))) (-15 0 ($) -3488) (-15 1 ($) -3488) (-15 -1427 ($ $)) (-15 -1519 ((-1134) $)) (-15 -1938 ($ (-1134))) (-15 -1555 ((-1152) (-627 $))) (-15 -2390 ((-1152) (-1152) (-627 $)))))) (T -528)) +((-3072 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-528)))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-528)))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-528))) (-5 *1 (-528)))) (-4218 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-1152)) (-5 *1 (-528)))) (-3494 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-528)))) (-2384 (*1 *1 *1 *1) (-5 *1 (-528))) (* (*1 *1 *1 *1) (-5 *1 (-528))) (-2407 (*1 *1 *1 *1) (-5 *1 (-528))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-528)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-528)))) (-1922 (*1 *1) (-5 *1 (-528))) (-1933 (*1 *1) (-5 *1 (-528))) (-1427 (*1 *1 *1) (-5 *1 (-528))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-528)))) (-1938 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-528)))) (-1555 (*1 *2 *3) (-12 (-5 *3 (-627 (-528))) (-5 *2 (-1152)) (-5 *1 (-528)))) (-2390 (*1 *2 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-528))) (-5 *1 (-528))))) +(-13 (-1079 (-1134) (-1152) (-552) (-220) (-842)) (-600 (-1080)) (-10 -8 (-15 -3072 ((-52) $)) (-15 -3562 ($ (-1080))) (-15 -3780 ($ $ (-627 $))) (-15 -4218 ($ $ (-627 (-1152)) (-1152))) (-15 -3494 ($ $ (-627 (-1152)))) (-15 -2384 ($ $ $)) (-15 * ($ $ $)) (-15 -2407 ($ $ $)) (-15 ** ($ $ (-754))) (-15 ** ($ $ (-552))) (-15 (-1922) ($) -3488) (-15 (-1933) ($) -3488) (-15 -1427 ($ $)) (-15 -1519 ((-1134) $)) (-15 -1938 ($ (-1134))) (-15 -1555 ((-1152) (-627 $))) (-15 -2390 ((-1152) (-1152) (-627 $))))) +((-3590 ((|#2| |#2|) 17)) (-3153 ((|#2| |#2|) 13)) (-3371 ((|#2| |#2| (-552) (-552)) 20)) (-1817 ((|#2| |#2|) 15))) +(((-529 |#1| |#2|) (-10 -7 (-15 -3153 (|#2| |#2|)) (-15 -1817 (|#2| |#2|)) (-15 -3590 (|#2| |#2|)) (-15 -3371 (|#2| |#2| (-552) (-552)))) (-13 (-544) (-144)) (-1226 |#1|)) (T -529)) +((-3371 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-552)) (-4 *4 (-13 (-544) (-144))) (-5 *1 (-529 *4 *2)) (-4 *2 (-1226 *4)))) (-3590 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1226 *3)))) (-1817 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1226 *3)))) (-3153 (*1 *2 *2) (-12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1226 *3))))) +(-10 -7 (-15 -3153 (|#2| |#2|)) (-15 -1817 (|#2| |#2|)) (-15 -3590 (|#2| |#2|)) (-15 -3371 (|#2| |#2| (-552) (-552)))) +((-1289 (((-627 (-288 (-931 |#2|))) (-627 |#2|) (-627 (-1152))) 32)) (-3101 (((-627 |#2|) (-931 |#1|) |#3|) 53) (((-627 |#2|) (-1148 |#1|) |#3|) 52)) (-2799 (((-627 (-627 |#2|)) (-627 (-931 |#1|)) (-627 (-931 |#1|)) (-627 (-1152)) |#3|) 91))) +(((-530 |#1| |#2| |#3|) (-10 -7 (-15 -3101 ((-627 |#2|) (-1148 |#1|) |#3|)) (-15 -3101 ((-627 |#2|) (-931 |#1|) |#3|)) (-15 -2799 ((-627 (-627 |#2|)) (-627 (-931 |#1|)) (-627 (-931 |#1|)) (-627 (-1152)) |#3|)) (-15 -1289 ((-627 (-288 (-931 |#2|))) (-627 |#2|) (-627 (-1152))))) (-445) (-357) (-13 (-357) (-828))) (T -530)) +((-1289 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *6)) (-5 *4 (-627 (-1152))) (-4 *6 (-357)) (-5 *2 (-627 (-288 (-931 *6)))) (-5 *1 (-530 *5 *6 *7)) (-4 *5 (-445)) (-4 *7 (-13 (-357) (-828))))) (-2799 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-627 (-931 *6))) (-5 *4 (-627 (-1152))) (-4 *6 (-445)) (-5 *2 (-627 (-627 *7))) (-5 *1 (-530 *6 *7 *5)) (-4 *7 (-357)) (-4 *5 (-13 (-357) (-828))))) (-3101 (*1 *2 *3 *4) (-12 (-5 *3 (-931 *5)) (-4 *5 (-445)) (-5 *2 (-627 *6)) (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-828))))) (-3101 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 *5)) (-4 *5 (-445)) (-5 *2 (-627 *6)) (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-828)))))) +(-10 -7 (-15 -3101 ((-627 |#2|) (-1148 |#1|) |#3|)) (-15 -3101 ((-627 |#2|) (-931 |#1|) |#3|)) (-15 -2799 ((-627 (-627 |#2|)) (-627 (-931 |#1|)) (-627 (-931 |#1|)) (-627 (-1152)) |#3|)) (-15 -1289 ((-627 (-288 (-931 |#2|))) (-627 |#2|) (-627 (-1152))))) +((-3226 ((|#2| |#2| |#1|) 17)) (-2955 ((|#2| (-627 |#2|)) 27)) (-1550 ((|#2| (-627 |#2|)) 46))) +(((-531 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2955 (|#2| (-627 |#2|))) (-15 -1550 (|#2| (-627 |#2|))) (-15 -3226 (|#2| |#2| |#1|))) (-301) (-1211 |#1|) |#1| (-1 |#1| |#1| (-754))) (T -531)) +((-3226 (*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-754))) (-5 *1 (-531 *3 *2 *4 *5)) (-4 *2 (-1211 *3)))) (-1550 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-531 *4 *2 *5 *6)) (-4 *4 (-301)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-754))))) (-2955 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-531 *4 *2 *5 *6)) (-4 *4 (-301)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-754)))))) +(-10 -7 (-15 -2955 (|#2| (-627 |#2|))) (-15 -1550 (|#2| (-627 |#2|))) (-15 -3226 (|#2| |#2| |#1|))) +((-1727 (((-412 (-1148 |#4|)) (-1148 |#4|) (-1 (-412 (-1148 |#3|)) (-1148 |#3|))) 80) (((-412 |#4|) |#4| (-1 (-412 (-1148 |#3|)) (-1148 |#3|))) 169))) +(((-532 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1727 ((-412 |#4|) |#4| (-1 (-412 (-1148 |#3|)) (-1148 |#3|)))) (-15 -1727 ((-412 (-1148 |#4|)) (-1148 |#4|) (-1 (-412 (-1148 |#3|)) (-1148 |#3|))))) (-830) (-776) (-13 (-301) (-144)) (-928 |#3| |#2| |#1|)) (T -532)) +((-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-412 (-1148 *7)) (-1148 *7))) (-4 *7 (-13 (-301) (-144))) (-4 *5 (-830)) (-4 *6 (-776)) (-4 *8 (-928 *7 *6 *5)) (-5 *2 (-412 (-1148 *8))) (-5 *1 (-532 *5 *6 *7 *8)) (-5 *3 (-1148 *8)))) (-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-412 (-1148 *7)) (-1148 *7))) (-4 *7 (-13 (-301) (-144))) (-4 *5 (-830)) (-4 *6 (-776)) (-5 *2 (-412 *3)) (-5 *1 (-532 *5 *6 *7 *3)) (-4 *3 (-928 *7 *6 *5))))) +(-10 -7 (-15 -1727 ((-412 |#4|) |#4| (-1 (-412 (-1148 |#3|)) (-1148 |#3|)))) (-15 -1727 ((-412 (-1148 |#4|)) (-1148 |#4|) (-1 (-412 (-1148 |#3|)) (-1148 |#3|))))) +((-3590 ((|#4| |#4|) 74)) (-3153 ((|#4| |#4|) 70)) (-3371 ((|#4| |#4| (-552) (-552)) 76)) (-1817 ((|#4| |#4|) 72))) +(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3153 (|#4| |#4|)) (-15 -1817 (|#4| |#4|)) (-15 -3590 (|#4| |#4|)) (-15 -3371 (|#4| |#4| (-552) (-552)))) (-13 (-357) (-362) (-600 (-552))) (-1211 |#1|) (-707 |#1| |#2|) (-1226 |#3|)) (T -533)) +((-3371 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-552)) (-4 *4 (-13 (-357) (-362) (-600 *3))) (-4 *5 (-1211 *4)) (-4 *6 (-707 *4 *5)) (-5 *1 (-533 *4 *5 *6 *2)) (-4 *2 (-1226 *6)))) (-3590 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-4 *4 (-1211 *3)) (-4 *5 (-707 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1226 *5)))) (-1817 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-4 *4 (-1211 *3)) (-4 *5 (-707 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1226 *5)))) (-3153 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-4 *4 (-1211 *3)) (-4 *5 (-707 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1226 *5))))) +(-10 -7 (-15 -3153 (|#4| |#4|)) (-15 -1817 (|#4| |#4|)) (-15 -3590 (|#4| |#4|)) (-15 -3371 (|#4| |#4| (-552) (-552)))) +((-3590 ((|#2| |#2|) 27)) (-3153 ((|#2| |#2|) 23)) (-3371 ((|#2| |#2| (-552) (-552)) 29)) (-1817 ((|#2| |#2|) 25))) +(((-534 |#1| |#2|) (-10 -7 (-15 -3153 (|#2| |#2|)) (-15 -1817 (|#2| |#2|)) (-15 -3590 (|#2| |#2|)) (-15 -3371 (|#2| |#2| (-552) (-552)))) (-13 (-357) (-362) (-600 (-552))) (-1226 |#1|)) (T -534)) +((-3371 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-552)) (-4 *4 (-13 (-357) (-362) (-600 *3))) (-5 *1 (-534 *4 *2)) (-4 *2 (-1226 *4)))) (-3590 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1226 *3)))) (-1817 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1226 *3)))) (-3153 (*1 *2 *2) (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1226 *3))))) +(-10 -7 (-15 -3153 (|#2| |#2|)) (-15 -1817 (|#2| |#2|)) (-15 -3590 (|#2| |#2|)) (-15 -3371 (|#2| |#2| (-552) (-552)))) +((-1831 (((-3 (-552) "failed") |#2| |#1| (-1 (-3 (-552) "failed") |#1|)) 14) (((-3 (-552) "failed") |#2| |#1| (-552) (-1 (-3 (-552) "failed") |#1|)) 13) (((-3 (-552) "failed") |#2| (-552) (-1 (-3 (-552) "failed") |#1|)) 26))) +(((-535 |#1| |#2|) (-10 -7 (-15 -1831 ((-3 (-552) "failed") |#2| (-552) (-1 (-3 (-552) "failed") |#1|))) (-15 -1831 ((-3 (-552) "failed") |#2| |#1| (-552) (-1 (-3 (-552) "failed") |#1|))) (-15 -1831 ((-3 (-552) "failed") |#2| |#1| (-1 (-3 (-552) "failed") |#1|)))) (-1028) (-1211 |#1|)) (T -535)) +((-1831 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-552) "failed") *4)) (-4 *4 (-1028)) (-5 *2 (-552)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1211 *4)))) (-1831 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-552) "failed") *4)) (-4 *4 (-1028)) (-5 *2 (-552)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1211 *4)))) (-1831 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-552) "failed") *5)) (-4 *5 (-1028)) (-5 *2 (-552)) (-5 *1 (-535 *5 *3)) (-4 *3 (-1211 *5))))) +(-10 -7 (-15 -1831 ((-3 (-552) "failed") |#2| (-552) (-1 (-3 (-552) "failed") |#1|))) (-15 -1831 ((-3 (-552) "failed") |#2| |#1| (-552) (-1 (-3 (-552) "failed") |#1|))) (-15 -1831 ((-3 (-552) "failed") |#2| |#1| (-1 (-3 (-552) "failed") |#1|)))) +((-2002 (($ $ $) 79)) (-2487 (((-412 $) $) 47)) (-4039 (((-3 (-552) "failed") $) 59)) (-1703 (((-552) $) 37)) (-2859 (((-3 (-401 (-552)) "failed") $) 74)) (-4229 (((-111) $) 24)) (-2411 (((-401 (-552)) $) 72)) (-1633 (((-111) $) 50)) (-3428 (($ $ $ $) 86)) (-2983 (((-111) $) 16)) (-1868 (($ $ $) 57)) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 69)) (-4317 (((-3 $ "failed") $) 64)) (-4117 (($ $) 23)) (-3556 (($ $ $) 84)) (-3002 (($) 60)) (-2610 (($ $) 53)) (-1727 (((-412 $) $) 45)) (-1507 (((-111) $) 14)) (-2718 (((-754) $) 28)) (-2942 (($ $ (-754)) NIL) (($ $) 10)) (-2973 (($ $) 17)) (-3562 (((-552) $) NIL) (((-528) $) 36) (((-871 (-552)) $) 40) (((-373) $) 31) (((-220) $) 33)) (-3995 (((-754)) 8)) (-3240 (((-111) $ $) 20)) (-3697 (($ $ $) 55))) +(((-536 |#1|) (-10 -8 (-15 -3556 (|#1| |#1| |#1|)) (-15 -3428 (|#1| |#1| |#1| |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -2973 (|#1| |#1|)) (-15 -2859 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2411 ((-401 (-552)) |#1|)) (-15 -4229 ((-111) |#1|)) (-15 -2002 (|#1| |#1| |#1|)) (-15 -3240 ((-111) |#1| |#1|)) (-15 -1507 ((-111) |#1|)) (-15 -3002 (|#1|)) (-15 -4317 ((-3 |#1| "failed") |#1|)) (-15 -3562 ((-220) |#1|)) (-15 -3562 ((-373) |#1|)) (-15 -1868 (|#1| |#1| |#1|)) (-15 -2610 (|#1| |#1|)) (-15 -3697 (|#1| |#1| |#1|)) (-15 -4208 ((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|))) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -3562 ((-552) |#1|)) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -2983 ((-111) |#1|)) (-15 -2718 ((-754) |#1|)) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -2487 ((-412 |#1|) |#1|)) (-15 -1633 ((-111) |#1|)) (-15 -3995 ((-754)))) (-537)) (T -536)) +((-3995 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-536 *3)) (-4 *3 (-537))))) +(-10 -8 (-15 -3556 (|#1| |#1| |#1|)) (-15 -3428 (|#1| |#1| |#1| |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -2973 (|#1| |#1|)) (-15 -2859 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2411 ((-401 (-552)) |#1|)) (-15 -4229 ((-111) |#1|)) (-15 -2002 (|#1| |#1| |#1|)) (-15 -3240 ((-111) |#1| |#1|)) (-15 -1507 ((-111) |#1|)) (-15 -3002 (|#1|)) (-15 -4317 ((-3 |#1| "failed") |#1|)) (-15 -3562 ((-220) |#1|)) (-15 -3562 ((-373) |#1|)) (-15 -1868 (|#1| |#1| |#1|)) (-15 -2610 (|#1| |#1|)) (-15 -3697 (|#1| |#1| |#1|)) (-15 -4208 ((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|))) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -3562 ((-552) |#1|)) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -2983 ((-111) |#1|)) (-15 -2718 ((-754) |#1|)) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -2487 ((-412 |#1|) |#1|)) (-15 -1633 ((-111) |#1|)) (-15 -3995 ((-754)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-2002 (($ $ $) 82)) (-4136 (((-3 $ "failed") $ $) 19)) (-3633 (($ $ $ $) 71)) (-4014 (($ $) 49)) (-2487 (((-412 $) $) 50)) (-4224 (((-111) $ $) 122)) (-2422 (((-552) $) 111)) (-1452 (($ $ $) 85)) (-3887 (($) 17 T CONST)) (-4039 (((-3 (-552) "failed") $) 103)) (-1703 (((-552) $) 102)) (-2813 (($ $ $) 126)) (-1800 (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 101) (((-671 (-552)) (-671 $)) 100)) (-2040 (((-3 $ "failed") $) 32)) (-2859 (((-3 (-401 (-552)) "failed") $) 79)) (-4229 (((-111) $) 81)) (-2411 (((-401 (-552)) $) 80)) (-1279 (($) 78) (($ $) 77)) (-2789 (($ $ $) 125)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 120)) (-1633 (((-111) $) 51)) (-3428 (($ $ $ $) 69)) (-3537 (($ $ $) 83)) (-2983 (((-111) $) 113)) (-1868 (($ $ $) 94)) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 97)) (-2624 (((-111) $) 30)) (-1394 (((-111) $) 89)) (-4317 (((-3 $ "failed") $) 91)) (-1508 (((-111) $) 112)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 129)) (-1969 (($ $ $ $) 70)) (-1816 (($ $ $) 114)) (-4093 (($ $ $) 115)) (-4117 (($ $) 73)) (-3593 (($ $) 86)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-3556 (($ $ $) 68)) (-3002 (($) 90 T CONST)) (-3445 (($ $) 75)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-2610 (($ $) 95)) (-1727 (((-412 $) $) 48)) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 128) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 127)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 121)) (-1507 (((-111) $) 88)) (-2718 (((-754) $) 123)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 124)) (-2942 (($ $ (-754)) 108) (($ $) 106)) (-1313 (($ $) 74)) (-2973 (($ $) 76)) (-3562 (((-552) $) 105) (((-528) $) 99) (((-871 (-552)) $) 98) (((-373) $) 93) (((-220) $) 92)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-552)) 104)) (-3995 (((-754)) 28)) (-3240 (((-111) $ $) 84)) (-3697 (($ $ $) 96)) (-2705 (($) 87)) (-3778 (((-111) $ $) 37)) (-2166 (($ $ $ $) 72)) (-3329 (($ $) 110)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-754)) 109) (($ $) 107)) (-2351 (((-111) $ $) 117)) (-2329 (((-111) $ $) 118)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 116)) (-2316 (((-111) $ $) 119)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-537) (-137)) (T -537)) +((-1394 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111)))) (-1507 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111)))) (-2705 (*1 *1) (-4 *1 (-537))) (-3593 (*1 *1 *1) (-4 *1 (-537))) (-1452 (*1 *1 *1 *1) (-4 *1 (-537))) (-3240 (*1 *2 *1 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111)))) (-3537 (*1 *1 *1 *1) (-4 *1 (-537))) (-2002 (*1 *1 *1 *1) (-4 *1 (-537))) (-4229 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111)))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-401 (-552))))) (-2859 (*1 *2 *1) (|partial| -12 (-4 *1 (-537)) (-5 *2 (-401 (-552))))) (-1279 (*1 *1) (-4 *1 (-537))) (-1279 (*1 *1 *1) (-4 *1 (-537))) (-2973 (*1 *1 *1) (-4 *1 (-537))) (-3445 (*1 *1 *1) (-4 *1 (-537))) (-1313 (*1 *1 *1) (-4 *1 (-537))) (-4117 (*1 *1 *1) (-4 *1 (-537))) (-2166 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-3633 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-1969 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-3428 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-3556 (*1 *1 *1 *1) (-4 *1 (-537)))) +(-13 (-1193) (-301) (-803) (-228) (-600 (-552)) (-1017 (-552)) (-623 (-552)) (-600 (-528)) (-600 (-871 (-552))) (-865 (-552)) (-140) (-1001) (-144) (-1127) (-10 -8 (-15 -1394 ((-111) $)) (-15 -1507 ((-111) $)) (-6 -4365) (-15 -2705 ($)) (-15 -3593 ($ $)) (-15 -1452 ($ $ $)) (-15 -3240 ((-111) $ $)) (-15 -3537 ($ $ $)) (-15 -2002 ($ $ $)) (-15 -4229 ((-111) $)) (-15 -2411 ((-401 (-552)) $)) (-15 -2859 ((-3 (-401 (-552)) "failed") $)) (-15 -1279 ($)) (-15 -1279 ($ $)) (-15 -2973 ($ $)) (-15 -3445 ($ $)) (-15 -1313 ($ $)) (-15 -4117 ($ $)) (-15 -2166 ($ $ $ $)) (-15 -3633 ($ $ $ $)) (-15 -1969 ($ $ $ $)) (-15 -3428 ($ $ $ $)) (-15 -3556 ($ $ $)) (-6 -4364))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-144) . T) ((-599 (-842)) . T) ((-140) . T) ((-169) . T) ((-600 (-220)) . T) ((-600 (-373)) . T) ((-600 (-528)) . T) ((-600 (-552)) . T) ((-600 (-871 (-552))) . T) ((-228) . T) ((-284) . T) ((-301) . T) ((-445) . T) ((-544) . T) ((-630 $) . T) ((-623 (-552)) . T) ((-700 $) . T) ((-709) . T) ((-774) . T) ((-775) . T) ((-777) . T) ((-778) . T) ((-803) . T) ((-828) . T) ((-830) . T) ((-865 (-552)) . T) ((-899) . T) ((-1001) . T) ((-1017 (-552)) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1127) . T) ((-1193) . T)) +((-1465 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3305 (((-1240) $ |#1| |#1|) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#2| $ |#1| |#2|) NIL)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3602 (((-3 |#2| "failed") |#1| $) NIL)) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2265 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-3 |#2| "failed") |#1| $) NIL)) (-4342 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) NIL)) (-3215 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 ((|#1| $) NIL (|has| |#1| (-830)))) (-3114 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2285 ((|#1| $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4367))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1296 (((-627 |#1|) $) NIL)) (-3619 (((-111) |#1| $) NIL)) (-4165 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3954 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3892 (((-627 |#1|) $) NIL)) (-2358 (((-111) |#1| $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-3340 ((|#2| $) NIL (|has| |#1| (-830)))) (-1503 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL)) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3028 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076)))) (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1477 (((-842) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842))) (|has| |#2| (-599 (-842)))))) (-2577 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-538 |#1| |#2| |#3|) (-13 (-1165 |#1| |#2|) (-10 -7 (-6 -4366))) (-1076) (-1076) (-13 (-1165 |#1| |#2|) (-10 -7 (-6 -4366)))) (T -538)) +NIL +(-13 (-1165 |#1| |#2|) (-10 -7 (-6 -4366))) +((-1643 (((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) (-1 (-1148 |#2|) (-1148 |#2|))) 51))) +(((-539 |#1| |#2|) (-10 -7 (-15 -1643 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) (-1 (-1148 |#2|) (-1148 |#2|))))) (-13 (-830) (-544)) (-13 (-27) (-424 |#1|))) (T -539)) +((-1643 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-598 *3)) (-5 *5 (-1 (-1148 *3) (-1148 *3))) (-4 *3 (-13 (-27) (-424 *6))) (-4 *6 (-13 (-830) (-544))) (-5 *2 (-573 *3)) (-5 *1 (-539 *6 *3))))) +(-10 -7 (-15 -1643 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) (-1 (-1148 |#2|) (-1148 |#2|))))) +((-1791 (((-573 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-1446 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-3283 (((-573 |#5|) |#5| (-1 |#3| |#3|)) 202))) +(((-540 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3283 ((-573 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1791 ((-573 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1446 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-830) (-544) (-1017 (-552))) (-13 (-27) (-424 |#1|)) (-1211 |#2|) (-1211 (-401 |#3|)) (-336 |#2| |#3| |#4|)) (T -540)) +((-1446 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-27) (-424 *4))) (-4 *4 (-13 (-830) (-544) (-1017 (-552)))) (-4 *7 (-1211 (-401 *6))) (-5 *1 (-540 *4 *5 *6 *7 *2)) (-4 *2 (-336 *5 *6 *7)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1211 *6)) (-4 *6 (-13 (-27) (-424 *5))) (-4 *5 (-13 (-830) (-544) (-1017 (-552)))) (-4 *8 (-1211 (-401 *7))) (-5 *2 (-573 *3)) (-5 *1 (-540 *5 *6 *7 *8 *3)) (-4 *3 (-336 *6 *7 *8)))) (-3283 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1211 *6)) (-4 *6 (-13 (-27) (-424 *5))) (-4 *5 (-13 (-830) (-544) (-1017 (-552)))) (-4 *8 (-1211 (-401 *7))) (-5 *2 (-573 *3)) (-5 *1 (-540 *5 *6 *7 *8 *3)) (-4 *3 (-336 *6 *7 *8))))) +(-10 -7 (-15 -3283 ((-573 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1791 ((-573 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1446 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-1923 (((-111) (-552) (-552)) 10)) (-3601 (((-552) (-552)) 7)) (-2180 (((-552) (-552) (-552)) 8))) +(((-541) (-10 -7 (-15 -3601 ((-552) (-552))) (-15 -2180 ((-552) (-552) (-552))) (-15 -1923 ((-111) (-552) (-552))))) (T -541)) +((-1923 (*1 *2 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-111)) (-5 *1 (-541)))) (-2180 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-541)))) (-3601 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-541))))) +(-10 -7 (-15 -3601 ((-552) (-552))) (-15 -2180 ((-552) (-552) (-552))) (-15 -1923 ((-111) (-552) (-552)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-2359 ((|#1| $) 59)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-1607 (($ $) 89)) (-1467 (($ $) 72)) (-2796 ((|#1| $) 60)) (-4136 (((-3 $ "failed") $ $) 19)) (-1737 (($ $) 71)) (-1584 (($ $) 88)) (-1445 (($ $) 73)) (-1628 (($ $) 87)) (-1492 (($ $) 74)) (-3887 (($) 17 T CONST)) (-4039 (((-3 (-552) "failed") $) 67)) (-1703 (((-552) $) 66)) (-2040 (((-3 $ "failed") $) 32)) (-3891 (($ |#1| |#1|) 64)) (-2983 (((-111) $) 58)) (-2951 (($) 99)) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 70)) (-1508 (((-111) $) 57)) (-1816 (($ $ $) 105)) (-4093 (($ $ $) 104)) (-4135 (($ $) 96)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-2712 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-401 (-552))) 62)) (-4191 ((|#1| $) 61)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-2761 (((-3 $ "failed") $ $) 40)) (-3154 (($ $) 97)) (-1640 (($ $) 86)) (-1502 (($ $) 75)) (-1615 (($ $) 85)) (-1479 (($ $) 76)) (-1596 (($ $) 84)) (-1456 (($ $) 77)) (-2584 (((-111) $ |#1|) 56)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-552)) 68)) (-3995 (((-754)) 28)) (-1673 (($ $) 95)) (-1534 (($ $) 83)) (-3778 (((-111) $ $) 37)) (-1652 (($ $) 94)) (-1513 (($ $) 82)) (-1697 (($ $) 93)) (-1561 (($ $) 81)) (-3519 (($ $) 92)) (-1575 (($ $) 80)) (-1686 (($ $) 91)) (-1547 (($ $) 79)) (-1661 (($ $) 90)) (-1524 (($ $) 78)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2351 (((-111) $ $) 102)) (-2329 (((-111) $ $) 101)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 103)) (-2316 (((-111) $ $) 100)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ $) 98) (($ $ (-401 (-552))) 69)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-542 |#1|) (-137) (-13 (-398) (-1174))) (T -542)) +((-2712 (*1 *1 *2 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174))))) (-3891 (*1 *1 *2 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174))))) (-2712 (*1 *1 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174))))) (-2712 (*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-4 *1 (-542 *3)) (-4 *3 (-13 (-398) (-1174))))) (-4191 (*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174))))) (-2796 (*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174))))) (-2359 (*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174))))) (-2983 (*1 *2 *1) (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-398) (-1174))) (-5 *2 (-111)))) (-1508 (*1 *2 *1) (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-398) (-1174))) (-5 *2 (-111)))) (-2584 (*1 *2 *1 *3) (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-398) (-1174))) (-5 *2 (-111))))) +(-13 (-445) (-830) (-1174) (-981) (-1017 (-552)) (-10 -8 (-6 -3030) (-15 -2712 ($ |t#1| |t#1|)) (-15 -3891 ($ |t#1| |t#1|)) (-15 -2712 ($ |t#1|)) (-15 -2712 ($ (-401 (-552)))) (-15 -4191 (|t#1| $)) (-15 -2796 (|t#1| $)) (-15 -2359 (|t#1| $)) (-15 -2983 ((-111) $)) (-15 -1508 ((-111) $)) (-15 -2584 ((-111) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-94) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-278) . T) ((-284) . T) ((-445) . T) ((-485) . T) ((-544) . T) ((-630 $) . T) ((-700 $) . T) ((-709) . T) ((-830) . T) ((-981) . T) ((-1017 (-552)) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1174) . T) ((-1177) . T)) +((-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 9)) (-3245 (($ $) 11)) (-4058 (((-111) $) 18)) (-2040 (((-3 $ "failed") $) 16)) (-3778 (((-111) $ $) 20))) +(((-543 |#1|) (-10 -8 (-15 -4058 ((-111) |#1|)) (-15 -3778 ((-111) |#1| |#1|)) (-15 -3245 (|#1| |#1|)) (-15 -1887 ((-2 (|:| -2717 |#1|) (|:| -4353 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2040 ((-3 |#1| "failed") |#1|))) (-544)) (T -543)) +NIL +(-10 -8 (-15 -4058 ((-111) |#1|)) (-15 -3778 ((-111) |#1| |#1|)) (-15 -3245 (|#1| |#1|)) (-15 -1887 ((-2 (|:| -2717 |#1|) (|:| -4353 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2040 ((-3 |#1| "failed") |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2761 (((-3 $ "failed") $ $) 40)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-544) (-137)) (T -544)) +((-2761 (*1 *1 *1 *1) (|partial| -4 *1 (-544))) (-1887 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2717 *1) (|:| -4353 *1) (|:| |associate| *1))) (-4 *1 (-544)))) (-3245 (*1 *1 *1) (-4 *1 (-544))) (-3778 (*1 *2 *1 *1) (-12 (-4 *1 (-544)) (-5 *2 (-111)))) (-4058 (*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-111))))) +(-13 (-169) (-38 $) (-284) (-10 -8 (-15 -2761 ((-3 $ "failed") $ $)) (-15 -1887 ((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $)) (-15 -3245 ($ $)) (-15 -3778 ((-111) $ $)) (-15 -4058 ((-111) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-284) . T) ((-630 $) . T) ((-700 $) . T) ((-709) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-3357 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1152) (-627 |#2|)) 37)) (-1335 (((-573 |#2|) |#2| (-1152)) 62)) (-1740 (((-3 |#2| "failed") |#2| (-1152)) 152)) (-3922 (((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1152) (-598 |#2|) (-627 (-598 |#2|))) 155)) (-3599 (((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1152) |#2|) 40))) +(((-545 |#1| |#2|) (-10 -7 (-15 -3599 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1152) |#2|)) (-15 -3357 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1152) (-627 |#2|))) (-15 -1740 ((-3 |#2| "failed") |#2| (-1152))) (-15 -1335 ((-573 |#2|) |#2| (-1152))) (-15 -3922 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1152) (-598 |#2|) (-627 (-598 |#2|))))) (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552))) (-13 (-27) (-1174) (-424 |#1|))) (T -545)) +((-3922 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1152)) (-5 *6 (-627 (-598 *3))) (-5 *5 (-598 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *7))) (-4 *7 (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-2 (|:| -3446 *3) (|:| |coeff| *3))) (-5 *1 (-545 *7 *3)))) (-1335 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-573 *3)) (-5 *1 (-545 *5 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))))) (-1740 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1152)) (-4 *4 (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-545 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4))))) (-3357 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-627 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-545 *6 *3)))) (-3599 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1152)) (-4 *5 (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-2 (|:| -3446 *3) (|:| |coeff| *3))) (-5 *1 (-545 *5 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5)))))) +(-10 -7 (-15 -3599 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1152) |#2|)) (-15 -3357 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1152) (-627 |#2|))) (-15 -1740 ((-3 |#2| "failed") |#2| (-1152))) (-15 -1335 ((-573 |#2|) |#2| (-1152))) (-15 -3922 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1152) (-598 |#2|) (-627 (-598 |#2|))))) +((-2487 (((-412 |#1|) |#1|) 18)) (-1727 (((-412 |#1|) |#1|) 33)) (-2021 (((-3 |#1| "failed") |#1|) 44)) (-2299 (((-412 |#1|) |#1|) 51))) +(((-546 |#1|) (-10 -7 (-15 -1727 ((-412 |#1|) |#1|)) (-15 -2487 ((-412 |#1|) |#1|)) (-15 -2299 ((-412 |#1|) |#1|)) (-15 -2021 ((-3 |#1| "failed") |#1|))) (-537)) (T -546)) +((-2021 (*1 *2 *2) (|partial| -12 (-5 *1 (-546 *2)) (-4 *2 (-537)))) (-2299 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537)))) (-2487 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537)))) (-1727 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537))))) +(-10 -7 (-15 -1727 ((-412 |#1|) |#1|)) (-15 -2487 ((-412 |#1|) |#1|)) (-15 -2299 ((-412 |#1|) |#1|)) (-15 -2021 ((-3 |#1| "failed") |#1|))) +((-3555 (($) 9)) (-3431 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 35)) (-1296 (((-627 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $) 32)) (-3954 (($ (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3666 (($ (-627 (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2162 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 39)) (-2083 (((-627 (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-3269 (((-1240)) 12))) +(((-547) (-10 -8 (-15 -3555 ($)) (-15 -3269 ((-1240))) (-15 -1296 ((-627 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $)) (-15 -3666 ($ (-627 (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3954 ($ (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -3431 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2083 ((-627 (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2162 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (T -547)) +((-2162 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-547)))) (-2083 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-547)))) (-3431 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-547)))) (-3954 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-547)))) (-3666 (*1 *1 *2) (-12 (-5 *2 (-627 (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-547)))) (-1296 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-5 *1 (-547)))) (-3269 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-547)))) (-3555 (*1 *1) (-5 *1 (-547)))) +(-10 -8 (-15 -3555 ($)) (-15 -3269 ((-1240))) (-15 -1296 ((-627 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $)) (-15 -3666 ($ (-627 (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3954 ($ (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -3431 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2083 ((-627 (-2 (|:| -3998 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2162 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) +((-1694 (((-1148 (-401 (-1148 |#2|))) |#2| (-598 |#2|) (-598 |#2|) (-1148 |#2|)) 32)) (-1585 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-627 |#2|) (-598 |#2|) |#2| (-401 (-1148 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-627 |#2|) |#2| (-1148 |#2|)) 110)) (-3296 (((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) (-598 |#2|) |#2| (-401 (-1148 |#2|))) 80) (((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) |#2| (-1148 |#2|)) 52)) (-1833 (((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2| (-598 |#2|) |#2| (-401 (-1148 |#2|))) 87) (((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2| |#2| (-1148 |#2|)) 109)) (-2786 (((-3 |#2| "failed") |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1152)) (-598 |#2|) |#2| (-401 (-1148 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1152)) |#2| (-1148 |#2|)) 111)) (-2225 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2957 (-627 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) (-598 |#2|) |#2| (-401 (-1148 |#2|))) 128 (|has| |#3| (-638 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2957 (-627 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) |#2| (-1148 |#2|)) 127 (|has| |#3| (-638 |#2|)))) (-1842 ((|#2| (-1148 (-401 (-1148 |#2|))) (-598 |#2|) |#2|) 50)) (-2079 (((-1148 (-401 (-1148 |#2|))) (-1148 |#2|) (-598 |#2|)) 31))) +(((-548 |#1| |#2| |#3|) (-10 -7 (-15 -3296 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) |#2| (-1148 |#2|))) (-15 -3296 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) (-598 |#2|) |#2| (-401 (-1148 |#2|)))) (-15 -1833 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2| |#2| (-1148 |#2|))) (-15 -1833 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2| (-598 |#2|) |#2| (-401 (-1148 |#2|)))) (-15 -1585 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-627 |#2|) |#2| (-1148 |#2|))) (-15 -1585 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-627 |#2|) (-598 |#2|) |#2| (-401 (-1148 |#2|)))) (-15 -2786 ((-3 |#2| "failed") |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1152)) |#2| (-1148 |#2|))) (-15 -2786 ((-3 |#2| "failed") |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1152)) (-598 |#2|) |#2| (-401 (-1148 |#2|)))) (-15 -1694 ((-1148 (-401 (-1148 |#2|))) |#2| (-598 |#2|) (-598 |#2|) (-1148 |#2|))) (-15 -1842 (|#2| (-1148 (-401 (-1148 |#2|))) (-598 |#2|) |#2|)) (-15 -2079 ((-1148 (-401 (-1148 |#2|))) (-1148 |#2|) (-598 |#2|))) (IF (|has| |#3| (-638 |#2|)) (PROGN (-15 -2225 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2957 (-627 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) |#2| (-1148 |#2|))) (-15 -2225 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2957 (-627 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) (-598 |#2|) |#2| (-401 (-1148 |#2|))))) |%noBranch|)) (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552))) (-13 (-424 |#1|) (-27) (-1174)) (-1076)) (T -548)) +((-2225 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-598 *4)) (-5 *6 (-401 (-1148 *4))) (-4 *4 (-13 (-424 *7) (-27) (-1174))) (-4 *7 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) (-5 *1 (-548 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1076)))) (-2225 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-598 *4)) (-5 *6 (-1148 *4)) (-4 *4 (-13 (-424 *7) (-27) (-1174))) (-4 *7 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) (-5 *1 (-548 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1076)))) (-2079 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *6)) (-4 *6 (-13 (-424 *5) (-27) (-1174))) (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-1148 (-401 (-1148 *6)))) (-5 *1 (-548 *5 *6 *7)) (-5 *3 (-1148 *6)) (-4 *7 (-1076)))) (-1842 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1148 (-401 (-1148 *2)))) (-5 *4 (-598 *2)) (-4 *2 (-13 (-424 *5) (-27) (-1174))) (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *1 (-548 *5 *2 *6)) (-4 *6 (-1076)))) (-1694 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-598 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1174))) (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-1148 (-401 (-1148 *3)))) (-5 *1 (-548 *6 *3 *7)) (-5 *5 (-1148 *3)) (-4 *7 (-1076)))) (-2786 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-598 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1152))) (-5 *5 (-401 (-1148 *2))) (-4 *2 (-13 (-424 *6) (-27) (-1174))) (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *1 (-548 *6 *2 *7)) (-4 *7 (-1076)))) (-2786 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-598 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1152))) (-5 *5 (-1148 *2)) (-4 *2 (-13 (-424 *6) (-27) (-1174))) (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *1 (-548 *6 *2 *7)) (-4 *7 (-1076)))) (-1585 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-627 *3)) (-5 *6 (-401 (-1148 *3))) (-4 *3 (-13 (-424 *7) (-27) (-1174))) (-4 *7 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-548 *7 *3 *8)) (-4 *8 (-1076)))) (-1585 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-627 *3)) (-5 *6 (-1148 *3)) (-4 *3 (-13 (-424 *7) (-27) (-1174))) (-4 *7 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-548 *7 *3 *8)) (-4 *8 (-1076)))) (-1833 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-401 (-1148 *3))) (-4 *3 (-13 (-424 *6) (-27) (-1174))) (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-2 (|:| -3446 *3) (|:| |coeff| *3))) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1076)))) (-1833 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-1148 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1174))) (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-2 (|:| -3446 *3) (|:| |coeff| *3))) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1076)))) (-3296 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-598 *3)) (-5 *5 (-401 (-1148 *3))) (-4 *3 (-13 (-424 *6) (-27) (-1174))) (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-573 *3)) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1076)))) (-3296 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-598 *3)) (-5 *5 (-1148 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1174))) (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-573 *3)) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1076))))) +(-10 -7 (-15 -3296 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) |#2| (-1148 |#2|))) (-15 -3296 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|) (-598 |#2|) |#2| (-401 (-1148 |#2|)))) (-15 -1833 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2| |#2| (-1148 |#2|))) (-15 -1833 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2| (-598 |#2|) |#2| (-401 (-1148 |#2|)))) (-15 -1585 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-627 |#2|) |#2| (-1148 |#2|))) (-15 -1585 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-627 |#2|) (-598 |#2|) |#2| (-401 (-1148 |#2|)))) (-15 -2786 ((-3 |#2| "failed") |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1152)) |#2| (-1148 |#2|))) (-15 -2786 ((-3 |#2| "failed") |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1152)) (-598 |#2|) |#2| (-401 (-1148 |#2|)))) (-15 -1694 ((-1148 (-401 (-1148 |#2|))) |#2| (-598 |#2|) (-598 |#2|) (-1148 |#2|))) (-15 -1842 (|#2| (-1148 (-401 (-1148 |#2|))) (-598 |#2|) |#2|)) (-15 -2079 ((-1148 (-401 (-1148 |#2|))) (-1148 |#2|) (-598 |#2|))) (IF (|has| |#3| (-638 |#2|)) (PROGN (-15 -2225 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2957 (-627 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) |#2| (-1148 |#2|))) (-15 -2225 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2957 (-627 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) (-598 |#2|) |#2| (-401 (-1148 |#2|))))) |%noBranch|)) +((-3182 (((-552) (-552) (-754)) 66)) (-2347 (((-552) (-552)) 65)) (-3860 (((-552) (-552)) 64)) (-4106 (((-552) (-552)) 69)) (-2529 (((-552) (-552) (-552)) 49)) (-1827 (((-552) (-552) (-552)) 46)) (-3450 (((-401 (-552)) (-552)) 20)) (-3837 (((-552) (-552)) 21)) (-4121 (((-552) (-552)) 58)) (-1990 (((-552) (-552)) 32)) (-2622 (((-627 (-552)) (-552)) 63)) (-3098 (((-552) (-552) (-552) (-552) (-552)) 44)) (-3559 (((-401 (-552)) (-552)) 41))) +(((-549) (-10 -7 (-15 -3559 ((-401 (-552)) (-552))) (-15 -3098 ((-552) (-552) (-552) (-552) (-552))) (-15 -2622 ((-627 (-552)) (-552))) (-15 -1990 ((-552) (-552))) (-15 -4121 ((-552) (-552))) (-15 -3837 ((-552) (-552))) (-15 -3450 ((-401 (-552)) (-552))) (-15 -1827 ((-552) (-552) (-552))) (-15 -2529 ((-552) (-552) (-552))) (-15 -4106 ((-552) (-552))) (-15 -3860 ((-552) (-552))) (-15 -2347 ((-552) (-552))) (-15 -3182 ((-552) (-552) (-754))))) (T -549)) +((-3182 (*1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-754)) (-5 *1 (-549)))) (-2347 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-3860 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-4106 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-2529 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-1827 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-3450 (*1 *2 *3) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-549)) (-5 *3 (-552)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-4121 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-1990 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-2622 (*1 *2 *3) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-549)) (-5 *3 (-552)))) (-3098 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) (-3559 (*1 *2 *3) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-549)) (-5 *3 (-552))))) +(-10 -7 (-15 -3559 ((-401 (-552)) (-552))) (-15 -3098 ((-552) (-552) (-552) (-552) (-552))) (-15 -2622 ((-627 (-552)) (-552))) (-15 -1990 ((-552) (-552))) (-15 -4121 ((-552) (-552))) (-15 -3837 ((-552) (-552))) (-15 -3450 ((-401 (-552)) (-552))) (-15 -1827 ((-552) (-552) (-552))) (-15 -2529 ((-552) (-552) (-552))) (-15 -4106 ((-552) (-552))) (-15 -3860 ((-552) (-552))) (-15 -2347 ((-552) (-552))) (-15 -3182 ((-552) (-552) (-754)))) +((-1644 (((-2 (|:| |answer| |#4|) (|:| -3874 |#4|)) |#4| (-1 |#2| |#2|)) 52))) +(((-550 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1644 ((-2 (|:| |answer| |#4|) (|:| -3874 |#4|)) |#4| (-1 |#2| |#2|)))) (-357) (-1211 |#1|) (-1211 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -550)) +((-1644 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) (-4 *7 (-1211 (-401 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3874 *3))) (-5 *1 (-550 *5 *6 *7 *3)) (-4 *3 (-336 *5 *6 *7))))) +(-10 -7 (-15 -1644 ((-2 (|:| |answer| |#4|) (|:| -3874 |#4|)) |#4| (-1 |#2| |#2|)))) +((-1644 (((-2 (|:| |answer| (-401 |#2|)) (|:| -3874 (-401 |#2|)) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|)) 18))) +(((-551 |#1| |#2|) (-10 -7 (-15 -1644 ((-2 (|:| |answer| (-401 |#2|)) (|:| -3874 (-401 |#2|)) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|)))) (-357) (-1211 |#1|)) (T -551)) +((-1644 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |answer| (-401 *6)) (|:| -3874 (-401 *6)) (|:| |specpart| (-401 *6)) (|:| |polypart| *6))) (-5 *1 (-551 *5 *6)) (-5 *3 (-401 *6))))) +(-10 -7 (-15 -1644 ((-2 (|:| |answer| (-401 |#2|)) (|:| -3874 (-401 |#2|)) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 25)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 88)) (-3245 (($ $) 89)) (-4058 (((-111) $) NIL)) (-2002 (($ $ $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $ $ $) 43)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL)) (-1452 (($ $ $) 82)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL)) (-1703 (((-552) $) NIL)) (-2813 (($ $ $) 81)) (-1800 (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 62) (((-671 (-552)) (-671 $)) 58)) (-2040 (((-3 $ "failed") $) 85)) (-2859 (((-3 (-401 (-552)) "failed") $) NIL)) (-4229 (((-111) $) NIL)) (-2411 (((-401 (-552)) $) NIL)) (-1279 (($) 64) (($ $) 65)) (-2789 (($ $ $) 80)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-3428 (($ $ $ $) NIL)) (-3537 (($ $ $) 55)) (-2983 (((-111) $) NIL)) (-1868 (($ $ $) NIL)) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL)) (-2624 (((-111) $) 26)) (-1394 (((-111) $) 75)) (-4317 (((-3 $ "failed") $) NIL)) (-1508 (((-111) $) 35)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1969 (($ $ $ $) 44)) (-1816 (($ $ $) 77)) (-4093 (($ $ $) 76)) (-4117 (($ $) NIL)) (-3593 (($ $) 41)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) 54)) (-3556 (($ $ $) NIL)) (-3002 (($) NIL T CONST)) (-3445 (($ $) 31)) (-1498 (((-1096) $) 34)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 119)) (-1323 (($ $ $) 86) (($ (-627 $)) NIL)) (-2610 (($ $) NIL)) (-1727 (((-412 $) $) 105)) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL)) (-2761 (((-3 $ "failed") $ $) 84)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1507 (((-111) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 79)) (-2942 (($ $ (-754)) NIL) (($ $) NIL)) (-1313 (($ $) 32)) (-2973 (($ $) 30)) (-3562 (((-552) $) 40) (((-528) $) 52) (((-871 (-552)) $) NIL) (((-373) $) 47) (((-220) $) 49) (((-1134) $) 53)) (-1477 (((-842) $) 38) (($ (-552)) 39) (($ $) NIL) (($ (-552)) 39)) (-3995 (((-754)) NIL)) (-3240 (((-111) $ $) NIL)) (-3697 (($ $ $) NIL)) (-2705 (($) 29)) (-3778 (((-111) $ $) NIL)) (-2166 (($ $ $ $) 42)) (-3329 (($ $) 63)) (-1922 (($) 27 T CONST)) (-1933 (($) 28 T CONST)) (-4157 (((-1134) $) 20) (((-1134) $ (-111)) 22) (((-1240) (-805) $) 23) (((-1240) (-805) $ (-111)) 24)) (-4251 (($ $ (-754)) NIL) (($ $) NIL)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 66)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 67)) (-2396 (($ $) 68) (($ $ $) 70)) (-2384 (($ $ $) 69)) (** (($ $ (-900)) NIL) (($ $ (-754)) 74)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 72) (($ $ $) 71))) +(((-552) (-13 (-537) (-600 (-1134)) (-811) (-10 -8 (-15 -1279 ($ $)) (-6 -4353) (-6 -4358) (-6 -4354) (-6 -4348)))) (T -552)) +((-1279 (*1 *1 *1) (-5 *1 (-552)))) +(-13 (-537) (-600 (-1134)) (-811) (-10 -8 (-15 -1279 ($ $)) (-6 -4353) (-6 -4358) (-6 -4354) (-6 -4348))) +((-1841 (((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014))) (-752) (-1040)) 108) (((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014))) (-752)) 110)) (-2747 (((-3 (-1014) "failed") (-310 (-373)) (-1068 (-823 (-373))) (-1152)) 172) (((-3 (-1014) "failed") (-310 (-373)) (-1068 (-823 (-373))) (-1134)) 171) (((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))) (-373) (-373) (-1040)) 176) (((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))) (-373) (-373)) 177) (((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))) (-373)) 178) (((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373))))) 179) (((-1014) (-310 (-373)) (-1070 (-823 (-373)))) 167) (((-1014) (-310 (-373)) (-1070 (-823 (-373))) (-373)) 166) (((-1014) (-310 (-373)) (-1070 (-823 (-373))) (-373) (-373)) 162) (((-1014) (-752)) 155) (((-1014) (-310 (-373)) (-1070 (-823 (-373))) (-373) (-373) (-1040)) 161))) +(((-553) (-10 -7 (-15 -2747 ((-1014) (-310 (-373)) (-1070 (-823 (-373))) (-373) (-373) (-1040))) (-15 -2747 ((-1014) (-752))) (-15 -2747 ((-1014) (-310 (-373)) (-1070 (-823 (-373))) (-373) (-373))) (-15 -2747 ((-1014) (-310 (-373)) (-1070 (-823 (-373))) (-373))) (-15 -2747 ((-1014) (-310 (-373)) (-1070 (-823 (-373))))) (-15 -2747 ((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))))) (-15 -2747 ((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))) (-373))) (-15 -2747 ((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))) (-373) (-373))) (-15 -2747 ((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))) (-373) (-373) (-1040))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014))) (-752))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014))) (-752) (-1040))) (-15 -2747 ((-3 (-1014) "failed") (-310 (-373)) (-1068 (-823 (-373))) (-1134))) (-15 -2747 ((-3 (-1014) "failed") (-310 (-373)) (-1068 (-823 (-373))) (-1152))))) (T -553)) +((-2747 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-310 (-373))) (-5 *4 (-1068 (-823 (-373)))) (-5 *5 (-1152)) (-5 *2 (-1014)) (-5 *1 (-553)))) (-2747 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-310 (-373))) (-5 *4 (-1068 (-823 (-373)))) (-5 *5 (-1134)) (-5 *2 (-1014)) (-5 *1 (-553)))) (-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-752)) (-5 *4 (-1040)) (-5 *2 (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014)))) (-5 *1 (-553)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-752)) (-5 *2 (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014)))) (-5 *1 (-553)))) (-2747 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-1070 (-823 (-373))))) (-5 *5 (-373)) (-5 *6 (-1040)) (-5 *2 (-1014)) (-5 *1 (-553)))) (-2747 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-1070 (-823 (-373))))) (-5 *5 (-373)) (-5 *2 (-1014)) (-5 *1 (-553)))) (-2747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-1070 (-823 (-373))))) (-5 *5 (-373)) (-5 *2 (-1014)) (-5 *1 (-553)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-1070 (-823 (-373))))) (-5 *2 (-1014)) (-5 *1 (-553)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1070 (-823 (-373)))) (-5 *2 (-1014)) (-5 *1 (-553)))) (-2747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1070 (-823 (-373)))) (-5 *5 (-373)) (-5 *2 (-1014)) (-5 *1 (-553)))) (-2747 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1070 (-823 (-373)))) (-5 *5 (-373)) (-5 *2 (-1014)) (-5 *1 (-553)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-752)) (-5 *2 (-1014)) (-5 *1 (-553)))) (-2747 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1070 (-823 (-373)))) (-5 *5 (-373)) (-5 *6 (-1040)) (-5 *2 (-1014)) (-5 *1 (-553))))) +(-10 -7 (-15 -2747 ((-1014) (-310 (-373)) (-1070 (-823 (-373))) (-373) (-373) (-1040))) (-15 -2747 ((-1014) (-752))) (-15 -2747 ((-1014) (-310 (-373)) (-1070 (-823 (-373))) (-373) (-373))) (-15 -2747 ((-1014) (-310 (-373)) (-1070 (-823 (-373))) (-373))) (-15 -2747 ((-1014) (-310 (-373)) (-1070 (-823 (-373))))) (-15 -2747 ((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))))) (-15 -2747 ((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))) (-373))) (-15 -2747 ((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))) (-373) (-373))) (-15 -2747 ((-1014) (-310 (-373)) (-627 (-1070 (-823 (-373)))) (-373) (-373) (-1040))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014))) (-752))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014))) (-752) (-1040))) (-15 -2747 ((-3 (-1014) "failed") (-310 (-373)) (-1068 (-823 (-373))) (-1134))) (-15 -2747 ((-3 (-1014) "failed") (-310 (-373)) (-1068 (-823 (-373))) (-1152)))) +((-3531 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-627 |#2|)) 184)) (-1306 (((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|)) 98)) (-1924 (((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2|) 180)) (-3399 (((-3 |#2| "failed") |#2| |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1152))) 189)) (-2042 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2957 (-627 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) (-1152)) 197 (|has| |#3| (-638 |#2|))))) +(((-554 |#1| |#2| |#3|) (-10 -7 (-15 -1306 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|))) (-15 -1924 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2|)) (-15 -3531 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-627 |#2|))) (-15 -3399 ((-3 |#2| "failed") |#2| |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1152)))) (IF (|has| |#3| (-638 |#2|)) (-15 -2042 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2957 (-627 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) (-1152))) |%noBranch|)) (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552))) (-13 (-424 |#1|) (-27) (-1174)) (-1076)) (T -554)) +((-2042 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-598 *4)) (-5 *6 (-1152)) (-4 *4 (-13 (-424 *7) (-27) (-1174))) (-4 *7 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1076)))) (-3399 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-598 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1152))) (-4 *2 (-13 (-424 *5) (-27) (-1174))) (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *1 (-554 *5 *2 *6)) (-4 *6 (-1076)))) (-3531 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-627 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1174))) (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1076)))) (-1924 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-598 *3)) (-4 *3 (-13 (-424 *5) (-27) (-1174))) (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-2 (|:| -3446 *3) (|:| |coeff| *3))) (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1076)))) (-1306 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-598 *3)) (-4 *3 (-13 (-424 *5) (-27) (-1174))) (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 (-573 *3)) (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1076))))) +(-10 -7 (-15 -1306 ((-573 |#2|) |#2| (-598 |#2|) (-598 |#2|))) (-15 -1924 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-598 |#2|) (-598 |#2|) |#2|)) (-15 -3531 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|) (-598 |#2|) (-627 |#2|))) (-15 -3399 ((-3 |#2| "failed") |#2| |#2| |#2| (-598 |#2|) (-598 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1152)))) (IF (|has| |#3| (-638 |#2|)) (-15 -2042 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2957 (-627 |#2|))) |#3| |#2| (-598 |#2|) (-598 |#2|) (-1152))) |%noBranch|)) +((-3766 (((-2 (|:| -3767 |#2|) (|:| |nconst| |#2|)) |#2| (-1152)) 64)) (-4217 (((-3 |#2| "failed") |#2| (-1152) (-823 |#2|) (-823 |#2|)) 164 (-12 (|has| |#2| (-1115)) (|has| |#1| (-600 (-871 (-552)))) (|has| |#1| (-865 (-552))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1152)) 147 (-12 (|has| |#2| (-613)) (|has| |#1| (-600 (-871 (-552)))) (|has| |#1| (-865 (-552)))))) (-2389 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1152)) 148 (-12 (|has| |#2| (-613)) (|has| |#1| (-600 (-871 (-552)))) (|has| |#1| (-865 (-552))))))) +(((-555 |#1| |#2|) (-10 -7 (-15 -3766 ((-2 (|:| -3767 |#2|) (|:| |nconst| |#2|)) |#2| (-1152))) (IF (|has| |#1| (-600 (-871 (-552)))) (IF (|has| |#1| (-865 (-552))) (PROGN (IF (|has| |#2| (-613)) (PROGN (-15 -2389 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1152))) (-15 -4217 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1152)))) |%noBranch|) (IF (|has| |#2| (-1115)) (-15 -4217 ((-3 |#2| "failed") |#2| (-1152) (-823 |#2|) (-823 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-830) (-1017 (-552)) (-445) (-623 (-552))) (-13 (-27) (-1174) (-424 |#1|))) (T -555)) +((-4217 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1152)) (-5 *4 (-823 *2)) (-4 *2 (-1115)) (-4 *2 (-13 (-27) (-1174) (-424 *5))) (-4 *5 (-600 (-871 (-552)))) (-4 *5 (-865 (-552))) (-4 *5 (-13 (-830) (-1017 (-552)) (-445) (-623 (-552)))) (-5 *1 (-555 *5 *2)))) (-4217 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1152)) (-4 *5 (-600 (-871 (-552)))) (-4 *5 (-865 (-552))) (-4 *5 (-13 (-830) (-1017 (-552)) (-445) (-623 (-552)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-613)) (-4 *3 (-13 (-27) (-1174) (-424 *5))))) (-2389 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1152)) (-4 *5 (-600 (-871 (-552)))) (-4 *5 (-865 (-552))) (-4 *5 (-13 (-830) (-1017 (-552)) (-445) (-623 (-552)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-613)) (-4 *3 (-13 (-27) (-1174) (-424 *5))))) (-3766 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-830) (-1017 (-552)) (-445) (-623 (-552)))) (-5 *2 (-2 (|:| -3767 *3) (|:| |nconst| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5)))))) +(-10 -7 (-15 -3766 ((-2 (|:| -3767 |#2|) (|:| |nconst| |#2|)) |#2| (-1152))) (IF (|has| |#1| (-600 (-871 (-552)))) (IF (|has| |#1| (-865 (-552))) (PROGN (IF (|has| |#2| (-613)) (PROGN (-15 -2389 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1152))) (-15 -4217 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1152)))) |%noBranch|) (IF (|has| |#2| (-1115)) (-15 -4217 ((-3 |#2| "failed") |#2| (-1152) (-823 |#2|) (-823 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-3997 (((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-627 (-401 |#2|))) 41)) (-2747 (((-573 (-401 |#2|)) (-401 |#2|)) 28)) (-2847 (((-3 (-401 |#2|) "failed") (-401 |#2|)) 17)) (-2447 (((-3 (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-401 |#2|)) 48))) +(((-556 |#1| |#2|) (-10 -7 (-15 -2747 ((-573 (-401 |#2|)) (-401 |#2|))) (-15 -2847 ((-3 (-401 |#2|) "failed") (-401 |#2|))) (-15 -2447 ((-3 (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-401 |#2|))) (-15 -3997 ((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-627 (-401 |#2|))))) (-13 (-357) (-144) (-1017 (-552))) (-1211 |#1|)) (T -556)) +((-3997 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-627 (-401 *6))) (-5 *3 (-401 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-556 *5 *6)))) (-2447 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-357) (-144) (-1017 (-552)))) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| -3446 (-401 *5)) (|:| |coeff| (-401 *5)))) (-5 *1 (-556 *4 *5)) (-5 *3 (-401 *5)))) (-2847 (*1 *2 *2) (|partial| -12 (-5 *2 (-401 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-13 (-357) (-144) (-1017 (-552)))) (-5 *1 (-556 *3 *4)))) (-2747 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-552)))) (-4 *5 (-1211 *4)) (-5 *2 (-573 (-401 *5))) (-5 *1 (-556 *4 *5)) (-5 *3 (-401 *5))))) +(-10 -7 (-15 -2747 ((-573 (-401 |#2|)) (-401 |#2|))) (-15 -2847 ((-3 (-401 |#2|) "failed") (-401 |#2|))) (-15 -2447 ((-3 (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-401 |#2|))) (-15 -3997 ((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-627 (-401 |#2|))))) +((-3706 (((-3 (-552) "failed") |#1|) 14)) (-2170 (((-111) |#1|) 13)) (-2933 (((-552) |#1|) 9))) +(((-557 |#1|) (-10 -7 (-15 -2933 ((-552) |#1|)) (-15 -2170 ((-111) |#1|)) (-15 -3706 ((-3 (-552) "failed") |#1|))) (-1017 (-552))) (T -557)) +((-3706 (*1 *2 *3) (|partial| -12 (-5 *2 (-552)) (-5 *1 (-557 *3)) (-4 *3 (-1017 *2)))) (-2170 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-557 *3)) (-4 *3 (-1017 (-552))))) (-2933 (*1 *2 *3) (-12 (-5 *2 (-552)) (-5 *1 (-557 *3)) (-4 *3 (-1017 *2))))) +(-10 -7 (-15 -2933 ((-552) |#1|)) (-15 -2170 ((-111) |#1|)) (-15 -3706 ((-3 (-552) "failed") |#1|))) +((-3464 (((-3 (-2 (|:| |mainpart| (-401 (-931 |#1|))) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 (-931 |#1|))) (|:| |logand| (-401 (-931 |#1|))))))) "failed") (-401 (-931 |#1|)) (-1152) (-627 (-401 (-931 |#1|)))) 48)) (-3394 (((-573 (-401 (-931 |#1|))) (-401 (-931 |#1|)) (-1152)) 28)) (-3806 (((-3 (-401 (-931 |#1|)) "failed") (-401 (-931 |#1|)) (-1152)) 23)) (-2109 (((-3 (-2 (|:| -3446 (-401 (-931 |#1|))) (|:| |coeff| (-401 (-931 |#1|)))) "failed") (-401 (-931 |#1|)) (-1152) (-401 (-931 |#1|))) 35))) +(((-558 |#1|) (-10 -7 (-15 -3394 ((-573 (-401 (-931 |#1|))) (-401 (-931 |#1|)) (-1152))) (-15 -3806 ((-3 (-401 (-931 |#1|)) "failed") (-401 (-931 |#1|)) (-1152))) (-15 -3464 ((-3 (-2 (|:| |mainpart| (-401 (-931 |#1|))) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 (-931 |#1|))) (|:| |logand| (-401 (-931 |#1|))))))) "failed") (-401 (-931 |#1|)) (-1152) (-627 (-401 (-931 |#1|))))) (-15 -2109 ((-3 (-2 (|:| -3446 (-401 (-931 |#1|))) (|:| |coeff| (-401 (-931 |#1|)))) "failed") (-401 (-931 |#1|)) (-1152) (-401 (-931 |#1|))))) (-13 (-544) (-1017 (-552)) (-144))) (T -558)) +((-2109 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1152)) (-4 *5 (-13 (-544) (-1017 (-552)) (-144))) (-5 *2 (-2 (|:| -3446 (-401 (-931 *5))) (|:| |coeff| (-401 (-931 *5))))) (-5 *1 (-558 *5)) (-5 *3 (-401 (-931 *5))))) (-3464 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-627 (-401 (-931 *6)))) (-5 *3 (-401 (-931 *6))) (-4 *6 (-13 (-544) (-1017 (-552)) (-144))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-558 *6)))) (-3806 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-401 (-931 *4))) (-5 *3 (-1152)) (-4 *4 (-13 (-544) (-1017 (-552)) (-144))) (-5 *1 (-558 *4)))) (-3394 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-544) (-1017 (-552)) (-144))) (-5 *2 (-573 (-401 (-931 *5)))) (-5 *1 (-558 *5)) (-5 *3 (-401 (-931 *5)))))) +(-10 -7 (-15 -3394 ((-573 (-401 (-931 |#1|))) (-401 (-931 |#1|)) (-1152))) (-15 -3806 ((-3 (-401 (-931 |#1|)) "failed") (-401 (-931 |#1|)) (-1152))) (-15 -3464 ((-3 (-2 (|:| |mainpart| (-401 (-931 |#1|))) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 (-931 |#1|))) (|:| |logand| (-401 (-931 |#1|))))))) "failed") (-401 (-931 |#1|)) (-1152) (-627 (-401 (-931 |#1|))))) (-15 -2109 ((-3 (-2 (|:| -3446 (-401 (-931 |#1|))) (|:| |coeff| (-401 (-931 |#1|)))) "failed") (-401 (-931 |#1|)) (-1152) (-401 (-931 |#1|))))) +((-1465 (((-111) $ $) 58)) (-3024 (((-111) $) 36)) (-2359 ((|#1| $) 30)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) 62)) (-1607 (($ $) 122)) (-1467 (($ $) 102)) (-2796 ((|#1| $) 28)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1737 (($ $) NIL)) (-1584 (($ $) 124)) (-1445 (($ $) 98)) (-1628 (($ $) 126)) (-1492 (($ $) 106)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) 77)) (-1703 (((-552) $) 79)) (-2040 (((-3 $ "failed") $) 61)) (-3891 (($ |#1| |#1|) 26)) (-2983 (((-111) $) 33)) (-2951 (($) 88)) (-2624 (((-111) $) 43)) (-1352 (($ $ (-552)) NIL)) (-1508 (((-111) $) 34)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-4135 (($ $) 90)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-2712 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-401 (-552))) 76)) (-4191 ((|#1| $) 27)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) 64) (($ (-627 $)) NIL)) (-2761 (((-3 $ "failed") $ $) 63)) (-3154 (($ $) 92)) (-1640 (($ $) 130)) (-1502 (($ $) 104)) (-1615 (($ $) 132)) (-1479 (($ $) 108)) (-1596 (($ $) 128)) (-1456 (($ $) 100)) (-2584 (((-111) $ |#1|) 31)) (-1477 (((-842) $) 84) (($ (-552)) 66) (($ $) NIL) (($ (-552)) 66)) (-3995 (((-754)) 86)) (-1673 (($ $) 144)) (-1534 (($ $) 114)) (-3778 (((-111) $ $) NIL)) (-1652 (($ $) 142)) (-1513 (($ $) 110)) (-1697 (($ $) 140)) (-1561 (($ $) 120)) (-3519 (($ $) 138)) (-1575 (($ $) 118)) (-1686 (($ $) 136)) (-1547 (($ $) 116)) (-1661 (($ $) 134)) (-1524 (($ $) 112)) (-1922 (($) 21 T CONST)) (-1933 (($) 10 T CONST)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 37)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 35)) (-2396 (($ $) 41) (($ $ $) 42)) (-2384 (($ $ $) 40)) (** (($ $ (-900)) 54) (($ $ (-754)) NIL) (($ $ $) 94) (($ $ (-401 (-552))) 146)) (* (($ (-900) $) 51) (($ (-754) $) NIL) (($ (-552) $) 50) (($ $ $) 48))) +(((-559 |#1|) (-542 |#1|) (-13 (-398) (-1174))) (T -559)) NIL (-542 |#1|) -((-4264 (((-3 (-625 (-1145 (-552))) "failed") (-625 (-1145 (-552))) (-1145 (-552))) 24))) -(((-560) (-10 -7 (-15 -4264 ((-3 (-625 (-1145 (-552))) "failed") (-625 (-1145 (-552))) (-1145 (-552)))))) (T -560)) -((-4264 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-625 (-1145 (-552)))) (-5 *3 (-1145 (-552))) (-5 *1 (-560))))) -(-10 -7 (-15 -4264 ((-3 (-625 (-1145 (-552))) "failed") (-625 (-1145 (-552))) (-1145 (-552))))) -((-2841 (((-625 (-596 |#2|)) (-625 (-596 |#2|)) (-1149)) 19)) (-2875 (((-625 (-596 |#2|)) (-625 |#2|) (-1149)) 23)) (-3419 (((-625 (-596 |#2|)) (-625 (-596 |#2|)) (-625 (-596 |#2|))) 11)) (-2886 ((|#2| |#2| (-1149)) 54 (|has| |#1| (-544)))) (-2896 ((|#2| |#2| (-1149)) 78 (-12 (|has| |#2| (-279)) (|has| |#1| (-446))))) (-2864 (((-596 |#2|) (-596 |#2|) (-625 (-596 |#2|)) (-1149)) 25)) (-2853 (((-596 |#2|) (-625 (-596 |#2|))) 24)) (-2906 (((-571 |#2|) |#2| (-1149) (-1 (-571 |#2|) |#2| (-1149)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149))) 103 (-12 (|has| |#2| (-279)) (|has| |#2| (-611)) (|has| |#2| (-1014 (-1149))) (|has| |#1| (-598 (-868 (-552)))) (|has| |#1| (-446)) (|has| |#1| (-862 (-552))))))) -(((-561 |#1| |#2|) (-10 -7 (-15 -2841 ((-625 (-596 |#2|)) (-625 (-596 |#2|)) (-1149))) (-15 -2853 ((-596 |#2|) (-625 (-596 |#2|)))) (-15 -2864 ((-596 |#2|) (-596 |#2|) (-625 (-596 |#2|)) (-1149))) (-15 -3419 ((-625 (-596 |#2|)) (-625 (-596 |#2|)) (-625 (-596 |#2|)))) (-15 -2875 ((-625 (-596 |#2|)) (-625 |#2|) (-1149))) (IF (|has| |#1| (-544)) (-15 -2886 (|#2| |#2| (-1149))) |%noBranch|) (IF (|has| |#1| (-446)) (IF (|has| |#2| (-279)) (PROGN (-15 -2896 (|#2| |#2| (-1149))) (IF (|has| |#1| (-598 (-868 (-552)))) (IF (|has| |#1| (-862 (-552))) (IF (|has| |#2| (-611)) (IF (|has| |#2| (-1014 (-1149))) (-15 -2906 ((-571 |#2|) |#2| (-1149) (-1 (-571 |#2|) |#2| (-1149)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-827) (-425 |#1|)) (T -561)) -((-2906 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-571 *3) *3 (-1149))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1149))) (-4 *3 (-279)) (-4 *3 (-611)) (-4 *3 (-1014 *4)) (-4 *3 (-425 *7)) (-5 *4 (-1149)) (-4 *7 (-598 (-868 (-552)))) (-4 *7 (-446)) (-4 *7 (-862 (-552))) (-4 *7 (-827)) (-5 *2 (-571 *3)) (-5 *1 (-561 *7 *3)))) (-2896 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-446)) (-4 *4 (-827)) (-5 *1 (-561 *4 *2)) (-4 *2 (-279)) (-4 *2 (-425 *4)))) (-2886 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-544)) (-4 *4 (-827)) (-5 *1 (-561 *4 *2)) (-4 *2 (-425 *4)))) (-2875 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *6)) (-5 *4 (-1149)) (-4 *6 (-425 *5)) (-4 *5 (-827)) (-5 *2 (-625 (-596 *6))) (-5 *1 (-561 *5 *6)))) (-3419 (*1 *2 *2 *2) (-12 (-5 *2 (-625 (-596 *4))) (-4 *4 (-425 *3)) (-4 *3 (-827)) (-5 *1 (-561 *3 *4)))) (-2864 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-625 (-596 *6))) (-5 *4 (-1149)) (-5 *2 (-596 *6)) (-4 *6 (-425 *5)) (-4 *5 (-827)) (-5 *1 (-561 *5 *6)))) (-2853 (*1 *2 *3) (-12 (-5 *3 (-625 (-596 *5))) (-4 *4 (-827)) (-5 *2 (-596 *5)) (-5 *1 (-561 *4 *5)) (-4 *5 (-425 *4)))) (-2841 (*1 *2 *2 *3) (-12 (-5 *2 (-625 (-596 *5))) (-5 *3 (-1149)) (-4 *5 (-425 *4)) (-4 *4 (-827)) (-5 *1 (-561 *4 *5))))) -(-10 -7 (-15 -2841 ((-625 (-596 |#2|)) (-625 (-596 |#2|)) (-1149))) (-15 -2853 ((-596 |#2|) (-625 (-596 |#2|)))) (-15 -2864 ((-596 |#2|) (-596 |#2|) (-625 (-596 |#2|)) (-1149))) (-15 -3419 ((-625 (-596 |#2|)) (-625 (-596 |#2|)) (-625 (-596 |#2|)))) (-15 -2875 ((-625 (-596 |#2|)) (-625 |#2|) (-1149))) (IF (|has| |#1| (-544)) (-15 -2886 (|#2| |#2| (-1149))) |%noBranch|) (IF (|has| |#1| (-446)) (IF (|has| |#2| (-279)) (PROGN (-15 -2896 (|#2| |#2| (-1149))) (IF (|has| |#1| (-598 (-868 (-552)))) (IF (|has| |#1| (-862 (-552))) (IF (|has| |#2| (-611)) (IF (|has| |#2| (-1014 (-1149))) (-15 -2906 ((-571 |#2|) |#2| (-1149) (-1 (-571 |#2|) |#2| (-1149)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2938 (((-2 (|:| |answer| (-571 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-625 |#1|) "failed") (-552) |#1| |#1|)) 172)) (-2973 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-625 (-402 |#2|))) 148)) (-3008 (((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-625 (-402 |#2|))) 145)) (-3020 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-2916 (((-2 (|:| |answer| (-571 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-2996 (((-3 (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-402 |#2|)) 175)) (-2948 (((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-402 |#2|)) 178)) (-3041 (((-2 (|:| |ir| (-571 (-402 |#2|))) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|)) 84)) (-3052 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2984 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|) (-625 (-402 |#2|))) 152)) (-3031 (((-3 (-605 |#1| |#2|) "failed") (-605 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|)) 137)) (-2928 (((-2 (|:| |answer| (-571 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|)) 162)) (-2962 (((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|) (-402 |#2|)) 183))) -(((-562 |#1| |#2|) (-10 -7 (-15 -2916 ((-2 (|:| |answer| (-571 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2928 ((-2 (|:| |answer| (-571 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|))) (-15 -2938 ((-2 (|:| |answer| (-571 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-625 |#1|) "failed") (-552) |#1| |#1|))) (-15 -2948 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-402 |#2|))) (-15 -2962 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|) (-402 |#2|))) (-15 -2973 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-625 (-402 |#2|)))) (-15 -2984 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|) (-625 (-402 |#2|)))) (-15 -2996 ((-3 (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-402 |#2|))) (-15 -3008 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-625 (-402 |#2|)))) (-15 -3020 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3031 ((-3 (-605 |#1| |#2|) "failed") (-605 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|))) (-15 -3041 ((-2 (|:| |ir| (-571 (-402 |#2|))) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|))) (-15 -3052 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-358) (-1208 |#1|)) (T -562)) -((-3052 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-562 *5 *3)))) (-3041 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |ir| (-571 (-402 *6))) (|:| |specpart| (-402 *6)) (|:| |polypart| *6))) (-5 *1 (-562 *5 *6)) (-5 *3 (-402 *6)))) (-3031 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-605 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -2303 *4) (|:| |sol?| (-112))) (-552) *4)) (-4 *4 (-358)) (-4 *5 (-1208 *4)) (-5 *1 (-562 *4 *5)))) (-3020 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3114 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-358)) (-5 *1 (-562 *4 *2)) (-4 *2 (-1208 *4)))) (-3008 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-625 (-402 *7))) (-4 *7 (-1208 *6)) (-5 *3 (-402 *7)) (-4 *6 (-358)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *6 *7)))) (-2996 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -3114 (-402 *6)) (|:| |coeff| (-402 *6)))) (-5 *1 (-562 *5 *6)) (-5 *3 (-402 *6)))) (-2984 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -2303 *7) (|:| |sol?| (-112))) (-552) *7)) (-5 *6 (-625 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1208 *7)) (-5 *3 (-402 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-562 *7 *8)))) (-2973 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3114 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-625 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1208 *7)) (-5 *3 (-402 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-562 *7 *8)))) (-2962 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2303 *6) (|:| |sol?| (-112))) (-552) *6)) (-4 *6 (-358)) (-4 *7 (-1208 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6)) (-2 (|:| -3114 (-402 *7)) (|:| |coeff| (-402 *7))) "failed")) (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))) (-2948 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3114 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-358)) (-4 *7 (-1208 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6)) (-2 (|:| -3114 (-402 *7)) (|:| |coeff| (-402 *7))) "failed")) (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))) (-2938 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-625 *6) "failed") (-552) *6 *6)) (-4 *6 (-358)) (-4 *7 (-1208 *6)) (-5 *2 (-2 (|:| |answer| (-571 (-402 *7))) (|:| |a0| *6))) (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))) (-2928 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2303 *6) (|:| |sol?| (-112))) (-552) *6)) (-4 *6 (-358)) (-4 *7 (-1208 *6)) (-5 *2 (-2 (|:| |answer| (-571 (-402 *7))) (|:| |a0| *6))) (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))) (-2916 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3114 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-358)) (-4 *7 (-1208 *6)) (-5 *2 (-2 (|:| |answer| (-571 (-402 *7))) (|:| |a0| *6))) (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7))))) -(-10 -7 (-15 -2916 ((-2 (|:| |answer| (-571 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2928 ((-2 (|:| |answer| (-571 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|))) (-15 -2938 ((-2 (|:| |answer| (-571 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-625 |#1|) "failed") (-552) |#1| |#1|))) (-15 -2948 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-402 |#2|))) (-15 -2962 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|) (-402 |#2|))) (-15 -2973 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-625 (-402 |#2|)))) (-15 -2984 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|) (-625 (-402 |#2|)))) (-15 -2996 ((-3 (-2 (|:| -3114 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-402 |#2|))) (-15 -3008 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-625 (-402 |#2|)))) (-15 -3020 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3031 ((-3 (-605 |#1| |#2|) "failed") (-605 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2303 |#1|) (|:| |sol?| (-112))) (-552) |#1|))) (-15 -3041 ((-2 (|:| |ir| (-571 (-402 |#2|))) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|))) (-15 -3052 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-3063 (((-3 |#2| "failed") |#2| (-1149) (-1149)) 10))) -(((-563 |#1| |#2|) (-10 -7 (-15 -3063 ((-3 |#2| "failed") |#2| (-1149) (-1149)))) (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))) (-13 (-1171) (-935) (-1112) (-29 |#1|))) (T -563)) -((-3063 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1149)) (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1171) (-935) (-1112) (-29 *4)))))) -(-10 -7 (-15 -3063 ((-3 |#2| "failed") |#2| (-1149) (-1149)))) -((-2315 (((-1093) $ (-128)) 12)) (-2328 (((-1093) $ (-129)) 11)) (-4224 (((-1093) $ (-128)) 7)) (-4235 (((-1093) $) 8)) (-4125 (($ $) 6))) -(((-564) (-138)) (T -564)) -NIL -(-13 (-520) (-837)) -(((-171) . T) ((-520) . T) ((-837) . T)) -((-1671 (((-112) $ $) NIL)) (-4213 (($) 7 T CONST)) (-2883 (((-1131) $) NIL)) (-1461 (($) 6 T CONST)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 14)) (-3073 (($) 8 T CONST)) (-2281 (((-112) $ $) 10))) -(((-565) (-13 (-1073) (-10 -8 (-15 -1461 ($) -1426) (-15 -4213 ($) -1426) (-15 -3073 ($) -1426)))) (T -565)) -((-1461 (*1 *1) (-5 *1 (-565))) (-4213 (*1 *1) (-5 *1 (-565))) (-3073 (*1 *1) (-5 *1 (-565)))) -(-13 (-1073) (-10 -8 (-15 -1461 ($) -1426) (-15 -4213 ($) -1426) (-15 -3073 ($) -1426))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3837 (($ $ (-552)) 66)) (-2408 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-1496 (($ (-1145 (-552)) (-552)) 72)) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) 58)) (-1507 (($ $) 34)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2172 (((-751) $) 15)) (-3650 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1531 (((-552)) 29)) (-1520 (((-552) $) 32)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2147 (($ $ (-552)) 21)) (-2802 (((-3 $ "failed") $ $) 59)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) 16)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 61)) (-1542 (((-1129 (-552)) $) 18)) (-3580 (($ $) 23)) (-1683 (((-839) $) 87) (($ (-552)) 52) (($ $) NIL)) (-4141 (((-751)) 14)) (-3518 (((-112) $ $) NIL)) (-2874 (((-552) $ (-552)) 36)) (-2089 (($) 35 T CONST)) (-2100 (($) 19 T CONST)) (-2281 (((-112) $ $) 39)) (-2393 (($ $) 51) (($ $ $) 37)) (-2382 (($ $ $) 50)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 54) (($ $ $) 55))) -(((-566 |#1| |#2|) (-845 |#1|) (-552) (-112)) (T -566)) -NIL -(-845 |#1|) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 21)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 (($ $ (-897)) NIL (|has| $ (-363))) (($ $) NIL)) (-3811 (((-1159 (-897) (-751)) (-552)) 47)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 $ "failed") $) 75)) (-1895 (($ $) 74)) (-2670 (($ (-1232 $)) 73)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) 32)) (-3702 (($) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) 49)) (-3872 (((-112) $) NIL)) (-3554 (($ $) NIL) (($ $ (-751)) NIL)) (-2951 (((-112) $) NIL)) (-2172 (((-813 (-897)) $) NIL) (((-897) $) NIL)) (-3650 (((-112) $) NIL)) (-1280 (($) 37 (|has| $ (-363)))) (-4328 (((-112) $) NIL (|has| $ (-363)))) (-4209 (($ $ (-897)) NIL (|has| $ (-363))) (($ $) NIL)) (-4034 (((-3 $ "failed") $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 $) $ (-897)) NIL (|has| $ (-363))) (((-1145 $) $) 83)) (-4318 (((-897) $) 55)) (-1378 (((-1145 $) $) NIL (|has| $ (-363)))) (-1369 (((-3 (-1145 $) "failed") $ $) NIL (|has| $ (-363))) (((-1145 $) $) NIL (|has| $ (-363)))) (-1386 (($ $ (-1145 $)) NIL (|has| $ (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL T CONST)) (-3123 (($ (-897)) 48)) (-4143 (((-112) $) 67)) (-2831 (((-1093) $) NIL)) (-3212 (($) 19 (|has| $ (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) 42)) (-3824 (((-413 $) $) NIL)) (-4130 (((-897)) 66) (((-813 (-897))) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-3 (-751) "failed") $ $) NIL) (((-751) $) NIL)) (-3904 (((-133)) NIL)) (-3072 (($ $ (-751)) NIL) (($ $) NIL)) (-4276 (((-897) $) 65) (((-813 (-897)) $) NIL)) (-3610 (((-1145 $)) 82)) (-3798 (($) 54)) (-1397 (($) 38 (|has| $ (-363)))) (-2780 (((-669 $) (-1232 $)) NIL) (((-1232 $) $) 71)) (-2042 (((-552) $) 28)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) 30) (($ $) NIL) (($ (-402 (-552))) NIL)) (-4243 (((-3 $ "failed") $) NIL) (($ $) 84)) (-4141 (((-751)) 39)) (-1270 (((-1232 $) (-897)) 77) (((-1232 $)) 76)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) 22 T CONST)) (-2100 (($) 18 T CONST)) (-4104 (($ $ (-751)) NIL (|has| $ (-363))) (($ $) NIL (|has| $ (-363)))) (-3768 (($ $ (-751)) NIL) (($ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) 26)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 61) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL))) -(((-567 |#1|) (-13 (-344) (-324 $) (-598 (-552))) (-897)) (T -567)) -NIL -(-13 (-344) (-324 $) (-598 (-552))) -((-3081 (((-1237) (-1131)) 10))) -(((-568) (-10 -7 (-15 -3081 ((-1237) (-1131))))) (T -568)) -((-3081 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-568))))) -(-10 -7 (-15 -3081 ((-1237) (-1131)))) -((-3819 (((-571 |#2|) (-571 |#2|)) 40)) (-3455 (((-625 |#2|) (-571 |#2|)) 42)) (-2021 ((|#2| (-571 |#2|)) 48))) -(((-569 |#1| |#2|) (-10 -7 (-15 -3819 ((-571 |#2|) (-571 |#2|))) (-15 -3455 ((-625 |#2|) (-571 |#2|))) (-15 -2021 (|#2| (-571 |#2|)))) (-13 (-446) (-1014 (-552)) (-827) (-621 (-552))) (-13 (-29 |#1|) (-1171))) (T -569)) -((-2021 (*1 *2 *3) (-12 (-5 *3 (-571 *2)) (-4 *2 (-13 (-29 *4) (-1171))) (-5 *1 (-569 *4 *2)) (-4 *4 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))))) (-3455 (*1 *2 *3) (-12 (-5 *3 (-571 *5)) (-4 *5 (-13 (-29 *4) (-1171))) (-4 *4 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) (-5 *2 (-625 *5)) (-5 *1 (-569 *4 *5)))) (-3819 (*1 *2 *2) (-12 (-5 *2 (-571 *4)) (-4 *4 (-13 (-29 *3) (-1171))) (-4 *3 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) (-5 *1 (-569 *3 *4))))) -(-10 -7 (-15 -3819 ((-571 |#2|) (-571 |#2|))) (-15 -3455 ((-625 |#2|) (-571 |#2|))) (-15 -2021 (|#2| (-571 |#2|)))) -((-1996 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-571 |#2|) (-1 |#2| |#1|) (-571 |#1|)) 30))) -(((-570 |#1| |#2|) (-10 -7 (-15 -1996 ((-571 |#2|) (-1 |#2| |#1|) (-571 |#1|))) (-15 -1996 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1996 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1996 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-358) (-358)) (T -570)) -((-1996 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-358)) (-4 *6 (-358)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-570 *5 *6)))) (-1996 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-358)) (-4 *2 (-358)) (-5 *1 (-570 *5 *2)))) (-1996 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3114 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-358)) (-4 *6 (-358)) (-5 *2 (-2 (|:| -3114 *6) (|:| |coeff| *6))) (-5 *1 (-570 *5 *6)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-571 *5)) (-4 *5 (-358)) (-4 *6 (-358)) (-5 *2 (-571 *6)) (-5 *1 (-570 *5 *6))))) -(-10 -7 (-15 -1996 ((-571 |#2|) (-1 |#2| |#1|) (-571 |#1|))) (-15 -1996 ((-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3114 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1996 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1996 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) 69)) (-1895 ((|#1| $) NIL)) (-3114 ((|#1| $) 26)) (-3096 (((-625 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-3124 (($ |#1| (-625 (-2 (|:| |scalar| (-402 (-552))) (|:| |coeff| (-1145 |#1|)) (|:| |logand| (-1145 |#1|)))) (-625 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-3106 (((-625 (-2 (|:| |scalar| (-402 (-552))) (|:| |coeff| (-1145 |#1|)) (|:| |logand| (-1145 |#1|)))) $) 27)) (-2883 (((-1131) $) NIL)) (-4269 (($ |#1| |#1|) 33) (($ |#1| (-1149)) 44 (|has| |#1| (-1014 (-1149))))) (-2831 (((-1093) $) NIL)) (-3089 (((-112) $) 30)) (-3072 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1149)) 82 (|has| |#1| (-876 (-1149))))) (-1683 (((-839) $) 96) (($ |#1|) 25)) (-2089 (($) 16 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) 15) (($ $ $) NIL)) (-2382 (($ $ $) 78)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 14) (($ (-402 (-552)) $) 36) (($ $ (-402 (-552))) NIL))) -(((-571 |#1|) (-13 (-698 (-402 (-552))) (-1014 |#1|) (-10 -8 (-15 -3124 ($ |#1| (-625 (-2 (|:| |scalar| (-402 (-552))) (|:| |coeff| (-1145 |#1|)) (|:| |logand| (-1145 |#1|)))) (-625 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3114 (|#1| $)) (-15 -3106 ((-625 (-2 (|:| |scalar| (-402 (-552))) (|:| |coeff| (-1145 |#1|)) (|:| |logand| (-1145 |#1|)))) $)) (-15 -3096 ((-625 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3089 ((-112) $)) (-15 -4269 ($ |#1| |#1|)) (-15 -3072 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-876 (-1149))) (-15 -3072 (|#1| $ (-1149))) |%noBranch|) (IF (|has| |#1| (-1014 (-1149))) (-15 -4269 ($ |#1| (-1149))) |%noBranch|))) (-358)) (T -571)) -((-3124 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-625 (-2 (|:| |scalar| (-402 (-552))) (|:| |coeff| (-1145 *2)) (|:| |logand| (-1145 *2))))) (-5 *4 (-625 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-358)) (-5 *1 (-571 *2)))) (-3114 (*1 *2 *1) (-12 (-5 *1 (-571 *2)) (-4 *2 (-358)))) (-3106 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |scalar| (-402 (-552))) (|:| |coeff| (-1145 *3)) (|:| |logand| (-1145 *3))))) (-5 *1 (-571 *3)) (-4 *3 (-358)))) (-3096 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-571 *3)) (-4 *3 (-358)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-571 *3)) (-4 *3 (-358)))) (-4269 (*1 *1 *2 *2) (-12 (-5 *1 (-571 *2)) (-4 *2 (-358)))) (-3072 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-571 *2)) (-4 *2 (-358)))) (-3072 (*1 *2 *1 *3) (-12 (-4 *2 (-358)) (-4 *2 (-876 *3)) (-5 *1 (-571 *2)) (-5 *3 (-1149)))) (-4269 (*1 *1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *1 (-571 *2)) (-4 *2 (-1014 *3)) (-4 *2 (-358))))) -(-13 (-698 (-402 (-552))) (-1014 |#1|) (-10 -8 (-15 -3124 ($ |#1| (-625 (-2 (|:| |scalar| (-402 (-552))) (|:| |coeff| (-1145 |#1|)) (|:| |logand| (-1145 |#1|)))) (-625 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3114 (|#1| $)) (-15 -3106 ((-625 (-2 (|:| |scalar| (-402 (-552))) (|:| |coeff| (-1145 |#1|)) (|:| |logand| (-1145 |#1|)))) $)) (-15 -3096 ((-625 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3089 ((-112) $)) (-15 -4269 ($ |#1| |#1|)) (-15 -3072 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-876 (-1149))) (-15 -3072 (|#1| $ (-1149))) |%noBranch|) (IF (|has| |#1| (-1014 (-1149))) (-15 -4269 ($ |#1| (-1149))) |%noBranch|))) -((-1984 (((-112) |#1|) 16)) (-1994 (((-3 |#1| "failed") |#1|) 14)) (-3143 (((-2 (|:| -3929 |#1|) (|:| -3564 (-751))) |#1|) 31) (((-3 |#1| "failed") |#1| (-751)) 18)) (-3132 (((-112) |#1| (-751)) 19)) (-2005 ((|#1| |#1|) 32)) (-3155 ((|#1| |#1| (-751)) 34))) -(((-572 |#1|) (-10 -7 (-15 -3132 ((-112) |#1| (-751))) (-15 -3143 ((-3 |#1| "failed") |#1| (-751))) (-15 -3143 ((-2 (|:| -3929 |#1|) (|:| -3564 (-751))) |#1|)) (-15 -3155 (|#1| |#1| (-751))) (-15 -1984 ((-112) |#1|)) (-15 -1994 ((-3 |#1| "failed") |#1|)) (-15 -2005 (|#1| |#1|))) (-537)) (T -572)) -((-2005 (*1 *2 *2) (-12 (-5 *1 (-572 *2)) (-4 *2 (-537)))) (-1994 (*1 *2 *2) (|partial| -12 (-5 *1 (-572 *2)) (-4 *2 (-537)))) (-1984 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-537)))) (-3155 (*1 *2 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-572 *2)) (-4 *2 (-537)))) (-3143 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3929 *3) (|:| -3564 (-751)))) (-5 *1 (-572 *3)) (-4 *3 (-537)))) (-3143 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-751)) (-5 *1 (-572 *2)) (-4 *2 (-537)))) (-3132 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-537))))) -(-10 -7 (-15 -3132 ((-112) |#1| (-751))) (-15 -3143 ((-3 |#1| "failed") |#1| (-751))) (-15 -3143 ((-2 (|:| -3929 |#1|) (|:| -3564 (-751))) |#1|)) (-15 -3155 (|#1| |#1| (-751))) (-15 -1984 ((-112) |#1|)) (-15 -1994 ((-3 |#1| "failed") |#1|)) (-15 -2005 (|#1| |#1|))) -((-2012 (((-1145 |#1|) (-897)) 27))) -(((-573 |#1|) (-10 -7 (-15 -2012 ((-1145 |#1|) (-897)))) (-344)) (T -573)) -((-2012 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-573 *4)) (-4 *4 (-344))))) -(-10 -7 (-15 -2012 ((-1145 |#1|) (-897)))) -((-3819 (((-571 (-402 (-928 |#1|))) (-571 (-402 (-928 |#1|)))) 27)) (-2481 (((-3 (-311 |#1|) (-625 (-311 |#1|))) (-402 (-928 |#1|)) (-1149)) 34 (|has| |#1| (-145)))) (-3455 (((-625 (-311 |#1|)) (-571 (-402 (-928 |#1|)))) 19)) (-2030 (((-311 |#1|) (-402 (-928 |#1|)) (-1149)) 32 (|has| |#1| (-145)))) (-2021 (((-311 |#1|) (-571 (-402 (-928 |#1|)))) 21))) -(((-574 |#1|) (-10 -7 (-15 -3819 ((-571 (-402 (-928 |#1|))) (-571 (-402 (-928 |#1|))))) (-15 -3455 ((-625 (-311 |#1|)) (-571 (-402 (-928 |#1|))))) (-15 -2021 ((-311 |#1|) (-571 (-402 (-928 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -2481 ((-3 (-311 |#1|) (-625 (-311 |#1|))) (-402 (-928 |#1|)) (-1149))) (-15 -2030 ((-311 |#1|) (-402 (-928 |#1|)) (-1149)))) |%noBranch|)) (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) (T -574)) -((-2030 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149)) (-4 *5 (-145)) (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) (-5 *2 (-311 *5)) (-5 *1 (-574 *5)))) (-2481 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149)) (-4 *5 (-145)) (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) (-5 *2 (-3 (-311 *5) (-625 (-311 *5)))) (-5 *1 (-574 *5)))) (-2021 (*1 *2 *3) (-12 (-5 *3 (-571 (-402 (-928 *4)))) (-4 *4 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) (-5 *2 (-311 *4)) (-5 *1 (-574 *4)))) (-3455 (*1 *2 *3) (-12 (-5 *3 (-571 (-402 (-928 *4)))) (-4 *4 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) (-5 *2 (-625 (-311 *4))) (-5 *1 (-574 *4)))) (-3819 (*1 *2 *2) (-12 (-5 *2 (-571 (-402 (-928 *3)))) (-4 *3 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) (-5 *1 (-574 *3))))) -(-10 -7 (-15 -3819 ((-571 (-402 (-928 |#1|))) (-571 (-402 (-928 |#1|))))) (-15 -3455 ((-625 (-311 |#1|)) (-571 (-402 (-928 |#1|))))) (-15 -2021 ((-311 |#1|) (-571 (-402 (-928 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -2481 ((-3 (-311 |#1|) (-625 (-311 |#1|))) (-402 (-928 |#1|)) (-1149))) (-15 -2030 ((-311 |#1|) (-402 (-928 |#1|)) (-1149)))) |%noBranch|)) -((-2049 (((-625 (-669 (-552))) (-625 (-552)) (-625 (-881 (-552)))) 46) (((-625 (-669 (-552))) (-625 (-552))) 47) (((-669 (-552)) (-625 (-552)) (-881 (-552))) 42)) (-2040 (((-751) (-625 (-552))) 40))) -(((-575) (-10 -7 (-15 -2040 ((-751) (-625 (-552)))) (-15 -2049 ((-669 (-552)) (-625 (-552)) (-881 (-552)))) (-15 -2049 ((-625 (-669 (-552))) (-625 (-552)))) (-15 -2049 ((-625 (-669 (-552))) (-625 (-552)) (-625 (-881 (-552))))))) (T -575)) -((-2049 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-552))) (-5 *4 (-625 (-881 (-552)))) (-5 *2 (-625 (-669 (-552)))) (-5 *1 (-575)))) (-2049 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-625 (-669 (-552)))) (-5 *1 (-575)))) (-2049 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-552))) (-5 *4 (-881 (-552))) (-5 *2 (-669 (-552))) (-5 *1 (-575)))) (-2040 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-751)) (-5 *1 (-575))))) -(-10 -7 (-15 -2040 ((-751) (-625 (-552)))) (-15 -2049 ((-669 (-552)) (-625 (-552)) (-881 (-552)))) (-15 -2049 ((-625 (-669 (-552))) (-625 (-552)))) (-15 -2049 ((-625 (-669 (-552))) (-625 (-552)) (-625 (-881 (-552)))))) -((-2694 (((-625 |#5|) |#5| (-112)) 73)) (-2062 (((-112) |#5| (-625 |#5|)) 30))) -(((-576 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2694 ((-625 |#5|) |#5| (-112))) (-15 -2062 ((-112) |#5| (-625 |#5|)))) (-13 (-302) (-145)) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|)) (T -576)) -((-2062 (*1 *2 *3 *4) (-12 (-5 *4 (-625 *3)) (-4 *3 (-1082 *5 *6 *7 *8)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-576 *5 *6 *7 *8 *3)))) (-2694 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-625 *3)) (-5 *1 (-576 *5 *6 *7 *8 *3)) (-4 *3 (-1082 *5 *6 *7 *8))))) -(-10 -7 (-15 -2694 ((-625 |#5|) |#5| (-112))) (-15 -2062 ((-112) |#5| (-625 |#5|)))) -((-1671 (((-112) $ $) NIL)) (-2662 (((-1108) $) 11)) (-2651 (((-1108) $) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL))) -(((-577) (-13 (-1056) (-10 -8 (-15 -2651 ((-1108) $)) (-15 -2662 ((-1108) $))))) (T -577)) -((-2651 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-577)))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-577))))) -(-13 (-1056) (-10 -8 (-15 -2651 ((-1108) $)) (-15 -2662 ((-1108) $)))) -((-1671 (((-112) $ $) NIL (|has| (-142) (-1073)))) (-3829 (($ $) 34)) (-3843 (($ $) NIL)) (-3808 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-1975 (((-112) $ $) 51)) (-1951 (((-112) $ $ (-552)) 46)) (-3819 (((-625 $) $ (-142)) 60) (((-625 $) $ (-139)) 61)) (-3237 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-827)))) (-3218 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-142) (-827))))) (-1800 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 (((-142) $ (-552) (-142)) 45 (|has| $ (-6 -4354))) (((-142) $ (-1199 (-552)) (-142)) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-3209 (($ $ (-142)) 64) (($ $ (-139)) 65)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-1353 (($ $ (-1199 (-552)) $) 44)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-1416 (($ (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3692 (((-142) $ (-552) (-142)) NIL (|has| $ (-6 -4354)))) (-3631 (((-142) $ (-552)) NIL)) (-1992 (((-112) $ $) 72)) (-2483 (((-552) (-1 (-112) (-142)) $) NIL) (((-552) (-142) $) NIL (|has| (-142) (-1073))) (((-552) (-142) $ (-552)) 48 (|has| (-142) (-1073))) (((-552) $ $ (-552)) 47) (((-552) (-139) $ (-552)) 50)) (-3799 (((-625 (-142)) $) NIL (|has| $ (-6 -4353)))) (-2183 (($ (-751) (-142)) 9)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) 28 (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| (-142) (-827)))) (-3280 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-827)))) (-3730 (((-625 (-142)) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-2537 (((-552) $) 42 (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| (-142) (-827)))) (-1899 (((-112) $ $ (-142)) 73)) (-2344 (((-751) $ $ (-142)) 70)) (-3683 (($ (-1 (-142) (-142)) $) 33 (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3857 (($ $) 37)) (-3870 (($ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-3221 (($ $ (-142)) 62) (($ $ (-139)) 63)) (-2883 (((-1131) $) 38 (|has| (-142) (-1073)))) (-3994 (($ (-142) $ (-552)) NIL) (($ $ $ (-552)) 23)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-552) $) 69) (((-1093) $) NIL (|has| (-142) (-1073)))) (-2924 (((-142) $) NIL (|has| (-552) (-827)))) (-2380 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2518 (($ $ (-142)) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-142)))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-289 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-625 (-142)) (-625 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-1358 (((-625 (-142)) $) NIL)) (-1916 (((-112) $) 12)) (-3600 (($) 10)) (-2154 (((-142) $ (-552) (-142)) NIL) (((-142) $ (-552)) 52) (($ $ (-1199 (-552))) 21) (($ $ $) NIL)) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-2840 (((-751) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353))) (((-751) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-3228 (($ $ $ (-552)) 66 (|has| $ (-6 -4354)))) (-1871 (($ $) 17)) (-2042 (((-528) $) NIL (|has| (-142) (-598 (-528))))) (-1695 (($ (-625 (-142))) NIL)) (-3402 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) 16) (($ (-625 $)) 67)) (-1683 (($ (-142)) NIL) (((-839) $) 27 (|has| (-142) (-597 (-839))))) (-1900 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| (-142) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-142) (-827)))) (-2281 (((-112) $ $) 14 (|has| (-142) (-1073)))) (-2334 (((-112) $ $) NIL (|has| (-142) (-827)))) (-2307 (((-112) $ $) 15 (|has| (-142) (-827)))) (-1471 (((-751) $) 13 (|has| $ (-6 -4353))))) -(((-578 |#1|) (-13 (-1117) (-10 -8 (-15 -2831 ((-552) $)))) (-552)) (T -578)) -((-2831 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-578 *3)) (-14 *3 *2)))) -(-13 (-1117) (-10 -8 (-15 -2831 ((-552) $)))) -((-1791 (((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2| (-1067 |#4|)) 32))) -(((-579 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1791 ((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2| (-1067 |#4|))) (-15 -1791 ((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2|))) (-773) (-827) (-544) (-925 |#3| |#1| |#2|)) (T -579)) -((-1791 (*1 *2 *3 *4) (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-544)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-552)))) (-5 *1 (-579 *5 *4 *6 *3)) (-4 *3 (-925 *6 *5 *4)))) (-1791 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1067 *3)) (-4 *3 (-925 *7 *6 *4)) (-4 *6 (-773)) (-4 *4 (-827)) (-4 *7 (-544)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-552)))) (-5 *1 (-579 *6 *4 *7 *3))))) -(-10 -7 (-15 -1791 ((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2| (-1067 |#4|))) (-15 -1791 ((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 63)) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2162 (($ $ (-552)) 54) (($ $ (-552) (-552)) 55)) (-2182 (((-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 60)) (-2409 (($ $) 100)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2386 (((-839) (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) (-1002 (-820 (-552))) (-1149) |#1| (-402 (-552))) 224)) (-3615 (($ (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 34)) (-3101 (($) NIL T CONST)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3592 (((-112) $) NIL)) (-2172 (((-552) $) 58) (((-552) $ (-552)) 59)) (-3650 (((-112) $) NIL)) (-2216 (($ $ (-897)) 76)) (-2493 (($ (-1 |#1| (-552)) $) 73)) (-4201 (((-112) $) 25)) (-3957 (($ |#1| (-552)) 22) (($ $ (-1055) (-552)) NIL) (($ $ (-625 (-1055)) (-625 (-552))) NIL)) (-1996 (($ (-1 |#1| |#1|) $) 67)) (-2448 (($ (-1002 (-820 (-552))) (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 13)) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2481 (($ $) 150 (|has| |#1| (-38 (-402 (-552)))))) (-2418 (((-3 $ "failed") $ $ (-112)) 99)) (-2398 (($ $ $) 108)) (-2831 (((-1093) $) NIL)) (-2428 (((-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 15)) (-2437 (((-1002 (-820 (-552))) $) 14)) (-2147 (($ $ (-552)) 45)) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-4073 (((-1129 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-552)))))) (-2154 ((|#1| $ (-552)) 57) (($ $ $) NIL (|has| (-552) (-1085)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (-4276 (((-552) $) NIL)) (-3580 (($ $) 46)) (-1683 (((-839) $) NIL) (($ (-552)) 28) (($ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) 27 (|has| |#1| (-170)))) (-3637 ((|#1| $ (-552)) 56)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) 37)) (-2845 ((|#1| $) NIL)) (-2169 (($ $) 186 (|has| |#1| (-38 (-402 (-552)))))) (-2298 (($ $) 158 (|has| |#1| (-38 (-402 (-552)))))) (-2191 (($ $) 190 (|has| |#1| (-38 (-402 (-552)))))) (-2326 (($ $) 163 (|has| |#1| (-38 (-402 (-552)))))) (-2144 (($ $) 189 (|has| |#1| (-38 (-402 (-552)))))) (-2275 (($ $) 162 (|has| |#1| (-38 (-402 (-552)))))) (-2365 (($ $ (-402 (-552))) 166 (|has| |#1| (-38 (-402 (-552)))))) (-2376 (($ $ |#1|) 146 (|has| |#1| (-38 (-402 (-552)))))) (-2339 (($ $) 192 (|has| |#1| (-38 (-402 (-552)))))) (-2353 (($ $) 149 (|has| |#1| (-38 (-402 (-552)))))) (-2135 (($ $) 191 (|has| |#1| (-38 (-402 (-552)))))) (-2264 (($ $) 164 (|has| |#1| (-38 (-402 (-552)))))) (-2159 (($ $) 187 (|has| |#1| (-38 (-402 (-552)))))) (-2286 (($ $) 160 (|has| |#1| (-38 (-402 (-552)))))) (-2179 (($ $) 188 (|has| |#1| (-38 (-402 (-552)))))) (-2313 (($ $) 161 (|has| |#1| (-38 (-402 (-552)))))) (-2105 (($ $) 197 (|has| |#1| (-38 (-402 (-552)))))) (-2235 (($ $) 173 (|has| |#1| (-38 (-402 (-552)))))) (-2123 (($ $) 194 (|has| |#1| (-38 (-402 (-552)))))) (-2255 (($ $) 168 (|has| |#1| (-38 (-402 (-552)))))) (-2083 (($ $) 201 (|has| |#1| (-38 (-402 (-552)))))) (-2213 (($ $) 177 (|has| |#1| (-38 (-402 (-552)))))) (-2073 (($ $) 203 (|has| |#1| (-38 (-402 (-552)))))) (-2202 (($ $) 179 (|has| |#1| (-38 (-402 (-552)))))) (-2094 (($ $) 199 (|has| |#1| (-38 (-402 (-552)))))) (-2223 (($ $) 175 (|has| |#1| (-38 (-402 (-552)))))) (-2114 (($ $) 196 (|has| |#1| (-38 (-402 (-552)))))) (-2246 (($ $) 171 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2874 ((|#1| $ (-552)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-2089 (($) 29 T CONST)) (-2100 (($) 38 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (-2281 (((-112) $ $) 65)) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) 84) (($ $ $) 64)) (-2382 (($ $ $) 81)) (** (($ $ (-897)) NIL) (($ $ (-751)) 103)) (* (($ (-897) $) 89) (($ (-751) $) 87) (($ (-552) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))))) -(((-580 |#1|) (-13 (-1210 |#1| (-552)) (-10 -8 (-15 -2448 ($ (-1002 (-820 (-552))) (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))))) (-15 -2437 ((-1002 (-820 (-552))) $)) (-15 -2428 ((-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $)) (-15 -3615 ($ (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))))) (-15 -4201 ((-112) $)) (-15 -2493 ($ (-1 |#1| (-552)) $)) (-15 -2418 ((-3 $ "failed") $ $ (-112))) (-15 -2409 ($ $)) (-15 -2398 ($ $ $)) (-15 -2386 ((-839) (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) (-1002 (-820 (-552))) (-1149) |#1| (-402 (-552)))) (IF (|has| |#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ($ $)) (-15 -2376 ($ $ |#1|)) (-15 -2365 ($ $ (-402 (-552)))) (-15 -2353 ($ $)) (-15 -2339 ($ $)) (-15 -2326 ($ $)) (-15 -2313 ($ $)) (-15 -2298 ($ $)) (-15 -2286 ($ $)) (-15 -2275 ($ $)) (-15 -2264 ($ $)) (-15 -2255 ($ $)) (-15 -2246 ($ $)) (-15 -2235 ($ $)) (-15 -2223 ($ $)) (-15 -2213 ($ $)) (-15 -2202 ($ $)) (-15 -2191 ($ $)) (-15 -2179 ($ $)) (-15 -2169 ($ $)) (-15 -2159 ($ $)) (-15 -2144 ($ $)) (-15 -2135 ($ $)) (-15 -2123 ($ $)) (-15 -2114 ($ $)) (-15 -2105 ($ $)) (-15 -2094 ($ $)) (-15 -2083 ($ $)) (-15 -2073 ($ $))) |%noBranch|))) (-1025)) (T -580)) -((-4201 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-1025)))) (-2448 (*1 *1 *2 *3) (-12 (-5 *2 (-1002 (-820 (-552)))) (-5 *3 (-1129 (-2 (|:| |k| (-552)) (|:| |c| *4)))) (-4 *4 (-1025)) (-5 *1 (-580 *4)))) (-2437 (*1 *2 *1) (-12 (-5 *2 (-1002 (-820 (-552)))) (-5 *1 (-580 *3)) (-4 *3 (-1025)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-1129 (-2 (|:| |k| (-552)) (|:| |c| *3)))) (-5 *1 (-580 *3)) (-4 *3 (-1025)))) (-3615 (*1 *1 *2) (-12 (-5 *2 (-1129 (-2 (|:| |k| (-552)) (|:| |c| *3)))) (-4 *3 (-1025)) (-5 *1 (-580 *3)))) (-2493 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-552))) (-4 *3 (-1025)) (-5 *1 (-580 *3)))) (-2418 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-1025)))) (-2409 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1025)))) (-2398 (*1 *1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1025)))) (-2386 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1129 (-2 (|:| |k| (-552)) (|:| |c| *6)))) (-5 *4 (-1002 (-820 (-552)))) (-5 *5 (-1149)) (-5 *7 (-402 (-552))) (-4 *6 (-1025)) (-5 *2 (-839)) (-5 *1 (-580 *6)))) (-2481 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2376 (*1 *1 *1 *2) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2365 (*1 *1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-580 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1025)))) (-2353 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2339 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2326 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2313 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2298 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2286 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2275 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2264 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2255 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2246 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2235 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2223 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2213 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2202 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2191 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2179 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2169 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2144 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2135 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2123 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2114 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2105 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2094 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2083 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) (-2073 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) -(-13 (-1210 |#1| (-552)) (-10 -8 (-15 -2448 ($ (-1002 (-820 (-552))) (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))))) (-15 -2437 ((-1002 (-820 (-552))) $)) (-15 -2428 ((-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $)) (-15 -3615 ($ (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))))) (-15 -4201 ((-112) $)) (-15 -2493 ($ (-1 |#1| (-552)) $)) (-15 -2418 ((-3 $ "failed") $ $ (-112))) (-15 -2409 ($ $)) (-15 -2398 ($ $ $)) (-15 -2386 ((-839) (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) (-1002 (-820 (-552))) (-1149) |#1| (-402 (-552)))) (IF (|has| |#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ($ $)) (-15 -2376 ($ $ |#1|)) (-15 -2365 ($ $ (-402 (-552)))) (-15 -2353 ($ $)) (-15 -2339 ($ $)) (-15 -2326 ($ $)) (-15 -2313 ($ $)) (-15 -2298 ($ $)) (-15 -2286 ($ $)) (-15 -2275 ($ $)) (-15 -2264 ($ $)) (-15 -2255 ($ $)) (-15 -2246 ($ $)) (-15 -2235 ($ $)) (-15 -2223 ($ $)) (-15 -2213 ($ $)) (-15 -2202 ($ $)) (-15 -2191 ($ $)) (-15 -2179 ($ $)) (-15 -2169 ($ $)) (-15 -2159 ($ $)) (-15 -2144 ($ $)) (-15 -2135 ($ $)) (-15 -2123 ($ $)) (-15 -2114 ($ $)) (-15 -2105 ($ $)) (-15 -2094 ($ $)) (-15 -2083 ($ $)) (-15 -2073 ($ $))) |%noBranch|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3615 (($ (-1129 |#1|)) 9)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) 42)) (-3592 (((-112) $) 52)) (-2172 (((-751) $) 55) (((-751) $ (-751)) 54)) (-3650 (((-112) $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2802 (((-3 $ "failed") $ $) 44 (|has| |#1| (-544)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL (|has| |#1| (-544)))) (-2512 (((-1129 |#1|) $) 23)) (-4141 (((-751)) 51)) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2089 (($) 10 T CONST)) (-2100 (($) 14 T CONST)) (-2281 (((-112) $ $) 22)) (-2393 (($ $) 30) (($ $ $) 16)) (-2382 (($ $ $) 25)) (** (($ $ (-897)) NIL) (($ $ (-751)) 49)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-552)) 36))) -(((-581 |#1|) (-13 (-1025) (-10 -8 (-15 -2512 ((-1129 |#1|) $)) (-15 -3615 ($ (-1129 |#1|))) (-15 -3592 ((-112) $)) (-15 -2172 ((-751) $)) (-15 -2172 ((-751) $ (-751))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-552))) (IF (|has| |#1| (-544)) (-6 (-544)) |%noBranch|))) (-1025)) (T -581)) -((-2512 (*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) (-3615 (*1 *1 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-581 *3)))) (-3592 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) (-2172 (*1 *2 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-581 *2)) (-4 *2 (-1025)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-581 *2)) (-4 *2 (-1025)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-581 *3)) (-4 *3 (-1025))))) -(-13 (-1025) (-10 -8 (-15 -2512 ((-1129 |#1|) $)) (-15 -3615 ($ (-1129 |#1|))) (-15 -3592 ((-112) $)) (-15 -2172 ((-751) $)) (-15 -2172 ((-751) $ (-751))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-552))) (IF (|has| |#1| (-544)) (-6 (-544)) |%noBranch|))) -((-1996 (((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)) 15))) -(((-582 |#1| |#2|) (-10 -7 (-15 -1996 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)))) (-1186) (-1186)) (T -582)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-585 *6)) (-5 *1 (-582 *5 *6))))) -(-10 -7 (-15 -1996 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)))) -((-1996 (((-1129 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-1129 |#2|)) 20) (((-1129 |#3|) (-1 |#3| |#1| |#2|) (-1129 |#1|) (-585 |#2|)) 19) (((-585 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-585 |#2|)) 18))) -(((-583 |#1| |#2| |#3|) (-10 -7 (-15 -1996 ((-585 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-585 |#2|))) (-15 -1996 ((-1129 |#3|) (-1 |#3| |#1| |#2|) (-1129 |#1|) (-585 |#2|))) (-15 -1996 ((-1129 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-1129 |#2|)))) (-1186) (-1186) (-1186)) (T -583)) -((-1996 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-1129 *7)) (-4 *6 (-1186)) (-4 *7 (-1186)) (-4 *8 (-1186)) (-5 *2 (-1129 *8)) (-5 *1 (-583 *6 *7 *8)))) (-1996 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1129 *6)) (-5 *5 (-585 *7)) (-4 *6 (-1186)) (-4 *7 (-1186)) (-4 *8 (-1186)) (-5 *2 (-1129 *8)) (-5 *1 (-583 *6 *7 *8)))) (-1996 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-585 *7)) (-4 *6 (-1186)) (-4 *7 (-1186)) (-4 *8 (-1186)) (-5 *2 (-585 *8)) (-5 *1 (-583 *6 *7 *8))))) -(-10 -7 (-15 -1996 ((-585 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-585 |#2|))) (-15 -1996 ((-1129 |#3|) (-1 |#3| |#1| |#2|) (-1129 |#1|) (-585 |#2|))) (-15 -1996 ((-1129 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-1129 |#2|)))) -((-2499 ((|#3| |#3| (-625 (-596 |#3|)) (-625 (-1149))) 55)) (-2490 (((-167 |#2|) |#3|) 117)) (-2460 ((|#3| (-167 |#2|)) 44)) (-2469 ((|#2| |#3|) 19)) (-2478 ((|#3| |#2|) 33))) -(((-584 |#1| |#2| |#3|) (-10 -7 (-15 -2460 (|#3| (-167 |#2|))) (-15 -2469 (|#2| |#3|)) (-15 -2478 (|#3| |#2|)) (-15 -2490 ((-167 |#2|) |#3|)) (-15 -2499 (|#3| |#3| (-625 (-596 |#3|)) (-625 (-1149))))) (-13 (-544) (-827)) (-13 (-425 |#1|) (-978) (-1171)) (-13 (-425 (-167 |#1|)) (-978) (-1171))) (T -584)) -((-2499 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-625 (-596 *2))) (-5 *4 (-625 (-1149))) (-4 *2 (-13 (-425 (-167 *5)) (-978) (-1171))) (-4 *5 (-13 (-544) (-827))) (-5 *1 (-584 *5 *6 *2)) (-4 *6 (-13 (-425 *5) (-978) (-1171))))) (-2490 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-827))) (-5 *2 (-167 *5)) (-5 *1 (-584 *4 *5 *3)) (-4 *5 (-13 (-425 *4) (-978) (-1171))) (-4 *3 (-13 (-425 (-167 *4)) (-978) (-1171))))) (-2478 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-827))) (-4 *2 (-13 (-425 (-167 *4)) (-978) (-1171))) (-5 *1 (-584 *4 *3 *2)) (-4 *3 (-13 (-425 *4) (-978) (-1171))))) (-2469 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-827))) (-4 *2 (-13 (-425 *4) (-978) (-1171))) (-5 *1 (-584 *4 *2 *3)) (-4 *3 (-13 (-425 (-167 *4)) (-978) (-1171))))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-425 *4) (-978) (-1171))) (-4 *4 (-13 (-544) (-827))) (-4 *2 (-13 (-425 (-167 *4)) (-978) (-1171))) (-5 *1 (-584 *4 *5 *2))))) -(-10 -7 (-15 -2460 (|#3| (-167 |#2|))) (-15 -2469 (|#2| |#3|)) (-15 -2478 (|#3| |#2|)) (-15 -2490 ((-167 |#2|) |#3|)) (-15 -2499 (|#3| |#3| (-625 (-596 |#3|)) (-625 (-1149))))) -((-3488 (($ (-1 (-112) |#1|) $) 17)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-3421 (($ (-1 |#1| |#1|) |#1|) 9)) (-3467 (($ (-1 (-112) |#1|) $) 13)) (-3478 (($ (-1 (-112) |#1|) $) 15)) (-1695 (((-1129 |#1|) $) 18)) (-1683 (((-839) $) NIL))) -(((-585 |#1|) (-13 (-597 (-839)) (-10 -8 (-15 -1996 ($ (-1 |#1| |#1|) $)) (-15 -3467 ($ (-1 (-112) |#1|) $)) (-15 -3478 ($ (-1 (-112) |#1|) $)) (-15 -3488 ($ (-1 (-112) |#1|) $)) (-15 -3421 ($ (-1 |#1| |#1|) |#1|)) (-15 -1695 ((-1129 |#1|) $)))) (-1186)) (T -585)) -((-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1186)) (-5 *1 (-585 *3)))) (-3467 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1186)) (-5 *1 (-585 *3)))) (-3478 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1186)) (-5 *1 (-585 *3)))) (-3488 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1186)) (-5 *1 (-585 *3)))) (-3421 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1186)) (-5 *1 (-585 *3)))) (-1695 (*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-585 *3)) (-4 *3 (-1186))))) -(-13 (-597 (-839)) (-10 -8 (-15 -1996 ($ (-1 |#1| |#1|) $)) (-15 -3467 ($ (-1 (-112) |#1|) $)) (-15 -3478 ($ (-1 (-112) |#1|) $)) (-15 -3488 ($ (-1 (-112) |#1|) $)) (-15 -3421 ($ (-1 |#1| |#1|) |#1|)) (-15 -1695 ((-1129 |#1|) $)))) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2983 (($ (-751)) NIL (|has| |#1| (-23)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) NIL)) (-2483 (((-552) (-1 (-112) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073)))) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3191 (((-669 |#1|) $ $) NIL (|has| |#1| (-1025)))) (-2183 (($ (-751) |#1|) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2638 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-2878 (((-112) $ (-751)) NIL)) (-3456 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2924 ((|#1| $) NIL (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-1443 ((|#1| $ $) NIL (|has| |#1| (-1025)))) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-1431 (($ $ $) NIL (|has| |#1| (-1025)))) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) NIL)) (-3402 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-625 $)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2393 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2382 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-552) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-707))) (($ $ |#1|) NIL (|has| |#1| (-707)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-586 |#1| |#2|) (-1230 |#1|) (-1186) (-552)) (T -586)) -NIL -(-1230 |#1|) -((-2509 (((-1237) $ |#2| |#2|) 36)) (-2527 ((|#2| $) 23)) (-2537 ((|#2| $) 21)) (-3683 (($ (-1 |#3| |#3|) $) 32)) (-1996 (($ (-1 |#3| |#3|) $) 30)) (-2924 ((|#3| $) 26)) (-2518 (($ $ |#3|) 33)) (-2545 (((-112) |#3| $) 17)) (-1358 (((-625 |#3|) $) 15)) (-2154 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-587 |#1| |#2| |#3|) (-10 -8 (-15 -2509 ((-1237) |#1| |#2| |#2|)) (-15 -2518 (|#1| |#1| |#3|)) (-15 -2924 (|#3| |#1|)) (-15 -2527 (|#2| |#1|)) (-15 -2537 (|#2| |#1|)) (-15 -2545 ((-112) |#3| |#1|)) (-15 -1358 ((-625 |#3|) |#1|)) (-15 -2154 (|#3| |#1| |#2|)) (-15 -2154 (|#3| |#1| |#2| |#3|)) (-15 -3683 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1996 (|#1| (-1 |#3| |#3|) |#1|))) (-588 |#2| |#3|) (-1073) (-1186)) (T -587)) -NIL -(-10 -8 (-15 -2509 ((-1237) |#1| |#2| |#2|)) (-15 -2518 (|#1| |#1| |#3|)) (-15 -2924 (|#3| |#1|)) (-15 -2527 (|#2| |#1|)) (-15 -2537 (|#2| |#1|)) (-15 -2545 ((-112) |#3| |#1|)) (-15 -1358 ((-625 |#3|) |#1|)) (-15 -2154 (|#3| |#1| |#2|)) (-15 -2154 (|#3| |#1| |#2| |#3|)) (-15 -3683 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1996 (|#1| (-1 |#3| |#3|) |#1|))) -((-1671 (((-112) $ $) 19 (|has| |#2| (-1073)))) (-2509 (((-1237) $ |#1| |#1|) 40 (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) 8)) (-1851 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4354)))) (-3101 (($) 7 T CONST)) (-3692 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) 51)) (-3799 (((-625 |#2|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-2527 ((|#1| $) 43 (|has| |#1| (-827)))) (-3730 (((-625 |#2|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1073)) (|has| $ (-6 -4353))))) (-2537 ((|#1| $) 44 (|has| |#1| (-827)))) (-3683 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#2| |#2|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#2| (-1073)))) (-2554 (((-625 |#1|) $) 46)) (-2564 (((-112) |#1| $) 47)) (-2831 (((-1093) $) 21 (|has| |#2| (-1073)))) (-2924 ((|#2| $) 42 (|has| |#1| (-827)))) (-2518 (($ $ |#2|) 41 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#2|))) 26 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) 25 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) 23 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2840 (((-751) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4353))) (((-751) |#2| $) 28 (-12 (|has| |#2| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-839) $) 18 (|has| |#2| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#2| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-588 |#1| |#2|) (-138) (-1073) (-1186)) (T -588)) -((-1358 (*1 *2 *1) (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1186)) (-5 *2 (-625 *4)))) (-2564 (*1 *2 *3 *1) (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1186)) (-5 *2 (-112)))) (-2554 (*1 *2 *1) (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1186)) (-5 *2 (-625 *3)))) (-2545 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-588 *4 *3)) (-4 *4 (-1073)) (-4 *3 (-1186)) (-4 *3 (-1073)) (-5 *2 (-112)))) (-2537 (*1 *2 *1) (-12 (-4 *1 (-588 *2 *3)) (-4 *3 (-1186)) (-4 *2 (-1073)) (-4 *2 (-827)))) (-2527 (*1 *2 *1) (-12 (-4 *1 (-588 *2 *3)) (-4 *3 (-1186)) (-4 *2 (-1073)) (-4 *2 (-827)))) (-2924 (*1 *2 *1) (-12 (-4 *1 (-588 *3 *2)) (-4 *3 (-1073)) (-4 *3 (-827)) (-4 *2 (-1186)))) (-2518 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-588 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1186)))) (-2509 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-588 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1186)) (-5 *2 (-1237))))) -(-13 (-483 |t#2|) (-283 |t#1| |t#2|) (-10 -8 (-15 -1358 ((-625 |t#2|) $)) (-15 -2564 ((-112) |t#1| $)) (-15 -2554 ((-625 |t#1|) $)) (IF (|has| |t#2| (-1073)) (IF (|has| $ (-6 -4353)) (-15 -2545 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-827)) (PROGN (-15 -2537 (|t#1| $)) (-15 -2527 (|t#1| $)) (-15 -2924 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4354)) (PROGN (-15 -2518 ($ $ |t#2|)) (-15 -2509 ((-1237) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#2| (-1073)) ((-597 (-839)) -1523 (|has| |#2| (-1073)) (|has| |#2| (-597 (-839)))) ((-281 |#1| |#2|) . T) ((-283 |#1| |#2|) . T) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((-483 |#2|) . T) ((-507 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((-1073) |has| |#2| (-1073)) ((-1186) . T)) -((-1683 (((-839) $) 19) (((-129) $) 14) (($ (-129)) 13))) -(((-589) (-13 (-597 (-839)) (-597 (-129)) (-10 -8 (-15 -1683 ($ (-129)))))) (T -589)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-129)) (-5 *1 (-589))))) -(-13 (-597 (-839)) (-597 (-129)) (-10 -8 (-15 -1683 ($ (-129))))) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL) (((-1154) $) NIL) (($ (-1154)) NIL) (((-1185) $) 14) (($ (-625 (-1185))) 13)) (-3666 (((-625 (-1185)) $) 10)) (-2281 (((-112) $ $) NIL))) -(((-590) (-13 (-1056) (-597 (-1185)) (-10 -8 (-15 -1683 ($ (-625 (-1185)))) (-15 -3666 ((-625 (-1185)) $))))) (T -590)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-1185))) (-5 *1 (-590)))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-625 (-1185))) (-5 *1 (-590))))) -(-13 (-1056) (-597 (-1185)) (-10 -8 (-15 -1683 ($ (-625 (-1185)))) (-15 -3666 ((-625 (-1185)) $)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3618 (((-3 $ "failed")) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2770 (((-1232 (-669 |#1|))) NIL (|has| |#2| (-412 |#1|))) (((-1232 (-669 |#1|)) (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3208 (((-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3101 (($) NIL T CONST)) (-1456 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-4152 (((-3 $ "failed")) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-2629 (((-669 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-669 |#1|) (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3192 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-2612 (((-669 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-669 |#1|) $ (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3598 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-1392 (((-1145 (-928 |#1|))) NIL (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-358))))) (-3629 (($ $ (-897)) NIL)) (-3174 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-4175 (((-1145 |#1|) $) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-2648 ((|#1|) NIL (|has| |#2| (-412 |#1|))) ((|#1| (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3159 (((-1145 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-4303 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2670 (($ (-1232 |#1|)) NIL (|has| |#2| (-412 |#1|))) (($ (-1232 |#1|) (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-4174 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-3442 (((-897)) NIL (|has| |#2| (-362 |#1|)))) (-4272 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2712 (($ $ (-897)) NIL)) (-4228 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4207 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4250 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1467 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-4164 (((-3 $ "failed")) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-2640 (((-669 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-669 |#1|) (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3199 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-2619 (((-669 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-669 |#1|) $ (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3609 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-1433 (((-1145 (-928 |#1|))) NIL (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-358))))) (-3619 (($ $ (-897)) NIL)) (-3182 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-4187 (((-1145 |#1|) $) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-2658 ((|#1|) NIL (|has| |#2| (-412 |#1|))) ((|#1| (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3166 (((-1145 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-4312 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2883 (((-1131) $) NIL)) (-4218 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4239 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4261 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2831 (((-1093) $) NIL)) (-4293 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2154 ((|#1| $ (-552)) NIL (|has| |#2| (-412 |#1|)))) (-2780 (((-669 |#1|) (-1232 $)) NIL (|has| |#2| (-412 |#1|))) (((-1232 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-669 |#1|) (-1232 $) (-1232 $)) NIL (|has| |#2| (-362 |#1|))) (((-1232 |#1|) $ (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-2042 (($ (-1232 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-1232 |#1|) $) NIL (|has| |#2| (-412 |#1|)))) (-2533 (((-625 (-928 |#1|))) NIL (|has| |#2| (-412 |#1|))) (((-625 (-928 |#1|)) (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3828 (($ $ $) NIL)) (-3148 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1683 (((-839) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1270 (((-1232 $)) NIL (|has| |#2| (-412 |#1|)))) (-4197 (((-625 (-1232 |#1|))) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-3842 (($ $ $ $) NIL)) (-4333 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2872 (($ (-669 |#1|) $) NIL (|has| |#2| (-412 |#1|)))) (-3818 (($ $ $) NIL)) (-3137 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4322 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4283 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2089 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) 24)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-591 |#1| |#2|) (-13 (-725 |#1|) (-597 |#2|) (-10 -8 (-15 -1683 ($ |#2|)) (IF (|has| |#2| (-412 |#1|)) (-6 (-412 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|))) (-170) (-725 |#1|)) (T -591)) -((-1683 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-591 *3 *2)) (-4 *2 (-725 *3))))) -(-13 (-725 |#1|) (-597 |#2|) (-10 -8 (-15 -1683 ($ |#2|)) (IF (|has| |#2| (-412 |#1|)) (-6 (-412 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|))) -((-1671 (((-112) $ $) NIL)) (-4086 (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) 33)) (-2173 (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL) (($) NIL)) (-2509 (((-1237) $ (-1131) (-1131)) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-1131) |#1|) 43)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-3128 (((-3 |#1| "failed") (-1131) $) 46)) (-3101 (($) NIL T CONST)) (-4137 (($ $ (-1131)) 24)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073))))) (-1938 (((-3 |#1| "failed") (-1131) $) 47) (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353))) (($ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL (|has| $ (-6 -4353)))) (-1416 (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353))) (($ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073))))) (-2163 (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073))))) (-4099 (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) 32)) (-3692 ((|#1| $ (-1131) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-1131)) NIL)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353))) (((-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-1731 (($ $) 48)) (-2508 (($ (-383)) 22) (($ (-383) (-1131)) 21)) (-1288 (((-383) $) 34)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-1131) $) NIL (|has| (-1131) (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353))) (((-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (((-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073))))) (-2537 (((-1131) $) NIL (|has| (-1131) (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-3712 (((-625 (-1131)) $) 39)) (-1370 (((-112) (-1131) $) NIL)) (-4111 (((-1131) $) 35)) (-2953 (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL)) (-3966 (($ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL)) (-2554 (((-625 (-1131)) $) NIL)) (-2564 (((-112) (-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 ((|#1| $) NIL (|has| (-1131) (-827)))) (-2380 (((-3 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) "failed") (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL)) (-2518 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (($ $ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (($ $ (-625 (-289 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) 37)) (-2154 ((|#1| $ (-1131) |#1|) NIL) ((|#1| $ (-1131)) 42)) (-4255 (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL) (($) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (((-751) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (((-751) (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL)) (-1683 (((-839) $) 20)) (-4125 (($ $) 25)) (-2977 (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 19)) (-1471 (((-751) $) 41 (|has| $ (-6 -4353))))) -(((-592 |#1|) (-13 (-359 (-383) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) (-1162 (-1131) |#1|) (-10 -8 (-6 -4353) (-15 -1731 ($ $)))) (-1073)) (T -592)) -((-1731 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1073))))) -(-13 (-359 (-383) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) (-1162 (-1131) |#1|) (-10 -8 (-6 -4353) (-15 -1731 ($ $)))) -((-2893 (((-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) $) 15)) (-3712 (((-625 |#2|) $) 19)) (-1370 (((-112) |#2| $) 12))) -(((-593 |#1| |#2| |#3|) (-10 -8 (-15 -3712 ((-625 |#2|) |#1|)) (-15 -1370 ((-112) |#2| |#1|)) (-15 -2893 ((-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|))) (-594 |#2| |#3|) (-1073) (-1073)) (T -593)) -NIL -(-10 -8 (-15 -3712 ((-625 |#2|) |#1|)) (-15 -1370 ((-112) |#2| |#1|)) (-15 -2893 ((-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|))) -((-1671 (((-112) $ $) 19 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-3495 (((-112) $ (-751)) 8)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 45 (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 55 (|has| $ (-6 -4353)))) (-3128 (((-3 |#2| "failed") |#1| $) 61)) (-3101 (($) 7 T CONST)) (-2959 (($ $) 58 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353))))) (-1938 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 46 (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) 62)) (-1416 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 54 (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 56 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 53 (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 52 (|has| $ (-6 -4353)))) (-3799 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-3712 (((-625 |#1|) $) 63)) (-1370 (((-112) |#1| $) 64)) (-2953 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 39)) (-3966 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 40)) (-2831 (((-1093) $) 21 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-2380 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 51)) (-2966 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 41)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) 26 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 25 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 24 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 23 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-4255 (($) 49) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 48)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 31 (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 59 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 50)) (-1683 (((-839) $) 18 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839))))) (-2977 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 42)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-594 |#1| |#2|) (-138) (-1073) (-1073)) (T -594)) -((-1370 (*1 *2 *3 *1) (-12 (-4 *1 (-594 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-5 *2 (-112)))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-594 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-5 *2 (-625 *3)))) (-1938 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-594 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073)))) (-3128 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-594 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073))))) -(-13 (-225 (-2 (|:| -2971 |t#1|) (|:| -4120 |t#2|))) (-10 -8 (-15 -1370 ((-112) |t#1| $)) (-15 -3712 ((-625 |t#1|) $)) (-15 -1938 ((-3 |t#2| "failed") |t#1| $)) (-15 -3128 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-106 #0=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T) ((-101) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) ((-597 (-839)) -1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839)))) ((-149 #0#) . T) ((-598 (-528)) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))) ((-225 #0#) . T) ((-231 #0#) . T) ((-304 #0#) -12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))) ((-483 #0#) . T) ((-507 #0# #0#) -12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))) ((-1073) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) ((-1186) . T)) -((-1398 (((-596 |#2|) |#1|) 15)) (-1408 (((-3 |#1| "failed") (-596 |#2|)) 19))) -(((-595 |#1| |#2|) (-10 -7 (-15 -1398 ((-596 |#2|) |#1|)) (-15 -1408 ((-3 |#1| "failed") (-596 |#2|)))) (-827) (-827)) (T -595)) -((-1408 (*1 *2 *3) (|partial| -12 (-5 *3 (-596 *4)) (-4 *4 (-827)) (-4 *2 (-827)) (-5 *1 (-595 *2 *4)))) (-1398 (*1 *2 *3) (-12 (-5 *2 (-596 *4)) (-5 *1 (-595 *3 *4)) (-4 *3 (-827)) (-4 *4 (-827))))) -(-10 -7 (-15 -1398 ((-596 |#2|) |#1|)) (-15 -1408 ((-3 |#1| "failed") (-596 |#2|)))) -((-1671 (((-112) $ $) NIL)) (-1379 (((-3 (-1149) "failed") $) 37)) (-2087 (((-1237) $ (-751)) 26)) (-2483 (((-751) $) 25)) (-1563 (((-114) $) 12)) (-1288 (((-1149) $) 20)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-1425 (($ (-114) (-625 |#1|) (-751)) 30) (($ (-1149)) 31)) (-1721 (((-112) $ (-114)) 18) (((-112) $ (-1149)) 16)) (-2207 (((-751) $) 22)) (-2831 (((-1093) $) NIL)) (-2042 (((-868 (-552)) $) 77 (|has| |#1| (-598 (-868 (-552))))) (((-868 (-374)) $) 84 (|has| |#1| (-598 (-868 (-374))))) (((-528) $) 69 (|has| |#1| (-598 (-528))))) (-1683 (((-839) $) 55)) (-1388 (((-625 |#1|) $) 24)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 41)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 42))) -(((-596 |#1|) (-13 (-131) (-860 |#1|) (-10 -8 (-15 -1288 ((-1149) $)) (-15 -1563 ((-114) $)) (-15 -1388 ((-625 |#1|) $)) (-15 -2207 ((-751) $)) (-15 -1425 ($ (-114) (-625 |#1|) (-751))) (-15 -1425 ($ (-1149))) (-15 -1379 ((-3 (-1149) "failed") $)) (-15 -1721 ((-112) $ (-114))) (-15 -1721 ((-112) $ (-1149))) (IF (|has| |#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|))) (-827)) (T -596)) -((-1288 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-596 *3)) (-4 *3 (-827)))) (-1563 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-596 *3)) (-4 *3 (-827)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-596 *3)) (-4 *3 (-827)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-596 *3)) (-4 *3 (-827)))) (-1425 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-625 *5)) (-5 *4 (-751)) (-4 *5 (-827)) (-5 *1 (-596 *5)))) (-1425 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-596 *3)) (-4 *3 (-827)))) (-1379 (*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-596 *3)) (-4 *3 (-827)))) (-1721 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-596 *4)) (-4 *4 (-827)))) (-1721 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-112)) (-5 *1 (-596 *4)) (-4 *4 (-827))))) -(-13 (-131) (-860 |#1|) (-10 -8 (-15 -1288 ((-1149) $)) (-15 -1563 ((-114) $)) (-15 -1388 ((-625 |#1|) $)) (-15 -2207 ((-751) $)) (-15 -1425 ($ (-114) (-625 |#1|) (-751))) (-15 -1425 ($ (-1149))) (-15 -1379 ((-3 (-1149) "failed") $)) (-15 -1721 ((-112) $ (-114))) (-15 -1721 ((-112) $ (-1149))) (IF (|has| |#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|))) -((-1683 ((|#1| $) 6))) -(((-597 |#1|) (-138) (-1186)) (T -597)) -((-1683 (*1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1186))))) -(-13 (-10 -8 (-15 -1683 (|t#1| $)))) -((-2042 ((|#1| $) 6))) -(((-598 |#1|) (-138) (-1186)) (T -598)) -((-2042 (*1 *2 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-1186))))) -(-13 (-10 -8 (-15 -2042 (|t#1| $)))) -((-1418 (((-3 (-1145 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 (-413 |#2|) |#2|)) 15) (((-3 (-1145 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|)) 16))) -(((-599 |#1| |#2|) (-10 -7 (-15 -1418 ((-3 (-1145 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|))) (-15 -1418 ((-3 (-1145 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 (-413 |#2|) |#2|)))) (-13 (-145) (-27) (-1014 (-552)) (-1014 (-402 (-552)))) (-1208 |#1|)) (T -599)) -((-1418 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1208 *5)) (-4 *5 (-13 (-145) (-27) (-1014 (-552)) (-1014 (-402 (-552))))) (-5 *2 (-1145 (-402 *6))) (-5 *1 (-599 *5 *6)) (-5 *3 (-402 *6)))) (-1418 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-145) (-27) (-1014 (-552)) (-1014 (-402 (-552))))) (-4 *5 (-1208 *4)) (-5 *2 (-1145 (-402 *5))) (-5 *1 (-599 *4 *5)) (-5 *3 (-402 *5))))) -(-10 -7 (-15 -1418 ((-3 (-1145 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|))) (-15 -1418 ((-3 (-1145 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 (-413 |#2|) |#2|)))) -((-1671 (((-112) $ $) NIL)) (-3494 (($) 11 T CONST)) (-3732 (($) 12 T CONST)) (-3152 (($ $ $) 24)) (-2960 (($ $) 22)) (-2883 (((-1131) $) NIL)) (-2221 (($ $ $) 25)) (-2831 (((-1093) $) NIL)) (-2643 (($) 10 T CONST)) (-3251 (($ $ $) 26)) (-1683 (((-839) $) 30)) (-2079 (((-112) $ (|[\|\|]| -2643)) 19) (((-112) $ (|[\|\|]| -3494)) 21) (((-112) $ (|[\|\|]| -3732)) 17)) (-3743 (($ $ $) 23)) (-2281 (((-112) $ $) 15))) -(((-600) (-13 (-943) (-10 -8 (-15 -2643 ($) -1426) (-15 -3494 ($) -1426) (-15 -3732 ($) -1426) (-15 -2079 ((-112) $ (|[\|\|]| -2643))) (-15 -2079 ((-112) $ (|[\|\|]| -3494))) (-15 -2079 ((-112) $ (|[\|\|]| -3732)))))) (T -600)) -((-2643 (*1 *1) (-5 *1 (-600))) (-3494 (*1 *1) (-5 *1 (-600))) (-3732 (*1 *1) (-5 *1 (-600))) (-2079 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2643)) (-5 *2 (-112)) (-5 *1 (-600)))) (-2079 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3494)) (-5 *2 (-112)) (-5 *1 (-600)))) (-2079 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3732)) (-5 *2 (-112)) (-5 *1 (-600))))) -(-13 (-943) (-10 -8 (-15 -2643 ($) -1426) (-15 -3494 ($) -1426) (-15 -3732 ($) -1426) (-15 -2079 ((-112) $ (|[\|\|]| -2643))) (-15 -2079 ((-112) $ (|[\|\|]| -3494))) (-15 -2079 ((-112) $ (|[\|\|]| -3732))))) -((-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#2|) 10))) -(((-601 |#1| |#2|) (-10 -8 (-15 -1683 (|#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|))) (-602 |#2|) (-1025)) (T -601)) -NIL -(-10 -8 (-15 -1683 (|#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 34)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ |#1| $) 35))) -(((-602 |#1|) (-138) (-1025)) (T -602)) -((-1683 (*1 *1 *2) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1025))))) -(-13 (-1025) (-628 |t#1|) (-10 -8 (-15 -1683 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4127 (((-552) $) NIL (|has| |#1| (-825)))) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL)) (-3620 (((-112) $) NIL (|has| |#1| (-825)))) (-3650 (((-112) $) NIL)) (-1356 ((|#1| $) 13)) (-3630 (((-112) $) NIL (|has| |#1| (-825)))) (-3658 (($ $ $) NIL (|has| |#1| (-825)))) (-3332 (($ $ $) NIL (|has| |#1| (-825)))) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1368 ((|#3| $) 15)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL)) (-4141 (((-751)) 20)) (-1727 (($ $) NIL (|has| |#1| (-825)))) (-2089 (($) NIL T CONST)) (-2100 (($) 12 T CONST)) (-2346 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2404 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-603 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (-15 -2404 ($ $ |#3|)) (-15 -2404 ($ |#1| |#3|)) (-15 -1356 (|#1| $)) (-15 -1368 (|#3| $)))) (-38 |#2|) (-170) (|SubsetCategory| (-707) |#2|)) (T -603)) -((-2404 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-603 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-707) *4)))) (-2404 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-603 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-707) *4)))) (-1356 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-603 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-707) *3)))) (-1368 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-707) *4)) (-5 *1 (-603 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (-15 -2404 ($ $ |#3|)) (-15 -2404 ($ |#1| |#3|)) (-15 -1356 (|#1| $)) (-15 -1368 (|#3| $)))) -((-1428 ((|#2| |#2| (-1149) (-1149)) 18))) -(((-604 |#1| |#2|) (-10 -7 (-15 -1428 (|#2| |#2| (-1149) (-1149)))) (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552))) (-13 (-1171) (-935) (-29 |#1|))) (T -604)) -((-1428 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-604 *4 *2)) (-4 *2 (-13 (-1171) (-935) (-29 *4)))))) -(-10 -7 (-15 -1428 (|#2| |#2| (-1149) (-1149)))) -((-1671 (((-112) $ $) 56)) (-3641 (((-112) $) 52)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-1440 ((|#1| $) 49)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3165 (((-2 (|:| -3533 $) (|:| -3523 (-402 |#2|))) (-402 |#2|)) 97 (|has| |#1| (-358)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) 24)) (-4174 (((-3 $ "failed") $) 75)) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-2172 (((-552) $) 19)) (-3650 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4201 (((-112) $) 36)) (-3957 (($ |#1| (-552)) 21)) (-4144 ((|#1| $) 51)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) 87 (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2802 (((-3 $ "failed") $ $) 79)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-2397 (((-751) $) 99 (|has| |#1| (-358)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 98 (|has| |#1| (-358)))) (-3072 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-4276 (((-552) $) 34)) (-2042 (((-402 |#2|) $) 42)) (-1683 (((-839) $) 62) (($ (-552)) 32) (($ $) NIL) (($ (-402 (-552))) NIL (|has| |#1| (-1014 (-402 (-552))))) (($ |#1|) 31) (($ |#2|) 22)) (-3637 ((|#1| $ (-552)) 63)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) 29)) (-3518 (((-112) $ $) NIL)) (-2089 (($) 9 T CONST)) (-2100 (($) 12 T CONST)) (-3768 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-2281 (((-112) $ $) 17)) (-2393 (($ $) 46) (($ $ $) NIL)) (-2382 (($ $ $) 76)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 26) (($ $ $) 44))) -(((-605 |#1| |#2|) (-13 (-227 |#2|) (-544) (-598 (-402 |#2|)) (-406 |#1|) (-1014 |#2|) (-10 -8 (-15 -4201 ((-112) $)) (-15 -4276 ((-552) $)) (-15 -2172 ((-552) $)) (-15 -4169 ($ $)) (-15 -4144 (|#1| $)) (-15 -1440 (|#1| $)) (-15 -3637 (|#1| $ (-552))) (-15 -3957 ($ |#1| (-552))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-302)) (-15 -3165 ((-2 (|:| -3533 $) (|:| -3523 (-402 |#2|))) (-402 |#2|)))) |%noBranch|))) (-544) (-1208 |#1|)) (T -605)) -((-4201 (*1 *2 *1) (-12 (-4 *3 (-544)) (-5 *2 (-112)) (-5 *1 (-605 *3 *4)) (-4 *4 (-1208 *3)))) (-4276 (*1 *2 *1) (-12 (-4 *3 (-544)) (-5 *2 (-552)) (-5 *1 (-605 *3 *4)) (-4 *4 (-1208 *3)))) (-2172 (*1 *2 *1) (-12 (-4 *3 (-544)) (-5 *2 (-552)) (-5 *1 (-605 *3 *4)) (-4 *4 (-1208 *3)))) (-4169 (*1 *1 *1) (-12 (-4 *2 (-544)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1208 *2)))) (-4144 (*1 *2 *1) (-12 (-4 *2 (-544)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1208 *2)))) (-1440 (*1 *2 *1) (-12 (-4 *2 (-544)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1208 *2)))) (-3637 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *2 (-544)) (-5 *1 (-605 *2 *4)) (-4 *4 (-1208 *2)))) (-3957 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-4 *2 (-544)) (-5 *1 (-605 *2 *4)) (-4 *4 (-1208 *2)))) (-3165 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *4 (-544)) (-4 *5 (-1208 *4)) (-5 *2 (-2 (|:| -3533 (-605 *4 *5)) (|:| -3523 (-402 *5)))) (-5 *1 (-605 *4 *5)) (-5 *3 (-402 *5))))) -(-13 (-227 |#2|) (-544) (-598 (-402 |#2|)) (-406 |#1|) (-1014 |#2|) (-10 -8 (-15 -4201 ((-112) $)) (-15 -4276 ((-552) $)) (-15 -2172 ((-552) $)) (-15 -4169 ($ $)) (-15 -4144 (|#1| $)) (-15 -1440 (|#1| $)) (-15 -3637 (|#1| $ (-552))) (-15 -3957 ($ |#1| (-552))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-302)) (-15 -3165 ((-2 (|:| -3533 $) (|:| -3523 (-402 |#2|))) (-402 |#2|)))) |%noBranch|))) -((-3690 (((-625 |#6|) (-625 |#4|) (-112)) 47)) (-1451 ((|#6| |#6|) 40))) -(((-606 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1451 (|#6| |#6|)) (-15 -3690 ((-625 |#6|) (-625 |#4|) (-112)))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|) (-1082 |#1| |#2| |#3| |#4|)) (T -606)) -((-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 *10)) (-5 *1 (-606 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *10 (-1082 *5 *6 *7 *8)))) (-1451 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-606 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *2 (-1082 *3 *4 *5 *6))))) -(-10 -7 (-15 -1451 (|#6| |#6|)) (-15 -3690 ((-625 |#6|) (-625 |#4|) (-112)))) -((-1462 (((-112) |#3| (-751) (-625 |#3|)) 23)) (-1474 (((-3 (-2 (|:| |polfac| (-625 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-625 (-1145 |#3|)))) "failed") |#3| (-625 (-1145 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3449 (-625 (-2 (|:| |irr| |#4|) (|:| -3515 (-552)))))) (-625 |#3|) (-625 |#1|) (-625 |#3|)) 55))) -(((-607 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1462 ((-112) |#3| (-751) (-625 |#3|))) (-15 -1474 ((-3 (-2 (|:| |polfac| (-625 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-625 (-1145 |#3|)))) "failed") |#3| (-625 (-1145 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3449 (-625 (-2 (|:| |irr| |#4|) (|:| -3515 (-552)))))) (-625 |#3|) (-625 |#1|) (-625 |#3|)))) (-827) (-773) (-302) (-925 |#3| |#2| |#1|)) (T -607)) -((-1474 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3449 (-625 (-2 (|:| |irr| *10) (|:| -3515 (-552))))))) (-5 *6 (-625 *3)) (-5 *7 (-625 *8)) (-4 *8 (-827)) (-4 *3 (-302)) (-4 *10 (-925 *3 *9 *8)) (-4 *9 (-773)) (-5 *2 (-2 (|:| |polfac| (-625 *10)) (|:| |correct| *3) (|:| |corrfact| (-625 (-1145 *3))))) (-5 *1 (-607 *8 *9 *3 *10)) (-5 *4 (-625 (-1145 *3))))) (-1462 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-751)) (-5 *5 (-625 *3)) (-4 *3 (-302)) (-4 *6 (-827)) (-4 *7 (-773)) (-5 *2 (-112)) (-5 *1 (-607 *6 *7 *3 *8)) (-4 *8 (-925 *3 *7 *6))))) -(-10 -7 (-15 -1462 ((-112) |#3| (-751) (-625 |#3|))) (-15 -1474 ((-3 (-2 (|:| |polfac| (-625 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-625 (-1145 |#3|)))) "failed") |#3| (-625 (-1145 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3449 (-625 (-2 (|:| |irr| |#4|) (|:| -3515 (-552)))))) (-625 |#3|) (-625 |#1|) (-625 |#3|)))) -((-1671 (((-112) $ $) NIL)) (-2662 (((-1108) $) 11)) (-2651 (((-1108) $) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL))) -(((-608) (-13 (-1056) (-10 -8 (-15 -2651 ((-1108) $)) (-15 -2662 ((-1108) $))))) (T -608)) -((-2651 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-608)))) (-2662 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-608))))) -(-13 (-1056) (-10 -8 (-15 -2651 ((-1108) $)) (-15 -2662 ((-1108) $)))) -((-1671 (((-112) $ $) NIL)) (-3202 (((-625 |#1|) $) NIL)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-4191 (($ $) 67)) (-2458 (((-644 |#1| |#2|) $) 52)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 70)) (-1484 (((-625 (-289 |#2|)) $ $) 33)) (-2831 (((-1093) $) NIL)) (-2863 (($ (-644 |#1| |#2|)) 48)) (-2410 (($ $ $) NIL)) (-3828 (($ $ $) NIL)) (-1683 (((-839) $) 58) (((-1247 |#1| |#2|) $) NIL) (((-1252 |#1| |#2|) $) 66)) (-2100 (($) 53 T CONST)) (-1494 (((-625 (-2 (|:| |k| (-652 |#1|)) (|:| |c| |#2|))) $) 31)) (-1505 (((-625 (-644 |#1| |#2|)) (-625 |#1|)) 65)) (-2032 (((-625 (-2 (|:| |k| (-869 |#1|)) (|:| |c| |#2|))) $) 37)) (-2281 (((-112) $ $) 54)) (-2404 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ $ $) 44))) -(((-609 |#1| |#2| |#3|) (-13 (-467) (-10 -8 (-15 -2863 ($ (-644 |#1| |#2|))) (-15 -2458 ((-644 |#1| |#2|) $)) (-15 -2032 ((-625 (-2 (|:| |k| (-869 |#1|)) (|:| |c| |#2|))) $)) (-15 -1683 ((-1247 |#1| |#2|) $)) (-15 -1683 ((-1252 |#1| |#2|) $)) (-15 -4191 ($ $)) (-15 -3202 ((-625 |#1|) $)) (-15 -1505 ((-625 (-644 |#1| |#2|)) (-625 |#1|))) (-15 -1494 ((-625 (-2 (|:| |k| (-652 |#1|)) (|:| |c| |#2|))) $)) (-15 -1484 ((-625 (-289 |#2|)) $ $)))) (-827) (-13 (-170) (-698 (-402 (-552)))) (-897)) (T -609)) -((-2863 (*1 *1 *2) (-12 (-5 *2 (-644 *3 *4)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-5 *1 (-609 *3 *4 *5)) (-14 *5 (-897)))) (-2458 (*1 *2 *1) (-12 (-5 *2 (-644 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897)))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |k| (-869 *3)) (|:| |c| *4)))) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1252 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897)))) (-4191 (*1 *1 *1) (-12 (-5 *1 (-609 *2 *3 *4)) (-4 *2 (-827)) (-4 *3 (-13 (-170) (-698 (-402 (-552))))) (-14 *4 (-897)))) (-3202 (*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897)))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-827)) (-5 *2 (-625 (-644 *4 *5))) (-5 *1 (-609 *4 *5 *6)) (-4 *5 (-13 (-170) (-698 (-402 (-552))))) (-14 *6 (-897)))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |k| (-652 *3)) (|:| |c| *4)))) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897)))) (-1484 (*1 *2 *1 *1) (-12 (-5 *2 (-625 (-289 *4))) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897))))) -(-13 (-467) (-10 -8 (-15 -2863 ($ (-644 |#1| |#2|))) (-15 -2458 ((-644 |#1| |#2|) $)) (-15 -2032 ((-625 (-2 (|:| |k| (-869 |#1|)) (|:| |c| |#2|))) $)) (-15 -1683 ((-1247 |#1| |#2|) $)) (-15 -1683 ((-1252 |#1| |#2|) $)) (-15 -4191 ($ $)) (-15 -3202 ((-625 |#1|) $)) (-15 -1505 ((-625 (-644 |#1| |#2|)) (-625 |#1|))) (-15 -1494 ((-625 (-2 (|:| |k| (-652 |#1|)) (|:| |c| |#2|))) $)) (-15 -1484 ((-625 (-289 |#2|)) $ $)))) -((-3690 (((-625 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-625 (-760 |#1| (-841 |#2|))) (-112)) 72) (((-625 (-1022 |#1| |#2|)) (-625 (-760 |#1| (-841 |#2|))) (-112)) 58)) (-1518 (((-112) (-625 (-760 |#1| (-841 |#2|)))) 23)) (-1562 (((-625 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-625 (-760 |#1| (-841 |#2|))) (-112)) 71)) (-1551 (((-625 (-1022 |#1| |#2|)) (-625 (-760 |#1| (-841 |#2|))) (-112)) 57)) (-1540 (((-625 (-760 |#1| (-841 |#2|))) (-625 (-760 |#1| (-841 |#2|)))) 27)) (-1529 (((-3 (-625 (-760 |#1| (-841 |#2|))) "failed") (-625 (-760 |#1| (-841 |#2|)))) 26))) -(((-610 |#1| |#2|) (-10 -7 (-15 -1518 ((-112) (-625 (-760 |#1| (-841 |#2|))))) (-15 -1529 ((-3 (-625 (-760 |#1| (-841 |#2|))) "failed") (-625 (-760 |#1| (-841 |#2|))))) (-15 -1540 ((-625 (-760 |#1| (-841 |#2|))) (-625 (-760 |#1| (-841 |#2|))))) (-15 -1551 ((-625 (-1022 |#1| |#2|)) (-625 (-760 |#1| (-841 |#2|))) (-112))) (-15 -1562 ((-625 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-625 (-760 |#1| (-841 |#2|))) (-112))) (-15 -3690 ((-625 (-1022 |#1| |#2|)) (-625 (-760 |#1| (-841 |#2|))) (-112))) (-15 -3690 ((-625 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-625 (-760 |#1| (-841 |#2|))) (-112)))) (-446) (-625 (-1149))) (T -610)) -((-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-625 (-1149))) (-5 *2 (-625 (-1119 *5 (-524 (-841 *6)) (-841 *6) (-760 *5 (-841 *6))))) (-5 *1 (-610 *5 *6)))) (-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-625 (-1149))) (-5 *2 (-625 (-1022 *5 *6))) (-5 *1 (-610 *5 *6)))) (-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-625 (-1149))) (-5 *2 (-625 (-1119 *5 (-524 (-841 *6)) (-841 *6) (-760 *5 (-841 *6))))) (-5 *1 (-610 *5 *6)))) (-1551 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-625 (-1149))) (-5 *2 (-625 (-1022 *5 *6))) (-5 *1 (-610 *5 *6)))) (-1540 (*1 *2 *2) (-12 (-5 *2 (-625 (-760 *3 (-841 *4)))) (-4 *3 (-446)) (-14 *4 (-625 (-1149))) (-5 *1 (-610 *3 *4)))) (-1529 (*1 *2 *2) (|partial| -12 (-5 *2 (-625 (-760 *3 (-841 *4)))) (-4 *3 (-446)) (-14 *4 (-625 (-1149))) (-5 *1 (-610 *3 *4)))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-625 (-760 *4 (-841 *5)))) (-4 *4 (-446)) (-14 *5 (-625 (-1149))) (-5 *2 (-112)) (-5 *1 (-610 *4 *5))))) -(-10 -7 (-15 -1518 ((-112) (-625 (-760 |#1| (-841 |#2|))))) (-15 -1529 ((-3 (-625 (-760 |#1| (-841 |#2|))) "failed") (-625 (-760 |#1| (-841 |#2|))))) (-15 -1540 ((-625 (-760 |#1| (-841 |#2|))) (-625 (-760 |#1| (-841 |#2|))))) (-15 -1551 ((-625 (-1022 |#1| |#2|)) (-625 (-760 |#1| (-841 |#2|))) (-112))) (-15 -1562 ((-625 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-625 (-760 |#1| (-841 |#2|))) (-112))) (-15 -3690 ((-625 (-1022 |#1| |#2|)) (-625 (-760 |#1| (-841 |#2|))) (-112))) (-15 -3690 ((-625 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-625 (-760 |#1| (-841 |#2|))) (-112)))) -((-3728 (($ $) 38)) (-3604 (($ $) 21)) (-3710 (($ $) 37)) (-3581 (($ $) 22)) (-3749 (($ $) 36)) (-3627 (($ $) 23)) (-1385 (($) 48)) (-2458 (($ $) 45)) (-3654 (($ $) 17)) (-4269 (($ $ (-1065 $)) 7) (($ $ (-1149)) 6)) (-2863 (($ $) 46)) (-2349 (($ $) 15)) (-3569 (($ $) 16)) (-3759 (($ $) 35)) (-3638 (($ $) 24)) (-3738 (($ $) 34)) (-3614 (($ $) 25)) (-3721 (($ $) 33)) (-3593 (($ $) 26)) (-3789 (($ $) 44)) (-3670 (($ $) 32)) (-3769 (($ $) 43)) (-3648 (($ $) 31)) (-3809 (($ $) 42)) (-3691 (($ $) 30)) (-3742 (($ $) 41)) (-3700 (($ $) 29)) (-3797 (($ $) 40)) (-3681 (($ $) 28)) (-3778 (($ $) 39)) (-3659 (($ $) 27)) (-1594 (($ $) 19)) (-1606 (($ $) 20)) (-1582 (($ $) 18)) (** (($ $ $) 47))) -(((-611) (-138)) (T -611)) -((-1606 (*1 *1 *1) (-4 *1 (-611))) (-1594 (*1 *1 *1) (-4 *1 (-611))) (-1582 (*1 *1 *1) (-4 *1 (-611))) (-3654 (*1 *1 *1) (-4 *1 (-611))) (-3569 (*1 *1 *1) (-4 *1 (-611))) (-2349 (*1 *1 *1) (-4 *1 (-611)))) -(-13 (-935) (-1171) (-10 -8 (-15 -1606 ($ $)) (-15 -1594 ($ $)) (-15 -1582 ($ $)) (-15 -3654 ($ $)) (-15 -3569 ($ $)) (-15 -2349 ($ $)))) -(((-35) . T) ((-94) . T) ((-279) . T) ((-486) . T) ((-935) . T) ((-1171) . T) ((-1174) . T)) -((-1563 (((-114) (-114)) 83)) (-3654 ((|#2| |#2|) 30)) (-4269 ((|#2| |#2| (-1065 |#2|)) 79) ((|#2| |#2| (-1149)) 52)) (-2349 ((|#2| |#2|) 29)) (-3569 ((|#2| |#2|) 31)) (-1572 (((-112) (-114)) 34)) (-1594 ((|#2| |#2|) 26)) (-1606 ((|#2| |#2|) 28)) (-1582 ((|#2| |#2|) 27))) -(((-612 |#1| |#2|) (-10 -7 (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 -1606 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -2349 (|#2| |#2|)) (-15 -3569 (|#2| |#2|)) (-15 -4269 (|#2| |#2| (-1149))) (-15 -4269 (|#2| |#2| (-1065 |#2|)))) (-13 (-827) (-544)) (-13 (-425 |#1|) (-978) (-1171))) (T -612)) -((-4269 (*1 *2 *2 *3) (-12 (-5 *3 (-1065 *2)) (-4 *2 (-13 (-425 *4) (-978) (-1171))) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-612 *4 *2)))) (-4269 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-612 *4 *2)) (-4 *2 (-13 (-425 *4) (-978) (-1171))))) (-3569 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2)) (-4 *2 (-13 (-425 *3) (-978) (-1171))))) (-2349 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2)) (-4 *2 (-13 (-425 *3) (-978) (-1171))))) (-3654 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2)) (-4 *2 (-13 (-425 *3) (-978) (-1171))))) (-1582 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2)) (-4 *2 (-13 (-425 *3) (-978) (-1171))))) (-1594 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2)) (-4 *2 (-13 (-425 *3) (-978) (-1171))))) (-1606 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2)) (-4 *2 (-13 (-425 *3) (-978) (-1171))))) (-1563 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *4)) (-4 *4 (-13 (-425 *3) (-978) (-1171))))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112)) (-5 *1 (-612 *4 *5)) (-4 *5 (-13 (-425 *4) (-978) (-1171)))))) -(-10 -7 (-15 -1572 ((-112) (-114))) (-15 -1563 ((-114) (-114))) (-15 -1606 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1582 (|#2| |#2|)) (-15 -3654 (|#2| |#2|)) (-15 -2349 (|#2| |#2|)) (-15 -3569 (|#2| |#2|)) (-15 -4269 (|#2| |#2| (-1149))) (-15 -4269 (|#2| |#2| (-1065 |#2|)))) -((-1719 (((-475 |#1| |#2|) (-243 |#1| |#2|)) 53)) (-1640 (((-625 (-243 |#1| |#2|)) (-625 (-475 |#1| |#2|))) 68)) (-1651 (((-475 |#1| |#2|) (-625 (-475 |#1| |#2|)) (-841 |#1|)) 70) (((-475 |#1| |#2|) (-625 (-475 |#1| |#2|)) (-625 (-475 |#1| |#2|)) (-841 |#1|)) 69)) (-1616 (((-2 (|:| |gblist| (-625 (-243 |#1| |#2|))) (|:| |gvlist| (-625 (-552)))) (-625 (-475 |#1| |#2|))) 108)) (-1697 (((-625 (-475 |#1| |#2|)) (-841 |#1|) (-625 (-475 |#1| |#2|)) (-625 (-475 |#1| |#2|))) 83)) (-1628 (((-2 (|:| |glbase| (-625 (-243 |#1| |#2|))) (|:| |glval| (-625 (-552)))) (-625 (-243 |#1| |#2|))) 118)) (-1673 (((-1232 |#2|) (-475 |#1| |#2|) (-625 (-475 |#1| |#2|))) 58)) (-1662 (((-625 (-475 |#1| |#2|)) (-625 (-475 |#1| |#2|))) 41)) (-1707 (((-243 |#1| |#2|) (-243 |#1| |#2|) (-625 (-243 |#1| |#2|))) 50)) (-1685 (((-243 |#1| |#2|) (-625 |#2|) (-243 |#1| |#2|) (-625 (-243 |#1| |#2|))) 91))) -(((-613 |#1| |#2|) (-10 -7 (-15 -1616 ((-2 (|:| |gblist| (-625 (-243 |#1| |#2|))) (|:| |gvlist| (-625 (-552)))) (-625 (-475 |#1| |#2|)))) (-15 -1628 ((-2 (|:| |glbase| (-625 (-243 |#1| |#2|))) (|:| |glval| (-625 (-552)))) (-625 (-243 |#1| |#2|)))) (-15 -1640 ((-625 (-243 |#1| |#2|)) (-625 (-475 |#1| |#2|)))) (-15 -1651 ((-475 |#1| |#2|) (-625 (-475 |#1| |#2|)) (-625 (-475 |#1| |#2|)) (-841 |#1|))) (-15 -1651 ((-475 |#1| |#2|) (-625 (-475 |#1| |#2|)) (-841 |#1|))) (-15 -1662 ((-625 (-475 |#1| |#2|)) (-625 (-475 |#1| |#2|)))) (-15 -1673 ((-1232 |#2|) (-475 |#1| |#2|) (-625 (-475 |#1| |#2|)))) (-15 -1685 ((-243 |#1| |#2|) (-625 |#2|) (-243 |#1| |#2|) (-625 (-243 |#1| |#2|)))) (-15 -1697 ((-625 (-475 |#1| |#2|)) (-841 |#1|) (-625 (-475 |#1| |#2|)) (-625 (-475 |#1| |#2|)))) (-15 -1707 ((-243 |#1| |#2|) (-243 |#1| |#2|) (-625 (-243 |#1| |#2|)))) (-15 -1719 ((-475 |#1| |#2|) (-243 |#1| |#2|)))) (-625 (-1149)) (-446)) (T -613)) -((-1719 (*1 *2 *3) (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-446)) (-5 *2 (-475 *4 *5)) (-5 *1 (-613 *4 *5)))) (-1707 (*1 *2 *2 *3) (-12 (-5 *3 (-625 (-243 *4 *5))) (-5 *2 (-243 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-446)) (-5 *1 (-613 *4 *5)))) (-1697 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-625 (-475 *4 *5))) (-5 *3 (-841 *4)) (-14 *4 (-625 (-1149))) (-4 *5 (-446)) (-5 *1 (-613 *4 *5)))) (-1685 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-625 *6)) (-5 *4 (-625 (-243 *5 *6))) (-4 *6 (-446)) (-5 *2 (-243 *5 *6)) (-14 *5 (-625 (-1149))) (-5 *1 (-613 *5 *6)))) (-1673 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-475 *5 *6))) (-5 *3 (-475 *5 *6)) (-14 *5 (-625 (-1149))) (-4 *6 (-446)) (-5 *2 (-1232 *6)) (-5 *1 (-613 *5 *6)))) (-1662 (*1 *2 *2) (-12 (-5 *2 (-625 (-475 *3 *4))) (-14 *3 (-625 (-1149))) (-4 *4 (-446)) (-5 *1 (-613 *3 *4)))) (-1651 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-475 *5 *6))) (-5 *4 (-841 *5)) (-14 *5 (-625 (-1149))) (-5 *2 (-475 *5 *6)) (-5 *1 (-613 *5 *6)) (-4 *6 (-446)))) (-1651 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-625 (-475 *5 *6))) (-5 *4 (-841 *5)) (-14 *5 (-625 (-1149))) (-5 *2 (-475 *5 *6)) (-5 *1 (-613 *5 *6)) (-4 *6 (-446)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-625 (-475 *4 *5))) (-14 *4 (-625 (-1149))) (-4 *5 (-446)) (-5 *2 (-625 (-243 *4 *5))) (-5 *1 (-613 *4 *5)))) (-1628 (*1 *2 *3) (-12 (-14 *4 (-625 (-1149))) (-4 *5 (-446)) (-5 *2 (-2 (|:| |glbase| (-625 (-243 *4 *5))) (|:| |glval| (-625 (-552))))) (-5 *1 (-613 *4 *5)) (-5 *3 (-625 (-243 *4 *5))))) (-1616 (*1 *2 *3) (-12 (-5 *3 (-625 (-475 *4 *5))) (-14 *4 (-625 (-1149))) (-4 *5 (-446)) (-5 *2 (-2 (|:| |gblist| (-625 (-243 *4 *5))) (|:| |gvlist| (-625 (-552))))) (-5 *1 (-613 *4 *5))))) -(-10 -7 (-15 -1616 ((-2 (|:| |gblist| (-625 (-243 |#1| |#2|))) (|:| |gvlist| (-625 (-552)))) (-625 (-475 |#1| |#2|)))) (-15 -1628 ((-2 (|:| |glbase| (-625 (-243 |#1| |#2|))) (|:| |glval| (-625 (-552)))) (-625 (-243 |#1| |#2|)))) (-15 -1640 ((-625 (-243 |#1| |#2|)) (-625 (-475 |#1| |#2|)))) (-15 -1651 ((-475 |#1| |#2|) (-625 (-475 |#1| |#2|)) (-625 (-475 |#1| |#2|)) (-841 |#1|))) (-15 -1651 ((-475 |#1| |#2|) (-625 (-475 |#1| |#2|)) (-841 |#1|))) (-15 -1662 ((-625 (-475 |#1| |#2|)) (-625 (-475 |#1| |#2|)))) (-15 -1673 ((-1232 |#2|) (-475 |#1| |#2|) (-625 (-475 |#1| |#2|)))) (-15 -1685 ((-243 |#1| |#2|) (-625 |#2|) (-243 |#1| |#2|) (-625 (-243 |#1| |#2|)))) (-15 -1697 ((-625 (-475 |#1| |#2|)) (-841 |#1|) (-625 (-475 |#1| |#2|)) (-625 (-475 |#1| |#2|)))) (-15 -1707 ((-243 |#1| |#2|) (-243 |#1| |#2|) (-625 (-243 |#1| |#2|)))) (-15 -1719 ((-475 |#1| |#2|) (-243 |#1| |#2|)))) -((-1671 (((-112) $ $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073))))) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))) NIL)) (-2509 (((-1237) $ (-1131) (-1131)) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 (((-52) $ (-1131) (-52)) 16) (((-52) $ (-1149) (-52)) 17)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-3128 (((-3 (-52) "failed") (-1131) $) NIL)) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073))))) (-1938 (($ (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-3 (-52) "failed") (-1131) $) NIL)) (-1416 (($ (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $ (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073)))) (((-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $ (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-3692 (((-52) $ (-1131) (-52)) NIL (|has| $ (-6 -4354)))) (-3631 (((-52) $ (-1131)) NIL)) (-3799 (((-625 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-625 (-52)) $) NIL (|has| $ (-6 -4353)))) (-1731 (($ $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-1131) $) NIL (|has| (-1131) (-827)))) (-3730 (((-625 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-625 (-52)) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-52) (-1073))))) (-2537 (((-1131) $) NIL (|has| (-1131) (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4354))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1473 (($ (-383)) 9)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073))))) (-3712 (((-625 (-1131)) $) NIL)) (-1370 (((-112) (-1131) $) NIL)) (-2953 (((-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) $) NIL)) (-3966 (($ (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) $) NIL)) (-2554 (((-625 (-1131)) $) NIL)) (-2564 (((-112) (-1131) $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073))))) (-2924 (((-52) $) NIL (|has| (-1131) (-827)))) (-2380 (((-3 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) "failed") (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL)) (-2518 (($ $ (-52)) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073)))) (($ $ (-289 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073)))) (($ $ (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073)))) (($ $ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073)))) (($ $ (-625 (-52)) (-625 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073)))) (($ $ (-289 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073)))) (($ $ (-625 (-289 (-52)))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-52) (-1073))))) (-1358 (((-625 (-52)) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 (((-52) $ (-1131)) 14) (((-52) $ (-1131) (-52)) NIL) (((-52) $ (-1149)) 15)) (-4255 (($) NIL) (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))) NIL)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073)))) (((-751) (-52) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-52) (-1073)))) (((-751) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))) NIL)) (-1683 (((-839) $) NIL (-1523 (|has| (-52) (-597 (-839))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-597 (-839)))))) (-2977 (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))))) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 (-52))) (-1073))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-614) (-13 (-1162 (-1131) (-52)) (-10 -8 (-15 -1473 ($ (-383))) (-15 -1731 ($ $)) (-15 -2154 ((-52) $ (-1149))) (-15 -1851 ((-52) $ (-1149) (-52)))))) (T -614)) -((-1473 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-614)))) (-1731 (*1 *1 *1) (-5 *1 (-614))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-52)) (-5 *1 (-614)))) (-1851 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1149)) (-5 *1 (-614))))) -(-13 (-1162 (-1131) (-52)) (-10 -8 (-15 -1473 ($ (-383))) (-15 -1731 ($ $)) (-15 -2154 ((-52) $ (-1149))) (-15 -1851 ((-52) $ (-1149) (-52))))) -((-2404 (($ $ |#2|) 10))) -(((-615 |#1| |#2|) (-10 -8 (-15 -2404 (|#1| |#1| |#2|))) (-616 |#2|) (-170)) (T -615)) -NIL -(-10 -8 (-15 -2404 (|#1| |#1| |#2|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1695 (($ $ $) 29)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 28 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-616 |#1|) (-138) (-170)) (T -616)) -((-1695 (*1 *1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-170)))) (-2404 (*1 *1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-170)) (-4 *2 (-358))))) -(-13 (-698 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -1695 ($ $ $)) (IF (|has| |t#1| (-358)) (-15 -2404 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-698 |#1|) . T) ((-1031 |#1|) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3618 (((-3 $ "failed")) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2770 (((-1232 (-669 |#1|))) NIL (|has| |#2| (-412 |#1|))) (((-1232 (-669 |#1|)) (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3208 (((-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3101 (($) NIL T CONST)) (-1456 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-4152 (((-3 $ "failed")) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-2629 (((-669 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-669 |#1|) (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3192 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-2612 (((-669 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-669 |#1|) $ (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3598 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-1392 (((-1145 (-928 |#1|))) NIL (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-358))))) (-3629 (($ $ (-897)) NIL)) (-3174 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-4175 (((-1145 |#1|) $) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-2648 ((|#1|) NIL (|has| |#2| (-412 |#1|))) ((|#1| (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3159 (((-1145 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-4303 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2670 (($ (-1232 |#1|)) NIL (|has| |#2| (-412 |#1|))) (($ (-1232 |#1|) (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-4174 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-3442 (((-897)) NIL (|has| |#2| (-362 |#1|)))) (-4272 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2712 (($ $ (-897)) NIL)) (-4228 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4207 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4250 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1467 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-4164 (((-3 $ "failed")) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-2640 (((-669 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-669 |#1|) (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3199 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-2619 (((-669 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-669 |#1|) $ (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3609 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-1433 (((-1145 (-928 |#1|))) NIL (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-358))))) (-3619 (($ $ (-897)) NIL)) (-3182 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-4187 (((-1145 |#1|) $) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-2658 ((|#1|) NIL (|has| |#2| (-412 |#1|))) ((|#1| (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3166 (((-1145 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-4312 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2883 (((-1131) $) NIL)) (-4218 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4239 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4261 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2831 (((-1093) $) NIL)) (-4293 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2154 ((|#1| $ (-552)) NIL (|has| |#2| (-412 |#1|)))) (-2780 (((-669 |#1|) (-1232 $)) NIL (|has| |#2| (-412 |#1|))) (((-1232 |#1|) $) NIL (|has| |#2| (-412 |#1|))) (((-669 |#1|) (-1232 $) (-1232 $)) NIL (|has| |#2| (-362 |#1|))) (((-1232 |#1|) $ (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-2042 (($ (-1232 |#1|)) NIL (|has| |#2| (-412 |#1|))) (((-1232 |#1|) $) NIL (|has| |#2| (-412 |#1|)))) (-2533 (((-625 (-928 |#1|))) NIL (|has| |#2| (-412 |#1|))) (((-625 (-928 |#1|)) (-1232 $)) NIL (|has| |#2| (-362 |#1|)))) (-3828 (($ $ $) NIL)) (-3148 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1683 (((-839) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1270 (((-1232 $)) NIL (|has| |#2| (-412 |#1|)))) (-4197 (((-625 (-1232 |#1|))) NIL (-1523 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-412 |#1|)) (|has| |#1| (-544)))))) (-3842 (($ $ $ $) NIL)) (-4333 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2872 (($ (-669 |#1|) $) NIL (|has| |#2| (-412 |#1|)))) (-3818 (($ $ $) NIL)) (-3137 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4322 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4283 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2089 (($) 15 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) 17)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-617 |#1| |#2|) (-13 (-725 |#1|) (-597 |#2|) (-10 -8 (-15 -1683 ($ |#2|)) (IF (|has| |#2| (-412 |#1|)) (-6 (-412 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|))) (-170) (-725 |#1|)) (T -617)) -((-1683 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-617 *3 *2)) (-4 *2 (-725 *3))))) -(-13 (-725 |#1|) (-597 |#2|) (-10 -8 (-15 -1683 ($ |#2|)) (IF (|has| |#2| (-412 |#1|)) (-6 (-412 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|))) -((-1751 (((-3 (-820 |#2|) "failed") |#2| (-289 |#2|) (-1131)) 82) (((-3 (-820 |#2|) (-2 (|:| |leftHandLimit| (-3 (-820 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-820 |#2|) "failed"))) "failed") |#2| (-289 (-820 |#2|))) 104)) (-1741 (((-3 (-813 |#2|) "failed") |#2| (-289 (-813 |#2|))) 109))) -(((-618 |#1| |#2|) (-10 -7 (-15 -1751 ((-3 (-820 |#2|) (-2 (|:| |leftHandLimit| (-3 (-820 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-820 |#2|) "failed"))) "failed") |#2| (-289 (-820 |#2|)))) (-15 -1741 ((-3 (-813 |#2|) "failed") |#2| (-289 (-813 |#2|)))) (-15 -1751 ((-3 (-820 |#2|) "failed") |#2| (-289 |#2|) (-1131)))) (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))) (-13 (-27) (-1171) (-425 |#1|))) (T -618)) -((-1751 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-289 *3)) (-5 *5 (-1131)) (-4 *3 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-820 *3)) (-5 *1 (-618 *6 *3)))) (-1741 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-289 (-813 *3))) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-813 *3)) (-5 *1 (-618 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))))) (-1751 (*1 *2 *3 *4) (-12 (-5 *4 (-289 (-820 *3))) (-4 *3 (-13 (-27) (-1171) (-425 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-3 (-820 *3) (-2 (|:| |leftHandLimit| (-3 (-820 *3) "failed")) (|:| |rightHandLimit| (-3 (-820 *3) "failed"))) "failed")) (-5 *1 (-618 *5 *3))))) -(-10 -7 (-15 -1751 ((-3 (-820 |#2|) (-2 (|:| |leftHandLimit| (-3 (-820 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-820 |#2|) "failed"))) "failed") |#2| (-289 (-820 |#2|)))) (-15 -1741 ((-3 (-813 |#2|) "failed") |#2| (-289 (-813 |#2|)))) (-15 -1751 ((-3 (-820 |#2|) "failed") |#2| (-289 |#2|) (-1131)))) -((-1751 (((-3 (-820 (-402 (-928 |#1|))) "failed") (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|))) (-1131)) 80) (((-3 (-820 (-402 (-928 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed"))) "failed") (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|)))) 20) (((-3 (-820 (-402 (-928 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed"))) "failed") (-402 (-928 |#1|)) (-289 (-820 (-928 |#1|)))) 35)) (-1741 (((-813 (-402 (-928 |#1|))) (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|)))) 23) (((-813 (-402 (-928 |#1|))) (-402 (-928 |#1|)) (-289 (-813 (-928 |#1|)))) 43))) -(((-619 |#1|) (-10 -7 (-15 -1751 ((-3 (-820 (-402 (-928 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed"))) "failed") (-402 (-928 |#1|)) (-289 (-820 (-928 |#1|))))) (-15 -1751 ((-3 (-820 (-402 (-928 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed"))) "failed") (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|))))) (-15 -1741 ((-813 (-402 (-928 |#1|))) (-402 (-928 |#1|)) (-289 (-813 (-928 |#1|))))) (-15 -1741 ((-813 (-402 (-928 |#1|))) (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|))))) (-15 -1751 ((-3 (-820 (-402 (-928 |#1|))) "failed") (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|))) (-1131)))) (-446)) (T -619)) -((-1751 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-289 (-402 (-928 *6)))) (-5 *5 (-1131)) (-5 *3 (-402 (-928 *6))) (-4 *6 (-446)) (-5 *2 (-820 *3)) (-5 *1 (-619 *6)))) (-1741 (*1 *2 *3 *4) (-12 (-5 *4 (-289 (-402 (-928 *5)))) (-5 *3 (-402 (-928 *5))) (-4 *5 (-446)) (-5 *2 (-813 *3)) (-5 *1 (-619 *5)))) (-1741 (*1 *2 *3 *4) (-12 (-5 *4 (-289 (-813 (-928 *5)))) (-4 *5 (-446)) (-5 *2 (-813 (-402 (-928 *5)))) (-5 *1 (-619 *5)) (-5 *3 (-402 (-928 *5))))) (-1751 (*1 *2 *3 *4) (-12 (-5 *4 (-289 (-402 (-928 *5)))) (-5 *3 (-402 (-928 *5))) (-4 *5 (-446)) (-5 *2 (-3 (-820 *3) (-2 (|:| |leftHandLimit| (-3 (-820 *3) "failed")) (|:| |rightHandLimit| (-3 (-820 *3) "failed"))) "failed")) (-5 *1 (-619 *5)))) (-1751 (*1 *2 *3 *4) (-12 (-5 *4 (-289 (-820 (-928 *5)))) (-4 *5 (-446)) (-5 *2 (-3 (-820 (-402 (-928 *5))) (-2 (|:| |leftHandLimit| (-3 (-820 (-402 (-928 *5))) "failed")) (|:| |rightHandLimit| (-3 (-820 (-402 (-928 *5))) "failed"))) "failed")) (-5 *1 (-619 *5)) (-5 *3 (-402 (-928 *5)))))) -(-10 -7 (-15 -1751 ((-3 (-820 (-402 (-928 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed"))) "failed") (-402 (-928 |#1|)) (-289 (-820 (-928 |#1|))))) (-15 -1751 ((-3 (-820 (-402 (-928 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-820 (-402 (-928 |#1|))) "failed"))) "failed") (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|))))) (-15 -1741 ((-813 (-402 (-928 |#1|))) (-402 (-928 |#1|)) (-289 (-813 (-928 |#1|))))) (-15 -1741 ((-813 (-402 (-928 |#1|))) (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|))))) (-15 -1751 ((-3 (-820 (-402 (-928 |#1|))) "failed") (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|))) (-1131)))) -((-1782 (((-3 (-1232 (-402 |#1|)) "failed") (-1232 |#2|) |#2|) 57 (-2960 (|has| |#1| (-358)))) (((-3 (-1232 |#1|) "failed") (-1232 |#2|) |#2|) 42 (|has| |#1| (-358)))) (-1761 (((-112) (-1232 |#2|)) 30)) (-1771 (((-3 (-1232 |#1|) "failed") (-1232 |#2|)) 33))) -(((-620 |#1| |#2|) (-10 -7 (-15 -1761 ((-112) (-1232 |#2|))) (-15 -1771 ((-3 (-1232 |#1|) "failed") (-1232 |#2|))) (IF (|has| |#1| (-358)) (-15 -1782 ((-3 (-1232 |#1|) "failed") (-1232 |#2|) |#2|)) (-15 -1782 ((-3 (-1232 (-402 |#1|)) "failed") (-1232 |#2|) |#2|)))) (-544) (-621 |#1|)) (T -620)) -((-1782 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1232 *4)) (-4 *4 (-621 *5)) (-2960 (-4 *5 (-358))) (-4 *5 (-544)) (-5 *2 (-1232 (-402 *5))) (-5 *1 (-620 *5 *4)))) (-1782 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1232 *4)) (-4 *4 (-621 *5)) (-4 *5 (-358)) (-4 *5 (-544)) (-5 *2 (-1232 *5)) (-5 *1 (-620 *5 *4)))) (-1771 (*1 *2 *3) (|partial| -12 (-5 *3 (-1232 *5)) (-4 *5 (-621 *4)) (-4 *4 (-544)) (-5 *2 (-1232 *4)) (-5 *1 (-620 *4 *5)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-1232 *5)) (-4 *5 (-621 *4)) (-4 *4 (-544)) (-5 *2 (-112)) (-5 *1 (-620 *4 *5))))) -(-10 -7 (-15 -1761 ((-112) (-1232 |#2|))) (-15 -1771 ((-3 (-1232 |#1|) "failed") (-1232 |#2|))) (IF (|has| |#1| (-358)) (-15 -1782 ((-3 (-1232 |#1|) "failed") (-1232 |#2|) |#2|)) (-15 -1782 ((-3 (-1232 (-402 |#1|)) "failed") (-1232 |#2|) |#2|)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-1794 (((-669 |#1|) (-669 $)) 34) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 33)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-621 |#1|) (-138) (-1025)) (T -621)) -((-1794 (*1 *2 *3) (-12 (-5 *3 (-669 *1)) (-4 *1 (-621 *4)) (-4 *4 (-1025)) (-5 *2 (-669 *4)))) (-1794 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *1)) (-5 *4 (-1232 *1)) (-4 *1 (-621 *5)) (-4 *5 (-1025)) (-5 *2 (-2 (|:| -2351 (-669 *5)) (|:| |vec| (-1232 *5))))))) -(-13 (-1025) (-10 -8 (-15 -1794 ((-669 |t#1|) (-669 $))) (-15 -1794 ((-2 (|:| -2351 (-669 |t#1|)) (|:| |vec| (-1232 |t#1|))) (-669 $) (-1232 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-2344 ((|#2| (-625 |#1|) (-625 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-625 |#1|) (-625 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-625 |#1|) (-625 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-625 |#1|) (-625 |#2|) |#2|) 17) ((|#2| (-625 |#1|) (-625 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-625 |#1|) (-625 |#2|)) 12))) -(((-622 |#1| |#2|) (-10 -7 (-15 -2344 ((-1 |#2| |#1|) (-625 |#1|) (-625 |#2|))) (-15 -2344 (|#2| (-625 |#1|) (-625 |#2|) |#1|)) (-15 -2344 ((-1 |#2| |#1|) (-625 |#1|) (-625 |#2|) |#2|)) (-15 -2344 (|#2| (-625 |#1|) (-625 |#2|) |#1| |#2|)) (-15 -2344 ((-1 |#2| |#1|) (-625 |#1|) (-625 |#2|) (-1 |#2| |#1|))) (-15 -2344 (|#2| (-625 |#1|) (-625 |#2|) |#1| (-1 |#2| |#1|)))) (-1073) (-1186)) (T -622)) -((-2344 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-625 *5)) (-5 *4 (-625 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1073)) (-4 *2 (-1186)) (-5 *1 (-622 *5 *2)))) (-2344 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-625 *5)) (-5 *4 (-625 *6)) (-4 *5 (-1073)) (-4 *6 (-1186)) (-5 *1 (-622 *5 *6)))) (-2344 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-625 *5)) (-5 *4 (-625 *2)) (-4 *5 (-1073)) (-4 *2 (-1186)) (-5 *1 (-622 *5 *2)))) (-2344 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *6)) (-5 *4 (-625 *5)) (-4 *6 (-1073)) (-4 *5 (-1186)) (-5 *2 (-1 *5 *6)) (-5 *1 (-622 *6 *5)))) (-2344 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *5)) (-5 *4 (-625 *2)) (-4 *5 (-1073)) (-4 *2 (-1186)) (-5 *1 (-622 *5 *2)))) (-2344 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-5 *4 (-625 *6)) (-4 *5 (-1073)) (-4 *6 (-1186)) (-5 *2 (-1 *6 *5)) (-5 *1 (-622 *5 *6))))) -(-10 -7 (-15 -2344 ((-1 |#2| |#1|) (-625 |#1|) (-625 |#2|))) (-15 -2344 (|#2| (-625 |#1|) (-625 |#2|) |#1|)) (-15 -2344 ((-1 |#2| |#1|) (-625 |#1|) (-625 |#2|) |#2|)) (-15 -2344 (|#2| (-625 |#1|) (-625 |#2|) |#1| |#2|)) (-15 -2344 ((-1 |#2| |#1|) (-625 |#1|) (-625 |#2|) (-1 |#2| |#1|))) (-15 -2344 (|#2| (-625 |#1|) (-625 |#2|) |#1| (-1 |#2| |#1|)))) -((-1454 (((-625 |#2|) (-1 |#2| |#1| |#2|) (-625 |#1|) |#2|) 16)) (-2163 ((|#2| (-1 |#2| |#1| |#2|) (-625 |#1|) |#2|) 18)) (-1996 (((-625 |#2|) (-1 |#2| |#1|) (-625 |#1|)) 13))) -(((-623 |#1| |#2|) (-10 -7 (-15 -1454 ((-625 |#2|) (-1 |#2| |#1| |#2|) (-625 |#1|) |#2|)) (-15 -2163 (|#2| (-1 |#2| |#1| |#2|) (-625 |#1|) |#2|)) (-15 -1996 ((-625 |#2|) (-1 |#2| |#1|) (-625 |#1|)))) (-1186) (-1186)) (T -623)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-625 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-625 *6)) (-5 *1 (-623 *5 *6)))) (-2163 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-625 *5)) (-4 *5 (-1186)) (-4 *2 (-1186)) (-5 *1 (-623 *5 *2)))) (-1454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-625 *6)) (-4 *6 (-1186)) (-4 *5 (-1186)) (-5 *2 (-625 *5)) (-5 *1 (-623 *6 *5))))) -(-10 -7 (-15 -1454 ((-625 |#2|) (-1 |#2| |#1| |#2|) (-625 |#1|) |#2|)) (-15 -2163 (|#2| (-1 |#2| |#1| |#2|) (-625 |#1|) |#2|)) (-15 -1996 ((-625 |#2|) (-1 |#2| |#1|) (-625 |#1|)))) -((-1996 (((-625 |#3|) (-1 |#3| |#1| |#2|) (-625 |#1|) (-625 |#2|)) 13))) -(((-624 |#1| |#2| |#3|) (-10 -7 (-15 -1996 ((-625 |#3|) (-1 |#3| |#1| |#2|) (-625 |#1|) (-625 |#2|)))) (-1186) (-1186) (-1186)) (T -624)) -((-1996 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-625 *6)) (-5 *5 (-625 *7)) (-4 *6 (-1186)) (-4 *7 (-1186)) (-4 *8 (-1186)) (-5 *2 (-625 *8)) (-5 *1 (-624 *6 *7 *8))))) -(-10 -7 (-15 -1996 ((-625 |#3|) (-1 |#3| |#1| |#2|) (-625 |#1|) (-625 |#2|)))) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3800 ((|#1| $) NIL)) (-3897 ((|#1| $) NIL)) (-2101 (($ $) NIL)) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-2278 (($ $ (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) $) NIL (|has| |#1| (-827))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3218 (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1800 (($ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-2565 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-2301 (($ $ $) NIL (|has| $ (-6 -4354)))) (-2289 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-2317 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4354))) (($ $ "rest" $) NIL (|has| $ (-6 -4354))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) NIL (|has| $ (-6 -4354)))) (-2861 (($ $ $) 32 (|has| |#1| (-1073)))) (-2850 (($ $ $) 34 (|has| |#1| (-1073)))) (-2838 (($ $ $) 37 (|has| |#1| (-1073)))) (-2873 (($ (-1 (-112) |#1|) $) NIL)) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2673 ((|#1| $) NIL)) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2936 (($ $) NIL) (($ $ (-751)) NIL)) (-3238 (($ $) NIL (|has| |#1| (-1073)))) (-2959 (($ $) 31 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1938 (($ |#1| $) NIL (|has| |#1| (-1073))) (($ (-1 (-112) |#1|) $) NIL)) (-1416 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3692 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) NIL)) (-4011 (((-112) $) NIL)) (-2483 (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073))) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) (-1 (-112) |#1|) $) NIL)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2068 (((-112) $) 9)) (-1399 (((-625 $) $) NIL)) (-1371 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3526 (($) 7)) (-2183 (($ (-751) |#1|) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3260 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3280 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 33 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2801 (($ |#1|) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-3183 (((-625 |#1|) $) NIL)) (-3367 (((-112) $) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-1437 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-3966 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3994 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2924 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-4022 (((-112) $) NIL)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1199 (-552))) NIL) ((|#1| $ (-552)) 36) ((|#1| $ (-552) |#1|) NIL)) (-1389 (((-552) $ $) NIL)) (-2884 (($ $ (-1199 (-552))) NIL) (($ $ (-552)) NIL)) (-4001 (($ $ (-1199 (-552))) NIL) (($ $ (-552)) NIL)) (-2316 (((-112) $) NIL)) (-2356 (($ $) NIL)) (-2330 (($ $) NIL (|has| $ (-6 -4354)))) (-2368 (((-751) $) NIL)) (-2379 (($ $) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) 45 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) NIL)) (-1587 (($ |#1| $) 10)) (-2342 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3402 (($ $ $) 30) (($ |#1| $) NIL) (($ (-625 $)) NIL) (($ $ |#1|) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) NIL)) (-1380 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2622 (($ $ $) 11)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3010 (((-1131) $) 26 (|has| |#1| (-808))) (((-1131) $ (-112)) 27 (|has| |#1| (-808))) (((-1237) (-802) $) 28 (|has| |#1| (-808))) (((-1237) (-802) $ (-112)) 29 (|has| |#1| (-808)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-625 |#1|) (-13 (-646 |#1|) (-10 -8 (-15 -3526 ($)) (-15 -2068 ((-112) $)) (-15 -1587 ($ |#1| $)) (-15 -2622 ($ $ $)) (IF (|has| |#1| (-1073)) (PROGN (-15 -2861 ($ $ $)) (-15 -2850 ($ $ $)) (-15 -2838 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-808)) (-6 (-808)) |%noBranch|))) (-1186)) (T -625)) -((-3526 (*1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1186)))) (-2068 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-625 *3)) (-4 *3 (-1186)))) (-1587 (*1 *1 *2 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1186)))) (-2622 (*1 *1 *1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1186)))) (-2861 (*1 *1 *1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1073)) (-4 *2 (-1186)))) (-2850 (*1 *1 *1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1073)) (-4 *2 (-1186)))) (-2838 (*1 *1 *1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1073)) (-4 *2 (-1186))))) -(-13 (-646 |#1|) (-10 -8 (-15 -3526 ($)) (-15 -2068 ((-112) $)) (-15 -1587 ($ |#1| $)) (-15 -2622 ($ $ $)) (IF (|has| |#1| (-1073)) (PROGN (-15 -2861 ($ $ $)) (-15 -2850 ($ $ $)) (-15 -2838 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-808)) (-6 (-808)) |%noBranch|))) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 11) (((-1154) $) NIL) (($ (-1154)) NIL) ((|#1| $) 8)) (-2281 (((-112) $ $) NIL))) -(((-626 |#1|) (-13 (-1056) (-597 |#1|)) (-1073)) (T -626)) -NIL -(-13 (-1056) (-597 |#1|)) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2946 (($ |#1| |#1| $) 43)) (-3495 (((-112) $ (-751)) NIL)) (-2873 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-3238 (($ $) 45)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1938 (($ |#1| $) 52 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-3799 (((-625 |#1|) $) 9 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 37)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2953 ((|#1| $) 46)) (-3966 (($ |#1| $) 26) (($ |#1| $ (-751)) 42)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2966 ((|#1| $) 48)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 21)) (-3600 (($) 25)) (-1806 (((-112) $) 50)) (-3229 (((-625 (-2 (|:| -4120 |#1|) (|:| -2840 (-751)))) $) 59)) (-4255 (($) 23) (($ (-625 |#1|)) 18)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) 56 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) 19)) (-2042 (((-528) $) 34 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) NIL)) (-1683 (((-839) $) 14 (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) 22)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 61 (|has| |#1| (-1073)))) (-1471 (((-751) $) 16 (|has| $ (-6 -4353))))) -(((-627 |#1|) (-13 (-675 |#1|) (-10 -8 (-6 -4353) (-15 -1806 ((-112) $)) (-15 -2946 ($ |#1| |#1| $)))) (-1073)) (T -627)) -((-1806 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-627 *3)) (-4 *3 (-1073)))) (-2946 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1073))))) -(-13 (-675 |#1|) (-10 -8 (-6 -4353) (-15 -1806 ((-112) $)) (-15 -2946 ($ |#1| |#1| $)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ |#1| $) 23))) -(((-628 |#1|) (-138) (-1032)) (T -628)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1032))))) +((-1964 (((-3 (-627 (-1148 (-552))) "failed") (-627 (-1148 (-552))) (-1148 (-552))) 24))) +(((-560) (-10 -7 (-15 -1964 ((-3 (-627 (-1148 (-552))) "failed") (-627 (-1148 (-552))) (-1148 (-552)))))) (T -560)) +((-1964 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-627 (-1148 (-552)))) (-5 *3 (-1148 (-552))) (-5 *1 (-560))))) +(-10 -7 (-15 -1964 ((-3 (-627 (-1148 (-552))) "failed") (-627 (-1148 (-552))) (-1148 (-552))))) +((-2452 (((-627 (-598 |#2|)) (-627 (-598 |#2|)) (-1152)) 19)) (-2371 (((-627 (-598 |#2|)) (-627 |#2|) (-1152)) 23)) (-3416 (((-627 (-598 |#2|)) (-627 (-598 |#2|)) (-627 (-598 |#2|))) 11)) (-2147 ((|#2| |#2| (-1152)) 54 (|has| |#1| (-544)))) (-3737 ((|#2| |#2| (-1152)) 78 (-12 (|has| |#2| (-278)) (|has| |#1| (-445))))) (-3948 (((-598 |#2|) (-598 |#2|) (-627 (-598 |#2|)) (-1152)) 25)) (-4278 (((-598 |#2|) (-627 (-598 |#2|))) 24)) (-3323 (((-573 |#2|) |#2| (-1152) (-1 (-573 |#2|) |#2| (-1152)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1152))) 103 (-12 (|has| |#2| (-278)) (|has| |#2| (-613)) (|has| |#2| (-1017 (-1152))) (|has| |#1| (-600 (-871 (-552)))) (|has| |#1| (-445)) (|has| |#1| (-865 (-552))))))) +(((-561 |#1| |#2|) (-10 -7 (-15 -2452 ((-627 (-598 |#2|)) (-627 (-598 |#2|)) (-1152))) (-15 -4278 ((-598 |#2|) (-627 (-598 |#2|)))) (-15 -3948 ((-598 |#2|) (-598 |#2|) (-627 (-598 |#2|)) (-1152))) (-15 -3416 ((-627 (-598 |#2|)) (-627 (-598 |#2|)) (-627 (-598 |#2|)))) (-15 -2371 ((-627 (-598 |#2|)) (-627 |#2|) (-1152))) (IF (|has| |#1| (-544)) (-15 -2147 (|#2| |#2| (-1152))) |%noBranch|) (IF (|has| |#1| (-445)) (IF (|has| |#2| (-278)) (PROGN (-15 -3737 (|#2| |#2| (-1152))) (IF (|has| |#1| (-600 (-871 (-552)))) (IF (|has| |#1| (-865 (-552))) (IF (|has| |#2| (-613)) (IF (|has| |#2| (-1017 (-1152))) (-15 -3323 ((-573 |#2|) |#2| (-1152) (-1 (-573 |#2|) |#2| (-1152)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1152)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-830) (-424 |#1|)) (T -561)) +((-3323 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-573 *3) *3 (-1152))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1152))) (-4 *3 (-278)) (-4 *3 (-613)) (-4 *3 (-1017 *4)) (-4 *3 (-424 *7)) (-5 *4 (-1152)) (-4 *7 (-600 (-871 (-552)))) (-4 *7 (-445)) (-4 *7 (-865 (-552))) (-4 *7 (-830)) (-5 *2 (-573 *3)) (-5 *1 (-561 *7 *3)))) (-3737 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-445)) (-4 *4 (-830)) (-5 *1 (-561 *4 *2)) (-4 *2 (-278)) (-4 *2 (-424 *4)))) (-2147 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-544)) (-4 *4 (-830)) (-5 *1 (-561 *4 *2)) (-4 *2 (-424 *4)))) (-2371 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *6)) (-5 *4 (-1152)) (-4 *6 (-424 *5)) (-4 *5 (-830)) (-5 *2 (-627 (-598 *6))) (-5 *1 (-561 *5 *6)))) (-3416 (*1 *2 *2 *2) (-12 (-5 *2 (-627 (-598 *4))) (-4 *4 (-424 *3)) (-4 *3 (-830)) (-5 *1 (-561 *3 *4)))) (-3948 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-627 (-598 *6))) (-5 *4 (-1152)) (-5 *2 (-598 *6)) (-4 *6 (-424 *5)) (-4 *5 (-830)) (-5 *1 (-561 *5 *6)))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-627 (-598 *5))) (-4 *4 (-830)) (-5 *2 (-598 *5)) (-5 *1 (-561 *4 *5)) (-4 *5 (-424 *4)))) (-2452 (*1 *2 *2 *3) (-12 (-5 *2 (-627 (-598 *5))) (-5 *3 (-1152)) (-4 *5 (-424 *4)) (-4 *4 (-830)) (-5 *1 (-561 *4 *5))))) +(-10 -7 (-15 -2452 ((-627 (-598 |#2|)) (-627 (-598 |#2|)) (-1152))) (-15 -4278 ((-598 |#2|) (-627 (-598 |#2|)))) (-15 -3948 ((-598 |#2|) (-598 |#2|) (-627 (-598 |#2|)) (-1152))) (-15 -3416 ((-627 (-598 |#2|)) (-627 (-598 |#2|)) (-627 (-598 |#2|)))) (-15 -2371 ((-627 (-598 |#2|)) (-627 |#2|) (-1152))) (IF (|has| |#1| (-544)) (-15 -2147 (|#2| |#2| (-1152))) |%noBranch|) (IF (|has| |#1| (-445)) (IF (|has| |#2| (-278)) (PROGN (-15 -3737 (|#2| |#2| (-1152))) (IF (|has| |#1| (-600 (-871 (-552)))) (IF (|has| |#1| (-865 (-552))) (IF (|has| |#2| (-613)) (IF (|has| |#2| (-1017 (-1152))) (-15 -3323 ((-573 |#2|) |#2| (-1152) (-1 (-573 |#2|) |#2| (-1152)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1152)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2406 (((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-627 |#1|) "failed") (-552) |#1| |#1|)) 172)) (-3469 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-627 (-401 |#2|))) 148)) (-2765 (((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-627 (-401 |#2|))) 145)) (-4055 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-1797 (((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-2058 (((-3 (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-401 |#2|)) 175)) (-2273 (((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-401 |#2|)) 178)) (-3389 (((-2 (|:| |ir| (-573 (-401 |#2|))) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|)) 84)) (-1765 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2364 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|) (-627 (-401 |#2|))) 152)) (-3791 (((-3 (-607 |#1| |#2|) "failed") (-607 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|)) 137)) (-2228 (((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|)) 162)) (-2428 (((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|) (-401 |#2|)) 183))) +(((-562 |#1| |#2|) (-10 -7 (-15 -1797 ((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2228 ((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|))) (-15 -2406 ((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-627 |#1|) "failed") (-552) |#1| |#1|))) (-15 -2273 ((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-401 |#2|))) (-15 -2428 ((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|) (-401 |#2|))) (-15 -3469 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-627 (-401 |#2|)))) (-15 -2364 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|) (-627 (-401 |#2|)))) (-15 -2058 ((-3 (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-401 |#2|))) (-15 -2765 ((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-627 (-401 |#2|)))) (-15 -4055 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3791 ((-3 (-607 |#1| |#2|) "failed") (-607 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|))) (-15 -3389 ((-2 (|:| |ir| (-573 (-401 |#2|))) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|))) (-15 -1765 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-357) (-1211 |#1|)) (T -562)) +((-1765 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-562 *5 *3)))) (-3389 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |ir| (-573 (-401 *6))) (|:| |specpart| (-401 *6)) (|:| |polypart| *6))) (-5 *1 (-562 *5 *6)) (-5 *3 (-401 *6)))) (-3791 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-607 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -2791 *4) (|:| |sol?| (-111))) (-552) *4)) (-4 *4 (-357)) (-4 *5 (-1211 *4)) (-5 *1 (-562 *4 *5)))) (-4055 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3446 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-357)) (-5 *1 (-562 *4 *2)) (-4 *2 (-1211 *4)))) (-2765 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-627 (-401 *7))) (-4 *7 (-1211 *6)) (-5 *3 (-401 *7)) (-4 *6 (-357)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *6 *7)))) (-2058 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| -3446 (-401 *6)) (|:| |coeff| (-401 *6)))) (-5 *1 (-562 *5 *6)) (-5 *3 (-401 *6)))) (-2364 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -2791 *7) (|:| |sol?| (-111))) (-552) *7)) (-5 *6 (-627 (-401 *8))) (-4 *7 (-357)) (-4 *8 (-1211 *7)) (-5 *3 (-401 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-562 *7 *8)))) (-3469 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3446 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-627 (-401 *8))) (-4 *7 (-357)) (-4 *8 (-1211 *7)) (-5 *3 (-401 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-562 *7 *8)))) (-2428 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2791 *6) (|:| |sol?| (-111))) (-552) *6)) (-4 *6 (-357)) (-4 *7 (-1211 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-401 *7)) (|:| |a0| *6)) (-2 (|:| -3446 (-401 *7)) (|:| |coeff| (-401 *7))) "failed")) (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7)))) (-2273 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3446 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-357)) (-4 *7 (-1211 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-401 *7)) (|:| |a0| *6)) (-2 (|:| -3446 (-401 *7)) (|:| |coeff| (-401 *7))) "failed")) (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7)))) (-2406 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-627 *6) "failed") (-552) *6 *6)) (-4 *6 (-357)) (-4 *7 (-1211 *6)) (-5 *2 (-2 (|:| |answer| (-573 (-401 *7))) (|:| |a0| *6))) (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7)))) (-2228 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2791 *6) (|:| |sol?| (-111))) (-552) *6)) (-4 *6 (-357)) (-4 *7 (-1211 *6)) (-5 *2 (-2 (|:| |answer| (-573 (-401 *7))) (|:| |a0| *6))) (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7)))) (-1797 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3446 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-357)) (-4 *7 (-1211 *6)) (-5 *2 (-2 (|:| |answer| (-573 (-401 *7))) (|:| |a0| *6))) (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7))))) +(-10 -7 (-15 -1797 ((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2228 ((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|))) (-15 -2406 ((-2 (|:| |answer| (-573 (-401 |#2|))) (|:| |a0| |#1|)) (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-627 |#1|) "failed") (-552) |#1| |#1|))) (-15 -2273 ((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-401 |#2|))) (-15 -2428 ((-3 (-2 (|:| |answer| (-401 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|) (-401 |#2|))) (-15 -3469 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-627 (-401 |#2|)))) (-15 -2364 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|))))))) (|:| |a0| |#1|)) "failed") (-401 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|) (-627 (-401 |#2|)))) (-15 -2058 ((-3 (-2 (|:| -3446 (-401 |#2|)) (|:| |coeff| (-401 |#2|))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-401 |#2|))) (-15 -2765 ((-3 (-2 (|:| |mainpart| (-401 |#2|)) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| (-401 |#2|)) (|:| |logand| (-401 |#2|)))))) "failed") (-401 |#2|) (-1 |#2| |#2|) (-627 (-401 |#2|)))) (-15 -4055 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3791 ((-3 (-607 |#1| |#2|) "failed") (-607 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2791 |#1|) (|:| |sol?| (-111))) (-552) |#1|))) (-15 -3389 ((-2 (|:| |ir| (-573 (-401 |#2|))) (|:| |specpart| (-401 |#2|)) (|:| |polypart| |#2|)) (-401 |#2|) (-1 |#2| |#2|))) (-15 -1765 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-1450 (((-3 |#2| "failed") |#2| (-1152) (-1152)) 10))) +(((-563 |#1| |#2|) (-10 -7 (-15 -1450 ((-3 |#2| "failed") |#2| (-1152) (-1152)))) (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552))) (-13 (-1174) (-938) (-1115) (-29 |#1|))) (T -563)) +((-1450 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1152)) (-4 *4 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1174) (-938) (-1115) (-29 *4)))))) +(-10 -7 (-15 -1450 ((-3 |#2| "failed") |#2| (-1152) (-1152)))) +((-1525 (((-1096) $ (-127)) 12)) (-3928 (((-1096) $ (-128)) 11)) (-3166 (((-1096) $ (-127)) 7)) (-2764 (((-1096) $) 8)) (-2219 (($ $) 6))) +(((-564) (-137)) (T -564)) +NIL +(-13 (-519) (-840)) +(((-170) . T) ((-519) . T) ((-840) . T)) +((-1525 (((-1096) $ (-127)) NIL)) (-3928 (((-1096) $ (-128)) NIL)) (-3166 (((-1096) $ (-127)) NIL)) (-2764 (((-1096) $) NIL)) (-1300 (((-111) $) NIL)) (-3725 (($ (-382)) 14) (($ (-1134)) 16)) (-1477 (((-842) $) NIL)) (-2219 (($ $) NIL))) +(((-565) (-13 (-564) (-599 (-842)) (-10 -8 (-15 -3725 ($ (-382))) (-15 -3725 ($ (-1134))) (-15 -1300 ((-111) $))))) (T -565)) +((-3725 (*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-565)))) (-3725 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-565)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-565))))) +(-13 (-564) (-599 (-842)) (-10 -8 (-15 -3725 ($ (-382))) (-15 -3725 ($ (-1134))) (-15 -1300 ((-111) $)))) +((-1465 (((-111) $ $) NIL)) (-1395 (($) 7 T CONST)) (-1595 (((-1134) $) NIL)) (-1268 (($) 6 T CONST)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 14)) (-3436 (($) 8 T CONST)) (-2292 (((-111) $ $) 10))) +(((-566) (-13 (-1076) (-10 -8 (-15 -1268 ($) -3488) (-15 -1395 ($) -3488) (-15 -3436 ($) -3488)))) (T -566)) +((-1268 (*1 *1) (-5 *1 (-566))) (-1395 (*1 *1) (-5 *1 (-566))) (-3436 (*1 *1) (-5 *1 (-566)))) +(-13 (-1076) (-10 -8 (-15 -1268 ($) -3488) (-15 -1395 ($) -3488) (-15 -3436 ($) -3488))) +((-1465 (((-111) $ $) NIL)) (-1291 (((-3 $ "failed") (-483)) 13)) (-1595 (((-1134) $) NIL)) (-1957 (($ (-1134)) 9)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 28)) (-3581 (((-208 4 (-128)) $) 16)) (-2292 (((-111) $ $) 19))) +(((-567) (-13 (-1076) (-10 -8 (-15 -1957 ($ (-1134))) (-15 -3581 ((-208 4 (-128)) $)) (-15 -1291 ((-3 $ "failed") (-483)))))) (T -567)) +((-1957 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-567)))) (-3581 (*1 *2 *1) (-12 (-5 *2 (-208 4 (-128))) (-5 *1 (-567)))) (-1291 (*1 *1 *2) (|partial| -12 (-5 *2 (-483)) (-5 *1 (-567))))) +(-13 (-1076) (-10 -8 (-15 -1957 ($ (-1134))) (-15 -3581 ((-208 4 (-128)) $)) (-15 -1291 ((-3 $ "failed") (-483))))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1737 (($ $ (-552)) 66)) (-4224 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-1905 (($ (-1148 (-552)) (-552)) 72)) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) 58)) (-1497 (($ $) 34)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2641 (((-754) $) 15)) (-2624 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3484 (((-552)) 29)) (-3752 (((-552) $) 32)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4168 (($ $ (-552)) 21)) (-2761 (((-3 $ "failed") $ $) 59)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) 16)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 61)) (-3080 (((-1132 (-552)) $) 18)) (-2890 (($ $) 23)) (-1477 (((-842) $) 87) (($ (-552)) 52) (($ $) NIL)) (-3995 (((-754)) 14)) (-3778 (((-111) $ $) NIL)) (-3030 (((-552) $ (-552)) 36)) (-1922 (($) 35 T CONST)) (-1933 (($) 19 T CONST)) (-2292 (((-111) $ $) 39)) (-2396 (($ $) 51) (($ $ $) 37)) (-2384 (($ $ $) 50)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 54) (($ $ $) 55))) +(((-568 |#1| |#2|) (-848 |#1|) (-552) (-111)) (T -568)) +NIL +(-848 |#1|) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 21)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 (($ $ (-900)) NIL (|has| $ (-362))) (($ $) NIL)) (-2038 (((-1162 (-900) (-754)) (-552)) 47)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 $ "failed") $) 75)) (-1703 (($ $) 74)) (-2342 (($ (-1235 $)) 73)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) 32)) (-1279 (($) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) 49)) (-1415 (((-111) $) NIL)) (-4294 (($ $) NIL) (($ $ (-754)) NIL)) (-1633 (((-111) $) NIL)) (-2641 (((-816 (-900)) $) NIL) (((-900) $) NIL)) (-2624 (((-111) $) NIL)) (-2611 (($) 37 (|has| $ (-362)))) (-2492 (((-111) $) NIL (|has| $ (-362)))) (-2349 (($ $ (-900)) NIL (|has| $ (-362))) (($ $) NIL)) (-4317 (((-3 $ "failed") $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 $) $ (-900)) NIL (|has| $ (-362))) (((-1148 $) $) 83)) (-2886 (((-900) $) 55)) (-1980 (((-1148 $) $) NIL (|has| $ (-362)))) (-2259 (((-3 (-1148 $) "failed") $ $) NIL (|has| $ (-362))) (((-1148 $) $) NIL (|has| $ (-362)))) (-3520 (($ $ (-1148 $)) NIL (|has| $ (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL T CONST)) (-4153 (($ (-900)) 48)) (-2249 (((-111) $) 67)) (-1498 (((-1096) $) NIL)) (-2220 (($) 19 (|has| $ (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) 42)) (-1727 (((-412 $) $) NIL)) (-3804 (((-900)) 66) (((-816 (-900))) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-3 (-754) "failed") $ $) NIL) (((-754) $) NIL)) (-2405 (((-132)) NIL)) (-2942 (($ $ (-754)) NIL) (($ $) NIL)) (-3567 (((-900) $) 65) (((-816 (-900)) $) NIL)) (-1376 (((-1148 $)) 82)) (-3439 (($) 54)) (-3231 (($) 38 (|has| $ (-362)))) (-3133 (((-671 $) (-1235 $)) NIL) (((-1235 $) $) 71)) (-3562 (((-552) $) 28)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) 30) (($ $) NIL) (($ (-401 (-552))) NIL)) (-3050 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3995 (((-754)) 39)) (-2957 (((-1235 $) (-900)) 77) (((-1235 $)) 76)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) 22 T CONST)) (-1933 (($) 18 T CONST)) (-3406 (($ $ (-754)) NIL (|has| $ (-362))) (($ $) NIL (|has| $ (-362)))) (-4251 (($ $ (-754)) NIL) (($ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) 26)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 61) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) +(((-569 |#1|) (-13 (-343) (-323 $) (-600 (-552))) (-900)) (T -569)) +NIL +(-13 (-343) (-323 $) (-600 (-552))) +((-3026 (((-1240) (-1134)) 10))) +(((-570) (-10 -7 (-15 -3026 ((-1240) (-1134))))) (T -570)) +((-3026 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-570))))) +(-10 -7 (-15 -3026 ((-1240) (-1134)))) +((-2843 (((-573 |#2|) (-573 |#2|)) 40)) (-2496 (((-627 |#2|) (-573 |#2|)) 42)) (-1464 ((|#2| (-573 |#2|)) 48))) +(((-571 |#1| |#2|) (-10 -7 (-15 -2843 ((-573 |#2|) (-573 |#2|))) (-15 -2496 ((-627 |#2|) (-573 |#2|))) (-15 -1464 (|#2| (-573 |#2|)))) (-13 (-445) (-1017 (-552)) (-830) (-623 (-552))) (-13 (-29 |#1|) (-1174))) (T -571)) +((-1464 (*1 *2 *3) (-12 (-5 *3 (-573 *2)) (-4 *2 (-13 (-29 *4) (-1174))) (-5 *1 (-571 *4 *2)) (-4 *4 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-573 *5)) (-4 *5 (-13 (-29 *4) (-1174))) (-4 *4 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) (-5 *2 (-627 *5)) (-5 *1 (-571 *4 *5)))) (-2843 (*1 *2 *2) (-12 (-5 *2 (-573 *4)) (-4 *4 (-13 (-29 *3) (-1174))) (-4 *3 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) (-5 *1 (-571 *3 *4))))) +(-10 -7 (-15 -2843 ((-573 |#2|) (-573 |#2|))) (-15 -2496 ((-627 |#2|) (-573 |#2|))) (-15 -1464 (|#2| (-573 |#2|)))) +((-3516 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-573 |#2|) (-1 |#2| |#1|) (-573 |#1|)) 30))) +(((-572 |#1| |#2|) (-10 -7 (-15 -3516 ((-573 |#2|) (-1 |#2| |#1|) (-573 |#1|))) (-15 -3516 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3516 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3516 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-357) (-357)) (T -572)) +((-3516 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-357)) (-4 *6 (-357)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-572 *5 *6)))) (-3516 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-357)) (-4 *2 (-357)) (-5 *1 (-572 *5 *2)))) (-3516 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3446 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-357)) (-4 *6 (-357)) (-5 *2 (-2 (|:| -3446 *6) (|:| |coeff| *6))) (-5 *1 (-572 *5 *6)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-573 *5)) (-4 *5 (-357)) (-4 *6 (-357)) (-5 *2 (-573 *6)) (-5 *1 (-572 *5 *6))))) +(-10 -7 (-15 -3516 ((-573 |#2|) (-1 |#2| |#1|) (-573 |#1|))) (-15 -3516 ((-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3446 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3516 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3516 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) 69)) (-1703 ((|#1| $) NIL)) (-3446 ((|#1| $) 26)) (-4196 (((-627 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2987 (($ |#1| (-627 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1148 |#1|)) (|:| |logand| (-1148 |#1|)))) (-627 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-3874 (((-627 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1148 |#1|)) (|:| |logand| (-1148 |#1|)))) $) 27)) (-1595 (((-1134) $) NIL)) (-3096 (($ |#1| |#1|) 33) (($ |#1| (-1152)) 44 (|has| |#1| (-1017 (-1152))))) (-1498 (((-1096) $) NIL)) (-2713 (((-111) $) 30)) (-2942 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1152)) 82 (|has| |#1| (-879 (-1152))))) (-1477 (((-842) $) 96) (($ |#1|) 25)) (-1922 (($) 16 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) 15) (($ $ $) NIL)) (-2384 (($ $ $) 78)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 14) (($ (-401 (-552)) $) 36) (($ $ (-401 (-552))) NIL))) +(((-573 |#1|) (-13 (-700 (-401 (-552))) (-1017 |#1|) (-10 -8 (-15 -2987 ($ |#1| (-627 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1148 |#1|)) (|:| |logand| (-1148 |#1|)))) (-627 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3446 (|#1| $)) (-15 -3874 ((-627 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1148 |#1|)) (|:| |logand| (-1148 |#1|)))) $)) (-15 -4196 ((-627 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2713 ((-111) $)) (-15 -3096 ($ |#1| |#1|)) (-15 -2942 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-879 (-1152))) (-15 -2942 (|#1| $ (-1152))) |%noBranch|) (IF (|has| |#1| (-1017 (-1152))) (-15 -3096 ($ |#1| (-1152))) |%noBranch|))) (-357)) (T -573)) +((-2987 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-627 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1148 *2)) (|:| |logand| (-1148 *2))))) (-5 *4 (-627 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-357)) (-5 *1 (-573 *2)))) (-3446 (*1 *2 *1) (-12 (-5 *1 (-573 *2)) (-4 *2 (-357)))) (-3874 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1148 *3)) (|:| |logand| (-1148 *3))))) (-5 *1 (-573 *3)) (-4 *3 (-357)))) (-4196 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-573 *3)) (-4 *3 (-357)))) (-2713 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-573 *3)) (-4 *3 (-357)))) (-3096 (*1 *1 *2 *2) (-12 (-5 *1 (-573 *2)) (-4 *2 (-357)))) (-2942 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-573 *2)) (-4 *2 (-357)))) (-2942 (*1 *2 *1 *3) (-12 (-4 *2 (-357)) (-4 *2 (-879 *3)) (-5 *1 (-573 *2)) (-5 *3 (-1152)))) (-3096 (*1 *1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *1 (-573 *2)) (-4 *2 (-1017 *3)) (-4 *2 (-357))))) +(-13 (-700 (-401 (-552))) (-1017 |#1|) (-10 -8 (-15 -2987 ($ |#1| (-627 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1148 |#1|)) (|:| |logand| (-1148 |#1|)))) (-627 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3446 (|#1| $)) (-15 -3874 ((-627 (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1148 |#1|)) (|:| |logand| (-1148 |#1|)))) $)) (-15 -4196 ((-627 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2713 ((-111) $)) (-15 -3096 ($ |#1| |#1|)) (-15 -2942 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-879 (-1152))) (-15 -2942 (|#1| $ (-1152))) |%noBranch|) (IF (|has| |#1| (-1017 (-1152))) (-15 -3096 ($ |#1| (-1152))) |%noBranch|))) +((-1978 (((-111) |#1|) 16)) (-3553 (((-3 |#1| "failed") |#1|) 14)) (-1582 (((-2 (|:| -2705 |#1|) (|:| -4067 (-754))) |#1|) 31) (((-3 |#1| "failed") |#1| (-754)) 18)) (-1726 (((-111) |#1| (-754)) 19)) (-3337 ((|#1| |#1|) 32)) (-3324 ((|#1| |#1| (-754)) 34))) +(((-574 |#1|) (-10 -7 (-15 -1726 ((-111) |#1| (-754))) (-15 -1582 ((-3 |#1| "failed") |#1| (-754))) (-15 -1582 ((-2 (|:| -2705 |#1|) (|:| -4067 (-754))) |#1|)) (-15 -3324 (|#1| |#1| (-754))) (-15 -1978 ((-111) |#1|)) (-15 -3553 ((-3 |#1| "failed") |#1|)) (-15 -3337 (|#1| |#1|))) (-537)) (T -574)) +((-3337 (*1 *2 *2) (-12 (-5 *1 (-574 *2)) (-4 *2 (-537)))) (-3553 (*1 *2 *2) (|partial| -12 (-5 *1 (-574 *2)) (-4 *2 (-537)))) (-1978 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-574 *3)) (-4 *3 (-537)))) (-3324 (*1 *2 *2 *3) (-12 (-5 *3 (-754)) (-5 *1 (-574 *2)) (-4 *2 (-537)))) (-1582 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2705 *3) (|:| -4067 (-754)))) (-5 *1 (-574 *3)) (-4 *3 (-537)))) (-1582 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-754)) (-5 *1 (-574 *2)) (-4 *2 (-537)))) (-1726 (*1 *2 *3 *4) (-12 (-5 *4 (-754)) (-5 *2 (-111)) (-5 *1 (-574 *3)) (-4 *3 (-537))))) +(-10 -7 (-15 -1726 ((-111) |#1| (-754))) (-15 -1582 ((-3 |#1| "failed") |#1| (-754))) (-15 -1582 ((-2 (|:| -2705 |#1|) (|:| -4067 (-754))) |#1|)) (-15 -3324 (|#1| |#1| (-754))) (-15 -1978 ((-111) |#1|)) (-15 -3553 ((-3 |#1| "failed") |#1|)) (-15 -3337 (|#1| |#1|))) +((-1808 (((-1148 |#1|) (-900)) 27))) +(((-575 |#1|) (-10 -7 (-15 -1808 ((-1148 |#1|) (-900)))) (-343)) (T -575)) +((-1808 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-575 *4)) (-4 *4 (-343))))) +(-10 -7 (-15 -1808 ((-1148 |#1|) (-900)))) +((-2843 (((-573 (-401 (-931 |#1|))) (-573 (-401 (-931 |#1|)))) 27)) (-2747 (((-3 (-310 |#1|) (-627 (-310 |#1|))) (-401 (-931 |#1|)) (-1152)) 34 (|has| |#1| (-144)))) (-2496 (((-627 (-310 |#1|)) (-573 (-401 (-931 |#1|)))) 19)) (-3067 (((-310 |#1|) (-401 (-931 |#1|)) (-1152)) 32 (|has| |#1| (-144)))) (-1464 (((-310 |#1|) (-573 (-401 (-931 |#1|)))) 21))) +(((-576 |#1|) (-10 -7 (-15 -2843 ((-573 (-401 (-931 |#1|))) (-573 (-401 (-931 |#1|))))) (-15 -2496 ((-627 (-310 |#1|)) (-573 (-401 (-931 |#1|))))) (-15 -1464 ((-310 |#1|) (-573 (-401 (-931 |#1|))))) (IF (|has| |#1| (-144)) (PROGN (-15 -2747 ((-3 (-310 |#1|) (-627 (-310 |#1|))) (-401 (-931 |#1|)) (-1152))) (-15 -3067 ((-310 |#1|) (-401 (-931 |#1|)) (-1152)))) |%noBranch|)) (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) (T -576)) +((-3067 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) (-4 *5 (-144)) (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) (-5 *2 (-310 *5)) (-5 *1 (-576 *5)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) (-4 *5 (-144)) (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) (-5 *2 (-3 (-310 *5) (-627 (-310 *5)))) (-5 *1 (-576 *5)))) (-1464 (*1 *2 *3) (-12 (-5 *3 (-573 (-401 (-931 *4)))) (-4 *4 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) (-5 *2 (-310 *4)) (-5 *1 (-576 *4)))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-573 (-401 (-931 *4)))) (-4 *4 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) (-5 *2 (-627 (-310 *4))) (-5 *1 (-576 *4)))) (-2843 (*1 *2 *2) (-12 (-5 *2 (-573 (-401 (-931 *3)))) (-4 *3 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) (-5 *1 (-576 *3))))) +(-10 -7 (-15 -2843 ((-573 (-401 (-931 |#1|))) (-573 (-401 (-931 |#1|))))) (-15 -2496 ((-627 (-310 |#1|)) (-573 (-401 (-931 |#1|))))) (-15 -1464 ((-310 |#1|) (-573 (-401 (-931 |#1|))))) (IF (|has| |#1| (-144)) (PROGN (-15 -2747 ((-3 (-310 |#1|) (-627 (-310 |#1|))) (-401 (-931 |#1|)) (-1152))) (-15 -3067 ((-310 |#1|) (-401 (-931 |#1|)) (-1152)))) |%noBranch|)) +((-4321 (((-627 (-671 (-552))) (-627 (-552)) (-627 (-884 (-552)))) 46) (((-627 (-671 (-552))) (-627 (-552))) 47) (((-671 (-552)) (-627 (-552)) (-884 (-552))) 42)) (-2823 (((-754) (-627 (-552))) 40))) +(((-577) (-10 -7 (-15 -2823 ((-754) (-627 (-552)))) (-15 -4321 ((-671 (-552)) (-627 (-552)) (-884 (-552)))) (-15 -4321 ((-627 (-671 (-552))) (-627 (-552)))) (-15 -4321 ((-627 (-671 (-552))) (-627 (-552)) (-627 (-884 (-552))))))) (T -577)) +((-4321 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-552))) (-5 *4 (-627 (-884 (-552)))) (-5 *2 (-627 (-671 (-552)))) (-5 *1 (-577)))) (-4321 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-627 (-671 (-552)))) (-5 *1 (-577)))) (-4321 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-552))) (-5 *4 (-884 (-552))) (-5 *2 (-671 (-552))) (-5 *1 (-577)))) (-2823 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-754)) (-5 *1 (-577))))) +(-10 -7 (-15 -2823 ((-754) (-627 (-552)))) (-15 -4321 ((-671 (-552)) (-627 (-552)) (-884 (-552)))) (-15 -4321 ((-627 (-671 (-552))) (-627 (-552)))) (-15 -4321 ((-627 (-671 (-552))) (-627 (-552)) (-627 (-884 (-552)))))) +((-3001 (((-627 |#5|) |#5| (-111)) 73)) (-1811 (((-111) |#5| (-627 |#5|)) 30))) +(((-578 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3001 ((-627 |#5|) |#5| (-111))) (-15 -1811 ((-111) |#5| (-627 |#5|)))) (-13 (-301) (-144)) (-776) (-830) (-1042 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3| |#4|)) (T -578)) +((-1811 (*1 *2 *3 *4) (-12 (-5 *4 (-627 *3)) (-4 *3 (-1085 *5 *6 *7 *8)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-578 *5 *6 *7 *8 *3)))) (-3001 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7)) (-5 *2 (-627 *3)) (-5 *1 (-578 *5 *6 *7 *8 *3)) (-4 *3 (-1085 *5 *6 *7 *8))))) +(-10 -7 (-15 -3001 ((-627 |#5|) |#5| (-111))) (-15 -1811 ((-111) |#5| (-627 |#5|)))) +((-1465 (((-111) $ $) NIL)) (-3089 (((-1111) $) 11)) (-3078 (((-1111) $) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 19) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) +(((-579) (-13 (-1059) (-10 -8 (-15 -3078 ((-1111) $)) (-15 -3089 ((-1111) $))))) (T -579)) +((-3078 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-579)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-579))))) +(-13 (-1059) (-10 -8 (-15 -3078 ((-1111) $)) (-15 -3089 ((-1111) $)))) +((-1465 (((-111) $ $) NIL (|has| (-141) (-1076)))) (-2726 (($ $) 34)) (-1349 (($ $) NIL)) (-3064 (($ $ (-141)) NIL) (($ $ (-138)) NIL)) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-4025 (((-111) $ $) 51)) (-4003 (((-111) $ $ (-552)) 46)) (-2843 (((-627 $) $ (-141)) 60) (((-627 $) $ (-138)) 61)) (-1439 (((-111) (-1 (-111) (-141) (-141)) $) NIL) (((-111) $) NIL (|has| (-141) (-830)))) (-2701 (($ (-1 (-111) (-141) (-141)) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| (-141) (-830))))) (-4298 (($ (-1 (-111) (-141) (-141)) $) NIL) (($ $) NIL (|has| (-141) (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 (((-141) $ (-552) (-141)) 45 (|has| $ (-6 -4367))) (((-141) $ (-1202 (-552)) (-141)) NIL (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-3702 (($ $ (-141)) 64) (($ $ (-138)) 65)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3754 (($ $ (-1202 (-552)) $) 44)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-4342 (($ (-141) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076)))) (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-141) (-1 (-141) (-141) (-141)) $ (-141) (-141)) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076)))) (((-141) (-1 (-141) (-141) (-141)) $ (-141)) NIL (|has| $ (-6 -4366))) (((-141) (-1 (-141) (-141) (-141)) $) NIL (|has| $ (-6 -4366)))) (-3473 (((-141) $ (-552) (-141)) NIL (|has| $ (-6 -4367)))) (-3413 (((-141) $ (-552)) NIL)) (-4050 (((-111) $ $) 72)) (-2967 (((-552) (-1 (-111) (-141)) $) NIL) (((-552) (-141) $) NIL (|has| (-141) (-1076))) (((-552) (-141) $ (-552)) 48 (|has| (-141) (-1076))) (((-552) $ $ (-552)) 47) (((-552) (-138) $ (-552)) 50)) (-3215 (((-627 (-141)) $) NIL (|has| $ (-6 -4366)))) (-2655 (($ (-754) (-141)) 9)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) 28 (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| (-141) (-830)))) (-3759 (($ (-1 (-111) (-141) (-141)) $ $) NIL) (($ $ $) NIL (|has| (-141) (-830)))) (-3114 (((-627 (-141)) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-141) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-2285 (((-552) $) 42 (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| (-141) (-830)))) (-2999 (((-111) $ $ (-141)) 73)) (-3835 (((-754) $ $ (-141)) 70)) (-3463 (($ (-1 (-141) (-141)) $) 33 (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-141) (-141)) $) NIL) (($ (-1 (-141) (-141) (-141)) $ $) NIL)) (-3053 (($ $) 37)) (-3769 (($ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-3712 (($ $ (-141)) 62) (($ $ (-138)) 63)) (-1595 (((-1134) $) 38 (|has| (-141) (-1076)))) (-3252 (($ (-141) $ (-552)) NIL) (($ $ $ (-552)) 23)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-552) $) 69) (((-1096) $) NIL (|has| (-141) (-1076)))) (-3340 (((-141) $) NIL (|has| (-552) (-830)))) (-1503 (((-3 (-141) "failed") (-1 (-111) (-141)) $) NIL)) (-1942 (($ $ (-141)) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-141)))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-288 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-141) (-141)) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-627 (-141)) (-627 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) (-141) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-2083 (((-627 (-141)) $) NIL)) (-1275 (((-111) $) 12)) (-2373 (($) 10)) (-1985 (((-141) $ (-552) (-141)) NIL) (((-141) $ (-552)) 52) (($ $ (-1202 (-552))) 21) (($ $ $) NIL)) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-1509 (((-754) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366))) (((-754) (-141) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-4105 (($ $ $ (-552)) 66 (|has| $ (-6 -4367)))) (-2973 (($ $) 17)) (-3562 (((-528) $) NIL (|has| (-141) (-600 (-528))))) (-1490 (($ (-627 (-141))) NIL)) (-2668 (($ $ (-141)) NIL) (($ (-141) $) NIL) (($ $ $) 16) (($ (-627 $)) 67)) (-1477 (($ (-141)) NIL) (((-842) $) 27 (|has| (-141) (-599 (-842))))) (-3299 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| (-141) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-141) (-830)))) (-2292 (((-111) $ $) 14 (|has| (-141) (-1076)))) (-2340 (((-111) $ $) NIL (|has| (-141) (-830)))) (-2316 (((-111) $ $) 15 (|has| (-141) (-830)))) (-1383 (((-754) $) 13 (|has| $ (-6 -4366))))) +(((-580 |#1|) (-13 (-1120) (-10 -8 (-15 -1498 ((-552) $)))) (-552)) (T -580)) +((-1498 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-580 *3)) (-14 *3 *2)))) +(-13 (-1120) (-10 -8 (-15 -1498 ((-552) $)))) +((-2707 (((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2| (-1070 |#4|)) 32))) +(((-581 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2707 ((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2| (-1070 |#4|))) (-15 -2707 ((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2|))) (-776) (-830) (-544) (-928 |#3| |#1| |#2|)) (T -581)) +((-2707 (*1 *2 *3 *4) (-12 (-4 *5 (-776)) (-4 *4 (-830)) (-4 *6 (-544)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-552)))) (-5 *1 (-581 *5 *4 *6 *3)) (-4 *3 (-928 *6 *5 *4)))) (-2707 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1070 *3)) (-4 *3 (-928 *7 *6 *4)) (-4 *6 (-776)) (-4 *4 (-830)) (-4 *7 (-544)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-552)))) (-5 *1 (-581 *6 *4 *7 *3))))) +(-10 -7 (-15 -2707 ((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2| (-1070 |#4|))) (-15 -2707 ((-2 (|:| |num| |#4|) (|:| |den| (-552))) |#4| |#2|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 63)) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4019 (($ $ (-552)) 54) (($ $ (-552) (-552)) 55)) (-4245 (((-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 60)) (-2507 (($ $) 100)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1287 (((-842) (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) (-1005 (-823 (-552))) (-1152) |#1| (-401 (-552))) 224)) (-1777 (($ (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 34)) (-3887 (($) NIL T CONST)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2391 (((-111) $) NIL)) (-2641 (((-552) $) 58) (((-552) $ (-552)) 59)) (-2624 (((-111) $) NIL)) (-3322 (($ $ (-900)) 76)) (-3045 (($ (-1 |#1| (-552)) $) 73)) (-3267 (((-111) $) 25)) (-1832 (($ |#1| (-552)) 22) (($ $ (-1058) (-552)) NIL) (($ $ (-627 (-1058)) (-627 (-552))) NIL)) (-3516 (($ (-1 |#1| |#1|) $) 67)) (-2586 (($ (-1005 (-823 (-552))) (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 13)) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-2747 (($ $) 150 (|has| |#1| (-38 (-401 (-552)))))) (-2019 (((-3 $ "failed") $ $ (-111)) 99)) (-4000 (($ $ $) 108)) (-1498 (((-1096) $) NIL)) (-4323 (((-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 15)) (-4060 (((-1005 (-823 (-552))) $) 14)) (-4168 (($ $ (-552)) 45)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-3321 (((-1132 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-552)))))) (-1985 ((|#1| $ (-552)) 57) (($ $ $) NIL (|has| (-552) (-1088)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (-3567 (((-552) $) NIL)) (-2890 (($ $) 46)) (-1477 (((-842) $) NIL) (($ (-552)) 28) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) 27 (|has| |#1| (-169)))) (-1889 ((|#1| $ (-552)) 56)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) 37)) (-3174 ((|#1| $) NIL)) (-2203 (($ $) 186 (|has| |#1| (-38 (-401 (-552)))))) (-2807 (($ $) 158 (|has| |#1| (-38 (-401 (-552)))))) (-2570 (($ $) 190 (|has| |#1| (-38 (-401 (-552)))))) (-2842 (($ $) 163 (|has| |#1| (-38 (-401 (-552)))))) (-1649 (($ $) 189 (|has| |#1| (-38 (-401 (-552)))))) (-3715 (($ $) 162 (|has| |#1| (-38 (-401 (-552)))))) (-3435 (($ $ (-401 (-552))) 166 (|has| |#1| (-38 (-401 (-552)))))) (-2838 (($ $ |#1|) 146 (|has| |#1| (-38 (-401 (-552)))))) (-4108 (($ $) 192 (|has| |#1| (-38 (-401 (-552)))))) (-2674 (($ $) 149 (|has| |#1| (-38 (-401 (-552)))))) (-1912 (($ $) 191 (|has| |#1| (-38 (-401 (-552)))))) (-1466 (($ $) 164 (|has| |#1| (-38 (-401 (-552)))))) (-2324 (($ $) 187 (|has| |#1| (-38 (-401 (-552)))))) (-3256 (($ $) 160 (|has| |#1| (-38 (-401 (-552)))))) (-3910 (($ $) 188 (|has| |#1| (-38 (-401 (-552)))))) (-1290 (($ $) 161 (|has| |#1| (-38 (-401 (-552)))))) (-1835 (($ $) 197 (|has| |#1| (-38 (-401 (-552)))))) (-4248 (($ $) 173 (|has| |#1| (-38 (-401 (-552)))))) (-2177 (($ $) 194 (|has| |#1| (-38 (-401 (-552)))))) (-2171 (($ $) 168 (|has| |#1| (-38 (-401 (-552)))))) (-2479 (($ $) 201 (|has| |#1| (-38 (-401 (-552)))))) (-1906 (($ $) 177 (|has| |#1| (-38 (-401 (-552)))))) (-1576 (($ $) 203 (|has| |#1| (-38 (-401 (-552)))))) (-4138 (($ $) 179 (|has| |#1| (-38 (-401 (-552)))))) (-2120 (($ $) 199 (|has| |#1| (-38 (-401 (-552)))))) (-2062 (($ $) 175 (|has| |#1| (-38 (-401 (-552)))))) (-3398 (($ $) 196 (|has| |#1| (-38 (-401 (-552)))))) (-4329 (($ $) 171 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3030 ((|#1| $ (-552)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-1922 (($) 29 T CONST)) (-1933 (($) 38 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (-2292 (((-111) $ $) 65)) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) 84) (($ $ $) 64)) (-2384 (($ $ $) 81)) (** (($ $ (-900)) NIL) (($ $ (-754)) 103)) (* (($ (-900) $) 89) (($ (-754) $) 87) (($ (-552) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-582 |#1|) (-13 (-1213 |#1| (-552)) (-10 -8 (-15 -2586 ($ (-1005 (-823 (-552))) (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))))) (-15 -4060 ((-1005 (-823 (-552))) $)) (-15 -4323 ((-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $)) (-15 -1777 ($ (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))))) (-15 -3267 ((-111) $)) (-15 -3045 ($ (-1 |#1| (-552)) $)) (-15 -2019 ((-3 $ "failed") $ $ (-111))) (-15 -2507 ($ $)) (-15 -4000 ($ $ $)) (-15 -1287 ((-842) (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) (-1005 (-823 (-552))) (-1152) |#1| (-401 (-552)))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ($ $)) (-15 -2838 ($ $ |#1|)) (-15 -3435 ($ $ (-401 (-552)))) (-15 -2674 ($ $)) (-15 -4108 ($ $)) (-15 -2842 ($ $)) (-15 -1290 ($ $)) (-15 -2807 ($ $)) (-15 -3256 ($ $)) (-15 -3715 ($ $)) (-15 -1466 ($ $)) (-15 -2171 ($ $)) (-15 -4329 ($ $)) (-15 -4248 ($ $)) (-15 -2062 ($ $)) (-15 -1906 ($ $)) (-15 -4138 ($ $)) (-15 -2570 ($ $)) (-15 -3910 ($ $)) (-15 -2203 ($ $)) (-15 -2324 ($ $)) (-15 -1649 ($ $)) (-15 -1912 ($ $)) (-15 -2177 ($ $)) (-15 -3398 ($ $)) (-15 -1835 ($ $)) (-15 -2120 ($ $)) (-15 -2479 ($ $)) (-15 -1576 ($ $))) |%noBranch|))) (-1028)) (T -582)) +((-3267 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-582 *3)) (-4 *3 (-1028)))) (-2586 (*1 *1 *2 *3) (-12 (-5 *2 (-1005 (-823 (-552)))) (-5 *3 (-1132 (-2 (|:| |k| (-552)) (|:| |c| *4)))) (-4 *4 (-1028)) (-5 *1 (-582 *4)))) (-4060 (*1 *2 *1) (-12 (-5 *2 (-1005 (-823 (-552)))) (-5 *1 (-582 *3)) (-4 *3 (-1028)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-1132 (-2 (|:| |k| (-552)) (|:| |c| *3)))) (-5 *1 (-582 *3)) (-4 *3 (-1028)))) (-1777 (*1 *1 *2) (-12 (-5 *2 (-1132 (-2 (|:| |k| (-552)) (|:| |c| *3)))) (-4 *3 (-1028)) (-5 *1 (-582 *3)))) (-3045 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-552))) (-4 *3 (-1028)) (-5 *1 (-582 *3)))) (-2019 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-111)) (-5 *1 (-582 *3)) (-4 *3 (-1028)))) (-2507 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1028)))) (-4000 (*1 *1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1028)))) (-1287 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1132 (-2 (|:| |k| (-552)) (|:| |c| *6)))) (-5 *4 (-1005 (-823 (-552)))) (-5 *5 (-1152)) (-5 *7 (-401 (-552))) (-4 *6 (-1028)) (-5 *2 (-842)) (-5 *1 (-582 *6)))) (-2747 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2838 (*1 *1 *1 *2) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-3435 (*1 *1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-582 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1028)))) (-2674 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-4108 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2842 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-1290 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2807 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-3256 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-3715 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-1466 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2171 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-4329 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-4248 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2062 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-1906 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-4138 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2570 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-3910 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2203 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2324 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-1649 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-1912 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2177 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-3398 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-1835 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2120 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-2479 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) (-1576 (*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(-13 (-1213 |#1| (-552)) (-10 -8 (-15 -2586 ($ (-1005 (-823 (-552))) (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))))) (-15 -4060 ((-1005 (-823 (-552))) $)) (-15 -4323 ((-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $)) (-15 -1777 ($ (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))))) (-15 -3267 ((-111) $)) (-15 -3045 ($ (-1 |#1| (-552)) $)) (-15 -2019 ((-3 $ "failed") $ $ (-111))) (-15 -2507 ($ $)) (-15 -4000 ($ $ $)) (-15 -1287 ((-842) (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) (-1005 (-823 (-552))) (-1152) |#1| (-401 (-552)))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ($ $)) (-15 -2838 ($ $ |#1|)) (-15 -3435 ($ $ (-401 (-552)))) (-15 -2674 ($ $)) (-15 -4108 ($ $)) (-15 -2842 ($ $)) (-15 -1290 ($ $)) (-15 -2807 ($ $)) (-15 -3256 ($ $)) (-15 -3715 ($ $)) (-15 -1466 ($ $)) (-15 -2171 ($ $)) (-15 -4329 ($ $)) (-15 -4248 ($ $)) (-15 -2062 ($ $)) (-15 -1906 ($ $)) (-15 -4138 ($ $)) (-15 -2570 ($ $)) (-15 -3910 ($ $)) (-15 -2203 ($ $)) (-15 -2324 ($ $)) (-15 -1649 ($ $)) (-15 -1912 ($ $)) (-15 -2177 ($ $)) (-15 -3398 ($ $)) (-15 -1835 ($ $)) (-15 -2120 ($ $)) (-15 -2479 ($ $)) (-15 -1576 ($ $))) |%noBranch|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-1777 (($ (-1132 |#1|)) 9)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) 42)) (-2391 (((-111) $) 52)) (-2641 (((-754) $) 55) (((-754) $ (-754)) 54)) (-2624 (((-111) $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2761 (((-3 $ "failed") $ $) 44 (|has| |#1| (-544)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL (|has| |#1| (-544)))) (-1493 (((-1132 |#1|) $) 23)) (-3995 (((-754)) 51)) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1922 (($) 10 T CONST)) (-1933 (($) 14 T CONST)) (-2292 (((-111) $ $) 22)) (-2396 (($ $) 30) (($ $ $) 16)) (-2384 (($ $ $) 25)) (** (($ $ (-900)) NIL) (($ $ (-754)) 49)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-552)) 36))) +(((-583 |#1|) (-13 (-1028) (-10 -8 (-15 -1493 ((-1132 |#1|) $)) (-15 -1777 ($ (-1132 |#1|))) (-15 -2391 ((-111) $)) (-15 -2641 ((-754) $)) (-15 -2641 ((-754) $ (-754))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-552))) (IF (|has| |#1| (-544)) (-6 (-544)) |%noBranch|))) (-1028)) (T -583)) +((-1493 (*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-583 *3)) (-4 *3 (-1028)))) (-1777 (*1 *1 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-583 *3)))) (-2391 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-583 *3)) (-4 *3 (-1028)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-583 *3)) (-4 *3 (-1028)))) (-2641 (*1 *2 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-583 *3)) (-4 *3 (-1028)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1028)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1028)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-583 *3)) (-4 *3 (-1028))))) +(-13 (-1028) (-10 -8 (-15 -1493 ((-1132 |#1|) $)) (-15 -1777 ($ (-1132 |#1|))) (-15 -2391 ((-111) $)) (-15 -2641 ((-754) $)) (-15 -2641 ((-754) $ (-754))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-552))) (IF (|has| |#1| (-544)) (-6 (-544)) |%noBranch|))) +((-3516 (((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|)) 15))) +(((-584 |#1| |#2|) (-10 -7 (-15 -3516 ((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|)))) (-1189) (-1189)) (T -584)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-587 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-587 *6)) (-5 *1 (-584 *5 *6))))) +(-10 -7 (-15 -3516 ((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|)))) +((-3516 (((-1132 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-1132 |#2|)) 20) (((-1132 |#3|) (-1 |#3| |#1| |#2|) (-1132 |#1|) (-587 |#2|)) 19) (((-587 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-587 |#2|)) 18))) +(((-585 |#1| |#2| |#3|) (-10 -7 (-15 -3516 ((-587 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-587 |#2|))) (-15 -3516 ((-1132 |#3|) (-1 |#3| |#1| |#2|) (-1132 |#1|) (-587 |#2|))) (-15 -3516 ((-1132 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-1132 |#2|)))) (-1189) (-1189) (-1189)) (T -585)) +((-3516 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-587 *6)) (-5 *5 (-1132 *7)) (-4 *6 (-1189)) (-4 *7 (-1189)) (-4 *8 (-1189)) (-5 *2 (-1132 *8)) (-5 *1 (-585 *6 *7 *8)))) (-3516 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1132 *6)) (-5 *5 (-587 *7)) (-4 *6 (-1189)) (-4 *7 (-1189)) (-4 *8 (-1189)) (-5 *2 (-1132 *8)) (-5 *1 (-585 *6 *7 *8)))) (-3516 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-587 *6)) (-5 *5 (-587 *7)) (-4 *6 (-1189)) (-4 *7 (-1189)) (-4 *8 (-1189)) (-5 *2 (-587 *8)) (-5 *1 (-585 *6 *7 *8))))) +(-10 -7 (-15 -3516 ((-587 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-587 |#2|))) (-15 -3516 ((-1132 |#3|) (-1 |#3| |#1| |#2|) (-1132 |#1|) (-587 |#2|))) (-15 -3516 ((-1132 |#3|) (-1 |#3| |#1| |#2|) (-587 |#1|) (-1132 |#2|)))) +((-3542 ((|#3| |#3| (-627 (-598 |#3|)) (-627 (-1152))) 55)) (-2007 (((-166 |#2|) |#3|) 117)) (-3395 ((|#3| (-166 |#2|)) 44)) (-1847 ((|#2| |#3|) 19)) (-1518 ((|#3| |#2|) 33))) +(((-586 |#1| |#2| |#3|) (-10 -7 (-15 -3395 (|#3| (-166 |#2|))) (-15 -1847 (|#2| |#3|)) (-15 -1518 (|#3| |#2|)) (-15 -2007 ((-166 |#2|) |#3|)) (-15 -3542 (|#3| |#3| (-627 (-598 |#3|)) (-627 (-1152))))) (-13 (-544) (-830)) (-13 (-424 |#1|) (-981) (-1174)) (-13 (-424 (-166 |#1|)) (-981) (-1174))) (T -586)) +((-3542 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-627 (-598 *2))) (-5 *4 (-627 (-1152))) (-4 *2 (-13 (-424 (-166 *5)) (-981) (-1174))) (-4 *5 (-13 (-544) (-830))) (-5 *1 (-586 *5 *6 *2)) (-4 *6 (-13 (-424 *5) (-981) (-1174))))) (-2007 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-830))) (-5 *2 (-166 *5)) (-5 *1 (-586 *4 *5 *3)) (-4 *5 (-13 (-424 *4) (-981) (-1174))) (-4 *3 (-13 (-424 (-166 *4)) (-981) (-1174))))) (-1518 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-830))) (-4 *2 (-13 (-424 (-166 *4)) (-981) (-1174))) (-5 *1 (-586 *4 *3 *2)) (-4 *3 (-13 (-424 *4) (-981) (-1174))))) (-1847 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-830))) (-4 *2 (-13 (-424 *4) (-981) (-1174))) (-5 *1 (-586 *4 *2 *3)) (-4 *3 (-13 (-424 (-166 *4)) (-981) (-1174))))) (-3395 (*1 *2 *3) (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-424 *4) (-981) (-1174))) (-4 *4 (-13 (-544) (-830))) (-4 *2 (-13 (-424 (-166 *4)) (-981) (-1174))) (-5 *1 (-586 *4 *5 *2))))) +(-10 -7 (-15 -3395 (|#3| (-166 |#2|))) (-15 -1847 (|#2| |#3|)) (-15 -1518 (|#3| |#2|)) (-15 -2007 ((-166 |#2|) |#3|)) (-15 -3542 (|#3| |#3| (-627 (-598 |#3|)) (-627 (-1152))))) +((-2536 (($ (-1 (-111) |#1|) $) 17)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-2458 (($ (-1 |#1| |#1|) |#1|) 9)) (-2509 (($ (-1 (-111) |#1|) $) 13)) (-2524 (($ (-1 (-111) |#1|) $) 15)) (-1490 (((-1132 |#1|) $) 18)) (-1477 (((-842) $) NIL))) +(((-587 |#1|) (-13 (-599 (-842)) (-10 -8 (-15 -3516 ($ (-1 |#1| |#1|) $)) (-15 -2509 ($ (-1 (-111) |#1|) $)) (-15 -2524 ($ (-1 (-111) |#1|) $)) (-15 -2536 ($ (-1 (-111) |#1|) $)) (-15 -2458 ($ (-1 |#1| |#1|) |#1|)) (-15 -1490 ((-1132 |#1|) $)))) (-1189)) (T -587)) +((-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1189)) (-5 *1 (-587 *3)))) (-2509 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1189)) (-5 *1 (-587 *3)))) (-2524 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1189)) (-5 *1 (-587 *3)))) (-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1189)) (-5 *1 (-587 *3)))) (-2458 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1189)) (-5 *1 (-587 *3)))) (-1490 (*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-587 *3)) (-4 *3 (-1189))))) +(-13 (-599 (-842)) (-10 -8 (-15 -3516 ($ (-1 |#1| |#1|) $)) (-15 -2509 ($ (-1 (-111) |#1|) $)) (-15 -2524 ($ (-1 (-111) |#1|) $)) (-15 -2536 ($ (-1 (-111) |#1|) $)) (-15 -2458 ($ (-1 |#1| |#1|) |#1|)) (-15 -1490 ((-1132 |#1|) $)))) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2099 (($ (-754)) NIL (|has| |#1| (-23)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) NIL)) (-2967 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076)))) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-1541 (((-671 |#1|) $ $) NIL (|has| |#1| (-1028)))) (-2655 (($ (-754) |#1|) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2306 ((|#1| $) NIL (-12 (|has| |#1| (-981)) (|has| |#1| (-1028))))) (-3971 (((-111) $ (-754)) NIL)) (-3593 ((|#1| $) NIL (-12 (|has| |#1| (-981)) (|has| |#1| (-1028))))) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3340 ((|#1| $) NIL (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-2395 ((|#1| $ $) NIL (|has| |#1| (-1028)))) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-3917 (($ $ $) NIL (|has| |#1| (-1028)))) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) NIL)) (-2668 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-627 $)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2396 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2384 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-552) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-709))) (($ $ |#1|) NIL (|has| |#1| (-709)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-588 |#1| |#2|) (-1233 |#1|) (-1189) (-552)) (T -588)) +NIL +(-1233 |#1|) +((-3305 (((-1240) $ |#2| |#2|) 36)) (-3661 ((|#2| $) 23)) (-2285 ((|#2| $) 21)) (-3463 (($ (-1 |#3| |#3|) $) 32)) (-3516 (($ (-1 |#3| |#3|) $) 30)) (-3340 ((|#3| $) 26)) (-1942 (($ $ |#3|) 33)) (-2181 (((-111) |#3| $) 17)) (-2083 (((-627 |#3|) $) 15)) (-1985 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-589 |#1| |#2| |#3|) (-10 -8 (-15 -3305 ((-1240) |#1| |#2| |#2|)) (-15 -1942 (|#1| |#1| |#3|)) (-15 -3340 (|#3| |#1|)) (-15 -3661 (|#2| |#1|)) (-15 -2285 (|#2| |#1|)) (-15 -2181 ((-111) |#3| |#1|)) (-15 -2083 ((-627 |#3|) |#1|)) (-15 -1985 (|#3| |#1| |#2|)) (-15 -1985 (|#3| |#1| |#2| |#3|)) (-15 -3463 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3516 (|#1| (-1 |#3| |#3|) |#1|))) (-590 |#2| |#3|) (-1076) (-1189)) (T -589)) +NIL +(-10 -8 (-15 -3305 ((-1240) |#1| |#2| |#2|)) (-15 -1942 (|#1| |#1| |#3|)) (-15 -3340 (|#3| |#1|)) (-15 -3661 (|#2| |#1|)) (-15 -2285 (|#2| |#1|)) (-15 -2181 ((-111) |#3| |#1|)) (-15 -2083 ((-627 |#3|) |#1|)) (-15 -1985 (|#3| |#1| |#2|)) (-15 -1985 (|#3| |#1| |#2| |#3|)) (-15 -3463 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3516 (|#1| (-1 |#3| |#3|) |#1|))) +((-1465 (((-111) $ $) 19 (|has| |#2| (-1076)))) (-3305 (((-1240) $ |#1| |#1|) 40 (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) 8)) (-2950 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4367)))) (-3887 (($) 7 T CONST)) (-3473 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) 51)) (-3215 (((-627 |#2|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3661 ((|#1| $) 43 (|has| |#1| (-830)))) (-3114 (((-627 |#2|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#2| $) 27 (-12 (|has| |#2| (-1076)) (|has| $ (-6 -4366))))) (-2285 ((|#1| $) 44 (|has| |#1| (-830)))) (-3463 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#2| |#2|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#2| (-1076)))) (-3892 (((-627 |#1|) $) 46)) (-2358 (((-111) |#1| $) 47)) (-1498 (((-1096) $) 21 (|has| |#2| (-1076)))) (-3340 ((|#2| $) 42 (|has| |#1| (-830)))) (-1942 (($ $ |#2|) 41 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#2|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#2|))) 26 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) 25 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) 23 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#2| $) 45 (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-1509 (((-754) (-1 (-111) |#2|) $) 31 (|has| $ (-6 -4366))) (((-754) |#2| $) 28 (-12 (|has| |#2| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-842) $) 18 (|has| |#2| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#2|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#2| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-590 |#1| |#2|) (-137) (-1076) (-1189)) (T -590)) +((-2083 (*1 *2 *1) (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1189)) (-5 *2 (-627 *4)))) (-2358 (*1 *2 *3 *1) (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1189)) (-5 *2 (-111)))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1189)) (-5 *2 (-627 *3)))) (-2181 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4366)) (-4 *1 (-590 *4 *3)) (-4 *4 (-1076)) (-4 *3 (-1189)) (-4 *3 (-1076)) (-5 *2 (-111)))) (-2285 (*1 *2 *1) (-12 (-4 *1 (-590 *2 *3)) (-4 *3 (-1189)) (-4 *2 (-1076)) (-4 *2 (-830)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-590 *2 *3)) (-4 *3 (-1189)) (-4 *2 (-1076)) (-4 *2 (-830)))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1076)) (-4 *3 (-830)) (-4 *2 (-1189)))) (-1942 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-590 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1189)))) (-3305 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-590 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1189)) (-5 *2 (-1240))))) +(-13 (-482 |t#2|) (-282 |t#1| |t#2|) (-10 -8 (-15 -2083 ((-627 |t#2|) $)) (-15 -2358 ((-111) |t#1| $)) (-15 -3892 ((-627 |t#1|) $)) (IF (|has| |t#2| (-1076)) (IF (|has| $ (-6 -4366)) (-15 -2181 ((-111) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-830)) (PROGN (-15 -2285 (|t#1| $)) (-15 -3661 (|t#1| $)) (-15 -3340 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4367)) (PROGN (-15 -1942 ($ $ |t#2|)) (-15 -3305 ((-1240) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#2| (-1076)) ((-599 (-842)) -1559 (|has| |#2| (-1076)) (|has| |#2| (-599 (-842)))) ((-280 |#1| |#2|) . T) ((-282 |#1| |#2|) . T) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((-482 |#2|) . T) ((-506 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((-1076) |has| |#2| (-1076)) ((-1189) . T)) +((-1477 (((-842) $) 19) (((-128) $) 14) (($ (-128)) 13))) +(((-591) (-13 (-599 (-842)) (-599 (-128)) (-10 -8 (-15 -1477 ($ (-128)))))) (T -591)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-591))))) +(-13 (-599 (-842)) (-599 (-128)) (-10 -8 (-15 -1477 ($ (-128))))) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL) (((-1157) $) NIL) (($ (-1157)) NIL) (((-1188) $) 14) (($ (-627 (-1188))) 13)) (-2697 (((-627 (-1188)) $) 10)) (-2292 (((-111) $ $) NIL))) +(((-592) (-13 (-1059) (-599 (-1188)) (-10 -8 (-15 -1477 ($ (-627 (-1188)))) (-15 -2697 ((-627 (-1188)) $))))) (T -592)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-1188))) (-5 *1 (-592)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-627 (-1188))) (-5 *1 (-592))))) +(-13 (-1059) (-599 (-1188)) (-10 -8 (-15 -1477 ($ (-627 (-1188)))) (-15 -2697 ((-627 (-1188)) $)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2717 (((-3 $ "failed")) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-3449 (((-1235 (-671 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-1235 (-671 |#1|)) (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-2946 (((-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-3887 (($) NIL T CONST)) (-2478 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-3994 (((-3 $ "failed")) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2877 (((-671 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-671 |#1|) (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-2526 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-3029 (((-671 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-671 |#1|) $ (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-1592 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2856 (((-1148 (-931 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-357))))) (-1407 (($ $ (-900)) NIL)) (-2141 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-3343 (((-1148 |#1|) $) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-3119 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-1608 (((-1148 |#1|) $) NIL (|has| |#2| (-361 |#1|)))) (-1819 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2342 (($ (-1235 |#1|)) NIL (|has| |#2| (-411 |#1|))) (($ (-1235 |#1|) (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-2040 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-4154 (((-900)) NIL (|has| |#2| (-361 |#1|)))) (-3972 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1410 (($ $ (-900)) NIL)) (-3363 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1878 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3728 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2513 (((-3 $ "failed")) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-1425 (((-671 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-671 |#1|) (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-4131 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-2593 (((-671 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-671 |#1|) $ (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-4336 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-1548 (((-1148 (-931 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-357))))) (-2896 (($ $ (-900)) NIL)) (-1856 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-1794 (((-1148 |#1|) $) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2806 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-2798 (((-1148 |#1|) $) NIL (|has| |#2| (-361 |#1|)))) (-3485 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1595 (((-1134) $) NIL)) (-3570 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2011 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2344 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1498 (((-1096) $) NIL)) (-3361 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1985 ((|#1| $ (-552)) NIL (|has| |#2| (-411 |#1|)))) (-3133 (((-671 |#1|) (-1235 $)) NIL (|has| |#2| (-411 |#1|))) (((-1235 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-671 |#1|) (-1235 $) (-1235 $)) NIL (|has| |#2| (-361 |#1|))) (((-1235 |#1|) $ (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-3562 (($ (-1235 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-1235 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2539 (((-627 (-931 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-627 (-931 |#1|)) (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-2493 (($ $ $) NIL)) (-1822 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1477 (((-842) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2957 (((-1235 $)) NIL (|has| |#2| (-411 |#1|)))) (-1360 (((-627 (-1235 |#1|))) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-4297 (($ $ $ $) NIL)) (-3656 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3288 (($ (-671 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2743 (($ $ $) NIL)) (-3304 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3258 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3699 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1922 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) 24)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-593 |#1| |#2|) (-13 (-727 |#1|) (-599 |#2|) (-10 -8 (-15 -1477 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|))) (-169) (-727 |#1|)) (T -593)) +((-1477 (*1 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-593 *3 *2)) (-4 *2 (-727 *3))))) +(-13 (-727 |#1|) (-599 |#2|) (-10 -8 (-15 -1477 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|))) +((-1465 (((-111) $ $) NIL)) (-2035 (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) 33)) (-2642 (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL) (($) NIL)) (-3305 (((-1240) $ (-1134) (-1134)) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-1134) |#1|) 43)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-3602 (((-3 |#1| "failed") (-1134) $) 46)) (-3887 (($) NIL T CONST)) (-1496 (($ $ (-1134)) 24)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076))))) (-2265 (((-3 |#1| "failed") (-1134) $) 47) (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366))) (($ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL (|has| $ (-6 -4366)))) (-4342 (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366))) (($ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076))))) (-2091 (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076))))) (-3689 (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) 32)) (-3473 ((|#1| $ (-1134) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-1134)) NIL)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366))) (((-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-2319 (($ $) 48)) (-2849 (($ (-382)) 22) (($ (-382) (-1134)) 21)) (-3112 (((-382) $) 34)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-1134) $) NIL (|has| (-1134) (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366))) (((-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (((-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076))))) (-2285 (((-1134) $) NIL (|has| (-1134) (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367))) (($ (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-1296 (((-627 (-1134)) $) 39)) (-3619 (((-111) (-1134) $) NIL)) (-2548 (((-1134) $) 35)) (-4165 (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL)) (-3954 (($ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL)) (-3892 (((-627 (-1134)) $) NIL)) (-2358 (((-111) (-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 ((|#1| $) NIL (|has| (-1134) (-830)))) (-1503 (((-3 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) "failed") (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (($ $ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (($ $ (-627 (-288 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) 37)) (-1985 ((|#1| $ (-1134) |#1|) NIL) ((|#1| $ (-1134)) 42)) (-3028 (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL) (($) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (((-754) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (((-754) (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL)) (-1477 (((-842) $) 20)) (-2219 (($ $) 25)) (-2577 (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 19)) (-1383 (((-754) $) 41 (|has| $ (-6 -4366))))) +(((-594 |#1|) (-13 (-358 (-382) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) (-1165 (-1134) |#1|) (-10 -8 (-6 -4366) (-15 -2319 ($ $)))) (-1076)) (T -594)) +((-2319 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1076))))) +(-13 (-358 (-382) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) (-1165 (-1134) |#1|) (-10 -8 (-6 -4366) (-15 -2319 ($ $)))) +((-3082 (((-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) $) 15)) (-1296 (((-627 |#2|) $) 19)) (-3619 (((-111) |#2| $) 12))) +(((-595 |#1| |#2| |#3|) (-10 -8 (-15 -1296 ((-627 |#2|) |#1|)) (-15 -3619 ((-111) |#2| |#1|)) (-15 -3082 ((-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|))) (-596 |#2| |#3|) (-1076) (-1076)) (T -595)) +NIL +(-10 -8 (-15 -1296 ((-627 |#2|) |#1|)) (-15 -3619 ((-111) |#2| |#1|)) (-15 -3082 ((-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|))) +((-1465 (((-111) $ $) 19 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-4031 (((-111) $ (-754)) 8)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 45 (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 55 (|has| $ (-6 -4366)))) (-3602 (((-3 |#2| "failed") |#1| $) 61)) (-3887 (($) 7 T CONST)) (-3370 (($ $) 58 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366))))) (-2265 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 47 (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 46 (|has| $ (-6 -4366))) (((-3 |#2| "failed") |#1| $) 62)) (-4342 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 54 (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 56 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 53 (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 52 (|has| $ (-6 -4366)))) (-3215 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-1296 (((-627 |#1|) $) 63)) (-3619 (((-111) |#1| $) 64)) (-4165 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 39)) (-3954 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 40)) (-1498 (((-1096) $) 21 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-1503 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 51)) (-4133 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 41)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) 26 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 25 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 24 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 23 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-3028 (($) 49) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 48)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 31 (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 59 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 50)) (-1477 (((-842) $) 18 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842))))) (-2577 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 42)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-596 |#1| |#2|) (-137) (-1076) (-1076)) (T -596)) +((-3619 (*1 *2 *3 *1) (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-5 *2 (-111)))) (-1296 (*1 *2 *1) (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-5 *2 (-627 *3)))) (-2265 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-596 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076)))) (-3602 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-596 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076))))) +(-13 (-224 (-2 (|:| -3998 |t#1|) (|:| -2162 |t#2|))) (-10 -8 (-15 -3619 ((-111) |t#1| $)) (-15 -1296 ((-627 |t#1|) $)) (-15 -2265 ((-3 |t#2| "failed") |t#1| $)) (-15 -3602 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-106 #0=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T) ((-101) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) ((-599 (-842)) -1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842)))) ((-148 #0#) . T) ((-600 (-528)) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))) ((-224 #0#) . T) ((-230 #0#) . T) ((-303 #0#) -12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))) ((-482 #0#) . T) ((-506 #0# #0#) -12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))) ((-1076) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) ((-1189) . T)) +((-3475 (((-598 |#2|) |#1|) 15)) (-2224 (((-3 |#1| "failed") (-598 |#2|)) 19))) +(((-597 |#1| |#2|) (-10 -7 (-15 -3475 ((-598 |#2|) |#1|)) (-15 -2224 ((-3 |#1| "failed") (-598 |#2|)))) (-830) (-830)) (T -597)) +((-2224 (*1 *2 *3) (|partial| -12 (-5 *3 (-598 *4)) (-4 *4 (-830)) (-4 *2 (-830)) (-5 *1 (-597 *2 *4)))) (-3475 (*1 *2 *3) (-12 (-5 *2 (-598 *4)) (-5 *1 (-597 *3 *4)) (-4 *3 (-830)) (-4 *4 (-830))))) +(-10 -7 (-15 -3475 ((-598 |#2|) |#1|)) (-15 -2224 ((-3 |#1| "failed") (-598 |#2|)))) +((-1465 (((-111) $ $) NIL)) (-3320 (((-3 (-1152) "failed") $) 37)) (-2944 (((-1240) $ (-754)) 26)) (-2967 (((-754) $) 25)) (-4148 (((-113) $) 12)) (-3112 (((-1152) $) 20)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-2991 (($ (-113) (-627 |#1|) (-754)) 30) (($ (-1152)) 31)) (-2070 (((-111) $ (-113)) 18) (((-111) $ (-1152)) 16)) (-3476 (((-754) $) 22)) (-1498 (((-1096) $) NIL)) (-3562 (((-871 (-552)) $) 77 (|has| |#1| (-600 (-871 (-552))))) (((-871 (-373)) $) 84 (|has| |#1| (-600 (-871 (-373))))) (((-528) $) 69 (|has| |#1| (-600 (-528))))) (-1477 (((-842) $) 55)) (-1731 (((-627 |#1|) $) 24)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 41)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 42))) +(((-598 |#1|) (-13 (-130) (-863 |#1|) (-10 -8 (-15 -3112 ((-1152) $)) (-15 -4148 ((-113) $)) (-15 -1731 ((-627 |#1|) $)) (-15 -3476 ((-754) $)) (-15 -2991 ($ (-113) (-627 |#1|) (-754))) (-15 -2991 ($ (-1152))) (-15 -3320 ((-3 (-1152) "failed") $)) (-15 -2070 ((-111) $ (-113))) (-15 -2070 ((-111) $ (-1152))) (IF (|has| |#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|))) (-830)) (T -598)) +((-3112 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-598 *3)) (-4 *3 (-830)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-598 *3)) (-4 *3 (-830)))) (-1731 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-598 *3)) (-4 *3 (-830)))) (-3476 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-598 *3)) (-4 *3 (-830)))) (-2991 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-113)) (-5 *3 (-627 *5)) (-5 *4 (-754)) (-4 *5 (-830)) (-5 *1 (-598 *5)))) (-2991 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-598 *3)) (-4 *3 (-830)))) (-3320 (*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-598 *3)) (-4 *3 (-830)))) (-2070 (*1 *2 *1 *3) (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-598 *4)) (-4 *4 (-830)))) (-2070 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-111)) (-5 *1 (-598 *4)) (-4 *4 (-830))))) +(-13 (-130) (-863 |#1|) (-10 -8 (-15 -3112 ((-1152) $)) (-15 -4148 ((-113) $)) (-15 -1731 ((-627 |#1|) $)) (-15 -3476 ((-754) $)) (-15 -2991 ($ (-113) (-627 |#1|) (-754))) (-15 -2991 ($ (-1152))) (-15 -3320 ((-3 (-1152) "failed") $)) (-15 -2070 ((-111) $ (-113))) (-15 -2070 ((-111) $ (-1152))) (IF (|has| |#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|))) +((-1477 ((|#1| $) 6))) +(((-599 |#1|) (-137) (-1189)) (T -599)) +((-1477 (*1 *2 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-1189))))) +(-13 (-10 -8 (-15 -1477 (|t#1| $)))) +((-3562 ((|#1| $) 6))) +(((-600 |#1|) (-137) (-1189)) (T -600)) +((-3562 (*1 *2 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-1189))))) +(-13 (-10 -8 (-15 -3562 (|t#1| $)))) +((-2600 (((-3 (-1148 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 (-412 |#2|) |#2|)) 15) (((-3 (-1148 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|)) 16))) +(((-601 |#1| |#2|) (-10 -7 (-15 -2600 ((-3 (-1148 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|))) (-15 -2600 ((-3 (-1148 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 (-412 |#2|) |#2|)))) (-13 (-144) (-27) (-1017 (-552)) (-1017 (-401 (-552)))) (-1211 |#1|)) (T -601)) +((-2600 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-144) (-27) (-1017 (-552)) (-1017 (-401 (-552))))) (-5 *2 (-1148 (-401 *6))) (-5 *1 (-601 *5 *6)) (-5 *3 (-401 *6)))) (-2600 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-144) (-27) (-1017 (-552)) (-1017 (-401 (-552))))) (-4 *5 (-1211 *4)) (-5 *2 (-1148 (-401 *5))) (-5 *1 (-601 *4 *5)) (-5 *3 (-401 *5))))) +(-10 -7 (-15 -2600 ((-3 (-1148 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|))) (-15 -2600 ((-3 (-1148 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 (-412 |#2|) |#2|)))) +((-1465 (((-111) $ $) NIL)) (-1645 (($) 11 T CONST)) (-2503 (($) 12 T CONST)) (-1881 (($ $ $) 24)) (-1681 (($ $) 22)) (-1595 (((-1134) $) NIL)) (-2516 (($ $ $) 25)) (-1498 (((-1096) $) NIL)) (-1336 (($) 10 T CONST)) (-1655 (($ $ $) 26)) (-1477 (((-842) $) 30)) (-1911 (((-111) $ (|[\|\|]| -1336)) 19) (((-111) $ (|[\|\|]| -1645)) 21) (((-111) $ (|[\|\|]| -2503)) 17)) (-2520 (($ $ $) 23)) (-2292 (((-111) $ $) 15))) +(((-602) (-13 (-946) (-10 -8 (-15 -1336 ($) -3488) (-15 -1645 ($) -3488) (-15 -2503 ($) -3488) (-15 -1911 ((-111) $ (|[\|\|]| -1336))) (-15 -1911 ((-111) $ (|[\|\|]| -1645))) (-15 -1911 ((-111) $ (|[\|\|]| -2503)))))) (T -602)) +((-1336 (*1 *1) (-5 *1 (-602))) (-1645 (*1 *1) (-5 *1 (-602))) (-2503 (*1 *1) (-5 *1 (-602))) (-1911 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1336)) (-5 *2 (-111)) (-5 *1 (-602)))) (-1911 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1645)) (-5 *2 (-111)) (-5 *1 (-602)))) (-1911 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2503)) (-5 *2 (-111)) (-5 *1 (-602))))) +(-13 (-946) (-10 -8 (-15 -1336 ($) -3488) (-15 -1645 ($) -3488) (-15 -2503 ($) -3488) (-15 -1911 ((-111) $ (|[\|\|]| -1336))) (-15 -1911 ((-111) $ (|[\|\|]| -1645))) (-15 -1911 ((-111) $ (|[\|\|]| -2503))))) +((-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#2|) 10))) +(((-603 |#1| |#2|) (-10 -8 (-15 -1477 (|#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) (-604 |#2|) (-1028)) (T -603)) +NIL +(-10 -8 (-15 -1477 (|#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 34)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ |#1| $) 35))) +(((-604 |#1|) (-137) (-1028)) (T -604)) +((-1477 (*1 *1 *2) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1028))))) +(-13 (-1028) (-630 |t#1|) (-10 -8 (-15 -1477 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-709) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2422 (((-552) $) NIL (|has| |#1| (-828)))) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL)) (-2983 (((-111) $) NIL (|has| |#1| (-828)))) (-2624 (((-111) $) NIL)) (-2918 ((|#1| $) 13)) (-1508 (((-111) $) NIL (|has| |#1| (-828)))) (-1816 (($ $ $) NIL (|has| |#1| (-828)))) (-4093 (($ $ $) NIL (|has| |#1| (-828)))) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2929 ((|#3| $) 15)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL)) (-3995 (((-754)) 20)) (-3329 (($ $) NIL (|has| |#1| (-828)))) (-1922 (($) NIL T CONST)) (-1933 (($) 12 T CONST)) (-2351 (((-111) $ $) NIL (|has| |#1| (-828)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-828)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#1| (-828)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-828)))) (-2407 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-605 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|) (-15 -2407 ($ $ |#3|)) (-15 -2407 ($ |#1| |#3|)) (-15 -2918 (|#1| $)) (-15 -2929 (|#3| $)))) (-38 |#2|) (-169) (|SubsetCategory| (-709) |#2|)) (T -605)) +((-2407 (*1 *1 *1 *2) (-12 (-4 *4 (-169)) (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-709) *4)))) (-2407 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-605 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-709) *4)))) (-2918 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-38 *3)) (-5 *1 (-605 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-709) *3)))) (-2929 (*1 *2 *1) (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-709) *4)) (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|) (-15 -2407 ($ $ |#3|)) (-15 -2407 ($ |#1| |#3|)) (-15 -2918 (|#1| $)) (-15 -2929 (|#3| $)))) +((-1315 ((|#2| |#2| (-1152) (-1152)) 18))) +(((-606 |#1| |#2|) (-10 -7 (-15 -1315 (|#2| |#2| (-1152) (-1152)))) (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552))) (-13 (-1174) (-938) (-29 |#1|))) (T -606)) +((-1315 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-606 *4 *2)) (-4 *2 (-13 (-1174) (-938) (-29 *4)))))) +(-10 -7 (-15 -1315 (|#2| |#2| (-1152) (-1152)))) +((-1465 (((-111) $ $) 56)) (-3024 (((-111) $) 52)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1824 ((|#1| $) 49)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-4194 (((-2 (|:| -3043 $) (|:| -1469 (-401 |#2|))) (-401 |#2|)) 97 (|has| |#1| (-357)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) 24)) (-2040 (((-3 $ "failed") $) 75)) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-2641 (((-552) $) 19)) (-2624 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3267 (((-111) $) 36)) (-1832 (($ |#1| (-552)) 21)) (-1993 ((|#1| $) 51)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) 87 (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-2761 (((-3 $ "failed") $ $) 79)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-2718 (((-754) $) 99 (|has| |#1| (-357)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 98 (|has| |#1| (-357)))) (-2942 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-754)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-3567 (((-552) $) 34)) (-3562 (((-401 |#2|) $) 42)) (-1477 (((-842) $) 62) (($ (-552)) 32) (($ $) NIL) (($ (-401 (-552))) NIL (|has| |#1| (-1017 (-401 (-552))))) (($ |#1|) 31) (($ |#2|) 22)) (-1889 ((|#1| $ (-552)) 63)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) 29)) (-3778 (((-111) $ $) NIL)) (-1922 (($) 9 T CONST)) (-1933 (($) 12 T CONST)) (-4251 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-754)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-2292 (((-111) $ $) 17)) (-2396 (($ $) 46) (($ $ $) NIL)) (-2384 (($ $ $) 76)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 26) (($ $ $) 44))) +(((-607 |#1| |#2|) (-13 (-226 |#2|) (-544) (-600 (-401 |#2|)) (-405 |#1|) (-1017 |#2|) (-10 -8 (-15 -3267 ((-111) $)) (-15 -3567 ((-552) $)) (-15 -2641 ((-552) $)) (-15 -2014 ($ $)) (-15 -1993 (|#1| $)) (-15 -1824 (|#1| $)) (-15 -1889 (|#1| $ (-552))) (-15 -1832 ($ |#1| (-552))) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-6 (-301)) (-15 -4194 ((-2 (|:| -3043 $) (|:| -1469 (-401 |#2|))) (-401 |#2|)))) |%noBranch|))) (-544) (-1211 |#1|)) (T -607)) +((-3267 (*1 *2 *1) (-12 (-4 *3 (-544)) (-5 *2 (-111)) (-5 *1 (-607 *3 *4)) (-4 *4 (-1211 *3)))) (-3567 (*1 *2 *1) (-12 (-4 *3 (-544)) (-5 *2 (-552)) (-5 *1 (-607 *3 *4)) (-4 *4 (-1211 *3)))) (-2641 (*1 *2 *1) (-12 (-4 *3 (-544)) (-5 *2 (-552)) (-5 *1 (-607 *3 *4)) (-4 *4 (-1211 *3)))) (-2014 (*1 *1 *1) (-12 (-4 *2 (-544)) (-5 *1 (-607 *2 *3)) (-4 *3 (-1211 *2)))) (-1993 (*1 *2 *1) (-12 (-4 *2 (-544)) (-5 *1 (-607 *2 *3)) (-4 *3 (-1211 *2)))) (-1824 (*1 *2 *1) (-12 (-4 *2 (-544)) (-5 *1 (-607 *2 *3)) (-4 *3 (-1211 *2)))) (-1889 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *2 (-544)) (-5 *1 (-607 *2 *4)) (-4 *4 (-1211 *2)))) (-1832 (*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-4 *2 (-544)) (-5 *1 (-607 *2 *4)) (-4 *4 (-1211 *2)))) (-4194 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *4 (-544)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| -3043 (-607 *4 *5)) (|:| -1469 (-401 *5)))) (-5 *1 (-607 *4 *5)) (-5 *3 (-401 *5))))) +(-13 (-226 |#2|) (-544) (-600 (-401 |#2|)) (-405 |#1|) (-1017 |#2|) (-10 -8 (-15 -3267 ((-111) $)) (-15 -3567 ((-552) $)) (-15 -2641 ((-552) $)) (-15 -2014 ($ $)) (-15 -1993 (|#1| $)) (-15 -1824 (|#1| $)) (-15 -1889 (|#1| $ (-552))) (-15 -1832 ($ |#1| (-552))) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-6 (-301)) (-15 -4194 ((-2 (|:| -3043 $) (|:| -1469 (-401 |#2|))) (-401 |#2|)))) |%noBranch|))) +((-1361 (((-627 |#6|) (-627 |#4|) (-111)) 47)) (-2486 ((|#6| |#6|) 40))) +(((-608 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2486 (|#6| |#6|)) (-15 -1361 ((-627 |#6|) (-627 |#4|) (-111)))) (-445) (-776) (-830) (-1042 |#1| |#2| |#3|) (-1048 |#1| |#2| |#3| |#4|) (-1085 |#1| |#2| |#3| |#4|)) (T -608)) +((-1361 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 *10)) (-5 *1 (-608 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1048 *5 *6 *7 *8)) (-4 *10 (-1085 *5 *6 *7 *8)))) (-2486 (*1 *2 *2) (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *1 (-608 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *2 (-1085 *3 *4 *5 *6))))) +(-10 -7 (-15 -2486 (|#6| |#6|)) (-15 -1361 ((-627 |#6|) (-627 |#4|) (-111)))) +((-2156 (((-111) |#3| (-754) (-627 |#3|)) 23)) (-3746 (((-3 (-2 (|:| |polfac| (-627 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-627 (-1148 |#3|)))) "failed") |#3| (-627 (-1148 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2101 (-627 (-2 (|:| |irr| |#4|) (|:| -3594 (-552)))))) (-627 |#3|) (-627 |#1|) (-627 |#3|)) 55))) +(((-609 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2156 ((-111) |#3| (-754) (-627 |#3|))) (-15 -3746 ((-3 (-2 (|:| |polfac| (-627 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-627 (-1148 |#3|)))) "failed") |#3| (-627 (-1148 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2101 (-627 (-2 (|:| |irr| |#4|) (|:| -3594 (-552)))))) (-627 |#3|) (-627 |#1|) (-627 |#3|)))) (-830) (-776) (-301) (-928 |#3| |#2| |#1|)) (T -609)) +((-3746 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2101 (-627 (-2 (|:| |irr| *10) (|:| -3594 (-552))))))) (-5 *6 (-627 *3)) (-5 *7 (-627 *8)) (-4 *8 (-830)) (-4 *3 (-301)) (-4 *10 (-928 *3 *9 *8)) (-4 *9 (-776)) (-5 *2 (-2 (|:| |polfac| (-627 *10)) (|:| |correct| *3) (|:| |corrfact| (-627 (-1148 *3))))) (-5 *1 (-609 *8 *9 *3 *10)) (-5 *4 (-627 (-1148 *3))))) (-2156 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-754)) (-5 *5 (-627 *3)) (-4 *3 (-301)) (-4 *6 (-830)) (-4 *7 (-776)) (-5 *2 (-111)) (-5 *1 (-609 *6 *7 *3 *8)) (-4 *8 (-928 *3 *7 *6))))) +(-10 -7 (-15 -2156 ((-111) |#3| (-754) (-627 |#3|))) (-15 -3746 ((-3 (-2 (|:| |polfac| (-627 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-627 (-1148 |#3|)))) "failed") |#3| (-627 (-1148 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2101 (-627 (-2 (|:| |irr| |#4|) (|:| -3594 (-552)))))) (-627 |#3|) (-627 |#1|) (-627 |#3|)))) +((-1465 (((-111) $ $) NIL)) (-3089 (((-1111) $) 11)) (-3078 (((-1111) $) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 19) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) +(((-610) (-13 (-1059) (-10 -8 (-15 -3078 ((-1111) $)) (-15 -3089 ((-1111) $))))) (T -610)) +((-3078 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-610)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-610))))) +(-13 (-1059) (-10 -8 (-15 -3078 ((-1111) $)) (-15 -3089 ((-1111) $)))) +((-1465 (((-111) $ $) NIL)) (-1671 (((-627 |#1|) $) NIL)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-3627 (($ $) 67)) (-4135 (((-646 |#1| |#2|) $) 52)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 70)) (-3333 (((-627 (-288 |#2|)) $ $) 33)) (-1498 (((-1096) $) NIL)) (-3154 (($ (-646 |#1| |#2|)) 48)) (-2616 (($ $ $) NIL)) (-2493 (($ $ $) NIL)) (-1477 (((-842) $) 58) (((-1250 |#1| |#2|) $) NIL) (((-1255 |#1| |#2|) $) 66)) (-1933 (($) 53 T CONST)) (-1712 (((-627 (-2 (|:| |k| (-654 |#1|)) (|:| |c| |#2|))) $) 31)) (-4346 (((-627 (-646 |#1| |#2|)) (-627 |#1|)) 65)) (-1880 (((-627 (-2 (|:| |k| (-872 |#1|)) (|:| |c| |#2|))) $) 37)) (-2292 (((-111) $ $) 54)) (-2407 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ $ $) 44))) +(((-611 |#1| |#2| |#3|) (-13 (-466) (-10 -8 (-15 -3154 ($ (-646 |#1| |#2|))) (-15 -4135 ((-646 |#1| |#2|) $)) (-15 -1880 ((-627 (-2 (|:| |k| (-872 |#1|)) (|:| |c| |#2|))) $)) (-15 -1477 ((-1250 |#1| |#2|) $)) (-15 -1477 ((-1255 |#1| |#2|) $)) (-15 -3627 ($ $)) (-15 -1671 ((-627 |#1|) $)) (-15 -4346 ((-627 (-646 |#1| |#2|)) (-627 |#1|))) (-15 -1712 ((-627 (-2 (|:| |k| (-654 |#1|)) (|:| |c| |#2|))) $)) (-15 -3333 ((-627 (-288 |#2|)) $ $)))) (-830) (-13 (-169) (-700 (-401 (-552)))) (-900)) (T -611)) +((-3154 (*1 *1 *2) (-12 (-5 *2 (-646 *3 *4)) (-4 *3 (-830)) (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-5 *1 (-611 *3 *4 *5)) (-14 *5 (-900)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-646 *3 *4)) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) (-1880 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |k| (-872 *3)) (|:| |c| *4)))) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1250 *3 *4)) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1255 *3 *4)) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) (-3627 (*1 *1 *1) (-12 (-5 *1 (-611 *2 *3 *4)) (-4 *2 (-830)) (-4 *3 (-13 (-169) (-700 (-401 (-552))))) (-14 *4 (-900)))) (-1671 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) (-4346 (*1 *2 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-830)) (-5 *2 (-627 (-646 *4 *5))) (-5 *1 (-611 *4 *5 *6)) (-4 *5 (-13 (-169) (-700 (-401 (-552))))) (-14 *6 (-900)))) (-1712 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |k| (-654 *3)) (|:| |c| *4)))) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) (-3333 (*1 *2 *1 *1) (-12 (-5 *2 (-627 (-288 *4))) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900))))) +(-13 (-466) (-10 -8 (-15 -3154 ($ (-646 |#1| |#2|))) (-15 -4135 ((-646 |#1| |#2|) $)) (-15 -1880 ((-627 (-2 (|:| |k| (-872 |#1|)) (|:| |c| |#2|))) $)) (-15 -1477 ((-1250 |#1| |#2|) $)) (-15 -1477 ((-1255 |#1| |#2|) $)) (-15 -3627 ($ $)) (-15 -1671 ((-627 |#1|) $)) (-15 -4346 ((-627 (-646 |#1| |#2|)) (-627 |#1|))) (-15 -1712 ((-627 (-2 (|:| |k| (-654 |#1|)) (|:| |c| |#2|))) $)) (-15 -3333 ((-627 (-288 |#2|)) $ $)))) +((-1361 (((-627 (-1122 |#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|)))) (-627 (-763 |#1| (-844 |#2|))) (-111)) 72) (((-627 (-1025 |#1| |#2|)) (-627 (-763 |#1| (-844 |#2|))) (-111)) 58)) (-3583 (((-111) (-627 (-763 |#1| (-844 |#2|)))) 23)) (-4044 (((-627 (-1122 |#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|)))) (-627 (-763 |#1| (-844 |#2|))) (-111)) 71)) (-2546 (((-627 (-1025 |#1| |#2|)) (-627 (-763 |#1| (-844 |#2|))) (-111)) 57)) (-2875 (((-627 (-763 |#1| (-844 |#2|))) (-627 (-763 |#1| (-844 |#2|)))) 27)) (-3287 (((-3 (-627 (-763 |#1| (-844 |#2|))) "failed") (-627 (-763 |#1| (-844 |#2|)))) 26))) +(((-612 |#1| |#2|) (-10 -7 (-15 -3583 ((-111) (-627 (-763 |#1| (-844 |#2|))))) (-15 -3287 ((-3 (-627 (-763 |#1| (-844 |#2|))) "failed") (-627 (-763 |#1| (-844 |#2|))))) (-15 -2875 ((-627 (-763 |#1| (-844 |#2|))) (-627 (-763 |#1| (-844 |#2|))))) (-15 -2546 ((-627 (-1025 |#1| |#2|)) (-627 (-763 |#1| (-844 |#2|))) (-111))) (-15 -4044 ((-627 (-1122 |#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|)))) (-627 (-763 |#1| (-844 |#2|))) (-111))) (-15 -1361 ((-627 (-1025 |#1| |#2|)) (-627 (-763 |#1| (-844 |#2|))) (-111))) (-15 -1361 ((-627 (-1122 |#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|)))) (-627 (-763 |#1| (-844 |#2|))) (-111)))) (-445) (-627 (-1152))) (T -612)) +((-1361 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-763 *5 (-844 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) (-14 *6 (-627 (-1152))) (-5 *2 (-627 (-1122 *5 (-523 (-844 *6)) (-844 *6) (-763 *5 (-844 *6))))) (-5 *1 (-612 *5 *6)))) (-1361 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-763 *5 (-844 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) (-14 *6 (-627 (-1152))) (-5 *2 (-627 (-1025 *5 *6))) (-5 *1 (-612 *5 *6)))) (-4044 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-763 *5 (-844 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) (-14 *6 (-627 (-1152))) (-5 *2 (-627 (-1122 *5 (-523 (-844 *6)) (-844 *6) (-763 *5 (-844 *6))))) (-5 *1 (-612 *5 *6)))) (-2546 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-763 *5 (-844 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) (-14 *6 (-627 (-1152))) (-5 *2 (-627 (-1025 *5 *6))) (-5 *1 (-612 *5 *6)))) (-2875 (*1 *2 *2) (-12 (-5 *2 (-627 (-763 *3 (-844 *4)))) (-4 *3 (-445)) (-14 *4 (-627 (-1152))) (-5 *1 (-612 *3 *4)))) (-3287 (*1 *2 *2) (|partial| -12 (-5 *2 (-627 (-763 *3 (-844 *4)))) (-4 *3 (-445)) (-14 *4 (-627 (-1152))) (-5 *1 (-612 *3 *4)))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-627 (-763 *4 (-844 *5)))) (-4 *4 (-445)) (-14 *5 (-627 (-1152))) (-5 *2 (-111)) (-5 *1 (-612 *4 *5))))) +(-10 -7 (-15 -3583 ((-111) (-627 (-763 |#1| (-844 |#2|))))) (-15 -3287 ((-3 (-627 (-763 |#1| (-844 |#2|))) "failed") (-627 (-763 |#1| (-844 |#2|))))) (-15 -2875 ((-627 (-763 |#1| (-844 |#2|))) (-627 (-763 |#1| (-844 |#2|))))) (-15 -2546 ((-627 (-1025 |#1| |#2|)) (-627 (-763 |#1| (-844 |#2|))) (-111))) (-15 -4044 ((-627 (-1122 |#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|)))) (-627 (-763 |#1| (-844 |#2|))) (-111))) (-15 -1361 ((-627 (-1025 |#1| |#2|)) (-627 (-763 |#1| (-844 |#2|))) (-111))) (-15 -1361 ((-627 (-1122 |#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|)))) (-627 (-763 |#1| (-844 |#2|))) (-111)))) +((-1607 (($ $) 38)) (-1467 (($ $) 21)) (-1584 (($ $) 37)) (-1445 (($ $) 22)) (-1628 (($ $) 36)) (-1492 (($ $) 23)) (-2951 (($) 48)) (-4135 (($ $) 45)) (-2059 (($ $) 17)) (-3096 (($ $ (-1068 $)) 7) (($ $ (-1152)) 6)) (-3154 (($ $) 46)) (-1398 (($ $) 15)) (-1430 (($ $) 16)) (-1640 (($ $) 35)) (-1502 (($ $) 24)) (-1615 (($ $) 34)) (-1479 (($ $) 25)) (-1596 (($ $) 33)) (-1456 (($ $) 26)) (-1673 (($ $) 44)) (-1534 (($ $) 32)) (-1652 (($ $) 43)) (-1513 (($ $) 31)) (-1697 (($ $) 42)) (-1561 (($ $) 30)) (-3519 (($ $) 41)) (-1575 (($ $) 29)) (-1686 (($ $) 40)) (-1547 (($ $) 28)) (-1661 (($ $) 39)) (-1524 (($ $) 27)) (-3903 (($ $) 19)) (-2499 (($ $) 20)) (-4173 (($ $) 18)) (** (($ $ $) 47))) +(((-613) (-137)) (T -613)) +((-2499 (*1 *1 *1) (-4 *1 (-613))) (-3903 (*1 *1 *1) (-4 *1 (-613))) (-4173 (*1 *1 *1) (-4 *1 (-613))) (-2059 (*1 *1 *1) (-4 *1 (-613))) (-1430 (*1 *1 *1) (-4 *1 (-613))) (-1398 (*1 *1 *1) (-4 *1 (-613)))) +(-13 (-938) (-1174) (-10 -8 (-15 -2499 ($ $)) (-15 -3903 ($ $)) (-15 -4173 ($ $)) (-15 -2059 ($ $)) (-15 -1430 ($ $)) (-15 -1398 ($ $)))) +(((-35) . T) ((-94) . T) ((-278) . T) ((-485) . T) ((-938) . T) ((-1174) . T) ((-1177) . T)) +((-4148 (((-113) (-113)) 83)) (-2059 ((|#2| |#2|) 30)) (-3096 ((|#2| |#2| (-1068 |#2|)) 79) ((|#2| |#2| (-1152)) 52)) (-1398 ((|#2| |#2|) 29)) (-1430 ((|#2| |#2|) 31)) (-3749 (((-111) (-113)) 34)) (-3903 ((|#2| |#2|) 26)) (-2499 ((|#2| |#2|) 28)) (-4173 ((|#2| |#2|) 27))) +(((-614 |#1| |#2|) (-10 -7 (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 -2499 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -4173 (|#2| |#2|)) (-15 -2059 (|#2| |#2|)) (-15 -1398 (|#2| |#2|)) (-15 -1430 (|#2| |#2|)) (-15 -3096 (|#2| |#2| (-1152))) (-15 -3096 (|#2| |#2| (-1068 |#2|)))) (-13 (-830) (-544)) (-13 (-424 |#1|) (-981) (-1174))) (T -614)) +((-3096 (*1 *2 *2 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-13 (-424 *4) (-981) (-1174))) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-614 *4 *2)))) (-3096 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-614 *4 *2)) (-4 *2 (-13 (-424 *4) (-981) (-1174))))) (-1430 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) (-4 *2 (-13 (-424 *3) (-981) (-1174))))) (-1398 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) (-4 *2 (-13 (-424 *3) (-981) (-1174))))) (-2059 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) (-4 *2 (-13 (-424 *3) (-981) (-1174))))) (-4173 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) (-4 *2 (-13 (-424 *3) (-981) (-1174))))) (-3903 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) (-4 *2 (-13 (-424 *3) (-981) (-1174))))) (-2499 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) (-4 *2 (-13 (-424 *3) (-981) (-1174))))) (-4148 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *4)) (-4 *4 (-13 (-424 *3) (-981) (-1174))))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) (-5 *1 (-614 *4 *5)) (-4 *5 (-13 (-424 *4) (-981) (-1174)))))) +(-10 -7 (-15 -3749 ((-111) (-113))) (-15 -4148 ((-113) (-113))) (-15 -2499 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -4173 (|#2| |#2|)) (-15 -2059 (|#2| |#2|)) (-15 -1398 (|#2| |#2|)) (-15 -1430 (|#2| |#2|)) (-15 -3096 (|#2| |#2| (-1152))) (-15 -3096 (|#2| |#2| (-1068 |#2|)))) +((-2781 (((-474 |#1| |#2|) (-242 |#1| |#2|)) 53)) (-2738 (((-627 (-242 |#1| |#2|)) (-627 (-474 |#1| |#2|))) 68)) (-1326 (((-474 |#1| |#2|) (-627 (-474 |#1| |#2|)) (-844 |#1|)) 70) (((-474 |#1| |#2|) (-627 (-474 |#1| |#2|)) (-627 (-474 |#1| |#2|)) (-844 |#1|)) 69)) (-4213 (((-2 (|:| |gblist| (-627 (-242 |#1| |#2|))) (|:| |gvlist| (-627 (-552)))) (-627 (-474 |#1| |#2|))) 108)) (-3936 (((-627 (-474 |#1| |#2|)) (-844 |#1|) (-627 (-474 |#1| |#2|)) (-627 (-474 |#1| |#2|))) 83)) (-2940 (((-2 (|:| |glbase| (-627 (-242 |#1| |#2|))) (|:| |glval| (-627 (-552)))) (-627 (-242 |#1| |#2|))) 118)) (-1624 (((-1235 |#2|) (-474 |#1| |#2|) (-627 (-474 |#1| |#2|))) 58)) (-3106 (((-627 (-474 |#1| |#2|)) (-627 (-474 |#1| |#2|))) 41)) (-2431 (((-242 |#1| |#2|) (-242 |#1| |#2|) (-627 (-242 |#1| |#2|))) 50)) (-4269 (((-242 |#1| |#2|) (-627 |#2|) (-242 |#1| |#2|) (-627 (-242 |#1| |#2|))) 91))) +(((-615 |#1| |#2|) (-10 -7 (-15 -4213 ((-2 (|:| |gblist| (-627 (-242 |#1| |#2|))) (|:| |gvlist| (-627 (-552)))) (-627 (-474 |#1| |#2|)))) (-15 -2940 ((-2 (|:| |glbase| (-627 (-242 |#1| |#2|))) (|:| |glval| (-627 (-552)))) (-627 (-242 |#1| |#2|)))) (-15 -2738 ((-627 (-242 |#1| |#2|)) (-627 (-474 |#1| |#2|)))) (-15 -1326 ((-474 |#1| |#2|) (-627 (-474 |#1| |#2|)) (-627 (-474 |#1| |#2|)) (-844 |#1|))) (-15 -1326 ((-474 |#1| |#2|) (-627 (-474 |#1| |#2|)) (-844 |#1|))) (-15 -3106 ((-627 (-474 |#1| |#2|)) (-627 (-474 |#1| |#2|)))) (-15 -1624 ((-1235 |#2|) (-474 |#1| |#2|) (-627 (-474 |#1| |#2|)))) (-15 -4269 ((-242 |#1| |#2|) (-627 |#2|) (-242 |#1| |#2|) (-627 (-242 |#1| |#2|)))) (-15 -3936 ((-627 (-474 |#1| |#2|)) (-844 |#1|) (-627 (-474 |#1| |#2|)) (-627 (-474 |#1| |#2|)))) (-15 -2431 ((-242 |#1| |#2|) (-242 |#1| |#2|) (-627 (-242 |#1| |#2|)))) (-15 -2781 ((-474 |#1| |#2|) (-242 |#1| |#2|)))) (-627 (-1152)) (-445)) (T -615)) +((-2781 (*1 *2 *3) (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-445)) (-5 *2 (-474 *4 *5)) (-5 *1 (-615 *4 *5)))) (-2431 (*1 *2 *2 *3) (-12 (-5 *3 (-627 (-242 *4 *5))) (-5 *2 (-242 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-445)) (-5 *1 (-615 *4 *5)))) (-3936 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-627 (-474 *4 *5))) (-5 *3 (-844 *4)) (-14 *4 (-627 (-1152))) (-4 *5 (-445)) (-5 *1 (-615 *4 *5)))) (-4269 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-627 *6)) (-5 *4 (-627 (-242 *5 *6))) (-4 *6 (-445)) (-5 *2 (-242 *5 *6)) (-14 *5 (-627 (-1152))) (-5 *1 (-615 *5 *6)))) (-1624 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-474 *5 *6))) (-5 *3 (-474 *5 *6)) (-14 *5 (-627 (-1152))) (-4 *6 (-445)) (-5 *2 (-1235 *6)) (-5 *1 (-615 *5 *6)))) (-3106 (*1 *2 *2) (-12 (-5 *2 (-627 (-474 *3 *4))) (-14 *3 (-627 (-1152))) (-4 *4 (-445)) (-5 *1 (-615 *3 *4)))) (-1326 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-474 *5 *6))) (-5 *4 (-844 *5)) (-14 *5 (-627 (-1152))) (-5 *2 (-474 *5 *6)) (-5 *1 (-615 *5 *6)) (-4 *6 (-445)))) (-1326 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-627 (-474 *5 *6))) (-5 *4 (-844 *5)) (-14 *5 (-627 (-1152))) (-5 *2 (-474 *5 *6)) (-5 *1 (-615 *5 *6)) (-4 *6 (-445)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-627 (-474 *4 *5))) (-14 *4 (-627 (-1152))) (-4 *5 (-445)) (-5 *2 (-627 (-242 *4 *5))) (-5 *1 (-615 *4 *5)))) (-2940 (*1 *2 *3) (-12 (-14 *4 (-627 (-1152))) (-4 *5 (-445)) (-5 *2 (-2 (|:| |glbase| (-627 (-242 *4 *5))) (|:| |glval| (-627 (-552))))) (-5 *1 (-615 *4 *5)) (-5 *3 (-627 (-242 *4 *5))))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-627 (-474 *4 *5))) (-14 *4 (-627 (-1152))) (-4 *5 (-445)) (-5 *2 (-2 (|:| |gblist| (-627 (-242 *4 *5))) (|:| |gvlist| (-627 (-552))))) (-5 *1 (-615 *4 *5))))) +(-10 -7 (-15 -4213 ((-2 (|:| |gblist| (-627 (-242 |#1| |#2|))) (|:| |gvlist| (-627 (-552)))) (-627 (-474 |#1| |#2|)))) (-15 -2940 ((-2 (|:| |glbase| (-627 (-242 |#1| |#2|))) (|:| |glval| (-627 (-552)))) (-627 (-242 |#1| |#2|)))) (-15 -2738 ((-627 (-242 |#1| |#2|)) (-627 (-474 |#1| |#2|)))) (-15 -1326 ((-474 |#1| |#2|) (-627 (-474 |#1| |#2|)) (-627 (-474 |#1| |#2|)) (-844 |#1|))) (-15 -1326 ((-474 |#1| |#2|) (-627 (-474 |#1| |#2|)) (-844 |#1|))) (-15 -3106 ((-627 (-474 |#1| |#2|)) (-627 (-474 |#1| |#2|)))) (-15 -1624 ((-1235 |#2|) (-474 |#1| |#2|) (-627 (-474 |#1| |#2|)))) (-15 -4269 ((-242 |#1| |#2|) (-627 |#2|) (-242 |#1| |#2|) (-627 (-242 |#1| |#2|)))) (-15 -3936 ((-627 (-474 |#1| |#2|)) (-844 |#1|) (-627 (-474 |#1| |#2|)) (-627 (-474 |#1| |#2|)))) (-15 -2431 ((-242 |#1| |#2|) (-242 |#1| |#2|) (-627 (-242 |#1| |#2|)))) (-15 -2781 ((-474 |#1| |#2|) (-242 |#1| |#2|)))) +((-1465 (((-111) $ $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076))))) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))))) NIL)) (-3305 (((-1240) $ (-1134) (-1134)) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 (((-52) $ (-1134) (-52)) 16) (((-52) $ (-1152) (-52)) 17)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-3602 (((-3 (-52) "failed") (-1134) $) NIL)) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076))))) (-2265 (($ (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-3 (-52) "failed") (-1134) $) NIL)) (-4342 (($ (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $ (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076)))) (((-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $ (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-3473 (((-52) $ (-1134) (-52)) NIL (|has| $ (-6 -4367)))) (-3413 (((-52) $ (-1134)) NIL)) (-3215 (((-627 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-627 (-52)) $) NIL (|has| $ (-6 -4366)))) (-2319 (($ $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-1134) $) NIL (|has| (-1134) (-830)))) (-3114 (((-627 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-627 (-52)) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076)))) (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-52) (-1076))))) (-2285 (((-1134) $) NIL (|has| (-1134) (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4367))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1284 (($ (-382)) 9)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076))))) (-1296 (((-627 (-1134)) $) NIL)) (-3619 (((-111) (-1134) $) NIL)) (-4165 (((-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) $) NIL)) (-3954 (($ (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) $) NIL)) (-3892 (((-627 (-1134)) $) NIL)) (-2358 (((-111) (-1134) $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076))))) (-3340 (((-52) $) NIL (|has| (-1134) (-830)))) (-1503 (((-3 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) "failed") (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL)) (-1942 (($ $ (-52)) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076)))) (($ $ (-288 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076)))) (($ $ (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076)))) (($ $ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076)))) (($ $ (-627 (-52)) (-627 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076)))) (($ $ (-288 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076)))) (($ $ (-627 (-288 (-52)))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-52) (-1076))))) (-2083 (((-627 (-52)) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 (((-52) $ (-1134)) 14) (((-52) $ (-1134) (-52)) NIL) (((-52) $ (-1152)) 15)) (-3028 (($) NIL) (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))))) NIL)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076)))) (((-754) (-52) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-52) (-1076)))) (((-754) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))))) NIL)) (-1477 (((-842) $) NIL (-1559 (|has| (-52) (-599 (-842))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-599 (-842)))))) (-2577 (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))))) NIL)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 (-52))) (-1076))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-616) (-13 (-1165 (-1134) (-52)) (-10 -8 (-15 -1284 ($ (-382))) (-15 -2319 ($ $)) (-15 -1985 ((-52) $ (-1152))) (-15 -2950 ((-52) $ (-1152) (-52)))))) (T -616)) +((-1284 (*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-616)))) (-2319 (*1 *1 *1) (-5 *1 (-616))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-616)))) (-2950 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1152)) (-5 *1 (-616))))) +(-13 (-1165 (-1134) (-52)) (-10 -8 (-15 -1284 ($ (-382))) (-15 -2319 ($ $)) (-15 -1985 ((-52) $ (-1152))) (-15 -2950 ((-52) $ (-1152) (-52))))) +((-2407 (($ $ |#2|) 10))) +(((-617 |#1| |#2|) (-10 -8 (-15 -2407 (|#1| |#1| |#2|))) (-618 |#2|) (-169)) (T -617)) +NIL +(-10 -8 (-15 -2407 (|#1| |#1| |#2|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1490 (($ $ $) 29)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 28 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-618 |#1|) (-137) (-169)) (T -618)) +((-1490 (*1 *1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-169)))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-169)) (-4 *2 (-357))))) +(-13 (-700 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -1490 ($ $ $)) (IF (|has| |t#1| (-357)) (-15 -2407 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-700 |#1|) . T) ((-1034 |#1|) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2717 (((-3 $ "failed")) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-3449 (((-1235 (-671 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-1235 (-671 |#1|)) (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-2946 (((-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-3887 (($) NIL T CONST)) (-2478 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-3994 (((-3 $ "failed")) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2877 (((-671 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-671 |#1|) (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-2526 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-3029 (((-671 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-671 |#1|) $ (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-1592 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2856 (((-1148 (-931 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-357))))) (-1407 (($ $ (-900)) NIL)) (-2141 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-3343 (((-1148 |#1|) $) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-3119 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-1608 (((-1148 |#1|) $) NIL (|has| |#2| (-361 |#1|)))) (-1819 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2342 (($ (-1235 |#1|)) NIL (|has| |#2| (-411 |#1|))) (($ (-1235 |#1|) (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-2040 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-4154 (((-900)) NIL (|has| |#2| (-361 |#1|)))) (-3972 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1410 (($ $ (-900)) NIL)) (-3363 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1878 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3728 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2513 (((-3 $ "failed")) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-1425 (((-671 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-671 |#1|) (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-4131 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-2593 (((-671 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-671 |#1|) $ (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-4336 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-1548 (((-1148 (-931 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-357))))) (-2896 (($ $ (-900)) NIL)) (-1856 ((|#1| $) NIL (|has| |#2| (-361 |#1|)))) (-1794 (((-1148 |#1|) $) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-2806 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-2798 (((-1148 |#1|) $) NIL (|has| |#2| (-361 |#1|)))) (-3485 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1595 (((-1134) $) NIL)) (-3570 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2011 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-2344 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1498 (((-1096) $) NIL)) (-3361 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1985 ((|#1| $ (-552)) NIL (|has| |#2| (-411 |#1|)))) (-3133 (((-671 |#1|) (-1235 $)) NIL (|has| |#2| (-411 |#1|))) (((-1235 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-671 |#1|) (-1235 $) (-1235 $)) NIL (|has| |#2| (-361 |#1|))) (((-1235 |#1|) $ (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-3562 (($ (-1235 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-1235 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2539 (((-627 (-931 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-627 (-931 |#1|)) (-1235 $)) NIL (|has| |#2| (-361 |#1|)))) (-2493 (($ $ $) NIL)) (-1822 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1477 (((-842) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2957 (((-1235 $)) NIL (|has| |#2| (-411 |#1|)))) (-1360 (((-627 (-1235 |#1|))) NIL (-1559 (-12 (|has| |#2| (-361 |#1|)) (|has| |#1| (-544))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-544)))))) (-4297 (($ $ $ $) NIL)) (-3656 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3288 (($ (-671 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2743 (($ $ $) NIL)) (-3304 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3258 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-3699 (((-111)) NIL (|has| |#2| (-361 |#1|)))) (-1922 (($) 15 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) 17)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-619 |#1| |#2|) (-13 (-727 |#1|) (-599 |#2|) (-10 -8 (-15 -1477 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|))) (-169) (-727 |#1|)) (T -619)) +((-1477 (*1 *1 *2) (-12 (-4 *3 (-169)) (-5 *1 (-619 *3 *2)) (-4 *2 (-727 *3))))) +(-13 (-727 |#1|) (-599 |#2|) (-10 -8 (-15 -1477 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-361 |#1|)) (-6 (-361 |#1|)) |%noBranch|))) +((-1484 (((-3 (-823 |#2|) "failed") |#2| (-288 |#2|) (-1134)) 82) (((-3 (-823 |#2|) (-2 (|:| |leftHandLimit| (-3 (-823 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-823 |#2|) "failed"))) "failed") |#2| (-288 (-823 |#2|))) 104)) (-2008 (((-3 (-816 |#2|) "failed") |#2| (-288 (-816 |#2|))) 109))) +(((-620 |#1| |#2|) (-10 -7 (-15 -1484 ((-3 (-823 |#2|) (-2 (|:| |leftHandLimit| (-3 (-823 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-823 |#2|) "failed"))) "failed") |#2| (-288 (-823 |#2|)))) (-15 -2008 ((-3 (-816 |#2|) "failed") |#2| (-288 (-816 |#2|)))) (-15 -1484 ((-3 (-823 |#2|) "failed") |#2| (-288 |#2|) (-1134)))) (-13 (-445) (-830) (-1017 (-552)) (-623 (-552))) (-13 (-27) (-1174) (-424 |#1|))) (T -620)) +((-1484 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-288 *3)) (-5 *5 (-1134)) (-4 *3 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-823 *3)) (-5 *1 (-620 *6 *3)))) (-2008 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-288 (-816 *3))) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-816 *3)) (-5 *1 (-620 *5 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))))) (-1484 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-823 *3))) (-4 *3 (-13 (-27) (-1174) (-424 *5))) (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-3 (-823 *3) (-2 (|:| |leftHandLimit| (-3 (-823 *3) "failed")) (|:| |rightHandLimit| (-3 (-823 *3) "failed"))) "failed")) (-5 *1 (-620 *5 *3))))) +(-10 -7 (-15 -1484 ((-3 (-823 |#2|) (-2 (|:| |leftHandLimit| (-3 (-823 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-823 |#2|) "failed"))) "failed") |#2| (-288 (-823 |#2|)))) (-15 -2008 ((-3 (-816 |#2|) "failed") |#2| (-288 (-816 |#2|)))) (-15 -1484 ((-3 (-823 |#2|) "failed") |#2| (-288 |#2|) (-1134)))) +((-1484 (((-3 (-823 (-401 (-931 |#1|))) "failed") (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|))) (-1134)) 80) (((-3 (-823 (-401 (-931 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed"))) "failed") (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|)))) 20) (((-3 (-823 (-401 (-931 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed"))) "failed") (-401 (-931 |#1|)) (-288 (-823 (-931 |#1|)))) 35)) (-2008 (((-816 (-401 (-931 |#1|))) (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|)))) 23) (((-816 (-401 (-931 |#1|))) (-401 (-931 |#1|)) (-288 (-816 (-931 |#1|)))) 43))) +(((-621 |#1|) (-10 -7 (-15 -1484 ((-3 (-823 (-401 (-931 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed"))) "failed") (-401 (-931 |#1|)) (-288 (-823 (-931 |#1|))))) (-15 -1484 ((-3 (-823 (-401 (-931 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed"))) "failed") (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|))))) (-15 -2008 ((-816 (-401 (-931 |#1|))) (-401 (-931 |#1|)) (-288 (-816 (-931 |#1|))))) (-15 -2008 ((-816 (-401 (-931 |#1|))) (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|))))) (-15 -1484 ((-3 (-823 (-401 (-931 |#1|))) "failed") (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|))) (-1134)))) (-445)) (T -621)) +((-1484 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-288 (-401 (-931 *6)))) (-5 *5 (-1134)) (-5 *3 (-401 (-931 *6))) (-4 *6 (-445)) (-5 *2 (-823 *3)) (-5 *1 (-621 *6)))) (-2008 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-401 (-931 *5)))) (-5 *3 (-401 (-931 *5))) (-4 *5 (-445)) (-5 *2 (-816 *3)) (-5 *1 (-621 *5)))) (-2008 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-816 (-931 *5)))) (-4 *5 (-445)) (-5 *2 (-816 (-401 (-931 *5)))) (-5 *1 (-621 *5)) (-5 *3 (-401 (-931 *5))))) (-1484 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-401 (-931 *5)))) (-5 *3 (-401 (-931 *5))) (-4 *5 (-445)) (-5 *2 (-3 (-823 *3) (-2 (|:| |leftHandLimit| (-3 (-823 *3) "failed")) (|:| |rightHandLimit| (-3 (-823 *3) "failed"))) "failed")) (-5 *1 (-621 *5)))) (-1484 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-823 (-931 *5)))) (-4 *5 (-445)) (-5 *2 (-3 (-823 (-401 (-931 *5))) (-2 (|:| |leftHandLimit| (-3 (-823 (-401 (-931 *5))) "failed")) (|:| |rightHandLimit| (-3 (-823 (-401 (-931 *5))) "failed"))) "failed")) (-5 *1 (-621 *5)) (-5 *3 (-401 (-931 *5)))))) +(-10 -7 (-15 -1484 ((-3 (-823 (-401 (-931 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed"))) "failed") (-401 (-931 |#1|)) (-288 (-823 (-931 |#1|))))) (-15 -1484 ((-3 (-823 (-401 (-931 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-823 (-401 (-931 |#1|))) "failed"))) "failed") (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|))))) (-15 -2008 ((-816 (-401 (-931 |#1|))) (-401 (-931 |#1|)) (-288 (-816 (-931 |#1|))))) (-15 -2008 ((-816 (-401 (-931 |#1|))) (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|))))) (-15 -1484 ((-3 (-823 (-401 (-931 |#1|))) "failed") (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|))) (-1134)))) +((-3274 (((-3 (-1235 (-401 |#1|)) "failed") (-1235 |#2|) |#2|) 57 (-1681 (|has| |#1| (-357)))) (((-3 (-1235 |#1|) "failed") (-1235 |#2|) |#2|) 42 (|has| |#1| (-357)))) (-2998 (((-111) (-1235 |#2|)) 30)) (-3505 (((-3 (-1235 |#1|) "failed") (-1235 |#2|)) 33))) +(((-622 |#1| |#2|) (-10 -7 (-15 -2998 ((-111) (-1235 |#2|))) (-15 -3505 ((-3 (-1235 |#1|) "failed") (-1235 |#2|))) (IF (|has| |#1| (-357)) (-15 -3274 ((-3 (-1235 |#1|) "failed") (-1235 |#2|) |#2|)) (-15 -3274 ((-3 (-1235 (-401 |#1|)) "failed") (-1235 |#2|) |#2|)))) (-544) (-623 |#1|)) (T -622)) +((-3274 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1235 *4)) (-4 *4 (-623 *5)) (-1681 (-4 *5 (-357))) (-4 *5 (-544)) (-5 *2 (-1235 (-401 *5))) (-5 *1 (-622 *5 *4)))) (-3274 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1235 *4)) (-4 *4 (-623 *5)) (-4 *5 (-357)) (-4 *5 (-544)) (-5 *2 (-1235 *5)) (-5 *1 (-622 *5 *4)))) (-3505 (*1 *2 *3) (|partial| -12 (-5 *3 (-1235 *5)) (-4 *5 (-623 *4)) (-4 *4 (-544)) (-5 *2 (-1235 *4)) (-5 *1 (-622 *4 *5)))) (-2998 (*1 *2 *3) (-12 (-5 *3 (-1235 *5)) (-4 *5 (-623 *4)) (-4 *4 (-544)) (-5 *2 (-111)) (-5 *1 (-622 *4 *5))))) +(-10 -7 (-15 -2998 ((-111) (-1235 |#2|))) (-15 -3505 ((-3 (-1235 |#1|) "failed") (-1235 |#2|))) (IF (|has| |#1| (-357)) (-15 -3274 ((-3 (-1235 |#1|) "failed") (-1235 |#2|) |#2|)) (-15 -3274 ((-3 (-1235 (-401 |#1|)) "failed") (-1235 |#2|) |#2|)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1800 (((-671 |#1|) (-671 $)) 34) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 33)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-623 |#1|) (-137) (-1028)) (T -623)) +((-1800 (*1 *2 *3) (-12 (-5 *3 (-671 *1)) (-4 *1 (-623 *4)) (-4 *4 (-1028)) (-5 *2 (-671 *4)))) (-1800 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *1)) (-5 *4 (-1235 *1)) (-4 *1 (-623 *5)) (-4 *5 (-1028)) (-5 *2 (-2 (|:| -2515 (-671 *5)) (|:| |vec| (-1235 *5))))))) +(-13 (-1028) (-10 -8 (-15 -1800 ((-671 |t#1|) (-671 $))) (-15 -1800 ((-2 (|:| -2515 (-671 |t#1|)) (|:| |vec| (-1235 |t#1|))) (-671 $) (-1235 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 $) . T) ((-709) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-3835 ((|#2| (-627 |#1|) (-627 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-627 |#1|) (-627 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-627 |#1|) (-627 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-627 |#1|) (-627 |#2|) |#2|) 17) ((|#2| (-627 |#1|) (-627 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-627 |#1|) (-627 |#2|)) 12))) +(((-624 |#1| |#2|) (-10 -7 (-15 -3835 ((-1 |#2| |#1|) (-627 |#1|) (-627 |#2|))) (-15 -3835 (|#2| (-627 |#1|) (-627 |#2|) |#1|)) (-15 -3835 ((-1 |#2| |#1|) (-627 |#1|) (-627 |#2|) |#2|)) (-15 -3835 (|#2| (-627 |#1|) (-627 |#2|) |#1| |#2|)) (-15 -3835 ((-1 |#2| |#1|) (-627 |#1|) (-627 |#2|) (-1 |#2| |#1|))) (-15 -3835 (|#2| (-627 |#1|) (-627 |#2|) |#1| (-1 |#2| |#1|)))) (-1076) (-1189)) (T -624)) +((-3835 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-627 *5)) (-5 *4 (-627 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1076)) (-4 *2 (-1189)) (-5 *1 (-624 *5 *2)))) (-3835 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-627 *5)) (-5 *4 (-627 *6)) (-4 *5 (-1076)) (-4 *6 (-1189)) (-5 *1 (-624 *5 *6)))) (-3835 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-627 *5)) (-5 *4 (-627 *2)) (-4 *5 (-1076)) (-4 *2 (-1189)) (-5 *1 (-624 *5 *2)))) (-3835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *6)) (-5 *4 (-627 *5)) (-4 *6 (-1076)) (-4 *5 (-1189)) (-5 *2 (-1 *5 *6)) (-5 *1 (-624 *6 *5)))) (-3835 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *5)) (-5 *4 (-627 *2)) (-4 *5 (-1076)) (-4 *2 (-1189)) (-5 *1 (-624 *5 *2)))) (-3835 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-5 *4 (-627 *6)) (-4 *5 (-1076)) (-4 *6 (-1189)) (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *5 *6))))) +(-10 -7 (-15 -3835 ((-1 |#2| |#1|) (-627 |#1|) (-627 |#2|))) (-15 -3835 (|#2| (-627 |#1|) (-627 |#2|) |#1|)) (-15 -3835 ((-1 |#2| |#1|) (-627 |#1|) (-627 |#2|) |#2|)) (-15 -3835 (|#2| (-627 |#1|) (-627 |#2|) |#1| |#2|)) (-15 -3835 ((-1 |#2| |#1|) (-627 |#1|) (-627 |#2|) (-1 |#2| |#1|))) (-15 -3835 (|#2| (-627 |#1|) (-627 |#2|) |#1| (-1 |#2| |#1|)))) +((-2169 (((-627 |#2|) (-1 |#2| |#1| |#2|) (-627 |#1|) |#2|) 16)) (-2091 ((|#2| (-1 |#2| |#1| |#2|) (-627 |#1|) |#2|) 18)) (-3516 (((-627 |#2|) (-1 |#2| |#1|) (-627 |#1|)) 13))) +(((-625 |#1| |#2|) (-10 -7 (-15 -2169 ((-627 |#2|) (-1 |#2| |#1| |#2|) (-627 |#1|) |#2|)) (-15 -2091 (|#2| (-1 |#2| |#1| |#2|) (-627 |#1|) |#2|)) (-15 -3516 ((-627 |#2|) (-1 |#2| |#1|) (-627 |#1|)))) (-1189) (-1189)) (T -625)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-627 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-627 *6)) (-5 *1 (-625 *5 *6)))) (-2091 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-627 *5)) (-4 *5 (-1189)) (-4 *2 (-1189)) (-5 *1 (-625 *5 *2)))) (-2169 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-627 *6)) (-4 *6 (-1189)) (-4 *5 (-1189)) (-5 *2 (-627 *5)) (-5 *1 (-625 *6 *5))))) +(-10 -7 (-15 -2169 ((-627 |#2|) (-1 |#2| |#1| |#2|) (-627 |#1|) |#2|)) (-15 -2091 (|#2| (-1 |#2| |#1| |#2|) (-627 |#1|) |#2|)) (-15 -3516 ((-627 |#2|) (-1 |#2| |#1|) (-627 |#1|)))) +((-3516 (((-627 |#3|) (-1 |#3| |#1| |#2|) (-627 |#1|) (-627 |#2|)) 13))) +(((-626 |#1| |#2| |#3|) (-10 -7 (-15 -3516 ((-627 |#3|) (-1 |#3| |#1| |#2|) (-627 |#1|) (-627 |#2|)))) (-1189) (-1189) (-1189)) (T -626)) +((-3516 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-627 *6)) (-5 *5 (-627 *7)) (-4 *6 (-1189)) (-4 *7 (-1189)) (-4 *8 (-1189)) (-5 *2 (-627 *8)) (-5 *1 (-626 *6 *7 *8))))) +(-10 -7 (-15 -3516 ((-627 |#3|) (-1 |#3| |#1| |#2|) (-627 |#1|) (-627 |#2|)))) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4288 ((|#1| $) NIL)) (-4155 ((|#1| $) NIL)) (-1700 (($ $) NIL)) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-3900 (($ $ (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) $) NIL (|has| |#1| (-830))) (((-111) (-1 (-111) |#1| |#1|) $) NIL)) (-2701 (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830)))) (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-4298 (($ $) NIL (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2472 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-1474 (($ $ $) NIL (|has| $ (-6 -4367)))) (-2801 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-1612 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4367))) (($ $ "rest" $) NIL (|has| $ (-6 -4367))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) NIL (|has| $ (-6 -4367)))) (-1364 (($ $ $) 32 (|has| |#1| (-1076)))) (-1353 (($ $ $) 34 (|has| |#1| (-1076)))) (-1341 (($ $ $) 37 (|has| |#1| (-1076)))) (-4289 (($ (-1 (-111) |#1|) $) NIL)) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-4143 ((|#1| $) NIL)) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3351 (($ $) NIL) (($ $ (-754)) NIL)) (-2820 (($ $) NIL (|has| |#1| (-1076)))) (-3370 (($ $) 31 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2265 (($ |#1| $) NIL (|has| |#1| (-1076))) (($ (-1 (-111) |#1|) $) NIL)) (-4342 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3473 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) NIL)) (-3592 (((-111) $) NIL)) (-2967 (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076))) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) (-1 (-111) |#1|) $) NIL)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-1900 (((-111) $) 9)) (-2336 (((-627 $) $) NIL)) (-3726 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2997 (($) 7)) (-2655 (($ (-754) |#1|) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-1438 (($ $ $) NIL (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3759 (($ $ $) NIL (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $ $) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 33 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1299 (($ |#1|) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1823 (((-627 |#1|) $) NIL)) (-3810 (((-111) $) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1294 ((|#1| $) NIL) (($ $ (-754)) NIL)) (-3954 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3252 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3340 ((|#1| $) NIL) (($ $ (-754)) NIL)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4367)))) (-2361 (((-111) $) NIL)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1202 (-552))) NIL) ((|#1| $ (-552)) 36) ((|#1| $ (-552) |#1|) NIL)) (-1848 (((-552) $ $) NIL)) (-3010 (($ $ (-1202 (-552))) NIL) (($ $ (-552)) NIL)) (-3907 (($ $ (-1202 (-552))) NIL) (($ $ (-552)) NIL)) (-2978 (((-111) $) NIL)) (-1805 (($ $) NIL)) (-3384 (($ $) NIL (|has| $ (-6 -4367)))) (-3543 (((-754) $) NIL)) (-4149 (($ $) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) 45 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) NIL)) (-3848 (($ |#1| $) 10)) (-3151 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2668 (($ $ $) 30) (($ |#1| $) NIL) (($ (-627 $)) NIL) (($ $ |#1|) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) NIL)) (-3415 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1307 (($ $ $) 11)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-4157 (((-1134) $) 26 (|has| |#1| (-811))) (((-1134) $ (-111)) 27 (|has| |#1| (-811))) (((-1240) (-805) $) 28 (|has| |#1| (-811))) (((-1240) (-805) $ (-111)) 29 (|has| |#1| (-811)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-627 |#1|) (-13 (-648 |#1|) (-10 -8 (-15 -2997 ($)) (-15 -1900 ((-111) $)) (-15 -3848 ($ |#1| $)) (-15 -1307 ($ $ $)) (IF (|has| |#1| (-1076)) (PROGN (-15 -1364 ($ $ $)) (-15 -1353 ($ $ $)) (-15 -1341 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-811)) (-6 (-811)) |%noBranch|))) (-1189)) (T -627)) +((-2997 (*1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1189)))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-627 *3)) (-4 *3 (-1189)))) (-3848 (*1 *1 *2 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1189)))) (-1307 (*1 *1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1189)))) (-1364 (*1 *1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1076)) (-4 *2 (-1189)))) (-1353 (*1 *1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1076)) (-4 *2 (-1189)))) (-1341 (*1 *1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1076)) (-4 *2 (-1189))))) +(-13 (-648 |#1|) (-10 -8 (-15 -2997 ($)) (-15 -1900 ((-111) $)) (-15 -3848 ($ |#1| $)) (-15 -1307 ($ $ $)) (IF (|has| |#1| (-1076)) (PROGN (-15 -1364 ($ $ $)) (-15 -1353 ($ $ $)) (-15 -1341 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-811)) (-6 (-811)) |%noBranch|))) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 11) (((-1157) $) NIL) (($ (-1157)) NIL) ((|#1| $) 8)) (-2292 (((-111) $ $) NIL))) +(((-628 |#1|) (-13 (-1059) (-599 |#1|)) (-1076)) (T -628)) +NIL +(-13 (-1059) (-599 |#1|)) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3364 (($ |#1| |#1| $) 43)) (-4031 (((-111) $ (-754)) NIL)) (-4289 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2820 (($ $) 45)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2265 (($ |#1| $) 52 (|has| $ (-6 -4366))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4366)))) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366)))) (-3215 (((-627 |#1|) $) 9 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 37)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-4165 ((|#1| $) 46)) (-3954 (($ |#1| $) 26) (($ |#1| $ (-754)) 42)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-4133 ((|#1| $) 48)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 21)) (-2373 (($) 25)) (-3630 (((-111) $) 50)) (-3131 (((-627 (-2 (|:| -2162 |#1|) (|:| -1509 (-754)))) $) 59)) (-3028 (($) 23) (($ (-627 |#1|)) 18)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) 56 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) 19)) (-3562 (((-528) $) 34 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) NIL)) (-1477 (((-842) $) 14 (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) 22)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 61 (|has| |#1| (-1076)))) (-1383 (((-754) $) 16 (|has| $ (-6 -4366))))) +(((-629 |#1|) (-13 (-677 |#1|) (-10 -8 (-6 -4366) (-15 -3630 ((-111) $)) (-15 -3364 ($ |#1| |#1| $)))) (-1076)) (T -629)) +((-3630 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-629 *3)) (-4 *3 (-1076)))) (-3364 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-629 *2)) (-4 *2 (-1076))))) +(-13 (-677 |#1|) (-10 -8 (-6 -4366) (-15 -3630 ((-111) $)) (-15 -3364 ($ |#1| |#1| $)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ |#1| $) 23))) +(((-630 |#1|) (-137) (-1035)) (T -630)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1035))))) (-13 (-21) (-10 -8 (-15 * ($ |t#1| $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-2894 (((-751) $) 15)) (-1862 (($ $ |#1|) 56)) (-1883 (($ $) 32)) (-2306 (($ $) 31)) (-1893 (((-3 |#1| "failed") $) 48)) (-1895 ((|#1| $) NIL)) (-2157 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3375 (((-839) $ (-1 (-839) (-839) (-839)) (-1 (-839) (-839) (-839)) (-552)) 46)) (-3461 ((|#1| $ (-552)) 30)) (-3472 ((|#2| $ (-552)) 29)) (-1817 (($ (-1 |#1| |#1|) $) 34)) (-1827 (($ (-1 |#2| |#2|) $) 38)) (-1873 (($) 10)) (-1907 (($ |#1| |#2|) 22)) (-1892 (($ (-625 (-2 (|:| |gen| |#1|) (|:| -2863 |#2|)))) 23)) (-1918 (((-625 (-2 (|:| |gen| |#1|) (|:| -2863 |#2|))) $) 13)) (-1853 (($ |#1| $) 57)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1840 (((-112) $ $) 60)) (-1683 (((-839) $) 19) (($ |#1|) 16)) (-2281 (((-112) $ $) 25))) -(((-629 |#1| |#2| |#3|) (-13 (-1073) (-1014 |#1|) (-10 -8 (-15 -3375 ((-839) $ (-1 (-839) (-839) (-839)) (-1 (-839) (-839) (-839)) (-552))) (-15 -1918 ((-625 (-2 (|:| |gen| |#1|) (|:| -2863 |#2|))) $)) (-15 -1907 ($ |#1| |#2|)) (-15 -1892 ($ (-625 (-2 (|:| |gen| |#1|) (|:| -2863 |#2|))))) (-15 -3472 (|#2| $ (-552))) (-15 -3461 (|#1| $ (-552))) (-15 -2306 ($ $)) (-15 -1883 ($ $)) (-15 -2894 ((-751) $)) (-15 -1873 ($)) (-15 -1862 ($ $ |#1|)) (-15 -1853 ($ |#1| $)) (-15 -2157 ($ |#1| |#2| $)) (-15 -2157 ($ $ $)) (-15 -1840 ((-112) $ $)) (-15 -1827 ($ (-1 |#2| |#2|) $)) (-15 -1817 ($ (-1 |#1| |#1|) $)))) (-1073) (-23) |#2|) (T -629)) -((-3375 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-839) (-839) (-839))) (-5 *4 (-552)) (-5 *2 (-839)) (-5 *1 (-629 *5 *6 *7)) (-4 *5 (-1073)) (-4 *6 (-23)) (-14 *7 *6))) (-1918 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 *4)))) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1073)) (-4 *4 (-23)) (-14 *5 *4))) (-1907 (*1 *1 *2 *3) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) (-14 *4 *3))) (-1892 (*1 *1 *2) (-12 (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 *4)))) (-4 *3 (-1073)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-629 *3 *4 *5)))) (-3472 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *2 (-23)) (-5 *1 (-629 *4 *2 *5)) (-4 *4 (-1073)) (-14 *5 *2))) (-3461 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *2 (-1073)) (-5 *1 (-629 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2306 (*1 *1 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) (-14 *4 *3))) (-1883 (*1 *1 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) (-14 *4 *3))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1073)) (-4 *4 (-23)) (-14 *5 *4))) (-1873 (*1 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) (-14 *4 *3))) (-1862 (*1 *1 *1 *2) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) (-14 *4 *3))) (-1853 (*1 *1 *2 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) (-14 *4 *3))) (-2157 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) (-14 *4 *3))) (-2157 (*1 *1 *1 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) (-14 *4 *3))) (-1840 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1073)) (-4 *4 (-23)) (-14 *5 *4))) (-1827 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1073)))) (-1817 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1073)) (-5 *1 (-629 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1073) (-1014 |#1|) (-10 -8 (-15 -3375 ((-839) $ (-1 (-839) (-839) (-839)) (-1 (-839) (-839) (-839)) (-552))) (-15 -1918 ((-625 (-2 (|:| |gen| |#1|) (|:| -2863 |#2|))) $)) (-15 -1907 ($ |#1| |#2|)) (-15 -1892 ($ (-625 (-2 (|:| |gen| |#1|) (|:| -2863 |#2|))))) (-15 -3472 (|#2| $ (-552))) (-15 -3461 (|#1| $ (-552))) (-15 -2306 ($ $)) (-15 -1883 ($ $)) (-15 -2894 ((-751) $)) (-15 -1873 ($)) (-15 -1862 ($ $ |#1|)) (-15 -1853 ($ |#1| $)) (-15 -2157 ($ |#1| |#2| $)) (-15 -2157 ($ $ $)) (-15 -1840 ((-112) $ $)) (-15 -1827 ($ (-1 |#2| |#2|) $)) (-15 -1817 ($ (-1 |#1| |#1|) $)))) -((-2537 (((-552) $) 24)) (-3994 (($ |#2| $ (-552)) 22) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) 12)) (-2564 (((-112) (-552) $) 15)) (-3402 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-625 $)) NIL))) -(((-630 |#1| |#2|) (-10 -8 (-15 -3994 (|#1| |#1| |#1| (-552))) (-15 -3994 (|#1| |#2| |#1| (-552))) (-15 -3402 (|#1| (-625 |#1|))) (-15 -3402 (|#1| |#1| |#1|)) (-15 -3402 (|#1| |#2| |#1|)) (-15 -3402 (|#1| |#1| |#2|)) (-15 -2537 ((-552) |#1|)) (-15 -2554 ((-625 (-552)) |#1|)) (-15 -2564 ((-112) (-552) |#1|))) (-631 |#2|) (-1186)) (T -630)) -NIL -(-10 -8 (-15 -3994 (|#1| |#1| |#1| (-552))) (-15 -3994 (|#1| |#2| |#1| (-552))) (-15 -3402 (|#1| (-625 |#1|))) (-15 -3402 (|#1| |#1| |#1|)) (-15 -3402 (|#1| |#2| |#1|)) (-15 -3402 (|#1| |#1| |#2|)) (-15 -2537 ((-552) |#1|)) (-15 -2554 ((-625 (-552)) |#1|)) (-15 -2564 ((-112) (-552) |#1|))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-2509 (((-1237) $ (-552) (-552)) 40 (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) 8)) (-1851 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) 58 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-2959 (($ $) 78 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#1| $) 77 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 51)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2183 (($ (-751) |#1|) 69)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 43 (|has| (-552) (-827)))) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 44 (|has| (-552) (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-2554 (((-625 (-552)) $) 46)) (-2564 (((-112) (-552) $) 47)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2924 ((|#1| $) 42 (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2518 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1199 (-552))) 63)) (-4001 (($ $ (-552)) 62) (($ $ (-1199 (-552))) 61)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 79 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 70)) (-3402 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-625 $)) 65)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-631 |#1|) (-138) (-1186)) (T -631)) -((-2183 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-4 *1 (-631 *3)) (-4 *3 (-1186)))) (-3402 (*1 *1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1186)))) (-3402 (*1 *1 *2 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1186)))) (-3402 (*1 *1 *1 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1186)))) (-3402 (*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-631 *3)) (-4 *3 (-1186)))) (-1996 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-631 *3)) (-4 *3 (-1186)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-1199 (-552))) (-4 *1 (-631 *3)) (-4 *3 (-1186)))) (-4001 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-631 *3)) (-4 *3 (-1186)))) (-4001 (*1 *1 *1 *2) (-12 (-5 *2 (-1199 (-552))) (-4 *1 (-631 *3)) (-4 *3 (-1186)))) (-3994 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-631 *2)) (-4 *2 (-1186)))) (-3994 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-631 *3)) (-4 *3 (-1186)))) (-1851 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1199 (-552))) (|has| *1 (-6 -4354)) (-4 *1 (-631 *2)) (-4 *2 (-1186))))) -(-13 (-588 (-552) |t#1|) (-149 |t#1|) (-10 -8 (-15 -2183 ($ (-751) |t#1|)) (-15 -3402 ($ $ |t#1|)) (-15 -3402 ($ |t#1| $)) (-15 -3402 ($ $ $)) (-15 -3402 ($ (-625 $))) (-15 -1996 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2154 ($ $ (-1199 (-552)))) (-15 -4001 ($ $ (-552))) (-15 -4001 ($ $ (-1199 (-552)))) (-15 -3994 ($ |t#1| $ (-552))) (-15 -3994 ($ $ $ (-552))) (IF (|has| $ (-6 -4354)) (-15 -1851 (|t#1| $ (-1199 (-552)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-281 #0=(-552) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-588 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T)) -((-1728 (((-3 |#2| "failed") |#3| |#2| (-1149) |#2| (-625 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) "failed") |#3| |#2| (-1149)) 44))) -(((-632 |#1| |#2| |#3|) (-10 -7 (-15 -1728 ((-3 (-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) "failed") |#3| |#2| (-1149))) (-15 -1728 ((-3 |#2| "failed") |#3| |#2| (-1149) |#2| (-625 |#2|)))) (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)) (-13 (-29 |#1|) (-1171) (-935)) (-636 |#2|)) (T -632)) -((-1728 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-625 *2)) (-4 *2 (-13 (-29 *6) (-1171) (-935))) (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *1 (-632 *6 *2 *3)) (-4 *3 (-636 *2)))) (-1728 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1149)) (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-4 *4 (-13 (-29 *6) (-1171) (-935))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1270 (-625 *4)))) (-5 *1 (-632 *6 *4 *3)) (-4 *3 (-636 *4))))) -(-10 -7 (-15 -1728 ((-3 (-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) "failed") |#3| |#2| (-1149))) (-15 -1728 ((-3 |#2| "failed") |#3| |#2| (-1149) |#2| (-625 |#2|)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-1931 (($ $) NIL (|has| |#1| (-358)))) (-1953 (($ $ $) NIL (|has| |#1| (-358)))) (-1965 (($ $ (-751)) NIL (|has| |#1| (-358)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2146 (($ $ $) NIL (|has| |#1| (-358)))) (-2161 (($ $ $) NIL (|has| |#1| (-358)))) (-2171 (($ $ $) NIL (|has| |#1| (-358)))) (-2126 (($ $ $) NIL (|has| |#1| (-358)))) (-2116 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2137 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2266 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) NIL)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#1| (-446)))) (-3650 (((-112) $) NIL)) (-3957 (($ |#1| (-751)) NIL)) (-2248 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-544)))) (-2237 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-544)))) (-4134 (((-751) $) NIL)) (-2215 (($ $ $) NIL (|has| |#1| (-358)))) (-2225 (($ $ $) NIL (|has| |#1| (-358)))) (-2107 (($ $ $) NIL (|has| |#1| (-358)))) (-2193 (($ $ $) NIL (|has| |#1| (-358)))) (-2181 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2204 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2257 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-2154 ((|#1| $ |#1|) NIL)) (-3771 (($ $ $) NIL (|has| |#1| (-358)))) (-4276 (((-751) $) NIL)) (-4108 ((|#1| $) NIL (|has| |#1| (-446)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ (-402 (-552))) NIL (|has| |#1| (-1014 (-402 (-552))))) (($ |#1|) NIL)) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-751)) NIL)) (-4141 (((-751)) NIL)) (-2872 ((|#1| $ |#1| |#1|) NIL)) (-3180 (($ $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($) NIL)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-633 |#1|) (-636 |#1|) (-229)) (T -633)) -NIL -(-636 |#1|) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-1931 (($ $) NIL (|has| |#1| (-358)))) (-1953 (($ $ $) NIL (|has| |#1| (-358)))) (-1965 (($ $ (-751)) NIL (|has| |#1| (-358)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2146 (($ $ $) NIL (|has| |#1| (-358)))) (-2161 (($ $ $) NIL (|has| |#1| (-358)))) (-2171 (($ $ $) NIL (|has| |#1| (-358)))) (-2126 (($ $ $) NIL (|has| |#1| (-358)))) (-2116 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2137 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2266 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) NIL)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#1| (-446)))) (-3650 (((-112) $) NIL)) (-3957 (($ |#1| (-751)) NIL)) (-2248 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-544)))) (-2237 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-544)))) (-4134 (((-751) $) NIL)) (-2215 (($ $ $) NIL (|has| |#1| (-358)))) (-2225 (($ $ $) NIL (|has| |#1| (-358)))) (-2107 (($ $ $) NIL (|has| |#1| (-358)))) (-2193 (($ $ $) NIL (|has| |#1| (-358)))) (-2181 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2204 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2257 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-2154 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3771 (($ $ $) NIL (|has| |#1| (-358)))) (-4276 (((-751) $) NIL)) (-4108 ((|#1| $) NIL (|has| |#1| (-446)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ (-402 (-552))) NIL (|has| |#1| (-1014 (-402 (-552))))) (($ |#1|) NIL)) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-751)) NIL)) (-4141 (((-751)) NIL)) (-2872 ((|#1| $ |#1| |#1|) NIL)) (-3180 (($ $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($) NIL)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-634 |#1| |#2|) (-13 (-636 |#1|) (-281 |#2| |#2|)) (-229) (-13 (-628 |#1|) (-10 -8 (-15 -3072 ($ $))))) (T -634)) -NIL -(-13 (-636 |#1|) (-281 |#2| |#2|)) -((-1931 (($ $) 26)) (-3180 (($ $) 24)) (-3768 (($) 12))) -(((-635 |#1| |#2|) (-10 -8 (-15 -1931 (|#1| |#1|)) (-15 -3180 (|#1| |#1|)) (-15 -3768 (|#1|))) (-636 |#2|) (-1025)) (T -635)) -NIL -(-10 -8 (-15 -1931 (|#1| |#1|)) (-15 -3180 (|#1| |#1|)) (-15 -3768 (|#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-1931 (($ $) 80 (|has| |#1| (-358)))) (-1953 (($ $ $) 82 (|has| |#1| (-358)))) (-1965 (($ $ (-751)) 81 (|has| |#1| (-358)))) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2146 (($ $ $) 43 (|has| |#1| (-358)))) (-2161 (($ $ $) 44 (|has| |#1| (-358)))) (-2171 (($ $ $) 46 (|has| |#1| (-358)))) (-2126 (($ $ $) 41 (|has| |#1| (-358)))) (-2116 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 40 (|has| |#1| (-358)))) (-2137 (((-3 $ "failed") $ $) 42 (|has| |#1| (-358)))) (-2266 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 45 (|has| |#1| (-358)))) (-1893 (((-3 (-552) "failed") $) 72 (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) 70 (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 67)) (-1895 (((-552) $) 73 (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) 71 (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) 66)) (-4169 (($ $) 62)) (-4174 (((-3 $ "failed") $) 32)) (-1294 (($ $) 53 (|has| |#1| (-446)))) (-3650 (((-112) $) 30)) (-3957 (($ |#1| (-751)) 60)) (-2248 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55 (|has| |#1| (-544)))) (-2237 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 56 (|has| |#1| (-544)))) (-4134 (((-751) $) 64)) (-2215 (($ $ $) 50 (|has| |#1| (-358)))) (-2225 (($ $ $) 51 (|has| |#1| (-358)))) (-2107 (($ $ $) 39 (|has| |#1| (-358)))) (-2193 (($ $ $) 48 (|has| |#1| (-358)))) (-2181 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 47 (|has| |#1| (-358)))) (-2204 (((-3 $ "failed") $ $) 49 (|has| |#1| (-358)))) (-2257 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 52 (|has| |#1| (-358)))) (-4144 ((|#1| $) 63)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-2802 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-544)))) (-2154 ((|#1| $ |#1|) 85)) (-3771 (($ $ $) 79 (|has| |#1| (-358)))) (-4276 (((-751) $) 65)) (-4108 ((|#1| $) 54 (|has| |#1| (-446)))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ (-402 (-552))) 69 (|has| |#1| (-1014 (-402 (-552))))) (($ |#1|) 68)) (-2512 (((-625 |#1|) $) 59)) (-3637 ((|#1| $ (-751)) 61)) (-4141 (((-751)) 28)) (-2872 ((|#1| $ |#1| |#1|) 58)) (-3180 (($ $) 83)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($) 84)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) -(((-636 |#1|) (-138) (-1025)) (T -636)) -((-3768 (*1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1025)))) (-3180 (*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1025)))) (-1953 (*1 *1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-1965 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-636 *3)) (-4 *3 (-1025)) (-4 *3 (-358)))) (-1931 (*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-3771 (*1 *1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) -(-13 (-829 |t#1|) (-281 |t#1| |t#1|) (-10 -8 (-15 -3768 ($)) (-15 -3180 ($ $)) (IF (|has| |t#1| (-358)) (PROGN (-15 -1953 ($ $ $)) (-15 -1965 ($ $ (-751))) (-15 -1931 ($ $)) (-15 -3771 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-281 |#1| |#1|) . T) ((-406 |#1|) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) |has| |#1| (-170)) ((-707) . T) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-829 |#1|) . T)) -((-1941 (((-625 (-633 (-402 |#2|))) (-633 (-402 |#2|))) 74 (|has| |#1| (-27)))) (-3824 (((-625 (-633 (-402 |#2|))) (-633 (-402 |#2|))) 73 (|has| |#1| (-27))) (((-625 (-633 (-402 |#2|))) (-633 (-402 |#2|)) (-1 (-625 |#1|) |#2|)) 17))) -(((-637 |#1| |#2|) (-10 -7 (-15 -3824 ((-625 (-633 (-402 |#2|))) (-633 (-402 |#2|)) (-1 (-625 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3824 ((-625 (-633 (-402 |#2|))) (-633 (-402 |#2|)))) (-15 -1941 ((-625 (-633 (-402 |#2|))) (-633 (-402 |#2|))))) |%noBranch|)) (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))) (-1208 |#1|)) (T -637)) -((-1941 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-4 *5 (-1208 *4)) (-5 *2 (-625 (-633 (-402 *5)))) (-5 *1 (-637 *4 *5)) (-5 *3 (-633 (-402 *5))))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-4 *5 (-1208 *4)) (-5 *2 (-625 (-633 (-402 *5)))) (-5 *1 (-637 *4 *5)) (-5 *3 (-633 (-402 *5))))) (-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-625 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-4 *6 (-1208 *5)) (-5 *2 (-625 (-633 (-402 *6)))) (-5 *1 (-637 *5 *6)) (-5 *3 (-633 (-402 *6)))))) -(-10 -7 (-15 -3824 ((-625 (-633 (-402 |#2|))) (-633 (-402 |#2|)) (-1 (-625 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3824 ((-625 (-633 (-402 |#2|))) (-633 (-402 |#2|)))) (-15 -1941 ((-625 (-633 (-402 |#2|))) (-633 (-402 |#2|))))) |%noBranch|)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-1931 (($ $) NIL (|has| |#1| (-358)))) (-1953 (($ $ $) 28 (|has| |#1| (-358)))) (-1965 (($ $ (-751)) 31 (|has| |#1| (-358)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2146 (($ $ $) NIL (|has| |#1| (-358)))) (-2161 (($ $ $) NIL (|has| |#1| (-358)))) (-2171 (($ $ $) NIL (|has| |#1| (-358)))) (-2126 (($ $ $) NIL (|has| |#1| (-358)))) (-2116 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2137 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2266 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) NIL)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#1| (-446)))) (-3650 (((-112) $) NIL)) (-3957 (($ |#1| (-751)) NIL)) (-2248 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-544)))) (-2237 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-544)))) (-4134 (((-751) $) NIL)) (-2215 (($ $ $) NIL (|has| |#1| (-358)))) (-2225 (($ $ $) NIL (|has| |#1| (-358)))) (-2107 (($ $ $) NIL (|has| |#1| (-358)))) (-2193 (($ $ $) NIL (|has| |#1| (-358)))) (-2181 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2204 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2257 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-2154 ((|#1| $ |#1|) 24)) (-3771 (($ $ $) 33 (|has| |#1| (-358)))) (-4276 (((-751) $) NIL)) (-4108 ((|#1| $) NIL (|has| |#1| (-446)))) (-1683 (((-839) $) 20) (($ (-552)) NIL) (($ (-402 (-552))) NIL (|has| |#1| (-1014 (-402 (-552))))) (($ |#1|) NIL)) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-751)) NIL)) (-4141 (((-751)) NIL)) (-2872 ((|#1| $ |#1| |#1|) 23)) (-3180 (($ $) NIL)) (-2089 (($) 21 T CONST)) (-2100 (($) 8 T CONST)) (-3768 (($) NIL)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-638 |#1| |#2|) (-636 |#1|) (-1025) (-1 |#1| |#1|)) (T -638)) -NIL -(-636 |#1|) -((-1953 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-1965 ((|#2| |#2| (-751) (-1 |#1| |#1|)) 40)) (-3771 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) -(((-639 |#1| |#2|) (-10 -7 (-15 -1953 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1965 (|#2| |#2| (-751) (-1 |#1| |#1|))) (-15 -3771 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-358) (-636 |#1|)) (T -639)) -((-3771 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-639 *4 *2)) (-4 *2 (-636 *4)))) (-1965 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-751)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) (-5 *1 (-639 *5 *2)) (-4 *2 (-636 *5)))) (-1953 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-639 *4 *2)) (-4 *2 (-636 *4))))) -(-10 -7 (-15 -1953 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1965 (|#2| |#2| (-751) (-1 |#1| |#1|))) (-15 -3771 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-2827 (($ $ $) 9))) -(((-640 |#1|) (-10 -8 (-15 -2827 (|#1| |#1| |#1|))) (-641)) (T -640)) -NIL -(-10 -8 (-15 -2827 (|#1| |#1| |#1|))) -((-1671 (((-112) $ $) 7)) (-2488 (($ $) 10)) (-2827 (($ $ $) 8)) (-2281 (((-112) $ $) 6)) (-2814 (($ $ $) 9))) -(((-641) (-138)) (T -641)) -((-2488 (*1 *1 *1) (-4 *1 (-641))) (-2814 (*1 *1 *1 *1) (-4 *1 (-641))) (-2827 (*1 *1 *1 *1) (-4 *1 (-641)))) -(-13 (-101) (-10 -8 (-15 -2488 ($ $)) (-15 -2814 ($ $ $)) (-15 -2827 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-3307 (((-754) $) 15)) (-4178 (($ $ |#1|) 56)) (-2519 (($ $) 32)) (-3429 (($ $) 31)) (-4039 (((-3 |#1| "failed") $) 48)) (-1703 ((|#1| $) NIL)) (-1801 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-2267 (((-842) $ (-1 (-842) (-842) (-842)) (-1 (-842) (-842) (-842)) (-552)) 46)) (-2792 ((|#1| $ (-552)) 30)) (-1389 ((|#2| $ (-552)) 29)) (-2356 (($ (-1 |#1| |#1|) $) 34)) (-4086 (($ (-1 |#2| |#2|) $) 38)) (-3952 (($) 10)) (-2893 (($ |#1| |#2|) 22)) (-3063 (($ (-627 (-2 (|:| |gen| |#1|) (|:| -3154 |#2|)))) 23)) (-1514 (((-627 (-2 (|:| |gen| |#1|) (|:| -3154 |#2|))) $) 13)) (-2537 (($ |#1| $) 57)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2815 (((-111) $ $) 60)) (-1477 (((-842) $) 19) (($ |#1|) 16)) (-2292 (((-111) $ $) 25))) +(((-631 |#1| |#2| |#3|) (-13 (-1076) (-1017 |#1|) (-10 -8 (-15 -2267 ((-842) $ (-1 (-842) (-842) (-842)) (-1 (-842) (-842) (-842)) (-552))) (-15 -1514 ((-627 (-2 (|:| |gen| |#1|) (|:| -3154 |#2|))) $)) (-15 -2893 ($ |#1| |#2|)) (-15 -3063 ($ (-627 (-2 (|:| |gen| |#1|) (|:| -3154 |#2|))))) (-15 -1389 (|#2| $ (-552))) (-15 -2792 (|#1| $ (-552))) (-15 -3429 ($ $)) (-15 -2519 ($ $)) (-15 -3307 ((-754) $)) (-15 -3952 ($)) (-15 -4178 ($ $ |#1|)) (-15 -2537 ($ |#1| $)) (-15 -1801 ($ |#1| |#2| $)) (-15 -1801 ($ $ $)) (-15 -2815 ((-111) $ $)) (-15 -4086 ($ (-1 |#2| |#2|) $)) (-15 -2356 ($ (-1 |#1| |#1|) $)))) (-1076) (-23) |#2|) (T -631)) +((-2267 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-842) (-842) (-842))) (-5 *4 (-552)) (-5 *2 (-842)) (-5 *1 (-631 *5 *6 *7)) (-4 *5 (-1076)) (-4 *6 (-23)) (-14 *7 *6))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 *4)))) (-5 *1 (-631 *3 *4 *5)) (-4 *3 (-1076)) (-4 *4 (-23)) (-14 *5 *4))) (-2893 (*1 *1 *2 *3) (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) (-14 *4 *3))) (-3063 (*1 *1 *2) (-12 (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 *4)))) (-4 *3 (-1076)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-631 *3 *4 *5)))) (-1389 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *2 (-23)) (-5 *1 (-631 *4 *2 *5)) (-4 *4 (-1076)) (-14 *5 *2))) (-2792 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *2 (-1076)) (-5 *1 (-631 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3429 (*1 *1 *1) (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) (-14 *4 *3))) (-2519 (*1 *1 *1) (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) (-14 *4 *3))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-631 *3 *4 *5)) (-4 *3 (-1076)) (-4 *4 (-23)) (-14 *5 *4))) (-3952 (*1 *1) (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) (-14 *4 *3))) (-4178 (*1 *1 *1 *2) (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) (-14 *4 *3))) (-2537 (*1 *1 *2 *1) (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) (-14 *4 *3))) (-1801 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) (-14 *4 *3))) (-1801 (*1 *1 *1 *1) (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) (-14 *4 *3))) (-2815 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-631 *3 *4 *5)) (-4 *3 (-1076)) (-4 *4 (-23)) (-14 *5 *4))) (-4086 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-631 *3 *4 *5)) (-4 *3 (-1076)))) (-2356 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1076)) (-5 *1 (-631 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1076) (-1017 |#1|) (-10 -8 (-15 -2267 ((-842) $ (-1 (-842) (-842) (-842)) (-1 (-842) (-842) (-842)) (-552))) (-15 -1514 ((-627 (-2 (|:| |gen| |#1|) (|:| -3154 |#2|))) $)) (-15 -2893 ($ |#1| |#2|)) (-15 -3063 ($ (-627 (-2 (|:| |gen| |#1|) (|:| -3154 |#2|))))) (-15 -1389 (|#2| $ (-552))) (-15 -2792 (|#1| $ (-552))) (-15 -3429 ($ $)) (-15 -2519 ($ $)) (-15 -3307 ((-754) $)) (-15 -3952 ($)) (-15 -4178 ($ $ |#1|)) (-15 -2537 ($ |#1| $)) (-15 -1801 ($ |#1| |#2| $)) (-15 -1801 ($ $ $)) (-15 -2815 ((-111) $ $)) (-15 -4086 ($ (-1 |#2| |#2|) $)) (-15 -2356 ($ (-1 |#1| |#1|) $)))) +((-2285 (((-552) $) 24)) (-3252 (($ |#2| $ (-552)) 22) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) 12)) (-2358 (((-111) (-552) $) 15)) (-2668 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-627 $)) NIL))) +(((-632 |#1| |#2|) (-10 -8 (-15 -3252 (|#1| |#1| |#1| (-552))) (-15 -3252 (|#1| |#2| |#1| (-552))) (-15 -2668 (|#1| (-627 |#1|))) (-15 -2668 (|#1| |#1| |#1|)) (-15 -2668 (|#1| |#2| |#1|)) (-15 -2668 (|#1| |#1| |#2|)) (-15 -2285 ((-552) |#1|)) (-15 -3892 ((-627 (-552)) |#1|)) (-15 -2358 ((-111) (-552) |#1|))) (-633 |#2|) (-1189)) (T -632)) +NIL +(-10 -8 (-15 -3252 (|#1| |#1| |#1| (-552))) (-15 -3252 (|#1| |#2| |#1| (-552))) (-15 -2668 (|#1| (-627 |#1|))) (-15 -2668 (|#1| |#1| |#1|)) (-15 -2668 (|#1| |#2| |#1|)) (-15 -2668 (|#1| |#1| |#2|)) (-15 -2285 ((-552) |#1|)) (-15 -3892 ((-627 (-552)) |#1|)) (-15 -2358 ((-111) (-552) |#1|))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-3305 (((-1240) $ (-552) (-552)) 40 (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) 8)) (-2950 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) 58 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-3370 (($ $) 78 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#1| $) 77 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 51)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2655 (($ (-754) |#1|) 69)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 43 (|has| (-552) (-830)))) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 44 (|has| (-552) (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-3892 (((-627 (-552)) $) 46)) (-2358 (((-111) (-552) $) 47)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3340 ((|#1| $) 42 (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-1942 (($ $ |#1|) 41 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1202 (-552))) 63)) (-3907 (($ $ (-552)) 62) (($ $ (-1202 (-552))) 61)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 79 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 70)) (-2668 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-627 $)) 65)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-633 |#1|) (-137) (-1189)) (T -633)) +((-2655 (*1 *1 *2 *3) (-12 (-5 *2 (-754)) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) (-2668 (*1 *1 *1 *2) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1189)))) (-2668 (*1 *1 *2 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1189)))) (-2668 (*1 *1 *1 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1189)))) (-2668 (*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) (-3516 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 (-552))) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) (-3907 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) (-3907 (*1 *1 *1 *2) (-12 (-5 *2 (-1202 (-552))) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) (-3252 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-633 *2)) (-4 *2 (-1189)))) (-3252 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) (-2950 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1202 (-552))) (|has| *1 (-6 -4367)) (-4 *1 (-633 *2)) (-4 *2 (-1189))))) +(-13 (-590 (-552) |t#1|) (-148 |t#1|) (-10 -8 (-15 -2655 ($ (-754) |t#1|)) (-15 -2668 ($ $ |t#1|)) (-15 -2668 ($ |t#1| $)) (-15 -2668 ($ $ $)) (-15 -2668 ($ (-627 $))) (-15 -3516 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1985 ($ $ (-1202 (-552)))) (-15 -3907 ($ $ (-552))) (-15 -3907 ($ $ (-1202 (-552)))) (-15 -3252 ($ |t#1| $ (-552))) (-15 -3252 ($ $ $ (-552))) (IF (|has| $ (-6 -4367)) (-15 -2950 (|t#1| $ (-1202 (-552)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) +((-1696 (((-3 |#2| "failed") |#3| |#2| (-1152) |#2| (-627 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) "failed") |#3| |#2| (-1152)) 44))) +(((-634 |#1| |#2| |#3|) (-10 -7 (-15 -1696 ((-3 (-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) "failed") |#3| |#2| (-1152))) (-15 -1696 ((-3 |#2| "failed") |#3| |#2| (-1152) |#2| (-627 |#2|)))) (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144)) (-13 (-29 |#1|) (-1174) (-938)) (-638 |#2|)) (T -634)) +((-1696 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-627 *2)) (-4 *2 (-13 (-29 *6) (-1174) (-938))) (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *1 (-634 *6 *2 *3)) (-4 *3 (-638 *2)))) (-1696 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1152)) (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-4 *4 (-13 (-29 *6) (-1174) (-938))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2957 (-627 *4)))) (-5 *1 (-634 *6 *4 *3)) (-4 *3 (-638 *4))))) +(-10 -7 (-15 -1696 ((-3 (-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) "failed") |#3| |#2| (-1152))) (-15 -1696 ((-3 |#2| "failed") |#3| |#2| (-1152) |#2| (-627 |#2|)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3659 (($ $) NIL (|has| |#1| (-357)))) (-4182 (($ $ $) NIL (|has| |#1| (-357)))) (-2032 (($ $ (-754)) NIL (|has| |#1| (-357)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-1768 (($ $ $) NIL (|has| |#1| (-357)))) (-2585 (($ $ $) NIL (|has| |#1| (-357)))) (-4281 (($ $ $) NIL (|has| |#1| (-357)))) (-4214 (($ $ $) NIL (|has| |#1| (-357)))) (-3571 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4021 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-3557 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) NIL)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#1| (-445)))) (-2624 (((-111) $) NIL)) (-1832 (($ |#1| (-754)) NIL)) (-3107 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-544)))) (-1378 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-544)))) (-3465 (((-754) $) NIL)) (-2753 (($ $ $) NIL (|has| |#1| (-357)))) (-4009 (($ $ $) NIL (|has| |#1| (-357)))) (-2016 (($ $ $) NIL (|has| |#1| (-357)))) (-2812 (($ $ $) NIL (|has| |#1| (-357)))) (-3008 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4266 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-4273 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-1985 ((|#1| $ |#1|) NIL)) (-3801 (($ $ $) NIL (|has| |#1| (-357)))) (-3567 (((-754) $) NIL)) (-3495 ((|#1| $) NIL (|has| |#1| (-445)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#1| (-1017 (-401 (-552))))) (($ |#1|) NIL)) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-754)) NIL)) (-3995 (((-754)) NIL)) (-3288 ((|#1| $ |#1| |#1|) NIL)) (-2279 (($ $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($) NIL)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-635 |#1|) (-638 |#1|) (-228)) (T -635)) +NIL +(-638 |#1|) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3659 (($ $) NIL (|has| |#1| (-357)))) (-4182 (($ $ $) NIL (|has| |#1| (-357)))) (-2032 (($ $ (-754)) NIL (|has| |#1| (-357)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-1768 (($ $ $) NIL (|has| |#1| (-357)))) (-2585 (($ $ $) NIL (|has| |#1| (-357)))) (-4281 (($ $ $) NIL (|has| |#1| (-357)))) (-4214 (($ $ $) NIL (|has| |#1| (-357)))) (-3571 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4021 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-3557 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) NIL)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#1| (-445)))) (-2624 (((-111) $) NIL)) (-1832 (($ |#1| (-754)) NIL)) (-3107 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-544)))) (-1378 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-544)))) (-3465 (((-754) $) NIL)) (-2753 (($ $ $) NIL (|has| |#1| (-357)))) (-4009 (($ $ $) NIL (|has| |#1| (-357)))) (-2016 (($ $ $) NIL (|has| |#1| (-357)))) (-2812 (($ $ $) NIL (|has| |#1| (-357)))) (-3008 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4266 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-4273 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-1985 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3801 (($ $ $) NIL (|has| |#1| (-357)))) (-3567 (((-754) $) NIL)) (-3495 ((|#1| $) NIL (|has| |#1| (-445)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#1| (-1017 (-401 (-552))))) (($ |#1|) NIL)) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-754)) NIL)) (-3995 (((-754)) NIL)) (-3288 ((|#1| $ |#1| |#1|) NIL)) (-2279 (($ $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($) NIL)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-636 |#1| |#2|) (-13 (-638 |#1|) (-280 |#2| |#2|)) (-228) (-13 (-630 |#1|) (-10 -8 (-15 -2942 ($ $))))) (T -636)) +NIL +(-13 (-638 |#1|) (-280 |#2| |#2|)) +((-3659 (($ $) 26)) (-2279 (($ $) 24)) (-4251 (($) 12))) +(((-637 |#1| |#2|) (-10 -8 (-15 -3659 (|#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -4251 (|#1|))) (-638 |#2|) (-1028)) (T -637)) +NIL +(-10 -8 (-15 -3659 (|#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -4251 (|#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3659 (($ $) 80 (|has| |#1| (-357)))) (-4182 (($ $ $) 82 (|has| |#1| (-357)))) (-2032 (($ $ (-754)) 81 (|has| |#1| (-357)))) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1768 (($ $ $) 43 (|has| |#1| (-357)))) (-2585 (($ $ $) 44 (|has| |#1| (-357)))) (-4281 (($ $ $) 46 (|has| |#1| (-357)))) (-4214 (($ $ $) 41 (|has| |#1| (-357)))) (-3571 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 40 (|has| |#1| (-357)))) (-4021 (((-3 $ "failed") $ $) 42 (|has| |#1| (-357)))) (-3557 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 45 (|has| |#1| (-357)))) (-4039 (((-3 (-552) "failed") $) 72 (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) 70 (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 67)) (-1703 (((-552) $) 73 (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) 71 (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) 66)) (-2014 (($ $) 62)) (-2040 (((-3 $ "failed") $) 32)) (-1375 (($ $) 53 (|has| |#1| (-445)))) (-2624 (((-111) $) 30)) (-1832 (($ |#1| (-754)) 60)) (-3107 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55 (|has| |#1| (-544)))) (-1378 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 56 (|has| |#1| (-544)))) (-3465 (((-754) $) 64)) (-2753 (($ $ $) 50 (|has| |#1| (-357)))) (-4009 (($ $ $) 51 (|has| |#1| (-357)))) (-2016 (($ $ $) 39 (|has| |#1| (-357)))) (-2812 (($ $ $) 48 (|has| |#1| (-357)))) (-3008 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 47 (|has| |#1| (-357)))) (-4266 (((-3 $ "failed") $ $) 49 (|has| |#1| (-357)))) (-4273 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 52 (|has| |#1| (-357)))) (-1993 ((|#1| $) 63)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2761 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-544)))) (-1985 ((|#1| $ |#1|) 85)) (-3801 (($ $ $) 79 (|has| |#1| (-357)))) (-3567 (((-754) $) 65)) (-3495 ((|#1| $) 54 (|has| |#1| (-445)))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 69 (|has| |#1| (-1017 (-401 (-552))))) (($ |#1|) 68)) (-1493 (((-627 |#1|) $) 59)) (-1889 ((|#1| $ (-754)) 61)) (-3995 (((-754)) 28)) (-3288 ((|#1| $ |#1| |#1|) 58)) (-2279 (($ $) 83)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($) 84)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) +(((-638 |#1|) (-137) (-1028)) (T -638)) +((-4251 (*1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1028)))) (-2279 (*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1028)))) (-4182 (*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-2032 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-638 *3)) (-4 *3 (-1028)) (-4 *3 (-357)))) (-3659 (*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-3801 (*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) +(-13 (-832 |t#1|) (-280 |t#1| |t#1|) (-10 -8 (-15 -4251 ($)) (-15 -2279 ($ $)) (IF (|has| |t#1| (-357)) (PROGN (-15 -4182 ($ $ $)) (-15 -2032 ($ $ (-754))) (-15 -3659 ($ $)) (-15 -3801 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-280 |#1| |#1|) . T) ((-405 |#1|) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-700 |#1|) |has| |#1| (-169)) ((-709) . T) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T) ((-1034 |#1|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-832 |#1|) . T)) +((-2453 (((-627 (-635 (-401 |#2|))) (-635 (-401 |#2|))) 74 (|has| |#1| (-27)))) (-1727 (((-627 (-635 (-401 |#2|))) (-635 (-401 |#2|))) 73 (|has| |#1| (-27))) (((-627 (-635 (-401 |#2|))) (-635 (-401 |#2|)) (-1 (-627 |#1|) |#2|)) 17))) +(((-639 |#1| |#2|) (-10 -7 (-15 -1727 ((-627 (-635 (-401 |#2|))) (-635 (-401 |#2|)) (-1 (-627 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1727 ((-627 (-635 (-401 |#2|))) (-635 (-401 |#2|)))) (-15 -2453 ((-627 (-635 (-401 |#2|))) (-635 (-401 |#2|))))) |%noBranch|)) (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552)))) (-1211 |#1|)) (T -639)) +((-2453 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-4 *5 (-1211 *4)) (-5 *2 (-627 (-635 (-401 *5)))) (-5 *1 (-639 *4 *5)) (-5 *3 (-635 (-401 *5))))) (-1727 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-4 *5 (-1211 *4)) (-5 *2 (-627 (-635 (-401 *5)))) (-5 *1 (-639 *4 *5)) (-5 *3 (-635 (-401 *5))))) (-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-627 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-4 *6 (-1211 *5)) (-5 *2 (-627 (-635 (-401 *6)))) (-5 *1 (-639 *5 *6)) (-5 *3 (-635 (-401 *6)))))) +(-10 -7 (-15 -1727 ((-627 (-635 (-401 |#2|))) (-635 (-401 |#2|)) (-1 (-627 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1727 ((-627 (-635 (-401 |#2|))) (-635 (-401 |#2|)))) (-15 -2453 ((-627 (-635 (-401 |#2|))) (-635 (-401 |#2|))))) |%noBranch|)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3659 (($ $) NIL (|has| |#1| (-357)))) (-4182 (($ $ $) 28 (|has| |#1| (-357)))) (-2032 (($ $ (-754)) 31 (|has| |#1| (-357)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-1768 (($ $ $) NIL (|has| |#1| (-357)))) (-2585 (($ $ $) NIL (|has| |#1| (-357)))) (-4281 (($ $ $) NIL (|has| |#1| (-357)))) (-4214 (($ $ $) NIL (|has| |#1| (-357)))) (-3571 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4021 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-3557 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) NIL)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#1| (-445)))) (-2624 (((-111) $) NIL)) (-1832 (($ |#1| (-754)) NIL)) (-3107 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-544)))) (-1378 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-544)))) (-3465 (((-754) $) NIL)) (-2753 (($ $ $) NIL (|has| |#1| (-357)))) (-4009 (($ $ $) NIL (|has| |#1| (-357)))) (-2016 (($ $ $) NIL (|has| |#1| (-357)))) (-2812 (($ $ $) NIL (|has| |#1| (-357)))) (-3008 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4266 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-4273 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-1985 ((|#1| $ |#1|) 24)) (-3801 (($ $ $) 33 (|has| |#1| (-357)))) (-3567 (((-754) $) NIL)) (-3495 ((|#1| $) NIL (|has| |#1| (-445)))) (-1477 (((-842) $) 20) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#1| (-1017 (-401 (-552))))) (($ |#1|) NIL)) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-754)) NIL)) (-3995 (((-754)) NIL)) (-3288 ((|#1| $ |#1| |#1|) 23)) (-2279 (($ $) NIL)) (-1922 (($) 21 T CONST)) (-1933 (($) 8 T CONST)) (-4251 (($) NIL)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-640 |#1| |#2|) (-638 |#1|) (-1028) (-1 |#1| |#1|)) (T -640)) +NIL +(-638 |#1|) +((-4182 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-2032 ((|#2| |#2| (-754) (-1 |#1| |#1|)) 40)) (-3801 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) +(((-641 |#1| |#2|) (-10 -7 (-15 -4182 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2032 (|#2| |#2| (-754) (-1 |#1| |#1|))) (-15 -3801 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-357) (-638 |#1|)) (T -641)) +((-3801 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-357)) (-5 *1 (-641 *4 *2)) (-4 *2 (-638 *4)))) (-2032 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-1 *5 *5)) (-4 *5 (-357)) (-5 *1 (-641 *5 *2)) (-4 *2 (-638 *5)))) (-4182 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-357)) (-5 *1 (-641 *4 *2)) (-4 *2 (-638 *4))))) +(-10 -7 (-15 -4182 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2032 (|#2| |#2| (-754) (-1 |#1| |#1|))) (-15 -3801 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-1872 (($ $ $) 9))) +(((-642 |#1|) (-10 -8 (-15 -1872 (|#1| |#1| |#1|))) (-643)) (T -642)) +NIL +(-10 -8 (-15 -1872 (|#1| |#1| |#1|))) +((-1465 (((-111) $ $) 7)) (-2831 (($ $) 10)) (-1872 (($ $ $) 8)) (-2292 (((-111) $ $) 6)) (-1861 (($ $ $) 9))) +(((-643) (-137)) (T -643)) +((-2831 (*1 *1 *1) (-4 *1 (-643))) (-1861 (*1 *1 *1 *1) (-4 *1 (-643))) (-1872 (*1 *1 *1 *1) (-4 *1 (-643)))) +(-13 (-101) (-10 -8 (-15 -2831 ($ $)) (-15 -1861 ($ $ $)) (-15 -1872 ($ $ $)))) (((-101) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 15)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-1356 ((|#1| $) 21)) (-3658 (($ $ $) NIL (|has| |#1| (-771)))) (-3332 (($ $ $) NIL (|has| |#1| (-771)))) (-2883 (((-1131) $) 46)) (-2831 (((-1093) $) NIL)) (-1368 ((|#3| $) 22)) (-1683 (((-839) $) 42)) (-2089 (($) 10 T CONST)) (-2346 (((-112) $ $) NIL (|has| |#1| (-771)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-771)))) (-2281 (((-112) $ $) 20)) (-2334 (((-112) $ $) NIL (|has| |#1| (-771)))) (-2307 (((-112) $ $) 24 (|has| |#1| (-771)))) (-2404 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-2393 (($ $) 17) (($ $ $) NIL)) (-2382 (($ $ $) 27)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) -(((-642 |#1| |#2| |#3|) (-13 (-698 |#2|) (-10 -8 (IF (|has| |#1| (-771)) (-6 (-771)) |%noBranch|) (-15 -2404 ($ $ |#3|)) (-15 -2404 ($ |#1| |#3|)) (-15 -1356 (|#1| $)) (-15 -1368 (|#3| $)))) (-698 |#2|) (-170) (|SubsetCategory| (-707) |#2|)) (T -642)) -((-2404 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-642 *3 *4 *2)) (-4 *3 (-698 *4)) (-4 *2 (|SubsetCategory| (-707) *4)))) (-2404 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-642 *2 *4 *3)) (-4 *2 (-698 *4)) (-4 *3 (|SubsetCategory| (-707) *4)))) (-1356 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-698 *3)) (-5 *1 (-642 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-707) *3)))) (-1368 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-707) *4)) (-5 *1 (-642 *3 *4 *2)) (-4 *3 (-698 *4))))) -(-13 (-698 |#2|) (-10 -8 (IF (|has| |#1| (-771)) (-6 (-771)) |%noBranch|) (-15 -2404 ($ $ |#3|)) (-15 -2404 ($ |#1| |#3|)) (-15 -1356 (|#1| $)) (-15 -1368 (|#3| $)))) -((-3781 (((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|)) 33))) -(((-643 |#1|) (-10 -7 (-15 -3781 ((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|)))) (-885)) (T -643)) -((-3781 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-625 (-1145 *4))) (-5 *3 (-1145 *4)) (-4 *4 (-885)) (-5 *1 (-643 *4))))) -(-10 -7 (-15 -3781 ((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3202 (((-625 |#1|) $) 82)) (-4266 (($ $ (-751)) 90)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-4211 (((-1256 |#1| |#2|) (-1256 |#1| |#2|) $) 48)) (-1893 (((-3 (-652 |#1|) "failed") $) NIL)) (-1895 (((-652 |#1|) $) NIL)) (-4169 (($ $) 89)) (-3723 (((-751) $) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-2243 (($ (-652 |#1|) |#2|) 68)) (-4191 (($ $) 86)) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-4222 (((-1256 |#1| |#2|) (-1256 |#1| |#2|) $) 47)) (-3388 (((-2 (|:| |k| (-652 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4131 (((-652 |#1|) $) NIL)) (-4144 ((|#2| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4073 (($ $ |#1| $) 30) (($ $ (-625 |#1|) (-625 $)) 32)) (-4276 (((-751) $) 88)) (-1695 (($ $ $) 20) (($ (-652 |#1|) (-652 |#1|)) 77) (($ (-652 |#1|) $) 75) (($ $ (-652 |#1|)) 76)) (-1683 (((-839) $) NIL) (($ |#1|) 74) (((-1247 |#1| |#2|) $) 58) (((-1256 |#1| |#2|) $) 41) (($ (-652 |#1|)) 25)) (-2512 (((-625 |#2|) $) NIL)) (-3637 ((|#2| $ (-652 |#1|)) NIL)) (-3340 ((|#2| (-1256 |#1| |#2|) $) 43)) (-2089 (($) 23 T CONST)) (-2032 (((-625 (-2 (|:| |k| (-652 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4254 (((-3 $ "failed") (-1247 |#1| |#2|)) 60)) (-3246 (($ (-652 |#1|)) 14)) (-2281 (((-112) $ $) 44)) (-2404 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-2393 (($ $) 66) (($ $ $) NIL)) (-2382 (($ $ $) 29)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-652 |#1|)) NIL))) -(((-644 |#1| |#2|) (-13 (-369 |#1| |#2|) (-377 |#2| (-652 |#1|)) (-10 -8 (-15 -4254 ((-3 $ "failed") (-1247 |#1| |#2|))) (-15 -1695 ($ (-652 |#1|) (-652 |#1|))) (-15 -1695 ($ (-652 |#1|) $)) (-15 -1695 ($ $ (-652 |#1|))))) (-827) (-170)) (T -644)) -((-4254 (*1 *1 *2) (|partial| -12 (-5 *2 (-1247 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *1 (-644 *3 *4)))) (-1695 (*1 *1 *2 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4)) (-4 *4 (-170)))) (-1695 (*1 *1 *2 *1) (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4)) (-4 *4 (-170)))) (-1695 (*1 *1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4)) (-4 *4 (-170))))) -(-13 (-369 |#1| |#2|) (-377 |#2| (-652 |#1|)) (-10 -8 (-15 -4254 ((-3 $ "failed") (-1247 |#1| |#2|))) (-15 -1695 ($ (-652 |#1|) (-652 |#1|))) (-15 -1695 ($ (-652 |#1|) $)) (-15 -1695 ($ $ (-652 |#1|))))) -((-3237 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 50)) (-3218 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2873 (($ (-1 (-112) |#2|) $) 28)) (-1883 (($ $) 56)) (-3238 (($ $) 64)) (-1938 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 37)) (-2163 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-2483 (((-552) |#2| $ (-552)) 61) (((-552) |#2| $) NIL) (((-552) (-1 (-112) |#2|) $) 47)) (-2183 (($ (-751) |#2|) 54)) (-3260 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-3280 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-1996 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-2801 (($ |#2|) 15)) (-3966 (($ $ $ (-552)) 36) (($ |#2| $ (-552)) 34)) (-2380 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 46)) (-2884 (($ $ (-1199 (-552))) 44) (($ $ (-552)) 38)) (-3228 (($ $ $ (-552)) 60)) (-1871 (($ $) 58)) (-2307 (((-112) $ $) 66))) -(((-645 |#1| |#2|) (-10 -8 (-15 -2801 (|#1| |#2|)) (-15 -2884 (|#1| |#1| (-552))) (-15 -2884 (|#1| |#1| (-1199 (-552)))) (-15 -1938 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3966 (|#1| |#2| |#1| (-552))) (-15 -3966 (|#1| |#1| |#1| (-552))) (-15 -3260 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2873 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1938 (|#1| |#2| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -3260 (|#1| |#1| |#1|)) (-15 -3280 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3237 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2483 ((-552) (-1 (-112) |#2|) |#1|)) (-15 -2483 ((-552) |#2| |#1|)) (-15 -2483 ((-552) |#2| |#1| (-552))) (-15 -3280 (|#1| |#1| |#1|)) (-15 -3237 ((-112) |#1|)) (-15 -3228 (|#1| |#1| |#1| (-552))) (-15 -1883 (|#1| |#1|)) (-15 -3218 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3218 (|#1| |#1|)) (-15 -2307 ((-112) |#1| |#1|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2380 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2183 (|#1| (-751) |#2|)) (-15 -1996 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1871 (|#1| |#1|))) (-646 |#2|) (-1186)) (T -645)) -NIL -(-10 -8 (-15 -2801 (|#1| |#2|)) (-15 -2884 (|#1| |#1| (-552))) (-15 -2884 (|#1| |#1| (-1199 (-552)))) (-15 -1938 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3966 (|#1| |#2| |#1| (-552))) (-15 -3966 (|#1| |#1| |#1| (-552))) (-15 -3260 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2873 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1938 (|#1| |#2| |#1|)) (-15 -3238 (|#1| |#1|)) (-15 -3260 (|#1| |#1| |#1|)) (-15 -3280 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3237 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2483 ((-552) (-1 (-112) |#2|) |#1|)) (-15 -2483 ((-552) |#2| |#1|)) (-15 -2483 ((-552) |#2| |#1| (-552))) (-15 -3280 (|#1| |#1| |#1|)) (-15 -3237 ((-112) |#1|)) (-15 -3228 (|#1| |#1| |#1| (-552))) (-15 -1883 (|#1| |#1|)) (-15 -3218 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3218 (|#1| |#1|)) (-15 -2307 ((-112) |#1| |#1|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2163 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2380 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2183 (|#1| (-751) |#2|)) (-15 -1996 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1871 (|#1| |#1|))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3800 ((|#1| $) 48)) (-3897 ((|#1| $) 65)) (-2101 (($ $) 67)) (-2509 (((-1237) $ (-552) (-552)) 97 (|has| $ (-6 -4354)))) (-2278 (($ $ (-552)) 52 (|has| $ (-6 -4354)))) (-3237 (((-112) $) 142 (|has| |#1| (-827))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-3218 (($ $) 146 (-12 (|has| |#1| (-827)) (|has| $ (-6 -4354)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4354)))) (-1800 (($ $) 141 (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-3495 (((-112) $ (-751)) 8)) (-2565 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-2301 (($ $ $) 56 (|has| $ (-6 -4354)))) (-2289 ((|#1| $ |#1|) 54 (|has| $ (-6 -4354)))) (-2317 ((|#1| $ |#1|) 58 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4354))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4354))) (($ $ "rest" $) 55 (|has| $ (-6 -4354))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) 117 (|has| $ (-6 -4354))) ((|#1| $ (-552) |#1|) 86 (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 41 (|has| $ (-6 -4354)))) (-2873 (($ (-1 (-112) |#1|) $) 129)) (-3488 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4353)))) (-2673 ((|#1| $) 66)) (-3101 (($) 7 T CONST)) (-1883 (($ $) 144 (|has| $ (-6 -4354)))) (-2306 (($ $) 134)) (-2936 (($ $) 73) (($ $ (-751)) 71)) (-3238 (($ $) 131 (|has| |#1| (-1073)))) (-2959 (($ $) 99 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1938 (($ |#1| $) 130 (|has| |#1| (-1073))) (($ (-1 (-112) |#1|) $) 125)) (-1416 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4353))) (($ |#1| $) 100 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3692 ((|#1| $ (-552) |#1|) 85 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 87)) (-4011 (((-112) $) 83)) (-2483 (((-552) |#1| $ (-552)) 139 (|has| |#1| (-1073))) (((-552) |#1| $) 138 (|has| |#1| (-1073))) (((-552) (-1 (-112) |#1|) $) 137)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) 50)) (-1371 (((-112) $ $) 42 (|has| |#1| (-1073)))) (-2183 (($ (-751) |#1|) 108)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 95 (|has| (-552) (-827)))) (-3658 (($ $ $) 147 (|has| |#1| (-827)))) (-3260 (($ $ $) 132 (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-3280 (($ $ $) 140 (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 94 (|has| (-552) (-827)))) (-3332 (($ $ $) 148 (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2801 (($ |#1|) 122)) (-2878 (((-112) $ (-751)) 10)) (-3183 (((-625 |#1|) $) 45)) (-3367 (((-112) $) 49)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-1437 ((|#1| $) 70) (($ $ (-751)) 68)) (-3966 (($ $ $ (-552)) 127) (($ |#1| $ (-552)) 126)) (-3994 (($ $ $ (-552)) 116) (($ |#1| $ (-552)) 115)) (-2554 (((-625 (-552)) $) 92)) (-2564 (((-112) (-552) $) 91)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2924 ((|#1| $) 76) (($ $ (-751)) 74)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2518 (($ $ |#1|) 96 (|has| $ (-6 -4354)))) (-4022 (((-112) $) 84)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) 90)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1199 (-552))) 112) ((|#1| $ (-552)) 89) ((|#1| $ (-552) |#1|) 88)) (-1389 (((-552) $ $) 44)) (-2884 (($ $ (-1199 (-552))) 124) (($ $ (-552)) 123)) (-4001 (($ $ (-1199 (-552))) 114) (($ $ (-552)) 113)) (-2316 (((-112) $) 46)) (-2356 (($ $) 62)) (-2330 (($ $) 59 (|has| $ (-6 -4354)))) (-2368 (((-751) $) 63)) (-2379 (($ $) 64)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3228 (($ $ $ (-552)) 143 (|has| $ (-6 -4354)))) (-1871 (($ $) 13)) (-2042 (((-528) $) 98 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 107)) (-2342 (($ $ $) 61) (($ $ |#1|) 60)) (-3402 (($ $ $) 78) (($ |#1| $) 77) (($ (-625 $)) 110) (($ $ |#1|) 109)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) 51)) (-1380 (((-112) $ $) 43 (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) 150 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 151 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-2334 (((-112) $ $) 149 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 152 (|has| |#1| (-827)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-646 |#1|) (-138) (-1186)) (T -646)) -((-2801 (*1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1186))))) -(-13 (-1122 |t#1|) (-368 |t#1|) (-277 |t#1|) (-10 -8 (-15 -2801 ($ |t#1|)))) -(((-34) . T) ((-101) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827))) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-281 #0=(-552) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-277 |#1|) . T) ((-368 |#1|) . T) ((-483 |#1|) . T) ((-588 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-631 |#1|) . T) ((-827) |has| |#1| (-827)) ((-986 |#1|) . T) ((-1073) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827))) ((-1122 |#1|) . T) ((-1186) . T) ((-1220 |#1|) . T)) -((-1728 (((-625 (-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|))))) (-625 (-625 |#1|)) (-625 (-1232 |#1|))) 22) (((-625 (-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|))))) (-669 |#1|) (-625 (-1232 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|)))) (-625 (-625 |#1|)) (-1232 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|)))) (-669 |#1|) (-1232 |#1|)) 14)) (-3442 (((-751) (-669 |#1|) (-1232 |#1|)) 30)) (-2535 (((-3 (-1232 |#1|) "failed") (-669 |#1|) (-1232 |#1|)) 24)) (-3791 (((-112) (-669 |#1|) (-1232 |#1|)) 27))) -(((-647 |#1|) (-10 -7 (-15 -1728 ((-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|)))) (-669 |#1|) (-1232 |#1|))) (-15 -1728 ((-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|)))) (-625 (-625 |#1|)) (-1232 |#1|))) (-15 -1728 ((-625 (-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|))))) (-669 |#1|) (-625 (-1232 |#1|)))) (-15 -1728 ((-625 (-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|))))) (-625 (-625 |#1|)) (-625 (-1232 |#1|)))) (-15 -2535 ((-3 (-1232 |#1|) "failed") (-669 |#1|) (-1232 |#1|))) (-15 -3791 ((-112) (-669 |#1|) (-1232 |#1|))) (-15 -3442 ((-751) (-669 |#1|) (-1232 |#1|)))) (-358)) (T -647)) -((-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *5)) (-5 *4 (-1232 *5)) (-4 *5 (-358)) (-5 *2 (-751)) (-5 *1 (-647 *5)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *5)) (-5 *4 (-1232 *5)) (-4 *5 (-358)) (-5 *2 (-112)) (-5 *1 (-647 *5)))) (-2535 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1232 *4)) (-5 *3 (-669 *4)) (-4 *4 (-358)) (-5 *1 (-647 *4)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-625 *5))) (-4 *5 (-358)) (-5 *2 (-625 (-2 (|:| |particular| (-3 (-1232 *5) "failed")) (|:| -1270 (-625 (-1232 *5)))))) (-5 *1 (-647 *5)) (-5 *4 (-625 (-1232 *5))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *5)) (-4 *5 (-358)) (-5 *2 (-625 (-2 (|:| |particular| (-3 (-1232 *5) "failed")) (|:| -1270 (-625 (-1232 *5)))))) (-5 *1 (-647 *5)) (-5 *4 (-625 (-1232 *5))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-625 *5))) (-4 *5 (-358)) (-5 *2 (-2 (|:| |particular| (-3 (-1232 *5) "failed")) (|:| -1270 (-625 (-1232 *5))))) (-5 *1 (-647 *5)) (-5 *4 (-1232 *5)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |particular| (-3 (-1232 *5) "failed")) (|:| -1270 (-625 (-1232 *5))))) (-5 *1 (-647 *5)) (-5 *4 (-1232 *5))))) -(-10 -7 (-15 -1728 ((-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|)))) (-669 |#1|) (-1232 |#1|))) (-15 -1728 ((-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|)))) (-625 (-625 |#1|)) (-1232 |#1|))) (-15 -1728 ((-625 (-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|))))) (-669 |#1|) (-625 (-1232 |#1|)))) (-15 -1728 ((-625 (-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|))))) (-625 (-625 |#1|)) (-625 (-1232 |#1|)))) (-15 -2535 ((-3 (-1232 |#1|) "failed") (-669 |#1|) (-1232 |#1|))) (-15 -3791 ((-112) (-669 |#1|) (-1232 |#1|))) (-15 -3442 ((-751) (-669 |#1|) (-1232 |#1|)))) -((-1728 (((-625 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1270 (-625 |#3|)))) |#4| (-625 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1270 (-625 |#3|))) |#4| |#3|) 45)) (-3442 (((-751) |#4| |#3|) 17)) (-2535 (((-3 |#3| "failed") |#4| |#3|) 20)) (-3791 (((-112) |#4| |#3|) 13))) -(((-648 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1728 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1270 (-625 |#3|))) |#4| |#3|)) (-15 -1728 ((-625 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1270 (-625 |#3|)))) |#4| (-625 |#3|))) (-15 -2535 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3791 ((-112) |#4| |#3|)) (-15 -3442 ((-751) |#4| |#3|))) (-358) (-13 (-368 |#1|) (-10 -7 (-6 -4354))) (-13 (-368 |#1|) (-10 -7 (-6 -4354))) (-667 |#1| |#2| |#3|)) (T -648)) -((-3442 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4354)))) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-751)) (-5 *1 (-648 *5 *6 *4 *3)) (-4 *3 (-667 *5 *6 *4)))) (-3791 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4354)))) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-112)) (-5 *1 (-648 *5 *6 *4 *3)) (-4 *3 (-667 *5 *6 *4)))) (-2535 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-358)) (-4 *5 (-13 (-368 *4) (-10 -7 (-6 -4354)))) (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4354)))) (-5 *1 (-648 *4 *5 *2 *3)) (-4 *3 (-667 *4 *5 *2)))) (-1728 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4354)))) (-4 *7 (-13 (-368 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-625 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1270 (-625 *7))))) (-5 *1 (-648 *5 *6 *7 *3)) (-5 *4 (-625 *7)) (-4 *3 (-667 *5 *6 *7)))) (-1728 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4354)))) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) (-5 *1 (-648 *5 *6 *4 *3)) (-4 *3 (-667 *5 *6 *4))))) -(-10 -7 (-15 -1728 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1270 (-625 |#3|))) |#4| |#3|)) (-15 -1728 ((-625 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1270 (-625 |#3|)))) |#4| (-625 |#3|))) (-15 -2535 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3791 ((-112) |#4| |#3|)) (-15 -3442 ((-751) |#4| |#3|))) -((-3801 (((-2 (|:| |particular| (-3 (-1232 (-402 |#4|)) "failed")) (|:| -1270 (-625 (-1232 (-402 |#4|))))) (-625 |#4|) (-625 |#3|)) 45))) -(((-649 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3801 ((-2 (|:| |particular| (-3 (-1232 (-402 |#4|)) "failed")) (|:| -1270 (-625 (-1232 (-402 |#4|))))) (-625 |#4|) (-625 |#3|)))) (-544) (-773) (-827) (-925 |#1| |#2| |#3|)) (T -649)) -((-3801 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 *7)) (-4 *7 (-827)) (-4 *8 (-925 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773)) (-5 *2 (-2 (|:| |particular| (-3 (-1232 (-402 *8)) "failed")) (|:| -1270 (-625 (-1232 (-402 *8)))))) (-5 *1 (-649 *5 *6 *7 *8))))) -(-10 -7 (-15 -3801 ((-2 (|:| |particular| (-3 (-1232 (-402 |#4|)) "failed")) (|:| -1270 (-625 (-1232 (-402 |#4|))))) (-625 |#4|) (-625 |#3|)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3618 (((-3 $ "failed")) NIL (|has| |#2| (-544)))) (-1650 ((|#2| $) NIL)) (-4089 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2770 (((-1232 (-669 |#2|))) NIL) (((-1232 (-669 |#2|)) (-1232 $)) NIL)) (-4114 (((-112) $) NIL)) (-3208 (((-1232 $)) 37)) (-3495 (((-112) $ (-751)) NIL)) (-2467 (($ |#2|) NIL)) (-3101 (($) NIL T CONST)) (-3991 (($ $) NIL (|has| |#2| (-302)))) (-4015 (((-236 |#1| |#2|) $ (-552)) NIL)) (-1456 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) NIL (|has| |#2| (-544)))) (-4152 (((-3 $ "failed")) NIL (|has| |#2| (-544)))) (-2629 (((-669 |#2|)) NIL) (((-669 |#2|) (-1232 $)) NIL)) (-3192 ((|#2| $) NIL)) (-2612 (((-669 |#2|) $) NIL) (((-669 |#2|) $ (-1232 $)) NIL)) (-3598 (((-3 $ "failed") $) NIL (|has| |#2| (-544)))) (-1392 (((-1145 (-928 |#2|))) NIL (|has| |#2| (-358)))) (-3629 (($ $ (-897)) NIL)) (-3174 ((|#2| $) NIL)) (-4175 (((-1145 |#2|) $) NIL (|has| |#2| (-544)))) (-2648 ((|#2|) NIL) ((|#2| (-1232 $)) NIL)) (-3159 (((-1145 |#2|) $) NIL)) (-4303 (((-112)) NIL)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#2| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-3 |#2| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#2| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#2| (-1014 (-402 (-552))))) ((|#2| $) NIL)) (-2670 (($ (-1232 |#2|)) NIL) (($ (-1232 |#2|) (-1232 $)) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3442 (((-751) $) NIL (|has| |#2| (-544))) (((-897)) 38)) (-3631 ((|#2| $ (-552) (-552)) NIL)) (-4272 (((-112)) NIL)) (-2712 (($ $ (-897)) NIL)) (-3799 (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3650 (((-112) $) NIL)) (-3979 (((-751) $) NIL (|has| |#2| (-544)))) (-3967 (((-625 (-236 |#1| |#2|)) $) NIL (|has| |#2| (-544)))) (-1773 (((-751) $) NIL)) (-4228 (((-112)) NIL)) (-1784 (((-751) $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2416 ((|#2| $) NIL (|has| |#2| (-6 (-4355 "*"))))) (-4063 (((-552) $) NIL)) (-4038 (((-552) $) NIL)) (-3730 (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-4050 (((-552) $) NIL)) (-4027 (((-552) $) NIL)) (-3907 (($ (-625 (-625 |#2|))) NIL)) (-3683 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3803 (((-625 (-625 |#2|)) $) NIL)) (-4207 (((-112)) NIL)) (-4250 (((-112)) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-1467 (((-3 (-2 (|:| |particular| $) (|:| -1270 (-625 $))) "failed")) NIL (|has| |#2| (-544)))) (-4164 (((-3 $ "failed")) NIL (|has| |#2| (-544)))) (-2640 (((-669 |#2|)) NIL) (((-669 |#2|) (-1232 $)) NIL)) (-3199 ((|#2| $) NIL)) (-2619 (((-669 |#2|) $) NIL) (((-669 |#2|) $ (-1232 $)) NIL)) (-3609 (((-3 $ "failed") $) NIL (|has| |#2| (-544)))) (-1433 (((-1145 (-928 |#2|))) NIL (|has| |#2| (-358)))) (-3619 (($ $ (-897)) NIL)) (-3182 ((|#2| $) NIL)) (-4187 (((-1145 |#2|) $) NIL (|has| |#2| (-544)))) (-2658 ((|#2|) NIL) ((|#2| (-1232 $)) NIL)) (-3166 (((-1145 |#2|) $) NIL)) (-4312 (((-112)) NIL)) (-2883 (((-1131) $) NIL)) (-4218 (((-112)) NIL)) (-4239 (((-112)) NIL)) (-4261 (((-112)) NIL)) (-3150 (((-3 $ "failed") $) NIL (|has| |#2| (-358)))) (-2831 (((-1093) $) NIL)) (-4293 (((-112)) NIL)) (-2802 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544)))) (-1888 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#2| $ (-552) (-552) |#2|) NIL) ((|#2| $ (-552) (-552)) 22) ((|#2| $ (-552)) NIL)) (-3072 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-2435 ((|#2| $) NIL)) (-2457 (($ (-625 |#2|)) NIL)) (-4102 (((-112) $) NIL)) (-2446 (((-236 |#1| |#2|) $) NIL)) (-2426 ((|#2| $) NIL (|has| |#2| (-6 (-4355 "*"))))) (-2840 (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1871 (($ $) NIL)) (-2780 (((-669 |#2|) (-1232 $)) NIL) (((-1232 |#2|) $) NIL) (((-669 |#2|) (-1232 $) (-1232 $)) NIL) (((-1232 |#2|) $ (-1232 $)) 25)) (-2042 (($ (-1232 |#2|)) NIL) (((-1232 |#2|) $) NIL)) (-2533 (((-625 (-928 |#2|))) NIL) (((-625 (-928 |#2|)) (-1232 $)) NIL)) (-3828 (($ $ $) NIL)) (-3148 (((-112)) NIL)) (-4004 (((-236 |#1| |#2|) $ (-552)) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ (-402 (-552))) NIL (|has| |#2| (-1014 (-402 (-552))))) (($ |#2|) NIL) (((-669 |#2|) $) NIL)) (-4141 (((-751)) NIL)) (-1270 (((-1232 $)) 36)) (-4197 (((-625 (-1232 |#2|))) NIL (|has| |#2| (-544)))) (-3842 (($ $ $ $) NIL)) (-4333 (((-112)) NIL)) (-2872 (($ (-669 |#2|) $) NIL)) (-1900 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4077 (((-112) $) NIL)) (-3818 (($ $ $) NIL)) (-3137 (((-112)) NIL)) (-4322 (((-112)) NIL)) (-4283 (((-112)) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| |#2| (-358)))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-236 |#1| |#2|) $ (-236 |#1| |#2|)) NIL) (((-236 |#1| |#2|) (-236 |#1| |#2|) $) NIL)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-650 |#1| |#2|) (-13 (-1096 |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) (-597 (-669 |#2|)) (-412 |#2|)) (-897) (-170)) (T -650)) -NIL -(-13 (-1096 |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) (-597 (-669 |#2|)) (-412 |#2|)) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2923 (((-625 (-1108)) $) 10)) (-1683 (((-839) $) 18) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL))) -(((-651) (-13 (-1056) (-10 -8 (-15 -2923 ((-625 (-1108)) $))))) (T -651)) -((-2923 (*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-651))))) -(-13 (-1056) (-10 -8 (-15 -2923 ((-625 (-1108)) $)))) -((-1671 (((-112) $ $) NIL)) (-3202 (((-625 |#1|) $) NIL)) (-2303 (($ $) 52)) (-2023 (((-112) $) NIL)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-3833 (((-3 $ "failed") (-799 |#1|)) 23)) (-3860 (((-112) (-799 |#1|)) 15)) (-3846 (($ (-799 |#1|)) 24)) (-3511 (((-112) $ $) 30)) (-3456 (((-897) $) 37)) (-2290 (($ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3824 (((-625 $) (-799 |#1|)) 17)) (-1683 (((-839) $) 43) (($ |#1|) 34) (((-799 |#1|) $) 39) (((-657 |#1|) $) 44)) (-3821 (((-58 (-625 $)) (-625 |#1|) (-897)) 57)) (-3812 (((-625 $) (-625 |#1|) (-897)) 60)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 53)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 38))) -(((-652 |#1|) (-13 (-827) (-1014 |#1|) (-10 -8 (-15 -2023 ((-112) $)) (-15 -2290 ($ $)) (-15 -2303 ($ $)) (-15 -3456 ((-897) $)) (-15 -3511 ((-112) $ $)) (-15 -1683 ((-799 |#1|) $)) (-15 -1683 ((-657 |#1|) $)) (-15 -3824 ((-625 $) (-799 |#1|))) (-15 -3860 ((-112) (-799 |#1|))) (-15 -3846 ($ (-799 |#1|))) (-15 -3833 ((-3 $ "failed") (-799 |#1|))) (-15 -3202 ((-625 |#1|) $)) (-15 -3821 ((-58 (-625 $)) (-625 |#1|) (-897))) (-15 -3812 ((-625 $) (-625 |#1|) (-897))))) (-827)) (T -652)) -((-2023 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-2290 (*1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-827)))) (-2303 (*1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-827)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-897)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-3511 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-3824 (*1 *2 *3) (-12 (-5 *3 (-799 *4)) (-4 *4 (-827)) (-5 *2 (-625 (-652 *4))) (-5 *1 (-652 *4)))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-799 *4)) (-4 *4 (-827)) (-5 *2 (-112)) (-5 *1 (-652 *4)))) (-3846 (*1 *1 *2) (-12 (-5 *2 (-799 *3)) (-4 *3 (-827)) (-5 *1 (-652 *3)))) (-3833 (*1 *1 *2) (|partial| -12 (-5 *2 (-799 *3)) (-4 *3 (-827)) (-5 *1 (-652 *3)))) (-3202 (*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-3821 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-5 *4 (-897)) (-4 *5 (-827)) (-5 *2 (-58 (-625 (-652 *5)))) (-5 *1 (-652 *5)))) (-3812 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-5 *4 (-897)) (-4 *5 (-827)) (-5 *2 (-625 (-652 *5))) (-5 *1 (-652 *5))))) -(-13 (-827) (-1014 |#1|) (-10 -8 (-15 -2023 ((-112) $)) (-15 -2290 ($ $)) (-15 -2303 ($ $)) (-15 -3456 ((-897) $)) (-15 -3511 ((-112) $ $)) (-15 -1683 ((-799 |#1|) $)) (-15 -1683 ((-657 |#1|) $)) (-15 -3824 ((-625 $) (-799 |#1|))) (-15 -3860 ((-112) (-799 |#1|))) (-15 -3846 ($ (-799 |#1|))) (-15 -3833 ((-3 $ "failed") (-799 |#1|))) (-15 -3202 ((-625 |#1|) $)) (-15 -3821 ((-58 (-625 $)) (-625 |#1|) (-897))) (-15 -3812 ((-625 $) (-625 |#1|) (-897))))) -((-3800 ((|#2| $) 76)) (-2101 (($ $) 96)) (-3495 (((-112) $ (-751)) 26)) (-2936 (($ $) 85) (($ $ (-751)) 88)) (-4011 (((-112) $) 97)) (-1399 (((-625 $) $) 72)) (-1371 (((-112) $ $) 71)) (-2909 (((-112) $ (-751)) 24)) (-2527 (((-552) $) 46)) (-2537 (((-552) $) 45)) (-2878 (((-112) $ (-751)) 22)) (-3367 (((-112) $) 74)) (-1437 ((|#2| $) 89) (($ $ (-751)) 92)) (-3994 (($ $ $ (-552)) 62) (($ |#2| $ (-552)) 61)) (-2554 (((-625 (-552)) $) 44)) (-2564 (((-112) (-552) $) 42)) (-2924 ((|#2| $) NIL) (($ $ (-751)) 84)) (-2147 (($ $ (-552)) 100)) (-4022 (((-112) $) 99)) (-1888 (((-112) (-1 (-112) |#2|) $) 32)) (-1358 (((-625 |#2|) $) 33)) (-2154 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1199 (-552))) 58) ((|#2| $ (-552)) 40) ((|#2| $ (-552) |#2|) 41)) (-1389 (((-552) $ $) 70)) (-4001 (($ $ (-1199 (-552))) 57) (($ $ (-552)) 51)) (-2316 (((-112) $) 66)) (-2356 (($ $) 81)) (-2368 (((-751) $) 80)) (-2379 (($ $) 79)) (-1695 (($ (-625 |#2|)) 37)) (-3580 (($ $) 101)) (-3320 (((-625 $) $) 69)) (-1380 (((-112) $ $) 68)) (-1900 (((-112) (-1 (-112) |#2|) $) 31)) (-2281 (((-112) $ $) 18)) (-1471 (((-751) $) 29))) -(((-653 |#1| |#2|) (-10 -8 (-15 -3580 (|#1| |#1|)) (-15 -2147 (|#1| |#1| (-552))) (-15 -4011 ((-112) |#1|)) (-15 -4022 ((-112) |#1|)) (-15 -2154 (|#2| |#1| (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552))) (-15 -1358 ((-625 |#2|) |#1|)) (-15 -2564 ((-112) (-552) |#1|)) (-15 -2554 ((-625 (-552)) |#1|)) (-15 -2537 ((-552) |#1|)) (-15 -2527 ((-552) |#1|)) (-15 -1695 (|#1| (-625 |#2|))) (-15 -2154 (|#1| |#1| (-1199 (-552)))) (-15 -4001 (|#1| |#1| (-552))) (-15 -4001 (|#1| |#1| (-1199 (-552)))) (-15 -3994 (|#1| |#2| |#1| (-552))) (-15 -3994 (|#1| |#1| |#1| (-552))) (-15 -2356 (|#1| |#1|)) (-15 -2368 ((-751) |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2101 (|#1| |#1|)) (-15 -1437 (|#1| |#1| (-751))) (-15 -2154 (|#2| |#1| "last")) (-15 -1437 (|#2| |#1|)) (-15 -2936 (|#1| |#1| (-751))) (-15 -2154 (|#1| |#1| "rest")) (-15 -2936 (|#1| |#1|)) (-15 -2924 (|#1| |#1| (-751))) (-15 -2154 (|#2| |#1| "first")) (-15 -2924 (|#2| |#1|)) (-15 -1371 ((-112) |#1| |#1|)) (-15 -1380 ((-112) |#1| |#1|)) (-15 -1389 ((-552) |#1| |#1|)) (-15 -2316 ((-112) |#1|)) (-15 -2154 (|#2| |#1| "value")) (-15 -3800 (|#2| |#1|)) (-15 -3367 ((-112) |#1|)) (-15 -1399 ((-625 |#1|) |#1|)) (-15 -3320 ((-625 |#1|) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -1888 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-751) |#1|)) (-15 -3495 ((-112) |#1| (-751))) (-15 -2909 ((-112) |#1| (-751))) (-15 -2878 ((-112) |#1| (-751)))) (-654 |#2|) (-1186)) (T -653)) -NIL -(-10 -8 (-15 -3580 (|#1| |#1|)) (-15 -2147 (|#1| |#1| (-552))) (-15 -4011 ((-112) |#1|)) (-15 -4022 ((-112) |#1|)) (-15 -2154 (|#2| |#1| (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552))) (-15 -1358 ((-625 |#2|) |#1|)) (-15 -2564 ((-112) (-552) |#1|)) (-15 -2554 ((-625 (-552)) |#1|)) (-15 -2537 ((-552) |#1|)) (-15 -2527 ((-552) |#1|)) (-15 -1695 (|#1| (-625 |#2|))) (-15 -2154 (|#1| |#1| (-1199 (-552)))) (-15 -4001 (|#1| |#1| (-552))) (-15 -4001 (|#1| |#1| (-1199 (-552)))) (-15 -3994 (|#1| |#2| |#1| (-552))) (-15 -3994 (|#1| |#1| |#1| (-552))) (-15 -2356 (|#1| |#1|)) (-15 -2368 ((-751) |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2101 (|#1| |#1|)) (-15 -1437 (|#1| |#1| (-751))) (-15 -2154 (|#2| |#1| "last")) (-15 -1437 (|#2| |#1|)) (-15 -2936 (|#1| |#1| (-751))) (-15 -2154 (|#1| |#1| "rest")) (-15 -2936 (|#1| |#1|)) (-15 -2924 (|#1| |#1| (-751))) (-15 -2154 (|#2| |#1| "first")) (-15 -2924 (|#2| |#1|)) (-15 -1371 ((-112) |#1| |#1|)) (-15 -1380 ((-112) |#1| |#1|)) (-15 -1389 ((-552) |#1| |#1|)) (-15 -2316 ((-112) |#1|)) (-15 -2154 (|#2| |#1| "value")) (-15 -3800 (|#2| |#1|)) (-15 -3367 ((-112) |#1|)) (-15 -1399 ((-625 |#1|) |#1|)) (-15 -3320 ((-625 |#1|) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -1888 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1471 ((-751) |#1|)) (-15 -3495 ((-112) |#1| (-751))) (-15 -2909 ((-112) |#1| (-751))) (-15 -2878 ((-112) |#1| (-751)))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3800 ((|#1| $) 48)) (-3897 ((|#1| $) 65)) (-2101 (($ $) 67)) (-2509 (((-1237) $ (-552) (-552)) 97 (|has| $ (-6 -4354)))) (-2278 (($ $ (-552)) 52 (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) 8)) (-2565 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-2301 (($ $ $) 56 (|has| $ (-6 -4354)))) (-2289 ((|#1| $ |#1|) 54 (|has| $ (-6 -4354)))) (-2317 ((|#1| $ |#1|) 58 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4354))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4354))) (($ $ "rest" $) 55 (|has| $ (-6 -4354))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) 117 (|has| $ (-6 -4354))) ((|#1| $ (-552) |#1|) 86 (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 41 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) 102)) (-2673 ((|#1| $) 66)) (-3101 (($) 7 T CONST)) (-3887 (($ $) 124)) (-2936 (($ $) 73) (($ $ (-751)) 71)) (-2959 (($ $) 99 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#1| $) 100 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 103)) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3692 ((|#1| $ (-552) |#1|) 85 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 87)) (-4011 (((-112) $) 83)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3873 (((-751) $) 123)) (-1399 (((-625 $) $) 50)) (-1371 (((-112) $ $) 42 (|has| |#1| (-1073)))) (-2183 (($ (-751) |#1|) 108)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 95 (|has| (-552) (-827)))) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 94 (|has| (-552) (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2878 (((-112) $ (-751)) 10)) (-3183 (((-625 |#1|) $) 45)) (-3367 (((-112) $) 49)) (-3913 (($ $) 126)) (-3927 (((-112) $) 127)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-1437 ((|#1| $) 70) (($ $ (-751)) 68)) (-3994 (($ $ $ (-552)) 116) (($ |#1| $ (-552)) 115)) (-2554 (((-625 (-552)) $) 92)) (-2564 (((-112) (-552) $) 91)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-3900 ((|#1| $) 125)) (-2924 ((|#1| $) 76) (($ $ (-751)) 74)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2518 (($ $ |#1|) 96 (|has| $ (-6 -4354)))) (-2147 (($ $ (-552)) 122)) (-4022 (((-112) $) 84)) (-3940 (((-112) $) 128)) (-3952 (((-112) $) 129)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) 90)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1199 (-552))) 112) ((|#1| $ (-552)) 89) ((|#1| $ (-552) |#1|) 88)) (-1389 (((-552) $ $) 44)) (-4001 (($ $ (-1199 (-552))) 114) (($ $ (-552)) 113)) (-2316 (((-112) $) 46)) (-2356 (($ $) 62)) (-2330 (($ $) 59 (|has| $ (-6 -4354)))) (-2368 (((-751) $) 63)) (-2379 (($ $) 64)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 98 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 107)) (-2342 (($ $ $) 61 (|has| $ (-6 -4354))) (($ $ |#1|) 60 (|has| $ (-6 -4354)))) (-3402 (($ $ $) 78) (($ |#1| $) 77) (($ (-625 $)) 110) (($ $ |#1|) 109)) (-3580 (($ $) 121)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) 51)) (-1380 (((-112) $ $) 43 (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-654 |#1|) (-138) (-1186)) (T -654)) -((-1416 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-654 *3)) (-4 *3 (-1186)))) (-3488 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-654 *3)) (-4 *3 (-1186)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1186)) (-5 *2 (-112)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1186)) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1186)) (-5 *2 (-112)))) (-3913 (*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1186)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1186)))) (-3887 (*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1186)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1186)) (-5 *2 (-751)))) (-2147 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-654 *3)) (-4 *3 (-1186)))) (-3580 (*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1186))))) -(-13 (-1122 |t#1|) (-10 -8 (-15 -1416 ($ (-1 (-112) |t#1|) $)) (-15 -3488 ($ (-1 (-112) |t#1|) $)) (-15 -3952 ((-112) $)) (-15 -3940 ((-112) $)) (-15 -3927 ((-112) $)) (-15 -3913 ($ $)) (-15 -3900 (|t#1| $)) (-15 -3887 ($ $)) (-15 -3873 ((-751) $)) (-15 -2147 ($ $ (-552))) (-15 -3580 ($ $)))) -(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-281 #0=(-552) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-588 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-631 |#1|) . T) ((-986 |#1|) . T) ((-1073) |has| |#1| (-1073)) ((-1122 |#1|) . T) ((-1186) . T) ((-1220 |#1|) . T)) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-4013 (($ (-751) (-751) (-751)) 33 (|has| |#1| (-1025)))) (-3495 (((-112) $ (-751)) NIL)) (-3989 ((|#1| $ (-751) (-751) (-751) |#1|) 27)) (-3101 (($) NIL T CONST)) (-2157 (($ $ $) 37 (|has| |#1| (-1025)))) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3965 (((-1232 (-751)) $) 9)) (-3977 (($ (-1149) $ $) 22)) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-4002 (($ (-751)) 35 (|has| |#1| (-1025)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-751) (-751) (-751)) 25)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-1695 (($ (-625 (-625 (-625 |#1|)))) 44)) (-1683 (($ (-934 (-934 (-934 |#1|)))) 15) (((-934 (-934 (-934 |#1|))) $) 12) (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-655 |#1|) (-13 (-483 |#1|) (-10 -8 (IF (|has| |#1| (-1025)) (PROGN (-15 -4013 ($ (-751) (-751) (-751))) (-15 -4002 ($ (-751))) (-15 -2157 ($ $ $))) |%noBranch|) (-15 -1695 ($ (-625 (-625 (-625 |#1|))))) (-15 -2154 (|#1| $ (-751) (-751) (-751))) (-15 -3989 (|#1| $ (-751) (-751) (-751) |#1|)) (-15 -1683 ($ (-934 (-934 (-934 |#1|))))) (-15 -1683 ((-934 (-934 (-934 |#1|))) $)) (-15 -3977 ($ (-1149) $ $)) (-15 -3965 ((-1232 (-751)) $)))) (-1073)) (T -655)) -((-4013 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-655 *3)) (-4 *3 (-1025)) (-4 *3 (-1073)))) (-4002 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-655 *3)) (-4 *3 (-1025)) (-4 *3 (-1073)))) (-2157 (*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1025)) (-4 *2 (-1073)))) (-1695 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 (-625 *3)))) (-4 *3 (-1073)) (-5 *1 (-655 *3)))) (-2154 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-751)) (-5 *1 (-655 *2)) (-4 *2 (-1073)))) (-3989 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-655 *2)) (-4 *2 (-1073)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-934 (-934 (-934 *3)))) (-4 *3 (-1073)) (-5 *1 (-655 *3)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-934 (-934 (-934 *3)))) (-5 *1 (-655 *3)) (-4 *3 (-1073)))) (-3977 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-655 *3)) (-4 *3 (-1073)))) (-3965 (*1 *2 *1) (-12 (-5 *2 (-1232 (-751))) (-5 *1 (-655 *3)) (-4 *3 (-1073))))) -(-13 (-483 |#1|) (-10 -8 (IF (|has| |#1| (-1025)) (PROGN (-15 -4013 ($ (-751) (-751) (-751))) (-15 -4002 ($ (-751))) (-15 -2157 ($ $ $))) |%noBranch|) (-15 -1695 ($ (-625 (-625 (-625 |#1|))))) (-15 -2154 (|#1| $ (-751) (-751) (-751))) (-15 -3989 (|#1| $ (-751) (-751) (-751) |#1|)) (-15 -1683 ($ (-934 (-934 (-934 |#1|))))) (-15 -1683 ((-934 (-934 (-934 |#1|))) $)) (-15 -3977 ($ (-1149) $ $)) (-15 -3965 ((-1232 (-751)) $)))) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-3545 (((-477) $) 10)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 21) (((-1154) $) NIL) (($ (-1154)) NIL)) (-1300 (((-1108) $) 12)) (-2281 (((-112) $ $) NIL))) -(((-656) (-13 (-1056) (-10 -8 (-15 -3545 ((-477) $)) (-15 -1300 ((-1108) $))))) (T -656)) -((-3545 (*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-656)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-656))))) -(-13 (-1056) (-10 -8 (-15 -3545 ((-477) $)) (-15 -1300 ((-1108) $)))) -((-1671 (((-112) $ $) NIL)) (-3202 (((-625 |#1|) $) 14)) (-2303 (($ $) 18)) (-2023 (((-112) $) 19)) (-1893 (((-3 |#1| "failed") $) 22)) (-1895 ((|#1| $) 20)) (-2936 (($ $) 36)) (-4191 (($ $) 24)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-3511 (((-112) $ $) 42)) (-3456 (((-897) $) 38)) (-2290 (($ $) 17)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 ((|#1| $) 35)) (-1683 (((-839) $) 31) (($ |#1|) 23) (((-799 |#1|) $) 27)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 12)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 40)) (* (($ $ $) 34))) -(((-657 |#1|) (-13 (-827) (-1014 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1683 ((-799 |#1|) $)) (-15 -2924 (|#1| $)) (-15 -2290 ($ $)) (-15 -3456 ((-897) $)) (-15 -3511 ((-112) $ $)) (-15 -4191 ($ $)) (-15 -2936 ($ $)) (-15 -2023 ((-112) $)) (-15 -2303 ($ $)) (-15 -3202 ((-625 |#1|) $)))) (-827)) (T -657)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) (-2924 (*1 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-2290 (*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-897)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) (-3511 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) (-4191 (*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-2936 (*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) (-2303 (*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-3202 (*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-657 *3)) (-4 *3 (-827))))) -(-13 (-827) (-1014 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1683 ((-799 |#1|) $)) (-15 -2924 (|#1| $)) (-15 -2290 ($ $)) (-15 -3456 ((-897) $)) (-15 -3511 ((-112) $ $)) (-15 -4191 ($ $)) (-15 -2936 ($ $)) (-15 -2023 ((-112) $)) (-15 -2303 ($ $)) (-15 -3202 ((-625 |#1|) $)))) -((-4061 ((|#1| (-1 |#1| (-751) |#1|) (-751) |#1|) 11)) (-2783 ((|#1| (-1 |#1| |#1|) (-751) |#1|) 9))) -(((-658 |#1|) (-10 -7 (-15 -2783 (|#1| (-1 |#1| |#1|) (-751) |#1|)) (-15 -4061 (|#1| (-1 |#1| (-751) |#1|) (-751) |#1|))) (-1073)) (T -658)) -((-4061 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-751) *2)) (-5 *4 (-751)) (-4 *2 (-1073)) (-5 *1 (-658 *2)))) (-2783 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-751)) (-4 *2 (-1073)) (-5 *1 (-658 *2))))) -(-10 -7 (-15 -2783 (|#1| (-1 |#1| |#1|) (-751) |#1|)) (-15 -4061 (|#1| (-1 |#1| (-751) |#1|) (-751) |#1|))) -((-2305 ((|#2| |#1| |#2|) 9)) (-2292 ((|#1| |#1| |#2|) 8))) -(((-659 |#1| |#2|) (-10 -7 (-15 -2292 (|#1| |#1| |#2|)) (-15 -2305 (|#2| |#1| |#2|))) (-1073) (-1073)) (T -659)) -((-2305 (*1 *2 *3 *2) (-12 (-5 *1 (-659 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073)))) (-2292 (*1 *2 *2 *3) (-12 (-5 *1 (-659 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073))))) -(-10 -7 (-15 -2292 (|#1| |#1| |#2|)) (-15 -2305 (|#2| |#1| |#2|))) -((-4240 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-660 |#1| |#2| |#3|) (-10 -7 (-15 -4240 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1073) (-1073) (-1073)) (T -660)) -((-4240 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073)) (-5 *1 (-660 *5 *6 *2))))) -(-10 -7 (-15 -4240 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-1671 (((-112) $ $) NIL)) (-1711 (((-1185) $) 20)) (-1655 (((-625 (-1185)) $) 18)) (-4025 (($ (-625 (-1185)) (-1185)) 13)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 29) (((-1154) $) NIL) (($ (-1154)) NIL) (((-1185) $) 21) (($ (-1091)) 10)) (-2281 (((-112) $ $) NIL))) -(((-661) (-13 (-1056) (-597 (-1185)) (-10 -8 (-15 -1683 ($ (-1091))) (-15 -4025 ($ (-625 (-1185)) (-1185))) (-15 -1655 ((-625 (-1185)) $)) (-15 -1711 ((-1185) $))))) (T -661)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-661)))) (-4025 (*1 *1 *2 *3) (-12 (-5 *2 (-625 (-1185))) (-5 *3 (-1185)) (-5 *1 (-661)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-625 (-1185))) (-5 *1 (-661)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-661))))) -(-13 (-1056) (-597 (-1185)) (-10 -8 (-15 -1683 ($ (-1091))) (-15 -4025 ($ (-625 (-1185)) (-1185))) (-15 -1655 ((-625 (-1185)) $)) (-15 -1711 ((-1185) $)))) -((-4061 (((-1 |#1| (-751) |#1|) (-1 |#1| (-751) |#1|)) 23)) (-4036 (((-1 |#1|) |#1|) 8)) (-2150 ((|#1| |#1|) 16)) (-4048 (((-625 |#1|) (-1 (-625 |#1|) (-625 |#1|)) (-552)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-1683 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-751)) 20))) -(((-662 |#1|) (-10 -7 (-15 -4036 ((-1 |#1|) |#1|)) (-15 -1683 ((-1 |#1|) |#1|)) (-15 -4048 (|#1| (-1 |#1| |#1|))) (-15 -4048 ((-625 |#1|) (-1 (-625 |#1|) (-625 |#1|)) (-552))) (-15 -2150 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-751))) (-15 -4061 ((-1 |#1| (-751) |#1|) (-1 |#1| (-751) |#1|)))) (-1073)) (T -662)) -((-4061 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-751) *3)) (-4 *3 (-1073)) (-5 *1 (-662 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *4 (-1073)) (-5 *1 (-662 *4)))) (-2150 (*1 *2 *2) (-12 (-5 *1 (-662 *2)) (-4 *2 (-1073)))) (-4048 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-625 *5) (-625 *5))) (-5 *4 (-552)) (-5 *2 (-625 *5)) (-5 *1 (-662 *5)) (-4 *5 (-1073)))) (-4048 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-662 *2)) (-4 *2 (-1073)))) (-1683 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-662 *3)) (-4 *3 (-1073)))) (-4036 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-662 *3)) (-4 *3 (-1073))))) -(-10 -7 (-15 -4036 ((-1 |#1|) |#1|)) (-15 -1683 ((-1 |#1|) |#1|)) (-15 -4048 (|#1| (-1 |#1| |#1|))) (-15 -4048 ((-625 |#1|) (-1 (-625 |#1|) (-625 |#1|)) (-552))) (-15 -2150 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-751))) (-15 -4061 ((-1 |#1| (-751) |#1|) (-1 |#1| (-751) |#1|)))) -((-4100 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-4087 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1426 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-4075 (((-1 |#2| |#1|) |#2|) 11))) -(((-663 |#1| |#2|) (-10 -7 (-15 -4075 ((-1 |#2| |#1|) |#2|)) (-15 -4087 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1426 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4100 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1073) (-1073)) (T -663)) -((-4100 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-5 *2 (-1 *5 *4)) (-5 *1 (-663 *4 *5)))) (-1426 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1073)) (-5 *2 (-1 *5 *4)) (-5 *1 (-663 *4 *5)) (-4 *4 (-1073)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-5 *2 (-1 *5)) (-5 *1 (-663 *4 *5)))) (-4075 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-663 *4 *3)) (-4 *4 (-1073)) (-4 *3 (-1073))))) -(-10 -7 (-15 -4075 ((-1 |#2| |#1|) |#2|)) (-15 -4087 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1426 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4100 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-4165 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-4112 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-4126 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-4139 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-4153 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -4112 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4126 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4139 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4153 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4165 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1073) (-1073) (-1073)) (T -664)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-1 *7 *5)) (-5 *1 (-664 *5 *6 *7)))) (-4165 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-664 *4 *5 *6)))) (-4153 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-664 *4 *5 *6)) (-4 *4 (-1073)))) (-4139 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1073)) (-4 *6 (-1073)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-664 *4 *5 *6)) (-4 *5 (-1073)))) (-4126 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *4 *5 *6)))) (-4112 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1073)) (-4 *4 (-1073)) (-4 *6 (-1073)) (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *5 *4 *6))))) -(-10 -7 (-15 -4112 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4126 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4139 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4153 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4165 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-2163 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1996 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-665 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1996 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1996 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2163 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1025) (-368 |#1|) (-368 |#1|) (-667 |#1| |#2| |#3|) (-1025) (-368 |#5|) (-368 |#5|) (-667 |#5| |#6| |#7|)) (T -665)) -((-2163 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1025)) (-4 *2 (-1025)) (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) (-4 *8 (-368 *2)) (-4 *9 (-368 *2)) (-5 *1 (-665 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-667 *5 *6 *7)) (-4 *10 (-667 *2 *8 *9)))) (-1996 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1025)) (-4 *8 (-1025)) (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) (-4 *2 (-667 *8 *9 *10)) (-5 *1 (-665 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-667 *5 *6 *7)) (-4 *9 (-368 *8)) (-4 *10 (-368 *8)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1025)) (-4 *8 (-1025)) (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) (-4 *2 (-667 *8 *9 *10)) (-5 *1 (-665 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-667 *5 *6 *7)) (-4 *9 (-368 *8)) (-4 *10 (-368 *8))))) -(-10 -7 (-15 -1996 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1996 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2163 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-2983 (($ (-751) (-751)) 33)) (-4219 (($ $ $) 56)) (-2003 (($ |#3|) 52) (($ $) 53)) (-4089 (((-112) $) 28)) (-4208 (($ $ (-552) (-552)) 58)) (-4198 (($ $ (-552) (-552)) 59)) (-4188 (($ $ (-552) (-552) (-552) (-552)) 63)) (-4241 (($ $) 54)) (-4114 (((-112) $) 14)) (-4176 (($ $ (-552) (-552) $) 64)) (-1851 ((|#2| $ (-552) (-552) |#2|) NIL) (($ $ (-625 (-552)) (-625 (-552)) $) 62)) (-2467 (($ (-751) |#2|) 39)) (-3907 (($ (-625 (-625 |#2|))) 37)) (-3803 (((-625 (-625 |#2|)) $) 57)) (-4229 (($ $ $) 55)) (-2802 (((-3 $ "failed") $ |#2|) 91)) (-2154 ((|#2| $ (-552) (-552)) NIL) ((|#2| $ (-552) (-552) |#2|) NIL) (($ $ (-625 (-552)) (-625 (-552))) 61)) (-2457 (($ (-625 |#2|)) 40) (($ (-625 $)) 42)) (-4102 (((-112) $) 24)) (-1683 (($ |#4|) 47) (((-839) $) NIL)) (-4077 (((-112) $) 30)) (-2404 (($ $ |#2|) 93)) (-2393 (($ $ $) 68) (($ $) 71)) (-2382 (($ $ $) 66)) (** (($ $ (-751)) 80) (($ $ (-552)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-552) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) -(((-666 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1683 ((-839) |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -2404 (|#1| |#1| |#2|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-751))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -4176 (|#1| |#1| (-552) (-552) |#1|)) (-15 -4188 (|#1| |#1| (-552) (-552) (-552) (-552))) (-15 -4198 (|#1| |#1| (-552) (-552))) (-15 -4208 (|#1| |#1| (-552) (-552))) (-15 -1851 (|#1| |#1| (-625 (-552)) (-625 (-552)) |#1|)) (-15 -2154 (|#1| |#1| (-625 (-552)) (-625 (-552)))) (-15 -3803 ((-625 (-625 |#2|)) |#1|)) (-15 -4219 (|#1| |#1| |#1|)) (-15 -4229 (|#1| |#1| |#1|)) (-15 -4241 (|#1| |#1|)) (-15 -2003 (|#1| |#1|)) (-15 -2003 (|#1| |#3|)) (-15 -1683 (|#1| |#4|)) (-15 -2457 (|#1| (-625 |#1|))) (-15 -2457 (|#1| (-625 |#2|))) (-15 -2467 (|#1| (-751) |#2|)) (-15 -3907 (|#1| (-625 (-625 |#2|)))) (-15 -2983 (|#1| (-751) (-751))) (-15 -4077 ((-112) |#1|)) (-15 -4089 ((-112) |#1|)) (-15 -4102 ((-112) |#1|)) (-15 -4114 ((-112) |#1|)) (-15 -1851 (|#2| |#1| (-552) (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552) (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552) (-552)))) (-667 |#2| |#3| |#4|) (-1025) (-368 |#2|) (-368 |#2|)) (T -666)) -NIL -(-10 -8 (-15 -1683 ((-839) |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -2404 (|#1| |#1| |#2|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-751))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -4176 (|#1| |#1| (-552) (-552) |#1|)) (-15 -4188 (|#1| |#1| (-552) (-552) (-552) (-552))) (-15 -4198 (|#1| |#1| (-552) (-552))) (-15 -4208 (|#1| |#1| (-552) (-552))) (-15 -1851 (|#1| |#1| (-625 (-552)) (-625 (-552)) |#1|)) (-15 -2154 (|#1| |#1| (-625 (-552)) (-625 (-552)))) (-15 -3803 ((-625 (-625 |#2|)) |#1|)) (-15 -4219 (|#1| |#1| |#1|)) (-15 -4229 (|#1| |#1| |#1|)) (-15 -4241 (|#1| |#1|)) (-15 -2003 (|#1| |#1|)) (-15 -2003 (|#1| |#3|)) (-15 -1683 (|#1| |#4|)) (-15 -2457 (|#1| (-625 |#1|))) (-15 -2457 (|#1| (-625 |#2|))) (-15 -2467 (|#1| (-751) |#2|)) (-15 -3907 (|#1| (-625 (-625 |#2|)))) (-15 -2983 (|#1| (-751) (-751))) (-15 -4077 ((-112) |#1|)) (-15 -4089 ((-112) |#1|)) (-15 -4102 ((-112) |#1|)) (-15 -4114 ((-112) |#1|)) (-15 -1851 (|#2| |#1| (-552) (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552) (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552) (-552)))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-2983 (($ (-751) (-751)) 97)) (-4219 (($ $ $) 87)) (-2003 (($ |#2|) 91) (($ $) 90)) (-4089 (((-112) $) 99)) (-4208 (($ $ (-552) (-552)) 83)) (-4198 (($ $ (-552) (-552)) 82)) (-4188 (($ $ (-552) (-552) (-552) (-552)) 81)) (-4241 (($ $) 89)) (-4114 (((-112) $) 101)) (-3495 (((-112) $ (-751)) 8)) (-4176 (($ $ (-552) (-552) $) 80)) (-1851 ((|#1| $ (-552) (-552) |#1|) 44) (($ $ (-625 (-552)) (-625 (-552)) $) 84)) (-2701 (($ $ (-552) |#2|) 42)) (-2691 (($ $ (-552) |#3|) 41)) (-2467 (($ (-751) |#1|) 95)) (-3101 (($) 7 T CONST)) (-3991 (($ $) 67 (|has| |#1| (-302)))) (-4015 ((|#2| $ (-552)) 46)) (-3442 (((-751) $) 66 (|has| |#1| (-544)))) (-3692 ((|#1| $ (-552) (-552) |#1|) 43)) (-3631 ((|#1| $ (-552) (-552)) 48)) (-3799 (((-625 |#1|) $) 30)) (-3979 (((-751) $) 65 (|has| |#1| (-544)))) (-3967 (((-625 |#3|) $) 64 (|has| |#1| (-544)))) (-1773 (((-751) $) 51)) (-2183 (($ (-751) (-751) |#1|) 57)) (-1784 (((-751) $) 50)) (-2909 (((-112) $ (-751)) 9)) (-2416 ((|#1| $) 62 (|has| |#1| (-6 (-4355 "*"))))) (-4063 (((-552) $) 55)) (-4038 (((-552) $) 53)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-4050 (((-552) $) 54)) (-4027 (((-552) $) 52)) (-3907 (($ (-625 (-625 |#1|))) 96)) (-3683 (($ (-1 |#1| |#1|) $) 34)) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3803 (((-625 (-625 |#1|)) $) 86)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-3150 (((-3 $ "failed") $) 61 (|has| |#1| (-358)))) (-4229 (($ $ $) 88)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2518 (($ $ |#1|) 56)) (-2802 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-544)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ (-552) (-552)) 49) ((|#1| $ (-552) (-552) |#1|) 47) (($ $ (-625 (-552)) (-625 (-552))) 85)) (-2457 (($ (-625 |#1|)) 94) (($ (-625 $)) 93)) (-4102 (((-112) $) 100)) (-2426 ((|#1| $) 63 (|has| |#1| (-6 (-4355 "*"))))) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-4004 ((|#3| $ (-552)) 45)) (-1683 (($ |#3|) 92) (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-4077 (((-112) $) 98)) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-2404 (($ $ |#1|) 68 (|has| |#1| (-358)))) (-2393 (($ $ $) 78) (($ $) 77)) (-2382 (($ $ $) 79)) (** (($ $ (-751)) 70) (($ $ (-552)) 60 (|has| |#1| (-358)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-552) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-667 |#1| |#2| |#3|) (-138) (-1025) (-368 |t#1|) (-368 |t#1|)) (T -667)) -((-4114 (*1 *2 *1) (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-112)))) (-4102 (*1 *2 *1) (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-112)))) (-4089 (*1 *2 *1) (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-112)))) (-4077 (*1 *2 *1) (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-112)))) (-2983 (*1 *1 *2 *2) (-12 (-5 *2 (-751)) (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-3907 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2467 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2457 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2457 (*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *5)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-1683 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *2)) (-4 *4 (-368 *3)) (-4 *2 (-368 *3)))) (-2003 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *1 (-667 *3 *2 *4)) (-4 *2 (-368 *3)) (-4 *4 (-368 *3)))) (-2003 (*1 *1 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-4241 (*1 *1 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-4229 (*1 *1 *1 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-4219 (*1 *1 *1 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-625 (-625 *3))))) (-2154 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-625 (-552))) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-1851 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-625 (-552))) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-4208 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-4198 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-4188 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-4176 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2382 (*1 *1 *1 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-2393 (*1 *1 *1 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (-2393 (*1 *1 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-667 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *2 (-368 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-667 *3 *2 *4)) (-4 *3 (-1025)) (-4 *2 (-368 *3)) (-4 *4 (-368 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) (-2802 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-544)))) (-2404 (*1 *1 *1 *2) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-358)))) (-3991 (*1 *1 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-302)))) (-3442 (*1 *2 *1) (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-4 *3 (-544)) (-5 *2 (-751)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-4 *3 (-544)) (-5 *2 (-751)))) (-3967 (*1 *2 *1) (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-4 *3 (-544)) (-5 *2 (-625 *5)))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025)))) (-2416 (*1 *2 *1) (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025)))) (-3150 (*1 *1 *1) (|partial| -12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-358)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-4 *3 (-358))))) -(-13 (-56 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4354) (-6 -4353) (-15 -4114 ((-112) $)) (-15 -4102 ((-112) $)) (-15 -4089 ((-112) $)) (-15 -4077 ((-112) $)) (-15 -2983 ($ (-751) (-751))) (-15 -3907 ($ (-625 (-625 |t#1|)))) (-15 -2467 ($ (-751) |t#1|)) (-15 -2457 ($ (-625 |t#1|))) (-15 -2457 ($ (-625 $))) (-15 -1683 ($ |t#3|)) (-15 -2003 ($ |t#2|)) (-15 -2003 ($ $)) (-15 -4241 ($ $)) (-15 -4229 ($ $ $)) (-15 -4219 ($ $ $)) (-15 -3803 ((-625 (-625 |t#1|)) $)) (-15 -2154 ($ $ (-625 (-552)) (-625 (-552)))) (-15 -1851 ($ $ (-625 (-552)) (-625 (-552)) $)) (-15 -4208 ($ $ (-552) (-552))) (-15 -4198 ($ $ (-552) (-552))) (-15 -4188 ($ $ (-552) (-552) (-552) (-552))) (-15 -4176 ($ $ (-552) (-552) $)) (-15 -2382 ($ $ $)) (-15 -2393 ($ $ $)) (-15 -2393 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-552) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-751))) (IF (|has| |t#1| (-544)) (-15 -2802 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-358)) (-15 -2404 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-302)) (-15 -3991 ($ $)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -3442 ((-751) $)) (-15 -3979 ((-751) $)) (-15 -3967 ((-625 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4355 "*"))) (PROGN (-15 -2426 (|t#1| $)) (-15 -2416 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-15 -3150 ((-3 $ "failed") $)) (-15 ** ($ $ (-552)))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-56 |#1| |#2| |#3|) . T) ((-1186) . T)) -((-3991 ((|#4| |#4|) 72 (|has| |#1| (-302)))) (-3442 (((-751) |#4|) 99 (|has| |#1| (-544)))) (-3979 (((-751) |#4|) 76 (|has| |#1| (-544)))) (-3967 (((-625 |#3|) |#4|) 83 (|has| |#1| (-544)))) (-3369 (((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|) 111 (|has| |#1| (-302)))) (-2416 ((|#1| |#4|) 35)) (-4294 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-544)))) (-3150 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-358)))) (-4284 ((|#4| |#4|) 68 (|has| |#1| (-544)))) (-4262 ((|#4| |#4| |#1| (-552) (-552)) 43)) (-4251 ((|#4| |#4| (-552) (-552)) 38)) (-4273 ((|#4| |#4| |#1| (-552) (-552)) 48)) (-2426 ((|#1| |#4|) 78)) (-3180 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-544))))) -(((-668 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2426 (|#1| |#4|)) (-15 -2416 (|#1| |#4|)) (-15 -4251 (|#4| |#4| (-552) (-552))) (-15 -4262 (|#4| |#4| |#1| (-552) (-552))) (-15 -4273 (|#4| |#4| |#1| (-552) (-552))) (IF (|has| |#1| (-544)) (PROGN (-15 -3442 ((-751) |#4|)) (-15 -3979 ((-751) |#4|)) (-15 -3967 ((-625 |#3|) |#4|)) (-15 -4284 (|#4| |#4|)) (-15 -4294 ((-3 |#4| "failed") |#4|)) (-15 -3180 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-302)) (PROGN (-15 -3991 (|#4| |#4|)) (-15 -3369 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -3150 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-170) (-368 |#1|) (-368 |#1|) (-667 |#1| |#2| |#3|)) (T -668)) -((-3150 (*1 *2 *2) (|partial| -12 (-4 *3 (-358)) (-4 *3 (-170)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))) (-3369 (*1 *2 *3 *3) (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-668 *3 *4 *5 *6)) (-4 *6 (-667 *3 *4 *5)))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))) (-3180 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *4 (-170)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))) (-4294 (*1 *2 *2) (|partial| -12 (-4 *3 (-544)) (-4 *3 (-170)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))) (-4284 (*1 *2 *2) (-12 (-4 *3 (-544)) (-4 *3 (-170)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))) (-3967 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *4 (-170)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-625 *6)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))) (-3979 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *4 (-170)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-751)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))) (-3442 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *4 (-170)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-751)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))) (-4273 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-552)) (-4 *3 (-170)) (-4 *5 (-368 *3)) (-4 *6 (-368 *3)) (-5 *1 (-668 *3 *5 *6 *2)) (-4 *2 (-667 *3 *5 *6)))) (-4262 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-552)) (-4 *3 (-170)) (-4 *5 (-368 *3)) (-4 *6 (-368 *3)) (-5 *1 (-668 *3 *5 *6 *2)) (-4 *2 (-667 *3 *5 *6)))) (-4251 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-552)) (-4 *4 (-170)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *1 (-668 *4 *5 *6 *2)) (-4 *2 (-667 *4 *5 *6)))) (-2416 (*1 *2 *3) (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-170)) (-5 *1 (-668 *2 *4 *5 *3)) (-4 *3 (-667 *2 *4 *5)))) (-2426 (*1 *2 *3) (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-170)) (-5 *1 (-668 *2 *4 *5 *3)) (-4 *3 (-667 *2 *4 *5))))) -(-10 -7 (-15 -2426 (|#1| |#4|)) (-15 -2416 (|#1| |#4|)) (-15 -4251 (|#4| |#4| (-552) (-552))) (-15 -4262 (|#4| |#4| |#1| (-552) (-552))) (-15 -4273 (|#4| |#4| |#1| (-552) (-552))) (IF (|has| |#1| (-544)) (PROGN (-15 -3442 ((-751) |#4|)) (-15 -3979 ((-751) |#4|)) (-15 -3967 ((-625 |#3|) |#4|)) (-15 -4284 (|#4| |#4|)) (-15 -4294 ((-3 |#4| "failed") |#4|)) (-15 -3180 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-302)) (PROGN (-15 -3991 (|#4| |#4|)) (-15 -3369 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -3150 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2983 (($ (-751) (-751)) 47)) (-4219 (($ $ $) NIL)) (-2003 (($ (-1232 |#1|)) NIL) (($ $) NIL)) (-4089 (((-112) $) NIL)) (-4208 (($ $ (-552) (-552)) 12)) (-4198 (($ $ (-552) (-552)) NIL)) (-4188 (($ $ (-552) (-552) (-552) (-552)) NIL)) (-4241 (($ $) NIL)) (-4114 (((-112) $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-4176 (($ $ (-552) (-552) $) NIL)) (-1851 ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-625 (-552)) (-625 (-552)) $) NIL)) (-2701 (($ $ (-552) (-1232 |#1|)) NIL)) (-2691 (($ $ (-552) (-1232 |#1|)) NIL)) (-2467 (($ (-751) |#1|) 22)) (-3101 (($) NIL T CONST)) (-3991 (($ $) 31 (|has| |#1| (-302)))) (-4015 (((-1232 |#1|) $ (-552)) NIL)) (-3442 (((-751) $) 33 (|has| |#1| (-544)))) (-3692 ((|#1| $ (-552) (-552) |#1|) 51)) (-3631 ((|#1| $ (-552) (-552)) NIL)) (-3799 (((-625 |#1|) $) NIL)) (-3979 (((-751) $) 35 (|has| |#1| (-544)))) (-3967 (((-625 (-1232 |#1|)) $) 38 (|has| |#1| (-544)))) (-1773 (((-751) $) 20)) (-2183 (($ (-751) (-751) |#1|) 16)) (-1784 (((-751) $) 21)) (-2909 (((-112) $ (-751)) NIL)) (-2416 ((|#1| $) 29 (|has| |#1| (-6 (-4355 "*"))))) (-4063 (((-552) $) 9)) (-4038 (((-552) $) 10)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-4050 (((-552) $) 11)) (-4027 (((-552) $) 48)) (-3907 (($ (-625 (-625 |#1|))) NIL)) (-3683 (($ (-1 |#1| |#1|) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3803 (((-625 (-625 |#1|)) $) 60)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3150 (((-3 $ "failed") $) 45 (|has| |#1| (-358)))) (-4229 (($ $ $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2518 (($ $ |#1|) NIL)) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-625 (-552)) (-625 (-552))) NIL)) (-2457 (($ (-625 |#1|)) NIL) (($ (-625 $)) NIL) (($ (-1232 |#1|)) 52)) (-4102 (((-112) $) NIL)) (-2426 ((|#1| $) 27 (|has| |#1| (-6 (-4355 "*"))))) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-2042 (((-528) $) 64 (|has| |#1| (-598 (-528))))) (-4004 (((-1232 |#1|) $ (-552)) NIL)) (-1683 (($ (-1232 |#1|)) NIL) (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4077 (((-112) $) NIL)) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $ $) NIL) (($ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-751)) 23) (($ $ (-552)) 46 (|has| |#1| (-358)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-552) $) NIL) (((-1232 |#1|) $ (-1232 |#1|)) NIL) (((-1232 |#1|) (-1232 |#1|) $) NIL)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-669 |#1|) (-13 (-667 |#1| (-1232 |#1|) (-1232 |#1|)) (-10 -8 (-15 -2457 ($ (-1232 |#1|))) (IF (|has| |#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -3150 ((-3 $ "failed") $)) |%noBranch|))) (-1025)) (T -669)) -((-3150 (*1 *1 *1) (|partial| -12 (-5 *1 (-669 *2)) (-4 *2 (-358)) (-4 *2 (-1025)))) (-2457 (*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-1025)) (-5 *1 (-669 *3))))) -(-13 (-667 |#1| (-1232 |#1|) (-1232 |#1|)) (-10 -8 (-15 -2457 ($ (-1232 |#1|))) (IF (|has| |#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -3150 ((-3 $ "failed") $)) |%noBranch|))) -((-1285 (((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|)) 25)) (-1275 (((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|) 21)) (-1297 (((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-751)) 26)) (-4313 (((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|)) 14)) (-4323 (((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|)) 18) (((-669 |#1|) (-669 |#1|) (-669 |#1|)) 16)) (-1265 (((-669 |#1|) (-669 |#1|) |#1| (-669 |#1|)) 20)) (-4304 (((-669 |#1|) (-669 |#1|) (-669 |#1|)) 12)) (** (((-669 |#1|) (-669 |#1|) (-751)) 30))) -(((-670 |#1|) (-10 -7 (-15 -4304 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -4313 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -4323 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -4323 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -1265 ((-669 |#1|) (-669 |#1|) |#1| (-669 |#1|))) (-15 -1275 ((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|)) (-15 -1285 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -1297 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-751))) (-15 ** ((-669 |#1|) (-669 |#1|) (-751)))) (-1025)) (T -670)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-669 *4)) (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *1 (-670 *4)))) (-1297 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-669 *4)) (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *1 (-670 *4)))) (-1285 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-1275 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-1265 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-4323 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-4323 (*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-4313 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-4304 (*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3))))) -(-10 -7 (-15 -4304 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -4313 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -4323 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -4323 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -1265 ((-669 |#1|) (-669 |#1|) |#1| (-669 |#1|))) (-15 -1275 ((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|)) (-15 -1285 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -1297 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-751))) (-15 ** ((-669 |#1|) (-669 |#1|) (-751)))) -((-3163 (($) 8 T CONST)) (-1683 (((-839) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-2079 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -3163)) 16)) (-1905 ((|#1| $) 11))) -(((-671 |#1|) (-13 (-1227) (-597 (-839)) (-10 -8 (-15 -2079 ((-112) $ (|[\|\|]| |#1|))) (-15 -2079 ((-112) $ (|[\|\|]| -3163))) (-15 -1683 ($ |#1|)) (-15 -1683 (|#1| $)) (-15 -1905 (|#1| $)) (-15 -3163 ($) -1426))) (-597 (-839))) (T -671)) -((-2079 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-597 (-839))) (-5 *2 (-112)) (-5 *1 (-671 *4)))) (-2079 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3163)) (-5 *2 (-112)) (-5 *1 (-671 *4)) (-4 *4 (-597 (-839))))) (-1683 (*1 *1 *2) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-839))))) (-1683 (*1 *2 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-839))))) (-1905 (*1 *2 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-839))))) (-3163 (*1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-839)))))) -(-13 (-1227) (-597 (-839)) (-10 -8 (-15 -2079 ((-112) $ (|[\|\|]| |#1|))) (-15 -2079 ((-112) $ (|[\|\|]| -3163))) (-15 -1683 ($ |#1|)) (-15 -1683 (|#1| $)) (-15 -1905 (|#1| $)) (-15 -3163 ($) -1426))) -((-1327 ((|#2| |#2| |#4|) 25)) (-3210 (((-669 |#2|) |#3| |#4|) 31)) (-1337 (((-669 |#2|) |#2| |#4|) 30)) (-1308 (((-1232 |#2|) |#2| |#4|) 16)) (-1316 ((|#2| |#3| |#4|) 24)) (-3220 (((-669 |#2|) |#3| |#4| (-751) (-751)) 38)) (-3200 (((-669 |#2|) |#2| |#4| (-751)) 37))) -(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1308 ((-1232 |#2|) |#2| |#4|)) (-15 -1316 (|#2| |#3| |#4|)) (-15 -1327 (|#2| |#2| |#4|)) (-15 -1337 ((-669 |#2|) |#2| |#4|)) (-15 -3200 ((-669 |#2|) |#2| |#4| (-751))) (-15 -3210 ((-669 |#2|) |#3| |#4|)) (-15 -3220 ((-669 |#2|) |#3| |#4| (-751) (-751)))) (-1073) (-876 |#1|) (-368 |#2|) (-13 (-368 |#1|) (-10 -7 (-6 -4353)))) (T -672)) -((-3220 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-751)) (-4 *6 (-1073)) (-4 *7 (-876 *6)) (-5 *2 (-669 *7)) (-5 *1 (-672 *6 *7 *3 *4)) (-4 *3 (-368 *7)) (-4 *4 (-13 (-368 *6) (-10 -7 (-6 -4353)))))) (-3210 (*1 *2 *3 *4) (-12 (-4 *5 (-1073)) (-4 *6 (-876 *5)) (-5 *2 (-669 *6)) (-5 *1 (-672 *5 *6 *3 *4)) (-4 *3 (-368 *6)) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4353)))))) (-3200 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-751)) (-4 *6 (-1073)) (-4 *3 (-876 *6)) (-5 *2 (-669 *3)) (-5 *1 (-672 *6 *3 *7 *4)) (-4 *7 (-368 *3)) (-4 *4 (-13 (-368 *6) (-10 -7 (-6 -4353)))))) (-1337 (*1 *2 *3 *4) (-12 (-4 *5 (-1073)) (-4 *3 (-876 *5)) (-5 *2 (-669 *3)) (-5 *1 (-672 *5 *3 *6 *4)) (-4 *6 (-368 *3)) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4353)))))) (-1327 (*1 *2 *2 *3) (-12 (-4 *4 (-1073)) (-4 *2 (-876 *4)) (-5 *1 (-672 *4 *2 *5 *3)) (-4 *5 (-368 *2)) (-4 *3 (-13 (-368 *4) (-10 -7 (-6 -4353)))))) (-1316 (*1 *2 *3 *4) (-12 (-4 *5 (-1073)) (-4 *2 (-876 *5)) (-5 *1 (-672 *5 *2 *3 *4)) (-4 *3 (-368 *2)) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4353)))))) (-1308 (*1 *2 *3 *4) (-12 (-4 *5 (-1073)) (-4 *3 (-876 *5)) (-5 *2 (-1232 *3)) (-5 *1 (-672 *5 *3 *6 *4)) (-4 *6 (-368 *3)) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4353))))))) -(-10 -7 (-15 -1308 ((-1232 |#2|) |#2| |#4|)) (-15 -1316 (|#2| |#3| |#4|)) (-15 -1327 (|#2| |#2| |#4|)) (-15 -1337 ((-669 |#2|) |#2| |#4|)) (-15 -3200 ((-669 |#2|) |#2| |#4| (-751))) (-15 -3210 ((-669 |#2|) |#3| |#4|)) (-15 -3220 ((-669 |#2|) |#3| |#4| (-751) (-751)))) -((-3076 (((-2 (|:| |num| (-669 |#1|)) (|:| |den| |#1|)) (-669 |#2|)) 20)) (-3055 ((|#1| (-669 |#2|)) 9)) (-3066 (((-669 |#1|) (-669 |#2|)) 18))) -(((-673 |#1| |#2|) (-10 -7 (-15 -3055 (|#1| (-669 |#2|))) (-15 -3066 ((-669 |#1|) (-669 |#2|))) (-15 -3076 ((-2 (|:| |num| (-669 |#1|)) (|:| |den| |#1|)) (-669 |#2|)))) (-544) (-968 |#1|)) (T -673)) -((-3076 (*1 *2 *3) (-12 (-5 *3 (-669 *5)) (-4 *5 (-968 *4)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |num| (-669 *4)) (|:| |den| *4))) (-5 *1 (-673 *4 *5)))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-669 *5)) (-4 *5 (-968 *4)) (-4 *4 (-544)) (-5 *2 (-669 *4)) (-5 *1 (-673 *4 *5)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-669 *4)) (-4 *4 (-968 *2)) (-4 *2 (-544)) (-5 *1 (-673 *2 *4))))) -(-10 -7 (-15 -3055 (|#1| (-669 |#2|))) (-15 -3066 ((-669 |#1|) (-669 |#2|))) (-15 -3076 ((-2 (|:| |num| (-669 |#1|)) (|:| |den| |#1|)) (-669 |#2|)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2570 (((-669 (-679))) NIL) (((-669 (-679)) (-1232 $)) NIL)) (-1650 (((-679) $) NIL)) (-3728 (($ $) NIL (|has| (-679) (-1171)))) (-3604 (($ $) NIL (|has| (-679) (-1171)))) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| (-679) (-344)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-679) (-302)) (|has| (-679) (-885))))) (-2194 (($ $) NIL (-1523 (-12 (|has| (-679) (-302)) (|has| (-679) (-885))) (|has| (-679) (-358))))) (-1330 (((-413 $) $) NIL (-1523 (-12 (|has| (-679) (-302)) (|has| (-679) (-885))) (|has| (-679) (-358))))) (-3837 (($ $) NIL (-12 (|has| (-679) (-978)) (|has| (-679) (-1171))))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-679) (-302)) (|has| (-679) (-885))))) (-2408 (((-112) $ $) NIL (|has| (-679) (-302)))) (-2894 (((-751)) NIL (|has| (-679) (-363)))) (-3710 (($ $) NIL (|has| (-679) (-1171)))) (-3581 (($ $) NIL (|has| (-679) (-1171)))) (-3749 (($ $) NIL (|has| (-679) (-1171)))) (-3627 (($ $) NIL (|has| (-679) (-1171)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-679) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| (-679) (-1014 (-402 (-552)))))) (-1895 (((-552) $) NIL) (((-679) $) NIL) (((-402 (-552)) $) NIL (|has| (-679) (-1014 (-402 (-552)))))) (-2670 (($ (-1232 (-679))) NIL) (($ (-1232 (-679)) (-1232 $)) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-679) (-344)))) (-2851 (($ $ $) NIL (|has| (-679) (-302)))) (-2559 (((-669 (-679)) $) NIL) (((-669 (-679)) $ (-1232 $)) NIL)) (-1794 (((-669 (-679)) (-669 $)) NIL) (((-2 (|:| -2351 (-669 (-679))) (|:| |vec| (-1232 (-679)))) (-669 $) (-1232 $)) NIL) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| (-679) (-621 (-552)))) (((-669 (-552)) (-669 $)) NIL (|has| (-679) (-621 (-552))))) (-2163 (((-3 $ "failed") (-402 (-1145 (-679)))) NIL (|has| (-679) (-358))) (($ (-1145 (-679))) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3852 (((-679) $) 29)) (-2555 (((-3 (-402 (-552)) "failed") $) NIL (|has| (-679) (-537)))) (-2546 (((-112) $) NIL (|has| (-679) (-537)))) (-2538 (((-402 (-552)) $) NIL (|has| (-679) (-537)))) (-3442 (((-897)) NIL)) (-3702 (($) NIL (|has| (-679) (-363)))) (-2826 (($ $ $) NIL (|has| (-679) (-302)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| (-679) (-302)))) (-4279 (($) NIL (|has| (-679) (-344)))) (-3872 (((-112) $) NIL (|has| (-679) (-344)))) (-3554 (($ $) NIL (|has| (-679) (-344))) (($ $ (-751)) NIL (|has| (-679) (-344)))) (-2951 (((-112) $) NIL (-1523 (-12 (|has| (-679) (-302)) (|has| (-679) (-885))) (|has| (-679) (-358))))) (-1362 (((-2 (|:| |r| (-679)) (|:| |phi| (-679))) $) NIL (-12 (|has| (-679) (-1034)) (|has| (-679) (-1171))))) (-1385 (($) NIL (|has| (-679) (-1171)))) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| (-679) (-862 (-374)))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| (-679) (-862 (-552))))) (-2172 (((-813 (-897)) $) NIL (|has| (-679) (-344))) (((-897) $) NIL (|has| (-679) (-344)))) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL (-12 (|has| (-679) (-978)) (|has| (-679) (-1171))))) (-4209 (((-679) $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| (-679) (-344)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| (-679) (-302)))) (-1291 (((-1145 (-679)) $) NIL (|has| (-679) (-358)))) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-1996 (($ (-1 (-679) (-679)) $) NIL)) (-4318 (((-897) $) NIL (|has| (-679) (-363)))) (-2458 (($ $) NIL (|has| (-679) (-1171)))) (-2148 (((-1145 (-679)) $) NIL)) (-2605 (($ (-625 $)) NIL (|has| (-679) (-302))) (($ $ $) NIL (|has| (-679) (-302)))) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| (-679) (-358)))) (-2071 (($) NIL (|has| (-679) (-344)) CONST)) (-3123 (($ (-897)) NIL (|has| (-679) (-363)))) (-1373 (($) NIL)) (-3865 (((-679) $) 31)) (-2831 (((-1093) $) NIL)) (-3212 (($) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| (-679) (-302)))) (-2633 (($ (-625 $)) NIL (|has| (-679) (-302))) (($ $ $) NIL (|has| (-679) (-302)))) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| (-679) (-344)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-679) (-302)) (|has| (-679) (-885))))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-679) (-302)) (|has| (-679) (-885))))) (-3824 (((-413 $) $) NIL (-1523 (-12 (|has| (-679) (-302)) (|has| (-679) (-885))) (|has| (-679) (-358))))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-679) (-302))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| (-679) (-302)))) (-2802 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-679)) NIL (|has| (-679) (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| (-679) (-302)))) (-2863 (($ $) NIL (|has| (-679) (-1171)))) (-4073 (($ $ (-1149) (-679)) NIL (|has| (-679) (-507 (-1149) (-679)))) (($ $ (-625 (-1149)) (-625 (-679))) NIL (|has| (-679) (-507 (-1149) (-679)))) (($ $ (-625 (-289 (-679)))) NIL (|has| (-679) (-304 (-679)))) (($ $ (-289 (-679))) NIL (|has| (-679) (-304 (-679)))) (($ $ (-679) (-679)) NIL (|has| (-679) (-304 (-679)))) (($ $ (-625 (-679)) (-625 (-679))) NIL (|has| (-679) (-304 (-679))))) (-2397 (((-751) $) NIL (|has| (-679) (-302)))) (-2154 (($ $ (-679)) NIL (|has| (-679) (-281 (-679) (-679))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| (-679) (-302)))) (-3217 (((-679)) NIL) (((-679) (-1232 $)) NIL)) (-3563 (((-3 (-751) "failed") $ $) NIL (|has| (-679) (-344))) (((-751) $) NIL (|has| (-679) (-344)))) (-3072 (($ $ (-1 (-679) (-679))) NIL) (($ $ (-1 (-679) (-679)) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-1149)) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-751)) NIL (|has| (-679) (-229))) (($ $) NIL (|has| (-679) (-229)))) (-3640 (((-669 (-679)) (-1232 $) (-1 (-679) (-679))) NIL (|has| (-679) (-358)))) (-3610 (((-1145 (-679))) NIL)) (-3759 (($ $) NIL (|has| (-679) (-1171)))) (-3638 (($ $) NIL (|has| (-679) (-1171)))) (-3798 (($) NIL (|has| (-679) (-344)))) (-3738 (($ $) NIL (|has| (-679) (-1171)))) (-3614 (($ $) NIL (|has| (-679) (-1171)))) (-3721 (($ $) NIL (|has| (-679) (-1171)))) (-3593 (($ $) NIL (|has| (-679) (-1171)))) (-2780 (((-669 (-679)) (-1232 $)) NIL) (((-1232 (-679)) $) NIL) (((-669 (-679)) (-1232 $) (-1232 $)) NIL) (((-1232 (-679)) $ (-1232 $)) NIL)) (-2042 (((-528) $) NIL (|has| (-679) (-598 (-528)))) (((-167 (-221)) $) NIL (|has| (-679) (-998))) (((-167 (-374)) $) NIL (|has| (-679) (-998))) (((-868 (-374)) $) NIL (|has| (-679) (-598 (-868 (-374))))) (((-868 (-552)) $) NIL (|has| (-679) (-598 (-868 (-552))))) (($ (-1145 (-679))) NIL) (((-1145 (-679)) $) NIL) (($ (-1232 (-679))) NIL) (((-1232 (-679)) $) NIL)) (-2410 (($ $) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-1523 (-12 (|has| (-679) (-302)) (|has| $ (-143)) (|has| (-679) (-885))) (|has| (-679) (-344))))) (-3858 (($ (-679) (-679)) 12)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-552)) NIL) (($ (-679)) NIL) (($ (-167 (-374))) 13) (($ (-167 (-552))) 19) (($ (-167 (-679))) 28) (($ (-167 (-681))) 25) (((-167 (-374)) $) 33) (($ (-402 (-552))) NIL (-1523 (|has| (-679) (-1014 (-402 (-552)))) (|has| (-679) (-358))))) (-4243 (($ $) NIL (|has| (-679) (-344))) (((-3 $ "failed") $) NIL (-1523 (-12 (|has| (-679) (-302)) (|has| $ (-143)) (|has| (-679) (-885))) (|has| (-679) (-143))))) (-3974 (((-1145 (-679)) $) NIL)) (-4141 (((-751)) NIL)) (-1270 (((-1232 $)) NIL)) (-3789 (($ $) NIL (|has| (-679) (-1171)))) (-3670 (($ $) NIL (|has| (-679) (-1171)))) (-3518 (((-112) $ $) NIL)) (-3769 (($ $) NIL (|has| (-679) (-1171)))) (-3648 (($ $) NIL (|has| (-679) (-1171)))) (-3809 (($ $) NIL (|has| (-679) (-1171)))) (-3691 (($ $) NIL (|has| (-679) (-1171)))) (-1388 (((-679) $) NIL (|has| (-679) (-1171)))) (-3742 (($ $) NIL (|has| (-679) (-1171)))) (-3700 (($ $) NIL (|has| (-679) (-1171)))) (-3797 (($ $) NIL (|has| (-679) (-1171)))) (-3681 (($ $) NIL (|has| (-679) (-1171)))) (-3778 (($ $) NIL (|has| (-679) (-1171)))) (-3659 (($ $) NIL (|has| (-679) (-1171)))) (-1727 (($ $) NIL (|has| (-679) (-1034)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-1 (-679) (-679))) NIL) (($ $ (-1 (-679) (-679)) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-1149)) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-751)) NIL (|has| (-679) (-229))) (($ $) NIL (|has| (-679) (-229)))) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL (|has| (-679) (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ $) NIL (|has| (-679) (-1171))) (($ $ (-402 (-552))) NIL (-12 (|has| (-679) (-978)) (|has| (-679) (-1171)))) (($ $ (-552)) NIL (|has| (-679) (-358)))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ (-679) $) NIL) (($ $ (-679)) NIL) (($ (-402 (-552)) $) NIL (|has| (-679) (-358))) (($ $ (-402 (-552))) NIL (|has| (-679) (-358))))) -(((-674) (-13 (-382) (-164 (-679)) (-10 -8 (-15 -1683 ($ (-167 (-374)))) (-15 -1683 ($ (-167 (-552)))) (-15 -1683 ($ (-167 (-679)))) (-15 -1683 ($ (-167 (-681)))) (-15 -1683 ((-167 (-374)) $))))) (T -674)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-167 (-374))) (-5 *1 (-674)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-167 (-552))) (-5 *1 (-674)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-167 (-679))) (-5 *1 (-674)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-167 (-681))) (-5 *1 (-674)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-167 (-374))) (-5 *1 (-674))))) -(-13 (-382) (-164 (-679)) (-10 -8 (-15 -1683 ($ (-167 (-374)))) (-15 -1683 ($ (-167 (-552)))) (-15 -1683 ($ (-167 (-679)))) (-15 -1683 ($ (-167 (-681)))) (-15 -1683 ((-167 (-374)) $)))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) 8)) (-2873 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-3238 (($ $) 62)) (-2959 (($ $) 58 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1938 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-1416 (($ |#1| $) 57 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2953 ((|#1| $) 39)) (-3966 (($ |#1| $) 40) (($ |#1| $ (-751)) 63)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-3229 (((-625 (-2 (|:| -4120 |#1|) (|:| -2840 (-751)))) $) 61)) (-4255 (($) 49) (($ (-625 |#1|)) 48)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 59 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 50)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-675 |#1|) (-138) (-1073)) (T -675)) -((-3966 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-675 *2)) (-4 *2 (-1073)))) (-3238 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1073)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1073)) (-5 *2 (-625 (-2 (|:| -4120 *3) (|:| -2840 (-751)))))))) -(-13 (-231 |t#1|) (-10 -8 (-15 -3966 ($ |t#1| $ (-751))) (-15 -3238 ($ $)) (-15 -3229 ((-625 (-2 (|:| -4120 |t#1|) (|:| -2840 (-751)))) $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T)) -((-3265 (((-625 |#1|) (-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552)))) (-552)) 47)) (-3247 ((|#1| |#1| (-552)) 46)) (-2633 ((|#1| |#1| |#1| (-552)) 36)) (-3824 (((-625 |#1|) |#1| (-552)) 39)) (-3274 ((|#1| |#1| (-552) |#1| (-552)) 32)) (-3256 (((-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552)))) |#1| (-552)) 45))) -(((-676 |#1|) (-10 -7 (-15 -2633 (|#1| |#1| |#1| (-552))) (-15 -3247 (|#1| |#1| (-552))) (-15 -3824 ((-625 |#1|) |#1| (-552))) (-15 -3256 ((-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552)))) |#1| (-552))) (-15 -3265 ((-625 |#1|) (-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552)))) (-552))) (-15 -3274 (|#1| |#1| (-552) |#1| (-552)))) (-1208 (-552))) (T -676)) -((-3274 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-676 *2)) (-4 *2 (-1208 *3)))) (-3265 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-2 (|:| -3824 *5) (|:| -4276 (-552))))) (-5 *4 (-552)) (-4 *5 (-1208 *4)) (-5 *2 (-625 *5)) (-5 *1 (-676 *5)))) (-3256 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-5 *2 (-625 (-2 (|:| -3824 *3) (|:| -4276 *4)))) (-5 *1 (-676 *3)) (-4 *3 (-1208 *4)))) (-3824 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-5 *2 (-625 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1208 *4)))) (-3247 (*1 *2 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-676 *2)) (-4 *2 (-1208 *3)))) (-2633 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-676 *2)) (-4 *2 (-1208 *3))))) -(-10 -7 (-15 -2633 (|#1| |#1| |#1| (-552))) (-15 -3247 (|#1| |#1| (-552))) (-15 -3824 ((-625 |#1|) |#1| (-552))) (-15 -3256 ((-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552)))) |#1| (-552))) (-15 -3265 ((-625 |#1|) (-625 (-2 (|:| -3824 |#1|) (|:| -4276 (-552)))) (-552))) (-15 -3274 (|#1| |#1| (-552) |#1| (-552)))) -((-3313 (((-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221) (-221))) 17)) (-3284 (((-1106 (-221)) (-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-625 (-258))) 40) (((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-625 (-258))) 42) (((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1067 (-221)) (-1067 (-221)) (-625 (-258))) 44)) (-3303 (((-1106 (-221)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-625 (-258))) NIL)) (-3293 (((-1106 (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1067 (-221)) (-1067 (-221)) (-625 (-258))) 45))) -(((-677) (-10 -7 (-15 -3284 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1067 (-221)) (-1067 (-221)) (-625 (-258)))) (-15 -3284 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-625 (-258)))) (-15 -3284 ((-1106 (-221)) (-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-625 (-258)))) (-15 -3293 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1067 (-221)) (-1067 (-221)) (-625 (-258)))) (-15 -3303 ((-1106 (-221)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-625 (-258)))) (-15 -3313 ((-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221) (-221)))))) (T -677)) -((-3313 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1 (-221) (-221) (-221) (-221))) (-5 *2 (-1 (-919 (-221)) (-221) (-221))) (-5 *1 (-677)))) (-3303 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-311 (-552))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1067 (-221))) (-5 *6 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-677)))) (-3293 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) "undefined")) (-5 *5 (-1067 (-221))) (-5 *6 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-677)))) (-3284 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-221))) (-5 *5 (-625 (-258))) (-5 *1 (-677)))) (-3284 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-221))) (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-677)))) (-3284 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) "undefined")) (-5 *5 (-1067 (-221))) (-5 *6 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-677))))) -(-10 -7 (-15 -3284 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1067 (-221)) (-1067 (-221)) (-625 (-258)))) (-15 -3284 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-625 (-258)))) (-15 -3284 ((-1106 (-221)) (-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-625 (-258)))) (-15 -3293 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) "undefined") (-1067 (-221)) (-1067 (-221)) (-625 (-258)))) (-15 -3303 ((-1106 (-221)) (-311 (-552)) (-311 (-552)) (-311 (-552)) (-1 (-221) (-221)) (-1067 (-221)) (-625 (-258)))) (-15 -3313 ((-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221) (-221))))) -((-3824 (((-413 (-1145 |#4|)) (-1145 |#4|)) 73) (((-413 |#4|) |#4|) 221))) -(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3824 ((-413 |#4|) |#4|)) (-15 -3824 ((-413 (-1145 |#4|)) (-1145 |#4|)))) (-827) (-773) (-344) (-925 |#3| |#2| |#1|)) (T -678)) -((-3824 (*1 *2 *3) (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-344)) (-4 *7 (-925 *6 *5 *4)) (-5 *2 (-413 (-1145 *7))) (-5 *1 (-678 *4 *5 *6 *7)) (-5 *3 (-1145 *7)))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-344)) (-5 *2 (-413 *3)) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-925 *6 *5 *4))))) -(-10 -7 (-15 -3824 ((-413 |#4|) |#4|)) (-15 -3824 ((-413 (-1145 |#4|)) (-1145 |#4|)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 84)) (-4177 (((-552) $) 30)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2162 (($ $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-3837 (($ $) NIL)) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL)) (-3101 (($) NIL T CONST)) (-4154 (($ $) NIL)) (-1893 (((-3 (-552) "failed") $) 73) (((-3 (-402 (-552)) "failed") $) 26) (((-3 (-374) "failed") $) 70)) (-1895 (((-552) $) 75) (((-402 (-552)) $) 67) (((-374) $) 68)) (-2851 (($ $ $) 96)) (-4174 (((-3 $ "failed") $) 87)) (-2826 (($ $ $) 95)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-1923 (((-897)) 77) (((-897) (-897)) 76)) (-3620 (((-112) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL)) (-2172 (((-552) $) NIL)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL)) (-4209 (($ $) NIL)) (-3630 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3324 (((-552) (-552)) 81) (((-552)) 82)) (-3658 (($ $ $) NIL) (($) NIL (-12 (-2960 (|has| $ (-6 -4336))) (-2960 (|has| $ (-6 -4344)))))) (-3333 (((-552) (-552)) 79) (((-552)) 80)) (-3332 (($ $ $) NIL) (($) NIL (-12 (-2960 (|has| $ (-6 -4336))) (-2960 (|has| $ (-6 -4344)))))) (-2594 (((-552) $) 16)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 91)) (-3586 (((-897) (-552)) NIL (|has| $ (-6 -4344)))) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL)) (-4189 (($ $) NIL)) (-2189 (($ (-552) (-552)) NIL) (($ (-552) (-552) (-897)) NIL)) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) 92)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3564 (((-552) $) 22)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 94)) (-1542 (((-897)) NIL) (((-897) (-897)) NIL (|has| $ (-6 -4344)))) (-3574 (((-897) (-552)) NIL (|has| $ (-6 -4344)))) (-2042 (((-374) $) NIL) (((-221) $) NIL) (((-868 (-374)) $) NIL)) (-1683 (((-839) $) 52) (($ (-552)) 63) (($ $) NIL) (($ (-402 (-552))) 66) (($ (-552)) 63) (($ (-402 (-552))) 66) (($ (-374)) 60) (((-374) $) 50) (($ (-681)) 55)) (-4141 (((-751)) 103)) (-2963 (($ (-552) (-552) (-897)) 44)) (-4199 (($ $) NIL)) (-3597 (((-897)) NIL) (((-897) (-897)) NIL (|has| $ (-6 -4344)))) (-3929 (((-897)) 35) (((-897) (-897)) 78)) (-3518 (((-112) $ $) NIL)) (-1727 (($ $) NIL)) (-2089 (($) 32 T CONST)) (-2100 (($) 17 T CONST)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 83)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 101)) (-2404 (($ $ $) 65)) (-2393 (($ $) 99) (($ $ $) 100)) (-2382 (($ $ $) 98)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL) (($ $ (-402 (-552))) 90)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 97) (($ $ $) 88) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL))) -(((-679) (-13 (-399) (-382) (-358) (-1014 (-374)) (-1014 (-402 (-552))) (-145) (-10 -8 (-15 -1923 ((-897) (-897))) (-15 -1923 ((-897))) (-15 -3929 ((-897) (-897))) (-15 -3333 ((-552) (-552))) (-15 -3333 ((-552))) (-15 -3324 ((-552) (-552))) (-15 -3324 ((-552))) (-15 -1683 ((-374) $)) (-15 -1683 ($ (-681))) (-15 -2594 ((-552) $)) (-15 -3564 ((-552) $)) (-15 -2963 ($ (-552) (-552) (-897)))))) (T -679)) -((-3564 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-679)))) (-2594 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-679)))) (-1923 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-679)))) (-1923 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-679)))) (-3929 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-679)))) (-3333 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-679)))) (-3333 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-679)))) (-3324 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-679)))) (-3324 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-679)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-374)) (-5 *1 (-679)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-681)) (-5 *1 (-679)))) (-2963 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-897)) (-5 *1 (-679))))) -(-13 (-399) (-382) (-358) (-1014 (-374)) (-1014 (-402 (-552))) (-145) (-10 -8 (-15 -1923 ((-897) (-897))) (-15 -1923 ((-897))) (-15 -3929 ((-897) (-897))) (-15 -3333 ((-552) (-552))) (-15 -3333 ((-552))) (-15 -3324 ((-552) (-552))) (-15 -3324 ((-552))) (-15 -1683 ((-374) $)) (-15 -1683 ($ (-681))) (-15 -2594 ((-552) $)) (-15 -3564 ((-552) $)) (-15 -2963 ($ (-552) (-552) (-897))))) -((-3360 (((-669 |#1|) (-669 |#1|) |#1| |#1|) 65)) (-3991 (((-669 |#1|) (-669 |#1|) |#1|) 48)) (-3351 (((-669 |#1|) (-669 |#1|) |#1|) 66)) (-3342 (((-669 |#1|) (-669 |#1|)) 49)) (-3369 (((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|) 64))) -(((-680 |#1|) (-10 -7 (-15 -3342 ((-669 |#1|) (-669 |#1|))) (-15 -3991 ((-669 |#1|) (-669 |#1|) |#1|)) (-15 -3351 ((-669 |#1|) (-669 |#1|) |#1|)) (-15 -3360 ((-669 |#1|) (-669 |#1|) |#1| |#1|)) (-15 -3369 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|))) (-302)) (T -680)) -((-3369 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-680 *3)) (-4 *3 (-302)))) (-3360 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))) (-3351 (*1 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))) (-3991 (*1 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))) (-3342 (*1 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3))))) -(-10 -7 (-15 -3342 ((-669 |#1|) (-669 |#1|))) (-15 -3991 ((-669 |#1|) (-669 |#1|) |#1|)) (-15 -3351 ((-669 |#1|) (-669 |#1|) |#1|)) (-15 -3360 ((-669 |#1|) (-669 |#1|) |#1| |#1|)) (-15 -3369 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-3364 (($ $ $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3346 (($ $ $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL)) (-3420 (($ $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) 27)) (-1895 (((-552) $) 25)) (-2851 (($ $ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2555 (((-3 (-402 (-552)) "failed") $) NIL)) (-2546 (((-112) $) NIL)) (-2538 (((-402 (-552)) $) NIL)) (-3702 (($ $) NIL) (($) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3327 (($ $ $ $) NIL)) (-3372 (($ $ $) NIL)) (-3620 (((-112) $) NIL)) (-1302 (($ $ $) NIL)) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL)) (-3650 (((-112) $) NIL)) (-3932 (((-112) $) NIL)) (-4034 (((-3 $ "failed") $) NIL)) (-3630 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3336 (($ $ $ $) NIL)) (-3658 (($ $ $) NIL)) (-3379 (((-897) (-897)) 10) (((-897)) 9)) (-3332 (($ $ $) NIL)) (-2059 (($ $) NIL)) (-3456 (($ $) NIL)) (-2605 (($ (-625 $)) NIL) (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-3317 (($ $ $) NIL)) (-2071 (($) NIL T CONST)) (-1971 (($ $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ (-625 $)) NIL) (($ $ $) NIL)) (-1279 (($ $) NIL)) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3943 (((-112) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $) NIL) (($ $ (-751)) NIL)) (-2715 (($ $) NIL)) (-1871 (($ $) NIL)) (-2042 (((-221) $) NIL) (((-374) $) NIL) (((-868 (-552)) $) NIL) (((-528) $) NIL) (((-552) $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) 24) (($ $) NIL) (($ (-552)) 24) (((-311 $) (-311 (-552))) 18)) (-4141 (((-751)) NIL)) (-3383 (((-112) $ $) NIL)) (-3901 (($ $ $) NIL)) (-3929 (($) NIL)) (-3518 (((-112) $ $) NIL)) (-3355 (($ $ $ $) NIL)) (-1727 (($ $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $) NIL) (($ $ (-751)) NIL)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL))) -(((-681) (-13 (-382) (-537) (-10 -8 (-15 -3379 ((-897) (-897))) (-15 -3379 ((-897))) (-15 -1683 ((-311 $) (-311 (-552))))))) (T -681)) -((-3379 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-681)))) (-3379 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-681)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-311 (-552))) (-5 *2 (-311 (-681))) (-5 *1 (-681))))) -(-13 (-382) (-537) (-10 -8 (-15 -3379 ((-897) (-897))) (-15 -3379 ((-897))) (-15 -1683 ((-311 $) (-311 (-552)))))) -((-3417 (((-1 |#4| |#2| |#3|) |#1| (-1149) (-1149)) 19)) (-3389 (((-1 |#4| |#2| |#3|) (-1149)) 12))) -(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3389 ((-1 |#4| |#2| |#3|) (-1149))) (-15 -3417 ((-1 |#4| |#2| |#3|) |#1| (-1149) (-1149)))) (-598 (-528)) (-1186) (-1186) (-1186)) (T -682)) -((-3417 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1149)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-682 *3 *5 *6 *7)) (-4 *3 (-598 (-528))) (-4 *5 (-1186)) (-4 *6 (-1186)) (-4 *7 (-1186)))) (-3389 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *4 (-598 (-528))) (-4 *5 (-1186)) (-4 *6 (-1186)) (-4 *7 (-1186))))) -(-10 -7 (-15 -3389 ((-1 |#4| |#2| |#3|) (-1149))) (-15 -3417 ((-1 |#4| |#2| |#3|) |#1| (-1149) (-1149)))) -((-1671 (((-112) $ $) NIL)) (-2087 (((-1237) $ (-751)) 14)) (-2483 (((-751) $) 12)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 25)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 24))) -(((-683 |#1|) (-13 (-131) (-597 |#1|) (-10 -8 (-15 -1683 ($ |#1|)))) (-1073)) (T -683)) -((-1683 (*1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1073))))) -(-13 (-131) (-597 |#1|) (-10 -8 (-15 -1683 ($ |#1|)))) -((-3400 (((-1 (-221) (-221) (-221)) |#1| (-1149) (-1149)) 34) (((-1 (-221) (-221)) |#1| (-1149)) 39))) -(((-684 |#1|) (-10 -7 (-15 -3400 ((-1 (-221) (-221)) |#1| (-1149))) (-15 -3400 ((-1 (-221) (-221) (-221)) |#1| (-1149) (-1149)))) (-598 (-528))) (T -684)) -((-3400 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1149)) (-5 *2 (-1 (-221) (-221) (-221))) (-5 *1 (-684 *3)) (-4 *3 (-598 (-528))))) (-3400 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-5 *2 (-1 (-221) (-221))) (-5 *1 (-684 *3)) (-4 *3 (-598 (-528)))))) -(-10 -7 (-15 -3400 ((-1 (-221) (-221)) |#1| (-1149))) (-15 -3400 ((-1 (-221) (-221) (-221)) |#1| (-1149) (-1149)))) -((-2487 (((-1149) |#1| (-1149) (-625 (-1149))) 9) (((-1149) |#1| (-1149) (-1149) (-1149)) 12) (((-1149) |#1| (-1149) (-1149)) 11) (((-1149) |#1| (-1149)) 10))) -(((-685 |#1|) (-10 -7 (-15 -2487 ((-1149) |#1| (-1149))) (-15 -2487 ((-1149) |#1| (-1149) (-1149))) (-15 -2487 ((-1149) |#1| (-1149) (-1149) (-1149))) (-15 -2487 ((-1149) |#1| (-1149) (-625 (-1149))))) (-598 (-528))) (T -685)) -((-2487 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-625 (-1149))) (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-528))))) (-2487 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-528))))) (-2487 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-528))))) (-2487 (*1 *2 *3 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-528)))))) -(-10 -7 (-15 -2487 ((-1149) |#1| (-1149))) (-15 -2487 ((-1149) |#1| (-1149) (-1149))) (-15 -2487 ((-1149) |#1| (-1149) (-1149) (-1149))) (-15 -2487 ((-1149) |#1| (-1149) (-625 (-1149))))) -((-3546 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-686 |#1| |#2|) (-10 -7 (-15 -3546 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1186) (-1186)) (T -686)) -((-3546 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-686 *3 *4)) (-4 *3 (-1186)) (-4 *4 (-1186))))) -(-10 -7 (-15 -3546 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-3409 (((-1 |#3| |#2|) (-1149)) 11)) (-3417 (((-1 |#3| |#2|) |#1| (-1149)) 21))) -(((-687 |#1| |#2| |#3|) (-10 -7 (-15 -3409 ((-1 |#3| |#2|) (-1149))) (-15 -3417 ((-1 |#3| |#2|) |#1| (-1149)))) (-598 (-528)) (-1186) (-1186)) (T -687)) -((-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-5 *2 (-1 *6 *5)) (-5 *1 (-687 *3 *5 *6)) (-4 *3 (-598 (-528))) (-4 *5 (-1186)) (-4 *6 (-1186)))) (-3409 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1 *6 *5)) (-5 *1 (-687 *4 *5 *6)) (-4 *4 (-598 (-528))) (-4 *5 (-1186)) (-4 *6 (-1186))))) -(-10 -7 (-15 -3409 ((-1 |#3| |#2|) (-1149))) (-15 -3417 ((-1 |#3| |#2|) |#1| (-1149)))) -((-3453 (((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-625 |#2|) (-625 (-1145 |#4|)) (-625 |#3|) (-625 |#4|) (-625 (-625 (-2 (|:| -1894 (-751)) (|:| |pcoef| |#4|)))) (-625 (-751)) (-1232 (-625 (-1145 |#3|))) |#3|) 62)) (-3440 (((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-625 |#2|) (-625 (-1145 |#3|)) (-625 |#3|) (-625 |#4|) (-625 (-751)) |#3|) 75)) (-3430 (((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-625 |#2|) (-625 |#3|) (-625 (-751)) (-625 (-1145 |#4|)) (-1232 (-625 (-1145 |#3|))) |#3|) 34))) -(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3430 ((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-625 |#2|) (-625 |#3|) (-625 (-751)) (-625 (-1145 |#4|)) (-1232 (-625 (-1145 |#3|))) |#3|)) (-15 -3440 ((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-625 |#2|) (-625 (-1145 |#3|)) (-625 |#3|) (-625 |#4|) (-625 (-751)) |#3|)) (-15 -3453 ((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-625 |#2|) (-625 (-1145 |#4|)) (-625 |#3|) (-625 |#4|) (-625 (-625 (-2 (|:| -1894 (-751)) (|:| |pcoef| |#4|)))) (-625 (-751)) (-1232 (-625 (-1145 |#3|))) |#3|))) (-773) (-827) (-302) (-925 |#3| |#1| |#2|)) (T -688)) -((-3453 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-625 (-1145 *13))) (-5 *3 (-1145 *13)) (-5 *4 (-625 *12)) (-5 *5 (-625 *10)) (-5 *6 (-625 *13)) (-5 *7 (-625 (-625 (-2 (|:| -1894 (-751)) (|:| |pcoef| *13))))) (-5 *8 (-625 (-751))) (-5 *9 (-1232 (-625 (-1145 *10)))) (-4 *12 (-827)) (-4 *10 (-302)) (-4 *13 (-925 *10 *11 *12)) (-4 *11 (-773)) (-5 *1 (-688 *11 *12 *10 *13)))) (-3440 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-625 *11)) (-5 *5 (-625 (-1145 *9))) (-5 *6 (-625 *9)) (-5 *7 (-625 *12)) (-5 *8 (-625 (-751))) (-4 *11 (-827)) (-4 *9 (-302)) (-4 *12 (-925 *9 *10 *11)) (-4 *10 (-773)) (-5 *2 (-625 (-1145 *12))) (-5 *1 (-688 *10 *11 *9 *12)) (-5 *3 (-1145 *12)))) (-3430 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-625 (-1145 *11))) (-5 *3 (-1145 *11)) (-5 *4 (-625 *10)) (-5 *5 (-625 *8)) (-5 *6 (-625 (-751))) (-5 *7 (-1232 (-625 (-1145 *8)))) (-4 *10 (-827)) (-4 *8 (-302)) (-4 *11 (-925 *8 *9 *10)) (-4 *9 (-773)) (-5 *1 (-688 *9 *10 *8 *11))))) -(-10 -7 (-15 -3430 ((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-625 |#2|) (-625 |#3|) (-625 (-751)) (-625 (-1145 |#4|)) (-1232 (-625 (-1145 |#3|))) |#3|)) (-15 -3440 ((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-625 |#2|) (-625 (-1145 |#3|)) (-625 |#3|) (-625 |#4|) (-625 (-751)) |#3|)) (-15 -3453 ((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-625 |#2|) (-625 (-1145 |#4|)) (-625 |#3|) (-625 |#4|) (-625 (-625 (-2 (|:| -1894 (-751)) (|:| |pcoef| |#4|)))) (-625 (-751)) (-1232 (-625 (-1145 |#3|))) |#3|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4169 (($ $) 39)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-3957 (($ |#1| (-751)) 37)) (-4134 (((-751) $) 41)) (-4144 ((|#1| $) 40)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4276 (((-751) $) 42)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 36 (|has| |#1| (-170)))) (-3637 ((|#1| $ (-751)) 38)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43))) -(((-689 |#1|) (-138) (-1025)) (T -689)) -((-4276 (*1 *2 *1) (-12 (-4 *1 (-689 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-4134 (*1 *2 *1) (-12 (-4 *1 (-689 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-4144 (*1 *2 *1) (-12 (-4 *1 (-689 *2)) (-4 *2 (-1025)))) (-4169 (*1 *1 *1) (-12 (-4 *1 (-689 *2)) (-4 *2 (-1025)))) (-3637 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-689 *2)) (-4 *2 (-1025)))) (-3957 (*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-689 *2)) (-4 *2 (-1025))))) -(-13 (-1025) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4276 ((-751) $)) (-15 -4134 ((-751) $)) (-15 -4144 (|t#1| $)) (-15 -4169 ($ $)) (-15 -3637 (|t#1| $ (-751))) (-15 -3957 ($ |t#1| (-751))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) |has| |#1| (-170)) ((-707) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-1996 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-690 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1996 (|#6| (-1 |#4| |#1|) |#3|))) (-544) (-1208 |#1|) (-1208 (-402 |#2|)) (-544) (-1208 |#4|) (-1208 (-402 |#5|))) (T -690)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-544)) (-4 *7 (-544)) (-4 *6 (-1208 *5)) (-4 *2 (-1208 (-402 *8))) (-5 *1 (-690 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1208 (-402 *6))) (-4 *8 (-1208 *7))))) -(-10 -7 (-15 -1996 (|#6| (-1 |#4| |#1|) |#3|))) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3465 (((-1131) (-839)) 31)) (-1407 (((-1237) (-1131)) 28)) (-3486 (((-1131) (-839)) 24)) (-3476 (((-1131) (-839)) 25)) (-1683 (((-839) $) NIL) (((-1131) (-839)) 23)) (-2281 (((-112) $ $) NIL))) -(((-691) (-13 (-1073) (-10 -7 (-15 -1683 ((-1131) (-839))) (-15 -3486 ((-1131) (-839))) (-15 -3476 ((-1131) (-839))) (-15 -3465 ((-1131) (-839))) (-15 -1407 ((-1237) (-1131)))))) (T -691)) -((-1683 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1131)) (-5 *1 (-691)))) (-3486 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1131)) (-5 *1 (-691)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1131)) (-5 *1 (-691)))) (-3465 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1131)) (-5 *1 (-691)))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-691))))) -(-13 (-1073) (-10 -7 (-15 -1683 ((-1131) (-839))) (-15 -3486 ((-1131) (-839))) (-15 -3476 ((-1131) (-839))) (-15 -3465 ((-1131) (-839))) (-15 -1407 ((-1237) (-1131))))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-2851 (($ $ $) NIL)) (-2163 (($ |#1| |#2|) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3650 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1531 ((|#2| $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3575 (((-3 $ "failed") $ $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) ((|#1| $) NIL)) (-4141 (((-751)) NIL)) (-3518 (((-112) $ $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL))) -(((-692 |#1| |#2| |#3| |#4| |#5|) (-13 (-358) (-10 -8 (-15 -1531 (|#2| $)) (-15 -1683 (|#1| $)) (-15 -2163 ($ |#1| |#2|)) (-15 -3575 ((-3 $ "failed") $ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -692)) -((-1531 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-692 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1683 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2163 (*1 *1 *2 *3) (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3575 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-358) (-10 -8 (-15 -1531 (|#2| $)) (-15 -1683 (|#1| $)) (-15 -2163 ($ |#1| |#2|)) (-15 -3575 ((-3 $ "failed") $ $)))) -((-1671 (((-112) $ $) 78)) (-3641 (((-112) $) 30)) (-2138 (((-1232 |#1|) $ (-751)) NIL)) (-3982 (((-625 (-1055)) $) NIL)) (-2117 (($ (-1145 |#1|)) NIL)) (-3793 (((-1145 $) $ (-1055)) NIL) (((-1145 |#1|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-1055))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3197 (($ $ $) NIL (|has| |#1| (-544)))) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2194 (($ $) NIL (|has| |#1| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-2894 (((-751)) 47 (|has| |#1| (-363)))) (-2076 (($ $ (-751)) NIL)) (-2065 (($ $ (-751)) NIL)) (-3555 ((|#2| |#2|) 44)) (-3165 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-446)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-1055) "failed") $) NIL)) (-1895 ((|#1| $) NIL) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-1055) $) NIL)) (-3207 (($ $ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $ $) NIL (|has| |#1| (-170)))) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) 34)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-2163 (($ |#2|) 42)) (-4174 (((-3 $ "failed") $) 86)) (-3702 (($) 51 (|has| |#1| (-363)))) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-2052 (($ $ $) NIL)) (-3181 (($ $ $) NIL (|has| |#1| (-544)))) (-3173 (((-2 (|:| -3340 |#1|) (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-544)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-1294 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#1| (-885)))) (-3515 (((-934 $)) 80)) (-1347 (($ $ |#1| (-751) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-1055) (-862 (-374))) (|has| |#1| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-1055) (-862 (-552))) (|has| |#1| (-862 (-552)))))) (-2172 (((-751) $ $) NIL (|has| |#1| (-544)))) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-1124)))) (-3970 (($ (-1145 |#1|) (-1055)) NIL) (($ (-1145 $) (-1055)) NIL)) (-2216 (($ $ (-751)) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-751)) 77) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-1055)) NIL) (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1531 ((|#2|) 45)) (-4134 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-625 (-751)) $ (-625 (-1055))) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1357 (($ (-1 (-751) (-751)) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2127 (((-1145 |#1|) $) NIL)) (-1942 (((-3 (-1055) "failed") $) NIL)) (-4318 (((-897) $) NIL (|has| |#1| (-363)))) (-2148 ((|#2| $) 41)) (-4131 (($ $) NIL)) (-4144 ((|#1| $) 28)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2883 (((-1131) $) NIL)) (-2086 (((-2 (|:| -3984 $) (|:| -3645 $)) $ (-751)) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-1055)) (|:| -3564 (-751))) "failed") $) NIL)) (-2481 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2071 (($) NIL (|has| |#1| (-1124)) CONST)) (-3123 (($ (-897)) NIL (|has| |#1| (-363)))) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 ((|#1| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3497 (($ $) 79 (|has| |#1| (-344)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-885)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-1055) |#1|) NIL) (($ $ (-625 (-1055)) (-625 |#1|)) NIL) (($ $ (-1055) $) NIL) (($ $ (-625 (-1055)) (-625 $)) NIL)) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#1| (-544))) ((|#1| (-402 $) |#1|) NIL (|has| |#1| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#1| (-544)))) (-2108 (((-3 $ "failed") $ (-751)) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 87 (|has| |#1| (-358)))) (-3217 (($ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-3072 (($ $ (-1055)) NIL) (($ $ (-625 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4276 (((-751) $) 32) (((-751) $ (-1055)) NIL) (((-625 (-751)) $ (-625 (-1055))) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-1055) (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-1055) (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-1055) (-598 (-528))) (|has| |#1| (-598 (-528)))))) (-4108 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-885))))) (-3506 (((-934 $)) 36)) (-3190 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544))) (((-3 (-402 $) "failed") (-402 $) $) NIL (|has| |#1| (-544)))) (-1683 (((-839) $) 61) (($ (-552)) NIL) (($ |#1|) 58) (($ (-1055)) NIL) (($ |#2|) 68) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-751)) 63) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2089 (($) 20 T CONST)) (-3544 (((-1232 |#1|) $) 75)) (-3534 (($ (-1232 |#1|)) 50)) (-2100 (($) 8 T CONST)) (-3768 (($ $ (-1055)) NIL) (($ $ (-625 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3524 (((-1232 |#1|) $) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) 69)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) 72) (($ $ $) NIL)) (-2382 (($ $ $) 33)) (** (($ $ (-897)) NIL) (($ $ (-751)) 81)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 57) (($ $ $) 74) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) -(((-693 |#1| |#2|) (-13 (-1208 |#1|) (-10 -8 (-15 -3555 (|#2| |#2|)) (-15 -1531 (|#2|)) (-15 -2163 ($ |#2|)) (-15 -2148 (|#2| $)) (-15 -1683 ($ |#2|)) (-15 -3544 ((-1232 |#1|) $)) (-15 -3534 ($ (-1232 |#1|))) (-15 -3524 ((-1232 |#1|) $)) (-15 -3515 ((-934 $))) (-15 -3506 ((-934 $))) (IF (|has| |#1| (-344)) (-15 -3497 ($ $)) |%noBranch|) (IF (|has| |#1| (-363)) (-6 (-363)) |%noBranch|))) (-1025) (-1208 |#1|)) (T -693)) -((-3555 (*1 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1208 *3)))) (-1531 (*1 *2) (-12 (-4 *2 (-1208 *3)) (-5 *1 (-693 *3 *2)) (-4 *3 (-1025)))) (-2163 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1208 *3)))) (-2148 (*1 *2 *1) (-12 (-4 *2 (-1208 *3)) (-5 *1 (-693 *3 *2)) (-4 *3 (-1025)))) (-1683 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1208 *3)))) (-3544 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-1232 *3)) (-5 *1 (-693 *3 *4)) (-4 *4 (-1208 *3)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-1025)) (-5 *1 (-693 *3 *4)) (-4 *4 (-1208 *3)))) (-3524 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-1232 *3)) (-5 *1 (-693 *3 *4)) (-4 *4 (-1208 *3)))) (-3515 (*1 *2) (-12 (-4 *3 (-1025)) (-5 *2 (-934 (-693 *3 *4))) (-5 *1 (-693 *3 *4)) (-4 *4 (-1208 *3)))) (-3506 (*1 *2) (-12 (-4 *3 (-1025)) (-5 *2 (-934 (-693 *3 *4))) (-5 *1 (-693 *3 *4)) (-4 *4 (-1208 *3)))) (-3497 (*1 *1 *1) (-12 (-4 *2 (-344)) (-4 *2 (-1025)) (-5 *1 (-693 *2 *3)) (-4 *3 (-1208 *2))))) -(-13 (-1208 |#1|) (-10 -8 (-15 -3555 (|#2| |#2|)) (-15 -1531 (|#2|)) (-15 -2163 ($ |#2|)) (-15 -2148 (|#2| $)) (-15 -1683 ($ |#2|)) (-15 -3544 ((-1232 |#1|) $)) (-15 -3534 ($ (-1232 |#1|))) (-15 -3524 ((-1232 |#1|) $)) (-15 -3515 ((-934 $))) (-15 -3506 ((-934 $))) (IF (|has| |#1| (-344)) (-15 -3497 ($ $)) |%noBranch|) (IF (|has| |#1| (-363)) (-6 (-363)) |%noBranch|))) -((-1671 (((-112) $ $) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-3123 ((|#1| $) 13)) (-2831 (((-1093) $) NIL)) (-3564 ((|#2| $) 12)) (-1695 (($ |#1| |#2|) 16)) (-1683 (((-839) $) NIL) (($ (-2 (|:| -3123 |#1|) (|:| -3564 |#2|))) 15) (((-2 (|:| -3123 |#1|) (|:| -3564 |#2|)) $) 14)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 11))) -(((-694 |#1| |#2| |#3|) (-13 (-827) (-10 -8 (-15 -3564 (|#2| $)) (-15 -3123 (|#1| $)) (-15 -1683 ($ (-2 (|:| -3123 |#1|) (|:| -3564 |#2|)))) (-15 -1683 ((-2 (|:| -3123 |#1|) (|:| -3564 |#2|)) $)) (-15 -1695 ($ |#1| |#2|)))) (-827) (-1073) (-1 (-112) (-2 (|:| -3123 |#1|) (|:| -3564 |#2|)) (-2 (|:| -3123 |#1|) (|:| -3564 |#2|)))) (T -694)) -((-3564 (*1 *2 *1) (-12 (-4 *2 (-1073)) (-5 *1 (-694 *3 *2 *4)) (-4 *3 (-827)) (-14 *4 (-1 (-112) (-2 (|:| -3123 *3) (|:| -3564 *2)) (-2 (|:| -3123 *3) (|:| -3564 *2)))))) (-3123 (*1 *2 *1) (-12 (-4 *2 (-827)) (-5 *1 (-694 *2 *3 *4)) (-4 *3 (-1073)) (-14 *4 (-1 (-112) (-2 (|:| -3123 *2) (|:| -3564 *3)) (-2 (|:| -3123 *2) (|:| -3564 *3)))))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3123 *3) (|:| -3564 *4))) (-4 *3 (-827)) (-4 *4 (-1073)) (-5 *1 (-694 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3123 *3) (|:| -3564 *4))) (-5 *1 (-694 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-1073)) (-14 *5 (-1 (-112) *2 *2)))) (-1695 (*1 *1 *2 *3) (-12 (-5 *1 (-694 *2 *3 *4)) (-4 *2 (-827)) (-4 *3 (-1073)) (-14 *4 (-1 (-112) (-2 (|:| -3123 *2) (|:| -3564 *3)) (-2 (|:| -3123 *2) (|:| -3564 *3))))))) -(-13 (-827) (-10 -8 (-15 -3564 (|#2| $)) (-15 -3123 (|#1| $)) (-15 -1683 ($ (-2 (|:| -3123 |#1|) (|:| -3564 |#2|)))) (-15 -1683 ((-2 (|:| -3123 |#1|) (|:| -3564 |#2|)) $)) (-15 -1695 ($ |#1| |#2|)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 59)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) 89) (((-3 (-114) "failed") $) 95)) (-1895 ((|#1| $) NIL) (((-114) $) 39)) (-4174 (((-3 $ "failed") $) 90)) (-3145 ((|#2| (-114) |#2|) 82)) (-3650 (((-112) $) NIL)) (-3134 (($ |#1| (-356 (-114))) 14)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3157 (($ $ (-1 |#2| |#2|)) 58)) (-3164 (($ $ (-1 |#2| |#2|)) 44)) (-2154 ((|#2| $ |#2|) 33)) (-3172 ((|#1| |#1|) 105 (|has| |#1| (-170)))) (-1683 (((-839) $) 66) (($ (-552)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) 37)) (-3180 (($ $) 99 (|has| |#1| (-170))) (($ $ $) 103 (|has| |#1| (-170)))) (-2089 (($) 21 T CONST)) (-2100 (($) 9 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) 48) (($ $ $) NIL)) (-2382 (($ $ $) 73)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ (-114) (-552)) NIL) (($ $ (-552)) 57)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-170))) (($ $ |#1|) 97 (|has| |#1| (-170))))) -(((-695 |#1| |#2|) (-13 (-1025) (-1014 |#1|) (-1014 (-114)) (-281 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -3180 ($ $)) (-15 -3180 ($ $ $)) (-15 -3172 (|#1| |#1|))) |%noBranch|) (-15 -3164 ($ $ (-1 |#2| |#2|))) (-15 -3157 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-552))) (-15 ** ($ $ (-552))) (-15 -3145 (|#2| (-114) |#2|)) (-15 -3134 ($ |#1| (-356 (-114)))))) (-1025) (-628 |#1|)) (T -695)) -((-3180 (*1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3)) (-4 *3 (-628 *2)))) (-3180 (*1 *1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3)) (-4 *3 (-628 *2)))) (-3172 (*1 *2 *2) (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3)) (-4 *3 (-628 *2)))) (-3164 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-628 *3)) (-4 *3 (-1025)) (-5 *1 (-695 *3 *4)))) (-3157 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-628 *3)) (-4 *3 (-1025)) (-5 *1 (-695 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-552)) (-4 *4 (-1025)) (-5 *1 (-695 *4 *5)) (-4 *5 (-628 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *3 (-1025)) (-5 *1 (-695 *3 *4)) (-4 *4 (-628 *3)))) (-3145 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1025)) (-5 *1 (-695 *4 *2)) (-4 *2 (-628 *4)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *3 (-356 (-114))) (-4 *2 (-1025)) (-5 *1 (-695 *2 *4)) (-4 *4 (-628 *2))))) -(-13 (-1025) (-1014 |#1|) (-1014 (-114)) (-281 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -3180 ($ $)) (-15 -3180 ($ $ $)) (-15 -3172 (|#1| |#1|))) |%noBranch|) (-15 -3164 ($ $ (-1 |#2| |#2|))) (-15 -3157 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-552))) (-15 ** ($ $ (-552))) (-15 -3145 (|#2| (-114) |#2|)) (-15 -3134 ($ |#1| (-356 (-114)))))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 33)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2163 (($ |#1| |#2|) 25)) (-4174 (((-3 $ "failed") $) 48)) (-3650 (((-112) $) 35)) (-1531 ((|#2| $) 12)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 49)) (-2831 (((-1093) $) NIL)) (-3575 (((-3 $ "failed") $ $) 47)) (-1683 (((-839) $) 24) (($ (-552)) 19) ((|#1| $) 13)) (-4141 (((-751)) 28)) (-2089 (($) 16 T CONST)) (-2100 (($) 30 T CONST)) (-2281 (((-112) $ $) 38)) (-2393 (($ $) 43) (($ $ $) 37)) (-2382 (($ $ $) 40)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 21) (($ $ $) 20))) -(((-696 |#1| |#2| |#3| |#4| |#5|) (-13 (-1025) (-10 -8 (-15 -1531 (|#2| $)) (-15 -1683 (|#1| $)) (-15 -2163 ($ |#1| |#2|)) (-15 -3575 ((-3 $ "failed") $ $)) (-15 -4174 ((-3 $ "failed") $)) (-15 -4092 ($ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -696)) -((-4174 (*1 *1 *1) (|partial| -12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1531 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-696 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1683 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2163 (*1 *1 *2 *3) (-12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3575 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4092 (*1 *1 *1) (-12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1025) (-10 -8 (-15 -1531 (|#2| $)) (-15 -1683 (|#1| $)) (-15 -2163 ($ |#1| |#2|)) (-15 -3575 ((-3 $ "failed") $ $)) (-15 -4174 ((-3 $ "failed") $)) (-15 -4092 ($ $)))) -((* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-697 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|))) (-698 |#2|) (-170)) (T -697)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-698 |#1|) (-138) (-170)) (T -698)) -NIL -(-13 (-111 |t#1| |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-1031 |#1|) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-3420 (($ |#1|) 17) (($ $ |#1|) 20)) (-1487 (($ |#1|) 18) (($ $ |#1|) 21)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3650 (((-112) $) NIL)) (-3587 (($ |#1| |#1| |#1| |#1|) 8)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 16)) (-2831 (((-1093) $) NIL)) (-4073 ((|#1| $ |#1|) 24) (((-813 |#1|) $ (-813 |#1|)) 32)) (-2410 (($ $ $) NIL)) (-3828 (($ $ $) NIL)) (-1683 (((-839) $) 39)) (-2100 (($) 9 T CONST)) (-2281 (((-112) $ $) 44)) (-2404 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ $ $) 14))) -(((-699 |#1|) (-13 (-467) (-10 -8 (-15 -3587 ($ |#1| |#1| |#1| |#1|)) (-15 -3420 ($ |#1|)) (-15 -1487 ($ |#1|)) (-15 -4174 ($)) (-15 -3420 ($ $ |#1|)) (-15 -1487 ($ $ |#1|)) (-15 -4174 ($ $)) (-15 -4073 (|#1| $ |#1|)) (-15 -4073 ((-813 |#1|) $ (-813 |#1|))))) (-358)) (T -699)) -((-3587 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-3420 (*1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-1487 (*1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-4174 (*1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-3420 (*1 *1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-1487 (*1 *1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-4174 (*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-4073 (*1 *2 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-4073 (*1 *2 *1 *2) (-12 (-5 *2 (-813 *3)) (-4 *3 (-358)) (-5 *1 (-699 *3))))) -(-13 (-467) (-10 -8 (-15 -3587 ($ |#1| |#1| |#1| |#1|)) (-15 -3420 ($ |#1|)) (-15 -1487 ($ |#1|)) (-15 -4174 ($)) (-15 -3420 ($ $ |#1|)) (-15 -1487 ($ $ |#1|)) (-15 -4174 ($ $)) (-15 -4073 (|#1| $ |#1|)) (-15 -4073 ((-813 |#1|) $ (-813 |#1|))))) -((-3629 (($ $ (-897)) 12)) (-3619 (($ $ (-897)) 13)) (** (($ $ (-897)) 10))) -(((-700 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-897))) (-15 -3619 (|#1| |#1| (-897))) (-15 -3629 (|#1| |#1| (-897)))) (-701)) (T -700)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-897))) (-15 -3619 (|#1| |#1| (-897))) (-15 -3629 (|#1| |#1| (-897)))) -((-1671 (((-112) $ $) 7)) (-3629 (($ $ (-897)) 15)) (-3619 (($ $ (-897)) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 6)) (** (($ $ (-897)) 13)) (* (($ $ $) 16))) -(((-701) (-138)) (T -701)) -((* (*1 *1 *1 *1) (-4 *1 (-701))) (-3629 (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-897)))) (-3619 (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-897)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-897))))) -(-13 (-1073) (-10 -8 (-15 * ($ $ $)) (-15 -3629 ($ $ (-897))) (-15 -3619 ($ $ (-897))) (-15 ** ($ $ (-897))))) -(((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-3629 (($ $ (-897)) NIL) (($ $ (-751)) 17)) (-3650 (((-112) $) 10)) (-3619 (($ $ (-897)) NIL) (($ $ (-751)) 18)) (** (($ $ (-897)) NIL) (($ $ (-751)) 15))) -(((-702 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-751))) (-15 -3619 (|#1| |#1| (-751))) (-15 -3629 (|#1| |#1| (-751))) (-15 -3650 ((-112) |#1|)) (-15 ** (|#1| |#1| (-897))) (-15 -3619 (|#1| |#1| (-897))) (-15 -3629 (|#1| |#1| (-897)))) (-703)) (T -702)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-751))) (-15 -3619 (|#1| |#1| (-751))) (-15 -3629 (|#1| |#1| (-751))) (-15 -3650 ((-112) |#1|)) (-15 ** (|#1| |#1| (-897))) (-15 -3619 (|#1| |#1| (-897))) (-15 -3629 (|#1| |#1| (-897)))) -((-1671 (((-112) $ $) 7)) (-3598 (((-3 $ "failed") $) 17)) (-3629 (($ $ (-897)) 15) (($ $ (-751)) 22)) (-4174 (((-3 $ "failed") $) 19)) (-3650 (((-112) $) 23)) (-3609 (((-3 $ "failed") $) 18)) (-3619 (($ $ (-897)) 14) (($ $ (-751)) 21)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2100 (($) 24 T CONST)) (-2281 (((-112) $ $) 6)) (** (($ $ (-897)) 13) (($ $ (-751)) 20)) (* (($ $ $) 16))) -(((-703) (-138)) (T -703)) -((-2100 (*1 *1) (-4 *1 (-703))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-703)) (-5 *2 (-112)))) (-3629 (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751)))) (-3619 (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751)))) (-4174 (*1 *1 *1) (|partial| -4 *1 (-703))) (-3609 (*1 *1 *1) (|partial| -4 *1 (-703))) (-3598 (*1 *1 *1) (|partial| -4 *1 (-703)))) -(-13 (-701) (-10 -8 (-15 (-2100) ($) -1426) (-15 -3650 ((-112) $)) (-15 -3629 ($ $ (-751))) (-15 -3619 ($ $ (-751))) (-15 ** ($ $ (-751))) (-15 -4174 ((-3 $ "failed") $)) (-15 -3609 ((-3 $ "failed") $)) (-15 -3598 ((-3 $ "failed") $)))) -(((-101) . T) ((-597 (-839)) . T) ((-701) . T) ((-1073) . T)) -((-2894 (((-751)) 34)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1895 (((-552) $) NIL) (((-402 (-552)) $) NIL) ((|#2| $) 22)) (-2163 (($ |#3|) NIL) (((-3 $ "failed") (-402 |#3|)) 44)) (-4174 (((-3 $ "failed") $) 64)) (-3702 (($) 38)) (-4209 ((|#2| $) 20)) (-3212 (($) 17)) (-3072 (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)) (-3640 (((-669 |#2|) (-1232 $) (-1 |#2| |#2|)) 59)) (-2042 (((-1232 |#2|) $) NIL) (($ (-1232 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3974 ((|#3| $) 32)) (-1270 (((-1232 $)) 29))) -(((-704 |#1| |#2| |#3|) (-10 -8 (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3702 (|#1|)) (-15 -2894 ((-751))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3640 ((-669 |#2|) (-1232 |#1|) (-1 |#2| |#2|))) (-15 -2163 ((-3 |#1| "failed") (-402 |#3|))) (-15 -2042 (|#1| |#3|)) (-15 -2163 (|#1| |#3|)) (-15 -3212 (|#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -2042 (|#3| |#1|)) (-15 -2042 (|#1| (-1232 |#2|))) (-15 -2042 ((-1232 |#2|) |#1|)) (-15 -1270 ((-1232 |#1|))) (-15 -3974 (|#3| |#1|)) (-15 -4209 (|#2| |#1|)) (-15 -4174 ((-3 |#1| "failed") |#1|))) (-705 |#2| |#3|) (-170) (-1208 |#2|)) (T -704)) -((-2894 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1208 *4)) (-5 *2 (-751)) (-5 *1 (-704 *3 *4 *5)) (-4 *3 (-705 *4 *5))))) -(-10 -8 (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3702 (|#1|)) (-15 -2894 ((-751))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3640 ((-669 |#2|) (-1232 |#1|) (-1 |#2| |#2|))) (-15 -2163 ((-3 |#1| "failed") (-402 |#3|))) (-15 -2042 (|#1| |#3|)) (-15 -2163 (|#1| |#3|)) (-15 -3212 (|#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -2042 (|#3| |#1|)) (-15 -2042 (|#1| (-1232 |#2|))) (-15 -2042 ((-1232 |#2|) |#1|)) (-15 -1270 ((-1232 |#1|))) (-15 -3974 (|#3| |#1|)) (-15 -4209 (|#2| |#1|)) (-15 -4174 ((-3 |#1| "failed") |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 91 (|has| |#1| (-358)))) (-3528 (($ $) 92 (|has| |#1| (-358)))) (-3509 (((-112) $) 94 (|has| |#1| (-358)))) (-2570 (((-669 |#1|) (-1232 $)) 44) (((-669 |#1|)) 59)) (-1650 ((|#1| $) 50)) (-3811 (((-1159 (-897) (-751)) (-552)) 144 (|has| |#1| (-344)))) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 111 (|has| |#1| (-358)))) (-1330 (((-413 $) $) 112 (|has| |#1| (-358)))) (-2408 (((-112) $ $) 102 (|has| |#1| (-358)))) (-2894 (((-751)) 85 (|has| |#1| (-363)))) (-3101 (($) 17 T CONST)) (-1893 (((-3 (-552) "failed") $) 166 (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) 164 (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 163)) (-1895 (((-552) $) 167 (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) 165 (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) 162)) (-2670 (($ (-1232 |#1|) (-1232 $)) 46) (($ (-1232 |#1|)) 62)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-344)))) (-2851 (($ $ $) 106 (|has| |#1| (-358)))) (-2559 (((-669 |#1|) $ (-1232 $)) 51) (((-669 |#1|) $) 57)) (-1794 (((-669 (-552)) (-669 $)) 161 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 160 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 159) (((-669 |#1|) (-669 $)) 158)) (-2163 (($ |#2|) 155) (((-3 $ "failed") (-402 |#2|)) 152 (|has| |#1| (-358)))) (-4174 (((-3 $ "failed") $) 32)) (-3442 (((-897)) 52)) (-3702 (($) 88 (|has| |#1| (-363)))) (-2826 (($ $ $) 105 (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 100 (|has| |#1| (-358)))) (-4279 (($) 146 (|has| |#1| (-344)))) (-3872 (((-112) $) 147 (|has| |#1| (-344)))) (-3554 (($ $ (-751)) 138 (|has| |#1| (-344))) (($ $) 137 (|has| |#1| (-344)))) (-2951 (((-112) $) 113 (|has| |#1| (-358)))) (-2172 (((-897) $) 149 (|has| |#1| (-344))) (((-813 (-897)) $) 135 (|has| |#1| (-344)))) (-3650 (((-112) $) 30)) (-4209 ((|#1| $) 49)) (-4034 (((-3 $ "failed") $) 139 (|has| |#1| (-344)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 109 (|has| |#1| (-358)))) (-1291 ((|#2| $) 42 (|has| |#1| (-358)))) (-4318 (((-897) $) 87 (|has| |#1| (-363)))) (-2148 ((|#2| $) 153)) (-2605 (($ (-625 $)) 98 (|has| |#1| (-358))) (($ $ $) 97 (|has| |#1| (-358)))) (-2883 (((-1131) $) 9)) (-4092 (($ $) 114 (|has| |#1| (-358)))) (-2071 (($) 140 (|has| |#1| (-344)) CONST)) (-3123 (($ (-897)) 86 (|has| |#1| (-363)))) (-2831 (((-1093) $) 10)) (-3212 (($) 157)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 99 (|has| |#1| (-358)))) (-2633 (($ (-625 $)) 96 (|has| |#1| (-358))) (($ $ $) 95 (|has| |#1| (-358)))) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) 143 (|has| |#1| (-344)))) (-3824 (((-413 $) $) 110 (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 107 (|has| |#1| (-358)))) (-2802 (((-3 $ "failed") $ $) 90 (|has| |#1| (-358)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 101 (|has| |#1| (-358)))) (-2397 (((-751) $) 103 (|has| |#1| (-358)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 104 (|has| |#1| (-358)))) (-3217 ((|#1| (-1232 $)) 45) ((|#1|) 58)) (-3563 (((-751) $) 148 (|has| |#1| (-344))) (((-3 (-751) "failed") $ $) 136 (|has| |#1| (-344)))) (-3072 (($ $) 134 (-1523 (-3743 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-751)) 132 (-1523 (-3743 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-1149)) 130 (-3743 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-625 (-1149))) 129 (-3743 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-1149) (-751)) 128 (-3743 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-625 (-1149)) (-625 (-751))) 127 (-3743 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-1 |#1| |#1|) (-751)) 120 (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-358)))) (-3640 (((-669 |#1|) (-1232 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-358)))) (-3610 ((|#2|) 156)) (-3798 (($) 145 (|has| |#1| (-344)))) (-2780 (((-1232 |#1|) $ (-1232 $)) 48) (((-669 |#1|) (-1232 $) (-1232 $)) 47) (((-1232 |#1|) $) 64) (((-669 |#1|) (-1232 $)) 63)) (-2042 (((-1232 |#1|) $) 61) (($ (-1232 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 142 (|has| |#1| (-344)))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-358))) (($ (-402 (-552))) 84 (-1523 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-552))))))) (-4243 (($ $) 141 (|has| |#1| (-344))) (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-3974 ((|#2| $) 43)) (-4141 (((-751)) 28)) (-1270 (((-1232 $)) 65)) (-3518 (((-112) $ $) 93 (|has| |#1| (-358)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $) 133 (-1523 (-3743 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-751)) 131 (-1523 (-3743 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-1149)) 126 (-3743 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-625 (-1149))) 125 (-3743 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-1149) (-751)) 124 (-3743 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-625 (-1149)) (-625 (-751))) 123 (-3743 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-1 |#1| |#1|) (-751)) 122 (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-358)))) (-2281 (((-112) $ $) 6)) (-2404 (($ $ $) 118 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 115 (|has| |#1| (-358)))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-402 (-552)) $) 117 (|has| |#1| (-358))) (($ $ (-402 (-552))) 116 (|has| |#1| (-358))))) -(((-705 |#1| |#2|) (-138) (-170) (-1208 |t#1|)) (T -705)) -((-3212 (*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-705 *2 *3)) (-4 *3 (-1208 *2)))) (-3610 (*1 *2) (-12 (-4 *1 (-705 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1208 *3)))) (-2163 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-705 *3 *2)) (-4 *2 (-1208 *3)))) (-2042 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-705 *3 *2)) (-4 *2 (-1208 *3)))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-705 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1208 *3)))) (-2163 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1208 *3)) (-4 *3 (-358)) (-4 *3 (-170)) (-4 *1 (-705 *3 *4)))) (-3640 (*1 *2 *3 *4) (-12 (-5 *3 (-1232 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) (-4 *1 (-705 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1208 *5)) (-5 *2 (-669 *5))))) -(-13 (-404 |t#1| |t#2|) (-170) (-598 |t#2|) (-406 |t#1|) (-372 |t#1|) (-10 -8 (-15 -3212 ($)) (-15 -3610 (|t#2|)) (-15 -2163 ($ |t#2|)) (-15 -2042 ($ |t#2|)) (-15 -2148 (|t#2| $)) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-6 (-358)) (-6 (-227 |t#1|)) (-15 -2163 ((-3 $ "failed") (-402 |t#2|))) (-15 -3640 ((-669 |t#1|) (-1232 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-38 |#1|) . T) ((-38 $) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-101) . T) ((-111 #0# #0#) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1523 (|has| |#1| (-344)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) . T) ((-598 |#2|) . T) ((-227 |#1|) |has| |#1| (-358)) ((-229) -1523 (|has| |#1| (-344)) (-12 (|has| |#1| (-229)) (|has| |#1| (-358)))) ((-239) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-285) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-302) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-358) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-397) |has| |#1| (-344)) ((-363) -1523 (|has| |#1| (-363)) (|has| |#1| (-344))) ((-344) |has| |#1| (-344)) ((-365 |#1| |#2|) . T) ((-404 |#1| |#2|) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-446) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-544) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-628 #0#) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-552)) |has| |#1| (-621 (-552))) ((-621 |#1|) . T) ((-698 #0#) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-698 |#1|) . T) ((-698 $) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149)))) ((-896) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T) ((-1031 #0#) -1523 (|has| |#1| (-344)) (|has| |#1| (-358))) ((-1031 |#1|) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1124) |has| |#1| (-344)) ((-1190) -1523 (|has| |#1| (-344)) (|has| |#1| (-358)))) -((-3101 (($) 11)) (-4174 (((-3 $ "failed") $) 13)) (-3650 (((-112) $) 10)) (** (($ $ (-897)) NIL) (($ $ (-751)) 18))) -(((-706 |#1|) (-10 -8 (-15 -4174 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 -3650 ((-112) |#1|)) (-15 -3101 (|#1|)) (-15 ** (|#1| |#1| (-897)))) (-707)) (T -706)) -NIL -(-10 -8 (-15 -4174 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 -3650 ((-112) |#1|)) (-15 -3101 (|#1|)) (-15 ** (|#1| |#1| (-897)))) -((-1671 (((-112) $ $) 7)) (-3101 (($) 18 T CONST)) (-4174 (((-3 $ "failed") $) 15)) (-3650 (((-112) $) 17)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2100 (($) 19 T CONST)) (-2281 (((-112) $ $) 6)) (** (($ $ (-897)) 13) (($ $ (-751)) 16)) (* (($ $ $) 14))) -(((-707) (-138)) (T -707)) -((-2100 (*1 *1) (-4 *1 (-707))) (-3101 (*1 *1) (-4 *1 (-707))) (-3650 (*1 *2 *1) (-12 (-4 *1 (-707)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-751)))) (-4174 (*1 *1 *1) (|partial| -4 *1 (-707)))) -(-13 (-1085) (-10 -8 (-15 (-2100) ($) -1426) (-15 -3101 ($) -1426) (-15 -3650 ((-112) $)) (-15 ** ($ $ (-751))) (-15 -4174 ((-3 $ "failed") $)))) -(((-101) . T) ((-597 (-839)) . T) ((-1085) . T) ((-1073) . T)) -((-3661 (((-2 (|:| -2992 (-413 |#2|)) (|:| |special| (-413 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3819 (((-2 (|:| -2992 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3673 ((|#2| (-402 |#2|) (-1 |#2| |#2|)) 13)) (-3950 (((-2 (|:| |poly| |#2|) (|:| -2992 (-402 |#2|)) (|:| |special| (-402 |#2|))) (-402 |#2|) (-1 |#2| |#2|)) 47))) -(((-708 |#1| |#2|) (-10 -7 (-15 -3819 ((-2 (|:| -2992 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3661 ((-2 (|:| -2992 (-413 |#2|)) (|:| |special| (-413 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3673 (|#2| (-402 |#2|) (-1 |#2| |#2|))) (-15 -3950 ((-2 (|:| |poly| |#2|) (|:| -2992 (-402 |#2|)) (|:| |special| (-402 |#2|))) (-402 |#2|) (-1 |#2| |#2|)))) (-358) (-1208 |#1|)) (T -708)) -((-3950 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2992 (-402 *6)) (|:| |special| (-402 *6)))) (-5 *1 (-708 *5 *6)) (-5 *3 (-402 *6)))) (-3673 (*1 *2 *3 *4) (-12 (-5 *3 (-402 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1208 *5)) (-5 *1 (-708 *5 *2)) (-4 *5 (-358)))) (-3661 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -2992 (-413 *3)) (|:| |special| (-413 *3)))) (-5 *1 (-708 *5 *3)))) (-3819 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -2992 *3) (|:| |special| *3))) (-5 *1 (-708 *5 *3))))) -(-10 -7 (-15 -3819 ((-2 (|:| -2992 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3661 ((-2 (|:| -2992 (-413 |#2|)) (|:| |special| (-413 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3673 (|#2| (-402 |#2|) (-1 |#2| |#2|))) (-15 -3950 ((-2 (|:| |poly| |#2|) (|:| -2992 (-402 |#2|)) (|:| |special| (-402 |#2|))) (-402 |#2|) (-1 |#2| |#2|)))) -((-2370 ((|#7| (-625 |#5|) |#6|) NIL)) (-1996 ((|#7| (-1 |#5| |#4|) |#6|) 26))) -(((-709 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1996 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2370 (|#7| (-625 |#5|) |#6|))) (-827) (-773) (-773) (-1025) (-1025) (-925 |#4| |#2| |#1|) (-925 |#5| |#3| |#1|)) (T -709)) -((-2370 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *9)) (-4 *9 (-1025)) (-4 *5 (-827)) (-4 *6 (-773)) (-4 *8 (-1025)) (-4 *2 (-925 *9 *7 *5)) (-5 *1 (-709 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-773)) (-4 *4 (-925 *8 *6 *5)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1025)) (-4 *9 (-1025)) (-4 *5 (-827)) (-4 *6 (-773)) (-4 *2 (-925 *9 *7 *5)) (-5 *1 (-709 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-773)) (-4 *4 (-925 *8 *6 *5))))) -(-10 -7 (-15 -1996 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2370 (|#7| (-625 |#5|) |#6|))) -((-1996 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-710 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1996 (|#7| (-1 |#2| |#1|) |#6|))) (-827) (-827) (-773) (-773) (-1025) (-925 |#5| |#3| |#1|) (-925 |#5| |#4| |#2|)) (T -710)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-827)) (-4 *6 (-827)) (-4 *7 (-773)) (-4 *9 (-1025)) (-4 *2 (-925 *9 *8 *6)) (-5 *1 (-710 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-773)) (-4 *4 (-925 *9 *7 *5))))) -(-10 -7 (-15 -1996 (|#7| (-1 |#2| |#1|) |#6|))) -((-3824 (((-413 |#4|) |#4|) 41))) -(((-711 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3824 ((-413 |#4|) |#4|))) (-773) (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)) (-15 -2195 ((-3 $ "failed") (-1149))))) (-302) (-925 (-928 |#3|) |#1| |#2|)) (T -711)) -((-3824 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)) (-15 -2195 ((-3 $ "failed") (-1149)))))) (-4 *6 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-711 *4 *5 *6 *3)) (-4 *3 (-925 (-928 *6) *4 *5))))) -(-10 -7 (-15 -3824 ((-413 |#4|) |#4|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-841 |#1|)) $) NIL)) (-3793 (((-1145 $) $ (-841 |#1|)) NIL) (((-1145 |#2|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3528 (($ $) NIL (|has| |#2| (-544)))) (-3509 (((-112) $) NIL (|has| |#2| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-841 |#1|))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-2194 (($ $) NIL (|has| |#2| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#2| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1014 (-552)))) (((-3 (-841 |#1|) "failed") $) NIL)) (-1895 ((|#2| $) NIL) (((-402 (-552)) $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#2| (-1014 (-552)))) (((-841 |#1|) $) NIL)) (-3207 (($ $ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-4169 (($ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#2| (-885)))) (-1347 (($ $ |#2| (-524 (-841 |#1|)) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-374))) (|has| |#2| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-552))) (|has| |#2| (-862 (-552)))))) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-3970 (($ (-1145 |#2|) (-841 |#1|)) NIL) (($ (-1145 $) (-841 |#1|)) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#2| (-524 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-841 |#1|)) NIL)) (-4134 (((-524 (-841 |#1|)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-625 (-751)) $ (-625 (-841 |#1|))) NIL)) (-3658 (($ $ $) NIL (|has| |#2| (-827)))) (-3332 (($ $ $) NIL (|has| |#2| (-827)))) (-1357 (($ (-1 (-524 (-841 |#1|)) (-524 (-841 |#1|))) $) NIL)) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-1942 (((-3 (-841 |#1|) "failed") $) NIL)) (-4131 (($ $) NIL)) (-4144 ((|#2| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-2883 (((-1131) $) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-841 |#1|)) (|:| -3564 (-751))) "failed") $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 ((|#2| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#2| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#2| (-885)))) (-2802 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-841 |#1|) |#2|) NIL) (($ $ (-625 (-841 |#1|)) (-625 |#2|)) NIL) (($ $ (-841 |#1|) $) NIL) (($ $ (-625 (-841 |#1|)) (-625 $)) NIL)) (-3217 (($ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-3072 (($ $ (-841 |#1|)) NIL) (($ $ (-625 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-4276 (((-524 (-841 |#1|)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-625 (-751)) $ (-625 (-841 |#1|))) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-868 (-374)))) (|has| |#2| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-868 (-552)))) (|has| |#2| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-841 |#1|) (-598 (-528))) (|has| |#2| (-598 (-528)))))) (-4108 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-841 |#1|)) NIL) (($ $) NIL (|has| |#2| (-544))) (($ (-402 (-552))) NIL (-1523 (|has| |#2| (-38 (-402 (-552)))) (|has| |#2| (-1014 (-402 (-552))))))) (-2512 (((-625 |#2|) $) NIL)) (-3637 ((|#2| $ (-524 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#2| (-885))) (|has| |#2| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#2| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#2| (-544)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-841 |#1|)) NIL) (($ $ (-625 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-625 (-841 |#1|)) (-625 (-751))) NIL)) (-2346 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2404 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL (|has| |#2| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#2| (-38 (-402 (-552))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-712 |#1| |#2|) (-925 |#2| (-524 (-841 |#1|)) (-841 |#1|)) (-625 (-1149)) (-1025)) (T -712)) -NIL -(-925 |#2| (-524 (-841 |#1|)) (-841 |#1|)) -((-3684 (((-2 (|:| -1282 (-928 |#3|)) (|:| -3480 (-928 |#3|))) |#4|) 14)) (-2180 ((|#4| |#4| |#2|) 33)) (-3713 ((|#4| (-402 (-928 |#3|)) |#2|) 64)) (-3703 ((|#4| (-1145 (-928 |#3|)) |#2|) 77)) (-3693 ((|#4| (-1145 |#4|) |#2|) 51)) (-2170 ((|#4| |#4| |#2|) 54)) (-3824 (((-413 |#4|) |#4|) 40))) -(((-713 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3684 ((-2 (|:| -1282 (-928 |#3|)) (|:| -3480 (-928 |#3|))) |#4|)) (-15 -2170 (|#4| |#4| |#2|)) (-15 -3693 (|#4| (-1145 |#4|) |#2|)) (-15 -2180 (|#4| |#4| |#2|)) (-15 -3703 (|#4| (-1145 (-928 |#3|)) |#2|)) (-15 -3713 (|#4| (-402 (-928 |#3|)) |#2|)) (-15 -3824 ((-413 |#4|) |#4|))) (-773) (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)))) (-544) (-925 (-402 (-928 |#3|)) |#1| |#2|)) (T -713)) -((-3824 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))) (-4 *6 (-544)) (-5 *2 (-413 *3)) (-5 *1 (-713 *4 *5 *6 *3)) (-4 *3 (-925 (-402 (-928 *6)) *4 *5)))) (-3713 (*1 *2 *3 *4) (-12 (-4 *6 (-544)) (-4 *2 (-925 *3 *5 *4)) (-5 *1 (-713 *5 *4 *6 *2)) (-5 *3 (-402 (-928 *6))) (-4 *5 (-773)) (-4 *4 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))))) (-3703 (*1 *2 *3 *4) (-12 (-5 *3 (-1145 (-928 *6))) (-4 *6 (-544)) (-4 *2 (-925 (-402 (-928 *6)) *5 *4)) (-5 *1 (-713 *5 *4 *6 *2)) (-4 *5 (-773)) (-4 *4 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))))) (-2180 (*1 *2 *2 *3) (-12 (-4 *4 (-773)) (-4 *3 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))) (-4 *5 (-544)) (-5 *1 (-713 *4 *3 *5 *2)) (-4 *2 (-925 (-402 (-928 *5)) *4 *3)))) (-3693 (*1 *2 *3 *4) (-12 (-5 *3 (-1145 *2)) (-4 *2 (-925 (-402 (-928 *6)) *5 *4)) (-5 *1 (-713 *5 *4 *6 *2)) (-4 *5 (-773)) (-4 *4 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))) (-4 *6 (-544)))) (-2170 (*1 *2 *2 *3) (-12 (-4 *4 (-773)) (-4 *3 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))) (-4 *5 (-544)) (-5 *1 (-713 *4 *3 *5 *2)) (-4 *2 (-925 (-402 (-928 *5)) *4 *3)))) (-3684 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))) (-4 *6 (-544)) (-5 *2 (-2 (|:| -1282 (-928 *6)) (|:| -3480 (-928 *6)))) (-5 *1 (-713 *4 *5 *6 *3)) (-4 *3 (-925 (-402 (-928 *6)) *4 *5))))) -(-10 -7 (-15 -3684 ((-2 (|:| -1282 (-928 |#3|)) (|:| -3480 (-928 |#3|))) |#4|)) (-15 -2170 (|#4| |#4| |#2|)) (-15 -3693 (|#4| (-1145 |#4|) |#2|)) (-15 -2180 (|#4| |#4| |#2|)) (-15 -3703 (|#4| (-1145 (-928 |#3|)) |#2|)) (-15 -3713 (|#4| (-402 (-928 |#3|)) |#2|)) (-15 -3824 ((-413 |#4|) |#4|))) -((-3824 (((-413 |#4|) |#4|) 52))) -(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3824 ((-413 |#4|) |#4|))) (-773) (-827) (-13 (-302) (-145)) (-925 (-402 |#3|) |#1| |#2|)) (T -714)) -((-3824 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-13 (-302) (-145))) (-5 *2 (-413 *3)) (-5 *1 (-714 *4 *5 *6 *3)) (-4 *3 (-925 (-402 *6) *4 *5))))) -(-10 -7 (-15 -3824 ((-413 |#4|) |#4|))) -((-1996 (((-716 |#2| |#3|) (-1 |#2| |#1|) (-716 |#1| |#3|)) 18))) -(((-715 |#1| |#2| |#3|) (-10 -7 (-15 -1996 ((-716 |#2| |#3|) (-1 |#2| |#1|) (-716 |#1| |#3|)))) (-1025) (-1025) (-707)) (T -715)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-716 *5 *7)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-4 *7 (-707)) (-5 *2 (-716 *6 *7)) (-5 *1 (-715 *5 *6 *7))))) -(-10 -7 (-15 -1996 ((-716 |#2| |#3|) (-1 |#2| |#1|) (-716 |#1| |#3|)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 28)) (-2182 (((-625 (-2 (|:| -3340 |#1|) (|:| -2243 |#2|))) $) 29)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2894 (((-751)) 20 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-1895 ((|#2| $) NIL) ((|#1| $) NIL)) (-4169 (($ $) 79 (|has| |#2| (-827)))) (-4174 (((-3 $ "failed") $) 65)) (-3702 (($) 35 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) 55)) (-4148 (((-625 $) $) 39)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| |#2|) 16)) (-1996 (($ (-1 |#1| |#1|) $) 54)) (-4318 (((-897) $) 32 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-4131 ((|#2| $) 78 (|has| |#2| (-827)))) (-4144 ((|#1| $) 77 (|has| |#2| (-827)))) (-2883 (((-1131) $) NIL)) (-3123 (($ (-897)) 27 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 76) (($ (-552)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-625 (-2 (|:| -3340 |#1|) (|:| -2243 |#2|)))) 11)) (-2512 (((-625 |#1|) $) 41)) (-3637 ((|#1| $ |#2|) 88)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-2089 (($) 12 T CONST)) (-2100 (($) 33 T CONST)) (-2281 (((-112) $ $) 80)) (-2393 (($ $) 47) (($ $ $) NIL)) (-2382 (($ $ $) 26)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) -(((-716 |#1| |#2|) (-13 (-1025) (-1014 |#2|) (-1014 |#1|) (-10 -8 (-15 -3957 ($ |#1| |#2|)) (-15 -3637 (|#1| $ |#2|)) (-15 -1683 ($ (-625 (-2 (|:| -3340 |#1|) (|:| -2243 |#2|))))) (-15 -2182 ((-625 (-2 (|:| -3340 |#1|) (|:| -2243 |#2|))) $)) (-15 -1996 ($ (-1 |#1| |#1|) $)) (-15 -4201 ((-112) $)) (-15 -2512 ((-625 |#1|) $)) (-15 -4148 ((-625 $) $)) (-15 -3723 ((-751) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-827)) (PROGN (-15 -4131 (|#2| $)) (-15 -4144 (|#1| $)) (-15 -4169 ($ $))) |%noBranch|))) (-1025) (-707)) (T -716)) -((-3957 (*1 *1 *2 *3) (-12 (-5 *1 (-716 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-707)))) (-3637 (*1 *2 *1 *3) (-12 (-4 *2 (-1025)) (-5 *1 (-716 *2 *3)) (-4 *3 (-707)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-2 (|:| -3340 *3) (|:| -2243 *4)))) (-4 *3 (-1025)) (-4 *4 (-707)) (-5 *1 (-716 *3 *4)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| -3340 *3) (|:| -2243 *4)))) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) (-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-716 *3 *4)) (-4 *4 (-707)))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) (-2512 (*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-625 (-716 *3 *4))) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) (-3723 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) (-4131 (*1 *2 *1) (-12 (-4 *2 (-707)) (-4 *2 (-827)) (-5 *1 (-716 *3 *2)) (-4 *3 (-1025)))) (-4144 (*1 *2 *1) (-12 (-4 *2 (-1025)) (-5 *1 (-716 *2 *3)) (-4 *3 (-827)) (-4 *3 (-707)))) (-4169 (*1 *1 *1) (-12 (-5 *1 (-716 *2 *3)) (-4 *3 (-827)) (-4 *2 (-1025)) (-4 *3 (-707))))) -(-13 (-1025) (-1014 |#2|) (-1014 |#1|) (-10 -8 (-15 -3957 ($ |#1| |#2|)) (-15 -3637 (|#1| $ |#2|)) (-15 -1683 ($ (-625 (-2 (|:| -3340 |#1|) (|:| -2243 |#2|))))) (-15 -2182 ((-625 (-2 (|:| -3340 |#1|) (|:| -2243 |#2|))) $)) (-15 -1996 ($ (-1 |#1| |#1|) $)) (-15 -4201 ((-112) $)) (-15 -2512 ((-625 |#1|) $)) (-15 -4148 ((-625 $) $)) (-15 -3723 ((-751) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-827)) (PROGN (-15 -4131 (|#2| $)) (-15 -4144 (|#1| $)) (-15 -4169 ($ $))) |%noBranch|))) -((-1671 (((-112) $ $) 19)) (-3419 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2837 (($ $ $) 72)) (-2823 (((-112) $ $) 73)) (-3495 (((-112) $ (-751)) 8)) (-1517 (($ (-625 |#1|)) 68) (($) 67)) (-2873 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-3238 (($ $) 62)) (-2959 (($ $) 58 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1938 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-1416 (($ |#1| $) 57 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2871 (((-112) $ $) 64)) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22)) (-2860 (($ $ $) 69)) (-2953 ((|#1| $) 39)) (-3966 (($ |#1| $) 40) (($ |#1| $ (-751)) 63)) (-2831 (((-1093) $) 21)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-3229 (((-625 (-2 (|:| -4120 |#1|) (|:| -2840 (-751)))) $) 61)) (-2849 (($ $ |#1|) 71) (($ $ $) 70)) (-4255 (($) 49) (($ (-625 |#1|)) 48)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 59 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 50)) (-1683 (((-839) $) 18)) (-3761 (($ (-625 |#1|)) 66) (($) 65)) (-2977 (($ (-625 |#1|)) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20)) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-717 |#1|) (-138) (-1073)) (T -717)) -NIL -(-13 (-675 |t#1|) (-1071 |t#1|)) -(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-597 (-839)) . T) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-675 |#1|) . T) ((-1071 |#1|) . T) ((-1073) . T) ((-1186) . T)) -((-1671 (((-112) $ $) NIL)) (-3419 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-2837 (($ $ $) 79)) (-2823 (((-112) $ $) 83)) (-3495 (((-112) $ (-751)) NIL)) (-1517 (($ (-625 |#1|)) 24) (($) 16)) (-2873 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-3238 (($ $) 71)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1938 (($ |#1| $) 61 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 64 (|has| $ (-6 -4353))) (($ |#1| $ (-552)) 62) (($ (-1 (-112) |#1|) $ (-552)) 65)) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (($ |#1| $ (-552)) 67) (($ (-1 (-112) |#1|) $ (-552)) 68)) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-3799 (((-625 |#1|) $) 32 (|has| $ (-6 -4353)))) (-2871 (((-112) $ $) 82)) (-3740 (($) 14) (($ |#1|) 26) (($ (-625 |#1|)) 21)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) 38)) (-2893 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 75)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-2860 (($ $ $) 77)) (-2953 ((|#1| $) 55)) (-3966 (($ |#1| $) 56) (($ |#1| $ (-751)) 72)) (-2831 (((-1093) $) NIL)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2966 ((|#1| $) 54)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 50)) (-3600 (($) 13)) (-3229 (((-625 (-2 (|:| -4120 |#1|) (|:| -2840 (-751)))) $) 48)) (-2849 (($ $ |#1|) NIL) (($ $ $) 78)) (-4255 (($) 15) (($ (-625 |#1|)) 23)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) 60 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) 66)) (-2042 (((-528) $) 36 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 20)) (-1683 (((-839) $) 44)) (-3761 (($ (-625 |#1|)) 25) (($) 17)) (-2977 (($ (-625 |#1|)) 22)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 81)) (-1471 (((-751) $) 59 (|has| $ (-6 -4353))))) -(((-718 |#1|) (-13 (-717 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -3740 ($)) (-15 -3740 ($ |#1|)) (-15 -3740 ($ (-625 |#1|))) (-15 -3730 ((-625 |#1|) $)) (-15 -1416 ($ |#1| $ (-552))) (-15 -1416 ($ (-1 (-112) |#1|) $ (-552))) (-15 -1938 ($ |#1| $ (-552))) (-15 -1938 ($ (-1 (-112) |#1|) $ (-552))))) (-1073)) (T -718)) -((-3740 (*1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-1073)))) (-3740 (*1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-1073)))) (-3740 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-718 *3)))) (-3730 (*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-718 *3)) (-4 *3 (-1073)))) (-1416 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-718 *2)) (-4 *2 (-1073)))) (-1416 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-552)) (-4 *4 (-1073)) (-5 *1 (-718 *4)))) (-1938 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-718 *2)) (-4 *2 (-1073)))) (-1938 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-552)) (-4 *4 (-1073)) (-5 *1 (-718 *4))))) -(-13 (-717 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -3740 ($)) (-15 -3740 ($ |#1|)) (-15 -3740 ($ (-625 |#1|))) (-15 -3730 ((-625 |#1|) $)) (-15 -1416 ($ |#1| $ (-552))) (-15 -1416 ($ (-1 (-112) |#1|) $ (-552))) (-15 -1938 ($ |#1| $ (-552))) (-15 -1938 ($ (-1 (-112) |#1|) $ (-552))))) -((-2955 (((-1237) (-1131)) 8))) -(((-719) (-10 -7 (-15 -2955 ((-1237) (-1131))))) (T -719)) -((-2955 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-719))))) -(-10 -7 (-15 -2955 ((-1237) (-1131)))) -((-3751 (((-625 |#1|) (-625 |#1|) (-625 |#1|)) 10))) -(((-720 |#1|) (-10 -7 (-15 -3751 ((-625 |#1|) (-625 |#1|) (-625 |#1|)))) (-827)) (T -720)) -((-3751 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-720 *3))))) -(-10 -7 (-15 -3751 ((-625 |#1|) (-625 |#1|) (-625 |#1|)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3982 (((-625 |#2|) $) 134)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 127 (|has| |#1| (-544)))) (-3528 (($ $) 126 (|has| |#1| (-544)))) (-3509 (((-112) $) 124 (|has| |#1| (-544)))) (-3728 (($ $) 83 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 66 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) 19)) (-3837 (($ $) 65 (|has| |#1| (-38 (-402 (-552)))))) (-3710 (($ $) 82 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 67 (|has| |#1| (-38 (-402 (-552)))))) (-3749 (($ $) 81 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 68 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) 17 T CONST)) (-4169 (($ $) 118)) (-4174 (((-3 $ "failed") $) 32)) (-4098 (((-928 |#1|) $ (-751)) 96) (((-928 |#1|) $ (-751) (-751)) 95)) (-3592 (((-112) $) 135)) (-1385 (($) 93 (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-751) $ |#2|) 98) (((-751) $ |#2| (-751)) 97)) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 64 (|has| |#1| (-38 (-402 (-552)))))) (-4201 (((-112) $) 116)) (-3957 (($ $ (-625 |#2|) (-625 (-524 |#2|))) 133) (($ $ |#2| (-524 |#2|)) 132) (($ |#1| (-524 |#2|)) 117) (($ $ |#2| (-751)) 100) (($ $ (-625 |#2|) (-625 (-751))) 99)) (-1996 (($ (-1 |#1| |#1|) $) 115)) (-2458 (($ $) 90 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) 113)) (-4144 ((|#1| $) 112)) (-2883 (((-1131) $) 9)) (-2481 (($ $ |#2|) 94 (|has| |#1| (-38 (-402 (-552)))))) (-2831 (((-1093) $) 10)) (-2147 (($ $ (-751)) 101)) (-2802 (((-3 $ "failed") $ $) 128 (|has| |#1| (-544)))) (-2863 (($ $) 91 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (($ $ |#2| $) 109) (($ $ (-625 |#2|) (-625 $)) 108) (($ $ (-625 (-289 $))) 107) (($ $ (-289 $)) 106) (($ $ $ $) 105) (($ $ (-625 $) (-625 $)) 104)) (-3072 (($ $ |#2|) 40) (($ $ (-625 |#2|)) 39) (($ $ |#2| (-751)) 38) (($ $ (-625 |#2|) (-625 (-751))) 37)) (-4276 (((-524 |#2|) $) 114)) (-3759 (($ $) 80 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 69 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 79 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 70 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 78 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 71 (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) 136)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 131 (|has| |#1| (-170))) (($ $) 129 (|has| |#1| (-544))) (($ (-402 (-552))) 121 (|has| |#1| (-38 (-402 (-552)))))) (-3637 ((|#1| $ (-524 |#2|)) 119) (($ $ |#2| (-751)) 103) (($ $ (-625 |#2|) (-625 (-751))) 102)) (-4243 (((-3 $ "failed") $) 130 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-3789 (($ $) 89 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 77 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) 125 (|has| |#1| (-544)))) (-3769 (($ $) 88 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 76 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 87 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 75 (|has| |#1| (-38 (-402 (-552)))))) (-3742 (($ $) 86 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 74 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 85 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 73 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 84 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 72 (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ |#2|) 36) (($ $ (-625 |#2|)) 35) (($ $ |#2| (-751)) 34) (($ $ (-625 |#2|) (-625 (-751))) 33)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 120 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ $) 92 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 63 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 123 (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) 122 (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 111) (($ $ |#1|) 110))) -(((-721 |#1| |#2|) (-138) (-1025) (-827)) (T -721)) -((-3637 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *2)) (-4 *4 (-1025)) (-4 *2 (-827)))) (-3637 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 *5)) (-5 *3 (-625 (-751))) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-827)))) (-2147 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-721 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-827)))) (-3957 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *2)) (-4 *4 (-1025)) (-4 *2 (-827)))) (-3957 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 *5)) (-5 *3 (-625 (-751))) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-827)))) (-2172 (*1 *2 *1 *3) (-12 (-4 *1 (-721 *4 *3)) (-4 *4 (-1025)) (-4 *3 (-827)) (-5 *2 (-751)))) (-2172 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-751)) (-4 *1 (-721 *4 *3)) (-4 *4 (-1025)) (-4 *3 (-827)))) (-4098 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-827)) (-5 *2 (-928 *4)))) (-4098 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-827)) (-5 *2 (-928 *4)))) (-2481 (*1 *1 *1 *2) (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-827)) (-4 *3 (-38 (-402 (-552))))))) -(-13 (-876 |t#2|) (-949 |t#1| (-524 |t#2|) |t#2|) (-507 |t#2| $) (-304 $) (-10 -8 (-15 -3637 ($ $ |t#2| (-751))) (-15 -3637 ($ $ (-625 |t#2|) (-625 (-751)))) (-15 -2147 ($ $ (-751))) (-15 -3957 ($ $ |t#2| (-751))) (-15 -3957 ($ $ (-625 |t#2|) (-625 (-751)))) (-15 -2172 ((-751) $ |t#2|)) (-15 -2172 ((-751) $ |t#2| (-751))) (-15 -4098 ((-928 |t#1|) $ (-751))) (-15 -4098 ((-928 |t#1|) $ (-751) (-751))) (IF (|has| |t#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ($ $ |t#2|)) (-6 (-978)) (-6 (-1171))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-524 |#2|)) . T) ((-25) . T) ((-38 #1=(-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-544)) ((-35) |has| |#1| (-38 (-402 (-552)))) ((-94) |has| |#1| (-38 (-402 (-552)))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-552)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-279) |has| |#1| (-38 (-402 (-552)))) ((-285) |has| |#1| (-544)) ((-304 $) . T) ((-486) |has| |#1| (-38 (-402 (-552)))) ((-507 |#2| $) . T) ((-507 $ $) . T) ((-544) |has| |#1| (-544)) ((-628 #1#) |has| |#1| (-38 (-402 (-552)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) |has| |#1| (-38 (-402 (-552)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-544)) ((-707) . T) ((-876 |#2|) . T) ((-949 |#1| #0# |#2|) . T) ((-978) |has| |#1| (-38 (-402 (-552)))) ((-1031 #1#) |has| |#1| (-38 (-402 (-552)))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1171) |has| |#1| (-38 (-402 (-552)))) ((-1174) |has| |#1| (-38 (-402 (-552))))) -((-3824 (((-413 (-1145 |#4|)) (-1145 |#4|)) 30) (((-413 |#4|) |#4|) 26))) -(((-722 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3824 ((-413 |#4|) |#4|)) (-15 -3824 ((-413 (-1145 |#4|)) (-1145 |#4|)))) (-827) (-773) (-13 (-302) (-145)) (-925 |#3| |#2| |#1|)) (T -722)) -((-3824 (*1 *2 *3) (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-925 *6 *5 *4)) (-5 *2 (-413 (-1145 *7))) (-5 *1 (-722 *4 *5 *6 *7)) (-5 *3 (-1145 *7)))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-13 (-302) (-145))) (-5 *2 (-413 *3)) (-5 *1 (-722 *4 *5 *6 *3)) (-4 *3 (-925 *6 *5 *4))))) -(-10 -7 (-15 -3824 ((-413 |#4|) |#4|)) (-15 -3824 ((-413 (-1145 |#4|)) (-1145 |#4|)))) -((-2641 (((-413 |#4|) |#4| |#2|) 120)) (-2620 (((-413 |#4|) |#4|) NIL)) (-1330 (((-413 (-1145 |#4|)) (-1145 |#4|)) 111) (((-413 |#4|) |#4|) 41)) (-2659 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-625 (-2 (|:| -3824 (-1145 |#4|)) (|:| -3564 (-552)))))) (-1145 |#4|) (-625 |#2|) (-625 (-625 |#3|))) 69)) (-2703 (((-1145 |#3|) (-1145 |#3|) (-552)) 139)) (-2693 (((-625 (-751)) (-1145 |#4|) (-625 |#2|) (-751)) 61)) (-2148 (((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-1145 |#3|) (-1145 |#3|) |#4| (-625 |#2|) (-625 (-751)) (-625 |#3|)) 65)) (-2671 (((-2 (|:| |upol| (-1145 |#3|)) (|:| |Lval| (-625 |#3|)) (|:| |Lfact| (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552))))) (|:| |ctpol| |#3|)) (-1145 |#4|) (-625 |#2|) (-625 (-625 |#3|))) 26)) (-2649 (((-2 (|:| -4256 (-1145 |#4|)) (|:| |polval| (-1145 |#3|))) (-1145 |#4|) (-1145 |#3|) (-552)) 57)) (-2630 (((-552) (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552))))) 136)) (-2683 ((|#4| (-552) (-413 |#4|)) 58)) (-1482 (((-112) (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552)))) (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552))))) NIL))) -(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1330 ((-413 |#4|) |#4|)) (-15 -1330 ((-413 (-1145 |#4|)) (-1145 |#4|))) (-15 -2620 ((-413 |#4|) |#4|)) (-15 -2630 ((-552) (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552)))))) (-15 -2641 ((-413 |#4|) |#4| |#2|)) (-15 -2649 ((-2 (|:| -4256 (-1145 |#4|)) (|:| |polval| (-1145 |#3|))) (-1145 |#4|) (-1145 |#3|) (-552))) (-15 -2659 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-625 (-2 (|:| -3824 (-1145 |#4|)) (|:| -3564 (-552)))))) (-1145 |#4|) (-625 |#2|) (-625 (-625 |#3|)))) (-15 -2671 ((-2 (|:| |upol| (-1145 |#3|)) (|:| |Lval| (-625 |#3|)) (|:| |Lfact| (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552))))) (|:| |ctpol| |#3|)) (-1145 |#4|) (-625 |#2|) (-625 (-625 |#3|)))) (-15 -2683 (|#4| (-552) (-413 |#4|))) (-15 -1482 ((-112) (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552)))) (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552)))))) (-15 -2148 ((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-1145 |#3|) (-1145 |#3|) |#4| (-625 |#2|) (-625 (-751)) (-625 |#3|))) (-15 -2693 ((-625 (-751)) (-1145 |#4|) (-625 |#2|) (-751))) (-15 -2703 ((-1145 |#3|) (-1145 |#3|) (-552)))) (-773) (-827) (-302) (-925 |#3| |#1| |#2|)) (T -723)) -((-2703 (*1 *2 *2 *3) (-12 (-5 *2 (-1145 *6)) (-5 *3 (-552)) (-4 *6 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-925 *6 *4 *5)))) (-2693 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1145 *9)) (-5 *4 (-625 *7)) (-4 *7 (-827)) (-4 *9 (-925 *8 *6 *7)) (-4 *6 (-773)) (-4 *8 (-302)) (-5 *2 (-625 (-751))) (-5 *1 (-723 *6 *7 *8 *9)) (-5 *5 (-751)))) (-2148 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1145 *11)) (-5 *6 (-625 *10)) (-5 *7 (-625 (-751))) (-5 *8 (-625 *11)) (-4 *10 (-827)) (-4 *11 (-302)) (-4 *9 (-773)) (-4 *5 (-925 *11 *9 *10)) (-5 *2 (-625 (-1145 *5))) (-5 *1 (-723 *9 *10 *11 *5)) (-5 *3 (-1145 *5)))) (-1482 (*1 *2 *3 *3) (-12 (-5 *3 (-625 (-2 (|:| -3824 (-1145 *6)) (|:| -3564 (-552))))) (-4 *6 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-925 *6 *4 *5)))) (-2683 (*1 *2 *3 *4) (-12 (-5 *3 (-552)) (-5 *4 (-413 *2)) (-4 *2 (-925 *7 *5 *6)) (-5 *1 (-723 *5 *6 *7 *2)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-302)))) (-2671 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1145 *9)) (-5 *4 (-625 *7)) (-5 *5 (-625 (-625 *8))) (-4 *7 (-827)) (-4 *8 (-302)) (-4 *9 (-925 *8 *6 *7)) (-4 *6 (-773)) (-5 *2 (-2 (|:| |upol| (-1145 *8)) (|:| |Lval| (-625 *8)) (|:| |Lfact| (-625 (-2 (|:| -3824 (-1145 *8)) (|:| -3564 (-552))))) (|:| |ctpol| *8))) (-5 *1 (-723 *6 *7 *8 *9)))) (-2659 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-625 *7)) (-5 *5 (-625 (-625 *8))) (-4 *7 (-827)) (-4 *8 (-302)) (-4 *6 (-773)) (-4 *9 (-925 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-625 (-2 (|:| -3824 (-1145 *9)) (|:| -3564 (-552))))))) (-5 *1 (-723 *6 *7 *8 *9)) (-5 *3 (-1145 *9)))) (-2649 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-552)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-302)) (-4 *9 (-925 *8 *6 *7)) (-5 *2 (-2 (|:| -4256 (-1145 *9)) (|:| |polval| (-1145 *8)))) (-5 *1 (-723 *6 *7 *8 *9)) (-5 *3 (-1145 *9)) (-5 *4 (-1145 *8)))) (-2641 (*1 *2 *3 *4) (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-723 *5 *4 *6 *3)) (-4 *3 (-925 *6 *5 *4)))) (-2630 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| -3824 (-1145 *6)) (|:| -3564 (-552))))) (-4 *6 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-552)) (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-925 *6 *4 *5)))) (-2620 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-925 *6 *4 *5)))) (-1330 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-413 (-1145 *7))) (-5 *1 (-723 *4 *5 *6 *7)) (-5 *3 (-1145 *7)))) (-1330 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-925 *6 *4 *5))))) -(-10 -7 (-15 -1330 ((-413 |#4|) |#4|)) (-15 -1330 ((-413 (-1145 |#4|)) (-1145 |#4|))) (-15 -2620 ((-413 |#4|) |#4|)) (-15 -2630 ((-552) (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552)))))) (-15 -2641 ((-413 |#4|) |#4| |#2|)) (-15 -2649 ((-2 (|:| -4256 (-1145 |#4|)) (|:| |polval| (-1145 |#3|))) (-1145 |#4|) (-1145 |#3|) (-552))) (-15 -2659 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-625 (-2 (|:| -3824 (-1145 |#4|)) (|:| -3564 (-552)))))) (-1145 |#4|) (-625 |#2|) (-625 (-625 |#3|)))) (-15 -2671 ((-2 (|:| |upol| (-1145 |#3|)) (|:| |Lval| (-625 |#3|)) (|:| |Lfact| (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552))))) (|:| |ctpol| |#3|)) (-1145 |#4|) (-625 |#2|) (-625 (-625 |#3|)))) (-15 -2683 (|#4| (-552) (-413 |#4|))) (-15 -1482 ((-112) (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552)))) (-625 (-2 (|:| -3824 (-1145 |#3|)) (|:| -3564 (-552)))))) (-15 -2148 ((-3 (-625 (-1145 |#4|)) "failed") (-1145 |#4|) (-1145 |#3|) (-1145 |#3|) |#4| (-625 |#2|) (-625 (-751)) (-625 |#3|))) (-15 -2693 ((-625 (-751)) (-1145 |#4|) (-625 |#2|) (-751))) (-15 -2703 ((-1145 |#3|) (-1145 |#3|) (-552)))) -((-2712 (($ $ (-897)) 12))) -(((-724 |#1| |#2|) (-10 -8 (-15 -2712 (|#1| |#1| (-897)))) (-725 |#2|) (-170)) (T -724)) -NIL -(-10 -8 (-15 -2712 (|#1| |#1| (-897)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-3629 (($ $ (-897)) 28)) (-2712 (($ $ (-897)) 33)) (-3619 (($ $ (-897)) 29)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3828 (($ $ $) 25)) (-1683 (((-839) $) 11)) (-3842 (($ $ $ $) 26)) (-3818 (($ $ $) 24)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 30)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-725 |#1|) (-138) (-170)) (T -725)) -((-2712 (*1 *1 *1 *2) (-12 (-5 *2 (-897)) (-4 *1 (-725 *3)) (-4 *3 (-170))))) -(-13 (-742) (-698 |t#1|) (-10 -8 (-15 -2712 ($ $ (-897))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-698 |#1|) . T) ((-701) . T) ((-742) . T) ((-1031 |#1|) . T) ((-1073) . T)) -((-2731 (((-1011) (-669 (-221)) (-552) (-112) (-552)) 25)) (-2722 (((-1011) (-669 (-221)) (-552) (-112) (-552)) 24))) -(((-726) (-10 -7 (-15 -2722 ((-1011) (-669 (-221)) (-552) (-112) (-552))) (-15 -2731 ((-1011) (-669 (-221)) (-552) (-112) (-552))))) (T -726)) -((-2731 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *5 (-112)) (-5 *2 (-1011)) (-5 *1 (-726)))) (-2722 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *5 (-112)) (-5 *2 (-1011)) (-5 *1 (-726))))) -(-10 -7 (-15 -2722 ((-1011) (-669 (-221)) (-552) (-112) (-552))) (-15 -2731 ((-1011) (-669 (-221)) (-552) (-112) (-552)))) -((-2759 (((-1011) (-552) (-552) (-552) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-73 FCN)))) 43)) (-2750 (((-1011) (-552) (-552) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-80 FCN)))) 39)) (-2741 (((-1011) (-221) (-221) (-221) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) 32))) -(((-727) (-10 -7 (-15 -2741 ((-1011) (-221) (-221) (-221) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))) (-15 -2750 ((-1011) (-552) (-552) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-80 FCN))))) (-15 -2759 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-73 FCN))))))) (T -727)) -((-2759 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1011)) (-5 *1 (-727)))) (-2750 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1011)) (-5 *1 (-727)))) (-2741 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) (-5 *2 (-1011)) (-5 *1 (-727))))) -(-10 -7 (-15 -2741 ((-1011) (-221) (-221) (-221) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))) (-15 -2750 ((-1011) (-552) (-552) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-80 FCN))))) (-15 -2759 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-73 FCN)))))) -((-2892 (((-1011) (-552) (-552) (-669 (-221)) (-552)) 34)) (-2882 (((-1011) (-552) (-552) (-669 (-221)) (-552)) 33)) (-2870 (((-1011) (-552) (-669 (-221)) (-552)) 32)) (-2859 (((-1011) (-552) (-669 (-221)) (-552)) 31)) (-2848 (((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552)) 30)) (-2836 (((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552)) 29)) (-2822 (((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-552)) 28)) (-2810 (((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-552)) 27)) (-2799 (((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552)) 24)) (-2790 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552)) 23)) (-2779 (((-1011) (-552) (-669 (-221)) (-552)) 22)) (-2769 (((-1011) (-552) (-669 (-221)) (-552)) 21))) -(((-728) (-10 -7 (-15 -2769 ((-1011) (-552) (-669 (-221)) (-552))) (-15 -2779 ((-1011) (-552) (-669 (-221)) (-552))) (-15 -2790 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2799 ((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2810 ((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2822 ((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2836 ((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2848 ((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2859 ((-1011) (-552) (-669 (-221)) (-552))) (-15 -2870 ((-1011) (-552) (-669 (-221)) (-552))) (-15 -2882 ((-1011) (-552) (-552) (-669 (-221)) (-552))) (-15 -2892 ((-1011) (-552) (-552) (-669 (-221)) (-552))))) (T -728)) -((-2892 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2882 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2870 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2859 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2848 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2836 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2822 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2810 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2799 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2790 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2779 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2769 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728))))) -(-10 -7 (-15 -2769 ((-1011) (-552) (-669 (-221)) (-552))) (-15 -2779 ((-1011) (-552) (-669 (-221)) (-552))) (-15 -2790 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2799 ((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2810 ((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2822 ((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2836 ((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2848 ((-1011) (-552) (-552) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2859 ((-1011) (-552) (-669 (-221)) (-552))) (-15 -2870 ((-1011) (-552) (-669 (-221)) (-552))) (-15 -2882 ((-1011) (-552) (-552) (-669 (-221)) (-552))) (-15 -2892 ((-1011) (-552) (-552) (-669 (-221)) (-552)))) -((-3026 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552) (-221) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 FUNCTN)))) 52)) (-3014 (((-1011) (-669 (-221)) (-669 (-221)) (-552) (-552)) 51)) (-3002 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 FUNCTN)))) 50)) (-2990 (((-1011) (-221) (-221) (-552) (-552) (-552) (-552)) 46)) (-2979 (((-1011) (-221) (-221) (-552) (-221) (-552) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) 45)) (-2968 (((-1011) (-221) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) 44)) (-2956 (((-1011) (-221) (-221) (-221) (-221) (-552) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) 43)) (-2944 (((-1011) (-221) (-221) (-221) (-552) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) 42)) (-2934 (((-1011) (-221) (-552) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) 38)) (-2922 (((-1011) (-221) (-221) (-552) (-669 (-221)) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) 37)) (-2912 (((-1011) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) 33)) (-2902 (((-1011) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) 32))) -(((-729) (-10 -7 (-15 -2902 ((-1011) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))) (-15 -2912 ((-1011) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))) (-15 -2922 ((-1011) (-221) (-221) (-552) (-669 (-221)) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))) (-15 -2934 ((-1011) (-221) (-552) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))) (-15 -2944 ((-1011) (-221) (-221) (-221) (-552) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G))))) (-15 -2956 ((-1011) (-221) (-221) (-221) (-221) (-552) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G))))) (-15 -2968 ((-1011) (-221) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G))))) (-15 -2979 ((-1011) (-221) (-221) (-552) (-221) (-552) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G))))) (-15 -2990 ((-1011) (-221) (-221) (-552) (-552) (-552) (-552))) (-15 -3002 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 FUNCTN))))) (-15 -3014 ((-1011) (-669 (-221)) (-669 (-221)) (-552) (-552))) (-15 -3026 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552) (-221) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 FUNCTN))))))) (T -729)) -((-3026 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-3014 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-729)))) (-3002 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2990 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2979 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2968 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2956 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2944 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2934 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2922 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2912 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2902 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) (-5 *2 (-1011)) (-5 *1 (-729))))) -(-10 -7 (-15 -2902 ((-1011) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))) (-15 -2912 ((-1011) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))) (-15 -2922 ((-1011) (-221) (-221) (-552) (-669 (-221)) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))) (-15 -2934 ((-1011) (-221) (-552) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281))))) (-15 -2944 ((-1011) (-221) (-221) (-221) (-552) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G))))) (-15 -2956 ((-1011) (-221) (-221) (-221) (-221) (-552) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G))))) (-15 -2968 ((-1011) (-221) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G))))) (-15 -2979 ((-1011) (-221) (-221) (-552) (-221) (-552) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G))))) (-15 -2990 ((-1011) (-221) (-221) (-552) (-552) (-552) (-552))) (-15 -3002 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552) (-221) (-552) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 FUNCTN))))) (-15 -3014 ((-1011) (-669 (-221)) (-669 (-221)) (-552) (-552))) (-15 -3026 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552) (-221) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 FUNCTN)))))) -((-3103 (((-1011) (-552) (-552) (-552) (-552) (-221) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-383)) (|:| |fp| (-75 G JACOBG JACGEP)))) 76)) (-3094 (((-1011) (-669 (-221)) (-552) (-552) (-221) (-552) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 BDYVAL))) (-383) (-383)) 69) (((-1011) (-669 (-221)) (-552) (-552) (-221) (-552) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 BDYVAL)))) 68)) (-3086 (((-1011) (-221) (-221) (-552) (-221) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNG)))) 57)) (-3078 (((-1011) (-669 (-221)) (-669 (-221)) (-552) (-221) (-221) (-221) (-552) (-552) (-552) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN)))) 50)) (-3068 (((-1011) (-221) (-552) (-552) (-1131) (-552) (-221) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT)))) 49)) (-3058 (((-1011) (-221) (-552) (-552) (-221) (-1131) (-221) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT)))) 45)) (-3047 (((-1011) (-221) (-552) (-552) (-221) (-221) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN)))) 42)) (-3037 (((-1011) (-221) (-552) (-552) (-552) (-221) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT)))) 38))) -(((-730) (-10 -7 (-15 -3037 ((-1011) (-221) (-552) (-552) (-552) (-221) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT))))) (-15 -3047 ((-1011) (-221) (-552) (-552) (-221) (-221) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))))) (-15 -3058 ((-1011) (-221) (-552) (-552) (-221) (-1131) (-221) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT))))) (-15 -3068 ((-1011) (-221) (-552) (-552) (-1131) (-552) (-221) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT))))) (-15 -3078 ((-1011) (-669 (-221)) (-669 (-221)) (-552) (-221) (-221) (-221) (-552) (-552) (-552) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))))) (-15 -3086 ((-1011) (-221) (-221) (-552) (-221) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNG))))) (-15 -3094 ((-1011) (-669 (-221)) (-552) (-552) (-221) (-552) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 BDYVAL))))) (-15 -3094 ((-1011) (-669 (-221)) (-552) (-552) (-221) (-552) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 BDYVAL))) (-383) (-383))) (-15 -3103 ((-1011) (-552) (-552) (-552) (-552) (-221) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-383)) (|:| |fp| (-75 G JACOBG JACGEP))))))) (T -730)) -((-3103 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-75 G JACOBG JACGEP)))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-3094 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-383)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-3094 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-1011)) (-5 *1 (-730)))) (-3086 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-83 FCNF)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-3078 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1011)) (-5 *1 (-730)))) (-3068 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-552)) (-5 *5 (-1131)) (-5 *6 (-669 (-221))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-70 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-3058 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-552)) (-5 *5 (-1131)) (-5 *6 (-669 (-221))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-3047 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-3037 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730))))) -(-10 -7 (-15 -3037 ((-1011) (-221) (-552) (-552) (-552) (-221) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT))))) (-15 -3047 ((-1011) (-221) (-552) (-552) (-221) (-221) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))))) (-15 -3058 ((-1011) (-221) (-552) (-552) (-221) (-1131) (-221) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT))))) (-15 -3068 ((-1011) (-221) (-552) (-552) (-1131) (-552) (-221) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT))))) (-15 -3078 ((-1011) (-669 (-221)) (-669 (-221)) (-552) (-221) (-221) (-221) (-552) (-552) (-552) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN))))) (-15 -3086 ((-1011) (-221) (-221) (-552) (-221) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNG))))) (-15 -3094 ((-1011) (-669 (-221)) (-552) (-552) (-221) (-552) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 BDYVAL))))) (-15 -3094 ((-1011) (-669 (-221)) (-552) (-552) (-221) (-552) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 BDYVAL))) (-383) (-383))) (-15 -3103 ((-1011) (-552) (-552) (-552) (-552) (-221) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-383)) (|:| |fp| (-75 G JACOBG JACGEP)))))) -((-3129 (((-1011) (-221) (-221) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-221) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-221) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-655 (-221)) (-552)) 45)) (-3120 (((-1011) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-1131) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-82 BNDY)))) 41)) (-3111 (((-1011) (-552) (-552) (-552) (-552) (-221) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552)) 23))) -(((-731) (-10 -7 (-15 -3111 ((-1011) (-552) (-552) (-552) (-552) (-221) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -3120 ((-1011) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-1131) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-82 BNDY))))) (-15 -3129 ((-1011) (-221) (-221) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-221) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-221) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-655 (-221)) (-552))))) (T -731)) -((-3129 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-655 (-221))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-731)))) (-3120 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *5 (-1131)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 PDEF)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1011)) (-5 *1 (-731)))) (-3111 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-731))))) -(-10 -7 (-15 -3111 ((-1011) (-552) (-552) (-552) (-552) (-221) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -3120 ((-1011) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-1131) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-82 BNDY))))) (-15 -3129 ((-1011) (-221) (-221) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-221) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-221) (-552) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-655 (-221)) (-552)))) -((-2045 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-669 (-221)) (-221) (-221) (-552)) 35)) (-2036 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-221) (-221) (-552)) 34)) (-2027 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-669 (-221)) (-221) (-221) (-552)) 33)) (-2018 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552)) 29)) (-3184 (((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552)) 28)) (-3175 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-221) (-552)) 27)) (-3167 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-552)) 24)) (-3160 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-552)) 23)) (-3149 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552)) 22)) (-3138 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552) (-552) (-552)) 21))) -(((-732) (-10 -7 (-15 -3138 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552) (-552) (-552))) (-15 -3149 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -3160 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-552))) (-15 -3167 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-552))) (-15 -3175 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-221) (-552))) (-15 -3184 ((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2018 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2027 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-669 (-221)) (-221) (-221) (-552))) (-15 -2036 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-221) (-221) (-552))) (-15 -2045 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-669 (-221)) (-221) (-221) (-552))))) (T -732)) -((-2045 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2036 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2027 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *6 (-221)) (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2018 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))) (-3184 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))) (-3175 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-732)))) (-3167 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))) (-3160 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))) (-3149 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))) (-3138 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732))))) -(-10 -7 (-15 -3138 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552) (-552) (-552))) (-15 -3149 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -3160 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-552))) (-15 -3167 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-552))) (-15 -3175 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-221) (-552))) (-15 -3184 ((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2018 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2027 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-669 (-221)) (-221) (-221) (-552))) (-15 -2036 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-221) (-221) (-552))) (-15 -2045 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-669 (-221)) (-221) (-221) (-552)))) -((-2241 (((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-552) (-552) (-552)) 45)) (-2232 (((-1011) (-552) (-552) (-552) (-221) (-669 (-221)) (-669 (-221)) (-552)) 44)) (-2219 (((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-552)) 43)) (-2210 (((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552)) 42)) (-2198 (((-1011) (-1131) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-552)) 41)) (-2187 (((-1011) (-1131) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-552)) 40)) (-2176 (((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-552) (-552) (-552) (-221) (-669 (-221)) (-552)) 39)) (-2166 (((-1011) (-1131) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-552))) 38)) (-2155 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552)) 35)) (-2141 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552)) 34)) (-2130 (((-1011) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552)) 33)) (-2120 (((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552)) 32)) (-2111 (((-1011) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-221) (-552)) 31)) (-2102 (((-1011) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-221) (-552) (-552) (-552)) 30)) (-2090 (((-1011) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-552) (-552) (-552)) 29)) (-2080 (((-1011) (-552) (-552) (-552) (-221) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-552) (-669 (-552)) (-552) (-552) (-552)) 28)) (-2069 (((-1011) (-552) (-669 (-221)) (-221) (-552)) 24)) (-2057 (((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552)) 21))) -(((-733) (-10 -7 (-15 -2057 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2069 ((-1011) (-552) (-669 (-221)) (-221) (-552))) (-15 -2080 ((-1011) (-552) (-552) (-552) (-221) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-552) (-669 (-552)) (-552) (-552) (-552))) (-15 -2090 ((-1011) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-552) (-552) (-552))) (-15 -2102 ((-1011) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-221) (-552) (-552) (-552))) (-15 -2111 ((-1011) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-221) (-552))) (-15 -2120 ((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2130 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552))) (-15 -2141 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552))) (-15 -2155 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2166 ((-1011) (-1131) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-552)))) (-15 -2176 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-552) (-552) (-552) (-221) (-669 (-221)) (-552))) (-15 -2187 ((-1011) (-1131) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-552))) (-15 -2198 ((-1011) (-1131) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2210 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2219 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-552))) (-15 -2232 ((-1011) (-552) (-552) (-552) (-221) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2241 ((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-552) (-552) (-552))))) (T -733)) -((-2241 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2232 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2219 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2210 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2198 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2187 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-221)) (-5 *7 (-669 (-552))) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2176 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *6 (-221)) (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2166 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-221)) (-5 *7 (-669 (-552))) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2155 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2141 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2130 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2120 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2111 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2102 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2090 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2080 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-669 (-221))) (-5 *6 (-669 (-552))) (-5 *3 (-552)) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2069 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2057 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733))))) -(-10 -7 (-15 -2057 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2069 ((-1011) (-552) (-669 (-221)) (-221) (-552))) (-15 -2080 ((-1011) (-552) (-552) (-552) (-221) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-552) (-669 (-552)) (-552) (-552) (-552))) (-15 -2090 ((-1011) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-552) (-552) (-552))) (-15 -2102 ((-1011) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-221) (-552) (-552) (-552))) (-15 -2111 ((-1011) (-552) (-221) (-221) (-669 (-221)) (-552) (-552) (-221) (-552))) (-15 -2120 ((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2130 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552))) (-15 -2141 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552))) (-15 -2155 ((-1011) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2166 ((-1011) (-1131) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-552)))) (-15 -2176 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-552) (-552) (-552) (-221) (-669 (-221)) (-552))) (-15 -2187 ((-1011) (-1131) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-552))) (-15 -2198 ((-1011) (-1131) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2210 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2219 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-552))) (-15 -2232 ((-1011) (-552) (-552) (-552) (-221) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2241 ((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552) (-669 (-221)) (-669 (-221)) (-552) (-552) (-552)))) -((-2335 (((-1011) (-552) (-552) (-552) (-221) (-669 (-221)) (-552) (-669 (-221)) (-552)) 63)) (-2321 (((-1011) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-112) (-221) (-552) (-221) (-221) (-112) (-221) (-221) (-221) (-221) (-112) (-552) (-552) (-552) (-552) (-552) (-221) (-221) (-221) (-552) (-552) (-552) (-552) (-552) (-669 (-552)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 OBJFUN)))) 62)) (-2308 (((-1011) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-112) (-112) (-552) (-552) (-669 (-221)) (-669 (-552)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 QPHESS)))) 58)) (-2294 (((-1011) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-552) (-552) (-669 (-221)) (-552)) 51)) (-2282 (((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-65 FUNCT1)))) 50)) (-2270 (((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-62 LSFUN2)))) 46)) (-2261 (((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 LSFUN1)))) 42)) (-2252 (((-1011) (-552) (-221) (-221) (-552) (-221) (-112) (-221) (-221) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 OBJFUN)))) 38))) -(((-734) (-10 -7 (-15 -2252 ((-1011) (-552) (-221) (-221) (-552) (-221) (-112) (-221) (-221) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 OBJFUN))))) (-15 -2261 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 LSFUN1))))) (-15 -2270 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-62 LSFUN2))))) (-15 -2282 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-65 FUNCT1))))) (-15 -2294 ((-1011) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-552) (-552) (-669 (-221)) (-552))) (-15 -2308 ((-1011) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-112) (-112) (-552) (-552) (-669 (-221)) (-669 (-552)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 QPHESS))))) (-15 -2321 ((-1011) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-112) (-221) (-552) (-221) (-221) (-112) (-221) (-221) (-221) (-221) (-112) (-552) (-552) (-552) (-552) (-552) (-221) (-221) (-221) (-552) (-552) (-552) (-552) (-552) (-669 (-552)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 OBJFUN))))) (-15 -2335 ((-1011) (-552) (-552) (-552) (-221) (-669 (-221)) (-552) (-669 (-221)) (-552))))) (T -734)) -((-2335 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2321 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-112)) (-5 *6 (-221)) (-5 *7 (-669 (-552))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-79 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2308 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-669 (-221))) (-5 *6 (-112)) (-5 *7 (-669 (-552))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-552)) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2294 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-112)) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2282 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2270 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2261 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2252 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-552)) (-5 *5 (-112)) (-5 *6 (-669 (-221))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-734))))) -(-10 -7 (-15 -2252 ((-1011) (-552) (-221) (-221) (-552) (-221) (-112) (-221) (-221) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 OBJFUN))))) (-15 -2261 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 LSFUN1))))) (-15 -2270 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-62 LSFUN2))))) (-15 -2282 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-65 FUNCT1))))) (-15 -2294 ((-1011) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-552) (-552) (-669 (-221)) (-552))) (-15 -2308 ((-1011) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-112) (-112) (-552) (-552) (-669 (-221)) (-669 (-552)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 QPHESS))))) (-15 -2321 ((-1011) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-552) (-112) (-221) (-552) (-221) (-221) (-112) (-221) (-221) (-221) (-221) (-112) (-552) (-552) (-552) (-552) (-552) (-221) (-221) (-221) (-552) (-552) (-552) (-552) (-552) (-669 (-552)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 OBJFUN))))) (-15 -2335 ((-1011) (-552) (-552) (-552) (-221) (-669 (-221)) (-552) (-669 (-221)) (-552)))) -((-2445 (((-1011) (-1131) (-552) (-552) (-552) (-552) (-669 (-167 (-221))) (-669 (-167 (-221))) (-552)) 47)) (-2434 (((-1011) (-1131) (-1131) (-552) (-552) (-669 (-167 (-221))) (-552) (-669 (-167 (-221))) (-552) (-552) (-669 (-167 (-221))) (-552)) 46)) (-2425 (((-1011) (-552) (-552) (-552) (-669 (-167 (-221))) (-552)) 45)) (-2415 (((-1011) (-1131) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552)) 40)) (-2405 (((-1011) (-1131) (-1131) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-552) (-552) (-669 (-221)) (-552)) 39)) (-2394 (((-1011) (-552) (-552) (-552) (-669 (-221)) (-552)) 36)) (-2383 (((-1011) (-552) (-669 (-221)) (-552) (-669 (-552)) (-552)) 35)) (-2372 (((-1011) (-552) (-552) (-552) (-552) (-625 (-112)) (-669 (-221)) (-669 (-552)) (-669 (-552)) (-221) (-221) (-552)) 34)) (-2361 (((-1011) (-552) (-552) (-552) (-669 (-552)) (-669 (-552)) (-669 (-552)) (-669 (-552)) (-112) (-221) (-112) (-669 (-552)) (-669 (-221)) (-552)) 33)) (-2347 (((-1011) (-552) (-552) (-552) (-552) (-221) (-112) (-112) (-625 (-112)) (-669 (-221)) (-669 (-552)) (-669 (-552)) (-552)) 32))) -(((-735) (-10 -7 (-15 -2347 ((-1011) (-552) (-552) (-552) (-552) (-221) (-112) (-112) (-625 (-112)) (-669 (-221)) (-669 (-552)) (-669 (-552)) (-552))) (-15 -2361 ((-1011) (-552) (-552) (-552) (-669 (-552)) (-669 (-552)) (-669 (-552)) (-669 (-552)) (-112) (-221) (-112) (-669 (-552)) (-669 (-221)) (-552))) (-15 -2372 ((-1011) (-552) (-552) (-552) (-552) (-625 (-112)) (-669 (-221)) (-669 (-552)) (-669 (-552)) (-221) (-221) (-552))) (-15 -2383 ((-1011) (-552) (-669 (-221)) (-552) (-669 (-552)) (-552))) (-15 -2394 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-552))) (-15 -2405 ((-1011) (-1131) (-1131) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-552) (-552) (-669 (-221)) (-552))) (-15 -2415 ((-1011) (-1131) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2425 ((-1011) (-552) (-552) (-552) (-669 (-167 (-221))) (-552))) (-15 -2434 ((-1011) (-1131) (-1131) (-552) (-552) (-669 (-167 (-221))) (-552) (-669 (-167 (-221))) (-552) (-552) (-669 (-167 (-221))) (-552))) (-15 -2445 ((-1011) (-1131) (-552) (-552) (-552) (-552) (-669 (-167 (-221))) (-669 (-167 (-221))) (-552))))) (T -735)) -((-2445 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-167 (-221)))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2434 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-167 (-221)))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2425 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-167 (-221)))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2415 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2405 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2394 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2383 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2372 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-625 (-112))) (-5 *5 (-669 (-221))) (-5 *6 (-669 (-552))) (-5 *7 (-221)) (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2361 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-669 (-552))) (-5 *5 (-112)) (-5 *7 (-669 (-221))) (-5 *3 (-552)) (-5 *6 (-221)) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2347 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-625 (-112))) (-5 *7 (-669 (-221))) (-5 *8 (-669 (-552))) (-5 *3 (-552)) (-5 *4 (-221)) (-5 *5 (-112)) (-5 *2 (-1011)) (-5 *1 (-735))))) -(-10 -7 (-15 -2347 ((-1011) (-552) (-552) (-552) (-552) (-221) (-112) (-112) (-625 (-112)) (-669 (-221)) (-669 (-552)) (-669 (-552)) (-552))) (-15 -2361 ((-1011) (-552) (-552) (-552) (-669 (-552)) (-669 (-552)) (-669 (-552)) (-669 (-552)) (-112) (-221) (-112) (-669 (-552)) (-669 (-221)) (-552))) (-15 -2372 ((-1011) (-552) (-552) (-552) (-552) (-625 (-112)) (-669 (-221)) (-669 (-552)) (-669 (-552)) (-221) (-221) (-552))) (-15 -2383 ((-1011) (-552) (-669 (-221)) (-552) (-669 (-552)) (-552))) (-15 -2394 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-552))) (-15 -2405 ((-1011) (-1131) (-1131) (-552) (-552) (-669 (-221)) (-552) (-669 (-221)) (-552) (-552) (-669 (-221)) (-552))) (-15 -2415 ((-1011) (-1131) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2425 ((-1011) (-552) (-552) (-552) (-669 (-167 (-221))) (-552))) (-15 -2434 ((-1011) (-1131) (-1131) (-552) (-552) (-669 (-167 (-221))) (-552) (-669 (-167 (-221))) (-552) (-552) (-669 (-167 (-221))) (-552))) (-15 -2445 ((-1011) (-1131) (-552) (-552) (-552) (-552) (-669 (-167 (-221))) (-669 (-167 (-221))) (-552)))) -((-2590 (((-1011) (-552) (-552) (-552) (-552) (-552) (-112) (-552) (-112) (-552) (-669 (-167 (-221))) (-669 (-167 (-221))) (-552)) 65)) (-2580 (((-1011) (-552) (-552) (-552) (-552) (-552) (-112) (-552) (-112) (-552) (-669 (-221)) (-669 (-221)) (-552)) 60)) (-2571 (((-1011) (-552) (-552) (-221) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE))) (-383)) 56) (((-1011) (-552) (-552) (-221) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE)))) 55)) (-2560 (((-1011) (-552) (-552) (-552) (-221) (-112) (-552) (-669 (-221)) (-669 (-221)) (-552)) 37)) (-2551 (((-1011) (-552) (-552) (-221) (-221) (-552) (-552) (-669 (-221)) (-552)) 33)) (-2542 (((-1011) (-669 (-221)) (-552) (-669 (-221)) (-552) (-552) (-552) (-552) (-552)) 30)) (-2534 (((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552)) 29)) (-2524 (((-1011) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552)) 28)) (-2515 (((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552)) 27)) (-2506 (((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-552)) 26)) (-2496 (((-1011) (-552) (-552) (-669 (-221)) (-552)) 25)) (-2485 (((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552)) 24)) (-2474 (((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552)) 23)) (-2466 (((-1011) (-669 (-221)) (-552) (-552) (-552) (-552)) 22)) (-2456 (((-1011) (-552) (-552) (-669 (-221)) (-552)) 21))) -(((-736) (-10 -7 (-15 -2456 ((-1011) (-552) (-552) (-669 (-221)) (-552))) (-15 -2466 ((-1011) (-669 (-221)) (-552) (-552) (-552) (-552))) (-15 -2474 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2485 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2496 ((-1011) (-552) (-552) (-669 (-221)) (-552))) (-15 -2506 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-552))) (-15 -2515 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2524 ((-1011) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2534 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2542 ((-1011) (-669 (-221)) (-552) (-669 (-221)) (-552) (-552) (-552) (-552) (-552))) (-15 -2551 ((-1011) (-552) (-552) (-221) (-221) (-552) (-552) (-669 (-221)) (-552))) (-15 -2560 ((-1011) (-552) (-552) (-552) (-221) (-112) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2571 ((-1011) (-552) (-552) (-221) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE))))) (-15 -2571 ((-1011) (-552) (-552) (-221) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE))) (-383))) (-15 -2580 ((-1011) (-552) (-552) (-552) (-552) (-552) (-112) (-552) (-112) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2590 ((-1011) (-552) (-552) (-552) (-552) (-552) (-112) (-552) (-112) (-552) (-669 (-167 (-221))) (-669 (-167 (-221))) (-552))))) (T -736)) -((-2590 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-112)) (-5 *5 (-669 (-167 (-221)))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2580 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-112)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2571 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-383)) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2571 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2560 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-552)) (-5 *5 (-112)) (-5 *6 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2551 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2542 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2534 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2524 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2515 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2506 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2496 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2485 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2474 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2466 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2456 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736))))) -(-10 -7 (-15 -2456 ((-1011) (-552) (-552) (-669 (-221)) (-552))) (-15 -2466 ((-1011) (-669 (-221)) (-552) (-552) (-552) (-552))) (-15 -2474 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2485 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2496 ((-1011) (-552) (-552) (-669 (-221)) (-552))) (-15 -2506 ((-1011) (-552) (-552) (-552) (-552) (-669 (-221)) (-552))) (-15 -2515 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2524 ((-1011) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2534 ((-1011) (-552) (-552) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2542 ((-1011) (-669 (-221)) (-552) (-669 (-221)) (-552) (-552) (-552) (-552) (-552))) (-15 -2551 ((-1011) (-552) (-552) (-221) (-221) (-552) (-552) (-669 (-221)) (-552))) (-15 -2560 ((-1011) (-552) (-552) (-552) (-221) (-112) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2571 ((-1011) (-552) (-552) (-221) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE))))) (-15 -2571 ((-1011) (-552) (-552) (-221) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE))) (-383))) (-15 -2580 ((-1011) (-552) (-552) (-552) (-552) (-552) (-112) (-552) (-112) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -2590 ((-1011) (-552) (-552) (-552) (-552) (-552) (-112) (-552) (-112) (-552) (-669 (-167 (-221))) (-669 (-167 (-221))) (-552)))) -((-1491 (((-1011) (-552) (-552) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-69 APROD)))) 61)) (-1481 (((-1011) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-552)) (-552) (-669 (-221)) (-552) (-552) (-552) (-552)) 57)) (-1469 (((-1011) (-552) (-669 (-221)) (-112) (-221) (-552) (-552) (-552) (-552) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-383)) (|:| |fp| (-72 MSOLVE)))) 56)) (-1458 (((-1011) (-552) (-552) (-669 (-221)) (-552) (-669 (-552)) (-552) (-669 (-552)) (-669 (-221)) (-669 (-552)) (-669 (-552)) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-552)) 37)) (-1448 (((-1011) (-552) (-552) (-552) (-221) (-552) (-669 (-221)) (-669 (-221)) (-552)) 36)) (-1434 (((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552)) 33)) (-1423 (((-1011) (-552) (-669 (-221)) (-552) (-669 (-552)) (-669 (-552)) (-552) (-669 (-552)) (-669 (-221))) 32)) (-1413 (((-1011) (-669 (-221)) (-552) (-669 (-221)) (-552) (-552) (-552)) 28)) (-1404 (((-1011) (-552) (-669 (-221)) (-552) (-669 (-221)) (-552)) 27)) (-1394 (((-1011) (-552) (-669 (-221)) (-552) (-669 (-221)) (-552)) 26)) (-2603 (((-1011) (-552) (-669 (-167 (-221))) (-552) (-552) (-552) (-552) (-669 (-167 (-221))) (-552)) 22))) -(((-737) (-10 -7 (-15 -2603 ((-1011) (-552) (-669 (-167 (-221))) (-552) (-552) (-552) (-552) (-669 (-167 (-221))) (-552))) (-15 -1394 ((-1011) (-552) (-669 (-221)) (-552) (-669 (-221)) (-552))) (-15 -1404 ((-1011) (-552) (-669 (-221)) (-552) (-669 (-221)) (-552))) (-15 -1413 ((-1011) (-669 (-221)) (-552) (-669 (-221)) (-552) (-552) (-552))) (-15 -1423 ((-1011) (-552) (-669 (-221)) (-552) (-669 (-552)) (-669 (-552)) (-552) (-669 (-552)) (-669 (-221)))) (-15 -1434 ((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -1448 ((-1011) (-552) (-552) (-552) (-221) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -1458 ((-1011) (-552) (-552) (-669 (-221)) (-552) (-669 (-552)) (-552) (-669 (-552)) (-669 (-221)) (-669 (-552)) (-669 (-552)) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-552))) (-15 -1469 ((-1011) (-552) (-669 (-221)) (-112) (-221) (-552) (-552) (-552) (-552) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-383)) (|:| |fp| (-72 MSOLVE))))) (-15 -1481 ((-1011) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-552)) (-552) (-669 (-221)) (-552) (-552) (-552) (-552))) (-15 -1491 ((-1011) (-552) (-552) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-69 APROD))))))) (T -737)) -((-1491 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-69 APROD)))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-1481 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-1469 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-112)) (-5 *6 (-221)) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 APROD)))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1011)) (-5 *1 (-737)))) (-1458 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-1448 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-1434 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-737)))) (-1423 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-1413 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-1404 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-737)))) (-1394 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2603 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-167 (-221)))) (-5 *2 (-1011)) (-5 *1 (-737))))) -(-10 -7 (-15 -2603 ((-1011) (-552) (-669 (-167 (-221))) (-552) (-552) (-552) (-552) (-669 (-167 (-221))) (-552))) (-15 -1394 ((-1011) (-552) (-669 (-221)) (-552) (-669 (-221)) (-552))) (-15 -1404 ((-1011) (-552) (-669 (-221)) (-552) (-669 (-221)) (-552))) (-15 -1413 ((-1011) (-669 (-221)) (-552) (-669 (-221)) (-552) (-552) (-552))) (-15 -1423 ((-1011) (-552) (-669 (-221)) (-552) (-669 (-552)) (-669 (-552)) (-552) (-669 (-552)) (-669 (-221)))) (-15 -1434 ((-1011) (-552) (-552) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-552))) (-15 -1448 ((-1011) (-552) (-552) (-552) (-221) (-552) (-669 (-221)) (-669 (-221)) (-552))) (-15 -1458 ((-1011) (-552) (-552) (-669 (-221)) (-552) (-669 (-552)) (-552) (-669 (-552)) (-669 (-221)) (-669 (-552)) (-669 (-552)) (-669 (-221)) (-669 (-221)) (-669 (-552)) (-552))) (-15 -1469 ((-1011) (-552) (-669 (-221)) (-112) (-221) (-552) (-552) (-552) (-552) (-221) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-383)) (|:| |fp| (-72 MSOLVE))))) (-15 -1481 ((-1011) (-552) (-669 (-221)) (-552) (-669 (-221)) (-669 (-552)) (-552) (-669 (-221)) (-552) (-552) (-552) (-552))) (-15 -1491 ((-1011) (-552) (-552) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-552) (-669 (-221)) (-552) (-3 (|:| |fn| (-383)) (|:| |fp| (-69 APROD)))))) -((-1537 (((-1011) (-1131) (-552) (-552) (-669 (-221)) (-552) (-552) (-669 (-221))) 29)) (-1526 (((-1011) (-1131) (-552) (-552) (-669 (-221))) 28)) (-1514 (((-1011) (-1131) (-552) (-552) (-669 (-221)) (-552) (-669 (-552)) (-552) (-669 (-221))) 27)) (-1501 (((-1011) (-552) (-552) (-552) (-669 (-221))) 21))) -(((-738) (-10 -7 (-15 -1501 ((-1011) (-552) (-552) (-552) (-669 (-221)))) (-15 -1514 ((-1011) (-1131) (-552) (-552) (-669 (-221)) (-552) (-669 (-552)) (-552) (-669 (-221)))) (-15 -1526 ((-1011) (-1131) (-552) (-552) (-669 (-221)))) (-15 -1537 ((-1011) (-1131) (-552) (-552) (-669 (-221)) (-552) (-552) (-669 (-221)))))) (T -738)) -((-1537 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-738)))) (-1526 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-738)))) (-1514 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-669 (-552))) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-738)))) (-1501 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-738))))) -(-10 -7 (-15 -1501 ((-1011) (-552) (-552) (-552) (-669 (-221)))) (-15 -1514 ((-1011) (-1131) (-552) (-552) (-669 (-221)) (-552) (-669 (-552)) (-552) (-669 (-221)))) (-15 -1526 ((-1011) (-1131) (-552) (-552) (-669 (-221)))) (-15 -1537 ((-1011) (-1131) (-552) (-552) (-669 (-221)) (-552) (-552) (-669 (-221))))) -((-1961 (((-1011) (-221) (-221) (-221) (-221) (-552)) 62)) (-1948 (((-1011) (-221) (-221) (-221) (-552)) 61)) (-1937 (((-1011) (-221) (-221) (-221) (-552)) 60)) (-1927 (((-1011) (-221) (-221) (-552)) 59)) (-1915 (((-1011) (-221) (-552)) 58)) (-1902 (((-1011) (-221) (-552)) 57)) (-1890 (((-1011) (-221) (-552)) 56)) (-1880 (((-1011) (-221) (-552)) 55)) (-1869 (((-1011) (-221) (-552)) 54)) (-1859 (((-1011) (-221) (-552)) 53)) (-1848 (((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552)) 52)) (-1835 (((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552)) 51)) (-1824 (((-1011) (-221) (-552)) 50)) (-1814 (((-1011) (-221) (-552)) 49)) (-1803 (((-1011) (-221) (-552)) 48)) (-1789 (((-1011) (-221) (-552)) 47)) (-1779 (((-1011) (-552) (-221) (-167 (-221)) (-552) (-1131) (-552)) 46)) (-1768 (((-1011) (-1131) (-167 (-221)) (-1131) (-552)) 45)) (-1758 (((-1011) (-1131) (-167 (-221)) (-1131) (-552)) 44)) (-1748 (((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552)) 43)) (-1738 (((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552)) 42)) (-1726 (((-1011) (-221) (-552)) 39)) (-1715 (((-1011) (-221) (-552)) 38)) (-1704 (((-1011) (-221) (-552)) 37)) (-1693 (((-1011) (-221) (-552)) 36)) (-1681 (((-1011) (-221) (-552)) 35)) (-1669 (((-1011) (-221) (-552)) 34)) (-1659 (((-1011) (-221) (-552)) 33)) (-1647 (((-1011) (-221) (-552)) 32)) (-1636 (((-1011) (-221) (-552)) 31)) (-1624 (((-1011) (-221) (-552)) 30)) (-1613 (((-1011) (-221) (-221) (-221) (-552)) 29)) (-1602 (((-1011) (-221) (-552)) 28)) (-1591 (((-1011) (-221) (-552)) 27)) (-1579 (((-1011) (-221) (-552)) 26)) (-1569 (((-1011) (-221) (-552)) 25)) (-1558 (((-1011) (-221) (-552)) 24)) (-1547 (((-1011) (-167 (-221)) (-552)) 21))) -(((-739) (-10 -7 (-15 -1547 ((-1011) (-167 (-221)) (-552))) (-15 -1558 ((-1011) (-221) (-552))) (-15 -1569 ((-1011) (-221) (-552))) (-15 -1579 ((-1011) (-221) (-552))) (-15 -1591 ((-1011) (-221) (-552))) (-15 -1602 ((-1011) (-221) (-552))) (-15 -1613 ((-1011) (-221) (-221) (-221) (-552))) (-15 -1624 ((-1011) (-221) (-552))) (-15 -1636 ((-1011) (-221) (-552))) (-15 -1647 ((-1011) (-221) (-552))) (-15 -1659 ((-1011) (-221) (-552))) (-15 -1669 ((-1011) (-221) (-552))) (-15 -1681 ((-1011) (-221) (-552))) (-15 -1693 ((-1011) (-221) (-552))) (-15 -1704 ((-1011) (-221) (-552))) (-15 -1715 ((-1011) (-221) (-552))) (-15 -1726 ((-1011) (-221) (-552))) (-15 -1738 ((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552))) (-15 -1748 ((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552))) (-15 -1758 ((-1011) (-1131) (-167 (-221)) (-1131) (-552))) (-15 -1768 ((-1011) (-1131) (-167 (-221)) (-1131) (-552))) (-15 -1779 ((-1011) (-552) (-221) (-167 (-221)) (-552) (-1131) (-552))) (-15 -1789 ((-1011) (-221) (-552))) (-15 -1803 ((-1011) (-221) (-552))) (-15 -1814 ((-1011) (-221) (-552))) (-15 -1824 ((-1011) (-221) (-552))) (-15 -1835 ((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552))) (-15 -1848 ((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552))) (-15 -1859 ((-1011) (-221) (-552))) (-15 -1869 ((-1011) (-221) (-552))) (-15 -1880 ((-1011) (-221) (-552))) (-15 -1890 ((-1011) (-221) (-552))) (-15 -1902 ((-1011) (-221) (-552))) (-15 -1915 ((-1011) (-221) (-552))) (-15 -1927 ((-1011) (-221) (-221) (-552))) (-15 -1937 ((-1011) (-221) (-221) (-221) (-552))) (-15 -1948 ((-1011) (-221) (-221) (-221) (-552))) (-15 -1961 ((-1011) (-221) (-221) (-221) (-221) (-552))))) (T -739)) -((-1961 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1948 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1937 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1927 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1915 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1902 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1890 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1880 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1869 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1859 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1848 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-221))) (-5 *5 (-552)) (-5 *6 (-1131)) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1835 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-221))) (-5 *5 (-552)) (-5 *6 (-1131)) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1824 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1814 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1803 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1789 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1779 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-552)) (-5 *5 (-167 (-221))) (-5 *6 (-1131)) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1768 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1131)) (-5 *4 (-167 (-221))) (-5 *5 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1758 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1131)) (-5 *4 (-167 (-221))) (-5 *5 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1748 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-221))) (-5 *5 (-552)) (-5 *6 (-1131)) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1738 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-167 (-221))) (-5 *5 (-552)) (-5 *6 (-1131)) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1726 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1715 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1704 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1693 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1681 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1669 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1647 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1636 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1624 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1613 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1602 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1591 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1579 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1569 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1558 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-167 (-221))) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(-10 -7 (-15 -1547 ((-1011) (-167 (-221)) (-552))) (-15 -1558 ((-1011) (-221) (-552))) (-15 -1569 ((-1011) (-221) (-552))) (-15 -1579 ((-1011) (-221) (-552))) (-15 -1591 ((-1011) (-221) (-552))) (-15 -1602 ((-1011) (-221) (-552))) (-15 -1613 ((-1011) (-221) (-221) (-221) (-552))) (-15 -1624 ((-1011) (-221) (-552))) (-15 -1636 ((-1011) (-221) (-552))) (-15 -1647 ((-1011) (-221) (-552))) (-15 -1659 ((-1011) (-221) (-552))) (-15 -1669 ((-1011) (-221) (-552))) (-15 -1681 ((-1011) (-221) (-552))) (-15 -1693 ((-1011) (-221) (-552))) (-15 -1704 ((-1011) (-221) (-552))) (-15 -1715 ((-1011) (-221) (-552))) (-15 -1726 ((-1011) (-221) (-552))) (-15 -1738 ((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552))) (-15 -1748 ((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552))) (-15 -1758 ((-1011) (-1131) (-167 (-221)) (-1131) (-552))) (-15 -1768 ((-1011) (-1131) (-167 (-221)) (-1131) (-552))) (-15 -1779 ((-1011) (-552) (-221) (-167 (-221)) (-552) (-1131) (-552))) (-15 -1789 ((-1011) (-221) (-552))) (-15 -1803 ((-1011) (-221) (-552))) (-15 -1814 ((-1011) (-221) (-552))) (-15 -1824 ((-1011) (-221) (-552))) (-15 -1835 ((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552))) (-15 -1848 ((-1011) (-221) (-167 (-221)) (-552) (-1131) (-552))) (-15 -1859 ((-1011) (-221) (-552))) (-15 -1869 ((-1011) (-221) (-552))) (-15 -1880 ((-1011) (-221) (-552))) (-15 -1890 ((-1011) (-221) (-552))) (-15 -1902 ((-1011) (-221) (-552))) (-15 -1915 ((-1011) (-221) (-552))) (-15 -1927 ((-1011) (-221) (-221) (-552))) (-15 -1937 ((-1011) (-221) (-221) (-221) (-552))) (-15 -1948 ((-1011) (-221) (-221) (-221) (-552))) (-15 -1961 ((-1011) (-221) (-221) (-221) (-221) (-552)))) -((-3807 (((-1237)) 18)) (-1981 (((-1131)) 22)) (-1973 (((-1131)) 21)) (-2002 (((-1077) (-1149) (-669 (-552))) 37) (((-1077) (-1149) (-669 (-221))) 32)) (-2631 (((-112)) 16)) (-1990 (((-1131) (-1131)) 25))) -(((-740) (-10 -7 (-15 -1973 ((-1131))) (-15 -1981 ((-1131))) (-15 -1990 ((-1131) (-1131))) (-15 -2002 ((-1077) (-1149) (-669 (-221)))) (-15 -2002 ((-1077) (-1149) (-669 (-552)))) (-15 -2631 ((-112))) (-15 -3807 ((-1237))))) (T -740)) -((-3807 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-740)))) (-2631 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-740)))) (-2002 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-669 (-552))) (-5 *2 (-1077)) (-5 *1 (-740)))) (-2002 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-669 (-221))) (-5 *2 (-1077)) (-5 *1 (-740)))) (-1990 (*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740)))) (-1981 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740)))) (-1973 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740))))) -(-10 -7 (-15 -1973 ((-1131))) (-15 -1981 ((-1131))) (-15 -1990 ((-1131) (-1131))) (-15 -2002 ((-1077) (-1149) (-669 (-221)))) (-15 -2002 ((-1077) (-1149) (-669 (-552)))) (-15 -2631 ((-112))) (-15 -3807 ((-1237)))) -((-3828 (($ $ $) 10)) (-3842 (($ $ $ $) 9)) (-3818 (($ $ $) 12))) -(((-741 |#1|) (-10 -8 (-15 -3818 (|#1| |#1| |#1|)) (-15 -3828 (|#1| |#1| |#1|)) (-15 -3842 (|#1| |#1| |#1| |#1|))) (-742)) (T -741)) -NIL -(-10 -8 (-15 -3818 (|#1| |#1| |#1|)) (-15 -3828 (|#1| |#1| |#1|)) (-15 -3842 (|#1| |#1| |#1| |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-3629 (($ $ (-897)) 28)) (-3619 (($ $ (-897)) 29)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3828 (($ $ $) 25)) (-1683 (((-839) $) 11)) (-3842 (($ $ $ $) 26)) (-3818 (($ $ $) 24)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 30)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 27))) -(((-742) (-138)) (T -742)) -((-3842 (*1 *1 *1 *1 *1) (-4 *1 (-742))) (-3828 (*1 *1 *1 *1) (-4 *1 (-742))) (-3818 (*1 *1 *1 *1) (-4 *1 (-742)))) -(-13 (-21) (-701) (-10 -8 (-15 -3842 ($ $ $ $)) (-15 -3828 ($ $ $)) (-15 -3818 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-701) . T) ((-1073) . T)) -((-1683 (((-839) $) NIL) (($ (-552)) 10))) -(((-743 |#1|) (-10 -8 (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|))) (-744)) (T -743)) -NIL -(-10 -8 (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-3598 (((-3 $ "failed") $) 40)) (-3629 (($ $ (-897)) 28) (($ $ (-751)) 35)) (-4174 (((-3 $ "failed") $) 38)) (-3650 (((-112) $) 34)) (-3609 (((-3 $ "failed") $) 39)) (-3619 (($ $ (-897)) 29) (($ $ (-751)) 36)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3828 (($ $ $) 25)) (-1683 (((-839) $) 11) (($ (-552)) 31)) (-4141 (((-751)) 32)) (-3842 (($ $ $ $) 26)) (-3818 (($ $ $) 24)) (-2089 (($) 18 T CONST)) (-2100 (($) 33 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 30) (($ $ (-751)) 37)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 27))) -(((-744) (-138)) (T -744)) -((-4141 (*1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-751)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-744))))) -(-13 (-742) (-703) (-10 -8 (-15 -4141 ((-751))) (-15 -1683 ($ (-552))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-701) . T) ((-703) . T) ((-742) . T) ((-1073) . T)) -((-3869 (((-625 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 (-167 |#1|)))))) (-669 (-167 (-402 (-552)))) |#1|) 33)) (-3856 (((-625 (-167 |#1|)) (-669 (-167 (-402 (-552)))) |#1|) 23)) (-3974 (((-928 (-167 (-402 (-552)))) (-669 (-167 (-402 (-552)))) (-1149)) 20) (((-928 (-167 (-402 (-552)))) (-669 (-167 (-402 (-552))))) 19))) -(((-745 |#1|) (-10 -7 (-15 -3974 ((-928 (-167 (-402 (-552)))) (-669 (-167 (-402 (-552)))))) (-15 -3974 ((-928 (-167 (-402 (-552)))) (-669 (-167 (-402 (-552)))) (-1149))) (-15 -3856 ((-625 (-167 |#1|)) (-669 (-167 (-402 (-552)))) |#1|)) (-15 -3869 ((-625 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 (-167 |#1|)))))) (-669 (-167 (-402 (-552)))) |#1|))) (-13 (-358) (-825))) (T -745)) -((-3869 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-167 (-402 (-552))))) (-5 *2 (-625 (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 (-167 *4))))))) (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825))))) (-3856 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-167 (-402 (-552))))) (-5 *2 (-625 (-167 *4))) (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825))))) (-3974 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-167 (-402 (-552))))) (-5 *4 (-1149)) (-5 *2 (-928 (-167 (-402 (-552))))) (-5 *1 (-745 *5)) (-4 *5 (-13 (-358) (-825))))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-669 (-167 (-402 (-552))))) (-5 *2 (-928 (-167 (-402 (-552))))) (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825)))))) -(-10 -7 (-15 -3974 ((-928 (-167 (-402 (-552)))) (-669 (-167 (-402 (-552)))))) (-15 -3974 ((-928 (-167 (-402 (-552)))) (-669 (-167 (-402 (-552)))) (-1149))) (-15 -3856 ((-625 (-167 |#1|)) (-669 (-167 (-402 (-552)))) |#1|)) (-15 -3869 ((-625 (-2 (|:| |outval| (-167 |#1|)) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 (-167 |#1|)))))) (-669 (-167 (-402 (-552)))) |#1|))) -((-1553 (((-172 (-552)) |#1|) 25))) -(((-746 |#1|) (-10 -7 (-15 -1553 ((-172 (-552)) |#1|))) (-399)) (T -746)) -((-1553 (*1 *2 *3) (-12 (-5 *2 (-172 (-552))) (-5 *1 (-746 *3)) (-4 *3 (-399))))) -(-10 -7 (-15 -1553 ((-172 (-552)) |#1|))) -((-2215 ((|#1| |#1| |#1|) 24)) (-2225 ((|#1| |#1| |#1|) 23)) (-2107 ((|#1| |#1| |#1|) 32)) (-2193 ((|#1| |#1| |#1|) 28)) (-2204 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2257 (((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|) 22))) -(((-747 |#1| |#2|) (-10 -7 (-15 -2257 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -2225 (|#1| |#1| |#1|)) (-15 -2215 (|#1| |#1| |#1|)) (-15 -2204 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2193 (|#1| |#1| |#1|)) (-15 -2107 (|#1| |#1| |#1|))) (-689 |#2|) (-358)) (T -747)) -((-2107 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) (-2193 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) (-2204 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) (-2215 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) (-2225 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) (-2257 (*1 *2 *3 *3) (-12 (-4 *4 (-358)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-747 *3 *4)) (-4 *3 (-689 *4))))) -(-10 -7 (-15 -2257 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -2225 (|#1| |#1| |#1|)) (-15 -2215 (|#1| |#1| |#1|)) (-15 -2204 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2193 (|#1| |#1| |#1|)) (-15 -2107 (|#1| |#1| |#1|))) -((-4006 (((-2 (|:| -1270 (-669 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-669 (-552)))) (-552)) 59)) (-3993 (((-2 (|:| -1270 (-669 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-669 (-552))))) 57)) (-3217 (((-552)) 71))) -(((-748 |#1| |#2|) (-10 -7 (-15 -3217 ((-552))) (-15 -3993 ((-2 (|:| -1270 (-669 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-669 (-552)))))) (-15 -4006 ((-2 (|:| -1270 (-669 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-669 (-552)))) (-552)))) (-1208 (-552)) (-404 (-552) |#1|)) (T -748)) -((-4006 (*1 *2 *3) (-12 (-5 *3 (-552)) (-4 *4 (-1208 *3)) (-5 *2 (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-5 *1 (-748 *4 *5)) (-4 *5 (-404 *3 *4)))) (-3993 (*1 *2) (-12 (-4 *3 (-1208 (-552))) (-5 *2 (-2 (|:| -1270 (-669 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-669 (-552))))) (-5 *1 (-748 *3 *4)) (-4 *4 (-404 (-552) *3)))) (-3217 (*1 *2) (-12 (-4 *3 (-1208 *2)) (-5 *2 (-552)) (-5 *1 (-748 *3 *4)) (-4 *4 (-404 *2 *3))))) -(-10 -7 (-15 -3217 ((-552))) (-15 -3993 ((-2 (|:| -1270 (-669 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-669 (-552)))))) (-15 -4006 ((-2 (|:| -1270 (-669 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-669 (-552)))) (-552)))) -((-1671 (((-112) $ $) NIL)) (-1895 (((-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) $) 21)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 20) (($ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 13) (($ (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) 18)) (-2281 (((-112) $ $) NIL))) -(((-749) (-13 (-1073) (-10 -8 (-15 -1683 ($ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1683 ($ (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1683 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (-15 -1683 ((-839) $)) (-15 -1895 ((-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) $))))) (T -749)) -((-1683 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-749)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-749)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-749)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) (-5 *1 (-749)))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) (-5 *1 (-749))))) -(-13 (-1073) (-10 -8 (-15 -1683 ($ (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1683 ($ (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1683 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (-15 -1683 ((-839) $)) (-15 -1895 ((-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) $)))) -((-3414 (((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|))) 18) (((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|)) (-625 (-1149))) 17)) (-1728 (((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|))) 20) (((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|)) (-625 (-1149))) 19))) -(((-750 |#1|) (-10 -7 (-15 -3414 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|)) (-625 (-1149)))) (-15 -3414 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|)))) (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|)) (-625 (-1149)))) (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|))))) (-544)) (T -750)) -((-1728 (*1 *2 *3) (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *4)))))) (-5 *1 (-750 *4)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-625 (-1149))) (-4 *5 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *5)))))) (-5 *1 (-750 *5)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *4)))))) (-5 *1 (-750 *4)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-625 (-1149))) (-4 *5 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *5)))))) (-5 *1 (-750 *5))))) -(-10 -7 (-15 -3414 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|)) (-625 (-1149)))) (-15 -3414 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|)))) (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|)) (-625 (-1149)))) (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-928 |#1|))))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-1282 (($ $ $) 6)) (-2077 (((-3 $ "failed") $ $) 9)) (-3420 (($ $ (-552)) 7)) (-3101 (($) NIL T CONST)) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($ $) NIL)) (-2826 (($ $ $) NIL)) (-3650 (((-112) $) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2633 (($ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1683 (((-839) $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-897)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ $ $) NIL))) -(((-751) (-13 (-773) (-707) (-10 -8 (-15 -2826 ($ $ $)) (-15 -2851 ($ $ $)) (-15 -2633 ($ $ $)) (-15 -3481 ((-2 (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -2802 ((-3 $ "failed") $ $)) (-15 -3420 ($ $ (-552))) (-15 -3702 ($ $)) (-6 (-4355 "*"))))) (T -751)) -((-2826 (*1 *1 *1 *1) (-5 *1 (-751))) (-2851 (*1 *1 *1 *1) (-5 *1 (-751))) (-2633 (*1 *1 *1 *1) (-5 *1 (-751))) (-3481 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3984 (-751)) (|:| -3645 (-751)))) (-5 *1 (-751)))) (-2802 (*1 *1 *1 *1) (|partial| -5 *1 (-751))) (-3420 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-751)))) (-3702 (*1 *1 *1) (-5 *1 (-751)))) -(-13 (-773) (-707) (-10 -8 (-15 -2826 ($ $ $)) (-15 -2851 ($ $ $)) (-15 -2633 ($ $ $)) (-15 -3481 ((-2 (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -2802 ((-3 $ "failed") $ $)) (-15 -3420 ($ $ (-552))) (-15 -3702 ($ $)) (-6 (-4355 "*")))) -((-1728 (((-3 |#2| "failed") |#2| |#2| (-114) (-1149)) 35))) -(((-752 |#1| |#2|) (-10 -7 (-15 -1728 ((-3 |#2| "failed") |#2| |#2| (-114) (-1149)))) (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)) (-13 (-29 |#1|) (-1171) (-935))) (T -752)) -((-1728 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1149)) (-4 *5 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *1 (-752 *5 *2)) (-4 *2 (-13 (-29 *5) (-1171) (-935)))))) -(-10 -7 (-15 -1728 ((-3 |#2| "failed") |#2| |#2| (-114) (-1149)))) -((-1683 (((-754) |#1|) 8))) -(((-753 |#1|) (-10 -7 (-15 -1683 ((-754) |#1|))) (-1186)) (T -753)) -((-1683 (*1 *2 *3) (-12 (-5 *2 (-754)) (-5 *1 (-753 *3)) (-4 *3 (-1186))))) -(-10 -7 (-15 -1683 ((-754) |#1|))) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 7)) (-2281 (((-112) $ $) 9))) -(((-754) (-1073)) (T -754)) -NIL -(-1073) -((-4209 ((|#2| |#4|) 35))) -(((-755 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4209 (|#2| |#4|))) (-446) (-1208 |#1|) (-705 |#1| |#2|) (-1208 |#3|)) (T -755)) -((-4209 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-705 *4 *2)) (-4 *2 (-1208 *4)) (-5 *1 (-755 *4 *2 *5 *3)) (-4 *3 (-1208 *5))))) -(-10 -7 (-15 -4209 (|#2| |#4|))) -((-4174 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-3910 (((-1237) (-1131) (-1131) |#4| |#5|) 33)) (-3882 ((|#4| |#4| |#5|) 73)) (-3895 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#5|) 77)) (-3923 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|) 16))) -(((-756 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4174 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3882 (|#4| |#4| |#5|)) (-15 -3895 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#5|)) (-15 -3910 ((-1237) (-1131) (-1131) |#4| |#5|)) (-15 -3923 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -756)) -((-3923 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *4)))) (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3910 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1131)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *4 (-1039 *6 *7 *8)) (-5 *2 (-1237)) (-5 *1 (-756 *6 *7 *8 *4 *5)) (-4 *5 (-1045 *6 *7 *8 *4)))) (-3895 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3882 (*1 *2 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *2 (-1039 *4 *5 *6)) (-5 *1 (-756 *4 *5 *6 *2 *3)) (-4 *3 (-1045 *4 *5 *6 *2)))) (-4174 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) -(-10 -7 (-15 -4174 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3882 (|#4| |#4| |#5|)) (-15 -3895 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#5|)) (-15 -3910 ((-1237) (-1131) (-1131) |#4| |#5|)) (-15 -3923 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|))) -((-1893 (((-3 (-1145 (-1145 |#1|)) "failed") |#4|) 43)) (-3937 (((-625 |#4|) |#4|) 15)) (-4104 ((|#4| |#4|) 11))) -(((-757 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3937 ((-625 |#4|) |#4|)) (-15 -1893 ((-3 (-1145 (-1145 |#1|)) "failed") |#4|)) (-15 -4104 (|#4| |#4|))) (-344) (-324 |#1|) (-1208 |#2|) (-1208 |#3|) (-897)) (T -757)) -((-4104 (*1 *2 *2) (-12 (-4 *3 (-344)) (-4 *4 (-324 *3)) (-4 *5 (-1208 *4)) (-5 *1 (-757 *3 *4 *5 *2 *6)) (-4 *2 (-1208 *5)) (-14 *6 (-897)))) (-1893 (*1 *2 *3) (|partial| -12 (-4 *4 (-344)) (-4 *5 (-324 *4)) (-4 *6 (-1208 *5)) (-5 *2 (-1145 (-1145 *4))) (-5 *1 (-757 *4 *5 *6 *3 *7)) (-4 *3 (-1208 *6)) (-14 *7 (-897)))) (-3937 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *5 (-324 *4)) (-4 *6 (-1208 *5)) (-5 *2 (-625 *3)) (-5 *1 (-757 *4 *5 *6 *3 *7)) (-4 *3 (-1208 *6)) (-14 *7 (-897))))) -(-10 -7 (-15 -3937 ((-625 |#4|) |#4|)) (-15 -1893 ((-3 (-1145 (-1145 |#1|)) "failed") |#4|)) (-15 -4104 (|#4| |#4|))) -((-3947 (((-2 (|:| |deter| (-625 (-1145 |#5|))) (|:| |dterm| (-625 (-625 (-2 (|:| -1894 (-751)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-625 |#1|)) (|:| |nlead| (-625 |#5|))) (-1145 |#5|) (-625 |#1|) (-625 |#5|)) 54)) (-3960 (((-625 (-751)) |#1|) 13))) -(((-758 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3947 ((-2 (|:| |deter| (-625 (-1145 |#5|))) (|:| |dterm| (-625 (-625 (-2 (|:| -1894 (-751)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-625 |#1|)) (|:| |nlead| (-625 |#5|))) (-1145 |#5|) (-625 |#1|) (-625 |#5|))) (-15 -3960 ((-625 (-751)) |#1|))) (-1208 |#4|) (-773) (-827) (-302) (-925 |#4| |#2| |#3|)) (T -758)) -((-3960 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-625 (-751))) (-5 *1 (-758 *3 *4 *5 *6 *7)) (-4 *3 (-1208 *6)) (-4 *7 (-925 *6 *4 *5)))) (-3947 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1208 *9)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-302)) (-4 *10 (-925 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-625 (-1145 *10))) (|:| |dterm| (-625 (-625 (-2 (|:| -1894 (-751)) (|:| |pcoef| *10))))) (|:| |nfacts| (-625 *6)) (|:| |nlead| (-625 *10)))) (-5 *1 (-758 *6 *7 *8 *9 *10)) (-5 *3 (-1145 *10)) (-5 *4 (-625 *6)) (-5 *5 (-625 *10))))) -(-10 -7 (-15 -3947 ((-2 (|:| |deter| (-625 (-1145 |#5|))) (|:| |dterm| (-625 (-625 (-2 (|:| -1894 (-751)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-625 |#1|)) (|:| |nlead| (-625 |#5|))) (-1145 |#5|) (-625 |#1|) (-625 |#5|))) (-15 -3960 ((-625 (-751)) |#1|))) -((-3998 (((-625 (-2 (|:| |outval| |#1|) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 |#1|))))) (-669 (-402 (-552))) |#1|) 31)) (-3986 (((-625 |#1|) (-669 (-402 (-552))) |#1|) 21)) (-3974 (((-928 (-402 (-552))) (-669 (-402 (-552))) (-1149)) 18) (((-928 (-402 (-552))) (-669 (-402 (-552)))) 17))) -(((-759 |#1|) (-10 -7 (-15 -3974 ((-928 (-402 (-552))) (-669 (-402 (-552))))) (-15 -3974 ((-928 (-402 (-552))) (-669 (-402 (-552))) (-1149))) (-15 -3986 ((-625 |#1|) (-669 (-402 (-552))) |#1|)) (-15 -3998 ((-625 (-2 (|:| |outval| |#1|) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 |#1|))))) (-669 (-402 (-552))) |#1|))) (-13 (-358) (-825))) (T -759)) -((-3998 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-402 (-552)))) (-5 *2 (-625 (-2 (|:| |outval| *4) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 *4)))))) (-5 *1 (-759 *4)) (-4 *4 (-13 (-358) (-825))))) (-3986 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-402 (-552)))) (-5 *2 (-625 *4)) (-5 *1 (-759 *4)) (-4 *4 (-13 (-358) (-825))))) (-3974 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-402 (-552)))) (-5 *4 (-1149)) (-5 *2 (-928 (-402 (-552)))) (-5 *1 (-759 *5)) (-4 *5 (-13 (-358) (-825))))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-552)))) (-5 *2 (-928 (-402 (-552)))) (-5 *1 (-759 *4)) (-4 *4 (-13 (-358) (-825)))))) -(-10 -7 (-15 -3974 ((-928 (-402 (-552))) (-669 (-402 (-552))))) (-15 -3974 ((-928 (-402 (-552))) (-669 (-402 (-552))) (-1149))) (-15 -3986 ((-625 |#1|) (-669 (-402 (-552))) |#1|)) (-15 -3998 ((-625 (-2 (|:| |outval| |#1|) (|:| |outmult| (-552)) (|:| |outvect| (-625 (-669 |#1|))))) (-669 (-402 (-552))) |#1|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 34)) (-3982 (((-625 |#2|) $) NIL)) (-3793 (((-1145 $) $ |#2|) NIL) (((-1145 |#1|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 |#2|)) NIL)) (-2101 (($ $) 28)) (-3431 (((-112) $ $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3197 (($ $ $) 93 (|has| |#1| (-544)))) (-3275 (((-625 $) $ $) 106 (|has| |#1| (-544)))) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2194 (($ $) NIL (|has| |#1| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-928 (-402 (-552)))) NIL (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#2| (-598 (-1149))))) (((-3 $ "failed") (-928 (-552))) NIL (-1523 (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-598 (-1149))) (-2960 (|has| |#1| (-38 (-402 (-552)))))) (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#2| (-598 (-1149)))))) (((-3 $ "failed") (-928 |#1|)) NIL (-1523 (-12 (|has| |#2| (-598 (-1149))) (-2960 (|has| |#1| (-38 (-402 (-552))))) (-2960 (|has| |#1| (-38 (-552))))) (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-598 (-1149))) (-2960 (|has| |#1| (-38 (-402 (-552))))) (-2960 (|has| |#1| (-537)))) (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#2| (-598 (-1149))) (-2960 (|has| |#1| (-968 (-552))))))) (((-3 (-1098 |#1| |#2|) "failed") $) 18)) (-1895 ((|#1| $) NIL) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#1| (-1014 (-552)))) ((|#2| $) NIL) (($ (-928 (-402 (-552)))) NIL (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#2| (-598 (-1149))))) (($ (-928 (-552))) NIL (-1523 (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-598 (-1149))) (-2960 (|has| |#1| (-38 (-402 (-552)))))) (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#2| (-598 (-1149)))))) (($ (-928 |#1|)) NIL (-1523 (-12 (|has| |#2| (-598 (-1149))) (-2960 (|has| |#1| (-38 (-402 (-552))))) (-2960 (|has| |#1| (-38 (-552))))) (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-598 (-1149))) (-2960 (|has| |#1| (-38 (-402 (-552))))) (-2960 (|has| |#1| (-537)))) (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#2| (-598 (-1149))) (-2960 (|has| |#1| (-968 (-552))))))) (((-1098 |#1| |#2|) $) NIL)) (-3207 (($ $ $ |#2|) NIL (|has| |#1| (-170))) (($ $ $) 104 (|has| |#1| (-544)))) (-4169 (($ $) NIL) (($ $ |#2|) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-2668 (((-112) $ $) NIL) (((-112) $ (-625 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3498 (((-112) $) NIL)) (-3173 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 70)) (-3239 (($ $) 119 (|has| |#1| (-446)))) (-1294 (($ $) NIL (|has| |#1| (-446))) (($ $ |#2|) NIL (|has| |#1| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#1| (-885)))) (-3334 (($ $) NIL (|has| |#1| (-544)))) (-3343 (($ $) NIL (|has| |#1| (-544)))) (-3418 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3410 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-1347 (($ $ |#1| (-524 |#2|) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| |#1| (-862 (-374))) (|has| |#2| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| |#1| (-862 (-552))) (|has| |#2| (-862 (-552)))))) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-2678 (((-112) $ $) NIL) (((-112) $ (-625 $)) NIL)) (-3248 (($ $ $ $ $) 90 (|has| |#1| (-544)))) (-3565 ((|#2| $) 19)) (-3970 (($ (-1145 |#1|) |#2|) NIL) (($ (-1145 $) |#2|) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-524 |#2|)) NIL) (($ $ |#2| (-751)) 36) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-3361 (($ $ $) 60)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ |#2|) NIL)) (-3507 (((-112) $) NIL)) (-4134 (((-524 |#2|) $) NIL) (((-751) $ |#2|) NIL) (((-625 (-751)) $ (-625 |#2|)) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3556 (((-751) $) 20)) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1357 (($ (-1 (-524 |#2|) (-524 |#2|)) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-1942 (((-3 |#2| "failed") $) NIL)) (-3211 (($ $) NIL (|has| |#1| (-446)))) (-3222 (($ $) NIL (|has| |#1| (-446)))) (-3454 (((-625 $) $) NIL)) (-3487 (($ $) 37)) (-3230 (($ $) NIL (|has| |#1| (-446)))) (-3466 (((-625 $) $) 41)) (-3477 (($ $) 39)) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3352 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4321 (-751))) $ $) 82)) (-3370 (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $) 67) (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $ |#2|) NIL)) (-3380 (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3645 $)) $ $) NIL) (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3645 $)) $ $ |#2|) NIL)) (-3401 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3390 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-2883 (((-1131) $) NIL)) (-3662 (($ $ $) 108 (|has| |#1| (-544)))) (-3525 (((-625 $) $) 30)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| |#2|) (|:| -3564 (-751))) "failed") $) NIL)) (-3777 (((-112) $ $) NIL) (((-112) $ (-625 $)) NIL)) (-3727 (($ $ $) NIL)) (-2071 (($ $) 21)) (-2719 (((-112) $ $) NIL)) (-3788 (((-112) $ $) NIL) (((-112) $ (-625 $)) NIL)) (-3737 (($ $ $) NIL)) (-3545 (($ $) 23)) (-2831 (((-1093) $) NIL)) (-3285 (((-2 (|:| -2633 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-544)))) (-3294 (((-2 (|:| -2633 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-544)))) (-4105 (((-112) $) 52)) (-4117 ((|#1| $) 55)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-446)))) (-2633 ((|#1| |#1| $) 116 (|has| |#1| (-446))) (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-885)))) (-3304 (((-2 (|:| -2633 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-544)))) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-3314 (($ $ |#1|) 112 (|has| |#1| (-544))) (($ $ $) NIL (|has| |#1| (-544)))) (-3325 (($ $ |#1|) 111 (|has| |#1| (-544))) (($ $ $) NIL (|has| |#1| (-544)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-625 |#2|) (-625 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-625 |#2|) (-625 $)) NIL)) (-3217 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-3072 (($ $ |#2|) NIL) (($ $ (-625 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-4276 (((-524 |#2|) $) NIL) (((-751) $ |#2|) 43) (((-625 (-751)) $ (-625 |#2|)) NIL)) (-3535 (($ $) NIL)) (-3516 (($ $) 33)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| |#1| (-598 (-868 (-374)))) (|has| |#2| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| |#1| (-598 (-868 (-552)))) (|has| |#2| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| |#1| (-598 (-528))) (|has| |#2| (-598 (-528))))) (($ (-928 (-402 (-552)))) NIL (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#2| (-598 (-1149))))) (($ (-928 (-552))) NIL (-1523 (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-598 (-1149))) (-2960 (|has| |#1| (-38 (-402 (-552)))))) (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#2| (-598 (-1149)))))) (($ (-928 |#1|)) NIL (|has| |#2| (-598 (-1149)))) (((-1131) $) NIL (-12 (|has| |#1| (-1014 (-552))) (|has| |#2| (-598 (-1149))))) (((-928 |#1|) $) NIL (|has| |#2| (-598 (-1149))))) (-4108 ((|#1| $) 115 (|has| |#1| (-446))) (($ $ |#2|) NIL (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-928 |#1|) $) NIL (|has| |#2| (-598 (-1149)))) (((-1098 |#1| |#2|) $) 15) (($ (-1098 |#1| |#2|)) 16) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-524 |#2|)) NIL) (($ $ |#2| (-751)) 44) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2089 (($) 13 T CONST)) (-3441 (((-3 (-112) "failed") $ $) NIL)) (-2100 (($) 35 T CONST)) (-3257 (($ $ $ $ (-751)) 88 (|has| |#1| (-544)))) (-3266 (($ $ $ (-751)) 87 (|has| |#1| (-544)))) (-3768 (($ $ |#2|) NIL) (($ $ (-625 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) 54)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) 64)) (-2382 (($ $ $) 74)) (** (($ $ (-897)) NIL) (($ $ (-751)) 61)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 59) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) -(((-760 |#1| |#2|) (-13 (-1039 |#1| (-524 |#2|) |#2|) (-597 (-1098 |#1| |#2|)) (-1014 (-1098 |#1| |#2|))) (-1025) (-827)) (T -760)) -NIL -(-13 (-1039 |#1| (-524 |#2|) |#2|) (-597 (-1098 |#1| |#2|)) (-1014 (-1098 |#1| |#2|))) -((-1996 (((-762 |#2|) (-1 |#2| |#1|) (-762 |#1|)) 13))) -(((-761 |#1| |#2|) (-10 -7 (-15 -1996 ((-762 |#2|) (-1 |#2| |#1|) (-762 |#1|)))) (-1025) (-1025)) (T -761)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-762 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-5 *2 (-762 *6)) (-5 *1 (-761 *5 *6))))) -(-10 -7 (-15 -1996 ((-762 |#2|) (-1 |#2| |#1|) (-762 |#1|)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 12)) (-2138 (((-1232 |#1|) $ (-751)) NIL)) (-3982 (((-625 (-1055)) $) NIL)) (-2117 (($ (-1145 |#1|)) NIL)) (-3793 (((-1145 $) $ (-1055)) NIL) (((-1145 |#1|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-1055))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4045 (((-625 $) $ $) 39 (|has| |#1| (-544)))) (-3197 (($ $ $) 35 (|has| |#1| (-544)))) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2194 (($ $) NIL (|has| |#1| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-2076 (($ $ (-751)) NIL)) (-2065 (($ $ (-751)) NIL)) (-3165 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-446)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-1055) "failed") $) NIL) (((-3 (-1145 |#1|) "failed") $) 10)) (-1895 ((|#1| $) NIL) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-1055) $) NIL) (((-1145 |#1|) $) NIL)) (-3207 (($ $ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $ $) 43 (|has| |#1| (-170)))) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-2052 (($ $ $) NIL)) (-3181 (($ $ $) 71 (|has| |#1| (-544)))) (-3173 (((-2 (|:| -3340 |#1|) (|:| -3984 $) (|:| -3645 $)) $ $) 70 (|has| |#1| (-544)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-1294 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#1| (-885)))) (-1347 (($ $ |#1| (-751) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-1055) (-862 (-374))) (|has| |#1| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-1055) (-862 (-552))) (|has| |#1| (-862 (-552)))))) (-2172 (((-751) $ $) NIL (|has| |#1| (-544)))) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-1124)))) (-3970 (($ (-1145 |#1|) (-1055)) NIL) (($ (-1145 $) (-1055)) NIL)) (-2216 (($ $ (-751)) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-751)) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-3361 (($ $ $) 20)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-1055)) NIL) (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-4134 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-625 (-751)) $ (-625 (-1055))) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1357 (($ (-1 (-751) (-751)) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2127 (((-1145 |#1|) $) NIL)) (-1942 (((-3 (-1055) "failed") $) NIL)) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3352 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4321 (-751))) $ $) 26)) (-4070 (($ $ $) 29)) (-4058 (($ $ $) 32)) (-3370 (((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $) 31)) (-2883 (((-1131) $) NIL)) (-3662 (($ $ $) 41 (|has| |#1| (-544)))) (-2086 (((-2 (|:| -3984 $) (|:| -3645 $)) $ (-751)) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-1055)) (|:| -3564 (-751))) "failed") $) NIL)) (-2481 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2071 (($) NIL (|has| |#1| (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-3285 (((-2 (|:| -2633 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-544)))) (-3294 (((-2 (|:| -2633 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-544)))) (-4010 (((-2 (|:| -3207 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-544)))) (-4021 (((-2 (|:| -3207 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-544)))) (-4105 (((-112) $) 13)) (-4117 ((|#1| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3044 (($ $ (-751) |#1| $) 19)) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-885)))) (-3304 (((-2 (|:| -2633 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-544)))) (-4033 (((-2 (|:| -3207 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-544)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-1055) |#1|) NIL) (($ $ (-625 (-1055)) (-625 |#1|)) NIL) (($ $ (-1055) $) NIL) (($ $ (-625 (-1055)) (-625 $)) NIL)) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#1| (-544))) ((|#1| (-402 $) |#1|) NIL (|has| |#1| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#1| (-544)))) (-2108 (((-3 $ "failed") $ (-751)) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-3217 (($ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-3072 (($ $ (-1055)) NIL) (($ $ (-625 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4276 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-625 (-751)) $ (-625 (-1055))) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-1055) (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-1055) (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-1055) (-598 (-528))) (|has| |#1| (-598 (-528)))))) (-4108 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-885))))) (-3190 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544))) (((-3 (-402 $) "failed") (-402 $) $) NIL (|has| |#1| (-544)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-1055)) NIL) (((-1145 |#1|) $) 7) (($ (-1145 |#1|)) 8) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-751)) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2089 (($) 21 T CONST)) (-2100 (($) 24 T CONST)) (-3768 (($ $ (-1055)) NIL) (($ $ (-625 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) 28) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) -(((-762 |#1|) (-13 (-1208 |#1|) (-597 (-1145 |#1|)) (-1014 (-1145 |#1|)) (-10 -8 (-15 -3044 ($ $ (-751) |#1| $)) (-15 -3361 ($ $ $)) (-15 -3352 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4321 (-751))) $ $)) (-15 -4070 ($ $ $)) (-15 -3370 ((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -4058 ($ $ $)) (IF (|has| |#1| (-544)) (PROGN (-15 -4045 ((-625 $) $ $)) (-15 -3662 ($ $ $)) (-15 -3304 ((-2 (|:| -2633 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3294 ((-2 (|:| -2633 $) (|:| |coef1| $)) $ $)) (-15 -3285 ((-2 (|:| -2633 $) (|:| |coef2| $)) $ $)) (-15 -4033 ((-2 (|:| -3207 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4021 ((-2 (|:| -3207 |#1|) (|:| |coef1| $)) $ $)) (-15 -4010 ((-2 (|:| -3207 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1025)) (T -762)) -((-3044 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-751)) (-5 *1 (-762 *3)) (-4 *3 (-1025)))) (-3361 (*1 *1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-1025)))) (-3352 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-762 *3)) (|:| |polden| *3) (|:| -4321 (-751)))) (-5 *1 (-762 *3)) (-4 *3 (-1025)))) (-4070 (*1 *1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-1025)))) (-3370 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3340 *3) (|:| |gap| (-751)) (|:| -3984 (-762 *3)) (|:| -3645 (-762 *3)))) (-5 *1 (-762 *3)) (-4 *3 (-1025)))) (-4058 (*1 *1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-1025)))) (-4045 (*1 *2 *1 *1) (-12 (-5 *2 (-625 (-762 *3))) (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025)))) (-3662 (*1 *1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-544)) (-4 *2 (-1025)))) (-3304 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2633 (-762 *3)) (|:| |coef1| (-762 *3)) (|:| |coef2| (-762 *3)))) (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025)))) (-3294 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2633 (-762 *3)) (|:| |coef1| (-762 *3)))) (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025)))) (-3285 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2633 (-762 *3)) (|:| |coef2| (-762 *3)))) (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025)))) (-4033 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3207 *3) (|:| |coef1| (-762 *3)) (|:| |coef2| (-762 *3)))) (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025)))) (-4021 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3207 *3) (|:| |coef1| (-762 *3)))) (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025)))) (-4010 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3207 *3) (|:| |coef2| (-762 *3)))) (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025))))) -(-13 (-1208 |#1|) (-597 (-1145 |#1|)) (-1014 (-1145 |#1|)) (-10 -8 (-15 -3044 ($ $ (-751) |#1| $)) (-15 -3361 ($ $ $)) (-15 -3352 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4321 (-751))) $ $)) (-15 -4070 ($ $ $)) (-15 -3370 ((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -4058 ($ $ $)) (IF (|has| |#1| (-544)) (PROGN (-15 -4045 ((-625 $) $ $)) (-15 -3662 ($ $ $)) (-15 -3304 ((-2 (|:| -2633 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3294 ((-2 (|:| -2633 $) (|:| |coef1| $)) $ $)) (-15 -3285 ((-2 (|:| -2633 $) (|:| |coef2| $)) $ $)) (-15 -4033 ((-2 (|:| -3207 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4021 ((-2 (|:| -3207 |#1|) (|:| |coef1| $)) $ $)) (-15 -4010 ((-2 (|:| -3207 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-4096 ((|#1| (-751) |#1|) 32 (|has| |#1| (-38 (-402 (-552)))))) (-3909 ((|#1| (-751) |#1|) 22)) (-4083 ((|#1| (-751) |#1|) 34 (|has| |#1| (-38 (-402 (-552))))))) -(((-763 |#1|) (-10 -7 (-15 -3909 (|#1| (-751) |#1|)) (IF (|has| |#1| (-38 (-402 (-552)))) (PROGN (-15 -4083 (|#1| (-751) |#1|)) (-15 -4096 (|#1| (-751) |#1|))) |%noBranch|)) (-170)) (T -763)) -((-4096 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-170)))) (-4083 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-170)))) (-3909 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-170))))) -(-10 -7 (-15 -3909 (|#1| (-751) |#1|)) (IF (|has| |#1| (-38 (-402 (-552)))) (PROGN (-15 -4083 (|#1| (-751) |#1|)) (-15 -4096 (|#1| (-751) |#1|))) |%noBranch|)) -((-1671 (((-112) $ $) 7)) (-3680 (((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 |#4|)))) (-625 |#4|)) 85)) (-3690 (((-625 $) (-625 |#4|)) 86) (((-625 $) (-625 |#4|) (-112)) 111)) (-3982 (((-625 |#3|) $) 33)) (-3707 (((-112) $) 26)) (-3613 (((-112) $) 17 (|has| |#1| (-544)))) (-2656 (((-112) |#4| $) 101) (((-112) $) 97)) (-3748 ((|#4| |#4| $) 92)) (-2194 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| $) 126)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) 27)) (-3495 (((-112) $ (-751)) 44)) (-3488 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353))) (((-3 |#4| "failed") $ |#3|) 79)) (-3101 (($) 45 T CONST)) (-3667 (((-112) $) 22 (|has| |#1| (-544)))) (-3688 (((-112) $ $) 24 (|has| |#1| (-544)))) (-3678 (((-112) $ $) 23 (|has| |#1| (-544)))) (-3697 (((-112) $) 25 (|has| |#1| (-544)))) (-3757 (((-625 |#4|) (-625 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3624 (((-625 |#4|) (-625 |#4|) $) 18 (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) 19 (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) 36)) (-1895 (($ (-625 |#4|)) 35)) (-2936 (((-3 $ "failed") $) 82)) (-3720 ((|#4| |#4| $) 89)) (-2959 (($ $) 68 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#4| $) 67 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-2668 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3699 ((|#4| |#4| $) 87)) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2689 (((-2 (|:| -1387 (-625 |#4|)) (|:| -2508 (-625 |#4|))) $) 105)) (-3731 (((-112) |#4| $) 136)) (-3714 (((-112) |#4| $) 133)) (-3741 (((-112) |#4| $) 137) (((-112) $) 134)) (-3799 (((-625 |#4|) $) 52 (|has| $ (-6 -4353)))) (-2678 (((-112) |#4| $) 104) (((-112) $) 103)) (-3565 ((|#3| $) 34)) (-2909 (((-112) $ (-751)) 43)) (-3730 (((-625 |#4|) $) 53 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) 47)) (-2615 (((-625 |#3|) $) 32)) (-2608 (((-112) |#3| $) 31)) (-2878 (((-112) $ (-751)) 42)) (-2883 (((-1131) $) 9)) (-3674 (((-3 |#4| (-625 $)) |#4| |#4| $) 128)) (-3662 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| |#4| $) 127)) (-1437 (((-3 |#4| "failed") $) 83)) (-3685 (((-625 $) |#4| $) 129)) (-3704 (((-3 (-112) (-625 $)) |#4| $) 132)) (-3694 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2860 (((-625 $) |#4| $) 125) (((-625 $) (-625 |#4|) $) 124) (((-625 $) (-625 |#4|) (-625 $)) 123) (((-625 $) |#4| (-625 $)) 122)) (-3999 (($ |#4| $) 117) (($ (-625 |#4|) $) 116)) (-2699 (((-625 |#4|) $) 107)) (-3777 (((-112) |#4| $) 99) (((-112) $) 95)) (-3727 ((|#4| |#4| $) 90)) (-2719 (((-112) $ $) 110)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-3788 (((-112) |#4| $) 100) (((-112) $) 96)) (-3737 ((|#4| |#4| $) 91)) (-2831 (((-1093) $) 10)) (-2924 (((-3 |#4| "failed") $) 84)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3657 (((-3 $ "failed") $ |#4|) 78)) (-2147 (($ $ |#4|) 77) (((-625 $) |#4| $) 115) (((-625 $) |#4| (-625 $)) 114) (((-625 $) (-625 |#4|) $) 113) (((-625 $) (-625 |#4|) (-625 $)) 112)) (-1888 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) 38)) (-1916 (((-112) $) 41)) (-3600 (($) 40)) (-4276 (((-751) $) 106)) (-2840 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-1871 (($ $) 39)) (-2042 (((-528) $) 69 (|has| |#4| (-598 (-528))))) (-1695 (($ (-625 |#4|)) 60)) (-3718 (($ $ |#3|) 28)) (-2595 (($ $ |#3|) 30)) (-3709 (($ $) 88)) (-2584 (($ $ |#3|) 29)) (-1683 (((-839) $) 11) (((-625 |#4|) $) 37)) (-3647 (((-751) $) 76 (|has| |#3| (-363)))) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3767 (((-112) $ (-1 (-112) |#4| (-625 |#4|))) 98)) (-3651 (((-625 $) |#4| $) 121) (((-625 $) |#4| (-625 $)) 120) (((-625 $) (-625 |#4|) $) 119) (((-625 $) (-625 |#4|) (-625 $)) 118)) (-1900 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-3669 (((-625 |#3|) $) 81)) (-3724 (((-112) |#4| $) 135)) (-4168 (((-112) |#3| $) 80)) (-2281 (((-112) $ $) 6)) (-1471 (((-751) $) 46 (|has| $ (-6 -4353))))) -(((-764 |#1| |#2| |#3| |#4|) (-138) (-446) (-773) (-827) (-1039 |t#1| |t#2| |t#3|)) (T -764)) -NIL -(-13 (-1045 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-101) . T) ((-597 (-625 |#4|)) . T) ((-597 (-839)) . T) ((-149 |#4|) . T) ((-598 (-528)) |has| |#4| (-598 (-528))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-952 |#1| |#2| |#3| |#4|) . T) ((-1045 |#1| |#2| |#3| |#4|) . T) ((-1073) . T) ((-1179 |#1| |#2| |#3| |#4|) . T) ((-1186) . T)) -((-4109 (((-3 (-374) "failed") (-311 |#1|) (-897)) 62 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-3 (-374) "failed") (-311 |#1|)) 54 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-3 (-374) "failed") (-402 (-928 |#1|)) (-897)) 41 (|has| |#1| (-544))) (((-3 (-374) "failed") (-402 (-928 |#1|))) 40 (|has| |#1| (-544))) (((-3 (-374) "failed") (-928 |#1|) (-897)) 31 (|has| |#1| (-1025))) (((-3 (-374) "failed") (-928 |#1|)) 30 (|has| |#1| (-1025)))) (-1959 (((-374) (-311 |#1|) (-897)) 99 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-374) (-311 |#1|)) 94 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-374) (-402 (-928 |#1|)) (-897)) 91 (|has| |#1| (-544))) (((-374) (-402 (-928 |#1|))) 90 (|has| |#1| (-544))) (((-374) (-928 |#1|) (-897)) 86 (|has| |#1| (-1025))) (((-374) (-928 |#1|)) 85 (|has| |#1| (-1025))) (((-374) |#1| (-897)) 76) (((-374) |#1|) 22)) (-4122 (((-3 (-167 (-374)) "failed") (-311 (-167 |#1|)) (-897)) 71 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-3 (-167 (-374)) "failed") (-311 (-167 |#1|))) 70 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-3 (-167 (-374)) "failed") (-311 |#1|) (-897)) 63 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-3 (-167 (-374)) "failed") (-311 |#1|)) 61 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-3 (-167 (-374)) "failed") (-402 (-928 (-167 |#1|))) (-897)) 46 (|has| |#1| (-544))) (((-3 (-167 (-374)) "failed") (-402 (-928 (-167 |#1|)))) 45 (|has| |#1| (-544))) (((-3 (-167 (-374)) "failed") (-402 (-928 |#1|)) (-897)) 39 (|has| |#1| (-544))) (((-3 (-167 (-374)) "failed") (-402 (-928 |#1|))) 38 (|has| |#1| (-544))) (((-3 (-167 (-374)) "failed") (-928 |#1|) (-897)) 28 (|has| |#1| (-1025))) (((-3 (-167 (-374)) "failed") (-928 |#1|)) 26 (|has| |#1| (-1025))) (((-3 (-167 (-374)) "failed") (-928 (-167 |#1|)) (-897)) 18 (|has| |#1| (-170))) (((-3 (-167 (-374)) "failed") (-928 (-167 |#1|))) 15 (|has| |#1| (-170)))) (-3762 (((-167 (-374)) (-311 (-167 |#1|)) (-897)) 102 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-167 (-374)) (-311 (-167 |#1|))) 101 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-167 (-374)) (-311 |#1|) (-897)) 100 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-167 (-374)) (-311 |#1|)) 98 (-12 (|has| |#1| (-544)) (|has| |#1| (-827)))) (((-167 (-374)) (-402 (-928 (-167 |#1|))) (-897)) 93 (|has| |#1| (-544))) (((-167 (-374)) (-402 (-928 (-167 |#1|)))) 92 (|has| |#1| (-544))) (((-167 (-374)) (-402 (-928 |#1|)) (-897)) 89 (|has| |#1| (-544))) (((-167 (-374)) (-402 (-928 |#1|))) 88 (|has| |#1| (-544))) (((-167 (-374)) (-928 |#1|) (-897)) 84 (|has| |#1| (-1025))) (((-167 (-374)) (-928 |#1|)) 83 (|has| |#1| (-1025))) (((-167 (-374)) (-928 (-167 |#1|)) (-897)) 78 (|has| |#1| (-170))) (((-167 (-374)) (-928 (-167 |#1|))) 77 (|has| |#1| (-170))) (((-167 (-374)) (-167 |#1|) (-897)) 80 (|has| |#1| (-170))) (((-167 (-374)) (-167 |#1|)) 79 (|has| |#1| (-170))) (((-167 (-374)) |#1| (-897)) 27) (((-167 (-374)) |#1|) 25))) -(((-765 |#1|) (-10 -7 (-15 -1959 ((-374) |#1|)) (-15 -1959 ((-374) |#1| (-897))) (-15 -3762 ((-167 (-374)) |#1|)) (-15 -3762 ((-167 (-374)) |#1| (-897))) (IF (|has| |#1| (-170)) (PROGN (-15 -3762 ((-167 (-374)) (-167 |#1|))) (-15 -3762 ((-167 (-374)) (-167 |#1|) (-897))) (-15 -3762 ((-167 (-374)) (-928 (-167 |#1|)))) (-15 -3762 ((-167 (-374)) (-928 (-167 |#1|)) (-897)))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-15 -1959 ((-374) (-928 |#1|))) (-15 -1959 ((-374) (-928 |#1|) (-897))) (-15 -3762 ((-167 (-374)) (-928 |#1|))) (-15 -3762 ((-167 (-374)) (-928 |#1|) (-897)))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -1959 ((-374) (-402 (-928 |#1|)))) (-15 -1959 ((-374) (-402 (-928 |#1|)) (-897))) (-15 -3762 ((-167 (-374)) (-402 (-928 |#1|)))) (-15 -3762 ((-167 (-374)) (-402 (-928 |#1|)) (-897))) (-15 -3762 ((-167 (-374)) (-402 (-928 (-167 |#1|))))) (-15 -3762 ((-167 (-374)) (-402 (-928 (-167 |#1|))) (-897))) (IF (|has| |#1| (-827)) (PROGN (-15 -1959 ((-374) (-311 |#1|))) (-15 -1959 ((-374) (-311 |#1|) (-897))) (-15 -3762 ((-167 (-374)) (-311 |#1|))) (-15 -3762 ((-167 (-374)) (-311 |#1|) (-897))) (-15 -3762 ((-167 (-374)) (-311 (-167 |#1|)))) (-15 -3762 ((-167 (-374)) (-311 (-167 |#1|)) (-897)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -4122 ((-3 (-167 (-374)) "failed") (-928 (-167 |#1|)))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-928 (-167 |#1|)) (-897)))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-15 -4109 ((-3 (-374) "failed") (-928 |#1|))) (-15 -4109 ((-3 (-374) "failed") (-928 |#1|) (-897))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-928 |#1|))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-928 |#1|) (-897)))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -4109 ((-3 (-374) "failed") (-402 (-928 |#1|)))) (-15 -4109 ((-3 (-374) "failed") (-402 (-928 |#1|)) (-897))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-402 (-928 |#1|)))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-402 (-928 |#1|)) (-897))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-402 (-928 (-167 |#1|))))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-402 (-928 (-167 |#1|))) (-897))) (IF (|has| |#1| (-827)) (PROGN (-15 -4109 ((-3 (-374) "failed") (-311 |#1|))) (-15 -4109 ((-3 (-374) "failed") (-311 |#1|) (-897))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-311 |#1|))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-311 |#1|) (-897))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-311 (-167 |#1|)))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-311 (-167 |#1|)) (-897)))) |%noBranch|)) |%noBranch|)) (-598 (-374))) (T -765)) -((-4122 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-311 (-167 *5))) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-827)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-4122 (*1 *2 *3) (|partial| -12 (-5 *3 (-311 (-167 *4))) (-4 *4 (-544)) (-4 *4 (-827)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-4122 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-311 *5)) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-827)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-4122 (*1 *2 *3) (|partial| -12 (-5 *3 (-311 *4)) (-4 *4 (-544)) (-4 *4 (-827)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-4109 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-311 *5)) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-827)) (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5)))) (-4109 (*1 *2 *3) (|partial| -12 (-5 *3 (-311 *4)) (-4 *4 (-544)) (-4 *4 (-827)) (-4 *4 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *4)))) (-4122 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-402 (-928 (-167 *5)))) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-4122 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-928 (-167 *4)))) (-4 *4 (-544)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-4122 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-4122 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-4109 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5)))) (-4109 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544)) (-4 *4 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *4)))) (-4122 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-928 *5)) (-5 *4 (-897)) (-4 *5 (-1025)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-4122 (*1 *2 *3) (|partial| -12 (-5 *3 (-928 *4)) (-4 *4 (-1025)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-4109 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-928 *5)) (-5 *4 (-897)) (-4 *5 (-1025)) (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5)))) (-4109 (*1 *2 *3) (|partial| -12 (-5 *3 (-928 *4)) (-4 *4 (-1025)) (-4 *4 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *4)))) (-4122 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-928 (-167 *5))) (-5 *4 (-897)) (-4 *5 (-170)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-4122 (*1 *2 *3) (|partial| -12 (-5 *3 (-928 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-311 (-167 *5))) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-827)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-311 (-167 *4))) (-4 *4 (-544)) (-4 *4 (-827)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-311 *5)) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-827)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-311 *4)) (-4 *4 (-544)) (-4 *4 (-827)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-311 *5)) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-827)) (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5)))) (-1959 (*1 *2 *3) (-12 (-5 *3 (-311 *4)) (-4 *4 (-544)) (-4 *4 (-827)) (-4 *4 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *4)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 (-167 *5)))) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-402 (-928 (-167 *4)))) (-4 *4 (-544)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5)))) (-1959 (*1 *2 *3) (-12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544)) (-4 *4 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *4)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-928 *5)) (-5 *4 (-897)) (-4 *5 (-1025)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-928 *4)) (-4 *4 (-1025)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-1959 (*1 *2 *3 *4) (-12 (-5 *3 (-928 *5)) (-5 *4 (-897)) (-4 *5 (-1025)) (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5)))) (-1959 (*1 *2 *3) (-12 (-5 *3 (-928 *4)) (-4 *4 (-1025)) (-4 *4 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *4)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-928 (-167 *5))) (-5 *4 (-897)) (-4 *5 (-170)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-928 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-167 *5)) (-5 *4 (-897)) (-4 *5 (-170)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) (-3762 (*1 *2 *3) (-12 (-5 *3 (-167 *4)) (-4 *4 (-170)) (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *4 (-897)) (-5 *2 (-167 (-374))) (-5 *1 (-765 *3)) (-4 *3 (-598 (-374))))) (-3762 (*1 *2 *3) (-12 (-5 *2 (-167 (-374))) (-5 *1 (-765 *3)) (-4 *3 (-598 (-374))))) (-1959 (*1 *2 *3 *4) (-12 (-5 *4 (-897)) (-5 *2 (-374)) (-5 *1 (-765 *3)) (-4 *3 (-598 *2)))) (-1959 (*1 *2 *3) (-12 (-5 *2 (-374)) (-5 *1 (-765 *3)) (-4 *3 (-598 *2))))) -(-10 -7 (-15 -1959 ((-374) |#1|)) (-15 -1959 ((-374) |#1| (-897))) (-15 -3762 ((-167 (-374)) |#1|)) (-15 -3762 ((-167 (-374)) |#1| (-897))) (IF (|has| |#1| (-170)) (PROGN (-15 -3762 ((-167 (-374)) (-167 |#1|))) (-15 -3762 ((-167 (-374)) (-167 |#1|) (-897))) (-15 -3762 ((-167 (-374)) (-928 (-167 |#1|)))) (-15 -3762 ((-167 (-374)) (-928 (-167 |#1|)) (-897)))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-15 -1959 ((-374) (-928 |#1|))) (-15 -1959 ((-374) (-928 |#1|) (-897))) (-15 -3762 ((-167 (-374)) (-928 |#1|))) (-15 -3762 ((-167 (-374)) (-928 |#1|) (-897)))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -1959 ((-374) (-402 (-928 |#1|)))) (-15 -1959 ((-374) (-402 (-928 |#1|)) (-897))) (-15 -3762 ((-167 (-374)) (-402 (-928 |#1|)))) (-15 -3762 ((-167 (-374)) (-402 (-928 |#1|)) (-897))) (-15 -3762 ((-167 (-374)) (-402 (-928 (-167 |#1|))))) (-15 -3762 ((-167 (-374)) (-402 (-928 (-167 |#1|))) (-897))) (IF (|has| |#1| (-827)) (PROGN (-15 -1959 ((-374) (-311 |#1|))) (-15 -1959 ((-374) (-311 |#1|) (-897))) (-15 -3762 ((-167 (-374)) (-311 |#1|))) (-15 -3762 ((-167 (-374)) (-311 |#1|) (-897))) (-15 -3762 ((-167 (-374)) (-311 (-167 |#1|)))) (-15 -3762 ((-167 (-374)) (-311 (-167 |#1|)) (-897)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -4122 ((-3 (-167 (-374)) "failed") (-928 (-167 |#1|)))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-928 (-167 |#1|)) (-897)))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-15 -4109 ((-3 (-374) "failed") (-928 |#1|))) (-15 -4109 ((-3 (-374) "failed") (-928 |#1|) (-897))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-928 |#1|))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-928 |#1|) (-897)))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -4109 ((-3 (-374) "failed") (-402 (-928 |#1|)))) (-15 -4109 ((-3 (-374) "failed") (-402 (-928 |#1|)) (-897))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-402 (-928 |#1|)))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-402 (-928 |#1|)) (-897))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-402 (-928 (-167 |#1|))))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-402 (-928 (-167 |#1|))) (-897))) (IF (|has| |#1| (-827)) (PROGN (-15 -4109 ((-3 (-374) "failed") (-311 |#1|))) (-15 -4109 ((-3 (-374) "failed") (-311 |#1|) (-897))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-311 |#1|))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-311 |#1|) (-897))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-311 (-167 |#1|)))) (-15 -4122 ((-3 (-167 (-374)) "failed") (-311 (-167 |#1|)) (-897)))) |%noBranch|)) |%noBranch|)) -((-4173 (((-897) (-1131)) 66)) (-4195 (((-3 (-374) "failed") (-1131)) 33)) (-4183 (((-374) (-1131)) 31)) (-4149 (((-897) (-1131)) 54)) (-4161 (((-1131) (-897)) 56)) (-4135 (((-1131) (-897)) 53))) -(((-766) (-10 -7 (-15 -4135 ((-1131) (-897))) (-15 -4149 ((-897) (-1131))) (-15 -4161 ((-1131) (-897))) (-15 -4173 ((-897) (-1131))) (-15 -4183 ((-374) (-1131))) (-15 -4195 ((-3 (-374) "failed") (-1131))))) (T -766)) -((-4195 (*1 *2 *3) (|partial| -12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-766)))) (-4183 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-766)))) (-4173 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-897)) (-5 *1 (-766)))) (-4161 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1131)) (-5 *1 (-766)))) (-4149 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-897)) (-5 *1 (-766)))) (-4135 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1131)) (-5 *1 (-766))))) -(-10 -7 (-15 -4135 ((-1131) (-897))) (-15 -4149 ((-897) (-1131))) (-15 -4161 ((-1131) (-897))) (-15 -4173 ((-897) (-1131))) (-15 -4183 ((-374) (-1131))) (-15 -4195 ((-3 (-374) "failed") (-1131)))) -((-1671 (((-112) $ $) 7)) (-4205 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 15) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 13)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 16) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 6))) -(((-767) (-138)) (T -767)) -((-3890 (*1 *2 *3 *4) (-12 (-4 *1 (-767)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011)))))) (-4205 (*1 *2 *3 *2) (-12 (-4 *1 (-767)) (-5 *2 (-1011)) (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) (-3890 (*1 *2 *3 *4) (-12 (-4 *1 (-767)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011)))))) (-4205 (*1 *2 *3 *2) (-12 (-4 *1 (-767)) (-5 *2 (-1011)) (-5 *3 (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) -(-13 (-1073) (-10 -7 (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -4205 ((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -4205 ((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011))))) -(((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-4237 (((-1237) (-1232 (-374)) (-552) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -2824 (-374))) (-374) (-1232 (-374)) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374))) 44) (((-1237) (-1232 (-374)) (-552) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -2824 (-374))) (-374) (-1232 (-374)) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374))) 43)) (-4248 (((-1237) (-1232 (-374)) (-552) (-374) (-374) (-552) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374))) 50)) (-4226 (((-1237) (-1232 (-374)) (-552) (-374) (-374) (-374) (-374) (-552) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374))) 41)) (-4216 (((-1237) (-1232 (-374)) (-552) (-374) (-374) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374))) 52) (((-1237) (-1232 (-374)) (-552) (-374) (-374) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374))) 51))) -(((-768) (-10 -7 (-15 -4216 ((-1237) (-1232 (-374)) (-552) (-374) (-374) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)))) (-15 -4216 ((-1237) (-1232 (-374)) (-552) (-374) (-374) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)))) (-15 -4226 ((-1237) (-1232 (-374)) (-552) (-374) (-374) (-374) (-374) (-552) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)))) (-15 -4237 ((-1237) (-1232 (-374)) (-552) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -2824 (-374))) (-374) (-1232 (-374)) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)))) (-15 -4237 ((-1237) (-1232 (-374)) (-552) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -2824 (-374))) (-374) (-1232 (-374)) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)))) (-15 -4248 ((-1237) (-1232 (-374)) (-552) (-374) (-374) (-552) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)))))) (T -768)) -((-4248 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1237) (-1232 *5) (-1232 *5) (-374))) (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237)) (-5 *1 (-768)))) (-4237 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-552)) (-5 *6 (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -2824 (-374)))) (-5 *7 (-1 (-1237) (-1232 *5) (-1232 *5) (-374))) (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237)) (-5 *1 (-768)))) (-4237 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-552)) (-5 *6 (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -2824 (-374)))) (-5 *7 (-1 (-1237) (-1232 *5) (-1232 *5) (-374))) (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237)) (-5 *1 (-768)))) (-4226 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1237) (-1232 *5) (-1232 *5) (-374))) (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237)) (-5 *1 (-768)))) (-4216 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1237) (-1232 *5) (-1232 *5) (-374))) (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237)) (-5 *1 (-768)))) (-4216 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1237) (-1232 *5) (-1232 *5) (-374))) (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237)) (-5 *1 (-768))))) -(-10 -7 (-15 -4216 ((-1237) (-1232 (-374)) (-552) (-374) (-374) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)))) (-15 -4216 ((-1237) (-1232 (-374)) (-552) (-374) (-374) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)))) (-15 -4226 ((-1237) (-1232 (-374)) (-552) (-374) (-374) (-374) (-374) (-552) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)))) (-15 -4237 ((-1237) (-1232 (-374)) (-552) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -2824 (-374))) (-374) (-1232 (-374)) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)))) (-15 -4237 ((-1237) (-1232 (-374)) (-552) (-374) (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -2824 (-374))) (-374) (-1232 (-374)) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)) (-1232 (-374)))) (-15 -4248 ((-1237) (-1232 (-374)) (-552) (-374) (-374) (-552) (-1 (-1237) (-1232 (-374)) (-1232 (-374)) (-374))))) -((-1272 (((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552)) 53)) (-4310 (((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552)) 31)) (-4330 (((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552)) 52)) (-4301 (((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552)) 29)) (-4320 (((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552)) 51)) (-4291 (((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552)) 19)) (-4280 (((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552) (-552)) 32)) (-4270 (((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552) (-552)) 30)) (-4258 (((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552) (-552)) 28))) -(((-769) (-10 -7 (-15 -4258 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552) (-552))) (-15 -4270 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552) (-552))) (-15 -4280 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552) (-552))) (-15 -4291 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))) (-15 -4301 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))) (-15 -4310 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))) (-15 -4320 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))) (-15 -4330 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))) (-15 -1272 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))))) (T -769)) -((-1272 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-552)))) (-4330 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-552)))) (-4320 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-552)))) (-4310 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-552)))) (-4301 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-552)))) (-4291 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-552)))) (-4280 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-552)))) (-4270 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-552)))) (-4258 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) (-5 *2 (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-552))))) -(-10 -7 (-15 -4258 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552) (-552))) (-15 -4270 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552) (-552))) (-15 -4280 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552) (-552))) (-15 -4291 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))) (-15 -4301 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))) (-15 -4310 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))) (-15 -4320 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))) (-15 -4330 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552))) (-15 -1272 ((-2 (|:| -3800 (-374)) (|:| -1939 (-374)) (|:| |totalpts| (-552)) (|:| |success| (-112))) (-1 (-374) (-374)) (-374) (-374) (-374) (-374) (-552) (-552)))) -((-2776 (((-1181 |#1|) |#1| (-221) (-552)) 46))) -(((-770 |#1|) (-10 -7 (-15 -2776 ((-1181 |#1|) |#1| (-221) (-552)))) (-950)) (T -770)) -((-2776 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-221)) (-5 *5 (-552)) (-5 *2 (-1181 *3)) (-5 *1 (-770 *3)) (-4 *3 (-950))))) -(-10 -7 (-15 -2776 ((-1181 |#1|) |#1| (-221) (-552)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 24)) (-2077 (((-3 $ "failed") $ $) 26)) (-3101 (($) 23 T CONST)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 22 T CONST)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)) (-2393 (($ $ $) 28) (($ $) 27)) (-2382 (($ $ $) 20)) (* (($ (-897) $) 21) (($ (-751) $) 25) (($ (-552) $) 29))) -(((-771) (-138)) (T -771)) -NIL -(-13 (-775) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-772) . T) ((-774) . T) ((-775) . T) ((-827) . T) ((-1073) . T)) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 24)) (-3101 (($) 23 T CONST)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 22 T CONST)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)) (-2382 (($ $ $) 20)) (* (($ (-897) $) 21) (($ (-751) $) 25))) -(((-772) (-138)) (T -772)) -NIL -(-13 (-774) (-23)) -(((-23) . T) ((-25) . T) ((-101) . T) ((-597 (-839)) . T) ((-774) . T) ((-827) . T) ((-1073) . T)) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 24)) (-1282 (($ $ $) 27)) (-2077 (((-3 $ "failed") $ $) 26)) (-3101 (($) 23 T CONST)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 22 T CONST)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)) (-2382 (($ $ $) 20)) (* (($ (-897) $) 21) (($ (-751) $) 25))) -(((-773) (-138)) (T -773)) -((-1282 (*1 *1 *1 *1) (-4 *1 (-773)))) -(-13 (-775) (-10 -8 (-15 -1282 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-772) . T) ((-774) . T) ((-775) . T) ((-827) . T) ((-1073) . T)) -((-1671 (((-112) $ $) 7)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)) (-2382 (($ $ $) 20)) (* (($ (-897) $) 21))) -(((-774) (-138)) (T -774)) -NIL -(-13 (-827) (-25)) -(((-25) . T) ((-101) . T) ((-597 (-839)) . T) ((-827) . T) ((-1073) . T)) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 24)) (-2077 (((-3 $ "failed") $ $) 26)) (-3101 (($) 23 T CONST)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 22 T CONST)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)) (-2382 (($ $ $) 20)) (* (($ (-897) $) 21) (($ (-751) $) 25))) -(((-775) (-138)) (T -775)) -NIL -(-13 (-772) (-130)) -(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-772) . T) ((-774) . T) ((-827) . T) ((-1073) . T)) -((-3641 (((-112) $) 41)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-1895 (((-552) $) NIL) (((-402 (-552)) $) NIL) ((|#2| $) 42)) (-2555 (((-3 (-402 (-552)) "failed") $) 78)) (-2546 (((-112) $) 72)) (-2538 (((-402 (-552)) $) 76)) (-4209 ((|#2| $) 26)) (-1996 (($ (-1 |#2| |#2|) $) 23)) (-4092 (($ $) 61)) (-2042 (((-528) $) 67)) (-2410 (($ $) 21)) (-1683 (((-839) $) 56) (($ (-552)) 39) (($ |#2|) 37) (($ (-402 (-552))) NIL)) (-4141 (((-751)) 10)) (-1727 ((|#2| $) 71)) (-2281 (((-112) $ $) 29)) (-2307 (((-112) $ $) 69)) (-2393 (($ $) 31) (($ $ $) NIL)) (-2382 (($ $ $) 30)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) -(((-776 |#1| |#2|) (-10 -8 (-15 -2307 ((-112) |#1| |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -4092 (|#1| |#1|)) (-15 -2555 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -2538 ((-402 (-552)) |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -1727 (|#2| |#1|)) (-15 -4209 (|#2| |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -1683 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 -4141 ((-751))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 -3641 ((-112) |#1|)) (-15 * (|#1| (-897) |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|))) (-777 |#2|) (-170)) (T -776)) -((-4141 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-776 *3 *4)) (-4 *3 (-777 *4))))) -(-10 -8 (-15 -2307 ((-112) |#1| |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -4092 (|#1| |#1|)) (-15 -2555 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -2538 ((-402 (-552)) |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -1727 (|#2| |#1|)) (-15 -4209 (|#2| |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -1683 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 -4141 ((-751))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 -3641 ((-112) |#1|)) (-15 * (|#1| (-897) |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-2894 (((-751)) 51 (|has| |#1| (-363)))) (-3101 (($) 17 T CONST)) (-1893 (((-3 (-552) "failed") $) 92 (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) 90 (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 88)) (-1895 (((-552) $) 93 (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) 91 (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) 87)) (-4174 (((-3 $ "failed") $) 32)) (-3852 ((|#1| $) 77)) (-2555 (((-3 (-402 (-552)) "failed") $) 64 (|has| |#1| (-537)))) (-2546 (((-112) $) 66 (|has| |#1| (-537)))) (-2538 (((-402 (-552)) $) 65 (|has| |#1| (-537)))) (-3702 (($) 54 (|has| |#1| (-363)))) (-3650 (((-112) $) 30)) (-1334 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-4209 ((|#1| $) 69)) (-3658 (($ $ $) 60 (|has| |#1| (-827)))) (-3332 (($ $ $) 59 (|has| |#1| (-827)))) (-1996 (($ (-1 |#1| |#1|) $) 79)) (-4318 (((-897) $) 53 (|has| |#1| (-363)))) (-2883 (((-1131) $) 9)) (-4092 (($ $) 63 (|has| |#1| (-358)))) (-3123 (($ (-897)) 52 (|has| |#1| (-363)))) (-1305 ((|#1| $) 74)) (-1313 ((|#1| $) 75)) (-1324 ((|#1| $) 76)) (-2377 ((|#1| $) 70)) (-2387 ((|#1| $) 71)) (-2399 ((|#1| $) 72)) (-1293 ((|#1| $) 73)) (-2831 (((-1093) $) 10)) (-4073 (($ $ (-625 |#1|) (-625 |#1|)) 85 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) 83 (|has| |#1| (-304 |#1|))) (($ $ (-625 (-289 |#1|))) 82 (|has| |#1| (-304 |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) 81 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) 80 (|has| |#1| (-507 (-1149) |#1|)))) (-2154 (($ $ |#1|) 86 (|has| |#1| (-281 |#1| |#1|)))) (-2042 (((-528) $) 61 (|has| |#1| (-598 (-528))))) (-2410 (($ $) 78)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 35) (($ (-402 (-552))) 89 (|has| |#1| (-1014 (-402 (-552)))))) (-4243 (((-3 $ "failed") $) 62 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-1727 ((|#1| $) 67 (|has| |#1| (-1034)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2346 (((-112) $ $) 57 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 56 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 58 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 55 (|has| |#1| (-827)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-777 |#1|) (-138) (-170)) (T -777)) -((-2410 (*1 *1 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-1324 (*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-1313 (*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-1305 (*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-1293 (*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-2399 (*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-2387 (*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-2377 (*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-1334 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-777 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112)))) (-2538 (*1 *2 *1) (-12 (-4 *1 (-777 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-552))))) (-2555 (*1 *2 *1) (|partial| -12 (-4 *1 (-777 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-552))))) (-4092 (*1 *1 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)) (-4 *2 (-358))))) -(-13 (-38 |t#1|) (-406 |t#1|) (-333 |t#1|) (-10 -8 (-15 -2410 ($ $)) (-15 -3852 (|t#1| $)) (-15 -1324 (|t#1| $)) (-15 -1313 (|t#1| $)) (-15 -1305 (|t#1| $)) (-15 -1293 (|t#1| $)) (-15 -2399 (|t#1| $)) (-15 -2387 (|t#1| $)) (-15 -2377 (|t#1| $)) (-15 -4209 (|t#1| $)) (-15 -1334 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1034)) (-15 -1727 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -2546 ((-112) $)) (-15 -2538 ((-402 (-552)) $)) (-15 -2555 ((-3 (-402 (-552)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-358)) (-15 -4092 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-363) |has| |#1| (-363)) ((-333 |#1|) . T) ((-406 |#1|) . T) ((-507 (-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) . T) ((-707) . T) ((-827) |has| |#1| (-827)) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-1996 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-778 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1996 (|#3| (-1 |#4| |#2|) |#1|))) (-777 |#2|) (-170) (-777 |#4|) (-170)) (T -778)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-777 *6)) (-5 *1 (-778 *4 *5 *2 *6)) (-4 *4 (-777 *5))))) -(-10 -7 (-15 -1996 (|#3| (-1 |#4| |#2|) |#1|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2894 (((-751)) NIL (|has| |#1| (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL) (((-3 (-975 |#1|) "failed") $) 35) (((-3 (-552) "failed") $) NIL (-1523 (|has| (-975 |#1|) (-1014 (-552))) (|has| |#1| (-1014 (-552))))) (((-3 (-402 (-552)) "failed") $) NIL (-1523 (|has| (-975 |#1|) (-1014 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552))))))) (-1895 ((|#1| $) NIL) (((-975 |#1|) $) 33) (((-552) $) NIL (-1523 (|has| (-975 |#1|) (-1014 (-552))) (|has| |#1| (-1014 (-552))))) (((-402 (-552)) $) NIL (-1523 (|has| (-975 |#1|) (-1014 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552))))))) (-4174 (((-3 $ "failed") $) NIL)) (-3852 ((|#1| $) 16)) (-2555 (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-537)))) (-2546 (((-112) $) NIL (|has| |#1| (-537)))) (-2538 (((-402 (-552)) $) NIL (|has| |#1| (-537)))) (-3702 (($) NIL (|has| |#1| (-363)))) (-3650 (((-112) $) NIL)) (-1334 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-975 |#1|) (-975 |#1|)) 29)) (-4209 ((|#1| $) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-4318 (((-897) $) NIL (|has| |#1| (-363)))) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| |#1| (-358)))) (-3123 (($ (-897)) NIL (|has| |#1| (-363)))) (-1305 ((|#1| $) 22)) (-1313 ((|#1| $) 20)) (-1324 ((|#1| $) 18)) (-2377 ((|#1| $) 26)) (-2387 ((|#1| $) 25)) (-2399 ((|#1| $) 24)) (-1293 ((|#1| $) 23)) (-2831 (((-1093) $) NIL)) (-4073 (($ $ (-625 |#1|) (-625 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-625 (-289 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) NIL (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-507 (-1149) |#1|)))) (-2154 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-2410 (($ $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-975 |#1|)) 30) (($ (-402 (-552))) NIL (-1523 (|has| (-975 |#1|) (-1014 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552))))))) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-1727 ((|#1| $) NIL (|has| |#1| (-1034)))) (-2089 (($) 8 T CONST)) (-2100 (($) 12 T CONST)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-779 |#1|) (-13 (-777 |#1|) (-406 (-975 |#1|)) (-10 -8 (-15 -1334 ($ (-975 |#1|) (-975 |#1|))))) (-170)) (T -779)) -((-1334 (*1 *1 *2 *2) (-12 (-5 *2 (-975 *3)) (-4 *3 (-170)) (-5 *1 (-779 *3))))) -(-13 (-777 |#1|) (-406 (-975 |#1|)) (-10 -8 (-15 -1334 ($ (-975 |#1|) (-975 |#1|))))) -((-1671 (((-112) $ $) 7)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-1345 (((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 13)) (-2281 (((-112) $ $) 6))) -(((-780) (-138)) (T -780)) -((-3890 (*1 *2 *3 *4) (-12 (-4 *1 (-780)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)))))) (-1345 (*1 *2 *3) (-12 (-4 *1 (-780)) (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-1011))))) -(-13 (-1073) (-10 -7 (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1345 ((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) -(((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-1354 (((-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) |#3| |#2| (-1149)) 19))) -(((-781 |#1| |#2| |#3|) (-10 -7 (-15 -1354 ((-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) |#3| |#2| (-1149)))) (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)) (-13 (-29 |#1|) (-1171) (-935)) (-636 |#2|)) (T -781)) -((-1354 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1149)) (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-4 *4 (-13 (-29 *6) (-1171) (-935))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1270 (-625 *4)))) (-5 *1 (-781 *6 *4 *3)) (-4 *3 (-636 *4))))) -(-10 -7 (-15 -1354 ((-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) |#3| |#2| (-1149)))) -((-1728 (((-3 |#2| "failed") |#2| (-114) (-289 |#2|) (-625 |#2|)) 28) (((-3 |#2| "failed") (-289 |#2|) (-114) (-289 |#2|) (-625 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) |#2| "failed") |#2| (-114) (-1149)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) |#2| "failed") (-289 |#2|) (-114) (-1149)) 18) (((-3 (-2 (|:| |particular| (-1232 |#2|)) (|:| -1270 (-625 (-1232 |#2|)))) "failed") (-625 |#2|) (-625 (-114)) (-1149)) 24) (((-3 (-2 (|:| |particular| (-1232 |#2|)) (|:| -1270 (-625 (-1232 |#2|)))) "failed") (-625 (-289 |#2|)) (-625 (-114)) (-1149)) 26) (((-3 (-625 (-1232 |#2|)) "failed") (-669 |#2|) (-1149)) 37) (((-3 (-2 (|:| |particular| (-1232 |#2|)) (|:| -1270 (-625 (-1232 |#2|)))) "failed") (-669 |#2|) (-1232 |#2|) (-1149)) 35))) -(((-782 |#1| |#2|) (-10 -7 (-15 -1728 ((-3 (-2 (|:| |particular| (-1232 |#2|)) (|:| -1270 (-625 (-1232 |#2|)))) "failed") (-669 |#2|) (-1232 |#2|) (-1149))) (-15 -1728 ((-3 (-625 (-1232 |#2|)) "failed") (-669 |#2|) (-1149))) (-15 -1728 ((-3 (-2 (|:| |particular| (-1232 |#2|)) (|:| -1270 (-625 (-1232 |#2|)))) "failed") (-625 (-289 |#2|)) (-625 (-114)) (-1149))) (-15 -1728 ((-3 (-2 (|:| |particular| (-1232 |#2|)) (|:| -1270 (-625 (-1232 |#2|)))) "failed") (-625 |#2|) (-625 (-114)) (-1149))) (-15 -1728 ((-3 (-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) |#2| "failed") (-289 |#2|) (-114) (-1149))) (-15 -1728 ((-3 (-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) |#2| "failed") |#2| (-114) (-1149))) (-15 -1728 ((-3 |#2| "failed") (-289 |#2|) (-114) (-289 |#2|) (-625 |#2|))) (-15 -1728 ((-3 |#2| "failed") |#2| (-114) (-289 |#2|) (-625 |#2|)))) (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)) (-13 (-29 |#1|) (-1171) (-935))) (T -782)) -((-1728 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-289 *2)) (-5 *5 (-625 *2)) (-4 *2 (-13 (-29 *6) (-1171) (-935))) (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *1 (-782 *6 *2)))) (-1728 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-289 *2)) (-5 *4 (-114)) (-5 *5 (-625 *2)) (-4 *2 (-13 (-29 *6) (-1171) (-935))) (-5 *1 (-782 *6 *2)) (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))))) (-1728 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1149)) (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1270 (-625 *3))) *3 "failed")) (-5 *1 (-782 *6 *3)) (-4 *3 (-13 (-29 *6) (-1171) (-935))))) (-1728 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-289 *7)) (-5 *4 (-114)) (-5 *5 (-1149)) (-4 *7 (-13 (-29 *6) (-1171) (-935))) (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1270 (-625 *7))) *7 "failed")) (-5 *1 (-782 *6 *7)))) (-1728 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-625 *7)) (-5 *4 (-625 (-114))) (-5 *5 (-1149)) (-4 *7 (-13 (-29 *6) (-1171) (-935))) (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-2 (|:| |particular| (-1232 *7)) (|:| -1270 (-625 (-1232 *7))))) (-5 *1 (-782 *6 *7)))) (-1728 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-625 (-289 *7))) (-5 *4 (-625 (-114))) (-5 *5 (-1149)) (-4 *7 (-13 (-29 *6) (-1171) (-935))) (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-2 (|:| |particular| (-1232 *7)) (|:| -1270 (-625 (-1232 *7))))) (-5 *1 (-782 *6 *7)))) (-1728 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-669 *6)) (-5 *4 (-1149)) (-4 *6 (-13 (-29 *5) (-1171) (-935))) (-4 *5 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-625 (-1232 *6))) (-5 *1 (-782 *5 *6)))) (-1728 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-669 *7)) (-5 *5 (-1149)) (-4 *7 (-13 (-29 *6) (-1171) (-935))) (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-2 (|:| |particular| (-1232 *7)) (|:| -1270 (-625 (-1232 *7))))) (-5 *1 (-782 *6 *7)) (-5 *4 (-1232 *7))))) -(-10 -7 (-15 -1728 ((-3 (-2 (|:| |particular| (-1232 |#2|)) (|:| -1270 (-625 (-1232 |#2|)))) "failed") (-669 |#2|) (-1232 |#2|) (-1149))) (-15 -1728 ((-3 (-625 (-1232 |#2|)) "failed") (-669 |#2|) (-1149))) (-15 -1728 ((-3 (-2 (|:| |particular| (-1232 |#2|)) (|:| -1270 (-625 (-1232 |#2|)))) "failed") (-625 (-289 |#2|)) (-625 (-114)) (-1149))) (-15 -1728 ((-3 (-2 (|:| |particular| (-1232 |#2|)) (|:| -1270 (-625 (-1232 |#2|)))) "failed") (-625 |#2|) (-625 (-114)) (-1149))) (-15 -1728 ((-3 (-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) |#2| "failed") (-289 |#2|) (-114) (-1149))) (-15 -1728 ((-3 (-2 (|:| |particular| |#2|) (|:| -1270 (-625 |#2|))) |#2| "failed") |#2| (-114) (-1149))) (-15 -1728 ((-3 |#2| "failed") (-289 |#2|) (-114) (-289 |#2|) (-625 |#2|))) (-15 -1728 ((-3 |#2| "failed") |#2| (-114) (-289 |#2|) (-625 |#2|)))) -((-1365 (($) 9)) (-3243 (((-3 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))) "failed") (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 31)) (-3712 (((-625 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $) 28)) (-3966 (($ (-2 (|:| -2971 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))))) 25)) (-3234 (($ (-625 (-2 (|:| -2971 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))))) 23)) (-1376 (((-1237)) 12))) -(((-783) (-10 -8 (-15 -1365 ($)) (-15 -1376 ((-1237))) (-15 -3712 ((-625 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -3234 ($ (-625 (-2 (|:| -2971 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))))))) (-15 -3966 ($ (-2 (|:| -2971 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))))) (-15 -3243 ((-3 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))) "failed") (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -783)) -((-3243 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))) (-5 *1 (-783)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2971 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))))) (-5 *1 (-783)))) (-3234 (*1 *1 *2) (-12 (-5 *2 (-625 (-2 (|:| -2971 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))))) (-5 *1 (-783)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-5 *1 (-783)))) (-1376 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-783)))) (-1365 (*1 *1) (-5 *1 (-783)))) -(-10 -8 (-15 -1365 ($)) (-15 -1376 ((-1237))) (-15 -3712 ((-625 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -3234 ($ (-625 (-2 (|:| -2971 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374)))))))) (-15 -3966 ($ (-2 (|:| -2971 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -4120 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))))))) (-15 -3243 ((-3 (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) (|:| |expense| (-374)) (|:| |accuracy| (-374)) (|:| |intermediateResults| (-374))) "failed") (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) -((-4206 ((|#2| |#2| (-1149)) 16)) (-3252 ((|#2| |#2| (-1149)) 51)) (-3261 (((-1 |#2| |#2|) (-1149)) 11))) -(((-784 |#1| |#2|) (-10 -7 (-15 -4206 (|#2| |#2| (-1149))) (-15 -3252 (|#2| |#2| (-1149))) (-15 -3261 ((-1 |#2| |#2|) (-1149)))) (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145)) (-13 (-29 |#1|) (-1171) (-935))) (T -784)) -((-3261 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-1 *5 *5)) (-5 *1 (-784 *4 *5)) (-4 *5 (-13 (-29 *4) (-1171) (-935))))) (-3252 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *1 (-784 *4 *2)) (-4 *2 (-13 (-29 *4) (-1171) (-935))))) (-4206 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *1 (-784 *4 *2)) (-4 *2 (-13 (-29 *4) (-1171) (-935)))))) -(-10 -7 (-15 -4206 (|#2| |#2| (-1149))) (-15 -3252 (|#2| |#2| (-1149))) (-15 -3261 ((-1 |#2| |#2|) (-1149)))) -((-1728 (((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-311 (-374)) (-625 (-374)) (-374) (-374)) 116) (((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-311 (-374)) (-625 (-374)) (-374)) 117) (((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-625 (-374)) (-374)) 119) (((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-311 (-374)) (-374)) 120) (((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-374)) 121) (((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374))) 122) (((-1011) (-788) (-1037)) 108) (((-1011) (-788)) 109)) (-3890 (((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-788) (-1037)) 75) (((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-788)) 77))) -(((-785) (-10 -7 (-15 -1728 ((-1011) (-788))) (-15 -1728 ((-1011) (-788) (-1037))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-374))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-311 (-374)) (-374))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-625 (-374)) (-374))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-311 (-374)) (-625 (-374)) (-374))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-311 (-374)) (-625 (-374)) (-374) (-374))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-788))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-788) (-1037))))) (T -785)) -((-3890 (*1 *2 *3 *4) (-12 (-5 *3 (-788)) (-5 *4 (-1037)) (-5 *2 (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))))) (-5 *1 (-785)))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))))) (-5 *1 (-785)))) (-1728 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1232 (-311 *4))) (-5 *5 (-625 (-374))) (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-1728 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1232 (-311 *4))) (-5 *5 (-625 (-374))) (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-1728 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1232 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-625 *4)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-1728 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1232 (-311 *4))) (-5 *5 (-625 (-374))) (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-1728 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1232 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-625 *4)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-1728 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1232 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-625 *4)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-788)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-1011)) (-5 *1 (-785))))) -(-10 -7 (-15 -1728 ((-1011) (-788))) (-15 -1728 ((-1011) (-788) (-1037))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-374))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-311 (-374)) (-374))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-625 (-374)) (-374))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-311 (-374)) (-625 (-374)) (-374))) (-15 -1728 ((-1011) (-1232 (-311 (-374))) (-374) (-374) (-625 (-374)) (-311 (-374)) (-625 (-374)) (-374) (-374))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-788))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-788) (-1037)))) -((-3270 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1270 (-625 |#4|))) (-633 |#4|) |#4|) 35))) -(((-786 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3270 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1270 (-625 |#4|))) (-633 |#4|) |#4|))) (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))) (-1208 |#1|) (-1208 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -786)) -((-3270 (*1 *2 *3 *4) (-12 (-5 *3 (-633 *4)) (-4 *4 (-337 *5 *6 *7)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) (-5 *1 (-786 *5 *6 *7 *4))))) -(-10 -7 (-15 -3270 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1270 (-625 |#4|))) (-633 |#4|) |#4|))) -((-3076 (((-2 (|:| -2772 |#3|) (|:| |rh| (-625 (-402 |#2|)))) |#4| (-625 (-402 |#2|))) 52)) (-3290 (((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#4| |#2|) 60) (((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#4|) 59) (((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#3| |#2|) 20) (((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#3|) 21)) (-3299 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3278 ((|#2| |#3| (-625 (-402 |#2|))) 93) (((-3 |#2| "failed") |#3| (-402 |#2|)) 90))) -(((-787 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3278 ((-3 |#2| "failed") |#3| (-402 |#2|))) (-15 -3278 (|#2| |#3| (-625 (-402 |#2|)))) (-15 -3290 ((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#3|)) (-15 -3290 ((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#3| |#2|)) (-15 -3299 (|#2| |#3| |#1|)) (-15 -3290 ((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#4|)) (-15 -3290 ((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#4| |#2|)) (-15 -3299 (|#2| |#4| |#1|)) (-15 -3076 ((-2 (|:| -2772 |#3|) (|:| |rh| (-625 (-402 |#2|)))) |#4| (-625 (-402 |#2|))))) (-13 (-358) (-145) (-1014 (-402 (-552)))) (-1208 |#1|) (-636 |#2|) (-636 (-402 |#2|))) (T -787)) -((-3076 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *6 (-1208 *5)) (-5 *2 (-2 (|:| -2772 *7) (|:| |rh| (-625 (-402 *6))))) (-5 *1 (-787 *5 *6 *7 *3)) (-5 *4 (-625 (-402 *6))) (-4 *7 (-636 *6)) (-4 *3 (-636 (-402 *6))))) (-3299 (*1 *2 *3 *4) (-12 (-4 *2 (-1208 *4)) (-5 *1 (-787 *4 *2 *5 *3)) (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *5 (-636 *2)) (-4 *3 (-636 (-402 *2))))) (-3290 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *4 (-1208 *5)) (-5 *2 (-625 (-2 (|:| -2845 *4) (|:| -2438 *4)))) (-5 *1 (-787 *5 *4 *6 *3)) (-4 *6 (-636 *4)) (-4 *3 (-636 (-402 *4))))) (-3290 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *5 (-1208 *4)) (-5 *2 (-625 (-2 (|:| -2845 *5) (|:| -2438 *5)))) (-5 *1 (-787 *4 *5 *6 *3)) (-4 *6 (-636 *5)) (-4 *3 (-636 (-402 *5))))) (-3299 (*1 *2 *3 *4) (-12 (-4 *2 (-1208 *4)) (-5 *1 (-787 *4 *2 *3 *5)) (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *3 (-636 *2)) (-4 *5 (-636 (-402 *2))))) (-3290 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *4 (-1208 *5)) (-5 *2 (-625 (-2 (|:| -2845 *4) (|:| -2438 *4)))) (-5 *1 (-787 *5 *4 *3 *6)) (-4 *3 (-636 *4)) (-4 *6 (-636 (-402 *4))))) (-3290 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *5 (-1208 *4)) (-5 *2 (-625 (-2 (|:| -2845 *5) (|:| -2438 *5)))) (-5 *1 (-787 *4 *5 *3 *6)) (-4 *3 (-636 *5)) (-4 *6 (-636 (-402 *5))))) (-3278 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-402 *2))) (-4 *2 (-1208 *5)) (-5 *1 (-787 *5 *2 *3 *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *3 (-636 *2)) (-4 *6 (-636 (-402 *2))))) (-3278 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-402 *2)) (-4 *2 (-1208 *5)) (-5 *1 (-787 *5 *2 *3 *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *3 (-636 *2)) (-4 *6 (-636 *4))))) -(-10 -7 (-15 -3278 ((-3 |#2| "failed") |#3| (-402 |#2|))) (-15 -3278 (|#2| |#3| (-625 (-402 |#2|)))) (-15 -3290 ((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#3|)) (-15 -3290 ((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#3| |#2|)) (-15 -3299 (|#2| |#3| |#1|)) (-15 -3290 ((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#4|)) (-15 -3290 ((-625 (-2 (|:| -2845 |#2|) (|:| -2438 |#2|))) |#4| |#2|)) (-15 -3299 (|#2| |#4| |#1|)) (-15 -3076 ((-2 (|:| -2772 |#3|) (|:| |rh| (-625 (-402 |#2|)))) |#4| (-625 (-402 |#2|))))) -((-1671 (((-112) $ $) NIL)) (-1895 (((-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) $) 13)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 15) (($ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 12)) (-2281 (((-112) $ $) NIL))) -(((-788) (-13 (-1073) (-10 -8 (-15 -1683 ($ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1683 ((-839) $)) (-15 -1895 ((-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) $))))) (T -788)) -((-1683 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-788)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-788)))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-788))))) -(-13 (-1073) (-10 -8 (-15 -1683 ($ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1683 ((-839) $)) (-15 -1895 ((-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) $)))) -((-3374 (((-625 (-2 (|:| |frac| (-402 |#2|)) (|:| -2772 |#3|))) |#3| (-1 (-625 |#2|) |#2| (-1145 |#2|)) (-1 (-413 |#2|) |#2|)) 118)) (-3385 (((-625 (-2 (|:| |poly| |#2|) (|:| -2772 |#3|))) |#3| (-1 (-625 |#1|) |#2|)) 46)) (-3319 (((-625 (-2 (|:| |deg| (-751)) (|:| -2772 |#2|))) |#3|) 95)) (-3309 ((|#2| |#3|) 37)) (-3329 (((-625 (-2 (|:| -1426 |#1|) (|:| -2772 |#3|))) |#3| (-1 (-625 |#1|) |#2|)) 82)) (-3338 ((|#3| |#3| (-402 |#2|)) 63) ((|#3| |#3| |#2|) 79))) -(((-789 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3309 (|#2| |#3|)) (-15 -3319 ((-625 (-2 (|:| |deg| (-751)) (|:| -2772 |#2|))) |#3|)) (-15 -3329 ((-625 (-2 (|:| -1426 |#1|) (|:| -2772 |#3|))) |#3| (-1 (-625 |#1|) |#2|))) (-15 -3385 ((-625 (-2 (|:| |poly| |#2|) (|:| -2772 |#3|))) |#3| (-1 (-625 |#1|) |#2|))) (-15 -3374 ((-625 (-2 (|:| |frac| (-402 |#2|)) (|:| -2772 |#3|))) |#3| (-1 (-625 |#2|) |#2| (-1145 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3338 (|#3| |#3| |#2|)) (-15 -3338 (|#3| |#3| (-402 |#2|)))) (-13 (-358) (-145) (-1014 (-402 (-552)))) (-1208 |#1|) (-636 |#2|) (-636 (-402 |#2|))) (T -789)) -((-3338 (*1 *2 *2 *3) (-12 (-5 *3 (-402 *5)) (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *5 (-1208 *4)) (-5 *1 (-789 *4 *5 *2 *6)) (-4 *2 (-636 *5)) (-4 *6 (-636 *3)))) (-3338 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *3 (-1208 *4)) (-5 *1 (-789 *4 *3 *2 *5)) (-4 *2 (-636 *3)) (-4 *5 (-636 (-402 *3))))) (-3374 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-625 *7) *7 (-1145 *7))) (-5 *5 (-1 (-413 *7) *7)) (-4 *7 (-1208 *6)) (-4 *6 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-5 *2 (-625 (-2 (|:| |frac| (-402 *7)) (|:| -2772 *3)))) (-5 *1 (-789 *6 *7 *3 *8)) (-4 *3 (-636 *7)) (-4 *8 (-636 (-402 *7))))) (-3385 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-625 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *6 (-1208 *5)) (-5 *2 (-625 (-2 (|:| |poly| *6) (|:| -2772 *3)))) (-5 *1 (-789 *5 *6 *3 *7)) (-4 *3 (-636 *6)) (-4 *7 (-636 (-402 *6))))) (-3329 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-625 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *6 (-1208 *5)) (-5 *2 (-625 (-2 (|:| -1426 *5) (|:| -2772 *3)))) (-5 *1 (-789 *5 *6 *3 *7)) (-4 *3 (-636 *6)) (-4 *7 (-636 (-402 *6))))) (-3319 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *5 (-1208 *4)) (-5 *2 (-625 (-2 (|:| |deg| (-751)) (|:| -2772 *5)))) (-5 *1 (-789 *4 *5 *3 *6)) (-4 *3 (-636 *5)) (-4 *6 (-636 (-402 *5))))) (-3309 (*1 *2 *3) (-12 (-4 *2 (-1208 *4)) (-5 *1 (-789 *4 *2 *3 *5)) (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *3 (-636 *2)) (-4 *5 (-636 (-402 *2)))))) -(-10 -7 (-15 -3309 (|#2| |#3|)) (-15 -3319 ((-625 (-2 (|:| |deg| (-751)) (|:| -2772 |#2|))) |#3|)) (-15 -3329 ((-625 (-2 (|:| -1426 |#1|) (|:| -2772 |#3|))) |#3| (-1 (-625 |#1|) |#2|))) (-15 -3385 ((-625 (-2 (|:| |poly| |#2|) (|:| -2772 |#3|))) |#3| (-1 (-625 |#1|) |#2|))) (-15 -3374 ((-625 (-2 (|:| |frac| (-402 |#2|)) (|:| -2772 |#3|))) |#3| (-1 (-625 |#2|) |#2| (-1145 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3338 (|#3| |#3| |#2|)) (-15 -3338 (|#3| |#3| (-402 |#2|)))) -((-3348 (((-2 (|:| -1270 (-625 (-402 |#2|))) (|:| -2351 (-669 |#1|))) (-634 |#2| (-402 |#2|)) (-625 (-402 |#2|))) 121) (((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -1270 (-625 (-402 |#2|)))) (-634 |#2| (-402 |#2|)) (-402 |#2|)) 120) (((-2 (|:| -1270 (-625 (-402 |#2|))) (|:| -2351 (-669 |#1|))) (-633 (-402 |#2|)) (-625 (-402 |#2|))) 115) (((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -1270 (-625 (-402 |#2|)))) (-633 (-402 |#2|)) (-402 |#2|)) 113)) (-3357 ((|#2| (-634 |#2| (-402 |#2|))) 80) ((|#2| (-633 (-402 |#2|))) 83))) -(((-790 |#1| |#2|) (-10 -7 (-15 -3348 ((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -1270 (-625 (-402 |#2|)))) (-633 (-402 |#2|)) (-402 |#2|))) (-15 -3348 ((-2 (|:| -1270 (-625 (-402 |#2|))) (|:| -2351 (-669 |#1|))) (-633 (-402 |#2|)) (-625 (-402 |#2|)))) (-15 -3348 ((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -1270 (-625 (-402 |#2|)))) (-634 |#2| (-402 |#2|)) (-402 |#2|))) (-15 -3348 ((-2 (|:| -1270 (-625 (-402 |#2|))) (|:| -2351 (-669 |#1|))) (-634 |#2| (-402 |#2|)) (-625 (-402 |#2|)))) (-15 -3357 (|#2| (-633 (-402 |#2|)))) (-15 -3357 (|#2| (-634 |#2| (-402 |#2|))))) (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))) (-1208 |#1|)) (T -790)) -((-3357 (*1 *2 *3) (-12 (-5 *3 (-634 *2 (-402 *2))) (-4 *2 (-1208 *4)) (-5 *1 (-790 *4 *2)) (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-633 (-402 *2))) (-4 *2 (-1208 *4)) (-5 *1 (-790 *4 *2)) (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6 (-402 *6))) (-4 *6 (-1208 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-5 *2 (-2 (|:| -1270 (-625 (-402 *6))) (|:| -2351 (-669 *5)))) (-5 *1 (-790 *5 *6)) (-5 *4 (-625 (-402 *6))))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) (-5 *1 (-790 *5 *6)))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-633 (-402 *6))) (-4 *6 (-1208 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-5 *2 (-2 (|:| -1270 (-625 (-402 *6))) (|:| -2351 (-669 *5)))) (-5 *1 (-790 *5 *6)) (-5 *4 (-625 (-402 *6))))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-633 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) (-5 *1 (-790 *5 *6))))) -(-10 -7 (-15 -3348 ((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -1270 (-625 (-402 |#2|)))) (-633 (-402 |#2|)) (-402 |#2|))) (-15 -3348 ((-2 (|:| -1270 (-625 (-402 |#2|))) (|:| -2351 (-669 |#1|))) (-633 (-402 |#2|)) (-625 (-402 |#2|)))) (-15 -3348 ((-2 (|:| |particular| (-3 (-402 |#2|) "failed")) (|:| -1270 (-625 (-402 |#2|)))) (-634 |#2| (-402 |#2|)) (-402 |#2|))) (-15 -3348 ((-2 (|:| -1270 (-625 (-402 |#2|))) (|:| -2351 (-669 |#1|))) (-634 |#2| (-402 |#2|)) (-625 (-402 |#2|)))) (-15 -3357 (|#2| (-633 (-402 |#2|)))) (-15 -3357 (|#2| (-634 |#2| (-402 |#2|))))) -((-3366 (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#1|))) |#5| |#4|) 48))) -(((-791 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3366 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#1|))) |#5| |#4|))) (-358) (-636 |#1|) (-1208 |#1|) (-705 |#1| |#3|) (-636 |#4|)) (T -791)) -((-3366 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *7 (-1208 *5)) (-4 *4 (-705 *5 *7)) (-5 *2 (-2 (|:| -2351 (-669 *6)) (|:| |vec| (-1232 *5)))) (-5 *1 (-791 *5 *6 *7 *4 *3)) (-4 *6 (-636 *5)) (-4 *3 (-636 *4))))) -(-10 -7 (-15 -3366 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#1|))) |#5| |#4|))) -((-3374 (((-625 (-2 (|:| |frac| (-402 |#2|)) (|:| -2772 (-634 |#2| (-402 |#2|))))) (-634 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|)) 47)) (-3396 (((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|))) 138 (|has| |#1| (-27))) (((-625 (-402 |#2|)) (-633 (-402 |#2|)) (-1 (-413 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-625 (-402 |#2|)) (-633 (-402 |#2|))) 140 (|has| |#1| (-27))) (((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)) (-1 (-625 |#1|) |#2|) (-1 (-413 |#2|) |#2|)) 38) (((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)) (-1 (-625 |#1|) |#2|)) 39) (((-625 (-402 |#2|)) (-633 (-402 |#2|)) (-1 (-625 |#1|) |#2|) (-1 (-413 |#2|) |#2|)) 36) (((-625 (-402 |#2|)) (-633 (-402 |#2|)) (-1 (-625 |#1|) |#2|)) 37)) (-3385 (((-625 (-2 (|:| |poly| |#2|) (|:| -2772 (-634 |#2| (-402 |#2|))))) (-634 |#2| (-402 |#2|)) (-1 (-625 |#1|) |#2|)) 83))) -(((-792 |#1| |#2|) (-10 -7 (-15 -3396 ((-625 (-402 |#2|)) (-633 (-402 |#2|)) (-1 (-625 |#1|) |#2|))) (-15 -3396 ((-625 (-402 |#2|)) (-633 (-402 |#2|)) (-1 (-625 |#1|) |#2|) (-1 (-413 |#2|) |#2|))) (-15 -3396 ((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)) (-1 (-625 |#1|) |#2|))) (-15 -3396 ((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)) (-1 (-625 |#1|) |#2|) (-1 (-413 |#2|) |#2|))) (-15 -3374 ((-625 (-2 (|:| |frac| (-402 |#2|)) (|:| -2772 (-634 |#2| (-402 |#2|))))) (-634 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3385 ((-625 (-2 (|:| |poly| |#2|) (|:| -2772 (-634 |#2| (-402 |#2|))))) (-634 |#2| (-402 |#2|)) (-1 (-625 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3396 ((-625 (-402 |#2|)) (-633 (-402 |#2|)))) (-15 -3396 ((-625 (-402 |#2|)) (-633 (-402 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3396 ((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)))) (-15 -3396 ((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|)))) |%noBranch|)) (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))) (-1208 |#1|)) (T -792)) -((-3396 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6 (-402 *6))) (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1208 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-5 *2 (-625 (-402 *6))) (-5 *1 (-792 *5 *6)))) (-3396 (*1 *2 *3) (-12 (-5 *3 (-634 *5 (-402 *5))) (-4 *5 (-1208 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-5 *2 (-625 (-402 *5))) (-5 *1 (-792 *4 *5)))) (-3396 (*1 *2 *3 *4) (-12 (-5 *3 (-633 (-402 *6))) (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1208 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-5 *2 (-625 (-402 *6))) (-5 *1 (-792 *5 *6)))) (-3396 (*1 *2 *3) (-12 (-5 *3 (-633 (-402 *5))) (-4 *5 (-1208 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-5 *2 (-625 (-402 *5))) (-5 *1 (-792 *4 *5)))) (-3385 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-625 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-4 *6 (-1208 *5)) (-5 *2 (-625 (-2 (|:| |poly| *6) (|:| -2772 (-634 *6 (-402 *6)))))) (-5 *1 (-792 *5 *6)) (-5 *3 (-634 *6 (-402 *6))))) (-3374 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1208 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-5 *2 (-625 (-2 (|:| |frac| (-402 *6)) (|:| -2772 (-634 *6 (-402 *6)))))) (-5 *1 (-792 *5 *6)) (-5 *3 (-634 *6 (-402 *6))))) (-3396 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 *7 (-402 *7))) (-5 *4 (-1 (-625 *6) *7)) (-5 *5 (-1 (-413 *7) *7)) (-4 *6 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-4 *7 (-1208 *6)) (-5 *2 (-625 (-402 *7))) (-5 *1 (-792 *6 *7)))) (-3396 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6 (-402 *6))) (-5 *4 (-1 (-625 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-4 *6 (-1208 *5)) (-5 *2 (-625 (-402 *6))) (-5 *1 (-792 *5 *6)))) (-3396 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-633 (-402 *7))) (-5 *4 (-1 (-625 *6) *7)) (-5 *5 (-1 (-413 *7) *7)) (-4 *6 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-4 *7 (-1208 *6)) (-5 *2 (-625 (-402 *7))) (-5 *1 (-792 *6 *7)))) (-3396 (*1 *2 *3 *4) (-12 (-5 *3 (-633 (-402 *6))) (-5 *4 (-1 (-625 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) (-4 *6 (-1208 *5)) (-5 *2 (-625 (-402 *6))) (-5 *1 (-792 *5 *6))))) -(-10 -7 (-15 -3396 ((-625 (-402 |#2|)) (-633 (-402 |#2|)) (-1 (-625 |#1|) |#2|))) (-15 -3396 ((-625 (-402 |#2|)) (-633 (-402 |#2|)) (-1 (-625 |#1|) |#2|) (-1 (-413 |#2|) |#2|))) (-15 -3396 ((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)) (-1 (-625 |#1|) |#2|))) (-15 -3396 ((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)) (-1 (-625 |#1|) |#2|) (-1 (-413 |#2|) |#2|))) (-15 -3374 ((-625 (-2 (|:| |frac| (-402 |#2|)) (|:| -2772 (-634 |#2| (-402 |#2|))))) (-634 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3385 ((-625 (-2 (|:| |poly| |#2|) (|:| -2772 (-634 |#2| (-402 |#2|))))) (-634 |#2| (-402 |#2|)) (-1 (-625 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3396 ((-625 (-402 |#2|)) (-633 (-402 |#2|)))) (-15 -3396 ((-625 (-402 |#2|)) (-633 (-402 |#2|)) (-1 (-413 |#2|) |#2|))) (-15 -3396 ((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)))) (-15 -3396 ((-625 (-402 |#2|)) (-634 |#2| (-402 |#2|)) (-1 (-413 |#2|) |#2|)))) |%noBranch|)) -((-3406 (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#1|))) (-669 |#2|) (-1232 |#1|)) 85) (((-2 (|:| A (-669 |#1|)) (|:| |eqs| (-625 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1232 |#1|)) (|:| -2772 |#2|) (|:| |rh| |#1|))))) (-669 |#1|) (-1232 |#1|)) 15)) (-3414 (((-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|)))) (-669 |#2|) (-1232 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1270 (-625 |#1|))) |#2| |#1|)) 92)) (-1728 (((-3 (-2 (|:| |particular| (-1232 |#1|)) (|:| -1270 (-669 |#1|))) "failed") (-669 |#1|) (-1232 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1270 (-625 |#1|))) "failed") |#2| |#1|)) 43))) -(((-793 |#1| |#2|) (-10 -7 (-15 -3406 ((-2 (|:| A (-669 |#1|)) (|:| |eqs| (-625 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1232 |#1|)) (|:| -2772 |#2|) (|:| |rh| |#1|))))) (-669 |#1|) (-1232 |#1|))) (-15 -3406 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#1|))) (-669 |#2|) (-1232 |#1|))) (-15 -1728 ((-3 (-2 (|:| |particular| (-1232 |#1|)) (|:| -1270 (-669 |#1|))) "failed") (-669 |#1|) (-1232 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1270 (-625 |#1|))) "failed") |#2| |#1|))) (-15 -3414 ((-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|)))) (-669 |#2|) (-1232 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1270 (-625 |#1|))) |#2| |#1|)))) (-358) (-636 |#1|)) (T -793)) -((-3414 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1270 (-625 *6))) *7 *6)) (-4 *6 (-358)) (-4 *7 (-636 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1232 *6) "failed")) (|:| -1270 (-625 (-1232 *6))))) (-5 *1 (-793 *6 *7)) (-5 *4 (-1232 *6)))) (-1728 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1270 (-625 *6))) "failed") *7 *6)) (-4 *6 (-358)) (-4 *7 (-636 *6)) (-5 *2 (-2 (|:| |particular| (-1232 *6)) (|:| -1270 (-669 *6)))) (-5 *1 (-793 *6 *7)) (-5 *3 (-669 *6)) (-5 *4 (-1232 *6)))) (-3406 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-636 *5)) (-5 *2 (-2 (|:| -2351 (-669 *6)) (|:| |vec| (-1232 *5)))) (-5 *1 (-793 *5 *6)) (-5 *3 (-669 *6)) (-5 *4 (-1232 *5)))) (-3406 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-5 *2 (-2 (|:| A (-669 *5)) (|:| |eqs| (-625 (-2 (|:| C (-669 *5)) (|:| |g| (-1232 *5)) (|:| -2772 *6) (|:| |rh| *5)))))) (-5 *1 (-793 *5 *6)) (-5 *3 (-669 *5)) (-5 *4 (-1232 *5)) (-4 *6 (-636 *5))))) -(-10 -7 (-15 -3406 ((-2 (|:| A (-669 |#1|)) (|:| |eqs| (-625 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1232 |#1|)) (|:| -2772 |#2|) (|:| |rh| |#1|))))) (-669 |#1|) (-1232 |#1|))) (-15 -3406 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#1|))) (-669 |#2|) (-1232 |#1|))) (-15 -1728 ((-3 (-2 (|:| |particular| (-1232 |#1|)) (|:| -1270 (-669 |#1|))) "failed") (-669 |#1|) (-1232 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1270 (-625 |#1|))) "failed") |#2| |#1|))) (-15 -3414 ((-2 (|:| |particular| (-3 (-1232 |#1|) "failed")) (|:| -1270 (-625 (-1232 |#1|)))) (-669 |#2|) (-1232 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1270 (-625 |#1|))) |#2| |#1|)))) -((-3426 (((-669 |#1|) (-625 |#1|) (-751)) 13) (((-669 |#1|) (-625 |#1|)) 14)) (-3436 (((-3 (-1232 |#1|) "failed") |#2| |#1| (-625 |#1|)) 34)) (-2535 (((-3 |#1| "failed") |#2| |#1| (-625 |#1|) (-1 |#1| |#1|)) 42))) -(((-794 |#1| |#2|) (-10 -7 (-15 -3426 ((-669 |#1|) (-625 |#1|))) (-15 -3426 ((-669 |#1|) (-625 |#1|) (-751))) (-15 -3436 ((-3 (-1232 |#1|) "failed") |#2| |#1| (-625 |#1|))) (-15 -2535 ((-3 |#1| "failed") |#2| |#1| (-625 |#1|) (-1 |#1| |#1|)))) (-358) (-636 |#1|)) (T -794)) -((-2535 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-625 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-358)) (-5 *1 (-794 *2 *3)) (-4 *3 (-636 *2)))) (-3436 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-625 *4)) (-4 *4 (-358)) (-5 *2 (-1232 *4)) (-5 *1 (-794 *4 *3)) (-4 *3 (-636 *4)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-5 *4 (-751)) (-4 *5 (-358)) (-5 *2 (-669 *5)) (-5 *1 (-794 *5 *6)) (-4 *6 (-636 *5)))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-358)) (-5 *2 (-669 *4)) (-5 *1 (-794 *4 *5)) (-4 *5 (-636 *4))))) -(-10 -7 (-15 -3426 ((-669 |#1|) (-625 |#1|))) (-15 -3426 ((-669 |#1|) (-625 |#1|) (-751))) (-15 -3436 ((-3 (-1232 |#1|) "failed") |#2| |#1| (-625 |#1|))) (-15 -2535 ((-3 |#1| "failed") |#2| |#1| (-625 |#1|) (-1 |#1| |#1|)))) -((-1671 (((-112) $ $) NIL (|has| |#2| (-1073)))) (-3641 (((-112) $) NIL (|has| |#2| (-130)))) (-2787 (($ (-897)) NIL (|has| |#2| (-1025)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-1282 (($ $ $) NIL (|has| |#2| (-773)))) (-2077 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-3495 (((-112) $ (-751)) NIL)) (-2894 (((-751)) NIL (|has| |#2| (-363)))) (-4127 (((-552) $) NIL (|has| |#2| (-825)))) (-1851 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (-12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073)))) (((-3 (-402 (-552)) "failed") $) NIL (-12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1073)))) (-1895 (((-552) $) NIL (-12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073)))) (((-402 (-552)) $) NIL (-12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) ((|#2| $) NIL (|has| |#2| (-1073)))) (-1794 (((-669 (-552)) (-669 $)) NIL (-12 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (-12 (|has| |#2| (-621 (-552))) (|has| |#2| (-1025)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL (|has| |#2| (-1025))) (((-669 |#2|) (-669 $)) NIL (|has| |#2| (-1025)))) (-4174 (((-3 $ "failed") $) NIL (|has| |#2| (-707)))) (-3702 (($) NIL (|has| |#2| (-363)))) (-3692 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#2| $ (-552)) NIL)) (-3620 (((-112) $) NIL (|has| |#2| (-825)))) (-3799 (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3650 (((-112) $) NIL (|has| |#2| (-707)))) (-3630 (((-112) $) NIL (|has| |#2| (-825)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3730 (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3683 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-4318 (((-897) $) NIL (|has| |#2| (-363)))) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#2| (-1073)))) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-3123 (($ (-897)) NIL (|has| |#2| (-363)))) (-2831 (((-1093) $) NIL (|has| |#2| (-1073)))) (-2924 ((|#2| $) NIL (|has| (-552) (-827)))) (-2518 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-552)) NIL)) (-1443 ((|#2| $ $) NIL (|has| |#2| (-1025)))) (-3878 (($ (-1232 |#2|)) NIL)) (-3904 (((-133)) NIL (|has| |#2| (-358)))) (-3072 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2840 (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-1232 |#2|) $) NIL) (($ (-552)) NIL (-1523 (-12 (|has| |#2| (-1014 (-552))) (|has| |#2| (-1073))) (|has| |#2| (-1025)))) (($ (-402 (-552))) NIL (-12 (|has| |#2| (-1014 (-402 (-552)))) (|has| |#2| (-1073)))) (($ |#2|) NIL (|has| |#2| (-1073))) (((-839) $) NIL (|has| |#2| (-597 (-839))))) (-4141 (((-751)) NIL (|has| |#2| (-1025)))) (-1900 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-1727 (($ $) NIL (|has| |#2| (-825)))) (-2089 (($) NIL (|has| |#2| (-130)) CONST)) (-2100 (($) NIL (|has| |#2| (-707)) CONST)) (-3768 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2346 (((-112) $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2320 (((-112) $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2281 (((-112) $ $) NIL (|has| |#2| (-1073)))) (-2334 (((-112) $ $) NIL (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2307 (((-112) $ $) 11 (-1523 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2404 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-2393 (($ $ $) NIL (|has| |#2| (-1025))) (($ $) NIL (|has| |#2| (-1025)))) (-2382 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-751)) NIL (|has| |#2| (-707))) (($ $ (-897)) NIL (|has| |#2| (-707)))) (* (($ (-552) $) NIL (|has| |#2| (-1025))) (($ $ $) NIL (|has| |#2| (-707))) (($ $ |#2|) NIL (|has| |#2| (-707))) (($ |#2| $) NIL (|has| |#2| (-707))) (($ (-751) $) NIL (|has| |#2| (-130))) (($ (-897) $) NIL (|has| |#2| (-25)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-795 |#1| |#2| |#3|) (-234 |#1| |#2|) (-751) (-773) (-1 (-112) (-1232 |#2|) (-1232 |#2|))) (T -795)) -NIL -(-234 |#1| |#2|) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3169 (((-625 (-751)) $) NIL) (((-625 (-751)) $ (-1149)) NIL)) (-3469 (((-751) $) NIL) (((-751) $ (-1149)) NIL)) (-3982 (((-625 (-798 (-1149))) $) NIL)) (-3793 (((-1145 $) $ (-798 (-1149))) NIL) (((-1145 |#1|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-798 (-1149)))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2194 (($ $) NIL (|has| |#1| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3153 (($ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-798 (-1149)) "failed") $) NIL) (((-3 (-1149) "failed") $) NIL) (((-3 (-1098 |#1| (-1149)) "failed") $) NIL)) (-1895 ((|#1| $) NIL) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-798 (-1149)) $) NIL) (((-1149) $) NIL) (((-1098 |#1| (-1149)) $) NIL)) (-3207 (($ $ $ (-798 (-1149))) NIL (|has| |#1| (-170)))) (-4169 (($ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#1| (-446))) (($ $ (-798 (-1149))) NIL (|has| |#1| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#1| (-885)))) (-1347 (($ $ |#1| (-524 (-798 (-1149))) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-798 (-1149)) (-862 (-374))) (|has| |#1| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-798 (-1149)) (-862 (-552))) (|has| |#1| (-862 (-552)))))) (-2172 (((-751) $ (-1149)) NIL) (((-751) $) NIL)) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-3970 (($ (-1145 |#1|) (-798 (-1149))) NIL) (($ (-1145 $) (-798 (-1149))) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-524 (-798 (-1149)))) NIL) (($ $ (-798 (-1149)) (-751)) NIL) (($ $ (-625 (-798 (-1149))) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-798 (-1149))) NIL)) (-4134 (((-524 (-798 (-1149))) $) NIL) (((-751) $ (-798 (-1149))) NIL) (((-625 (-751)) $ (-625 (-798 (-1149)))) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1357 (($ (-1 (-524 (-798 (-1149))) (-524 (-798 (-1149)))) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-3479 (((-1 $ (-751)) (-1149)) NIL) (((-1 $ (-751)) $) NIL (|has| |#1| (-229)))) (-1942 (((-3 (-798 (-1149)) "failed") $) NIL)) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2578 (((-798 (-1149)) $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2883 (((-1131) $) NIL)) (-3162 (((-112) $) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-798 (-1149))) (|:| -3564 (-751))) "failed") $) NIL)) (-4186 (($ $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 ((|#1| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-885)))) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-798 (-1149)) |#1|) NIL) (($ $ (-625 (-798 (-1149))) (-625 |#1|)) NIL) (($ $ (-798 (-1149)) $) NIL) (($ $ (-625 (-798 (-1149))) (-625 $)) NIL) (($ $ (-1149) $) NIL (|has| |#1| (-229))) (($ $ (-625 (-1149)) (-625 $)) NIL (|has| |#1| (-229))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-229))) (($ $ (-625 (-1149)) (-625 |#1|)) NIL (|has| |#1| (-229)))) (-3217 (($ $ (-798 (-1149))) NIL (|has| |#1| (-170)))) (-3072 (($ $ (-798 (-1149))) NIL) (($ $ (-625 (-798 (-1149)))) NIL) (($ $ (-798 (-1149)) (-751)) NIL) (($ $ (-625 (-798 (-1149))) (-625 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3177 (((-625 (-1149)) $) NIL)) (-4276 (((-524 (-798 (-1149))) $) NIL) (((-751) $ (-798 (-1149))) NIL) (((-625 (-751)) $ (-625 (-798 (-1149)))) NIL) (((-751) $ (-1149)) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-798 (-1149)) (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-798 (-1149)) (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-798 (-1149)) (-598 (-528))) (|has| |#1| (-598 (-528)))))) (-4108 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-798 (-1149))) NIL (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-798 (-1149))) NIL) (($ (-1149)) NIL) (($ (-1098 |#1| (-1149))) NIL) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-524 (-798 (-1149)))) NIL) (($ $ (-798 (-1149)) (-751)) NIL) (($ $ (-625 (-798 (-1149))) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-798 (-1149))) NIL) (($ $ (-625 (-798 (-1149)))) NIL) (($ $ (-798 (-1149)) (-751)) NIL) (($ $ (-625 (-798 (-1149))) (-625 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-796 |#1|) (-13 (-248 |#1| (-1149) (-798 (-1149)) (-524 (-798 (-1149)))) (-1014 (-1098 |#1| (-1149)))) (-1025)) (T -796)) -NIL -(-13 (-248 |#1| (-1149) (-798 (-1149)) (-524 (-798 (-1149)))) (-1014 (-1098 |#1| (-1149)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-358)))) (-3528 (($ $) NIL (|has| |#2| (-358)))) (-3509 (((-112) $) NIL (|has| |#2| (-358)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL (|has| |#2| (-358)))) (-1330 (((-413 $) $) NIL (|has| |#2| (-358)))) (-2408 (((-112) $ $) NIL (|has| |#2| (-358)))) (-3101 (($) NIL T CONST)) (-2851 (($ $ $) NIL (|has| |#2| (-358)))) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL (|has| |#2| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#2| (-358)))) (-2951 (((-112) $) NIL (|has| |#2| (-358)))) (-3650 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#2| (-358)))) (-2605 (($ (-625 $)) NIL (|has| |#2| (-358))) (($ $ $) NIL (|has| |#2| (-358)))) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 20 (|has| |#2| (-358)))) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#2| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#2| (-358))) (($ $ $) NIL (|has| |#2| (-358)))) (-3824 (((-413 $) $) NIL (|has| |#2| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#2| (-358)))) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#2| (-358)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#2| (-358)))) (-2397 (((-751) $) NIL (|has| |#2| (-358)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#2| (-358)))) (-3072 (($ $ (-751)) NIL) (($ $) 13)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-402 (-552))) NIL (|has| |#2| (-358))) (($ $) NIL (|has| |#2| (-358)))) (-4141 (((-751)) NIL)) (-3518 (((-112) $ $) NIL (|has| |#2| (-358)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-751)) NIL) (($ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) 15 (|has| |#2| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-897)) NIL) (($ $ (-552)) 18 (|has| |#2| (-358)))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-402 (-552)) $) NIL (|has| |#2| (-358))) (($ $ (-402 (-552))) NIL (|has| |#2| (-358))))) -(((-797 |#1| |#2| |#3|) (-13 (-111 $ $) (-229) (-10 -8 (IF (|has| |#2| (-358)) (-6 (-358)) |%noBranch|) (-15 -1683 ($ |#2|)) (-15 -1683 (|#2| $)))) (-1073) (-876 |#1|) |#1|) (T -797)) -((-1683 (*1 *1 *2) (-12 (-4 *3 (-1073)) (-14 *4 *3) (-5 *1 (-797 *3 *2 *4)) (-4 *2 (-876 *3)))) (-1683 (*1 *2 *1) (-12 (-4 *2 (-876 *3)) (-5 *1 (-797 *3 *2 *4)) (-4 *3 (-1073)) (-14 *4 *3)))) -(-13 (-111 $ $) (-229) (-10 -8 (IF (|has| |#2| (-358)) (-6 (-358)) |%noBranch|) (-15 -1683 ($ |#2|)) (-15 -1683 (|#2| $)))) -((-1671 (((-112) $ $) NIL)) (-3469 (((-751) $) NIL)) (-2195 ((|#1| $) 10)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-2172 (((-751) $) 11)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-3479 (($ |#1| (-751)) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3072 (($ $) NIL) (($ $ (-751)) NIL)) (-1683 (((-839) $) NIL) (($ |#1|) NIL)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL))) -(((-798 |#1|) (-261 |#1|) (-827)) (T -798)) -NIL -(-261 |#1|) -((-1671 (((-112) $ $) NIL)) (-3202 (((-625 |#1|) $) 29)) (-2894 (((-751) $) NIL)) (-3101 (($) NIL T CONST)) (-4211 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-2936 (($ $) 31)) (-4174 (((-3 $ "failed") $) NIL)) (-3482 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3650 (((-112) $) NIL)) (-3461 ((|#1| $ (-552)) NIL)) (-3472 (((-751) $ (-552)) NIL)) (-4191 (($ $) 36)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-4222 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-3511 (((-112) $ $) 34)) (-3456 (((-751) $) 25)) (-2883 (((-1131) $) NIL)) (-3492 (($ $ $) NIL)) (-3502 (($ $ $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 ((|#1| $) 30)) (-3449 (((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-751)))) $) NIL)) (-2813 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-1683 (((-839) $) NIL) (($ |#1|) NIL)) (-2100 (($) 15 T CONST)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 35)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ |#1| (-751)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-799 |#1|) (-13 (-823) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-751))) (-15 -2924 (|#1| $)) (-15 -2936 ($ $)) (-15 -4191 ($ $)) (-15 -3511 ((-112) $ $)) (-15 -3502 ($ $ $)) (-15 -3492 ($ $ $)) (-15 -4222 ((-3 $ "failed") $ $)) (-15 -4211 ((-3 $ "failed") $ $)) (-15 -4222 ((-3 $ "failed") $ |#1|)) (-15 -4211 ((-3 $ "failed") $ |#1|)) (-15 -2813 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3482 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2894 ((-751) $)) (-15 -3472 ((-751) $ (-552))) (-15 -3461 (|#1| $ (-552))) (-15 -3449 ((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-751)))) $)) (-15 -3456 ((-751) $)) (-15 -3202 ((-625 |#1|) $)))) (-827)) (T -799)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-2924 (*1 *2 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-2936 (*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4191 (*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-3511 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-3502 (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-3492 (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4222 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4211 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4222 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4211 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-2813 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-799 *3)) (|:| |rm| (-799 *3)))) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-3482 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-799 *3)) (|:| |mm| (-799 *3)) (|:| |rm| (-799 *3)))) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-2894 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-3472 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-751)) (-5 *1 (-799 *4)) (-4 *4 (-827)))) (-3461 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 (-751))))) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-3202 (*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-799 *3)) (-4 *3 (-827))))) -(-13 (-823) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-751))) (-15 -2924 (|#1| $)) (-15 -2936 ($ $)) (-15 -4191 ($ $)) (-15 -3511 ((-112) $ $)) (-15 -3502 ($ $ $)) (-15 -3492 ($ $ $)) (-15 -4222 ((-3 $ "failed") $ $)) (-15 -4211 ((-3 $ "failed") $ $)) (-15 -4222 ((-3 $ "failed") $ |#1|)) (-15 -4211 ((-3 $ "failed") $ |#1|)) (-15 -2813 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3482 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2894 ((-751) $)) (-15 -3472 ((-751) $ (-552))) (-15 -3461 (|#1| $ (-552))) (-15 -3449 ((-625 (-2 (|:| |gen| |#1|) (|:| -2863 (-751)))) $)) (-15 -3456 ((-751) $)) (-15 -3202 ((-625 |#1|) $)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-4127 (((-552) $) 51)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3620 (((-112) $) 49)) (-3650 (((-112) $) 30)) (-3630 (((-112) $) 50)) (-3658 (($ $ $) 48)) (-3332 (($ $ $) 47)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-2802 (((-3 $ "failed") $ $) 40)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-1727 (($ $) 52)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2346 (((-112) $ $) 45)) (-2320 (((-112) $ $) 44)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 46)) (-2307 (((-112) $ $) 43)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-800) (-138)) (T -800)) -NIL -(-13 (-544) (-825)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-285) . T) ((-544) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-775) . T) ((-825) . T) ((-827) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-3520 (($ (-1093)) 7)) (-3560 (((-112) $ (-1131) (-1093)) 15)) (-3551 (((-802) $) 12)) (-3539 (((-802) $) 11)) (-3530 (((-1237) $) 9)) (-3571 (((-112) $ (-1093)) 16))) -(((-801) (-10 -8 (-15 -3520 ($ (-1093))) (-15 -3530 ((-1237) $)) (-15 -3539 ((-802) $)) (-15 -3551 ((-802) $)) (-15 -3560 ((-112) $ (-1131) (-1093))) (-15 -3571 ((-112) $ (-1093))))) (T -801)) -((-3571 (*1 *2 *1 *3) (-12 (-5 *3 (-1093)) (-5 *2 (-112)) (-5 *1 (-801)))) (-3560 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-1093)) (-5 *2 (-112)) (-5 *1 (-801)))) (-3551 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-801)))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-801)))) (-3530 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-801)))) (-3520 (*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-801))))) -(-10 -8 (-15 -3520 ($ (-1093))) (-15 -3530 ((-1237) $)) (-15 -3539 ((-802) $)) (-15 -3551 ((-802) $)) (-15 -3560 ((-112) $ (-1131) (-1093))) (-15 -3571 ((-112) $ (-1093)))) -((-3616 (((-1237) $ (-803)) 12)) (-3787 (((-1237) $ (-1149)) 32)) (-2664 (((-1237) $ (-1131) (-1131)) 34)) (-2655 (((-1237) $ (-1131)) 33)) (-3689 (((-1237) $) 19)) (-3766 (((-1237) $ (-552)) 28)) (-3776 (((-1237) $ (-221)) 30)) (-3679 (((-1237) $) 18)) (-3756 (((-1237) $) 26)) (-3747 (((-1237) $) 25)) (-3726 (((-1237) $) 23)) (-3736 (((-1237) $) 24)) (-3719 (((-1237) $) 22)) (-3708 (((-1237) $) 21)) (-3698 (((-1237) $) 20)) (-3656 (((-1237) $) 16)) (-3668 (((-1237) $) 17)) (-3646 (((-1237) $) 15)) (-3636 (((-1237) $) 14)) (-3625 (((-1237) $) 13)) (-3594 (($ (-1131) (-803)) 9)) (-3583 (($ (-1131) (-1131) (-803)) 8)) (-2842 (((-1149) $) 51)) (-2877 (((-1149) $) 55)) (-2866 (((-2 (|:| |cd| (-1131)) (|:| -1288 (-1131))) $) 54)) (-2855 (((-1131) $) 52)) (-2737 (((-1237) $) 41)) (-2818 (((-552) $) 49)) (-2832 (((-221) $) 50)) (-2727 (((-1237) $) 40)) (-2806 (((-1237) $) 48)) (-2795 (((-1237) $) 47)) (-2775 (((-1237) $) 45)) (-2786 (((-1237) $) 46)) (-2765 (((-1237) $) 44)) (-2755 (((-1237) $) 43)) (-2746 (((-1237) $) 42)) (-2708 (((-1237) $) 38)) (-2718 (((-1237) $) 39)) (-2697 (((-1237) $) 37)) (-2687 (((-1237) $) 36)) (-2677 (((-1237) $) 35)) (-3605 (((-1237) $) 11))) -(((-802) (-10 -8 (-15 -3583 ($ (-1131) (-1131) (-803))) (-15 -3594 ($ (-1131) (-803))) (-15 -3605 ((-1237) $)) (-15 -3616 ((-1237) $ (-803))) (-15 -3625 ((-1237) $)) (-15 -3636 ((-1237) $)) (-15 -3646 ((-1237) $)) (-15 -3656 ((-1237) $)) (-15 -3668 ((-1237) $)) (-15 -3679 ((-1237) $)) (-15 -3689 ((-1237) $)) (-15 -3698 ((-1237) $)) (-15 -3708 ((-1237) $)) (-15 -3719 ((-1237) $)) (-15 -3726 ((-1237) $)) (-15 -3736 ((-1237) $)) (-15 -3747 ((-1237) $)) (-15 -3756 ((-1237) $)) (-15 -3766 ((-1237) $ (-552))) (-15 -3776 ((-1237) $ (-221))) (-15 -3787 ((-1237) $ (-1149))) (-15 -2655 ((-1237) $ (-1131))) (-15 -2664 ((-1237) $ (-1131) (-1131))) (-15 -2677 ((-1237) $)) (-15 -2687 ((-1237) $)) (-15 -2697 ((-1237) $)) (-15 -2708 ((-1237) $)) (-15 -2718 ((-1237) $)) (-15 -2727 ((-1237) $)) (-15 -2737 ((-1237) $)) (-15 -2746 ((-1237) $)) (-15 -2755 ((-1237) $)) (-15 -2765 ((-1237) $)) (-15 -2775 ((-1237) $)) (-15 -2786 ((-1237) $)) (-15 -2795 ((-1237) $)) (-15 -2806 ((-1237) $)) (-15 -2818 ((-552) $)) (-15 -2832 ((-221) $)) (-15 -2842 ((-1149) $)) (-15 -2855 ((-1131) $)) (-15 -2866 ((-2 (|:| |cd| (-1131)) (|:| -1288 (-1131))) $)) (-15 -2877 ((-1149) $)))) (T -802)) -((-2877 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-802)))) (-2866 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1131)) (|:| -1288 (-1131)))) (-5 *1 (-802)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-802)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-802)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-802)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-802)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2765 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2755 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2746 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2737 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2718 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2708 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2664 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-802)))) (-2655 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-802)))) (-3787 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-802)))) (-3776 (*1 *2 *1 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1237)) (-5 *1 (-802)))) (-3766 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-802)))) (-3756 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3747 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3698 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3656 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3646 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3636 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3616 (*1 *2 *1 *3) (-12 (-5 *3 (-803)) (-5 *2 (-1237)) (-5 *1 (-802)))) (-3605 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-3594 (*1 *1 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-803)) (-5 *1 (-802)))) (-3583 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-803)) (-5 *1 (-802))))) -(-10 -8 (-15 -3583 ($ (-1131) (-1131) (-803))) (-15 -3594 ($ (-1131) (-803))) (-15 -3605 ((-1237) $)) (-15 -3616 ((-1237) $ (-803))) (-15 -3625 ((-1237) $)) (-15 -3636 ((-1237) $)) (-15 -3646 ((-1237) $)) (-15 -3656 ((-1237) $)) (-15 -3668 ((-1237) $)) (-15 -3679 ((-1237) $)) (-15 -3689 ((-1237) $)) (-15 -3698 ((-1237) $)) (-15 -3708 ((-1237) $)) (-15 -3719 ((-1237) $)) (-15 -3726 ((-1237) $)) (-15 -3736 ((-1237) $)) (-15 -3747 ((-1237) $)) (-15 -3756 ((-1237) $)) (-15 -3766 ((-1237) $ (-552))) (-15 -3776 ((-1237) $ (-221))) (-15 -3787 ((-1237) $ (-1149))) (-15 -2655 ((-1237) $ (-1131))) (-15 -2664 ((-1237) $ (-1131) (-1131))) (-15 -2677 ((-1237) $)) (-15 -2687 ((-1237) $)) (-15 -2697 ((-1237) $)) (-15 -2708 ((-1237) $)) (-15 -2718 ((-1237) $)) (-15 -2727 ((-1237) $)) (-15 -2737 ((-1237) $)) (-15 -2746 ((-1237) $)) (-15 -2755 ((-1237) $)) (-15 -2765 ((-1237) $)) (-15 -2775 ((-1237) $)) (-15 -2786 ((-1237) $)) (-15 -2795 ((-1237) $)) (-15 -2806 ((-1237) $)) (-15 -2818 ((-552) $)) (-15 -2832 ((-221) $)) (-15 -2842 ((-1149) $)) (-15 -2855 ((-1131) $)) (-15 -2866 ((-2 (|:| |cd| (-1131)) (|:| -1288 (-1131))) $)) (-15 -2877 ((-1149) $))) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 12)) (-2908 (($) 15)) (-2918 (($) 13)) (-2898 (($) 16)) (-2888 (($) 14)) (-2281 (((-112) $ $) 8))) -(((-803) (-13 (-1073) (-10 -8 (-15 -2918 ($)) (-15 -2908 ($)) (-15 -2898 ($)) (-15 -2888 ($))))) (T -803)) -((-2918 (*1 *1) (-5 *1 (-803))) (-2908 (*1 *1) (-5 *1 (-803))) (-2898 (*1 *1) (-5 *1 (-803))) (-2888 (*1 *1) (-5 *1 (-803)))) -(-13 (-1073) (-10 -8 (-15 -2918 ($)) (-15 -2908 ($)) (-15 -2898 ($)) (-15 -2888 ($)))) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 21) (($ (-1149)) 17)) (-2975 (((-112) $) 10)) (-2986 (((-112) $) 9)) (-2964 (((-112) $) 11)) (-2998 (((-112) $) 8)) (-2281 (((-112) $ $) 19))) -(((-804) (-13 (-1073) (-10 -8 (-15 -1683 ($ (-1149))) (-15 -2998 ((-112) $)) (-15 -2986 ((-112) $)) (-15 -2975 ((-112) $)) (-15 -2964 ((-112) $))))) (T -804)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-804)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804)))) (-2986 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804)))) (-2964 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804))))) -(-13 (-1073) (-10 -8 (-15 -1683 ($ (-1149))) (-15 -2998 ((-112) $)) (-15 -2986 ((-112) $)) (-15 -2975 ((-112) $)) (-15 -2964 ((-112) $)))) -((-1671 (((-112) $ $) NIL)) (-2930 (($ (-804) (-625 (-1149))) 24)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2950 (((-804) $) 25)) (-2940 (((-625 (-1149)) $) 26)) (-1683 (((-839) $) 23)) (-2281 (((-112) $ $) NIL))) -(((-805) (-13 (-1073) (-10 -8 (-15 -2950 ((-804) $)) (-15 -2940 ((-625 (-1149)) $)) (-15 -2930 ($ (-804) (-625 (-1149))))))) (T -805)) -((-2950 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-805)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-805)))) (-2930 (*1 *1 *2 *3) (-12 (-5 *2 (-804)) (-5 *3 (-625 (-1149))) (-5 *1 (-805))))) -(-13 (-1073) (-10 -8 (-15 -2950 ((-804) $)) (-15 -2940 ((-625 (-1149)) $)) (-15 -2930 ($ (-804) (-625 (-1149)))))) -((-3010 (((-1237) (-802) (-311 |#1|) (-112)) 23) (((-1237) (-802) (-311 |#1|)) 79) (((-1131) (-311 |#1|) (-112)) 78) (((-1131) (-311 |#1|)) 77))) -(((-806 |#1|) (-10 -7 (-15 -3010 ((-1131) (-311 |#1|))) (-15 -3010 ((-1131) (-311 |#1|) (-112))) (-15 -3010 ((-1237) (-802) (-311 |#1|))) (-15 -3010 ((-1237) (-802) (-311 |#1|) (-112)))) (-13 (-808) (-827) (-1025))) (T -806)) -((-3010 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802)) (-5 *4 (-311 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-808) (-827) (-1025))) (-5 *2 (-1237)) (-5 *1 (-806 *6)))) (-3010 (*1 *2 *3 *4) (-12 (-5 *3 (-802)) (-5 *4 (-311 *5)) (-4 *5 (-13 (-808) (-827) (-1025))) (-5 *2 (-1237)) (-5 *1 (-806 *5)))) (-3010 (*1 *2 *3 *4) (-12 (-5 *3 (-311 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-808) (-827) (-1025))) (-5 *2 (-1131)) (-5 *1 (-806 *5)))) (-3010 (*1 *2 *3) (-12 (-5 *3 (-311 *4)) (-4 *4 (-13 (-808) (-827) (-1025))) (-5 *2 (-1131)) (-5 *1 (-806 *4))))) -(-10 -7 (-15 -3010 ((-1131) (-311 |#1|))) (-15 -3010 ((-1131) (-311 |#1|) (-112))) (-15 -3010 ((-1237) (-802) (-311 |#1|))) (-15 -3010 ((-1237) (-802) (-311 |#1|) (-112)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3022 ((|#1| $) 10)) (-3362 (($ |#1|) 9)) (-3650 (((-112) $) NIL)) (-3957 (($ |#2| (-751)) NIL)) (-4134 (((-751) $) NIL)) (-4144 ((|#2| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3072 (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-4276 (((-751) $) NIL)) (-1683 (((-839) $) 17) (($ (-552)) NIL) (($ |#2|) NIL (|has| |#2| (-170)))) (-3637 ((|#2| $ (-751)) NIL)) (-4141 (((-751)) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-807 |#1| |#2|) (-13 (-689 |#2|) (-10 -8 (IF (|has| |#1| (-229)) (-6 (-229)) |%noBranch|) (-15 -3362 ($ |#1|)) (-15 -3022 (|#1| $)))) (-689 |#2|) (-1025)) (T -807)) -((-3362 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-807 *2 *3)) (-4 *2 (-689 *3)))) (-3022 (*1 *2 *1) (-12 (-4 *2 (-689 *3)) (-5 *1 (-807 *2 *3)) (-4 *3 (-1025))))) -(-13 (-689 |#2|) (-10 -8 (IF (|has| |#1| (-229)) (-6 (-229)) |%noBranch|) (-15 -3362 ($ |#1|)) (-15 -3022 (|#1| $)))) -((-3010 (((-1237) (-802) $ (-112)) 9) (((-1237) (-802) $) 8) (((-1131) $ (-112)) 7) (((-1131) $) 6))) -(((-808) (-138)) (T -808)) -((-3010 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-808)) (-5 *3 (-802)) (-5 *4 (-112)) (-5 *2 (-1237)))) (-3010 (*1 *2 *3 *1) (-12 (-4 *1 (-808)) (-5 *3 (-802)) (-5 *2 (-1237)))) (-3010 (*1 *2 *1 *3) (-12 (-4 *1 (-808)) (-5 *3 (-112)) (-5 *2 (-1131)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-808)) (-5 *2 (-1131))))) -(-13 (-10 -8 (-15 -3010 ((-1131) $)) (-15 -3010 ((-1131) $ (-112))) (-15 -3010 ((-1237) (-802) $)) (-15 -3010 ((-1237) (-802) $ (-112))))) -((-3098 (((-307) (-1131) (-1131)) 12)) (-3091 (((-112) (-1131) (-1131)) 34)) (-3083 (((-112) (-1131)) 33)) (-3054 (((-52) (-1131)) 25)) (-3043 (((-52) (-1131)) 23)) (-3033 (((-52) (-802)) 17)) (-3075 (((-625 (-1131)) (-1131)) 28)) (-3065 (((-625 (-1131))) 27))) -(((-809) (-10 -7 (-15 -3033 ((-52) (-802))) (-15 -3043 ((-52) (-1131))) (-15 -3054 ((-52) (-1131))) (-15 -3065 ((-625 (-1131)))) (-15 -3075 ((-625 (-1131)) (-1131))) (-15 -3083 ((-112) (-1131))) (-15 -3091 ((-112) (-1131) (-1131))) (-15 -3098 ((-307) (-1131) (-1131))))) (T -809)) -((-3098 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-307)) (-5 *1 (-809)))) (-3091 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-809)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-809)))) (-3075 (*1 *2 *3) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-809)) (-5 *3 (-1131)))) (-3065 (*1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-809)))) (-3054 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-52)) (-5 *1 (-809)))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-52)) (-5 *1 (-809)))) (-3033 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-52)) (-5 *1 (-809))))) -(-10 -7 (-15 -3033 ((-52) (-802))) (-15 -3043 ((-52) (-1131))) (-15 -3054 ((-52) (-1131))) (-15 -3065 ((-625 (-1131)))) (-15 -3075 ((-625 (-1131)) (-1131))) (-15 -3083 ((-112) (-1131))) (-15 -3091 ((-112) (-1131) (-1131))) (-15 -3098 ((-307) (-1131) (-1131)))) -((-1671 (((-112) $ $) 19)) (-3419 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2837 (($ $ $) 72)) (-2823 (((-112) $ $) 73)) (-3495 (((-112) $ (-751)) 8)) (-1517 (($ (-625 |#1|)) 68) (($) 67)) (-2873 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-3238 (($ $) 62)) (-2959 (($ $) 58 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1938 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-1416 (($ |#1| $) 57 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2871 (((-112) $ $) 64)) (-2909 (((-112) $ (-751)) 9)) (-3658 ((|#1| $) 78)) (-3260 (($ $ $) 81)) (-3280 (($ $ $) 80)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3332 ((|#1| $) 79)) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22)) (-2860 (($ $ $) 69)) (-2953 ((|#1| $) 39)) (-3966 (($ |#1| $) 40) (($ |#1| $ (-751)) 63)) (-2831 (((-1093) $) 21)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-3229 (((-625 (-2 (|:| -4120 |#1|) (|:| -2840 (-751)))) $) 61)) (-2849 (($ $ |#1|) 71) (($ $ $) 70)) (-4255 (($) 49) (($ (-625 |#1|)) 48)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 59 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 50)) (-1683 (((-839) $) 18)) (-3761 (($ (-625 |#1|)) 66) (($) 65)) (-2977 (($ (-625 |#1|)) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20)) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-810 |#1|) (-138) (-827)) (T -810)) -((-3658 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-827))))) -(-13 (-717 |t#1|) (-944 |t#1|) (-10 -8 (-15 -3658 (|t#1| $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-597 (-839)) . T) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-675 |#1|) . T) ((-717 |#1|) . T) ((-944 |#1|) . T) ((-1071 |#1|) . T) ((-1073) . T) ((-1186) . T)) -((-3126 (((-1237) (-1093) (-1093)) 47)) (-3116 (((-1237) (-801) (-52)) 44)) (-3108 (((-52) (-801)) 16))) -(((-811) (-10 -7 (-15 -3108 ((-52) (-801))) (-15 -3116 ((-1237) (-801) (-52))) (-15 -3126 ((-1237) (-1093) (-1093))))) (T -811)) -((-3126 (*1 *2 *3 *3) (-12 (-5 *3 (-1093)) (-5 *2 (-1237)) (-5 *1 (-811)))) (-3116 (*1 *2 *3 *4) (-12 (-5 *3 (-801)) (-5 *4 (-52)) (-5 *2 (-1237)) (-5 *1 (-811)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-801)) (-5 *2 (-52)) (-5 *1 (-811))))) -(-10 -7 (-15 -3108 ((-52) (-801))) (-15 -3116 ((-1237) (-801) (-52))) (-15 -3126 ((-1237) (-1093) (-1093)))) -((-1996 (((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|) (-813 |#2|)) 12) (((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|)) 13))) -(((-812 |#1| |#2|) (-10 -7 (-15 -1996 ((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|))) (-15 -1996 ((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|) (-813 |#2|)))) (-1073) (-1073)) (T -812)) -((-1996 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-813 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-813 *5)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-5 *1 (-812 *5 *6)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-813 *5)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-5 *2 (-813 *6)) (-5 *1 (-812 *5 *6))))) -(-10 -7 (-15 -1996 ((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|))) (-15 -1996 ((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|) (-813 |#2|)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL (|has| |#1| (-21)))) (-2077 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4127 (((-552) $) NIL (|has| |#1| (-825)))) (-3101 (($) NIL (|has| |#1| (-21)) CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 15)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) 9)) (-4174 (((-3 $ "failed") $) 40 (|has| |#1| (-825)))) (-2555 (((-3 (-402 (-552)) "failed") $) 49 (|has| |#1| (-537)))) (-2546 (((-112) $) 43 (|has| |#1| (-537)))) (-2538 (((-402 (-552)) $) 46 (|has| |#1| (-537)))) (-3620 (((-112) $) NIL (|has| |#1| (-825)))) (-3650 (((-112) $) NIL (|has| |#1| (-825)))) (-3630 (((-112) $) NIL (|has| |#1| (-825)))) (-3658 (($ $ $) NIL (|has| |#1| (-825)))) (-3332 (($ $ $) NIL (|has| |#1| (-825)))) (-2883 (((-1131) $) NIL)) (-1396 (($) 13)) (-2051 (((-112) $) 12)) (-2831 (((-1093) $) NIL)) (-2064 (((-112) $) 11)) (-1683 (((-839) $) 18) (($ (-402 (-552))) NIL (|has| |#1| (-1014 (-402 (-552))))) (($ |#1|) 8) (($ (-552)) NIL (-1523 (|has| |#1| (-825)) (|has| |#1| (-1014 (-552)))))) (-4141 (((-751)) 34 (|has| |#1| (-825)))) (-1727 (($ $) NIL (|has| |#1| (-825)))) (-2089 (($) 22 (|has| |#1| (-21)) CONST)) (-2100 (($) 31 (|has| |#1| (-825)) CONST)) (-2346 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2281 (((-112) $ $) 20)) (-2334 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2307 (((-112) $ $) 42 (|has| |#1| (-825)))) (-2393 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-2382 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-897)) NIL (|has| |#1| (-825))) (($ $ (-751)) NIL (|has| |#1| (-825)))) (* (($ $ $) 37 (|has| |#1| (-825))) (($ (-552) $) 25 (|has| |#1| (-21))) (($ (-751) $) NIL (|has| |#1| (-21))) (($ (-897) $) NIL (|has| |#1| (-21))))) -(((-813 |#1|) (-13 (-1073) (-406 |#1|) (-10 -8 (-15 -1396 ($)) (-15 -2064 ((-112) $)) (-15 -2051 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -2546 ((-112) $)) (-15 -2538 ((-402 (-552)) $)) (-15 -2555 ((-3 (-402 (-552)) "failed") $))) |%noBranch|))) (-1073)) (T -813)) -((-1396 (*1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1073)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-813 *3)) (-4 *3 (-1073)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-813 *3)) (-4 *3 (-1073)))) (-2546 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-813 *3)) (-4 *3 (-537)) (-4 *3 (-1073)))) (-2538 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-813 *3)) (-4 *3 (-537)) (-4 *3 (-1073)))) (-2555 (*1 *2 *1) (|partial| -12 (-5 *2 (-402 (-552))) (-5 *1 (-813 *3)) (-4 *3 (-537)) (-4 *3 (-1073))))) -(-13 (-1073) (-406 |#1|) (-10 -8 (-15 -1396 ($)) (-15 -2064 ((-112) $)) (-15 -2051 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -2546 ((-112) $)) (-15 -2538 ((-402 (-552)) $)) (-15 -2555 ((-3 (-402 (-552)) "failed") $))) |%noBranch|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-1895 ((|#1| $) NIL) (((-114) $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3145 ((|#1| (-114) |#1|) NIL)) (-3650 (((-112) $) NIL)) (-3134 (($ |#1| (-356 (-114))) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3157 (($ $ (-1 |#1| |#1|)) NIL)) (-3164 (($ $ (-1 |#1| |#1|)) NIL)) (-2154 ((|#1| $ |#1|) NIL)) (-3172 ((|#1| |#1|) NIL (|has| |#1| (-170)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-3180 (($ $) NIL (|has| |#1| (-170))) (($ $ $) NIL (|has| |#1| (-170)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ (-114) (-552)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) -(((-814 |#1|) (-13 (-1025) (-1014 |#1|) (-1014 (-114)) (-281 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -3180 ($ $)) (-15 -3180 ($ $ $)) (-15 -3172 (|#1| |#1|))) |%noBranch|) (-15 -3164 ($ $ (-1 |#1| |#1|))) (-15 -3157 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-552))) (-15 ** ($ $ (-552))) (-15 -3145 (|#1| (-114) |#1|)) (-15 -3134 ($ |#1| (-356 (-114)))))) (-1025)) (T -814)) -((-3180 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025)))) (-3180 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025)))) (-3172 (*1 *2 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025)))) (-3164 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-814 *3)))) (-3157 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-814 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-552)) (-5 *1 (-814 *4)) (-4 *4 (-1025)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-814 *3)) (-4 *3 (-1025)))) (-3145 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-814 *2)) (-4 *2 (-1025)))) (-3134 (*1 *1 *2 *3) (-12 (-5 *3 (-356 (-114))) (-5 *1 (-814 *2)) (-4 *2 (-1025))))) -(-13 (-1025) (-1014 |#1|) (-1014 (-114)) (-281 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -3180 ($ $)) (-15 -3180 ($ $ $)) (-15 -3172 (|#1| |#1|))) |%noBranch|) (-15 -3164 ($ $ (-1 |#1| |#1|))) (-15 -3157 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-552))) (-15 ** ($ $ (-552))) (-15 -3145 (|#1| (-114) |#1|)) (-15 -3134 ($ |#1| (-356 (-114)))))) -((-3189 (((-210 (-495)) (-1131)) 9))) -(((-815) (-10 -7 (-15 -3189 ((-210 (-495)) (-1131))))) (T -815)) -((-3189 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-210 (-495))) (-5 *1 (-815))))) -(-10 -7 (-15 -3189 ((-210 (-495)) (-1131)))) -((-1671 (((-112) $ $) 7)) (-3196 (((-1011) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) 14) (((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 13)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 16) (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) 15)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 6))) -(((-816) (-138)) (T -816)) -((-3890 (*1 *2 *3 *4) (-12 (-4 *1 (-816)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (-5 *2 (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)))))) (-3890 (*1 *2 *3 *4) (-12 (-4 *1 (-816)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) (-5 *2 (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)))))) (-3196 (*1 *2 *3) (-12 (-4 *1 (-816)) (-5 *3 (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) (-5 *2 (-1011)))) (-3196 (*1 *2 *3) (-12 (-4 *1 (-816)) (-5 *3 (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (-5 *2 (-1011))))) -(-13 (-1073) (-10 -7 (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221))))))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) (-15 -3196 ((-1011) (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) (-15 -3196 ((-1011) (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221))))))))) -(((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-2038 (((-1011) (-625 (-311 (-374))) (-625 (-374))) 147) (((-1011) (-311 (-374)) (-625 (-374))) 145) (((-1011) (-311 (-374)) (-625 (-374)) (-625 (-820 (-374))) (-625 (-820 (-374)))) 144) (((-1011) (-311 (-374)) (-625 (-374)) (-625 (-820 (-374))) (-625 (-311 (-374))) (-625 (-820 (-374)))) 143) (((-1011) (-818)) 117) (((-1011) (-818) (-1037)) 116)) (-3890 (((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-818) (-1037)) 82) (((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-818)) 84)) (-3206 (((-1011) (-625 (-311 (-374))) (-625 (-374))) 148) (((-1011) (-818)) 133))) -(((-817) (-10 -7 (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-818))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-818) (-1037))) (-15 -2038 ((-1011) (-818) (-1037))) (-15 -2038 ((-1011) (-818))) (-15 -3206 ((-1011) (-818))) (-15 -2038 ((-1011) (-311 (-374)) (-625 (-374)) (-625 (-820 (-374))) (-625 (-311 (-374))) (-625 (-820 (-374))))) (-15 -2038 ((-1011) (-311 (-374)) (-625 (-374)) (-625 (-820 (-374))) (-625 (-820 (-374))))) (-15 -2038 ((-1011) (-311 (-374)) (-625 (-374)))) (-15 -2038 ((-1011) (-625 (-311 (-374))) (-625 (-374)))) (-15 -3206 ((-1011) (-625 (-311 (-374))) (-625 (-374)))))) (T -817)) -((-3206 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-311 (-374)))) (-5 *4 (-625 (-374))) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-311 (-374)))) (-5 *4 (-625 (-374))) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-374))) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2038 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-374))) (-5 *5 (-625 (-820 (-374)))) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2038 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-625 (-374))) (-5 *5 (-625 (-820 (-374)))) (-5 *6 (-625 (-311 (-374)))) (-5 *3 (-311 (-374))) (-5 *2 (-1011)) (-5 *1 (-817)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-817)))) (-3890 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-1037)) (-5 *2 (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))))) (-5 *1 (-817)))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))))) (-5 *1 (-817))))) -(-10 -7 (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-818))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-818) (-1037))) (-15 -2038 ((-1011) (-818) (-1037))) (-15 -2038 ((-1011) (-818))) (-15 -3206 ((-1011) (-818))) (-15 -2038 ((-1011) (-311 (-374)) (-625 (-374)) (-625 (-820 (-374))) (-625 (-311 (-374))) (-625 (-820 (-374))))) (-15 -2038 ((-1011) (-311 (-374)) (-625 (-374)) (-625 (-820 (-374))) (-625 (-820 (-374))))) (-15 -2038 ((-1011) (-311 (-374)) (-625 (-374)))) (-15 -2038 ((-1011) (-625 (-311 (-374))) (-625 (-374)))) (-15 -3206 ((-1011) (-625 (-311 (-374))) (-625 (-374))))) -((-1671 (((-112) $ $) NIL)) (-1895 (((-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) $) 21)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 20) (($ (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) 14) (($ (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))))) 18)) (-2281 (((-112) $ $) NIL))) -(((-818) (-13 (-1073) (-10 -8 (-15 -1683 ($ (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221))))))) (-15 -1683 ($ (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) (-15 -1683 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))))) (-15 -1683 ((-839) $)) (-15 -1895 ((-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) $))))) (T -818)) -((-1683 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-818)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (-5 *1 (-818)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) (-5 *1 (-818)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))))) (-5 *1 (-818)))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))))) (-5 *1 (-818))))) -(-13 (-1073) (-10 -8 (-15 -1683 ($ (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221))))))) (-15 -1683 ($ (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) (-15 -1683 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))))) (-15 -1683 ((-839) $)) (-15 -1895 ((-3 (|:| |noa| (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) (|:| |ub| (-625 (-820 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221)))))) $)))) -((-1996 (((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|) (-820 |#2|) (-820 |#2|)) 13) (((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)) 14))) -(((-819 |#1| |#2|) (-10 -7 (-15 -1996 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|))) (-15 -1996 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|) (-820 |#2|) (-820 |#2|)))) (-1073) (-1073)) (T -819)) -((-1996 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-820 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-5 *1 (-819 *5 *6)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6))))) -(-10 -7 (-15 -1996 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|))) (-15 -1996 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|) (-820 |#2|) (-820 |#2|)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL (|has| |#1| (-21)))) (-3216 (((-1093) $) 24)) (-2077 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-4127 (((-552) $) NIL (|has| |#1| (-825)))) (-3101 (($) NIL (|has| |#1| (-21)) CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 16)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) 9)) (-4174 (((-3 $ "failed") $) 47 (|has| |#1| (-825)))) (-2555 (((-3 (-402 (-552)) "failed") $) 54 (|has| |#1| (-537)))) (-2546 (((-112) $) 49 (|has| |#1| (-537)))) (-2538 (((-402 (-552)) $) 52 (|has| |#1| (-537)))) (-3620 (((-112) $) NIL (|has| |#1| (-825)))) (-1828 (($) 13)) (-3650 (((-112) $) NIL (|has| |#1| (-825)))) (-3630 (((-112) $) NIL (|has| |#1| (-825)))) (-1841 (($) 14)) (-3658 (($ $ $) NIL (|has| |#1| (-825)))) (-3332 (($ $ $) NIL (|has| |#1| (-825)))) (-2883 (((-1131) $) NIL)) (-2051 (((-112) $) 12)) (-2831 (((-1093) $) NIL)) (-2064 (((-112) $) 11)) (-1683 (((-839) $) 22) (($ (-402 (-552))) NIL (|has| |#1| (-1014 (-402 (-552))))) (($ |#1|) 8) (($ (-552)) NIL (-1523 (|has| |#1| (-825)) (|has| |#1| (-1014 (-552)))))) (-4141 (((-751)) 41 (|has| |#1| (-825)))) (-1727 (($ $) NIL (|has| |#1| (-825)))) (-2089 (($) 29 (|has| |#1| (-21)) CONST)) (-2100 (($) 38 (|has| |#1| (-825)) CONST)) (-2346 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2281 (((-112) $ $) 27)) (-2334 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2307 (((-112) $ $) 48 (|has| |#1| (-825)))) (-2393 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-2382 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-897)) NIL (|has| |#1| (-825))) (($ $ (-751)) NIL (|has| |#1| (-825)))) (* (($ $ $) 44 (|has| |#1| (-825))) (($ (-552) $) 32 (|has| |#1| (-21))) (($ (-751) $) NIL (|has| |#1| (-21))) (($ (-897) $) NIL (|has| |#1| (-21))))) -(((-820 |#1|) (-13 (-1073) (-406 |#1|) (-10 -8 (-15 -1828 ($)) (-15 -1841 ($)) (-15 -2064 ((-112) $)) (-15 -2051 ((-112) $)) (-15 -3216 ((-1093) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -2546 ((-112) $)) (-15 -2538 ((-402 (-552)) $)) (-15 -2555 ((-3 (-402 (-552)) "failed") $))) |%noBranch|))) (-1073)) (T -820)) -((-1828 (*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1073)))) (-1841 (*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1073)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-1073)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-1073)))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-820 *3)) (-4 *3 (-1073)))) (-2546 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-537)) (-4 *3 (-1073)))) (-2538 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-820 *3)) (-4 *3 (-537)) (-4 *3 (-1073)))) (-2555 (*1 *2 *1) (|partial| -12 (-5 *2 (-402 (-552))) (-5 *1 (-820 *3)) (-4 *3 (-537)) (-4 *3 (-1073))))) -(-13 (-1073) (-406 |#1|) (-10 -8 (-15 -1828 ($)) (-15 -1841 ($)) (-15 -2064 ((-112) $)) (-15 -2051 ((-112) $)) (-15 -3216 ((-1093) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -2546 ((-112) $)) (-15 -2538 ((-402 (-552)) $)) (-15 -2555 ((-3 (-402 (-552)) "failed") $))) |%noBranch|))) -((-1671 (((-112) $ $) 7)) (-2894 (((-751)) 20)) (-3702 (($) 23)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-4318 (((-897) $) 22)) (-2883 (((-1131) $) 9)) (-3123 (($ (-897)) 21)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18))) -(((-821) (-138)) (T -821)) -NIL -(-13 (-827) (-363)) -(((-101) . T) ((-597 (-839)) . T) ((-363) . T) ((-827) . T) ((-1073) . T)) -((-2085 (((-112) (-1232 |#2|) (-1232 |#2|)) 17)) (-2096 (((-112) (-1232 |#2|) (-1232 |#2|)) 18)) (-2075 (((-112) (-1232 |#2|) (-1232 |#2|)) 14))) -(((-822 |#1| |#2|) (-10 -7 (-15 -2075 ((-112) (-1232 |#2|) (-1232 |#2|))) (-15 -2085 ((-112) (-1232 |#2|) (-1232 |#2|))) (-15 -2096 ((-112) (-1232 |#2|) (-1232 |#2|)))) (-751) (-772)) (T -822)) -((-2096 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5)) (-4 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-822 *4 *5)) (-14 *4 (-751)))) (-2085 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5)) (-4 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-822 *4 *5)) (-14 *4 (-751)))) (-2075 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5)) (-4 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-822 *4 *5)) (-14 *4 (-751))))) -(-10 -7 (-15 -2075 ((-112) (-1232 |#2|) (-1232 |#2|))) (-15 -2085 ((-112) (-1232 |#2|) (-1232 |#2|))) (-15 -2096 ((-112) (-1232 |#2|) (-1232 |#2|)))) -((-1671 (((-112) $ $) 7)) (-3101 (($) 23 T CONST)) (-4174 (((-3 $ "failed") $) 26)) (-3650 (((-112) $) 24)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2100 (($) 22 T CONST)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)) (** (($ $ (-897)) 21) (($ $ (-751)) 25)) (* (($ $ $) 20))) -(((-823) (-138)) (T -823)) -NIL -(-13 (-834) (-707)) -(((-101) . T) ((-597 (-839)) . T) ((-707) . T) ((-834) . T) ((-827) . T) ((-1085) . T) ((-1073) . T)) -((-4127 (((-552) $) 17)) (-3620 (((-112) $) 10)) (-3630 (((-112) $) 11)) (-1727 (($ $) 19))) -(((-824 |#1|) (-10 -8 (-15 -1727 (|#1| |#1|)) (-15 -4127 ((-552) |#1|)) (-15 -3630 ((-112) |#1|)) (-15 -3620 ((-112) |#1|))) (-825)) (T -824)) -NIL -(-10 -8 (-15 -1727 (|#1| |#1|)) (-15 -4127 ((-552) |#1|)) (-15 -3630 ((-112) |#1|)) (-15 -3620 ((-112) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 24)) (-2077 (((-3 $ "failed") $ $) 26)) (-4127 (((-552) $) 33)) (-3101 (($) 23 T CONST)) (-4174 (((-3 $ "failed") $) 38)) (-3620 (((-112) $) 35)) (-3650 (((-112) $) 40)) (-3630 (((-112) $) 34)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 43)) (-4141 (((-751)) 42)) (-1727 (($ $) 32)) (-2089 (($) 22 T CONST)) (-2100 (($) 41 T CONST)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)) (-2393 (($ $ $) 28) (($ $) 27)) (-2382 (($ $ $) 20)) (** (($ $ (-751)) 39) (($ $ (-897)) 36)) (* (($ (-897) $) 21) (($ (-751) $) 25) (($ (-552) $) 29) (($ $ $) 37))) -(((-825) (-138)) (T -825)) -((-3620 (*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-552)))) (-1727 (*1 *1 *1) (-4 *1 (-825)))) -(-13 (-771) (-1025) (-707) (-10 -8 (-15 -3620 ((-112) $)) (-15 -3630 ((-112) $)) (-15 -4127 ((-552) $)) (-15 -1727 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-775) . T) ((-827) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-3658 (($ $ $) 10)) (-3332 (($ $ $) 9)) (-2346 (((-112) $ $) 13)) (-2320 (((-112) $ $) 11)) (-2334 (((-112) $ $) 14))) -(((-826 |#1|) (-10 -8 (-15 -3658 (|#1| |#1| |#1|)) (-15 -3332 (|#1| |#1| |#1|)) (-15 -2334 ((-112) |#1| |#1|)) (-15 -2346 ((-112) |#1| |#1|)) (-15 -2320 ((-112) |#1| |#1|))) (-827)) (T -826)) -NIL -(-10 -8 (-15 -3658 (|#1| |#1| |#1|)) (-15 -3332 (|#1| |#1| |#1|)) (-15 -2334 ((-112) |#1| |#1|)) (-15 -2346 ((-112) |#1| |#1|)) (-15 -2320 ((-112) |#1| |#1|))) -((-1671 (((-112) $ $) 7)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18))) -(((-827) (-138)) (T -827)) -((-2307 (*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) (-2320 (*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) (-2346 (*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) (-2334 (*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) (-3332 (*1 *1 *1 *1) (-4 *1 (-827))) (-3658 (*1 *1 *1 *1) (-4 *1 (-827)))) -(-13 (-1073) (-10 -8 (-15 -2307 ((-112) $ $)) (-15 -2320 ((-112) $ $)) (-15 -2346 ((-112) $ $)) (-15 -2334 ((-112) $ $)) (-15 -3332 ($ $ $)) (-15 -3658 ($ $ $)))) -(((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-2146 (($ $ $) 45)) (-2161 (($ $ $) 44)) (-2171 (($ $ $) 42)) (-2126 (($ $ $) 51)) (-2116 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 46)) (-2137 (((-3 $ "failed") $ $) 49)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1294 (($ $) 35)) (-2215 (($ $ $) 39)) (-2225 (($ $ $) 38)) (-2107 (($ $ $) 47)) (-2193 (($ $ $) 53)) (-2181 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 41)) (-2204 (((-3 $ "failed") $ $) 48)) (-2802 (((-3 $ "failed") $ |#2|) 28)) (-4108 ((|#2| $) 32)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ (-402 (-552))) NIL) (($ |#2|) 12)) (-2512 (((-625 |#2|) $) 18)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) -(((-828 |#1| |#2|) (-10 -8 (-15 -2107 (|#1| |#1| |#1|)) (-15 -2116 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3212 |#1|)) |#1| |#1|)) (-15 -2126 (|#1| |#1| |#1|)) (-15 -2137 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2146 (|#1| |#1| |#1|)) (-15 -2161 (|#1| |#1| |#1|)) (-15 -2171 (|#1| |#1| |#1|)) (-15 -2181 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3212 |#1|)) |#1| |#1|)) (-15 -2193 (|#1| |#1| |#1|)) (-15 -2204 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2215 (|#1| |#1| |#1|)) (-15 -2225 (|#1| |#1| |#1|)) (-15 -1294 (|#1| |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2512 ((-625 |#2|) |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|)) (-15 -1683 ((-839) |#1|))) (-829 |#2|) (-1025)) (T -828)) -NIL -(-10 -8 (-15 -2107 (|#1| |#1| |#1|)) (-15 -2116 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3212 |#1|)) |#1| |#1|)) (-15 -2126 (|#1| |#1| |#1|)) (-15 -2137 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2146 (|#1| |#1| |#1|)) (-15 -2161 (|#1| |#1| |#1|)) (-15 -2171 (|#1| |#1| |#1|)) (-15 -2181 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3212 |#1|)) |#1| |#1|)) (-15 -2193 (|#1| |#1| |#1|)) (-15 -2204 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2215 (|#1| |#1| |#1|)) (-15 -2225 (|#1| |#1| |#1|)) (-15 -1294 (|#1| |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -2802 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2512 ((-625 |#2|) |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|)) (-15 -1683 ((-839) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2146 (($ $ $) 43 (|has| |#1| (-358)))) (-2161 (($ $ $) 44 (|has| |#1| (-358)))) (-2171 (($ $ $) 46 (|has| |#1| (-358)))) (-2126 (($ $ $) 41 (|has| |#1| (-358)))) (-2116 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 40 (|has| |#1| (-358)))) (-2137 (((-3 $ "failed") $ $) 42 (|has| |#1| (-358)))) (-2266 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 45 (|has| |#1| (-358)))) (-1893 (((-3 (-552) "failed") $) 72 (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) 70 (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 67)) (-1895 (((-552) $) 73 (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) 71 (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) 66)) (-4169 (($ $) 62)) (-4174 (((-3 $ "failed") $) 32)) (-1294 (($ $) 53 (|has| |#1| (-446)))) (-3650 (((-112) $) 30)) (-3957 (($ |#1| (-751)) 60)) (-2248 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55 (|has| |#1| (-544)))) (-2237 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 56 (|has| |#1| (-544)))) (-4134 (((-751) $) 64)) (-2215 (($ $ $) 50 (|has| |#1| (-358)))) (-2225 (($ $ $) 51 (|has| |#1| (-358)))) (-2107 (($ $ $) 39 (|has| |#1| (-358)))) (-2193 (($ $ $) 48 (|has| |#1| (-358)))) (-2181 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 47 (|has| |#1| (-358)))) (-2204 (((-3 $ "failed") $ $) 49 (|has| |#1| (-358)))) (-2257 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 52 (|has| |#1| (-358)))) (-4144 ((|#1| $) 63)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-2802 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-544)))) (-4276 (((-751) $) 65)) (-4108 ((|#1| $) 54 (|has| |#1| (-446)))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ (-402 (-552))) 69 (|has| |#1| (-1014 (-402 (-552))))) (($ |#1|) 68)) (-2512 (((-625 |#1|) $) 59)) (-3637 ((|#1| $ (-751)) 61)) (-4141 (((-751)) 28)) (-2872 ((|#1| $ |#1| |#1|) 58)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) -(((-829 |#1|) (-138) (-1025)) (T -829)) -((-4276 (*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-4134 (*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-4144 (*1 *2 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)))) (-4169 (*1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)))) (-3637 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-829 *2)) (-4 *2 (-1025)))) (-3957 (*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-829 *2)) (-4 *2 (-1025)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-625 *3)))) (-2872 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)))) (-2802 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-544)))) (-2237 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-829 *3)))) (-2248 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-829 *3)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-446)))) (-1294 (*1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-446)))) (-2257 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-829 *3)))) (-2225 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2215 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2204 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2193 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2181 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3212 *1))) (-4 *1 (-829 *3)))) (-2171 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2266 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-829 *3)))) (-2161 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2146 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2137 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2126 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2116 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3212 *1))) (-4 *1 (-829 *3)))) (-2107 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) -(-13 (-1025) (-111 |t#1| |t#1|) (-406 |t#1|) (-10 -8 (-15 -4276 ((-751) $)) (-15 -4134 ((-751) $)) (-15 -4144 (|t#1| $)) (-15 -4169 ($ $)) (-15 -3637 (|t#1| $ (-751))) (-15 -3957 ($ |t#1| (-751))) (-15 -2512 ((-625 |t#1|) $)) (-15 -2872 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -2802 ((-3 $ "failed") $ |t#1|)) (-15 -2237 ((-2 (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -2248 ((-2 (|:| -3984 $) (|:| -3645 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-15 -4108 (|t#1| $)) (-15 -1294 ($ $))) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-15 -2257 ((-2 (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -2225 ($ $ $)) (-15 -2215 ($ $ $)) (-15 -2204 ((-3 $ "failed") $ $)) (-15 -2193 ($ $ $)) (-15 -2181 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $)) (-15 -2171 ($ $ $)) (-15 -2266 ((-2 (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -2161 ($ $ $)) (-15 -2146 ($ $ $)) (-15 -2137 ((-3 $ "failed") $ $)) (-15 -2126 ($ $ $)) (-15 -2116 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $)) (-15 -2107 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-406 |#1|) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) |has| |#1| (-170)) ((-707) . T) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-2200 ((|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|)) 20)) (-2266 (((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|)) 43 (|has| |#1| (-358)))) (-2248 (((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|)) 40 (|has| |#1| (-544)))) (-2237 (((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|)) 39 (|has| |#1| (-544)))) (-2257 (((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|)) 42 (|has| |#1| (-358)))) (-2872 ((|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|)) 31))) -(((-830 |#1| |#2|) (-10 -7 (-15 -2200 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -2872 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-544)) (PROGN (-15 -2237 ((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2248 ((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -2257 ((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2266 ((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) (-1025) (-829 |#1|)) (T -830)) -((-2266 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-358)) (-4 *5 (-1025)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-830 *5 *3)) (-4 *3 (-829 *5)))) (-2257 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-358)) (-4 *5 (-1025)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-830 *5 *3)) (-4 *3 (-829 *5)))) (-2248 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-544)) (-4 *5 (-1025)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-830 *5 *3)) (-4 *3 (-829 *5)))) (-2237 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-544)) (-4 *5 (-1025)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-830 *5 *3)) (-4 *3 (-829 *5)))) (-2872 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1025)) (-5 *1 (-830 *2 *3)) (-4 *3 (-829 *2)))) (-2200 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1025)) (-5 *1 (-830 *5 *2)) (-4 *2 (-829 *5))))) -(-10 -7 (-15 -2200 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -2872 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-544)) (PROGN (-15 -2237 ((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2248 ((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -2257 ((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2266 ((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2146 (($ $ $) NIL (|has| |#1| (-358)))) (-2161 (($ $ $) NIL (|has| |#1| (-358)))) (-2171 (($ $ $) NIL (|has| |#1| (-358)))) (-2126 (($ $ $) NIL (|has| |#1| (-358)))) (-2116 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2137 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2266 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 32 (|has| |#1| (-358)))) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) NIL)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#1| (-446)))) (-3375 (((-839) $ (-839)) NIL)) (-3650 (((-112) $) NIL)) (-3957 (($ |#1| (-751)) NIL)) (-2248 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 28 (|has| |#1| (-544)))) (-2237 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 26 (|has| |#1| (-544)))) (-4134 (((-751) $) NIL)) (-2215 (($ $ $) NIL (|has| |#1| (-358)))) (-2225 (($ $ $) NIL (|has| |#1| (-358)))) (-2107 (($ $ $) NIL (|has| |#1| (-358)))) (-2193 (($ $ $) NIL (|has| |#1| (-358)))) (-2181 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2204 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2257 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 30 (|has| |#1| (-358)))) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-4276 (((-751) $) NIL)) (-4108 ((|#1| $) NIL (|has| |#1| (-446)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ (-402 (-552))) NIL (|has| |#1| (-1014 (-402 (-552))))) (($ |#1|) NIL)) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-751)) NIL)) (-4141 (((-751)) NIL)) (-2872 ((|#1| $ |#1| |#1|) 15)) (-2089 (($) NIL T CONST)) (-2100 (($) 20 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) 19) (($ $ (-751)) 22)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-831 |#1| |#2| |#3|) (-13 (-829 |#1|) (-10 -8 (-15 -3375 ((-839) $ (-839))))) (-1025) (-98 |#1|) (-1 |#1| |#1|)) (T -831)) -((-3375 (*1 *2 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-831 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-829 |#1|) (-10 -8 (-15 -3375 ((-839) $ (-839))))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2146 (($ $ $) NIL (|has| |#2| (-358)))) (-2161 (($ $ $) NIL (|has| |#2| (-358)))) (-2171 (($ $ $) NIL (|has| |#2| (-358)))) (-2126 (($ $ $) NIL (|has| |#2| (-358)))) (-2116 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#2| (-358)))) (-2137 (((-3 $ "failed") $ $) NIL (|has| |#2| (-358)))) (-2266 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#2| (-358)))) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#2| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-3 |#2| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#2| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#2| (-1014 (-402 (-552))))) ((|#2| $) NIL)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#2| (-446)))) (-3650 (((-112) $) NIL)) (-3957 (($ |#2| (-751)) 16)) (-2248 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#2| (-544)))) (-2237 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#2| (-544)))) (-4134 (((-751) $) NIL)) (-2215 (($ $ $) NIL (|has| |#2| (-358)))) (-2225 (($ $ $) NIL (|has| |#2| (-358)))) (-2107 (($ $ $) NIL (|has| |#2| (-358)))) (-2193 (($ $ $) NIL (|has| |#2| (-358)))) (-2181 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#2| (-358)))) (-2204 (((-3 $ "failed") $ $) NIL (|has| |#2| (-358)))) (-2257 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#2| (-358)))) (-4144 ((|#2| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2802 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544)))) (-4276 (((-751) $) NIL)) (-4108 ((|#2| $) NIL (|has| |#2| (-446)))) (-1683 (((-839) $) 23) (($ (-552)) NIL) (($ (-402 (-552))) NIL (|has| |#2| (-1014 (-402 (-552))))) (($ |#2|) NIL) (($ (-1228 |#1|)) 18)) (-2512 (((-625 |#2|) $) NIL)) (-3637 ((|#2| $ (-751)) NIL)) (-4141 (((-751)) NIL)) (-2872 ((|#2| $ |#2| |#2|) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) 13 T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-832 |#1| |#2| |#3| |#4|) (-13 (-829 |#2|) (-10 -8 (-15 -1683 ($ (-1228 |#1|))))) (-1149) (-1025) (-98 |#2|) (-1 |#2| |#2|)) (T -832)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1228 *3)) (-14 *3 (-1149)) (-5 *1 (-832 *3 *4 *5 *6)) (-4 *4 (-1025)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4))))) -(-13 (-829 |#2|) (-10 -8 (-15 -1683 ($ (-1228 |#1|))))) -((-2300 ((|#1| (-751) |#1|) 35 (|has| |#1| (-38 (-402 (-552)))))) (-2288 ((|#1| (-751) (-751) |#1|) 27) ((|#1| (-751) |#1|) 20)) (-2277 ((|#1| (-751) |#1|) 31)) (-3894 ((|#1| (-751) |#1|) 29)) (-3881 ((|#1| (-751) |#1|) 28))) -(((-833 |#1|) (-10 -7 (-15 -3881 (|#1| (-751) |#1|)) (-15 -3894 (|#1| (-751) |#1|)) (-15 -2277 (|#1| (-751) |#1|)) (-15 -2288 (|#1| (-751) |#1|)) (-15 -2288 (|#1| (-751) (-751) |#1|)) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2300 (|#1| (-751) |#1|)) |%noBranch|)) (-170)) (T -833)) -((-2300 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-170)))) (-2288 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) (-2288 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) (-2277 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) (-3894 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) (-3881 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170))))) -(-10 -7 (-15 -3881 (|#1| (-751) |#1|)) (-15 -3894 (|#1| (-751) |#1|)) (-15 -2277 (|#1| (-751) |#1|)) (-15 -2288 (|#1| (-751) |#1|)) (-15 -2288 (|#1| (-751) (-751) |#1|)) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2300 (|#1| (-751) |#1|)) |%noBranch|)) -((-1671 (((-112) $ $) 7)) (-3658 (($ $ $) 13)) (-3332 (($ $ $) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2346 (((-112) $ $) 16)) (-2320 (((-112) $ $) 17)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 15)) (-2307 (((-112) $ $) 18)) (** (($ $ (-897)) 21)) (* (($ $ $) 20))) -(((-834) (-138)) (T -834)) -NIL -(-13 (-827) (-1085)) -(((-101) . T) ((-597 (-839)) . T) ((-827) . T) ((-1085) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-3800 (((-552) $) 12)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 18) (($ (-552)) 11)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 8)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 9))) -(((-835) (-13 (-827) (-10 -8 (-15 -1683 ($ (-552))) (-15 -3800 ((-552) $))))) (T -835)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-835)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-835))))) -(-13 (-827) (-10 -8 (-15 -1683 ($ (-552))) (-15 -3800 ((-552) $)))) -((-2315 (((-1093) $ (-128)) 17))) -(((-836 |#1|) (-10 -8 (-15 -2315 ((-1093) |#1| (-128)))) (-837)) (T -836)) -NIL -(-10 -8 (-15 -2315 ((-1093) |#1| (-128)))) -((-2315 (((-1093) $ (-128)) 7)) (-2328 (((-1093) $ (-129)) 8)) (-4125 (($ $) 6))) -(((-837) (-138)) (T -837)) -((-2328 (*1 *2 *1 *3) (-12 (-4 *1 (-837)) (-5 *3 (-129)) (-5 *2 (-1093)))) (-2315 (*1 *2 *1 *3) (-12 (-4 *1 (-837)) (-5 *3 (-128)) (-5 *2 (-1093))))) -(-13 (-171) (-10 -8 (-15 -2328 ((-1093) $ (-129))) (-15 -2315 ((-1093) $ (-128))))) -(((-171) . T)) -((-2315 (((-1093) $ (-128)) NIL)) (-2328 (((-1093) $ (-129)) 22)) (-2355 (($ (-383)) 12) (($ (-1131)) 14)) (-2341 (((-112) $) 19)) (-1683 (((-839) $) 26)) (-4125 (($ $) 23))) -(((-838) (-13 (-837) (-597 (-839)) (-10 -8 (-15 -2355 ($ (-383))) (-15 -2355 ($ (-1131))) (-15 -2341 ((-112) $))))) (T -838)) -((-2355 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-838)))) (-2355 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-838)))) (-2341 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838))))) -(-13 (-837) (-597 (-839)) (-10 -8 (-15 -2355 ($ (-383))) (-15 -2355 ($ (-1131))) (-15 -2341 ((-112) $)))) -((-1671 (((-112) $ $) NIL) (($ $ $) 77)) (-2566 (($ $ $) 114)) (-1924 (((-552) $) 31) (((-552)) 36)) (-2626 (($ (-552)) 45)) (-2597 (($ $ $) 46) (($ (-625 $)) 76)) (-2480 (($ $ (-625 $)) 74)) (-1430 (((-552) $) 34)) (-2511 (($ $ $) 65)) (-1791 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-1442 (((-552) $) 33)) (-2520 (($ $ $) 64)) (-4265 (($ $) 104)) (-2547 (($ $ $) 118)) (-2378 (($ (-625 $)) 53)) (-3468 (($ $ (-625 $)) 71)) (-2616 (($ (-552) (-552)) 47)) (-1496 (($ $) 115) (($ $ $) 116)) (-2303 (($ $ (-552)) 41) (($ $) 44)) (-2851 (($ $ $) 89)) (-2529 (($ $ $) 121)) (-2471 (($ $) 105)) (-2826 (($ $ $) 90)) (-2430 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-3871 (((-1237) $) 10)) (-2462 (($ $) 108) (($ $ (-751)) 111)) (-2492 (($ $ $) 67)) (-2501 (($ $ $) 66)) (-2667 (($ $ (-625 $)) 100)) (-2575 (($ $ $) 103)) (-2400 (($ (-625 $)) 51)) (-2411 (($ $) 62) (($ (-625 $)) 63)) (-2440 (($ $ $) 112)) (-2450 (($ $) 106)) (-2556 (($ $ $) 117)) (-3375 (($ (-552)) 21) (($ (-1149)) 23) (($ (-1131)) 30) (($ (-221)) 25)) (-3152 (($ $ $) 93)) (-2960 (($ $) 94)) (-1464 (((-1237) (-1131)) 15)) (-2133 (($ (-1131)) 14)) (-3907 (($ (-625 (-625 $))) 50)) (-2290 (($ $ (-552)) 40) (($ $) 43)) (-2883 (((-1131) $) NIL)) (-3050 (($ $ $) 120)) (-4206 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-2047 (((-112) $) 98)) (-2585 (($ $ (-625 $)) 101) (($ $ $ $) 102)) (-2637 (($ (-552)) 37)) (-2207 (((-552) $) 32) (((-552)) 35)) (-2609 (($ $ $) 38) (($ (-625 $)) 75)) (-2831 (((-1093) $) NIL)) (-2802 (($ $ $) 91)) (-3600 (($) 13)) (-2154 (($ $ (-625 $)) 99)) (-1453 (((-1131) (-1131)) 8)) (-1443 (($ $) 107) (($ $ (-751)) 110)) (-2813 (($ $ $) 88)) (-3072 (($ $ (-751)) 126)) (-2388 (($ (-625 $)) 52)) (-1683 (((-839) $) 19)) (-2845 (($ $ (-552)) 39) (($ $) 42)) (-2420 (($ $) 60) (($ (-625 $)) 61)) (-3761 (($ $) 58) (($ (-625 $)) 59)) (-3779 (($ $) 113)) (-2367 (($ (-625 $)) 57)) (-3901 (($ $ $) 97)) (-2539 (($ $ $) 119)) (-3743 (($ $ $) 92)) (-1504 (($ $ $) 95) (($ $) 96)) (-2346 (($ $ $) 81)) (-2320 (($ $ $) 79)) (-2281 (((-112) $ $) 16) (($ $ $) 17)) (-2334 (($ $ $) 80)) (-2307 (($ $ $) 78)) (-2404 (($ $ $) 86)) (-2393 (($ $ $) 83) (($ $) 84)) (-2382 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) -(((-839) (-13 (-1073) (-10 -8 (-15 -3871 ((-1237) $)) (-15 -2133 ($ (-1131))) (-15 -1464 ((-1237) (-1131))) (-15 -3375 ($ (-552))) (-15 -3375 ($ (-1149))) (-15 -3375 ($ (-1131))) (-15 -3375 ($ (-221))) (-15 -3600 ($)) (-15 -1453 ((-1131) (-1131))) (-15 -1924 ((-552) $)) (-15 -2207 ((-552) $)) (-15 -1924 ((-552))) (-15 -2207 ((-552))) (-15 -1442 ((-552) $)) (-15 -1430 ((-552) $)) (-15 -2637 ($ (-552))) (-15 -2626 ($ (-552))) (-15 -2616 ($ (-552) (-552))) (-15 -2290 ($ $ (-552))) (-15 -2303 ($ $ (-552))) (-15 -2845 ($ $ (-552))) (-15 -2290 ($ $)) (-15 -2303 ($ $)) (-15 -2845 ($ $)) (-15 -2609 ($ $ $)) (-15 -2597 ($ $ $)) (-15 -2609 ($ (-625 $))) (-15 -2597 ($ (-625 $))) (-15 -2667 ($ $ (-625 $))) (-15 -2585 ($ $ (-625 $))) (-15 -2585 ($ $ $ $)) (-15 -2575 ($ $ $)) (-15 -2047 ((-112) $)) (-15 -2154 ($ $ (-625 $))) (-15 -4265 ($ $)) (-15 -3050 ($ $ $)) (-15 -3779 ($ $)) (-15 -3907 ($ (-625 (-625 $)))) (-15 -2566 ($ $ $)) (-15 -1496 ($ $)) (-15 -1496 ($ $ $)) (-15 -2556 ($ $ $)) (-15 -2547 ($ $ $)) (-15 -2539 ($ $ $)) (-15 -2529 ($ $ $)) (-15 -3072 ($ $ (-751))) (-15 -3901 ($ $ $)) (-15 -2520 ($ $ $)) (-15 -2511 ($ $ $)) (-15 -2501 ($ $ $)) (-15 -2492 ($ $ $)) (-15 -3468 ($ $ (-625 $))) (-15 -2480 ($ $ (-625 $))) (-15 -2471 ($ $)) (-15 -1443 ($ $)) (-15 -1443 ($ $ (-751))) (-15 -2462 ($ $)) (-15 -2462 ($ $ (-751))) (-15 -2450 ($ $)) (-15 -2440 ($ $ $)) (-15 -1791 ($ $)) (-15 -1791 ($ $ $)) (-15 -1791 ($ $ $ $)) (-15 -2430 ($ $)) (-15 -2430 ($ $ $)) (-15 -2430 ($ $ $ $)) (-15 -4206 ($ $)) (-15 -4206 ($ $ $)) (-15 -4206 ($ $ $ $)) (-15 -3761 ($ $)) (-15 -3761 ($ (-625 $))) (-15 -2420 ($ $)) (-15 -2420 ($ (-625 $))) (-15 -2411 ($ $)) (-15 -2411 ($ (-625 $))) (-15 -2400 ($ (-625 $))) (-15 -2388 ($ (-625 $))) (-15 -2378 ($ (-625 $))) (-15 -2367 ($ (-625 $))) (-15 -2281 ($ $ $)) (-15 -1671 ($ $ $)) (-15 -2307 ($ $ $)) (-15 -2320 ($ $ $)) (-15 -2334 ($ $ $)) (-15 -2346 ($ $ $)) (-15 -2382 ($ $ $)) (-15 -2393 ($ $ $)) (-15 -2393 ($ $)) (-15 * ($ $ $)) (-15 -2404 ($ $ $)) (-15 ** ($ $ $)) (-15 -2813 ($ $ $)) (-15 -2851 ($ $ $)) (-15 -2826 ($ $ $)) (-15 -2802 ($ $ $)) (-15 -3743 ($ $ $)) (-15 -3152 ($ $ $)) (-15 -2960 ($ $)) (-15 -1504 ($ $ $)) (-15 -1504 ($ $))))) (T -839)) -((-3871 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-839)))) (-2133 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-839)))) (-1464 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-839)))) (-3375 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-3375 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-839)))) (-3375 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-839)))) (-3375 (*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-839)))) (-3600 (*1 *1) (-5 *1 (-839))) (-1453 (*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-839)))) (-1924 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-2207 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-1924 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-2207 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-2637 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-2626 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-2616 (*1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-2290 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-2303 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-2845 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) (-2290 (*1 *1 *1) (-5 *1 (-839))) (-2303 (*1 *1 *1) (-5 *1 (-839))) (-2845 (*1 *1 *1) (-5 *1 (-839))) (-2609 (*1 *1 *1 *1) (-5 *1 (-839))) (-2597 (*1 *1 *1 *1) (-5 *1 (-839))) (-2609 (*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2597 (*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2667 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2585 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2585 (*1 *1 *1 *1 *1) (-5 *1 (-839))) (-2575 (*1 *1 *1 *1) (-5 *1 (-839))) (-2047 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-4265 (*1 *1 *1) (-5 *1 (-839))) (-3050 (*1 *1 *1 *1) (-5 *1 (-839))) (-3779 (*1 *1 *1) (-5 *1 (-839))) (-3907 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 (-839)))) (-5 *1 (-839)))) (-2566 (*1 *1 *1 *1) (-5 *1 (-839))) (-1496 (*1 *1 *1) (-5 *1 (-839))) (-1496 (*1 *1 *1 *1) (-5 *1 (-839))) (-2556 (*1 *1 *1 *1) (-5 *1 (-839))) (-2547 (*1 *1 *1 *1) (-5 *1 (-839))) (-2539 (*1 *1 *1 *1) (-5 *1 (-839))) (-2529 (*1 *1 *1 *1) (-5 *1 (-839))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-839)))) (-3901 (*1 *1 *1 *1) (-5 *1 (-839))) (-2520 (*1 *1 *1 *1) (-5 *1 (-839))) (-2511 (*1 *1 *1 *1) (-5 *1 (-839))) (-2501 (*1 *1 *1 *1) (-5 *1 (-839))) (-2492 (*1 *1 *1 *1) (-5 *1 (-839))) (-3468 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2480 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2471 (*1 *1 *1) (-5 *1 (-839))) (-1443 (*1 *1 *1) (-5 *1 (-839))) (-1443 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-839)))) (-2462 (*1 *1 *1) (-5 *1 (-839))) (-2462 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-839)))) (-2450 (*1 *1 *1) (-5 *1 (-839))) (-2440 (*1 *1 *1 *1) (-5 *1 (-839))) (-1791 (*1 *1 *1) (-5 *1 (-839))) (-1791 (*1 *1 *1 *1) (-5 *1 (-839))) (-1791 (*1 *1 *1 *1 *1) (-5 *1 (-839))) (-2430 (*1 *1 *1) (-5 *1 (-839))) (-2430 (*1 *1 *1 *1) (-5 *1 (-839))) (-2430 (*1 *1 *1 *1 *1) (-5 *1 (-839))) (-4206 (*1 *1 *1) (-5 *1 (-839))) (-4206 (*1 *1 *1 *1) (-5 *1 (-839))) (-4206 (*1 *1 *1 *1 *1) (-5 *1 (-839))) (-3761 (*1 *1 *1) (-5 *1 (-839))) (-3761 (*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2420 (*1 *1 *1) (-5 *1 (-839))) (-2420 (*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2411 (*1 *1 *1) (-5 *1 (-839))) (-2411 (*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2400 (*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2367 (*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) (-2281 (*1 *1 *1 *1) (-5 *1 (-839))) (-1671 (*1 *1 *1 *1) (-5 *1 (-839))) (-2307 (*1 *1 *1 *1) (-5 *1 (-839))) (-2320 (*1 *1 *1 *1) (-5 *1 (-839))) (-2334 (*1 *1 *1 *1) (-5 *1 (-839))) (-2346 (*1 *1 *1 *1) (-5 *1 (-839))) (-2382 (*1 *1 *1 *1) (-5 *1 (-839))) (-2393 (*1 *1 *1 *1) (-5 *1 (-839))) (-2393 (*1 *1 *1) (-5 *1 (-839))) (* (*1 *1 *1 *1) (-5 *1 (-839))) (-2404 (*1 *1 *1 *1) (-5 *1 (-839))) (** (*1 *1 *1 *1) (-5 *1 (-839))) (-2813 (*1 *1 *1 *1) (-5 *1 (-839))) (-2851 (*1 *1 *1 *1) (-5 *1 (-839))) (-2826 (*1 *1 *1 *1) (-5 *1 (-839))) (-2802 (*1 *1 *1 *1) (-5 *1 (-839))) (-3743 (*1 *1 *1 *1) (-5 *1 (-839))) (-3152 (*1 *1 *1 *1) (-5 *1 (-839))) (-2960 (*1 *1 *1) (-5 *1 (-839))) (-1504 (*1 *1 *1 *1) (-5 *1 (-839))) (-1504 (*1 *1 *1) (-5 *1 (-839)))) -(-13 (-1073) (-10 -8 (-15 -3871 ((-1237) $)) (-15 -2133 ($ (-1131))) (-15 -1464 ((-1237) (-1131))) (-15 -3375 ($ (-552))) (-15 -3375 ($ (-1149))) (-15 -3375 ($ (-1131))) (-15 -3375 ($ (-221))) (-15 -3600 ($)) (-15 -1453 ((-1131) (-1131))) (-15 -1924 ((-552) $)) (-15 -2207 ((-552) $)) (-15 -1924 ((-552))) (-15 -2207 ((-552))) (-15 -1442 ((-552) $)) (-15 -1430 ((-552) $)) (-15 -2637 ($ (-552))) (-15 -2626 ($ (-552))) (-15 -2616 ($ (-552) (-552))) (-15 -2290 ($ $ (-552))) (-15 -2303 ($ $ (-552))) (-15 -2845 ($ $ (-552))) (-15 -2290 ($ $)) (-15 -2303 ($ $)) (-15 -2845 ($ $)) (-15 -2609 ($ $ $)) (-15 -2597 ($ $ $)) (-15 -2609 ($ (-625 $))) (-15 -2597 ($ (-625 $))) (-15 -2667 ($ $ (-625 $))) (-15 -2585 ($ $ (-625 $))) (-15 -2585 ($ $ $ $)) (-15 -2575 ($ $ $)) (-15 -2047 ((-112) $)) (-15 -2154 ($ $ (-625 $))) (-15 -4265 ($ $)) (-15 -3050 ($ $ $)) (-15 -3779 ($ $)) (-15 -3907 ($ (-625 (-625 $)))) (-15 -2566 ($ $ $)) (-15 -1496 ($ $)) (-15 -1496 ($ $ $)) (-15 -2556 ($ $ $)) (-15 -2547 ($ $ $)) (-15 -2539 ($ $ $)) (-15 -2529 ($ $ $)) (-15 -3072 ($ $ (-751))) (-15 -3901 ($ $ $)) (-15 -2520 ($ $ $)) (-15 -2511 ($ $ $)) (-15 -2501 ($ $ $)) (-15 -2492 ($ $ $)) (-15 -3468 ($ $ (-625 $))) (-15 -2480 ($ $ (-625 $))) (-15 -2471 ($ $)) (-15 -1443 ($ $)) (-15 -1443 ($ $ (-751))) (-15 -2462 ($ $)) (-15 -2462 ($ $ (-751))) (-15 -2450 ($ $)) (-15 -2440 ($ $ $)) (-15 -1791 ($ $)) (-15 -1791 ($ $ $)) (-15 -1791 ($ $ $ $)) (-15 -2430 ($ $)) (-15 -2430 ($ $ $)) (-15 -2430 ($ $ $ $)) (-15 -4206 ($ $)) (-15 -4206 ($ $ $)) (-15 -4206 ($ $ $ $)) (-15 -3761 ($ $)) (-15 -3761 ($ (-625 $))) (-15 -2420 ($ $)) (-15 -2420 ($ (-625 $))) (-15 -2411 ($ $)) (-15 -2411 ($ (-625 $))) (-15 -2400 ($ (-625 $))) (-15 -2388 ($ (-625 $))) (-15 -2378 ($ (-625 $))) (-15 -2367 ($ (-625 $))) (-15 -2281 ($ $ $)) (-15 -1671 ($ $ $)) (-15 -2307 ($ $ $)) (-15 -2320 ($ $ $)) (-15 -2334 ($ $ $)) (-15 -2346 ($ $ $)) (-15 -2382 ($ $ $)) (-15 -2393 ($ $ $)) (-15 -2393 ($ $)) (-15 * ($ $ $)) (-15 -2404 ($ $ $)) (-15 ** ($ $ $)) (-15 -2813 ($ $ $)) (-15 -2851 ($ $ $)) (-15 -2826 ($ $ $)) (-15 -2802 ($ $ $)) (-15 -3743 ($ $ $)) (-15 -3152 ($ $ $)) (-15 -2960 ($ $)) (-15 -1504 ($ $ $)) (-15 -1504 ($ $)))) -((-2505 (((-1237) (-625 (-52))) 24)) (-4213 (((-1237) (-1131) (-839)) 14) (((-1237) (-839)) 9) (((-1237) (-1131)) 11))) -(((-840) (-10 -7 (-15 -4213 ((-1237) (-1131))) (-15 -4213 ((-1237) (-839))) (-15 -4213 ((-1237) (-1131) (-839))) (-15 -2505 ((-1237) (-625 (-52)))))) (T -840)) -((-2505 (*1 *2 *3) (-12 (-5 *3 (-625 (-52))) (-5 *2 (-1237)) (-5 *1 (-840)))) (-4213 (*1 *2 *3 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-839)) (-5 *2 (-1237)) (-5 *1 (-840)))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1237)) (-5 *1 (-840)))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-840))))) -(-10 -7 (-15 -4213 ((-1237) (-1131))) (-15 -4213 ((-1237) (-839))) (-15 -4213 ((-1237) (-1131) (-839))) (-15 -2505 ((-1237) (-625 (-52))))) -((-1671 (((-112) $ $) NIL)) (-2195 (((-3 $ "failed") (-1149)) 33)) (-2894 (((-751)) 31)) (-3702 (($) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-4318 (((-897) $) 29)) (-2883 (((-1131) $) 39)) (-3123 (($ (-897)) 28)) (-2831 (((-1093) $) NIL)) (-2042 (((-1149) $) 13) (((-528) $) 19) (((-868 (-374)) $) 26) (((-868 (-552)) $) 22)) (-1683 (((-839) $) 16)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 36)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 35))) -(((-841 |#1|) (-13 (-821) (-598 (-1149)) (-598 (-528)) (-598 (-868 (-374))) (-598 (-868 (-552))) (-10 -8 (-15 -2195 ((-3 $ "failed") (-1149))))) (-625 (-1149))) (T -841)) -((-2195 (*1 *1 *2) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-841 *3)) (-14 *3 (-625 *2))))) -(-13 (-821) (-598 (-1149)) (-598 (-528)) (-598 (-868 (-374))) (-598 (-868 (-552))) (-10 -8 (-15 -2195 ((-3 $ "failed") (-1149))))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (((-928 |#1|) $) NIL) (($ (-928 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-170)))) (-4141 (((-751)) NIL)) (-4040 (((-1237) (-751)) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2404 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) -(((-842 |#1| |#2| |#3| |#4|) (-13 (-1025) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -1683 ((-928 |#1|) $)) (-15 -1683 ($ (-928 |#1|))) (IF (|has| |#1| (-358)) (-15 -2404 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4040 ((-1237) (-751))))) (-1025) (-625 (-1149)) (-625 (-751)) (-751)) (T -842)) -((-1683 (*1 *2 *1) (-12 (-5 *2 (-928 *3)) (-5 *1 (-842 *3 *4 *5 *6)) (-4 *3 (-1025)) (-14 *4 (-625 (-1149))) (-14 *5 (-625 (-751))) (-14 *6 (-751)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-1025)) (-5 *1 (-842 *3 *4 *5 *6)) (-14 *4 (-625 (-1149))) (-14 *5 (-625 (-751))) (-14 *6 (-751)))) (-2404 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-842 *2 *3 *4 *5)) (-4 *2 (-358)) (-4 *2 (-1025)) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-751))) (-14 *5 (-751)))) (-4040 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-842 *4 *5 *6 *7)) (-4 *4 (-1025)) (-14 *5 (-625 (-1149))) (-14 *6 (-625 *3)) (-14 *7 *3)))) -(-13 (-1025) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -1683 ((-928 |#1|) $)) (-15 -1683 ($ (-928 |#1|))) (IF (|has| |#1| (-358)) (-15 -2404 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4040 ((-1237) (-751))))) -((-1476 (((-3 (-172 |#3|) "failed") (-751) (-751) |#2| |#2|) 31)) (-1486 (((-3 (-402 |#3|) "failed") (-751) (-751) |#2| |#2|) 24))) -(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -1486 ((-3 (-402 |#3|) "failed") (-751) (-751) |#2| |#2|)) (-15 -1476 ((-3 (-172 |#3|) "failed") (-751) (-751) |#2| |#2|))) (-358) (-1223 |#1|) (-1208 |#1|)) (T -843)) -((-1476 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-751)) (-4 *5 (-358)) (-5 *2 (-172 *6)) (-5 *1 (-843 *5 *4 *6)) (-4 *4 (-1223 *5)) (-4 *6 (-1208 *5)))) (-1486 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-751)) (-4 *5 (-358)) (-5 *2 (-402 *6)) (-5 *1 (-843 *5 *4 *6)) (-4 *4 (-1223 *5)) (-4 *6 (-1208 *5))))) -(-10 -7 (-15 -1486 ((-3 (-402 |#3|) "failed") (-751) (-751) |#2| |#2|)) (-15 -1476 ((-3 (-172 |#3|) "failed") (-751) (-751) |#2| |#2|))) -((-1486 (((-3 (-402 (-1205 |#2| |#1|)) "failed") (-751) (-751) (-1224 |#1| |#2| |#3|)) 28) (((-3 (-402 (-1205 |#2| |#1|)) "failed") (-751) (-751) (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|)) 26))) -(((-844 |#1| |#2| |#3|) (-10 -7 (-15 -1486 ((-3 (-402 (-1205 |#2| |#1|)) "failed") (-751) (-751) (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|))) (-15 -1486 ((-3 (-402 (-1205 |#2| |#1|)) "failed") (-751) (-751) (-1224 |#1| |#2| |#3|)))) (-358) (-1149) |#1|) (T -844)) -((-1486 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-751)) (-5 *4 (-1224 *5 *6 *7)) (-4 *5 (-358)) (-14 *6 (-1149)) (-14 *7 *5) (-5 *2 (-402 (-1205 *6 *5))) (-5 *1 (-844 *5 *6 *7)))) (-1486 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-751)) (-5 *4 (-1224 *5 *6 *7)) (-4 *5 (-358)) (-14 *6 (-1149)) (-14 *7 *5) (-5 *2 (-402 (-1205 *6 *5))) (-5 *1 (-844 *5 *6 *7))))) -(-10 -7 (-15 -1486 ((-3 (-402 (-1205 |#2| |#1|)) "failed") (-751) (-751) (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|))) (-15 -1486 ((-3 (-402 (-1205 |#2| |#1|)) "failed") (-751) (-751) (-1224 |#1| |#2| |#3|)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-3837 (($ $ (-552)) 60)) (-2408 (((-112) $ $) 57)) (-3101 (($) 17 T CONST)) (-1496 (($ (-1145 (-552)) (-552)) 59)) (-2851 (($ $ $) 53)) (-4174 (((-3 $ "failed") $) 32)) (-1507 (($ $) 62)) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-2172 (((-751) $) 67)) (-3650 (((-112) $) 30)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-1531 (((-552)) 64)) (-1520 (((-552) $) 63)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2147 (($ $ (-552)) 66)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-2397 (((-751) $) 56)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-1542 (((-1129 (-552)) $) 68)) (-3580 (($ $) 65)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2874 (((-552) $ (-552)) 61)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-845 |#1|) (-138) (-552)) (T -845)) -((-1542 (*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-5 *2 (-1129 (-552))))) (-2172 (*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-5 *2 (-751)))) (-2147 (*1 *1 *1 *2) (-12 (-4 *1 (-845 *3)) (-5 *2 (-552)))) (-3580 (*1 *1 *1) (-4 *1 (-845 *2))) (-1531 (*1 *2) (-12 (-4 *1 (-845 *3)) (-5 *2 (-552)))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-5 *2 (-552)))) (-1507 (*1 *1 *1) (-4 *1 (-845 *2))) (-2874 (*1 *2 *1 *2) (-12 (-4 *1 (-845 *3)) (-5 *2 (-552)))) (-3837 (*1 *1 *1 *2) (-12 (-4 *1 (-845 *3)) (-5 *2 (-552)))) (-1496 (*1 *1 *2 *3) (-12 (-5 *2 (-1145 (-552))) (-5 *3 (-552)) (-4 *1 (-845 *4))))) -(-13 (-302) (-145) (-10 -8 (-15 -1542 ((-1129 (-552)) $)) (-15 -2172 ((-751) $)) (-15 -2147 ($ $ (-552))) (-15 -3580 ($ $)) (-15 -1531 ((-552))) (-15 -1520 ((-552) $)) (-15 -1507 ($ $)) (-15 -2874 ((-552) $ (-552))) (-15 -3837 ($ $ (-552))) (-15 -1496 ($ (-1145 (-552)) (-552))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-597 (-839)) . T) ((-170) . T) ((-285) . T) ((-302) . T) ((-446) . T) ((-544) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-896) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3837 (($ $ (-552)) NIL)) (-2408 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-1496 (($ (-1145 (-552)) (-552)) NIL)) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1507 (($ $) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2172 (((-751) $) NIL)) (-3650 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1531 (((-552)) NIL)) (-1520 (((-552) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2147 (($ $ (-552)) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1542 (((-1129 (-552)) $) NIL)) (-3580 (($ $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL)) (-4141 (((-751)) NIL)) (-3518 (((-112) $ $) NIL)) (-2874 (((-552) $ (-552)) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL))) -(((-846 |#1|) (-845 |#1|) (-552)) (T -846)) -NIL -(-845 |#1|) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4177 (((-846 |#1|) $) NIL (|has| (-846 |#1|) (-302)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-846 |#1|) (-885)))) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| (-846 |#1|) (-885)))) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL (|has| (-846 |#1|) (-800)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-846 |#1|) "failed") $) NIL) (((-3 (-1149) "failed") $) NIL (|has| (-846 |#1|) (-1014 (-1149)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| (-846 |#1|) (-1014 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-846 |#1|) (-1014 (-552))))) (-1895 (((-846 |#1|) $) NIL) (((-1149) $) NIL (|has| (-846 |#1|) (-1014 (-1149)))) (((-402 (-552)) $) NIL (|has| (-846 |#1|) (-1014 (-552)))) (((-552) $) NIL (|has| (-846 |#1|) (-1014 (-552))))) (-2987 (($ $) NIL) (($ (-552) $) NIL)) (-2851 (($ $ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| (-846 |#1|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| (-846 |#1|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-846 |#1|))) (|:| |vec| (-1232 (-846 |#1|)))) (-669 $) (-1232 $)) NIL) (((-669 (-846 |#1|)) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-846 |#1|) (-537)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3620 (((-112) $) NIL (|has| (-846 |#1|) (-800)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| (-846 |#1|) (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| (-846 |#1|) (-862 (-374))))) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL)) (-1356 (((-846 |#1|) $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| (-846 |#1|) (-1124)))) (-3630 (((-112) $) NIL (|has| (-846 |#1|) (-800)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL (|has| (-846 |#1|) (-827)))) (-3332 (($ $ $) NIL (|has| (-846 |#1|) (-827)))) (-1996 (($ (-1 (-846 |#1|) (-846 |#1|)) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-846 |#1|) (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL (|has| (-846 |#1|) (-302)))) (-4189 (((-846 |#1|) $) NIL (|has| (-846 |#1|) (-537)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-846 |#1|) (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-846 |#1|) (-885)))) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-4073 (($ $ (-625 (-846 |#1|)) (-625 (-846 |#1|))) NIL (|has| (-846 |#1|) (-304 (-846 |#1|)))) (($ $ (-846 |#1|) (-846 |#1|)) NIL (|has| (-846 |#1|) (-304 (-846 |#1|)))) (($ $ (-289 (-846 |#1|))) NIL (|has| (-846 |#1|) (-304 (-846 |#1|)))) (($ $ (-625 (-289 (-846 |#1|)))) NIL (|has| (-846 |#1|) (-304 (-846 |#1|)))) (($ $ (-625 (-1149)) (-625 (-846 |#1|))) NIL (|has| (-846 |#1|) (-507 (-1149) (-846 |#1|)))) (($ $ (-1149) (-846 |#1|)) NIL (|has| (-846 |#1|) (-507 (-1149) (-846 |#1|))))) (-2397 (((-751) $) NIL)) (-2154 (($ $ (-846 |#1|)) NIL (|has| (-846 |#1|) (-281 (-846 |#1|) (-846 |#1|))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $) NIL (|has| (-846 |#1|) (-229))) (($ $ (-751)) NIL (|has| (-846 |#1|) (-229))) (($ $ (-1149)) NIL (|has| (-846 |#1|) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-846 |#1|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-846 |#1|) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-846 |#1|) (-876 (-1149)))) (($ $ (-1 (-846 |#1|) (-846 |#1|)) (-751)) NIL) (($ $ (-1 (-846 |#1|) (-846 |#1|))) NIL)) (-2265 (($ $) NIL)) (-1368 (((-846 |#1|) $) NIL)) (-2042 (((-868 (-552)) $) NIL (|has| (-846 |#1|) (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| (-846 |#1|) (-598 (-868 (-374))))) (((-528) $) NIL (|has| (-846 |#1|) (-598 (-528)))) (((-374) $) NIL (|has| (-846 |#1|) (-998))) (((-221) $) NIL (|has| (-846 |#1|) (-998)))) (-1553 (((-172 (-402 (-552))) $) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-846 |#1|) (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL) (($ (-846 |#1|)) NIL) (($ (-1149)) NIL (|has| (-846 |#1|) (-1014 (-1149))))) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| (-846 |#1|) (-885))) (|has| (-846 |#1|) (-143))))) (-4141 (((-751)) NIL)) (-4199 (((-846 |#1|) $) NIL (|has| (-846 |#1|) (-537)))) (-3518 (((-112) $ $) NIL)) (-2874 (((-402 (-552)) $ (-552)) NIL)) (-1727 (($ $) NIL (|has| (-846 |#1|) (-800)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $) NIL (|has| (-846 |#1|) (-229))) (($ $ (-751)) NIL (|has| (-846 |#1|) (-229))) (($ $ (-1149)) NIL (|has| (-846 |#1|) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-846 |#1|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-846 |#1|) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-846 |#1|) (-876 (-1149)))) (($ $ (-1 (-846 |#1|) (-846 |#1|)) (-751)) NIL) (($ $ (-1 (-846 |#1|) (-846 |#1|))) NIL)) (-2346 (((-112) $ $) NIL (|has| (-846 |#1|) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-846 |#1|) (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| (-846 |#1|) (-827)))) (-2307 (((-112) $ $) NIL (|has| (-846 |#1|) (-827)))) (-2404 (($ $ $) NIL) (($ (-846 |#1|) (-846 |#1|)) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ (-846 |#1|) $) NIL) (($ $ (-846 |#1|)) NIL))) -(((-847 |#1|) (-13 (-968 (-846 |#1|)) (-10 -8 (-15 -2874 ((-402 (-552)) $ (-552))) (-15 -1553 ((-172 (-402 (-552))) $)) (-15 -2987 ($ $)) (-15 -2987 ($ (-552) $)))) (-552)) (T -847)) -((-2874 (*1 *2 *1 *3) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-847 *4)) (-14 *4 *3) (-5 *3 (-552)))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-172 (-402 (-552)))) (-5 *1 (-847 *3)) (-14 *3 (-552)))) (-2987 (*1 *1 *1) (-12 (-5 *1 (-847 *2)) (-14 *2 (-552)))) (-2987 (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-847 *3)) (-14 *3 *2)))) -(-13 (-968 (-846 |#1|)) (-10 -8 (-15 -2874 ((-402 (-552)) $ (-552))) (-15 -1553 ((-172 (-402 (-552))) $)) (-15 -2987 ($ $)) (-15 -2987 ($ (-552) $)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4177 ((|#2| $) NIL (|has| |#2| (-302)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL (|has| |#2| (-800)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) NIL) (((-3 (-1149) "failed") $) NIL (|has| |#2| (-1014 (-1149)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#2| (-1014 (-552)))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1014 (-552))))) (-1895 ((|#2| $) NIL) (((-1149) $) NIL (|has| |#2| (-1014 (-1149)))) (((-402 (-552)) $) NIL (|has| |#2| (-1014 (-552)))) (((-552) $) NIL (|has| |#2| (-1014 (-552))))) (-2987 (($ $) 31) (($ (-552) $) 32)) (-2851 (($ $ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) 53)) (-3702 (($) NIL (|has| |#2| (-537)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3620 (((-112) $) NIL (|has| |#2| (-800)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| |#2| (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| |#2| (-862 (-374))))) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL)) (-1356 ((|#2| $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| |#2| (-1124)))) (-3630 (((-112) $) NIL (|has| |#2| (-800)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL (|has| |#2| (-827)))) (-3332 (($ $ $) NIL (|has| |#2| (-827)))) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 49)) (-2071 (($) NIL (|has| |#2| (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL (|has| |#2| (-302)))) (-4189 ((|#2| $) NIL (|has| |#2| (-537)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-4073 (($ $ (-625 |#2|) (-625 |#2|)) NIL (|has| |#2| (-304 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-304 |#2|))) (($ $ (-289 |#2|)) NIL (|has| |#2| (-304 |#2|))) (($ $ (-625 (-289 |#2|))) NIL (|has| |#2| (-304 |#2|))) (($ $ (-625 (-1149)) (-625 |#2|)) NIL (|has| |#2| (-507 (-1149) |#2|))) (($ $ (-1149) |#2|) NIL (|has| |#2| (-507 (-1149) |#2|)))) (-2397 (((-751) $) NIL)) (-2154 (($ $ |#2|) NIL (|has| |#2| (-281 |#2| |#2|)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $) NIL (|has| |#2| (-229))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2265 (($ $) NIL)) (-1368 ((|#2| $) NIL)) (-2042 (((-868 (-552)) $) NIL (|has| |#2| (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| |#2| (-598 (-868 (-374))))) (((-528) $) NIL (|has| |#2| (-598 (-528)))) (((-374) $) NIL (|has| |#2| (-998))) (((-221) $) NIL (|has| |#2| (-998)))) (-1553 (((-172 (-402 (-552))) $) 68)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-885))))) (-1683 (((-839) $) 87) (($ (-552)) 19) (($ $) NIL) (($ (-402 (-552))) 24) (($ |#2|) 18) (($ (-1149)) NIL (|has| |#2| (-1014 (-1149))))) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#2| (-885))) (|has| |#2| (-143))))) (-4141 (((-751)) NIL)) (-4199 ((|#2| $) NIL (|has| |#2| (-537)))) (-3518 (((-112) $ $) NIL)) (-2874 (((-402 (-552)) $ (-552)) 60)) (-1727 (($ $) NIL (|has| |#2| (-800)))) (-2089 (($) 14 T CONST)) (-2100 (($) 16 T CONST)) (-3768 (($ $) NIL (|has| |#2| (-229))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2346 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2281 (((-112) $ $) 35)) (-2334 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2404 (($ $ $) 23) (($ |#2| |#2|) 54)) (-2393 (($ $) 39) (($ $ $) 41)) (-2382 (($ $ $) 37)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) 50)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 42) (($ $ $) 44) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) -(((-848 |#1| |#2|) (-13 (-968 |#2|) (-10 -8 (-15 -2874 ((-402 (-552)) $ (-552))) (-15 -1553 ((-172 (-402 (-552))) $)) (-15 -2987 ($ $)) (-15 -2987 ($ (-552) $)))) (-552) (-845 |#1|)) (T -848)) -((-2874 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-402 (-552))) (-5 *1 (-848 *4 *5)) (-5 *3 (-552)) (-4 *5 (-845 *4)))) (-1553 (*1 *2 *1) (-12 (-14 *3 (-552)) (-5 *2 (-172 (-402 (-552)))) (-5 *1 (-848 *3 *4)) (-4 *4 (-845 *3)))) (-2987 (*1 *1 *1) (-12 (-14 *2 (-552)) (-5 *1 (-848 *2 *3)) (-4 *3 (-845 *2)))) (-2987 (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-14 *3 *2) (-5 *1 (-848 *3 *4)) (-4 *4 (-845 *3))))) -(-13 (-968 |#2|) (-10 -8 (-15 -2874 ((-402 (-552)) $ (-552))) (-15 -1553 ((-172 (-402 (-552))) $)) (-15 -2987 ($ $)) (-15 -2987 ($ (-552) $)))) -((-1671 (((-112) $ $) NIL (-12 (|has| |#1| (-1073)) (|has| |#2| (-1073))))) (-2673 ((|#2| $) 12)) (-3154 (($ |#1| |#2|) 9)) (-2883 (((-1131) $) NIL (-12 (|has| |#1| (-1073)) (|has| |#2| (-1073))))) (-2831 (((-1093) $) NIL (-12 (|has| |#1| (-1073)) (|has| |#2| (-1073))))) (-2924 ((|#1| $) 11)) (-1695 (($ |#1| |#2|) 10)) (-1683 (((-839) $) 18 (-1523 (-12 (|has| |#1| (-597 (-839))) (|has| |#2| (-597 (-839)))) (-12 (|has| |#1| (-1073)) (|has| |#2| (-1073)))))) (-2281 (((-112) $ $) 22 (-12 (|has| |#1| (-1073)) (|has| |#2| (-1073)))))) -(((-849 |#1| |#2|) (-13 (-1186) (-10 -8 (IF (|has| |#1| (-597 (-839))) (IF (|has| |#2| (-597 (-839))) (-6 (-597 (-839))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1073)) (IF (|has| |#2| (-1073)) (-6 (-1073)) |%noBranch|) |%noBranch|) (-15 -3154 ($ |#1| |#2|)) (-15 -1695 ($ |#1| |#2|)) (-15 -2924 (|#1| $)) (-15 -2673 (|#2| $)))) (-1186) (-1186)) (T -849)) -((-3154 (*1 *1 *2 *3) (-12 (-5 *1 (-849 *2 *3)) (-4 *2 (-1186)) (-4 *3 (-1186)))) (-1695 (*1 *1 *2 *3) (-12 (-5 *1 (-849 *2 *3)) (-4 *2 (-1186)) (-4 *3 (-1186)))) (-2924 (*1 *2 *1) (-12 (-4 *2 (-1186)) (-5 *1 (-849 *2 *3)) (-4 *3 (-1186)))) (-2673 (*1 *2 *1) (-12 (-4 *2 (-1186)) (-5 *1 (-849 *3 *2)) (-4 *3 (-1186))))) -(-13 (-1186) (-10 -8 (IF (|has| |#1| (-597 (-839))) (IF (|has| |#2| (-597 (-839))) (-6 (-597 (-839))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1073)) (IF (|has| |#2| (-1073)) (-6 (-1073)) |%noBranch|) |%noBranch|) (-15 -3154 ($ |#1| |#2|)) (-15 -1695 ($ |#1| |#2|)) (-15 -2924 (|#1| $)) (-15 -2673 (|#2| $)))) -((-1671 (((-112) $ $) NIL)) (-3074 (((-552) $) 15)) (-1574 (($ (-155)) 11)) (-1564 (($ (-155)) 12)) (-2883 (((-1131) $) NIL)) (-3064 (((-155) $) 13)) (-2831 (((-1093) $) NIL)) (-2562 (($ (-155)) 9)) (-1583 (($ (-155)) 8)) (-1683 (((-839) $) 23) (($ (-155)) 16)) (-3931 (($ (-155)) 10)) (-2281 (((-112) $ $) NIL))) -(((-850) (-13 (-1073) (-10 -8 (-15 -1583 ($ (-155))) (-15 -2562 ($ (-155))) (-15 -3931 ($ (-155))) (-15 -1574 ($ (-155))) (-15 -1564 ($ (-155))) (-15 -3064 ((-155) $)) (-15 -3074 ((-552) $)) (-15 -1683 ($ (-155)))))) (T -850)) -((-1583 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-3931 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-1574 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-1564 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-3064 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-3074 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-850)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850))))) -(-13 (-1073) (-10 -8 (-15 -1583 ($ (-155))) (-15 -2562 ($ (-155))) (-15 -3931 ($ (-155))) (-15 -1574 ($ (-155))) (-15 -1564 ($ (-155))) (-15 -3064 ((-155) $)) (-15 -3074 ((-552) $)) (-15 -1683 ($ (-155))))) -((-1683 (((-311 (-552)) (-402 (-928 (-48)))) 23) (((-311 (-552)) (-928 (-48))) 18))) -(((-851) (-10 -7 (-15 -1683 ((-311 (-552)) (-928 (-48)))) (-15 -1683 ((-311 (-552)) (-402 (-928 (-48))))))) (T -851)) -((-1683 (*1 *2 *3) (-12 (-5 *3 (-402 (-928 (-48)))) (-5 *2 (-311 (-552))) (-5 *1 (-851)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-928 (-48))) (-5 *2 (-311 (-552))) (-5 *1 (-851))))) -(-10 -7 (-15 -1683 ((-311 (-552)) (-928 (-48)))) (-15 -1683 ((-311 (-552)) (-402 (-928 (-48)))))) -((-1996 (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)) 14))) -(((-852 |#1| |#2|) (-10 -7 (-15 -1996 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)))) (-1186) (-1186)) (T -852)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6))))) -(-10 -7 (-15 -1996 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)))) -((-1614 (($ |#1| |#1|) 8)) (-1619 ((|#1| $ (-751)) 10))) -(((-853 |#1|) (-10 -8 (-15 -1614 ($ |#1| |#1|)) (-15 -1619 (|#1| $ (-751)))) (-1186)) (T -853)) -((-1619 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-853 *2)) (-4 *2 (-1186)))) (-1614 (*1 *1 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1186))))) -(-10 -8 (-15 -1614 ($ |#1| |#1|)) (-15 -1619 (|#1| $ (-751)))) -((-1996 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 14))) -(((-854 |#1| |#2|) (-10 -7 (-15 -1996 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)))) (-1186) (-1186)) (T -854)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6))))) -(-10 -7 (-15 -1996 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)))) -((-1614 (($ |#1| |#1| |#1|) 8)) (-1619 ((|#1| $ (-751)) 10))) -(((-855 |#1|) (-10 -8 (-15 -1614 ($ |#1| |#1| |#1|)) (-15 -1619 (|#1| $ (-751)))) (-1186)) (T -855)) -((-1619 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-855 *2)) (-4 *2 (-1186)))) (-1614 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1186))))) -(-10 -8 (-15 -1614 ($ |#1| |#1| |#1|)) (-15 -1619 (|#1| $ (-751)))) -((-1595 (((-625 (-1154)) (-1131)) 9))) -(((-856) (-10 -7 (-15 -1595 ((-625 (-1154)) (-1131))))) (T -856)) -((-1595 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-625 (-1154))) (-5 *1 (-856))))) -(-10 -7 (-15 -1595 ((-625 (-1154)) (-1131)))) -((-1996 (((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)) 14))) -(((-857 |#1| |#2|) (-10 -7 (-15 -1996 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)))) (-1186) (-1186)) (T -857)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-858 *6)) (-5 *1 (-857 *5 *6))))) -(-10 -7 (-15 -1996 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)))) -((-1608 (($ |#1| |#1| |#1|) 8)) (-1619 ((|#1| $ (-751)) 10))) -(((-858 |#1|) (-10 -8 (-15 -1608 ($ |#1| |#1| |#1|)) (-15 -1619 (|#1| $ (-751)))) (-1186)) (T -858)) -((-1619 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-858 *2)) (-4 *2 (-1186)))) (-1608 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-858 *2)) (-4 *2 (-1186))))) -(-10 -8 (-15 -1608 ($ |#1| |#1| |#1|)) (-15 -1619 (|#1| $ (-751)))) -((-1664 (((-1129 (-625 (-552))) (-625 (-552)) (-1129 (-625 (-552)))) 32)) (-1653 (((-1129 (-625 (-552))) (-625 (-552)) (-625 (-552))) 28)) (-1675 (((-1129 (-625 (-552))) (-625 (-552))) 41) (((-1129 (-625 (-552))) (-625 (-552)) (-625 (-552))) 40)) (-1687 (((-1129 (-625 (-552))) (-552)) 42)) (-1630 (((-1129 (-625 (-552))) (-552) (-552)) 22) (((-1129 (-625 (-552))) (-552)) 16) (((-1129 (-625 (-552))) (-552) (-552) (-552)) 12)) (-1642 (((-1129 (-625 (-552))) (-1129 (-625 (-552)))) 26)) (-2410 (((-625 (-552)) (-625 (-552))) 25))) -(((-859) (-10 -7 (-15 -1630 ((-1129 (-625 (-552))) (-552) (-552) (-552))) (-15 -1630 ((-1129 (-625 (-552))) (-552))) (-15 -1630 ((-1129 (-625 (-552))) (-552) (-552))) (-15 -2410 ((-625 (-552)) (-625 (-552)))) (-15 -1642 ((-1129 (-625 (-552))) (-1129 (-625 (-552))))) (-15 -1653 ((-1129 (-625 (-552))) (-625 (-552)) (-625 (-552)))) (-15 -1664 ((-1129 (-625 (-552))) (-625 (-552)) (-1129 (-625 (-552))))) (-15 -1675 ((-1129 (-625 (-552))) (-625 (-552)) (-625 (-552)))) (-15 -1675 ((-1129 (-625 (-552))) (-625 (-552)))) (-15 -1687 ((-1129 (-625 (-552))) (-552))))) (T -859)) -((-1687 (*1 *2 *3) (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-552)))) (-1675 (*1 *2 *3) (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-625 (-552))))) (-1675 (*1 *2 *3 *3) (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-625 (-552))))) (-1664 (*1 *2 *3 *2) (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *3 (-625 (-552))) (-5 *1 (-859)))) (-1653 (*1 *2 *3 *3) (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-625 (-552))))) (-1642 (*1 *2 *2) (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)))) (-2410 (*1 *2 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-859)))) (-1630 (*1 *2 *3 *3) (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-552)))) (-1630 (*1 *2 *3) (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-552)))) (-1630 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-552))))) -(-10 -7 (-15 -1630 ((-1129 (-625 (-552))) (-552) (-552) (-552))) (-15 -1630 ((-1129 (-625 (-552))) (-552))) (-15 -1630 ((-1129 (-625 (-552))) (-552) (-552))) (-15 -2410 ((-625 (-552)) (-625 (-552)))) (-15 -1642 ((-1129 (-625 (-552))) (-1129 (-625 (-552))))) (-15 -1653 ((-1129 (-625 (-552))) (-625 (-552)) (-625 (-552)))) (-15 -1664 ((-1129 (-625 (-552))) (-625 (-552)) (-1129 (-625 (-552))))) (-15 -1675 ((-1129 (-625 (-552))) (-625 (-552)) (-625 (-552)))) (-15 -1675 ((-1129 (-625 (-552))) (-625 (-552)))) (-15 -1687 ((-1129 (-625 (-552))) (-552)))) -((-2042 (((-868 (-374)) $) 9 (|has| |#1| (-598 (-868 (-374))))) (((-868 (-552)) $) 8 (|has| |#1| (-598 (-868 (-552))))))) -(((-860 |#1|) (-138) (-1186)) (T -860)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-598 (-868 (-552)))) (-6 (-598 (-868 (-552)))) |%noBranch|) (IF (|has| |t#1| (-598 (-868 (-374)))) (-6 (-598 (-868 (-374)))) |%noBranch|))) -(((-598 (-868 (-374))) |has| |#1| (-598 (-868 (-374)))) ((-598 (-868 (-552))) |has| |#1| (-598 (-868 (-552))))) -((-1671 (((-112) $ $) NIL)) (-2183 (($) 14)) (-1709 (($ (-865 |#1| |#2|) (-865 |#1| |#3|)) 27)) (-3223 (((-865 |#1| |#3|) $) 16)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1785 (((-112) $) 22)) (-3547 (($) 19)) (-1683 (((-839) $) 30)) (-1699 (((-865 |#1| |#2|) $) 15)) (-2281 (((-112) $ $) 25))) -(((-861 |#1| |#2| |#3|) (-13 (-1073) (-10 -8 (-15 -1785 ((-112) $)) (-15 -3547 ($)) (-15 -2183 ($)) (-15 -1709 ($ (-865 |#1| |#2|) (-865 |#1| |#3|))) (-15 -1699 ((-865 |#1| |#2|) $)) (-15 -3223 ((-865 |#1| |#3|) $)))) (-1073) (-1073) (-646 |#2|)) (T -861)) -((-1785 (*1 *2 *1) (-12 (-4 *4 (-1073)) (-5 *2 (-112)) (-5 *1 (-861 *3 *4 *5)) (-4 *3 (-1073)) (-4 *5 (-646 *4)))) (-3547 (*1 *1) (-12 (-4 *3 (-1073)) (-5 *1 (-861 *2 *3 *4)) (-4 *2 (-1073)) (-4 *4 (-646 *3)))) (-2183 (*1 *1) (-12 (-4 *3 (-1073)) (-5 *1 (-861 *2 *3 *4)) (-4 *2 (-1073)) (-4 *4 (-646 *3)))) (-1709 (*1 *1 *2 *3) (-12 (-5 *2 (-865 *4 *5)) (-5 *3 (-865 *4 *6)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-646 *5)) (-5 *1 (-861 *4 *5 *6)))) (-1699 (*1 *2 *1) (-12 (-4 *4 (-1073)) (-5 *2 (-865 *3 *4)) (-5 *1 (-861 *3 *4 *5)) (-4 *3 (-1073)) (-4 *5 (-646 *4)))) (-3223 (*1 *2 *1) (-12 (-4 *4 (-1073)) (-5 *2 (-865 *3 *5)) (-5 *1 (-861 *3 *4 *5)) (-4 *3 (-1073)) (-4 *5 (-646 *4))))) -(-13 (-1073) (-10 -8 (-15 -1785 ((-112) $)) (-15 -3547 ($)) (-15 -2183 ($)) (-15 -1709 ($ (-865 |#1| |#2|) (-865 |#1| |#3|))) (-15 -1699 ((-865 |#1| |#2|) $)) (-15 -3223 ((-865 |#1| |#3|) $)))) -((-1671 (((-112) $ $) 7)) (-3841 (((-865 |#1| $) $ (-868 |#1|) (-865 |#1| $)) 13)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 6))) -(((-862 |#1|) (-138) (-1073)) (T -862)) -((-3841 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-865 *4 *1)) (-5 *3 (-868 *4)) (-4 *1 (-862 *4)) (-4 *4 (-1073))))) -(-13 (-1073) (-10 -8 (-15 -3841 ((-865 |t#1| $) $ (-868 |t#1|) (-865 |t#1| $))))) -(((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-1721 (((-112) (-625 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-1733 (((-865 |#1| |#2|) |#2| |#3|) 43 (-12 (-2960 (|has| |#2| (-1014 (-1149)))) (-2960 (|has| |#2| (-1025))))) (((-625 (-289 (-928 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1025)) (-2960 (|has| |#2| (-1014 (-1149)))))) (((-625 (-289 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1014 (-1149)))) (((-861 |#1| |#2| (-625 |#2|)) (-625 |#2|) |#3|) 21))) -(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -1721 ((-112) |#2| |#3|)) (-15 -1721 ((-112) (-625 |#2|) |#3|)) (-15 -1733 ((-861 |#1| |#2| (-625 |#2|)) (-625 |#2|) |#3|)) (IF (|has| |#2| (-1014 (-1149))) (-15 -1733 ((-625 (-289 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1025)) (-15 -1733 ((-625 (-289 (-928 |#2|))) |#2| |#3|)) (-15 -1733 ((-865 |#1| |#2|) |#2| |#3|))))) (-1073) (-862 |#1|) (-598 (-868 |#1|))) (T -863)) -((-1733 (*1 *2 *3 *4) (-12 (-4 *5 (-1073)) (-5 *2 (-865 *5 *3)) (-5 *1 (-863 *5 *3 *4)) (-2960 (-4 *3 (-1014 (-1149)))) (-2960 (-4 *3 (-1025))) (-4 *3 (-862 *5)) (-4 *4 (-598 (-868 *5))))) (-1733 (*1 *2 *3 *4) (-12 (-4 *5 (-1073)) (-5 *2 (-625 (-289 (-928 *3)))) (-5 *1 (-863 *5 *3 *4)) (-4 *3 (-1025)) (-2960 (-4 *3 (-1014 (-1149)))) (-4 *3 (-862 *5)) (-4 *4 (-598 (-868 *5))))) (-1733 (*1 *2 *3 *4) (-12 (-4 *5 (-1073)) (-5 *2 (-625 (-289 *3))) (-5 *1 (-863 *5 *3 *4)) (-4 *3 (-1014 (-1149))) (-4 *3 (-862 *5)) (-4 *4 (-598 (-868 *5))))) (-1733 (*1 *2 *3 *4) (-12 (-4 *5 (-1073)) (-4 *6 (-862 *5)) (-5 *2 (-861 *5 *6 (-625 *6))) (-5 *1 (-863 *5 *6 *4)) (-5 *3 (-625 *6)) (-4 *4 (-598 (-868 *5))))) (-1721 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *6)) (-4 *6 (-862 *5)) (-4 *5 (-1073)) (-5 *2 (-112)) (-5 *1 (-863 *5 *6 *4)) (-4 *4 (-598 (-868 *5))))) (-1721 (*1 *2 *3 *4) (-12 (-4 *5 (-1073)) (-5 *2 (-112)) (-5 *1 (-863 *5 *3 *4)) (-4 *3 (-862 *5)) (-4 *4 (-598 (-868 *5)))))) -(-10 -7 (-15 -1721 ((-112) |#2| |#3|)) (-15 -1721 ((-112) (-625 |#2|) |#3|)) (-15 -1733 ((-861 |#1| |#2| (-625 |#2|)) (-625 |#2|) |#3|)) (IF (|has| |#2| (-1014 (-1149))) (-15 -1733 ((-625 (-289 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1025)) (-15 -1733 ((-625 (-289 (-928 |#2|))) |#2| |#3|)) (-15 -1733 ((-865 |#1| |#2|) |#2| |#3|))))) -((-1996 (((-865 |#1| |#3|) (-1 |#3| |#2|) (-865 |#1| |#2|)) 22))) -(((-864 |#1| |#2| |#3|) (-10 -7 (-15 -1996 ((-865 |#1| |#3|) (-1 |#3| |#2|) (-865 |#1| |#2|)))) (-1073) (-1073) (-1073)) (T -864)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-865 *5 *6)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-865 *5 *7)) (-5 *1 (-864 *5 *6 *7))))) -(-10 -7 (-15 -1996 ((-865 |#1| |#3|) (-1 |#3| |#2|) (-865 |#1| |#2|)))) -((-1671 (((-112) $ $) NIL)) (-3419 (($ $ $) 39)) (-1997 (((-3 (-112) "failed") $ (-868 |#1|)) 36)) (-2183 (($) 12)) (-2883 (((-1131) $) NIL)) (-1753 (($ (-868 |#1|) |#2| $) 20)) (-2831 (((-1093) $) NIL)) (-1774 (((-3 |#2| "failed") (-868 |#1|) $) 50)) (-1785 (((-112) $) 15)) (-3547 (($) 13)) (-3905 (((-625 (-2 (|:| -2971 (-1149)) (|:| -4120 |#2|))) $) 25)) (-1695 (($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 |#2|)))) 23)) (-1683 (((-839) $) 44)) (-1743 (($ (-868 |#1|) |#2| $ |#2|) 48)) (-1763 (($ (-868 |#1|) |#2| $) 47)) (-2281 (((-112) $ $) 41))) -(((-865 |#1| |#2|) (-13 (-1073) (-10 -8 (-15 -1785 ((-112) $)) (-15 -3547 ($)) (-15 -2183 ($)) (-15 -3419 ($ $ $)) (-15 -1774 ((-3 |#2| "failed") (-868 |#1|) $)) (-15 -1763 ($ (-868 |#1|) |#2| $)) (-15 -1753 ($ (-868 |#1|) |#2| $)) (-15 -1743 ($ (-868 |#1|) |#2| $ |#2|)) (-15 -3905 ((-625 (-2 (|:| -2971 (-1149)) (|:| -4120 |#2|))) $)) (-15 -1695 ($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 |#2|))))) (-15 -1997 ((-3 (-112) "failed") $ (-868 |#1|))))) (-1073) (-1073)) (T -865)) -((-1785 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-865 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)))) (-3547 (*1 *1) (-12 (-5 *1 (-865 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))) (-2183 (*1 *1) (-12 (-5 *1 (-865 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))) (-3419 (*1 *1 *1 *1) (-12 (-5 *1 (-865 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))) (-1774 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-868 *4)) (-4 *4 (-1073)) (-4 *2 (-1073)) (-5 *1 (-865 *4 *2)))) (-1763 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-868 *4)) (-4 *4 (-1073)) (-5 *1 (-865 *4 *3)) (-4 *3 (-1073)))) (-1753 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-868 *4)) (-4 *4 (-1073)) (-5 *1 (-865 *4 *3)) (-4 *3 (-1073)))) (-1743 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-868 *4)) (-4 *4 (-1073)) (-5 *1 (-865 *4 *3)) (-4 *3 (-1073)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 *4)))) (-5 *1 (-865 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)))) (-1695 (*1 *1 *2) (-12 (-5 *2 (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 *4)))) (-4 *4 (-1073)) (-5 *1 (-865 *3 *4)) (-4 *3 (-1073)))) (-1997 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-868 *4)) (-4 *4 (-1073)) (-5 *2 (-112)) (-5 *1 (-865 *4 *5)) (-4 *5 (-1073))))) -(-13 (-1073) (-10 -8 (-15 -1785 ((-112) $)) (-15 -3547 ($)) (-15 -2183 ($)) (-15 -3419 ($ $ $)) (-15 -1774 ((-3 |#2| "failed") (-868 |#1|) $)) (-15 -1763 ($ (-868 |#1|) |#2| $)) (-15 -1753 ($ (-868 |#1|) |#2| $)) (-15 -1743 ($ (-868 |#1|) |#2| $ |#2|)) (-15 -3905 ((-625 (-2 (|:| -2971 (-1149)) (|:| -4120 |#2|))) $)) (-15 -1695 ($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 |#2|))))) (-15 -1997 ((-3 (-112) "failed") $ (-868 |#1|))))) -((-3925 (((-868 |#1|) (-868 |#1|) (-625 (-1149)) (-1 (-112) (-625 |#2|))) 32) (((-868 |#1|) (-868 |#1|) (-625 (-1 (-112) |#2|))) 43) (((-868 |#1|) (-868 |#1|) (-1 (-112) |#2|)) 35)) (-1997 (((-112) (-625 |#2|) (-868 |#1|)) 40) (((-112) |#2| (-868 |#1|)) 36)) (-3321 (((-1 (-112) |#2|) (-868 |#1|)) 16)) (-2014 (((-625 |#2|) (-868 |#1|)) 24)) (-2007 (((-868 |#1|) (-868 |#1|) |#2|) 20))) -(((-866 |#1| |#2|) (-10 -7 (-15 -3925 ((-868 |#1|) (-868 |#1|) (-1 (-112) |#2|))) (-15 -3925 ((-868 |#1|) (-868 |#1|) (-625 (-1 (-112) |#2|)))) (-15 -3925 ((-868 |#1|) (-868 |#1|) (-625 (-1149)) (-1 (-112) (-625 |#2|)))) (-15 -3321 ((-1 (-112) |#2|) (-868 |#1|))) (-15 -1997 ((-112) |#2| (-868 |#1|))) (-15 -1997 ((-112) (-625 |#2|) (-868 |#1|))) (-15 -2007 ((-868 |#1|) (-868 |#1|) |#2|)) (-15 -2014 ((-625 |#2|) (-868 |#1|)))) (-1073) (-1186)) (T -866)) -((-2014 (*1 *2 *3) (-12 (-5 *3 (-868 *4)) (-4 *4 (-1073)) (-5 *2 (-625 *5)) (-5 *1 (-866 *4 *5)) (-4 *5 (-1186)))) (-2007 (*1 *2 *2 *3) (-12 (-5 *2 (-868 *4)) (-4 *4 (-1073)) (-5 *1 (-866 *4 *3)) (-4 *3 (-1186)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *6)) (-5 *4 (-868 *5)) (-4 *5 (-1073)) (-4 *6 (-1186)) (-5 *2 (-112)) (-5 *1 (-866 *5 *6)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *4 (-868 *5)) (-4 *5 (-1073)) (-5 *2 (-112)) (-5 *1 (-866 *5 *3)) (-4 *3 (-1186)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-868 *4)) (-4 *4 (-1073)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-866 *4 *5)) (-4 *5 (-1186)))) (-3925 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-868 *5)) (-5 *3 (-625 (-1149))) (-5 *4 (-1 (-112) (-625 *6))) (-4 *5 (-1073)) (-4 *6 (-1186)) (-5 *1 (-866 *5 *6)))) (-3925 (*1 *2 *2 *3) (-12 (-5 *2 (-868 *4)) (-5 *3 (-625 (-1 (-112) *5))) (-4 *4 (-1073)) (-4 *5 (-1186)) (-5 *1 (-866 *4 *5)))) (-3925 (*1 *2 *2 *3) (-12 (-5 *2 (-868 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1073)) (-4 *5 (-1186)) (-5 *1 (-866 *4 *5))))) -(-10 -7 (-15 -3925 ((-868 |#1|) (-868 |#1|) (-1 (-112) |#2|))) (-15 -3925 ((-868 |#1|) (-868 |#1|) (-625 (-1 (-112) |#2|)))) (-15 -3925 ((-868 |#1|) (-868 |#1|) (-625 (-1149)) (-1 (-112) (-625 |#2|)))) (-15 -3321 ((-1 (-112) |#2|) (-868 |#1|))) (-15 -1997 ((-112) |#2| (-868 |#1|))) (-15 -1997 ((-112) (-625 |#2|) (-868 |#1|))) (-15 -2007 ((-868 |#1|) (-868 |#1|) |#2|)) (-15 -2014 ((-625 |#2|) (-868 |#1|)))) -((-1996 (((-868 |#2|) (-1 |#2| |#1|) (-868 |#1|)) 19))) -(((-867 |#1| |#2|) (-10 -7 (-15 -1996 ((-868 |#2|) (-1 |#2| |#1|) (-868 |#1|)))) (-1073) (-1073)) (T -867)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-868 *5)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-5 *2 (-868 *6)) (-5 *1 (-867 *5 *6))))) -(-10 -7 (-15 -1996 ((-868 |#2|) (-1 |#2| |#1|) (-868 |#1|)))) -((-1671 (((-112) $ $) NIL)) (-1875 (($ $ (-625 (-52))) 64)) (-3982 (((-625 $) $) 118)) (-1843 (((-2 (|:| |var| (-625 (-1149))) (|:| |pred| (-52))) $) 24)) (-2981 (((-112) $) 30)) (-1855 (($ $ (-625 (-1149)) (-52)) 25)) (-1885 (($ $ (-625 (-52))) 63)) (-1893 (((-3 |#1| "failed") $) 61) (((-3 (-1149) "failed") $) 140)) (-1895 ((|#1| $) 58) (((-1149) $) NIL)) (-1819 (($ $) 108)) (-1956 (((-112) $) 47)) (-1896 (((-625 (-52)) $) 45)) (-1864 (($ (-1149) (-112) (-112) (-112)) 65)) (-1796 (((-3 (-625 $) "failed") (-625 $)) 72)) (-1920 (((-112) $) 50)) (-1934 (((-112) $) 49)) (-2883 (((-1131) $) NIL)) (-4172 (((-3 (-625 $) "failed") $) 36)) (-2151 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-4194 (((-3 (-2 (|:| |val| $) (|:| -3564 $)) "failed") $) 83)) (-4160 (((-3 (-625 $) "failed") $) 33)) (-1986 (((-3 (-625 $) "failed") $ (-114)) 107) (((-3 (-2 (|:| -3362 (-114)) (|:| |arg| (-625 $))) "failed") $) 95)) (-1977 (((-3 (-625 $) "failed") $) 37)) (-4182 (((-3 (-2 (|:| |val| $) (|:| -3564 (-751))) "failed") $) 40)) (-1968 (((-112) $) 29)) (-2831 (((-1093) $) NIL)) (-1830 (((-112) $) 21)) (-1909 (((-112) $) 46)) (-1808 (((-625 (-52)) $) 111)) (-1944 (((-112) $) 48)) (-2154 (($ (-114) (-625 $)) 92)) (-2389 (((-751) $) 28)) (-1871 (($ $) 62)) (-2042 (($ (-625 $)) 59)) (-4307 (((-112) $) 26)) (-1683 (((-839) $) 53) (($ |#1|) 18) (($ (-1149)) 66)) (-2007 (($ $ (-52)) 110)) (-2089 (($) 91 T CONST)) (-2100 (($) 73 T CONST)) (-2281 (((-112) $ $) 79)) (-2404 (($ $ $) 100)) (-2382 (($ $ $) 104)) (** (($ $ (-751)) 99) (($ $ $) 54)) (* (($ $ $) 105))) -(((-868 |#1|) (-13 (-1073) (-1014 |#1|) (-1014 (-1149)) (-10 -8 (-15 0 ($) -1426) (-15 1 ($) -1426) (-15 -4160 ((-3 (-625 $) "failed") $)) (-15 -4172 ((-3 (-625 $) "failed") $)) (-15 -1986 ((-3 (-625 $) "failed") $ (-114))) (-15 -1986 ((-3 (-2 (|:| -3362 (-114)) (|:| |arg| (-625 $))) "failed") $)) (-15 -4182 ((-3 (-2 (|:| |val| $) (|:| -3564 (-751))) "failed") $)) (-15 -2151 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1977 ((-3 (-625 $) "failed") $)) (-15 -4194 ((-3 (-2 (|:| |val| $) (|:| -3564 $)) "failed") $)) (-15 -2154 ($ (-114) (-625 $))) (-15 -2382 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-751))) (-15 ** ($ $ $)) (-15 -2404 ($ $ $)) (-15 -2389 ((-751) $)) (-15 -2042 ($ (-625 $))) (-15 -1871 ($ $)) (-15 -1968 ((-112) $)) (-15 -1956 ((-112) $)) (-15 -2981 ((-112) $)) (-15 -4307 ((-112) $)) (-15 -1944 ((-112) $)) (-15 -1934 ((-112) $)) (-15 -1920 ((-112) $)) (-15 -1909 ((-112) $)) (-15 -1896 ((-625 (-52)) $)) (-15 -1885 ($ $ (-625 (-52)))) (-15 -1875 ($ $ (-625 (-52)))) (-15 -1864 ($ (-1149) (-112) (-112) (-112))) (-15 -1855 ($ $ (-625 (-1149)) (-52))) (-15 -1843 ((-2 (|:| |var| (-625 (-1149))) (|:| |pred| (-52))) $)) (-15 -1830 ((-112) $)) (-15 -1819 ($ $)) (-15 -2007 ($ $ (-52))) (-15 -1808 ((-625 (-52)) $)) (-15 -3982 ((-625 $) $)) (-15 -1796 ((-3 (-625 $) "failed") (-625 $))))) (-1073)) (T -868)) -((-2089 (*1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) (-2100 (*1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) (-4160 (*1 *2 *1) (|partial| -12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-4172 (*1 *2 *1) (|partial| -12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1986 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-625 (-868 *4))) (-5 *1 (-868 *4)) (-4 *4 (-1073)))) (-1986 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3362 (-114)) (|:| |arg| (-625 (-868 *3))))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-4182 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-868 *3)) (|:| -3564 (-751)))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-2151 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-868 *3)) (|:| |den| (-868 *3)))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1977 (*1 *2 *1) (|partial| -12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-4194 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-868 *3)) (|:| -3564 (-868 *3)))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-2154 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-625 (-868 *4))) (-5 *1 (-868 *4)) (-4 *4 (-1073)))) (-2382 (*1 *1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) (-2404 (*1 *1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) (-2389 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1871 (*1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) (-1968 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1956 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1944 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1920 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1909 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-625 (-52))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1885 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-52))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1875 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-52))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1864 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-112)) (-5 *1 (-868 *4)) (-4 *4 (-1073)))) (-1855 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-52)) (-5 *1 (-868 *4)) (-4 *4 (-1073)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-625 (-1149))) (|:| |pred| (-52)))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1830 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1819 (*1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1808 (*1 *2 *1) (-12 (-5 *2 (-625 (-52))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-3982 (*1 *2 *1) (-12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) (-1796 (*1 *2 *2) (|partial| -12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3)) (-4 *3 (-1073))))) -(-13 (-1073) (-1014 |#1|) (-1014 (-1149)) (-10 -8 (-15 (-2089) ($) -1426) (-15 (-2100) ($) -1426) (-15 -4160 ((-3 (-625 $) "failed") $)) (-15 -4172 ((-3 (-625 $) "failed") $)) (-15 -1986 ((-3 (-625 $) "failed") $ (-114))) (-15 -1986 ((-3 (-2 (|:| -3362 (-114)) (|:| |arg| (-625 $))) "failed") $)) (-15 -4182 ((-3 (-2 (|:| |val| $) (|:| -3564 (-751))) "failed") $)) (-15 -2151 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1977 ((-3 (-625 $) "failed") $)) (-15 -4194 ((-3 (-2 (|:| |val| $) (|:| -3564 $)) "failed") $)) (-15 -2154 ($ (-114) (-625 $))) (-15 -2382 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-751))) (-15 ** ($ $ $)) (-15 -2404 ($ $ $)) (-15 -2389 ((-751) $)) (-15 -2042 ($ (-625 $))) (-15 -1871 ($ $)) (-15 -1968 ((-112) $)) (-15 -1956 ((-112) $)) (-15 -2981 ((-112) $)) (-15 -4307 ((-112) $)) (-15 -1944 ((-112) $)) (-15 -1934 ((-112) $)) (-15 -1920 ((-112) $)) (-15 -1909 ((-112) $)) (-15 -1896 ((-625 (-52)) $)) (-15 -1885 ($ $ (-625 (-52)))) (-15 -1875 ($ $ (-625 (-52)))) (-15 -1864 ($ (-1149) (-112) (-112) (-112))) (-15 -1855 ($ $ (-625 (-1149)) (-52))) (-15 -1843 ((-2 (|:| |var| (-625 (-1149))) (|:| |pred| (-52))) $)) (-15 -1830 ((-112) $)) (-15 -1819 ($ $)) (-15 -2007 ($ $ (-52))) (-15 -1808 ((-625 (-52)) $)) (-15 -3982 ((-625 $) $)) (-15 -1796 ((-3 (-625 $) "failed") (-625 $))))) -((-1671 (((-112) $ $) NIL)) (-3202 (((-625 |#1|) $) 16)) (-2023 (((-112) $) 38)) (-1893 (((-3 (-652 |#1|) "failed") $) 43)) (-1895 (((-652 |#1|) $) 41)) (-2936 (($ $) 18)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-3456 (((-751) $) 46)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 (((-652 |#1|) $) 17)) (-1683 (((-839) $) 37) (($ (-652 |#1|)) 21) (((-799 |#1|) $) 27) (($ |#1|) 20)) (-2100 (($) 8 T CONST)) (-2032 (((-625 (-652 |#1|)) $) 23)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 11)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 49))) -(((-869 |#1|) (-13 (-827) (-1014 (-652 |#1|)) (-10 -8 (-15 1 ($) -1426) (-15 -1683 ((-799 |#1|) $)) (-15 -1683 ($ |#1|)) (-15 -2924 ((-652 |#1|) $)) (-15 -3456 ((-751) $)) (-15 -2032 ((-625 (-652 |#1|)) $)) (-15 -2936 ($ $)) (-15 -2023 ((-112) $)) (-15 -3202 ((-625 |#1|) $)))) (-827)) (T -869)) -((-2100 (*1 *1) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) (-1683 (*1 *1 *2) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827)))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-625 (-652 *3))) (-5 *1 (-869 *3)) (-4 *3 (-827)))) (-2936 (*1 *1 *1) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827)))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) (-3202 (*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827))))) -(-13 (-827) (-1014 (-652 |#1|)) (-10 -8 (-15 (-2100) ($) -1426) (-15 -1683 ((-799 |#1|) $)) (-15 -1683 ($ |#1|)) (-15 -2924 ((-652 |#1|) $)) (-15 -3456 ((-751) $)) (-15 -2032 ((-625 (-652 |#1|)) $)) (-15 -2936 ($ $)) (-15 -2023 ((-112) $)) (-15 -3202 ((-625 |#1|) $)))) -((-4249 ((|#1| |#1| |#1|) 19))) -(((-870 |#1| |#2|) (-10 -7 (-15 -4249 (|#1| |#1| |#1|))) (-1208 |#2|) (-1025)) (T -870)) -((-4249 (*1 *2 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-870 *2 *3)) (-4 *2 (-1208 *3))))) -(-10 -7 (-15 -4249 (|#1| |#1| |#1|))) -((-1671 (((-112) $ $) 7)) (-3890 (((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 14)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-3850 (((-1011) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 13)) (-2281 (((-112) $ $) 6))) -(((-871) (-138)) (T -871)) -((-3890 (*1 *2 *3 *4) (-12 (-4 *1 (-871)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) (-5 *2 (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)))))) (-3850 (*1 *2 *3) (-12 (-4 *1 (-871)) (-5 *3 (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) (-5 *2 (-1011))))) -(-13 (-1073) (-10 -7 (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))))) (-15 -3850 ((-1011) (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))))))) -(((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-3876 ((|#1| |#1| (-751)) 24)) (-3863 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3950 (((-3 (-2 (|:| -2290 |#1|) (|:| -2303 |#1|)) "failed") |#1| (-751) (-751)) 27) (((-625 |#1|) |#1|) 29))) -(((-872 |#1| |#2|) (-10 -7 (-15 -3950 ((-625 |#1|) |#1|)) (-15 -3950 ((-3 (-2 (|:| -2290 |#1|) (|:| -2303 |#1|)) "failed") |#1| (-751) (-751))) (-15 -3863 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3876 (|#1| |#1| (-751)))) (-1208 |#2|) (-358)) (T -872)) -((-3876 (*1 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-358)) (-5 *1 (-872 *2 *4)) (-4 *2 (-1208 *4)))) (-3863 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-358)) (-5 *1 (-872 *2 *3)) (-4 *2 (-1208 *3)))) (-3950 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-751)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -2290 *3) (|:| -2303 *3))) (-5 *1 (-872 *3 *5)) (-4 *3 (-1208 *5)))) (-3950 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-625 *3)) (-5 *1 (-872 *3 *4)) (-4 *3 (-1208 *4))))) -(-10 -7 (-15 -3950 ((-625 |#1|) |#1|)) (-15 -3950 ((-3 (-2 (|:| -2290 |#1|) (|:| -2303 |#1|)) "failed") |#1| (-751) (-751))) (-15 -3863 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3876 (|#1| |#1| (-751)))) -((-1728 (((-1011) (-374) (-374) (-374) (-374) (-751) (-751) (-625 (-311 (-374))) (-625 (-625 (-311 (-374)))) (-1131)) 96) (((-1011) (-374) (-374) (-374) (-374) (-751) (-751) (-625 (-311 (-374))) (-625 (-625 (-311 (-374)))) (-1131) (-221)) 91) (((-1011) (-874) (-1037)) 83) (((-1011) (-874)) 84)) (-3890 (((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-874) (-1037)) 59) (((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-874)) 61))) -(((-873) (-10 -7 (-15 -1728 ((-1011) (-874))) (-15 -1728 ((-1011) (-874) (-1037))) (-15 -1728 ((-1011) (-374) (-374) (-374) (-374) (-751) (-751) (-625 (-311 (-374))) (-625 (-625 (-311 (-374)))) (-1131) (-221))) (-15 -1728 ((-1011) (-374) (-374) (-374) (-374) (-751) (-751) (-625 (-311 (-374))) (-625 (-625 (-311 (-374)))) (-1131))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-874))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-874) (-1037))))) (T -873)) -((-3890 (*1 *2 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-1037)) (-5 *2 (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))))) (-5 *1 (-873)))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131))))) (-5 *1 (-873)))) (-1728 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-751)) (-5 *6 (-625 (-625 (-311 *3)))) (-5 *7 (-1131)) (-5 *5 (-625 (-311 (-374)))) (-5 *3 (-374)) (-5 *2 (-1011)) (-5 *1 (-873)))) (-1728 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-751)) (-5 *6 (-625 (-625 (-311 *3)))) (-5 *7 (-1131)) (-5 *8 (-221)) (-5 *5 (-625 (-311 (-374)))) (-5 *3 (-374)) (-5 *2 (-1011)) (-5 *1 (-873)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-873)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1011)) (-5 *1 (-873))))) -(-10 -7 (-15 -1728 ((-1011) (-874))) (-15 -1728 ((-1011) (-874) (-1037))) (-15 -1728 ((-1011) (-374) (-374) (-374) (-374) (-751) (-751) (-625 (-311 (-374))) (-625 (-625 (-311 (-374)))) (-1131) (-221))) (-15 -1728 ((-1011) (-374) (-374) (-374) (-374) (-751) (-751) (-625 (-311 (-374))) (-625 (-625 (-311 (-374)))) (-1131))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-874))) (-15 -3890 ((-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) (|:| |explanations| (-625 (-1131)))) (-874) (-1037)))) -((-1671 (((-112) $ $) NIL)) (-1895 (((-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))) $) 19)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 21) (($ (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 18)) (-2281 (((-112) $ $) NIL))) -(((-874) (-13 (-1073) (-10 -8 (-15 -1683 ($ (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))))) (-15 -1683 ((-839) $)) (-15 -1895 ((-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))) $))))) (T -874)) -((-1683 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-874)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) (-5 *1 (-874)))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) (-5 *1 (-874))))) -(-13 (-1073) (-10 -8 (-15 -1683 ($ (-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))))) (-15 -1683 ((-839) $)) (-15 -1895 ((-2 (|:| |pde| (-625 (-311 (-221)))) (|:| |constraints| (-625 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-552)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))) $)))) -((-3072 (($ $ |#2|) NIL) (($ $ (-625 |#2|)) 10) (($ $ |#2| (-751)) 12) (($ $ (-625 |#2|) (-625 (-751))) 15)) (-3768 (($ $ |#2|) 16) (($ $ (-625 |#2|)) 18) (($ $ |#2| (-751)) 19) (($ $ (-625 |#2|) (-625 (-751))) 21))) -(((-875 |#1| |#2|) (-10 -8 (-15 -3768 (|#1| |#1| (-625 |#2|) (-625 (-751)))) (-15 -3768 (|#1| |#1| |#2| (-751))) (-15 -3768 (|#1| |#1| (-625 |#2|))) (-15 -3768 (|#1| |#1| |#2|)) (-15 -3072 (|#1| |#1| (-625 |#2|) (-625 (-751)))) (-15 -3072 (|#1| |#1| |#2| (-751))) (-15 -3072 (|#1| |#1| (-625 |#2|))) (-15 -3072 (|#1| |#1| |#2|))) (-876 |#2|) (-1073)) (T -875)) -NIL -(-10 -8 (-15 -3768 (|#1| |#1| (-625 |#2|) (-625 (-751)))) (-15 -3768 (|#1| |#1| |#2| (-751))) (-15 -3768 (|#1| |#1| (-625 |#2|))) (-15 -3768 (|#1| |#1| |#2|)) (-15 -3072 (|#1| |#1| (-625 |#2|) (-625 (-751)))) (-15 -3072 (|#1| |#1| |#2| (-751))) (-15 -3072 (|#1| |#1| (-625 |#2|))) (-15 -3072 (|#1| |#1| |#2|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3072 (($ $ |#1|) 40) (($ $ (-625 |#1|)) 39) (($ $ |#1| (-751)) 38) (($ $ (-625 |#1|) (-625 (-751))) 37)) (-1683 (((-839) $) 11) (($ (-552)) 27)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ |#1|) 36) (($ $ (-625 |#1|)) 35) (($ $ |#1| (-751)) 34) (($ $ (-625 |#1|) (-625 (-751))) 33)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-876 |#1|) (-138) (-1073)) (T -876)) -((-3072 (*1 *1 *1 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1073)))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *1 (-876 *3)) (-4 *3 (-1073)))) (-3072 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-876 *2)) (-4 *2 (-1073)))) (-3072 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *3 (-625 (-751))) (-4 *1 (-876 *4)) (-4 *4 (-1073)))) (-3768 (*1 *1 *1 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1073)))) (-3768 (*1 *1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *1 (-876 *3)) (-4 *3 (-1073)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-876 *2)) (-4 *2 (-1073)))) (-3768 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 *4)) (-5 *3 (-625 (-751))) (-4 *1 (-876 *4)) (-4 *4 (-1073))))) -(-13 (-1025) (-10 -8 (-15 -3072 ($ $ |t#1|)) (-15 -3072 ($ $ (-625 |t#1|))) (-15 -3072 ($ $ |t#1| (-751))) (-15 -3072 ($ $ (-625 |t#1|) (-625 (-751)))) (-15 -3768 ($ $ |t#1|)) (-15 -3768 ($ $ (-625 |t#1|))) (-15 -3768 ($ $ |t#1| (-751))) (-15 -3768 ($ $ (-625 |t#1|) (-625 (-751)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3800 ((|#1| $) 26)) (-3495 (((-112) $ (-751)) NIL)) (-2565 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-1958 (($ $ $) NIL (|has| $ (-6 -4354)))) (-1964 (($ $ $) NIL (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4354))) (($ $ "left" $) NIL (|has| $ (-6 -4354))) (($ $ "right" $) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-2303 (($ $) 25)) (-1638 (($ |#1|) 12) (($ $ $) 17)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) NIL)) (-1371 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2290 (($ $) 23)) (-3183 (((-625 |#1|) $) NIL)) (-3367 (((-112) $) 20)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1389 (((-552) $ $) NIL)) (-2316 (((-112) $) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-1172 |#1|) $) 9) (((-839) $) 29 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) NIL)) (-1380 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 21 (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-877 |#1|) (-13 (-119 |#1|) (-10 -8 (-15 -1638 ($ |#1|)) (-15 -1638 ($ $ $)) (-15 -1683 ((-1172 |#1|) $)))) (-1073)) (T -877)) -((-1638 (*1 *1 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1073)))) (-1638 (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1073)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1073))))) -(-13 (-119 |#1|) (-10 -8 (-15 -1638 ($ |#1|)) (-15 -1638 ($ $ $)) (-15 -1683 ((-1172 |#1|) $)))) -((-4016 ((|#2| (-1115 |#1| |#2|)) 40))) -(((-878 |#1| |#2|) (-10 -7 (-15 -4016 (|#2| (-1115 |#1| |#2|)))) (-897) (-13 (-1025) (-10 -7 (-6 (-4355 "*"))))) (T -878)) -((-4016 (*1 *2 *3) (-12 (-5 *3 (-1115 *4 *2)) (-14 *4 (-897)) (-4 *2 (-13 (-1025) (-10 -7 (-6 (-4355 "*"))))) (-5 *1 (-878 *4 *2))))) -(-10 -7 (-15 -4016 (|#2| (-1115 |#1| |#2|)))) -((-1671 (((-112) $ $) 7)) (-3101 (($) 18 T CONST)) (-4174 (((-3 $ "failed") $) 15)) (-4115 (((-1075 |#1|) $ |#1|) 32)) (-3650 (((-112) $) 17)) (-3658 (($ $ $) 30 (-1523 (|has| |#1| (-827)) (|has| |#1| (-363))))) (-3332 (($ $ $) 29 (-1523 (|has| |#1| (-827)) (|has| |#1| (-363))))) (-2883 (((-1131) $) 9)) (-4092 (($ $) 24)) (-2831 (((-1093) $) 10)) (-4073 ((|#1| $ |#1|) 34)) (-2154 ((|#1| $ |#1|) 33)) (-4028 (($ (-625 (-625 |#1|))) 35)) (-4039 (($ (-625 |#1|)) 36)) (-2410 (($ $ $) 21)) (-3828 (($ $ $) 20)) (-1683 (((-839) $) 11)) (-2100 (($) 19 T CONST)) (-2346 (((-112) $ $) 27 (-1523 (|has| |#1| (-827)) (|has| |#1| (-363))))) (-2320 (((-112) $ $) 26 (-1523 (|has| |#1| (-827)) (|has| |#1| (-363))))) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 28 (-1523 (|has| |#1| (-827)) (|has| |#1| (-363))))) (-2307 (((-112) $ $) 31)) (-2404 (($ $ $) 23)) (** (($ $ (-897)) 13) (($ $ (-751)) 16) (($ $ (-552)) 22)) (* (($ $ $) 14))) -(((-879 |#1|) (-138) (-1073)) (T -879)) -((-4039 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-4 *1 (-879 *3)))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1073)) (-4 *1 (-879 *3)))) (-4073 (*1 *2 *1 *2) (-12 (-4 *1 (-879 *2)) (-4 *2 (-1073)))) (-2154 (*1 *2 *1 *2) (-12 (-4 *1 (-879 *2)) (-4 *2 (-1073)))) (-4115 (*1 *2 *1 *3) (-12 (-4 *1 (-879 *3)) (-4 *3 (-1073)) (-5 *2 (-1075 *3)))) (-2307 (*1 *2 *1 *1) (-12 (-4 *1 (-879 *3)) (-4 *3 (-1073)) (-5 *2 (-112))))) -(-13 (-467) (-10 -8 (-15 -4039 ($ (-625 |t#1|))) (-15 -4028 ($ (-625 (-625 |t#1|)))) (-15 -4073 (|t#1| $ |t#1|)) (-15 -2154 (|t#1| $ |t#1|)) (-15 -4115 ((-1075 |t#1|) $ |t#1|)) (-15 -2307 ((-112) $ $)) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-827)) |%noBranch|))) -(((-101) . T) ((-597 (-839)) . T) ((-467) . T) ((-707) . T) ((-827) -1523 (|has| |#1| (-827)) (|has| |#1| (-363))) ((-1085) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-4142 (((-625 (-625 (-751))) $) 108)) (-4090 (((-625 (-751)) (-881 |#1|) $) 130)) (-4078 (((-625 (-751)) (-881 |#1|) $) 131)) (-4155 (((-625 (-881 |#1|)) $) 98)) (-3702 (((-881 |#1|) $ (-552)) 103) (((-881 |#1|) $) 104)) (-4129 (($ (-625 (-881 |#1|))) 110)) (-2172 (((-751) $) 105)) (-4103 (((-1075 (-1075 |#1|)) $) 128)) (-4115 (((-1075 |#1|) $ |#1|) 121) (((-1075 (-1075 |#1|)) $ (-1075 |#1|)) 139) (((-1075 (-625 |#1|)) $ (-625 |#1|)) 142)) (-4064 (((-1075 |#1|) $) 101)) (-2893 (((-112) (-881 |#1|) $) 92)) (-2883 (((-1131) $) NIL)) (-4051 (((-1237) $) 95) (((-1237) $ (-552) (-552)) 143)) (-2831 (((-1093) $) NIL)) (-4167 (((-625 (-881 |#1|)) $) 96)) (-2154 (((-881 |#1|) $ (-751)) 99)) (-4276 (((-751) $) 106)) (-1683 (((-839) $) 119) (((-625 (-881 |#1|)) $) 23) (($ (-625 (-881 |#1|))) 109)) (-3929 (((-625 |#1|) $) 107)) (-2281 (((-112) $ $) 136)) (-2334 (((-112) $ $) 134)) (-2307 (((-112) $ $) 133))) -(((-880 |#1|) (-13 (-1073) (-10 -8 (-15 -1683 ((-625 (-881 |#1|)) $)) (-15 -4167 ((-625 (-881 |#1|)) $)) (-15 -2154 ((-881 |#1|) $ (-751))) (-15 -3702 ((-881 |#1|) $ (-552))) (-15 -3702 ((-881 |#1|) $)) (-15 -2172 ((-751) $)) (-15 -4276 ((-751) $)) (-15 -3929 ((-625 |#1|) $)) (-15 -4155 ((-625 (-881 |#1|)) $)) (-15 -4142 ((-625 (-625 (-751))) $)) (-15 -1683 ($ (-625 (-881 |#1|)))) (-15 -4129 ($ (-625 (-881 |#1|)))) (-15 -4115 ((-1075 |#1|) $ |#1|)) (-15 -4103 ((-1075 (-1075 |#1|)) $)) (-15 -4115 ((-1075 (-1075 |#1|)) $ (-1075 |#1|))) (-15 -4115 ((-1075 (-625 |#1|)) $ (-625 |#1|))) (-15 -2893 ((-112) (-881 |#1|) $)) (-15 -4090 ((-625 (-751)) (-881 |#1|) $)) (-15 -4078 ((-625 (-751)) (-881 |#1|) $)) (-15 -4064 ((-1075 |#1|) $)) (-15 -2307 ((-112) $ $)) (-15 -2334 ((-112) $ $)) (-15 -4051 ((-1237) $)) (-15 -4051 ((-1237) $ (-552) (-552))))) (-1073)) (T -880)) -((-1683 (*1 *2 *1) (-12 (-5 *2 (-625 (-881 *3))) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-4167 (*1 *2 *1) (-12 (-5 *2 (-625 (-881 *3))) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-881 *4)) (-5 *1 (-880 *4)) (-4 *4 (-1073)))) (-3702 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-881 *4)) (-5 *1 (-880 *4)) (-4 *4 (-1073)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-881 *3)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-4155 (*1 *2 *1) (-12 (-5 *2 (-625 (-881 *3))) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-625 (-625 (-751)))) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-881 *3))) (-4 *3 (-1073)) (-5 *1 (-880 *3)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-625 (-881 *3))) (-4 *3 (-1073)) (-5 *1 (-880 *3)))) (-4115 (*1 *2 *1 *3) (-12 (-5 *2 (-1075 *3)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-4103 (*1 *2 *1) (-12 (-5 *2 (-1075 (-1075 *3))) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-4115 (*1 *2 *1 *3) (-12 (-4 *4 (-1073)) (-5 *2 (-1075 (-1075 *4))) (-5 *1 (-880 *4)) (-5 *3 (-1075 *4)))) (-4115 (*1 *2 *1 *3) (-12 (-4 *4 (-1073)) (-5 *2 (-1075 (-625 *4))) (-5 *1 (-880 *4)) (-5 *3 (-625 *4)))) (-2893 (*1 *2 *3 *1) (-12 (-5 *3 (-881 *4)) (-4 *4 (-1073)) (-5 *2 (-112)) (-5 *1 (-880 *4)))) (-4090 (*1 *2 *3 *1) (-12 (-5 *3 (-881 *4)) (-4 *4 (-1073)) (-5 *2 (-625 (-751))) (-5 *1 (-880 *4)))) (-4078 (*1 *2 *3 *1) (-12 (-5 *3 (-881 *4)) (-4 *4 (-1073)) (-5 *2 (-625 (-751))) (-5 *1 (-880 *4)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-1075 *3)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-2307 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-2334 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) (-4051 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-880 *4)) (-4 *4 (-1073))))) -(-13 (-1073) (-10 -8 (-15 -1683 ((-625 (-881 |#1|)) $)) (-15 -4167 ((-625 (-881 |#1|)) $)) (-15 -2154 ((-881 |#1|) $ (-751))) (-15 -3702 ((-881 |#1|) $ (-552))) (-15 -3702 ((-881 |#1|) $)) (-15 -2172 ((-751) $)) (-15 -4276 ((-751) $)) (-15 -3929 ((-625 |#1|) $)) (-15 -4155 ((-625 (-881 |#1|)) $)) (-15 -4142 ((-625 (-625 (-751))) $)) (-15 -1683 ($ (-625 (-881 |#1|)))) (-15 -4129 ($ (-625 (-881 |#1|)))) (-15 -4115 ((-1075 |#1|) $ |#1|)) (-15 -4103 ((-1075 (-1075 |#1|)) $)) (-15 -4115 ((-1075 (-1075 |#1|)) $ (-1075 |#1|))) (-15 -4115 ((-1075 (-625 |#1|)) $ (-625 |#1|))) (-15 -2893 ((-112) (-881 |#1|) $)) (-15 -4090 ((-625 (-751)) (-881 |#1|) $)) (-15 -4078 ((-625 (-751)) (-881 |#1|) $)) (-15 -4064 ((-1075 |#1|) $)) (-15 -2307 ((-112) $ $)) (-15 -2334 ((-112) $ $)) (-15 -4051 ((-1237) $)) (-15 -4051 ((-1237) $ (-552) (-552))))) -((-1671 (((-112) $ $) NIL)) (-1800 (((-625 $) (-625 $)) 77)) (-4127 (((-552) $) 60)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL)) (-2172 (((-751) $) 58)) (-4115 (((-1075 |#1|) $ |#1|) 49)) (-3650 (((-112) $) NIL)) (-3932 (((-112) $) 63)) (-3955 (((-751) $) 61)) (-4064 (((-1075 |#1|) $) 42)) (-3658 (($ $ $) NIL (-1523 (|has| |#1| (-363)) (|has| |#1| (-827))))) (-3332 (($ $ $) NIL (-1523 (|has| |#1| (-363)) (|has| |#1| (-827))))) (-4005 (((-2 (|:| |preimage| (-625 |#1|)) (|:| |image| (-625 |#1|))) $) 37)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 93)) (-2831 (((-1093) $) NIL)) (-3917 (((-1075 |#1|) $) 100 (|has| |#1| (-363)))) (-3943 (((-112) $) 59)) (-4073 ((|#1| $ |#1|) 47)) (-2154 ((|#1| $ |#1|) 94)) (-4276 (((-751) $) 44)) (-4028 (($ (-625 (-625 |#1|))) 85)) (-3968 (((-947) $) 53)) (-4039 (($ (-625 |#1|)) 21)) (-2410 (($ $ $) NIL)) (-3828 (($ $ $) NIL)) (-3992 (($ (-625 (-625 |#1|))) 39)) (-3980 (($ (-625 (-625 |#1|))) 88)) (-3903 (($ (-625 |#1|)) 96)) (-1683 (((-839) $) 84) (($ (-625 (-625 |#1|))) 66) (($ (-625 |#1|)) 67)) (-2100 (($) 16 T CONST)) (-2346 (((-112) $ $) NIL (-1523 (|has| |#1| (-363)) (|has| |#1| (-827))))) (-2320 (((-112) $ $) NIL (-1523 (|has| |#1| (-363)) (|has| |#1| (-827))))) (-2281 (((-112) $ $) 45)) (-2334 (((-112) $ $) NIL (-1523 (|has| |#1| (-363)) (|has| |#1| (-827))))) (-2307 (((-112) $ $) 65)) (-2404 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ $ $) 22))) -(((-881 |#1|) (-13 (-879 |#1|) (-10 -8 (-15 -4005 ((-2 (|:| |preimage| (-625 |#1|)) (|:| |image| (-625 |#1|))) $)) (-15 -3992 ($ (-625 (-625 |#1|)))) (-15 -1683 ($ (-625 (-625 |#1|)))) (-15 -1683 ($ (-625 |#1|))) (-15 -3980 ($ (-625 (-625 |#1|)))) (-15 -4276 ((-751) $)) (-15 -4064 ((-1075 |#1|) $)) (-15 -3968 ((-947) $)) (-15 -2172 ((-751) $)) (-15 -3955 ((-751) $)) (-15 -4127 ((-552) $)) (-15 -3943 ((-112) $)) (-15 -3932 ((-112) $)) (-15 -1800 ((-625 $) (-625 $))) (IF (|has| |#1| (-363)) (-15 -3917 ((-1075 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-537)) (-15 -3903 ($ (-625 |#1|))) (IF (|has| |#1| (-363)) (-15 -3903 ($ (-625 |#1|))) |%noBranch|)))) (-1073)) (T -881)) -((-4005 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-625 *3)) (|:| |image| (-625 *3)))) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) (-3992 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1073)) (-5 *1 (-881 *3)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1073)) (-5 *1 (-881 *3)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-881 *3)))) (-3980 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1073)) (-5 *1 (-881 *3)))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-1075 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-947)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) (-2172 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) (-1800 (*1 *2 *2) (-12 (-5 *2 (-625 (-881 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-1075 *3)) (-5 *1 (-881 *3)) (-4 *3 (-363)) (-4 *3 (-1073)))) (-3903 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-881 *3))))) -(-13 (-879 |#1|) (-10 -8 (-15 -4005 ((-2 (|:| |preimage| (-625 |#1|)) (|:| |image| (-625 |#1|))) $)) (-15 -3992 ($ (-625 (-625 |#1|)))) (-15 -1683 ($ (-625 (-625 |#1|)))) (-15 -1683 ($ (-625 |#1|))) (-15 -3980 ($ (-625 (-625 |#1|)))) (-15 -4276 ((-751) $)) (-15 -4064 ((-1075 |#1|) $)) (-15 -3968 ((-947) $)) (-15 -2172 ((-751) $)) (-15 -3955 ((-751) $)) (-15 -4127 ((-552) $)) (-15 -3943 ((-112) $)) (-15 -3932 ((-112) $)) (-15 -1800 ((-625 $) (-625 $))) (IF (|has| |#1| (-363)) (-15 -3917 ((-1075 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-537)) (-15 -3903 ($ (-625 |#1|))) (IF (|has| |#1| (-363)) (-15 -3903 ($ (-625 |#1|))) |%noBranch|)))) -((-4190 (((-3 (-625 (-1145 |#4|)) "failed") (-625 (-1145 |#4|)) (-1145 |#4|)) 128)) (-4221 ((|#1|) 77)) (-4210 (((-413 (-1145 |#4|)) (-1145 |#4|)) 137)) (-4231 (((-413 (-1145 |#4|)) (-625 |#3|) (-1145 |#4|)) 69)) (-4200 (((-413 (-1145 |#4|)) (-1145 |#4|)) 147)) (-4178 (((-3 (-625 (-1145 |#4|)) "failed") (-625 (-1145 |#4|)) (-1145 |#4|) |#3|) 92))) -(((-882 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4190 ((-3 (-625 (-1145 |#4|)) "failed") (-625 (-1145 |#4|)) (-1145 |#4|))) (-15 -4200 ((-413 (-1145 |#4|)) (-1145 |#4|))) (-15 -4210 ((-413 (-1145 |#4|)) (-1145 |#4|))) (-15 -4221 (|#1|)) (-15 -4178 ((-3 (-625 (-1145 |#4|)) "failed") (-625 (-1145 |#4|)) (-1145 |#4|) |#3|)) (-15 -4231 ((-413 (-1145 |#4|)) (-625 |#3|) (-1145 |#4|)))) (-885) (-773) (-827) (-925 |#1| |#2| |#3|)) (T -882)) -((-4231 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *7)) (-4 *7 (-827)) (-4 *5 (-885)) (-4 *6 (-773)) (-4 *8 (-925 *5 *6 *7)) (-5 *2 (-413 (-1145 *8))) (-5 *1 (-882 *5 *6 *7 *8)) (-5 *4 (-1145 *8)))) (-4178 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-625 (-1145 *7))) (-5 *3 (-1145 *7)) (-4 *7 (-925 *5 *6 *4)) (-4 *5 (-885)) (-4 *6 (-773)) (-4 *4 (-827)) (-5 *1 (-882 *5 *6 *4 *7)))) (-4221 (*1 *2) (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-885)) (-5 *1 (-882 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4)))) (-4210 (*1 *2 *3) (-12 (-4 *4 (-885)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-925 *4 *5 *6)) (-5 *2 (-413 (-1145 *7))) (-5 *1 (-882 *4 *5 *6 *7)) (-5 *3 (-1145 *7)))) (-4200 (*1 *2 *3) (-12 (-4 *4 (-885)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-925 *4 *5 *6)) (-5 *2 (-413 (-1145 *7))) (-5 *1 (-882 *4 *5 *6 *7)) (-5 *3 (-1145 *7)))) (-4190 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-625 (-1145 *7))) (-5 *3 (-1145 *7)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-885)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-882 *4 *5 *6 *7))))) -(-10 -7 (-15 -4190 ((-3 (-625 (-1145 |#4|)) "failed") (-625 (-1145 |#4|)) (-1145 |#4|))) (-15 -4200 ((-413 (-1145 |#4|)) (-1145 |#4|))) (-15 -4210 ((-413 (-1145 |#4|)) (-1145 |#4|))) (-15 -4221 (|#1|)) (-15 -4178 ((-3 (-625 (-1145 |#4|)) "failed") (-625 (-1145 |#4|)) (-1145 |#4|) |#3|)) (-15 -4231 ((-413 (-1145 |#4|)) (-625 |#3|) (-1145 |#4|)))) -((-4190 (((-3 (-625 (-1145 |#2|)) "failed") (-625 (-1145 |#2|)) (-1145 |#2|)) 36)) (-4221 ((|#1|) 54)) (-4210 (((-413 (-1145 |#2|)) (-1145 |#2|)) 102)) (-4231 (((-413 (-1145 |#2|)) (-1145 |#2|)) 90)) (-4200 (((-413 (-1145 |#2|)) (-1145 |#2|)) 113))) -(((-883 |#1| |#2|) (-10 -7 (-15 -4190 ((-3 (-625 (-1145 |#2|)) "failed") (-625 (-1145 |#2|)) (-1145 |#2|))) (-15 -4200 ((-413 (-1145 |#2|)) (-1145 |#2|))) (-15 -4210 ((-413 (-1145 |#2|)) (-1145 |#2|))) (-15 -4221 (|#1|)) (-15 -4231 ((-413 (-1145 |#2|)) (-1145 |#2|)))) (-885) (-1208 |#1|)) (T -883)) -((-4231 (*1 *2 *3) (-12 (-4 *4 (-885)) (-4 *5 (-1208 *4)) (-5 *2 (-413 (-1145 *5))) (-5 *1 (-883 *4 *5)) (-5 *3 (-1145 *5)))) (-4221 (*1 *2) (-12 (-4 *2 (-885)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1208 *2)))) (-4210 (*1 *2 *3) (-12 (-4 *4 (-885)) (-4 *5 (-1208 *4)) (-5 *2 (-413 (-1145 *5))) (-5 *1 (-883 *4 *5)) (-5 *3 (-1145 *5)))) (-4200 (*1 *2 *3) (-12 (-4 *4 (-885)) (-4 *5 (-1208 *4)) (-5 *2 (-413 (-1145 *5))) (-5 *1 (-883 *4 *5)) (-5 *3 (-1145 *5)))) (-4190 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-625 (-1145 *5))) (-5 *3 (-1145 *5)) (-4 *5 (-1208 *4)) (-4 *4 (-885)) (-5 *1 (-883 *4 *5))))) -(-10 -7 (-15 -4190 ((-3 (-625 (-1145 |#2|)) "failed") (-625 (-1145 |#2|)) (-1145 |#2|))) (-15 -4200 ((-413 (-1145 |#2|)) (-1145 |#2|))) (-15 -4210 ((-413 (-1145 |#2|)) (-1145 |#2|))) (-15 -4221 (|#1|)) (-15 -4231 ((-413 (-1145 |#2|)) (-1145 |#2|)))) -((-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 41)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 18)) (-4243 (((-3 $ "failed") $) 35))) -(((-884 |#1|) (-10 -8 (-15 -4243 ((-3 |#1| "failed") |#1|)) (-15 -4264 ((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|))) (-15 -4306 ((-1145 |#1|) (-1145 |#1|) (-1145 |#1|)))) (-885)) (T -884)) -NIL -(-10 -8 (-15 -4243 ((-3 |#1| "failed") |#1|)) (-15 -4264 ((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|))) (-15 -4306 ((-1145 |#1|) (-1145 |#1|) (-1145 |#1|)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-4296 (((-413 (-1145 $)) (-1145 $)) 58)) (-2194 (($ $) 49)) (-1330 (((-413 $) $) 50)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 55)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-2951 (((-112) $) 51)) (-3650 (((-112) $) 30)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-4275 (((-413 (-1145 $)) (-1145 $)) 56)) (-4286 (((-413 (-1145 $)) (-1145 $)) 57)) (-3824 (((-413 $) $) 48)) (-2802 (((-3 $ "failed") $ $) 40)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 54 (|has| $ (-143)))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41)) (-4243 (((-3 $ "failed") $) 53 (|has| $ (-143)))) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-885) (-138)) (T -885)) -((-4306 (*1 *2 *2 *2) (-12 (-5 *2 (-1145 *1)) (-4 *1 (-885)))) (-4296 (*1 *2 *3) (-12 (-4 *1 (-885)) (-5 *2 (-413 (-1145 *1))) (-5 *3 (-1145 *1)))) (-4286 (*1 *2 *3) (-12 (-4 *1 (-885)) (-5 *2 (-413 (-1145 *1))) (-5 *3 (-1145 *1)))) (-4275 (*1 *2 *3) (-12 (-4 *1 (-885)) (-5 *2 (-413 (-1145 *1))) (-5 *3 (-1145 *1)))) (-4264 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-625 (-1145 *1))) (-5 *3 (-1145 *1)) (-4 *1 (-885)))) (-4253 (*1 *2 *3) (|partial| -12 (-5 *3 (-669 *1)) (-4 *1 (-143)) (-4 *1 (-885)) (-5 *2 (-1232 *1)))) (-4243 (*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-885))))) -(-13 (-1190) (-10 -8 (-15 -4296 ((-413 (-1145 $)) (-1145 $))) (-15 -4286 ((-413 (-1145 $)) (-1145 $))) (-15 -4275 ((-413 (-1145 $)) (-1145 $))) (-15 -4306 ((-1145 $) (-1145 $) (-1145 $))) (-15 -4264 ((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $))) (IF (|has| $ (-143)) (PROGN (-15 -4253 ((-3 (-1232 $) "failed") (-669 $))) (-15 -4243 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-544) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-4156 (((-112) $) NIL)) (-4116 (((-751)) NIL)) (-1650 (($ $ (-897)) NIL (|has| $ (-363))) (($ $) NIL)) (-3811 (((-1159 (-897) (-751)) (-552)) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-2894 (((-751)) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 $ "failed") $) NIL)) (-1895 (($ $) NIL)) (-2670 (($ (-1232 $)) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-4279 (($) NIL)) (-3872 (((-112) $) NIL)) (-3554 (($ $) NIL) (($ $ (-751)) NIL)) (-2951 (((-112) $) NIL)) (-2172 (((-813 (-897)) $) NIL) (((-897) $) NIL)) (-3650 (((-112) $) NIL)) (-1280 (($) NIL (|has| $ (-363)))) (-4328 (((-112) $) NIL (|has| $ (-363)))) (-4209 (($ $ (-897)) NIL (|has| $ (-363))) (($ $) NIL)) (-4034 (((-3 $ "failed") $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-1291 (((-1145 $) $ (-897)) NIL (|has| $ (-363))) (((-1145 $) $) NIL)) (-4318 (((-897) $) NIL)) (-1378 (((-1145 $) $) NIL (|has| $ (-363)))) (-1369 (((-3 (-1145 $) "failed") $ $) NIL (|has| $ (-363))) (((-1145 $) $) NIL (|has| $ (-363)))) (-1386 (($ $ (-1145 $)) NIL (|has| $ (-363)))) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL T CONST)) (-3123 (($ (-897)) NIL)) (-4143 (((-112) $) NIL)) (-2831 (((-1093) $) NIL)) (-3212 (($) NIL (|has| $ (-363)))) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL)) (-3824 (((-413 $) $) NIL)) (-4130 (((-897)) NIL) (((-813 (-897))) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3563 (((-3 (-751) "failed") $ $) NIL) (((-751) $) NIL)) (-3904 (((-133)) NIL)) (-3072 (($ $ (-751)) NIL) (($ $) NIL)) (-4276 (((-897) $) NIL) (((-813 (-897)) $) NIL)) (-3610 (((-1145 $)) NIL)) (-3798 (($) NIL)) (-1397 (($) NIL (|has| $ (-363)))) (-2780 (((-669 $) (-1232 $)) NIL) (((-1232 $) $) NIL)) (-2042 (((-552) $) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL)) (-4243 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-4141 (((-751)) NIL)) (-1270 (((-1232 $) (-897)) NIL) (((-1232 $)) NIL)) (-3518 (((-112) $ $) NIL)) (-4168 (((-112) $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-4104 (($ $ (-751)) NIL (|has| $ (-363))) (($ $) NIL (|has| $ (-363)))) (-3768 (($ $ (-751)) NIL) (($ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL))) -(((-886 |#1|) (-13 (-344) (-324 $) (-598 (-552))) (-897)) (T -886)) -NIL -(-13 (-344) (-324 $) (-598 (-552))) -((-4325 (((-3 (-2 (|:| -2172 (-751)) (|:| -2487 |#5|)) "failed") (-331 |#2| |#3| |#4| |#5|)) 79)) (-4315 (((-112) (-331 |#2| |#3| |#4| |#5|)) 17)) (-2172 (((-3 (-751) "failed") (-331 |#2| |#3| |#4| |#5|)) 15))) -(((-887 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2172 ((-3 (-751) "failed") (-331 |#2| |#3| |#4| |#5|))) (-15 -4315 ((-112) (-331 |#2| |#3| |#4| |#5|))) (-15 -4325 ((-3 (-2 (|:| -2172 (-751)) (|:| -2487 |#5|)) "failed") (-331 |#2| |#3| |#4| |#5|)))) (-13 (-827) (-544) (-1014 (-552))) (-425 |#1|) (-1208 |#2|) (-1208 (-402 |#3|)) (-337 |#2| |#3| |#4|)) (T -887)) -((-4325 (*1 *2 *3) (|partial| -12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4)) (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *4 (-13 (-827) (-544) (-1014 (-552)))) (-5 *2 (-2 (|:| -2172 (-751)) (|:| -2487 *8))) (-5 *1 (-887 *4 *5 *6 *7 *8)))) (-4315 (*1 *2 *3) (-12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4)) (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *4 (-13 (-827) (-544) (-1014 (-552)))) (-5 *2 (-112)) (-5 *1 (-887 *4 *5 *6 *7 *8)))) (-2172 (*1 *2 *3) (|partial| -12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4)) (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *4 (-13 (-827) (-544) (-1014 (-552)))) (-5 *2 (-751)) (-5 *1 (-887 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -2172 ((-3 (-751) "failed") (-331 |#2| |#3| |#4| |#5|))) (-15 -4315 ((-112) (-331 |#2| |#3| |#4| |#5|))) (-15 -4325 ((-3 (-2 (|:| -2172 (-751)) (|:| -2487 |#5|)) "failed") (-331 |#2| |#3| |#4| |#5|)))) -((-4325 (((-3 (-2 (|:| -2172 (-751)) (|:| -2487 |#3|)) "failed") (-331 (-402 (-552)) |#1| |#2| |#3|)) 56)) (-4315 (((-112) (-331 (-402 (-552)) |#1| |#2| |#3|)) 16)) (-2172 (((-3 (-751) "failed") (-331 (-402 (-552)) |#1| |#2| |#3|)) 14))) -(((-888 |#1| |#2| |#3|) (-10 -7 (-15 -2172 ((-3 (-751) "failed") (-331 (-402 (-552)) |#1| |#2| |#3|))) (-15 -4315 ((-112) (-331 (-402 (-552)) |#1| |#2| |#3|))) (-15 -4325 ((-3 (-2 (|:| -2172 (-751)) (|:| -2487 |#3|)) "failed") (-331 (-402 (-552)) |#1| |#2| |#3|)))) (-1208 (-402 (-552))) (-1208 (-402 |#1|)) (-337 (-402 (-552)) |#1| |#2|)) (T -888)) -((-4325 (*1 *2 *3) (|partial| -12 (-5 *3 (-331 (-402 (-552)) *4 *5 *6)) (-4 *4 (-1208 (-402 (-552)))) (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 (-402 (-552)) *4 *5)) (-5 *2 (-2 (|:| -2172 (-751)) (|:| -2487 *6))) (-5 *1 (-888 *4 *5 *6)))) (-4315 (*1 *2 *3) (-12 (-5 *3 (-331 (-402 (-552)) *4 *5 *6)) (-4 *4 (-1208 (-402 (-552)))) (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 (-402 (-552)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-888 *4 *5 *6)))) (-2172 (*1 *2 *3) (|partial| -12 (-5 *3 (-331 (-402 (-552)) *4 *5 *6)) (-4 *4 (-1208 (-402 (-552)))) (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 (-402 (-552)) *4 *5)) (-5 *2 (-751)) (-5 *1 (-888 *4 *5 *6))))) -(-10 -7 (-15 -2172 ((-3 (-751) "failed") (-331 (-402 (-552)) |#1| |#2| |#3|))) (-15 -4315 ((-112) (-331 (-402 (-552)) |#1| |#2| |#3|))) (-15 -4325 ((-3 (-2 (|:| -2172 (-751)) (|:| -2487 |#3|)) "failed") (-331 (-402 (-552)) |#1| |#2| |#3|)))) -((-1310 ((|#2| |#2|) 26)) (-1286 (((-552) (-625 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))))) 15)) (-1267 (((-897) (-552)) 35)) (-1298 (((-552) |#2|) 42)) (-1277 (((-552) |#2|) 21) (((-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))) |#1|) 20))) -(((-889 |#1| |#2|) (-10 -7 (-15 -1267 ((-897) (-552))) (-15 -1277 ((-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))) |#1|)) (-15 -1277 ((-552) |#2|)) (-15 -1286 ((-552) (-625 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552)))))) (-15 -1298 ((-552) |#2|)) (-15 -1310 (|#2| |#2|))) (-1208 (-402 (-552))) (-1208 (-402 |#1|))) (T -889)) -((-1310 (*1 *2 *2) (-12 (-4 *3 (-1208 (-402 (-552)))) (-5 *1 (-889 *3 *2)) (-4 *2 (-1208 (-402 *3))))) (-1298 (*1 *2 *3) (-12 (-4 *4 (-1208 (-402 *2))) (-5 *2 (-552)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1208 (-402 *4))))) (-1286 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))))) (-4 *4 (-1208 (-402 *2))) (-5 *2 (-552)) (-5 *1 (-889 *4 *5)) (-4 *5 (-1208 (-402 *4))))) (-1277 (*1 *2 *3) (-12 (-4 *4 (-1208 (-402 *2))) (-5 *2 (-552)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1208 (-402 *4))))) (-1277 (*1 *2 *3) (-12 (-4 *3 (-1208 (-402 (-552)))) (-5 *2 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552)))) (-5 *1 (-889 *3 *4)) (-4 *4 (-1208 (-402 *3))))) (-1267 (*1 *2 *3) (-12 (-5 *3 (-552)) (-4 *4 (-1208 (-402 *3))) (-5 *2 (-897)) (-5 *1 (-889 *4 *5)) (-4 *5 (-1208 (-402 *4)))))) -(-10 -7 (-15 -1267 ((-897) (-552))) (-15 -1277 ((-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))) |#1|)) (-15 -1277 ((-552) |#2|)) (-15 -1286 ((-552) (-625 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552)))))) (-15 -1298 ((-552) |#2|)) (-15 -1310 (|#2| |#2|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4177 ((|#1| $) 81)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-2851 (($ $ $) NIL)) (-4174 (((-3 $ "failed") $) 75)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-1390 (($ |#1| (-413 |#1|)) 73)) (-1329 (((-1145 |#1|) |#1| |#1|) 41)) (-1319 (($ $) 49)) (-3650 (((-112) $) NIL)) (-1340 (((-552) $) 78)) (-1348 (($ $ (-552)) 80)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-1360 ((|#1| $) 77)) (-1372 (((-413 |#1|) $) 76)) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) 74)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1381 (($ $) 39)) (-1683 (((-839) $) 99) (($ (-552)) 54) (($ $) NIL) (($ (-402 (-552))) NIL) (($ |#1|) 31) (((-402 |#1|) $) 59) (($ (-402 (-413 |#1|))) 67)) (-4141 (((-751)) 52)) (-3518 (((-112) $ $) NIL)) (-2089 (($) 23 T CONST)) (-2100 (($) 12 T CONST)) (-2281 (((-112) $ $) 68)) (-2404 (($ $ $) NIL)) (-2393 (($ $) 88) (($ $ $) NIL)) (-2382 (($ $ $) 38)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 90) (($ $ $) 37) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) -(((-890 |#1|) (-13 (-358) (-38 |#1|) (-10 -8 (-15 -1683 ((-402 |#1|) $)) (-15 -1683 ($ (-402 (-413 |#1|)))) (-15 -1381 ($ $)) (-15 -1372 ((-413 |#1|) $)) (-15 -1360 (|#1| $)) (-15 -1348 ($ $ (-552))) (-15 -1340 ((-552) $)) (-15 -1329 ((-1145 |#1|) |#1| |#1|)) (-15 -1319 ($ $)) (-15 -1390 ($ |#1| (-413 |#1|))) (-15 -4177 (|#1| $)))) (-302)) (T -890)) -((-1683 (*1 *2 *1) (-12 (-5 *2 (-402 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-402 (-413 *3))) (-4 *3 (-302)) (-5 *1 (-890 *3)))) (-1381 (*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))) (-1372 (*1 *2 *1) (-12 (-5 *2 (-413 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) (-1360 (*1 *2 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))) (-1348 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) (-1329 (*1 *2 *3 *3) (-12 (-5 *2 (-1145 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) (-1319 (*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))) (-1390 (*1 *1 *2 *3) (-12 (-5 *3 (-413 *2)) (-4 *2 (-302)) (-5 *1 (-890 *2)))) (-4177 (*1 *2 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302))))) -(-13 (-358) (-38 |#1|) (-10 -8 (-15 -1683 ((-402 |#1|) $)) (-15 -1683 ($ (-402 (-413 |#1|)))) (-15 -1381 ($ $)) (-15 -1372 ((-413 |#1|) $)) (-15 -1360 (|#1| $)) (-15 -1348 ($ $ (-552))) (-15 -1340 ((-552) $)) (-15 -1329 ((-1145 |#1|) |#1| |#1|)) (-15 -1319 ($ $)) (-15 -1390 ($ |#1| (-413 |#1|))) (-15 -4177 (|#1| $)))) -((-1390 (((-52) (-928 |#1|) (-413 (-928 |#1|)) (-1149)) 17) (((-52) (-402 (-928 |#1|)) (-1149)) 18))) -(((-891 |#1|) (-10 -7 (-15 -1390 ((-52) (-402 (-928 |#1|)) (-1149))) (-15 -1390 ((-52) (-928 |#1|) (-413 (-928 |#1|)) (-1149)))) (-13 (-302) (-145))) (T -891)) -((-1390 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-413 (-928 *6))) (-5 *5 (-1149)) (-5 *3 (-928 *6)) (-4 *6 (-13 (-302) (-145))) (-5 *2 (-52)) (-5 *1 (-891 *6)))) (-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-145))) (-5 *2 (-52)) (-5 *1 (-891 *5))))) -(-10 -7 (-15 -1390 ((-52) (-402 (-928 |#1|)) (-1149))) (-15 -1390 ((-52) (-928 |#1|) (-413 (-928 |#1|)) (-1149)))) -((-1400 ((|#4| (-625 |#4|)) 121) (((-1145 |#4|) (-1145 |#4|) (-1145 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-2633 (((-1145 |#4|) (-625 (-1145 |#4|))) 114) (((-1145 |#4|) (-1145 |#4|) (-1145 |#4|)) 50) ((|#4| (-625 |#4|)) 55) ((|#4| |#4| |#4|) 84))) -(((-892 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2633 (|#4| |#4| |#4|)) (-15 -2633 (|#4| (-625 |#4|))) (-15 -2633 ((-1145 |#4|) (-1145 |#4|) (-1145 |#4|))) (-15 -2633 ((-1145 |#4|) (-625 (-1145 |#4|)))) (-15 -1400 (|#4| |#4| |#4|)) (-15 -1400 ((-1145 |#4|) (-1145 |#4|) (-1145 |#4|))) (-15 -1400 (|#4| (-625 |#4|)))) (-773) (-827) (-302) (-925 |#3| |#1| |#2|)) (T -892)) -((-1400 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *6 *4 *5)) (-5 *1 (-892 *4 *5 *6 *2)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)))) (-1400 (*1 *2 *2 *2) (-12 (-5 *2 (-1145 *6)) (-4 *6 (-925 *5 *3 *4)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *6)))) (-1400 (*1 *2 *2 *2) (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *2)) (-4 *2 (-925 *5 *3 *4)))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-625 (-1145 *7))) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-1145 *7)) (-5 *1 (-892 *4 *5 *6 *7)) (-4 *7 (-925 *6 *4 *5)))) (-2633 (*1 *2 *2 *2) (-12 (-5 *2 (-1145 *6)) (-4 *6 (-925 *5 *3 *4)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *6 *4 *5)) (-5 *1 (-892 *4 *5 *6 *2)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)))) (-2633 (*1 *2 *2 *2) (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *2)) (-4 *2 (-925 *5 *3 *4))))) -(-10 -7 (-15 -2633 (|#4| |#4| |#4|)) (-15 -2633 (|#4| (-625 |#4|))) (-15 -2633 ((-1145 |#4|) (-1145 |#4|) (-1145 |#4|))) (-15 -2633 ((-1145 |#4|) (-625 (-1145 |#4|)))) (-15 -1400 (|#4| |#4| |#4|)) (-15 -1400 ((-1145 |#4|) (-1145 |#4|) (-1145 |#4|))) (-15 -1400 (|#4| (-625 |#4|)))) -((-1435 (((-880 (-552)) (-947)) 23) (((-880 (-552)) (-625 (-552))) 20)) (-1410 (((-880 (-552)) (-625 (-552))) 48) (((-880 (-552)) (-897)) 49)) (-1422 (((-880 (-552))) 24)) (-1403 (((-880 (-552))) 38) (((-880 (-552)) (-625 (-552))) 37)) (-1393 (((-880 (-552))) 36) (((-880 (-552)) (-625 (-552))) 35)) (-1384 (((-880 (-552))) 34) (((-880 (-552)) (-625 (-552))) 33)) (-1375 (((-880 (-552))) 32) (((-880 (-552)) (-625 (-552))) 31)) (-1364 (((-880 (-552))) 30) (((-880 (-552)) (-625 (-552))) 29)) (-1414 (((-880 (-552))) 40) (((-880 (-552)) (-625 (-552))) 39)) (-1352 (((-880 (-552)) (-625 (-552))) 52) (((-880 (-552)) (-897)) 53)) (-1344 (((-880 (-552)) (-625 (-552))) 50) (((-880 (-552)) (-897)) 51)) (-1323 (((-880 (-552)) (-625 (-552))) 46) (((-880 (-552)) (-897)) 47)) (-1333 (((-880 (-552)) (-625 (-897))) 43))) -(((-893) (-10 -7 (-15 -1410 ((-880 (-552)) (-897))) (-15 -1410 ((-880 (-552)) (-625 (-552)))) (-15 -1323 ((-880 (-552)) (-897))) (-15 -1323 ((-880 (-552)) (-625 (-552)))) (-15 -1333 ((-880 (-552)) (-625 (-897)))) (-15 -1344 ((-880 (-552)) (-897))) (-15 -1344 ((-880 (-552)) (-625 (-552)))) (-15 -1352 ((-880 (-552)) (-897))) (-15 -1352 ((-880 (-552)) (-625 (-552)))) (-15 -1364 ((-880 (-552)) (-625 (-552)))) (-15 -1364 ((-880 (-552)))) (-15 -1375 ((-880 (-552)) (-625 (-552)))) (-15 -1375 ((-880 (-552)))) (-15 -1384 ((-880 (-552)) (-625 (-552)))) (-15 -1384 ((-880 (-552)))) (-15 -1393 ((-880 (-552)) (-625 (-552)))) (-15 -1393 ((-880 (-552)))) (-15 -1403 ((-880 (-552)) (-625 (-552)))) (-15 -1403 ((-880 (-552)))) (-15 -1414 ((-880 (-552)) (-625 (-552)))) (-15 -1414 ((-880 (-552)))) (-15 -1422 ((-880 (-552)))) (-15 -1435 ((-880 (-552)) (-625 (-552)))) (-15 -1435 ((-880 (-552)) (-947))))) (T -893)) -((-1435 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1422 (*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1414 (*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1403 (*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1403 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1393 (*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1393 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1384 (*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1375 (*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1375 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1364 (*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1352 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1352 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-625 (-897))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-880 (-552))) (-5 *1 (-893))))) -(-10 -7 (-15 -1410 ((-880 (-552)) (-897))) (-15 -1410 ((-880 (-552)) (-625 (-552)))) (-15 -1323 ((-880 (-552)) (-897))) (-15 -1323 ((-880 (-552)) (-625 (-552)))) (-15 -1333 ((-880 (-552)) (-625 (-897)))) (-15 -1344 ((-880 (-552)) (-897))) (-15 -1344 ((-880 (-552)) (-625 (-552)))) (-15 -1352 ((-880 (-552)) (-897))) (-15 -1352 ((-880 (-552)) (-625 (-552)))) (-15 -1364 ((-880 (-552)) (-625 (-552)))) (-15 -1364 ((-880 (-552)))) (-15 -1375 ((-880 (-552)) (-625 (-552)))) (-15 -1375 ((-880 (-552)))) (-15 -1384 ((-880 (-552)) (-625 (-552)))) (-15 -1384 ((-880 (-552)))) (-15 -1393 ((-880 (-552)) (-625 (-552)))) (-15 -1393 ((-880 (-552)))) (-15 -1403 ((-880 (-552)) (-625 (-552)))) (-15 -1403 ((-880 (-552)))) (-15 -1414 ((-880 (-552)) (-625 (-552)))) (-15 -1414 ((-880 (-552)))) (-15 -1422 ((-880 (-552)))) (-15 -1435 ((-880 (-552)) (-625 (-552)))) (-15 -1435 ((-880 (-552)) (-947)))) -((-1457 (((-625 (-928 |#1|)) (-625 (-928 |#1|)) (-625 (-1149))) 12)) (-1447 (((-625 (-928 |#1|)) (-625 (-928 |#1|)) (-625 (-1149))) 11))) -(((-894 |#1|) (-10 -7 (-15 -1447 ((-625 (-928 |#1|)) (-625 (-928 |#1|)) (-625 (-1149)))) (-15 -1457 ((-625 (-928 |#1|)) (-625 (-928 |#1|)) (-625 (-1149))))) (-446)) (T -894)) -((-1457 (*1 *2 *2 *3) (-12 (-5 *2 (-625 (-928 *4))) (-5 *3 (-625 (-1149))) (-4 *4 (-446)) (-5 *1 (-894 *4)))) (-1447 (*1 *2 *2 *3) (-12 (-5 *2 (-625 (-928 *4))) (-5 *3 (-625 (-1149))) (-4 *4 (-446)) (-5 *1 (-894 *4))))) -(-10 -7 (-15 -1447 ((-625 (-928 |#1|)) (-625 (-928 |#1|)) (-625 (-1149)))) (-15 -1457 ((-625 (-928 |#1|)) (-625 (-928 |#1|)) (-625 (-1149))))) -((-1683 (((-311 |#1|) (-471)) 16))) -(((-895 |#1|) (-10 -7 (-15 -1683 ((-311 |#1|) (-471)))) (-13 (-827) (-544))) (T -895)) -((-1683 (*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-311 *4)) (-5 *1 (-895 *4)) (-4 *4 (-13 (-827) (-544)))))) -(-10 -7 (-15 -1683 ((-311 |#1|) (-471)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-3650 (((-112) $) 30)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-896) (-138)) (T -896)) -((-1480 (*1 *2 *3) (-12 (-4 *1 (-896)) (-5 *2 (-2 (|:| -3340 (-625 *1)) (|:| -3212 *1))) (-5 *3 (-625 *1)))) (-1468 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-625 *1)) (-4 *1 (-896))))) -(-13 (-446) (-10 -8 (-15 -1480 ((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $))) (-15 -1468 ((-3 (-625 $) "failed") (-625 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-544) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2633 (($ $ $) NIL)) (-1683 (((-839) $) NIL)) (-2100 (($) NIL T CONST)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-897)) NIL)) (* (($ (-897) $) NIL) (($ $ $) NIL))) -(((-897) (-13 (-774) (-707) (-10 -8 (-15 -2633 ($ $ $)) (-6 (-4355 "*"))))) (T -897)) -((-2633 (*1 *1 *1 *1) (-5 *1 (-897)))) -(-13 (-774) (-707) (-10 -8 (-15 -2633 ($ $ $)) (-6 (-4355 "*")))) -((-1490 ((|#2| (-625 |#1|) (-625 |#1|)) 24))) -(((-898 |#1| |#2|) (-10 -7 (-15 -1490 (|#2| (-625 |#1|) (-625 |#1|)))) (-358) (-1208 |#1|)) (T -898)) -((-1490 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-358)) (-4 *2 (-1208 *4)) (-5 *1 (-898 *4 *2))))) -(-10 -7 (-15 -1490 (|#2| (-625 |#1|) (-625 |#1|)))) -((-3953 (((-1145 |#2|) (-625 |#2|) (-625 |#2|)) 17) (((-1205 |#1| |#2|) (-1205 |#1| |#2|) (-625 |#2|) (-625 |#2|)) 13))) -(((-899 |#1| |#2|) (-10 -7 (-15 -3953 ((-1205 |#1| |#2|) (-1205 |#1| |#2|) (-625 |#2|) (-625 |#2|))) (-15 -3953 ((-1145 |#2|) (-625 |#2|) (-625 |#2|)))) (-1149) (-358)) (T -899)) -((-3953 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *5)) (-4 *5 (-358)) (-5 *2 (-1145 *5)) (-5 *1 (-899 *4 *5)) (-14 *4 (-1149)))) (-3953 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1205 *4 *5)) (-5 *3 (-625 *5)) (-14 *4 (-1149)) (-4 *5 (-358)) (-5 *1 (-899 *4 *5))))) -(-10 -7 (-15 -3953 ((-1205 |#1| |#2|) (-1205 |#1| |#2|) (-625 |#2|) (-625 |#2|))) (-15 -3953 ((-1145 |#2|) (-625 |#2|) (-625 |#2|)))) -((-1513 (((-552) (-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-1131)) 139)) (-1725 ((|#4| |#4|) 155)) (-1557 (((-625 (-402 (-928 |#1|))) (-625 (-1149))) 118)) (-1714 (((-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))) (-669 |#4|) (-625 (-402 (-928 |#1|))) (-625 (-625 |#4|)) (-751) (-751) (-552)) 75)) (-1601 (((-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))) (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))) (-625 |#4|)) 59)) (-1703 (((-669 |#4|) (-669 |#4|) (-625 |#4|)) 55)) (-1525 (((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-1131)) 151)) (-1500 (((-552) (-669 |#4|) (-897) (-1131)) 132) (((-552) (-669 |#4|) (-625 (-1149)) (-897) (-1131)) 131) (((-552) (-669 |#4|) (-625 |#4|) (-897) (-1131)) 130) (((-552) (-669 |#4|) (-1131)) 127) (((-552) (-669 |#4|) (-625 (-1149)) (-1131)) 126) (((-552) (-669 |#4|) (-625 |#4|) (-1131)) 125) (((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-897)) 124) (((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 (-1149)) (-897)) 123) (((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 |#4|) (-897)) 122) (((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|)) 120) (((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 (-1149))) 119) (((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 |#4|)) 115)) (-1568 ((|#4| (-928 |#1|)) 68)) (-1680 (((-112) (-625 |#4|) (-625 (-625 |#4|))) 152)) (-1668 (((-625 (-625 (-552))) (-552) (-552)) 129)) (-1658 (((-625 (-625 |#4|)) (-625 (-625 |#4|))) 88)) (-1646 (((-751) (-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 |#4|))))) 86)) (-1635 (((-751) (-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 |#4|))))) 85)) (-1737 (((-112) (-625 (-928 |#1|))) 17) (((-112) (-625 |#4|)) 13)) (-1578 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-625 |#4|)) (|:| |n0| (-625 |#4|))) (-625 |#4|) (-625 |#4|)) 71)) (-1623 (((-625 |#4|) |#4|) 49)) (-1546 (((-625 (-402 (-928 |#1|))) (-625 |#4|)) 114) (((-669 (-402 (-928 |#1|))) (-669 |#4|)) 56) (((-402 (-928 |#1|)) |#4|) 111)) (-1536 (((-2 (|:| |rgl| (-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))))))) (|:| |rgsz| (-552))) (-669 |#4|) (-625 (-402 (-928 |#1|))) (-751) (-1131) (-552)) 93)) (-1590 (((-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 |#4|)))) (-669 |#4|) (-751)) 84)) (-1692 (((-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552))))) (-669 |#4|) (-751)) 101)) (-1612 (((-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))) (-2 (|:| -2351 (-669 (-402 (-928 |#1|)))) (|:| |vec| (-625 (-402 (-928 |#1|)))) (|:| -3442 (-751)) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552))))) 48))) -(((-900 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 |#4|))) (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 (-1149)))) (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|))) (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 |#4|) (-897))) (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 (-1149)) (-897))) (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-897))) (-15 -1500 ((-552) (-669 |#4|) (-625 |#4|) (-1131))) (-15 -1500 ((-552) (-669 |#4|) (-625 (-1149)) (-1131))) (-15 -1500 ((-552) (-669 |#4|) (-1131))) (-15 -1500 ((-552) (-669 |#4|) (-625 |#4|) (-897) (-1131))) (-15 -1500 ((-552) (-669 |#4|) (-625 (-1149)) (-897) (-1131))) (-15 -1500 ((-552) (-669 |#4|) (-897) (-1131))) (-15 -1513 ((-552) (-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-1131))) (-15 -1525 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-1131))) (-15 -1536 ((-2 (|:| |rgl| (-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))))))) (|:| |rgsz| (-552))) (-669 |#4|) (-625 (-402 (-928 |#1|))) (-751) (-1131) (-552))) (-15 -1546 ((-402 (-928 |#1|)) |#4|)) (-15 -1546 ((-669 (-402 (-928 |#1|))) (-669 |#4|))) (-15 -1546 ((-625 (-402 (-928 |#1|))) (-625 |#4|))) (-15 -1557 ((-625 (-402 (-928 |#1|))) (-625 (-1149)))) (-15 -1568 (|#4| (-928 |#1|))) (-15 -1578 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-625 |#4|)) (|:| |n0| (-625 |#4|))) (-625 |#4|) (-625 |#4|))) (-15 -1590 ((-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 |#4|)))) (-669 |#4|) (-751))) (-15 -1601 ((-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))) (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))) (-625 |#4|))) (-15 -1612 ((-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))) (-2 (|:| -2351 (-669 (-402 (-928 |#1|)))) (|:| |vec| (-625 (-402 (-928 |#1|)))) (|:| -3442 (-751)) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (-15 -1623 ((-625 |#4|) |#4|)) (-15 -1635 ((-751) (-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 |#4|)))))) (-15 -1646 ((-751) (-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 |#4|)))))) (-15 -1658 ((-625 (-625 |#4|)) (-625 (-625 |#4|)))) (-15 -1668 ((-625 (-625 (-552))) (-552) (-552))) (-15 -1680 ((-112) (-625 |#4|) (-625 (-625 |#4|)))) (-15 -1692 ((-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552))))) (-669 |#4|) (-751))) (-15 -1703 ((-669 |#4|) (-669 |#4|) (-625 |#4|))) (-15 -1714 ((-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))) (-669 |#4|) (-625 (-402 (-928 |#1|))) (-625 (-625 |#4|)) (-751) (-751) (-552))) (-15 -1725 (|#4| |#4|)) (-15 -1737 ((-112) (-625 |#4|))) (-15 -1737 ((-112) (-625 (-928 |#1|))))) (-13 (-302) (-145)) (-13 (-827) (-598 (-1149))) (-773) (-925 |#1| |#3| |#2|)) (T -900)) -((-1737 (*1 *2 *3) (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-112)) (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-925 *4 *6 *5)))) (-1737 (*1 *2 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-925 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-112)) (-5 *1 (-900 *4 *5 *6 *7)))) (-1725 (*1 *2 *2) (-12 (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-827) (-598 (-1149)))) (-4 *5 (-773)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *2 (-925 *3 *5 *4)))) (-1714 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552))))) (-5 *4 (-669 *12)) (-5 *5 (-625 (-402 (-928 *9)))) (-5 *6 (-625 (-625 *12))) (-5 *7 (-751)) (-5 *8 (-552)) (-4 *9 (-13 (-302) (-145))) (-4 *12 (-925 *9 *11 *10)) (-4 *10 (-13 (-827) (-598 (-1149)))) (-4 *11 (-773)) (-5 *2 (-2 (|:| |eqzro| (-625 *12)) (|:| |neqzro| (-625 *12)) (|:| |wcond| (-625 (-928 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 *9)))) (|:| -1270 (-625 (-1232 (-402 (-928 *9))))))))) (-5 *1 (-900 *9 *10 *11 *12)))) (-1703 (*1 *2 *2 *3) (-12 (-5 *2 (-669 *7)) (-5 *3 (-625 *7)) (-4 *7 (-925 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *1 (-900 *4 *5 *6 *7)))) (-1692 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-5 *4 (-751)) (-4 *8 (-925 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-625 (-2 (|:| |det| *8) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (-5 *1 (-900 *5 *6 *7 *8)))) (-1680 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-625 *8))) (-5 *3 (-625 *8)) (-4 *8 (-925 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-112)) (-5 *1 (-900 *5 *6 *7 *8)))) (-1668 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-625 (-625 (-552)))) (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-552)) (-4 *7 (-925 *4 *6 *5)))) (-1658 (*1 *2 *2) (-12 (-5 *2 (-625 (-625 *6))) (-4 *6 (-925 *3 *5 *4)) (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-827) (-598 (-1149)))) (-4 *5 (-773)) (-5 *1 (-900 *3 *4 *5 *6)))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| *7) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 *7))))) (-4 *7 (-925 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-751)) (-5 *1 (-900 *4 *5 *6 *7)))) (-1635 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| *7) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 *7))))) (-4 *7 (-925 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-751)) (-5 *1 (-900 *4 *5 *6 *7)))) (-1623 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-625 *3)) (-5 *1 (-900 *4 *5 *6 *3)) (-4 *3 (-925 *4 *6 *5)))) (-1612 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2351 (-669 (-402 (-928 *4)))) (|:| |vec| (-625 (-402 (-928 *4)))) (|:| -3442 (-751)) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552))))) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-2 (|:| |partsol| (-1232 (-402 (-928 *4)))) (|:| -1270 (-625 (-1232 (-402 (-928 *4))))))) (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-925 *4 *6 *5)))) (-1601 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1232 (-402 (-928 *4)))) (|:| -1270 (-625 (-1232 (-402 (-928 *4))))))) (-5 *3 (-625 *7)) (-4 *4 (-13 (-302) (-145))) (-4 *7 (-925 *4 *6 *5)) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *1 (-900 *4 *5 *6 *7)))) (-1590 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-4 *8 (-925 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| *8) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 *8))))) (-5 *1 (-900 *5 *6 *7 *8)) (-5 *4 (-751)))) (-1578 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-4 *7 (-925 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-625 *7)) (|:| |n0| (-625 *7)))) (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-625 *7)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-928 *4)) (-4 *4 (-13 (-302) (-145))) (-4 *2 (-925 *4 *6 *5)) (-5 *1 (-900 *4 *5 *6 *2)) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-625 (-1149))) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-625 (-402 (-928 *4)))) (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-925 *4 *6 *5)))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-925 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-625 (-402 (-928 *4)))) (-5 *1 (-900 *4 *5 *6 *7)))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-669 *7)) (-4 *7 (-925 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-669 (-402 (-928 *4)))) (-5 *1 (-900 *4 *5 *6 *7)))) (-1546 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-402 (-928 *4))) (-5 *1 (-900 *4 *5 *6 *3)) (-4 *3 (-925 *4 *6 *5)))) (-1536 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-669 *11)) (-5 *4 (-625 (-402 (-928 *8)))) (-5 *5 (-751)) (-5 *6 (-1131)) (-4 *8 (-13 (-302) (-145))) (-4 *11 (-925 *8 *10 *9)) (-4 *9 (-13 (-827) (-598 (-1149)))) (-4 *10 (-773)) (-5 *2 (-2 (|:| |rgl| (-625 (-2 (|:| |eqzro| (-625 *11)) (|:| |neqzro| (-625 *11)) (|:| |wcond| (-625 (-928 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 *8)))) (|:| -1270 (-625 (-1232 (-402 (-928 *8)))))))))) (|:| |rgsz| (-552)))) (-5 *1 (-900 *8 *9 *10 *11)) (-5 *7 (-552)))) (-1525 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-625 (-2 (|:| |eqzro| (-625 *7)) (|:| |neqzro| (-625 *7)) (|:| |wcond| (-625 (-928 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 *4)))) (|:| -1270 (-625 (-1232 (-402 (-928 *4)))))))))) (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-925 *4 *6 *5)))) (-1513 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-2 (|:| |eqzro| (-625 *8)) (|:| |neqzro| (-625 *8)) (|:| |wcond| (-625 (-928 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 *5)))) (|:| -1270 (-625 (-1232 (-402 (-928 *5)))))))))) (-5 *4 (-1131)) (-4 *5 (-13 (-302) (-145))) (-4 *8 (-925 *5 *7 *6)) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-552)) (-5 *1 (-900 *5 *6 *7 *8)))) (-1500 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *9)) (-5 *4 (-897)) (-5 *5 (-1131)) (-4 *9 (-925 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-552)) (-5 *1 (-900 *6 *7 *8 *9)))) (-1500 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-669 *10)) (-5 *4 (-625 (-1149))) (-5 *5 (-897)) (-5 *6 (-1131)) (-4 *10 (-925 *7 *9 *8)) (-4 *7 (-13 (-302) (-145))) (-4 *8 (-13 (-827) (-598 (-1149)))) (-4 *9 (-773)) (-5 *2 (-552)) (-5 *1 (-900 *7 *8 *9 *10)))) (-1500 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-669 *10)) (-5 *4 (-625 *10)) (-5 *5 (-897)) (-5 *6 (-1131)) (-4 *10 (-925 *7 *9 *8)) (-4 *7 (-13 (-302) (-145))) (-4 *8 (-13 (-827) (-598 (-1149)))) (-4 *9 (-773)) (-5 *2 (-552)) (-5 *1 (-900 *7 *8 *9 *10)))) (-1500 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-5 *4 (-1131)) (-4 *8 (-925 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-552)) (-5 *1 (-900 *5 *6 *7 *8)))) (-1500 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *9)) (-5 *4 (-625 (-1149))) (-5 *5 (-1131)) (-4 *9 (-925 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-552)) (-5 *1 (-900 *6 *7 *8 *9)))) (-1500 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *9)) (-5 *4 (-625 *9)) (-5 *5 (-1131)) (-4 *9 (-925 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-552)) (-5 *1 (-900 *6 *7 *8 *9)))) (-1500 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-5 *4 (-897)) (-4 *8 (-925 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-625 (-2 (|:| |eqzro| (-625 *8)) (|:| |neqzro| (-625 *8)) (|:| |wcond| (-625 (-928 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 *5)))) (|:| -1270 (-625 (-1232 (-402 (-928 *5)))))))))) (-5 *1 (-900 *5 *6 *7 *8)))) (-1500 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *9)) (-5 *4 (-625 (-1149))) (-5 *5 (-897)) (-4 *9 (-925 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-625 (-2 (|:| |eqzro| (-625 *9)) (|:| |neqzro| (-625 *9)) (|:| |wcond| (-625 (-928 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 *6)))) (|:| -1270 (-625 (-1232 (-402 (-928 *6)))))))))) (-5 *1 (-900 *6 *7 *8 *9)))) (-1500 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *9)) (-5 *5 (-897)) (-4 *9 (-925 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-625 (-2 (|:| |eqzro| (-625 *9)) (|:| |neqzro| (-625 *9)) (|:| |wcond| (-625 (-928 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 *6)))) (|:| -1270 (-625 (-1232 (-402 (-928 *6)))))))))) (-5 *1 (-900 *6 *7 *8 *9)) (-5 *4 (-625 *9)))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-669 *7)) (-4 *7 (-925 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-625 (-2 (|:| |eqzro| (-625 *7)) (|:| |neqzro| (-625 *7)) (|:| |wcond| (-625 (-928 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 *4)))) (|:| -1270 (-625 (-1232 (-402 (-928 *4)))))))))) (-5 *1 (-900 *4 *5 *6 *7)))) (-1500 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-5 *4 (-625 (-1149))) (-4 *8 (-925 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-625 (-2 (|:| |eqzro| (-625 *8)) (|:| |neqzro| (-625 *8)) (|:| |wcond| (-625 (-928 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 *5)))) (|:| -1270 (-625 (-1232 (-402 (-928 *5)))))))))) (-5 *1 (-900 *5 *6 *7 *8)))) (-1500 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-4 *8 (-925 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-625 (-2 (|:| |eqzro| (-625 *8)) (|:| |neqzro| (-625 *8)) (|:| |wcond| (-625 (-928 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 *5)))) (|:| -1270 (-625 (-1232 (-402 (-928 *5)))))))))) (-5 *1 (-900 *5 *6 *7 *8)) (-5 *4 (-625 *8))))) -(-10 -7 (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 |#4|))) (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 (-1149)))) (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|))) (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 |#4|) (-897))) (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-625 (-1149)) (-897))) (-15 -1500 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-669 |#4|) (-897))) (-15 -1500 ((-552) (-669 |#4|) (-625 |#4|) (-1131))) (-15 -1500 ((-552) (-669 |#4|) (-625 (-1149)) (-1131))) (-15 -1500 ((-552) (-669 |#4|) (-1131))) (-15 -1500 ((-552) (-669 |#4|) (-625 |#4|) (-897) (-1131))) (-15 -1500 ((-552) (-669 |#4|) (-625 (-1149)) (-897) (-1131))) (-15 -1500 ((-552) (-669 |#4|) (-897) (-1131))) (-15 -1513 ((-552) (-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-1131))) (-15 -1525 ((-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|))))))))) (-1131))) (-15 -1536 ((-2 (|:| |rgl| (-625 (-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))))))) (|:| |rgsz| (-552))) (-669 |#4|) (-625 (-402 (-928 |#1|))) (-751) (-1131) (-552))) (-15 -1546 ((-402 (-928 |#1|)) |#4|)) (-15 -1546 ((-669 (-402 (-928 |#1|))) (-669 |#4|))) (-15 -1546 ((-625 (-402 (-928 |#1|))) (-625 |#4|))) (-15 -1557 ((-625 (-402 (-928 |#1|))) (-625 (-1149)))) (-15 -1568 (|#4| (-928 |#1|))) (-15 -1578 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-625 |#4|)) (|:| |n0| (-625 |#4|))) (-625 |#4|) (-625 |#4|))) (-15 -1590 ((-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 |#4|)))) (-669 |#4|) (-751))) (-15 -1601 ((-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))) (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))) (-625 |#4|))) (-15 -1612 ((-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))) (-2 (|:| -2351 (-669 (-402 (-928 |#1|)))) (|:| |vec| (-625 (-402 (-928 |#1|)))) (|:| -3442 (-751)) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (-15 -1623 ((-625 |#4|) |#4|)) (-15 -1635 ((-751) (-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 |#4|)))))) (-15 -1646 ((-751) (-625 (-2 (|:| -3442 (-751)) (|:| |eqns| (-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))))) (|:| |fgb| (-625 |#4|)))))) (-15 -1658 ((-625 (-625 |#4|)) (-625 (-625 |#4|)))) (-15 -1668 ((-625 (-625 (-552))) (-552) (-552))) (-15 -1680 ((-112) (-625 |#4|) (-625 (-625 |#4|)))) (-15 -1692 ((-625 (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552))))) (-669 |#4|) (-751))) (-15 -1703 ((-669 |#4|) (-669 |#4|) (-625 |#4|))) (-15 -1714 ((-2 (|:| |eqzro| (-625 |#4|)) (|:| |neqzro| (-625 |#4|)) (|:| |wcond| (-625 (-928 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1232 (-402 (-928 |#1|)))) (|:| -1270 (-625 (-1232 (-402 (-928 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552)))) (-669 |#4|) (-625 (-402 (-928 |#1|))) (-625 (-625 |#4|)) (-751) (-751) (-552))) (-15 -1725 (|#4| |#4|)) (-15 -1737 ((-112) (-625 |#4|))) (-15 -1737 ((-112) (-625 (-928 |#1|))))) -((-1858 (((-903) |#1| (-1149)) 17) (((-903) |#1| (-1149) (-1067 (-221))) 21)) (-3796 (((-903) |#1| |#1| (-1149) (-1067 (-221))) 19) (((-903) |#1| (-1149) (-1067 (-221))) 15))) -(((-901 |#1|) (-10 -7 (-15 -3796 ((-903) |#1| (-1149) (-1067 (-221)))) (-15 -3796 ((-903) |#1| |#1| (-1149) (-1067 (-221)))) (-15 -1858 ((-903) |#1| (-1149) (-1067 (-221)))) (-15 -1858 ((-903) |#1| (-1149)))) (-598 (-528))) (T -901)) -((-1858 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-5 *2 (-903)) (-5 *1 (-901 *3)) (-4 *3 (-598 (-528))))) (-1858 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1149)) (-5 *5 (-1067 (-221))) (-5 *2 (-903)) (-5 *1 (-901 *3)) (-4 *3 (-598 (-528))))) (-3796 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1149)) (-5 *5 (-1067 (-221))) (-5 *2 (-903)) (-5 *1 (-901 *3)) (-4 *3 (-598 (-528))))) (-3796 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1149)) (-5 *5 (-1067 (-221))) (-5 *2 (-903)) (-5 *1 (-901 *3)) (-4 *3 (-598 (-528)))))) -(-10 -7 (-15 -3796 ((-903) |#1| (-1149) (-1067 (-221)))) (-15 -3796 ((-903) |#1| |#1| (-1149) (-1067 (-221)))) (-15 -1858 ((-903) |#1| (-1149) (-1067 (-221)))) (-15 -1858 ((-903) |#1| (-1149)))) -((-1722 (($ $ (-1067 (-221)) (-1067 (-221)) (-1067 (-221))) 70)) (-3675 (((-1067 (-221)) $) 40)) (-3663 (((-1067 (-221)) $) 39)) (-3652 (((-1067 (-221)) $) 38)) (-3775 (((-625 (-625 (-221))) $) 43)) (-3786 (((-1067 (-221)) $) 41)) (-1914 (((-552) (-552)) 32)) (-3755 (((-552) (-552)) 28)) (-3735 (((-552) (-552)) 30)) (-1889 (((-112) (-112)) 35)) (-1926 (((-552)) 31)) (-4230 (($ $ (-1067 (-221))) 73) (($ $) 74)) (-3806 (($ (-1 (-919 (-221)) (-221)) (-1067 (-221))) 78) (($ (-1 (-919 (-221)) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221))) 79)) (-3796 (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221))) 81) (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221))) 82) (($ $ (-1067 (-221))) 76)) (-1879 (((-552)) 36)) (-3765 (((-552)) 27)) (-3746 (((-552)) 29)) (-3603 (((-625 (-625 (-919 (-221)))) $) 95)) (-1868 (((-112) (-112)) 37)) (-1683 (((-839) $) 94)) (-1901 (((-112)) 34))) -(((-902) (-13 (-950) (-10 -8 (-15 -3806 ($ (-1 (-919 (-221)) (-221)) (-1067 (-221)))) (-15 -3806 ($ (-1 (-919 (-221)) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -3796 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221)))) (-15 -3796 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -3796 ($ $ (-1067 (-221)))) (-15 -1722 ($ $ (-1067 (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -4230 ($ $ (-1067 (-221)))) (-15 -4230 ($ $)) (-15 -3786 ((-1067 (-221)) $)) (-15 -3775 ((-625 (-625 (-221))) $)) (-15 -3765 ((-552))) (-15 -3755 ((-552) (-552))) (-15 -3746 ((-552))) (-15 -3735 ((-552) (-552))) (-15 -1926 ((-552))) (-15 -1914 ((-552) (-552))) (-15 -1901 ((-112))) (-15 -1889 ((-112) (-112))) (-15 -1879 ((-552))) (-15 -1868 ((-112) (-112)))))) (T -902)) -((-3806 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-902)))) (-3806 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-902)))) (-3796 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-902)))) (-3796 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-902)))) (-3796 (*1 *1 *1 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-902)))) (-1722 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-902)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-902)))) (-4230 (*1 *1 *1) (-5 *1 (-902))) (-3786 (*1 *2 *1) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-902)))) (-3775 (*1 *2 *1) (-12 (-5 *2 (-625 (-625 (-221)))) (-5 *1 (-902)))) (-3765 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902)))) (-3755 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902)))) (-3746 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902)))) (-3735 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902)))) (-1926 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902)))) (-1914 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902)))) (-1901 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-902)))) (-1889 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-902)))) (-1879 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902)))) (-1868 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-902))))) -(-13 (-950) (-10 -8 (-15 -3806 ($ (-1 (-919 (-221)) (-221)) (-1067 (-221)))) (-15 -3806 ($ (-1 (-919 (-221)) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -3796 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221)))) (-15 -3796 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -3796 ($ $ (-1067 (-221)))) (-15 -1722 ($ $ (-1067 (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -4230 ($ $ (-1067 (-221)))) (-15 -4230 ($ $)) (-15 -3786 ((-1067 (-221)) $)) (-15 -3775 ((-625 (-625 (-221))) $)) (-15 -3765 ((-552))) (-15 -3755 ((-552) (-552))) (-15 -3746 ((-552))) (-15 -3735 ((-552) (-552))) (-15 -1926 ((-552))) (-15 -1914 ((-552) (-552))) (-15 -1901 ((-112))) (-15 -1889 ((-112) (-112))) (-15 -1879 ((-552))) (-15 -1868 ((-112) (-112))))) -((-1722 (($ $ (-1067 (-221))) 70) (($ $ (-1067 (-221)) (-1067 (-221))) 71)) (-3663 (((-1067 (-221)) $) 44)) (-3652 (((-1067 (-221)) $) 43)) (-3786 (((-1067 (-221)) $) 45)) (-1778 (((-552) (-552)) 37)) (-1823 (((-552) (-552)) 33)) (-1802 (((-552) (-552)) 35)) (-1757 (((-112) (-112)) 39)) (-1790 (((-552)) 36)) (-4230 (($ $ (-1067 (-221))) 74) (($ $) 75)) (-3806 (($ (-1 (-919 (-221)) (-221)) (-1067 (-221))) 84) (($ (-1 (-919 (-221)) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221))) 85)) (-1858 (($ (-1 (-221) (-221)) (-1067 (-221))) 92) (($ (-1 (-221) (-221))) 95)) (-3796 (($ (-1 (-221) (-221)) (-1067 (-221))) 79) (($ (-1 (-221) (-221)) (-1067 (-221)) (-1067 (-221))) 80) (($ (-625 (-1 (-221) (-221))) (-1067 (-221))) 87) (($ (-625 (-1 (-221) (-221))) (-1067 (-221)) (-1067 (-221))) 88) (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221))) 81) (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221))) 82) (($ $ (-1067 (-221))) 76)) (-1847 (((-112) $) 40)) (-1747 (((-552)) 41)) (-1834 (((-552)) 32)) (-1813 (((-552)) 34)) (-3603 (((-625 (-625 (-919 (-221)))) $) 23)) (-3758 (((-112) (-112)) 42)) (-1683 (((-839) $) 106)) (-1767 (((-112)) 38))) -(((-903) (-13 (-931) (-10 -8 (-15 -3796 ($ (-1 (-221) (-221)) (-1067 (-221)))) (-15 -3796 ($ (-1 (-221) (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -3796 ($ (-625 (-1 (-221) (-221))) (-1067 (-221)))) (-15 -3796 ($ (-625 (-1 (-221) (-221))) (-1067 (-221)) (-1067 (-221)))) (-15 -3796 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221)))) (-15 -3796 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -3806 ($ (-1 (-919 (-221)) (-221)) (-1067 (-221)))) (-15 -3806 ($ (-1 (-919 (-221)) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -1858 ($ (-1 (-221) (-221)) (-1067 (-221)))) (-15 -1858 ($ (-1 (-221) (-221)))) (-15 -3796 ($ $ (-1067 (-221)))) (-15 -1847 ((-112) $)) (-15 -1722 ($ $ (-1067 (-221)))) (-15 -1722 ($ $ (-1067 (-221)) (-1067 (-221)))) (-15 -4230 ($ $ (-1067 (-221)))) (-15 -4230 ($ $)) (-15 -3786 ((-1067 (-221)) $)) (-15 -1834 ((-552))) (-15 -1823 ((-552) (-552))) (-15 -1813 ((-552))) (-15 -1802 ((-552) (-552))) (-15 -1790 ((-552))) (-15 -1778 ((-552) (-552))) (-15 -1767 ((-112))) (-15 -1757 ((-112) (-112))) (-15 -1747 ((-552))) (-15 -3758 ((-112) (-112)))))) (T -903)) -((-3796 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-903)))) (-3796 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-903)))) (-3796 (*1 *1 *2 *3) (-12 (-5 *2 (-625 (-1 (-221) (-221)))) (-5 *3 (-1067 (-221))) (-5 *1 (-903)))) (-3796 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-625 (-1 (-221) (-221)))) (-5 *3 (-1067 (-221))) (-5 *1 (-903)))) (-3796 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-903)))) (-3796 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-903)))) (-3806 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-903)))) (-3806 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-903)))) (-1858 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221))) (-5 *1 (-903)))) (-1858 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-903)))) (-3796 (*1 *1 *1 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-903)))) (-1847 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903)))) (-1722 (*1 *1 *1 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-903)))) (-1722 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-903)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-903)))) (-4230 (*1 *1 *1) (-5 *1 (-903))) (-3786 (*1 *2 *1) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-903)))) (-1834 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903)))) (-1823 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903)))) (-1813 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903)))) (-1802 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903)))) (-1790 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903)))) (-1778 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903)))) (-1767 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903)))) (-1757 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903)))) (-1747 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903)))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903))))) -(-13 (-931) (-10 -8 (-15 -3796 ($ (-1 (-221) (-221)) (-1067 (-221)))) (-15 -3796 ($ (-1 (-221) (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -3796 ($ (-625 (-1 (-221) (-221))) (-1067 (-221)))) (-15 -3796 ($ (-625 (-1 (-221) (-221))) (-1067 (-221)) (-1067 (-221)))) (-15 -3796 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221)))) (-15 -3796 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -3806 ($ (-1 (-919 (-221)) (-221)) (-1067 (-221)))) (-15 -3806 ($ (-1 (-919 (-221)) (-221)) (-1067 (-221)) (-1067 (-221)) (-1067 (-221)))) (-15 -1858 ($ (-1 (-221) (-221)) (-1067 (-221)))) (-15 -1858 ($ (-1 (-221) (-221)))) (-15 -3796 ($ $ (-1067 (-221)))) (-15 -1847 ((-112) $)) (-15 -1722 ($ $ (-1067 (-221)))) (-15 -1722 ($ $ (-1067 (-221)) (-1067 (-221)))) (-15 -4230 ($ $ (-1067 (-221)))) (-15 -4230 ($ $)) (-15 -3786 ((-1067 (-221)) $)) (-15 -1834 ((-552))) (-15 -1823 ((-552) (-552))) (-15 -1813 ((-552))) (-15 -1802 ((-552) (-552))) (-15 -1790 ((-552))) (-15 -1778 ((-552) (-552))) (-15 -1767 ((-112))) (-15 -1757 ((-112) (-112))) (-15 -1747 ((-552))) (-15 -3758 ((-112) (-112))))) -((-3817 (((-625 (-1067 (-221))) (-625 (-625 (-919 (-221))))) 24))) -(((-904) (-10 -7 (-15 -3817 ((-625 (-1067 (-221))) (-625 (-625 (-919 (-221)))))))) (T -904)) -((-3817 (*1 *2 *3) (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *2 (-625 (-1067 (-221)))) (-5 *1 (-904))))) -(-10 -7 (-15 -3817 ((-625 (-1067 (-221))) (-625 (-625 (-919 (-221))))))) -((-2001 ((|#2| |#2|) 26)) (-3830 ((|#2| |#2|) 27)) (-1426 ((|#2| |#2|) 25)) (-1950 ((|#2| |#2| (-1131)) 24))) -(((-905 |#1| |#2|) (-10 -7 (-15 -1950 (|#2| |#2| (-1131))) (-15 -1426 (|#2| |#2|)) (-15 -2001 (|#2| |#2|)) (-15 -3830 (|#2| |#2|))) (-827) (-425 |#1|)) (T -905)) -((-3830 (*1 *2 *2) (-12 (-4 *3 (-827)) (-5 *1 (-905 *3 *2)) (-4 *2 (-425 *3)))) (-2001 (*1 *2 *2) (-12 (-4 *3 (-827)) (-5 *1 (-905 *3 *2)) (-4 *2 (-425 *3)))) (-1426 (*1 *2 *2) (-12 (-4 *3 (-827)) (-5 *1 (-905 *3 *2)) (-4 *2 (-425 *3)))) (-1950 (*1 *2 *2 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-827)) (-5 *1 (-905 *4 *2)) (-4 *2 (-425 *4))))) -(-10 -7 (-15 -1950 (|#2| |#2| (-1131))) (-15 -1426 (|#2| |#2|)) (-15 -2001 (|#2| |#2|)) (-15 -3830 (|#2| |#2|))) -((-2001 (((-311 (-552)) (-1149)) 16)) (-3830 (((-311 (-552)) (-1149)) 14)) (-1426 (((-311 (-552)) (-1149)) 12)) (-1950 (((-311 (-552)) (-1149) (-1131)) 19))) -(((-906) (-10 -7 (-15 -1950 ((-311 (-552)) (-1149) (-1131))) (-15 -1426 ((-311 (-552)) (-1149))) (-15 -2001 ((-311 (-552)) (-1149))) (-15 -3830 ((-311 (-552)) (-1149))))) (T -906)) -((-3830 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-311 (-552))) (-5 *1 (-906)))) (-2001 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-311 (-552))) (-5 *1 (-906)))) (-1426 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-311 (-552))) (-5 *1 (-906)))) (-1950 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-1131)) (-5 *2 (-311 (-552))) (-5 *1 (-906))))) -(-10 -7 (-15 -1950 ((-311 (-552)) (-1149) (-1131))) (-15 -1426 ((-311 (-552)) (-1149))) (-15 -2001 ((-311 (-552)) (-1149))) (-15 -3830 ((-311 (-552)) (-1149)))) -((-3841 (((-865 |#1| |#3|) |#2| (-868 |#1|) (-865 |#1| |#3|)) 25)) (-3827 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-907 |#1| |#2| |#3|) (-10 -7 (-15 -3827 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3841 ((-865 |#1| |#3|) |#2| (-868 |#1|) (-865 |#1| |#3|)))) (-1073) (-862 |#1|) (-13 (-1073) (-1014 |#2|))) (T -907)) -((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-865 *5 *6)) (-5 *4 (-868 *5)) (-4 *5 (-1073)) (-4 *6 (-13 (-1073) (-1014 *3))) (-4 *3 (-862 *5)) (-5 *1 (-907 *5 *3 *6)))) (-3827 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1073) (-1014 *5))) (-4 *5 (-862 *4)) (-4 *4 (-1073)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-907 *4 *5 *6))))) -(-10 -7 (-15 -3827 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3841 ((-865 |#1| |#3|) |#2| (-868 |#1|) (-865 |#1| |#3|)))) -((-3841 (((-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|)) 30))) -(((-908 |#1| |#2| |#3|) (-10 -7 (-15 -3841 ((-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|)))) (-1073) (-13 (-544) (-827) (-862 |#1|)) (-13 (-425 |#2|) (-598 (-868 |#1|)) (-862 |#1|) (-1014 (-596 $)))) (T -908)) -((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-865 *5 *3)) (-4 *5 (-1073)) (-4 *3 (-13 (-425 *6) (-598 *4) (-862 *5) (-1014 (-596 $)))) (-5 *4 (-868 *5)) (-4 *6 (-13 (-544) (-827) (-862 *5))) (-5 *1 (-908 *5 *6 *3))))) -(-10 -7 (-15 -3841 ((-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|)))) -((-3841 (((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|)) 13))) -(((-909 |#1|) (-10 -7 (-15 -3841 ((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|)))) (-537)) (T -909)) -((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-865 (-552) *3)) (-5 *4 (-868 (-552))) (-4 *3 (-537)) (-5 *1 (-909 *3))))) -(-10 -7 (-15 -3841 ((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|)))) -((-3841 (((-865 |#1| |#2|) (-596 |#2|) (-868 |#1|) (-865 |#1| |#2|)) 54))) -(((-910 |#1| |#2|) (-10 -7 (-15 -3841 ((-865 |#1| |#2|) (-596 |#2|) (-868 |#1|) (-865 |#1| |#2|)))) (-1073) (-13 (-827) (-1014 (-596 $)) (-598 (-868 |#1|)) (-862 |#1|))) (T -910)) -((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-865 *5 *6)) (-5 *3 (-596 *6)) (-4 *5 (-1073)) (-4 *6 (-13 (-827) (-1014 (-596 $)) (-598 *4) (-862 *5))) (-5 *4 (-868 *5)) (-5 *1 (-910 *5 *6))))) -(-10 -7 (-15 -3841 ((-865 |#1| |#2|) (-596 |#2|) (-868 |#1|) (-865 |#1| |#2|)))) -((-3841 (((-861 |#1| |#2| |#3|) |#3| (-868 |#1|) (-861 |#1| |#2| |#3|)) 15))) -(((-911 |#1| |#2| |#3|) (-10 -7 (-15 -3841 ((-861 |#1| |#2| |#3|) |#3| (-868 |#1|) (-861 |#1| |#2| |#3|)))) (-1073) (-862 |#1|) (-646 |#2|)) (T -911)) -((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-861 *5 *6 *3)) (-5 *4 (-868 *5)) (-4 *5 (-1073)) (-4 *6 (-862 *5)) (-4 *3 (-646 *6)) (-5 *1 (-911 *5 *6 *3))))) -(-10 -7 (-15 -3841 ((-861 |#1| |#2| |#3|) |#3| (-868 |#1|) (-861 |#1| |#2| |#3|)))) -((-3841 (((-865 |#1| |#5|) |#5| (-868 |#1|) (-865 |#1| |#5|)) 17 (|has| |#3| (-862 |#1|))) (((-865 |#1| |#5|) |#5| (-868 |#1|) (-865 |#1| |#5|) (-1 (-865 |#1| |#5|) |#3| (-868 |#1|) (-865 |#1| |#5|))) 16))) -(((-912 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3841 ((-865 |#1| |#5|) |#5| (-868 |#1|) (-865 |#1| |#5|) (-1 (-865 |#1| |#5|) |#3| (-868 |#1|) (-865 |#1| |#5|)))) (IF (|has| |#3| (-862 |#1|)) (-15 -3841 ((-865 |#1| |#5|) |#5| (-868 |#1|) (-865 |#1| |#5|))) |%noBranch|)) (-1073) (-773) (-827) (-13 (-1025) (-827) (-862 |#1|)) (-13 (-925 |#4| |#2| |#3|) (-598 (-868 |#1|)))) (T -912)) -((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-865 *5 *3)) (-4 *5 (-1073)) (-4 *3 (-13 (-925 *8 *6 *7) (-598 *4))) (-5 *4 (-868 *5)) (-4 *7 (-862 *5)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-13 (-1025) (-827) (-862 *5))) (-5 *1 (-912 *5 *6 *7 *8 *3)))) (-3841 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-865 *6 *3) *8 (-868 *6) (-865 *6 *3))) (-4 *8 (-827)) (-5 *2 (-865 *6 *3)) (-5 *4 (-868 *6)) (-4 *6 (-1073)) (-4 *3 (-13 (-925 *9 *7 *8) (-598 *4))) (-4 *7 (-773)) (-4 *9 (-13 (-1025) (-827) (-862 *6))) (-5 *1 (-912 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -3841 ((-865 |#1| |#5|) |#5| (-868 |#1|) (-865 |#1| |#5|) (-1 (-865 |#1| |#5|) |#3| (-868 |#1|) (-865 |#1| |#5|)))) (IF (|has| |#3| (-862 |#1|)) (-15 -3841 ((-865 |#1| |#5|) |#5| (-868 |#1|) (-865 |#1| |#5|))) |%noBranch|)) -((-3925 ((|#2| |#2| (-625 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-913 |#1| |#2| |#3|) (-10 -7 (-15 -3925 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3925 (|#2| |#2| (-625 (-1 (-112) |#3|))))) (-827) (-425 |#1|) (-1186)) (T -913)) -((-3925 (*1 *2 *2 *3) (-12 (-5 *3 (-625 (-1 (-112) *5))) (-4 *5 (-1186)) (-4 *4 (-827)) (-5 *1 (-913 *4 *2 *5)) (-4 *2 (-425 *4)))) (-3925 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1186)) (-4 *4 (-827)) (-5 *1 (-913 *4 *2 *5)) (-4 *2 (-425 *4))))) -(-10 -7 (-15 -3925 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3925 (|#2| |#2| (-625 (-1 (-112) |#3|))))) -((-3925 (((-311 (-552)) (-1149) (-625 (-1 (-112) |#1|))) 18) (((-311 (-552)) (-1149) (-1 (-112) |#1|)) 15))) -(((-914 |#1|) (-10 -7 (-15 -3925 ((-311 (-552)) (-1149) (-1 (-112) |#1|))) (-15 -3925 ((-311 (-552)) (-1149) (-625 (-1 (-112) |#1|))))) (-1186)) (T -914)) -((-3925 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-625 (-1 (-112) *5))) (-4 *5 (-1186)) (-5 *2 (-311 (-552))) (-5 *1 (-914 *5)))) (-3925 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1186)) (-5 *2 (-311 (-552))) (-5 *1 (-914 *5))))) -(-10 -7 (-15 -3925 ((-311 (-552)) (-1149) (-1 (-112) |#1|))) (-15 -3925 ((-311 (-552)) (-1149) (-625 (-1 (-112) |#1|))))) -((-3841 (((-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|)) 25))) -(((-915 |#1| |#2| |#3|) (-10 -7 (-15 -3841 ((-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|)))) (-1073) (-13 (-544) (-862 |#1|) (-598 (-868 |#1|))) (-968 |#2|)) (T -915)) -((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-865 *5 *3)) (-4 *5 (-1073)) (-4 *3 (-968 *6)) (-4 *6 (-13 (-544) (-862 *5) (-598 *4))) (-5 *4 (-868 *5)) (-5 *1 (-915 *5 *6 *3))))) -(-10 -7 (-15 -3841 ((-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|)))) -((-3841 (((-865 |#1| (-1149)) (-1149) (-868 |#1|) (-865 |#1| (-1149))) 17))) -(((-916 |#1|) (-10 -7 (-15 -3841 ((-865 |#1| (-1149)) (-1149) (-868 |#1|) (-865 |#1| (-1149))))) (-1073)) (T -916)) -((-3841 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-865 *5 (-1149))) (-5 *3 (-1149)) (-5 *4 (-868 *5)) (-4 *5 (-1073)) (-5 *1 (-916 *5))))) -(-10 -7 (-15 -3841 ((-865 |#1| (-1149)) (-1149) (-868 |#1|) (-865 |#1| (-1149))))) -((-3855 (((-865 |#1| |#3|) (-625 |#3|) (-625 (-868 |#1|)) (-865 |#1| |#3|) (-1 (-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|))) 33)) (-3841 (((-865 |#1| |#3|) (-625 |#3|) (-625 (-868 |#1|)) (-1 |#3| (-625 |#3|)) (-865 |#1| |#3|) (-1 (-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|))) 32))) -(((-917 |#1| |#2| |#3|) (-10 -7 (-15 -3841 ((-865 |#1| |#3|) (-625 |#3|) (-625 (-868 |#1|)) (-1 |#3| (-625 |#3|)) (-865 |#1| |#3|) (-1 (-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|)))) (-15 -3855 ((-865 |#1| |#3|) (-625 |#3|) (-625 (-868 |#1|)) (-865 |#1| |#3|) (-1 (-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|))))) (-1073) (-13 (-1025) (-827)) (-13 (-1025) (-598 (-868 |#1|)) (-1014 |#2|))) (T -917)) -((-3855 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 (-868 *6))) (-5 *5 (-1 (-865 *6 *8) *8 (-868 *6) (-865 *6 *8))) (-4 *6 (-1073)) (-4 *8 (-13 (-1025) (-598 (-868 *6)) (-1014 *7))) (-5 *2 (-865 *6 *8)) (-4 *7 (-13 (-1025) (-827))) (-5 *1 (-917 *6 *7 *8)))) (-3841 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-625 (-868 *7))) (-5 *5 (-1 *9 (-625 *9))) (-5 *6 (-1 (-865 *7 *9) *9 (-868 *7) (-865 *7 *9))) (-4 *7 (-1073)) (-4 *9 (-13 (-1025) (-598 (-868 *7)) (-1014 *8))) (-5 *2 (-865 *7 *9)) (-5 *3 (-625 *9)) (-4 *8 (-13 (-1025) (-827))) (-5 *1 (-917 *7 *8 *9))))) -(-10 -7 (-15 -3841 ((-865 |#1| |#3|) (-625 |#3|) (-625 (-868 |#1|)) (-1 |#3| (-625 |#3|)) (-865 |#1| |#3|) (-1 (-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|)))) (-15 -3855 ((-865 |#1| |#3|) (-625 |#3|) (-625 (-868 |#1|)) (-865 |#1| |#3|) (-1 (-865 |#1| |#3|) |#3| (-868 |#1|) (-865 |#1| |#3|))))) -((-3961 (((-1145 (-402 (-552))) (-552)) 63)) (-3948 (((-1145 (-552)) (-552)) 66)) (-2475 (((-1145 (-552)) (-552)) 60)) (-3936 (((-552) (-1145 (-552))) 55)) (-3922 (((-1145 (-402 (-552))) (-552)) 49)) (-3909 (((-1145 (-552)) (-552)) 38)) (-3894 (((-1145 (-552)) (-552)) 68)) (-3881 (((-1145 (-552)) (-552)) 67)) (-3868 (((-1145 (-402 (-552))) (-552)) 51))) -(((-918) (-10 -7 (-15 -3868 ((-1145 (-402 (-552))) (-552))) (-15 -3881 ((-1145 (-552)) (-552))) (-15 -3894 ((-1145 (-552)) (-552))) (-15 -3909 ((-1145 (-552)) (-552))) (-15 -3922 ((-1145 (-402 (-552))) (-552))) (-15 -3936 ((-552) (-1145 (-552)))) (-15 -2475 ((-1145 (-552)) (-552))) (-15 -3948 ((-1145 (-552)) (-552))) (-15 -3961 ((-1145 (-402 (-552))) (-552))))) (T -918)) -((-3961 (*1 *2 *3) (-12 (-5 *2 (-1145 (-402 (-552)))) (-5 *1 (-918)) (-5 *3 (-552)))) (-3948 (*1 *2 *3) (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-918)) (-5 *3 (-552)))) (-2475 (*1 *2 *3) (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-918)) (-5 *3 (-552)))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-1145 (-552))) (-5 *2 (-552)) (-5 *1 (-918)))) (-3922 (*1 *2 *3) (-12 (-5 *2 (-1145 (-402 (-552)))) (-5 *1 (-918)) (-5 *3 (-552)))) (-3909 (*1 *2 *3) (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-918)) (-5 *3 (-552)))) (-3894 (*1 *2 *3) (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-918)) (-5 *3 (-552)))) (-3881 (*1 *2 *3) (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-918)) (-5 *3 (-552)))) (-3868 (*1 *2 *3) (-12 (-5 *2 (-1145 (-402 (-552)))) (-5 *1 (-918)) (-5 *3 (-552))))) -(-10 -7 (-15 -3868 ((-1145 (-402 (-552))) (-552))) (-15 -3881 ((-1145 (-552)) (-552))) (-15 -3894 ((-1145 (-552)) (-552))) (-15 -3909 ((-1145 (-552)) (-552))) (-15 -3922 ((-1145 (-402 (-552))) (-552))) (-15 -3936 ((-552) (-1145 (-552)))) (-15 -2475 ((-1145 (-552)) (-552))) (-15 -3948 ((-1145 (-552)) (-552))) (-15 -3961 ((-1145 (-402 (-552))) (-552)))) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2983 (($ (-751)) NIL (|has| |#1| (-23)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-552) |#1|) 11 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) NIL)) (-2483 (((-552) (-1 (-112) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073)))) (-3582 (($ (-625 |#1|)) 13)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3191 (((-669 |#1|) $ $) NIL (|has| |#1| (-1025)))) (-2183 (($ (-751) |#1|) 8)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) 10 (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2638 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-2878 (((-112) $ (-751)) NIL)) (-3456 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2924 ((|#1| $) NIL (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-2147 (($ $ (-625 |#1|)) 26)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) 20) (($ $ (-1199 (-552))) NIL)) (-1443 ((|#1| $ $) NIL (|has| |#1| (-1025)))) (-3904 (((-897) $) 16)) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-1431 (($ $ $) 24)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528)))) (($ (-625 |#1|)) 17)) (-1695 (($ (-625 |#1|)) NIL)) (-3402 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-625 $)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2393 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2382 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-552) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-707))) (($ $ |#1|) NIL (|has| |#1| (-707)))) (-1471 (((-751) $) 14 (|has| $ (-6 -4353))))) -(((-919 |#1|) (-956 |#1|) (-1025)) (T -919)) -NIL -(-956 |#1|) -((-3997 (((-475 |#1| |#2|) (-928 |#2|)) 20)) (-4032 (((-243 |#1| |#2|) (-928 |#2|)) 33)) (-4009 (((-928 |#2|) (-475 |#1| |#2|)) 25)) (-3985 (((-243 |#1| |#2|) (-475 |#1| |#2|)) 55)) (-4020 (((-928 |#2|) (-243 |#1| |#2|)) 30)) (-3973 (((-475 |#1| |#2|) (-243 |#1| |#2|)) 46))) -(((-920 |#1| |#2|) (-10 -7 (-15 -3973 ((-475 |#1| |#2|) (-243 |#1| |#2|))) (-15 -3985 ((-243 |#1| |#2|) (-475 |#1| |#2|))) (-15 -3997 ((-475 |#1| |#2|) (-928 |#2|))) (-15 -4009 ((-928 |#2|) (-475 |#1| |#2|))) (-15 -4020 ((-928 |#2|) (-243 |#1| |#2|))) (-15 -4032 ((-243 |#1| |#2|) (-928 |#2|)))) (-625 (-1149)) (-1025)) (T -920)) -((-4032 (*1 *2 *3) (-12 (-5 *3 (-928 *5)) (-4 *5 (-1025)) (-5 *2 (-243 *4 *5)) (-5 *1 (-920 *4 *5)) (-14 *4 (-625 (-1149))))) (-4020 (*1 *2 *3) (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-1025)) (-5 *2 (-928 *5)) (-5 *1 (-920 *4 *5)))) (-4009 (*1 *2 *3) (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-1025)) (-5 *2 (-928 *5)) (-5 *1 (-920 *4 *5)))) (-3997 (*1 *2 *3) (-12 (-5 *3 (-928 *5)) (-4 *5 (-1025)) (-5 *2 (-475 *4 *5)) (-5 *1 (-920 *4 *5)) (-14 *4 (-625 (-1149))))) (-3985 (*1 *2 *3) (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-1025)) (-5 *2 (-243 *4 *5)) (-5 *1 (-920 *4 *5)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-1025)) (-5 *2 (-475 *4 *5)) (-5 *1 (-920 *4 *5))))) -(-10 -7 (-15 -3973 ((-475 |#1| |#2|) (-243 |#1| |#2|))) (-15 -3985 ((-243 |#1| |#2|) (-475 |#1| |#2|))) (-15 -3997 ((-475 |#1| |#2|) (-928 |#2|))) (-15 -4009 ((-928 |#2|) (-475 |#1| |#2|))) (-15 -4020 ((-928 |#2|) (-243 |#1| |#2|))) (-15 -4032 ((-243 |#1| |#2|) (-928 |#2|)))) -((-4044 (((-625 |#2|) |#2| |#2|) 10)) (-4082 (((-751) (-625 |#1|)) 37 (|has| |#1| (-825)))) (-4056 (((-625 |#2|) |#2|) 11)) (-4095 (((-751) (-625 |#1|) (-552) (-552)) 39 (|has| |#1| (-825)))) (-4069 ((|#1| |#2|) 32 (|has| |#1| (-825))))) -(((-921 |#1| |#2|) (-10 -7 (-15 -4044 ((-625 |#2|) |#2| |#2|)) (-15 -4056 ((-625 |#2|) |#2|)) (IF (|has| |#1| (-825)) (PROGN (-15 -4069 (|#1| |#2|)) (-15 -4082 ((-751) (-625 |#1|))) (-15 -4095 ((-751) (-625 |#1|) (-552) (-552)))) |%noBranch|)) (-358) (-1208 |#1|)) (T -921)) -((-4095 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-625 *5)) (-5 *4 (-552)) (-4 *5 (-825)) (-4 *5 (-358)) (-5 *2 (-751)) (-5 *1 (-921 *5 *6)) (-4 *6 (-1208 *5)))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-825)) (-4 *4 (-358)) (-5 *2 (-751)) (-5 *1 (-921 *4 *5)) (-4 *5 (-1208 *4)))) (-4069 (*1 *2 *3) (-12 (-4 *2 (-358)) (-4 *2 (-825)) (-5 *1 (-921 *2 *3)) (-4 *3 (-1208 *2)))) (-4056 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-625 *3)) (-5 *1 (-921 *4 *3)) (-4 *3 (-1208 *4)))) (-4044 (*1 *2 *3 *3) (-12 (-4 *4 (-358)) (-5 *2 (-625 *3)) (-5 *1 (-921 *4 *3)) (-4 *3 (-1208 *4))))) -(-10 -7 (-15 -4044 ((-625 |#2|) |#2| |#2|)) (-15 -4056 ((-625 |#2|) |#2|)) (IF (|has| |#1| (-825)) (PROGN (-15 -4069 (|#1| |#2|)) (-15 -4082 ((-751) (-625 |#1|))) (-15 -4095 ((-751) (-625 |#1|) (-552) (-552)))) |%noBranch|)) -((-1996 (((-928 |#2|) (-1 |#2| |#1|) (-928 |#1|)) 19))) -(((-922 |#1| |#2|) (-10 -7 (-15 -1996 ((-928 |#2|) (-1 |#2| |#1|) (-928 |#1|)))) (-1025) (-1025)) (T -922)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-928 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-5 *2 (-928 *6)) (-5 *1 (-922 *5 *6))))) -(-10 -7 (-15 -1996 ((-928 |#2|) (-1 |#2| |#1|) (-928 |#1|)))) -((-3793 (((-1205 |#1| (-928 |#2|)) (-928 |#2|) (-1228 |#1|)) 18))) -(((-923 |#1| |#2|) (-10 -7 (-15 -3793 ((-1205 |#1| (-928 |#2|)) (-928 |#2|) (-1228 |#1|)))) (-1149) (-1025)) (T -923)) -((-3793 (*1 *2 *3 *4) (-12 (-5 *4 (-1228 *5)) (-14 *5 (-1149)) (-4 *6 (-1025)) (-5 *2 (-1205 *5 (-928 *6))) (-5 *1 (-923 *5 *6)) (-5 *3 (-928 *6))))) -(-10 -7 (-15 -3793 ((-1205 |#1| (-928 |#2|)) (-928 |#2|) (-1228 |#1|)))) -((-4121 (((-751) $) 71) (((-751) $ (-625 |#4|)) 74)) (-2194 (($ $) 173)) (-1330 (((-413 $) $) 165)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 116)) (-1893 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-1895 ((|#2| $) NIL) (((-402 (-552)) $) NIL) (((-552) $) NIL) ((|#4| $) 59)) (-3207 (($ $ $ |#4|) 76)) (-1794 (((-669 (-552)) (-669 $)) NIL) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) 106) (((-669 |#2|) (-669 $)) 99)) (-1294 (($ $) 180) (($ $ |#4|) 183)) (-4157 (((-625 $) $) 63)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 199) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 192)) (-4148 (((-625 $) $) 28)) (-3957 (($ |#2| |#3|) NIL) (($ $ |#4| (-751)) NIL) (($ $ (-625 |#4|) (-625 (-751))) 57)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ |#4|) 162)) (-4172 (((-3 (-625 $) "failed") $) 42)) (-4160 (((-3 (-625 $) "failed") $) 31)) (-4182 (((-3 (-2 (|:| |var| |#4|) (|:| -3564 (-751))) "failed") $) 47)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 109)) (-4275 (((-413 (-1145 $)) (-1145 $)) 122)) (-4286 (((-413 (-1145 $)) (-1145 $)) 120)) (-3824 (((-413 $) $) 140)) (-4073 (($ $ (-625 (-289 $))) 21) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-625 |#4|) (-625 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-625 |#4|) (-625 $)) NIL)) (-3217 (($ $ |#4|) 78)) (-2042 (((-868 (-374)) $) 213) (((-868 (-552)) $) 206) (((-528) $) 221)) (-4108 ((|#2| $) NIL) (($ $ |#4|) 175)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 154)) (-3637 ((|#2| $ |#3|) NIL) (($ $ |#4| (-751)) 52) (($ $ (-625 |#4|) (-625 (-751))) 55)) (-4243 (((-3 $ "failed") $) 156)) (-2307 (((-112) $ $) 186))) -(((-924 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4306 ((-1145 |#1|) (-1145 |#1|) (-1145 |#1|))) (-15 -1330 ((-413 |#1|) |#1|)) (-15 -2194 (|#1| |#1|)) (-15 -4243 ((-3 |#1| "failed") |#1|)) (-15 -2307 ((-112) |#1| |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -3841 ((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|))) (-15 -3841 ((-865 (-374) |#1|) |#1| (-868 (-374)) (-865 (-374) |#1|))) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -4286 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4275 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4264 ((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|))) (-15 -4253 ((-3 (-1232 |#1|) "failed") (-669 |#1|))) (-15 -1294 (|#1| |#1| |#4|)) (-15 -4108 (|#1| |#1| |#4|)) (-15 -3217 (|#1| |#1| |#4|)) (-15 -3207 (|#1| |#1| |#1| |#4|)) (-15 -4157 ((-625 |#1|) |#1|)) (-15 -4121 ((-751) |#1| (-625 |#4|))) (-15 -4121 ((-751) |#1|)) (-15 -4182 ((-3 (-2 (|:| |var| |#4|) (|:| -3564 (-751))) "failed") |#1|)) (-15 -4172 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -4160 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -3957 (|#1| |#1| (-625 |#4|) (-625 (-751)))) (-15 -3957 (|#1| |#1| |#4| (-751))) (-15 -2097 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1| |#4|)) (-15 -4148 ((-625 |#1|) |#1|)) (-15 -3637 (|#1| |#1| (-625 |#4|) (-625 (-751)))) (-15 -3637 (|#1| |#1| |#4| (-751))) (-15 -1794 ((-669 |#2|) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -1895 (|#4| |#1|)) (-15 -1893 ((-3 |#4| "failed") |#1|)) (-15 -4073 (|#1| |#1| (-625 |#4|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#4| |#1|)) (-15 -4073 (|#1| |#1| (-625 |#4|) (-625 |#2|))) (-15 -4073 (|#1| |#1| |#4| |#2|)) (-15 -4073 (|#1| |#1| (-625 |#1|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| (-289 |#1|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -3957 (|#1| |#2| |#3|)) (-15 -3637 (|#2| |#1| |#3|)) (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -1294 (|#1| |#1|))) (-925 |#2| |#3| |#4|) (-1025) (-773) (-827)) (T -924)) -NIL -(-10 -8 (-15 -4306 ((-1145 |#1|) (-1145 |#1|) (-1145 |#1|))) (-15 -1330 ((-413 |#1|) |#1|)) (-15 -2194 (|#1| |#1|)) (-15 -4243 ((-3 |#1| "failed") |#1|)) (-15 -2307 ((-112) |#1| |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -3841 ((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|))) (-15 -3841 ((-865 (-374) |#1|) |#1| (-868 (-374)) (-865 (-374) |#1|))) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -4286 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4275 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4264 ((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|))) (-15 -4253 ((-3 (-1232 |#1|) "failed") (-669 |#1|))) (-15 -1294 (|#1| |#1| |#4|)) (-15 -4108 (|#1| |#1| |#4|)) (-15 -3217 (|#1| |#1| |#4|)) (-15 -3207 (|#1| |#1| |#1| |#4|)) (-15 -4157 ((-625 |#1|) |#1|)) (-15 -4121 ((-751) |#1| (-625 |#4|))) (-15 -4121 ((-751) |#1|)) (-15 -4182 ((-3 (-2 (|:| |var| |#4|) (|:| -3564 (-751))) "failed") |#1|)) (-15 -4172 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -4160 ((-3 (-625 |#1|) "failed") |#1|)) (-15 -3957 (|#1| |#1| (-625 |#4|) (-625 (-751)))) (-15 -3957 (|#1| |#1| |#4| (-751))) (-15 -2097 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1| |#4|)) (-15 -4148 ((-625 |#1|) |#1|)) (-15 -3637 (|#1| |#1| (-625 |#4|) (-625 (-751)))) (-15 -3637 (|#1| |#1| |#4| (-751))) (-15 -1794 ((-669 |#2|) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -1895 (|#4| |#1|)) (-15 -1893 ((-3 |#4| "failed") |#1|)) (-15 -4073 (|#1| |#1| (-625 |#4|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#4| |#1|)) (-15 -4073 (|#1| |#1| (-625 |#4|) (-625 |#2|))) (-15 -4073 (|#1| |#1| |#4| |#2|)) (-15 -4073 (|#1| |#1| (-625 |#1|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| (-289 |#1|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -3957 (|#1| |#2| |#3|)) (-15 -3637 (|#2| |#1| |#3|)) (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -1294 (|#1| |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3982 (((-625 |#3|) $) 108)) (-3793 (((-1145 $) $ |#3|) 123) (((-1145 |#1|) $) 122)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 85 (|has| |#1| (-544)))) (-3528 (($ $) 86 (|has| |#1| (-544)))) (-3509 (((-112) $) 88 (|has| |#1| (-544)))) (-4121 (((-751) $) 110) (((-751) $ (-625 |#3|)) 109)) (-2077 (((-3 $ "failed") $ $) 19)) (-4296 (((-413 (-1145 $)) (-1145 $)) 98 (|has| |#1| (-885)))) (-2194 (($ $) 96 (|has| |#1| (-446)))) (-1330 (((-413 $) $) 95 (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 101 (|has| |#1| (-885)))) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#1| "failed") $) 162) (((-3 (-402 (-552)) "failed") $) 160 (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) 158 (|has| |#1| (-1014 (-552)))) (((-3 |#3| "failed") $) 134)) (-1895 ((|#1| $) 163) (((-402 (-552)) $) 159 (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) 157 (|has| |#1| (-1014 (-552)))) ((|#3| $) 133)) (-3207 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-4169 (($ $) 152)) (-1794 (((-669 (-552)) (-669 $)) 132 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 131 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 130) (((-669 |#1|) (-669 $)) 129)) (-4174 (((-3 $ "failed") $) 32)) (-1294 (($ $) 174 (|has| |#1| (-446))) (($ $ |#3|) 103 (|has| |#1| (-446)))) (-4157 (((-625 $) $) 107)) (-2951 (((-112) $) 94 (|has| |#1| (-885)))) (-1347 (($ $ |#1| |#2| $) 170)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 82 (-12 (|has| |#3| (-862 (-374))) (|has| |#1| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 81 (-12 (|has| |#3| (-862 (-552))) (|has| |#1| (-862 (-552)))))) (-3650 (((-112) $) 30)) (-3723 (((-751) $) 167)) (-3970 (($ (-1145 |#1|) |#3|) 115) (($ (-1145 $) |#3|) 114)) (-4148 (((-625 $) $) 124)) (-4201 (((-112) $) 150)) (-3957 (($ |#1| |#2|) 151) (($ $ |#3| (-751)) 117) (($ $ (-625 |#3|) (-625 (-751))) 116)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ |#3|) 118)) (-4134 ((|#2| $) 168) (((-751) $ |#3|) 120) (((-625 (-751)) $ (-625 |#3|)) 119)) (-3658 (($ $ $) 77 (|has| |#1| (-827)))) (-3332 (($ $ $) 76 (|has| |#1| (-827)))) (-1357 (($ (-1 |#2| |#2|) $) 169)) (-1996 (($ (-1 |#1| |#1|) $) 149)) (-1942 (((-3 |#3| "failed") $) 121)) (-4131 (($ $) 147)) (-4144 ((|#1| $) 146)) (-2605 (($ (-625 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-2883 (((-1131) $) 9)) (-4172 (((-3 (-625 $) "failed") $) 112)) (-4160 (((-3 (-625 $) "failed") $) 113)) (-4182 (((-3 (-2 (|:| |var| |#3|) (|:| -3564 (-751))) "failed") $) 111)) (-2831 (((-1093) $) 10)) (-4105 (((-112) $) 164)) (-4117 ((|#1| $) 165)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 93 (|has| |#1| (-446)))) (-2633 (($ (-625 $)) 90 (|has| |#1| (-446))) (($ $ $) 89 (|has| |#1| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) 100 (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) 99 (|has| |#1| (-885)))) (-3824 (((-413 $) $) 97 (|has| |#1| (-885)))) (-2802 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-4073 (($ $ (-625 (-289 $))) 143) (($ $ (-289 $)) 142) (($ $ $ $) 141) (($ $ (-625 $) (-625 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-625 |#3|) (-625 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-625 |#3|) (-625 $)) 136)) (-3217 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-3072 (($ $ |#3|) 40) (($ $ (-625 |#3|)) 39) (($ $ |#3| (-751)) 38) (($ $ (-625 |#3|) (-625 (-751))) 37)) (-4276 ((|#2| $) 148) (((-751) $ |#3|) 128) (((-625 (-751)) $ (-625 |#3|)) 127)) (-2042 (((-868 (-374)) $) 80 (-12 (|has| |#3| (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374)))))) (((-868 (-552)) $) 79 (-12 (|has| |#3| (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552)))))) (((-528) $) 78 (-12 (|has| |#3| (-598 (-528))) (|has| |#1| (-598 (-528)))))) (-4108 ((|#1| $) 173 (|has| |#1| (-446))) (($ $ |#3|) 104 (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 102 (-3743 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-544))) (($ (-402 (-552))) 70 (-1523 (|has| |#1| (-1014 (-402 (-552)))) (|has| |#1| (-38 (-402 (-552))))))) (-2512 (((-625 |#1|) $) 166)) (-3637 ((|#1| $ |#2|) 153) (($ $ |#3| (-751)) 126) (($ $ (-625 |#3|) (-625 (-751))) 125)) (-4243 (((-3 $ "failed") $) 71 (-1523 (-3743 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) 28)) (-1336 (($ $ $ (-751)) 171 (|has| |#1| (-170)))) (-3518 (((-112) $ $) 87 (|has| |#1| (-544)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ |#3|) 36) (($ $ (-625 |#3|)) 35) (($ $ |#3| (-751)) 34) (($ $ (-625 |#3|) (-625 (-751))) 33)) (-2346 (((-112) $ $) 74 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 73 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 75 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 72 (|has| |#1| (-827)))) (-2404 (($ $ |#1|) 154 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 156 (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) 155 (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-925 |#1| |#2| |#3|) (-138) (-1025) (-773) (-827)) (T -925)) -((-1294 (*1 *1 *1) (-12 (-4 *1 (-925 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-4276 (*1 *2 *1 *3) (-12 (-4 *1 (-925 *4 *5 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-751)))) (-4276 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *6)) (-4 *1 (-925 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 (-751))))) (-3637 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-925 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *2 (-827)))) (-3637 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 *6)) (-5 *3 (-625 (-751))) (-4 *1 (-925 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)))) (-4148 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-925 *3 *4 *5)))) (-3793 (*1 *2 *1 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-1145 *1)) (-4 *1 (-925 *4 *5 *3)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-925 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-1145 *3)))) (-1942 (*1 *2 *1) (|partial| -12 (-4 *1 (-925 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-4134 (*1 *2 *1 *3) (-12 (-4 *1 (-925 *4 *5 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-751)))) (-4134 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *6)) (-4 *1 (-925 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 (-751))))) (-2097 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-925 *4 *5 *3)))) (-3957 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-925 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *2 (-827)))) (-3957 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 *6)) (-5 *3 (-625 (-751))) (-4 *1 (-925 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)))) (-3970 (*1 *1 *2 *3) (-12 (-5 *2 (-1145 *4)) (-4 *4 (-1025)) (-4 *1 (-925 *4 *5 *3)) (-4 *5 (-773)) (-4 *3 (-827)))) (-3970 (*1 *1 *2 *3) (-12 (-5 *2 (-1145 *1)) (-4 *1 (-925 *4 *5 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)))) (-4160 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-925 *3 *4 *5)))) (-4172 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-925 *3 *4 *5)))) (-4182 (*1 *2 *1) (|partial| -12 (-4 *1 (-925 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| |var| *5) (|:| -3564 (-751)))))) (-4121 (*1 *2 *1) (-12 (-4 *1 (-925 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-751)))) (-4121 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *6)) (-4 *1 (-925 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-751)))) (-3982 (*1 *2 *1) (-12 (-4 *1 (-925 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *5)))) (-4157 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-925 *3 *4 *5)))) (-3207 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-925 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *3 (-170)))) (-3217 (*1 *1 *1 *2) (-12 (-4 *1 (-925 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *3 (-170)))) (-4108 (*1 *1 *1 *2) (-12 (-4 *1 (-925 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *3 (-446)))) (-1294 (*1 *1 *1 *2) (-12 (-4 *1 (-925 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *3 (-446)))) (-2194 (*1 *1 *1) (-12 (-4 *1 (-925 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-1330 (*1 *2 *1) (-12 (-4 *3 (-446)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-413 *1)) (-4 *1 (-925 *3 *4 *5))))) -(-13 (-876 |t#3|) (-321 |t#1| |t#2|) (-304 $) (-507 |t#3| |t#1|) (-507 |t#3| $) (-1014 |t#3|) (-372 |t#1|) (-10 -8 (-15 -4276 ((-751) $ |t#3|)) (-15 -4276 ((-625 (-751)) $ (-625 |t#3|))) (-15 -3637 ($ $ |t#3| (-751))) (-15 -3637 ($ $ (-625 |t#3|) (-625 (-751)))) (-15 -4148 ((-625 $) $)) (-15 -3793 ((-1145 $) $ |t#3|)) (-15 -3793 ((-1145 |t#1|) $)) (-15 -1942 ((-3 |t#3| "failed") $)) (-15 -4134 ((-751) $ |t#3|)) (-15 -4134 ((-625 (-751)) $ (-625 |t#3|))) (-15 -2097 ((-2 (|:| -3984 $) (|:| -3645 $)) $ $ |t#3|)) (-15 -3957 ($ $ |t#3| (-751))) (-15 -3957 ($ $ (-625 |t#3|) (-625 (-751)))) (-15 -3970 ($ (-1145 |t#1|) |t#3|)) (-15 -3970 ($ (-1145 $) |t#3|)) (-15 -4160 ((-3 (-625 $) "failed") $)) (-15 -4172 ((-3 (-625 $) "failed") $)) (-15 -4182 ((-3 (-2 (|:| |var| |t#3|) (|:| -3564 (-751))) "failed") $)) (-15 -4121 ((-751) $)) (-15 -4121 ((-751) $ (-625 |t#3|))) (-15 -3982 ((-625 |t#3|) $)) (-15 -4157 ((-625 $) $)) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-598 (-528))) (IF (|has| |t#3| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-598 (-868 (-552)))) (IF (|has| |t#3| (-598 (-868 (-552)))) (-6 (-598 (-868 (-552)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-598 (-868 (-374)))) (IF (|has| |t#3| (-598 (-868 (-374)))) (-6 (-598 (-868 (-374)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-862 (-552))) (IF (|has| |t#3| (-862 (-552))) (-6 (-862 (-552))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-862 (-374))) (IF (|has| |t#3| (-862 (-374))) (-6 (-862 (-374))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -3207 ($ $ $ |t#3|)) (-15 -3217 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-6 (-446)) (-15 -4108 ($ $ |t#3|)) (-15 -1294 ($ $)) (-15 -1294 ($ $ |t#3|)) (-15 -1330 ((-413 $) $)) (-15 -2194 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4351)) (-6 -4351) |%noBranch|) (IF (|has| |t#1| (-885)) (-6 (-885)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-552)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-598 (-528)) -12 (|has| |#1| (-598 (-528))) (|has| |#3| (-598 (-528)))) ((-598 (-868 (-374))) -12 (|has| |#1| (-598 (-868 (-374)))) (|has| |#3| (-598 (-868 (-374))))) ((-598 (-868 (-552))) -12 (|has| |#1| (-598 (-868 (-552)))) (|has| |#3| (-598 (-868 (-552))))) ((-285) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-304 $) . T) ((-321 |#1| |#2|) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-446) -1523 (|has| |#1| (-885)) (|has| |#1| (-446))) ((-507 |#3| |#1|) . T) ((-507 |#3| $) . T) ((-507 $ $) . T) ((-544) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-628 #0#) |has| |#1| (-38 (-402 (-552)))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-552)) |has| |#1| (-621 (-552))) ((-621 |#1|) . T) ((-698 #0#) |has| |#1| (-38 (-402 (-552)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 |#3|) . T) ((-862 (-374)) -12 (|has| |#1| (-862 (-374))) (|has| |#3| (-862 (-374)))) ((-862 (-552)) -12 (|has| |#1| (-862 (-552))) (|has| |#3| (-862 (-552)))) ((-885) |has| |#1| (-885)) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T) ((-1014 |#3|) . T) ((-1031 #0#) |has| |#1| (-38 (-402 (-552)))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) |has| |#1| (-885))) -((-3982 (((-625 |#2|) |#5|) 36)) (-3793 (((-1145 |#5|) |#5| |#2| (-1145 |#5|)) 23) (((-402 (-1145 |#5|)) |#5| |#2|) 16)) (-3970 ((|#5| (-402 (-1145 |#5|)) |#2|) 30)) (-1942 (((-3 |#2| "failed") |#5|) 65)) (-4172 (((-3 (-625 |#5|) "failed") |#5|) 59)) (-4194 (((-3 (-2 (|:| |val| |#5|) (|:| -3564 (-552))) "failed") |#5|) 47)) (-4160 (((-3 (-625 |#5|) "failed") |#5|) 61)) (-4182 (((-3 (-2 (|:| |var| |#2|) (|:| -3564 (-552))) "failed") |#5|) 51))) -(((-926 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3982 ((-625 |#2|) |#5|)) (-15 -1942 ((-3 |#2| "failed") |#5|)) (-15 -3793 ((-402 (-1145 |#5|)) |#5| |#2|)) (-15 -3970 (|#5| (-402 (-1145 |#5|)) |#2|)) (-15 -3793 ((-1145 |#5|) |#5| |#2| (-1145 |#5|))) (-15 -4160 ((-3 (-625 |#5|) "failed") |#5|)) (-15 -4172 ((-3 (-625 |#5|) "failed") |#5|)) (-15 -4182 ((-3 (-2 (|:| |var| |#2|) (|:| -3564 (-552))) "failed") |#5|)) (-15 -4194 ((-3 (-2 (|:| |val| |#5|) (|:| -3564 (-552))) "failed") |#5|))) (-773) (-827) (-1025) (-925 |#3| |#1| |#2|) (-13 (-358) (-10 -8 (-15 -1683 ($ |#4|)) (-15 -1356 (|#4| $)) (-15 -1368 (|#4| $))))) (T -926)) -((-4194 (*1 *2 *3) (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3564 (-552)))) (-5 *1 (-926 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $))))))) (-4182 (*1 *2 *3) (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3564 (-552)))) (-5 *1 (-926 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $))))))) (-4172 (*1 *2 *3) (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-625 *3)) (-5 *1 (-926 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $))))))) (-4160 (*1 *2 *3) (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-625 *3)) (-5 *1 (-926 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $))))))) (-3793 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1145 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $))))) (-4 *7 (-925 *6 *5 *4)) (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-1025)) (-5 *1 (-926 *5 *4 *6 *7 *3)))) (-3970 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-1145 *2))) (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-1025)) (-4 *2 (-13 (-358) (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $))))) (-5 *1 (-926 *5 *4 *6 *7 *2)) (-4 *7 (-925 *6 *5 *4)))) (-3793 (*1 *2 *3 *4) (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-1025)) (-4 *7 (-925 *6 *5 *4)) (-5 *2 (-402 (-1145 *3))) (-5 *1 (-926 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $))))))) (-1942 (*1 *2 *3) (|partial| -12 (-4 *4 (-773)) (-4 *5 (-1025)) (-4 *6 (-925 *5 *4 *2)) (-4 *2 (-827)) (-5 *1 (-926 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -1683 ($ *6)) (-15 -1356 (*6 $)) (-15 -1368 (*6 $))))))) (-3982 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-625 *5)) (-5 *1 (-926 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $)))))))) -(-10 -7 (-15 -3982 ((-625 |#2|) |#5|)) (-15 -1942 ((-3 |#2| "failed") |#5|)) (-15 -3793 ((-402 (-1145 |#5|)) |#5| |#2|)) (-15 -3970 (|#5| (-402 (-1145 |#5|)) |#2|)) (-15 -3793 ((-1145 |#5|) |#5| |#2| (-1145 |#5|))) (-15 -4160 ((-3 (-625 |#5|) "failed") |#5|)) (-15 -4172 ((-3 (-625 |#5|) "failed") |#5|)) (-15 -4182 ((-3 (-2 (|:| |var| |#2|) (|:| -3564 (-552))) "failed") |#5|)) (-15 -4194 ((-3 (-2 (|:| |val| |#5|) (|:| -3564 (-552))) "failed") |#5|))) -((-1996 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-927 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1996 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-773) (-827) (-1025) (-925 |#3| |#1| |#2|) (-13 (-1073) (-10 -8 (-15 -2382 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-751)))))) (T -927)) -((-1996 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-827)) (-4 *8 (-1025)) (-4 *6 (-773)) (-4 *2 (-13 (-1073) (-10 -8 (-15 -2382 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-751)))))) (-5 *1 (-927 *6 *7 *8 *5 *2)) (-4 *5 (-925 *8 *6 *7))))) -(-10 -7 (-15 -1996 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-1149)) $) 16)) (-3793 (((-1145 $) $ (-1149)) 21) (((-1145 |#1|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-1149))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2194 (($ $) NIL (|has| |#1| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) 8) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-1149) "failed") $) NIL)) (-1895 ((|#1| $) NIL) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-1149) $) NIL)) (-3207 (($ $ $ (-1149)) NIL (|has| |#1| (-170)))) (-4169 (($ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1149)) NIL (|has| |#1| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#1| (-885)))) (-1347 (($ $ |#1| (-524 (-1149)) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-1149) (-862 (-374))) (|has| |#1| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-1149) (-862 (-552))) (|has| |#1| (-862 (-552)))))) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-3970 (($ (-1145 |#1|) (-1149)) NIL) (($ (-1145 $) (-1149)) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-524 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-1149)) NIL)) (-4134 (((-524 (-1149)) $) NIL) (((-751) $ (-1149)) NIL) (((-625 (-751)) $ (-625 (-1149))) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1357 (($ (-1 (-524 (-1149)) (-524 (-1149))) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-1942 (((-3 (-1149) "failed") $) 19)) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2883 (((-1131) $) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-1149)) (|:| -3564 (-751))) "failed") $) NIL)) (-2481 (($ $ (-1149)) 29 (|has| |#1| (-38 (-402 (-552)))))) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 ((|#1| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-885)))) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-1149) |#1|) NIL) (($ $ (-625 (-1149)) (-625 |#1|)) NIL) (($ $ (-1149) $) NIL) (($ $ (-625 (-1149)) (-625 $)) NIL)) (-3217 (($ $ (-1149)) NIL (|has| |#1| (-170)))) (-3072 (($ $ (-1149)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL)) (-4276 (((-524 (-1149)) $) NIL) (((-751) $ (-1149)) NIL) (((-625 (-751)) $ (-625 (-1149))) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-1149) (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-1149) (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-1149) (-598 (-528))) (|has| |#1| (-598 (-528)))))) (-4108 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1149)) NIL (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) 25) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-1149)) 27) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-524 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-1149)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-928 |#1|) (-13 (-925 |#1| (-524 (-1149)) (-1149)) (-10 -8 (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1149))) |%noBranch|))) (-1025)) (T -928)) -((-2481 (*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-928 *3)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025))))) -(-13 (-925 |#1| (-524 (-1149)) (-1149)) (-10 -8 (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1149))) |%noBranch|))) -((-4204 (((-2 (|:| -3564 (-751)) (|:| -3340 |#5|) (|:| |radicand| |#5|)) |#3| (-751)) 38)) (-4215 (((-2 (|:| -3564 (-751)) (|:| -3340 |#5|) (|:| |radicand| |#5|)) (-402 (-552)) (-751)) 34)) (-4236 (((-2 (|:| -3564 (-751)) (|:| -3340 |#4|) (|:| |radicand| (-625 |#4|))) |#4| (-751)) 54)) (-4225 (((-2 (|:| -3564 (-751)) (|:| -3340 |#5|) (|:| |radicand| |#5|)) |#5| (-751)) 64 (|has| |#3| (-446))))) -(((-929 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4204 ((-2 (|:| -3564 (-751)) (|:| -3340 |#5|) (|:| |radicand| |#5|)) |#3| (-751))) (-15 -4215 ((-2 (|:| -3564 (-751)) (|:| -3340 |#5|) (|:| |radicand| |#5|)) (-402 (-552)) (-751))) (IF (|has| |#3| (-446)) (-15 -4225 ((-2 (|:| -3564 (-751)) (|:| -3340 |#5|) (|:| |radicand| |#5|)) |#5| (-751))) |%noBranch|) (-15 -4236 ((-2 (|:| -3564 (-751)) (|:| -3340 |#4|) (|:| |radicand| (-625 |#4|))) |#4| (-751)))) (-773) (-827) (-544) (-925 |#3| |#1| |#2|) (-13 (-358) (-10 -8 (-15 -1356 (|#4| $)) (-15 -1368 (|#4| $)) (-15 -1683 ($ |#4|))))) (T -929)) -((-4236 (*1 *2 *3 *4) (-12 (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-544)) (-4 *3 (-925 *7 *5 *6)) (-5 *2 (-2 (|:| -3564 (-751)) (|:| -3340 *3) (|:| |radicand| (-625 *3)))) (-5 *1 (-929 *5 *6 *7 *3 *8)) (-5 *4 (-751)) (-4 *8 (-13 (-358) (-10 -8 (-15 -1356 (*3 $)) (-15 -1368 (*3 $)) (-15 -1683 ($ *3))))))) (-4225 (*1 *2 *3 *4) (-12 (-4 *7 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-544)) (-4 *8 (-925 *7 *5 *6)) (-5 *2 (-2 (|:| -3564 (-751)) (|:| -3340 *3) (|:| |radicand| *3))) (-5 *1 (-929 *5 *6 *7 *8 *3)) (-5 *4 (-751)) (-4 *3 (-13 (-358) (-10 -8 (-15 -1356 (*8 $)) (-15 -1368 (*8 $)) (-15 -1683 ($ *8))))))) (-4215 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-552))) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-544)) (-4 *8 (-925 *7 *5 *6)) (-5 *2 (-2 (|:| -3564 (-751)) (|:| -3340 *9) (|:| |radicand| *9))) (-5 *1 (-929 *5 *6 *7 *8 *9)) (-5 *4 (-751)) (-4 *9 (-13 (-358) (-10 -8 (-15 -1356 (*8 $)) (-15 -1368 (*8 $)) (-15 -1683 ($ *8))))))) (-4204 (*1 *2 *3 *4) (-12 (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-544)) (-4 *7 (-925 *3 *5 *6)) (-5 *2 (-2 (|:| -3564 (-751)) (|:| -3340 *8) (|:| |radicand| *8))) (-5 *1 (-929 *5 *6 *3 *7 *8)) (-5 *4 (-751)) (-4 *8 (-13 (-358) (-10 -8 (-15 -1356 (*7 $)) (-15 -1368 (*7 $)) (-15 -1683 ($ *7)))))))) -(-10 -7 (-15 -4204 ((-2 (|:| -3564 (-751)) (|:| -3340 |#5|) (|:| |radicand| |#5|)) |#3| (-751))) (-15 -4215 ((-2 (|:| -3564 (-751)) (|:| -3340 |#5|) (|:| |radicand| |#5|)) (-402 (-552)) (-751))) (IF (|has| |#3| (-446)) (-15 -4225 ((-2 (|:| -3564 (-751)) (|:| -3340 |#5|) (|:| |radicand| |#5|)) |#5| (-751))) |%noBranch|) (-15 -4236 ((-2 (|:| -3564 (-751)) (|:| -3340 |#4|) (|:| |radicand| (-625 |#4|))) |#4| (-751)))) -((-1671 (((-112) $ $) NIL)) (-4247 (($ (-1093)) 8)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 14) (((-1093) $) 11)) (-2281 (((-112) $ $) 10))) -(((-930) (-13 (-1073) (-597 (-1093)) (-10 -8 (-15 -4247 ($ (-1093)))))) (T -930)) -((-4247 (*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-930))))) -(-13 (-1073) (-597 (-1093)) (-10 -8 (-15 -4247 ($ (-1093))))) -((-3663 (((-1067 (-221)) $) 8)) (-3652 (((-1067 (-221)) $) 9)) (-3603 (((-625 (-625 (-919 (-221)))) $) 10)) (-1683 (((-839) $) 6))) -(((-931) (-138)) (T -931)) -((-3603 (*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-625 (-625 (-919 (-221))))))) (-3652 (*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-1067 (-221))))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-1067 (-221)))))) -(-13 (-597 (-839)) (-10 -8 (-15 -3603 ((-625 (-625 (-919 (-221)))) $)) (-15 -3652 ((-1067 (-221)) $)) (-15 -3663 ((-1067 (-221)) $)))) -(((-597 (-839)) . T)) -((-4257 (((-3 (-669 |#1|) "failed") |#2| (-897)) 15))) -(((-932 |#1| |#2|) (-10 -7 (-15 -4257 ((-3 (-669 |#1|) "failed") |#2| (-897)))) (-544) (-636 |#1|)) (T -932)) -((-4257 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-897)) (-4 *5 (-544)) (-5 *2 (-669 *5)) (-5 *1 (-932 *5 *3)) (-4 *3 (-636 *5))))) -(-10 -7 (-15 -4257 ((-3 (-669 |#1|) "failed") |#2| (-897)))) -((-1454 (((-934 |#2|) (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|) 16)) (-2163 ((|#2| (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|) 18)) (-1996 (((-934 |#2|) (-1 |#2| |#1|) (-934 |#1|)) 13))) -(((-933 |#1| |#2|) (-10 -7 (-15 -1454 ((-934 |#2|) (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|)) (-15 -2163 (|#2| (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|)) (-15 -1996 ((-934 |#2|) (-1 |#2| |#1|) (-934 |#1|)))) (-1186) (-1186)) (T -933)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-934 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-934 *6)) (-5 *1 (-933 *5 *6)))) (-2163 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-934 *5)) (-4 *5 (-1186)) (-4 *2 (-1186)) (-5 *1 (-933 *5 *2)))) (-1454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-934 *6)) (-4 *6 (-1186)) (-4 *5 (-1186)) (-5 *2 (-934 *5)) (-5 *1 (-933 *6 *5))))) -(-10 -7 (-15 -1454 ((-934 |#2|) (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|)) (-15 -2163 (|#2| (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|)) (-15 -1996 ((-934 |#2|) (-1 |#2| |#1|) (-934 |#1|)))) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-552) |#1|) 16 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) 15 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 13)) (-2483 (((-552) (-1 (-112) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073)))) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2183 (($ (-751) |#1|) 12)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) 10 (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2924 ((|#1| $) NIL (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) 17 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) 11)) (-2154 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) 14) (($ $ (-1199 (-552))) NIL)) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) NIL)) (-3402 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-625 $)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-1471 (((-751) $) 8 (|has| $ (-6 -4353))))) -(((-934 |#1|) (-19 |#1|) (-1186)) (T -934)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 15)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2918 ((|#1| $) 21)) (-1816 (($ $ $) NIL (|has| |#1| (-774)))) (-4093 (($ $ $) NIL (|has| |#1| (-774)))) (-1595 (((-1134) $) 46)) (-1498 (((-1096) $) NIL)) (-2929 ((|#3| $) 22)) (-1477 (((-842) $) 42)) (-1922 (($) 10 T CONST)) (-2351 (((-111) $ $) NIL (|has| |#1| (-774)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-774)))) (-2292 (((-111) $ $) 20)) (-2340 (((-111) $ $) NIL (|has| |#1| (-774)))) (-2316 (((-111) $ $) 24 (|has| |#1| (-774)))) (-2407 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-2396 (($ $) 17) (($ $ $) NIL)) (-2384 (($ $ $) 27)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) +(((-644 |#1| |#2| |#3|) (-13 (-700 |#2|) (-10 -8 (IF (|has| |#1| (-774)) (-6 (-774)) |%noBranch|) (-15 -2407 ($ $ |#3|)) (-15 -2407 ($ |#1| |#3|)) (-15 -2918 (|#1| $)) (-15 -2929 (|#3| $)))) (-700 |#2|) (-169) (|SubsetCategory| (-709) |#2|)) (T -644)) +((-2407 (*1 *1 *1 *2) (-12 (-4 *4 (-169)) (-5 *1 (-644 *3 *4 *2)) (-4 *3 (-700 *4)) (-4 *2 (|SubsetCategory| (-709) *4)))) (-2407 (*1 *1 *2 *3) (-12 (-4 *4 (-169)) (-5 *1 (-644 *2 *4 *3)) (-4 *2 (-700 *4)) (-4 *3 (|SubsetCategory| (-709) *4)))) (-2918 (*1 *2 *1) (-12 (-4 *3 (-169)) (-4 *2 (-700 *3)) (-5 *1 (-644 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-709) *3)))) (-2929 (*1 *2 *1) (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-709) *4)) (-5 *1 (-644 *3 *4 *2)) (-4 *3 (-700 *4))))) +(-13 (-700 |#2|) (-10 -8 (IF (|has| |#1| (-774)) (-6 (-774)) |%noBranch|) (-15 -2407 ($ $ |#3|)) (-15 -2407 ($ |#1| |#3|)) (-15 -2918 (|#1| $)) (-15 -2929 (|#3| $)))) +((-2296 (((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|)) 33))) +(((-645 |#1|) (-10 -7 (-15 -2296 ((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|)))) (-888)) (T -645)) +((-2296 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-627 (-1148 *4))) (-5 *3 (-1148 *4)) (-4 *4 (-888)) (-5 *1 (-645 *4))))) +(-10 -7 (-15 -2296 ((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1671 (((-627 |#1|) $) 82)) (-1963 (($ $ (-754)) 90)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-1899 (((-1259 |#1| |#2|) (-1259 |#1| |#2|) $) 48)) (-4039 (((-3 (-654 |#1|) "failed") $) NIL)) (-1703 (((-654 |#1|) $) NIL)) (-2014 (($ $) 89)) (-3522 (((-754) $) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-3755 (($ (-654 |#1|) |#2|) 68)) (-3627 (($ $) 86)) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-1543 (((-1259 |#1| |#2|) (-1259 |#1| |#2|) $) 47)) (-3888 (((-2 (|:| |k| (-654 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1981 (((-654 |#1|) $) NIL)) (-1993 ((|#2| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3321 (($ $ |#1| $) 30) (($ $ (-627 |#1|) (-627 $)) 32)) (-3567 (((-754) $) 88)) (-1490 (($ $ $) 20) (($ (-654 |#1|) (-654 |#1|)) 77) (($ (-654 |#1|) $) 75) (($ $ (-654 |#1|)) 76)) (-1477 (((-842) $) NIL) (($ |#1|) 74) (((-1250 |#1| |#2|) $) 58) (((-1259 |#1| |#2|) $) 41) (($ (-654 |#1|)) 25)) (-1493 (((-627 |#2|) $) NIL)) (-1889 ((|#2| $ (-654 |#1|)) NIL)) (-3069 ((|#2| (-1259 |#1| |#2|) $) 43)) (-1922 (($) 23 T CONST)) (-1880 (((-627 (-2 (|:| |k| (-654 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2223 (((-3 $ "failed") (-1250 |#1| |#2|)) 60)) (-3014 (($ (-654 |#1|)) 14)) (-2292 (((-111) $ $) 44)) (-2407 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-2396 (($ $) 66) (($ $ $) NIL)) (-2384 (($ $ $) 29)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-654 |#1|)) NIL))) +(((-646 |#1| |#2|) (-13 (-368 |#1| |#2|) (-376 |#2| (-654 |#1|)) (-10 -8 (-15 -2223 ((-3 $ "failed") (-1250 |#1| |#2|))) (-15 -1490 ($ (-654 |#1|) (-654 |#1|))) (-15 -1490 ($ (-654 |#1|) $)) (-15 -1490 ($ $ (-654 |#1|))))) (-830) (-169)) (T -646)) +((-2223 (*1 *1 *2) (|partial| -12 (-5 *2 (-1250 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) (-5 *1 (-646 *3 *4)))) (-1490 (*1 *1 *2 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-830)) (-5 *1 (-646 *3 *4)) (-4 *4 (-169)))) (-1490 (*1 *1 *2 *1) (-12 (-5 *2 (-654 *3)) (-4 *3 (-830)) (-5 *1 (-646 *3 *4)) (-4 *4 (-169)))) (-1490 (*1 *1 *1 *2) (-12 (-5 *2 (-654 *3)) (-4 *3 (-830)) (-5 *1 (-646 *3 *4)) (-4 *4 (-169))))) +(-13 (-368 |#1| |#2|) (-376 |#2| (-654 |#1|)) (-10 -8 (-15 -2223 ((-3 $ "failed") (-1250 |#1| |#2|))) (-15 -1490 ($ (-654 |#1|) (-654 |#1|))) (-15 -1490 ($ (-654 |#1|) $)) (-15 -1490 ($ $ (-654 |#1|))))) +((-1439 (((-111) $) NIL) (((-111) (-1 (-111) |#2| |#2|) $) 50)) (-2701 (($ $) NIL) (($ (-1 (-111) |#2| |#2|) $) 12)) (-4289 (($ (-1 (-111) |#2|) $) 28)) (-2519 (($ $) 56)) (-2820 (($ $) 64)) (-2265 (($ |#2| $) NIL) (($ (-1 (-111) |#2|) $) 37)) (-2091 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-2967 (((-552) |#2| $ (-552)) 61) (((-552) |#2| $) NIL) (((-552) (-1 (-111) |#2|) $) 47)) (-2655 (($ (-754) |#2|) 54)) (-1438 (($ $ $) NIL) (($ (-1 (-111) |#2| |#2|) $ $) 30)) (-3759 (($ $ $) NIL) (($ (-1 (-111) |#2| |#2|) $ $) 24)) (-3516 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-1299 (($ |#2|) 15)) (-3954 (($ $ $ (-552)) 36) (($ |#2| $ (-552)) 34)) (-1503 (((-3 |#2| "failed") (-1 (-111) |#2|) $) 46)) (-3010 (($ $ (-1202 (-552))) 44) (($ $ (-552)) 38)) (-4105 (($ $ $ (-552)) 60)) (-2973 (($ $) 58)) (-2316 (((-111) $ $) 66))) +(((-647 |#1| |#2|) (-10 -8 (-15 -1299 (|#1| |#2|)) (-15 -3010 (|#1| |#1| (-552))) (-15 -3010 (|#1| |#1| (-1202 (-552)))) (-15 -2265 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3954 (|#1| |#2| |#1| (-552))) (-15 -3954 (|#1| |#1| |#1| (-552))) (-15 -1438 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -4289 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2265 (|#1| |#2| |#1|)) (-15 -2820 (|#1| |#1|)) (-15 -1438 (|#1| |#1| |#1|)) (-15 -3759 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -1439 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -2967 ((-552) (-1 (-111) |#2|) |#1|)) (-15 -2967 ((-552) |#2| |#1|)) (-15 -2967 ((-552) |#2| |#1| (-552))) (-15 -3759 (|#1| |#1| |#1|)) (-15 -1439 ((-111) |#1|)) (-15 -4105 (|#1| |#1| |#1| (-552))) (-15 -2519 (|#1| |#1|)) (-15 -2701 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -2316 ((-111) |#1| |#1|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1503 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2655 (|#1| (-754) |#2|)) (-15 -3516 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2973 (|#1| |#1|))) (-648 |#2|) (-1189)) (T -647)) +NIL +(-10 -8 (-15 -1299 (|#1| |#2|)) (-15 -3010 (|#1| |#1| (-552))) (-15 -3010 (|#1| |#1| (-1202 (-552)))) (-15 -2265 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -3954 (|#1| |#2| |#1| (-552))) (-15 -3954 (|#1| |#1| |#1| (-552))) (-15 -1438 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -4289 (|#1| (-1 (-111) |#2|) |#1|)) (-15 -2265 (|#1| |#2| |#1|)) (-15 -2820 (|#1| |#1|)) (-15 -1438 (|#1| |#1| |#1|)) (-15 -3759 (|#1| (-1 (-111) |#2| |#2|) |#1| |#1|)) (-15 -1439 ((-111) (-1 (-111) |#2| |#2|) |#1|)) (-15 -2967 ((-552) (-1 (-111) |#2|) |#1|)) (-15 -2967 ((-552) |#2| |#1|)) (-15 -2967 ((-552) |#2| |#1| (-552))) (-15 -3759 (|#1| |#1| |#1|)) (-15 -1439 ((-111) |#1|)) (-15 -4105 (|#1| |#1| |#1| (-552))) (-15 -2519 (|#1| |#1|)) (-15 -2701 (|#1| (-1 (-111) |#2| |#2|) |#1|)) (-15 -2701 (|#1| |#1|)) (-15 -2316 ((-111) |#1| |#1|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2091 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1503 ((-3 |#2| "failed") (-1 (-111) |#2|) |#1|)) (-15 -2655 (|#1| (-754) |#2|)) (-15 -3516 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2973 (|#1| |#1|))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4288 ((|#1| $) 48)) (-4155 ((|#1| $) 65)) (-1700 (($ $) 67)) (-3305 (((-1240) $ (-552) (-552)) 97 (|has| $ (-6 -4367)))) (-3900 (($ $ (-552)) 52 (|has| $ (-6 -4367)))) (-1439 (((-111) $) 142 (|has| |#1| (-830))) (((-111) (-1 (-111) |#1| |#1|) $) 136)) (-2701 (($ $) 146 (-12 (|has| |#1| (-830)) (|has| $ (-6 -4367)))) (($ (-1 (-111) |#1| |#1|) $) 145 (|has| $ (-6 -4367)))) (-4298 (($ $) 141 (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $) 135)) (-4031 (((-111) $ (-754)) 8)) (-2472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4367)))) (-1474 (($ $ $) 56 (|has| $ (-6 -4367)))) (-2801 ((|#1| $ |#1|) 54 (|has| $ (-6 -4367)))) (-1612 ((|#1| $ |#1|) 58 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4367))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4367))) (($ $ "rest" $) 55 (|has| $ (-6 -4367))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) 117 (|has| $ (-6 -4367))) ((|#1| $ (-552) |#1|) 86 (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 41 (|has| $ (-6 -4367)))) (-4289 (($ (-1 (-111) |#1|) $) 129)) (-2536 (($ (-1 (-111) |#1|) $) 102 (|has| $ (-6 -4366)))) (-4143 ((|#1| $) 66)) (-3887 (($) 7 T CONST)) (-2519 (($ $) 144 (|has| $ (-6 -4367)))) (-3429 (($ $) 134)) (-3351 (($ $) 73) (($ $ (-754)) 71)) (-2820 (($ $) 131 (|has| |#1| (-1076)))) (-3370 (($ $) 99 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2265 (($ |#1| $) 130 (|has| |#1| (-1076))) (($ (-1 (-111) |#1|) $) 125)) (-4342 (($ (-1 (-111) |#1|) $) 103 (|has| $ (-6 -4366))) (($ |#1| $) 100 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3473 ((|#1| $ (-552) |#1|) 85 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 87)) (-3592 (((-111) $) 83)) (-2967 (((-552) |#1| $ (-552)) 139 (|has| |#1| (-1076))) (((-552) |#1| $) 138 (|has| |#1| (-1076))) (((-552) (-1 (-111) |#1|) $) 137)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) 50)) (-3726 (((-111) $ $) 42 (|has| |#1| (-1076)))) (-2655 (($ (-754) |#1|) 108)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 95 (|has| (-552) (-830)))) (-1816 (($ $ $) 147 (|has| |#1| (-830)))) (-1438 (($ $ $) 132 (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $ $) 128)) (-3759 (($ $ $) 140 (|has| |#1| (-830))) (($ (-1 (-111) |#1| |#1|) $ $) 133)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 94 (|has| (-552) (-830)))) (-4093 (($ $ $) 148 (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1299 (($ |#1|) 122)) (-3971 (((-111) $ (-754)) 10)) (-1823 (((-627 |#1|) $) 45)) (-3810 (((-111) $) 49)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1294 ((|#1| $) 70) (($ $ (-754)) 68)) (-3954 (($ $ $ (-552)) 127) (($ |#1| $ (-552)) 126)) (-3252 (($ $ $ (-552)) 116) (($ |#1| $ (-552)) 115)) (-3892 (((-627 (-552)) $) 92)) (-2358 (((-111) (-552) $) 91)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3340 ((|#1| $) 76) (($ $ (-754)) 74)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-1942 (($ $ |#1|) 96 (|has| $ (-6 -4367)))) (-2361 (((-111) $) 84)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) 90)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1202 (-552))) 112) ((|#1| $ (-552)) 89) ((|#1| $ (-552) |#1|) 88)) (-1848 (((-552) $ $) 44)) (-3010 (($ $ (-1202 (-552))) 124) (($ $ (-552)) 123)) (-3907 (($ $ (-1202 (-552))) 114) (($ $ (-552)) 113)) (-2978 (((-111) $) 46)) (-1805 (($ $) 62)) (-3384 (($ $) 59 (|has| $ (-6 -4367)))) (-3543 (((-754) $) 63)) (-4149 (($ $) 64)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4105 (($ $ $ (-552)) 143 (|has| $ (-6 -4367)))) (-2973 (($ $) 13)) (-3562 (((-528) $) 98 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 107)) (-3151 (($ $ $) 61) (($ $ |#1|) 60)) (-2668 (($ $ $) 78) (($ |#1| $) 77) (($ (-627 $)) 110) (($ $ |#1|) 109)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) 51)) (-3415 (((-111) $ $) 43 (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) 150 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 151 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-2340 (((-111) $ $) 149 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 152 (|has| |#1| (-830)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-648 |#1|) (-137) (-1189)) (T -648)) +((-1299 (*1 *1 *2) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1189))))) +(-13 (-1125 |t#1|) (-367 |t#1|) (-276 |t#1|) (-10 -8 (-15 -1299 ($ |t#1|)))) +(((-34) . T) ((-101) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830))) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-276 |#1|) . T) ((-367 |#1|) . T) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-633 |#1|) . T) ((-830) |has| |#1| (-830)) ((-989 |#1|) . T) ((-1076) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830))) ((-1125 |#1|) . T) ((-1189) . T) ((-1223 |#1|) . T)) +((-1696 (((-627 (-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|))))) (-627 (-627 |#1|)) (-627 (-1235 |#1|))) 22) (((-627 (-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|))))) (-671 |#1|) (-627 (-1235 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|)))) (-627 (-627 |#1|)) (-1235 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|)))) (-671 |#1|) (-1235 |#1|)) 14)) (-4154 (((-754) (-671 |#1|) (-1235 |#1|)) 30)) (-3313 (((-3 (-1235 |#1|) "failed") (-671 |#1|) (-1235 |#1|)) 24)) (-2146 (((-111) (-671 |#1|) (-1235 |#1|)) 27))) +(((-649 |#1|) (-10 -7 (-15 -1696 ((-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|)))) (-671 |#1|) (-1235 |#1|))) (-15 -1696 ((-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|)))) (-627 (-627 |#1|)) (-1235 |#1|))) (-15 -1696 ((-627 (-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|))))) (-671 |#1|) (-627 (-1235 |#1|)))) (-15 -1696 ((-627 (-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|))))) (-627 (-627 |#1|)) (-627 (-1235 |#1|)))) (-15 -3313 ((-3 (-1235 |#1|) "failed") (-671 |#1|) (-1235 |#1|))) (-15 -2146 ((-111) (-671 |#1|) (-1235 |#1|))) (-15 -4154 ((-754) (-671 |#1|) (-1235 |#1|)))) (-357)) (T -649)) +((-4154 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *5)) (-5 *4 (-1235 *5)) (-4 *5 (-357)) (-5 *2 (-754)) (-5 *1 (-649 *5)))) (-2146 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *5)) (-5 *4 (-1235 *5)) (-4 *5 (-357)) (-5 *2 (-111)) (-5 *1 (-649 *5)))) (-3313 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1235 *4)) (-5 *3 (-671 *4)) (-4 *4 (-357)) (-5 *1 (-649 *4)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-627 *5))) (-4 *5 (-357)) (-5 *2 (-627 (-2 (|:| |particular| (-3 (-1235 *5) "failed")) (|:| -2957 (-627 (-1235 *5)))))) (-5 *1 (-649 *5)) (-5 *4 (-627 (-1235 *5))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *5)) (-4 *5 (-357)) (-5 *2 (-627 (-2 (|:| |particular| (-3 (-1235 *5) "failed")) (|:| -2957 (-627 (-1235 *5)))))) (-5 *1 (-649 *5)) (-5 *4 (-627 (-1235 *5))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-627 *5))) (-4 *5 (-357)) (-5 *2 (-2 (|:| |particular| (-3 (-1235 *5) "failed")) (|:| -2957 (-627 (-1235 *5))))) (-5 *1 (-649 *5)) (-5 *4 (-1235 *5)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |particular| (-3 (-1235 *5) "failed")) (|:| -2957 (-627 (-1235 *5))))) (-5 *1 (-649 *5)) (-5 *4 (-1235 *5))))) +(-10 -7 (-15 -1696 ((-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|)))) (-671 |#1|) (-1235 |#1|))) (-15 -1696 ((-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|)))) (-627 (-627 |#1|)) (-1235 |#1|))) (-15 -1696 ((-627 (-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|))))) (-671 |#1|) (-627 (-1235 |#1|)))) (-15 -1696 ((-627 (-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|))))) (-627 (-627 |#1|)) (-627 (-1235 |#1|)))) (-15 -3313 ((-3 (-1235 |#1|) "failed") (-671 |#1|) (-1235 |#1|))) (-15 -2146 ((-111) (-671 |#1|) (-1235 |#1|))) (-15 -4154 ((-754) (-671 |#1|) (-1235 |#1|)))) +((-1696 (((-627 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2957 (-627 |#3|)))) |#4| (-627 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2957 (-627 |#3|))) |#4| |#3|) 45)) (-4154 (((-754) |#4| |#3|) 17)) (-3313 (((-3 |#3| "failed") |#4| |#3|) 20)) (-2146 (((-111) |#4| |#3|) 13))) +(((-650 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1696 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2957 (-627 |#3|))) |#4| |#3|)) (-15 -1696 ((-627 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2957 (-627 |#3|)))) |#4| (-627 |#3|))) (-15 -3313 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2146 ((-111) |#4| |#3|)) (-15 -4154 ((-754) |#4| |#3|))) (-357) (-13 (-367 |#1|) (-10 -7 (-6 -4367))) (-13 (-367 |#1|) (-10 -7 (-6 -4367))) (-669 |#1| |#2| |#3|)) (T -650)) +((-4154 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-5 *2 (-754)) (-5 *1 (-650 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4)))) (-2146 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-5 *2 (-111)) (-5 *1 (-650 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4)))) (-3313 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-357)) (-4 *5 (-13 (-367 *4) (-10 -7 (-6 -4367)))) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4367)))) (-5 *1 (-650 *4 *5 *2 *3)) (-4 *3 (-669 *4 *5 *2)))) (-1696 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-4 *7 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-5 *2 (-627 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2957 (-627 *7))))) (-5 *1 (-650 *5 *6 *7 *3)) (-5 *4 (-627 *7)) (-4 *3 (-669 *5 *6 *7)))) (-1696 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) (-5 *1 (-650 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4))))) +(-10 -7 (-15 -1696 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2957 (-627 |#3|))) |#4| |#3|)) (-15 -1696 ((-627 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2957 (-627 |#3|)))) |#4| (-627 |#3|))) (-15 -3313 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2146 ((-111) |#4| |#3|)) (-15 -4154 ((-754) |#4| |#3|))) +((-3788 (((-2 (|:| |particular| (-3 (-1235 (-401 |#4|)) "failed")) (|:| -2957 (-627 (-1235 (-401 |#4|))))) (-627 |#4|) (-627 |#3|)) 45))) +(((-651 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3788 ((-2 (|:| |particular| (-3 (-1235 (-401 |#4|)) "failed")) (|:| -2957 (-627 (-1235 (-401 |#4|))))) (-627 |#4|) (-627 |#3|)))) (-544) (-776) (-830) (-928 |#1| |#2| |#3|)) (T -651)) +((-3788 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 *7)) (-4 *7 (-830)) (-4 *8 (-928 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) (-5 *2 (-2 (|:| |particular| (-3 (-1235 (-401 *8)) "failed")) (|:| -2957 (-627 (-1235 (-401 *8)))))) (-5 *1 (-651 *5 *6 *7 *8))))) +(-10 -7 (-15 -3788 ((-2 (|:| |particular| (-3 (-1235 (-401 |#4|)) "failed")) (|:| -2957 (-627 (-1235 (-401 |#4|))))) (-627 |#4|) (-627 |#3|)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2717 (((-3 $ "failed")) NIL (|has| |#2| (-544)))) (-3385 ((|#2| $) NIL)) (-2311 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3449 (((-1235 (-671 |#2|))) NIL) (((-1235 (-671 |#2|)) (-1235 $)) NIL)) (-3944 (((-111) $) NIL)) (-2946 (((-1235 $)) 37)) (-4031 (((-111) $ (-754)) NIL)) (-1665 (($ |#2|) NIL)) (-3887 (($) NIL T CONST)) (-1472 (($ $) NIL (|has| |#2| (-301)))) (-3884 (((-235 |#1| |#2|) $ (-552)) NIL)) (-2478 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) NIL (|has| |#2| (-544)))) (-3994 (((-3 $ "failed")) NIL (|has| |#2| (-544)))) (-2877 (((-671 |#2|)) NIL) (((-671 |#2|) (-1235 $)) NIL)) (-2526 ((|#2| $) NIL)) (-3029 (((-671 |#2|) $) NIL) (((-671 |#2|) $ (-1235 $)) NIL)) (-1592 (((-3 $ "failed") $) NIL (|has| |#2| (-544)))) (-2856 (((-1148 (-931 |#2|))) NIL (|has| |#2| (-357)))) (-1407 (($ $ (-900)) NIL)) (-2141 ((|#2| $) NIL)) (-3343 (((-1148 |#2|) $) NIL (|has| |#2| (-544)))) (-3119 ((|#2|) NIL) ((|#2| (-1235 $)) NIL)) (-1608 (((-1148 |#2|) $) NIL)) (-1819 (((-111)) NIL)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#2| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-3 |#2| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#2| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#2| (-1017 (-401 (-552))))) ((|#2| $) NIL)) (-2342 (($ (-1235 |#2|)) NIL) (($ (-1235 |#2|) (-1235 $)) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-4154 (((-754) $) NIL (|has| |#2| (-544))) (((-900)) 38)) (-3413 ((|#2| $ (-552) (-552)) NIL)) (-3972 (((-111)) NIL)) (-1410 (($ $ (-900)) NIL)) (-3215 (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-2624 (((-111) $) NIL)) (-1610 (((-754) $) NIL (|has| |#2| (-544)))) (-2960 (((-627 (-235 |#1| |#2|)) $) NIL (|has| |#2| (-544)))) (-3560 (((-754) $) NIL)) (-3363 (((-111)) NIL)) (-3572 (((-754) $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-1744 ((|#2| $) NIL (|has| |#2| (-6 (-4368 "*"))))) (-4083 (((-552) $) NIL)) (-3511 (((-552) $) NIL)) (-3114 (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-3479 (((-552) $) NIL)) (-2780 (((-552) $) NIL)) (-4176 (($ (-627 (-627 |#2|))) NIL)) (-3463 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3127 (((-627 (-627 |#2|)) $) NIL)) (-1878 (((-111)) NIL)) (-3728 (((-111)) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-4034 (((-3 (-2 (|:| |particular| $) (|:| -2957 (-627 $))) "failed")) NIL (|has| |#2| (-544)))) (-2513 (((-3 $ "failed")) NIL (|has| |#2| (-544)))) (-1425 (((-671 |#2|)) NIL) (((-671 |#2|) (-1235 $)) NIL)) (-4131 ((|#2| $) NIL)) (-2593 (((-671 |#2|) $) NIL) (((-671 |#2|) $ (-1235 $)) NIL)) (-4336 (((-3 $ "failed") $) NIL (|has| |#2| (-544)))) (-1548 (((-1148 (-931 |#2|))) NIL (|has| |#2| (-357)))) (-2896 (($ $ (-900)) NIL)) (-1856 ((|#2| $) NIL)) (-1794 (((-1148 |#2|) $) NIL (|has| |#2| (-544)))) (-2806 ((|#2|) NIL) ((|#2| (-1235 $)) NIL)) (-2798 (((-1148 |#2|) $) NIL)) (-3485 (((-111)) NIL)) (-1595 (((-1134) $) NIL)) (-3570 (((-111)) NIL)) (-2011 (((-111)) NIL)) (-2344 (((-111)) NIL)) (-2952 (((-3 $ "failed") $) NIL (|has| |#2| (-357)))) (-1498 (((-1096) $) NIL)) (-3361 (((-111)) NIL)) (-2761 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544)))) (-3509 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#2| $ (-552) (-552) |#2|) NIL) ((|#2| $ (-552) (-552)) 22) ((|#2| $ (-552)) NIL)) (-2942 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-754)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-3877 ((|#2| $) NIL)) (-3202 (($ (-627 |#2|)) NIL)) (-4064 (((-111) $) NIL)) (-2372 (((-235 |#1| |#2|) $) NIL)) (-1530 ((|#2| $) NIL (|has| |#2| (-6 (-4368 "*"))))) (-1509 (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2973 (($ $) NIL)) (-3133 (((-671 |#2|) (-1235 $)) NIL) (((-1235 |#2|) $) NIL) (((-671 |#2|) (-1235 $) (-1235 $)) NIL) (((-1235 |#2|) $ (-1235 $)) 25)) (-3562 (($ (-1235 |#2|)) NIL) (((-1235 |#2|) $) NIL)) (-2539 (((-627 (-931 |#2|))) NIL) (((-627 (-931 |#2|)) (-1235 $)) NIL)) (-2493 (($ $ $) NIL)) (-1822 (((-111)) NIL)) (-2152 (((-235 |#1| |#2|) $ (-552)) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#2| (-1017 (-401 (-552))))) (($ |#2|) NIL) (((-671 |#2|) $) NIL)) (-3995 (((-754)) NIL)) (-2957 (((-1235 $)) 36)) (-1360 (((-627 (-1235 |#2|))) NIL (|has| |#2| (-544)))) (-4297 (($ $ $ $) NIL)) (-3656 (((-111)) NIL)) (-3288 (($ (-671 |#2|) $) NIL)) (-3299 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3847 (((-111) $) NIL)) (-2743 (($ $ $) NIL)) (-3304 (((-111)) NIL)) (-3258 (((-111)) NIL)) (-3699 (((-111)) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-754)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| |#2| (-357)))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-235 |#1| |#2|) $ (-235 |#1| |#2|)) NIL) (((-235 |#1| |#2|) (-235 |#1| |#2|) $) NIL)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-652 |#1| |#2|) (-13 (-1099 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-599 (-671 |#2|)) (-411 |#2|)) (-900) (-169)) (T -652)) +NIL +(-13 (-1099 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-599 (-671 |#2|)) (-411 |#2|)) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3575 (((-627 (-1111)) $) 10)) (-1477 (((-842) $) 18) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) +(((-653) (-13 (-1059) (-10 -8 (-15 -3575 ((-627 (-1111)) $))))) (T -653)) +((-3575 (*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-653))))) +(-13 (-1059) (-10 -8 (-15 -3575 ((-627 (-1111)) $)))) +((-1465 (((-111) $ $) NIL)) (-1671 (((-627 |#1|) $) NIL)) (-2791 (($ $) 52)) (-3221 (((-111) $) NIL)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1678 (((-3 $ "failed") (-802 |#1|)) 23)) (-3218 (((-111) (-802 |#1|)) 15)) (-1551 (($ (-802 |#1|)) 24)) (-3637 (((-111) $ $) 30)) (-3593 (((-900) $) 37)) (-2776 (($ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1727 (((-627 $) (-802 |#1|)) 17)) (-1477 (((-842) $) 43) (($ |#1|) 34) (((-802 |#1|) $) 39) (((-659 |#1|) $) 44)) (-3036 (((-58 (-627 $)) (-627 |#1|) (-900)) 57)) (-3349 (((-627 $) (-627 |#1|) (-900)) 60)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 53)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 38))) +(((-654 |#1|) (-13 (-830) (-1017 |#1|) (-10 -8 (-15 -3221 ((-111) $)) (-15 -2776 ($ $)) (-15 -2791 ($ $)) (-15 -3593 ((-900) $)) (-15 -3637 ((-111) $ $)) (-15 -1477 ((-802 |#1|) $)) (-15 -1477 ((-659 |#1|) $)) (-15 -1727 ((-627 $) (-802 |#1|))) (-15 -3218 ((-111) (-802 |#1|))) (-15 -1551 ($ (-802 |#1|))) (-15 -1678 ((-3 $ "failed") (-802 |#1|))) (-15 -1671 ((-627 |#1|) $)) (-15 -3036 ((-58 (-627 $)) (-627 |#1|) (-900))) (-15 -3349 ((-627 $) (-627 |#1|) (-900))))) (-830)) (T -654)) +((-3221 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) (-2776 (*1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-830)))) (-2791 (*1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-830)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-900)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) (-3637 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-802 *3)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-802 *4)) (-4 *4 (-830)) (-5 *2 (-627 (-654 *4))) (-5 *1 (-654 *4)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-802 *4)) (-4 *4 (-830)) (-5 *2 (-111)) (-5 *1 (-654 *4)))) (-1551 (*1 *1 *2) (-12 (-5 *2 (-802 *3)) (-4 *3 (-830)) (-5 *1 (-654 *3)))) (-1678 (*1 *1 *2) (|partial| -12 (-5 *2 (-802 *3)) (-4 *3 (-830)) (-5 *1 (-654 *3)))) (-1671 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) (-3036 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-5 *4 (-900)) (-4 *5 (-830)) (-5 *2 (-58 (-627 (-654 *5)))) (-5 *1 (-654 *5)))) (-3349 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-5 *4 (-900)) (-4 *5 (-830)) (-5 *2 (-627 (-654 *5))) (-5 *1 (-654 *5))))) +(-13 (-830) (-1017 |#1|) (-10 -8 (-15 -3221 ((-111) $)) (-15 -2776 ($ $)) (-15 -2791 ($ $)) (-15 -3593 ((-900) $)) (-15 -3637 ((-111) $ $)) (-15 -1477 ((-802 |#1|) $)) (-15 -1477 ((-659 |#1|) $)) (-15 -1727 ((-627 $) (-802 |#1|))) (-15 -3218 ((-111) (-802 |#1|))) (-15 -1551 ($ (-802 |#1|))) (-15 -1678 ((-3 $ "failed") (-802 |#1|))) (-15 -1671 ((-627 |#1|) $)) (-15 -3036 ((-58 (-627 $)) (-627 |#1|) (-900))) (-15 -3349 ((-627 $) (-627 |#1|) (-900))))) +((-4288 ((|#2| $) 76)) (-1700 (($ $) 96)) (-4031 (((-111) $ (-754)) 26)) (-3351 (($ $) 85) (($ $ (-754)) 88)) (-3592 (((-111) $) 97)) (-2336 (((-627 $) $) 72)) (-3726 (((-111) $ $) 71)) (-1602 (((-111) $ (-754)) 24)) (-3661 (((-552) $) 46)) (-2285 (((-552) $) 45)) (-3971 (((-111) $ (-754)) 22)) (-3810 (((-111) $) 74)) (-1294 ((|#2| $) 89) (($ $ (-754)) 92)) (-3252 (($ $ $ (-552)) 62) (($ |#2| $ (-552)) 61)) (-3892 (((-627 (-552)) $) 44)) (-2358 (((-111) (-552) $) 42)) (-3340 ((|#2| $) NIL) (($ $ (-754)) 84)) (-4168 (($ $ (-552)) 100)) (-2361 (((-111) $) 99)) (-3509 (((-111) (-1 (-111) |#2|) $) 32)) (-2083 (((-627 |#2|) $) 33)) (-1985 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1202 (-552))) 58) ((|#2| $ (-552)) 40) ((|#2| $ (-552) |#2|) 41)) (-1848 (((-552) $ $) 70)) (-3907 (($ $ (-1202 (-552))) 57) (($ $ (-552)) 51)) (-2978 (((-111) $) 66)) (-1805 (($ $) 81)) (-3543 (((-754) $) 80)) (-4149 (($ $) 79)) (-1490 (($ (-627 |#2|)) 37)) (-2890 (($ $) 101)) (-2535 (((-627 $) $) 69)) (-3415 (((-111) $ $) 68)) (-3299 (((-111) (-1 (-111) |#2|) $) 31)) (-2292 (((-111) $ $) 18)) (-1383 (((-754) $) 29))) +(((-655 |#1| |#2|) (-10 -8 (-15 -2890 (|#1| |#1|)) (-15 -4168 (|#1| |#1| (-552))) (-15 -3592 ((-111) |#1|)) (-15 -2361 ((-111) |#1|)) (-15 -1985 (|#2| |#1| (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552))) (-15 -2083 ((-627 |#2|) |#1|)) (-15 -2358 ((-111) (-552) |#1|)) (-15 -3892 ((-627 (-552)) |#1|)) (-15 -2285 ((-552) |#1|)) (-15 -3661 ((-552) |#1|)) (-15 -1490 (|#1| (-627 |#2|))) (-15 -1985 (|#1| |#1| (-1202 (-552)))) (-15 -3907 (|#1| |#1| (-552))) (-15 -3907 (|#1| |#1| (-1202 (-552)))) (-15 -3252 (|#1| |#2| |#1| (-552))) (-15 -3252 (|#1| |#1| |#1| (-552))) (-15 -1805 (|#1| |#1|)) (-15 -3543 ((-754) |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -1294 (|#1| |#1| (-754))) (-15 -1985 (|#2| |#1| "last")) (-15 -1294 (|#2| |#1|)) (-15 -3351 (|#1| |#1| (-754))) (-15 -1985 (|#1| |#1| "rest")) (-15 -3351 (|#1| |#1|)) (-15 -3340 (|#1| |#1| (-754))) (-15 -1985 (|#2| |#1| "first")) (-15 -3340 (|#2| |#1|)) (-15 -3726 ((-111) |#1| |#1|)) (-15 -3415 ((-111) |#1| |#1|)) (-15 -1848 ((-552) |#1| |#1|)) (-15 -2978 ((-111) |#1|)) (-15 -1985 (|#2| |#1| "value")) (-15 -4288 (|#2| |#1|)) (-15 -3810 ((-111) |#1|)) (-15 -2336 ((-627 |#1|) |#1|)) (-15 -2535 ((-627 |#1|) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -3509 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -1383 ((-754) |#1|)) (-15 -4031 ((-111) |#1| (-754))) (-15 -1602 ((-111) |#1| (-754))) (-15 -3971 ((-111) |#1| (-754)))) (-656 |#2|) (-1189)) (T -655)) +NIL +(-10 -8 (-15 -2890 (|#1| |#1|)) (-15 -4168 (|#1| |#1| (-552))) (-15 -3592 ((-111) |#1|)) (-15 -2361 ((-111) |#1|)) (-15 -1985 (|#2| |#1| (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552))) (-15 -2083 ((-627 |#2|) |#1|)) (-15 -2358 ((-111) (-552) |#1|)) (-15 -3892 ((-627 (-552)) |#1|)) (-15 -2285 ((-552) |#1|)) (-15 -3661 ((-552) |#1|)) (-15 -1490 (|#1| (-627 |#2|))) (-15 -1985 (|#1| |#1| (-1202 (-552)))) (-15 -3907 (|#1| |#1| (-552))) (-15 -3907 (|#1| |#1| (-1202 (-552)))) (-15 -3252 (|#1| |#2| |#1| (-552))) (-15 -3252 (|#1| |#1| |#1| (-552))) (-15 -1805 (|#1| |#1|)) (-15 -3543 ((-754) |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -1294 (|#1| |#1| (-754))) (-15 -1985 (|#2| |#1| "last")) (-15 -1294 (|#2| |#1|)) (-15 -3351 (|#1| |#1| (-754))) (-15 -1985 (|#1| |#1| "rest")) (-15 -3351 (|#1| |#1|)) (-15 -3340 (|#1| |#1| (-754))) (-15 -1985 (|#2| |#1| "first")) (-15 -3340 (|#2| |#1|)) (-15 -3726 ((-111) |#1| |#1|)) (-15 -3415 ((-111) |#1| |#1|)) (-15 -1848 ((-552) |#1| |#1|)) (-15 -2978 ((-111) |#1|)) (-15 -1985 (|#2| |#1| "value")) (-15 -4288 (|#2| |#1|)) (-15 -3810 ((-111) |#1|)) (-15 -2336 ((-627 |#1|) |#1|)) (-15 -2535 ((-627 |#1|) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -3509 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#2|) |#1|)) (-15 -1383 ((-754) |#1|)) (-15 -4031 ((-111) |#1| (-754))) (-15 -1602 ((-111) |#1| (-754))) (-15 -3971 ((-111) |#1| (-754)))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4288 ((|#1| $) 48)) (-4155 ((|#1| $) 65)) (-1700 (($ $) 67)) (-3305 (((-1240) $ (-552) (-552)) 97 (|has| $ (-6 -4367)))) (-3900 (($ $ (-552)) 52 (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) 8)) (-2472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4367)))) (-1474 (($ $ $) 56 (|has| $ (-6 -4367)))) (-2801 ((|#1| $ |#1|) 54 (|has| $ (-6 -4367)))) (-1612 ((|#1| $ |#1|) 58 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4367))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4367))) (($ $ "rest" $) 55 (|has| $ (-6 -4367))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) 117 (|has| $ (-6 -4367))) ((|#1| $ (-552) |#1|) 86 (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 41 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) 102)) (-4143 ((|#1| $) 66)) (-3887 (($) 7 T CONST)) (-2860 (($ $) 124)) (-3351 (($ $) 73) (($ $ (-754)) 71)) (-3370 (($ $) 99 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#1| $) 100 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 103)) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3473 ((|#1| $ (-552) |#1|) 85 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 87)) (-3592 (((-111) $) 83)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-3939 (((-754) $) 123)) (-2336 (((-627 $) $) 50)) (-3726 (((-111) $ $) 42 (|has| |#1| (-1076)))) (-2655 (($ (-754) |#1|) 108)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 95 (|has| (-552) (-830)))) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 94 (|has| (-552) (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3971 (((-111) $ (-754)) 10)) (-1823 (((-627 |#1|) $) 45)) (-3810 (((-111) $) 49)) (-2421 (($ $) 126)) (-4244 (((-111) $) 127)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1294 ((|#1| $) 70) (($ $ (-754)) 68)) (-3252 (($ $ $ (-552)) 116) (($ |#1| $ (-552)) 115)) (-3892 (((-627 (-552)) $) 92)) (-2358 (((-111) (-552) $) 91)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3566 ((|#1| $) 125)) (-3340 ((|#1| $) 76) (($ $ (-754)) 74)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-1942 (($ $ |#1|) 96 (|has| $ (-6 -4367)))) (-4168 (($ $ (-552)) 122)) (-2361 (((-111) $) 84)) (-1298 (((-111) $) 128)) (-3076 (((-111) $) 129)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) 90)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1202 (-552))) 112) ((|#1| $ (-552)) 89) ((|#1| $ (-552) |#1|) 88)) (-1848 (((-552) $ $) 44)) (-3907 (($ $ (-1202 (-552))) 114) (($ $ (-552)) 113)) (-2978 (((-111) $) 46)) (-1805 (($ $) 62)) (-3384 (($ $) 59 (|has| $ (-6 -4367)))) (-3543 (((-754) $) 63)) (-4149 (($ $) 64)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 98 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 107)) (-3151 (($ $ $) 61 (|has| $ (-6 -4367))) (($ $ |#1|) 60 (|has| $ (-6 -4367)))) (-2668 (($ $ $) 78) (($ |#1| $) 77) (($ (-627 $)) 110) (($ $ |#1|) 109)) (-2890 (($ $) 121)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) 51)) (-3415 (((-111) $ $) 43 (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-656 |#1|) (-137) (-1189)) (T -656)) +((-4342 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-656 *3)) (-4 *3 (-1189)))) (-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-656 *3)) (-4 *3 (-1189)))) (-3076 (*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1189)) (-5 *2 (-111)))) (-1298 (*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1189)) (-5 *2 (-111)))) (-4244 (*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1189)) (-5 *2 (-111)))) (-2421 (*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1189)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1189)))) (-2860 (*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1189)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1189)) (-5 *2 (-754)))) (-4168 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-656 *3)) (-4 *3 (-1189)))) (-2890 (*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1189))))) +(-13 (-1125 |t#1|) (-10 -8 (-15 -4342 ($ (-1 (-111) |t#1|) $)) (-15 -2536 ($ (-1 (-111) |t#1|) $)) (-15 -3076 ((-111) $)) (-15 -1298 ((-111) $)) (-15 -4244 ((-111) $)) (-15 -2421 ($ $)) (-15 -3566 (|t#1| $)) (-15 -2860 ($ $)) (-15 -3939 ((-754) $)) (-15 -4168 ($ $ (-552))) (-15 -2890 ($ $)))) +(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-633 |#1|) . T) ((-989 |#1|) . T) ((-1076) |has| |#1| (-1076)) ((-1125 |#1|) . T) ((-1189) . T) ((-1223 |#1|) . T)) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3786 (($ (-754) (-754) (-754)) 33 (|has| |#1| (-1028)))) (-4031 (((-111) $ (-754)) NIL)) (-1372 ((|#1| $ (-754) (-754) (-754) |#1|) 27)) (-3887 (($) NIL T CONST)) (-1801 (($ $ $) 37 (|has| |#1| (-1028)))) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2866 (((-1235 (-754)) $) 9)) (-2736 (($ (-1152) $ $) 22)) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-2048 (($ (-754)) 35 (|has| |#1| (-1028)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-754) (-754) (-754)) 25)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-1490 (($ (-627 (-627 (-627 |#1|)))) 44)) (-1477 (($ (-937 (-937 (-937 |#1|)))) 15) (((-937 (-937 (-937 |#1|))) $) 12) (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-657 |#1|) (-13 (-482 |#1|) (-10 -8 (IF (|has| |#1| (-1028)) (PROGN (-15 -3786 ($ (-754) (-754) (-754))) (-15 -2048 ($ (-754))) (-15 -1801 ($ $ $))) |%noBranch|) (-15 -1490 ($ (-627 (-627 (-627 |#1|))))) (-15 -1985 (|#1| $ (-754) (-754) (-754))) (-15 -1372 (|#1| $ (-754) (-754) (-754) |#1|)) (-15 -1477 ($ (-937 (-937 (-937 |#1|))))) (-15 -1477 ((-937 (-937 (-937 |#1|))) $)) (-15 -2736 ($ (-1152) $ $)) (-15 -2866 ((-1235 (-754)) $)))) (-1076)) (T -657)) +((-3786 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-754)) (-5 *1 (-657 *3)) (-4 *3 (-1028)) (-4 *3 (-1076)))) (-2048 (*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-657 *3)) (-4 *3 (-1028)) (-4 *3 (-1076)))) (-1801 (*1 *1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-1028)) (-4 *2 (-1076)))) (-1490 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 (-627 *3)))) (-4 *3 (-1076)) (-5 *1 (-657 *3)))) (-1985 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-754)) (-5 *1 (-657 *2)) (-4 *2 (-1076)))) (-1372 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-657 *2)) (-4 *2 (-1076)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-937 (-937 (-937 *3)))) (-4 *3 (-1076)) (-5 *1 (-657 *3)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-937 (-937 (-937 *3)))) (-5 *1 (-657 *3)) (-4 *3 (-1076)))) (-2736 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-657 *3)) (-4 *3 (-1076)))) (-2866 (*1 *2 *1) (-12 (-5 *2 (-1235 (-754))) (-5 *1 (-657 *3)) (-4 *3 (-1076))))) +(-13 (-482 |#1|) (-10 -8 (IF (|has| |#1| (-1028)) (PROGN (-15 -3786 ($ (-754) (-754) (-754))) (-15 -2048 ($ (-754))) (-15 -1801 ($ $ $))) |%noBranch|) (-15 -1490 ($ (-627 (-627 (-627 |#1|))))) (-15 -1985 (|#1| $ (-754) (-754) (-754))) (-15 -1372 (|#1| $ (-754) (-754) (-754) |#1|)) (-15 -1477 ($ (-937 (-937 (-937 |#1|))))) (-15 -1477 ((-937 (-937 (-937 |#1|))) $)) (-15 -2736 ($ (-1152) $ $)) (-15 -2866 ((-1235 (-754)) $)))) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-3134 (((-476) $) 10)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 21) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3122 (((-1111) $) 12)) (-2292 (((-111) $ $) NIL))) +(((-658) (-13 (-1059) (-10 -8 (-15 -3134 ((-476) $)) (-15 -3122 ((-1111) $))))) (T -658)) +((-3134 (*1 *2 *1) (-12 (-5 *2 (-476)) (-5 *1 (-658)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-658))))) +(-13 (-1059) (-10 -8 (-15 -3134 ((-476) $)) (-15 -3122 ((-1111) $)))) +((-1465 (((-111) $ $) NIL)) (-1671 (((-627 |#1|) $) 14)) (-2791 (($ $) 18)) (-3221 (((-111) $) 19)) (-4039 (((-3 |#1| "failed") $) 22)) (-1703 ((|#1| $) 20)) (-3351 (($ $) 36)) (-3627 (($ $) 24)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3637 (((-111) $ $) 42)) (-3593 (((-900) $) 38)) (-2776 (($ $) 17)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 ((|#1| $) 35)) (-1477 (((-842) $) 31) (($ |#1|) 23) (((-802 |#1|) $) 27)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 12)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 40)) (* (($ $ $) 34))) +(((-659 |#1|) (-13 (-830) (-1017 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1477 ((-802 |#1|) $)) (-15 -3340 (|#1| $)) (-15 -2776 ($ $)) (-15 -3593 ((-900) $)) (-15 -3637 ((-111) $ $)) (-15 -3627 ($ $)) (-15 -3351 ($ $)) (-15 -3221 ((-111) $)) (-15 -2791 ($ $)) (-15 -1671 ((-627 |#1|) $)))) (-830)) (T -659)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-802 *3)) (-5 *1 (-659 *3)) (-4 *3 (-830)))) (-3340 (*1 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) (-2776 (*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-900)) (-5 *1 (-659 *3)) (-4 *3 (-830)))) (-3637 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-659 *3)) (-4 *3 (-830)))) (-3627 (*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) (-3351 (*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-659 *3)) (-4 *3 (-830)))) (-2791 (*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) (-1671 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-659 *3)) (-4 *3 (-830))))) +(-13 (-830) (-1017 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1477 ((-802 |#1|) $)) (-15 -3340 (|#1| $)) (-15 -2776 ($ $)) (-15 -3593 ((-900) $)) (-15 -3637 ((-111) $ $)) (-15 -3627 ($ $)) (-15 -3351 ($ $)) (-15 -3221 ((-111) $)) (-15 -2791 ($ $)) (-15 -1671 ((-627 |#1|) $)))) +((-3982 ((|#1| (-1 |#1| (-754) |#1|) (-754) |#1|) 11)) (-3915 ((|#1| (-1 |#1| |#1|) (-754) |#1|) 9))) +(((-660 |#1|) (-10 -7 (-15 -3915 (|#1| (-1 |#1| |#1|) (-754) |#1|)) (-15 -3982 (|#1| (-1 |#1| (-754) |#1|) (-754) |#1|))) (-1076)) (T -660)) +((-3982 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-754) *2)) (-5 *4 (-754)) (-4 *2 (-1076)) (-5 *1 (-660 *2)))) (-3915 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-754)) (-4 *2 (-1076)) (-5 *1 (-660 *2))))) +(-10 -7 (-15 -3915 (|#1| (-1 |#1| |#1|) (-754) |#1|)) (-15 -3982 (|#1| (-1 |#1| (-754) |#1|) (-754) |#1|))) +((-3807 ((|#2| |#1| |#2|) 9)) (-3797 ((|#1| |#1| |#2|) 8))) +(((-661 |#1| |#2|) (-10 -7 (-15 -3797 (|#1| |#1| |#2|)) (-15 -3807 (|#2| |#1| |#2|))) (-1076) (-1076)) (T -661)) +((-3807 (*1 *2 *3 *2) (-12 (-5 *1 (-661 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076)))) (-3797 (*1 *2 *2 *3) (-12 (-5 *1 (-661 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076))))) +(-10 -7 (-15 -3797 (|#1| |#1| |#2|)) (-15 -3807 (|#2| |#1| |#2|))) +((-3359 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-662 |#1| |#2| |#3|) (-10 -7 (-15 -3359 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1076) (-1076) (-1076)) (T -662)) +((-3359 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076)) (-5 *1 (-662 *5 *6 *2))))) +(-10 -7 (-15 -3359 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-1465 (((-111) $ $) NIL)) (-2816 (((-1188) $) 20)) (-3901 (((-627 (-1188)) $) 18)) (-2632 (($ (-627 (-1188)) (-1188)) 13)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 29) (((-1157) $) NIL) (($ (-1157)) NIL) (((-1188) $) 21) (($ (-1094)) 10)) (-2292 (((-111) $ $) NIL))) +(((-663) (-13 (-1059) (-599 (-1188)) (-10 -8 (-15 -1477 ($ (-1094))) (-15 -2632 ($ (-627 (-1188)) (-1188))) (-15 -3901 ((-627 (-1188)) $)) (-15 -2816 ((-1188) $))))) (T -663)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-663)))) (-2632 (*1 *1 *2 *3) (-12 (-5 *2 (-627 (-1188))) (-5 *3 (-1188)) (-5 *1 (-663)))) (-3901 (*1 *2 *1) (-12 (-5 *2 (-627 (-1188))) (-5 *1 (-663)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-663))))) +(-13 (-1059) (-599 (-1188)) (-10 -8 (-15 -1477 ($ (-1094))) (-15 -2632 ($ (-627 (-1188)) (-1188))) (-15 -3901 ((-627 (-1188)) $)) (-15 -2816 ((-1188) $)))) +((-3982 (((-1 |#1| (-754) |#1|) (-1 |#1| (-754) |#1|)) 23)) (-1488 (((-1 |#1|) |#1|) 8)) (-2618 ((|#1| |#1|) 16)) (-3369 (((-627 |#1|) (-1 (-627 |#1|) (-627 |#1|)) (-552)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-1477 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-754)) 20))) +(((-664 |#1|) (-10 -7 (-15 -1488 ((-1 |#1|) |#1|)) (-15 -1477 ((-1 |#1|) |#1|)) (-15 -3369 (|#1| (-1 |#1| |#1|))) (-15 -3369 ((-627 |#1|) (-1 (-627 |#1|) (-627 |#1|)) (-552))) (-15 -2618 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-754))) (-15 -3982 ((-1 |#1| (-754) |#1|) (-1 |#1| (-754) |#1|)))) (-1076)) (T -664)) +((-3982 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-754) *3)) (-4 *3 (-1076)) (-5 *1 (-664 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-754)) (-4 *4 (-1076)) (-5 *1 (-664 *4)))) (-2618 (*1 *2 *2) (-12 (-5 *1 (-664 *2)) (-4 *2 (-1076)))) (-3369 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-627 *5) (-627 *5))) (-5 *4 (-552)) (-5 *2 (-627 *5)) (-5 *1 (-664 *5)) (-4 *5 (-1076)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-664 *2)) (-4 *2 (-1076)))) (-1477 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-664 *3)) (-4 *3 (-1076)))) (-1488 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-664 *3)) (-4 *3 (-1076))))) +(-10 -7 (-15 -1488 ((-1 |#1|) |#1|)) (-15 -1477 ((-1 |#1|) |#1|)) (-15 -3369 (|#1| (-1 |#1| |#1|))) (-15 -3369 ((-627 |#1|) (-1 (-627 |#1|) (-627 |#1|)) (-552))) (-15 -2618 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-754))) (-15 -3982 ((-1 |#1| (-754) |#1|) (-1 |#1| (-754) |#1|)))) +((-2127 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2213 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3488 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3767 (((-1 |#2| |#1|) |#2|) 11))) +(((-665 |#1| |#2|) (-10 -7 (-15 -3767 ((-1 |#2| |#1|) |#2|)) (-15 -2213 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3488 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2127 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1076) (-1076)) (T -665)) +((-2127 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-5 *2 (-1 *5 *4)) (-5 *1 (-665 *4 *5)))) (-3488 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1076)) (-5 *2 (-1 *5 *4)) (-5 *1 (-665 *4 *5)) (-4 *4 (-1076)))) (-2213 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-5 *2 (-1 *5)) (-5 *1 (-665 *4 *5)))) (-3767 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-665 *4 *3)) (-4 *4 (-1076)) (-4 *3 (-1076))))) +(-10 -7 (-15 -3767 ((-1 |#2| |#1|) |#2|)) (-15 -2213 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3488 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2127 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-4215 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3844 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2409 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3905 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2514 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-666 |#1| |#2| |#3|) (-10 -7 (-15 -3844 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2409 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3905 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2514 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4215 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1076) (-1076) (-1076)) (T -666)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-1 *7 *5)) (-5 *1 (-666 *5 *6 *7)))) (-4215 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-666 *4 *5 *6)))) (-2514 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-666 *4 *5 *6)) (-4 *4 (-1076)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1076)) (-4 *6 (-1076)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-666 *4 *5 *6)) (-4 *5 (-1076)))) (-2409 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-5 *2 (-1 *6 *5)) (-5 *1 (-666 *4 *5 *6)))) (-3844 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1076)) (-4 *4 (-1076)) (-4 *6 (-1076)) (-5 *2 (-1 *6 *5)) (-5 *1 (-666 *5 *4 *6))))) +(-10 -7 (-15 -3844 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2409 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3905 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2514 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4215 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-2091 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3516 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-667 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3516 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3516 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2091 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1028) (-367 |#1|) (-367 |#1|) (-669 |#1| |#2| |#3|) (-1028) (-367 |#5|) (-367 |#5|) (-669 |#5| |#6| |#7|)) (T -667)) +((-2091 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1028)) (-4 *2 (-1028)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *8 (-367 *2)) (-4 *9 (-367 *2)) (-5 *1 (-667 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-669 *5 *6 *7)) (-4 *10 (-669 *2 *8 *9)))) (-3516 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1028)) (-4 *8 (-1028)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *2 (-669 *8 *9 *10)) (-5 *1 (-667 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-669 *5 *6 *7)) (-4 *9 (-367 *8)) (-4 *10 (-367 *8)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1028)) (-4 *8 (-1028)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *2 (-669 *8 *9 *10)) (-5 *1 (-667 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-669 *5 *6 *7)) (-4 *9 (-367 *8)) (-4 *10 (-367 *8))))) +(-10 -7 (-15 -3516 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3516 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2091 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-2099 (($ (-754) (-754)) 33)) (-2129 (($ $ $) 56)) (-3595 (($ |#3|) 52) (($ $) 53)) (-2311 (((-111) $) 28)) (-2232 (($ $ (-552) (-552)) 58)) (-3700 (($ $ (-552) (-552)) 59)) (-1966 (($ $ (-552) (-552) (-552) (-552)) 63)) (-2456 (($ $) 54)) (-3944 (((-111) $) 14)) (-1459 (($ $ (-552) (-552) $) 64)) (-2950 ((|#2| $ (-552) (-552) |#2|) NIL) (($ $ (-627 (-552)) (-627 (-552)) $) 62)) (-1665 (($ (-754) |#2|) 39)) (-4176 (($ (-627 (-627 |#2|))) 37)) (-3127 (((-627 (-627 |#2|)) $) 57)) (-3838 (($ $ $) 55)) (-2761 (((-3 $ "failed") $ |#2|) 91)) (-1985 ((|#2| $ (-552) (-552)) NIL) ((|#2| $ (-552) (-552) |#2|) NIL) (($ $ (-627 (-552)) (-627 (-552))) 61)) (-3202 (($ (-627 |#2|)) 40) (($ (-627 $)) 42)) (-4064 (((-111) $) 24)) (-1477 (($ |#4|) 47) (((-842) $) NIL)) (-3847 (((-111) $) 30)) (-2407 (($ $ |#2|) 93)) (-2396 (($ $ $) 68) (($ $) 71)) (-2384 (($ $ $) 66)) (** (($ $ (-754)) 80) (($ $ (-552)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-552) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) +(((-668 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1477 ((-842) |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -2407 (|#1| |#1| |#2|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-754))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2384 (|#1| |#1| |#1|)) (-15 -1459 (|#1| |#1| (-552) (-552) |#1|)) (-15 -1966 (|#1| |#1| (-552) (-552) (-552) (-552))) (-15 -3700 (|#1| |#1| (-552) (-552))) (-15 -2232 (|#1| |#1| (-552) (-552))) (-15 -2950 (|#1| |#1| (-627 (-552)) (-627 (-552)) |#1|)) (-15 -1985 (|#1| |#1| (-627 (-552)) (-627 (-552)))) (-15 -3127 ((-627 (-627 |#2|)) |#1|)) (-15 -2129 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -3595 (|#1| |#1|)) (-15 -3595 (|#1| |#3|)) (-15 -1477 (|#1| |#4|)) (-15 -3202 (|#1| (-627 |#1|))) (-15 -3202 (|#1| (-627 |#2|))) (-15 -1665 (|#1| (-754) |#2|)) (-15 -4176 (|#1| (-627 (-627 |#2|)))) (-15 -2099 (|#1| (-754) (-754))) (-15 -3847 ((-111) |#1|)) (-15 -2311 ((-111) |#1|)) (-15 -4064 ((-111) |#1|)) (-15 -3944 ((-111) |#1|)) (-15 -2950 (|#2| |#1| (-552) (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552) (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552) (-552)))) (-669 |#2| |#3| |#4|) (-1028) (-367 |#2|) (-367 |#2|)) (T -668)) +NIL +(-10 -8 (-15 -1477 ((-842) |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -2407 (|#1| |#1| |#2|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-754))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2384 (|#1| |#1| |#1|)) (-15 -1459 (|#1| |#1| (-552) (-552) |#1|)) (-15 -1966 (|#1| |#1| (-552) (-552) (-552) (-552))) (-15 -3700 (|#1| |#1| (-552) (-552))) (-15 -2232 (|#1| |#1| (-552) (-552))) (-15 -2950 (|#1| |#1| (-627 (-552)) (-627 (-552)) |#1|)) (-15 -1985 (|#1| |#1| (-627 (-552)) (-627 (-552)))) (-15 -3127 ((-627 (-627 |#2|)) |#1|)) (-15 -2129 (|#1| |#1| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -3595 (|#1| |#1|)) (-15 -3595 (|#1| |#3|)) (-15 -1477 (|#1| |#4|)) (-15 -3202 (|#1| (-627 |#1|))) (-15 -3202 (|#1| (-627 |#2|))) (-15 -1665 (|#1| (-754) |#2|)) (-15 -4176 (|#1| (-627 (-627 |#2|)))) (-15 -2099 (|#1| (-754) (-754))) (-15 -3847 ((-111) |#1|)) (-15 -2311 ((-111) |#1|)) (-15 -4064 ((-111) |#1|)) (-15 -3944 ((-111) |#1|)) (-15 -2950 (|#2| |#1| (-552) (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552) (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552) (-552)))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-2099 (($ (-754) (-754)) 97)) (-2129 (($ $ $) 87)) (-3595 (($ |#2|) 91) (($ $) 90)) (-2311 (((-111) $) 99)) (-2232 (($ $ (-552) (-552)) 83)) (-3700 (($ $ (-552) (-552)) 82)) (-1966 (($ $ (-552) (-552) (-552) (-552)) 81)) (-2456 (($ $) 89)) (-3944 (((-111) $) 101)) (-4031 (((-111) $ (-754)) 8)) (-1459 (($ $ (-552) (-552) $) 80)) (-2950 ((|#1| $ (-552) (-552) |#1|) 44) (($ $ (-627 (-552)) (-627 (-552)) $) 84)) (-1566 (($ $ (-552) |#2|) 42)) (-1666 (($ $ (-552) |#3|) 41)) (-1665 (($ (-754) |#1|) 95)) (-3887 (($) 7 T CONST)) (-1472 (($ $) 67 (|has| |#1| (-301)))) (-3884 ((|#2| $ (-552)) 46)) (-4154 (((-754) $) 66 (|has| |#1| (-544)))) (-3473 ((|#1| $ (-552) (-552) |#1|) 43)) (-3413 ((|#1| $ (-552) (-552)) 48)) (-3215 (((-627 |#1|) $) 30)) (-1610 (((-754) $) 65 (|has| |#1| (-544)))) (-2960 (((-627 |#3|) $) 64 (|has| |#1| (-544)))) (-3560 (((-754) $) 51)) (-2655 (($ (-754) (-754) |#1|) 57)) (-3572 (((-754) $) 50)) (-1602 (((-111) $ (-754)) 9)) (-1744 ((|#1| $) 62 (|has| |#1| (-6 (-4368 "*"))))) (-4083 (((-552) $) 55)) (-3511 (((-552) $) 53)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3479 (((-552) $) 54)) (-2780 (((-552) $) 52)) (-4176 (($ (-627 (-627 |#1|))) 96)) (-3463 (($ (-1 |#1| |#1|) $) 34)) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3127 (((-627 (-627 |#1|)) $) 86)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-2952 (((-3 $ "failed") $) 61 (|has| |#1| (-357)))) (-3838 (($ $ $) 88)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-1942 (($ $ |#1|) 56)) (-2761 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-544)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ (-552) (-552)) 49) ((|#1| $ (-552) (-552) |#1|) 47) (($ $ (-627 (-552)) (-627 (-552))) 85)) (-3202 (($ (-627 |#1|)) 94) (($ (-627 $)) 93)) (-4064 (((-111) $) 100)) (-1530 ((|#1| $) 63 (|has| |#1| (-6 (-4368 "*"))))) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-2152 ((|#3| $ (-552)) 45)) (-1477 (($ |#3|) 92) (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-3847 (((-111) $) 98)) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-2407 (($ $ |#1|) 68 (|has| |#1| (-357)))) (-2396 (($ $ $) 78) (($ $) 77)) (-2384 (($ $ $) 79)) (** (($ $ (-754)) 70) (($ $ (-552)) 60 (|has| |#1| (-357)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-552) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-669 |#1| |#2| |#3|) (-137) (-1028) (-367 |t#1|) (-367 |t#1|)) (T -669)) +((-3944 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-111)))) (-4064 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-111)))) (-2311 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-111)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-111)))) (-2099 (*1 *1 *2 *2) (-12 (-5 *2 (-754)) (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-4176 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1665 (*1 *1 *2 *3) (-12 (-5 *2 (-754)) (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3202 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3202 (*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1477 (*1 *1 *2) (-12 (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *2)) (-4 *4 (-367 *3)) (-4 *2 (-367 *3)))) (-3595 (*1 *1 *2) (-12 (-4 *3 (-1028)) (-4 *1 (-669 *3 *2 *4)) (-4 *2 (-367 *3)) (-4 *4 (-367 *3)))) (-3595 (*1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-2456 (*1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-3838 (*1 *1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-2129 (*1 *1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-627 (-627 *3))))) (-1985 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-627 (-552))) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2950 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-627 (-552))) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2232 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3700 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1966 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-1459 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2384 (*1 *1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-2396 (*1 *1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-2396 (*1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-669 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *2 (-367 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-669 *3 *2 *4)) (-4 *3 (-1028)) (-4 *2 (-367 *3)) (-4 *4 (-367 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2761 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-544)))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-357)))) (-1472 (*1 *1 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-301)))) (-4154 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-544)) (-5 *2 (-754)))) (-1610 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-544)) (-5 *2 (-754)))) (-2960 (*1 *2 *1) (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-544)) (-5 *2 (-627 *5)))) (-1530 (*1 *2 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (|has| *2 (-6 (-4368 "*"))) (-4 *2 (-1028)))) (-1744 (*1 *2 *1) (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (|has| *2 (-6 (-4368 "*"))) (-4 *2 (-1028)))) (-2952 (*1 *1 *1) (|partial| -12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-357)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-357))))) +(-13 (-56 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4367) (-6 -4366) (-15 -3944 ((-111) $)) (-15 -4064 ((-111) $)) (-15 -2311 ((-111) $)) (-15 -3847 ((-111) $)) (-15 -2099 ($ (-754) (-754))) (-15 -4176 ($ (-627 (-627 |t#1|)))) (-15 -1665 ($ (-754) |t#1|)) (-15 -3202 ($ (-627 |t#1|))) (-15 -3202 ($ (-627 $))) (-15 -1477 ($ |t#3|)) (-15 -3595 ($ |t#2|)) (-15 -3595 ($ $)) (-15 -2456 ($ $)) (-15 -3838 ($ $ $)) (-15 -2129 ($ $ $)) (-15 -3127 ((-627 (-627 |t#1|)) $)) (-15 -1985 ($ $ (-627 (-552)) (-627 (-552)))) (-15 -2950 ($ $ (-627 (-552)) (-627 (-552)) $)) (-15 -2232 ($ $ (-552) (-552))) (-15 -3700 ($ $ (-552) (-552))) (-15 -1966 ($ $ (-552) (-552) (-552) (-552))) (-15 -1459 ($ $ (-552) (-552) $)) (-15 -2384 ($ $ $)) (-15 -2396 ($ $ $)) (-15 -2396 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-552) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-754))) (IF (|has| |t#1| (-544)) (-15 -2761 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-357)) (-15 -2407 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-301)) (-15 -1472 ($ $)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -4154 ((-754) $)) (-15 -1610 ((-754) $)) (-15 -2960 ((-627 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4368 "*"))) (PROGN (-15 -1530 (|t#1| $)) (-15 -1744 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-357)) (PROGN (-15 -2952 ((-3 $ "failed") $)) (-15 ** ($ $ (-552)))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-56 |#1| |#2| |#3|) . T) ((-1189) . T)) +((-1472 ((|#4| |#4|) 72 (|has| |#1| (-301)))) (-4154 (((-754) |#4|) 99 (|has| |#1| (-544)))) (-1610 (((-754) |#4|) 76 (|has| |#1| (-544)))) (-2960 (((-627 |#3|) |#4|) 83 (|has| |#1| (-544)))) (-2867 (((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|) 111 (|has| |#1| (-301)))) (-1744 ((|#1| |#4|) 35)) (-3565 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-544)))) (-2952 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-357)))) (-1949 ((|#4| |#4|) 68 (|has| |#1| (-544)))) (-3776 ((|#4| |#4| |#1| (-552) (-552)) 43)) (-4076 ((|#4| |#4| (-552) (-552)) 38)) (-2221 ((|#4| |#4| |#1| (-552) (-552)) 48)) (-1530 ((|#1| |#4|) 78)) (-2279 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-544))))) +(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1530 (|#1| |#4|)) (-15 -1744 (|#1| |#4|)) (-15 -4076 (|#4| |#4| (-552) (-552))) (-15 -3776 (|#4| |#4| |#1| (-552) (-552))) (-15 -2221 (|#4| |#4| |#1| (-552) (-552))) (IF (|has| |#1| (-544)) (PROGN (-15 -4154 ((-754) |#4|)) (-15 -1610 ((-754) |#4|)) (-15 -2960 ((-627 |#3|) |#4|)) (-15 -1949 (|#4| |#4|)) (-15 -3565 ((-3 |#4| "failed") |#4|)) (-15 -2279 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-301)) (PROGN (-15 -1472 (|#4| |#4|)) (-15 -2867 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-357)) (-15 -2952 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-169) (-367 |#1|) (-367 |#1|) (-669 |#1| |#2| |#3|)) (T -670)) +((-2952 (*1 *2 *2) (|partial| -12 (-4 *3 (-357)) (-4 *3 (-169)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-670 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-2867 (*1 *2 *3 *3) (-12 (-4 *3 (-301)) (-4 *3 (-169)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-670 *3 *4 *5 *6)) (-4 *6 (-669 *3 *4 *5)))) (-1472 (*1 *2 *2) (-12 (-4 *3 (-301)) (-4 *3 (-169)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-670 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-2279 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-3565 (*1 *2 *2) (|partial| -12 (-4 *3 (-544)) (-4 *3 (-169)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-670 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-1949 (*1 *2 *2) (-12 (-4 *3 (-544)) (-4 *3 (-169)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-670 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-2960 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-627 *6)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-1610 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-754)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-4154 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-754)) (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-2221 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-552)) (-4 *3 (-169)) (-4 *5 (-367 *3)) (-4 *6 (-367 *3)) (-5 *1 (-670 *3 *5 *6 *2)) (-4 *2 (-669 *3 *5 *6)))) (-3776 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-552)) (-4 *3 (-169)) (-4 *5 (-367 *3)) (-4 *6 (-367 *3)) (-5 *1 (-670 *3 *5 *6 *2)) (-4 *2 (-669 *3 *5 *6)))) (-4076 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-552)) (-4 *4 (-169)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *1 (-670 *4 *5 *6 *2)) (-4 *2 (-669 *4 *5 *6)))) (-1744 (*1 *2 *3) (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-169)) (-5 *1 (-670 *2 *4 *5 *3)) (-4 *3 (-669 *2 *4 *5)))) (-1530 (*1 *2 *3) (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-169)) (-5 *1 (-670 *2 *4 *5 *3)) (-4 *3 (-669 *2 *4 *5))))) +(-10 -7 (-15 -1530 (|#1| |#4|)) (-15 -1744 (|#1| |#4|)) (-15 -4076 (|#4| |#4| (-552) (-552))) (-15 -3776 (|#4| |#4| |#1| (-552) (-552))) (-15 -2221 (|#4| |#4| |#1| (-552) (-552))) (IF (|has| |#1| (-544)) (PROGN (-15 -4154 ((-754) |#4|)) (-15 -1610 ((-754) |#4|)) (-15 -2960 ((-627 |#3|) |#4|)) (-15 -1949 (|#4| |#4|)) (-15 -3565 ((-3 |#4| "failed") |#4|)) (-15 -2279 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-301)) (PROGN (-15 -1472 (|#4| |#4|)) (-15 -2867 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-357)) (-15 -2952 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2099 (($ (-754) (-754)) 47)) (-2129 (($ $ $) NIL)) (-3595 (($ (-1235 |#1|)) NIL) (($ $) NIL)) (-2311 (((-111) $) NIL)) (-2232 (($ $ (-552) (-552)) 12)) (-3700 (($ $ (-552) (-552)) NIL)) (-1966 (($ $ (-552) (-552) (-552) (-552)) NIL)) (-2456 (($ $) NIL)) (-3944 (((-111) $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-1459 (($ $ (-552) (-552) $) NIL)) (-2950 ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-627 (-552)) (-627 (-552)) $) NIL)) (-1566 (($ $ (-552) (-1235 |#1|)) NIL)) (-1666 (($ $ (-552) (-1235 |#1|)) NIL)) (-1665 (($ (-754) |#1|) 22)) (-3887 (($) NIL T CONST)) (-1472 (($ $) 31 (|has| |#1| (-301)))) (-3884 (((-1235 |#1|) $ (-552)) NIL)) (-4154 (((-754) $) 33 (|has| |#1| (-544)))) (-3473 ((|#1| $ (-552) (-552) |#1|) 51)) (-3413 ((|#1| $ (-552) (-552)) NIL)) (-3215 (((-627 |#1|) $) NIL)) (-1610 (((-754) $) 35 (|has| |#1| (-544)))) (-2960 (((-627 (-1235 |#1|)) $) 38 (|has| |#1| (-544)))) (-3560 (((-754) $) 20)) (-2655 (($ (-754) (-754) |#1|) 16)) (-3572 (((-754) $) 21)) (-1602 (((-111) $ (-754)) NIL)) (-1744 ((|#1| $) 29 (|has| |#1| (-6 (-4368 "*"))))) (-4083 (((-552) $) 9)) (-3511 (((-552) $) 10)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3479 (((-552) $) 11)) (-2780 (((-552) $) 48)) (-4176 (($ (-627 (-627 |#1|))) NIL)) (-3463 (($ (-1 |#1| |#1|) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3127 (((-627 (-627 |#1|)) $) 60)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-2952 (((-3 $ "failed") $) 45 (|has| |#1| (-357)))) (-3838 (($ $ $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1942 (($ $ |#1|) NIL)) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-552) (-552)) NIL) ((|#1| $ (-552) (-552) |#1|) NIL) (($ $ (-627 (-552)) (-627 (-552))) NIL)) (-3202 (($ (-627 |#1|)) NIL) (($ (-627 $)) NIL) (($ (-1235 |#1|)) 52)) (-4064 (((-111) $) NIL)) (-1530 ((|#1| $) 27 (|has| |#1| (-6 (-4368 "*"))))) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-3562 (((-528) $) 64 (|has| |#1| (-600 (-528))))) (-2152 (((-1235 |#1|) $ (-552)) NIL)) (-1477 (($ (-1235 |#1|)) NIL) (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3847 (((-111) $) NIL)) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $ $) NIL) (($ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-754)) 23) (($ $ (-552)) 46 (|has| |#1| (-357)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-552) $) NIL) (((-1235 |#1|) $ (-1235 |#1|)) NIL) (((-1235 |#1|) (-1235 |#1|) $) NIL)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-671 |#1|) (-13 (-669 |#1| (-1235 |#1|) (-1235 |#1|)) (-10 -8 (-15 -3202 ($ (-1235 |#1|))) (IF (|has| |#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |#1| (-357)) (-15 -2952 ((-3 $ "failed") $)) |%noBranch|))) (-1028)) (T -671)) +((-2952 (*1 *1 *1) (|partial| -12 (-5 *1 (-671 *2)) (-4 *2 (-357)) (-4 *2 (-1028)))) (-3202 (*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-1028)) (-5 *1 (-671 *3))))) +(-13 (-669 |#1| (-1235 |#1|) (-1235 |#1|)) (-10 -8 (-15 -3202 ($ (-1235 |#1|))) (IF (|has| |#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |#1| (-357)) (-15 -2952 ((-3 $ "failed") $)) |%noBranch|))) +((-2174 (((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|)) 25)) (-3588 (((-671 |#1|) (-671 |#1|) (-671 |#1|) |#1|) 21)) (-2235 (((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|) (-754)) 26)) (-3751 (((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|)) 14)) (-3412 (((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|)) 18) (((-671 |#1|) (-671 |#1|) (-671 |#1|)) 16)) (-1954 (((-671 |#1|) (-671 |#1|) |#1| (-671 |#1|)) 20)) (-3353 (((-671 |#1|) (-671 |#1|) (-671 |#1|)) 12)) (** (((-671 |#1|) (-671 |#1|) (-754)) 30))) +(((-672 |#1|) (-10 -7 (-15 -3353 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -3751 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -3412 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -3412 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -1954 ((-671 |#1|) (-671 |#1|) |#1| (-671 |#1|))) (-15 -3588 ((-671 |#1|) (-671 |#1|) (-671 |#1|) |#1|)) (-15 -2174 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -2235 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|) (-754))) (-15 ** ((-671 |#1|) (-671 |#1|) (-754)))) (-1028)) (T -672)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-671 *4)) (-5 *3 (-754)) (-4 *4 (-1028)) (-5 *1 (-672 *4)))) (-2235 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-671 *4)) (-5 *3 (-754)) (-4 *4 (-1028)) (-5 *1 (-672 *4)))) (-2174 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3)))) (-3588 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3)))) (-1954 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3)))) (-3412 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3)))) (-3412 (*1 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3)))) (-3751 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3)))) (-3353 (*1 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3))))) +(-10 -7 (-15 -3353 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -3751 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -3412 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -3412 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -1954 ((-671 |#1|) (-671 |#1|) |#1| (-671 |#1|))) (-15 -3588 ((-671 |#1|) (-671 |#1|) (-671 |#1|) |#1|)) (-15 -2174 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -2235 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|) (-671 |#1|) (-754))) (-15 ** ((-671 |#1|) (-671 |#1|) (-754)))) +((-3071 (($) 8 T CONST)) (-1477 (((-842) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-1911 (((-111) $ (|[\|\|]| |#1|)) 14) (((-111) $ (|[\|\|]| -3071)) 16)) (-3007 ((|#1| $) 11))) +(((-673 |#1|) (-13 (-1230) (-599 (-842)) (-10 -8 (-15 -1911 ((-111) $ (|[\|\|]| |#1|))) (-15 -1911 ((-111) $ (|[\|\|]| -3071))) (-15 -1477 ($ |#1|)) (-15 -1477 (|#1| $)) (-15 -3007 (|#1| $)) (-15 -3071 ($) -3488))) (-599 (-842))) (T -673)) +((-1911 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-599 (-842))) (-5 *2 (-111)) (-5 *1 (-673 *4)))) (-1911 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3071)) (-5 *2 (-111)) (-5 *1 (-673 *4)) (-4 *4 (-599 (-842))))) (-1477 (*1 *1 *2) (-12 (-5 *1 (-673 *2)) (-4 *2 (-599 (-842))))) (-1477 (*1 *2 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-599 (-842))))) (-3007 (*1 *2 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-599 (-842))))) (-3071 (*1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-599 (-842)))))) +(-13 (-1230) (-599 (-842)) (-10 -8 (-15 -1911 ((-111) $ (|[\|\|]| |#1|))) (-15 -1911 ((-111) $ (|[\|\|]| -3071))) (-15 -1477 ($ |#1|)) (-15 -1477 (|#1| $)) (-15 -3007 (|#1| $)) (-15 -3071 ($) -3488))) +((-4259 ((|#2| |#2| |#4|) 25)) (-4220 (((-671 |#2|) |#3| |#4|) 31)) (-3038 (((-671 |#2|) |#2| |#4|) 30)) (-3117 (((-1235 |#2|) |#2| |#4|) 16)) (-2633 ((|#2| |#3| |#4|) 24)) (-1539 (((-671 |#2|) |#3| |#4| (-754) (-754)) 38)) (-2800 (((-671 |#2|) |#2| |#4| (-754)) 37))) +(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3117 ((-1235 |#2|) |#2| |#4|)) (-15 -2633 (|#2| |#3| |#4|)) (-15 -4259 (|#2| |#2| |#4|)) (-15 -3038 ((-671 |#2|) |#2| |#4|)) (-15 -2800 ((-671 |#2|) |#2| |#4| (-754))) (-15 -4220 ((-671 |#2|) |#3| |#4|)) (-15 -1539 ((-671 |#2|) |#3| |#4| (-754) (-754)))) (-1076) (-879 |#1|) (-367 |#2|) (-13 (-367 |#1|) (-10 -7 (-6 -4366)))) (T -674)) +((-1539 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-754)) (-4 *6 (-1076)) (-4 *7 (-879 *6)) (-5 *2 (-671 *7)) (-5 *1 (-674 *6 *7 *3 *4)) (-4 *3 (-367 *7)) (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4366)))))) (-4220 (*1 *2 *3 *4) (-12 (-4 *5 (-1076)) (-4 *6 (-879 *5)) (-5 *2 (-671 *6)) (-5 *1 (-674 *5 *6 *3 *4)) (-4 *3 (-367 *6)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4366)))))) (-2800 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-754)) (-4 *6 (-1076)) (-4 *3 (-879 *6)) (-5 *2 (-671 *3)) (-5 *1 (-674 *6 *3 *7 *4)) (-4 *7 (-367 *3)) (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4366)))))) (-3038 (*1 *2 *3 *4) (-12 (-4 *5 (-1076)) (-4 *3 (-879 *5)) (-5 *2 (-671 *3)) (-5 *1 (-674 *5 *3 *6 *4)) (-4 *6 (-367 *3)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4366)))))) (-4259 (*1 *2 *2 *3) (-12 (-4 *4 (-1076)) (-4 *2 (-879 *4)) (-5 *1 (-674 *4 *2 *5 *3)) (-4 *5 (-367 *2)) (-4 *3 (-13 (-367 *4) (-10 -7 (-6 -4366)))))) (-2633 (*1 *2 *3 *4) (-12 (-4 *5 (-1076)) (-4 *2 (-879 *5)) (-5 *1 (-674 *5 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4366)))))) (-3117 (*1 *2 *3 *4) (-12 (-4 *5 (-1076)) (-4 *3 (-879 *5)) (-5 *2 (-1235 *3)) (-5 *1 (-674 *5 *3 *6 *4)) (-4 *6 (-367 *3)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4366))))))) +(-10 -7 (-15 -3117 ((-1235 |#2|) |#2| |#4|)) (-15 -2633 (|#2| |#3| |#4|)) (-15 -4259 (|#2| |#2| |#4|)) (-15 -3038 ((-671 |#2|) |#2| |#4|)) (-15 -2800 ((-671 |#2|) |#2| |#4| (-754))) (-15 -4220 ((-671 |#2|) |#3| |#4|)) (-15 -1539 ((-671 |#2|) |#3| |#4| (-754) (-754)))) +((-1971 (((-2 (|:| |num| (-671 |#1|)) (|:| |den| |#1|)) (-671 |#2|)) 20)) (-3623 ((|#1| (-671 |#2|)) 9)) (-2155 (((-671 |#1|) (-671 |#2|)) 18))) +(((-675 |#1| |#2|) (-10 -7 (-15 -3623 (|#1| (-671 |#2|))) (-15 -2155 ((-671 |#1|) (-671 |#2|))) (-15 -1971 ((-2 (|:| |num| (-671 |#1|)) (|:| |den| |#1|)) (-671 |#2|)))) (-544) (-971 |#1|)) (T -675)) +((-1971 (*1 *2 *3) (-12 (-5 *3 (-671 *5)) (-4 *5 (-971 *4)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |num| (-671 *4)) (|:| |den| *4))) (-5 *1 (-675 *4 *5)))) (-2155 (*1 *2 *3) (-12 (-5 *3 (-671 *5)) (-4 *5 (-971 *4)) (-4 *4 (-544)) (-5 *2 (-671 *4)) (-5 *1 (-675 *4 *5)))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-671 *4)) (-4 *4 (-971 *2)) (-4 *2 (-544)) (-5 *1 (-675 *2 *4))))) +(-10 -7 (-15 -3623 (|#1| (-671 |#2|))) (-15 -2155 ((-671 |#1|) (-671 |#2|))) (-15 -1971 ((-2 (|:| |num| (-671 |#1|)) (|:| |den| |#1|)) (-671 |#2|)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-3841 (((-671 (-681))) NIL) (((-671 (-681)) (-1235 $)) NIL)) (-3385 (((-681) $) NIL)) (-1607 (($ $) NIL (|has| (-681) (-1174)))) (-1467 (($ $) NIL (|has| (-681) (-1174)))) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| (-681) (-343)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-681) (-301)) (|has| (-681) (-888))))) (-4014 (($ $) NIL (-1559 (-12 (|has| (-681) (-301)) (|has| (-681) (-888))) (|has| (-681) (-357))))) (-2487 (((-412 $) $) NIL (-1559 (-12 (|has| (-681) (-301)) (|has| (-681) (-888))) (|has| (-681) (-357))))) (-1737 (($ $) NIL (-12 (|has| (-681) (-981)) (|has| (-681) (-1174))))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-681) (-301)) (|has| (-681) (-888))))) (-4224 (((-111) $ $) NIL (|has| (-681) (-301)))) (-3307 (((-754)) NIL (|has| (-681) (-362)))) (-1584 (($ $) NIL (|has| (-681) (-1174)))) (-1445 (($ $) NIL (|has| (-681) (-1174)))) (-1628 (($ $) NIL (|has| (-681) (-1174)))) (-1492 (($ $) NIL (|has| (-681) (-1174)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-681) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-681) (-1017 (-401 (-552)))))) (-1703 (((-552) $) NIL) (((-681) $) NIL) (((-401 (-552)) $) NIL (|has| (-681) (-1017 (-401 (-552)))))) (-2342 (($ (-1235 (-681))) NIL) (($ (-1235 (-681)) (-1235 $)) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-681) (-343)))) (-2813 (($ $ $) NIL (|has| (-681) (-301)))) (-4088 (((-671 (-681)) $) NIL) (((-671 (-681)) $ (-1235 $)) NIL)) (-1800 (((-671 (-681)) (-671 $)) NIL) (((-2 (|:| -2515 (-671 (-681))) (|:| |vec| (-1235 (-681)))) (-671 $) (-1235 $)) NIL) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| (-681) (-623 (-552)))) (((-671 (-552)) (-671 $)) NIL (|has| (-681) (-623 (-552))))) (-2091 (((-3 $ "failed") (-401 (-1148 (-681)))) NIL (|has| (-681) (-357))) (($ (-1148 (-681))) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1749 (((-681) $) 29)) (-2859 (((-3 (-401 (-552)) "failed") $) NIL (|has| (-681) (-537)))) (-4229 (((-111) $) NIL (|has| (-681) (-537)))) (-2411 (((-401 (-552)) $) NIL (|has| (-681) (-537)))) (-4154 (((-900)) NIL)) (-1279 (($) NIL (|has| (-681) (-362)))) (-2789 (($ $ $) NIL (|has| (-681) (-301)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| (-681) (-301)))) (-2740 (($) NIL (|has| (-681) (-343)))) (-1415 (((-111) $) NIL (|has| (-681) (-343)))) (-4294 (($ $) NIL (|has| (-681) (-343))) (($ $ (-754)) NIL (|has| (-681) (-343)))) (-1633 (((-111) $) NIL (-1559 (-12 (|has| (-681) (-301)) (|has| (-681) (-888))) (|has| (-681) (-357))))) (-3890 (((-2 (|:| |r| (-681)) (|:| |phi| (-681))) $) NIL (-12 (|has| (-681) (-1037)) (|has| (-681) (-1174))))) (-2951 (($) NIL (|has| (-681) (-1174)))) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| (-681) (-865 (-373)))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| (-681) (-865 (-552))))) (-2641 (((-816 (-900)) $) NIL (|has| (-681) (-343))) (((-900) $) NIL (|has| (-681) (-343)))) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL (-12 (|has| (-681) (-981)) (|has| (-681) (-1174))))) (-2349 (((-681) $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| (-681) (-343)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| (-681) (-301)))) (-4205 (((-1148 (-681)) $) NIL (|has| (-681) (-357)))) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3516 (($ (-1 (-681) (-681)) $) NIL)) (-2886 (((-900) $) NIL (|has| (-681) (-362)))) (-4135 (($ $) NIL (|has| (-681) (-1174)))) (-2079 (((-1148 (-681)) $) NIL)) (-1276 (($ (-627 $)) NIL (|has| (-681) (-301))) (($ $ $) NIL (|has| (-681) (-301)))) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| (-681) (-357)))) (-3002 (($) NIL (|has| (-681) (-343)) CONST)) (-4153 (($ (-900)) NIL (|has| (-681) (-362)))) (-2547 (($) NIL)) (-1759 (((-681) $) 31)) (-1498 (((-1096) $) NIL)) (-2220 (($) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| (-681) (-301)))) (-1323 (($ (-627 $)) NIL (|has| (-681) (-301))) (($ $ $) NIL (|has| (-681) (-301)))) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| (-681) (-343)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-681) (-301)) (|has| (-681) (-888))))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-681) (-301)) (|has| (-681) (-888))))) (-1727 (((-412 $) $) NIL (-1559 (-12 (|has| (-681) (-301)) (|has| (-681) (-888))) (|has| (-681) (-357))))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-681) (-301))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| (-681) (-301)))) (-2761 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-681)) NIL (|has| (-681) (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| (-681) (-301)))) (-3154 (($ $) NIL (|has| (-681) (-1174)))) (-3321 (($ $ (-1152) (-681)) NIL (|has| (-681) (-506 (-1152) (-681)))) (($ $ (-627 (-1152)) (-627 (-681))) NIL (|has| (-681) (-506 (-1152) (-681)))) (($ $ (-627 (-288 (-681)))) NIL (|has| (-681) (-303 (-681)))) (($ $ (-288 (-681))) NIL (|has| (-681) (-303 (-681)))) (($ $ (-681) (-681)) NIL (|has| (-681) (-303 (-681)))) (($ $ (-627 (-681)) (-627 (-681))) NIL (|has| (-681) (-303 (-681))))) (-2718 (((-754) $) NIL (|has| (-681) (-301)))) (-1985 (($ $ (-681)) NIL (|has| (-681) (-280 (-681) (-681))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| (-681) (-301)))) (-1637 (((-681)) NIL) (((-681) (-1235 $)) NIL)) (-4018 (((-3 (-754) "failed") $ $) NIL (|has| (-681) (-343))) (((-754) $) NIL (|has| (-681) (-343)))) (-2942 (($ $ (-1 (-681) (-681))) NIL) (($ $ (-1 (-681) (-681)) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-681) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-681) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-681) (-879 (-1152)))) (($ $ (-1152)) NIL (|has| (-681) (-879 (-1152)))) (($ $ (-754)) NIL (|has| (-681) (-228))) (($ $) NIL (|has| (-681) (-228)))) (-4070 (((-671 (-681)) (-1235 $) (-1 (-681) (-681))) NIL (|has| (-681) (-357)))) (-1376 (((-1148 (-681))) NIL)) (-1640 (($ $) NIL (|has| (-681) (-1174)))) (-1502 (($ $) NIL (|has| (-681) (-1174)))) (-3439 (($) NIL (|has| (-681) (-343)))) (-1615 (($ $) NIL (|has| (-681) (-1174)))) (-1479 (($ $) NIL (|has| (-681) (-1174)))) (-1596 (($ $) NIL (|has| (-681) (-1174)))) (-1456 (($ $) NIL (|has| (-681) (-1174)))) (-3133 (((-671 (-681)) (-1235 $)) NIL) (((-1235 (-681)) $) NIL) (((-671 (-681)) (-1235 $) (-1235 $)) NIL) (((-1235 (-681)) $ (-1235 $)) NIL)) (-3562 (((-528) $) NIL (|has| (-681) (-600 (-528)))) (((-166 (-220)) $) NIL (|has| (-681) (-1001))) (((-166 (-373)) $) NIL (|has| (-681) (-1001))) (((-871 (-373)) $) NIL (|has| (-681) (-600 (-871 (-373))))) (((-871 (-552)) $) NIL (|has| (-681) (-600 (-871 (-552))))) (($ (-1148 (-681))) NIL) (((-1148 (-681)) $) NIL) (($ (-1235 (-681))) NIL) (((-1235 (-681)) $) NIL)) (-2616 (($ $) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-1559 (-12 (|has| (-681) (-301)) (|has| $ (-142)) (|has| (-681) (-888))) (|has| (-681) (-343))))) (-3040 (($ (-681) (-681)) 12)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-552)) NIL) (($ (-681)) NIL) (($ (-166 (-373))) 13) (($ (-166 (-552))) 19) (($ (-166 (-681))) 28) (($ (-166 (-683))) 25) (((-166 (-373)) $) 33) (($ (-401 (-552))) NIL (-1559 (|has| (-681) (-1017 (-401 (-552)))) (|has| (-681) (-357))))) (-3050 (($ $) NIL (|has| (-681) (-343))) (((-3 $ "failed") $) NIL (-1559 (-12 (|has| (-681) (-301)) (|has| $ (-142)) (|has| (-681) (-888))) (|has| (-681) (-142))))) (-2410 (((-1148 (-681)) $) NIL)) (-3995 (((-754)) NIL)) (-2957 (((-1235 $)) NIL)) (-1673 (($ $) NIL (|has| (-681) (-1174)))) (-1534 (($ $) NIL (|has| (-681) (-1174)))) (-3778 (((-111) $ $) NIL)) (-1652 (($ $) NIL (|has| (-681) (-1174)))) (-1513 (($ $) NIL (|has| (-681) (-1174)))) (-1697 (($ $) NIL (|has| (-681) (-1174)))) (-1561 (($ $) NIL (|has| (-681) (-1174)))) (-1731 (((-681) $) NIL (|has| (-681) (-1174)))) (-3519 (($ $) NIL (|has| (-681) (-1174)))) (-1575 (($ $) NIL (|has| (-681) (-1174)))) (-1686 (($ $) NIL (|has| (-681) (-1174)))) (-1547 (($ $) NIL (|has| (-681) (-1174)))) (-1661 (($ $) NIL (|has| (-681) (-1174)))) (-1524 (($ $) NIL (|has| (-681) (-1174)))) (-3329 (($ $) NIL (|has| (-681) (-1037)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-1 (-681) (-681))) NIL) (($ $ (-1 (-681) (-681)) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-681) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-681) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-681) (-879 (-1152)))) (($ $ (-1152)) NIL (|has| (-681) (-879 (-1152)))) (($ $ (-754)) NIL (|has| (-681) (-228))) (($ $) NIL (|has| (-681) (-228)))) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL (|has| (-681) (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ $) NIL (|has| (-681) (-1174))) (($ $ (-401 (-552))) NIL (-12 (|has| (-681) (-981)) (|has| (-681) (-1174)))) (($ $ (-552)) NIL (|has| (-681) (-357)))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ (-681) $) NIL) (($ $ (-681)) NIL) (($ (-401 (-552)) $) NIL (|has| (-681) (-357))) (($ $ (-401 (-552))) NIL (|has| (-681) (-357))))) +(((-676) (-13 (-381) (-163 (-681)) (-10 -8 (-15 -1477 ($ (-166 (-373)))) (-15 -1477 ($ (-166 (-552)))) (-15 -1477 ($ (-166 (-681)))) (-15 -1477 ($ (-166 (-683)))) (-15 -1477 ((-166 (-373)) $))))) (T -676)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-676)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-166 (-552))) (-5 *1 (-676)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-166 (-681))) (-5 *1 (-676)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-166 (-683))) (-5 *1 (-676)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-676))))) +(-13 (-381) (-163 (-681)) (-10 -8 (-15 -1477 ($ (-166 (-373)))) (-15 -1477 ($ (-166 (-552)))) (-15 -1477 ($ (-166 (-681)))) (-15 -1477 ($ (-166 (-683)))) (-15 -1477 ((-166 (-373)) $)))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) 8)) (-4289 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-2820 (($ $) 62)) (-3370 (($ $) 58 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2265 (($ |#1| $) 47 (|has| $ (-6 -4366))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4366)))) (-4342 (($ |#1| $) 57 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4366)))) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-4165 ((|#1| $) 39)) (-3954 (($ |#1| $) 40) (($ |#1| $ (-754)) 63)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-3131 (((-627 (-2 (|:| -2162 |#1|) (|:| -1509 (-754)))) $) 61)) (-3028 (($) 49) (($ (-627 |#1|)) 48)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 59 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 50)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) 42)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-677 |#1|) (-137) (-1076)) (T -677)) +((-3954 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *1 (-677 *2)) (-4 *2 (-1076)))) (-2820 (*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1076)))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-677 *3)) (-4 *3 (-1076)) (-5 *2 (-627 (-2 (|:| -2162 *3) (|:| -1509 (-754)))))))) +(-13 (-230 |t#1|) (-10 -8 (-15 -3954 ($ |t#1| $ (-754))) (-15 -2820 ($ $)) (-15 -3131 ((-627 (-2 (|:| -2162 |t#1|) (|:| -1509 (-754)))) $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-230 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) +((-3787 (((-627 |#1|) (-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552)))) (-552)) 47)) (-2365 ((|#1| |#1| (-552)) 46)) (-1323 ((|#1| |#1| |#1| (-552)) 36)) (-1727 (((-627 |#1|) |#1| (-552)) 39)) (-4207 ((|#1| |#1| (-552) |#1| (-552)) 32)) (-2151 (((-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552)))) |#1| (-552)) 45))) +(((-678 |#1|) (-10 -7 (-15 -1323 (|#1| |#1| |#1| (-552))) (-15 -2365 (|#1| |#1| (-552))) (-15 -1727 ((-627 |#1|) |#1| (-552))) (-15 -2151 ((-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552)))) |#1| (-552))) (-15 -3787 ((-627 |#1|) (-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552)))) (-552))) (-15 -4207 (|#1| |#1| (-552) |#1| (-552)))) (-1211 (-552))) (T -678)) +((-4207 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-678 *2)) (-4 *2 (-1211 *3)))) (-3787 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-2 (|:| -1727 *5) (|:| -3567 (-552))))) (-5 *4 (-552)) (-4 *5 (-1211 *4)) (-5 *2 (-627 *5)) (-5 *1 (-678 *5)))) (-2151 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-5 *2 (-627 (-2 (|:| -1727 *3) (|:| -3567 *4)))) (-5 *1 (-678 *3)) (-4 *3 (-1211 *4)))) (-1727 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-5 *2 (-627 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1211 *4)))) (-2365 (*1 *2 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-678 *2)) (-4 *2 (-1211 *3)))) (-1323 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-678 *2)) (-4 *2 (-1211 *3))))) +(-10 -7 (-15 -1323 (|#1| |#1| |#1| (-552))) (-15 -2365 (|#1| |#1| (-552))) (-15 -1727 ((-627 |#1|) |#1| (-552))) (-15 -2151 ((-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552)))) |#1| (-552))) (-15 -3787 ((-627 |#1|) (-627 (-2 (|:| -1727 |#1|) (|:| -3567 (-552)))) (-552))) (-15 -4207 (|#1| |#1| (-552) |#1| (-552)))) +((-2975 (((-1 (-922 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220) (-220))) 17)) (-3932 (((-1109 (-220)) (-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-627 (-257))) 40) (((-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-627 (-257))) 42) (((-1109 (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1070 (-220)) (-1070 (-220)) (-627 (-257))) 44)) (-4249 (((-1109 (-220)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-627 (-257))) NIL)) (-2552 (((-1109 (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1070 (-220)) (-1070 (-220)) (-627 (-257))) 45))) +(((-679) (-10 -7 (-15 -3932 ((-1109 (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1070 (-220)) (-1070 (-220)) (-627 (-257)))) (-15 -3932 ((-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-627 (-257)))) (-15 -3932 ((-1109 (-220)) (-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-627 (-257)))) (-15 -2552 ((-1109 (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1070 (-220)) (-1070 (-220)) (-627 (-257)))) (-15 -4249 ((-1109 (-220)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-627 (-257)))) (-15 -2975 ((-1 (-922 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220) (-220)))))) (T -679)) +((-2975 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1 (-220) (-220) (-220) (-220))) (-5 *2 (-1 (-922 (-220)) (-220) (-220))) (-5 *1 (-679)))) (-4249 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) (-5 *5 (-1070 (-220))) (-5 *6 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-679)))) (-2552 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-3 (-1 (-220) (-220) (-220) (-220)) "undefined")) (-5 *5 (-1070 (-220))) (-5 *6 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-679)))) (-3932 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1109 (-220))) (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-220))) (-5 *5 (-627 (-257))) (-5 *1 (-679)))) (-3932 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-220))) (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-679)))) (-3932 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-3 (-1 (-220) (-220) (-220) (-220)) "undefined")) (-5 *5 (-1070 (-220))) (-5 *6 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-679))))) +(-10 -7 (-15 -3932 ((-1109 (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1070 (-220)) (-1070 (-220)) (-627 (-257)))) (-15 -3932 ((-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-627 (-257)))) (-15 -3932 ((-1109 (-220)) (-1109 (-220)) (-1 (-922 (-220)) (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-627 (-257)))) (-15 -2552 ((-1109 (-220)) (-1 (-220) (-220) (-220)) (-3 (-1 (-220) (-220) (-220) (-220)) "undefined") (-1070 (-220)) (-1070 (-220)) (-627 (-257)))) (-15 -4249 ((-1109 (-220)) (-310 (-552)) (-310 (-552)) (-310 (-552)) (-1 (-220) (-220)) (-1070 (-220)) (-627 (-257)))) (-15 -2975 ((-1 (-922 (-220)) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220)) (-1 (-220) (-220) (-220) (-220))))) +((-1727 (((-412 (-1148 |#4|)) (-1148 |#4|)) 73) (((-412 |#4|) |#4|) 221))) +(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1727 ((-412 |#4|) |#4|)) (-15 -1727 ((-412 (-1148 |#4|)) (-1148 |#4|)))) (-830) (-776) (-343) (-928 |#3| |#2| |#1|)) (T -680)) +((-1727 (*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-776)) (-4 *6 (-343)) (-4 *7 (-928 *6 *5 *4)) (-5 *2 (-412 (-1148 *7))) (-5 *1 (-680 *4 *5 *6 *7)) (-5 *3 (-1148 *7)))) (-1727 (*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-776)) (-4 *6 (-343)) (-5 *2 (-412 *3)) (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-928 *6 *5 *4))))) +(-10 -7 (-15 -1727 ((-412 |#4|) |#4|)) (-15 -1727 ((-412 (-1148 |#4|)) (-1148 |#4|)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 84)) (-3471 (((-552) $) 30)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4019 (($ $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1737 (($ $) NIL)) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL)) (-3887 (($) NIL T CONST)) (-2635 (($ $) NIL)) (-4039 (((-3 (-552) "failed") $) 73) (((-3 (-401 (-552)) "failed") $) 26) (((-3 (-373) "failed") $) 70)) (-1703 (((-552) $) 75) (((-401 (-552)) $) 67) (((-373) $) 68)) (-2813 (($ $ $) 96)) (-2040 (((-3 $ "failed") $) 87)) (-2789 (($ $ $) 95)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-3284 (((-900)) 77) (((-900) (-900)) 76)) (-2983 (((-111) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL)) (-2641 (((-552) $) NIL)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL)) (-2349 (($ $) NIL)) (-1508 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2770 (((-552) (-552)) 81) (((-552)) 82)) (-1816 (($ $ $) NIL) (($) NIL (-12 (-1681 (|has| $ (-6 -4349))) (-1681 (|has| $ (-6 -4357)))))) (-1381 (((-552) (-552)) 79) (((-552)) 80)) (-4093 (($ $ $) NIL) (($) NIL (-12 (-1681 (|has| $ (-6 -4349))) (-1681 (|has| $ (-6 -4357)))))) (-2948 (((-552) $) 16)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 91)) (-3964 (((-900) (-552)) NIL (|has| $ (-6 -4357)))) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL)) (-2060 (($ $) NIL)) (-2103 (($ (-552) (-552)) NIL) (($ (-552) (-552) (-900)) NIL)) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) 92)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4067 (((-552) $) 22)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 94)) (-3080 (((-900)) NIL) (((-900) (-900)) NIL (|has| $ (-6 -4357)))) (-2531 (((-900) (-552)) NIL (|has| $ (-6 -4357)))) (-3562 (((-373) $) NIL) (((-220) $) NIL) (((-871 (-373)) $) NIL)) (-1477 (((-842) $) 52) (($ (-552)) 63) (($ $) NIL) (($ (-401 (-552))) 66) (($ (-552)) 63) (($ (-401 (-552))) 66) (($ (-373)) 60) (((-373) $) 50) (($ (-683)) 55)) (-3995 (((-754)) 103)) (-4222 (($ (-552) (-552) (-900)) 44)) (-3796 (($ $) NIL)) (-3580 (((-900)) NIL) (((-900) (-900)) NIL (|has| $ (-6 -4357)))) (-2705 (((-900)) 35) (((-900) (-900)) 78)) (-3778 (((-111) $ $) NIL)) (-3329 (($ $) NIL)) (-1922 (($) 32 T CONST)) (-1933 (($) 17 T CONST)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 83)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 101)) (-2407 (($ $ $) 65)) (-2396 (($ $) 99) (($ $ $) 100)) (-2384 (($ $ $) 98)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL) (($ $ (-401 (-552))) 90)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 97) (($ $ $) 88) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) +(((-681) (-13 (-398) (-381) (-357) (-1017 (-373)) (-1017 (-401 (-552))) (-144) (-10 -8 (-15 -3284 ((-900) (-900))) (-15 -3284 ((-900))) (-15 -2705 ((-900) (-900))) (-15 -1381 ((-552) (-552))) (-15 -1381 ((-552))) (-15 -2770 ((-552) (-552))) (-15 -2770 ((-552))) (-15 -1477 ((-373) $)) (-15 -1477 ($ (-683))) (-15 -2948 ((-552) $)) (-15 -4067 ((-552) $)) (-15 -4222 ($ (-552) (-552) (-900)))))) (T -681)) +((-4067 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-681)))) (-2948 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-681)))) (-3284 (*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-681)))) (-3284 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-681)))) (-2705 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-681)))) (-1381 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-681)))) (-1381 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-681)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-681)))) (-2770 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-681)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-373)) (-5 *1 (-681)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-683)) (-5 *1 (-681)))) (-4222 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-900)) (-5 *1 (-681))))) +(-13 (-398) (-381) (-357) (-1017 (-373)) (-1017 (-401 (-552))) (-144) (-10 -8 (-15 -3284 ((-900) (-900))) (-15 -3284 ((-900))) (-15 -2705 ((-900) (-900))) (-15 -1381 ((-552) (-552))) (-15 -1381 ((-552))) (-15 -2770 ((-552) (-552))) (-15 -2770 ((-552))) (-15 -1477 ((-373) $)) (-15 -1477 ($ (-683))) (-15 -2948 ((-552) $)) (-15 -4067 ((-552) $)) (-15 -4222 ($ (-552) (-552) (-900))))) +((-4315 (((-671 |#1|) (-671 |#1|) |#1| |#1|) 65)) (-1472 (((-671 |#1|) (-671 |#1|) |#1|) 48)) (-1556 (((-671 |#1|) (-671 |#1|) |#1|) 66)) (-3031 (((-671 |#1|) (-671 |#1|)) 49)) (-2867 (((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|) 64))) +(((-682 |#1|) (-10 -7 (-15 -3031 ((-671 |#1|) (-671 |#1|))) (-15 -1472 ((-671 |#1|) (-671 |#1|) |#1|)) (-15 -1556 ((-671 |#1|) (-671 |#1|) |#1|)) (-15 -4315 ((-671 |#1|) (-671 |#1|) |#1| |#1|)) (-15 -2867 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|))) (-301)) (T -682)) +((-2867 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-682 *3)) (-4 *3 (-301)))) (-4315 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-671 *3)) (-4 *3 (-301)) (-5 *1 (-682 *3)))) (-1556 (*1 *2 *2 *3) (-12 (-5 *2 (-671 *3)) (-4 *3 (-301)) (-5 *1 (-682 *3)))) (-1472 (*1 *2 *2 *3) (-12 (-5 *2 (-671 *3)) (-4 *3 (-301)) (-5 *1 (-682 *3)))) (-3031 (*1 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-301)) (-5 *1 (-682 *3))))) +(-10 -7 (-15 -3031 ((-671 |#1|) (-671 |#1|))) (-15 -1472 ((-671 |#1|) (-671 |#1|) |#1|)) (-15 -1556 ((-671 |#1|) (-671 |#1|) |#1|)) (-15 -4315 ((-671 |#1|) (-671 |#1|) |#1| |#1|)) (-15 -2867 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-2002 (($ $ $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $ $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL)) (-1452 (($ $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) 27)) (-1703 (((-552) $) 25)) (-2813 (($ $ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2859 (((-3 (-401 (-552)) "failed") $) NIL)) (-4229 (((-111) $) NIL)) (-2411 (((-401 (-552)) $) NIL)) (-1279 (($ $) NIL) (($) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-3428 (($ $ $ $) NIL)) (-3537 (($ $ $) NIL)) (-2983 (((-111) $) NIL)) (-1868 (($ $ $) NIL)) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL)) (-2624 (((-111) $) NIL)) (-1394 (((-111) $) NIL)) (-4317 (((-3 $ "failed") $) NIL)) (-1508 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1969 (($ $ $ $) NIL)) (-1816 (($ $ $) NIL)) (-2454 (((-900) (-900)) 10) (((-900)) 9)) (-4093 (($ $ $) NIL)) (-4117 (($ $) NIL)) (-3593 (($ $) NIL)) (-1276 (($ (-627 $)) NIL) (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-3556 (($ $ $) NIL)) (-3002 (($) NIL T CONST)) (-3445 (($ $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ (-627 $)) NIL) (($ $ $) NIL)) (-2610 (($ $) NIL)) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1507 (((-111) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $) NIL) (($ $ (-754)) NIL)) (-1313 (($ $) NIL)) (-2973 (($ $) NIL)) (-3562 (((-220) $) NIL) (((-373) $) NIL) (((-871 (-552)) $) NIL) (((-528) $) NIL) (((-552) $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) 24) (($ $) NIL) (($ (-552)) 24) (((-310 $) (-310 (-552))) 18)) (-3995 (((-754)) NIL)) (-3240 (((-111) $ $) NIL)) (-3697 (($ $ $) NIL)) (-2705 (($) NIL)) (-3778 (((-111) $ $) NIL)) (-2166 (($ $ $ $) NIL)) (-3329 (($ $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $) NIL) (($ $ (-754)) NIL)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL))) +(((-683) (-13 (-381) (-537) (-10 -8 (-15 -2454 ((-900) (-900))) (-15 -2454 ((-900))) (-15 -1477 ((-310 $) (-310 (-552))))))) (T -683)) +((-2454 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-683)))) (-2454 (*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-683)))) (-1477 (*1 *2 *3) (-12 (-5 *3 (-310 (-552))) (-5 *2 (-310 (-683))) (-5 *1 (-683))))) +(-13 (-381) (-537) (-10 -8 (-15 -2454 ((-900) (-900))) (-15 -2454 ((-900))) (-15 -1477 ((-310 $) (-310 (-552)))))) +((-2477 (((-1 |#4| |#2| |#3|) |#1| (-1152) (-1152)) 19)) (-4061 (((-1 |#4| |#2| |#3|) (-1152)) 12))) +(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4061 ((-1 |#4| |#2| |#3|) (-1152))) (-15 -2477 ((-1 |#4| |#2| |#3|) |#1| (-1152) (-1152)))) (-600 (-528)) (-1189) (-1189) (-1189)) (T -684)) +((-2477 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1152)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-684 *3 *5 *6 *7)) (-4 *3 (-600 (-528))) (-4 *5 (-1189)) (-4 *6 (-1189)) (-4 *7 (-1189)))) (-4061 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-684 *4 *5 *6 *7)) (-4 *4 (-600 (-528))) (-4 *5 (-1189)) (-4 *6 (-1189)) (-4 *7 (-1189))))) +(-10 -7 (-15 -4061 ((-1 |#4| |#2| |#3|) (-1152))) (-15 -2477 ((-1 |#4| |#2| |#3|) |#1| (-1152) (-1152)))) +((-1465 (((-111) $ $) NIL)) (-2944 (((-1240) $ (-754)) 14)) (-2967 (((-754) $) 12)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 25)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 24))) +(((-685 |#1|) (-13 (-130) (-599 |#1|) (-10 -8 (-15 -1477 ($ |#1|)))) (-1076)) (T -685)) +((-1477 (*1 *1 *2) (-12 (-5 *1 (-685 *2)) (-4 *2 (-1076))))) +(-13 (-130) (-599 |#1|) (-10 -8 (-15 -1477 ($ |#1|)))) +((-2575 (((-1 (-220) (-220) (-220)) |#1| (-1152) (-1152)) 34) (((-1 (-220) (-220)) |#1| (-1152)) 39))) +(((-686 |#1|) (-10 -7 (-15 -2575 ((-1 (-220) (-220)) |#1| (-1152))) (-15 -2575 ((-1 (-220) (-220) (-220)) |#1| (-1152) (-1152)))) (-600 (-528))) (T -686)) +((-2575 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1152)) (-5 *2 (-1 (-220) (-220) (-220))) (-5 *1 (-686 *3)) (-4 *3 (-600 (-528))))) (-2575 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-5 *2 (-1 (-220) (-220))) (-5 *1 (-686 *3)) (-4 *3 (-600 (-528)))))) +(-10 -7 (-15 -2575 ((-1 (-220) (-220)) |#1| (-1152))) (-15 -2575 ((-1 (-220) (-220) (-220)) |#1| (-1152) (-1152)))) +((-4218 (((-1152) |#1| (-1152) (-627 (-1152))) 9) (((-1152) |#1| (-1152) (-1152) (-1152)) 12) (((-1152) |#1| (-1152) (-1152)) 11) (((-1152) |#1| (-1152)) 10))) +(((-687 |#1|) (-10 -7 (-15 -4218 ((-1152) |#1| (-1152))) (-15 -4218 ((-1152) |#1| (-1152) (-1152))) (-15 -4218 ((-1152) |#1| (-1152) (-1152) (-1152))) (-15 -4218 ((-1152) |#1| (-1152) (-627 (-1152))))) (-600 (-528))) (T -687)) +((-4218 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-627 (-1152))) (-5 *2 (-1152)) (-5 *1 (-687 *3)) (-4 *3 (-600 (-528))))) (-4218 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-687 *3)) (-4 *3 (-600 (-528))))) (-4218 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-687 *3)) (-4 *3 (-600 (-528))))) (-4218 (*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-687 *3)) (-4 *3 (-600 (-528)))))) +(-10 -7 (-15 -4218 ((-1152) |#1| (-1152))) (-15 -4218 ((-1152) |#1| (-1152) (-1152))) (-15 -4218 ((-1152) |#1| (-1152) (-1152) (-1152))) (-15 -4218 ((-1152) |#1| (-1152) (-627 (-1152))))) +((-2605 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-688 |#1| |#2|) (-10 -7 (-15 -2605 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1189) (-1189)) (T -688)) +((-2605 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-688 *3 *4)) (-4 *3 (-1189)) (-4 *4 (-1189))))) +(-10 -7 (-15 -2605 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-4159 (((-1 |#3| |#2|) (-1152)) 11)) (-2477 (((-1 |#3| |#2|) |#1| (-1152)) 21))) +(((-689 |#1| |#2| |#3|) (-10 -7 (-15 -4159 ((-1 |#3| |#2|) (-1152))) (-15 -2477 ((-1 |#3| |#2|) |#1| (-1152)))) (-600 (-528)) (-1189) (-1189)) (T -689)) +((-2477 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *3 *5 *6)) (-4 *3 (-600 (-528))) (-4 *5 (-1189)) (-4 *6 (-1189)))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *4 *5 *6)) (-4 *4 (-600 (-528))) (-4 *5 (-1189)) (-4 *6 (-1189))))) +(-10 -7 (-15 -4159 ((-1 |#3| |#2|) (-1152))) (-15 -2477 ((-1 |#3| |#2|) |#1| (-1152)))) +((-2233 (((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-627 |#2|) (-627 (-1148 |#4|)) (-627 |#3|) (-627 |#4|) (-627 (-627 (-2 (|:| -3247 (-754)) (|:| |pcoef| |#4|)))) (-627 (-754)) (-1235 (-627 (-1148 |#3|))) |#3|) 62)) (-2724 (((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-627 |#2|) (-627 (-1148 |#3|)) (-627 |#3|) (-627 |#4|) (-627 (-754)) |#3|) 75)) (-4177 (((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-627 |#2|) (-627 |#3|) (-627 (-754)) (-627 (-1148 |#4|)) (-1235 (-627 (-1148 |#3|))) |#3|) 34))) +(((-690 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4177 ((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-627 |#2|) (-627 |#3|) (-627 (-754)) (-627 (-1148 |#4|)) (-1235 (-627 (-1148 |#3|))) |#3|)) (-15 -2724 ((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-627 |#2|) (-627 (-1148 |#3|)) (-627 |#3|) (-627 |#4|) (-627 (-754)) |#3|)) (-15 -2233 ((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-627 |#2|) (-627 (-1148 |#4|)) (-627 |#3|) (-627 |#4|) (-627 (-627 (-2 (|:| -3247 (-754)) (|:| |pcoef| |#4|)))) (-627 (-754)) (-1235 (-627 (-1148 |#3|))) |#3|))) (-776) (-830) (-301) (-928 |#3| |#1| |#2|)) (T -690)) +((-2233 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-627 (-1148 *13))) (-5 *3 (-1148 *13)) (-5 *4 (-627 *12)) (-5 *5 (-627 *10)) (-5 *6 (-627 *13)) (-5 *7 (-627 (-627 (-2 (|:| -3247 (-754)) (|:| |pcoef| *13))))) (-5 *8 (-627 (-754))) (-5 *9 (-1235 (-627 (-1148 *10)))) (-4 *12 (-830)) (-4 *10 (-301)) (-4 *13 (-928 *10 *11 *12)) (-4 *11 (-776)) (-5 *1 (-690 *11 *12 *10 *13)))) (-2724 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-627 *11)) (-5 *5 (-627 (-1148 *9))) (-5 *6 (-627 *9)) (-5 *7 (-627 *12)) (-5 *8 (-627 (-754))) (-4 *11 (-830)) (-4 *9 (-301)) (-4 *12 (-928 *9 *10 *11)) (-4 *10 (-776)) (-5 *2 (-627 (-1148 *12))) (-5 *1 (-690 *10 *11 *9 *12)) (-5 *3 (-1148 *12)))) (-4177 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-627 (-1148 *11))) (-5 *3 (-1148 *11)) (-5 *4 (-627 *10)) (-5 *5 (-627 *8)) (-5 *6 (-627 (-754))) (-5 *7 (-1235 (-627 (-1148 *8)))) (-4 *10 (-830)) (-4 *8 (-301)) (-4 *11 (-928 *8 *9 *10)) (-4 *9 (-776)) (-5 *1 (-690 *9 *10 *8 *11))))) +(-10 -7 (-15 -4177 ((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-627 |#2|) (-627 |#3|) (-627 (-754)) (-627 (-1148 |#4|)) (-1235 (-627 (-1148 |#3|))) |#3|)) (-15 -2724 ((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-627 |#2|) (-627 (-1148 |#3|)) (-627 |#3|) (-627 |#4|) (-627 (-754)) |#3|)) (-15 -2233 ((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-627 |#2|) (-627 (-1148 |#4|)) (-627 |#3|) (-627 |#4|) (-627 (-627 (-2 (|:| -3247 (-754)) (|:| |pcoef| |#4|)))) (-627 (-754)) (-1235 (-627 (-1148 |#3|))) |#3|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2014 (($ $) 39)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1832 (($ |#1| (-754)) 37)) (-3465 (((-754) $) 41)) (-1993 ((|#1| $) 40)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3567 (((-754) $) 42)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 36 (|has| |#1| (-169)))) (-1889 ((|#1| $ (-754)) 38)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43))) +(((-691 |#1|) (-137) (-1028)) (T -691)) +((-3567 (*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1028)) (-5 *2 (-754)))) (-3465 (*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1028)) (-5 *2 (-754)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-691 *2)) (-4 *2 (-1028)))) (-2014 (*1 *1 *1) (-12 (-4 *1 (-691 *2)) (-4 *2 (-1028)))) (-1889 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *1 (-691 *2)) (-4 *2 (-1028)))) (-1832 (*1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-691 *2)) (-4 *2 (-1028))))) +(-13 (-1028) (-110 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3567 ((-754) $)) (-15 -3465 ((-754) $)) (-15 -1993 (|t#1| $)) (-15 -2014 ($ $)) (-15 -1889 (|t#1| $ (-754))) (-15 -1832 ($ |t#1| (-754))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-700 |#1|) |has| |#1| (-169)) ((-709) . T) ((-1034 |#1|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-3516 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-692 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3516 (|#6| (-1 |#4| |#1|) |#3|))) (-544) (-1211 |#1|) (-1211 (-401 |#2|)) (-544) (-1211 |#4|) (-1211 (-401 |#5|))) (T -692)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-544)) (-4 *7 (-544)) (-4 *6 (-1211 *5)) (-4 *2 (-1211 (-401 *8))) (-5 *1 (-692 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1211 (-401 *6))) (-4 *8 (-1211 *7))))) +(-10 -7 (-15 -3516 (|#6| (-1 |#4| |#1|) |#3|))) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1972 (((-1134) (-842)) 31)) (-4291 (((-1240) (-1134)) 28)) (-3260 (((-1134) (-842)) 24)) (-3577 (((-1134) (-842)) 25)) (-1477 (((-842) $) NIL) (((-1134) (-842)) 23)) (-2292 (((-111) $ $) NIL))) +(((-693) (-13 (-1076) (-10 -7 (-15 -1477 ((-1134) (-842))) (-15 -3260 ((-1134) (-842))) (-15 -3577 ((-1134) (-842))) (-15 -1972 ((-1134) (-842))) (-15 -4291 ((-1240) (-1134)))))) (T -693)) +((-1477 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1134)) (-5 *1 (-693)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1134)) (-5 *1 (-693)))) (-3577 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1134)) (-5 *1 (-693)))) (-1972 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1134)) (-5 *1 (-693)))) (-4291 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-693))))) +(-13 (-1076) (-10 -7 (-15 -1477 ((-1134) (-842))) (-15 -3260 ((-1134) (-842))) (-15 -3577 ((-1134) (-842))) (-15 -1972 ((-1134) (-842))) (-15 -4291 ((-1240) (-1134))))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-2813 (($ $ $) NIL)) (-2091 (($ |#1| |#2|) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2624 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3484 ((|#2| $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3677 (((-3 $ "failed") $ $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) ((|#1| $) NIL)) (-3995 (((-754)) NIL)) (-3778 (((-111) $ $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) +(((-694 |#1| |#2| |#3| |#4| |#5|) (-13 (-357) (-10 -8 (-15 -3484 (|#2| $)) (-15 -1477 (|#1| $)) (-15 -2091 ($ |#1| |#2|)) (-15 -3677 ((-3 $ "failed") $ $)))) (-169) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -694)) +((-3484 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-694 *3 *2 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1477 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2091 (*1 *1 *2 *3) (-12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3677 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-357) (-10 -8 (-15 -3484 (|#2| $)) (-15 -1477 (|#1| $)) (-15 -2091 ($ |#1| |#2|)) (-15 -3677 ((-3 $ "failed") $ $)))) +((-1465 (((-111) $ $) 78)) (-3024 (((-111) $) 30)) (-2449 (((-1235 |#1|) $ (-754)) NIL)) (-1853 (((-627 (-1058)) $) NIL)) (-4027 (($ (-1148 |#1|)) NIL)) (-1694 (((-1148 $) $ (-1058)) NIL) (((-1148 |#1|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-1058))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1340 (($ $ $) NIL (|has| |#1| (-544)))) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4014 (($ $) NIL (|has| |#1| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-3307 (((-754)) 47 (|has| |#1| (-362)))) (-1611 (($ $ (-754)) NIL)) (-3123 (($ $ (-754)) NIL)) (-2650 ((|#2| |#2|) 44)) (-4194 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-445)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-1058) "failed") $) NIL)) (-1703 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-1058) $) NIL)) (-3116 (($ $ $ (-1058)) NIL (|has| |#1| (-169))) ((|#1| $ $) NIL (|has| |#1| (-169)))) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) 34)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2091 (($ |#2|) 42)) (-2040 (((-3 $ "failed") $) 86)) (-1279 (($) 51 (|has| |#1| (-362)))) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-1419 (($ $ $) NIL)) (-3955 (($ $ $) NIL (|has| |#1| (-544)))) (-2148 (((-2 (|:| -3069 |#1|) (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-544)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1375 (($ $) NIL (|has| |#1| (-445))) (($ $ (-1058)) NIL (|has| |#1| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#1| (-888)))) (-3594 (((-937 $)) 80)) (-2061 (($ $ |#1| (-754) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-1058) (-865 (-373))) (|has| |#1| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-1058) (-865 (-552))) (|has| |#1| (-865 (-552)))))) (-2641 (((-754) $ $) NIL (|has| |#1| (-544)))) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-1127)))) (-1842 (($ (-1148 |#1|) (-1058)) NIL) (($ (-1148 $) (-1058)) NIL)) (-3322 (($ $ (-754)) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-754)) 77) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-1058)) NIL) (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-3484 ((|#2|) 45)) (-3465 (((-754) $) NIL) (((-754) $ (-1058)) NIL) (((-627 (-754)) $ (-627 (-1058))) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3813 (($ (-1 (-754) (-754)) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1578 (((-1148 |#1|) $) NIL)) (-2685 (((-3 (-1058) "failed") $) NIL)) (-2886 (((-900) $) NIL (|has| |#1| (-362)))) (-2079 ((|#2| $) 41)) (-1981 (($ $) NIL)) (-1993 ((|#1| $) 28)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1595 (((-1134) $) NIL)) (-3341 (((-2 (|:| -2404 $) (|:| -3401 $)) $ (-754)) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-1058)) (|:| -4067 (-754))) "failed") $) NIL)) (-2747 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3002 (($) NIL (|has| |#1| (-1127)) CONST)) (-4153 (($ (-900)) NIL (|has| |#1| (-362)))) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 ((|#1| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-2760 (($ $) 79 (|has| |#1| (-343)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-888)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-1058) |#1|) NIL) (($ $ (-627 (-1058)) (-627 |#1|)) NIL) (($ $ (-1058) $) NIL) (($ $ (-627 (-1058)) (-627 $)) NIL)) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-401 $) (-401 $) (-401 $)) NIL (|has| |#1| (-544))) ((|#1| (-401 $) |#1|) NIL (|has| |#1| (-357))) (((-401 $) $ (-401 $)) NIL (|has| |#1| (-544)))) (-3719 (((-3 $ "failed") $ (-754)) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 87 (|has| |#1| (-357)))) (-1637 (($ $ (-1058)) NIL (|has| |#1| (-169))) ((|#1| $) NIL (|has| |#1| (-169)))) (-2942 (($ $ (-1058)) NIL) (($ $ (-627 (-1058))) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL) (($ $ (-754)) NIL) (($ $) NIL) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3567 (((-754) $) 32) (((-754) $ (-1058)) NIL) (((-627 (-754)) $ (-627 (-1058))) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-1058) (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-1058) (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-1058) (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3495 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ (-1058)) NIL (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-888))))) (-4276 (((-937 $)) 36)) (-2749 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544))) (((-3 (-401 $) "failed") (-401 $) $) NIL (|has| |#1| (-544)))) (-1477 (((-842) $) 61) (($ (-552)) NIL) (($ |#1|) 58) (($ (-1058)) NIL) (($ |#2|) 68) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-754)) 63) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#1| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1922 (($) 20 T CONST)) (-3018 (((-1235 |#1|) $) 75)) (-1368 (($ (-1235 |#1|)) 50)) (-1933 (($) 8 T CONST)) (-4251 (($ $ (-1058)) NIL) (($ $ (-627 (-1058))) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL) (($ $ (-754)) NIL) (($ $) NIL) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2741 (((-1235 |#1|) $) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) 69)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) 72) (($ $ $) NIL)) (-2384 (($ $ $) 33)) (** (($ $ (-900)) NIL) (($ $ (-754)) 81)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 57) (($ $ $) 74) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) +(((-695 |#1| |#2|) (-13 (-1211 |#1|) (-10 -8 (-15 -2650 (|#2| |#2|)) (-15 -3484 (|#2|)) (-15 -2091 ($ |#2|)) (-15 -2079 (|#2| $)) (-15 -1477 ($ |#2|)) (-15 -3018 ((-1235 |#1|) $)) (-15 -1368 ($ (-1235 |#1|))) (-15 -2741 ((-1235 |#1|) $)) (-15 -3594 ((-937 $))) (-15 -4276 ((-937 $))) (IF (|has| |#1| (-343)) (-15 -2760 ($ $)) |%noBranch|) (IF (|has| |#1| (-362)) (-6 (-362)) |%noBranch|))) (-1028) (-1211 |#1|)) (T -695)) +((-2650 (*1 *2 *2) (-12 (-4 *3 (-1028)) (-5 *1 (-695 *3 *2)) (-4 *2 (-1211 *3)))) (-3484 (*1 *2) (-12 (-4 *2 (-1211 *3)) (-5 *1 (-695 *3 *2)) (-4 *3 (-1028)))) (-2091 (*1 *1 *2) (-12 (-4 *3 (-1028)) (-5 *1 (-695 *3 *2)) (-4 *2 (-1211 *3)))) (-2079 (*1 *2 *1) (-12 (-4 *2 (-1211 *3)) (-5 *1 (-695 *3 *2)) (-4 *3 (-1028)))) (-1477 (*1 *1 *2) (-12 (-4 *3 (-1028)) (-5 *1 (-695 *3 *2)) (-4 *2 (-1211 *3)))) (-3018 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-5 *2 (-1235 *3)) (-5 *1 (-695 *3 *4)) (-4 *4 (-1211 *3)))) (-1368 (*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-1028)) (-5 *1 (-695 *3 *4)) (-4 *4 (-1211 *3)))) (-2741 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-5 *2 (-1235 *3)) (-5 *1 (-695 *3 *4)) (-4 *4 (-1211 *3)))) (-3594 (*1 *2) (-12 (-4 *3 (-1028)) (-5 *2 (-937 (-695 *3 *4))) (-5 *1 (-695 *3 *4)) (-4 *4 (-1211 *3)))) (-4276 (*1 *2) (-12 (-4 *3 (-1028)) (-5 *2 (-937 (-695 *3 *4))) (-5 *1 (-695 *3 *4)) (-4 *4 (-1211 *3)))) (-2760 (*1 *1 *1) (-12 (-4 *2 (-343)) (-4 *2 (-1028)) (-5 *1 (-695 *2 *3)) (-4 *3 (-1211 *2))))) +(-13 (-1211 |#1|) (-10 -8 (-15 -2650 (|#2| |#2|)) (-15 -3484 (|#2|)) (-15 -2091 ($ |#2|)) (-15 -2079 (|#2| $)) (-15 -1477 ($ |#2|)) (-15 -3018 ((-1235 |#1|) $)) (-15 -1368 ($ (-1235 |#1|))) (-15 -2741 ((-1235 |#1|) $)) (-15 -3594 ((-937 $))) (-15 -4276 ((-937 $))) (IF (|has| |#1| (-343)) (-15 -2760 ($ $)) |%noBranch|) (IF (|has| |#1| (-362)) (-6 (-362)) |%noBranch|))) +((-1465 (((-111) $ $) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-4153 ((|#1| $) 13)) (-1498 (((-1096) $) NIL)) (-4067 ((|#2| $) 12)) (-1490 (($ |#1| |#2|) 16)) (-1477 (((-842) $) NIL) (($ (-2 (|:| -4153 |#1|) (|:| -4067 |#2|))) 15) (((-2 (|:| -4153 |#1|) (|:| -4067 |#2|)) $) 14)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 11))) +(((-696 |#1| |#2| |#3|) (-13 (-830) (-10 -8 (-15 -4067 (|#2| $)) (-15 -4153 (|#1| $)) (-15 -1477 ($ (-2 (|:| -4153 |#1|) (|:| -4067 |#2|)))) (-15 -1477 ((-2 (|:| -4153 |#1|) (|:| -4067 |#2|)) $)) (-15 -1490 ($ |#1| |#2|)))) (-830) (-1076) (-1 (-111) (-2 (|:| -4153 |#1|) (|:| -4067 |#2|)) (-2 (|:| -4153 |#1|) (|:| -4067 |#2|)))) (T -696)) +((-4067 (*1 *2 *1) (-12 (-4 *2 (-1076)) (-5 *1 (-696 *3 *2 *4)) (-4 *3 (-830)) (-14 *4 (-1 (-111) (-2 (|:| -4153 *3) (|:| -4067 *2)) (-2 (|:| -4153 *3) (|:| -4067 *2)))))) (-4153 (*1 *2 *1) (-12 (-4 *2 (-830)) (-5 *1 (-696 *2 *3 *4)) (-4 *3 (-1076)) (-14 *4 (-1 (-111) (-2 (|:| -4153 *2) (|:| -4067 *3)) (-2 (|:| -4153 *2) (|:| -4067 *3)))))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4153 *3) (|:| -4067 *4))) (-4 *3 (-830)) (-4 *4 (-1076)) (-5 *1 (-696 *3 *4 *5)) (-14 *5 (-1 (-111) *2 *2)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4153 *3) (|:| -4067 *4))) (-5 *1 (-696 *3 *4 *5)) (-4 *3 (-830)) (-4 *4 (-1076)) (-14 *5 (-1 (-111) *2 *2)))) (-1490 (*1 *1 *2 *3) (-12 (-5 *1 (-696 *2 *3 *4)) (-4 *2 (-830)) (-4 *3 (-1076)) (-14 *4 (-1 (-111) (-2 (|:| -4153 *2) (|:| -4067 *3)) (-2 (|:| -4153 *2) (|:| -4067 *3))))))) +(-13 (-830) (-10 -8 (-15 -4067 (|#2| $)) (-15 -4153 (|#1| $)) (-15 -1477 ($ (-2 (|:| -4153 |#1|) (|:| -4067 |#2|)))) (-15 -1477 ((-2 (|:| -4153 |#1|) (|:| -4067 |#2|)) $)) (-15 -1490 ($ |#1| |#2|)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 59)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) 89) (((-3 (-113) "failed") $) 95)) (-1703 ((|#1| $) NIL) (((-113) $) 39)) (-2040 (((-3 $ "failed") $) 90)) (-3684 ((|#2| (-113) |#2|) 82)) (-2624 (((-111) $) NIL)) (-1962 (($ |#1| (-355 (-113))) 14)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2322 (($ $ (-1 |#2| |#2|)) 58)) (-2201 (($ $ (-1 |#2| |#2|)) 44)) (-1985 ((|#2| $ |#2|) 33)) (-3830 ((|#1| |#1|) 105 (|has| |#1| (-169)))) (-1477 (((-842) $) 66) (($ (-552)) 18) (($ |#1|) 17) (($ (-113)) 23)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) 37)) (-2279 (($ $) 99 (|has| |#1| (-169))) (($ $ $) 103 (|has| |#1| (-169)))) (-1922 (($) 21 T CONST)) (-1933 (($) 9 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) 48) (($ $ $) NIL)) (-2384 (($ $ $) 73)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ (-113) (-552)) NIL) (($ $ (-552)) 57)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-169))) (($ $ |#1|) 97 (|has| |#1| (-169))))) +(((-697 |#1| |#2|) (-13 (-1028) (-1017 |#1|) (-1017 (-113)) (-280 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -2279 ($ $)) (-15 -2279 ($ $ $)) (-15 -3830 (|#1| |#1|))) |%noBranch|) (-15 -2201 ($ $ (-1 |#2| |#2|))) (-15 -2322 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-552))) (-15 ** ($ $ (-552))) (-15 -3684 (|#2| (-113) |#2|)) (-15 -1962 ($ |#1| (-355 (-113)))))) (-1028) (-630 |#1|)) (T -697)) +((-2279 (*1 *1 *1) (-12 (-4 *2 (-169)) (-4 *2 (-1028)) (-5 *1 (-697 *2 *3)) (-4 *3 (-630 *2)))) (-2279 (*1 *1 *1 *1) (-12 (-4 *2 (-169)) (-4 *2 (-1028)) (-5 *1 (-697 *2 *3)) (-4 *3 (-630 *2)))) (-3830 (*1 *2 *2) (-12 (-4 *2 (-169)) (-4 *2 (-1028)) (-5 *1 (-697 *2 *3)) (-4 *3 (-630 *2)))) (-2201 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-630 *3)) (-4 *3 (-1028)) (-5 *1 (-697 *3 *4)))) (-2322 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-630 *3)) (-4 *3 (-1028)) (-5 *1 (-697 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-552)) (-4 *4 (-1028)) (-5 *1 (-697 *4 *5)) (-4 *5 (-630 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *3 (-1028)) (-5 *1 (-697 *3 *4)) (-4 *4 (-630 *3)))) (-3684 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-4 *4 (-1028)) (-5 *1 (-697 *4 *2)) (-4 *2 (-630 *4)))) (-1962 (*1 *1 *2 *3) (-12 (-5 *3 (-355 (-113))) (-4 *2 (-1028)) (-5 *1 (-697 *2 *4)) (-4 *4 (-630 *2))))) +(-13 (-1028) (-1017 |#1|) (-1017 (-113)) (-280 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -2279 ($ $)) (-15 -2279 ($ $ $)) (-15 -3830 (|#1| |#1|))) |%noBranch|) (-15 -2201 ($ $ (-1 |#2| |#2|))) (-15 -2322 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-552))) (-15 ** ($ $ (-552))) (-15 -3684 (|#2| (-113) |#2|)) (-15 -1962 ($ |#1| (-355 (-113)))))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 33)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2091 (($ |#1| |#2|) 25)) (-2040 (((-3 $ "failed") $) 48)) (-2624 (((-111) $) 35)) (-3484 ((|#2| $) 12)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 49)) (-1498 (((-1096) $) NIL)) (-3677 (((-3 $ "failed") $ $) 47)) (-1477 (((-842) $) 24) (($ (-552)) 19) ((|#1| $) 13)) (-3995 (((-754)) 28)) (-1922 (($) 16 T CONST)) (-1933 (($) 30 T CONST)) (-2292 (((-111) $ $) 38)) (-2396 (($ $) 43) (($ $ $) 37)) (-2384 (($ $ $) 40)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 21) (($ $ $) 20))) +(((-698 |#1| |#2| |#3| |#4| |#5|) (-13 (-1028) (-10 -8 (-15 -3484 (|#2| $)) (-15 -1477 (|#1| $)) (-15 -2091 ($ |#1| |#2|)) (-15 -3677 ((-3 $ "failed") $ $)) (-15 -2040 ((-3 $ "failed") $)) (-15 -1951 ($ $)))) (-169) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -698)) +((-2040 (*1 *1 *1) (|partial| -12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3484 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-698 *3 *2 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1477 (*1 *2 *1) (-12 (-4 *2 (-169)) (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2091 (*1 *1 *2 *3) (-12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3677 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1951 (*1 *1 *1) (-12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1028) (-10 -8 (-15 -3484 (|#2| $)) (-15 -1477 (|#1| $)) (-15 -2091 ($ |#1| |#2|)) (-15 -3677 ((-3 $ "failed") $ $)) (-15 -2040 ((-3 $ "failed") $)) (-15 -1951 ($ $)))) +((* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-699 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|))) (-700 |#2|) (-169)) (T -699)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-700 |#1|) (-137) (-169)) (T -700)) +NIL +(-13 (-110 |t#1| |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-1034 |#1|) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-1452 (($ |#1|) 17) (($ $ |#1|) 20)) (-2442 (($ |#1|) 18) (($ $ |#1|) 21)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2624 (((-111) $) NIL)) (-3253 (($ |#1| |#1| |#1| |#1|) 8)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 16)) (-1498 (((-1096) $) NIL)) (-3321 ((|#1| $ |#1|) 24) (((-816 |#1|) $ (-816 |#1|)) 32)) (-2616 (($ $ $) NIL)) (-2493 (($ $ $) NIL)) (-1477 (((-842) $) 39)) (-1933 (($) 9 T CONST)) (-2292 (((-111) $ $) 44)) (-2407 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ $ $) 14))) +(((-701 |#1|) (-13 (-466) (-10 -8 (-15 -3253 ($ |#1| |#1| |#1| |#1|)) (-15 -1452 ($ |#1|)) (-15 -2442 ($ |#1|)) (-15 -2040 ($)) (-15 -1452 ($ $ |#1|)) (-15 -2442 ($ $ |#1|)) (-15 -2040 ($ $)) (-15 -3321 (|#1| $ |#1|)) (-15 -3321 ((-816 |#1|) $ (-816 |#1|))))) (-357)) (T -701)) +((-3253 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) (-1452 (*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) (-2442 (*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) (-2040 (*1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) (-1452 (*1 *1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) (-2442 (*1 *1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) (-2040 (*1 *1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) (-3321 (*1 *2 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) (-3321 (*1 *2 *1 *2) (-12 (-5 *2 (-816 *3)) (-4 *3 (-357)) (-5 *1 (-701 *3))))) +(-13 (-466) (-10 -8 (-15 -3253 ($ |#1| |#1| |#1| |#1|)) (-15 -1452 ($ |#1|)) (-15 -2442 ($ |#1|)) (-15 -2040 ($)) (-15 -1452 ($ $ |#1|)) (-15 -2442 ($ $ |#1|)) (-15 -2040 ($ $)) (-15 -3321 (|#1| $ |#1|)) (-15 -3321 ((-816 |#1|) $ (-816 |#1|))))) +((-1407 (($ $ (-900)) 12)) (-2896 (($ $ (-900)) 13)) (** (($ $ (-900)) 10))) +(((-702 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-900))) (-15 -2896 (|#1| |#1| (-900))) (-15 -1407 (|#1| |#1| (-900)))) (-703)) (T -702)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-900))) (-15 -2896 (|#1| |#1| (-900))) (-15 -1407 (|#1| |#1| (-900)))) +((-1465 (((-111) $ $) 7)) (-1407 (($ $ (-900)) 15)) (-2896 (($ $ (-900)) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 6)) (** (($ $ (-900)) 13)) (* (($ $ $) 16))) +(((-703) (-137)) (T -703)) +((* (*1 *1 *1 *1) (-4 *1 (-703))) (-1407 (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-900)))) (-2896 (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-900)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-900))))) +(-13 (-1076) (-10 -8 (-15 * ($ $ $)) (-15 -1407 ($ $ (-900))) (-15 -2896 ($ $ (-900))) (-15 ** ($ $ (-900))))) +(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-1407 (($ $ (-900)) NIL) (($ $ (-754)) 17)) (-2624 (((-111) $) 10)) (-2896 (($ $ (-900)) NIL) (($ $ (-754)) 18)) (** (($ $ (-900)) NIL) (($ $ (-754)) 15))) +(((-704 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-754))) (-15 -2896 (|#1| |#1| (-754))) (-15 -1407 (|#1| |#1| (-754))) (-15 -2624 ((-111) |#1|)) (-15 ** (|#1| |#1| (-900))) (-15 -2896 (|#1| |#1| (-900))) (-15 -1407 (|#1| |#1| (-900)))) (-705)) (T -704)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-754))) (-15 -2896 (|#1| |#1| (-754))) (-15 -1407 (|#1| |#1| (-754))) (-15 -2624 ((-111) |#1|)) (-15 ** (|#1| |#1| (-900))) (-15 -2896 (|#1| |#1| (-900))) (-15 -1407 (|#1| |#1| (-900)))) +((-1465 (((-111) $ $) 7)) (-1592 (((-3 $ "failed") $) 17)) (-1407 (($ $ (-900)) 15) (($ $ (-754)) 22)) (-2040 (((-3 $ "failed") $) 19)) (-2624 (((-111) $) 23)) (-4336 (((-3 $ "failed") $) 18)) (-2896 (($ $ (-900)) 14) (($ $ (-754)) 21)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1933 (($) 24 T CONST)) (-2292 (((-111) $ $) 6)) (** (($ $ (-900)) 13) (($ $ (-754)) 20)) (* (($ $ $) 16))) +(((-705) (-137)) (T -705)) +((-1933 (*1 *1) (-4 *1 (-705))) (-2624 (*1 *2 *1) (-12 (-4 *1 (-705)) (-5 *2 (-111)))) (-1407 (*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-754)))) (-2896 (*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-754)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-754)))) (-2040 (*1 *1 *1) (|partial| -4 *1 (-705))) (-4336 (*1 *1 *1) (|partial| -4 *1 (-705))) (-1592 (*1 *1 *1) (|partial| -4 *1 (-705)))) +(-13 (-703) (-10 -8 (-15 (-1933) ($) -3488) (-15 -2624 ((-111) $)) (-15 -1407 ($ $ (-754))) (-15 -2896 ($ $ (-754))) (-15 ** ($ $ (-754))) (-15 -2040 ((-3 $ "failed") $)) (-15 -4336 ((-3 $ "failed") $)) (-15 -1592 ((-3 $ "failed") $)))) +(((-101) . T) ((-599 (-842)) . T) ((-703) . T) ((-1076) . T)) +((-3307 (((-754)) 34)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1703 (((-552) $) NIL) (((-401 (-552)) $) NIL) ((|#2| $) 22)) (-2091 (($ |#3|) NIL) (((-3 $ "failed") (-401 |#3|)) 44)) (-2040 (((-3 $ "failed") $) 64)) (-1279 (($) 38)) (-2349 ((|#2| $) 20)) (-2220 (($) 17)) (-2942 (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152)) NIL) (($ $ (-754)) NIL) (($ $) NIL)) (-4070 (((-671 |#2|) (-1235 $) (-1 |#2| |#2|)) 59)) (-3562 (((-1235 |#2|) $) NIL) (($ (-1235 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2410 ((|#3| $) 32)) (-2957 (((-1235 $)) 29))) +(((-706 |#1| |#2| |#3|) (-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -1279 (|#1|)) (-15 -3307 ((-754))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -4070 ((-671 |#2|) (-1235 |#1|) (-1 |#2| |#2|))) (-15 -2091 ((-3 |#1| "failed") (-401 |#3|))) (-15 -3562 (|#1| |#3|)) (-15 -2091 (|#1| |#3|)) (-15 -2220 (|#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -3562 (|#3| |#1|)) (-15 -3562 (|#1| (-1235 |#2|))) (-15 -3562 ((-1235 |#2|) |#1|)) (-15 -2957 ((-1235 |#1|))) (-15 -2410 (|#3| |#1|)) (-15 -2349 (|#2| |#1|)) (-15 -2040 ((-3 |#1| "failed") |#1|))) (-707 |#2| |#3|) (-169) (-1211 |#2|)) (T -706)) +((-3307 (*1 *2) (-12 (-4 *4 (-169)) (-4 *5 (-1211 *4)) (-5 *2 (-754)) (-5 *1 (-706 *3 *4 *5)) (-4 *3 (-707 *4 *5))))) +(-10 -8 (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -1279 (|#1|)) (-15 -3307 ((-754))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -4070 ((-671 |#2|) (-1235 |#1|) (-1 |#2| |#2|))) (-15 -2091 ((-3 |#1| "failed") (-401 |#3|))) (-15 -3562 (|#1| |#3|)) (-15 -2091 (|#1| |#3|)) (-15 -2220 (|#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -3562 (|#3| |#1|)) (-15 -3562 (|#1| (-1235 |#2|))) (-15 -3562 ((-1235 |#2|) |#1|)) (-15 -2957 ((-1235 |#1|))) (-15 -2410 (|#3| |#1|)) (-15 -2349 (|#2| |#1|)) (-15 -2040 ((-3 |#1| "failed") |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 91 (|has| |#1| (-357)))) (-3245 (($ $) 92 (|has| |#1| (-357)))) (-4058 (((-111) $) 94 (|has| |#1| (-357)))) (-3841 (((-671 |#1|) (-1235 $)) 44) (((-671 |#1|)) 59)) (-3385 ((|#1| $) 50)) (-2038 (((-1162 (-900) (-754)) (-552)) 144 (|has| |#1| (-343)))) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 111 (|has| |#1| (-357)))) (-2487 (((-412 $) $) 112 (|has| |#1| (-357)))) (-4224 (((-111) $ $) 102 (|has| |#1| (-357)))) (-3307 (((-754)) 85 (|has| |#1| (-362)))) (-3887 (($) 17 T CONST)) (-4039 (((-3 (-552) "failed") $) 166 (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) 164 (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 163)) (-1703 (((-552) $) 167 (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) 165 (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) 162)) (-2342 (($ (-1235 |#1|) (-1235 $)) 46) (($ (-1235 |#1|)) 62)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-343)))) (-2813 (($ $ $) 106 (|has| |#1| (-357)))) (-4088 (((-671 |#1|) $ (-1235 $)) 51) (((-671 |#1|) $) 57)) (-1800 (((-671 (-552)) (-671 $)) 161 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 160 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 159) (((-671 |#1|) (-671 $)) 158)) (-2091 (($ |#2|) 155) (((-3 $ "failed") (-401 |#2|)) 152 (|has| |#1| (-357)))) (-2040 (((-3 $ "failed") $) 32)) (-4154 (((-900)) 52)) (-1279 (($) 88 (|has| |#1| (-362)))) (-2789 (($ $ $) 105 (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 100 (|has| |#1| (-357)))) (-2740 (($) 146 (|has| |#1| (-343)))) (-1415 (((-111) $) 147 (|has| |#1| (-343)))) (-4294 (($ $ (-754)) 138 (|has| |#1| (-343))) (($ $) 137 (|has| |#1| (-343)))) (-1633 (((-111) $) 113 (|has| |#1| (-357)))) (-2641 (((-900) $) 149 (|has| |#1| (-343))) (((-816 (-900)) $) 135 (|has| |#1| (-343)))) (-2624 (((-111) $) 30)) (-2349 ((|#1| $) 49)) (-4317 (((-3 $ "failed") $) 139 (|has| |#1| (-343)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 109 (|has| |#1| (-357)))) (-4205 ((|#2| $) 42 (|has| |#1| (-357)))) (-2886 (((-900) $) 87 (|has| |#1| (-362)))) (-2079 ((|#2| $) 153)) (-1276 (($ (-627 $)) 98 (|has| |#1| (-357))) (($ $ $) 97 (|has| |#1| (-357)))) (-1595 (((-1134) $) 9)) (-1951 (($ $) 114 (|has| |#1| (-357)))) (-3002 (($) 140 (|has| |#1| (-343)) CONST)) (-4153 (($ (-900)) 86 (|has| |#1| (-362)))) (-1498 (((-1096) $) 10)) (-2220 (($) 157)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 99 (|has| |#1| (-357)))) (-1323 (($ (-627 $)) 96 (|has| |#1| (-357))) (($ $ $) 95 (|has| |#1| (-357)))) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) 143 (|has| |#1| (-343)))) (-1727 (((-412 $) $) 110 (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 107 (|has| |#1| (-357)))) (-2761 (((-3 $ "failed") $ $) 90 (|has| |#1| (-357)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 101 (|has| |#1| (-357)))) (-2718 (((-754) $) 103 (|has| |#1| (-357)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 104 (|has| |#1| (-357)))) (-1637 ((|#1| (-1235 $)) 45) ((|#1|) 58)) (-4018 (((-754) $) 148 (|has| |#1| (-343))) (((-3 (-754) "failed") $ $) 136 (|has| |#1| (-343)))) (-2942 (($ $) 134 (-1559 (-2520 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-754)) 132 (-1559 (-2520 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-1152)) 130 (-2520 (|has| |#1| (-879 (-1152))) (|has| |#1| (-357)))) (($ $ (-627 (-1152))) 129 (-2520 (|has| |#1| (-879 (-1152))) (|has| |#1| (-357)))) (($ $ (-1152) (-754)) 128 (-2520 (|has| |#1| (-879 (-1152))) (|has| |#1| (-357)))) (($ $ (-627 (-1152)) (-627 (-754))) 127 (-2520 (|has| |#1| (-879 (-1152))) (|has| |#1| (-357)))) (($ $ (-1 |#1| |#1|) (-754)) 120 (|has| |#1| (-357))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-357)))) (-4070 (((-671 |#1|) (-1235 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-357)))) (-1376 ((|#2|) 156)) (-3439 (($) 145 (|has| |#1| (-343)))) (-3133 (((-1235 |#1|) $ (-1235 $)) 48) (((-671 |#1|) (-1235 $) (-1235 $)) 47) (((-1235 |#1|) $) 64) (((-671 |#1|) (-1235 $)) 63)) (-3562 (((-1235 |#1|) $) 61) (($ (-1235 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 142 (|has| |#1| (-343)))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-357))) (($ (-401 (-552))) 84 (-1559 (|has| |#1| (-357)) (|has| |#1| (-1017 (-401 (-552))))))) (-3050 (($ $) 141 (|has| |#1| (-343))) (((-3 $ "failed") $) 41 (|has| |#1| (-142)))) (-2410 ((|#2| $) 43)) (-3995 (((-754)) 28)) (-2957 (((-1235 $)) 65)) (-3778 (((-111) $ $) 93 (|has| |#1| (-357)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $) 133 (-1559 (-2520 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-754)) 131 (-1559 (-2520 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-1152)) 126 (-2520 (|has| |#1| (-879 (-1152))) (|has| |#1| (-357)))) (($ $ (-627 (-1152))) 125 (-2520 (|has| |#1| (-879 (-1152))) (|has| |#1| (-357)))) (($ $ (-1152) (-754)) 124 (-2520 (|has| |#1| (-879 (-1152))) (|has| |#1| (-357)))) (($ $ (-627 (-1152)) (-627 (-754))) 123 (-2520 (|has| |#1| (-879 (-1152))) (|has| |#1| (-357)))) (($ $ (-1 |#1| |#1|) (-754)) 122 (|has| |#1| (-357))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-357)))) (-2292 (((-111) $ $) 6)) (-2407 (($ $ $) 118 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 115 (|has| |#1| (-357)))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-401 (-552)) $) 117 (|has| |#1| (-357))) (($ $ (-401 (-552))) 116 (|has| |#1| (-357))))) +(((-707 |#1| |#2|) (-137) (-169) (-1211 |t#1|)) (T -707)) +((-2220 (*1 *1) (-12 (-4 *2 (-169)) (-4 *1 (-707 *2 *3)) (-4 *3 (-1211 *2)))) (-1376 (*1 *2) (-12 (-4 *1 (-707 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1211 *3)))) (-2091 (*1 *1 *2) (-12 (-4 *3 (-169)) (-4 *1 (-707 *3 *2)) (-4 *2 (-1211 *3)))) (-3562 (*1 *1 *2) (-12 (-4 *3 (-169)) (-4 *1 (-707 *3 *2)) (-4 *2 (-1211 *3)))) (-2079 (*1 *2 *1) (-12 (-4 *1 (-707 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1211 *3)))) (-2091 (*1 *1 *2) (|partial| -12 (-5 *2 (-401 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-357)) (-4 *3 (-169)) (-4 *1 (-707 *3 *4)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *3 (-1235 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-357)) (-4 *1 (-707 *5 *6)) (-4 *5 (-169)) (-4 *6 (-1211 *5)) (-5 *2 (-671 *5))))) +(-13 (-403 |t#1| |t#2|) (-169) (-600 |t#2|) (-405 |t#1|) (-371 |t#1|) (-10 -8 (-15 -2220 ($)) (-15 -1376 (|t#2|)) (-15 -2091 ($ |t#2|)) (-15 -3562 ($ |t#2|)) (-15 -2079 (|t#2| $)) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|) (IF (|has| |t#1| (-357)) (PROGN (-6 (-357)) (-6 (-226 |t#1|)) (-15 -2091 ((-3 $ "failed") (-401 |t#2|))) (-15 -4070 ((-671 |t#1|) (-1235 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-343)) (-6 (-343)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-38 |#1|) . T) ((-38 $) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-101) . T) ((-110 #0# #0#) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-142) -1559 (|has| |#1| (-343)) (|has| |#1| (-142))) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) . T) ((-600 |#2|) . T) ((-226 |#1|) |has| |#1| (-357)) ((-228) -1559 (|has| |#1| (-343)) (-12 (|has| |#1| (-228)) (|has| |#1| (-357)))) ((-238) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-284) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-301) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-357) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-396) |has| |#1| (-343)) ((-362) -1559 (|has| |#1| (-362)) (|has| |#1| (-343))) ((-343) |has| |#1| (-343)) ((-364 |#1| |#2|) . T) ((-403 |#1| |#2|) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-445) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-544) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-630 #0#) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-630 |#1|) . T) ((-630 $) . T) ((-623 (-552)) |has| |#1| (-623 (-552))) ((-623 |#1|) . T) ((-700 #0#) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-700 |#1|) . T) ((-700 $) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-709) . T) ((-879 (-1152)) -12 (|has| |#1| (-357)) (|has| |#1| (-879 (-1152)))) ((-899) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T) ((-1034 #0#) -1559 (|has| |#1| (-343)) (|has| |#1| (-357))) ((-1034 |#1|) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1127) |has| |#1| (-343)) ((-1193) -1559 (|has| |#1| (-343)) (|has| |#1| (-357)))) +((-3887 (($) 11)) (-2040 (((-3 $ "failed") $) 13)) (-2624 (((-111) $) 10)) (** (($ $ (-900)) NIL) (($ $ (-754)) 18))) +(((-708 |#1|) (-10 -8 (-15 -2040 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-754))) (-15 -2624 ((-111) |#1|)) (-15 -3887 (|#1|)) (-15 ** (|#1| |#1| (-900)))) (-709)) (T -708)) +NIL +(-10 -8 (-15 -2040 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-754))) (-15 -2624 ((-111) |#1|)) (-15 -3887 (|#1|)) (-15 ** (|#1| |#1| (-900)))) +((-1465 (((-111) $ $) 7)) (-3887 (($) 18 T CONST)) (-2040 (((-3 $ "failed") $) 15)) (-2624 (((-111) $) 17)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1933 (($) 19 T CONST)) (-2292 (((-111) $ $) 6)) (** (($ $ (-900)) 13) (($ $ (-754)) 16)) (* (($ $ $) 14))) +(((-709) (-137)) (T -709)) +((-1933 (*1 *1) (-4 *1 (-709))) (-3887 (*1 *1) (-4 *1 (-709))) (-2624 (*1 *2 *1) (-12 (-4 *1 (-709)) (-5 *2 (-111)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-709)) (-5 *2 (-754)))) (-2040 (*1 *1 *1) (|partial| -4 *1 (-709)))) +(-13 (-1088) (-10 -8 (-15 (-1933) ($) -3488) (-15 -3887 ($) -3488) (-15 -2624 ((-111) $)) (-15 ** ($ $ (-754))) (-15 -2040 ((-3 $ "failed") $)))) +(((-101) . T) ((-599 (-842)) . T) ((-1088) . T) ((-1076) . T)) +((-4193 (((-2 (|:| -1317 (-412 |#2|)) (|:| |special| (-412 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-2843 (((-2 (|:| -1317 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2530 ((|#2| (-401 |#2|) (-1 |#2| |#2|)) 13)) (-4004 (((-2 (|:| |poly| |#2|) (|:| -1317 (-401 |#2|)) (|:| |special| (-401 |#2|))) (-401 |#2|) (-1 |#2| |#2|)) 47))) +(((-710 |#1| |#2|) (-10 -7 (-15 -2843 ((-2 (|:| -1317 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4193 ((-2 (|:| -1317 (-412 |#2|)) (|:| |special| (-412 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2530 (|#2| (-401 |#2|) (-1 |#2| |#2|))) (-15 -4004 ((-2 (|:| |poly| |#2|) (|:| -1317 (-401 |#2|)) (|:| |special| (-401 |#2|))) (-401 |#2|) (-1 |#2| |#2|)))) (-357) (-1211 |#1|)) (T -710)) +((-4004 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1317 (-401 *6)) (|:| |special| (-401 *6)))) (-5 *1 (-710 *5 *6)) (-5 *3 (-401 *6)))) (-2530 (*1 *2 *3 *4) (-12 (-5 *3 (-401 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1211 *5)) (-5 *1 (-710 *5 *2)) (-4 *5 (-357)))) (-4193 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| -1317 (-412 *3)) (|:| |special| (-412 *3)))) (-5 *1 (-710 *5 *3)))) (-2843 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-357)) (-5 *2 (-2 (|:| -1317 *3) (|:| |special| *3))) (-5 *1 (-710 *5 *3))))) +(-10 -7 (-15 -2843 ((-2 (|:| -1317 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -4193 ((-2 (|:| -1317 (-412 |#2|)) (|:| |special| (-412 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2530 (|#2| (-401 |#2|) (-1 |#2| |#2|))) (-15 -4004 ((-2 (|:| |poly| |#2|) (|:| -1317 (-401 |#2|)) (|:| |special| (-401 |#2|))) (-401 |#2|) (-1 |#2| |#2|)))) +((-3974 ((|#7| (-627 |#5|) |#6|) NIL)) (-3516 ((|#7| (-1 |#5| |#4|) |#6|) 26))) +(((-711 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3516 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3974 (|#7| (-627 |#5|) |#6|))) (-830) (-776) (-776) (-1028) (-1028) (-928 |#4| |#2| |#1|) (-928 |#5| |#3| |#1|)) (T -711)) +((-3974 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *9)) (-4 *9 (-1028)) (-4 *5 (-830)) (-4 *6 (-776)) (-4 *8 (-1028)) (-4 *2 (-928 *9 *7 *5)) (-5 *1 (-711 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-776)) (-4 *4 (-928 *8 *6 *5)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1028)) (-4 *9 (-1028)) (-4 *5 (-830)) (-4 *6 (-776)) (-4 *2 (-928 *9 *7 *5)) (-5 *1 (-711 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-776)) (-4 *4 (-928 *8 *6 *5))))) +(-10 -7 (-15 -3516 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3974 (|#7| (-627 |#5|) |#6|))) +((-3516 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-712 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3516 (|#7| (-1 |#2| |#1|) |#6|))) (-830) (-830) (-776) (-776) (-1028) (-928 |#5| |#3| |#1|) (-928 |#5| |#4| |#2|)) (T -712)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-830)) (-4 *6 (-830)) (-4 *7 (-776)) (-4 *9 (-1028)) (-4 *2 (-928 *9 *8 *6)) (-5 *1 (-712 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-776)) (-4 *4 (-928 *9 *7 *5))))) +(-10 -7 (-15 -3516 (|#7| (-1 |#2| |#1|) |#6|))) +((-1727 (((-412 |#4|) |#4|) 41))) +(((-713 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1727 ((-412 |#4|) |#4|))) (-776) (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)) (-15 -4344 ((-3 $ "failed") (-1152))))) (-301) (-928 (-931 |#3|) |#1| |#2|)) (T -713)) +((-1727 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)) (-15 -4344 ((-3 $ "failed") (-1152)))))) (-4 *6 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-713 *4 *5 *6 *3)) (-4 *3 (-928 (-931 *6) *4 *5))))) +(-10 -7 (-15 -1727 ((-412 |#4|) |#4|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-844 |#1|)) $) NIL)) (-1694 (((-1148 $) $ (-844 |#1|)) NIL) (((-1148 |#2|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3245 (($ $) NIL (|has| |#2| (-544)))) (-4058 (((-111) $) NIL (|has| |#2| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-844 |#1|))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-4014 (($ $) NIL (|has| |#2| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#2| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1017 (-552)))) (((-3 (-844 |#1|) "failed") $) NIL)) (-1703 ((|#2| $) NIL) (((-401 (-552)) $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#2| (-1017 (-552)))) (((-844 |#1|) $) NIL)) (-3116 (($ $ $ (-844 |#1|)) NIL (|has| |#2| (-169)))) (-2014 (($ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#2| (-445))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#2| (-888)))) (-2061 (($ $ |#2| (-523 (-844 |#1|)) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-844 |#1|) (-865 (-373))) (|has| |#2| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-844 |#1|) (-865 (-552))) (|has| |#2| (-865 (-552)))))) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-1842 (($ (-1148 |#2|) (-844 |#1|)) NIL) (($ (-1148 $) (-844 |#1|)) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#2| (-523 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-844 |#1|)) NIL)) (-3465 (((-523 (-844 |#1|)) $) NIL) (((-754) $ (-844 |#1|)) NIL) (((-627 (-754)) $ (-627 (-844 |#1|))) NIL)) (-1816 (($ $ $) NIL (|has| |#2| (-830)))) (-4093 (($ $ $) NIL (|has| |#2| (-830)))) (-3813 (($ (-1 (-523 (-844 |#1|)) (-523 (-844 |#1|))) $) NIL)) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-2685 (((-3 (-844 |#1|) "failed") $) NIL)) (-1981 (($ $) NIL)) (-1993 ((|#2| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-1595 (((-1134) $) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-844 |#1|)) (|:| -4067 (-754))) "failed") $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 ((|#2| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#2| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#2| (-888)))) (-2761 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-844 |#1|) |#2|) NIL) (($ $ (-627 (-844 |#1|)) (-627 |#2|)) NIL) (($ $ (-844 |#1|) $) NIL) (($ $ (-627 (-844 |#1|)) (-627 $)) NIL)) (-1637 (($ $ (-844 |#1|)) NIL (|has| |#2| (-169)))) (-2942 (($ $ (-844 |#1|)) NIL) (($ $ (-627 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-3567 (((-523 (-844 |#1|)) $) NIL) (((-754) $ (-844 |#1|)) NIL) (((-627 (-754)) $ (-627 (-844 |#1|))) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-844 |#1|) (-600 (-871 (-373)))) (|has| |#2| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-844 |#1|) (-600 (-871 (-552)))) (|has| |#2| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-844 |#1|) (-600 (-528))) (|has| |#2| (-600 (-528)))))) (-3495 ((|#2| $) NIL (|has| |#2| (-445))) (($ $ (-844 |#1|)) NIL (|has| |#2| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-844 |#1|)) NIL) (($ $) NIL (|has| |#2| (-544))) (($ (-401 (-552))) NIL (-1559 (|has| |#2| (-38 (-401 (-552)))) (|has| |#2| (-1017 (-401 (-552))))))) (-1493 (((-627 |#2|) $) NIL)) (-1889 ((|#2| $ (-523 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#2| (-888))) (|has| |#2| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#2| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#2| (-544)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-844 |#1|)) NIL) (($ $ (-627 (-844 |#1|))) NIL) (($ $ (-844 |#1|) (-754)) NIL) (($ $ (-627 (-844 |#1|)) (-627 (-754))) NIL)) (-2351 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2407 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#2| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#2| (-38 (-401 (-552))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-714 |#1| |#2|) (-928 |#2| (-523 (-844 |#1|)) (-844 |#1|)) (-627 (-1152)) (-1028)) (T -714)) +NIL +(-928 |#2| (-523 (-844 |#1|)) (-844 |#1|)) +((-4211 (((-2 (|:| -2796 (-931 |#3|)) (|:| -4191 (-931 |#3|))) |#4|) 14)) (-4007 ((|#4| |#4| |#2|) 33)) (-1917 ((|#4| (-401 (-931 |#3|)) |#2|) 64)) (-2251 ((|#4| (-1148 (-931 |#3|)) |#2|) 77)) (-3904 ((|#4| (-1148 |#4|) |#2|) 51)) (-4158 ((|#4| |#4| |#2|) 54)) (-1727 (((-412 |#4|) |#4|) 40))) +(((-715 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4211 ((-2 (|:| -2796 (-931 |#3|)) (|:| -4191 (-931 |#3|))) |#4|)) (-15 -4158 (|#4| |#4| |#2|)) (-15 -3904 (|#4| (-1148 |#4|) |#2|)) (-15 -4007 (|#4| |#4| |#2|)) (-15 -2251 (|#4| (-1148 (-931 |#3|)) |#2|)) (-15 -1917 (|#4| (-401 (-931 |#3|)) |#2|)) (-15 -1727 ((-412 |#4|) |#4|))) (-776) (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)))) (-544) (-928 (-401 (-931 |#3|)) |#1| |#2|)) (T -715)) +((-1727 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))) (-4 *6 (-544)) (-5 *2 (-412 *3)) (-5 *1 (-715 *4 *5 *6 *3)) (-4 *3 (-928 (-401 (-931 *6)) *4 *5)))) (-1917 (*1 *2 *3 *4) (-12 (-4 *6 (-544)) (-4 *2 (-928 *3 *5 *4)) (-5 *1 (-715 *5 *4 *6 *2)) (-5 *3 (-401 (-931 *6))) (-4 *5 (-776)) (-4 *4 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))))) (-2251 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 (-931 *6))) (-4 *6 (-544)) (-4 *2 (-928 (-401 (-931 *6)) *5 *4)) (-5 *1 (-715 *5 *4 *6 *2)) (-4 *5 (-776)) (-4 *4 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))))) (-4007 (*1 *2 *2 *3) (-12 (-4 *4 (-776)) (-4 *3 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))) (-4 *5 (-544)) (-5 *1 (-715 *4 *3 *5 *2)) (-4 *2 (-928 (-401 (-931 *5)) *4 *3)))) (-3904 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 *2)) (-4 *2 (-928 (-401 (-931 *6)) *5 *4)) (-5 *1 (-715 *5 *4 *6 *2)) (-4 *5 (-776)) (-4 *4 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))) (-4 *6 (-544)))) (-4158 (*1 *2 *2 *3) (-12 (-4 *4 (-776)) (-4 *3 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))) (-4 *5 (-544)) (-5 *1 (-715 *4 *3 *5 *2)) (-4 *2 (-928 (-401 (-931 *5)) *4 *3)))) (-4211 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))) (-4 *6 (-544)) (-5 *2 (-2 (|:| -2796 (-931 *6)) (|:| -4191 (-931 *6)))) (-5 *1 (-715 *4 *5 *6 *3)) (-4 *3 (-928 (-401 (-931 *6)) *4 *5))))) +(-10 -7 (-15 -4211 ((-2 (|:| -2796 (-931 |#3|)) (|:| -4191 (-931 |#3|))) |#4|)) (-15 -4158 (|#4| |#4| |#2|)) (-15 -3904 (|#4| (-1148 |#4|) |#2|)) (-15 -4007 (|#4| |#4| |#2|)) (-15 -2251 (|#4| (-1148 (-931 |#3|)) |#2|)) (-15 -1917 (|#4| (-401 (-931 |#3|)) |#2|)) (-15 -1727 ((-412 |#4|) |#4|))) +((-1727 (((-412 |#4|) |#4|) 52))) +(((-716 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1727 ((-412 |#4|) |#4|))) (-776) (-830) (-13 (-301) (-144)) (-928 (-401 |#3|) |#1| |#2|)) (T -716)) +((-1727 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-13 (-301) (-144))) (-5 *2 (-412 *3)) (-5 *1 (-716 *4 *5 *6 *3)) (-4 *3 (-928 (-401 *6) *4 *5))))) +(-10 -7 (-15 -1727 ((-412 |#4|) |#4|))) +((-3516 (((-718 |#2| |#3|) (-1 |#2| |#1|) (-718 |#1| |#3|)) 18))) +(((-717 |#1| |#2| |#3|) (-10 -7 (-15 -3516 ((-718 |#2| |#3|) (-1 |#2| |#1|) (-718 |#1| |#3|)))) (-1028) (-1028) (-709)) (T -717)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-718 *5 *7)) (-4 *5 (-1028)) (-4 *6 (-1028)) (-4 *7 (-709)) (-5 *2 (-718 *6 *7)) (-5 *1 (-717 *5 *6 *7))))) +(-10 -7 (-15 -3516 ((-718 |#2| |#3|) (-1 |#2| |#1|) (-718 |#1| |#3|)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 28)) (-4245 (((-627 (-2 (|:| -3069 |#1|) (|:| -3755 |#2|))) $) 29)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3307 (((-754)) 20 (-12 (|has| |#2| (-362)) (|has| |#1| (-362))))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-1703 ((|#2| $) NIL) ((|#1| $) NIL)) (-2014 (($ $) 79 (|has| |#2| (-830)))) (-2040 (((-3 $ "failed") $) 65)) (-1279 (($) 35 (-12 (|has| |#2| (-362)) (|has| |#1| (-362))))) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) 55)) (-3056 (((-627 $) $) 39)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| |#2|) 16)) (-3516 (($ (-1 |#1| |#1|) $) 54)) (-2886 (((-900) $) 32 (-12 (|has| |#2| (-362)) (|has| |#1| (-362))))) (-1981 ((|#2| $) 78 (|has| |#2| (-830)))) (-1993 ((|#1| $) 77 (|has| |#2| (-830)))) (-1595 (((-1134) $) NIL)) (-4153 (($ (-900)) 27 (-12 (|has| |#2| (-362)) (|has| |#1| (-362))))) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 76) (($ (-552)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-627 (-2 (|:| -3069 |#1|) (|:| -3755 |#2|)))) 11)) (-1493 (((-627 |#1|) $) 41)) (-1889 ((|#1| $ |#2|) 88)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-1922 (($) 12 T CONST)) (-1933 (($) 33 T CONST)) (-2292 (((-111) $ $) 80)) (-2396 (($ $) 47) (($ $ $) NIL)) (-2384 (($ $ $) 26)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) +(((-718 |#1| |#2|) (-13 (-1028) (-1017 |#2|) (-1017 |#1|) (-10 -8 (-15 -1832 ($ |#1| |#2|)) (-15 -1889 (|#1| $ |#2|)) (-15 -1477 ($ (-627 (-2 (|:| -3069 |#1|) (|:| -3755 |#2|))))) (-15 -4245 ((-627 (-2 (|:| -3069 |#1|) (|:| -3755 |#2|))) $)) (-15 -3516 ($ (-1 |#1| |#1|) $)) (-15 -3267 ((-111) $)) (-15 -1493 ((-627 |#1|) $)) (-15 -3056 ((-627 $) $)) (-15 -3522 ((-754) $)) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-830)) (PROGN (-15 -1981 (|#2| $)) (-15 -1993 (|#1| $)) (-15 -2014 ($ $))) |%noBranch|))) (-1028) (-709)) (T -718)) +((-1832 (*1 *1 *2 *3) (-12 (-5 *1 (-718 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-709)))) (-1889 (*1 *2 *1 *3) (-12 (-4 *2 (-1028)) (-5 *1 (-718 *2 *3)) (-4 *3 (-709)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-2 (|:| -3069 *3) (|:| -3755 *4)))) (-4 *3 (-1028)) (-4 *4 (-709)) (-5 *1 (-718 *3 *4)))) (-4245 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| -3069 *3) (|:| -3755 *4)))) (-5 *1 (-718 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-709)))) (-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-718 *3 *4)) (-4 *4 (-709)))) (-3267 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-718 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-709)))) (-1493 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-718 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-709)))) (-3056 (*1 *2 *1) (-12 (-5 *2 (-627 (-718 *3 *4))) (-5 *1 (-718 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-709)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-718 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-709)))) (-1981 (*1 *2 *1) (-12 (-4 *2 (-709)) (-4 *2 (-830)) (-5 *1 (-718 *3 *2)) (-4 *3 (-1028)))) (-1993 (*1 *2 *1) (-12 (-4 *2 (-1028)) (-5 *1 (-718 *2 *3)) (-4 *3 (-830)) (-4 *3 (-709)))) (-2014 (*1 *1 *1) (-12 (-5 *1 (-718 *2 *3)) (-4 *3 (-830)) (-4 *2 (-1028)) (-4 *3 (-709))))) +(-13 (-1028) (-1017 |#2|) (-1017 |#1|) (-10 -8 (-15 -1832 ($ |#1| |#2|)) (-15 -1889 (|#1| $ |#2|)) (-15 -1477 ($ (-627 (-2 (|:| -3069 |#1|) (|:| -3755 |#2|))))) (-15 -4245 ((-627 (-2 (|:| -3069 |#1|) (|:| -3755 |#2|))) $)) (-15 -3516 ($ (-1 |#1| |#1|) $)) (-15 -3267 ((-111) $)) (-15 -1493 ((-627 |#1|) $)) (-15 -3056 ((-627 $) $)) (-15 -3522 ((-754) $)) (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-362)) (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-830)) (PROGN (-15 -1981 (|#2| $)) (-15 -1993 (|#1| $)) (-15 -2014 ($ $))) |%noBranch|))) +((-1465 (((-111) $ $) 19)) (-3416 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3694 (($ $ $) 72)) (-3632 (((-111) $ $) 73)) (-4031 (((-111) $ (-754)) 8)) (-1342 (($ (-627 |#1|)) 68) (($) 67)) (-4289 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-2820 (($ $) 62)) (-3370 (($ $) 58 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2265 (($ |#1| $) 47 (|has| $ (-6 -4366))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4366)))) (-4342 (($ |#1| $) 57 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4366)))) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1854 (((-111) $ $) 64)) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22)) (-3383 (($ $ $) 69)) (-4165 ((|#1| $) 39)) (-3954 (($ |#1| $) 40) (($ |#1| $ (-754)) 63)) (-1498 (((-1096) $) 21)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-3131 (((-627 (-2 (|:| -2162 |#1|) (|:| -1509 (-754)))) $) 61)) (-2613 (($ $ |#1|) 71) (($ $ $) 70)) (-3028 (($) 49) (($ (-627 |#1|)) 48)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 59 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 50)) (-1477 (((-842) $) 18)) (-4243 (($ (-627 |#1|)) 66) (($) 65)) (-2577 (($ (-627 |#1|)) 42)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20)) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-719 |#1|) (-137) (-1076)) (T -719)) +NIL +(-13 (-677 |t#1|) (-1074 |t#1|)) +(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-599 (-842)) . T) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-230 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-677 |#1|) . T) ((-1074 |#1|) . T) ((-1076) . T) ((-1189) . T)) +((-1465 (((-111) $ $) NIL)) (-3416 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3694 (($ $ $) 79)) (-3632 (((-111) $ $) 83)) (-4031 (((-111) $ (-754)) NIL)) (-1342 (($ (-627 |#1|)) 24) (($) 16)) (-4289 (($ (-1 (-111) |#1|) $) 70 (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2820 (($ $) 71)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2265 (($ |#1| $) 61 (|has| $ (-6 -4366))) (($ (-1 (-111) |#1|) $) 64 (|has| $ (-6 -4366))) (($ |#1| $ (-552)) 62) (($ (-1 (-111) |#1|) $ (-552)) 65)) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (($ |#1| $ (-552)) 67) (($ (-1 (-111) |#1|) $ (-552)) 68)) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366)))) (-3215 (((-627 |#1|) $) 32 (|has| $ (-6 -4366)))) (-1854 (((-111) $ $) 82)) (-2689 (($) 14) (($ |#1|) 26) (($ (-627 |#1|)) 21)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) 38)) (-3082 (((-111) |#1| $) 58 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 75)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-3383 (($ $ $) 77)) (-4165 ((|#1| $) 55)) (-3954 (($ |#1| $) 56) (($ |#1| $ (-754)) 72)) (-1498 (((-1096) $) NIL)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-4133 ((|#1| $) 54)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 50)) (-2373 (($) 13)) (-3131 (((-627 (-2 (|:| -2162 |#1|) (|:| -1509 (-754)))) $) 48)) (-2613 (($ $ |#1|) NIL) (($ $ $) 78)) (-3028 (($) 15) (($ (-627 |#1|)) 23)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) 60 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) 66)) (-3562 (((-528) $) 36 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 20)) (-1477 (((-842) $) 44)) (-4243 (($ (-627 |#1|)) 25) (($) 17)) (-2577 (($ (-627 |#1|)) 22)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 81)) (-1383 (((-754) $) 59 (|has| $ (-6 -4366))))) +(((-720 |#1|) (-13 (-719 |#1|) (-10 -8 (-6 -4366) (-6 -4367) (-15 -2689 ($)) (-15 -2689 ($ |#1|)) (-15 -2689 ($ (-627 |#1|))) (-15 -3114 ((-627 |#1|) $)) (-15 -4342 ($ |#1| $ (-552))) (-15 -4342 ($ (-1 (-111) |#1|) $ (-552))) (-15 -2265 ($ |#1| $ (-552))) (-15 -2265 ($ (-1 (-111) |#1|) $ (-552))))) (-1076)) (T -720)) +((-2689 (*1 *1) (-12 (-5 *1 (-720 *2)) (-4 *2 (-1076)))) (-2689 (*1 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-1076)))) (-2689 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-720 *3)))) (-3114 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-720 *3)) (-4 *3 (-1076)))) (-4342 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-720 *2)) (-4 *2 (-1076)))) (-4342 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-552)) (-4 *4 (-1076)) (-5 *1 (-720 *4)))) (-2265 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-720 *2)) (-4 *2 (-1076)))) (-2265 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-552)) (-4 *4 (-1076)) (-5 *1 (-720 *4))))) +(-13 (-719 |#1|) (-10 -8 (-6 -4366) (-6 -4367) (-15 -2689 ($)) (-15 -2689 ($ |#1|)) (-15 -2689 ($ (-627 |#1|))) (-15 -3114 ((-627 |#1|) $)) (-15 -4342 ($ |#1| $ (-552))) (-15 -4342 ($ (-1 (-111) |#1|) $ (-552))) (-15 -2265 ($ |#1| $ (-552))) (-15 -2265 ($ (-1 (-111) |#1|) $ (-552))))) +((-1271 (((-1240) (-1134)) 8))) +(((-721) (-10 -7 (-15 -1271 ((-1240) (-1134))))) (T -721)) +((-1271 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-721))))) +(-10 -7 (-15 -1271 ((-1240) (-1134)))) +((-1741 (((-627 |#1|) (-627 |#1|) (-627 |#1|)) 10))) +(((-722 |#1|) (-10 -7 (-15 -1741 ((-627 |#1|) (-627 |#1|) (-627 |#1|)))) (-830)) (T -722)) +((-1741 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-722 *3))))) +(-10 -7 (-15 -1741 ((-627 |#1|) (-627 |#1|) (-627 |#1|)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1853 (((-627 |#2|) $) 134)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 127 (|has| |#1| (-544)))) (-3245 (($ $) 126 (|has| |#1| (-544)))) (-4058 (((-111) $) 124 (|has| |#1| (-544)))) (-1607 (($ $) 83 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 66 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) 19)) (-1737 (($ $) 65 (|has| |#1| (-38 (-401 (-552)))))) (-1584 (($ $) 82 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 67 (|has| |#1| (-38 (-401 (-552)))))) (-1628 (($ $) 81 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 68 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) 17 T CONST)) (-2014 (($ $) 118)) (-2040 (((-3 $ "failed") $) 32)) (-2212 (((-931 |#1|) $ (-754)) 96) (((-931 |#1|) $ (-754) (-754)) 95)) (-2391 (((-111) $) 135)) (-2951 (($) 93 (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-754) $ |#2|) 98) (((-754) $ |#2| (-754)) 97)) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 64 (|has| |#1| (-38 (-401 (-552)))))) (-3267 (((-111) $) 116)) (-1832 (($ $ (-627 |#2|) (-627 (-523 |#2|))) 133) (($ $ |#2| (-523 |#2|)) 132) (($ |#1| (-523 |#2|)) 117) (($ $ |#2| (-754)) 100) (($ $ (-627 |#2|) (-627 (-754))) 99)) (-3516 (($ (-1 |#1| |#1|) $) 115)) (-4135 (($ $) 90 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) 113)) (-1993 ((|#1| $) 112)) (-1595 (((-1134) $) 9)) (-2747 (($ $ |#2|) 94 (|has| |#1| (-38 (-401 (-552)))))) (-1498 (((-1096) $) 10)) (-4168 (($ $ (-754)) 101)) (-2761 (((-3 $ "failed") $ $) 128 (|has| |#1| (-544)))) (-3154 (($ $) 91 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (($ $ |#2| $) 109) (($ $ (-627 |#2|) (-627 $)) 108) (($ $ (-627 (-288 $))) 107) (($ $ (-288 $)) 106) (($ $ $ $) 105) (($ $ (-627 $) (-627 $)) 104)) (-2942 (($ $ |#2|) 40) (($ $ (-627 |#2|)) 39) (($ $ |#2| (-754)) 38) (($ $ (-627 |#2|) (-627 (-754))) 37)) (-3567 (((-523 |#2|) $) 114)) (-1640 (($ $) 80 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 69 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 79 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 70 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 78 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 71 (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) 136)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 131 (|has| |#1| (-169))) (($ $) 129 (|has| |#1| (-544))) (($ (-401 (-552))) 121 (|has| |#1| (-38 (-401 (-552)))))) (-1889 ((|#1| $ (-523 |#2|)) 119) (($ $ |#2| (-754)) 103) (($ $ (-627 |#2|) (-627 (-754))) 102)) (-3050 (((-3 $ "failed") $) 130 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-1673 (($ $) 89 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 77 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) 125 (|has| |#1| (-544)))) (-1652 (($ $) 88 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 76 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 87 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 75 (|has| |#1| (-38 (-401 (-552)))))) (-3519 (($ $) 86 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 74 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 85 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 73 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 84 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 72 (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ |#2|) 36) (($ $ (-627 |#2|)) 35) (($ $ |#2| (-754)) 34) (($ $ (-627 |#2|) (-627 (-754))) 33)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 120 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ $) 92 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 63 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 123 (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) 122 (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 111) (($ $ |#1|) 110))) +(((-723 |#1| |#2|) (-137) (-1028) (-830)) (T -723)) +((-1889 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-723 *4 *2)) (-4 *4 (-1028)) (-4 *2 (-830)))) (-1889 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 *5)) (-5 *3 (-627 (-754))) (-4 *1 (-723 *4 *5)) (-4 *4 (-1028)) (-4 *5 (-830)))) (-4168 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-723 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-830)))) (-1832 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-723 *4 *2)) (-4 *4 (-1028)) (-4 *2 (-830)))) (-1832 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 *5)) (-5 *3 (-627 (-754))) (-4 *1 (-723 *4 *5)) (-4 *4 (-1028)) (-4 *5 (-830)))) (-2641 (*1 *2 *1 *3) (-12 (-4 *1 (-723 *4 *3)) (-4 *4 (-1028)) (-4 *3 (-830)) (-5 *2 (-754)))) (-2641 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-754)) (-4 *1 (-723 *4 *3)) (-4 *4 (-1028)) (-4 *3 (-830)))) (-2212 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *1 (-723 *4 *5)) (-4 *4 (-1028)) (-4 *5 (-830)) (-5 *2 (-931 *4)))) (-2212 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-754)) (-4 *1 (-723 *4 *5)) (-4 *4 (-1028)) (-4 *5 (-830)) (-5 *2 (-931 *4)))) (-2747 (*1 *1 *1 *2) (-12 (-4 *1 (-723 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-830)) (-4 *3 (-38 (-401 (-552))))))) +(-13 (-879 |t#2|) (-952 |t#1| (-523 |t#2|) |t#2|) (-506 |t#2| $) (-303 $) (-10 -8 (-15 -1889 ($ $ |t#2| (-754))) (-15 -1889 ($ $ (-627 |t#2|) (-627 (-754)))) (-15 -4168 ($ $ (-754))) (-15 -1832 ($ $ |t#2| (-754))) (-15 -1832 ($ $ (-627 |t#2|) (-627 (-754)))) (-15 -2641 ((-754) $ |t#2|)) (-15 -2641 ((-754) $ |t#2| (-754))) (-15 -2212 ((-931 |t#1|) $ (-754))) (-15 -2212 ((-931 |t#1|) $ (-754) (-754))) (IF (|has| |t#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ($ $ |t#2|)) (-6 (-981)) (-6 (-1174))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-523 |#2|)) . T) ((-25) . T) ((-38 #1=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-544)) ((-35) |has| |#1| (-38 (-401 (-552)))) ((-94) |has| |#1| (-38 (-401 (-552)))) ((-101) . T) ((-110 #1# #1#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-278) |has| |#1| (-38 (-401 (-552)))) ((-284) |has| |#1| (-544)) ((-303 $) . T) ((-485) |has| |#1| (-38 (-401 (-552)))) ((-506 |#2| $) . T) ((-506 $ $) . T) ((-544) |has| |#1| (-544)) ((-630 #1#) |has| |#1| (-38 (-401 (-552)))) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #1#) |has| |#1| (-38 (-401 (-552)))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) |has| |#1| (-544)) ((-709) . T) ((-879 |#2|) . T) ((-952 |#1| #0# |#2|) . T) ((-981) |has| |#1| (-38 (-401 (-552)))) ((-1034 #1#) |has| |#1| (-38 (-401 (-552)))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1174) |has| |#1| (-38 (-401 (-552)))) ((-1177) |has| |#1| (-38 (-401 (-552))))) +((-1727 (((-412 (-1148 |#4|)) (-1148 |#4|)) 30) (((-412 |#4|) |#4|) 26))) +(((-724 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1727 ((-412 |#4|) |#4|)) (-15 -1727 ((-412 (-1148 |#4|)) (-1148 |#4|)))) (-830) (-776) (-13 (-301) (-144)) (-928 |#3| |#2| |#1|)) (T -724)) +((-1727 (*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-776)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-928 *6 *5 *4)) (-5 *2 (-412 (-1148 *7))) (-5 *1 (-724 *4 *5 *6 *7)) (-5 *3 (-1148 *7)))) (-1727 (*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-776)) (-4 *6 (-13 (-301) (-144))) (-5 *2 (-412 *3)) (-5 *1 (-724 *4 *5 *6 *3)) (-4 *3 (-928 *6 *5 *4))))) +(-10 -7 (-15 -1727 ((-412 |#4|) |#4|)) (-15 -1727 ((-412 (-1148 |#4|)) (-1148 |#4|)))) +((-2904 (((-412 |#4|) |#4| |#2|) 120)) (-1529 (((-412 |#4|) |#4|) NIL)) (-2487 (((-412 (-1148 |#4|)) (-1148 |#4|)) 111) (((-412 |#4|) |#4|) 41)) (-2144 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-627 (-2 (|:| -1727 (-1148 |#4|)) (|:| -4067 (-552)))))) (-1148 |#4|) (-627 |#2|) (-627 (-627 |#3|))) 69)) (-2817 (((-1148 |#3|) (-1148 |#3|) (-552)) 139)) (-2880 (((-627 (-754)) (-1148 |#4|) (-627 |#2|) (-754)) 61)) (-2079 (((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-1148 |#3|) (-1148 |#3|) |#4| (-627 |#2|) (-627 (-754)) (-627 |#3|)) 65)) (-2663 (((-2 (|:| |upol| (-1148 |#3|)) (|:| |Lval| (-627 |#3|)) (|:| |Lfact| (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552))))) (|:| |ctpol| |#3|)) (-1148 |#4|) (-627 |#2|) (-627 (-627 |#3|))) 26)) (-2455 (((-2 (|:| -3144 (-1148 |#4|)) (|:| |polval| (-1148 |#3|))) (-1148 |#4|) (-1148 |#3|) (-552)) 57)) (-3220 (((-552) (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552))))) 136)) (-4183 ((|#4| (-552) (-412 |#4|)) 58)) (-3184 (((-111) (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552)))) (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552))))) NIL))) +(((-725 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2487 ((-412 |#4|) |#4|)) (-15 -2487 ((-412 (-1148 |#4|)) (-1148 |#4|))) (-15 -1529 ((-412 |#4|) |#4|)) (-15 -3220 ((-552) (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552)))))) (-15 -2904 ((-412 |#4|) |#4| |#2|)) (-15 -2455 ((-2 (|:| -3144 (-1148 |#4|)) (|:| |polval| (-1148 |#3|))) (-1148 |#4|) (-1148 |#3|) (-552))) (-15 -2144 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-627 (-2 (|:| -1727 (-1148 |#4|)) (|:| -4067 (-552)))))) (-1148 |#4|) (-627 |#2|) (-627 (-627 |#3|)))) (-15 -2663 ((-2 (|:| |upol| (-1148 |#3|)) (|:| |Lval| (-627 |#3|)) (|:| |Lfact| (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552))))) (|:| |ctpol| |#3|)) (-1148 |#4|) (-627 |#2|) (-627 (-627 |#3|)))) (-15 -4183 (|#4| (-552) (-412 |#4|))) (-15 -3184 ((-111) (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552)))) (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552)))))) (-15 -2079 ((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-1148 |#3|) (-1148 |#3|) |#4| (-627 |#2|) (-627 (-754)) (-627 |#3|))) (-15 -2880 ((-627 (-754)) (-1148 |#4|) (-627 |#2|) (-754))) (-15 -2817 ((-1148 |#3|) (-1148 |#3|) (-552)))) (-776) (-830) (-301) (-928 |#3| |#1| |#2|)) (T -725)) +((-2817 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 *6)) (-5 *3 (-552)) (-4 *6 (-301)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-725 *4 *5 *6 *7)) (-4 *7 (-928 *6 *4 *5)))) (-2880 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1148 *9)) (-5 *4 (-627 *7)) (-4 *7 (-830)) (-4 *9 (-928 *8 *6 *7)) (-4 *6 (-776)) (-4 *8 (-301)) (-5 *2 (-627 (-754))) (-5 *1 (-725 *6 *7 *8 *9)) (-5 *5 (-754)))) (-2079 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1148 *11)) (-5 *6 (-627 *10)) (-5 *7 (-627 (-754))) (-5 *8 (-627 *11)) (-4 *10 (-830)) (-4 *11 (-301)) (-4 *9 (-776)) (-4 *5 (-928 *11 *9 *10)) (-5 *2 (-627 (-1148 *5))) (-5 *1 (-725 *9 *10 *11 *5)) (-5 *3 (-1148 *5)))) (-3184 (*1 *2 *3 *3) (-12 (-5 *3 (-627 (-2 (|:| -1727 (-1148 *6)) (|:| -4067 (-552))))) (-4 *6 (-301)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) (-5 *1 (-725 *4 *5 *6 *7)) (-4 *7 (-928 *6 *4 *5)))) (-4183 (*1 *2 *3 *4) (-12 (-5 *3 (-552)) (-5 *4 (-412 *2)) (-4 *2 (-928 *7 *5 *6)) (-5 *1 (-725 *5 *6 *7 *2)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-301)))) (-2663 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1148 *9)) (-5 *4 (-627 *7)) (-5 *5 (-627 (-627 *8))) (-4 *7 (-830)) (-4 *8 (-301)) (-4 *9 (-928 *8 *6 *7)) (-4 *6 (-776)) (-5 *2 (-2 (|:| |upol| (-1148 *8)) (|:| |Lval| (-627 *8)) (|:| |Lfact| (-627 (-2 (|:| -1727 (-1148 *8)) (|:| -4067 (-552))))) (|:| |ctpol| *8))) (-5 *1 (-725 *6 *7 *8 *9)))) (-2144 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-627 *7)) (-5 *5 (-627 (-627 *8))) (-4 *7 (-830)) (-4 *8 (-301)) (-4 *6 (-776)) (-4 *9 (-928 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-627 (-2 (|:| -1727 (-1148 *9)) (|:| -4067 (-552))))))) (-5 *1 (-725 *6 *7 *8 *9)) (-5 *3 (-1148 *9)))) (-2455 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-552)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-301)) (-4 *9 (-928 *8 *6 *7)) (-5 *2 (-2 (|:| -3144 (-1148 *9)) (|:| |polval| (-1148 *8)))) (-5 *1 (-725 *6 *7 *8 *9)) (-5 *3 (-1148 *9)) (-5 *4 (-1148 *8)))) (-2904 (*1 *2 *3 *4) (-12 (-4 *5 (-776)) (-4 *4 (-830)) (-4 *6 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-725 *5 *4 *6 *3)) (-4 *3 (-928 *6 *5 *4)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| -1727 (-1148 *6)) (|:| -4067 (-552))))) (-4 *6 (-301)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-552)) (-5 *1 (-725 *4 *5 *6 *7)) (-4 *7 (-928 *6 *4 *5)))) (-1529 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-725 *4 *5 *6 *3)) (-4 *3 (-928 *6 *4 *5)))) (-2487 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)) (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-412 (-1148 *7))) (-5 *1 (-725 *4 *5 *6 *7)) (-5 *3 (-1148 *7)))) (-2487 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-725 *4 *5 *6 *3)) (-4 *3 (-928 *6 *4 *5))))) +(-10 -7 (-15 -2487 ((-412 |#4|) |#4|)) (-15 -2487 ((-412 (-1148 |#4|)) (-1148 |#4|))) (-15 -1529 ((-412 |#4|) |#4|)) (-15 -3220 ((-552) (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552)))))) (-15 -2904 ((-412 |#4|) |#4| |#2|)) (-15 -2455 ((-2 (|:| -3144 (-1148 |#4|)) (|:| |polval| (-1148 |#3|))) (-1148 |#4|) (-1148 |#3|) (-552))) (-15 -2144 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-627 (-2 (|:| -1727 (-1148 |#4|)) (|:| -4067 (-552)))))) (-1148 |#4|) (-627 |#2|) (-627 (-627 |#3|)))) (-15 -2663 ((-2 (|:| |upol| (-1148 |#3|)) (|:| |Lval| (-627 |#3|)) (|:| |Lfact| (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552))))) (|:| |ctpol| |#3|)) (-1148 |#4|) (-627 |#2|) (-627 (-627 |#3|)))) (-15 -4183 (|#4| (-552) (-412 |#4|))) (-15 -3184 ((-111) (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552)))) (-627 (-2 (|:| -1727 (-1148 |#3|)) (|:| -4067 (-552)))))) (-15 -2079 ((-3 (-627 (-1148 |#4|)) "failed") (-1148 |#4|) (-1148 |#3|) (-1148 |#3|) |#4| (-627 |#2|) (-627 (-754)) (-627 |#3|))) (-15 -2880 ((-627 (-754)) (-1148 |#4|) (-627 |#2|) (-754))) (-15 -2817 ((-1148 |#3|) (-1148 |#3|) (-552)))) +((-1410 (($ $ (-900)) 12))) +(((-726 |#1| |#2|) (-10 -8 (-15 -1410 (|#1| |#1| (-900)))) (-727 |#2|) (-169)) (T -726)) +NIL +(-10 -8 (-15 -1410 (|#1| |#1| (-900)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1407 (($ $ (-900)) 28)) (-1410 (($ $ (-900)) 33)) (-2896 (($ $ (-900)) 29)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2493 (($ $ $) 25)) (-1477 (((-842) $) 11)) (-4297 (($ $ $ $) 26)) (-2743 (($ $ $) 24)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 30)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-727 |#1|) (-137) (-169)) (T -727)) +((-1410 (*1 *1 *1 *2) (-12 (-5 *2 (-900)) (-4 *1 (-727 *3)) (-4 *3 (-169))))) +(-13 (-744) (-700 |t#1|) (-10 -8 (-15 -1410 ($ $ (-900))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-700 |#1|) . T) ((-703) . T) ((-744) . T) ((-1034 |#1|) . T) ((-1076) . T)) +((-1986 (((-1014) (-671 (-220)) (-552) (-111) (-552)) 25)) (-3183 (((-1014) (-671 (-220)) (-552) (-111) (-552)) 24))) +(((-728) (-10 -7 (-15 -3183 ((-1014) (-671 (-220)) (-552) (-111) (-552))) (-15 -1986 ((-1014) (-671 (-220)) (-552) (-111) (-552))))) (T -728)) +((-1986 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *5 (-111)) (-5 *2 (-1014)) (-5 *1 (-728)))) (-3183 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *5 (-111)) (-5 *2 (-1014)) (-5 *1 (-728))))) +(-10 -7 (-15 -3183 ((-1014) (-671 (-220)) (-552) (-111) (-552))) (-15 -1986 ((-1014) (-671 (-220)) (-552) (-111) (-552)))) +((-1778 (((-1014) (-552) (-552) (-552) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-73 FCN)))) 43)) (-3315 (((-1014) (-552) (-552) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-80 FCN)))) 39)) (-3643 (((-1014) (-220) (-220) (-220) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) 32))) +(((-729) (-10 -7 (-15 -3643 ((-1014) (-220) (-220) (-220) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935))))) (-15 -3315 ((-1014) (-552) (-552) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-80 FCN))))) (-15 -1778 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-73 FCN))))))) (T -729)) +((-1778 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1014)) (-5 *1 (-729)))) (-3315 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1014)) (-5 *1 (-729)))) (-3643 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) (-5 *2 (-1014)) (-5 *1 (-729))))) +(-10 -7 (-15 -3643 ((-1014) (-220) (-220) (-220) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935))))) (-15 -3315 ((-1014) (-552) (-552) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-80 FCN))))) (-15 -1778 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-73 FCN)))))) +((-2994 (((-1014) (-552) (-552) (-671 (-220)) (-552)) 34)) (-1475 (((-1014) (-552) (-552) (-671 (-220)) (-552)) 33)) (-1748 (((-1014) (-552) (-671 (-220)) (-552)) 32)) (-3316 (((-1014) (-552) (-671 (-220)) (-552)) 31)) (-2491 (((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552)) 30)) (-2827 (((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552)) 29)) (-1653 (((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-552)) 28)) (-2913 (((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-552)) 27)) (-3087 (((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552)) 24)) (-1580 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552)) 23)) (-3037 (((-1014) (-552) (-671 (-220)) (-552)) 22)) (-1431 (((-1014) (-552) (-671 (-220)) (-552)) 21))) +(((-730) (-10 -7 (-15 -1431 ((-1014) (-552) (-671 (-220)) (-552))) (-15 -3037 ((-1014) (-552) (-671 (-220)) (-552))) (-15 -1580 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3087 ((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2913 ((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1653 ((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2827 ((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2491 ((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3316 ((-1014) (-552) (-671 (-220)) (-552))) (-15 -1748 ((-1014) (-552) (-671 (-220)) (-552))) (-15 -1475 ((-1014) (-552) (-552) (-671 (-220)) (-552))) (-15 -2994 ((-1014) (-552) (-552) (-671 (-220)) (-552))))) (T -730)) +((-2994 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-1475 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-1748 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-3316 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-2491 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-1134)) (-5 *5 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-2827 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-1134)) (-5 *5 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-1653 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-1134)) (-5 *5 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-2913 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-1134)) (-5 *5 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-3087 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-1580 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-3037 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730)))) (-1431 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-730))))) +(-10 -7 (-15 -1431 ((-1014) (-552) (-671 (-220)) (-552))) (-15 -3037 ((-1014) (-552) (-671 (-220)) (-552))) (-15 -1580 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3087 ((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2913 ((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1653 ((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2827 ((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2491 ((-1014) (-552) (-552) (-1134) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3316 ((-1014) (-552) (-671 (-220)) (-552))) (-15 -1748 ((-1014) (-552) (-671 (-220)) (-552))) (-15 -1475 ((-1014) (-552) (-552) (-671 (-220)) (-552))) (-15 -2994 ((-1014) (-552) (-552) (-671 (-220)) (-552)))) +((-3152 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552) (-220) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) 52)) (-3538 (((-1014) (-671 (-220)) (-671 (-220)) (-552) (-552)) 51)) (-1950 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) 50)) (-2434 (((-1014) (-220) (-220) (-552) (-552) (-552) (-552)) 46)) (-1782 (((-1014) (-220) (-220) (-552) (-220) (-552) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) 45)) (-1397 (((-1014) (-220) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) 44)) (-2208 (((-1014) (-220) (-220) (-220) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) 43)) (-2634 (((-1014) (-220) (-220) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) 42)) (-2979 (((-1014) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) 38)) (-1601 (((-1014) (-220) (-220) (-552) (-671 (-220)) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) 37)) (-4150 (((-1014) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) 33)) (-2653 (((-1014) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) 32))) +(((-731) (-10 -7 (-15 -2653 ((-1014) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935))))) (-15 -4150 ((-1014) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935))))) (-15 -1601 ((-1014) (-220) (-220) (-552) (-671 (-220)) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935))))) (-15 -2979 ((-1014) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935))))) (-15 -2634 ((-1014) (-220) (-220) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -2208 ((-1014) (-220) (-220) (-220) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -1397 ((-1014) (-220) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -1782 ((-1014) (-220) (-220) (-552) (-220) (-552) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -2434 ((-1014) (-220) (-220) (-552) (-552) (-552) (-552))) (-15 -1950 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN))))) (-15 -3538 ((-1014) (-671 (-220)) (-671 (-220)) (-552) (-552))) (-15 -3152 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552) (-220) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN))))))) (T -731)) +((-3152 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1014)) (-5 *1 (-731)))) (-3538 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-731)))) (-1950 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) (-5 *2 (-1014)) (-5 *1 (-731)))) (-2434 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-731)))) (-1782 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1014)) (-5 *1 (-731)))) (-1397 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1014)) (-5 *1 (-731)))) (-2208 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1014)) (-5 *1 (-731)))) (-2634 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1014)) (-5 *1 (-731)))) (-2979 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) (-5 *2 (-1014)) (-5 *1 (-731)))) (-1601 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-731)))) (-4150 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) (-5 *2 (-1014)) (-5 *1 (-731)))) (-2653 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) (-5 *2 (-1014)) (-5 *1 (-731))))) +(-10 -7 (-15 -2653 ((-1014) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935))))) (-15 -4150 ((-1014) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935))))) (-15 -1601 ((-1014) (-220) (-220) (-552) (-671 (-220)) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935))))) (-15 -2979 ((-1014) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935))))) (-15 -2634 ((-1014) (-220) (-220) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -2208 ((-1014) (-220) (-220) (-220) (-220) (-552) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -1397 ((-1014) (-220) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -1782 ((-1014) (-220) (-220) (-552) (-220) (-552) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G))))) (-15 -2434 ((-1014) (-220) (-220) (-552) (-552) (-552) (-552))) (-15 -1950 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552) (-220) (-552) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN))))) (-15 -3538 ((-1014) (-671 (-220)) (-671 (-220)) (-552) (-552))) (-15 -3152 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552) (-220) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))))) +((-3603 (((-1014) (-552) (-552) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-382)) (|:| |fp| (-75 G JACOBG JACGEP)))) 76)) (-2067 (((-1014) (-671 (-220)) (-552) (-552) (-220) (-552) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL))) (-382) (-382)) 69) (((-1014) (-671 (-220)) (-552) (-552) (-220) (-552) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL)))) 68)) (-2399 (((-1014) (-220) (-220) (-552) (-220) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-84 FCNG)))) 57)) (-2840 (((-1014) (-671 (-220)) (-671 (-220)) (-552) (-220) (-220) (-220) (-552) (-552) (-552) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) 50)) (-3169 (((-1014) (-220) (-552) (-552) (-1134) (-552) (-220) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) 49)) (-3843 (((-1014) (-220) (-552) (-552) (-220) (-1134) (-220) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) 45)) (-4127 (((-1014) (-220) (-552) (-552) (-220) (-220) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) 42)) (-2739 (((-1014) (-220) (-552) (-552) (-552) (-220) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) 38))) +(((-732) (-10 -7 (-15 -2739 ((-1014) (-220) (-552) (-552) (-552) (-220) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -4127 ((-1014) (-220) (-552) (-552) (-220) (-220) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))))) (-15 -3843 ((-1014) (-220) (-552) (-552) (-220) (-1134) (-220) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -3169 ((-1014) (-220) (-552) (-552) (-1134) (-552) (-220) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -2840 ((-1014) (-671 (-220)) (-671 (-220)) (-552) (-220) (-220) (-220) (-552) (-552) (-552) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))))) (-15 -2399 ((-1014) (-220) (-220) (-552) (-220) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-84 FCNG))))) (-15 -2067 ((-1014) (-671 (-220)) (-552) (-552) (-220) (-552) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL))))) (-15 -2067 ((-1014) (-671 (-220)) (-552) (-552) (-220) (-552) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL))) (-382) (-382))) (-15 -3603 ((-1014) (-552) (-552) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-382)) (|:| |fp| (-75 G JACOBG JACGEP))))))) (T -732)) +((-3603 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-75 G JACOBG JACGEP)))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-732)))) (-2067 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-382)) (-5 *2 (-1014)) (-5 *1 (-732)))) (-2067 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-1014)) (-5 *1 (-732)))) (-2399 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-83 FCNF)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-732)))) (-2840 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *5 (-220)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1014)) (-5 *1 (-732)))) (-3169 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-552)) (-5 *5 (-1134)) (-5 *6 (-671 (-220))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-70 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-732)))) (-3843 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-552)) (-5 *5 (-1134)) (-5 *6 (-671 (-220))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-732)))) (-4127 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-732)))) (-2739 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-732))))) +(-10 -7 (-15 -2739 ((-1014) (-220) (-552) (-552) (-552) (-220) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -4127 ((-1014) (-220) (-552) (-552) (-220) (-220) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))))) (-15 -3843 ((-1014) (-220) (-552) (-552) (-220) (-1134) (-220) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -3169 ((-1014) (-220) (-552) (-552) (-1134) (-552) (-220) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT))))) (-15 -2840 ((-1014) (-671 (-220)) (-671 (-220)) (-552) (-220) (-220) (-220) (-552) (-552) (-552) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN))))) (-15 -2399 ((-1014) (-220) (-220) (-552) (-220) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-84 FCNG))))) (-15 -2067 ((-1014) (-671 (-220)) (-552) (-552) (-220) (-552) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL))))) (-15 -2067 ((-1014) (-671 (-220)) (-552) (-552) (-220) (-552) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL))) (-382) (-382))) (-15 -3603 ((-1014) (-552) (-552) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-382)) (|:| |fp| (-75 G JACOBG JACGEP)))))) +((-2562 (((-1014) (-220) (-220) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-220) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-220) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-657 (-220)) (-552)) 45)) (-3858 (((-1014) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-1134) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-82 BNDY)))) 41)) (-3227 (((-1014) (-552) (-552) (-552) (-552) (-220) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552)) 23))) +(((-733) (-10 -7 (-15 -3227 ((-1014) (-552) (-552) (-552) (-552) (-220) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3858 ((-1014) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-1134) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-82 BNDY))))) (-15 -2562 ((-1014) (-220) (-220) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-220) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-220) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-657 (-220)) (-552))))) (T -733)) +((-2562 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-657 (-220))) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-733)))) (-3858 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-1134)) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-81 PDEF)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1014)) (-5 *1 (-733)))) (-3227 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-733))))) +(-10 -7 (-15 -3227 ((-1014) (-552) (-552) (-552) (-552) (-220) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3858 ((-1014) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-1134) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-382)) (|:| |fp| (-82 BNDY))))) (-15 -2562 ((-1014) (-220) (-220) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-220) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-220) (-552) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-657 (-220)) (-552)))) +((-4045 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-671 (-220)) (-220) (-220) (-552)) 35)) (-2468 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-220) (-220) (-552)) 34)) (-3908 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-671 (-220)) (-220) (-220) (-552)) 33)) (-4225 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552)) 29)) (-2704 (((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552)) 28)) (-3060 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-220) (-552)) 27)) (-1384 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-552)) 24)) (-2787 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-552)) 23)) (-2995 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552)) 22)) (-4260 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552) (-552) (-552)) 21))) +(((-734) (-10 -7 (-15 -4260 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552) (-552) (-552))) (-15 -2995 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2787 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-552))) (-15 -1384 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-552))) (-15 -3060 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-220) (-552))) (-15 -2704 ((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -4225 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3908 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-671 (-220)) (-220) (-220) (-552))) (-15 -2468 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-220) (-220) (-552))) (-15 -4045 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-671 (-220)) (-220) (-220) (-552))))) (T -734)) +((-4045 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) (-5 *2 (-1014)) (-5 *1 (-734)))) (-2468 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) (-5 *2 (-1014)) (-5 *1 (-734)))) (-3908 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *6 (-220)) (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-734)))) (-4225 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-734)))) (-2704 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-734)))) (-3060 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) (-5 *2 (-1014)) (-5 *1 (-734)))) (-1384 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-734)))) (-2787 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-734)))) (-2995 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-734)))) (-4260 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-734))))) +(-10 -7 (-15 -4260 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552) (-552) (-552))) (-15 -2995 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2787 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-552))) (-15 -1384 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-552))) (-15 -3060 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-220) (-552))) (-15 -2704 ((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -4225 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3908 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-671 (-220)) (-220) (-220) (-552))) (-15 -2468 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-220) (-220) (-552))) (-15 -4045 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-671 (-220)) (-220) (-220) (-552)))) +((-2229 (((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-552) (-552) (-552)) 45)) (-2603 (((-1014) (-552) (-552) (-552) (-220) (-671 (-220)) (-671 (-220)) (-552)) 44)) (-2253 (((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-552)) 43)) (-3034 (((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552)) 42)) (-1999 (((-1014) (-1134) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-552)) 41)) (-3459 (((-1014) (-1134) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-552)) 40)) (-3586 (((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-552) (-552) (-552) (-220) (-671 (-220)) (-552)) 39)) (-1864 (((-1014) (-1134) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-552))) 38)) (-3870 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552)) 35)) (-2768 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552)) 34)) (-1586 (((-1014) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552)) 33)) (-1888 (((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552)) 32)) (-4252 (((-1014) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-220) (-552)) 31)) (-1515 (((-1014) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-220) (-552) (-552) (-552)) 30)) (-4188 (((-1014) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-552) (-552) (-552)) 29)) (-2625 (((-1014) (-552) (-552) (-552) (-220) (-220) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-552) (-671 (-552)) (-552) (-552) (-552)) 28)) (-4296 (((-1014) (-552) (-671 (-220)) (-220) (-552)) 24)) (-2720 (((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552)) 21))) +(((-735) (-10 -7 (-15 -2720 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -4296 ((-1014) (-552) (-671 (-220)) (-220) (-552))) (-15 -2625 ((-1014) (-552) (-552) (-552) (-220) (-220) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-552) (-671 (-552)) (-552) (-552) (-552))) (-15 -4188 ((-1014) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-552) (-552) (-552))) (-15 -1515 ((-1014) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-220) (-552) (-552) (-552))) (-15 -4252 ((-1014) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-220) (-552))) (-15 -1888 ((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1586 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552))) (-15 -2768 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552))) (-15 -3870 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1864 ((-1014) (-1134) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-552)))) (-15 -3586 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-552) (-552) (-552) (-220) (-671 (-220)) (-552))) (-15 -3459 ((-1014) (-1134) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-552))) (-15 -1999 ((-1014) (-1134) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3034 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2253 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-552))) (-15 -2603 ((-1014) (-552) (-552) (-552) (-220) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2229 ((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-552) (-552) (-552))))) (T -735)) +((-2229 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-735)))) (-2603 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-2253 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-735)))) (-3034 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-735)))) (-1999 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-220)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-3459 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1134)) (-5 *5 (-671 (-220))) (-5 *6 (-220)) (-5 *7 (-671 (-552))) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-3586 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *6 (-220)) (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-1864 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1134)) (-5 *5 (-671 (-220))) (-5 *6 (-220)) (-5 *7 (-671 (-552))) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-3870 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-735)))) (-2768 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-1586 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-1888 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-735)))) (-4252 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-1515 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-4188 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-2625 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-671 (-220))) (-5 *6 (-671 (-552))) (-5 *3 (-552)) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-4296 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) (-5 *2 (-1014)) (-5 *1 (-735)))) (-2720 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-735))))) +(-10 -7 (-15 -2720 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -4296 ((-1014) (-552) (-671 (-220)) (-220) (-552))) (-15 -2625 ((-1014) (-552) (-552) (-552) (-220) (-220) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-552) (-671 (-552)) (-552) (-552) (-552))) (-15 -4188 ((-1014) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-552) (-552) (-552))) (-15 -1515 ((-1014) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-220) (-552) (-552) (-552))) (-15 -4252 ((-1014) (-552) (-220) (-220) (-671 (-220)) (-552) (-552) (-220) (-552))) (-15 -1888 ((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1586 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552))) (-15 -2768 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552))) (-15 -3870 ((-1014) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1864 ((-1014) (-1134) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-552)))) (-15 -3586 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-552) (-552) (-552) (-220) (-671 (-220)) (-552))) (-15 -3459 ((-1014) (-1134) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-552))) (-15 -1999 ((-1014) (-1134) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-220) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3034 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2253 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-552))) (-15 -2603 ((-1014) (-552) (-552) (-552) (-220) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2229 ((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552) (-671 (-220)) (-671 (-220)) (-552) (-552) (-552)))) +((-4041 (((-1014) (-552) (-552) (-552) (-220) (-671 (-220)) (-552) (-671 (-220)) (-552)) 63)) (-3176 (((-1014) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-111) (-220) (-552) (-220) (-220) (-111) (-220) (-220) (-220) (-220) (-111) (-552) (-552) (-552) (-552) (-552) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-552) (-671 (-552)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) 62)) (-2097 (((-1014) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-220) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-111) (-111) (-111) (-552) (-552) (-671 (-220)) (-671 (-552)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-64 QPHESS)))) 58)) (-2438 (((-1014) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-111) (-552) (-552) (-671 (-220)) (-552)) 51)) (-2980 (((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-65 FUNCT1)))) 50)) (-1567 (((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-62 LSFUN2)))) 46)) (-1581 (((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-78 LSFUN1)))) 42)) (-1883 (((-1014) (-552) (-220) (-220) (-552) (-220) (-111) (-220) (-220) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) 38))) +(((-736) (-10 -7 (-15 -1883 ((-1014) (-552) (-220) (-220) (-552) (-220) (-111) (-220) (-220) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN))))) (-15 -1581 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-78 LSFUN1))))) (-15 -1567 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-62 LSFUN2))))) (-15 -2980 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-65 FUNCT1))))) (-15 -2438 ((-1014) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-111) (-552) (-552) (-671 (-220)) (-552))) (-15 -2097 ((-1014) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-220) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-111) (-111) (-111) (-552) (-552) (-671 (-220)) (-671 (-552)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-64 QPHESS))))) (-15 -3176 ((-1014) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-111) (-220) (-552) (-220) (-220) (-111) (-220) (-220) (-220) (-220) (-111) (-552) (-552) (-552) (-552) (-552) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-552) (-671 (-552)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN))))) (-15 -4041 ((-1014) (-552) (-552) (-552) (-220) (-671 (-220)) (-552) (-671 (-220)) (-552))))) (T -736)) +((-4041 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-736)))) (-3176 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-671 (-220))) (-5 *5 (-111)) (-5 *6 (-220)) (-5 *7 (-671 (-552))) (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-79 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-736)))) (-2097 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-671 (-220))) (-5 *6 (-111)) (-5 *7 (-671 (-552))) (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-552)) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-736)))) (-2438 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-111)) (-5 *2 (-1014)) (-5 *1 (-736)))) (-2980 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1014)) (-5 *1 (-736)))) (-1567 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-1014)) (-5 *1 (-736)))) (-1581 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1014)) (-5 *1 (-736)))) (-1883 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-552)) (-5 *5 (-111)) (-5 *6 (-671 (-220))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-736))))) +(-10 -7 (-15 -1883 ((-1014) (-552) (-220) (-220) (-552) (-220) (-111) (-220) (-220) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN))))) (-15 -1581 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-78 LSFUN1))))) (-15 -1567 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-62 LSFUN2))))) (-15 -2980 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-65 FUNCT1))))) (-15 -2438 ((-1014) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-111) (-552) (-552) (-671 (-220)) (-552))) (-15 -2097 ((-1014) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-220) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-111) (-111) (-111) (-552) (-552) (-671 (-220)) (-671 (-552)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-64 QPHESS))))) (-15 -3176 ((-1014) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-552) (-111) (-220) (-552) (-220) (-220) (-111) (-220) (-220) (-220) (-220) (-111) (-552) (-552) (-552) (-552) (-552) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-552) (-671 (-552)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN))))) (-15 -4041 ((-1014) (-552) (-552) (-552) (-220) (-671 (-220)) (-552) (-671 (-220)) (-552)))) +((-3507 (((-1014) (-1134) (-552) (-552) (-552) (-552) (-671 (-166 (-220))) (-671 (-166 (-220))) (-552)) 47)) (-3789 (((-1014) (-1134) (-1134) (-552) (-552) (-671 (-166 (-220))) (-552) (-671 (-166 (-220))) (-552) (-552) (-671 (-166 (-220))) (-552)) 46)) (-1428 (((-1014) (-552) (-552) (-552) (-671 (-166 (-220))) (-552)) 45)) (-2878 (((-1014) (-1134) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552)) 40)) (-3378 (((-1014) (-1134) (-1134) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-552) (-552) (-671 (-220)) (-552)) 39)) (-3774 (((-1014) (-552) (-552) (-552) (-671 (-220)) (-552)) 36)) (-2195 (((-1014) (-552) (-671 (-220)) (-552) (-671 (-552)) (-552)) 35)) (-3481 (((-1014) (-552) (-552) (-552) (-552) (-627 (-111)) (-671 (-220)) (-671 (-552)) (-671 (-552)) (-220) (-220) (-552)) 34)) (-1945 (((-1014) (-552) (-552) (-552) (-671 (-552)) (-671 (-552)) (-671 (-552)) (-671 (-552)) (-111) (-220) (-111) (-671 (-552)) (-671 (-220)) (-552)) 33)) (-2387 (((-1014) (-552) (-552) (-552) (-552) (-220) (-111) (-111) (-627 (-111)) (-671 (-220)) (-671 (-552)) (-671 (-552)) (-552)) 32))) +(((-737) (-10 -7 (-15 -2387 ((-1014) (-552) (-552) (-552) (-552) (-220) (-111) (-111) (-627 (-111)) (-671 (-220)) (-671 (-552)) (-671 (-552)) (-552))) (-15 -1945 ((-1014) (-552) (-552) (-552) (-671 (-552)) (-671 (-552)) (-671 (-552)) (-671 (-552)) (-111) (-220) (-111) (-671 (-552)) (-671 (-220)) (-552))) (-15 -3481 ((-1014) (-552) (-552) (-552) (-552) (-627 (-111)) (-671 (-220)) (-671 (-552)) (-671 (-552)) (-220) (-220) (-552))) (-15 -2195 ((-1014) (-552) (-671 (-220)) (-552) (-671 (-552)) (-552))) (-15 -3774 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-552))) (-15 -3378 ((-1014) (-1134) (-1134) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-552) (-552) (-671 (-220)) (-552))) (-15 -2878 ((-1014) (-1134) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1428 ((-1014) (-552) (-552) (-552) (-671 (-166 (-220))) (-552))) (-15 -3789 ((-1014) (-1134) (-1134) (-552) (-552) (-671 (-166 (-220))) (-552) (-671 (-166 (-220))) (-552) (-552) (-671 (-166 (-220))) (-552))) (-15 -3507 ((-1014) (-1134) (-552) (-552) (-552) (-552) (-671 (-166 (-220))) (-671 (-166 (-220))) (-552))))) (T -737)) +((-3507 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-166 (-220)))) (-5 *2 (-1014)) (-5 *1 (-737)))) (-3789 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-166 (-220)))) (-5 *2 (-1014)) (-5 *1 (-737)))) (-1428 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-166 (-220)))) (-5 *2 (-1014)) (-5 *1 (-737)))) (-2878 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-737)))) (-3378 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-737)))) (-3774 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-737)))) (-2195 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-737)))) (-3481 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-627 (-111))) (-5 *5 (-671 (-220))) (-5 *6 (-671 (-552))) (-5 *7 (-220)) (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-737)))) (-1945 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-671 (-552))) (-5 *5 (-111)) (-5 *7 (-671 (-220))) (-5 *3 (-552)) (-5 *6 (-220)) (-5 *2 (-1014)) (-5 *1 (-737)))) (-2387 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-627 (-111))) (-5 *7 (-671 (-220))) (-5 *8 (-671 (-552))) (-5 *3 (-552)) (-5 *4 (-220)) (-5 *5 (-111)) (-5 *2 (-1014)) (-5 *1 (-737))))) +(-10 -7 (-15 -2387 ((-1014) (-552) (-552) (-552) (-552) (-220) (-111) (-111) (-627 (-111)) (-671 (-220)) (-671 (-552)) (-671 (-552)) (-552))) (-15 -1945 ((-1014) (-552) (-552) (-552) (-671 (-552)) (-671 (-552)) (-671 (-552)) (-671 (-552)) (-111) (-220) (-111) (-671 (-552)) (-671 (-220)) (-552))) (-15 -3481 ((-1014) (-552) (-552) (-552) (-552) (-627 (-111)) (-671 (-220)) (-671 (-552)) (-671 (-552)) (-220) (-220) (-552))) (-15 -2195 ((-1014) (-552) (-671 (-220)) (-552) (-671 (-552)) (-552))) (-15 -3774 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-552))) (-15 -3378 ((-1014) (-1134) (-1134) (-552) (-552) (-671 (-220)) (-552) (-671 (-220)) (-552) (-552) (-671 (-220)) (-552))) (-15 -2878 ((-1014) (-1134) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1428 ((-1014) (-552) (-552) (-552) (-671 (-166 (-220))) (-552))) (-15 -3789 ((-1014) (-1134) (-1134) (-552) (-552) (-671 (-166 (-220))) (-552) (-671 (-166 (-220))) (-552) (-552) (-671 (-166 (-220))) (-552))) (-15 -3507 ((-1014) (-1134) (-552) (-552) (-552) (-552) (-671 (-166 (-220))) (-671 (-166 (-220))) (-552)))) +((-3047 (((-1014) (-552) (-552) (-552) (-552) (-552) (-111) (-552) (-111) (-552) (-671 (-166 (-220))) (-671 (-166 (-220))) (-552)) 65)) (-1443 (((-1014) (-552) (-552) (-552) (-552) (-552) (-111) (-552) (-111) (-552) (-671 (-220)) (-671 (-220)) (-552)) 60)) (-1788 (((-1014) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE))) (-382)) 56) (((-1014) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE)))) 55)) (-3225 (((-1014) (-552) (-552) (-552) (-220) (-111) (-552) (-671 (-220)) (-671 (-220)) (-552)) 37)) (-3470 (((-1014) (-552) (-552) (-220) (-220) (-552) (-552) (-671 (-220)) (-552)) 33)) (-1754 (((-1014) (-671 (-220)) (-552) (-671 (-220)) (-552) (-552) (-552) (-552) (-552)) 30)) (-3194 (((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552)) 29)) (-1420 (((-1014) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552)) 28)) (-2828 (((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552)) 27)) (-3011 (((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-552)) 26)) (-1337 (((-1014) (-552) (-552) (-671 (-220)) (-552)) 25)) (-3924 (((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552)) 24)) (-4285 (((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552)) 23)) (-2810 (((-1014) (-671 (-220)) (-552) (-552) (-552) (-552)) 22)) (-3111 (((-1014) (-552) (-552) (-671 (-220)) (-552)) 21))) +(((-738) (-10 -7 (-15 -3111 ((-1014) (-552) (-552) (-671 (-220)) (-552))) (-15 -2810 ((-1014) (-671 (-220)) (-552) (-552) (-552) (-552))) (-15 -4285 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3924 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1337 ((-1014) (-552) (-552) (-671 (-220)) (-552))) (-15 -3011 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-552))) (-15 -2828 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1420 ((-1014) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3194 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1754 ((-1014) (-671 (-220)) (-552) (-671 (-220)) (-552) (-552) (-552) (-552) (-552))) (-15 -3470 ((-1014) (-552) (-552) (-220) (-220) (-552) (-552) (-671 (-220)) (-552))) (-15 -3225 ((-1014) (-552) (-552) (-552) (-220) (-111) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1788 ((-1014) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE))))) (-15 -1788 ((-1014) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE))) (-382))) (-15 -1443 ((-1014) (-552) (-552) (-552) (-552) (-552) (-111) (-552) (-111) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3047 ((-1014) (-552) (-552) (-552) (-552) (-552) (-111) (-552) (-111) (-552) (-671 (-166 (-220))) (-671 (-166 (-220))) (-552))))) (T -738)) +((-3047 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-111)) (-5 *5 (-671 (-166 (-220)))) (-5 *2 (-1014)) (-5 *1 (-738)))) (-1443 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *4 (-111)) (-5 *5 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-738)))) (-1788 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-382)) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-738)))) (-1788 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-738)))) (-3225 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-552)) (-5 *5 (-111)) (-5 *6 (-671 (-220))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-738)))) (-3470 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-738)))) (-1754 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-738)))) (-3194 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-738)))) (-1420 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-738)))) (-2828 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-738)))) (-3011 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-738)))) (-1337 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-738)))) (-3924 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-738)))) (-4285 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-738)))) (-2810 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-738)))) (-3111 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-738))))) +(-10 -7 (-15 -3111 ((-1014) (-552) (-552) (-671 (-220)) (-552))) (-15 -2810 ((-1014) (-671 (-220)) (-552) (-552) (-552) (-552))) (-15 -4285 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3924 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1337 ((-1014) (-552) (-552) (-671 (-220)) (-552))) (-15 -3011 ((-1014) (-552) (-552) (-552) (-552) (-671 (-220)) (-552))) (-15 -2828 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1420 ((-1014) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3194 ((-1014) (-552) (-552) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1754 ((-1014) (-671 (-220)) (-552) (-671 (-220)) (-552) (-552) (-552) (-552) (-552))) (-15 -3470 ((-1014) (-552) (-552) (-220) (-220) (-552) (-552) (-671 (-220)) (-552))) (-15 -3225 ((-1014) (-552) (-552) (-552) (-220) (-111) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1788 ((-1014) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE))))) (-15 -1788 ((-1014) (-552) (-552) (-220) (-552) (-552) (-552) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE))) (-382))) (-15 -1443 ((-1014) (-552) (-552) (-552) (-552) (-552) (-111) (-552) (-111) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -3047 ((-1014) (-552) (-552) (-552) (-552) (-552) (-111) (-552) (-111) (-552) (-671 (-166 (-220))) (-671 (-166 (-220))) (-552)))) +((-2677 (((-1014) (-552) (-552) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-69 APROD)))) 61)) (-3104 (((-1014) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-552)) (-552) (-671 (-220)) (-552) (-552) (-552) (-552)) 57)) (-3502 (((-1014) (-552) (-671 (-220)) (-111) (-220) (-552) (-552) (-552) (-552) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-382)) (|:| |fp| (-72 MSOLVE)))) 56)) (-1876 (((-1014) (-552) (-552) (-671 (-220)) (-552) (-671 (-552)) (-552) (-671 (-552)) (-671 (-220)) (-671 (-552)) (-671 (-552)) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-552)) 37)) (-2243 (((-1014) (-552) (-552) (-552) (-220) (-552) (-671 (-220)) (-671 (-220)) (-552)) 36)) (-1504 (((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552)) 33)) (-3705 (((-1014) (-552) (-671 (-220)) (-552) (-671 (-552)) (-671 (-552)) (-552) (-671 (-552)) (-671 (-220))) 32)) (-3641 (((-1014) (-671 (-220)) (-552) (-671 (-220)) (-552) (-552) (-552)) 28)) (-1802 (((-1014) (-552) (-671 (-220)) (-552) (-671 (-220)) (-552)) 27)) (-3000 (((-1014) (-552) (-671 (-220)) (-552) (-671 (-220)) (-552)) 26)) (-2675 (((-1014) (-552) (-671 (-166 (-220))) (-552) (-552) (-552) (-552) (-671 (-166 (-220))) (-552)) 22))) +(((-739) (-10 -7 (-15 -2675 ((-1014) (-552) (-671 (-166 (-220))) (-552) (-552) (-552) (-552) (-671 (-166 (-220))) (-552))) (-15 -3000 ((-1014) (-552) (-671 (-220)) (-552) (-671 (-220)) (-552))) (-15 -1802 ((-1014) (-552) (-671 (-220)) (-552) (-671 (-220)) (-552))) (-15 -3641 ((-1014) (-671 (-220)) (-552) (-671 (-220)) (-552) (-552) (-552))) (-15 -3705 ((-1014) (-552) (-671 (-220)) (-552) (-671 (-552)) (-671 (-552)) (-552) (-671 (-552)) (-671 (-220)))) (-15 -1504 ((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2243 ((-1014) (-552) (-552) (-552) (-220) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1876 ((-1014) (-552) (-552) (-671 (-220)) (-552) (-671 (-552)) (-552) (-671 (-552)) (-671 (-220)) (-671 (-552)) (-671 (-552)) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-552))) (-15 -3502 ((-1014) (-552) (-671 (-220)) (-111) (-220) (-552) (-552) (-552) (-552) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-382)) (|:| |fp| (-72 MSOLVE))))) (-15 -3104 ((-1014) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-552)) (-552) (-671 (-220)) (-552) (-552) (-552) (-552))) (-15 -2677 ((-1014) (-552) (-552) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-69 APROD))))))) (T -739)) +((-2677 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-69 APROD)))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-739)))) (-3104 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-739)))) (-3502 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-111)) (-5 *6 (-220)) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 APROD)))) (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1014)) (-5 *1 (-739)))) (-1876 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-739)))) (-2243 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-739)))) (-1504 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-739)))) (-3705 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-739)))) (-3641 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-739)))) (-1802 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-739)))) (-3000 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-739)))) (-2675 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-166 (-220)))) (-5 *2 (-1014)) (-5 *1 (-739))))) +(-10 -7 (-15 -2675 ((-1014) (-552) (-671 (-166 (-220))) (-552) (-552) (-552) (-552) (-671 (-166 (-220))) (-552))) (-15 -3000 ((-1014) (-552) (-671 (-220)) (-552) (-671 (-220)) (-552))) (-15 -1802 ((-1014) (-552) (-671 (-220)) (-552) (-671 (-220)) (-552))) (-15 -3641 ((-1014) (-671 (-220)) (-552) (-671 (-220)) (-552) (-552) (-552))) (-15 -3705 ((-1014) (-552) (-671 (-220)) (-552) (-671 (-552)) (-671 (-552)) (-552) (-671 (-552)) (-671 (-220)))) (-15 -1504 ((-1014) (-552) (-552) (-671 (-220)) (-671 (-220)) (-671 (-220)) (-552))) (-15 -2243 ((-1014) (-552) (-552) (-552) (-220) (-552) (-671 (-220)) (-671 (-220)) (-552))) (-15 -1876 ((-1014) (-552) (-552) (-671 (-220)) (-552) (-671 (-552)) (-552) (-671 (-552)) (-671 (-220)) (-671 (-552)) (-671 (-552)) (-671 (-220)) (-671 (-220)) (-671 (-552)) (-552))) (-15 -3502 ((-1014) (-552) (-671 (-220)) (-111) (-220) (-552) (-552) (-552) (-552) (-220) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-382)) (|:| |fp| (-72 MSOLVE))))) (-15 -3104 ((-1014) (-552) (-671 (-220)) (-552) (-671 (-220)) (-671 (-552)) (-552) (-671 (-220)) (-552) (-552) (-552) (-552))) (-15 -2677 ((-1014) (-552) (-552) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-671 (-220)) (-552) (-3 (|:| |fn| (-382)) (|:| |fp| (-69 APROD)))))) +((-2672 (((-1014) (-1134) (-552) (-552) (-671 (-220)) (-552) (-552) (-671 (-220))) 29)) (-2990 (((-1014) (-1134) (-552) (-552) (-671 (-220))) 28)) (-3734 (((-1014) (-1134) (-552) (-552) (-671 (-220)) (-552) (-671 (-552)) (-552) (-671 (-220))) 27)) (-4087 (((-1014) (-552) (-552) (-552) (-671 (-220))) 21))) +(((-740) (-10 -7 (-15 -4087 ((-1014) (-552) (-552) (-552) (-671 (-220)))) (-15 -3734 ((-1014) (-1134) (-552) (-552) (-671 (-220)) (-552) (-671 (-552)) (-552) (-671 (-220)))) (-15 -2990 ((-1014) (-1134) (-552) (-552) (-671 (-220)))) (-15 -2672 ((-1014) (-1134) (-552) (-552) (-671 (-220)) (-552) (-552) (-671 (-220)))))) (T -740)) +((-2672 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-740)))) (-2990 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-740)))) (-3734 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1134)) (-5 *5 (-671 (-220))) (-5 *6 (-671 (-552))) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-740)))) (-4087 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) (-5 *1 (-740))))) +(-10 -7 (-15 -4087 ((-1014) (-552) (-552) (-552) (-671 (-220)))) (-15 -3734 ((-1014) (-1134) (-552) (-552) (-671 (-220)) (-552) (-671 (-552)) (-552) (-671 (-220)))) (-15 -2990 ((-1014) (-1134) (-552) (-552) (-671 (-220)))) (-15 -2672 ((-1014) (-1134) (-552) (-552) (-671 (-220)) (-552) (-552) (-671 (-220))))) +((-1735 (((-1014) (-220) (-220) (-220) (-220) (-552)) 62)) (-2068 (((-1014) (-220) (-220) (-220) (-552)) 61)) (-2159 (((-1014) (-220) (-220) (-220) (-552)) 60)) (-2821 (((-1014) (-220) (-220) (-552)) 59)) (-4123 (((-1014) (-220) (-552)) 58)) (-2528 (((-1014) (-220) (-552)) 57)) (-1988 (((-1014) (-220) (-552)) 56)) (-3386 (((-1014) (-220) (-552)) 55)) (-3695 (((-1014) (-220) (-552)) 54)) (-1961 (((-1014) (-220) (-552)) 53)) (-2241 (((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552)) 52)) (-3710 (((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552)) 51)) (-1939 (((-1014) (-220) (-552)) 50)) (-3272 (((-1014) (-220) (-552)) 49)) (-1388 (((-1014) (-220) (-552)) 48)) (-2645 (((-1014) (-220) (-552)) 47)) (-2965 (((-1014) (-552) (-220) (-166 (-220)) (-552) (-1134) (-552)) 46)) (-1292 (((-1014) (-1134) (-166 (-220)) (-1134) (-552)) 45)) (-3823 (((-1014) (-1134) (-166 (-220)) (-1134) (-552)) 44)) (-3600 (((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552)) 43)) (-1855 (((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552)) 42)) (-3237 (((-1014) (-220) (-552)) 39)) (-1804 (((-1014) (-220) (-552)) 38)) (-3377 (((-1014) (-220) (-552)) 37)) (-3683 (((-1014) (-220) (-552)) 36)) (-3979 (((-1014) (-220) (-552)) 35)) (-2550 (((-1014) (-220) (-552)) 34)) (-2826 (((-1014) (-220) (-552)) 33)) (-4096 (((-1014) (-220) (-552)) 32)) (-2471 (((-1014) (-220) (-552)) 31)) (-3747 (((-1014) (-220) (-552)) 30)) (-1908 (((-1014) (-220) (-220) (-220) (-552)) 29)) (-3380 (((-1014) (-220) (-552)) 28)) (-3605 (((-1014) (-220) (-552)) 27)) (-3074 (((-1014) (-220) (-552)) 26)) (-3482 (((-1014) (-220) (-552)) 25)) (-1925 (((-1014) (-220) (-552)) 24)) (-2226 (((-1014) (-166 (-220)) (-552)) 21))) +(((-741) (-10 -7 (-15 -2226 ((-1014) (-166 (-220)) (-552))) (-15 -1925 ((-1014) (-220) (-552))) (-15 -3482 ((-1014) (-220) (-552))) (-15 -3074 ((-1014) (-220) (-552))) (-15 -3605 ((-1014) (-220) (-552))) (-15 -3380 ((-1014) (-220) (-552))) (-15 -1908 ((-1014) (-220) (-220) (-220) (-552))) (-15 -3747 ((-1014) (-220) (-552))) (-15 -2471 ((-1014) (-220) (-552))) (-15 -4096 ((-1014) (-220) (-552))) (-15 -2826 ((-1014) (-220) (-552))) (-15 -2550 ((-1014) (-220) (-552))) (-15 -3979 ((-1014) (-220) (-552))) (-15 -3683 ((-1014) (-220) (-552))) (-15 -3377 ((-1014) (-220) (-552))) (-15 -1804 ((-1014) (-220) (-552))) (-15 -3237 ((-1014) (-220) (-552))) (-15 -1855 ((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552))) (-15 -3600 ((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552))) (-15 -3823 ((-1014) (-1134) (-166 (-220)) (-1134) (-552))) (-15 -1292 ((-1014) (-1134) (-166 (-220)) (-1134) (-552))) (-15 -2965 ((-1014) (-552) (-220) (-166 (-220)) (-552) (-1134) (-552))) (-15 -2645 ((-1014) (-220) (-552))) (-15 -1388 ((-1014) (-220) (-552))) (-15 -3272 ((-1014) (-220) (-552))) (-15 -1939 ((-1014) (-220) (-552))) (-15 -3710 ((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552))) (-15 -2241 ((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552))) (-15 -1961 ((-1014) (-220) (-552))) (-15 -3695 ((-1014) (-220) (-552))) (-15 -3386 ((-1014) (-220) (-552))) (-15 -1988 ((-1014) (-220) (-552))) (-15 -2528 ((-1014) (-220) (-552))) (-15 -4123 ((-1014) (-220) (-552))) (-15 -2821 ((-1014) (-220) (-220) (-552))) (-15 -2159 ((-1014) (-220) (-220) (-220) (-552))) (-15 -2068 ((-1014) (-220) (-220) (-220) (-552))) (-15 -1735 ((-1014) (-220) (-220) (-220) (-220) (-552))))) (T -741)) +((-1735 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2068 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2159 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2821 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-4123 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2528 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-1988 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3386 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3695 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2241 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1134)) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3710 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1134)) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-1939 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3272 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-1388 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2645 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2965 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-552)) (-5 *5 (-166 (-220))) (-5 *6 (-1134)) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-1292 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1134)) (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3823 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1134)) (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3600 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1134)) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-1855 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1134)) (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3237 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-1804 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3377 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3683 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3979 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2826 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-4096 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2471 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3747 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-1908 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3380 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3605 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3074 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-3482 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-1925 (*1 *2 *3 *4) (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741)))) (-2226 (*1 *2 *3 *4) (-12 (-5 *3 (-166 (-220))) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(-10 -7 (-15 -2226 ((-1014) (-166 (-220)) (-552))) (-15 -1925 ((-1014) (-220) (-552))) (-15 -3482 ((-1014) (-220) (-552))) (-15 -3074 ((-1014) (-220) (-552))) (-15 -3605 ((-1014) (-220) (-552))) (-15 -3380 ((-1014) (-220) (-552))) (-15 -1908 ((-1014) (-220) (-220) (-220) (-552))) (-15 -3747 ((-1014) (-220) (-552))) (-15 -2471 ((-1014) (-220) (-552))) (-15 -4096 ((-1014) (-220) (-552))) (-15 -2826 ((-1014) (-220) (-552))) (-15 -2550 ((-1014) (-220) (-552))) (-15 -3979 ((-1014) (-220) (-552))) (-15 -3683 ((-1014) (-220) (-552))) (-15 -3377 ((-1014) (-220) (-552))) (-15 -1804 ((-1014) (-220) (-552))) (-15 -3237 ((-1014) (-220) (-552))) (-15 -1855 ((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552))) (-15 -3600 ((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552))) (-15 -3823 ((-1014) (-1134) (-166 (-220)) (-1134) (-552))) (-15 -1292 ((-1014) (-1134) (-166 (-220)) (-1134) (-552))) (-15 -2965 ((-1014) (-552) (-220) (-166 (-220)) (-552) (-1134) (-552))) (-15 -2645 ((-1014) (-220) (-552))) (-15 -1388 ((-1014) (-220) (-552))) (-15 -3272 ((-1014) (-220) (-552))) (-15 -1939 ((-1014) (-220) (-552))) (-15 -3710 ((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552))) (-15 -2241 ((-1014) (-220) (-166 (-220)) (-552) (-1134) (-552))) (-15 -1961 ((-1014) (-220) (-552))) (-15 -3695 ((-1014) (-220) (-552))) (-15 -3386 ((-1014) (-220) (-552))) (-15 -1988 ((-1014) (-220) (-552))) (-15 -2528 ((-1014) (-220) (-552))) (-15 -4123 ((-1014) (-220) (-552))) (-15 -2821 ((-1014) (-220) (-220) (-552))) (-15 -2159 ((-1014) (-220) (-220) (-220) (-552))) (-15 -2068 ((-1014) (-220) (-220) (-220) (-552))) (-15 -1735 ((-1014) (-220) (-220) (-220) (-220) (-552)))) +((-2958 (((-1240)) 18)) (-3312 (((-1134)) 22)) (-3548 (((-1134)) 21)) (-1623 (((-1080) (-1152) (-671 (-552))) 37) (((-1080) (-1152) (-671 (-220))) 32)) (-3533 (((-111)) 16)) (-1860 (((-1134) (-1134)) 25))) +(((-742) (-10 -7 (-15 -3548 ((-1134))) (-15 -3312 ((-1134))) (-15 -1860 ((-1134) (-1134))) (-15 -1623 ((-1080) (-1152) (-671 (-220)))) (-15 -1623 ((-1080) (-1152) (-671 (-552)))) (-15 -3533 ((-111))) (-15 -2958 ((-1240))))) (T -742)) +((-2958 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-742)))) (-3533 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-742)))) (-1623 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-671 (-552))) (-5 *2 (-1080)) (-5 *1 (-742)))) (-1623 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-671 (-220))) (-5 *2 (-1080)) (-5 *1 (-742)))) (-1860 (*1 *2 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-742)))) (-3312 (*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-742)))) (-3548 (*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-742))))) +(-10 -7 (-15 -3548 ((-1134))) (-15 -3312 ((-1134))) (-15 -1860 ((-1134) (-1134))) (-15 -1623 ((-1080) (-1152) (-671 (-220)))) (-15 -1623 ((-1080) (-1152) (-671 (-552)))) (-15 -3533 ((-111))) (-15 -2958 ((-1240)))) +((-2493 (($ $ $) 10)) (-4297 (($ $ $ $) 9)) (-2743 (($ $ $) 12))) +(((-743 |#1|) (-10 -8 (-15 -2743 (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1| |#1|)) (-15 -4297 (|#1| |#1| |#1| |#1|))) (-744)) (T -743)) +NIL +(-10 -8 (-15 -2743 (|#1| |#1| |#1|)) (-15 -2493 (|#1| |#1| |#1|)) (-15 -4297 (|#1| |#1| |#1| |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1407 (($ $ (-900)) 28)) (-2896 (($ $ (-900)) 29)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2493 (($ $ $) 25)) (-1477 (((-842) $) 11)) (-4297 (($ $ $ $) 26)) (-2743 (($ $ $) 24)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 30)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 27))) +(((-744) (-137)) (T -744)) +((-4297 (*1 *1 *1 *1 *1) (-4 *1 (-744))) (-2493 (*1 *1 *1 *1) (-4 *1 (-744))) (-2743 (*1 *1 *1 *1) (-4 *1 (-744)))) +(-13 (-21) (-703) (-10 -8 (-15 -4297 ($ $ $ $)) (-15 -2493 ($ $ $)) (-15 -2743 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-703) . T) ((-1076) . T)) +((-1477 (((-842) $) NIL) (($ (-552)) 10))) +(((-745 |#1|) (-10 -8 (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) (-746)) (T -745)) +NIL +(-10 -8 (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1592 (((-3 $ "failed") $) 40)) (-1407 (($ $ (-900)) 28) (($ $ (-754)) 35)) (-2040 (((-3 $ "failed") $) 38)) (-2624 (((-111) $) 34)) (-4336 (((-3 $ "failed") $) 39)) (-2896 (($ $ (-900)) 29) (($ $ (-754)) 36)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2493 (($ $ $) 25)) (-1477 (((-842) $) 11) (($ (-552)) 31)) (-3995 (((-754)) 32)) (-4297 (($ $ $ $) 26)) (-2743 (($ $ $) 24)) (-1922 (($) 18 T CONST)) (-1933 (($) 33 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 30) (($ $ (-754)) 37)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 27))) +(((-746) (-137)) (T -746)) +((-3995 (*1 *2) (-12 (-4 *1 (-746)) (-5 *2 (-754)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-746))))) +(-13 (-744) (-705) (-10 -8 (-15 -3995 ((-754))) (-15 -1477 ($ (-552))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-703) . T) ((-705) . T) ((-744) . T) ((-1076) . T)) +((-3625 (((-627 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 (-166 |#1|)))))) (-671 (-166 (-401 (-552)))) |#1|) 33)) (-2966 (((-627 (-166 |#1|)) (-671 (-166 (-401 (-552)))) |#1|) 23)) (-2410 (((-931 (-166 (-401 (-552)))) (-671 (-166 (-401 (-552)))) (-1152)) 20) (((-931 (-166 (-401 (-552)))) (-671 (-166 (-401 (-552))))) 19))) +(((-747 |#1|) (-10 -7 (-15 -2410 ((-931 (-166 (-401 (-552)))) (-671 (-166 (-401 (-552)))))) (-15 -2410 ((-931 (-166 (-401 (-552)))) (-671 (-166 (-401 (-552)))) (-1152))) (-15 -2966 ((-627 (-166 |#1|)) (-671 (-166 (-401 (-552)))) |#1|)) (-15 -3625 ((-627 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 (-166 |#1|)))))) (-671 (-166 (-401 (-552)))) |#1|))) (-13 (-357) (-828))) (T -747)) +((-3625 (*1 *2 *3 *4) (-12 (-5 *3 (-671 (-166 (-401 (-552))))) (-5 *2 (-627 (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 (-166 *4))))))) (-5 *1 (-747 *4)) (-4 *4 (-13 (-357) (-828))))) (-2966 (*1 *2 *3 *4) (-12 (-5 *3 (-671 (-166 (-401 (-552))))) (-5 *2 (-627 (-166 *4))) (-5 *1 (-747 *4)) (-4 *4 (-13 (-357) (-828))))) (-2410 (*1 *2 *3 *4) (-12 (-5 *3 (-671 (-166 (-401 (-552))))) (-5 *4 (-1152)) (-5 *2 (-931 (-166 (-401 (-552))))) (-5 *1 (-747 *5)) (-4 *5 (-13 (-357) (-828))))) (-2410 (*1 *2 *3) (-12 (-5 *3 (-671 (-166 (-401 (-552))))) (-5 *2 (-931 (-166 (-401 (-552))))) (-5 *1 (-747 *4)) (-4 *4 (-13 (-357) (-828)))))) +(-10 -7 (-15 -2410 ((-931 (-166 (-401 (-552)))) (-671 (-166 (-401 (-552)))))) (-15 -2410 ((-931 (-166 (-401 (-552)))) (-671 (-166 (-401 (-552)))) (-1152))) (-15 -2966 ((-627 (-166 |#1|)) (-671 (-166 (-401 (-552)))) |#1|)) (-15 -3625 ((-627 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 (-166 |#1|)))))) (-671 (-166 (-401 (-552)))) |#1|))) +((-2771 (((-171 (-552)) |#1|) 25))) +(((-748 |#1|) (-10 -7 (-15 -2771 ((-171 (-552)) |#1|))) (-398)) (T -748)) +((-2771 (*1 *2 *3) (-12 (-5 *2 (-171 (-552))) (-5 *1 (-748 *3)) (-4 *3 (-398))))) +(-10 -7 (-15 -2771 ((-171 (-552)) |#1|))) +((-2753 ((|#1| |#1| |#1|) 24)) (-4009 ((|#1| |#1| |#1|) 23)) (-2016 ((|#1| |#1| |#1|) 32)) (-2812 ((|#1| |#1| |#1|) 28)) (-4266 (((-3 |#1| "failed") |#1| |#1|) 27)) (-4273 (((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|) 22))) +(((-749 |#1| |#2|) (-10 -7 (-15 -4273 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -4009 (|#1| |#1| |#1|)) (-15 -2753 (|#1| |#1| |#1|)) (-15 -4266 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2812 (|#1| |#1| |#1|)) (-15 -2016 (|#1| |#1| |#1|))) (-691 |#2|) (-357)) (T -749)) +((-2016 (*1 *2 *2 *2) (-12 (-4 *3 (-357)) (-5 *1 (-749 *2 *3)) (-4 *2 (-691 *3)))) (-2812 (*1 *2 *2 *2) (-12 (-4 *3 (-357)) (-5 *1 (-749 *2 *3)) (-4 *2 (-691 *3)))) (-4266 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-357)) (-5 *1 (-749 *2 *3)) (-4 *2 (-691 *3)))) (-2753 (*1 *2 *2 *2) (-12 (-4 *3 (-357)) (-5 *1 (-749 *2 *3)) (-4 *2 (-691 *3)))) (-4009 (*1 *2 *2 *2) (-12 (-4 *3 (-357)) (-5 *1 (-749 *2 *3)) (-4 *2 (-691 *3)))) (-4273 (*1 *2 *3 *3) (-12 (-4 *4 (-357)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-749 *3 *4)) (-4 *3 (-691 *4))))) +(-10 -7 (-15 -4273 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -4009 (|#1| |#1| |#1|)) (-15 -2753 (|#1| |#1| |#1|)) (-15 -4266 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2812 (|#1| |#1| |#1|)) (-15 -2016 (|#1| |#1| |#1|))) +((-1525 (((-1096) $ (-127)) 12)) (-3928 (((-1096) $ (-128)) 11)) (-3166 (((-1096) $ (-127)) 7)) (-2764 (((-1096) $) 8)) (-3664 (((-111) $) 14)) (-2424 (((-3 $ "failed") |#1| (-933)) 15)) (-2219 (($ $) 6))) +(((-750 |#1|) (-137) (-1076)) (T -750)) +((-2424 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-933)) (-4 *1 (-750 *2)) (-4 *2 (-1076)))) (-3664 (*1 *2 *1) (-12 (-4 *1 (-750 *3)) (-4 *3 (-1076)) (-5 *2 (-111))))) +(-13 (-564) (-10 -8 (-15 -2424 ((-3 $ "failed") |t#1| (-933))) (-15 -3664 ((-111) $)))) +(((-170) . T) ((-519) . T) ((-564) . T) ((-840) . T)) +((-2993 (((-2 (|:| -2957 (-671 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-671 (-552)))) (-552)) 59)) (-3402 (((-2 (|:| -2957 (-671 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-671 (-552))))) 57)) (-1637 (((-552)) 71))) +(((-751 |#1| |#2|) (-10 -7 (-15 -1637 ((-552))) (-15 -3402 ((-2 (|:| -2957 (-671 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-671 (-552)))))) (-15 -2993 ((-2 (|:| -2957 (-671 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-671 (-552)))) (-552)))) (-1211 (-552)) (-403 (-552) |#1|)) (T -751)) +((-2993 (*1 *2 *3) (-12 (-5 *3 (-552)) (-4 *4 (-1211 *3)) (-5 *2 (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-5 *1 (-751 *4 *5)) (-4 *5 (-403 *3 *4)))) (-3402 (*1 *2) (-12 (-4 *3 (-1211 (-552))) (-5 *2 (-2 (|:| -2957 (-671 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-671 (-552))))) (-5 *1 (-751 *3 *4)) (-4 *4 (-403 (-552) *3)))) (-1637 (*1 *2) (-12 (-4 *3 (-1211 *2)) (-5 *2 (-552)) (-5 *1 (-751 *3 *4)) (-4 *4 (-403 *2 *3))))) +(-10 -7 (-15 -1637 ((-552))) (-15 -3402 ((-2 (|:| -2957 (-671 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-671 (-552)))))) (-15 -2993 ((-2 (|:| -2957 (-671 (-552))) (|:| |basisDen| (-552)) (|:| |basisInv| (-671 (-552)))) (-552)))) +((-1465 (((-111) $ $) NIL)) (-1703 (((-3 (|:| |nia| (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) $) 21)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 20) (($ (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 13) (($ (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) 18)) (-2292 (((-111) $ $) NIL))) +(((-752) (-13 (-1076) (-10 -8 (-15 -1477 ($ (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1477 ($ (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1477 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (-15 -1477 ((-842) $)) (-15 -1703 ((-3 (|:| |nia| (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) $))))) (T -752)) +((-1477 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-752)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *1 (-752)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *1 (-752)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) (-5 *1 (-752)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) (-5 *1 (-752))))) +(-13 (-1076) (-10 -8 (-15 -1477 ($ (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1477 ($ (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1477 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (-15 -1477 ((-842) $)) (-15 -1703 ((-3 (|:| |nia| (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| |mdnia| (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) $)))) +((-1662 (((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|))) 18) (((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|)) (-627 (-1152))) 17)) (-1696 (((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|))) 20) (((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|)) (-627 (-1152))) 19))) +(((-753 |#1|) (-10 -7 (-15 -1662 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|)) (-627 (-1152)))) (-15 -1662 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|)))) (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|)) (-627 (-1152)))) (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|))))) (-544)) (T -753)) +((-1696 (*1 *2 *3) (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *4)))))) (-5 *1 (-753 *4)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-627 (-1152))) (-4 *5 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *5)))))) (-5 *1 (-753 *5)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *4)))))) (-5 *1 (-753 *4)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-627 (-1152))) (-4 *5 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *5)))))) (-5 *1 (-753 *5))))) +(-10 -7 (-15 -1662 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|)) (-627 (-1152)))) (-15 -1662 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|)))) (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|)) (-627 (-1152)))) (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-931 |#1|))))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2796 (($ $ $) 6)) (-4136 (((-3 $ "failed") $ $) 9)) (-1452 (($ $ (-552)) 7)) (-3887 (($) NIL T CONST)) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($ $) NIL)) (-2789 (($ $ $) NIL)) (-2624 (((-111) $) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1323 (($ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-1477 (((-842) $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-754)) NIL) (($ $ (-900)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ $ $) NIL))) +(((-754) (-13 (-776) (-709) (-10 -8 (-15 -2789 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -1323 ($ $ $)) (-15 -3963 ((-2 (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -2761 ((-3 $ "failed") $ $)) (-15 -1452 ($ $ (-552))) (-15 -1279 ($ $)) (-6 (-4368 "*"))))) (T -754)) +((-2789 (*1 *1 *1 *1) (-5 *1 (-754))) (-2813 (*1 *1 *1 *1) (-5 *1 (-754))) (-1323 (*1 *1 *1 *1) (-5 *1 (-754))) (-3963 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2404 (-754)) (|:| -3401 (-754)))) (-5 *1 (-754)))) (-2761 (*1 *1 *1 *1) (|partial| -5 *1 (-754))) (-1452 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-754)))) (-1279 (*1 *1 *1) (-5 *1 (-754)))) +(-13 (-776) (-709) (-10 -8 (-15 -2789 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -1323 ($ $ $)) (-15 -3963 ((-2 (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -2761 ((-3 $ "failed") $ $)) (-15 -1452 ($ $ (-552))) (-15 -1279 ($ $)) (-6 (-4368 "*")))) +((-1696 (((-3 |#2| "failed") |#2| |#2| (-113) (-1152)) 35))) +(((-755 |#1| |#2|) (-10 -7 (-15 -1696 ((-3 |#2| "failed") |#2| |#2| (-113) (-1152)))) (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144)) (-13 (-29 |#1|) (-1174) (-938))) (T -755)) +((-1696 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1152)) (-4 *5 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *1 (-755 *5 *2)) (-4 *2 (-13 (-29 *5) (-1174) (-938)))))) +(-10 -7 (-15 -1696 ((-3 |#2| "failed") |#2| |#2| (-113) (-1152)))) +((-1477 (((-757) |#1|) 8))) +(((-756 |#1|) (-10 -7 (-15 -1477 ((-757) |#1|))) (-1189)) (T -756)) +((-1477 (*1 *2 *3) (-12 (-5 *2 (-757)) (-5 *1 (-756 *3)) (-4 *3 (-1189))))) +(-10 -7 (-15 -1477 ((-757) |#1|))) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 7)) (-2292 (((-111) $ $) 9))) +(((-757) (-1076)) (T -757)) +NIL +(-1076) +((-2349 ((|#2| |#4|) 35))) +(((-758 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2349 (|#2| |#4|))) (-445) (-1211 |#1|) (-707 |#1| |#2|) (-1211 |#3|)) (T -758)) +((-2349 (*1 *2 *3) (-12 (-4 *4 (-445)) (-4 *5 (-707 *4 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-758 *4 *2 *5 *3)) (-4 *3 (-1211 *5))))) +(-10 -7 (-15 -2349 (|#2| |#4|))) +((-2040 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-3334 (((-1240) (-1134) (-1134) |#4| |#5|) 33)) (-2436 ((|#4| |#4| |#5|) 73)) (-1319 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#5|) 77)) (-2092 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|) 16))) +(((-759 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2040 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2436 (|#4| |#4| |#5|)) (-15 -1319 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#5|)) (-15 -3334 ((-1240) (-1134) (-1134) |#4| |#5|)) (-15 -2092 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|))) (-445) (-776) (-830) (-1042 |#1| |#2| |#3|) (-1048 |#1| |#2| |#3| |#4|)) (T -759)) +((-2092 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *4)))) (-5 *1 (-759 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-3334 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1134)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *4 (-1042 *6 *7 *8)) (-5 *2 (-1240)) (-5 *1 (-759 *6 *7 *8 *4 *5)) (-4 *5 (-1048 *6 *7 *8 *4)))) (-1319 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) (-5 *1 (-759 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-2436 (*1 *2 *2 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *2 (-1042 *4 *5 *6)) (-5 *1 (-759 *4 *5 *6 *2 *3)) (-4 *3 (-1048 *4 *5 *6 *2)))) (-2040 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-759 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) +(-10 -7 (-15 -2040 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2436 (|#4| |#4| |#5|)) (-15 -1319 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#5|)) (-15 -3334 ((-1240) (-1134) (-1134) |#4| |#5|)) (-15 -2092 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|))) +((-4039 (((-3 (-1148 (-1148 |#1|)) "failed") |#4|) 43)) (-2239 (((-627 |#4|) |#4|) 15)) (-3406 ((|#4| |#4|) 11))) +(((-760 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2239 ((-627 |#4|) |#4|)) (-15 -4039 ((-3 (-1148 (-1148 |#1|)) "failed") |#4|)) (-15 -3406 (|#4| |#4|))) (-343) (-323 |#1|) (-1211 |#2|) (-1211 |#3|) (-900)) (T -760)) +((-3406 (*1 *2 *2) (-12 (-4 *3 (-343)) (-4 *4 (-323 *3)) (-4 *5 (-1211 *4)) (-5 *1 (-760 *3 *4 *5 *2 *6)) (-4 *2 (-1211 *5)) (-14 *6 (-900)))) (-4039 (*1 *2 *3) (|partial| -12 (-4 *4 (-343)) (-4 *5 (-323 *4)) (-4 *6 (-1211 *5)) (-5 *2 (-1148 (-1148 *4))) (-5 *1 (-760 *4 *5 *6 *3 *7)) (-4 *3 (-1211 *6)) (-14 *7 (-900)))) (-2239 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *5 (-323 *4)) (-4 *6 (-1211 *5)) (-5 *2 (-627 *3)) (-5 *1 (-760 *4 *5 *6 *3 *7)) (-4 *3 (-1211 *6)) (-14 *7 (-900))))) +(-10 -7 (-15 -2239 ((-627 |#4|) |#4|)) (-15 -4039 ((-3 (-1148 (-1148 |#1|)) "failed") |#4|)) (-15 -3406 (|#4| |#4|))) +((-3916 (((-2 (|:| |deter| (-627 (-1148 |#5|))) (|:| |dterm| (-627 (-627 (-2 (|:| -3247 (-754)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-627 |#1|)) (|:| |nlead| (-627 |#5|))) (-1148 |#5|) (-627 |#1|) (-627 |#5|)) 54)) (-2647 (((-627 (-754)) |#1|) 13))) +(((-761 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3916 ((-2 (|:| |deter| (-627 (-1148 |#5|))) (|:| |dterm| (-627 (-627 (-2 (|:| -3247 (-754)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-627 |#1|)) (|:| |nlead| (-627 |#5|))) (-1148 |#5|) (-627 |#1|) (-627 |#5|))) (-15 -2647 ((-627 (-754)) |#1|))) (-1211 |#4|) (-776) (-830) (-301) (-928 |#4| |#2| |#3|)) (T -761)) +((-2647 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)) (-5 *2 (-627 (-754))) (-5 *1 (-761 *3 *4 *5 *6 *7)) (-4 *3 (-1211 *6)) (-4 *7 (-928 *6 *4 *5)))) (-3916 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1211 *9)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *9 (-301)) (-4 *10 (-928 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-627 (-1148 *10))) (|:| |dterm| (-627 (-627 (-2 (|:| -3247 (-754)) (|:| |pcoef| *10))))) (|:| |nfacts| (-627 *6)) (|:| |nlead| (-627 *10)))) (-5 *1 (-761 *6 *7 *8 *9 *10)) (-5 *3 (-1148 *10)) (-5 *4 (-627 *6)) (-5 *5 (-627 *10))))) +(-10 -7 (-15 -3916 ((-2 (|:| |deter| (-627 (-1148 |#5|))) (|:| |dterm| (-627 (-627 (-2 (|:| -3247 (-754)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-627 |#1|)) (|:| |nlead| (-627 |#5|))) (-1148 |#5|) (-627 |#1|) (-627 |#5|))) (-15 -2647 ((-627 (-754)) |#1|))) +((-1774 (((-627 (-2 (|:| |outval| |#1|) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 |#1|))))) (-671 (-401 (-552))) |#1|) 31)) (-4113 (((-627 |#1|) (-671 (-401 (-552))) |#1|) 21)) (-2410 (((-931 (-401 (-552))) (-671 (-401 (-552))) (-1152)) 18) (((-931 (-401 (-552))) (-671 (-401 (-552)))) 17))) +(((-762 |#1|) (-10 -7 (-15 -2410 ((-931 (-401 (-552))) (-671 (-401 (-552))))) (-15 -2410 ((-931 (-401 (-552))) (-671 (-401 (-552))) (-1152))) (-15 -4113 ((-627 |#1|) (-671 (-401 (-552))) |#1|)) (-15 -1774 ((-627 (-2 (|:| |outval| |#1|) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 |#1|))))) (-671 (-401 (-552))) |#1|))) (-13 (-357) (-828))) (T -762)) +((-1774 (*1 *2 *3 *4) (-12 (-5 *3 (-671 (-401 (-552)))) (-5 *2 (-627 (-2 (|:| |outval| *4) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 *4)))))) (-5 *1 (-762 *4)) (-4 *4 (-13 (-357) (-828))))) (-4113 (*1 *2 *3 *4) (-12 (-5 *3 (-671 (-401 (-552)))) (-5 *2 (-627 *4)) (-5 *1 (-762 *4)) (-4 *4 (-13 (-357) (-828))))) (-2410 (*1 *2 *3 *4) (-12 (-5 *3 (-671 (-401 (-552)))) (-5 *4 (-1152)) (-5 *2 (-931 (-401 (-552)))) (-5 *1 (-762 *5)) (-4 *5 (-13 (-357) (-828))))) (-2410 (*1 *2 *3) (-12 (-5 *3 (-671 (-401 (-552)))) (-5 *2 (-931 (-401 (-552)))) (-5 *1 (-762 *4)) (-4 *4 (-13 (-357) (-828)))))) +(-10 -7 (-15 -2410 ((-931 (-401 (-552))) (-671 (-401 (-552))))) (-15 -2410 ((-931 (-401 (-552))) (-671 (-401 (-552))) (-1152))) (-15 -4113 ((-627 |#1|) (-671 (-401 (-552))) |#1|)) (-15 -1774 ((-627 (-2 (|:| |outval| |#1|) (|:| |outmult| (-552)) (|:| |outvect| (-627 (-671 |#1|))))) (-671 (-401 (-552))) |#1|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 34)) (-1853 (((-627 |#2|) $) NIL)) (-1694 (((-1148 $) $ |#2|) NIL) (((-1148 |#1|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 |#2|)) NIL)) (-1700 (($ $) 28)) (-4292 (((-111) $ $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1340 (($ $ $) 93 (|has| |#1| (-544)))) (-4311 (((-627 $) $ $) 106 (|has| |#1| (-544)))) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4014 (($ $) NIL (|has| |#1| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-931 (-401 (-552)))) NIL (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1152))))) (((-3 $ "failed") (-931 (-552))) NIL (-1559 (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-600 (-1152))) (-1681 (|has| |#1| (-38 (-401 (-552)))))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1152)))))) (((-3 $ "failed") (-931 |#1|)) NIL (-1559 (-12 (|has| |#2| (-600 (-1152))) (-1681 (|has| |#1| (-38 (-401 (-552))))) (-1681 (|has| |#1| (-38 (-552))))) (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-600 (-1152))) (-1681 (|has| |#1| (-38 (-401 (-552))))) (-1681 (|has| |#1| (-537)))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1152))) (-1681 (|has| |#1| (-971 (-552))))))) (((-3 (-1101 |#1| |#2|) "failed") $) 18)) (-1703 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1017 (-552)))) ((|#2| $) NIL) (($ (-931 (-401 (-552)))) NIL (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1152))))) (($ (-931 (-552))) NIL (-1559 (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-600 (-1152))) (-1681 (|has| |#1| (-38 (-401 (-552)))))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1152)))))) (($ (-931 |#1|)) NIL (-1559 (-12 (|has| |#2| (-600 (-1152))) (-1681 (|has| |#1| (-38 (-401 (-552))))) (-1681 (|has| |#1| (-38 (-552))))) (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-600 (-1152))) (-1681 (|has| |#1| (-38 (-401 (-552))))) (-1681 (|has| |#1| (-537)))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1152))) (-1681 (|has| |#1| (-971 (-552))))))) (((-1101 |#1| |#2|) $) NIL)) (-3116 (($ $ $ |#2|) NIL (|has| |#1| (-169))) (($ $ $) 104 (|has| |#1| (-544)))) (-2014 (($ $) NIL) (($ $ |#2|) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-4104 (((-111) $ $) NIL) (((-111) $ (-627 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2870 (((-111) $) NIL)) (-2148 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 70)) (-2914 (($ $) 119 (|has| |#1| (-445)))) (-1375 (($ $) NIL (|has| |#1| (-445))) (($ $ |#2|) NIL (|has| |#1| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#1| (-888)))) (-1483 (($ $) NIL (|has| |#1| (-544)))) (-3145 (($ $) NIL (|has| |#1| (-544)))) (-2612 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-4284 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-2061 (($ $ |#1| (-523 |#2|) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| |#1| (-865 (-373))) (|has| |#2| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| |#1| (-865 (-552))) (|has| |#2| (-865 (-552)))))) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-3850 (((-111) $ $) NIL) (((-111) $ (-627 $)) NIL)) (-2469 (($ $ $ $ $) 90 (|has| |#1| (-544)))) (-4147 ((|#2| $) 19)) (-1842 (($ (-1148 |#1|) |#2|) NIL) (($ (-1148 $) |#2|) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-523 |#2|)) NIL) (($ $ |#2| (-754)) 36) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-1355 (($ $ $) 60)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ |#2|) NIL)) (-1283 (((-111) $) NIL)) (-3465 (((-523 |#2|) $) NIL) (((-754) $ |#2|) NIL) (((-627 (-754)) $ (-627 |#2|)) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-1526 (((-754) $) 20)) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3813 (($ (-1 (-523 |#2|) (-523 |#2|)) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-2685 (((-3 |#2| "failed") $) NIL)) (-4313 (($ $) NIL (|has| |#1| (-445)))) (-3535 (($ $) NIL (|has| |#1| (-445)))) (-2314 (((-627 $) $) NIL)) (-3346 (($ $) 37)) (-3228 (($ $) NIL (|has| |#1| (-445)))) (-2075 (((-627 $) $) 41)) (-3674 (($ $) 39)) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL) (($ $ |#2|) 45)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1683 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3229 (-754))) $ $) 82)) (-2961 (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $) 67) (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $ |#2|) NIL)) (-2568 (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -3401 $)) $ $) NIL) (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -3401 $)) $ $ |#2|) NIL)) (-2709 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3015 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-1595 (((-1134) $) NIL)) (-4318 (($ $ $) 108 (|has| |#1| (-544)))) (-1639 (((-627 $) $) 30)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| |#2|) (|:| -4067 (-754))) "failed") $) NIL)) (-2481 (((-111) $ $) NIL) (((-111) $ (-627 $)) NIL)) (-3921 (($ $ $) NIL)) (-3002 (($ $) 21)) (-2654 (((-111) $ $) NIL)) (-2163 (((-111) $ $) NIL) (((-111) $ (-627 $)) NIL)) (-4116 (($ $ $) NIL)) (-3134 (($ $) 23)) (-1498 (((-1096) $) NIL)) (-2902 (((-2 (|:| -1323 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-544)))) (-2692 (((-2 (|:| -1323 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-544)))) (-1960 (((-111) $) 52)) (-1970 ((|#1| $) 55)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-445)))) (-1323 ((|#1| |#1| $) 116 (|has| |#1| (-445))) (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-888)))) (-1303 (((-2 (|:| -1323 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-544)))) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-3094 (($ $ |#1|) 112 (|has| |#1| (-544))) (($ $ $) NIL (|has| |#1| (-544)))) (-2899 (($ $ |#1|) 111 (|has| |#1| (-544))) (($ $ $) NIL (|has| |#1| (-544)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-627 |#2|) (-627 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-627 |#2|) (-627 $)) NIL)) (-1637 (($ $ |#2|) NIL (|has| |#1| (-169)))) (-2942 (($ $ |#2|) NIL) (($ $ (-627 |#2|)) NIL) (($ $ |#2| (-754)) NIL) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-3567 (((-523 |#2|) $) NIL) (((-754) $ |#2|) 43) (((-627 (-754)) $ (-627 |#2|)) NIL)) (-1478 (($ $) NIL)) (-3667 (($ $) 33)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| |#1| (-600 (-871 (-373)))) (|has| |#2| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| |#1| (-600 (-871 (-552)))) (|has| |#2| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| |#1| (-600 (-528))) (|has| |#2| (-600 (-528))))) (($ (-931 (-401 (-552)))) NIL (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1152))))) (($ (-931 (-552))) NIL (-1559 (-12 (|has| |#1| (-38 (-552))) (|has| |#2| (-600 (-1152))) (-1681 (|has| |#1| (-38 (-401 (-552)))))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#2| (-600 (-1152)))))) (($ (-931 |#1|)) NIL (|has| |#2| (-600 (-1152)))) (((-1134) $) NIL (-12 (|has| |#1| (-1017 (-552))) (|has| |#2| (-600 (-1152))))) (((-931 |#1|) $) NIL (|has| |#2| (-600 (-1152))))) (-3495 ((|#1| $) 115 (|has| |#1| (-445))) (($ $ |#2|) NIL (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-931 |#1|) $) NIL (|has| |#2| (-600 (-1152)))) (((-1101 |#1| |#2|) $) 15) (($ (-1101 |#1| |#2|)) 16) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-523 |#2|)) NIL) (($ $ |#2| (-754)) 44) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#1| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1922 (($) 13 T CONST)) (-1598 (((-3 (-111) "failed") $ $) NIL)) (-1933 (($) 35 T CONST)) (-4085 (($ $ $ $ (-754)) 88 (|has| |#1| (-544)))) (-3867 (($ $ $ (-754)) 87 (|has| |#1| (-544)))) (-4251 (($ $ |#2|) NIL) (($ $ (-627 |#2|)) NIL) (($ $ |#2| (-754)) NIL) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) 54)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) 64)) (-2384 (($ $ $) 74)) (** (($ $ (-900)) NIL) (($ $ (-754)) 61)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 59) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) +(((-763 |#1| |#2|) (-13 (-1042 |#1| (-523 |#2|) |#2|) (-599 (-1101 |#1| |#2|)) (-1017 (-1101 |#1| |#2|))) (-1028) (-830)) (T -763)) +NIL +(-13 (-1042 |#1| (-523 |#2|) |#2|) (-599 (-1101 |#1| |#2|)) (-1017 (-1101 |#1| |#2|))) +((-3516 (((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|)) 13))) +(((-764 |#1| |#2|) (-10 -7 (-15 -3516 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|)))) (-1028) (-1028)) (T -764)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1028)) (-4 *6 (-1028)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6))))) +(-10 -7 (-15 -3516 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 12)) (-2449 (((-1235 |#1|) $ (-754)) NIL)) (-1853 (((-627 (-1058)) $) NIL)) (-4027 (($ (-1148 |#1|)) NIL)) (-1694 (((-1148 $) $ (-1058)) NIL) (((-1148 |#1|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-1058))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3039 (((-627 $) $ $) 39 (|has| |#1| (-544)))) (-1340 (($ $ $) 35 (|has| |#1| (-544)))) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4014 (($ $) NIL (|has| |#1| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1611 (($ $ (-754)) NIL)) (-3123 (($ $ (-754)) NIL)) (-4194 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-445)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-1058) "failed") $) NIL) (((-3 (-1148 |#1|) "failed") $) 10)) (-1703 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-1058) $) NIL) (((-1148 |#1|) $) NIL)) (-3116 (($ $ $ (-1058)) NIL (|has| |#1| (-169))) ((|#1| $ $) 43 (|has| |#1| (-169)))) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-1419 (($ $ $) NIL)) (-3955 (($ $ $) 71 (|has| |#1| (-544)))) (-2148 (((-2 (|:| -3069 |#1|) (|:| -2404 $) (|:| -3401 $)) $ $) 70 (|has| |#1| (-544)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1375 (($ $) NIL (|has| |#1| (-445))) (($ $ (-1058)) NIL (|has| |#1| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#1| (-888)))) (-2061 (($ $ |#1| (-754) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-1058) (-865 (-373))) (|has| |#1| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-1058) (-865 (-552))) (|has| |#1| (-865 (-552)))))) (-2641 (((-754) $ $) NIL (|has| |#1| (-544)))) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-1127)))) (-1842 (($ (-1148 |#1|) (-1058)) NIL) (($ (-1148 $) (-1058)) NIL)) (-3322 (($ $ (-754)) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-754)) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-1355 (($ $ $) 20)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-1058)) NIL) (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-3465 (((-754) $) NIL) (((-754) $ (-1058)) NIL) (((-627 (-754)) $ (-627 (-1058))) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3813 (($ (-1 (-754) (-754)) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1578 (((-1148 |#1|) $) NIL)) (-2685 (((-3 (-1058) "failed") $) NIL)) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1683 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3229 (-754))) $ $) 26)) (-3513 (($ $ $) 29)) (-1713 (($ $ $) 32)) (-2961 (((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $) 31)) (-1595 (((-1134) $) NIL)) (-4318 (($ $ $) 41 (|has| |#1| (-544)))) (-3341 (((-2 (|:| -2404 $) (|:| -3401 $)) $ (-754)) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-1058)) (|:| -4067 (-754))) "failed") $) NIL)) (-2747 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3002 (($) NIL (|has| |#1| (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-2902 (((-2 (|:| -1323 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-544)))) (-2692 (((-2 (|:| -1323 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-544)))) (-3490 (((-2 (|:| -3116 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-544)))) (-2244 (((-2 (|:| -3116 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-544)))) (-1960 (((-111) $) 13)) (-1970 ((|#1| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1839 (($ $ (-754) |#1| $) 19)) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-888)))) (-1303 (((-2 (|:| -1323 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-544)))) (-4179 (((-2 (|:| -3116 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-544)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-1058) |#1|) NIL) (($ $ (-627 (-1058)) (-627 |#1|)) NIL) (($ $ (-1058) $) NIL) (($ $ (-627 (-1058)) (-627 $)) NIL)) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-401 $) (-401 $) (-401 $)) NIL (|has| |#1| (-544))) ((|#1| (-401 $) |#1|) NIL (|has| |#1| (-357))) (((-401 $) $ (-401 $)) NIL (|has| |#1| (-544)))) (-3719 (((-3 $ "failed") $ (-754)) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-1637 (($ $ (-1058)) NIL (|has| |#1| (-169))) ((|#1| $) NIL (|has| |#1| (-169)))) (-2942 (($ $ (-1058)) NIL) (($ $ (-627 (-1058))) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL) (($ $ (-754)) NIL) (($ $) NIL) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3567 (((-754) $) NIL) (((-754) $ (-1058)) NIL) (((-627 (-754)) $ (-627 (-1058))) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-1058) (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-1058) (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-1058) (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3495 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ (-1058)) NIL (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-888))))) (-2749 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544))) (((-3 (-401 $) "failed") (-401 $) $) NIL (|has| |#1| (-544)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-1058)) NIL) (((-1148 |#1|) $) 7) (($ (-1148 |#1|)) 8) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-754)) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#1| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1922 (($) 21 T CONST)) (-1933 (($) 24 T CONST)) (-4251 (($ $ (-1058)) NIL) (($ $ (-627 (-1058))) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL) (($ $ (-754)) NIL) (($ $) NIL) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) 28) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) +(((-765 |#1|) (-13 (-1211 |#1|) (-599 (-1148 |#1|)) (-1017 (-1148 |#1|)) (-10 -8 (-15 -1839 ($ $ (-754) |#1| $)) (-15 -1355 ($ $ $)) (-15 -1683 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3229 (-754))) $ $)) (-15 -3513 ($ $ $)) (-15 -2961 ((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -1713 ($ $ $)) (IF (|has| |#1| (-544)) (PROGN (-15 -3039 ((-627 $) $ $)) (-15 -4318 ($ $ $)) (-15 -1303 ((-2 (|:| -1323 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2692 ((-2 (|:| -1323 $) (|:| |coef1| $)) $ $)) (-15 -2902 ((-2 (|:| -1323 $) (|:| |coef2| $)) $ $)) (-15 -4179 ((-2 (|:| -3116 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2244 ((-2 (|:| -3116 |#1|) (|:| |coef1| $)) $ $)) (-15 -3490 ((-2 (|:| -3116 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1028)) (T -765)) +((-1839 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-754)) (-5 *1 (-765 *3)) (-4 *3 (-1028)))) (-1355 (*1 *1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1028)))) (-1683 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-765 *3)) (|:| |polden| *3) (|:| -3229 (-754)))) (-5 *1 (-765 *3)) (-4 *3 (-1028)))) (-3513 (*1 *1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1028)))) (-2961 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3069 *3) (|:| |gap| (-754)) (|:| -2404 (-765 *3)) (|:| -3401 (-765 *3)))) (-5 *1 (-765 *3)) (-4 *3 (-1028)))) (-1713 (*1 *1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1028)))) (-3039 (*1 *2 *1 *1) (-12 (-5 *2 (-627 (-765 *3))) (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028)))) (-4318 (*1 *1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-544)) (-4 *2 (-1028)))) (-1303 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1323 (-765 *3)) (|:| |coef1| (-765 *3)) (|:| |coef2| (-765 *3)))) (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028)))) (-2692 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1323 (-765 *3)) (|:| |coef1| (-765 *3)))) (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028)))) (-2902 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1323 (-765 *3)) (|:| |coef2| (-765 *3)))) (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028)))) (-4179 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3116 *3) (|:| |coef1| (-765 *3)) (|:| |coef2| (-765 *3)))) (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028)))) (-2244 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3116 *3) (|:| |coef1| (-765 *3)))) (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028)))) (-3490 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3116 *3) (|:| |coef2| (-765 *3)))) (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028))))) +(-13 (-1211 |#1|) (-599 (-1148 |#1|)) (-1017 (-1148 |#1|)) (-10 -8 (-15 -1839 ($ $ (-754) |#1| $)) (-15 -1355 ($ $ $)) (-15 -1683 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3229 (-754))) $ $)) (-15 -3513 ($ $ $)) (-15 -2961 ((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -1713 ($ $ $)) (IF (|has| |#1| (-544)) (PROGN (-15 -3039 ((-627 $) $ $)) (-15 -4318 ($ $ $)) (-15 -1303 ((-2 (|:| -1323 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2692 ((-2 (|:| -1323 $) (|:| |coef1| $)) $ $)) (-15 -2902 ((-2 (|:| -1323 $) (|:| |coef2| $)) $ $)) (-15 -4179 ((-2 (|:| -3116 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2244 ((-2 (|:| -3116 |#1|) (|:| |coef1| $)) $ $)) (-15 -3490 ((-2 (|:| -3116 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-1705 ((|#1| (-754) |#1|) 32 (|has| |#1| (-38 (-401 (-552)))))) (-3224 ((|#1| (-754) |#1|) 22)) (-3186 ((|#1| (-754) |#1|) 34 (|has| |#1| (-38 (-401 (-552))))))) +(((-766 |#1|) (-10 -7 (-15 -3224 (|#1| (-754) |#1|)) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -3186 (|#1| (-754) |#1|)) (-15 -1705 (|#1| (-754) |#1|))) |%noBranch|)) (-169)) (T -766)) +((-1705 (*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-766 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-169)))) (-3186 (*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-766 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-169)))) (-3224 (*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-766 *2)) (-4 *2 (-169))))) +(-10 -7 (-15 -3224 (|#1| (-754) |#1|)) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -3186 (|#1| (-754) |#1|)) (-15 -1705 (|#1| (-754) |#1|))) |%noBranch|)) +((-1465 (((-111) $ $) 7)) (-1764 (((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 |#4|)))) (-627 |#4|)) 85)) (-1361 (((-627 $) (-627 |#4|)) 86) (((-627 $) (-627 |#4|) (-111)) 111)) (-1853 (((-627 |#3|) $) 33)) (-2730 (((-111) $) 26)) (-3648 (((-111) $) 17 (|has| |#1| (-544)))) (-3691 (((-111) |#4| $) 101) (((-111) $) 97)) (-1553 ((|#4| |#4| $) 92)) (-4014 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| $) 126)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) 27)) (-4031 (((-111) $ (-754)) 44)) (-2536 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4366))) (((-3 |#4| "failed") $ |#3|) 79)) (-3887 (($) 45 T CONST)) (-3569 (((-111) $) 22 (|has| |#1| (-544)))) (-2330 (((-111) $ $) 24 (|has| |#1| (-544)))) (-2165 (((-111) $ $) 23 (|has| |#1| (-544)))) (-3188 (((-111) $) 25 (|has| |#1| (-544)))) (-3238 (((-627 |#4|) (-627 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-4097 (((-627 |#4|) (-627 |#4|) $) 18 (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) 19 (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) 36)) (-1703 (($ (-627 |#4|)) 35)) (-3351 (((-3 $ "failed") $) 82)) (-4167 ((|#4| |#4| $) 89)) (-3370 (($ $) 68 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#4| $) 67 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-4104 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-2934 ((|#4| |#4| $) 87)) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4366))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2415 (((-2 (|:| -4267 (-627 |#4|)) (|:| -2849 (-627 |#4|))) $) 105)) (-3203 (((-111) |#4| $) 136)) (-2004 (((-111) |#4| $) 133)) (-2790 (((-111) |#4| $) 137) (((-111) $) 134)) (-3215 (((-627 |#4|) $) 52 (|has| $ (-6 -4366)))) (-3850 (((-111) |#4| $) 104) (((-111) $) 103)) (-4147 ((|#3| $) 34)) (-1602 (((-111) $ (-754)) 43)) (-3114 (((-627 |#4|) $) 53 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) 47)) (-4198 (((-627 |#3|) $) 32)) (-1927 (((-111) |#3| $) 31)) (-3971 (((-111) $ (-754)) 42)) (-1595 (((-1134) $) 9)) (-2661 (((-3 |#4| (-627 $)) |#4| |#4| $) 128)) (-4318 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| |#4| $) 127)) (-1294 (((-3 |#4| "failed") $) 83)) (-4314 (((-627 $) |#4| $) 129)) (-2338 (((-3 (-111) (-627 $)) |#4| $) 132)) (-3984 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3383 (((-627 $) |#4| $) 125) (((-627 $) (-627 |#4|) $) 124) (((-627 $) (-627 |#4|) (-627 $)) 123) (((-627 $) |#4| (-627 $)) 122)) (-1892 (($ |#4| $) 117) (($ (-627 |#4|) $) 116)) (-4122 (((-627 |#4|) $) 107)) (-2481 (((-111) |#4| $) 99) (((-111) $) 95)) (-3921 ((|#4| |#4| $) 90)) (-2654 (((-111) $ $) 110)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-2163 (((-111) |#4| $) 100) (((-111) $) 96)) (-4116 ((|#4| |#4| $) 91)) (-1498 (((-1096) $) 10)) (-3340 (((-3 |#4| "failed") $) 84)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3672 (((-3 $ "failed") $ |#4|) 78)) (-4168 (($ $ |#4|) 77) (((-627 $) |#4| $) 115) (((-627 $) |#4| (-627 $)) 114) (((-627 $) (-627 |#4|) $) 113) (((-627 $) (-627 |#4|) (-627 $)) 112)) (-3509 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) 38)) (-1275 (((-111) $) 41)) (-2373 (($) 40)) (-3567 (((-754) $) 106)) (-1509 (((-754) |#4| $) 54 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4366)))) (-2973 (($ $) 39)) (-3562 (((-528) $) 69 (|has| |#4| (-600 (-528))))) (-1490 (($ (-627 |#4|)) 60)) (-4237 (($ $ |#3|) 28)) (-2286 (($ $ |#3|) 30)) (-2462 (($ $) 88)) (-3911 (($ $ |#3|) 29)) (-1477 (((-842) $) 11) (((-627 |#4|) $) 37)) (-1641 (((-754) $) 76 (|has| |#3| (-362)))) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-2925 (((-111) $ (-1 (-111) |#4| (-627 |#4|))) 98)) (-2733 (((-627 $) |#4| $) 121) (((-627 $) |#4| (-627 $)) 120) (((-627 $) (-627 |#4|) $) 119) (((-627 $) (-627 |#4|) (-627 $)) 118)) (-3299 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4366)))) (-2199 (((-627 |#3|) $) 81)) (-3612 (((-111) |#4| $) 135)) (-3528 (((-111) |#3| $) 80)) (-2292 (((-111) $ $) 6)) (-1383 (((-754) $) 46 (|has| $ (-6 -4366))))) +(((-767 |#1| |#2| |#3| |#4|) (-137) (-445) (-776) (-830) (-1042 |t#1| |t#2| |t#3|)) (T -767)) +NIL +(-13 (-1048 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-101) . T) ((-599 (-627 |#4|)) . T) ((-599 (-842)) . T) ((-148 |#4|) . T) ((-600 (-528)) |has| |#4| (-600 (-528))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-482 |#4|) . T) ((-506 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-955 |#1| |#2| |#3| |#4|) . T) ((-1048 |#1| |#2| |#3| |#4|) . T) ((-1076) . T) ((-1182 |#1| |#2| |#3| |#4|) . T) ((-1189) . T)) +((-1489 (((-3 (-373) "failed") (-310 |#1|) (-900)) 62 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-3 (-373) "failed") (-310 |#1|)) 54 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-3 (-373) "failed") (-401 (-931 |#1|)) (-900)) 41 (|has| |#1| (-544))) (((-3 (-373) "failed") (-401 (-931 |#1|))) 40 (|has| |#1| (-544))) (((-3 (-373) "failed") (-931 |#1|) (-900)) 31 (|has| |#1| (-1028))) (((-3 (-373) "failed") (-931 |#1|)) 30 (|has| |#1| (-1028)))) (-3735 (((-373) (-310 |#1|) (-900)) 99 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-373) (-310 |#1|)) 94 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-373) (-401 (-931 |#1|)) (-900)) 91 (|has| |#1| (-544))) (((-373) (-401 (-931 |#1|))) 90 (|has| |#1| (-544))) (((-373) (-931 |#1|) (-900)) 86 (|has| |#1| (-1028))) (((-373) (-931 |#1|)) 85 (|has| |#1| (-1028))) (((-373) |#1| (-900)) 76) (((-373) |#1|) 22)) (-3366 (((-3 (-166 (-373)) "failed") (-310 (-166 |#1|)) (-900)) 71 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-3 (-166 (-373)) "failed") (-310 (-166 |#1|))) 70 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-3 (-166 (-373)) "failed") (-310 |#1|) (-900)) 63 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-3 (-166 (-373)) "failed") (-310 |#1|)) 61 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-3 (-166 (-373)) "failed") (-401 (-931 (-166 |#1|))) (-900)) 46 (|has| |#1| (-544))) (((-3 (-166 (-373)) "failed") (-401 (-931 (-166 |#1|)))) 45 (|has| |#1| (-544))) (((-3 (-166 (-373)) "failed") (-401 (-931 |#1|)) (-900)) 39 (|has| |#1| (-544))) (((-3 (-166 (-373)) "failed") (-401 (-931 |#1|))) 38 (|has| |#1| (-544))) (((-3 (-166 (-373)) "failed") (-931 |#1|) (-900)) 28 (|has| |#1| (-1028))) (((-3 (-166 (-373)) "failed") (-931 |#1|)) 26 (|has| |#1| (-1028))) (((-3 (-166 (-373)) "failed") (-931 (-166 |#1|)) (-900)) 18 (|has| |#1| (-169))) (((-3 (-166 (-373)) "failed") (-931 (-166 |#1|))) 15 (|has| |#1| (-169)))) (-1659 (((-166 (-373)) (-310 (-166 |#1|)) (-900)) 102 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-166 (-373)) (-310 (-166 |#1|))) 101 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-166 (-373)) (-310 |#1|) (-900)) 100 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-166 (-373)) (-310 |#1|)) 98 (-12 (|has| |#1| (-544)) (|has| |#1| (-830)))) (((-166 (-373)) (-401 (-931 (-166 |#1|))) (-900)) 93 (|has| |#1| (-544))) (((-166 (-373)) (-401 (-931 (-166 |#1|)))) 92 (|has| |#1| (-544))) (((-166 (-373)) (-401 (-931 |#1|)) (-900)) 89 (|has| |#1| (-544))) (((-166 (-373)) (-401 (-931 |#1|))) 88 (|has| |#1| (-544))) (((-166 (-373)) (-931 |#1|) (-900)) 84 (|has| |#1| (-1028))) (((-166 (-373)) (-931 |#1|)) 83 (|has| |#1| (-1028))) (((-166 (-373)) (-931 (-166 |#1|)) (-900)) 78 (|has| |#1| (-169))) (((-166 (-373)) (-931 (-166 |#1|))) 77 (|has| |#1| (-169))) (((-166 (-373)) (-166 |#1|) (-900)) 80 (|has| |#1| (-169))) (((-166 (-373)) (-166 |#1|)) 79 (|has| |#1| (-169))) (((-166 (-373)) |#1| (-900)) 27) (((-166 (-373)) |#1|) 25))) +(((-768 |#1|) (-10 -7 (-15 -3735 ((-373) |#1|)) (-15 -3735 ((-373) |#1| (-900))) (-15 -1659 ((-166 (-373)) |#1|)) (-15 -1659 ((-166 (-373)) |#1| (-900))) (IF (|has| |#1| (-169)) (PROGN (-15 -1659 ((-166 (-373)) (-166 |#1|))) (-15 -1659 ((-166 (-373)) (-166 |#1|) (-900))) (-15 -1659 ((-166 (-373)) (-931 (-166 |#1|)))) (-15 -1659 ((-166 (-373)) (-931 (-166 |#1|)) (-900)))) |%noBranch|) (IF (|has| |#1| (-1028)) (PROGN (-15 -3735 ((-373) (-931 |#1|))) (-15 -3735 ((-373) (-931 |#1|) (-900))) (-15 -1659 ((-166 (-373)) (-931 |#1|))) (-15 -1659 ((-166 (-373)) (-931 |#1|) (-900)))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -3735 ((-373) (-401 (-931 |#1|)))) (-15 -3735 ((-373) (-401 (-931 |#1|)) (-900))) (-15 -1659 ((-166 (-373)) (-401 (-931 |#1|)))) (-15 -1659 ((-166 (-373)) (-401 (-931 |#1|)) (-900))) (-15 -1659 ((-166 (-373)) (-401 (-931 (-166 |#1|))))) (-15 -1659 ((-166 (-373)) (-401 (-931 (-166 |#1|))) (-900))) (IF (|has| |#1| (-830)) (PROGN (-15 -3735 ((-373) (-310 |#1|))) (-15 -3735 ((-373) (-310 |#1|) (-900))) (-15 -1659 ((-166 (-373)) (-310 |#1|))) (-15 -1659 ((-166 (-373)) (-310 |#1|) (-900))) (-15 -1659 ((-166 (-373)) (-310 (-166 |#1|)))) (-15 -1659 ((-166 (-373)) (-310 (-166 |#1|)) (-900)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-15 -3366 ((-3 (-166 (-373)) "failed") (-931 (-166 |#1|)))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-931 (-166 |#1|)) (-900)))) |%noBranch|) (IF (|has| |#1| (-1028)) (PROGN (-15 -1489 ((-3 (-373) "failed") (-931 |#1|))) (-15 -1489 ((-3 (-373) "failed") (-931 |#1|) (-900))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-931 |#1|))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-931 |#1|) (-900)))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -1489 ((-3 (-373) "failed") (-401 (-931 |#1|)))) (-15 -1489 ((-3 (-373) "failed") (-401 (-931 |#1|)) (-900))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-401 (-931 |#1|)))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-401 (-931 |#1|)) (-900))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-401 (-931 (-166 |#1|))))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-401 (-931 (-166 |#1|))) (-900))) (IF (|has| |#1| (-830)) (PROGN (-15 -1489 ((-3 (-373) "failed") (-310 |#1|))) (-15 -1489 ((-3 (-373) "failed") (-310 |#1|) (-900))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-310 |#1|))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-310 |#1|) (-900))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-310 (-166 |#1|)))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-310 (-166 |#1|)) (-900)))) |%noBranch|)) |%noBranch|)) (-600 (-373))) (T -768)) +((-3366 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-310 (-166 *5))) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-830)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-3366 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 (-166 *4))) (-4 *4 (-544)) (-4 *4 (-830)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-3366 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-310 *5)) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-830)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-3366 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-830)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-1489 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-310 *5)) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-830)) (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5)))) (-1489 (*1 *2 *3) (|partial| -12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-830)) (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *4)))) (-3366 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-401 (-931 (-166 *5)))) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-3366 (*1 *2 *3) (|partial| -12 (-5 *3 (-401 (-931 (-166 *4)))) (-4 *4 (-544)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-3366 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-3366 (*1 *2 *3) (|partial| -12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-1489 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5)))) (-1489 (*1 *2 *3) (|partial| -12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *4)))) (-3366 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-931 *5)) (-5 *4 (-900)) (-4 *5 (-1028)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-3366 (*1 *2 *3) (|partial| -12 (-5 *3 (-931 *4)) (-4 *4 (-1028)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-1489 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-931 *5)) (-5 *4 (-900)) (-4 *5 (-1028)) (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5)))) (-1489 (*1 *2 *3) (|partial| -12 (-5 *3 (-931 *4)) (-4 *4 (-1028)) (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *4)))) (-3366 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-931 (-166 *5))) (-5 *4 (-900)) (-4 *5 (-169)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-3366 (*1 *2 *3) (|partial| -12 (-5 *3 (-931 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-166 *5))) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-830)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-310 (-166 *4))) (-4 *4 (-544)) (-4 *4 (-830)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-310 *5)) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-830)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-830)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-3735 (*1 *2 *3 *4) (-12 (-5 *3 (-310 *5)) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-830)) (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5)))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-830)) (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *4)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 (-166 *5)))) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-401 (-931 (-166 *4)))) (-4 *4 (-544)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-3735 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5)))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *4)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-931 *5)) (-5 *4 (-900)) (-4 *5 (-1028)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-931 *4)) (-4 *4 (-1028)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-3735 (*1 *2 *3 *4) (-12 (-5 *3 (-931 *5)) (-5 *4 (-900)) (-4 *5 (-1028)) (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5)))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-931 *4)) (-4 *4 (-1028)) (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *4)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-931 (-166 *5))) (-5 *4 (-900)) (-4 *5 (-169)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-931 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *3 (-166 *5)) (-5 *4 (-900)) (-4 *5 (-169)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-166 *4)) (-4 *4 (-169)) (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) (-1659 (*1 *2 *3 *4) (-12 (-5 *4 (-900)) (-5 *2 (-166 (-373))) (-5 *1 (-768 *3)) (-4 *3 (-600 (-373))))) (-1659 (*1 *2 *3) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-768 *3)) (-4 *3 (-600 (-373))))) (-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-900)) (-5 *2 (-373)) (-5 *1 (-768 *3)) (-4 *3 (-600 *2)))) (-3735 (*1 *2 *3) (-12 (-5 *2 (-373)) (-5 *1 (-768 *3)) (-4 *3 (-600 *2))))) +(-10 -7 (-15 -3735 ((-373) |#1|)) (-15 -3735 ((-373) |#1| (-900))) (-15 -1659 ((-166 (-373)) |#1|)) (-15 -1659 ((-166 (-373)) |#1| (-900))) (IF (|has| |#1| (-169)) (PROGN (-15 -1659 ((-166 (-373)) (-166 |#1|))) (-15 -1659 ((-166 (-373)) (-166 |#1|) (-900))) (-15 -1659 ((-166 (-373)) (-931 (-166 |#1|)))) (-15 -1659 ((-166 (-373)) (-931 (-166 |#1|)) (-900)))) |%noBranch|) (IF (|has| |#1| (-1028)) (PROGN (-15 -3735 ((-373) (-931 |#1|))) (-15 -3735 ((-373) (-931 |#1|) (-900))) (-15 -1659 ((-166 (-373)) (-931 |#1|))) (-15 -1659 ((-166 (-373)) (-931 |#1|) (-900)))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -3735 ((-373) (-401 (-931 |#1|)))) (-15 -3735 ((-373) (-401 (-931 |#1|)) (-900))) (-15 -1659 ((-166 (-373)) (-401 (-931 |#1|)))) (-15 -1659 ((-166 (-373)) (-401 (-931 |#1|)) (-900))) (-15 -1659 ((-166 (-373)) (-401 (-931 (-166 |#1|))))) (-15 -1659 ((-166 (-373)) (-401 (-931 (-166 |#1|))) (-900))) (IF (|has| |#1| (-830)) (PROGN (-15 -3735 ((-373) (-310 |#1|))) (-15 -3735 ((-373) (-310 |#1|) (-900))) (-15 -1659 ((-166 (-373)) (-310 |#1|))) (-15 -1659 ((-166 (-373)) (-310 |#1|) (-900))) (-15 -1659 ((-166 (-373)) (-310 (-166 |#1|)))) (-15 -1659 ((-166 (-373)) (-310 (-166 |#1|)) (-900)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-15 -3366 ((-3 (-166 (-373)) "failed") (-931 (-166 |#1|)))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-931 (-166 |#1|)) (-900)))) |%noBranch|) (IF (|has| |#1| (-1028)) (PROGN (-15 -1489 ((-3 (-373) "failed") (-931 |#1|))) (-15 -1489 ((-3 (-373) "failed") (-931 |#1|) (-900))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-931 |#1|))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-931 |#1|) (-900)))) |%noBranch|) (IF (|has| |#1| (-544)) (PROGN (-15 -1489 ((-3 (-373) "failed") (-401 (-931 |#1|)))) (-15 -1489 ((-3 (-373) "failed") (-401 (-931 |#1|)) (-900))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-401 (-931 |#1|)))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-401 (-931 |#1|)) (-900))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-401 (-931 (-166 |#1|))))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-401 (-931 (-166 |#1|))) (-900))) (IF (|has| |#1| (-830)) (PROGN (-15 -1489 ((-3 (-373) "failed") (-310 |#1|))) (-15 -1489 ((-3 (-373) "failed") (-310 |#1|) (-900))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-310 |#1|))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-310 |#1|) (-900))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-310 (-166 |#1|)))) (-15 -3366 ((-3 (-166 (-373)) "failed") (-310 (-166 |#1|)) (-900)))) |%noBranch|)) |%noBranch|)) +((-1603 (((-900) (-1134)) 65)) (-2341 (((-3 (-373) "failed") (-1134)) 33)) (-1625 (((-373) (-1134)) 31)) (-3423 (((-900) (-1134)) 54)) (-2044 (((-1134) (-900)) 55)) (-3681 (((-1134) (-900)) 53))) +(((-769) (-10 -7 (-15 -3681 ((-1134) (-900))) (-15 -3423 ((-900) (-1134))) (-15 -2044 ((-1134) (-900))) (-15 -1603 ((-900) (-1134))) (-15 -1625 ((-373) (-1134))) (-15 -2341 ((-3 (-373) "failed") (-1134))))) (T -769)) +((-2341 (*1 *2 *3) (|partial| -12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-769)))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-769)))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-900)) (-5 *1 (-769)))) (-2044 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1134)) (-5 *1 (-769)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-900)) (-5 *1 (-769)))) (-3681 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1134)) (-5 *1 (-769))))) +(-10 -7 (-15 -3681 ((-1134) (-900))) (-15 -3423 ((-900) (-1134))) (-15 -2044 ((-1134) (-900))) (-15 -1603 ((-900) (-1134))) (-15 -1625 ((-373) (-1134))) (-15 -2341 ((-3 (-373) "failed") (-1134)))) +((-1465 (((-111) $ $) 7)) (-3198 (((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 15) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014)) 13)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 16) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 6))) +(((-770) (-137)) (T -770)) +((-1841 (*1 *2 *3 *4) (-12 (-4 *1 (-770)) (-5 *3 (-1040)) (-5 *4 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014)))))) (-3198 (*1 *2 *3 *2) (-12 (-4 *1 (-770)) (-5 *2 (-1014)) (-5 *3 (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) (-1841 (*1 *2 *3 *4) (-12 (-4 *1 (-770)) (-5 *3 (-1040)) (-5 *4 (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014)))))) (-3198 (*1 *2 *3 *2) (-12 (-4 *1 (-770)) (-5 *2 (-1014)) (-5 *3 (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) +(-13 (-1076) (-10 -7 (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3198 ((-1014) (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) (|:| |extra| (-1014))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -3198 ((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) (-1014))))) +(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-3379 (((-1240) (-1235 (-373)) (-552) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1953 (-373))) (-373) (-1235 (-373)) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373))) 44) (((-1240) (-1235 (-373)) (-552) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1953 (-373))) (-373) (-1235 (-373)) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373))) 43)) (-1807 (((-1240) (-1235 (-373)) (-552) (-373) (-373) (-552) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373))) 50)) (-3503 (((-1240) (-1235 (-373)) (-552) (-373) (-373) (-373) (-373) (-552) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373))) 41)) (-1769 (((-1240) (-1235 (-373)) (-552) (-373) (-373) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373))) 52) (((-1240) (-1235 (-373)) (-552) (-373) (-373) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373))) 51))) +(((-771) (-10 -7 (-15 -1769 ((-1240) (-1235 (-373)) (-552) (-373) (-373) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)))) (-15 -1769 ((-1240) (-1235 (-373)) (-552) (-373) (-373) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)))) (-15 -3503 ((-1240) (-1235 (-373)) (-552) (-373) (-373) (-373) (-373) (-552) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)))) (-15 -3379 ((-1240) (-1235 (-373)) (-552) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1953 (-373))) (-373) (-1235 (-373)) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)))) (-15 -3379 ((-1240) (-1235 (-373)) (-552) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1953 (-373))) (-373) (-1235 (-373)) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)))) (-15 -1807 ((-1240) (-1235 (-373)) (-552) (-373) (-373) (-552) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)))))) (T -771)) +((-1807 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) (-5 *1 (-771)))) (-3379 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-552)) (-5 *6 (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1953 (-373)))) (-5 *7 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) (-5 *1 (-771)))) (-3379 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-552)) (-5 *6 (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1953 (-373)))) (-5 *7 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) (-5 *1 (-771)))) (-3503 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) (-5 *1 (-771)))) (-1769 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) (-5 *1 (-771)))) (-1769 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) (-5 *1 (-771))))) +(-10 -7 (-15 -1769 ((-1240) (-1235 (-373)) (-552) (-373) (-373) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)))) (-15 -1769 ((-1240) (-1235 (-373)) (-552) (-373) (-373) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)))) (-15 -3503 ((-1240) (-1235 (-373)) (-552) (-373) (-373) (-373) (-373) (-552) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)))) (-15 -3379 ((-1240) (-1235 (-373)) (-552) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1953 (-373))) (-373) (-1235 (-373)) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)))) (-15 -3379 ((-1240) (-1235 (-373)) (-552) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1953 (-373))) (-373) (-1235 (-373)) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)) (-1235 (-373)))) (-15 -1807 ((-1240) (-1235 (-373)) (-552) (-373) (-373) (-552) (-1 (-1240) (-1235 (-373)) (-1235 (-373)) (-373))))) +((-1358 (((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552)) 53)) (-2737 (((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552)) 31)) (-2864 (((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552)) 52)) (-3102 (((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552)) 29)) (-3139 (((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552)) 51)) (-1399 (((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552)) 19)) (-1604 (((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552)) 32)) (-3196 (((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552)) 30)) (-3524 (((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552)) 28))) +(((-772) (-10 -7 (-15 -3524 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552))) (-15 -3196 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552))) (-15 -1604 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552))) (-15 -1399 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -3102 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -2737 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -3139 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -2864 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -1358 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))))) (T -772)) +((-1358 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-772)) (-5 *5 (-552)))) (-2864 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-772)) (-5 *5 (-552)))) (-3139 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-772)) (-5 *5 (-552)))) (-2737 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-772)) (-5 *5 (-552)))) (-3102 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-772)) (-5 *5 (-552)))) (-1399 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-772)) (-5 *5 (-552)))) (-1604 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-772)) (-5 *5 (-552)))) (-3196 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-772)) (-5 *5 (-552)))) (-3524 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) (|:| |success| (-111)))) (-5 *1 (-772)) (-5 *5 (-552))))) +(-10 -7 (-15 -3524 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552))) (-15 -3196 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552))) (-15 -1604 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552) (-552))) (-15 -1399 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -3102 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -2737 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -3139 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -2864 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552))) (-15 -1358 ((-2 (|:| -4288 (-373)) (|:| -3722 (-373)) (|:| |totalpts| (-552)) (|:| |success| (-111))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-552) (-552)))) +((-2366 (((-1184 |#1|) |#1| (-220) (-552)) 46))) +(((-773 |#1|) (-10 -7 (-15 -2366 ((-1184 |#1|) |#1| (-220) (-552)))) (-953)) (T -773)) +((-2366 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-220)) (-5 *5 (-552)) (-5 *2 (-1184 *3)) (-5 *1 (-773 *3)) (-4 *3 (-953))))) +(-10 -7 (-15 -2366 ((-1184 |#1|) |#1| (-220) (-552)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 24)) (-4136 (((-3 $ "failed") $ $) 26)) (-3887 (($) 23 T CONST)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 22 T CONST)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18)) (-2396 (($ $ $) 28) (($ $) 27)) (-2384 (($ $ $) 20)) (* (($ (-900) $) 21) (($ (-754) $) 25) (($ (-552) $) 29))) +(((-774) (-137)) (T -774)) +NIL +(-13 (-778) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-775) . T) ((-777) . T) ((-778) . T) ((-830) . T) ((-1076) . T)) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 24)) (-3887 (($) 23 T CONST)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 22 T CONST)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18)) (-2384 (($ $ $) 20)) (* (($ (-900) $) 21) (($ (-754) $) 25))) +(((-775) (-137)) (T -775)) +NIL +(-13 (-777) (-23)) +(((-23) . T) ((-25) . T) ((-101) . T) ((-599 (-842)) . T) ((-777) . T) ((-830) . T) ((-1076) . T)) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 24)) (-2796 (($ $ $) 27)) (-4136 (((-3 $ "failed") $ $) 26)) (-3887 (($) 23 T CONST)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 22 T CONST)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18)) (-2384 (($ $ $) 20)) (* (($ (-900) $) 21) (($ (-754) $) 25))) +(((-776) (-137)) (T -776)) +((-2796 (*1 *1 *1 *1) (-4 *1 (-776)))) +(-13 (-778) (-10 -8 (-15 -2796 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-775) . T) ((-777) . T) ((-778) . T) ((-830) . T) ((-1076) . T)) +((-1465 (((-111) $ $) 7)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18)) (-2384 (($ $ $) 20)) (* (($ (-900) $) 21))) +(((-777) (-137)) (T -777)) +NIL +(-13 (-830) (-25)) +(((-25) . T) ((-101) . T) ((-599 (-842)) . T) ((-830) . T) ((-1076) . T)) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 24)) (-4136 (((-3 $ "failed") $ $) 26)) (-3887 (($) 23 T CONST)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 22 T CONST)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18)) (-2384 (($ $ $) 20)) (* (($ (-900) $) 21) (($ (-754) $) 25))) +(((-778) (-137)) (T -778)) +NIL +(-13 (-775) (-129)) +(((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-775) . T) ((-777) . T) ((-830) . T) ((-1076) . T)) +((-3024 (((-111) $) 41)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-1703 (((-552) $) NIL) (((-401 (-552)) $) NIL) ((|#2| $) 42)) (-2859 (((-3 (-401 (-552)) "failed") $) 78)) (-4229 (((-111) $) 72)) (-2411 (((-401 (-552)) $) 76)) (-2349 ((|#2| $) 26)) (-3516 (($ (-1 |#2| |#2|) $) 23)) (-1951 (($ $) 61)) (-3562 (((-528) $) 67)) (-2616 (($ $) 21)) (-1477 (((-842) $) 56) (($ (-552)) 39) (($ |#2|) 37) (($ (-401 (-552))) NIL)) (-3995 (((-754)) 10)) (-3329 ((|#2| $) 71)) (-2292 (((-111) $ $) 29)) (-2316 (((-111) $ $) 69)) (-2396 (($ $) 31) (($ $ $) NIL)) (-2384 (($ $ $) 30)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) +(((-779 |#1| |#2|) (-10 -8 (-15 -2316 ((-111) |#1| |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -1951 (|#1| |#1|)) (-15 -2859 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2411 ((-401 (-552)) |#1|)) (-15 -4229 ((-111) |#1|)) (-15 -3329 (|#2| |#1|)) (-15 -2349 (|#2| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -1477 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 -3995 ((-754))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 -3024 ((-111) |#1|)) (-15 * (|#1| (-900) |#1|)) (-15 -2384 (|#1| |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) (-780 |#2|) (-169)) (T -779)) +((-3995 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-754)) (-5 *1 (-779 *3 *4)) (-4 *3 (-780 *4))))) +(-10 -8 (-15 -2316 ((-111) |#1| |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -1951 (|#1| |#1|)) (-15 -2859 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2411 ((-401 (-552)) |#1|)) (-15 -4229 ((-111) |#1|)) (-15 -3329 (|#2| |#1|)) (-15 -2349 (|#2| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -1477 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 -3995 ((-754))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 -3024 ((-111) |#1|)) (-15 * (|#1| (-900) |#1|)) (-15 -2384 (|#1| |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3307 (((-754)) 51 (|has| |#1| (-362)))) (-3887 (($) 17 T CONST)) (-4039 (((-3 (-552) "failed") $) 92 (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) 90 (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 88)) (-1703 (((-552) $) 93 (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) 91 (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) 87)) (-2040 (((-3 $ "failed") $) 32)) (-1749 ((|#1| $) 77)) (-2859 (((-3 (-401 (-552)) "failed") $) 64 (|has| |#1| (-537)))) (-4229 (((-111) $) 66 (|has| |#1| (-537)))) (-2411 (((-401 (-552)) $) 65 (|has| |#1| (-537)))) (-1279 (($) 54 (|has| |#1| (-362)))) (-2624 (((-111) $) 30)) (-3783 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-2349 ((|#1| $) 69)) (-1816 (($ $ $) 60 (|has| |#1| (-830)))) (-4093 (($ $ $) 59 (|has| |#1| (-830)))) (-3516 (($ (-1 |#1| |#1|) $) 79)) (-2886 (((-900) $) 53 (|has| |#1| (-362)))) (-1595 (((-1134) $) 9)) (-1951 (($ $) 63 (|has| |#1| (-357)))) (-4153 (($ (-900)) 52 (|has| |#1| (-362)))) (-1654 ((|#1| $) 74)) (-2348 ((|#1| $) 75)) (-2108 ((|#1| $) 76)) (-1715 ((|#1| $) 70)) (-1421 ((|#1| $) 71)) (-2963 ((|#1| $) 72)) (-4324 ((|#1| $) 73)) (-1498 (((-1096) $) 10)) (-3321 (($ $ (-627 |#1|) (-627 |#1|)) 85 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 83 (|has| |#1| (-303 |#1|))) (($ $ (-627 (-288 |#1|))) 82 (|has| |#1| (-303 |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) 81 (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-1152) |#1|) 80 (|has| |#1| (-506 (-1152) |#1|)))) (-1985 (($ $ |#1|) 86 (|has| |#1| (-280 |#1| |#1|)))) (-3562 (((-528) $) 61 (|has| |#1| (-600 (-528))))) (-2616 (($ $) 78)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 35) (($ (-401 (-552))) 89 (|has| |#1| (-1017 (-401 (-552)))))) (-3050 (((-3 $ "failed") $) 62 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3329 ((|#1| $) 67 (|has| |#1| (-1037)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2351 (((-111) $ $) 57 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 56 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 58 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 55 (|has| |#1| (-830)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-780 |#1|) (-137) (-169)) (T -780)) +((-2616 (*1 *1 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-1749 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-2108 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-2348 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-4324 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-2963 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-1421 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-3783 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)) (-4 *2 (-1037)))) (-4229 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-111)))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-780 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-401 (-552))))) (-2859 (*1 *2 *1) (|partial| -12 (-4 *1 (-780 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-401 (-552))))) (-1951 (*1 *1 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)) (-4 *2 (-357))))) +(-13 (-38 |t#1|) (-405 |t#1|) (-332 |t#1|) (-10 -8 (-15 -2616 ($ $)) (-15 -1749 (|t#1| $)) (-15 -2108 (|t#1| $)) (-15 -2348 (|t#1| $)) (-15 -1654 (|t#1| $)) (-15 -4324 (|t#1| $)) (-15 -2963 (|t#1| $)) (-15 -1421 (|t#1| $)) (-15 -1715 (|t#1| $)) (-15 -2349 (|t#1| $)) (-15 -3783 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-362)) (-6 (-362)) |%noBranch|) (IF (|has| |t#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |t#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-1037)) (-15 -3329 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -4229 ((-111) $)) (-15 -2411 ((-401 (-552)) $)) (-15 -2859 ((-3 (-401 (-552)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-357)) (-15 -1951 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 |#1| $) |has| |#1| (-280 |#1| |#1|)) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-362) |has| |#1| (-362)) ((-332 |#1|) . T) ((-405 |#1|) . T) ((-506 (-1152) |#1|) |has| |#1| (-506 (-1152) |#1|)) ((-506 |#1| |#1|) |has| |#1| (-303 |#1|)) ((-630 |#1|) . T) ((-630 $) . T) ((-700 |#1|) . T) ((-709) . T) ((-830) |has| |#1| (-830)) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T) ((-1034 |#1|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-3516 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-781 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 (|#3| (-1 |#4| |#2|) |#1|))) (-780 |#2|) (-169) (-780 |#4|) (-169)) (T -781)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-780 *6)) (-5 *1 (-781 *4 *5 *2 *6)) (-4 *4 (-780 *5))))) +(-10 -7 (-15 -3516 (|#3| (-1 |#4| |#2|) |#1|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3307 (((-754)) NIL (|has| |#1| (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL) (((-3 (-978 |#1|) "failed") $) 35) (((-3 (-552) "failed") $) NIL (-1559 (|has| (-978 |#1|) (-1017 (-552))) (|has| |#1| (-1017 (-552))))) (((-3 (-401 (-552)) "failed") $) NIL (-1559 (|has| (-978 |#1|) (-1017 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552))))))) (-1703 ((|#1| $) NIL) (((-978 |#1|) $) 33) (((-552) $) NIL (-1559 (|has| (-978 |#1|) (-1017 (-552))) (|has| |#1| (-1017 (-552))))) (((-401 (-552)) $) NIL (-1559 (|has| (-978 |#1|) (-1017 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552))))))) (-2040 (((-3 $ "failed") $) NIL)) (-1749 ((|#1| $) 16)) (-2859 (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-537)))) (-4229 (((-111) $) NIL (|has| |#1| (-537)))) (-2411 (((-401 (-552)) $) NIL (|has| |#1| (-537)))) (-1279 (($) NIL (|has| |#1| (-362)))) (-2624 (((-111) $) NIL)) (-3783 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-978 |#1|) (-978 |#1|)) 29)) (-2349 ((|#1| $) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-2886 (((-900) $) NIL (|has| |#1| (-362)))) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| |#1| (-357)))) (-4153 (($ (-900)) NIL (|has| |#1| (-362)))) (-1654 ((|#1| $) 22)) (-2348 ((|#1| $) 20)) (-2108 ((|#1| $) 18)) (-1715 ((|#1| $) 26)) (-1421 ((|#1| $) 25)) (-2963 ((|#1| $) 24)) (-4324 ((|#1| $) 23)) (-1498 (((-1096) $) NIL)) (-3321 (($ $ (-627 |#1|) (-627 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-627 (-288 |#1|))) NIL (|has| |#1| (-303 |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) NIL (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-1152) |#1|) NIL (|has| |#1| (-506 (-1152) |#1|)))) (-1985 (($ $ |#1|) NIL (|has| |#1| (-280 |#1| |#1|)))) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-2616 (($ $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-978 |#1|)) 30) (($ (-401 (-552))) NIL (-1559 (|has| (-978 |#1|) (-1017 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552))))))) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-3329 ((|#1| $) NIL (|has| |#1| (-1037)))) (-1922 (($) 8 T CONST)) (-1933 (($) 12 T CONST)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-782 |#1|) (-13 (-780 |#1|) (-405 (-978 |#1|)) (-10 -8 (-15 -3783 ($ (-978 |#1|) (-978 |#1|))))) (-169)) (T -782)) +((-3783 (*1 *1 *2 *2) (-12 (-5 *2 (-978 *3)) (-4 *3 (-169)) (-5 *1 (-782 *3))))) +(-13 (-780 |#1|) (-405 (-978 |#1|)) (-10 -8 (-15 -3783 ($ (-978 |#1|) (-978 |#1|))))) +((-1465 (((-111) $ $) 7)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2308 (((-1014) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 13)) (-2292 (((-111) $ $) 6))) +(((-783) (-137)) (T -783)) +((-1841 (*1 *2 *3 *4) (-12 (-4 *1 (-783)) (-5 *3 (-1040)) (-5 *4 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)))))) (-2308 (*1 *2 *3) (-12 (-4 *1 (-783)) (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-1014))))) +(-13 (-1076) (-10 -7 (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -2308 ((-1014) (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) +(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-2114 (((-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) |#3| |#2| (-1152)) 19))) +(((-784 |#1| |#2| |#3|) (-10 -7 (-15 -2114 ((-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) |#3| |#2| (-1152)))) (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144)) (-13 (-29 |#1|) (-1174) (-938)) (-638 |#2|)) (T -784)) +((-2114 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1152)) (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-4 *4 (-13 (-29 *6) (-1174) (-938))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2957 (-627 *4)))) (-5 *1 (-784 *6 *4 *3)) (-4 *3 (-638 *4))))) +(-10 -7 (-15 -2114 ((-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) |#3| |#2| (-1152)))) +((-1696 (((-3 |#2| "failed") |#2| (-113) (-288 |#2|) (-627 |#2|)) 28) (((-3 |#2| "failed") (-288 |#2|) (-113) (-288 |#2|) (-627 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) |#2| "failed") |#2| (-113) (-1152)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) |#2| "failed") (-288 |#2|) (-113) (-1152)) 18) (((-3 (-2 (|:| |particular| (-1235 |#2|)) (|:| -2957 (-627 (-1235 |#2|)))) "failed") (-627 |#2|) (-627 (-113)) (-1152)) 24) (((-3 (-2 (|:| |particular| (-1235 |#2|)) (|:| -2957 (-627 (-1235 |#2|)))) "failed") (-627 (-288 |#2|)) (-627 (-113)) (-1152)) 26) (((-3 (-627 (-1235 |#2|)) "failed") (-671 |#2|) (-1152)) 37) (((-3 (-2 (|:| |particular| (-1235 |#2|)) (|:| -2957 (-627 (-1235 |#2|)))) "failed") (-671 |#2|) (-1235 |#2|) (-1152)) 35))) +(((-785 |#1| |#2|) (-10 -7 (-15 -1696 ((-3 (-2 (|:| |particular| (-1235 |#2|)) (|:| -2957 (-627 (-1235 |#2|)))) "failed") (-671 |#2|) (-1235 |#2|) (-1152))) (-15 -1696 ((-3 (-627 (-1235 |#2|)) "failed") (-671 |#2|) (-1152))) (-15 -1696 ((-3 (-2 (|:| |particular| (-1235 |#2|)) (|:| -2957 (-627 (-1235 |#2|)))) "failed") (-627 (-288 |#2|)) (-627 (-113)) (-1152))) (-15 -1696 ((-3 (-2 (|:| |particular| (-1235 |#2|)) (|:| -2957 (-627 (-1235 |#2|)))) "failed") (-627 |#2|) (-627 (-113)) (-1152))) (-15 -1696 ((-3 (-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) |#2| "failed") (-288 |#2|) (-113) (-1152))) (-15 -1696 ((-3 (-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) |#2| "failed") |#2| (-113) (-1152))) (-15 -1696 ((-3 |#2| "failed") (-288 |#2|) (-113) (-288 |#2|) (-627 |#2|))) (-15 -1696 ((-3 |#2| "failed") |#2| (-113) (-288 |#2|) (-627 |#2|)))) (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144)) (-13 (-29 |#1|) (-1174) (-938))) (T -785)) +((-1696 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-288 *2)) (-5 *5 (-627 *2)) (-4 *2 (-13 (-29 *6) (-1174) (-938))) (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *1 (-785 *6 *2)))) (-1696 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-288 *2)) (-5 *4 (-113)) (-5 *5 (-627 *2)) (-4 *2 (-13 (-29 *6) (-1174) (-938))) (-5 *1 (-785 *6 *2)) (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))))) (-1696 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-113)) (-5 *5 (-1152)) (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2957 (-627 *3))) *3 "failed")) (-5 *1 (-785 *6 *3)) (-4 *3 (-13 (-29 *6) (-1174) (-938))))) (-1696 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-1152)) (-4 *7 (-13 (-29 *6) (-1174) (-938))) (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2957 (-627 *7))) *7 "failed")) (-5 *1 (-785 *6 *7)))) (-1696 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-627 *7)) (-5 *4 (-627 (-113))) (-5 *5 (-1152)) (-4 *7 (-13 (-29 *6) (-1174) (-938))) (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-2 (|:| |particular| (-1235 *7)) (|:| -2957 (-627 (-1235 *7))))) (-5 *1 (-785 *6 *7)))) (-1696 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-627 (-288 *7))) (-5 *4 (-627 (-113))) (-5 *5 (-1152)) (-4 *7 (-13 (-29 *6) (-1174) (-938))) (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-2 (|:| |particular| (-1235 *7)) (|:| -2957 (-627 (-1235 *7))))) (-5 *1 (-785 *6 *7)))) (-1696 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-671 *6)) (-5 *4 (-1152)) (-4 *6 (-13 (-29 *5) (-1174) (-938))) (-4 *5 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-627 (-1235 *6))) (-5 *1 (-785 *5 *6)))) (-1696 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-671 *7)) (-5 *5 (-1152)) (-4 *7 (-13 (-29 *6) (-1174) (-938))) (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-2 (|:| |particular| (-1235 *7)) (|:| -2957 (-627 (-1235 *7))))) (-5 *1 (-785 *6 *7)) (-5 *4 (-1235 *7))))) +(-10 -7 (-15 -1696 ((-3 (-2 (|:| |particular| (-1235 |#2|)) (|:| -2957 (-627 (-1235 |#2|)))) "failed") (-671 |#2|) (-1235 |#2|) (-1152))) (-15 -1696 ((-3 (-627 (-1235 |#2|)) "failed") (-671 |#2|) (-1152))) (-15 -1696 ((-3 (-2 (|:| |particular| (-1235 |#2|)) (|:| -2957 (-627 (-1235 |#2|)))) "failed") (-627 (-288 |#2|)) (-627 (-113)) (-1152))) (-15 -1696 ((-3 (-2 (|:| |particular| (-1235 |#2|)) (|:| -2957 (-627 (-1235 |#2|)))) "failed") (-627 |#2|) (-627 (-113)) (-1152))) (-15 -1696 ((-3 (-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) |#2| "failed") (-288 |#2|) (-113) (-1152))) (-15 -1696 ((-3 (-2 (|:| |particular| |#2|) (|:| -2957 (-627 |#2|))) |#2| "failed") |#2| (-113) (-1152))) (-15 -1696 ((-3 |#2| "failed") (-288 |#2|) (-113) (-288 |#2|) (-627 |#2|))) (-15 -1696 ((-3 |#2| "failed") |#2| (-113) (-288 |#2|) (-627 |#2|)))) +((-4332 (($) 9)) (-3300 (((-3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))) "failed") (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 31)) (-1296 (((-627 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $) 28)) (-3954 (($ (-2 (|:| -3998 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))) 25)) (-2476 (($ (-627 (-2 (|:| -3998 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) 23)) (-3968 (((-1240)) 12))) +(((-786) (-10 -8 (-15 -4332 ($)) (-15 -3968 ((-1240))) (-15 -1296 ((-627 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $)) (-15 -2476 ($ (-627 (-2 (|:| -3998 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))))) (-15 -3954 ($ (-2 (|:| -3998 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) (-15 -3300 ((-3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))) "failed") (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))))) (T -786)) +((-3300 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))) (-5 *1 (-786)))) (-3954 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3998 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))) (-5 *1 (-786)))) (-2476 (*1 *1 *2) (-12 (-5 *2 (-627 (-2 (|:| -3998 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) (-5 *1 (-786)))) (-1296 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-5 *1 (-786)))) (-3968 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-786)))) (-4332 (*1 *1) (-5 *1 (-786)))) +(-10 -8 (-15 -4332 ($)) (-15 -3968 ((-1240))) (-15 -1296 ((-627 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) $)) (-15 -2476 ($ (-627 (-2 (|:| -3998 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))))) (-15 -3954 ($ (-2 (|:| -3998 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (|:| -2162 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) (-15 -3300 ((-3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))) "failed") (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) +((-3275 ((|#2| |#2| (-1152)) 16)) (-1763 ((|#2| |#2| (-1152)) 51)) (-1528 (((-1 |#2| |#2|) (-1152)) 11))) +(((-787 |#1| |#2|) (-10 -7 (-15 -3275 (|#2| |#2| (-1152))) (-15 -1763 (|#2| |#2| (-1152))) (-15 -1528 ((-1 |#2| |#2|) (-1152)))) (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144)) (-13 (-29 |#1|) (-1174) (-938))) (T -787)) +((-1528 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-1 *5 *5)) (-5 *1 (-787 *4 *5)) (-4 *5 (-13 (-29 *4) (-1174) (-938))))) (-1763 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *1 (-787 *4 *2)) (-4 *2 (-13 (-29 *4) (-1174) (-938))))) (-3275 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *1 (-787 *4 *2)) (-4 *2 (-13 (-29 *4) (-1174) (-938)))))) +(-10 -7 (-15 -3275 (|#2| |#2| (-1152))) (-15 -1763 (|#2| |#2| (-1152))) (-15 -1528 ((-1 |#2| |#2|) (-1152)))) +((-1696 (((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-310 (-373)) (-627 (-373)) (-373) (-373)) 116) (((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-310 (-373)) (-627 (-373)) (-373)) 117) (((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-627 (-373)) (-373)) 119) (((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-310 (-373)) (-373)) 120) (((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-373)) 121) (((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373))) 122) (((-1014) (-791) (-1040)) 108) (((-1014) (-791)) 109)) (-1841 (((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-791) (-1040)) 75) (((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-791)) 77))) +(((-788) (-10 -7 (-15 -1696 ((-1014) (-791))) (-15 -1696 ((-1014) (-791) (-1040))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-373))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-310 (-373)) (-373))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-627 (-373)) (-373))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-310 (-373)) (-627 (-373)) (-373))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-310 (-373)) (-627 (-373)) (-373) (-373))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-791))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-791) (-1040))))) (T -788)) +((-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-791)) (-5 *4 (-1040)) (-5 *2 (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))))) (-5 *1 (-788)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))))) (-5 *1 (-788)))) (-1696 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1235 (-310 *4))) (-5 *5 (-627 (-373))) (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1014)) (-5 *1 (-788)))) (-1696 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1235 (-310 *4))) (-5 *5 (-627 (-373))) (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1014)) (-5 *1 (-788)))) (-1696 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1235 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-627 *4)) (-5 *2 (-1014)) (-5 *1 (-788)))) (-1696 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1235 (-310 *4))) (-5 *5 (-627 (-373))) (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1014)) (-5 *1 (-788)))) (-1696 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1235 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-627 *4)) (-5 *2 (-1014)) (-5 *1 (-788)))) (-1696 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1235 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-627 *4)) (-5 *2 (-1014)) (-5 *1 (-788)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-791)) (-5 *4 (-1040)) (-5 *2 (-1014)) (-5 *1 (-788)))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1014)) (-5 *1 (-788))))) +(-10 -7 (-15 -1696 ((-1014) (-791))) (-15 -1696 ((-1014) (-791) (-1040))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-373))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-310 (-373)) (-373))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-627 (-373)) (-373))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-310 (-373)) (-627 (-373)) (-373))) (-15 -1696 ((-1014) (-1235 (-310 (-373))) (-373) (-373) (-627 (-373)) (-310 (-373)) (-627 (-373)) (-373) (-373))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-791))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-791) (-1040)))) +((-2102 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2957 (-627 |#4|))) (-635 |#4|) |#4|) 35))) +(((-789 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2102 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2957 (-627 |#4|))) (-635 |#4|) |#4|))) (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552)))) (-1211 |#1|) (-1211 (-401 |#2|)) (-336 |#1| |#2| |#3|)) (T -789)) +((-2102 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *4)) (-4 *4 (-336 *5 *6 *7)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) (-5 *1 (-789 *5 *6 *7 *4))))) +(-10 -7 (-15 -2102 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2957 (-627 |#4|))) (-635 |#4|) |#4|))) +((-1971 (((-2 (|:| -1651 |#3|) (|:| |rh| (-627 (-401 |#2|)))) |#4| (-627 (-401 |#2|))) 52)) (-3411 (((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#4| |#2|) 60) (((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#4|) 59) (((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#3| |#2|) 20) (((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#3|) 21)) (-2055 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3551 ((|#2| |#3| (-627 (-401 |#2|))) 93) (((-3 |#2| "failed") |#3| (-401 |#2|)) 90))) +(((-790 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3551 ((-3 |#2| "failed") |#3| (-401 |#2|))) (-15 -3551 (|#2| |#3| (-627 (-401 |#2|)))) (-15 -3411 ((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#3|)) (-15 -3411 ((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#3| |#2|)) (-15 -2055 (|#2| |#3| |#1|)) (-15 -3411 ((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#4|)) (-15 -3411 ((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#4| |#2|)) (-15 -2055 (|#2| |#4| |#1|)) (-15 -1971 ((-2 (|:| -1651 |#3|) (|:| |rh| (-627 (-401 |#2|)))) |#4| (-627 (-401 |#2|))))) (-13 (-357) (-144) (-1017 (-401 (-552)))) (-1211 |#1|) (-638 |#2|) (-638 (-401 |#2|))) (T -790)) +((-1971 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *6 (-1211 *5)) (-5 *2 (-2 (|:| -1651 *7) (|:| |rh| (-627 (-401 *6))))) (-5 *1 (-790 *5 *6 *7 *3)) (-5 *4 (-627 (-401 *6))) (-4 *7 (-638 *6)) (-4 *3 (-638 (-401 *6))))) (-2055 (*1 *2 *3 *4) (-12 (-4 *2 (-1211 *4)) (-5 *1 (-790 *4 *2 *5 *3)) (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *5 (-638 *2)) (-4 *3 (-638 (-401 *2))))) (-3411 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *4 (-1211 *5)) (-5 *2 (-627 (-2 (|:| -3174 *4) (|:| -3262 *4)))) (-5 *1 (-790 *5 *4 *6 *3)) (-4 *6 (-638 *4)) (-4 *3 (-638 (-401 *4))))) (-3411 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *5 (-1211 *4)) (-5 *2 (-627 (-2 (|:| -3174 *5) (|:| -3262 *5)))) (-5 *1 (-790 *4 *5 *6 *3)) (-4 *6 (-638 *5)) (-4 *3 (-638 (-401 *5))))) (-2055 (*1 *2 *3 *4) (-12 (-4 *2 (-1211 *4)) (-5 *1 (-790 *4 *2 *3 *5)) (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *3 (-638 *2)) (-4 *5 (-638 (-401 *2))))) (-3411 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *4 (-1211 *5)) (-5 *2 (-627 (-2 (|:| -3174 *4) (|:| -3262 *4)))) (-5 *1 (-790 *5 *4 *3 *6)) (-4 *3 (-638 *4)) (-4 *6 (-638 (-401 *4))))) (-3411 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *5 (-1211 *4)) (-5 *2 (-627 (-2 (|:| -3174 *5) (|:| -3262 *5)))) (-5 *1 (-790 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-638 (-401 *5))))) (-3551 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-401 *2))) (-4 *2 (-1211 *5)) (-5 *1 (-790 *5 *2 *3 *6)) (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *3 (-638 *2)) (-4 *6 (-638 (-401 *2))))) (-3551 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-401 *2)) (-4 *2 (-1211 *5)) (-5 *1 (-790 *5 *2 *3 *6)) (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *3 (-638 *2)) (-4 *6 (-638 *4))))) +(-10 -7 (-15 -3551 ((-3 |#2| "failed") |#3| (-401 |#2|))) (-15 -3551 (|#2| |#3| (-627 (-401 |#2|)))) (-15 -3411 ((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#3|)) (-15 -3411 ((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#3| |#2|)) (-15 -2055 (|#2| |#3| |#1|)) (-15 -3411 ((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#4|)) (-15 -3411 ((-627 (-2 (|:| -3174 |#2|) (|:| -3262 |#2|))) |#4| |#2|)) (-15 -2055 (|#2| |#4| |#1|)) (-15 -1971 ((-2 (|:| -1651 |#3|) (|:| |rh| (-627 (-401 |#2|)))) |#4| (-627 (-401 |#2|))))) +((-1465 (((-111) $ $) NIL)) (-1703 (((-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) $) 13)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 15) (($ (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) 12)) (-2292 (((-111) $ $) NIL))) +(((-791) (-13 (-1076) (-10 -8 (-15 -1477 ($ (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1477 ((-842) $)) (-15 -1703 ((-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) $))))) (T -791)) +((-1477 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-791)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *1 (-791)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *1 (-791))))) +(-13 (-1076) (-10 -8 (-15 -1477 ($ (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))))) (-15 -1477 ((-842) $)) (-15 -1703 ((-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) (|:| |relerr| (-220))) $)))) +((-3403 (((-627 (-2 (|:| |frac| (-401 |#2|)) (|:| -1651 |#3|))) |#3| (-1 (-627 |#2|) |#2| (-1148 |#2|)) (-1 (-412 |#2|) |#2|)) 118)) (-1836 (((-627 (-2 (|:| |poly| |#2|) (|:| -1651 |#3|))) |#3| (-1 (-627 |#1|) |#2|)) 46)) (-2400 (((-627 (-2 (|:| |deg| (-754)) (|:| -1651 |#2|))) |#3|) 95)) (-3775 ((|#2| |#3|) 37)) (-2190 (((-627 (-2 (|:| -3488 |#1|) (|:| -1651 |#3|))) |#3| (-1 (-627 |#1|) |#2|)) 82)) (-3822 ((|#3| |#3| (-401 |#2|)) 63) ((|#3| |#3| |#2|) 79))) +(((-792 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3775 (|#2| |#3|)) (-15 -2400 ((-627 (-2 (|:| |deg| (-754)) (|:| -1651 |#2|))) |#3|)) (-15 -2190 ((-627 (-2 (|:| -3488 |#1|) (|:| -1651 |#3|))) |#3| (-1 (-627 |#1|) |#2|))) (-15 -1836 ((-627 (-2 (|:| |poly| |#2|) (|:| -1651 |#3|))) |#3| (-1 (-627 |#1|) |#2|))) (-15 -3403 ((-627 (-2 (|:| |frac| (-401 |#2|)) (|:| -1651 |#3|))) |#3| (-1 (-627 |#2|) |#2| (-1148 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -3822 (|#3| |#3| |#2|)) (-15 -3822 (|#3| |#3| (-401 |#2|)))) (-13 (-357) (-144) (-1017 (-401 (-552)))) (-1211 |#1|) (-638 |#2|) (-638 (-401 |#2|))) (T -792)) +((-3822 (*1 *2 *2 *3) (-12 (-5 *3 (-401 *5)) (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *5 (-1211 *4)) (-5 *1 (-792 *4 *5 *2 *6)) (-4 *2 (-638 *5)) (-4 *6 (-638 *3)))) (-3822 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *3 (-1211 *4)) (-5 *1 (-792 *4 *3 *2 *5)) (-4 *2 (-638 *3)) (-4 *5 (-638 (-401 *3))))) (-3403 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-627 *7) *7 (-1148 *7))) (-5 *5 (-1 (-412 *7) *7)) (-4 *7 (-1211 *6)) (-4 *6 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-5 *2 (-627 (-2 (|:| |frac| (-401 *7)) (|:| -1651 *3)))) (-5 *1 (-792 *6 *7 *3 *8)) (-4 *3 (-638 *7)) (-4 *8 (-638 (-401 *7))))) (-1836 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-627 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *6 (-1211 *5)) (-5 *2 (-627 (-2 (|:| |poly| *6) (|:| -1651 *3)))) (-5 *1 (-792 *5 *6 *3 *7)) (-4 *3 (-638 *6)) (-4 *7 (-638 (-401 *6))))) (-2190 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-627 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *6 (-1211 *5)) (-5 *2 (-627 (-2 (|:| -3488 *5) (|:| -1651 *3)))) (-5 *1 (-792 *5 *6 *3 *7)) (-4 *3 (-638 *6)) (-4 *7 (-638 (-401 *6))))) (-2400 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *5 (-1211 *4)) (-5 *2 (-627 (-2 (|:| |deg| (-754)) (|:| -1651 *5)))) (-5 *1 (-792 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-638 (-401 *5))))) (-3775 (*1 *2 *3) (-12 (-4 *2 (-1211 *4)) (-5 *1 (-792 *4 *2 *3 *5)) (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *3 (-638 *2)) (-4 *5 (-638 (-401 *2)))))) +(-10 -7 (-15 -3775 (|#2| |#3|)) (-15 -2400 ((-627 (-2 (|:| |deg| (-754)) (|:| -1651 |#2|))) |#3|)) (-15 -2190 ((-627 (-2 (|:| -3488 |#1|) (|:| -1651 |#3|))) |#3| (-1 (-627 |#1|) |#2|))) (-15 -1836 ((-627 (-2 (|:| |poly| |#2|) (|:| -1651 |#3|))) |#3| (-1 (-627 |#1|) |#2|))) (-15 -3403 ((-627 (-2 (|:| |frac| (-401 |#2|)) (|:| -1651 |#3|))) |#3| (-1 (-627 |#2|) |#2| (-1148 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -3822 (|#3| |#3| |#2|)) (-15 -3822 (|#3| |#3| (-401 |#2|)))) +((-2270 (((-2 (|:| -2957 (-627 (-401 |#2|))) (|:| -2515 (-671 |#1|))) (-636 |#2| (-401 |#2|)) (-627 (-401 |#2|))) 121) (((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -2957 (-627 (-401 |#2|)))) (-636 |#2| (-401 |#2|)) (-401 |#2|)) 120) (((-2 (|:| -2957 (-627 (-401 |#2|))) (|:| -2515 (-671 |#1|))) (-635 (-401 |#2|)) (-627 (-401 |#2|))) 115) (((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -2957 (-627 (-401 |#2|)))) (-635 (-401 |#2|)) (-401 |#2|)) 113)) (-4006 ((|#2| (-636 |#2| (-401 |#2|))) 80) ((|#2| (-635 (-401 |#2|))) 83))) +(((-793 |#1| |#2|) (-10 -7 (-15 -2270 ((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -2957 (-627 (-401 |#2|)))) (-635 (-401 |#2|)) (-401 |#2|))) (-15 -2270 ((-2 (|:| -2957 (-627 (-401 |#2|))) (|:| -2515 (-671 |#1|))) (-635 (-401 |#2|)) (-627 (-401 |#2|)))) (-15 -2270 ((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -2957 (-627 (-401 |#2|)))) (-636 |#2| (-401 |#2|)) (-401 |#2|))) (-15 -2270 ((-2 (|:| -2957 (-627 (-401 |#2|))) (|:| -2515 (-671 |#1|))) (-636 |#2| (-401 |#2|)) (-627 (-401 |#2|)))) (-15 -4006 (|#2| (-635 (-401 |#2|)))) (-15 -4006 (|#2| (-636 |#2| (-401 |#2|))))) (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552)))) (-1211 |#1|)) (T -793)) +((-4006 (*1 *2 *3) (-12 (-5 *3 (-636 *2 (-401 *2))) (-4 *2 (-1211 *4)) (-5 *1 (-793 *4 *2)) (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))))) (-4006 (*1 *2 *3) (-12 (-5 *3 (-635 (-401 *2))) (-4 *2 (-1211 *4)) (-5 *1 (-793 *4 *2)) (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))))) (-2270 (*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-401 *6))) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-5 *2 (-2 (|:| -2957 (-627 (-401 *6))) (|:| -2515 (-671 *5)))) (-5 *1 (-793 *5 *6)) (-5 *4 (-627 (-401 *6))))) (-2270 (*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-401 *6))) (-5 *4 (-401 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) (-5 *1 (-793 *5 *6)))) (-2270 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-401 *6))) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-5 *2 (-2 (|:| -2957 (-627 (-401 *6))) (|:| -2515 (-671 *5)))) (-5 *1 (-793 *5 *6)) (-5 *4 (-627 (-401 *6))))) (-2270 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-401 *6))) (-5 *4 (-401 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) (-5 *1 (-793 *5 *6))))) +(-10 -7 (-15 -2270 ((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -2957 (-627 (-401 |#2|)))) (-635 (-401 |#2|)) (-401 |#2|))) (-15 -2270 ((-2 (|:| -2957 (-627 (-401 |#2|))) (|:| -2515 (-671 |#1|))) (-635 (-401 |#2|)) (-627 (-401 |#2|)))) (-15 -2270 ((-2 (|:| |particular| (-3 (-401 |#2|) "failed")) (|:| -2957 (-627 (-401 |#2|)))) (-636 |#2| (-401 |#2|)) (-401 |#2|))) (-15 -2270 ((-2 (|:| -2957 (-627 (-401 |#2|))) (|:| -2515 (-671 |#1|))) (-636 |#2| (-401 |#2|)) (-627 (-401 |#2|)))) (-15 -4006 (|#2| (-635 (-401 |#2|)))) (-15 -4006 (|#2| (-636 |#2| (-401 |#2|))))) +((-3629 (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#1|))) |#5| |#4|) 48))) +(((-794 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3629 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#1|))) |#5| |#4|))) (-357) (-638 |#1|) (-1211 |#1|) (-707 |#1| |#3|) (-638 |#4|)) (T -794)) +((-3629 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *7 (-1211 *5)) (-4 *4 (-707 *5 *7)) (-5 *2 (-2 (|:| -2515 (-671 *6)) (|:| |vec| (-1235 *5)))) (-5 *1 (-794 *5 *6 *7 *4 *3)) (-4 *6 (-638 *5)) (-4 *3 (-638 *4))))) +(-10 -7 (-15 -3629 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#1|))) |#5| |#4|))) +((-3403 (((-627 (-2 (|:| |frac| (-401 |#2|)) (|:| -1651 (-636 |#2| (-401 |#2|))))) (-636 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|)) 47)) (-3483 (((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|))) 138 (|has| |#1| (-27))) (((-627 (-401 |#2|)) (-635 (-401 |#2|)) (-1 (-412 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-627 (-401 |#2|)) (-635 (-401 |#2|))) 140 (|has| |#1| (-27))) (((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)) (-1 (-627 |#1|) |#2|) (-1 (-412 |#2|) |#2|)) 38) (((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)) (-1 (-627 |#1|) |#2|)) 39) (((-627 (-401 |#2|)) (-635 (-401 |#2|)) (-1 (-627 |#1|) |#2|) (-1 (-412 |#2|) |#2|)) 36) (((-627 (-401 |#2|)) (-635 (-401 |#2|)) (-1 (-627 |#1|) |#2|)) 37)) (-1836 (((-627 (-2 (|:| |poly| |#2|) (|:| -1651 (-636 |#2| (-401 |#2|))))) (-636 |#2| (-401 |#2|)) (-1 (-627 |#1|) |#2|)) 83))) +(((-795 |#1| |#2|) (-10 -7 (-15 -3483 ((-627 (-401 |#2|)) (-635 (-401 |#2|)) (-1 (-627 |#1|) |#2|))) (-15 -3483 ((-627 (-401 |#2|)) (-635 (-401 |#2|)) (-1 (-627 |#1|) |#2|) (-1 (-412 |#2|) |#2|))) (-15 -3483 ((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)) (-1 (-627 |#1|) |#2|))) (-15 -3483 ((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)) (-1 (-627 |#1|) |#2|) (-1 (-412 |#2|) |#2|))) (-15 -3403 ((-627 (-2 (|:| |frac| (-401 |#2|)) (|:| -1651 (-636 |#2| (-401 |#2|))))) (-636 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -1836 ((-627 (-2 (|:| |poly| |#2|) (|:| -1651 (-636 |#2| (-401 |#2|))))) (-636 |#2| (-401 |#2|)) (-1 (-627 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3483 ((-627 (-401 |#2|)) (-635 (-401 |#2|)))) (-15 -3483 ((-627 (-401 |#2|)) (-635 (-401 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -3483 ((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)))) (-15 -3483 ((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|)))) |%noBranch|)) (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552)))) (-1211 |#1|)) (T -795)) +((-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-401 *6))) (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-5 *2 (-627 (-401 *6))) (-5 *1 (-795 *5 *6)))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-636 *5 (-401 *5))) (-4 *5 (-1211 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-5 *2 (-627 (-401 *5))) (-5 *1 (-795 *4 *5)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-401 *6))) (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-5 *2 (-627 (-401 *6))) (-5 *1 (-795 *5 *6)))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-635 (-401 *5))) (-4 *5 (-1211 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-5 *2 (-627 (-401 *5))) (-5 *1 (-795 *4 *5)))) (-1836 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-627 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-4 *6 (-1211 *5)) (-5 *2 (-627 (-2 (|:| |poly| *6) (|:| -1651 (-636 *6 (-401 *6)))))) (-5 *1 (-795 *5 *6)) (-5 *3 (-636 *6 (-401 *6))))) (-3403 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-5 *2 (-627 (-2 (|:| |frac| (-401 *6)) (|:| -1651 (-636 *6 (-401 *6)))))) (-5 *1 (-795 *5 *6)) (-5 *3 (-636 *6 (-401 *6))))) (-3483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-636 *7 (-401 *7))) (-5 *4 (-1 (-627 *6) *7)) (-5 *5 (-1 (-412 *7) *7)) (-4 *6 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-4 *7 (-1211 *6)) (-5 *2 (-627 (-401 *7))) (-5 *1 (-795 *6 *7)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-401 *6))) (-5 *4 (-1 (-627 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-4 *6 (-1211 *5)) (-5 *2 (-627 (-401 *6))) (-5 *1 (-795 *5 *6)))) (-3483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-401 *7))) (-5 *4 (-1 (-627 *6) *7)) (-5 *5 (-1 (-412 *7) *7)) (-4 *6 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-4 *7 (-1211 *6)) (-5 *2 (-627 (-401 *7))) (-5 *1 (-795 *6 *7)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-401 *6))) (-5 *4 (-1 (-627 *5) *6)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) (-4 *6 (-1211 *5)) (-5 *2 (-627 (-401 *6))) (-5 *1 (-795 *5 *6))))) +(-10 -7 (-15 -3483 ((-627 (-401 |#2|)) (-635 (-401 |#2|)) (-1 (-627 |#1|) |#2|))) (-15 -3483 ((-627 (-401 |#2|)) (-635 (-401 |#2|)) (-1 (-627 |#1|) |#2|) (-1 (-412 |#2|) |#2|))) (-15 -3483 ((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)) (-1 (-627 |#1|) |#2|))) (-15 -3483 ((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)) (-1 (-627 |#1|) |#2|) (-1 (-412 |#2|) |#2|))) (-15 -3403 ((-627 (-2 (|:| |frac| (-401 |#2|)) (|:| -1651 (-636 |#2| (-401 |#2|))))) (-636 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -1836 ((-627 (-2 (|:| |poly| |#2|) (|:| -1651 (-636 |#2| (-401 |#2|))))) (-636 |#2| (-401 |#2|)) (-1 (-627 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3483 ((-627 (-401 |#2|)) (-635 (-401 |#2|)))) (-15 -3483 ((-627 (-401 |#2|)) (-635 (-401 |#2|)) (-1 (-412 |#2|) |#2|))) (-15 -3483 ((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)))) (-15 -3483 ((-627 (-401 |#2|)) (-636 |#2| (-401 |#2|)) (-1 (-412 |#2|) |#2|)))) |%noBranch|)) +((-2024 (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#1|))) (-671 |#2|) (-1235 |#1|)) 85) (((-2 (|:| A (-671 |#1|)) (|:| |eqs| (-627 (-2 (|:| C (-671 |#1|)) (|:| |g| (-1235 |#1|)) (|:| -1651 |#2|) (|:| |rh| |#1|))))) (-671 |#1|) (-1235 |#1|)) 15)) (-1662 (((-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|)))) (-671 |#2|) (-1235 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2957 (-627 |#1|))) |#2| |#1|)) 92)) (-1696 (((-3 (-2 (|:| |particular| (-1235 |#1|)) (|:| -2957 (-671 |#1|))) "failed") (-671 |#1|) (-1235 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2957 (-627 |#1|))) "failed") |#2| |#1|)) 43))) +(((-796 |#1| |#2|) (-10 -7 (-15 -2024 ((-2 (|:| A (-671 |#1|)) (|:| |eqs| (-627 (-2 (|:| C (-671 |#1|)) (|:| |g| (-1235 |#1|)) (|:| -1651 |#2|) (|:| |rh| |#1|))))) (-671 |#1|) (-1235 |#1|))) (-15 -2024 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#1|))) (-671 |#2|) (-1235 |#1|))) (-15 -1696 ((-3 (-2 (|:| |particular| (-1235 |#1|)) (|:| -2957 (-671 |#1|))) "failed") (-671 |#1|) (-1235 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2957 (-627 |#1|))) "failed") |#2| |#1|))) (-15 -1662 ((-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|)))) (-671 |#2|) (-1235 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2957 (-627 |#1|))) |#2| |#1|)))) (-357) (-638 |#1|)) (T -796)) +((-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2957 (-627 *6))) *7 *6)) (-4 *6 (-357)) (-4 *7 (-638 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1235 *6) "failed")) (|:| -2957 (-627 (-1235 *6))))) (-5 *1 (-796 *6 *7)) (-5 *4 (-1235 *6)))) (-1696 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2957 (-627 *6))) "failed") *7 *6)) (-4 *6 (-357)) (-4 *7 (-638 *6)) (-5 *2 (-2 (|:| |particular| (-1235 *6)) (|:| -2957 (-671 *6)))) (-5 *1 (-796 *6 *7)) (-5 *3 (-671 *6)) (-5 *4 (-1235 *6)))) (-2024 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-4 *6 (-638 *5)) (-5 *2 (-2 (|:| -2515 (-671 *6)) (|:| |vec| (-1235 *5)))) (-5 *1 (-796 *5 *6)) (-5 *3 (-671 *6)) (-5 *4 (-1235 *5)))) (-2024 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-5 *2 (-2 (|:| A (-671 *5)) (|:| |eqs| (-627 (-2 (|:| C (-671 *5)) (|:| |g| (-1235 *5)) (|:| -1651 *6) (|:| |rh| *5)))))) (-5 *1 (-796 *5 *6)) (-5 *3 (-671 *5)) (-5 *4 (-1235 *5)) (-4 *6 (-638 *5))))) +(-10 -7 (-15 -2024 ((-2 (|:| A (-671 |#1|)) (|:| |eqs| (-627 (-2 (|:| C (-671 |#1|)) (|:| |g| (-1235 |#1|)) (|:| -1651 |#2|) (|:| |rh| |#1|))))) (-671 |#1|) (-1235 |#1|))) (-15 -2024 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#1|))) (-671 |#2|) (-1235 |#1|))) (-15 -1696 ((-3 (-2 (|:| |particular| (-1235 |#1|)) (|:| -2957 (-671 |#1|))) "failed") (-671 |#1|) (-1235 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2957 (-627 |#1|))) "failed") |#2| |#1|))) (-15 -1662 ((-2 (|:| |particular| (-3 (-1235 |#1|) "failed")) (|:| -2957 (-627 (-1235 |#1|)))) (-671 |#2|) (-1235 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2957 (-627 |#1|))) |#2| |#1|)))) +((-3943 (((-671 |#1|) (-627 |#1|) (-754)) 13) (((-671 |#1|) (-627 |#1|)) 14)) (-2408 (((-3 (-1235 |#1|) "failed") |#2| |#1| (-627 |#1|)) 34)) (-3313 (((-3 |#1| "failed") |#2| |#1| (-627 |#1|) (-1 |#1| |#1|)) 42))) +(((-797 |#1| |#2|) (-10 -7 (-15 -3943 ((-671 |#1|) (-627 |#1|))) (-15 -3943 ((-671 |#1|) (-627 |#1|) (-754))) (-15 -2408 ((-3 (-1235 |#1|) "failed") |#2| |#1| (-627 |#1|))) (-15 -3313 ((-3 |#1| "failed") |#2| |#1| (-627 |#1|) (-1 |#1| |#1|)))) (-357) (-638 |#1|)) (T -797)) +((-3313 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-627 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-357)) (-5 *1 (-797 *2 *3)) (-4 *3 (-638 *2)))) (-2408 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-627 *4)) (-4 *4 (-357)) (-5 *2 (-1235 *4)) (-5 *1 (-797 *4 *3)) (-4 *3 (-638 *4)))) (-3943 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-5 *4 (-754)) (-4 *5 (-357)) (-5 *2 (-671 *5)) (-5 *1 (-797 *5 *6)) (-4 *6 (-638 *5)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-357)) (-5 *2 (-671 *4)) (-5 *1 (-797 *4 *5)) (-4 *5 (-638 *4))))) +(-10 -7 (-15 -3943 ((-671 |#1|) (-627 |#1|))) (-15 -3943 ((-671 |#1|) (-627 |#1|) (-754))) (-15 -2408 ((-3 (-1235 |#1|) "failed") |#2| |#1| (-627 |#1|))) (-15 -3313 ((-3 |#1| "failed") |#2| |#1| (-627 |#1|) (-1 |#1| |#1|)))) +((-1465 (((-111) $ $) NIL (|has| |#2| (-1076)))) (-3024 (((-111) $) NIL (|has| |#2| (-129)))) (-3969 (($ (-900)) NIL (|has| |#2| (-1028)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-2796 (($ $ $) NIL (|has| |#2| (-776)))) (-4136 (((-3 $ "failed") $ $) NIL (|has| |#2| (-129)))) (-4031 (((-111) $ (-754)) NIL)) (-3307 (((-754)) NIL (|has| |#2| (-362)))) (-2422 (((-552) $) NIL (|has| |#2| (-828)))) (-2950 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (-12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1076)))) (-1703 (((-552) $) NIL (-12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076)))) (((-401 (-552)) $) NIL (-12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) ((|#2| $) NIL (|has| |#2| (-1076)))) (-1800 (((-671 (-552)) (-671 $)) NIL (-12 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (-12 (|has| |#2| (-623 (-552))) (|has| |#2| (-1028)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL (|has| |#2| (-1028))) (((-671 |#2|) (-671 $)) NIL (|has| |#2| (-1028)))) (-2040 (((-3 $ "failed") $) NIL (|has| |#2| (-709)))) (-1279 (($) NIL (|has| |#2| (-362)))) (-3473 ((|#2| $ (-552) |#2|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#2| $ (-552)) NIL)) (-2983 (((-111) $) NIL (|has| |#2| (-828)))) (-3215 (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-2624 (((-111) $) NIL (|has| |#2| (-709)))) (-1508 (((-111) $) NIL (|has| |#2| (-828)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-3114 (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-3463 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-2886 (((-900) $) NIL (|has| |#2| (-362)))) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#2| (-1076)))) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-4153 (($ (-900)) NIL (|has| |#2| (-362)))) (-1498 (((-1096) $) NIL (|has| |#2| (-1076)))) (-3340 ((|#2| $) NIL (|has| (-552) (-830)))) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#2| $ (-552) |#2|) NIL) ((|#2| $ (-552)) NIL)) (-2395 ((|#2| $ $) NIL (|has| |#2| (-1028)))) (-1767 (($ (-1235 |#2|)) NIL)) (-2405 (((-132)) NIL (|has| |#2| (-357)))) (-2942 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1 |#2| |#2|) (-754)) NIL (|has| |#2| (-1028))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1028)))) (-1509 (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-1235 |#2|) $) NIL) (($ (-552)) NIL (-1559 (-12 (|has| |#2| (-1017 (-552))) (|has| |#2| (-1076))) (|has| |#2| (-1028)))) (($ (-401 (-552))) NIL (-12 (|has| |#2| (-1017 (-401 (-552)))) (|has| |#2| (-1076)))) (($ |#2|) NIL (|has| |#2| (-1076))) (((-842) $) NIL (|has| |#2| (-599 (-842))))) (-3995 (((-754)) NIL (|has| |#2| (-1028)))) (-3299 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3329 (($ $) NIL (|has| |#2| (-828)))) (-1922 (($) NIL (|has| |#2| (-129)) CONST)) (-1933 (($) NIL (|has| |#2| (-709)) CONST)) (-4251 (($ $) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#2| (-228)) (|has| |#2| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#2| (-879 (-1152))) (|has| |#2| (-1028)))) (($ $ (-1 |#2| |#2|) (-754)) NIL (|has| |#2| (-1028))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1028)))) (-2351 (((-111) $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2329 (((-111) $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2292 (((-111) $ $) NIL (|has| |#2| (-1076)))) (-2340 (((-111) $ $) NIL (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2316 (((-111) $ $) 11 (-1559 (|has| |#2| (-776)) (|has| |#2| (-828))))) (-2407 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-2396 (($ $ $) NIL (|has| |#2| (-1028))) (($ $) NIL (|has| |#2| (-1028)))) (-2384 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-754)) NIL (|has| |#2| (-709))) (($ $ (-900)) NIL (|has| |#2| (-709)))) (* (($ (-552) $) NIL (|has| |#2| (-1028))) (($ $ $) NIL (|has| |#2| (-709))) (($ $ |#2|) NIL (|has| |#2| (-709))) (($ |#2| $) NIL (|has| |#2| (-709))) (($ (-754) $) NIL (|has| |#2| (-129))) (($ (-900) $) NIL (|has| |#2| (-25)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-798 |#1| |#2| |#3|) (-233 |#1| |#2|) (-754) (-776) (-1 (-111) (-1235 |#2|) (-1235 |#2|))) (T -798)) +NIL +(-233 |#1| |#2|) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3996 (((-627 (-754)) $) NIL) (((-627 (-754)) $ (-1152)) NIL)) (-2671 (((-754) $) NIL) (((-754) $ (-1152)) NIL)) (-1853 (((-627 (-801 (-1152))) $) NIL)) (-1694 (((-1148 $) $ (-801 (-1152))) NIL) (((-1148 |#1|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-801 (-1152)))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4014 (($ $) NIL (|has| |#1| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-2252 (($ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-801 (-1152)) "failed") $) NIL) (((-3 (-1152) "failed") $) NIL) (((-3 (-1101 |#1| (-1152)) "failed") $) NIL)) (-1703 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-801 (-1152)) $) NIL) (((-1152) $) NIL) (((-1101 |#1| (-1152)) $) NIL)) (-3116 (($ $ $ (-801 (-1152))) NIL (|has| |#1| (-169)))) (-2014 (($ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#1| (-445))) (($ $ (-801 (-1152))) NIL (|has| |#1| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#1| (-888)))) (-2061 (($ $ |#1| (-523 (-801 (-1152))) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-801 (-1152)) (-865 (-373))) (|has| |#1| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-801 (-1152)) (-865 (-552))) (|has| |#1| (-865 (-552)))))) (-2641 (((-754) $ (-1152)) NIL) (((-754) $) NIL)) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-1842 (($ (-1148 |#1|) (-801 (-1152))) NIL) (($ (-1148 $) (-801 (-1152))) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-523 (-801 (-1152)))) NIL) (($ $ (-801 (-1152)) (-754)) NIL) (($ $ (-627 (-801 (-1152))) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-801 (-1152))) NIL)) (-3465 (((-523 (-801 (-1152))) $) NIL) (((-754) $ (-801 (-1152))) NIL) (((-627 (-754)) $ (-627 (-801 (-1152)))) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3813 (($ (-1 (-523 (-801 (-1152))) (-523 (-801 (-1152)))) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-4250 (((-1 $ (-754)) (-1152)) NIL) (((-1 $ (-754)) $) NIL (|has| |#1| (-228)))) (-2685 (((-3 (-801 (-1152)) "failed") $) NIL)) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-4033 (((-801 (-1152)) $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1595 (((-1134) $) NIL)) (-3675 (((-111) $) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-801 (-1152))) (|:| -4067 (-754))) "failed") $) NIL)) (-2549 (($ $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 ((|#1| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-888)))) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-801 (-1152)) |#1|) NIL) (($ $ (-627 (-801 (-1152))) (-627 |#1|)) NIL) (($ $ (-801 (-1152)) $) NIL) (($ $ (-627 (-801 (-1152))) (-627 $)) NIL) (($ $ (-1152) $) NIL (|has| |#1| (-228))) (($ $ (-627 (-1152)) (-627 $)) NIL (|has| |#1| (-228))) (($ $ (-1152) |#1|) NIL (|has| |#1| (-228))) (($ $ (-627 (-1152)) (-627 |#1|)) NIL (|has| |#1| (-228)))) (-1637 (($ $ (-801 (-1152))) NIL (|has| |#1| (-169)))) (-2942 (($ $ (-801 (-1152))) NIL) (($ $ (-627 (-801 (-1152)))) NIL) (($ $ (-801 (-1152)) (-754)) NIL) (($ $ (-627 (-801 (-1152))) (-627 (-754))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2544 (((-627 (-1152)) $) NIL)) (-3567 (((-523 (-801 (-1152))) $) NIL) (((-754) $ (-801 (-1152))) NIL) (((-627 (-754)) $ (-627 (-801 (-1152)))) NIL) (((-754) $ (-1152)) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-801 (-1152)) (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-801 (-1152)) (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-801 (-1152)) (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3495 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ (-801 (-1152))) NIL (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-801 (-1152))) NIL) (($ (-1152)) NIL) (($ (-1101 |#1| (-1152))) NIL) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-523 (-801 (-1152)))) NIL) (($ $ (-801 (-1152)) (-754)) NIL) (($ $ (-627 (-801 (-1152))) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#1| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-801 (-1152))) NIL) (($ $ (-627 (-801 (-1152)))) NIL) (($ $ (-801 (-1152)) (-754)) NIL) (($ $ (-627 (-801 (-1152))) (-627 (-754))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-799 |#1|) (-13 (-247 |#1| (-1152) (-801 (-1152)) (-523 (-801 (-1152)))) (-1017 (-1101 |#1| (-1152)))) (-1028)) (T -799)) +NIL +(-13 (-247 |#1| (-1152) (-801 (-1152)) (-523 (-801 (-1152)))) (-1017 (-1101 |#1| (-1152)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#2| (-357)))) (-3245 (($ $) NIL (|has| |#2| (-357)))) (-4058 (((-111) $) NIL (|has| |#2| (-357)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL (|has| |#2| (-357)))) (-2487 (((-412 $) $) NIL (|has| |#2| (-357)))) (-4224 (((-111) $ $) NIL (|has| |#2| (-357)))) (-3887 (($) NIL T CONST)) (-2813 (($ $ $) NIL (|has| |#2| (-357)))) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL (|has| |#2| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#2| (-357)))) (-1633 (((-111) $) NIL (|has| |#2| (-357)))) (-2624 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#2| (-357)))) (-1276 (($ (-627 $)) NIL (|has| |#2| (-357))) (($ $ $) NIL (|has| |#2| (-357)))) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 20 (|has| |#2| (-357)))) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#2| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#2| (-357))) (($ $ $) NIL (|has| |#2| (-357)))) (-1727 (((-412 $) $) NIL (|has| |#2| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#2| (-357)))) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#2| (-357)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#2| (-357)))) (-2718 (((-754) $) NIL (|has| |#2| (-357)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#2| (-357)))) (-2942 (($ $ (-754)) NIL) (($ $) 13)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-401 (-552))) NIL (|has| |#2| (-357))) (($ $) NIL (|has| |#2| (-357)))) (-3995 (((-754)) NIL)) (-3778 (((-111) $ $) NIL (|has| |#2| (-357)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-754)) NIL) (($ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) 15 (|has| |#2| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-754)) NIL) (($ $ (-900)) NIL) (($ $ (-552)) 18 (|has| |#2| (-357)))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-401 (-552)) $) NIL (|has| |#2| (-357))) (($ $ (-401 (-552))) NIL (|has| |#2| (-357))))) +(((-800 |#1| |#2| |#3|) (-13 (-110 $ $) (-228) (-10 -8 (IF (|has| |#2| (-357)) (-6 (-357)) |%noBranch|) (-15 -1477 ($ |#2|)) (-15 -1477 (|#2| $)))) (-1076) (-879 |#1|) |#1|) (T -800)) +((-1477 (*1 *1 *2) (-12 (-4 *3 (-1076)) (-14 *4 *3) (-5 *1 (-800 *3 *2 *4)) (-4 *2 (-879 *3)))) (-1477 (*1 *2 *1) (-12 (-4 *2 (-879 *3)) (-5 *1 (-800 *3 *2 *4)) (-4 *3 (-1076)) (-14 *4 *3)))) +(-13 (-110 $ $) (-228) (-10 -8 (IF (|has| |#2| (-357)) (-6 (-357)) |%noBranch|) (-15 -1477 ($ |#2|)) (-15 -1477 (|#2| $)))) +((-1465 (((-111) $ $) NIL)) (-2671 (((-754) $) NIL)) (-4344 ((|#1| $) 10)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-2641 (((-754) $) 11)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-4250 (($ |#1| (-754)) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2942 (($ $) NIL) (($ $ (-754)) NIL)) (-1477 (((-842) $) NIL) (($ |#1|) NIL)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL))) +(((-801 |#1|) (-260 |#1|) (-830)) (T -801)) +NIL +(-260 |#1|) +((-1465 (((-111) $ $) NIL)) (-1671 (((-627 |#1|) $) 29)) (-3307 (((-754) $) NIL)) (-3887 (($) NIL T CONST)) (-1899 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-3351 (($ $) 31)) (-2040 (((-3 $ "failed") $) NIL)) (-2930 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2624 (((-111) $) NIL)) (-2792 ((|#1| $ (-552)) NIL)) (-1389 (((-754) $ (-552)) NIL)) (-3627 (($ $) 36)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1543 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-3637 (((-111) $ $) 34)) (-3593 (((-754) $) 25)) (-1595 (((-1134) $) NIL)) (-2345 (($ $ $) NIL)) (-2093 (($ $ $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 ((|#1| $) 30)) (-2101 (((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-754)))) $) NIL)) (-2773 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-1477 (((-842) $) NIL) (($ |#1|) NIL)) (-1933 (($) 15 T CONST)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 35)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ |#1| (-754)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-802 |#1|) (-13 (-826) (-1017 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-754))) (-15 -3340 (|#1| $)) (-15 -3351 ($ $)) (-15 -3627 ($ $)) (-15 -3637 ((-111) $ $)) (-15 -2093 ($ $ $)) (-15 -2345 ($ $ $)) (-15 -1543 ((-3 $ "failed") $ $)) (-15 -1899 ((-3 $ "failed") $ $)) (-15 -1543 ((-3 $ "failed") $ |#1|)) (-15 -1899 ((-3 $ "failed") $ |#1|)) (-15 -2773 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2930 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3307 ((-754) $)) (-15 -1389 ((-754) $ (-552))) (-15 -2792 (|#1| $ (-552))) (-15 -2101 ((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-754)))) $)) (-15 -3593 ((-754) $)) (-15 -1671 ((-627 |#1|) $)))) (-830)) (T -802)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-754)) (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-3340 (*1 *2 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-3351 (*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-3627 (*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-3637 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-802 *3)) (-4 *3 (-830)))) (-2093 (*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-2345 (*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-1543 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-1899 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-1543 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-1899 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-2773 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-802 *3)) (|:| |rm| (-802 *3)))) (-5 *1 (-802 *3)) (-4 *3 (-830)))) (-2930 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-802 *3)) (|:| |mm| (-802 *3)) (|:| |rm| (-802 *3)))) (-5 *1 (-802 *3)) (-4 *3 (-830)))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-802 *3)) (-4 *3 (-830)))) (-1389 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-754)) (-5 *1 (-802 *4)) (-4 *4 (-830)))) (-2792 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-802 *2)) (-4 *2 (-830)))) (-2101 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 (-754))))) (-5 *1 (-802 *3)) (-4 *3 (-830)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-802 *3)) (-4 *3 (-830)))) (-1671 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-802 *3)) (-4 *3 (-830))))) +(-13 (-826) (-1017 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-754))) (-15 -3340 (|#1| $)) (-15 -3351 ($ $)) (-15 -3627 ($ $)) (-15 -3637 ((-111) $ $)) (-15 -2093 ($ $ $)) (-15 -2345 ($ $ $)) (-15 -1543 ((-3 $ "failed") $ $)) (-15 -1899 ((-3 $ "failed") $ $)) (-15 -1543 ((-3 $ "failed") $ |#1|)) (-15 -1899 ((-3 $ "failed") $ |#1|)) (-15 -2773 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2930 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3307 ((-754) $)) (-15 -1389 ((-754) $ (-552))) (-15 -2792 (|#1| $ (-552))) (-15 -2101 ((-627 (-2 (|:| |gen| |#1|) (|:| -3154 (-754)))) $)) (-15 -3593 ((-754) $)) (-15 -1671 ((-627 |#1|) $)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-2422 (((-552) $) 51)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2983 (((-111) $) 49)) (-2624 (((-111) $) 30)) (-1508 (((-111) $) 50)) (-1816 (($ $ $) 48)) (-4093 (($ $ $) 47)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2761 (((-3 $ "failed") $ $) 40)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-3329 (($ $) 52)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2351 (((-111) $ $) 45)) (-2329 (((-111) $ $) 44)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 46)) (-2316 (((-111) $ $) 43)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-803) (-137)) (T -803)) +NIL +(-13 (-544) (-828)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-284) . T) ((-544) . T) ((-630 $) . T) ((-700 $) . T) ((-709) . T) ((-774) . T) ((-775) . T) ((-777) . T) ((-778) . T) ((-828) . T) ((-830) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-3003 (($ (-1096)) 7)) (-1955 (((-111) $ (-1134) (-1096)) 15)) (-1732 (((-805) $) 12)) (-3259 (((-805) $) 11)) (-2439 (((-1240) $) 9)) (-3408 (((-111) $ (-1096)) 16))) +(((-804) (-10 -8 (-15 -3003 ($ (-1096))) (-15 -2439 ((-1240) $)) (-15 -3259 ((-805) $)) (-15 -1732 ((-805) $)) (-15 -1955 ((-111) $ (-1134) (-1096))) (-15 -3408 ((-111) $ (-1096))))) (T -804)) +((-3408 (*1 *2 *1 *3) (-12 (-5 *3 (-1096)) (-5 *2 (-111)) (-5 *1 (-804)))) (-1955 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1134)) (-5 *4 (-1096)) (-5 *2 (-111)) (-5 *1 (-804)))) (-1732 (*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-804)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-804)))) (-2439 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-804)))) (-3003 (*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-804))))) +(-10 -8 (-15 -3003 ($ (-1096))) (-15 -2439 ((-1240) $)) (-15 -3259 ((-805) $)) (-15 -1732 ((-805) $)) (-15 -1955 ((-111) $ (-1134) (-1096))) (-15 -3408 ((-111) $ (-1096)))) +((-3753 (((-1240) $ (-806)) 12)) (-3387 (((-1240) $ (-1152)) 32)) (-1506 (((-1240) $ (-1134) (-1134)) 34)) (-1837 (((-1240) $ (-1134)) 33)) (-3665 (((-1240) $) 19)) (-4051 (((-1240) $ (-552)) 28)) (-2576 (((-1240) $ (-220)) 30)) (-1636 (((-1240) $) 18)) (-4312 (((-1240) $) 26)) (-2010 (((-1240) $) 25)) (-3980 (((-1240) $) 23)) (-2377 (((-1240) $) 24)) (-1273 (((-1240) $) 22)) (-2850 (((-1240) $) 21)) (-3264 (((-1240) $) 20)) (-2056 (((-1240) $) 16)) (-3687 (((-1240) $) 17)) (-3500 (((-1240) $) 15)) (-3824 (((-1240) $) 14)) (-4197 (((-1240) $) 13)) (-2497 (($ (-1134) (-806)) 9)) (-2976 (($ (-1134) (-1134) (-806)) 8)) (-1429 (((-1152) $) 51)) (-4180 (((-1152) $) 55)) (-2573 (((-2 (|:| |cd| (-1134)) (|:| -3112 (-1134))) $) 54)) (-2988 (((-1134) $) 52)) (-1392 (((-1240) $) 41)) (-4145 (((-552) $) 49)) (-2722 (((-220) $) 50)) (-2630 (((-1240) $) 40)) (-2450 (((-1240) $) 48)) (-3950 (((-1240) $) 47)) (-3878 (((-1240) $) 45)) (-2343 (((-1240) $) 46)) (-4201 (((-1240) $) 44)) (-2679 (((-1240) $) 43)) (-3041 (((-1240) $) 42)) (-4100 (((-1240) $) 38)) (-3962 (((-1240) $) 39)) (-2393 (((-1240) $) 37)) (-3741 (((-1240) $) 36)) (-2090 (((-1240) $) 35)) (-4042 (((-1240) $) 11))) +(((-805) (-10 -8 (-15 -2976 ($ (-1134) (-1134) (-806))) (-15 -2497 ($ (-1134) (-806))) (-15 -4042 ((-1240) $)) (-15 -3753 ((-1240) $ (-806))) (-15 -4197 ((-1240) $)) (-15 -3824 ((-1240) $)) (-15 -3500 ((-1240) $)) (-15 -2056 ((-1240) $)) (-15 -3687 ((-1240) $)) (-15 -1636 ((-1240) $)) (-15 -3665 ((-1240) $)) (-15 -3264 ((-1240) $)) (-15 -2850 ((-1240) $)) (-15 -1273 ((-1240) $)) (-15 -3980 ((-1240) $)) (-15 -2377 ((-1240) $)) (-15 -2010 ((-1240) $)) (-15 -4312 ((-1240) $)) (-15 -4051 ((-1240) $ (-552))) (-15 -2576 ((-1240) $ (-220))) (-15 -3387 ((-1240) $ (-1152))) (-15 -1837 ((-1240) $ (-1134))) (-15 -1506 ((-1240) $ (-1134) (-1134))) (-15 -2090 ((-1240) $)) (-15 -3741 ((-1240) $)) (-15 -2393 ((-1240) $)) (-15 -4100 ((-1240) $)) (-15 -3962 ((-1240) $)) (-15 -2630 ((-1240) $)) (-15 -1392 ((-1240) $)) (-15 -3041 ((-1240) $)) (-15 -2679 ((-1240) $)) (-15 -4201 ((-1240) $)) (-15 -3878 ((-1240) $)) (-15 -2343 ((-1240) $)) (-15 -3950 ((-1240) $)) (-15 -2450 ((-1240) $)) (-15 -4145 ((-552) $)) (-15 -2722 ((-220) $)) (-15 -1429 ((-1152) $)) (-15 -2988 ((-1134) $)) (-15 -2573 ((-2 (|:| |cd| (-1134)) (|:| -3112 (-1134))) $)) (-15 -4180 ((-1152) $)))) (T -805)) +((-4180 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-805)))) (-2573 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1134)) (|:| -3112 (-1134)))) (-5 *1 (-805)))) (-2988 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-805)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-805)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-805)))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-805)))) (-2450 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-2343 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3878 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3041 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-1392 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-2630 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-4100 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-2393 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3741 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-2090 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-1506 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-805)))) (-1837 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-805)))) (-3387 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-805)))) (-2576 (*1 *2 *1 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1240)) (-5 *1 (-805)))) (-4051 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-805)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-2010 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-2377 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3980 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-1273 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-2850 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3264 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3665 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-1636 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3687 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-2056 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3500 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3824 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-4197 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-3753 (*1 *2 *1 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1240)) (-5 *1 (-805)))) (-4042 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805)))) (-2497 (*1 *1 *2 *3) (-12 (-5 *2 (-1134)) (-5 *3 (-806)) (-5 *1 (-805)))) (-2976 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1134)) (-5 *3 (-806)) (-5 *1 (-805))))) +(-10 -8 (-15 -2976 ($ (-1134) (-1134) (-806))) (-15 -2497 ($ (-1134) (-806))) (-15 -4042 ((-1240) $)) (-15 -3753 ((-1240) $ (-806))) (-15 -4197 ((-1240) $)) (-15 -3824 ((-1240) $)) (-15 -3500 ((-1240) $)) (-15 -2056 ((-1240) $)) (-15 -3687 ((-1240) $)) (-15 -1636 ((-1240) $)) (-15 -3665 ((-1240) $)) (-15 -3264 ((-1240) $)) (-15 -2850 ((-1240) $)) (-15 -1273 ((-1240) $)) (-15 -3980 ((-1240) $)) (-15 -2377 ((-1240) $)) (-15 -2010 ((-1240) $)) (-15 -4312 ((-1240) $)) (-15 -4051 ((-1240) $ (-552))) (-15 -2576 ((-1240) $ (-220))) (-15 -3387 ((-1240) $ (-1152))) (-15 -1837 ((-1240) $ (-1134))) (-15 -1506 ((-1240) $ (-1134) (-1134))) (-15 -2090 ((-1240) $)) (-15 -3741 ((-1240) $)) (-15 -2393 ((-1240) $)) (-15 -4100 ((-1240) $)) (-15 -3962 ((-1240) $)) (-15 -2630 ((-1240) $)) (-15 -1392 ((-1240) $)) (-15 -3041 ((-1240) $)) (-15 -2679 ((-1240) $)) (-15 -4201 ((-1240) $)) (-15 -3878 ((-1240) $)) (-15 -2343 ((-1240) $)) (-15 -3950 ((-1240) $)) (-15 -2450 ((-1240) $)) (-15 -4145 ((-552) $)) (-15 -2722 ((-220) $)) (-15 -1429 ((-1152) $)) (-15 -2988 ((-1134) $)) (-15 -2573 ((-2 (|:| |cd| (-1134)) (|:| -3112 (-1134))) $)) (-15 -4180 ((-1152) $))) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 12)) (-1979 (($) 15)) (-4277 (($) 13)) (-3486 (($) 16)) (-3879 (($) 14)) (-2292 (((-111) $ $) 8))) +(((-806) (-13 (-1076) (-10 -8 (-15 -4277 ($)) (-15 -1979 ($)) (-15 -3486 ($)) (-15 -3879 ($))))) (T -806)) +((-4277 (*1 *1) (-5 *1 (-806))) (-1979 (*1 *1) (-5 *1 (-806))) (-3486 (*1 *1) (-5 *1 (-806))) (-3879 (*1 *1) (-5 *1 (-806)))) +(-13 (-1076) (-10 -8 (-15 -4277 ($)) (-15 -1979 ($)) (-15 -3486 ($)) (-15 -3879 ($)))) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 21) (($ (-1152)) 17)) (-4125 (((-111) $) 10)) (-1679 (((-111) $) 9)) (-1600 (((-111) $) 11)) (-1485 (((-111) $) 8)) (-2292 (((-111) $ $) 19))) +(((-807) (-13 (-1076) (-10 -8 (-15 -1477 ($ (-1152))) (-15 -1485 ((-111) $)) (-15 -1679 ((-111) $)) (-15 -4125 ((-111) $)) (-15 -1600 ((-111) $))))) (T -807)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-807)))) (-1485 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-807)))) (-1679 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-807)))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-807)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-807))))) +(-13 (-1076) (-10 -8 (-15 -1477 ($ (-1152))) (-15 -1485 ((-111) $)) (-15 -1679 ((-111) $)) (-15 -4125 ((-111) $)) (-15 -1600 ((-111) $)))) +((-1465 (((-111) $ $) NIL)) (-3825 (($ (-807) (-627 (-1152))) 24)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3142 (((-807) $) 25)) (-2326 (((-627 (-1152)) $) 26)) (-1477 (((-842) $) 23)) (-2292 (((-111) $ $) NIL))) +(((-808) (-13 (-1076) (-10 -8 (-15 -3142 ((-807) $)) (-15 -2326 ((-627 (-1152)) $)) (-15 -3825 ($ (-807) (-627 (-1152))))))) (T -808)) +((-3142 (*1 *2 *1) (-12 (-5 *2 (-807)) (-5 *1 (-808)))) (-2326 (*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-808)))) (-3825 (*1 *1 *2 *3) (-12 (-5 *2 (-807)) (-5 *3 (-627 (-1152))) (-5 *1 (-808))))) +(-13 (-1076) (-10 -8 (-15 -3142 ((-807) $)) (-15 -2326 ((-627 (-1152)) $)) (-15 -3825 ($ (-807) (-627 (-1152)))))) +((-4157 (((-1240) (-805) (-310 |#1|) (-111)) 23) (((-1240) (-805) (-310 |#1|)) 79) (((-1134) (-310 |#1|) (-111)) 78) (((-1134) (-310 |#1|)) 77))) +(((-809 |#1|) (-10 -7 (-15 -4157 ((-1134) (-310 |#1|))) (-15 -4157 ((-1134) (-310 |#1|) (-111))) (-15 -4157 ((-1240) (-805) (-310 |#1|))) (-15 -4157 ((-1240) (-805) (-310 |#1|) (-111)))) (-13 (-811) (-830) (-1028))) (T -809)) +((-4157 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-805)) (-5 *4 (-310 *6)) (-5 *5 (-111)) (-4 *6 (-13 (-811) (-830) (-1028))) (-5 *2 (-1240)) (-5 *1 (-809 *6)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-805)) (-5 *4 (-310 *5)) (-4 *5 (-13 (-811) (-830) (-1028))) (-5 *2 (-1240)) (-5 *1 (-809 *5)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-310 *5)) (-5 *4 (-111)) (-4 *5 (-13 (-811) (-830) (-1028))) (-5 *2 (-1134)) (-5 *1 (-809 *5)))) (-4157 (*1 *2 *3) (-12 (-5 *3 (-310 *4)) (-4 *4 (-13 (-811) (-830) (-1028))) (-5 *2 (-1134)) (-5 *1 (-809 *4))))) +(-10 -7 (-15 -4157 ((-1134) (-310 |#1|))) (-15 -4157 ((-1134) (-310 |#1|) (-111))) (-15 -4157 ((-1240) (-805) (-310 |#1|))) (-15 -4157 ((-1240) (-805) (-310 |#1|) (-111)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-3863 ((|#1| $) 10)) (-3354 (($ |#1|) 9)) (-2624 (((-111) $) NIL)) (-1832 (($ |#2| (-754)) NIL)) (-3465 (((-754) $) NIL)) (-1993 ((|#2| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2942 (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $) NIL (|has| |#1| (-228)))) (-3567 (((-754) $) NIL)) (-1477 (((-842) $) 17) (($ (-552)) NIL) (($ |#2|) NIL (|has| |#2| (-169)))) (-1889 ((|#2| $ (-754)) NIL)) (-3995 (((-754)) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $) NIL (|has| |#1| (-228)))) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-810 |#1| |#2|) (-13 (-691 |#2|) (-10 -8 (IF (|has| |#1| (-228)) (-6 (-228)) |%noBranch|) (-15 -3354 ($ |#1|)) (-15 -3863 (|#1| $)))) (-691 |#2|) (-1028)) (T -810)) +((-3354 (*1 *1 *2) (-12 (-4 *3 (-1028)) (-5 *1 (-810 *2 *3)) (-4 *2 (-691 *3)))) (-3863 (*1 *2 *1) (-12 (-4 *2 (-691 *3)) (-5 *1 (-810 *2 *3)) (-4 *3 (-1028))))) +(-13 (-691 |#2|) (-10 -8 (IF (|has| |#1| (-228)) (-6 (-228)) |%noBranch|) (-15 -3354 ($ |#1|)) (-15 -3863 (|#1| $)))) +((-4157 (((-1240) (-805) $ (-111)) 9) (((-1240) (-805) $) 8) (((-1134) $ (-111)) 7) (((-1134) $) 6))) +(((-811) (-137)) (T -811)) +((-4157 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-811)) (-5 *3 (-805)) (-5 *4 (-111)) (-5 *2 (-1240)))) (-4157 (*1 *2 *3 *1) (-12 (-4 *1 (-811)) (-5 *3 (-805)) (-5 *2 (-1240)))) (-4157 (*1 *2 *1 *3) (-12 (-4 *1 (-811)) (-5 *3 (-111)) (-5 *2 (-1134)))) (-4157 (*1 *2 *1) (-12 (-4 *1 (-811)) (-5 *2 (-1134))))) +(-13 (-10 -8 (-15 -4157 ((-1134) $)) (-15 -4157 ((-1134) $ (-111))) (-15 -4157 ((-1240) (-805) $)) (-15 -4157 ((-1240) (-805) $ (-111))))) +((-1338 (((-306) (-1134) (-1134)) 12)) (-1689 (((-111) (-1134) (-1134)) 34)) (-3212 (((-111) (-1134)) 33)) (-1634 (((-52) (-1134)) 25)) (-1947 (((-52) (-1134)) 23)) (-2321 (((-52) (-805)) 17)) (-2383 (((-627 (-1134)) (-1134)) 28)) (-3895 (((-627 (-1134))) 27))) +(((-812) (-10 -7 (-15 -2321 ((-52) (-805))) (-15 -1947 ((-52) (-1134))) (-15 -1634 ((-52) (-1134))) (-15 -3895 ((-627 (-1134)))) (-15 -2383 ((-627 (-1134)) (-1134))) (-15 -3212 ((-111) (-1134))) (-15 -1689 ((-111) (-1134) (-1134))) (-15 -1338 ((-306) (-1134) (-1134))))) (T -812)) +((-1338 (*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-306)) (-5 *1 (-812)))) (-1689 (*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-111)) (-5 *1 (-812)))) (-3212 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-111)) (-5 *1 (-812)))) (-2383 (*1 *2 *3) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-812)) (-5 *3 (-1134)))) (-3895 (*1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-812)))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-52)) (-5 *1 (-812)))) (-1947 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-52)) (-5 *1 (-812)))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-52)) (-5 *1 (-812))))) +(-10 -7 (-15 -2321 ((-52) (-805))) (-15 -1947 ((-52) (-1134))) (-15 -1634 ((-52) (-1134))) (-15 -3895 ((-627 (-1134)))) (-15 -2383 ((-627 (-1134)) (-1134))) (-15 -3212 ((-111) (-1134))) (-15 -1689 ((-111) (-1134) (-1134))) (-15 -1338 ((-306) (-1134) (-1134)))) +((-1465 (((-111) $ $) 19)) (-3416 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3694 (($ $ $) 72)) (-3632 (((-111) $ $) 73)) (-4031 (((-111) $ (-754)) 8)) (-1342 (($ (-627 |#1|)) 68) (($) 67)) (-4289 (($ (-1 (-111) |#1|) $) 45 (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-2820 (($ $) 62)) (-3370 (($ $) 58 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2265 (($ |#1| $) 47 (|has| $ (-6 -4366))) (($ (-1 (-111) |#1|) $) 46 (|has| $ (-6 -4366)))) (-4342 (($ |#1| $) 57 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 54 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4366)))) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1854 (((-111) $ $) 64)) (-1602 (((-111) $ (-754)) 9)) (-1816 ((|#1| $) 78)) (-1438 (($ $ $) 81)) (-3759 (($ $ $) 80)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4093 ((|#1| $) 79)) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22)) (-3383 (($ $ $) 69)) (-4165 ((|#1| $) 39)) (-3954 (($ |#1| $) 40) (($ |#1| $ (-754)) 63)) (-1498 (((-1096) $) 21)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 51)) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-3131 (((-627 (-2 (|:| -2162 |#1|) (|:| -1509 (-754)))) $) 61)) (-2613 (($ $ |#1|) 71) (($ $ $) 70)) (-3028 (($) 49) (($ (-627 |#1|)) 48)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 59 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 50)) (-1477 (((-842) $) 18)) (-4243 (($ (-627 |#1|)) 66) (($) 65)) (-2577 (($ (-627 |#1|)) 42)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20)) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-813 |#1|) (-137) (-830)) (T -813)) +((-1816 (*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-830))))) +(-13 (-719 |t#1|) (-947 |t#1|) (-10 -8 (-15 -1816 (|t#1| $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-599 (-842)) . T) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-230 |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-677 |#1|) . T) ((-719 |#1|) . T) ((-947 |#1|) . T) ((-1074 |#1|) . T) ((-1076) . T) ((-1189) . T)) +((-3236 (((-1240) (-1096) (-1096)) 47)) (-1460 (((-1240) (-804) (-52)) 44)) (-3992 (((-52) (-804)) 16))) +(((-814) (-10 -7 (-15 -3992 ((-52) (-804))) (-15 -1460 ((-1240) (-804) (-52))) (-15 -3236 ((-1240) (-1096) (-1096))))) (T -814)) +((-3236 (*1 *2 *3 *3) (-12 (-5 *3 (-1096)) (-5 *2 (-1240)) (-5 *1 (-814)))) (-1460 (*1 *2 *3 *4) (-12 (-5 *3 (-804)) (-5 *4 (-52)) (-5 *2 (-1240)) (-5 *1 (-814)))) (-3992 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-52)) (-5 *1 (-814))))) +(-10 -7 (-15 -3992 ((-52) (-804))) (-15 -1460 ((-1240) (-804) (-52))) (-15 -3236 ((-1240) (-1096) (-1096)))) +((-3516 (((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|) (-816 |#2|)) 12) (((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|)) 13))) +(((-815 |#1| |#2|) (-10 -7 (-15 -3516 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|))) (-15 -3516 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|) (-816 |#2|)))) (-1076) (-1076)) (T -815)) +((-3516 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-816 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-5 *1 (-815 *5 *6)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-5 *2 (-816 *6)) (-5 *1 (-815 *5 *6))))) +(-10 -7 (-15 -3516 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|))) (-15 -3516 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|) (-816 |#2|)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL (|has| |#1| (-21)))) (-4136 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2422 (((-552) $) NIL (|has| |#1| (-828)))) (-3887 (($) NIL (|has| |#1| (-21)) CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 15)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) 9)) (-2040 (((-3 $ "failed") $) 40 (|has| |#1| (-828)))) (-2859 (((-3 (-401 (-552)) "failed") $) 49 (|has| |#1| (-537)))) (-4229 (((-111) $) 43 (|has| |#1| (-537)))) (-2411 (((-401 (-552)) $) 46 (|has| |#1| (-537)))) (-2983 (((-111) $) NIL (|has| |#1| (-828)))) (-2624 (((-111) $) NIL (|has| |#1| (-828)))) (-1508 (((-111) $) NIL (|has| |#1| (-828)))) (-1816 (($ $ $) NIL (|has| |#1| (-828)))) (-4093 (($ $ $) NIL (|has| |#1| (-828)))) (-1595 (((-1134) $) NIL)) (-2962 (($) 13)) (-3493 (((-111) $) 12)) (-1498 (((-1096) $) NIL)) (-1932 (((-111) $) 11)) (-1477 (((-842) $) 18) (($ (-401 (-552))) NIL (|has| |#1| (-1017 (-401 (-552))))) (($ |#1|) 8) (($ (-552)) NIL (-1559 (|has| |#1| (-828)) (|has| |#1| (-1017 (-552)))))) (-3995 (((-754)) 34 (|has| |#1| (-828)))) (-3329 (($ $) NIL (|has| |#1| (-828)))) (-1922 (($) 22 (|has| |#1| (-21)) CONST)) (-1933 (($) 31 (|has| |#1| (-828)) CONST)) (-2351 (((-111) $ $) NIL (|has| |#1| (-828)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-828)))) (-2292 (((-111) $ $) 20)) (-2340 (((-111) $ $) NIL (|has| |#1| (-828)))) (-2316 (((-111) $ $) 42 (|has| |#1| (-828)))) (-2396 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-2384 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-900)) NIL (|has| |#1| (-828))) (($ $ (-754)) NIL (|has| |#1| (-828)))) (* (($ $ $) 37 (|has| |#1| (-828))) (($ (-552) $) 25 (|has| |#1| (-21))) (($ (-754) $) NIL (|has| |#1| (-21))) (($ (-900) $) NIL (|has| |#1| (-21))))) +(((-816 |#1|) (-13 (-1076) (-405 |#1|) (-10 -8 (-15 -2962 ($)) (-15 -1932 ((-111) $)) (-15 -3493 ((-111) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -4229 ((-111) $)) (-15 -2411 ((-401 (-552)) $)) (-15 -2859 ((-3 (-401 (-552)) "failed") $))) |%noBranch|))) (-1076)) (T -816)) +((-2962 (*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1076)))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-816 *3)) (-4 *3 (-1076)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-816 *3)) (-4 *3 (-1076)))) (-4229 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-816 *3)) (-4 *3 (-537)) (-4 *3 (-1076)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-816 *3)) (-4 *3 (-537)) (-4 *3 (-1076)))) (-2859 (*1 *2 *1) (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-816 *3)) (-4 *3 (-537)) (-4 *3 (-1076))))) +(-13 (-1076) (-405 |#1|) (-10 -8 (-15 -2962 ($)) (-15 -1932 ((-111) $)) (-15 -3493 ((-111) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -4229 ((-111) $)) (-15 -2411 ((-401 (-552)) $)) (-15 -2859 ((-3 (-401 (-552)) "failed") $))) |%noBranch|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL) (((-3 (-113) "failed") $) NIL)) (-1703 ((|#1| $) NIL) (((-113) $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-3684 ((|#1| (-113) |#1|) NIL)) (-2624 (((-111) $) NIL)) (-1962 (($ |#1| (-355 (-113))) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2322 (($ $ (-1 |#1| |#1|)) NIL)) (-2201 (($ $ (-1 |#1| |#1|)) NIL)) (-1985 ((|#1| $ |#1|) NIL)) (-3830 ((|#1| |#1|) NIL (|has| |#1| (-169)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-113)) NIL)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-2279 (($ $) NIL (|has| |#1| (-169))) (($ $ $) NIL (|has| |#1| (-169)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ (-113) (-552)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) +(((-817 |#1|) (-13 (-1028) (-1017 |#1|) (-1017 (-113)) (-280 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -2279 ($ $)) (-15 -2279 ($ $ $)) (-15 -3830 (|#1| |#1|))) |%noBranch|) (-15 -2201 ($ $ (-1 |#1| |#1|))) (-15 -2322 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-552))) (-15 ** ($ $ (-552))) (-15 -3684 (|#1| (-113) |#1|)) (-15 -1962 ($ |#1| (-355 (-113)))))) (-1028)) (T -817)) +((-2279 (*1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-169)) (-4 *2 (-1028)))) (-2279 (*1 *1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-169)) (-4 *2 (-1028)))) (-3830 (*1 *2 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-169)) (-4 *2 (-1028)))) (-2201 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-817 *3)))) (-2322 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-817 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-552)) (-5 *1 (-817 *4)) (-4 *4 (-1028)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-817 *3)) (-4 *3 (-1028)))) (-3684 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-817 *2)) (-4 *2 (-1028)))) (-1962 (*1 *1 *2 *3) (-12 (-5 *3 (-355 (-113))) (-5 *1 (-817 *2)) (-4 *2 (-1028))))) +(-13 (-1028) (-1017 |#1|) (-1017 (-113)) (-280 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |#1| (-169)) (PROGN (-6 (-38 |#1|)) (-15 -2279 ($ $)) (-15 -2279 ($ $ $)) (-15 -3830 (|#1| |#1|))) |%noBranch|) (-15 -2201 ($ $ (-1 |#1| |#1|))) (-15 -2322 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-552))) (-15 ** ($ $ (-552))) (-15 -3684 (|#1| (-113) |#1|)) (-15 -1962 ($ |#1| (-355 (-113)))))) +((-1918 (((-209 (-494)) (-1134)) 9))) +(((-818) (-10 -7 (-15 -1918 ((-209 (-494)) (-1134))))) (T -818)) +((-1918 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-209 (-494))) (-5 *1 (-818))))) +(-10 -7 (-15 -1918 ((-209 (-494)) (-1134)))) +((-1465 (((-111) $ $) 7)) (-3466 (((-1014) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) 14) (((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 13)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 16) (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) 15)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 6))) +(((-819) (-137)) (T -819)) +((-1841 (*1 *2 *3 *4) (-12 (-4 *1 (-819)) (-5 *3 (-1040)) (-5 *4 (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (-5 *2 (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)))))) (-1841 (*1 *2 *3 *4) (-12 (-4 *1 (-819)) (-5 *3 (-1040)) (-5 *4 (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) (-5 *2 (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)))))) (-3466 (*1 *2 *3) (-12 (-4 *1 (-819)) (-5 *3 (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) (-5 *2 (-1014)))) (-3466 (*1 *2 *3) (-12 (-4 *1 (-819)) (-5 *3 (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (-5 *2 (-1014))))) +(-13 (-1076) (-10 -7 (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220))))))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) (-15 -3466 ((-1014) (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) (-15 -3466 ((-1014) (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220))))))))) +(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-1834 (((-1014) (-627 (-310 (-373))) (-627 (-373))) 147) (((-1014) (-310 (-373)) (-627 (-373))) 145) (((-1014) (-310 (-373)) (-627 (-373)) (-627 (-823 (-373))) (-627 (-823 (-373)))) 144) (((-1014) (-310 (-373)) (-627 (-373)) (-627 (-823 (-373))) (-627 (-310 (-373))) (-627 (-823 (-373)))) 143) (((-1014) (-821)) 117) (((-1014) (-821) (-1040)) 116)) (-1841 (((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-821) (-1040)) 82) (((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-821)) 84)) (-3248 (((-1014) (-627 (-310 (-373))) (-627 (-373))) 148) (((-1014) (-821)) 133))) +(((-820) (-10 -7 (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-821))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-821) (-1040))) (-15 -1834 ((-1014) (-821) (-1040))) (-15 -1834 ((-1014) (-821))) (-15 -3248 ((-1014) (-821))) (-15 -1834 ((-1014) (-310 (-373)) (-627 (-373)) (-627 (-823 (-373))) (-627 (-310 (-373))) (-627 (-823 (-373))))) (-15 -1834 ((-1014) (-310 (-373)) (-627 (-373)) (-627 (-823 (-373))) (-627 (-823 (-373))))) (-15 -1834 ((-1014) (-310 (-373)) (-627 (-373)))) (-15 -1834 ((-1014) (-627 (-310 (-373))) (-627 (-373)))) (-15 -3248 ((-1014) (-627 (-310 (-373))) (-627 (-373)))))) (T -820)) +((-3248 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-310 (-373)))) (-5 *4 (-627 (-373))) (-5 *2 (-1014)) (-5 *1 (-820)))) (-1834 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-310 (-373)))) (-5 *4 (-627 (-373))) (-5 *2 (-1014)) (-5 *1 (-820)))) (-1834 (*1 *2 *3 *4) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-373))) (-5 *2 (-1014)) (-5 *1 (-820)))) (-1834 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-373))) (-5 *5 (-627 (-823 (-373)))) (-5 *2 (-1014)) (-5 *1 (-820)))) (-1834 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-627 (-373))) (-5 *5 (-627 (-823 (-373)))) (-5 *6 (-627 (-310 (-373)))) (-5 *3 (-310 (-373))) (-5 *2 (-1014)) (-5 *1 (-820)))) (-3248 (*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-1014)) (-5 *1 (-820)))) (-1834 (*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-1014)) (-5 *1 (-820)))) (-1834 (*1 *2 *3 *4) (-12 (-5 *3 (-821)) (-5 *4 (-1040)) (-5 *2 (-1014)) (-5 *1 (-820)))) (-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-821)) (-5 *4 (-1040)) (-5 *2 (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))))) (-5 *1 (-820)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))))) (-5 *1 (-820))))) +(-10 -7 (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-821))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-821) (-1040))) (-15 -1834 ((-1014) (-821) (-1040))) (-15 -1834 ((-1014) (-821))) (-15 -3248 ((-1014) (-821))) (-15 -1834 ((-1014) (-310 (-373)) (-627 (-373)) (-627 (-823 (-373))) (-627 (-310 (-373))) (-627 (-823 (-373))))) (-15 -1834 ((-1014) (-310 (-373)) (-627 (-373)) (-627 (-823 (-373))) (-627 (-823 (-373))))) (-15 -1834 ((-1014) (-310 (-373)) (-627 (-373)))) (-15 -1834 ((-1014) (-627 (-310 (-373))) (-627 (-373)))) (-15 -3248 ((-1014) (-627 (-310 (-373))) (-627 (-373))))) +((-1465 (((-111) $ $) NIL)) (-1703 (((-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) $) 21)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 20) (($ (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) 14) (($ (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))))) 18)) (-2292 (((-111) $ $) NIL))) +(((-821) (-13 (-1076) (-10 -8 (-15 -1477 ($ (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220))))))) (-15 -1477 ($ (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) (-15 -1477 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))))) (-15 -1477 ((-842) $)) (-15 -1703 ((-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) $))))) (T -821)) +((-1477 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-821)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (-5 *1 (-821)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) (-5 *1 (-821)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))))) (-5 *1 (-821)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))))) (-5 *1 (-821))))) +(-13 (-1076) (-10 -8 (-15 -1477 ($ (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220))))))) (-15 -1477 ($ (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) (-15 -1477 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))))) (-15 -1477 ((-842) $)) (-15 -1703 ((-3 (|:| |noa| (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220)))))) $)))) +((-3516 (((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|) (-823 |#2|) (-823 |#2|)) 13) (((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|)) 14))) +(((-822 |#1| |#2|) (-10 -7 (-15 -3516 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|))) (-15 -3516 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|) (-823 |#2|) (-823 |#2|)))) (-1076) (-1076)) (T -822)) +((-3516 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-823 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-823 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-5 *1 (-822 *5 *6)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-823 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-5 *2 (-823 *6)) (-5 *1 (-822 *5 *6))))) +(-10 -7 (-15 -3516 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|))) (-15 -3516 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|) (-823 |#2|) (-823 |#2|)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL (|has| |#1| (-21)))) (-1753 (((-1096) $) 24)) (-4136 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2422 (((-552) $) NIL (|has| |#1| (-828)))) (-3887 (($) NIL (|has| |#1| (-21)) CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 16)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) 9)) (-2040 (((-3 $ "failed") $) 47 (|has| |#1| (-828)))) (-2859 (((-3 (-401 (-552)) "failed") $) 54 (|has| |#1| (-537)))) (-4229 (((-111) $) 49 (|has| |#1| (-537)))) (-2411 (((-401 (-552)) $) 52 (|has| |#1| (-537)))) (-2983 (((-111) $) NIL (|has| |#1| (-828)))) (-3596 (($) 13)) (-2624 (((-111) $) NIL (|has| |#1| (-828)))) (-1508 (((-111) $) NIL (|has| |#1| (-828)))) (-3610 (($) 14)) (-1816 (($ $ $) NIL (|has| |#1| (-828)))) (-4093 (($ $ $) NIL (|has| |#1| (-828)))) (-1595 (((-1134) $) NIL)) (-3493 (((-111) $) 12)) (-1498 (((-1096) $) NIL)) (-1932 (((-111) $) 11)) (-1477 (((-842) $) 22) (($ (-401 (-552))) NIL (|has| |#1| (-1017 (-401 (-552))))) (($ |#1|) 8) (($ (-552)) NIL (-1559 (|has| |#1| (-828)) (|has| |#1| (-1017 (-552)))))) (-3995 (((-754)) 41 (|has| |#1| (-828)))) (-3329 (($ $) NIL (|has| |#1| (-828)))) (-1922 (($) 29 (|has| |#1| (-21)) CONST)) (-1933 (($) 38 (|has| |#1| (-828)) CONST)) (-2351 (((-111) $ $) NIL (|has| |#1| (-828)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-828)))) (-2292 (((-111) $ $) 27)) (-2340 (((-111) $ $) NIL (|has| |#1| (-828)))) (-2316 (((-111) $ $) 48 (|has| |#1| (-828)))) (-2396 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-2384 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-900)) NIL (|has| |#1| (-828))) (($ $ (-754)) NIL (|has| |#1| (-828)))) (* (($ $ $) 44 (|has| |#1| (-828))) (($ (-552) $) 32 (|has| |#1| (-21))) (($ (-754) $) NIL (|has| |#1| (-21))) (($ (-900) $) NIL (|has| |#1| (-21))))) +(((-823 |#1|) (-13 (-1076) (-405 |#1|) (-10 -8 (-15 -3596 ($)) (-15 -3610 ($)) (-15 -1932 ((-111) $)) (-15 -3493 ((-111) $)) (-15 -1753 ((-1096) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -4229 ((-111) $)) (-15 -2411 ((-401 (-552)) $)) (-15 -2859 ((-3 (-401 (-552)) "failed") $))) |%noBranch|))) (-1076)) (T -823)) +((-3596 (*1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1076)))) (-3610 (*1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1076)))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-823 *3)) (-4 *3 (-1076)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-823 *3)) (-4 *3 (-1076)))) (-1753 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-823 *3)) (-4 *3 (-1076)))) (-4229 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-823 *3)) (-4 *3 (-537)) (-4 *3 (-1076)))) (-2411 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-823 *3)) (-4 *3 (-537)) (-4 *3 (-1076)))) (-2859 (*1 *2 *1) (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-823 *3)) (-4 *3 (-537)) (-4 *3 (-1076))))) +(-13 (-1076) (-405 |#1|) (-10 -8 (-15 -3596 ($)) (-15 -3610 ($)) (-15 -1932 ((-111) $)) (-15 -3493 ((-111) $)) (-15 -1753 ((-1096) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -4229 ((-111) $)) (-15 -2411 ((-401 (-552)) $)) (-15 -2859 ((-3 (-401 (-552)) "failed") $))) |%noBranch|))) +((-1465 (((-111) $ $) 7)) (-3307 (((-754)) 20)) (-1279 (($) 23)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-2886 (((-900) $) 22)) (-1595 (((-1134) $) 9)) (-4153 (($ (-900)) 21)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18))) +(((-824) (-137)) (T -824)) +NIL +(-13 (-830) (-362)) +(((-101) . T) ((-599 (-842)) . T) ((-362) . T) ((-830) . T) ((-1076) . T)) +((-3953 (((-111) (-1235 |#2|) (-1235 |#2|)) 17)) (-2304 (((-111) (-1235 |#2|) (-1235 |#2|)) 18)) (-3662 (((-111) (-1235 |#2|) (-1235 |#2|)) 14))) +(((-825 |#1| |#2|) (-10 -7 (-15 -3662 ((-111) (-1235 |#2|) (-1235 |#2|))) (-15 -3953 ((-111) (-1235 |#2|) (-1235 |#2|))) (-15 -2304 ((-111) (-1235 |#2|) (-1235 |#2|)))) (-754) (-775)) (T -825)) +((-2304 (*1 *2 *3 *3) (-12 (-5 *3 (-1235 *5)) (-4 *5 (-775)) (-5 *2 (-111)) (-5 *1 (-825 *4 *5)) (-14 *4 (-754)))) (-3953 (*1 *2 *3 *3) (-12 (-5 *3 (-1235 *5)) (-4 *5 (-775)) (-5 *2 (-111)) (-5 *1 (-825 *4 *5)) (-14 *4 (-754)))) (-3662 (*1 *2 *3 *3) (-12 (-5 *3 (-1235 *5)) (-4 *5 (-775)) (-5 *2 (-111)) (-5 *1 (-825 *4 *5)) (-14 *4 (-754))))) +(-10 -7 (-15 -3662 ((-111) (-1235 |#2|) (-1235 |#2|))) (-15 -3953 ((-111) (-1235 |#2|) (-1235 |#2|))) (-15 -2304 ((-111) (-1235 |#2|) (-1235 |#2|)))) +((-1465 (((-111) $ $) 7)) (-3887 (($) 23 T CONST)) (-2040 (((-3 $ "failed") $) 26)) (-2624 (((-111) $) 24)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1933 (($) 22 T CONST)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18)) (** (($ $ (-900)) 21) (($ $ (-754)) 25)) (* (($ $ $) 20))) +(((-826) (-137)) (T -826)) +NIL +(-13 (-837) (-709)) +(((-101) . T) ((-599 (-842)) . T) ((-709) . T) ((-837) . T) ((-830) . T) ((-1088) . T) ((-1076) . T)) +((-2422 (((-552) $) 17)) (-2983 (((-111) $) 10)) (-1508 (((-111) $) 11)) (-3329 (($ $) 19))) +(((-827 |#1|) (-10 -8 (-15 -3329 (|#1| |#1|)) (-15 -2422 ((-552) |#1|)) (-15 -1508 ((-111) |#1|)) (-15 -2983 ((-111) |#1|))) (-828)) (T -827)) +NIL +(-10 -8 (-15 -3329 (|#1| |#1|)) (-15 -2422 ((-552) |#1|)) (-15 -1508 ((-111) |#1|)) (-15 -2983 ((-111) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 24)) (-4136 (((-3 $ "failed") $ $) 26)) (-2422 (((-552) $) 33)) (-3887 (($) 23 T CONST)) (-2040 (((-3 $ "failed") $) 38)) (-2983 (((-111) $) 35)) (-2624 (((-111) $) 40)) (-1508 (((-111) $) 34)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 43)) (-3995 (((-754)) 42)) (-3329 (($ $) 32)) (-1922 (($) 22 T CONST)) (-1933 (($) 41 T CONST)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18)) (-2396 (($ $ $) 28) (($ $) 27)) (-2384 (($ $ $) 20)) (** (($ $ (-754)) 39) (($ $ (-900)) 36)) (* (($ (-900) $) 21) (($ (-754) $) 25) (($ (-552) $) 29) (($ $ $) 37))) +(((-828) (-137)) (T -828)) +((-2983 (*1 *2 *1) (-12 (-4 *1 (-828)) (-5 *2 (-111)))) (-1508 (*1 *2 *1) (-12 (-4 *1 (-828)) (-5 *2 (-111)))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-828)) (-5 *2 (-552)))) (-3329 (*1 *1 *1) (-4 *1 (-828)))) +(-13 (-774) (-1028) (-709) (-10 -8 (-15 -2983 ((-111) $)) (-15 -1508 ((-111) $)) (-15 -2422 ((-552) $)) (-15 -3329 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 $) . T) ((-709) . T) ((-774) . T) ((-775) . T) ((-777) . T) ((-778) . T) ((-830) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-1816 (($ $ $) 10)) (-4093 (($ $ $) 9)) (-2351 (((-111) $ $) 13)) (-2329 (((-111) $ $) 11)) (-2340 (((-111) $ $) 14))) +(((-829 |#1|) (-10 -8 (-15 -1816 (|#1| |#1| |#1|)) (-15 -4093 (|#1| |#1| |#1|)) (-15 -2340 ((-111) |#1| |#1|)) (-15 -2351 ((-111) |#1| |#1|)) (-15 -2329 ((-111) |#1| |#1|))) (-830)) (T -829)) +NIL +(-10 -8 (-15 -1816 (|#1| |#1| |#1|)) (-15 -4093 (|#1| |#1| |#1|)) (-15 -2340 ((-111) |#1| |#1|)) (-15 -2351 ((-111) |#1| |#1|)) (-15 -2329 ((-111) |#1| |#1|))) +((-1465 (((-111) $ $) 7)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18))) +(((-830) (-137)) (T -830)) +((-2316 (*1 *2 *1 *1) (-12 (-4 *1 (-830)) (-5 *2 (-111)))) (-2329 (*1 *2 *1 *1) (-12 (-4 *1 (-830)) (-5 *2 (-111)))) (-2351 (*1 *2 *1 *1) (-12 (-4 *1 (-830)) (-5 *2 (-111)))) (-2340 (*1 *2 *1 *1) (-12 (-4 *1 (-830)) (-5 *2 (-111)))) (-4093 (*1 *1 *1 *1) (-4 *1 (-830))) (-1816 (*1 *1 *1 *1) (-4 *1 (-830)))) +(-13 (-1076) (-10 -8 (-15 -2316 ((-111) $ $)) (-15 -2329 ((-111) $ $)) (-15 -2351 ((-111) $ $)) (-15 -2340 ((-111) $ $)) (-15 -4093 ($ $ $)) (-15 -1816 ($ $ $)))) +(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-1768 (($ $ $) 45)) (-2585 (($ $ $) 44)) (-4281 (($ $ $) 42)) (-4214 (($ $ $) 51)) (-3571 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 46)) (-4021 (((-3 $ "failed") $ $) 49)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1375 (($ $) 35)) (-2753 (($ $ $) 39)) (-4009 (($ $ $) 38)) (-2016 (($ $ $) 47)) (-2812 (($ $ $) 53)) (-3008 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 41)) (-4266 (((-3 $ "failed") $ $) 48)) (-2761 (((-3 $ "failed") $ |#2|) 28)) (-3495 ((|#2| $) 32)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ (-401 (-552))) NIL) (($ |#2|) 12)) (-1493 (((-627 |#2|) $) 18)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) +(((-831 |#1| |#2|) (-10 -8 (-15 -2016 (|#1| |#1| |#1|)) (-15 -3571 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2220 |#1|)) |#1| |#1|)) (-15 -4214 (|#1| |#1| |#1|)) (-15 -4021 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1768 (|#1| |#1| |#1|)) (-15 -2585 (|#1| |#1| |#1|)) (-15 -4281 (|#1| |#1| |#1|)) (-15 -3008 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2220 |#1|)) |#1| |#1|)) (-15 -2812 (|#1| |#1| |#1|)) (-15 -4266 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2753 (|#1| |#1| |#1|)) (-15 -4009 (|#1| |#1| |#1|)) (-15 -1375 (|#1| |#1|)) (-15 -3495 (|#2| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1493 ((-627 |#2|) |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|)) (-15 -1477 ((-842) |#1|))) (-832 |#2|) (-1028)) (T -831)) +NIL +(-10 -8 (-15 -2016 (|#1| |#1| |#1|)) (-15 -3571 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2220 |#1|)) |#1| |#1|)) (-15 -4214 (|#1| |#1| |#1|)) (-15 -4021 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1768 (|#1| |#1| |#1|)) (-15 -2585 (|#1| |#1| |#1|)) (-15 -4281 (|#1| |#1| |#1|)) (-15 -3008 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2220 |#1|)) |#1| |#1|)) (-15 -2812 (|#1| |#1| |#1|)) (-15 -4266 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2753 (|#1| |#1| |#1|)) (-15 -4009 (|#1| |#1| |#1|)) (-15 -1375 (|#1| |#1|)) (-15 -3495 (|#2| |#1|)) (-15 -2761 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1493 ((-627 |#2|) |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|)) (-15 -1477 ((-842) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1768 (($ $ $) 43 (|has| |#1| (-357)))) (-2585 (($ $ $) 44 (|has| |#1| (-357)))) (-4281 (($ $ $) 46 (|has| |#1| (-357)))) (-4214 (($ $ $) 41 (|has| |#1| (-357)))) (-3571 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 40 (|has| |#1| (-357)))) (-4021 (((-3 $ "failed") $ $) 42 (|has| |#1| (-357)))) (-3557 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 45 (|has| |#1| (-357)))) (-4039 (((-3 (-552) "failed") $) 72 (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) 70 (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 67)) (-1703 (((-552) $) 73 (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) 71 (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) 66)) (-2014 (($ $) 62)) (-2040 (((-3 $ "failed") $) 32)) (-1375 (($ $) 53 (|has| |#1| (-445)))) (-2624 (((-111) $) 30)) (-1832 (($ |#1| (-754)) 60)) (-3107 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55 (|has| |#1| (-544)))) (-1378 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 56 (|has| |#1| (-544)))) (-3465 (((-754) $) 64)) (-2753 (($ $ $) 50 (|has| |#1| (-357)))) (-4009 (($ $ $) 51 (|has| |#1| (-357)))) (-2016 (($ $ $) 39 (|has| |#1| (-357)))) (-2812 (($ $ $) 48 (|has| |#1| (-357)))) (-3008 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 47 (|has| |#1| (-357)))) (-4266 (((-3 $ "failed") $ $) 49 (|has| |#1| (-357)))) (-4273 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 52 (|has| |#1| (-357)))) (-1993 ((|#1| $) 63)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2761 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-544)))) (-3567 (((-754) $) 65)) (-3495 ((|#1| $) 54 (|has| |#1| (-445)))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 69 (|has| |#1| (-1017 (-401 (-552))))) (($ |#1|) 68)) (-1493 (((-627 |#1|) $) 59)) (-1889 ((|#1| $ (-754)) 61)) (-3995 (((-754)) 28)) (-3288 ((|#1| $ |#1| |#1|) 58)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) +(((-832 |#1|) (-137) (-1028)) (T -832)) +((-3567 (*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1028)) (-5 *2 (-754)))) (-3465 (*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1028)) (-5 *2 (-754)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)))) (-2014 (*1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)))) (-1889 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *1 (-832 *2)) (-4 *2 (-1028)))) (-1832 (*1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-832 *2)) (-4 *2 (-1028)))) (-1493 (*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1028)) (-5 *2 (-627 *3)))) (-3288 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)))) (-2761 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-544)))) (-1378 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-832 *3)))) (-3107 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-832 *3)))) (-3495 (*1 *2 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-445)))) (-1375 (*1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-445)))) (-4273 (*1 *2 *1 *1) (-12 (-4 *3 (-357)) (-4 *3 (-1028)) (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-832 *3)))) (-4009 (*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-2753 (*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-4266 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-2812 (*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-3008 (*1 *2 *1 *1) (-12 (-4 *3 (-357)) (-4 *3 (-1028)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2220 *1))) (-4 *1 (-832 *3)))) (-4281 (*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-3557 (*1 *2 *1 *1) (-12 (-4 *3 (-357)) (-4 *3 (-1028)) (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-832 *3)))) (-2585 (*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-1768 (*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-4021 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-4214 (*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-3571 (*1 *2 *1 *1) (-12 (-4 *3 (-357)) (-4 *3 (-1028)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2220 *1))) (-4 *1 (-832 *3)))) (-2016 (*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) +(-13 (-1028) (-110 |t#1| |t#1|) (-405 |t#1|) (-10 -8 (-15 -3567 ((-754) $)) (-15 -3465 ((-754) $)) (-15 -1993 (|t#1| $)) (-15 -2014 ($ $)) (-15 -1889 (|t#1| $ (-754))) (-15 -1832 ($ |t#1| (-754))) (-15 -1493 ((-627 |t#1|) $)) (-15 -3288 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -2761 ((-3 $ "failed") $ |t#1|)) (-15 -1378 ((-2 (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -3107 ((-2 (|:| -2404 $) (|:| -3401 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-445)) (PROGN (-15 -3495 (|t#1| $)) (-15 -1375 ($ $))) |%noBranch|) (IF (|has| |t#1| (-357)) (PROGN (-15 -4273 ((-2 (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -4009 ($ $ $)) (-15 -2753 ($ $ $)) (-15 -4266 ((-3 $ "failed") $ $)) (-15 -2812 ($ $ $)) (-15 -3008 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $)) (-15 -4281 ($ $ $)) (-15 -3557 ((-2 (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -2585 ($ $ $)) (-15 -1768 ($ $ $)) (-15 -4021 ((-3 $ "failed") $ $)) (-15 -4214 ($ $ $)) (-15 -3571 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $)) (-15 -2016 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-405 |#1|) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-700 |#1|) |has| |#1| (-169)) ((-709) . T) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T) ((-1034 |#1|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-1844 ((|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|)) 20)) (-3557 (((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|)) 43 (|has| |#1| (-357)))) (-3107 (((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|)) 40 (|has| |#1| (-544)))) (-1378 (((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|)) 39 (|has| |#1| (-544)))) (-4273 (((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|)) 42 (|has| |#1| (-357)))) (-3288 ((|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|)) 31))) +(((-833 |#1| |#2|) (-10 -7 (-15 -1844 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -3288 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-544)) (PROGN (-15 -1378 ((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3107 ((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -4273 ((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3557 ((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) (-1028) (-832 |#1|)) (T -833)) +((-3557 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-357)) (-4 *5 (-1028)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-833 *5 *3)) (-4 *3 (-832 *5)))) (-4273 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-357)) (-4 *5 (-1028)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-833 *5 *3)) (-4 *3 (-832 *5)))) (-3107 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-544)) (-4 *5 (-1028)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-833 *5 *3)) (-4 *3 (-832 *5)))) (-1378 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-544)) (-4 *5 (-1028)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-833 *5 *3)) (-4 *3 (-832 *5)))) (-3288 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1028)) (-5 *1 (-833 *2 *3)) (-4 *3 (-832 *2)))) (-1844 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1028)) (-5 *1 (-833 *5 *2)) (-4 *2 (-832 *5))))) +(-10 -7 (-15 -1844 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -3288 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-544)) (PROGN (-15 -1378 ((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3107 ((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -4273 ((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -3557 ((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-1768 (($ $ $) NIL (|has| |#1| (-357)))) (-2585 (($ $ $) NIL (|has| |#1| (-357)))) (-4281 (($ $ $) NIL (|has| |#1| (-357)))) (-4214 (($ $ $) NIL (|has| |#1| (-357)))) (-3571 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4021 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-3557 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 32 (|has| |#1| (-357)))) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) NIL)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#1| (-445)))) (-2267 (((-842) $ (-842)) NIL)) (-2624 (((-111) $) NIL)) (-1832 (($ |#1| (-754)) NIL)) (-3107 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 28 (|has| |#1| (-544)))) (-1378 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 26 (|has| |#1| (-544)))) (-3465 (((-754) $) NIL)) (-2753 (($ $ $) NIL (|has| |#1| (-357)))) (-4009 (($ $ $) NIL (|has| |#1| (-357)))) (-2016 (($ $ $) NIL (|has| |#1| (-357)))) (-2812 (($ $ $) NIL (|has| |#1| (-357)))) (-3008 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4266 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-4273 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 30 (|has| |#1| (-357)))) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-3567 (((-754) $) NIL)) (-3495 ((|#1| $) NIL (|has| |#1| (-445)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#1| (-1017 (-401 (-552))))) (($ |#1|) NIL)) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-754)) NIL)) (-3995 (((-754)) NIL)) (-3288 ((|#1| $ |#1| |#1|) 15)) (-1922 (($) NIL T CONST)) (-1933 (($) 20 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) 19) (($ $ (-754)) 22)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-834 |#1| |#2| |#3|) (-13 (-832 |#1|) (-10 -8 (-15 -2267 ((-842) $ (-842))))) (-1028) (-98 |#1|) (-1 |#1| |#1|)) (T -834)) +((-2267 (*1 *2 *1 *2) (-12 (-5 *2 (-842)) (-5 *1 (-834 *3 *4 *5)) (-4 *3 (-1028)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-832 |#1|) (-10 -8 (-15 -2267 ((-842) $ (-842))))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-1768 (($ $ $) NIL (|has| |#2| (-357)))) (-2585 (($ $ $) NIL (|has| |#2| (-357)))) (-4281 (($ $ $) NIL (|has| |#2| (-357)))) (-4214 (($ $ $) NIL (|has| |#2| (-357)))) (-3571 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#2| (-357)))) (-4021 (((-3 $ "failed") $ $) NIL (|has| |#2| (-357)))) (-3557 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#2| (-357)))) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#2| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-3 |#2| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#2| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#2| (-1017 (-401 (-552))))) ((|#2| $) NIL)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#2| (-445)))) (-2624 (((-111) $) NIL)) (-1832 (($ |#2| (-754)) 16)) (-3107 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#2| (-544)))) (-1378 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#2| (-544)))) (-3465 (((-754) $) NIL)) (-2753 (($ $ $) NIL (|has| |#2| (-357)))) (-4009 (($ $ $) NIL (|has| |#2| (-357)))) (-2016 (($ $ $) NIL (|has| |#2| (-357)))) (-2812 (($ $ $) NIL (|has| |#2| (-357)))) (-3008 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#2| (-357)))) (-4266 (((-3 $ "failed") $ $) NIL (|has| |#2| (-357)))) (-4273 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#2| (-357)))) (-1993 ((|#2| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2761 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544)))) (-3567 (((-754) $) NIL)) (-3495 ((|#2| $) NIL (|has| |#2| (-445)))) (-1477 (((-842) $) 23) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#2| (-1017 (-401 (-552))))) (($ |#2|) NIL) (($ (-1231 |#1|)) 18)) (-1493 (((-627 |#2|) $) NIL)) (-1889 ((|#2| $ (-754)) NIL)) (-3995 (((-754)) NIL)) (-3288 ((|#2| $ |#2| |#2|) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) 13 T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-835 |#1| |#2| |#3| |#4|) (-13 (-832 |#2|) (-10 -8 (-15 -1477 ($ (-1231 |#1|))))) (-1152) (-1028) (-98 |#2|) (-1 |#2| |#2|)) (T -835)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-14 *3 (-1152)) (-5 *1 (-835 *3 *4 *5 *6)) (-4 *4 (-1028)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4))))) +(-13 (-832 |#2|) (-10 -8 (-15 -1477 ($ (-1231 |#1|))))) +((-1771 ((|#1| (-754) |#1|) 35 (|has| |#1| (-38 (-401 (-552)))))) (-3456 ((|#1| (-754) (-754) |#1|) 27) ((|#1| (-754) |#1|) 20)) (-3861 ((|#1| (-754) |#1|) 31)) (-4271 ((|#1| (-754) |#1|) 29)) (-2313 ((|#1| (-754) |#1|) 28))) +(((-836 |#1|) (-10 -7 (-15 -2313 (|#1| (-754) |#1|)) (-15 -4271 (|#1| (-754) |#1|)) (-15 -3861 (|#1| (-754) |#1|)) (-15 -3456 (|#1| (-754) |#1|)) (-15 -3456 (|#1| (-754) (-754) |#1|)) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -1771 (|#1| (-754) |#1|)) |%noBranch|)) (-169)) (T -836)) +((-1771 (*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-169)))) (-3456 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-169)))) (-3456 (*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-169)))) (-3861 (*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-169)))) (-4271 (*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-169)))) (-2313 (*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-169))))) +(-10 -7 (-15 -2313 (|#1| (-754) |#1|)) (-15 -4271 (|#1| (-754) |#1|)) (-15 -3861 (|#1| (-754) |#1|)) (-15 -3456 (|#1| (-754) |#1|)) (-15 -3456 (|#1| (-754) (-754) |#1|)) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -1771 (|#1| (-754) |#1|)) |%noBranch|)) +((-1465 (((-111) $ $) 7)) (-1816 (($ $ $) 13)) (-4093 (($ $ $) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2351 (((-111) $ $) 16)) (-2329 (((-111) $ $) 17)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 15)) (-2316 (((-111) $ $) 18)) (** (($ $ (-900)) 21)) (* (($ $ $) 20))) +(((-837) (-137)) (T -837)) +NIL +(-13 (-830) (-1088)) +(((-101) . T) ((-599 (-842)) . T) ((-830) . T) ((-1088) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-4288 (((-552) $) 12)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 18) (($ (-552)) 11)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 8)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 9))) +(((-838) (-13 (-830) (-10 -8 (-15 -1477 ($ (-552))) (-15 -4288 ((-552) $))))) (T -838)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-838)))) (-4288 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-838))))) +(-13 (-830) (-10 -8 (-15 -1477 ($ (-552))) (-15 -4288 ((-552) $)))) +((-1525 (((-1096) $ (-127)) 17))) +(((-839 |#1|) (-10 -8 (-15 -1525 ((-1096) |#1| (-127)))) (-840)) (T -839)) +NIL +(-10 -8 (-15 -1525 ((-1096) |#1| (-127)))) +((-1525 (((-1096) $ (-127)) 7)) (-3928 (((-1096) $ (-128)) 8)) (-2219 (($ $) 6))) +(((-840) (-137)) (T -840)) +((-3928 (*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-128)) (-5 *2 (-1096)))) (-1525 (*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-127)) (-5 *2 (-1096))))) +(-13 (-170) (-10 -8 (-15 -3928 ((-1096) $ (-128))) (-15 -1525 ((-1096) $ (-127))))) +(((-170) . T)) +((-1525 (((-1096) $ (-127)) NIL)) (-3928 (((-1096) $ (-128)) 22)) (-1664 (($ (-382)) 12) (($ (-1134)) 14)) (-1300 (((-111) $) 19)) (-1477 (((-842) $) 26)) (-2219 (($ $) 23))) +(((-841) (-13 (-840) (-599 (-842)) (-10 -8 (-15 -1664 ($ (-382))) (-15 -1664 ($ (-1134))) (-15 -1300 ((-111) $))))) (T -841)) +((-1664 (*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-841)))) (-1664 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-841)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-841))))) +(-13 (-840) (-599 (-842)) (-10 -8 (-15 -1664 ($ (-382))) (-15 -1664 ($ (-1134))) (-15 -1300 ((-111) $)))) +((-1465 (((-111) $ $) NIL) (($ $ $) 77)) (-2572 (($ $ $) 114)) (-2359 (((-552) $) 31) (((-552)) 36)) (-4272 (($ (-552)) 45)) (-2255 (($ $ $) 46) (($ (-627 $)) 76)) (-3591 (($ $ (-627 $)) 74)) (-2197 (((-552) $) 34)) (-2281 (($ $ $) 65)) (-2707 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-1996 (((-552) $) 33)) (-2167 (($ $ $) 64)) (-2258 (($ $) 104)) (-1293 (($ $ $) 118)) (-3957 (($ (-627 $)) 53)) (-3606 (($ $ (-627 $)) 71)) (-2464 (($ (-552) (-552)) 47)) (-1905 (($ $) 115) (($ $ $) 116)) (-2791 (($ $ (-552)) 41) (($ $) 44)) (-2813 (($ $ $) 89)) (-3871 (($ $ $) 121)) (-2049 (($ $) 105)) (-2789 (($ $ $) 90)) (-1451 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-1277 (((-1240) $) 10)) (-2376 (($ $) 108) (($ $ (-754)) 111)) (-4020 (($ $ $) 67)) (-3750 (($ $ $) 66)) (-4047 (($ $ (-627 $)) 100)) (-4099 (($ $ $) 103)) (-4056 (($ (-627 $)) 51)) (-3820 (($ $) 62) (($ (-627 $)) 63)) (-3140 (($ $ $) 112)) (-2830 (($ $) 106)) (-2954 (($ $ $) 117)) (-2267 (($ (-552)) 21) (($ (-1152)) 23) (($ (-1134)) 30) (($ (-220)) 25)) (-1881 (($ $ $) 93)) (-1681 (($ $) 94)) (-4204 (((-1240) (-1134)) 15)) (-3799 (($ (-1134)) 14)) (-4176 (($ (-627 (-627 $))) 50)) (-2776 (($ $ (-552)) 40) (($ $) 43)) (-1595 (((-1134) $) NIL)) (-3527 (($ $ $) 120)) (-3275 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-4107 (((-111) $) 98)) (-3800 (($ $ (-627 $)) 101) (($ $ $ $) 102)) (-2874 (($ (-552)) 37)) (-3476 (((-552) $) 32) (((-552)) 35)) (-3876 (($ $ $) 38) (($ (-627 $)) 75)) (-1498 (((-1096) $) NIL)) (-2761 (($ $ $) 91)) (-2373 (($) 13)) (-1985 (($ $ (-627 $)) 99)) (-2693 (((-1134) (-1134)) 8)) (-2395 (($ $) 107) (($ $ (-754)) 110)) (-2773 (($ $ $) 88)) (-2942 (($ $ (-754)) 126)) (-2337 (($ (-627 $)) 52)) (-1477 (((-842) $) 19)) (-3174 (($ $ (-552)) 39) (($ $) 42)) (-2182 (($ $) 60) (($ (-627 $)) 61)) (-4243 (($ $) 58) (($ (-627 $)) 59)) (-3092 (($ $) 113)) (-4331 (($ (-627 $)) 57)) (-3697 (($ $ $) 97)) (-2522 (($ $ $) 119)) (-2520 (($ $ $) 92)) (-2591 (($ $ $) 95) (($ $) 96)) (-2351 (($ $ $) 81)) (-2329 (($ $ $) 79)) (-2292 (((-111) $ $) 16) (($ $ $) 17)) (-2340 (($ $ $) 80)) (-2316 (($ $ $) 78)) (-2407 (($ $ $) 86)) (-2396 (($ $ $) 83) (($ $) 84)) (-2384 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) +(((-842) (-13 (-1076) (-10 -8 (-15 -1277 ((-1240) $)) (-15 -3799 ($ (-1134))) (-15 -4204 ((-1240) (-1134))) (-15 -2267 ($ (-552))) (-15 -2267 ($ (-1152))) (-15 -2267 ($ (-1134))) (-15 -2267 ($ (-220))) (-15 -2373 ($)) (-15 -2693 ((-1134) (-1134))) (-15 -2359 ((-552) $)) (-15 -3476 ((-552) $)) (-15 -2359 ((-552))) (-15 -3476 ((-552))) (-15 -1996 ((-552) $)) (-15 -2197 ((-552) $)) (-15 -2874 ($ (-552))) (-15 -4272 ($ (-552))) (-15 -2464 ($ (-552) (-552))) (-15 -2776 ($ $ (-552))) (-15 -2791 ($ $ (-552))) (-15 -3174 ($ $ (-552))) (-15 -2776 ($ $)) (-15 -2791 ($ $)) (-15 -3174 ($ $)) (-15 -3876 ($ $ $)) (-15 -2255 ($ $ $)) (-15 -3876 ($ (-627 $))) (-15 -2255 ($ (-627 $))) (-15 -4047 ($ $ (-627 $))) (-15 -3800 ($ $ (-627 $))) (-15 -3800 ($ $ $ $)) (-15 -4099 ($ $ $)) (-15 -4107 ((-111) $)) (-15 -1985 ($ $ (-627 $))) (-15 -2258 ($ $)) (-15 -3527 ($ $ $)) (-15 -3092 ($ $)) (-15 -4176 ($ (-627 (-627 $)))) (-15 -2572 ($ $ $)) (-15 -1905 ($ $)) (-15 -1905 ($ $ $)) (-15 -2954 ($ $ $)) (-15 -1293 ($ $ $)) (-15 -2522 ($ $ $)) (-15 -3871 ($ $ $)) (-15 -2942 ($ $ (-754))) (-15 -3697 ($ $ $)) (-15 -2167 ($ $ $)) (-15 -2281 ($ $ $)) (-15 -3750 ($ $ $)) (-15 -4020 ($ $ $)) (-15 -3606 ($ $ (-627 $))) (-15 -3591 ($ $ (-627 $))) (-15 -2049 ($ $)) (-15 -2395 ($ $)) (-15 -2395 ($ $ (-754))) (-15 -2376 ($ $)) (-15 -2376 ($ $ (-754))) (-15 -2830 ($ $)) (-15 -3140 ($ $ $)) (-15 -2707 ($ $)) (-15 -2707 ($ $ $)) (-15 -2707 ($ $ $ $)) (-15 -1451 ($ $)) (-15 -1451 ($ $ $)) (-15 -1451 ($ $ $ $)) (-15 -3275 ($ $)) (-15 -3275 ($ $ $)) (-15 -3275 ($ $ $ $)) (-15 -4243 ($ $)) (-15 -4243 ($ (-627 $))) (-15 -2182 ($ $)) (-15 -2182 ($ (-627 $))) (-15 -3820 ($ $)) (-15 -3820 ($ (-627 $))) (-15 -4056 ($ (-627 $))) (-15 -2337 ($ (-627 $))) (-15 -3957 ($ (-627 $))) (-15 -4331 ($ (-627 $))) (-15 -2292 ($ $ $)) (-15 -1465 ($ $ $)) (-15 -2316 ($ $ $)) (-15 -2329 ($ $ $)) (-15 -2340 ($ $ $)) (-15 -2351 ($ $ $)) (-15 -2384 ($ $ $)) (-15 -2396 ($ $ $)) (-15 -2396 ($ $)) (-15 * ($ $ $)) (-15 -2407 ($ $ $)) (-15 ** ($ $ $)) (-15 -2773 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -2789 ($ $ $)) (-15 -2761 ($ $ $)) (-15 -2520 ($ $ $)) (-15 -1881 ($ $ $)) (-15 -1681 ($ $)) (-15 -2591 ($ $ $)) (-15 -2591 ($ $))))) (T -842)) +((-1277 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-842)))) (-3799 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-842)))) (-4204 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-842)))) (-2267 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-2267 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-842)))) (-2267 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-842)))) (-2267 (*1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-842)))) (-2373 (*1 *1) (-5 *1 (-842))) (-2693 (*1 *2 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-842)))) (-2359 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-3476 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-2359 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-3476 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-2197 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-2874 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-4272 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-2464 (*1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-2776 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-2791 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-3174 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) (-2776 (*1 *1 *1) (-5 *1 (-842))) (-2791 (*1 *1 *1) (-5 *1 (-842))) (-3174 (*1 *1 *1) (-5 *1 (-842))) (-3876 (*1 *1 *1 *1) (-5 *1 (-842))) (-2255 (*1 *1 *1 *1) (-5 *1 (-842))) (-3876 (*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-2255 (*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-4047 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-3800 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-3800 (*1 *1 *1 *1 *1) (-5 *1 (-842))) (-4099 (*1 *1 *1 *1) (-5 *1 (-842))) (-4107 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-842)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-2258 (*1 *1 *1) (-5 *1 (-842))) (-3527 (*1 *1 *1 *1) (-5 *1 (-842))) (-3092 (*1 *1 *1) (-5 *1 (-842))) (-4176 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 (-842)))) (-5 *1 (-842)))) (-2572 (*1 *1 *1 *1) (-5 *1 (-842))) (-1905 (*1 *1 *1) (-5 *1 (-842))) (-1905 (*1 *1 *1 *1) (-5 *1 (-842))) (-2954 (*1 *1 *1 *1) (-5 *1 (-842))) (-1293 (*1 *1 *1 *1) (-5 *1 (-842))) (-2522 (*1 *1 *1 *1) (-5 *1 (-842))) (-3871 (*1 *1 *1 *1) (-5 *1 (-842))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-842)))) (-3697 (*1 *1 *1 *1) (-5 *1 (-842))) (-2167 (*1 *1 *1 *1) (-5 *1 (-842))) (-2281 (*1 *1 *1 *1) (-5 *1 (-842))) (-3750 (*1 *1 *1 *1) (-5 *1 (-842))) (-4020 (*1 *1 *1 *1) (-5 *1 (-842))) (-3606 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-3591 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-2049 (*1 *1 *1) (-5 *1 (-842))) (-2395 (*1 *1 *1) (-5 *1 (-842))) (-2395 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-842)))) (-2376 (*1 *1 *1) (-5 *1 (-842))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-842)))) (-2830 (*1 *1 *1) (-5 *1 (-842))) (-3140 (*1 *1 *1 *1) (-5 *1 (-842))) (-2707 (*1 *1 *1) (-5 *1 (-842))) (-2707 (*1 *1 *1 *1) (-5 *1 (-842))) (-2707 (*1 *1 *1 *1 *1) (-5 *1 (-842))) (-1451 (*1 *1 *1) (-5 *1 (-842))) (-1451 (*1 *1 *1 *1) (-5 *1 (-842))) (-1451 (*1 *1 *1 *1 *1) (-5 *1 (-842))) (-3275 (*1 *1 *1) (-5 *1 (-842))) (-3275 (*1 *1 *1 *1) (-5 *1 (-842))) (-3275 (*1 *1 *1 *1 *1) (-5 *1 (-842))) (-4243 (*1 *1 *1) (-5 *1 (-842))) (-4243 (*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-2182 (*1 *1 *1) (-5 *1 (-842))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-3820 (*1 *1 *1) (-5 *1 (-842))) (-3820 (*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-2337 (*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-3957 (*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-4331 (*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) (-2292 (*1 *1 *1 *1) (-5 *1 (-842))) (-1465 (*1 *1 *1 *1) (-5 *1 (-842))) (-2316 (*1 *1 *1 *1) (-5 *1 (-842))) (-2329 (*1 *1 *1 *1) (-5 *1 (-842))) (-2340 (*1 *1 *1 *1) (-5 *1 (-842))) (-2351 (*1 *1 *1 *1) (-5 *1 (-842))) (-2384 (*1 *1 *1 *1) (-5 *1 (-842))) (-2396 (*1 *1 *1 *1) (-5 *1 (-842))) (-2396 (*1 *1 *1) (-5 *1 (-842))) (* (*1 *1 *1 *1) (-5 *1 (-842))) (-2407 (*1 *1 *1 *1) (-5 *1 (-842))) (** (*1 *1 *1 *1) (-5 *1 (-842))) (-2773 (*1 *1 *1 *1) (-5 *1 (-842))) (-2813 (*1 *1 *1 *1) (-5 *1 (-842))) (-2789 (*1 *1 *1 *1) (-5 *1 (-842))) (-2761 (*1 *1 *1 *1) (-5 *1 (-842))) (-2520 (*1 *1 *1 *1) (-5 *1 (-842))) (-1881 (*1 *1 *1 *1) (-5 *1 (-842))) (-1681 (*1 *1 *1) (-5 *1 (-842))) (-2591 (*1 *1 *1 *1) (-5 *1 (-842))) (-2591 (*1 *1 *1) (-5 *1 (-842)))) +(-13 (-1076) (-10 -8 (-15 -1277 ((-1240) $)) (-15 -3799 ($ (-1134))) (-15 -4204 ((-1240) (-1134))) (-15 -2267 ($ (-552))) (-15 -2267 ($ (-1152))) (-15 -2267 ($ (-1134))) (-15 -2267 ($ (-220))) (-15 -2373 ($)) (-15 -2693 ((-1134) (-1134))) (-15 -2359 ((-552) $)) (-15 -3476 ((-552) $)) (-15 -2359 ((-552))) (-15 -3476 ((-552))) (-15 -1996 ((-552) $)) (-15 -2197 ((-552) $)) (-15 -2874 ($ (-552))) (-15 -4272 ($ (-552))) (-15 -2464 ($ (-552) (-552))) (-15 -2776 ($ $ (-552))) (-15 -2791 ($ $ (-552))) (-15 -3174 ($ $ (-552))) (-15 -2776 ($ $)) (-15 -2791 ($ $)) (-15 -3174 ($ $)) (-15 -3876 ($ $ $)) (-15 -2255 ($ $ $)) (-15 -3876 ($ (-627 $))) (-15 -2255 ($ (-627 $))) (-15 -4047 ($ $ (-627 $))) (-15 -3800 ($ $ (-627 $))) (-15 -3800 ($ $ $ $)) (-15 -4099 ($ $ $)) (-15 -4107 ((-111) $)) (-15 -1985 ($ $ (-627 $))) (-15 -2258 ($ $)) (-15 -3527 ($ $ $)) (-15 -3092 ($ $)) (-15 -4176 ($ (-627 (-627 $)))) (-15 -2572 ($ $ $)) (-15 -1905 ($ $)) (-15 -1905 ($ $ $)) (-15 -2954 ($ $ $)) (-15 -1293 ($ $ $)) (-15 -2522 ($ $ $)) (-15 -3871 ($ $ $)) (-15 -2942 ($ $ (-754))) (-15 -3697 ($ $ $)) (-15 -2167 ($ $ $)) (-15 -2281 ($ $ $)) (-15 -3750 ($ $ $)) (-15 -4020 ($ $ $)) (-15 -3606 ($ $ (-627 $))) (-15 -3591 ($ $ (-627 $))) (-15 -2049 ($ $)) (-15 -2395 ($ $)) (-15 -2395 ($ $ (-754))) (-15 -2376 ($ $)) (-15 -2376 ($ $ (-754))) (-15 -2830 ($ $)) (-15 -3140 ($ $ $)) (-15 -2707 ($ $)) (-15 -2707 ($ $ $)) (-15 -2707 ($ $ $ $)) (-15 -1451 ($ $)) (-15 -1451 ($ $ $)) (-15 -1451 ($ $ $ $)) (-15 -3275 ($ $)) (-15 -3275 ($ $ $)) (-15 -3275 ($ $ $ $)) (-15 -4243 ($ $)) (-15 -4243 ($ (-627 $))) (-15 -2182 ($ $)) (-15 -2182 ($ (-627 $))) (-15 -3820 ($ $)) (-15 -3820 ($ (-627 $))) (-15 -4056 ($ (-627 $))) (-15 -2337 ($ (-627 $))) (-15 -3957 ($ (-627 $))) (-15 -4331 ($ (-627 $))) (-15 -2292 ($ $ $)) (-15 -1465 ($ $ $)) (-15 -2316 ($ $ $)) (-15 -2329 ($ $ $)) (-15 -2340 ($ $ $)) (-15 -2351 ($ $ $)) (-15 -2384 ($ $ $)) (-15 -2396 ($ $ $)) (-15 -2396 ($ $)) (-15 * ($ $ $)) (-15 -2407 ($ $ $)) (-15 ** ($ $ $)) (-15 -2773 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -2789 ($ $ $)) (-15 -2761 ($ $ $)) (-15 -2520 ($ $ $)) (-15 -1881 ($ $ $)) (-15 -1681 ($ $)) (-15 -2591 ($ $ $)) (-15 -2591 ($ $)))) +((-2868 (((-1240) (-627 (-52))) 24)) (-1395 (((-1240) (-1134) (-842)) 14) (((-1240) (-842)) 9) (((-1240) (-1134)) 11))) +(((-843) (-10 -7 (-15 -1395 ((-1240) (-1134))) (-15 -1395 ((-1240) (-842))) (-15 -1395 ((-1240) (-1134) (-842))) (-15 -2868 ((-1240) (-627 (-52)))))) (T -843)) +((-2868 (*1 *2 *3) (-12 (-5 *3 (-627 (-52))) (-5 *2 (-1240)) (-5 *1 (-843)))) (-1395 (*1 *2 *3 *4) (-12 (-5 *3 (-1134)) (-5 *4 (-842)) (-5 *2 (-1240)) (-5 *1 (-843)))) (-1395 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1240)) (-5 *1 (-843)))) (-1395 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-843))))) +(-10 -7 (-15 -1395 ((-1240) (-1134))) (-15 -1395 ((-1240) (-842))) (-15 -1395 ((-1240) (-1134) (-842))) (-15 -2868 ((-1240) (-627 (-52))))) +((-1465 (((-111) $ $) NIL)) (-4344 (((-3 $ "failed") (-1152)) 33)) (-3307 (((-754)) 31)) (-1279 (($) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-2886 (((-900) $) 29)) (-1595 (((-1134) $) 39)) (-4153 (($ (-900)) 28)) (-1498 (((-1096) $) NIL)) (-3562 (((-1152) $) 13) (((-528) $) 19) (((-871 (-373)) $) 26) (((-871 (-552)) $) 22)) (-1477 (((-842) $) 16)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 36)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 35))) +(((-844 |#1|) (-13 (-824) (-600 (-1152)) (-600 (-528)) (-600 (-871 (-373))) (-600 (-871 (-552))) (-10 -8 (-15 -4344 ((-3 $ "failed") (-1152))))) (-627 (-1152))) (T -844)) +((-4344 (*1 *1 *2) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-844 *3)) (-14 *3 (-627 *2))))) +(-13 (-824) (-600 (-1152)) (-600 (-528)) (-600 (-871 (-373))) (-600 (-871 (-552))) (-10 -8 (-15 -4344 ((-3 $ "failed") (-1152))))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (((-931 |#1|) $) NIL) (($ (-931 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-169)))) (-3995 (((-754)) NIL)) (-1620 (((-1240) (-754)) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) +(((-845 |#1| |#2| |#3| |#4|) (-13 (-1028) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -1477 ((-931 |#1|) $)) (-15 -1477 ($ (-931 |#1|))) (IF (|has| |#1| (-357)) (-15 -2407 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1620 ((-1240) (-754))))) (-1028) (-627 (-1152)) (-627 (-754)) (-754)) (T -845)) +((-1477 (*1 *2 *1) (-12 (-5 *2 (-931 *3)) (-5 *1 (-845 *3 *4 *5 *6)) (-4 *3 (-1028)) (-14 *4 (-627 (-1152))) (-14 *5 (-627 (-754))) (-14 *6 (-754)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-931 *3)) (-4 *3 (-1028)) (-5 *1 (-845 *3 *4 *5 *6)) (-14 *4 (-627 (-1152))) (-14 *5 (-627 (-754))) (-14 *6 (-754)))) (-2407 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-845 *2 *3 *4 *5)) (-4 *2 (-357)) (-4 *2 (-1028)) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-754))) (-14 *5 (-754)))) (-1620 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-845 *4 *5 *6 *7)) (-4 *4 (-1028)) (-14 *5 (-627 (-1152))) (-14 *6 (-627 *3)) (-14 *7 *3)))) +(-13 (-1028) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -1477 ((-931 |#1|) $)) (-15 -1477 ($ (-931 |#1|))) (IF (|has| |#1| (-357)) (-15 -2407 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1620 ((-1240) (-754))))) +((-3899 (((-3 (-171 |#3|) "failed") (-754) (-754) |#2| |#2|) 31)) (-2268 (((-3 (-401 |#3|) "failed") (-754) (-754) |#2| |#2|) 24))) +(((-846 |#1| |#2| |#3|) (-10 -7 (-15 -2268 ((-3 (-401 |#3|) "failed") (-754) (-754) |#2| |#2|)) (-15 -3899 ((-3 (-171 |#3|) "failed") (-754) (-754) |#2| |#2|))) (-357) (-1226 |#1|) (-1211 |#1|)) (T -846)) +((-3899 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-754)) (-4 *5 (-357)) (-5 *2 (-171 *6)) (-5 *1 (-846 *5 *4 *6)) (-4 *4 (-1226 *5)) (-4 *6 (-1211 *5)))) (-2268 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-754)) (-4 *5 (-357)) (-5 *2 (-401 *6)) (-5 *1 (-846 *5 *4 *6)) (-4 *4 (-1226 *5)) (-4 *6 (-1211 *5))))) +(-10 -7 (-15 -2268 ((-3 (-401 |#3|) "failed") (-754) (-754) |#2| |#2|)) (-15 -3899 ((-3 (-171 |#3|) "failed") (-754) (-754) |#2| |#2|))) +((-2268 (((-3 (-401 (-1208 |#2| |#1|)) "failed") (-754) (-754) (-1227 |#1| |#2| |#3|)) 28) (((-3 (-401 (-1208 |#2| |#1|)) "failed") (-754) (-754) (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|)) 26))) +(((-847 |#1| |#2| |#3|) (-10 -7 (-15 -2268 ((-3 (-401 (-1208 |#2| |#1|)) "failed") (-754) (-754) (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|))) (-15 -2268 ((-3 (-401 (-1208 |#2| |#1|)) "failed") (-754) (-754) (-1227 |#1| |#2| |#3|)))) (-357) (-1152) |#1|) (T -847)) +((-2268 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-754)) (-5 *4 (-1227 *5 *6 *7)) (-4 *5 (-357)) (-14 *6 (-1152)) (-14 *7 *5) (-5 *2 (-401 (-1208 *6 *5))) (-5 *1 (-847 *5 *6 *7)))) (-2268 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-754)) (-5 *4 (-1227 *5 *6 *7)) (-4 *5 (-357)) (-14 *6 (-1152)) (-14 *7 *5) (-5 *2 (-401 (-1208 *6 *5))) (-5 *1 (-847 *5 *6 *7))))) +(-10 -7 (-15 -2268 ((-3 (-401 (-1208 |#2| |#1|)) "failed") (-754) (-754) (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|))) (-15 -2268 ((-3 (-401 (-1208 |#2| |#1|)) "failed") (-754) (-754) (-1227 |#1| |#2| |#3|)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-1737 (($ $ (-552)) 60)) (-4224 (((-111) $ $) 57)) (-3887 (($) 17 T CONST)) (-1905 (($ (-1148 (-552)) (-552)) 59)) (-2813 (($ $ $) 53)) (-2040 (((-3 $ "failed") $) 32)) (-1497 (($ $) 62)) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-2641 (((-754) $) 67)) (-2624 (((-111) $) 30)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-3484 (((-552)) 64)) (-3752 (((-552) $) 63)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-4168 (($ $ (-552)) 66)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-2718 (((-754) $) 56)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-3080 (((-1132 (-552)) $) 68)) (-2890 (($ $) 65)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-3030 (((-552) $ (-552)) 61)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-848 |#1|) (-137) (-552)) (T -848)) +((-3080 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-5 *2 (-1132 (-552))))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-5 *2 (-754)))) (-4168 (*1 *1 *1 *2) (-12 (-4 *1 (-848 *3)) (-5 *2 (-552)))) (-2890 (*1 *1 *1) (-4 *1 (-848 *2))) (-3484 (*1 *2) (-12 (-4 *1 (-848 *3)) (-5 *2 (-552)))) (-3752 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-5 *2 (-552)))) (-1497 (*1 *1 *1) (-4 *1 (-848 *2))) (-3030 (*1 *2 *1 *2) (-12 (-4 *1 (-848 *3)) (-5 *2 (-552)))) (-1737 (*1 *1 *1 *2) (-12 (-4 *1 (-848 *3)) (-5 *2 (-552)))) (-1905 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 (-552))) (-5 *3 (-552)) (-4 *1 (-848 *4))))) +(-13 (-301) (-144) (-10 -8 (-15 -3080 ((-1132 (-552)) $)) (-15 -2641 ((-754) $)) (-15 -4168 ($ $ (-552))) (-15 -2890 ($ $)) (-15 -3484 ((-552))) (-15 -3752 ((-552) $)) (-15 -1497 ($ $)) (-15 -3030 ((-552) $ (-552))) (-15 -1737 ($ $ (-552))) (-15 -1905 ($ (-1148 (-552)) (-552))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-144) . T) ((-599 (-842)) . T) ((-169) . T) ((-284) . T) ((-301) . T) ((-445) . T) ((-544) . T) ((-630 $) . T) ((-700 $) . T) ((-709) . T) ((-899) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1737 (($ $ (-552)) NIL)) (-4224 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-1905 (($ (-1148 (-552)) (-552)) NIL)) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1497 (($ $) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2641 (((-754) $) NIL)) (-2624 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3484 (((-552)) NIL)) (-3752 (((-552) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-4168 (($ $ (-552)) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-3080 (((-1132 (-552)) $) NIL)) (-2890 (($ $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL)) (-3995 (((-754)) NIL)) (-3778 (((-111) $ $) NIL)) (-3030 (((-552) $ (-552)) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL))) +(((-849 |#1|) (-848 |#1|) (-552)) (T -849)) +NIL +(-848 |#1|) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3471 (((-849 |#1|) $) NIL (|has| (-849 |#1|) (-301)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-849 |#1|) (-888)))) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| (-849 |#1|) (-888)))) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL (|has| (-849 |#1|) (-803)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-849 |#1|) "failed") $) NIL) (((-3 (-1152) "failed") $) NIL (|has| (-849 |#1|) (-1017 (-1152)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-849 |#1|) (-1017 (-552)))) (((-3 (-552) "failed") $) NIL (|has| (-849 |#1|) (-1017 (-552))))) (-1703 (((-849 |#1|) $) NIL) (((-1152) $) NIL (|has| (-849 |#1|) (-1017 (-1152)))) (((-401 (-552)) $) NIL (|has| (-849 |#1|) (-1017 (-552)))) (((-552) $) NIL (|has| (-849 |#1|) (-1017 (-552))))) (-1405 (($ $) NIL) (($ (-552) $) NIL)) (-2813 (($ $ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| (-849 |#1|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| (-849 |#1|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-849 |#1|))) (|:| |vec| (-1235 (-849 |#1|)))) (-671 $) (-1235 $)) NIL) (((-671 (-849 |#1|)) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-849 |#1|) (-537)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2983 (((-111) $) NIL (|has| (-849 |#1|) (-803)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| (-849 |#1|) (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| (-849 |#1|) (-865 (-373))))) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL)) (-2918 (((-849 |#1|) $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| (-849 |#1|) (-1127)))) (-1508 (((-111) $) NIL (|has| (-849 |#1|) (-803)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL (|has| (-849 |#1|) (-830)))) (-4093 (($ $ $) NIL (|has| (-849 |#1|) (-830)))) (-3516 (($ (-1 (-849 |#1|) (-849 |#1|)) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-849 |#1|) (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL (|has| (-849 |#1|) (-301)))) (-2060 (((-849 |#1|) $) NIL (|has| (-849 |#1|) (-537)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-849 |#1|) (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-849 |#1|) (-888)))) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3321 (($ $ (-627 (-849 |#1|)) (-627 (-849 |#1|))) NIL (|has| (-849 |#1|) (-303 (-849 |#1|)))) (($ $ (-849 |#1|) (-849 |#1|)) NIL (|has| (-849 |#1|) (-303 (-849 |#1|)))) (($ $ (-288 (-849 |#1|))) NIL (|has| (-849 |#1|) (-303 (-849 |#1|)))) (($ $ (-627 (-288 (-849 |#1|)))) NIL (|has| (-849 |#1|) (-303 (-849 |#1|)))) (($ $ (-627 (-1152)) (-627 (-849 |#1|))) NIL (|has| (-849 |#1|) (-506 (-1152) (-849 |#1|)))) (($ $ (-1152) (-849 |#1|)) NIL (|has| (-849 |#1|) (-506 (-1152) (-849 |#1|))))) (-2718 (((-754) $) NIL)) (-1985 (($ $ (-849 |#1|)) NIL (|has| (-849 |#1|) (-280 (-849 |#1|) (-849 |#1|))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $) NIL (|has| (-849 |#1|) (-228))) (($ $ (-754)) NIL (|has| (-849 |#1|) (-228))) (($ $ (-1152)) NIL (|has| (-849 |#1|) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-849 |#1|) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-849 |#1|) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-849 |#1|) (-879 (-1152)))) (($ $ (-1 (-849 |#1|) (-849 |#1|)) (-754)) NIL) (($ $ (-1 (-849 |#1|) (-849 |#1|))) NIL)) (-1583 (($ $) NIL)) (-2929 (((-849 |#1|) $) NIL)) (-3562 (((-871 (-552)) $) NIL (|has| (-849 |#1|) (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| (-849 |#1|) (-600 (-871 (-373))))) (((-528) $) NIL (|has| (-849 |#1|) (-600 (-528)))) (((-373) $) NIL (|has| (-849 |#1|) (-1001))) (((-220) $) NIL (|has| (-849 |#1|) (-1001)))) (-2771 (((-171 (-401 (-552))) $) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| (-849 |#1|) (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL) (($ (-849 |#1|)) NIL) (($ (-1152)) NIL (|has| (-849 |#1|) (-1017 (-1152))))) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| (-849 |#1|) (-888))) (|has| (-849 |#1|) (-142))))) (-3995 (((-754)) NIL)) (-3796 (((-849 |#1|) $) NIL (|has| (-849 |#1|) (-537)))) (-3778 (((-111) $ $) NIL)) (-3030 (((-401 (-552)) $ (-552)) NIL)) (-3329 (($ $) NIL (|has| (-849 |#1|) (-803)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $) NIL (|has| (-849 |#1|) (-228))) (($ $ (-754)) NIL (|has| (-849 |#1|) (-228))) (($ $ (-1152)) NIL (|has| (-849 |#1|) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-849 |#1|) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-849 |#1|) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-849 |#1|) (-879 (-1152)))) (($ $ (-1 (-849 |#1|) (-849 |#1|)) (-754)) NIL) (($ $ (-1 (-849 |#1|) (-849 |#1|))) NIL)) (-2351 (((-111) $ $) NIL (|has| (-849 |#1|) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-849 |#1|) (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| (-849 |#1|) (-830)))) (-2316 (((-111) $ $) NIL (|has| (-849 |#1|) (-830)))) (-2407 (($ $ $) NIL) (($ (-849 |#1|) (-849 |#1|)) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ (-849 |#1|) $) NIL) (($ $ (-849 |#1|)) NIL))) +(((-850 |#1|) (-13 (-971 (-849 |#1|)) (-10 -8 (-15 -3030 ((-401 (-552)) $ (-552))) (-15 -2771 ((-171 (-401 (-552))) $)) (-15 -1405 ($ $)) (-15 -1405 ($ (-552) $)))) (-552)) (T -850)) +((-3030 (*1 *2 *1 *3) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-850 *4)) (-14 *4 *3) (-5 *3 (-552)))) (-2771 (*1 *2 *1) (-12 (-5 *2 (-171 (-401 (-552)))) (-5 *1 (-850 *3)) (-14 *3 (-552)))) (-1405 (*1 *1 *1) (-12 (-5 *1 (-850 *2)) (-14 *2 (-552)))) (-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-850 *3)) (-14 *3 *2)))) +(-13 (-971 (-849 |#1|)) (-10 -8 (-15 -3030 ((-401 (-552)) $ (-552))) (-15 -2771 ((-171 (-401 (-552))) $)) (-15 -1405 ($ $)) (-15 -1405 ($ (-552) $)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3471 ((|#2| $) NIL (|has| |#2| (-301)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL (|has| |#2| (-803)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) NIL) (((-3 (-1152) "failed") $) NIL (|has| |#2| (-1017 (-1152)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1017 (-552)))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1017 (-552))))) (-1703 ((|#2| $) NIL) (((-1152) $) NIL (|has| |#2| (-1017 (-1152)))) (((-401 (-552)) $) NIL (|has| |#2| (-1017 (-552)))) (((-552) $) NIL (|has| |#2| (-1017 (-552))))) (-1405 (($ $) 31) (($ (-552) $) 32)) (-2813 (($ $ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) 53)) (-1279 (($) NIL (|has| |#2| (-537)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2983 (((-111) $) NIL (|has| |#2| (-803)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| |#2| (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| |#2| (-865 (-373))))) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL)) (-2918 ((|#2| $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| |#2| (-1127)))) (-1508 (((-111) $) NIL (|has| |#2| (-803)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL (|has| |#2| (-830)))) (-4093 (($ $ $) NIL (|has| |#2| (-830)))) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 49)) (-3002 (($) NIL (|has| |#2| (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL (|has| |#2| (-301)))) (-2060 ((|#2| $) NIL (|has| |#2| (-537)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3321 (($ $ (-627 |#2|) (-627 |#2|)) NIL (|has| |#2| (-303 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-303 |#2|))) (($ $ (-288 |#2|)) NIL (|has| |#2| (-303 |#2|))) (($ $ (-627 (-288 |#2|))) NIL (|has| |#2| (-303 |#2|))) (($ $ (-627 (-1152)) (-627 |#2|)) NIL (|has| |#2| (-506 (-1152) |#2|))) (($ $ (-1152) |#2|) NIL (|has| |#2| (-506 (-1152) |#2|)))) (-2718 (((-754) $) NIL)) (-1985 (($ $ |#2|) NIL (|has| |#2| (-280 |#2| |#2|)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $) NIL (|has| |#2| (-228))) (($ $ (-754)) NIL (|has| |#2| (-228))) (($ $ (-1152)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1583 (($ $) NIL)) (-2929 ((|#2| $) NIL)) (-3562 (((-871 (-552)) $) NIL (|has| |#2| (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| |#2| (-600 (-871 (-373))))) (((-528) $) NIL (|has| |#2| (-600 (-528)))) (((-373) $) NIL (|has| |#2| (-1001))) (((-220) $) NIL (|has| |#2| (-1001)))) (-2771 (((-171 (-401 (-552))) $) 68)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-888))))) (-1477 (((-842) $) 87) (($ (-552)) 19) (($ $) NIL) (($ (-401 (-552))) 24) (($ |#2|) 18) (($ (-1152)) NIL (|has| |#2| (-1017 (-1152))))) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#2| (-888))) (|has| |#2| (-142))))) (-3995 (((-754)) NIL)) (-3796 ((|#2| $) NIL (|has| |#2| (-537)))) (-3778 (((-111) $ $) NIL)) (-3030 (((-401 (-552)) $ (-552)) 60)) (-3329 (($ $) NIL (|has| |#2| (-803)))) (-1922 (($) 14 T CONST)) (-1933 (($) 16 T CONST)) (-4251 (($ $) NIL (|has| |#2| (-228))) (($ $ (-754)) NIL (|has| |#2| (-228))) (($ $ (-1152)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2351 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2292 (((-111) $ $) 35)) (-2340 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2407 (($ $ $) 23) (($ |#2| |#2|) 54)) (-2396 (($ $) 39) (($ $ $) 41)) (-2384 (($ $ $) 37)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) 50)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 42) (($ $ $) 44) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) +(((-851 |#1| |#2|) (-13 (-971 |#2|) (-10 -8 (-15 -3030 ((-401 (-552)) $ (-552))) (-15 -2771 ((-171 (-401 (-552))) $)) (-15 -1405 ($ $)) (-15 -1405 ($ (-552) $)))) (-552) (-848 |#1|)) (T -851)) +((-3030 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-401 (-552))) (-5 *1 (-851 *4 *5)) (-5 *3 (-552)) (-4 *5 (-848 *4)))) (-2771 (*1 *2 *1) (-12 (-14 *3 (-552)) (-5 *2 (-171 (-401 (-552)))) (-5 *1 (-851 *3 *4)) (-4 *4 (-848 *3)))) (-1405 (*1 *1 *1) (-12 (-14 *2 (-552)) (-5 *1 (-851 *2 *3)) (-4 *3 (-848 *2)))) (-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-14 *3 *2) (-5 *1 (-851 *3 *4)) (-4 *4 (-848 *3))))) +(-13 (-971 |#2|) (-10 -8 (-15 -3030 ((-401 (-552)) $ (-552))) (-15 -2771 ((-171 (-401 (-552))) $)) (-15 -1405 ($ $)) (-15 -1405 ($ (-552) $)))) +((-1465 (((-111) $ $) NIL (-12 (|has| |#1| (-1076)) (|has| |#2| (-1076))))) (-4143 ((|#2| $) 12)) (-4189 (($ |#1| |#2|) 9)) (-1595 (((-1134) $) NIL (-12 (|has| |#1| (-1076)) (|has| |#2| (-1076))))) (-1498 (((-1096) $) NIL (-12 (|has| |#1| (-1076)) (|has| |#2| (-1076))))) (-3340 ((|#1| $) 11)) (-1490 (($ |#1| |#2|) 10)) (-1477 (((-842) $) 18 (-1559 (-12 (|has| |#1| (-599 (-842))) (|has| |#2| (-599 (-842)))) (-12 (|has| |#1| (-1076)) (|has| |#2| (-1076)))))) (-2292 (((-111) $ $) 22 (-12 (|has| |#1| (-1076)) (|has| |#2| (-1076)))))) +(((-852 |#1| |#2|) (-13 (-1189) (-10 -8 (IF (|has| |#1| (-599 (-842))) (IF (|has| |#2| (-599 (-842))) (-6 (-599 (-842))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1076)) (IF (|has| |#2| (-1076)) (-6 (-1076)) |%noBranch|) |%noBranch|) (-15 -4189 ($ |#1| |#2|)) (-15 -1490 ($ |#1| |#2|)) (-15 -3340 (|#1| $)) (-15 -4143 (|#2| $)))) (-1189) (-1189)) (T -852)) +((-4189 (*1 *1 *2 *3) (-12 (-5 *1 (-852 *2 *3)) (-4 *2 (-1189)) (-4 *3 (-1189)))) (-1490 (*1 *1 *2 *3) (-12 (-5 *1 (-852 *2 *3)) (-4 *2 (-1189)) (-4 *3 (-1189)))) (-3340 (*1 *2 *1) (-12 (-4 *2 (-1189)) (-5 *1 (-852 *2 *3)) (-4 *3 (-1189)))) (-4143 (*1 *2 *1) (-12 (-4 *2 (-1189)) (-5 *1 (-852 *3 *2)) (-4 *3 (-1189))))) +(-13 (-1189) (-10 -8 (IF (|has| |#1| (-599 (-842))) (IF (|has| |#2| (-599 (-842))) (-6 (-599 (-842))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1076)) (IF (|has| |#2| (-1076)) (-6 (-1076)) |%noBranch|) |%noBranch|) (-15 -4189 ($ |#1| |#2|)) (-15 -1490 ($ |#1| |#2|)) (-15 -3340 (|#1| $)) (-15 -4143 (|#2| $)))) +((-1465 (((-111) $ $) NIL)) (-2291 (((-552) $) 15)) (-3883 (($ (-154)) 11)) (-4254 (($ (-154)) 12)) (-1595 (((-1134) $) NIL)) (-3808 (((-154) $) 13)) (-1498 (((-1096) $) NIL)) (-4030 (($ (-154)) 9)) (-1310 (($ (-154)) 8)) (-1477 (((-842) $) 23) (($ (-154)) 16)) (-3854 (($ (-154)) 10)) (-2292 (((-111) $ $) NIL))) +(((-853) (-13 (-1076) (-10 -8 (-15 -1310 ($ (-154))) (-15 -4030 ($ (-154))) (-15 -3854 ($ (-154))) (-15 -3883 ($ (-154))) (-15 -4254 ($ (-154))) (-15 -3808 ((-154) $)) (-15 -2291 ((-552) $)) (-15 -1477 ($ (-154)))))) (T -853)) +((-1310 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853)))) (-4030 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853)))) (-3854 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853)))) (-3883 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853)))) (-4254 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853)))) (-3808 (*1 *2 *1) (-12 (-5 *2 (-154)) (-5 *1 (-853)))) (-2291 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-853)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853))))) +(-13 (-1076) (-10 -8 (-15 -1310 ($ (-154))) (-15 -4030 ($ (-154))) (-15 -3854 ($ (-154))) (-15 -3883 ($ (-154))) (-15 -4254 ($ (-154))) (-15 -3808 ((-154) $)) (-15 -2291 ((-552) $)) (-15 -1477 ($ (-154))))) +((-1477 (((-310 (-552)) (-401 (-931 (-48)))) 23) (((-310 (-552)) (-931 (-48))) 18))) +(((-854) (-10 -7 (-15 -1477 ((-310 (-552)) (-931 (-48)))) (-15 -1477 ((-310 (-552)) (-401 (-931 (-48))))))) (T -854)) +((-1477 (*1 *2 *3) (-12 (-5 *3 (-401 (-931 (-48)))) (-5 *2 (-310 (-552))) (-5 *1 (-854)))) (-1477 (*1 *2 *3) (-12 (-5 *3 (-931 (-48))) (-5 *2 (-310 (-552))) (-5 *1 (-854))))) +(-10 -7 (-15 -1477 ((-310 (-552)) (-931 (-48)))) (-15 -1477 ((-310 (-552)) (-401 (-931 (-48)))))) +((-3516 (((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)) 14))) +(((-855 |#1| |#2|) (-10 -7 (-15 -3516 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)))) (-1189) (-1189)) (T -855)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-856 *6)) (-5 *1 (-855 *5 *6))))) +(-10 -7 (-15 -3516 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)))) +((-2139 (($ |#1| |#1|) 8)) (-1400 ((|#1| $ (-754)) 10))) +(((-856 |#1|) (-10 -8 (-15 -2139 ($ |#1| |#1|)) (-15 -1400 (|#1| $ (-754)))) (-1189)) (T -856)) +((-1400 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *1 (-856 *2)) (-4 *2 (-1189)))) (-2139 (*1 *1 *2 *2) (-12 (-5 *1 (-856 *2)) (-4 *2 (-1189))))) +(-10 -8 (-15 -2139 ($ |#1| |#1|)) (-15 -1400 (|#1| $ (-754)))) +((-3516 (((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)) 14))) +(((-857 |#1| |#2|) (-10 -7 (-15 -3516 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)))) (-1189) (-1189)) (T -857)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-858 *6)) (-5 *1 (-857 *5 *6))))) +(-10 -7 (-15 -3516 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)))) +((-2139 (($ |#1| |#1| |#1|) 8)) (-1400 ((|#1| $ (-754)) 10))) +(((-858 |#1|) (-10 -8 (-15 -2139 ($ |#1| |#1| |#1|)) (-15 -1400 (|#1| $ (-754)))) (-1189)) (T -858)) +((-1400 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *1 (-858 *2)) (-4 *2 (-1189)))) (-2139 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-858 *2)) (-4 *2 (-1189))))) +(-10 -8 (-15 -2139 ($ |#1| |#1| |#1|)) (-15 -1400 (|#1| $ (-754)))) +((-2977 (((-627 (-1157)) (-1134)) 9))) +(((-859) (-10 -7 (-15 -2977 ((-627 (-1157)) (-1134))))) (T -859)) +((-2977 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-627 (-1157))) (-5 *1 (-859))))) +(-10 -7 (-15 -2977 ((-627 (-1157)) (-1134)))) +((-3516 (((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)) 14))) +(((-860 |#1| |#2|) (-10 -7 (-15 -3516 ((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)))) (-1189) (-1189)) (T -860)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-861 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-861 *6)) (-5 *1 (-860 *5 *6))))) +(-10 -7 (-15 -3516 ((-861 |#2|) (-1 |#2| |#1|) (-861 |#1|)))) +((-2793 (($ |#1| |#1| |#1|) 8)) (-1400 ((|#1| $ (-754)) 10))) +(((-861 |#1|) (-10 -8 (-15 -2793 ($ |#1| |#1| |#1|)) (-15 -1400 (|#1| $ (-754)))) (-1189)) (T -861)) +((-1400 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *1 (-861 *2)) (-4 *2 (-1189)))) (-2793 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1189))))) +(-10 -8 (-15 -2793 ($ |#1| |#1| |#1|)) (-15 -1400 (|#1| $ (-754)))) +((-3293 (((-1132 (-627 (-552))) (-627 (-552)) (-1132 (-627 (-552)))) 32)) (-3532 (((-1132 (-627 (-552))) (-627 (-552)) (-627 (-552))) 28)) (-1874 (((-1132 (-627 (-552))) (-627 (-552))) 41) (((-1132 (-627 (-552))) (-627 (-552)) (-627 (-552))) 40)) (-1409 (((-1132 (-627 (-552))) (-552)) 42)) (-3163 (((-1132 (-627 (-552))) (-552) (-552)) 22) (((-1132 (-627 (-552))) (-552)) 16) (((-1132 (-627 (-552))) (-552) (-552) (-552)) 12)) (-1734 (((-1132 (-627 (-552))) (-1132 (-627 (-552)))) 26)) (-2616 (((-627 (-552)) (-627 (-552))) 25))) +(((-862) (-10 -7 (-15 -3163 ((-1132 (-627 (-552))) (-552) (-552) (-552))) (-15 -3163 ((-1132 (-627 (-552))) (-552))) (-15 -3163 ((-1132 (-627 (-552))) (-552) (-552))) (-15 -2616 ((-627 (-552)) (-627 (-552)))) (-15 -1734 ((-1132 (-627 (-552))) (-1132 (-627 (-552))))) (-15 -3532 ((-1132 (-627 (-552))) (-627 (-552)) (-627 (-552)))) (-15 -3293 ((-1132 (-627 (-552))) (-627 (-552)) (-1132 (-627 (-552))))) (-15 -1874 ((-1132 (-627 (-552))) (-627 (-552)) (-627 (-552)))) (-15 -1874 ((-1132 (-627 (-552))) (-627 (-552)))) (-15 -1409 ((-1132 (-627 (-552))) (-552))))) (T -862)) +((-1409 (*1 *2 *3) (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-552)))) (-1874 (*1 *2 *3) (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-627 (-552))))) (-1874 (*1 *2 *3 *3) (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-627 (-552))))) (-3293 (*1 *2 *3 *2) (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *3 (-627 (-552))) (-5 *1 (-862)))) (-3532 (*1 *2 *3 *3) (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-627 (-552))))) (-1734 (*1 *2 *2) (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)))) (-2616 (*1 *2 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-862)))) (-3163 (*1 *2 *3 *3) (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-552)))) (-3163 (*1 *2 *3) (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-552)))) (-3163 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-552))))) +(-10 -7 (-15 -3163 ((-1132 (-627 (-552))) (-552) (-552) (-552))) (-15 -3163 ((-1132 (-627 (-552))) (-552))) (-15 -3163 ((-1132 (-627 (-552))) (-552) (-552))) (-15 -2616 ((-627 (-552)) (-627 (-552)))) (-15 -1734 ((-1132 (-627 (-552))) (-1132 (-627 (-552))))) (-15 -3532 ((-1132 (-627 (-552))) (-627 (-552)) (-627 (-552)))) (-15 -3293 ((-1132 (-627 (-552))) (-627 (-552)) (-1132 (-627 (-552))))) (-15 -1874 ((-1132 (-627 (-552))) (-627 (-552)) (-627 (-552)))) (-15 -1874 ((-1132 (-627 (-552))) (-627 (-552)))) (-15 -1409 ((-1132 (-627 (-552))) (-552)))) +((-3562 (((-871 (-373)) $) 9 (|has| |#1| (-600 (-871 (-373))))) (((-871 (-552)) $) 8 (|has| |#1| (-600 (-871 (-552))))))) +(((-863 |#1|) (-137) (-1189)) (T -863)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-600 (-871 (-552)))) (-6 (-600 (-871 (-552)))) |%noBranch|) (IF (|has| |t#1| (-600 (-871 (-373)))) (-6 (-600 (-871 (-373)))) |%noBranch|))) +(((-600 (-871 (-373))) |has| |#1| (-600 (-871 (-373)))) ((-600 (-871 (-552))) |has| |#1| (-600 (-871 (-552))))) +((-1465 (((-111) $ $) NIL)) (-2655 (($) 14)) (-2639 (($ (-868 |#1| |#2|) (-868 |#1| |#3|)) 27)) (-4226 (((-868 |#1| |#3|) $) 16)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-4102 (((-111) $) 22)) (-2953 (($) 19)) (-1477 (((-842) $) 30)) (-2992 (((-868 |#1| |#2|) $) 15)) (-2292 (((-111) $ $) 25))) +(((-864 |#1| |#2| |#3|) (-13 (-1076) (-10 -8 (-15 -4102 ((-111) $)) (-15 -2953 ($)) (-15 -2655 ($)) (-15 -2639 ($ (-868 |#1| |#2|) (-868 |#1| |#3|))) (-15 -2992 ((-868 |#1| |#2|) $)) (-15 -4226 ((-868 |#1| |#3|) $)))) (-1076) (-1076) (-648 |#2|)) (T -864)) +((-4102 (*1 *2 *1) (-12 (-4 *4 (-1076)) (-5 *2 (-111)) (-5 *1 (-864 *3 *4 *5)) (-4 *3 (-1076)) (-4 *5 (-648 *4)))) (-2953 (*1 *1) (-12 (-4 *3 (-1076)) (-5 *1 (-864 *2 *3 *4)) (-4 *2 (-1076)) (-4 *4 (-648 *3)))) (-2655 (*1 *1) (-12 (-4 *3 (-1076)) (-5 *1 (-864 *2 *3 *4)) (-4 *2 (-1076)) (-4 *4 (-648 *3)))) (-2639 (*1 *1 *2 *3) (-12 (-5 *2 (-868 *4 *5)) (-5 *3 (-868 *4 *6)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-648 *5)) (-5 *1 (-864 *4 *5 *6)))) (-2992 (*1 *2 *1) (-12 (-4 *4 (-1076)) (-5 *2 (-868 *3 *4)) (-5 *1 (-864 *3 *4 *5)) (-4 *3 (-1076)) (-4 *5 (-648 *4)))) (-4226 (*1 *2 *1) (-12 (-4 *4 (-1076)) (-5 *2 (-868 *3 *5)) (-5 *1 (-864 *3 *4 *5)) (-4 *3 (-1076)) (-4 *5 (-648 *4))))) +(-13 (-1076) (-10 -8 (-15 -4102 ((-111) $)) (-15 -2953 ($)) (-15 -2655 ($)) (-15 -2639 ($ (-868 |#1| |#2|) (-868 |#1| |#3|))) (-15 -2992 ((-868 |#1| |#2|) $)) (-15 -4226 ((-868 |#1| |#3|) $)))) +((-1465 (((-111) $ $) 7)) (-4208 (((-868 |#1| $) $ (-871 |#1|) (-868 |#1| $)) 13)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 6))) +(((-865 |#1|) (-137) (-1076)) (T -865)) +((-4208 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-868 *4 *1)) (-5 *3 (-871 *4)) (-4 *1 (-865 *4)) (-4 *4 (-1076))))) +(-13 (-1076) (-10 -8 (-15 -4208 ((-868 |t#1| $) $ (-871 |t#1|) (-868 |t#1| $))))) +(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-2070 (((-111) (-627 |#2|) |#3|) 23) (((-111) |#2| |#3|) 18)) (-2648 (((-868 |#1| |#2|) |#2| |#3|) 43 (-12 (-1681 (|has| |#2| (-1017 (-1152)))) (-1681 (|has| |#2| (-1028))))) (((-627 (-288 (-931 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1028)) (-1681 (|has| |#2| (-1017 (-1152)))))) (((-627 (-288 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1017 (-1152)))) (((-864 |#1| |#2| (-627 |#2|)) (-627 |#2|) |#3|) 21))) +(((-866 |#1| |#2| |#3|) (-10 -7 (-15 -2070 ((-111) |#2| |#3|)) (-15 -2070 ((-111) (-627 |#2|) |#3|)) (-15 -2648 ((-864 |#1| |#2| (-627 |#2|)) (-627 |#2|) |#3|)) (IF (|has| |#2| (-1017 (-1152))) (-15 -2648 ((-627 (-288 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1028)) (-15 -2648 ((-627 (-288 (-931 |#2|))) |#2| |#3|)) (-15 -2648 ((-868 |#1| |#2|) |#2| |#3|))))) (-1076) (-865 |#1|) (-600 (-871 |#1|))) (T -866)) +((-2648 (*1 *2 *3 *4) (-12 (-4 *5 (-1076)) (-5 *2 (-868 *5 *3)) (-5 *1 (-866 *5 *3 *4)) (-1681 (-4 *3 (-1017 (-1152)))) (-1681 (-4 *3 (-1028))) (-4 *3 (-865 *5)) (-4 *4 (-600 (-871 *5))))) (-2648 (*1 *2 *3 *4) (-12 (-4 *5 (-1076)) (-5 *2 (-627 (-288 (-931 *3)))) (-5 *1 (-866 *5 *3 *4)) (-4 *3 (-1028)) (-1681 (-4 *3 (-1017 (-1152)))) (-4 *3 (-865 *5)) (-4 *4 (-600 (-871 *5))))) (-2648 (*1 *2 *3 *4) (-12 (-4 *5 (-1076)) (-5 *2 (-627 (-288 *3))) (-5 *1 (-866 *5 *3 *4)) (-4 *3 (-1017 (-1152))) (-4 *3 (-865 *5)) (-4 *4 (-600 (-871 *5))))) (-2648 (*1 *2 *3 *4) (-12 (-4 *5 (-1076)) (-4 *6 (-865 *5)) (-5 *2 (-864 *5 *6 (-627 *6))) (-5 *1 (-866 *5 *6 *4)) (-5 *3 (-627 *6)) (-4 *4 (-600 (-871 *5))))) (-2070 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *6)) (-4 *6 (-865 *5)) (-4 *5 (-1076)) (-5 *2 (-111)) (-5 *1 (-866 *5 *6 *4)) (-4 *4 (-600 (-871 *5))))) (-2070 (*1 *2 *3 *4) (-12 (-4 *5 (-1076)) (-5 *2 (-111)) (-5 *1 (-866 *5 *3 *4)) (-4 *3 (-865 *5)) (-4 *4 (-600 (-871 *5)))))) +(-10 -7 (-15 -2070 ((-111) |#2| |#3|)) (-15 -2070 ((-111) (-627 |#2|) |#3|)) (-15 -2648 ((-864 |#1| |#2| (-627 |#2|)) (-627 |#2|) |#3|)) (IF (|has| |#2| (-1017 (-1152))) (-15 -2648 ((-627 (-288 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1028)) (-15 -2648 ((-627 (-288 (-931 |#2|))) |#2| |#3|)) (-15 -2648 ((-868 |#1| |#2|) |#2| |#3|))))) +((-3516 (((-868 |#1| |#3|) (-1 |#3| |#2|) (-868 |#1| |#2|)) 22))) +(((-867 |#1| |#2| |#3|) (-10 -7 (-15 -3516 ((-868 |#1| |#3|) (-1 |#3| |#2|) (-868 |#1| |#2|)))) (-1076) (-1076) (-1076)) (T -867)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-868 *5 *6)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-868 *5 *7)) (-5 *1 (-867 *5 *6 *7))))) +(-10 -7 (-15 -3516 ((-868 |#1| |#3|) (-1 |#3| |#2|) (-868 |#1| |#2|)))) +((-1465 (((-111) $ $) NIL)) (-3416 (($ $ $) 39)) (-4139 (((-3 (-111) "failed") $ (-871 |#1|)) 36)) (-2655 (($) 12)) (-1595 (((-1134) $) NIL)) (-2684 (($ (-871 |#1|) |#2| $) 20)) (-1498 (((-1096) $) NIL)) (-2567 (((-3 |#2| "failed") (-871 |#1|) $) 50)) (-4102 (((-111) $) 15)) (-2953 (($) 13)) (-1790 (((-627 (-2 (|:| -3998 (-1152)) (|:| -2162 |#2|))) $) 25)) (-1490 (($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 |#2|)))) 23)) (-1477 (((-842) $) 44)) (-4339 (($ (-871 |#1|) |#2| $ |#2|) 48)) (-4015 (($ (-871 |#1|) |#2| $) 47)) (-2292 (((-111) $ $) 41))) +(((-868 |#1| |#2|) (-13 (-1076) (-10 -8 (-15 -4102 ((-111) $)) (-15 -2953 ($)) (-15 -2655 ($)) (-15 -3416 ($ $ $)) (-15 -2567 ((-3 |#2| "failed") (-871 |#1|) $)) (-15 -4015 ($ (-871 |#1|) |#2| $)) (-15 -2684 ($ (-871 |#1|) |#2| $)) (-15 -4339 ($ (-871 |#1|) |#2| $ |#2|)) (-15 -1790 ((-627 (-2 (|:| -3998 (-1152)) (|:| -2162 |#2|))) $)) (-15 -1490 ($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 |#2|))))) (-15 -4139 ((-3 (-111) "failed") $ (-871 |#1|))))) (-1076) (-1076)) (T -868)) +((-4102 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-868 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)))) (-2953 (*1 *1) (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076)))) (-2655 (*1 *1) (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076)))) (-3416 (*1 *1 *1 *1) (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076)))) (-2567 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-871 *4)) (-4 *4 (-1076)) (-4 *2 (-1076)) (-5 *1 (-868 *4 *2)))) (-4015 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-871 *4)) (-4 *4 (-1076)) (-5 *1 (-868 *4 *3)) (-4 *3 (-1076)))) (-2684 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-871 *4)) (-4 *4 (-1076)) (-5 *1 (-868 *4 *3)) (-4 *3 (-1076)))) (-4339 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-871 *4)) (-4 *4 (-1076)) (-5 *1 (-868 *4 *3)) (-4 *3 (-1076)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 *4)))) (-5 *1 (-868 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)))) (-1490 (*1 *1 *2) (-12 (-5 *2 (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 *4)))) (-4 *4 (-1076)) (-5 *1 (-868 *3 *4)) (-4 *3 (-1076)))) (-4139 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-871 *4)) (-4 *4 (-1076)) (-5 *2 (-111)) (-5 *1 (-868 *4 *5)) (-4 *5 (-1076))))) +(-13 (-1076) (-10 -8 (-15 -4102 ((-111) $)) (-15 -2953 ($)) (-15 -2655 ($)) (-15 -3416 ($ $ $)) (-15 -2567 ((-3 |#2| "failed") (-871 |#1|) $)) (-15 -4015 ($ (-871 |#1|) |#2| $)) (-15 -2684 ($ (-871 |#1|) |#2| $)) (-15 -4339 ($ (-871 |#1|) |#2| $ |#2|)) (-15 -1790 ((-627 (-2 (|:| -3998 (-1152)) (|:| -2162 |#2|))) $)) (-15 -1490 ($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 |#2|))))) (-15 -4139 ((-3 (-111) "failed") $ (-871 |#1|))))) +((-1792 (((-871 |#1|) (-871 |#1|) (-627 (-1152)) (-1 (-111) (-627 |#2|))) 32) (((-871 |#1|) (-871 |#1|) (-627 (-1 (-111) |#2|))) 43) (((-871 |#1|) (-871 |#1|) (-1 (-111) |#2|)) 35)) (-4139 (((-111) (-627 |#2|) (-871 |#1|)) 40) (((-111) |#2| (-871 |#1|)) 36)) (-2714 (((-1 (-111) |#2|) (-871 |#1|)) 16)) (-3517 (((-627 |#2|) (-871 |#1|)) 24)) (-3925 (((-871 |#1|) (-871 |#1|) |#2|) 20))) +(((-869 |#1| |#2|) (-10 -7 (-15 -1792 ((-871 |#1|) (-871 |#1|) (-1 (-111) |#2|))) (-15 -1792 ((-871 |#1|) (-871 |#1|) (-627 (-1 (-111) |#2|)))) (-15 -1792 ((-871 |#1|) (-871 |#1|) (-627 (-1152)) (-1 (-111) (-627 |#2|)))) (-15 -2714 ((-1 (-111) |#2|) (-871 |#1|))) (-15 -4139 ((-111) |#2| (-871 |#1|))) (-15 -4139 ((-111) (-627 |#2|) (-871 |#1|))) (-15 -3925 ((-871 |#1|) (-871 |#1|) |#2|)) (-15 -3517 ((-627 |#2|) (-871 |#1|)))) (-1076) (-1189)) (T -869)) +((-3517 (*1 *2 *3) (-12 (-5 *3 (-871 *4)) (-4 *4 (-1076)) (-5 *2 (-627 *5)) (-5 *1 (-869 *4 *5)) (-4 *5 (-1189)))) (-3925 (*1 *2 *2 *3) (-12 (-5 *2 (-871 *4)) (-4 *4 (-1076)) (-5 *1 (-869 *4 *3)) (-4 *3 (-1189)))) (-4139 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *6)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) (-4 *6 (-1189)) (-5 *2 (-111)) (-5 *1 (-869 *5 *6)))) (-4139 (*1 *2 *3 *4) (-12 (-5 *4 (-871 *5)) (-4 *5 (-1076)) (-5 *2 (-111)) (-5 *1 (-869 *5 *3)) (-4 *3 (-1189)))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-871 *4)) (-4 *4 (-1076)) (-5 *2 (-1 (-111) *5)) (-5 *1 (-869 *4 *5)) (-4 *5 (-1189)))) (-1792 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-871 *5)) (-5 *3 (-627 (-1152))) (-5 *4 (-1 (-111) (-627 *6))) (-4 *5 (-1076)) (-4 *6 (-1189)) (-5 *1 (-869 *5 *6)))) (-1792 (*1 *2 *2 *3) (-12 (-5 *2 (-871 *4)) (-5 *3 (-627 (-1 (-111) *5))) (-4 *4 (-1076)) (-4 *5 (-1189)) (-5 *1 (-869 *4 *5)))) (-1792 (*1 *2 *2 *3) (-12 (-5 *2 (-871 *4)) (-5 *3 (-1 (-111) *5)) (-4 *4 (-1076)) (-4 *5 (-1189)) (-5 *1 (-869 *4 *5))))) +(-10 -7 (-15 -1792 ((-871 |#1|) (-871 |#1|) (-1 (-111) |#2|))) (-15 -1792 ((-871 |#1|) (-871 |#1|) (-627 (-1 (-111) |#2|)))) (-15 -1792 ((-871 |#1|) (-871 |#1|) (-627 (-1152)) (-1 (-111) (-627 |#2|)))) (-15 -2714 ((-1 (-111) |#2|) (-871 |#1|))) (-15 -4139 ((-111) |#2| (-871 |#1|))) (-15 -4139 ((-111) (-627 |#2|) (-871 |#1|))) (-15 -3925 ((-871 |#1|) (-871 |#1|) |#2|)) (-15 -3517 ((-627 |#2|) (-871 |#1|)))) +((-3516 (((-871 |#2|) (-1 |#2| |#1|) (-871 |#1|)) 19))) +(((-870 |#1| |#2|) (-10 -7 (-15 -3516 ((-871 |#2|) (-1 |#2| |#1|) (-871 |#1|)))) (-1076) (-1076)) (T -870)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-5 *2 (-871 *6)) (-5 *1 (-870 *5 *6))))) +(-10 -7 (-15 -3516 ((-871 |#2|) (-1 |#2| |#1|) (-871 |#1|)))) +((-1465 (((-111) $ $) NIL)) (-2916 (($ $ (-627 (-52))) 64)) (-1853 (((-627 $) $) 118)) (-3021 (((-2 (|:| |var| (-627 (-1152))) (|:| |pred| (-52))) $) 24)) (-1891 (((-111) $) 30)) (-2763 (($ $ (-627 (-1152)) (-52)) 25)) (-2725 (($ $ (-627 (-52))) 63)) (-4039 (((-3 |#1| "failed") $) 61) (((-3 (-1152) "failed") $) 140)) (-1703 ((|#1| $) 58) (((-1152) $) NIL)) (-2604 (($ $) 108)) (-1370 (((-111) $) 47)) (-3160 (((-627 (-52)) $) 45)) (-1301 (($ (-1152) (-111) (-111) (-111)) 65)) (-2022 (((-3 (-627 $) "failed") (-627 $)) 72)) (-3613 (((-111) $) 50)) (-1866 (((-111) $) 49)) (-1595 (((-1134) $) NIL)) (-4035 (((-3 (-627 $) "failed") $) 36)) (-3425 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-1382 (((-3 (-2 (|:| |val| $) (|:| -4067 $)) "failed") $) 83)) (-2746 (((-3 (-627 $) "failed") $) 33)) (-2534 (((-3 (-627 $) "failed") $ (-113)) 107) (((-3 (-2 (|:| -3354 (-113)) (|:| |arg| (-627 $))) "failed") $) 95)) (-3937 (((-3 (-627 $) "failed") $) 37)) (-3815 (((-3 (-2 (|:| |val| $) (|:| -4067 (-754))) "failed") $) 40)) (-2138 (((-111) $) 29)) (-1498 (((-1096) $) NIL)) (-4303 (((-111) $) 21)) (-1865 (((-111) $) 46)) (-3756 (((-627 (-52)) $) 111)) (-2578 (((-111) $) 48)) (-1985 (($ (-113) (-627 $)) 92)) (-4170 (((-754) $) 28)) (-2973 (($ $) 62)) (-3562 (($ (-627 $)) 59)) (-2020 (((-111) $) 26)) (-1477 (((-842) $) 53) (($ |#1|) 18) (($ (-1152)) 66)) (-3925 (($ $ (-52)) 110)) (-1922 (($) 91 T CONST)) (-1933 (($) 73 T CONST)) (-2292 (((-111) $ $) 79)) (-2407 (($ $ $) 100)) (-2384 (($ $ $) 104)) (** (($ $ (-754)) 99) (($ $ $) 54)) (* (($ $ $) 105))) +(((-871 |#1|) (-13 (-1076) (-1017 |#1|) (-1017 (-1152)) (-10 -8 (-15 0 ($) -3488) (-15 1 ($) -3488) (-15 -2746 ((-3 (-627 $) "failed") $)) (-15 -4035 ((-3 (-627 $) "failed") $)) (-15 -2534 ((-3 (-627 $) "failed") $ (-113))) (-15 -2534 ((-3 (-2 (|:| -3354 (-113)) (|:| |arg| (-627 $))) "failed") $)) (-15 -3815 ((-3 (-2 (|:| |val| $) (|:| -4067 (-754))) "failed") $)) (-15 -3425 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3937 ((-3 (-627 $) "failed") $)) (-15 -1382 ((-3 (-2 (|:| |val| $) (|:| -4067 $)) "failed") $)) (-15 -1985 ($ (-113) (-627 $))) (-15 -2384 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-754))) (-15 ** ($ $ $)) (-15 -2407 ($ $ $)) (-15 -4170 ((-754) $)) (-15 -3562 ($ (-627 $))) (-15 -2973 ($ $)) (-15 -2138 ((-111) $)) (-15 -1370 ((-111) $)) (-15 -1891 ((-111) $)) (-15 -2020 ((-111) $)) (-15 -2578 ((-111) $)) (-15 -1866 ((-111) $)) (-15 -3613 ((-111) $)) (-15 -1865 ((-111) $)) (-15 -3160 ((-627 (-52)) $)) (-15 -2725 ($ $ (-627 (-52)))) (-15 -2916 ($ $ (-627 (-52)))) (-15 -1301 ($ (-1152) (-111) (-111) (-111))) (-15 -2763 ($ $ (-627 (-1152)) (-52))) (-15 -3021 ((-2 (|:| |var| (-627 (-1152))) (|:| |pred| (-52))) $)) (-15 -4303 ((-111) $)) (-15 -2604 ($ $)) (-15 -3925 ($ $ (-52))) (-15 -3756 ((-627 (-52)) $)) (-15 -1853 ((-627 $) $)) (-15 -2022 ((-3 (-627 $) "failed") (-627 $))))) (-1076)) (T -871)) +((-1922 (*1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) (-1933 (*1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) (-2746 (*1 *2 *1) (|partial| -12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-4035 (*1 *2 *1) (|partial| -12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-2534 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-627 (-871 *4))) (-5 *1 (-871 *4)) (-4 *4 (-1076)))) (-2534 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3354 (-113)) (|:| |arg| (-627 (-871 *3))))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-3815 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-871 *3)) (|:| -4067 (-754)))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-3425 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-871 *3)) (|:| |den| (-871 *3)))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-3937 (*1 *2 *1) (|partial| -12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-1382 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-871 *3)) (|:| -4067 (-871 *3)))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-1985 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-627 (-871 *4))) (-5 *1 (-871 *4)) (-4 *4 (-1076)))) (-2384 (*1 *1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) (-2407 (*1 *1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) (-4170 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-2973 (*1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-1370 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-1891 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-2578 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-1866 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-1865 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-3160 (*1 *2 *1) (-12 (-5 *2 (-627 (-52))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-2725 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-52))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-2916 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-52))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-1301 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-111)) (-5 *1 (-871 *4)) (-4 *4 (-1076)))) (-2763 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-52)) (-5 *1 (-871 *4)) (-4 *4 (-1076)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-627 (-1152))) (|:| |pred| (-52)))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-4303 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-2604 (*1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) (-3925 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-3756 (*1 *2 *1) (-12 (-5 *2 (-627 (-52))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) (-2022 (*1 *2 *2) (|partial| -12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) +(-13 (-1076) (-1017 |#1|) (-1017 (-1152)) (-10 -8 (-15 (-1922) ($) -3488) (-15 (-1933) ($) -3488) (-15 -2746 ((-3 (-627 $) "failed") $)) (-15 -4035 ((-3 (-627 $) "failed") $)) (-15 -2534 ((-3 (-627 $) "failed") $ (-113))) (-15 -2534 ((-3 (-2 (|:| -3354 (-113)) (|:| |arg| (-627 $))) "failed") $)) (-15 -3815 ((-3 (-2 (|:| |val| $) (|:| -4067 (-754))) "failed") $)) (-15 -3425 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3937 ((-3 (-627 $) "failed") $)) (-15 -1382 ((-3 (-2 (|:| |val| $) (|:| -4067 $)) "failed") $)) (-15 -1985 ($ (-113) (-627 $))) (-15 -2384 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-754))) (-15 ** ($ $ $)) (-15 -2407 ($ $ $)) (-15 -4170 ((-754) $)) (-15 -3562 ($ (-627 $))) (-15 -2973 ($ $)) (-15 -2138 ((-111) $)) (-15 -1370 ((-111) $)) (-15 -1891 ((-111) $)) (-15 -2020 ((-111) $)) (-15 -2578 ((-111) $)) (-15 -1866 ((-111) $)) (-15 -3613 ((-111) $)) (-15 -1865 ((-111) $)) (-15 -3160 ((-627 (-52)) $)) (-15 -2725 ($ $ (-627 (-52)))) (-15 -2916 ($ $ (-627 (-52)))) (-15 -1301 ($ (-1152) (-111) (-111) (-111))) (-15 -2763 ($ $ (-627 (-1152)) (-52))) (-15 -3021 ((-2 (|:| |var| (-627 (-1152))) (|:| |pred| (-52))) $)) (-15 -4303 ((-111) $)) (-15 -2604 ($ $)) (-15 -3925 ($ $ (-52))) (-15 -3756 ((-627 (-52)) $)) (-15 -1853 ((-627 $) $)) (-15 -2022 ((-3 (-627 $) "failed") (-627 $))))) +((-1465 (((-111) $ $) NIL)) (-1671 (((-627 |#1|) $) 16)) (-3221 (((-111) $) 38)) (-4039 (((-3 (-654 |#1|) "failed") $) 43)) (-1703 (((-654 |#1|) $) 41)) (-3351 (($ $) 18)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-3593 (((-754) $) 46)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 (((-654 |#1|) $) 17)) (-1477 (((-842) $) 37) (($ (-654 |#1|)) 21) (((-802 |#1|) $) 27) (($ |#1|) 20)) (-1933 (($) 8 T CONST)) (-1880 (((-627 (-654 |#1|)) $) 23)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 11)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 49))) +(((-872 |#1|) (-13 (-830) (-1017 (-654 |#1|)) (-10 -8 (-15 1 ($) -3488) (-15 -1477 ((-802 |#1|) $)) (-15 -1477 ($ |#1|)) (-15 -3340 ((-654 |#1|) $)) (-15 -3593 ((-754) $)) (-15 -1880 ((-627 (-654 |#1|)) $)) (-15 -3351 ($ $)) (-15 -3221 ((-111) $)) (-15 -1671 ((-627 |#1|) $)))) (-830)) (T -872)) +((-1933 (*1 *1) (-12 (-5 *1 (-872 *2)) (-4 *2 (-830)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-802 *3)) (-5 *1 (-872 *3)) (-4 *3 (-830)))) (-1477 (*1 *1 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-830)))) (-3340 (*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-872 *3)) (-4 *3 (-830)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-872 *3)) (-4 *3 (-830)))) (-1880 (*1 *2 *1) (-12 (-5 *2 (-627 (-654 *3))) (-5 *1 (-872 *3)) (-4 *3 (-830)))) (-3351 (*1 *1 *1) (-12 (-5 *1 (-872 *2)) (-4 *2 (-830)))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-872 *3)) (-4 *3 (-830)))) (-1671 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-872 *3)) (-4 *3 (-830))))) +(-13 (-830) (-1017 (-654 |#1|)) (-10 -8 (-15 (-1933) ($) -3488) (-15 -1477 ((-802 |#1|) $)) (-15 -1477 ($ |#1|)) (-15 -3340 ((-654 |#1|) $)) (-15 -3593 ((-754) $)) (-15 -1880 ((-627 (-654 |#1|)) $)) (-15 -3351 ($ $)) (-15 -3221 ((-111) $)) (-15 -1671 ((-627 |#1|) $)))) +((-2047 ((|#1| |#1| |#1|) 19))) +(((-873 |#1| |#2|) (-10 -7 (-15 -2047 (|#1| |#1| |#1|))) (-1211 |#2|) (-1028)) (T -873)) +((-2047 (*1 *2 *2 *2) (-12 (-4 *3 (-1028)) (-5 *1 (-873 *2 *3)) (-4 *2 (-1211 *3))))) +(-10 -7 (-15 -2047 (|#1| |#1| |#1|))) +((-1465 (((-111) $ $) 7)) (-1841 (((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) 14)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-3615 (((-1014) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) 13)) (-2292 (((-111) $ $) 6))) +(((-874) (-137)) (T -874)) +((-1841 (*1 *2 *3 *4) (-12 (-4 *1 (-874)) (-5 *3 (-1040)) (-5 *4 (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) (-5 *2 (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)))))) (-3615 (*1 *2 *3) (-12 (-4 *1 (-874)) (-5 *3 (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) (-5 *2 (-1014))))) +(-13 (-1076) (-10 -7 (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| |explanations| (-1134))) (-1040) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220))))) (-15 -3615 ((-1014) (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220))))))) +(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-3032 ((|#1| |#1| (-754)) 24)) (-3372 (((-3 |#1| "failed") |#1| |#1|) 22)) (-4004 (((-3 (-2 (|:| -2776 |#1|) (|:| -2791 |#1|)) "failed") |#1| (-754) (-754)) 27) (((-627 |#1|) |#1|) 29))) +(((-875 |#1| |#2|) (-10 -7 (-15 -4004 ((-627 |#1|) |#1|)) (-15 -4004 ((-3 (-2 (|:| -2776 |#1|) (|:| -2791 |#1|)) "failed") |#1| (-754) (-754))) (-15 -3372 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3032 (|#1| |#1| (-754)))) (-1211 |#2|) (-357)) (T -875)) +((-3032 (*1 *2 *2 *3) (-12 (-5 *3 (-754)) (-4 *4 (-357)) (-5 *1 (-875 *2 *4)) (-4 *2 (-1211 *4)))) (-3372 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-357)) (-5 *1 (-875 *2 *3)) (-4 *2 (-1211 *3)))) (-4004 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-754)) (-4 *5 (-357)) (-5 *2 (-2 (|:| -2776 *3) (|:| -2791 *3))) (-5 *1 (-875 *3 *5)) (-4 *3 (-1211 *5)))) (-4004 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-627 *3)) (-5 *1 (-875 *3 *4)) (-4 *3 (-1211 *4))))) +(-10 -7 (-15 -4004 ((-627 |#1|) |#1|)) (-15 -4004 ((-3 (-2 (|:| -2776 |#1|) (|:| -2791 |#1|)) "failed") |#1| (-754) (-754))) (-15 -3372 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3032 (|#1| |#1| (-754)))) +((-1696 (((-1014) (-373) (-373) (-373) (-373) (-754) (-754) (-627 (-310 (-373))) (-627 (-627 (-310 (-373)))) (-1134)) 96) (((-1014) (-373) (-373) (-373) (-373) (-754) (-754) (-627 (-310 (-373))) (-627 (-627 (-310 (-373)))) (-1134) (-220)) 91) (((-1014) (-877) (-1040)) 83) (((-1014) (-877)) 84)) (-1841 (((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-877) (-1040)) 59) (((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-877)) 61))) +(((-876) (-10 -7 (-15 -1696 ((-1014) (-877))) (-15 -1696 ((-1014) (-877) (-1040))) (-15 -1696 ((-1014) (-373) (-373) (-373) (-373) (-754) (-754) (-627 (-310 (-373))) (-627 (-627 (-310 (-373)))) (-1134) (-220))) (-15 -1696 ((-1014) (-373) (-373) (-373) (-373) (-754) (-754) (-627 (-310 (-373))) (-627 (-627 (-310 (-373)))) (-1134))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-877))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-877) (-1040))))) (T -876)) +((-1841 (*1 *2 *3 *4) (-12 (-5 *3 (-877)) (-5 *4 (-1040)) (-5 *2 (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))))) (-5 *1 (-876)))) (-1841 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134))))) (-5 *1 (-876)))) (-1696 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-754)) (-5 *6 (-627 (-627 (-310 *3)))) (-5 *7 (-1134)) (-5 *5 (-627 (-310 (-373)))) (-5 *3 (-373)) (-5 *2 (-1014)) (-5 *1 (-876)))) (-1696 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-754)) (-5 *6 (-627 (-627 (-310 *3)))) (-5 *7 (-1134)) (-5 *8 (-220)) (-5 *5 (-627 (-310 (-373)))) (-5 *3 (-373)) (-5 *2 (-1014)) (-5 *1 (-876)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-877)) (-5 *4 (-1040)) (-5 *2 (-1014)) (-5 *1 (-876)))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1014)) (-5 *1 (-876))))) +(-10 -7 (-15 -1696 ((-1014) (-877))) (-15 -1696 ((-1014) (-877) (-1040))) (-15 -1696 ((-1014) (-373) (-373) (-373) (-373) (-754) (-754) (-627 (-310 (-373))) (-627 (-627 (-310 (-373)))) (-1134) (-220))) (-15 -1696 ((-1014) (-373) (-373) (-373) (-373) (-754) (-754) (-627 (-310 (-373))) (-627 (-627 (-310 (-373)))) (-1134))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-877))) (-15 -1841 ((-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) (|:| |explanations| (-627 (-1134)))) (-877) (-1040)))) +((-1465 (((-111) $ $) NIL)) (-1703 (((-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220))) $) 19)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 21) (($ (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) 18)) (-2292 (((-111) $ $) NIL))) +(((-877) (-13 (-1076) (-10 -8 (-15 -1477 ($ (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220))))) (-15 -1477 ((-842) $)) (-15 -1703 ((-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220))) $))))) (T -877)) +((-1477 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-877)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) (-5 *1 (-877)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220)))) (-5 *1 (-877))))) +(-13 (-1076) (-10 -8 (-15 -1477 ($ (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220))))) (-15 -1477 ((-842) $)) (-15 -1703 ((-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| (-627 (-2 (|:| |start| (-220)) (|:| |finish| (-220)) (|:| |grid| (-754)) (|:| |boundaryType| (-552)) (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) (|:| |tol| (-220))) $)))) +((-2942 (($ $ |#2|) NIL) (($ $ (-627 |#2|)) 10) (($ $ |#2| (-754)) 12) (($ $ (-627 |#2|) (-627 (-754))) 15)) (-4251 (($ $ |#2|) 16) (($ $ (-627 |#2|)) 18) (($ $ |#2| (-754)) 19) (($ $ (-627 |#2|) (-627 (-754))) 21))) +(((-878 |#1| |#2|) (-10 -8 (-15 -4251 (|#1| |#1| (-627 |#2|) (-627 (-754)))) (-15 -4251 (|#1| |#1| |#2| (-754))) (-15 -4251 (|#1| |#1| (-627 |#2|))) (-15 -4251 (|#1| |#1| |#2|)) (-15 -2942 (|#1| |#1| (-627 |#2|) (-627 (-754)))) (-15 -2942 (|#1| |#1| |#2| (-754))) (-15 -2942 (|#1| |#1| (-627 |#2|))) (-15 -2942 (|#1| |#1| |#2|))) (-879 |#2|) (-1076)) (T -878)) +NIL +(-10 -8 (-15 -4251 (|#1| |#1| (-627 |#2|) (-627 (-754)))) (-15 -4251 (|#1| |#1| |#2| (-754))) (-15 -4251 (|#1| |#1| (-627 |#2|))) (-15 -4251 (|#1| |#1| |#2|)) (-15 -2942 (|#1| |#1| (-627 |#2|) (-627 (-754)))) (-15 -2942 (|#1| |#1| |#2| (-754))) (-15 -2942 (|#1| |#1| (-627 |#2|))) (-15 -2942 (|#1| |#1| |#2|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2942 (($ $ |#1|) 40) (($ $ (-627 |#1|)) 39) (($ $ |#1| (-754)) 38) (($ $ (-627 |#1|) (-627 (-754))) 37)) (-1477 (((-842) $) 11) (($ (-552)) 27)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ |#1|) 36) (($ $ (-627 |#1|)) 35) (($ $ |#1| (-754)) 34) (($ $ (-627 |#1|) (-627 (-754))) 33)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-879 |#1|) (-137) (-1076)) (T -879)) +((-2942 (*1 *1 *1 *2) (-12 (-4 *1 (-879 *2)) (-4 *2 (-1076)))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *1 (-879 *3)) (-4 *3 (-1076)))) (-2942 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-879 *2)) (-4 *2 (-1076)))) (-2942 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 *4)) (-5 *3 (-627 (-754))) (-4 *1 (-879 *4)) (-4 *4 (-1076)))) (-4251 (*1 *1 *1 *2) (-12 (-4 *1 (-879 *2)) (-4 *2 (-1076)))) (-4251 (*1 *1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *1 (-879 *3)) (-4 *3 (-1076)))) (-4251 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-879 *2)) (-4 *2 (-1076)))) (-4251 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 *4)) (-5 *3 (-627 (-754))) (-4 *1 (-879 *4)) (-4 *4 (-1076))))) +(-13 (-1028) (-10 -8 (-15 -2942 ($ $ |t#1|)) (-15 -2942 ($ $ (-627 |t#1|))) (-15 -2942 ($ $ |t#1| (-754))) (-15 -2942 ($ $ (-627 |t#1|) (-627 (-754)))) (-15 -4251 ($ $ |t#1|)) (-15 -4251 ($ $ (-627 |t#1|))) (-15 -4251 ($ $ |t#1| (-754))) (-15 -4251 ($ $ (-627 |t#1|) (-627 (-754)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 $) . T) ((-709) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4288 ((|#1| $) 26)) (-4031 (((-111) $ (-754)) NIL)) (-2472 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-3433 (($ $ $) NIL (|has| $ (-6 -4367)))) (-2076 (($ $ $) NIL (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4367))) (($ $ "left" $) NIL (|has| $ (-6 -4367))) (($ $ "right" $) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-2791 (($ $) 25)) (-3670 (($ |#1|) 12) (($ $ $) 17)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) NIL)) (-3726 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-2776 (($ $) 23)) (-1823 (((-627 |#1|) $) NIL)) (-3810 (((-111) $) 20)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1848 (((-552) $ $) NIL)) (-2978 (((-111) $) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-1175 |#1|) $) 9) (((-842) $) 29 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) NIL)) (-3415 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 21 (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-880 |#1|) (-13 (-118 |#1|) (-10 -8 (-15 -3670 ($ |#1|)) (-15 -3670 ($ $ $)) (-15 -1477 ((-1175 |#1|) $)))) (-1076)) (T -880)) +((-3670 (*1 *1 *2) (-12 (-5 *1 (-880 *2)) (-4 *2 (-1076)))) (-3670 (*1 *1 *1 *1) (-12 (-5 *1 (-880 *2)) (-4 *2 (-1076)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-880 *3)) (-4 *3 (-1076))))) +(-13 (-118 |#1|) (-10 -8 (-15 -3670 ($ |#1|)) (-15 -3670 ($ $ $)) (-15 -1477 ((-1175 |#1|) $)))) +((-3966 ((|#2| (-1118 |#1| |#2|)) 40))) +(((-881 |#1| |#2|) (-10 -7 (-15 -3966 (|#2| (-1118 |#1| |#2|)))) (-900) (-13 (-1028) (-10 -7 (-6 (-4368 "*"))))) (T -881)) +((-3966 (*1 *2 *3) (-12 (-5 *3 (-1118 *4 *2)) (-14 *4 (-900)) (-4 *2 (-13 (-1028) (-10 -7 (-6 (-4368 "*"))))) (-5 *1 (-881 *4 *2))))) +(-10 -7 (-15 -3966 (|#2| (-1118 |#1| |#2|)))) +((-1465 (((-111) $ $) 7)) (-3887 (($) 18 T CONST)) (-2040 (((-3 $ "failed") $) 15)) (-2908 (((-1078 |#1|) $ |#1|) 32)) (-2624 (((-111) $) 17)) (-1816 (($ $ $) 30 (-1559 (|has| |#1| (-830)) (|has| |#1| (-362))))) (-4093 (($ $ $) 29 (-1559 (|has| |#1| (-830)) (|has| |#1| (-362))))) (-1595 (((-1134) $) 9)) (-1951 (($ $) 24)) (-1498 (((-1096) $) 10)) (-3321 ((|#1| $ |#1|) 34)) (-1985 ((|#1| $ |#1|) 33)) (-1650 (($ (-627 (-627 |#1|))) 35)) (-3611 (($ (-627 |#1|)) 36)) (-2616 (($ $ $) 21)) (-2493 (($ $ $) 20)) (-1477 (((-842) $) 11)) (-1933 (($) 19 T CONST)) (-2351 (((-111) $ $) 27 (-1559 (|has| |#1| (-830)) (|has| |#1| (-362))))) (-2329 (((-111) $ $) 26 (-1559 (|has| |#1| (-830)) (|has| |#1| (-362))))) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 28 (-1559 (|has| |#1| (-830)) (|has| |#1| (-362))))) (-2316 (((-111) $ $) 31)) (-2407 (($ $ $) 23)) (** (($ $ (-900)) 13) (($ $ (-754)) 16) (($ $ (-552)) 22)) (* (($ $ $) 14))) +(((-882 |#1|) (-137) (-1076)) (T -882)) +((-3611 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-4 *1 (-882 *3)))) (-1650 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1076)) (-4 *1 (-882 *3)))) (-3321 (*1 *2 *1 *2) (-12 (-4 *1 (-882 *2)) (-4 *2 (-1076)))) (-1985 (*1 *2 *1 *2) (-12 (-4 *1 (-882 *2)) (-4 *2 (-1076)))) (-2908 (*1 *2 *1 *3) (-12 (-4 *1 (-882 *3)) (-4 *3 (-1076)) (-5 *2 (-1078 *3)))) (-2316 (*1 *2 *1 *1) (-12 (-4 *1 (-882 *3)) (-4 *3 (-1076)) (-5 *2 (-111))))) +(-13 (-466) (-10 -8 (-15 -3611 ($ (-627 |t#1|))) (-15 -1650 ($ (-627 (-627 |t#1|)))) (-15 -3321 (|t#1| $ |t#1|)) (-15 -1985 (|t#1| $ |t#1|)) (-15 -2908 ((-1078 |t#1|) $ |t#1|)) (-15 -2316 ((-111) $ $)) (IF (|has| |t#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |t#1| (-362)) (-6 (-830)) |%noBranch|))) +(((-101) . T) ((-599 (-842)) . T) ((-466) . T) ((-709) . T) ((-830) -1559 (|has| |#1| (-830)) (|has| |#1| (-362))) ((-1088) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-2969 (((-627 (-627 (-754))) $) 108)) (-2403 (((-627 (-754)) (-884 |#1|) $) 130)) (-3931 (((-627 (-754)) (-884 |#1|) $) 131)) (-2744 (((-627 (-884 |#1|)) $) 98)) (-1279 (((-884 |#1|) $ (-552)) 103) (((-884 |#1|) $) 104)) (-2614 (($ (-627 (-884 |#1|))) 110)) (-2641 (((-754) $) 105)) (-4156 (((-1078 (-1078 |#1|)) $) 128)) (-2908 (((-1078 |#1|) $ |#1|) 121) (((-1078 (-1078 |#1|)) $ (-1078 |#1|)) 139) (((-1078 (-627 |#1|)) $ (-627 |#1|)) 142)) (-4134 (((-1078 |#1|) $) 101)) (-3082 (((-111) (-884 |#1|) $) 92)) (-1595 (((-1134) $) NIL)) (-2368 (((-1240) $) 95) (((-1240) $ (-552) (-552)) 143)) (-1498 (((-1096) $) NIL)) (-1379 (((-627 (-884 |#1|)) $) 96)) (-1985 (((-884 |#1|) $ (-754)) 99)) (-3567 (((-754) $) 106)) (-1477 (((-842) $) 119) (((-627 (-884 |#1|)) $) 23) (($ (-627 (-884 |#1|))) 109)) (-2705 (((-627 |#1|) $) 107)) (-2292 (((-111) $ $) 136)) (-2340 (((-111) $ $) 134)) (-2316 (((-111) $ $) 133))) +(((-883 |#1|) (-13 (-1076) (-10 -8 (-15 -1477 ((-627 (-884 |#1|)) $)) (-15 -1379 ((-627 (-884 |#1|)) $)) (-15 -1985 ((-884 |#1|) $ (-754))) (-15 -1279 ((-884 |#1|) $ (-552))) (-15 -1279 ((-884 |#1|) $)) (-15 -2641 ((-754) $)) (-15 -3567 ((-754) $)) (-15 -2705 ((-627 |#1|) $)) (-15 -2744 ((-627 (-884 |#1|)) $)) (-15 -2969 ((-627 (-627 (-754))) $)) (-15 -1477 ($ (-627 (-884 |#1|)))) (-15 -2614 ($ (-627 (-884 |#1|)))) (-15 -2908 ((-1078 |#1|) $ |#1|)) (-15 -4156 ((-1078 (-1078 |#1|)) $)) (-15 -2908 ((-1078 (-1078 |#1|)) $ (-1078 |#1|))) (-15 -2908 ((-1078 (-627 |#1|)) $ (-627 |#1|))) (-15 -3082 ((-111) (-884 |#1|) $)) (-15 -2403 ((-627 (-754)) (-884 |#1|) $)) (-15 -3931 ((-627 (-754)) (-884 |#1|) $)) (-15 -4134 ((-1078 |#1|) $)) (-15 -2316 ((-111) $ $)) (-15 -2340 ((-111) $ $)) (-15 -2368 ((-1240) $)) (-15 -2368 ((-1240) $ (-552) (-552))))) (-1076)) (T -883)) +((-1477 (*1 *2 *1) (-12 (-5 *2 (-627 (-884 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-1379 (*1 *2 *1) (-12 (-5 *2 (-627 (-884 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *2 (-884 *4)) (-5 *1 (-883 *4)) (-4 *4 (-1076)))) (-1279 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-884 *4)) (-5 *1 (-883 *4)) (-4 *4 (-1076)))) (-1279 (*1 *2 *1) (-12 (-5 *2 (-884 *3)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-2705 (*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-2744 (*1 *2 *1) (-12 (-5 *2 (-627 (-884 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-2969 (*1 *2 *1) (-12 (-5 *2 (-627 (-627 (-754)))) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-884 *3))) (-4 *3 (-1076)) (-5 *1 (-883 *3)))) (-2614 (*1 *1 *2) (-12 (-5 *2 (-627 (-884 *3))) (-4 *3 (-1076)) (-5 *1 (-883 *3)))) (-2908 (*1 *2 *1 *3) (-12 (-5 *2 (-1078 *3)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-1078 (-1078 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-2908 (*1 *2 *1 *3) (-12 (-4 *4 (-1076)) (-5 *2 (-1078 (-1078 *4))) (-5 *1 (-883 *4)) (-5 *3 (-1078 *4)))) (-2908 (*1 *2 *1 *3) (-12 (-4 *4 (-1076)) (-5 *2 (-1078 (-627 *4))) (-5 *1 (-883 *4)) (-5 *3 (-627 *4)))) (-3082 (*1 *2 *3 *1) (-12 (-5 *3 (-884 *4)) (-4 *4 (-1076)) (-5 *2 (-111)) (-5 *1 (-883 *4)))) (-2403 (*1 *2 *3 *1) (-12 (-5 *3 (-884 *4)) (-4 *4 (-1076)) (-5 *2 (-627 (-754))) (-5 *1 (-883 *4)))) (-3931 (*1 *2 *3 *1) (-12 (-5 *3 (-884 *4)) (-4 *4 (-1076)) (-5 *2 (-627 (-754))) (-5 *1 (-883 *4)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-1078 *3)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-2316 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-2340 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-2368 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) (-2368 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-883 *4)) (-4 *4 (-1076))))) +(-13 (-1076) (-10 -8 (-15 -1477 ((-627 (-884 |#1|)) $)) (-15 -1379 ((-627 (-884 |#1|)) $)) (-15 -1985 ((-884 |#1|) $ (-754))) (-15 -1279 ((-884 |#1|) $ (-552))) (-15 -1279 ((-884 |#1|) $)) (-15 -2641 ((-754) $)) (-15 -3567 ((-754) $)) (-15 -2705 ((-627 |#1|) $)) (-15 -2744 ((-627 (-884 |#1|)) $)) (-15 -2969 ((-627 (-627 (-754))) $)) (-15 -1477 ($ (-627 (-884 |#1|)))) (-15 -2614 ($ (-627 (-884 |#1|)))) (-15 -2908 ((-1078 |#1|) $ |#1|)) (-15 -4156 ((-1078 (-1078 |#1|)) $)) (-15 -2908 ((-1078 (-1078 |#1|)) $ (-1078 |#1|))) (-15 -2908 ((-1078 (-627 |#1|)) $ (-627 |#1|))) (-15 -3082 ((-111) (-884 |#1|) $)) (-15 -2403 ((-627 (-754)) (-884 |#1|) $)) (-15 -3931 ((-627 (-754)) (-884 |#1|) $)) (-15 -4134 ((-1078 |#1|) $)) (-15 -2316 ((-111) $ $)) (-15 -2340 ((-111) $ $)) (-15 -2368 ((-1240) $)) (-15 -2368 ((-1240) $ (-552) (-552))))) +((-1465 (((-111) $ $) NIL)) (-4298 (((-627 $) (-627 $)) 77)) (-2422 (((-552) $) 60)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL)) (-2641 (((-754) $) 58)) (-2908 (((-1078 |#1|) $ |#1|) 49)) (-2624 (((-111) $) NIL)) (-1394 (((-111) $) 63)) (-3277 (((-754) $) 61)) (-4134 (((-1078 |#1|) $) 42)) (-1816 (($ $ $) NIL (-1559 (|has| |#1| (-362)) (|has| |#1| (-830))))) (-4093 (($ $ $) NIL (-1559 (|has| |#1| (-362)) (|has| |#1| (-830))))) (-4068 (((-2 (|:| |preimage| (-627 |#1|)) (|:| |image| (-627 |#1|))) $) 37)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 93)) (-1498 (((-1096) $) NIL)) (-2678 (((-1078 |#1|) $) 100 (|has| |#1| (-362)))) (-1507 (((-111) $) 59)) (-3321 ((|#1| $ |#1|) 47)) (-1985 ((|#1| $ |#1|) 94)) (-3567 (((-754) $) 44)) (-1650 (($ (-627 (-627 |#1|))) 85)) (-3048 (((-950) $) 53)) (-3611 (($ (-627 |#1|)) 21)) (-2616 (($ $ $) NIL)) (-2493 (($ $ $) NIL)) (-1565 (($ (-627 (-627 |#1|))) 39)) (-1702 (($ (-627 (-627 |#1|))) 88)) (-3792 (($ (-627 |#1|)) 96)) (-1477 (((-842) $) 84) (($ (-627 (-627 |#1|))) 66) (($ (-627 |#1|)) 67)) (-1933 (($) 16 T CONST)) (-2351 (((-111) $ $) NIL (-1559 (|has| |#1| (-362)) (|has| |#1| (-830))))) (-2329 (((-111) $ $) NIL (-1559 (|has| |#1| (-362)) (|has| |#1| (-830))))) (-2292 (((-111) $ $) 45)) (-2340 (((-111) $ $) NIL (-1559 (|has| |#1| (-362)) (|has| |#1| (-830))))) (-2316 (((-111) $ $) 65)) (-2407 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ $ $) 22))) +(((-884 |#1|) (-13 (-882 |#1|) (-10 -8 (-15 -4068 ((-2 (|:| |preimage| (-627 |#1|)) (|:| |image| (-627 |#1|))) $)) (-15 -1565 ($ (-627 (-627 |#1|)))) (-15 -1477 ($ (-627 (-627 |#1|)))) (-15 -1477 ($ (-627 |#1|))) (-15 -1702 ($ (-627 (-627 |#1|)))) (-15 -3567 ((-754) $)) (-15 -4134 ((-1078 |#1|) $)) (-15 -3048 ((-950) $)) (-15 -2641 ((-754) $)) (-15 -3277 ((-754) $)) (-15 -2422 ((-552) $)) (-15 -1507 ((-111) $)) (-15 -1394 ((-111) $)) (-15 -4298 ((-627 $) (-627 $))) (IF (|has| |#1| (-362)) (-15 -2678 ((-1078 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-537)) (-15 -3792 ($ (-627 |#1|))) (IF (|has| |#1| (-362)) (-15 -3792 ($ (-627 |#1|))) |%noBranch|)))) (-1076)) (T -884)) +((-4068 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-627 *3)) (|:| |image| (-627 *3)))) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) (-1565 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1076)) (-5 *1 (-884 *3)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1076)) (-5 *1 (-884 *3)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-884 *3)))) (-1702 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1076)) (-5 *1 (-884 *3)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-1078 *3)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) (-3048 (*1 *2 *1) (-12 (-5 *2 (-950)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) (-3277 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) (-2422 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) (-1507 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) (-1394 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) (-4298 (*1 *2 *2) (-12 (-5 *2 (-627 (-884 *3))) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) (-2678 (*1 *2 *1) (-12 (-5 *2 (-1078 *3)) (-5 *1 (-884 *3)) (-4 *3 (-362)) (-4 *3 (-1076)))) (-3792 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-884 *3))))) +(-13 (-882 |#1|) (-10 -8 (-15 -4068 ((-2 (|:| |preimage| (-627 |#1|)) (|:| |image| (-627 |#1|))) $)) (-15 -1565 ($ (-627 (-627 |#1|)))) (-15 -1477 ($ (-627 (-627 |#1|)))) (-15 -1477 ($ (-627 |#1|))) (-15 -1702 ($ (-627 (-627 |#1|)))) (-15 -3567 ((-754) $)) (-15 -4134 ((-1078 |#1|) $)) (-15 -3048 ((-950) $)) (-15 -2641 ((-754) $)) (-15 -3277 ((-754) $)) (-15 -2422 ((-552) $)) (-15 -1507 ((-111) $)) (-15 -1394 ((-111) $)) (-15 -4298 ((-627 $) (-627 $))) (IF (|has| |#1| (-362)) (-15 -2678 ((-1078 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-537)) (-15 -3792 ($ (-627 |#1|))) (IF (|has| |#1| (-362)) (-15 -3792 ($ (-627 |#1|))) |%noBranch|)))) +((-4335 (((-3 (-627 (-1148 |#4|)) "failed") (-627 (-1148 |#4|)) (-1148 |#4|)) 128)) (-1821 ((|#1|) 77)) (-2360 (((-412 (-1148 |#4|)) (-1148 |#4|)) 137)) (-1546 (((-412 (-1148 |#4|)) (-627 |#3|) (-1148 |#4|)) 69)) (-1663 (((-412 (-1148 |#4|)) (-1148 |#4|)) 147)) (-2649 (((-3 (-627 (-1148 |#4|)) "failed") (-627 (-1148 |#4|)) (-1148 |#4|) |#3|) 92))) +(((-885 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4335 ((-3 (-627 (-1148 |#4|)) "failed") (-627 (-1148 |#4|)) (-1148 |#4|))) (-15 -1663 ((-412 (-1148 |#4|)) (-1148 |#4|))) (-15 -2360 ((-412 (-1148 |#4|)) (-1148 |#4|))) (-15 -1821 (|#1|)) (-15 -2649 ((-3 (-627 (-1148 |#4|)) "failed") (-627 (-1148 |#4|)) (-1148 |#4|) |#3|)) (-15 -1546 ((-412 (-1148 |#4|)) (-627 |#3|) (-1148 |#4|)))) (-888) (-776) (-830) (-928 |#1| |#2| |#3|)) (T -885)) +((-1546 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *7)) (-4 *7 (-830)) (-4 *5 (-888)) (-4 *6 (-776)) (-4 *8 (-928 *5 *6 *7)) (-5 *2 (-412 (-1148 *8))) (-5 *1 (-885 *5 *6 *7 *8)) (-5 *4 (-1148 *8)))) (-2649 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-627 (-1148 *7))) (-5 *3 (-1148 *7)) (-4 *7 (-928 *5 *6 *4)) (-4 *5 (-888)) (-4 *6 (-776)) (-4 *4 (-830)) (-5 *1 (-885 *5 *6 *4 *7)))) (-1821 (*1 *2) (-12 (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-888)) (-5 *1 (-885 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) (-2360 (*1 *2 *3) (-12 (-4 *4 (-888)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-928 *4 *5 *6)) (-5 *2 (-412 (-1148 *7))) (-5 *1 (-885 *4 *5 *6 *7)) (-5 *3 (-1148 *7)))) (-1663 (*1 *2 *3) (-12 (-4 *4 (-888)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-928 *4 *5 *6)) (-5 *2 (-412 (-1148 *7))) (-5 *1 (-885 *4 *5 *6 *7)) (-5 *3 (-1148 *7)))) (-4335 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-627 (-1148 *7))) (-5 *3 (-1148 *7)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-888)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-885 *4 *5 *6 *7))))) +(-10 -7 (-15 -4335 ((-3 (-627 (-1148 |#4|)) "failed") (-627 (-1148 |#4|)) (-1148 |#4|))) (-15 -1663 ((-412 (-1148 |#4|)) (-1148 |#4|))) (-15 -2360 ((-412 (-1148 |#4|)) (-1148 |#4|))) (-15 -1821 (|#1|)) (-15 -2649 ((-3 (-627 (-1148 |#4|)) "failed") (-627 (-1148 |#4|)) (-1148 |#4|) |#3|)) (-15 -1546 ((-412 (-1148 |#4|)) (-627 |#3|) (-1148 |#4|)))) +((-4335 (((-3 (-627 (-1148 |#2|)) "failed") (-627 (-1148 |#2|)) (-1148 |#2|)) 36)) (-1821 ((|#1|) 54)) (-2360 (((-412 (-1148 |#2|)) (-1148 |#2|)) 102)) (-1546 (((-412 (-1148 |#2|)) (-1148 |#2|)) 90)) (-1663 (((-412 (-1148 |#2|)) (-1148 |#2|)) 113))) +(((-886 |#1| |#2|) (-10 -7 (-15 -4335 ((-3 (-627 (-1148 |#2|)) "failed") (-627 (-1148 |#2|)) (-1148 |#2|))) (-15 -1663 ((-412 (-1148 |#2|)) (-1148 |#2|))) (-15 -2360 ((-412 (-1148 |#2|)) (-1148 |#2|))) (-15 -1821 (|#1|)) (-15 -1546 ((-412 (-1148 |#2|)) (-1148 |#2|)))) (-888) (-1211 |#1|)) (T -886)) +((-1546 (*1 *2 *3) (-12 (-4 *4 (-888)) (-4 *5 (-1211 *4)) (-5 *2 (-412 (-1148 *5))) (-5 *1 (-886 *4 *5)) (-5 *3 (-1148 *5)))) (-1821 (*1 *2) (-12 (-4 *2 (-888)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1211 *2)))) (-2360 (*1 *2 *3) (-12 (-4 *4 (-888)) (-4 *5 (-1211 *4)) (-5 *2 (-412 (-1148 *5))) (-5 *1 (-886 *4 *5)) (-5 *3 (-1148 *5)))) (-1663 (*1 *2 *3) (-12 (-4 *4 (-888)) (-4 *5 (-1211 *4)) (-5 *2 (-412 (-1148 *5))) (-5 *1 (-886 *4 *5)) (-5 *3 (-1148 *5)))) (-4335 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-627 (-1148 *5))) (-5 *3 (-1148 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-888)) (-5 *1 (-886 *4 *5))))) +(-10 -7 (-15 -4335 ((-3 (-627 (-1148 |#2|)) "failed") (-627 (-1148 |#2|)) (-1148 |#2|))) (-15 -1663 ((-412 (-1148 |#2|)) (-1148 |#2|))) (-15 -2360 ((-412 (-1148 |#2|)) (-1148 |#2|))) (-15 -1821 (|#1|)) (-15 -1546 ((-412 (-1148 |#2|)) (-1148 |#2|)))) +((-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 41)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 18)) (-3050 (((-3 $ "failed") $) 35))) +(((-887 |#1|) (-10 -8 (-15 -3050 ((-3 |#1| "failed") |#1|)) (-15 -1964 ((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|))) (-15 -3128 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)))) (-888)) (T -887)) +NIL +(-10 -8 (-15 -3050 ((-3 |#1| "failed") |#1|)) (-15 -1964 ((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|))) (-15 -3128 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-2246 (((-412 (-1148 $)) (-1148 $)) 58)) (-4014 (($ $) 49)) (-2487 (((-412 $) $) 50)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 55)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-1633 (((-111) $) 51)) (-2624 (((-111) $) 30)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-3676 (((-412 (-1148 $)) (-1148 $)) 56)) (-3644 (((-412 (-1148 $)) (-1148 $)) 57)) (-1727 (((-412 $) $) 48)) (-2761 (((-3 $ "failed") $ $) 40)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 54 (|has| $ (-142)))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41)) (-3050 (((-3 $ "failed") $) 53 (|has| $ (-142)))) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-888) (-137)) (T -888)) +((-3128 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-888)))) (-2246 (*1 *2 *3) (-12 (-4 *1 (-888)) (-5 *2 (-412 (-1148 *1))) (-5 *3 (-1148 *1)))) (-3644 (*1 *2 *3) (-12 (-4 *1 (-888)) (-5 *2 (-412 (-1148 *1))) (-5 *3 (-1148 *1)))) (-3676 (*1 *2 *3) (-12 (-4 *1 (-888)) (-5 *2 (-412 (-1148 *1))) (-5 *3 (-1148 *1)))) (-1964 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-627 (-1148 *1))) (-5 *3 (-1148 *1)) (-4 *1 (-888)))) (-3319 (*1 *2 *3) (|partial| -12 (-5 *3 (-671 *1)) (-4 *1 (-142)) (-4 *1 (-888)) (-5 *2 (-1235 *1)))) (-3050 (*1 *1 *1) (|partial| -12 (-4 *1 (-142)) (-4 *1 (-888))))) +(-13 (-1193) (-10 -8 (-15 -2246 ((-412 (-1148 $)) (-1148 $))) (-15 -3644 ((-412 (-1148 $)) (-1148 $))) (-15 -3676 ((-412 (-1148 $)) (-1148 $))) (-15 -3128 ((-1148 $) (-1148 $) (-1148 $))) (-15 -1964 ((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $))) (IF (|has| $ (-142)) (PROGN (-15 -3319 ((-3 (-1235 $) "failed") (-671 $))) (-15 -3050 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-284) . T) ((-445) . T) ((-544) . T) ((-630 $) . T) ((-700 $) . T) ((-709) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-1991 (((-111) $) NIL)) (-4010 (((-754)) NIL)) (-3385 (($ $ (-900)) NIL (|has| $ (-362))) (($ $) NIL)) (-2038 (((-1162 (-900) (-754)) (-552)) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3307 (((-754)) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 $ "failed") $) NIL)) (-1703 (($ $) NIL)) (-2342 (($ (-1235 $)) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-2740 (($) NIL)) (-1415 (((-111) $) NIL)) (-4294 (($ $) NIL) (($ $ (-754)) NIL)) (-1633 (((-111) $) NIL)) (-2641 (((-816 (-900)) $) NIL) (((-900) $) NIL)) (-2624 (((-111) $) NIL)) (-2611 (($) NIL (|has| $ (-362)))) (-2492 (((-111) $) NIL (|has| $ (-362)))) (-2349 (($ $ (-900)) NIL (|has| $ (-362))) (($ $) NIL)) (-4317 (((-3 $ "failed") $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-4205 (((-1148 $) $ (-900)) NIL (|has| $ (-362))) (((-1148 $) $) NIL)) (-2886 (((-900) $) NIL)) (-1980 (((-1148 $) $) NIL (|has| $ (-362)))) (-2259 (((-3 (-1148 $) "failed") $ $) NIL (|has| $ (-362))) (((-1148 $) $) NIL (|has| $ (-362)))) (-3520 (($ $ (-1148 $)) NIL (|has| $ (-362)))) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL T CONST)) (-4153 (($ (-900)) NIL)) (-2249 (((-111) $) NIL)) (-1498 (((-1096) $) NIL)) (-2220 (($) NIL (|has| $ (-362)))) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL)) (-1727 (((-412 $) $) NIL)) (-3804 (((-900)) NIL) (((-816 (-900))) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-4018 (((-3 (-754) "failed") $ $) NIL) (((-754) $) NIL)) (-2405 (((-132)) NIL)) (-2942 (($ $ (-754)) NIL) (($ $) NIL)) (-3567 (((-900) $) NIL) (((-816 (-900)) $) NIL)) (-1376 (((-1148 $)) NIL)) (-3439 (($) NIL)) (-3231 (($) NIL (|has| $ (-362)))) (-3133 (((-671 $) (-1235 $)) NIL) (((-1235 $) $) NIL)) (-3562 (((-552) $) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL)) (-3050 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3995 (((-754)) NIL)) (-2957 (((-1235 $) (-900)) NIL) (((-1235 $)) NIL)) (-3778 (((-111) $ $) NIL)) (-3528 (((-111) $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-3406 (($ $ (-754)) NIL (|has| $ (-362))) (($ $) NIL (|has| $ (-362)))) (-4251 (($ $ (-754)) NIL) (($ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) +(((-889 |#1|) (-13 (-343) (-323 $) (-600 (-552))) (-900)) (T -889)) +NIL +(-13 (-343) (-323 $) (-600 (-552))) +((-2118 (((-3 (-2 (|:| -2641 (-754)) (|:| -4218 |#5|)) "failed") (-330 |#2| |#3| |#4| |#5|)) 79)) (-2646 (((-111) (-330 |#2| |#3| |#4| |#5|)) 17)) (-2641 (((-3 (-754) "failed") (-330 |#2| |#3| |#4| |#5|)) 15))) +(((-890 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2641 ((-3 (-754) "failed") (-330 |#2| |#3| |#4| |#5|))) (-15 -2646 ((-111) (-330 |#2| |#3| |#4| |#5|))) (-15 -2118 ((-3 (-2 (|:| -2641 (-754)) (|:| -4218 |#5|)) "failed") (-330 |#2| |#3| |#4| |#5|)))) (-13 (-830) (-544) (-1017 (-552))) (-424 |#1|) (-1211 |#2|) (-1211 (-401 |#3|)) (-336 |#2| |#3| |#4|)) (T -890)) +((-2118 (*1 *2 *3) (|partial| -12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) (-4 *4 (-13 (-830) (-544) (-1017 (-552)))) (-5 *2 (-2 (|:| -2641 (-754)) (|:| -4218 *8))) (-5 *1 (-890 *4 *5 *6 *7 *8)))) (-2646 (*1 *2 *3) (-12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) (-4 *4 (-13 (-830) (-544) (-1017 (-552)))) (-5 *2 (-111)) (-5 *1 (-890 *4 *5 *6 *7 *8)))) (-2641 (*1 *2 *3) (|partial| -12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) (-4 *4 (-13 (-830) (-544) (-1017 (-552)))) (-5 *2 (-754)) (-5 *1 (-890 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -2641 ((-3 (-754) "failed") (-330 |#2| |#3| |#4| |#5|))) (-15 -2646 ((-111) (-330 |#2| |#3| |#4| |#5|))) (-15 -2118 ((-3 (-2 (|:| -2641 (-754)) (|:| -4218 |#5|)) "failed") (-330 |#2| |#3| |#4| |#5|)))) +((-2118 (((-3 (-2 (|:| -2641 (-754)) (|:| -4218 |#3|)) "failed") (-330 (-401 (-552)) |#1| |#2| |#3|)) 56)) (-2646 (((-111) (-330 (-401 (-552)) |#1| |#2| |#3|)) 16)) (-2641 (((-3 (-754) "failed") (-330 (-401 (-552)) |#1| |#2| |#3|)) 14))) +(((-891 |#1| |#2| |#3|) (-10 -7 (-15 -2641 ((-3 (-754) "failed") (-330 (-401 (-552)) |#1| |#2| |#3|))) (-15 -2646 ((-111) (-330 (-401 (-552)) |#1| |#2| |#3|))) (-15 -2118 ((-3 (-2 (|:| -2641 (-754)) (|:| -4218 |#3|)) "failed") (-330 (-401 (-552)) |#1| |#2| |#3|)))) (-1211 (-401 (-552))) (-1211 (-401 |#1|)) (-336 (-401 (-552)) |#1| |#2|)) (T -891)) +((-2118 (*1 *2 *3) (|partial| -12 (-5 *3 (-330 (-401 (-552)) *4 *5 *6)) (-4 *4 (-1211 (-401 (-552)))) (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 (-401 (-552)) *4 *5)) (-5 *2 (-2 (|:| -2641 (-754)) (|:| -4218 *6))) (-5 *1 (-891 *4 *5 *6)))) (-2646 (*1 *2 *3) (-12 (-5 *3 (-330 (-401 (-552)) *4 *5 *6)) (-4 *4 (-1211 (-401 (-552)))) (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 (-401 (-552)) *4 *5)) (-5 *2 (-111)) (-5 *1 (-891 *4 *5 *6)))) (-2641 (*1 *2 *3) (|partial| -12 (-5 *3 (-330 (-401 (-552)) *4 *5 *6)) (-4 *4 (-1211 (-401 (-552)))) (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 (-401 (-552)) *4 *5)) (-5 *2 (-754)) (-5 *1 (-891 *4 *5 *6))))) +(-10 -7 (-15 -2641 ((-3 (-754) "failed") (-330 (-401 (-552)) |#1| |#2| |#3|))) (-15 -2646 ((-111) (-330 (-401 (-552)) |#1| |#2| |#3|))) (-15 -2118 ((-3 (-2 (|:| -2641 (-754)) (|:| -4218 |#3|)) "failed") (-330 (-401 (-552)) |#1| |#2| |#3|)))) +((-3704 ((|#2| |#2|) 26)) (-2814 (((-552) (-627 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))))) 15)) (-3696 (((-900) (-552)) 35)) (-1311 (((-552) |#2|) 42)) (-3302 (((-552) |#2|) 21) (((-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))) |#1|) 20))) +(((-892 |#1| |#2|) (-10 -7 (-15 -3696 ((-900) (-552))) (-15 -3302 ((-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))) |#1|)) (-15 -3302 ((-552) |#2|)) (-15 -2814 ((-552) (-627 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552)))))) (-15 -1311 ((-552) |#2|)) (-15 -3704 (|#2| |#2|))) (-1211 (-401 (-552))) (-1211 (-401 |#1|))) (T -892)) +((-3704 (*1 *2 *2) (-12 (-4 *3 (-1211 (-401 (-552)))) (-5 *1 (-892 *3 *2)) (-4 *2 (-1211 (-401 *3))))) (-1311 (*1 *2 *3) (-12 (-4 *4 (-1211 (-401 *2))) (-5 *2 (-552)) (-5 *1 (-892 *4 *3)) (-4 *3 (-1211 (-401 *4))))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))))) (-4 *4 (-1211 (-401 *2))) (-5 *2 (-552)) (-5 *1 (-892 *4 *5)) (-4 *5 (-1211 (-401 *4))))) (-3302 (*1 *2 *3) (-12 (-4 *4 (-1211 (-401 *2))) (-5 *2 (-552)) (-5 *1 (-892 *4 *3)) (-4 *3 (-1211 (-401 *4))))) (-3302 (*1 *2 *3) (-12 (-4 *3 (-1211 (-401 (-552)))) (-5 *2 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552)))) (-5 *1 (-892 *3 *4)) (-4 *4 (-1211 (-401 *3))))) (-3696 (*1 *2 *3) (-12 (-5 *3 (-552)) (-4 *4 (-1211 (-401 *3))) (-5 *2 (-900)) (-5 *1 (-892 *4 *5)) (-4 *5 (-1211 (-401 *4)))))) +(-10 -7 (-15 -3696 ((-900) (-552))) (-15 -3302 ((-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))) |#1|)) (-15 -3302 ((-552) |#2|)) (-15 -2814 ((-552) (-627 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552)))))) (-15 -1311 ((-552) |#2|)) (-15 -3704 (|#2| |#2|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3471 ((|#1| $) 81)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-2813 (($ $ $) NIL)) (-2040 (((-3 $ "failed") $) 75)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2680 (($ |#1| (-412 |#1|)) 73)) (-3016 (((-1148 |#1|) |#1| |#1|) 41)) (-3426 (($ $) 49)) (-2624 (((-111) $) NIL)) (-2700 (((-552) $) 78)) (-4174 (($ $ (-552)) 80)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-3859 ((|#1| $) 77)) (-4300 (((-412 |#1|) $) 76)) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) 74)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2891 (($ $) 39)) (-1477 (((-842) $) 99) (($ (-552)) 54) (($ $) NIL) (($ (-401 (-552))) NIL) (($ |#1|) 31) (((-401 |#1|) $) 59) (($ (-401 (-412 |#1|))) 67)) (-3995 (((-754)) 52)) (-3778 (((-111) $ $) NIL)) (-1922 (($) 23 T CONST)) (-1933 (($) 12 T CONST)) (-2292 (((-111) $ $) 68)) (-2407 (($ $ $) NIL)) (-2396 (($ $) 88) (($ $ $) NIL)) (-2384 (($ $ $) 38)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 90) (($ $ $) 37) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) +(((-893 |#1|) (-13 (-357) (-38 |#1|) (-10 -8 (-15 -1477 ((-401 |#1|) $)) (-15 -1477 ($ (-401 (-412 |#1|)))) (-15 -2891 ($ $)) (-15 -4300 ((-412 |#1|) $)) (-15 -3859 (|#1| $)) (-15 -4174 ($ $ (-552))) (-15 -2700 ((-552) $)) (-15 -3016 ((-1148 |#1|) |#1| |#1|)) (-15 -3426 ($ $)) (-15 -2680 ($ |#1| (-412 |#1|))) (-15 -3471 (|#1| $)))) (-301)) (T -893)) +((-1477 (*1 *2 *1) (-12 (-5 *2 (-401 *3)) (-5 *1 (-893 *3)) (-4 *3 (-301)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-401 (-412 *3))) (-4 *3 (-301)) (-5 *1 (-893 *3)))) (-2891 (*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-301)))) (-4300 (*1 *2 *1) (-12 (-5 *2 (-412 *3)) (-5 *1 (-893 *3)) (-4 *3 (-301)))) (-3859 (*1 *2 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-301)))) (-4174 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-893 *3)) (-4 *3 (-301)))) (-2700 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-893 *3)) (-4 *3 (-301)))) (-3016 (*1 *2 *3 *3) (-12 (-5 *2 (-1148 *3)) (-5 *1 (-893 *3)) (-4 *3 (-301)))) (-3426 (*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-301)))) (-2680 (*1 *1 *2 *3) (-12 (-5 *3 (-412 *2)) (-4 *2 (-301)) (-5 *1 (-893 *2)))) (-3471 (*1 *2 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-301))))) +(-13 (-357) (-38 |#1|) (-10 -8 (-15 -1477 ((-401 |#1|) $)) (-15 -1477 ($ (-401 (-412 |#1|)))) (-15 -2891 ($ $)) (-15 -4300 ((-412 |#1|) $)) (-15 -3859 (|#1| $)) (-15 -4174 ($ $ (-552))) (-15 -2700 ((-552) $)) (-15 -3016 ((-1148 |#1|) |#1| |#1|)) (-15 -3426 ($ $)) (-15 -2680 ($ |#1| (-412 |#1|))) (-15 -3471 (|#1| $)))) +((-2680 (((-52) (-931 |#1|) (-412 (-931 |#1|)) (-1152)) 17) (((-52) (-401 (-931 |#1|)) (-1152)) 18))) +(((-894 |#1|) (-10 -7 (-15 -2680 ((-52) (-401 (-931 |#1|)) (-1152))) (-15 -2680 ((-52) (-931 |#1|) (-412 (-931 |#1|)) (-1152)))) (-13 (-301) (-144))) (T -894)) +((-2680 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-412 (-931 *6))) (-5 *5 (-1152)) (-5 *3 (-931 *6)) (-4 *6 (-13 (-301) (-144))) (-5 *2 (-52)) (-5 *1 (-894 *6)))) (-2680 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) (-4 *5 (-13 (-301) (-144))) (-5 *2 (-52)) (-5 *1 (-894 *5))))) +(-10 -7 (-15 -2680 ((-52) (-401 (-931 |#1|)) (-1152))) (-15 -2680 ((-52) (-931 |#1|) (-412 (-931 |#1|)) (-1152)))) +((-1288 ((|#4| (-627 |#4|)) 121) (((-1148 |#4|) (-1148 |#4|) (-1148 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-1323 (((-1148 |#4|) (-627 (-1148 |#4|))) 114) (((-1148 |#4|) (-1148 |#4|) (-1148 |#4|)) 50) ((|#4| (-627 |#4|)) 55) ((|#4| |#4| |#4|) 84))) +(((-895 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1323 (|#4| |#4| |#4|)) (-15 -1323 (|#4| (-627 |#4|))) (-15 -1323 ((-1148 |#4|) (-1148 |#4|) (-1148 |#4|))) (-15 -1323 ((-1148 |#4|) (-627 (-1148 |#4|)))) (-15 -1288 (|#4| |#4| |#4|)) (-15 -1288 ((-1148 |#4|) (-1148 |#4|) (-1148 |#4|))) (-15 -1288 (|#4| (-627 |#4|)))) (-776) (-830) (-301) (-928 |#3| |#1| |#2|)) (T -895)) +((-1288 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *6 *4 *5)) (-5 *1 (-895 *4 *5 *6 *2)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)))) (-1288 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *6)) (-4 *6 (-928 *5 *3 *4)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *5 (-301)) (-5 *1 (-895 *3 *4 *5 *6)))) (-1288 (*1 *2 *2 *2) (-12 (-4 *3 (-776)) (-4 *4 (-830)) (-4 *5 (-301)) (-5 *1 (-895 *3 *4 *5 *2)) (-4 *2 (-928 *5 *3 *4)))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-627 (-1148 *7))) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)) (-5 *2 (-1148 *7)) (-5 *1 (-895 *4 *5 *6 *7)) (-4 *7 (-928 *6 *4 *5)))) (-1323 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *6)) (-4 *6 (-928 *5 *3 *4)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *5 (-301)) (-5 *1 (-895 *3 *4 *5 *6)))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *6 *4 *5)) (-5 *1 (-895 *4 *5 *6 *2)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)))) (-1323 (*1 *2 *2 *2) (-12 (-4 *3 (-776)) (-4 *4 (-830)) (-4 *5 (-301)) (-5 *1 (-895 *3 *4 *5 *2)) (-4 *2 (-928 *5 *3 *4))))) +(-10 -7 (-15 -1323 (|#4| |#4| |#4|)) (-15 -1323 (|#4| (-627 |#4|))) (-15 -1323 ((-1148 |#4|) (-1148 |#4|) (-1148 |#4|))) (-15 -1323 ((-1148 |#4|) (-627 (-1148 |#4|)))) (-15 -1288 (|#4| |#4| |#4|)) (-15 -1288 ((-1148 |#4|) (-1148 |#4|) (-1148 |#4|))) (-15 -1288 (|#4| (-627 |#4|)))) +((-2626 (((-883 (-552)) (-950)) 23) (((-883 (-552)) (-627 (-552))) 20)) (-3081 (((-883 (-552)) (-627 (-552))) 48) (((-883 (-552)) (-900)) 49)) (-2851 (((-883 (-552))) 24)) (-2936 (((-883 (-552))) 38) (((-883 (-552)) (-627 (-552))) 37)) (-3099 (((-883 (-552))) 36) (((-883 (-552)) (-627 (-552))) 35)) (-2557 (((-883 (-552))) 34) (((-883 (-552)) (-627 (-552))) 33)) (-2949 (((-883 (-552))) 32) (((-883 (-552)) (-627 (-552))) 31)) (-1344 (((-883 (-552))) 30) (((-883 (-552)) (-627 (-552))) 29)) (-1675 (((-883 (-552))) 40) (((-883 (-552)) (-627 (-552))) 39)) (-1670 (((-883 (-552)) (-627 (-552))) 52) (((-883 (-552)) (-900)) 53)) (-3326 (((-883 (-552)) (-627 (-552))) 50) (((-883 (-552)) (-900)) 51)) (-2888 (((-883 (-552)) (-627 (-552))) 46) (((-883 (-552)) (-900)) 47)) (-3558 (((-883 (-552)) (-627 (-900))) 43))) +(((-896) (-10 -7 (-15 -3081 ((-883 (-552)) (-900))) (-15 -3081 ((-883 (-552)) (-627 (-552)))) (-15 -2888 ((-883 (-552)) (-900))) (-15 -2888 ((-883 (-552)) (-627 (-552)))) (-15 -3558 ((-883 (-552)) (-627 (-900)))) (-15 -3326 ((-883 (-552)) (-900))) (-15 -3326 ((-883 (-552)) (-627 (-552)))) (-15 -1670 ((-883 (-552)) (-900))) (-15 -1670 ((-883 (-552)) (-627 (-552)))) (-15 -1344 ((-883 (-552)) (-627 (-552)))) (-15 -1344 ((-883 (-552)))) (-15 -2949 ((-883 (-552)) (-627 (-552)))) (-15 -2949 ((-883 (-552)))) (-15 -2557 ((-883 (-552)) (-627 (-552)))) (-15 -2557 ((-883 (-552)))) (-15 -3099 ((-883 (-552)) (-627 (-552)))) (-15 -3099 ((-883 (-552)))) (-15 -2936 ((-883 (-552)) (-627 (-552)))) (-15 -2936 ((-883 (-552)))) (-15 -1675 ((-883 (-552)) (-627 (-552)))) (-15 -1675 ((-883 (-552)))) (-15 -2851 ((-883 (-552)))) (-15 -2626 ((-883 (-552)) (-627 (-552)))) (-15 -2626 ((-883 (-552)) (-950))))) (T -896)) +((-2626 (*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-2626 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-2851 (*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-1675 (*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-2936 (*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-3099 (*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-3099 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-2557 (*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-2557 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-2949 (*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-1344 (*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-1344 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-3326 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-3326 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-627 (-900))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-883 (-552))) (-5 *1 (-896))))) +(-10 -7 (-15 -3081 ((-883 (-552)) (-900))) (-15 -3081 ((-883 (-552)) (-627 (-552)))) (-15 -2888 ((-883 (-552)) (-900))) (-15 -2888 ((-883 (-552)) (-627 (-552)))) (-15 -3558 ((-883 (-552)) (-627 (-900)))) (-15 -3326 ((-883 (-552)) (-900))) (-15 -3326 ((-883 (-552)) (-627 (-552)))) (-15 -1670 ((-883 (-552)) (-900))) (-15 -1670 ((-883 (-552)) (-627 (-552)))) (-15 -1344 ((-883 (-552)) (-627 (-552)))) (-15 -1344 ((-883 (-552)))) (-15 -2949 ((-883 (-552)) (-627 (-552)))) (-15 -2949 ((-883 (-552)))) (-15 -2557 ((-883 (-552)) (-627 (-552)))) (-15 -2557 ((-883 (-552)))) (-15 -3099 ((-883 (-552)) (-627 (-552)))) (-15 -3099 ((-883 (-552)))) (-15 -2936 ((-883 (-552)) (-627 (-552)))) (-15 -2936 ((-883 (-552)))) (-15 -1675 ((-883 (-552)) (-627 (-552)))) (-15 -1675 ((-883 (-552)))) (-15 -2851 ((-883 (-552)))) (-15 -2626 ((-883 (-552)) (-627 (-552)))) (-15 -2626 ((-883 (-552)) (-950)))) +((-1770 (((-627 (-931 |#1|)) (-627 (-931 |#1|)) (-627 (-1152))) 12)) (-3400 (((-627 (-931 |#1|)) (-627 (-931 |#1|)) (-627 (-1152))) 11))) +(((-897 |#1|) (-10 -7 (-15 -3400 ((-627 (-931 |#1|)) (-627 (-931 |#1|)) (-627 (-1152)))) (-15 -1770 ((-627 (-931 |#1|)) (-627 (-931 |#1|)) (-627 (-1152))))) (-445)) (T -897)) +((-1770 (*1 *2 *2 *3) (-12 (-5 *2 (-627 (-931 *4))) (-5 *3 (-627 (-1152))) (-4 *4 (-445)) (-5 *1 (-897 *4)))) (-3400 (*1 *2 *2 *3) (-12 (-5 *2 (-627 (-931 *4))) (-5 *3 (-627 (-1152))) (-4 *4 (-445)) (-5 *1 (-897 *4))))) +(-10 -7 (-15 -3400 ((-627 (-931 |#1|)) (-627 (-931 |#1|)) (-627 (-1152)))) (-15 -1770 ((-627 (-931 |#1|)) (-627 (-931 |#1|)) (-627 (-1152))))) +((-1477 (((-310 |#1|) (-470)) 16))) +(((-898 |#1|) (-10 -7 (-15 -1477 ((-310 |#1|) (-470)))) (-13 (-830) (-544))) (T -898)) +((-1477 (*1 *2 *3) (-12 (-5 *3 (-470)) (-5 *2 (-310 *4)) (-5 *1 (-898 *4)) (-4 *4 (-13 (-830) (-544)))))) +(-10 -7 (-15 -1477 ((-310 |#1|) (-470)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-2624 (((-111) $) 30)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-899) (-137)) (T -899)) +((-3009 (*1 *2 *3) (-12 (-4 *1 (-899)) (-5 *2 (-2 (|:| -3069 (-627 *1)) (|:| -2220 *1))) (-5 *3 (-627 *1)))) (-1491 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-627 *1)) (-4 *1 (-899))))) +(-13 (-445) (-10 -8 (-15 -3009 ((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $))) (-15 -1491 ((-3 (-627 $) "failed") (-627 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-284) . T) ((-445) . T) ((-544) . T) ((-630 $) . T) ((-700 $) . T) ((-709) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1323 (($ $ $) NIL)) (-1477 (((-842) $) NIL)) (-1933 (($) NIL T CONST)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-754)) NIL) (($ $ (-900)) NIL)) (* (($ (-900) $) NIL) (($ $ $) NIL))) +(((-900) (-13 (-777) (-709) (-10 -8 (-15 -1323 ($ $ $)) (-6 (-4368 "*"))))) (T -900)) +((-1323 (*1 *1 *1 *1) (-5 *1 (-900)))) +(-13 (-777) (-709) (-10 -8 (-15 -1323 ($ $ $)) (-6 (-4368 "*")))) +((-2571 ((|#2| (-627 |#1|) (-627 |#1|)) 24))) +(((-901 |#1| |#2|) (-10 -7 (-15 -2571 (|#2| (-627 |#1|) (-627 |#1|)))) (-357) (-1211 |#1|)) (T -901)) +((-2571 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-357)) (-4 *2 (-1211 *4)) (-5 *1 (-901 *4 *2))))) +(-10 -7 (-15 -2571 (|#2| (-627 |#1|) (-627 |#1|)))) +((-3179 (((-1148 |#2|) (-627 |#2|) (-627 |#2|)) 17) (((-1208 |#1| |#2|) (-1208 |#1| |#2|) (-627 |#2|) (-627 |#2|)) 13))) +(((-902 |#1| |#2|) (-10 -7 (-15 -3179 ((-1208 |#1| |#2|) (-1208 |#1| |#2|) (-627 |#2|) (-627 |#2|))) (-15 -3179 ((-1148 |#2|) (-627 |#2|) (-627 |#2|)))) (-1152) (-357)) (T -902)) +((-3179 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *5)) (-4 *5 (-357)) (-5 *2 (-1148 *5)) (-5 *1 (-902 *4 *5)) (-14 *4 (-1152)))) (-3179 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1208 *4 *5)) (-5 *3 (-627 *5)) (-14 *4 (-1152)) (-4 *5 (-357)) (-5 *1 (-902 *4 *5))))) +(-10 -7 (-15 -3179 ((-1208 |#1| |#2|) (-1208 |#1| |#2|) (-627 |#2|) (-627 |#2|))) (-15 -3179 ((-1148 |#2|) (-627 |#2|) (-627 |#2|)))) +((-3646 (((-552) (-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-1134)) 139)) (-3161 ((|#4| |#4|) 155)) (-1815 (((-627 (-401 (-931 |#1|))) (-627 (-1152))) 118)) (-2312 (((-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))) (-671 |#4|) (-627 (-401 (-931 |#1|))) (-627 (-627 |#4|)) (-754) (-754) (-552)) 75)) (-3285 (((-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))) (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))) (-627 |#4|)) 59)) (-4026 (((-671 |#4|) (-671 |#4|) (-627 |#4|)) 55)) (-4013 (((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-1134)) 151)) (-2164 (((-552) (-671 |#4|) (-900) (-1134)) 132) (((-552) (-671 |#4|) (-627 (-1152)) (-900) (-1134)) 131) (((-552) (-671 |#4|) (-627 |#4|) (-900) (-1134)) 130) (((-552) (-671 |#4|) (-1134)) 127) (((-552) (-671 |#4|) (-627 (-1152)) (-1134)) 126) (((-552) (-671 |#4|) (-627 |#4|) (-1134)) 125) (((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-900)) 124) (((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 (-1152)) (-900)) 123) (((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 |#4|) (-900)) 122) (((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|)) 120) (((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 (-1152))) 119) (((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 |#4|)) 115)) (-1494 ((|#4| (-931 |#1|)) 68)) (-1989 (((-111) (-627 |#4|) (-627 (-627 |#4|))) 152)) (-2435 (((-627 (-627 (-552))) (-552) (-552)) 129)) (-3873 (((-627 (-627 |#4|)) (-627 (-627 |#4|))) 88)) (-2154 (((-754) (-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 |#4|))))) 86)) (-2378 (((-754) (-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 |#4|))))) 85)) (-1617 (((-111) (-627 (-931 |#1|))) 17) (((-111) (-627 |#4|)) 13)) (-3012 (((-2 (|:| |sysok| (-111)) (|:| |z0| (-627 |#4|)) (|:| |n0| (-627 |#4|))) (-627 |#4|) (-627 |#4|)) 71)) (-3639 (((-627 |#4|) |#4|) 49)) (-3355 (((-627 (-401 (-931 |#1|))) (-627 |#4|)) 114) (((-671 (-401 (-931 |#1|))) (-671 |#4|)) 56) (((-401 (-931 |#1|)) |#4|) 111)) (-2540 (((-2 (|:| |rgl| (-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))))))) (|:| |rgsz| (-552))) (-671 |#4|) (-627 (-401 (-931 |#1|))) (-754) (-1134) (-552)) 93)) (-3514 (((-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 |#4|)))) (-671 |#4|) (-754)) 84)) (-3554 (((-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552))))) (-671 |#4|) (-754)) 101)) (-2033 (((-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))) (-2 (|:| -2515 (-671 (-401 (-931 |#1|)))) (|:| |vec| (-627 (-401 (-931 |#1|)))) (|:| -4154 (-754)) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552))))) 48))) +(((-903 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 |#4|))) (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 (-1152)))) (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|))) (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 |#4|) (-900))) (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 (-1152)) (-900))) (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-900))) (-15 -2164 ((-552) (-671 |#4|) (-627 |#4|) (-1134))) (-15 -2164 ((-552) (-671 |#4|) (-627 (-1152)) (-1134))) (-15 -2164 ((-552) (-671 |#4|) (-1134))) (-15 -2164 ((-552) (-671 |#4|) (-627 |#4|) (-900) (-1134))) (-15 -2164 ((-552) (-671 |#4|) (-627 (-1152)) (-900) (-1134))) (-15 -2164 ((-552) (-671 |#4|) (-900) (-1134))) (-15 -3646 ((-552) (-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-1134))) (-15 -4013 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-1134))) (-15 -2540 ((-2 (|:| |rgl| (-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))))))) (|:| |rgsz| (-552))) (-671 |#4|) (-627 (-401 (-931 |#1|))) (-754) (-1134) (-552))) (-15 -3355 ((-401 (-931 |#1|)) |#4|)) (-15 -3355 ((-671 (-401 (-931 |#1|))) (-671 |#4|))) (-15 -3355 ((-627 (-401 (-931 |#1|))) (-627 |#4|))) (-15 -1815 ((-627 (-401 (-931 |#1|))) (-627 (-1152)))) (-15 -1494 (|#4| (-931 |#1|))) (-15 -3012 ((-2 (|:| |sysok| (-111)) (|:| |z0| (-627 |#4|)) (|:| |n0| (-627 |#4|))) (-627 |#4|) (-627 |#4|))) (-15 -3514 ((-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 |#4|)))) (-671 |#4|) (-754))) (-15 -3285 ((-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))) (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))) (-627 |#4|))) (-15 -2033 ((-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))) (-2 (|:| -2515 (-671 (-401 (-931 |#1|)))) (|:| |vec| (-627 (-401 (-931 |#1|)))) (|:| -4154 (-754)) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (-15 -3639 ((-627 |#4|) |#4|)) (-15 -2378 ((-754) (-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 |#4|)))))) (-15 -2154 ((-754) (-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 |#4|)))))) (-15 -3873 ((-627 (-627 |#4|)) (-627 (-627 |#4|)))) (-15 -2435 ((-627 (-627 (-552))) (-552) (-552))) (-15 -1989 ((-111) (-627 |#4|) (-627 (-627 |#4|)))) (-15 -3554 ((-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552))))) (-671 |#4|) (-754))) (-15 -4026 ((-671 |#4|) (-671 |#4|) (-627 |#4|))) (-15 -2312 ((-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))) (-671 |#4|) (-627 (-401 (-931 |#1|))) (-627 (-627 |#4|)) (-754) (-754) (-552))) (-15 -3161 (|#4| |#4|)) (-15 -1617 ((-111) (-627 |#4|))) (-15 -1617 ((-111) (-627 (-931 |#1|))))) (-13 (-301) (-144)) (-13 (-830) (-600 (-1152))) (-776) (-928 |#1| |#3| |#2|)) (T -903)) +((-1617 (*1 *2 *3) (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-111)) (-5 *1 (-903 *4 *5 *6 *7)) (-4 *7 (-928 *4 *6 *5)))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-928 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-111)) (-5 *1 (-903 *4 *5 *6 *7)))) (-3161 (*1 *2 *2) (-12 (-4 *3 (-13 (-301) (-144))) (-4 *4 (-13 (-830) (-600 (-1152)))) (-4 *5 (-776)) (-5 *1 (-903 *3 *4 *5 *2)) (-4 *2 (-928 *3 *5 *4)))) (-2312 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552))))) (-5 *4 (-671 *12)) (-5 *5 (-627 (-401 (-931 *9)))) (-5 *6 (-627 (-627 *12))) (-5 *7 (-754)) (-5 *8 (-552)) (-4 *9 (-13 (-301) (-144))) (-4 *12 (-928 *9 *11 *10)) (-4 *10 (-13 (-830) (-600 (-1152)))) (-4 *11 (-776)) (-5 *2 (-2 (|:| |eqzro| (-627 *12)) (|:| |neqzro| (-627 *12)) (|:| |wcond| (-627 (-931 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 *9)))) (|:| -2957 (-627 (-1235 (-401 (-931 *9))))))))) (-5 *1 (-903 *9 *10 *11 *12)))) (-4026 (*1 *2 *2 *3) (-12 (-5 *2 (-671 *7)) (-5 *3 (-627 *7)) (-4 *7 (-928 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *1 (-903 *4 *5 *6 *7)))) (-3554 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-5 *4 (-754)) (-4 *8 (-928 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) (-4 *7 (-776)) (-5 *2 (-627 (-2 (|:| |det| *8) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (-5 *1 (-903 *5 *6 *7 *8)))) (-1989 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-627 *8))) (-5 *3 (-627 *8)) (-4 *8 (-928 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) (-4 *7 (-776)) (-5 *2 (-111)) (-5 *1 (-903 *5 *6 *7 *8)))) (-2435 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-627 (-627 (-552)))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-552)) (-4 *7 (-928 *4 *6 *5)))) (-3873 (*1 *2 *2) (-12 (-5 *2 (-627 (-627 *6))) (-4 *6 (-928 *3 *5 *4)) (-4 *3 (-13 (-301) (-144))) (-4 *4 (-13 (-830) (-600 (-1152)))) (-4 *5 (-776)) (-5 *1 (-903 *3 *4 *5 *6)))) (-2154 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| *7) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 *7))))) (-4 *7 (-928 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-754)) (-5 *1 (-903 *4 *5 *6 *7)))) (-2378 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| *7) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 *7))))) (-4 *7 (-928 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-754)) (-5 *1 (-903 *4 *5 *6 *7)))) (-3639 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-627 *3)) (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-928 *4 *6 *5)))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2515 (-671 (-401 (-931 *4)))) (|:| |vec| (-627 (-401 (-931 *4)))) (|:| -4154 (-754)) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552))))) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-2 (|:| |partsol| (-1235 (-401 (-931 *4)))) (|:| -2957 (-627 (-1235 (-401 (-931 *4))))))) (-5 *1 (-903 *4 *5 *6 *7)) (-4 *7 (-928 *4 *6 *5)))) (-3285 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1235 (-401 (-931 *4)))) (|:| -2957 (-627 (-1235 (-401 (-931 *4))))))) (-5 *3 (-627 *7)) (-4 *4 (-13 (-301) (-144))) (-4 *7 (-928 *4 *6 *5)) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *1 (-903 *4 *5 *6 *7)))) (-3514 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-4 *8 (-928 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) (-4 *7 (-776)) (-5 *2 (-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| *8) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 *8))))) (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-754)))) (-3012 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-4 *7 (-928 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-111)) (|:| |z0| (-627 *7)) (|:| |n0| (-627 *7)))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) (-1494 (*1 *2 *3) (-12 (-5 *3 (-931 *4)) (-4 *4 (-13 (-301) (-144))) (-4 *2 (-928 *4 *6 *5)) (-5 *1 (-903 *4 *5 *6 *2)) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-627 (-1152))) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-627 (-401 (-931 *4)))) (-5 *1 (-903 *4 *5 *6 *7)) (-4 *7 (-928 *4 *6 *5)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-928 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-627 (-401 (-931 *4)))) (-5 *1 (-903 *4 *5 *6 *7)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-671 *7)) (-4 *7 (-928 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-671 (-401 (-931 *4)))) (-5 *1 (-903 *4 *5 *6 *7)))) (-3355 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-401 (-931 *4))) (-5 *1 (-903 *4 *5 *6 *3)) (-4 *3 (-928 *4 *6 *5)))) (-2540 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-671 *11)) (-5 *4 (-627 (-401 (-931 *8)))) (-5 *5 (-754)) (-5 *6 (-1134)) (-4 *8 (-13 (-301) (-144))) (-4 *11 (-928 *8 *10 *9)) (-4 *9 (-13 (-830) (-600 (-1152)))) (-4 *10 (-776)) (-5 *2 (-2 (|:| |rgl| (-627 (-2 (|:| |eqzro| (-627 *11)) (|:| |neqzro| (-627 *11)) (|:| |wcond| (-627 (-931 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 *8)))) (|:| -2957 (-627 (-1235 (-401 (-931 *8)))))))))) (|:| |rgsz| (-552)))) (-5 *1 (-903 *8 *9 *10 *11)) (-5 *7 (-552)))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-627 (-2 (|:| |eqzro| (-627 *7)) (|:| |neqzro| (-627 *7)) (|:| |wcond| (-627 (-931 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 *4)))) (|:| -2957 (-627 (-1235 (-401 (-931 *4)))))))))) (-5 *1 (-903 *4 *5 *6 *7)) (-4 *7 (-928 *4 *6 *5)))) (-3646 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-2 (|:| |eqzro| (-627 *8)) (|:| |neqzro| (-627 *8)) (|:| |wcond| (-627 (-931 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 *5)))) (|:| -2957 (-627 (-1235 (-401 (-931 *5)))))))))) (-5 *4 (-1134)) (-4 *5 (-13 (-301) (-144))) (-4 *8 (-928 *5 *7 *6)) (-4 *6 (-13 (-830) (-600 (-1152)))) (-4 *7 (-776)) (-5 *2 (-552)) (-5 *1 (-903 *5 *6 *7 *8)))) (-2164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *9)) (-5 *4 (-900)) (-5 *5 (-1134)) (-4 *9 (-928 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-830) (-600 (-1152)))) (-4 *8 (-776)) (-5 *2 (-552)) (-5 *1 (-903 *6 *7 *8 *9)))) (-2164 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-671 *10)) (-5 *4 (-627 (-1152))) (-5 *5 (-900)) (-5 *6 (-1134)) (-4 *10 (-928 *7 *9 *8)) (-4 *7 (-13 (-301) (-144))) (-4 *8 (-13 (-830) (-600 (-1152)))) (-4 *9 (-776)) (-5 *2 (-552)) (-5 *1 (-903 *7 *8 *9 *10)))) (-2164 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-671 *10)) (-5 *4 (-627 *10)) (-5 *5 (-900)) (-5 *6 (-1134)) (-4 *10 (-928 *7 *9 *8)) (-4 *7 (-13 (-301) (-144))) (-4 *8 (-13 (-830) (-600 (-1152)))) (-4 *9 (-776)) (-5 *2 (-552)) (-5 *1 (-903 *7 *8 *9 *10)))) (-2164 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-5 *4 (-1134)) (-4 *8 (-928 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) (-4 *7 (-776)) (-5 *2 (-552)) (-5 *1 (-903 *5 *6 *7 *8)))) (-2164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *9)) (-5 *4 (-627 (-1152))) (-5 *5 (-1134)) (-4 *9 (-928 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-830) (-600 (-1152)))) (-4 *8 (-776)) (-5 *2 (-552)) (-5 *1 (-903 *6 *7 *8 *9)))) (-2164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *9)) (-5 *4 (-627 *9)) (-5 *5 (-1134)) (-4 *9 (-928 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-830) (-600 (-1152)))) (-4 *8 (-776)) (-5 *2 (-552)) (-5 *1 (-903 *6 *7 *8 *9)))) (-2164 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-5 *4 (-900)) (-4 *8 (-928 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) (-4 *7 (-776)) (-5 *2 (-627 (-2 (|:| |eqzro| (-627 *8)) (|:| |neqzro| (-627 *8)) (|:| |wcond| (-627 (-931 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 *5)))) (|:| -2957 (-627 (-1235 (-401 (-931 *5)))))))))) (-5 *1 (-903 *5 *6 *7 *8)))) (-2164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *9)) (-5 *4 (-627 (-1152))) (-5 *5 (-900)) (-4 *9 (-928 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-830) (-600 (-1152)))) (-4 *8 (-776)) (-5 *2 (-627 (-2 (|:| |eqzro| (-627 *9)) (|:| |neqzro| (-627 *9)) (|:| |wcond| (-627 (-931 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 *6)))) (|:| -2957 (-627 (-1235 (-401 (-931 *6)))))))))) (-5 *1 (-903 *6 *7 *8 *9)))) (-2164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-671 *9)) (-5 *5 (-900)) (-4 *9 (-928 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-830) (-600 (-1152)))) (-4 *8 (-776)) (-5 *2 (-627 (-2 (|:| |eqzro| (-627 *9)) (|:| |neqzro| (-627 *9)) (|:| |wcond| (-627 (-931 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 *6)))) (|:| -2957 (-627 (-1235 (-401 (-931 *6)))))))))) (-5 *1 (-903 *6 *7 *8 *9)) (-5 *4 (-627 *9)))) (-2164 (*1 *2 *3) (-12 (-5 *3 (-671 *7)) (-4 *7 (-928 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-627 (-2 (|:| |eqzro| (-627 *7)) (|:| |neqzro| (-627 *7)) (|:| |wcond| (-627 (-931 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 *4)))) (|:| -2957 (-627 (-1235 (-401 (-931 *4)))))))))) (-5 *1 (-903 *4 *5 *6 *7)))) (-2164 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-5 *4 (-627 (-1152))) (-4 *8 (-928 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) (-4 *7 (-776)) (-5 *2 (-627 (-2 (|:| |eqzro| (-627 *8)) (|:| |neqzro| (-627 *8)) (|:| |wcond| (-627 (-931 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 *5)))) (|:| -2957 (-627 (-1235 (-401 (-931 *5)))))))))) (-5 *1 (-903 *5 *6 *7 *8)))) (-2164 (*1 *2 *3 *4) (-12 (-5 *3 (-671 *8)) (-4 *8 (-928 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) (-4 *7 (-776)) (-5 *2 (-627 (-2 (|:| |eqzro| (-627 *8)) (|:| |neqzro| (-627 *8)) (|:| |wcond| (-627 (-931 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 *5)))) (|:| -2957 (-627 (-1235 (-401 (-931 *5)))))))))) (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-627 *8))))) +(-10 -7 (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 |#4|))) (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 (-1152)))) (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|))) (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 |#4|) (-900))) (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-627 (-1152)) (-900))) (-15 -2164 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-671 |#4|) (-900))) (-15 -2164 ((-552) (-671 |#4|) (-627 |#4|) (-1134))) (-15 -2164 ((-552) (-671 |#4|) (-627 (-1152)) (-1134))) (-15 -2164 ((-552) (-671 |#4|) (-1134))) (-15 -2164 ((-552) (-671 |#4|) (-627 |#4|) (-900) (-1134))) (-15 -2164 ((-552) (-671 |#4|) (-627 (-1152)) (-900) (-1134))) (-15 -2164 ((-552) (-671 |#4|) (-900) (-1134))) (-15 -3646 ((-552) (-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-1134))) (-15 -4013 ((-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|))))))))) (-1134))) (-15 -2540 ((-2 (|:| |rgl| (-627 (-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))))))) (|:| |rgsz| (-552))) (-671 |#4|) (-627 (-401 (-931 |#1|))) (-754) (-1134) (-552))) (-15 -3355 ((-401 (-931 |#1|)) |#4|)) (-15 -3355 ((-671 (-401 (-931 |#1|))) (-671 |#4|))) (-15 -3355 ((-627 (-401 (-931 |#1|))) (-627 |#4|))) (-15 -1815 ((-627 (-401 (-931 |#1|))) (-627 (-1152)))) (-15 -1494 (|#4| (-931 |#1|))) (-15 -3012 ((-2 (|:| |sysok| (-111)) (|:| |z0| (-627 |#4|)) (|:| |n0| (-627 |#4|))) (-627 |#4|) (-627 |#4|))) (-15 -3514 ((-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 |#4|)))) (-671 |#4|) (-754))) (-15 -3285 ((-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))) (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))) (-627 |#4|))) (-15 -2033 ((-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))) (-2 (|:| -2515 (-671 (-401 (-931 |#1|)))) (|:| |vec| (-627 (-401 (-931 |#1|)))) (|:| -4154 (-754)) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (-15 -3639 ((-627 |#4|) |#4|)) (-15 -2378 ((-754) (-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 |#4|)))))) (-15 -2154 ((-754) (-627 (-2 (|:| -4154 (-754)) (|:| |eqns| (-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))))) (|:| |fgb| (-627 |#4|)))))) (-15 -3873 ((-627 (-627 |#4|)) (-627 (-627 |#4|)))) (-15 -2435 ((-627 (-627 (-552))) (-552) (-552))) (-15 -1989 ((-111) (-627 |#4|) (-627 (-627 |#4|)))) (-15 -3554 ((-627 (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552))))) (-671 |#4|) (-754))) (-15 -4026 ((-671 |#4|) (-671 |#4|) (-627 |#4|))) (-15 -2312 ((-2 (|:| |eqzro| (-627 |#4|)) (|:| |neqzro| (-627 |#4|)) (|:| |wcond| (-627 (-931 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1235 (-401 (-931 |#1|)))) (|:| -2957 (-627 (-1235 (-401 (-931 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552)))) (-671 |#4|) (-627 (-401 (-931 |#1|))) (-627 (-627 |#4|)) (-754) (-754) (-552))) (-15 -3161 (|#4| |#4|)) (-15 -1617 ((-111) (-627 |#4|))) (-15 -1617 ((-111) (-627 (-931 |#1|))))) +((-2063 (((-906) |#1| (-1152)) 17) (((-906) |#1| (-1152) (-1070 (-220))) 21)) (-1540 (((-906) |#1| |#1| (-1152) (-1070 (-220))) 19) (((-906) |#1| (-1152) (-1070 (-220))) 15))) +(((-904 |#1|) (-10 -7 (-15 -1540 ((-906) |#1| (-1152) (-1070 (-220)))) (-15 -1540 ((-906) |#1| |#1| (-1152) (-1070 (-220)))) (-15 -2063 ((-906) |#1| (-1152) (-1070 (-220)))) (-15 -2063 ((-906) |#1| (-1152)))) (-600 (-528))) (T -904)) +((-2063 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-5 *2 (-906)) (-5 *1 (-904 *3)) (-4 *3 (-600 (-528))))) (-2063 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1152)) (-5 *5 (-1070 (-220))) (-5 *2 (-906)) (-5 *1 (-904 *3)) (-4 *3 (-600 (-528))))) (-1540 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1152)) (-5 *5 (-1070 (-220))) (-5 *2 (-906)) (-5 *1 (-904 *3)) (-4 *3 (-600 (-528))))) (-1540 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1152)) (-5 *5 (-1070 (-220))) (-5 *2 (-906)) (-5 *1 (-904 *3)) (-4 *3 (-600 (-528)))))) +(-10 -7 (-15 -1540 ((-906) |#1| (-1152) (-1070 (-220)))) (-15 -1540 ((-906) |#1| |#1| (-1152) (-1070 (-220)))) (-15 -2063 ((-906) |#1| (-1152) (-1070 (-220)))) (-15 -2063 ((-906) |#1| (-1152)))) +((-1799 (($ $ (-1070 (-220)) (-1070 (-220)) (-1070 (-220))) 70)) (-3457 (((-1070 (-220)) $) 40)) (-3447 (((-1070 (-220)) $) 39)) (-3437 (((-1070 (-220)) $) 38)) (-3223 (((-627 (-627 (-220))) $) 43)) (-1776 (((-1070 (-220)) $) 41)) (-4228 (((-552) (-552)) 32)) (-1627 (((-552) (-552)) 28)) (-1408 (((-552) (-552)) 30)) (-1902 (((-111) (-111)) 35)) (-2696 (((-552)) 31)) (-3938 (($ $ (-1070 (-220))) 73) (($ $) 74)) (-3977 (($ (-1 (-922 (-220)) (-220)) (-1070 (-220))) 78) (($ (-1 (-922 (-220)) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220))) 79)) (-1540 (($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220))) 81) (($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220))) 82) (($ $ (-1070 (-220))) 76)) (-2227 (((-552)) 36)) (-1574 (((-552)) 27)) (-1975 (((-552)) 29)) (-2116 (((-627 (-627 (-922 (-220)))) $) 95)) (-3597 (((-111) (-111)) 37)) (-1477 (((-842) $) 94)) (-2416 (((-111)) 34))) +(((-905) (-13 (-953) (-10 -8 (-15 -3977 ($ (-1 (-922 (-220)) (-220)) (-1070 (-220)))) (-15 -3977 ($ (-1 (-922 (-220)) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -1540 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220)))) (-15 -1540 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -1540 ($ $ (-1070 (-220)))) (-15 -1799 ($ $ (-1070 (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -3938 ($ $ (-1070 (-220)))) (-15 -3938 ($ $)) (-15 -1776 ((-1070 (-220)) $)) (-15 -3223 ((-627 (-627 (-220))) $)) (-15 -1574 ((-552))) (-15 -1627 ((-552) (-552))) (-15 -1975 ((-552))) (-15 -1408 ((-552) (-552))) (-15 -2696 ((-552))) (-15 -4228 ((-552) (-552))) (-15 -2416 ((-111))) (-15 -1902 ((-111) (-111))) (-15 -2227 ((-552))) (-15 -3597 ((-111) (-111)))))) (T -905)) +((-3977 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-922 (-220)) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-905)))) (-3977 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-922 (-220)) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-905)))) (-1540 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-905)))) (-1540 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-905)))) (-1540 (*1 *1 *1 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-905)))) (-1799 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-905)))) (-3938 (*1 *1 *1 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-905)))) (-3938 (*1 *1 *1) (-5 *1 (-905))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-905)))) (-3223 (*1 *2 *1) (-12 (-5 *2 (-627 (-627 (-220)))) (-5 *1 (-905)))) (-1574 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905)))) (-1627 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905)))) (-1975 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905)))) (-1408 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905)))) (-2696 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905)))) (-4228 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905)))) (-2416 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-905)))) (-1902 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-905)))) (-2227 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905)))) (-3597 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-905))))) +(-13 (-953) (-10 -8 (-15 -3977 ($ (-1 (-922 (-220)) (-220)) (-1070 (-220)))) (-15 -3977 ($ (-1 (-922 (-220)) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -1540 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220)))) (-15 -1540 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -1540 ($ $ (-1070 (-220)))) (-15 -1799 ($ $ (-1070 (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -3938 ($ $ (-1070 (-220)))) (-15 -3938 ($ $)) (-15 -1776 ((-1070 (-220)) $)) (-15 -3223 ((-627 (-627 (-220))) $)) (-15 -1574 ((-552))) (-15 -1627 ((-552) (-552))) (-15 -1975 ((-552))) (-15 -1408 ((-552) (-552))) (-15 -2696 ((-552))) (-15 -4228 ((-552) (-552))) (-15 -2416 ((-111))) (-15 -1902 ((-111) (-111))) (-15 -2227 ((-552))) (-15 -3597 ((-111) (-111))))) +((-1799 (($ $ (-1070 (-220))) 70) (($ $ (-1070 (-220)) (-1070 (-220))) 71)) (-3447 (((-1070 (-220)) $) 44)) (-3437 (((-1070 (-220)) $) 43)) (-1776 (((-1070 (-220)) $) 45)) (-3983 (((-552) (-552)) 37)) (-1828 (((-552) (-552)) 33)) (-4326 (((-552) (-552)) 35)) (-3894 (((-111) (-111)) 39)) (-2511 (((-552)) 36)) (-3938 (($ $ (-1070 (-220))) 74) (($ $) 75)) (-3977 (($ (-1 (-922 (-220)) (-220)) (-1070 (-220))) 84) (($ (-1 (-922 (-220)) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220))) 85)) (-2063 (($ (-1 (-220) (-220)) (-1070 (-220))) 92) (($ (-1 (-220) (-220))) 95)) (-1540 (($ (-1 (-220) (-220)) (-1070 (-220))) 79) (($ (-1 (-220) (-220)) (-1070 (-220)) (-1070 (-220))) 80) (($ (-627 (-1 (-220) (-220))) (-1070 (-220))) 87) (($ (-627 (-1 (-220) (-220))) (-1070 (-220)) (-1070 (-220))) 88) (($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220))) 81) (($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220))) 82) (($ $ (-1070 (-220))) 76)) (-3381 (((-111) $) 40)) (-4343 (((-552)) 41)) (-3614 (((-552)) 32)) (-3173 (((-552)) 34)) (-2116 (((-627 (-627 (-922 (-220)))) $) 23)) (-4239 (((-111) (-111)) 42)) (-1477 (((-842) $) 106)) (-4264 (((-111)) 38))) +(((-906) (-13 (-934) (-10 -8 (-15 -1540 ($ (-1 (-220) (-220)) (-1070 (-220)))) (-15 -1540 ($ (-1 (-220) (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -1540 ($ (-627 (-1 (-220) (-220))) (-1070 (-220)))) (-15 -1540 ($ (-627 (-1 (-220) (-220))) (-1070 (-220)) (-1070 (-220)))) (-15 -1540 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220)))) (-15 -1540 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -3977 ($ (-1 (-922 (-220)) (-220)) (-1070 (-220)))) (-15 -3977 ($ (-1 (-922 (-220)) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -2063 ($ (-1 (-220) (-220)) (-1070 (-220)))) (-15 -2063 ($ (-1 (-220) (-220)))) (-15 -1540 ($ $ (-1070 (-220)))) (-15 -3381 ((-111) $)) (-15 -1799 ($ $ (-1070 (-220)))) (-15 -1799 ($ $ (-1070 (-220)) (-1070 (-220)))) (-15 -3938 ($ $ (-1070 (-220)))) (-15 -3938 ($ $)) (-15 -1776 ((-1070 (-220)) $)) (-15 -3614 ((-552))) (-15 -1828 ((-552) (-552))) (-15 -3173 ((-552))) (-15 -4326 ((-552) (-552))) (-15 -2511 ((-552))) (-15 -3983 ((-552) (-552))) (-15 -4264 ((-111))) (-15 -3894 ((-111) (-111))) (-15 -4343 ((-552))) (-15 -4239 ((-111) (-111)))))) (T -906)) +((-1540 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-906)))) (-1540 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-906)))) (-1540 (*1 *1 *2 *3) (-12 (-5 *2 (-627 (-1 (-220) (-220)))) (-5 *3 (-1070 (-220))) (-5 *1 (-906)))) (-1540 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-627 (-1 (-220) (-220)))) (-5 *3 (-1070 (-220))) (-5 *1 (-906)))) (-1540 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-906)))) (-1540 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-906)))) (-3977 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-922 (-220)) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-906)))) (-3977 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-922 (-220)) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-906)))) (-2063 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) (-5 *1 (-906)))) (-2063 (*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-906)))) (-1540 (*1 *1 *1 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-906)))) (-3381 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-906)))) (-1799 (*1 *1 *1 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-906)))) (-1799 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-906)))) (-3938 (*1 *1 *1 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-906)))) (-3938 (*1 *1 *1) (-5 *1 (-906))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-906)))) (-3614 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906)))) (-1828 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906)))) (-3173 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906)))) (-4326 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906)))) (-2511 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906)))) (-3983 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906)))) (-4264 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-906)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-906)))) (-4343 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906)))) (-4239 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-906))))) +(-13 (-934) (-10 -8 (-15 -1540 ($ (-1 (-220) (-220)) (-1070 (-220)))) (-15 -1540 ($ (-1 (-220) (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -1540 ($ (-627 (-1 (-220) (-220))) (-1070 (-220)))) (-15 -1540 ($ (-627 (-1 (-220) (-220))) (-1070 (-220)) (-1070 (-220)))) (-15 -1540 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220)))) (-15 -1540 ($ (-1 (-220) (-220)) (-1 (-220) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -3977 ($ (-1 (-922 (-220)) (-220)) (-1070 (-220)))) (-15 -3977 ($ (-1 (-922 (-220)) (-220)) (-1070 (-220)) (-1070 (-220)) (-1070 (-220)))) (-15 -2063 ($ (-1 (-220) (-220)) (-1070 (-220)))) (-15 -2063 ($ (-1 (-220) (-220)))) (-15 -1540 ($ $ (-1070 (-220)))) (-15 -3381 ((-111) $)) (-15 -1799 ($ $ (-1070 (-220)))) (-15 -1799 ($ $ (-1070 (-220)) (-1070 (-220)))) (-15 -3938 ($ $ (-1070 (-220)))) (-15 -3938 ($ $)) (-15 -1776 ((-1070 (-220)) $)) (-15 -3614 ((-552))) (-15 -1828 ((-552) (-552))) (-15 -3173 ((-552))) (-15 -4326 ((-552) (-552))) (-15 -2511 ((-552))) (-15 -3983 ((-552) (-552))) (-15 -4264 ((-111))) (-15 -3894 ((-111) (-111))) (-15 -4343 ((-552))) (-15 -4239 ((-111) (-111))))) +((-2852 (((-627 (-1070 (-220))) (-627 (-627 (-922 (-220))))) 24))) +(((-907) (-10 -7 (-15 -2852 ((-627 (-1070 (-220))) (-627 (-627 (-922 (-220)))))))) (T -907)) +((-2852 (*1 *2 *3) (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *2 (-627 (-1070 (-220)))) (-5 *1 (-907))))) +(-10 -7 (-15 -2852 ((-627 (-1070 (-220))) (-627 (-627 (-922 (-220))))))) +((-2437 ((|#2| |#2|) 26)) (-1718 ((|#2| |#2|) 27)) (-3488 ((|#2| |#2|) 25)) (-3732 ((|#2| |#2| (-1134)) 24))) +(((-908 |#1| |#2|) (-10 -7 (-15 -3732 (|#2| |#2| (-1134))) (-15 -3488 (|#2| |#2|)) (-15 -2437 (|#2| |#2|)) (-15 -1718 (|#2| |#2|))) (-830) (-424 |#1|)) (T -908)) +((-1718 (*1 *2 *2) (-12 (-4 *3 (-830)) (-5 *1 (-908 *3 *2)) (-4 *2 (-424 *3)))) (-2437 (*1 *2 *2) (-12 (-4 *3 (-830)) (-5 *1 (-908 *3 *2)) (-4 *2 (-424 *3)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-830)) (-5 *1 (-908 *3 *2)) (-4 *2 (-424 *3)))) (-3732 (*1 *2 *2 *3) (-12 (-5 *3 (-1134)) (-4 *4 (-830)) (-5 *1 (-908 *4 *2)) (-4 *2 (-424 *4))))) +(-10 -7 (-15 -3732 (|#2| |#2| (-1134))) (-15 -3488 (|#2| |#2|)) (-15 -2437 (|#2| |#2|)) (-15 -1718 (|#2| |#2|))) +((-2437 (((-310 (-552)) (-1152)) 16)) (-1718 (((-310 (-552)) (-1152)) 14)) (-3488 (((-310 (-552)) (-1152)) 12)) (-3732 (((-310 (-552)) (-1152) (-1134)) 19))) +(((-909) (-10 -7 (-15 -3732 ((-310 (-552)) (-1152) (-1134))) (-15 -3488 ((-310 (-552)) (-1152))) (-15 -2437 ((-310 (-552)) (-1152))) (-15 -1718 ((-310 (-552)) (-1152))))) (T -909)) +((-1718 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-310 (-552))) (-5 *1 (-909)))) (-2437 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-310 (-552))) (-5 *1 (-909)))) (-3488 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-310 (-552))) (-5 *1 (-909)))) (-3732 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-1134)) (-5 *2 (-310 (-552))) (-5 *1 (-909))))) +(-10 -7 (-15 -3732 ((-310 (-552)) (-1152) (-1134))) (-15 -3488 ((-310 (-552)) (-1152))) (-15 -2437 ((-310 (-552)) (-1152))) (-15 -1718 ((-310 (-552)) (-1152)))) +((-4208 (((-868 |#1| |#3|) |#2| (-871 |#1|) (-868 |#1| |#3|)) 25)) (-2615 (((-1 (-111) |#2|) (-1 (-111) |#3|)) 13))) +(((-910 |#1| |#2| |#3|) (-10 -7 (-15 -2615 ((-1 (-111) |#2|) (-1 (-111) |#3|))) (-15 -4208 ((-868 |#1| |#3|) |#2| (-871 |#1|) (-868 |#1| |#3|)))) (-1076) (-865 |#1|) (-13 (-1076) (-1017 |#2|))) (T -910)) +((-4208 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-868 *5 *6)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) (-4 *6 (-13 (-1076) (-1017 *3))) (-4 *3 (-865 *5)) (-5 *1 (-910 *5 *3 *6)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-1 (-111) *6)) (-4 *6 (-13 (-1076) (-1017 *5))) (-4 *5 (-865 *4)) (-4 *4 (-1076)) (-5 *2 (-1 (-111) *5)) (-5 *1 (-910 *4 *5 *6))))) +(-10 -7 (-15 -2615 ((-1 (-111) |#2|) (-1 (-111) |#3|))) (-15 -4208 ((-868 |#1| |#3|) |#2| (-871 |#1|) (-868 |#1| |#3|)))) +((-4208 (((-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|)) 30))) +(((-911 |#1| |#2| |#3|) (-10 -7 (-15 -4208 ((-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|)))) (-1076) (-13 (-544) (-830) (-865 |#1|)) (-13 (-424 |#2|) (-600 (-871 |#1|)) (-865 |#1|) (-1017 (-598 $)))) (T -911)) +((-4208 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-868 *5 *3)) (-4 *5 (-1076)) (-4 *3 (-13 (-424 *6) (-600 *4) (-865 *5) (-1017 (-598 $)))) (-5 *4 (-871 *5)) (-4 *6 (-13 (-544) (-830) (-865 *5))) (-5 *1 (-911 *5 *6 *3))))) +(-10 -7 (-15 -4208 ((-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|)))) +((-4208 (((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|)) 13))) +(((-912 |#1|) (-10 -7 (-15 -4208 ((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|)))) (-537)) (T -912)) +((-4208 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-868 (-552) *3)) (-5 *4 (-871 (-552))) (-4 *3 (-537)) (-5 *1 (-912 *3))))) +(-10 -7 (-15 -4208 ((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|)))) +((-4208 (((-868 |#1| |#2|) (-598 |#2|) (-871 |#1|) (-868 |#1| |#2|)) 54))) +(((-913 |#1| |#2|) (-10 -7 (-15 -4208 ((-868 |#1| |#2|) (-598 |#2|) (-871 |#1|) (-868 |#1| |#2|)))) (-1076) (-13 (-830) (-1017 (-598 $)) (-600 (-871 |#1|)) (-865 |#1|))) (T -913)) +((-4208 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-868 *5 *6)) (-5 *3 (-598 *6)) (-4 *5 (-1076)) (-4 *6 (-13 (-830) (-1017 (-598 $)) (-600 *4) (-865 *5))) (-5 *4 (-871 *5)) (-5 *1 (-913 *5 *6))))) +(-10 -7 (-15 -4208 ((-868 |#1| |#2|) (-598 |#2|) (-871 |#1|) (-868 |#1| |#2|)))) +((-4208 (((-864 |#1| |#2| |#3|) |#3| (-871 |#1|) (-864 |#1| |#2| |#3|)) 15))) +(((-914 |#1| |#2| |#3|) (-10 -7 (-15 -4208 ((-864 |#1| |#2| |#3|) |#3| (-871 |#1|) (-864 |#1| |#2| |#3|)))) (-1076) (-865 |#1|) (-648 |#2|)) (T -914)) +((-4208 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-864 *5 *6 *3)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) (-4 *6 (-865 *5)) (-4 *3 (-648 *6)) (-5 *1 (-914 *5 *6 *3))))) +(-10 -7 (-15 -4208 ((-864 |#1| |#2| |#3|) |#3| (-871 |#1|) (-864 |#1| |#2| |#3|)))) +((-4208 (((-868 |#1| |#5|) |#5| (-871 |#1|) (-868 |#1| |#5|)) 17 (|has| |#3| (-865 |#1|))) (((-868 |#1| |#5|) |#5| (-871 |#1|) (-868 |#1| |#5|) (-1 (-868 |#1| |#5|) |#3| (-871 |#1|) (-868 |#1| |#5|))) 16))) +(((-915 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4208 ((-868 |#1| |#5|) |#5| (-871 |#1|) (-868 |#1| |#5|) (-1 (-868 |#1| |#5|) |#3| (-871 |#1|) (-868 |#1| |#5|)))) (IF (|has| |#3| (-865 |#1|)) (-15 -4208 ((-868 |#1| |#5|) |#5| (-871 |#1|) (-868 |#1| |#5|))) |%noBranch|)) (-1076) (-776) (-830) (-13 (-1028) (-830) (-865 |#1|)) (-13 (-928 |#4| |#2| |#3|) (-600 (-871 |#1|)))) (T -915)) +((-4208 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-868 *5 *3)) (-4 *5 (-1076)) (-4 *3 (-13 (-928 *8 *6 *7) (-600 *4))) (-5 *4 (-871 *5)) (-4 *7 (-865 *5)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-13 (-1028) (-830) (-865 *5))) (-5 *1 (-915 *5 *6 *7 *8 *3)))) (-4208 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-868 *6 *3) *8 (-871 *6) (-868 *6 *3))) (-4 *8 (-830)) (-5 *2 (-868 *6 *3)) (-5 *4 (-871 *6)) (-4 *6 (-1076)) (-4 *3 (-13 (-928 *9 *7 *8) (-600 *4))) (-4 *7 (-776)) (-4 *9 (-13 (-1028) (-830) (-865 *6))) (-5 *1 (-915 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -4208 ((-868 |#1| |#5|) |#5| (-871 |#1|) (-868 |#1| |#5|) (-1 (-868 |#1| |#5|) |#3| (-871 |#1|) (-868 |#1| |#5|)))) (IF (|has| |#3| (-865 |#1|)) (-15 -4208 ((-868 |#1| |#5|) |#5| (-871 |#1|) (-868 |#1| |#5|))) |%noBranch|)) +((-1792 ((|#2| |#2| (-627 (-1 (-111) |#3|))) 12) ((|#2| |#2| (-1 (-111) |#3|)) 13))) +(((-916 |#1| |#2| |#3|) (-10 -7 (-15 -1792 (|#2| |#2| (-1 (-111) |#3|))) (-15 -1792 (|#2| |#2| (-627 (-1 (-111) |#3|))))) (-830) (-424 |#1|) (-1189)) (T -916)) +((-1792 (*1 *2 *2 *3) (-12 (-5 *3 (-627 (-1 (-111) *5))) (-4 *5 (-1189)) (-4 *4 (-830)) (-5 *1 (-916 *4 *2 *5)) (-4 *2 (-424 *4)))) (-1792 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *5)) (-4 *5 (-1189)) (-4 *4 (-830)) (-5 *1 (-916 *4 *2 *5)) (-4 *2 (-424 *4))))) +(-10 -7 (-15 -1792 (|#2| |#2| (-1 (-111) |#3|))) (-15 -1792 (|#2| |#2| (-627 (-1 (-111) |#3|))))) +((-1792 (((-310 (-552)) (-1152) (-627 (-1 (-111) |#1|))) 18) (((-310 (-552)) (-1152) (-1 (-111) |#1|)) 15))) +(((-917 |#1|) (-10 -7 (-15 -1792 ((-310 (-552)) (-1152) (-1 (-111) |#1|))) (-15 -1792 ((-310 (-552)) (-1152) (-627 (-1 (-111) |#1|))))) (-1189)) (T -917)) +((-1792 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-627 (-1 (-111) *5))) (-4 *5 (-1189)) (-5 *2 (-310 (-552))) (-5 *1 (-917 *5)))) (-1792 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-1 (-111) *5)) (-4 *5 (-1189)) (-5 *2 (-310 (-552))) (-5 *1 (-917 *5))))) +(-10 -7 (-15 -1792 ((-310 (-552)) (-1152) (-1 (-111) |#1|))) (-15 -1792 ((-310 (-552)) (-1152) (-627 (-1 (-111) |#1|))))) +((-4208 (((-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|)) 25))) +(((-918 |#1| |#2| |#3|) (-10 -7 (-15 -4208 ((-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|)))) (-1076) (-13 (-544) (-865 |#1|) (-600 (-871 |#1|))) (-971 |#2|)) (T -918)) +((-4208 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-868 *5 *3)) (-4 *5 (-1076)) (-4 *3 (-971 *6)) (-4 *6 (-13 (-544) (-865 *5) (-600 *4))) (-5 *4 (-871 *5)) (-5 *1 (-918 *5 *6 *3))))) +(-10 -7 (-15 -4208 ((-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|)))) +((-4208 (((-868 |#1| (-1152)) (-1152) (-871 |#1|) (-868 |#1| (-1152))) 17))) +(((-919 |#1|) (-10 -7 (-15 -4208 ((-868 |#1| (-1152)) (-1152) (-871 |#1|) (-868 |#1| (-1152))))) (-1076)) (T -919)) +((-4208 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-868 *5 (-1152))) (-5 *3 (-1152)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) (-5 *1 (-919 *5))))) +(-10 -7 (-15 -4208 ((-868 |#1| (-1152)) (-1152) (-871 |#1|) (-868 |#1| (-1152))))) +((-2892 (((-868 |#1| |#3|) (-627 |#3|) (-627 (-871 |#1|)) (-868 |#1| |#3|) (-1 (-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|))) 33)) (-4208 (((-868 |#1| |#3|) (-627 |#3|) (-627 (-871 |#1|)) (-1 |#3| (-627 |#3|)) (-868 |#1| |#3|) (-1 (-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|))) 32))) +(((-920 |#1| |#2| |#3|) (-10 -7 (-15 -4208 ((-868 |#1| |#3|) (-627 |#3|) (-627 (-871 |#1|)) (-1 |#3| (-627 |#3|)) (-868 |#1| |#3|) (-1 (-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|)))) (-15 -2892 ((-868 |#1| |#3|) (-627 |#3|) (-627 (-871 |#1|)) (-868 |#1| |#3|) (-1 (-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|))))) (-1076) (-13 (-1028) (-830)) (-13 (-1028) (-600 (-871 |#1|)) (-1017 |#2|))) (T -920)) +((-2892 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 (-871 *6))) (-5 *5 (-1 (-868 *6 *8) *8 (-871 *6) (-868 *6 *8))) (-4 *6 (-1076)) (-4 *8 (-13 (-1028) (-600 (-871 *6)) (-1017 *7))) (-5 *2 (-868 *6 *8)) (-4 *7 (-13 (-1028) (-830))) (-5 *1 (-920 *6 *7 *8)))) (-4208 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-627 (-871 *7))) (-5 *5 (-1 *9 (-627 *9))) (-5 *6 (-1 (-868 *7 *9) *9 (-871 *7) (-868 *7 *9))) (-4 *7 (-1076)) (-4 *9 (-13 (-1028) (-600 (-871 *7)) (-1017 *8))) (-5 *2 (-868 *7 *9)) (-5 *3 (-627 *9)) (-4 *8 (-13 (-1028) (-830))) (-5 *1 (-920 *7 *8 *9))))) +(-10 -7 (-15 -4208 ((-868 |#1| |#3|) (-627 |#3|) (-627 (-871 |#1|)) (-1 |#3| (-627 |#3|)) (-868 |#1| |#3|) (-1 (-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|)))) (-15 -2892 ((-868 |#1| |#3|) (-627 |#3|) (-627 (-871 |#1|)) (-868 |#1| |#3|) (-1 (-868 |#1| |#3|) |#3| (-871 |#1|) (-868 |#1| |#3|))))) +((-2529 (((-1148 (-401 (-552))) (-552)) 63)) (-3831 (((-1148 (-552)) (-552)) 66)) (-1324 (((-1148 (-552)) (-552)) 60)) (-2136 (((-552) (-1148 (-552))) 55)) (-1990 (((-1148 (-401 (-552))) (-552)) 49)) (-3224 (((-1148 (-552)) (-552)) 38)) (-4271 (((-1148 (-552)) (-552)) 68)) (-2313 (((-1148 (-552)) (-552)) 67)) (-3559 (((-1148 (-401 (-552))) (-552)) 51))) +(((-921) (-10 -7 (-15 -3559 ((-1148 (-401 (-552))) (-552))) (-15 -2313 ((-1148 (-552)) (-552))) (-15 -4271 ((-1148 (-552)) (-552))) (-15 -3224 ((-1148 (-552)) (-552))) (-15 -1990 ((-1148 (-401 (-552))) (-552))) (-15 -2136 ((-552) (-1148 (-552)))) (-15 -1324 ((-1148 (-552)) (-552))) (-15 -3831 ((-1148 (-552)) (-552))) (-15 -2529 ((-1148 (-401 (-552))) (-552))))) (T -921)) +((-2529 (*1 *2 *3) (-12 (-5 *2 (-1148 (-401 (-552)))) (-5 *1 (-921)) (-5 *3 (-552)))) (-3831 (*1 *2 *3) (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-921)) (-5 *3 (-552)))) (-1324 (*1 *2 *3) (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-921)) (-5 *3 (-552)))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-1148 (-552))) (-5 *2 (-552)) (-5 *1 (-921)))) (-1990 (*1 *2 *3) (-12 (-5 *2 (-1148 (-401 (-552)))) (-5 *1 (-921)) (-5 *3 (-552)))) (-3224 (*1 *2 *3) (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-921)) (-5 *3 (-552)))) (-4271 (*1 *2 *3) (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-921)) (-5 *3 (-552)))) (-2313 (*1 *2 *3) (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-921)) (-5 *3 (-552)))) (-3559 (*1 *2 *3) (-12 (-5 *2 (-1148 (-401 (-552)))) (-5 *1 (-921)) (-5 *3 (-552))))) +(-10 -7 (-15 -3559 ((-1148 (-401 (-552))) (-552))) (-15 -2313 ((-1148 (-552)) (-552))) (-15 -4271 ((-1148 (-552)) (-552))) (-15 -3224 ((-1148 (-552)) (-552))) (-15 -1990 ((-1148 (-401 (-552))) (-552))) (-15 -2136 ((-552) (-1148 (-552)))) (-15 -1324 ((-1148 (-552)) (-552))) (-15 -3831 ((-1148 (-552)) (-552))) (-15 -2529 ((-1148 (-401 (-552))) (-552)))) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2099 (($ (-754)) NIL (|has| |#1| (-23)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-552) |#1|) 11 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) NIL)) (-2967 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076)))) (-1745 (($ (-627 |#1|)) 13)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-1541 (((-671 |#1|) $ $) NIL (|has| |#1| (-1028)))) (-2655 (($ (-754) |#1|) 8)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) 10 (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2306 ((|#1| $) NIL (-12 (|has| |#1| (-981)) (|has| |#1| (-1028))))) (-3971 (((-111) $ (-754)) NIL)) (-3593 ((|#1| $) NIL (-12 (|has| |#1| (-981)) (|has| |#1| (-1028))))) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3340 ((|#1| $) NIL (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4367)))) (-4168 (($ $ (-627 |#1|)) 26)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) 20) (($ $ (-1202 (-552))) NIL)) (-2395 ((|#1| $ $) NIL (|has| |#1| (-1028)))) (-2405 (((-900) $) 16)) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-3917 (($ $ $) 24)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528)))) (($ (-627 |#1|)) 17)) (-1490 (($ (-627 |#1|)) NIL)) (-2668 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-627 $)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2396 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2384 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-552) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-709))) (($ $ |#1|) NIL (|has| |#1| (-709)))) (-1383 (((-754) $) 14 (|has| $ (-6 -4366))))) +(((-922 |#1|) (-959 |#1|) (-1028)) (T -922)) +NIL +(-959 |#1|) +((-1690 (((-474 |#1| |#2|) (-931 |#2|)) 20)) (-4065 (((-242 |#1| |#2|) (-931 |#2|)) 33)) (-1495 (((-931 |#2|) (-474 |#1| |#2|)) 25)) (-4022 (((-242 |#1| |#2|) (-474 |#1| |#2|)) 55)) (-3373 (((-931 |#2|) (-242 |#1| |#2|)) 30)) (-2295 (((-474 |#1| |#2|) (-242 |#1| |#2|)) 46))) +(((-923 |#1| |#2|) (-10 -7 (-15 -2295 ((-474 |#1| |#2|) (-242 |#1| |#2|))) (-15 -4022 ((-242 |#1| |#2|) (-474 |#1| |#2|))) (-15 -1690 ((-474 |#1| |#2|) (-931 |#2|))) (-15 -1495 ((-931 |#2|) (-474 |#1| |#2|))) (-15 -3373 ((-931 |#2|) (-242 |#1| |#2|))) (-15 -4065 ((-242 |#1| |#2|) (-931 |#2|)))) (-627 (-1152)) (-1028)) (T -923)) +((-4065 (*1 *2 *3) (-12 (-5 *3 (-931 *5)) (-4 *5 (-1028)) (-5 *2 (-242 *4 *5)) (-5 *1 (-923 *4 *5)) (-14 *4 (-627 (-1152))))) (-3373 (*1 *2 *3) (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-1028)) (-5 *2 (-931 *5)) (-5 *1 (-923 *4 *5)))) (-1495 (*1 *2 *3) (-12 (-5 *3 (-474 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-1028)) (-5 *2 (-931 *5)) (-5 *1 (-923 *4 *5)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-931 *5)) (-4 *5 (-1028)) (-5 *2 (-474 *4 *5)) (-5 *1 (-923 *4 *5)) (-14 *4 (-627 (-1152))))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-474 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-1028)) (-5 *2 (-242 *4 *5)) (-5 *1 (-923 *4 *5)))) (-2295 (*1 *2 *3) (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-1028)) (-5 *2 (-474 *4 *5)) (-5 *1 (-923 *4 *5))))) +(-10 -7 (-15 -2295 ((-474 |#1| |#2|) (-242 |#1| |#2|))) (-15 -4022 ((-242 |#1| |#2|) (-474 |#1| |#2|))) (-15 -1690 ((-474 |#1| |#2|) (-931 |#2|))) (-15 -1495 ((-931 |#2|) (-474 |#1| |#2|))) (-15 -3373 ((-931 |#2|) (-242 |#1| |#2|))) (-15 -4065 ((-242 |#1| |#2|) (-931 |#2|)))) +((-4032 (((-627 |#2|) |#2| |#2|) 10)) (-3263 (((-754) (-627 |#1|)) 37 (|has| |#1| (-828)))) (-2858 (((-627 |#2|) |#2|) 11)) (-1614 (((-754) (-627 |#1|) (-552) (-552)) 39 (|has| |#1| (-828)))) (-3420 ((|#1| |#2|) 32 (|has| |#1| (-828))))) +(((-924 |#1| |#2|) (-10 -7 (-15 -4032 ((-627 |#2|) |#2| |#2|)) (-15 -2858 ((-627 |#2|) |#2|)) (IF (|has| |#1| (-828)) (PROGN (-15 -3420 (|#1| |#2|)) (-15 -3263 ((-754) (-627 |#1|))) (-15 -1614 ((-754) (-627 |#1|) (-552) (-552)))) |%noBranch|)) (-357) (-1211 |#1|)) (T -924)) +((-1614 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-627 *5)) (-5 *4 (-552)) (-4 *5 (-828)) (-4 *5 (-357)) (-5 *2 (-754)) (-5 *1 (-924 *5 *6)) (-4 *6 (-1211 *5)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-828)) (-4 *4 (-357)) (-5 *2 (-754)) (-5 *1 (-924 *4 *5)) (-4 *5 (-1211 *4)))) (-3420 (*1 *2 *3) (-12 (-4 *2 (-357)) (-4 *2 (-828)) (-5 *1 (-924 *2 *3)) (-4 *3 (-1211 *2)))) (-2858 (*1 *2 *3) (-12 (-4 *4 (-357)) (-5 *2 (-627 *3)) (-5 *1 (-924 *4 *3)) (-4 *3 (-1211 *4)))) (-4032 (*1 *2 *3 *3) (-12 (-4 *4 (-357)) (-5 *2 (-627 *3)) (-5 *1 (-924 *4 *3)) (-4 *3 (-1211 *4))))) +(-10 -7 (-15 -4032 ((-627 |#2|) |#2| |#2|)) (-15 -2858 ((-627 |#2|) |#2|)) (IF (|has| |#1| (-828)) (PROGN (-15 -3420 (|#1| |#2|)) (-15 -3263 ((-754) (-627 |#1|))) (-15 -1614 ((-754) (-627 |#1|) (-552) (-552)))) |%noBranch|)) +((-3516 (((-931 |#2|) (-1 |#2| |#1|) (-931 |#1|)) 19))) +(((-925 |#1| |#2|) (-10 -7 (-15 -3516 ((-931 |#2|) (-1 |#2| |#1|) (-931 |#1|)))) (-1028) (-1028)) (T -925)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-931 *5)) (-4 *5 (-1028)) (-4 *6 (-1028)) (-5 *2 (-931 *6)) (-5 *1 (-925 *5 *6))))) +(-10 -7 (-15 -3516 ((-931 |#2|) (-1 |#2| |#1|) (-931 |#1|)))) +((-1694 (((-1208 |#1| (-931 |#2|)) (-931 |#2|) (-1231 |#1|)) 18))) +(((-926 |#1| |#2|) (-10 -7 (-15 -1694 ((-1208 |#1| (-931 |#2|)) (-931 |#2|) (-1231 |#1|)))) (-1152) (-1028)) (T -926)) +((-1694 (*1 *2 *3 *4) (-12 (-5 *4 (-1231 *5)) (-14 *5 (-1152)) (-4 *6 (-1028)) (-5 *2 (-1208 *5 (-931 *6))) (-5 *1 (-926 *5 *6)) (-5 *3 (-931 *6))))) +(-10 -7 (-15 -1694 ((-1208 |#1| (-931 |#2|)) (-931 |#2|) (-1231 |#1|)))) +((-3278 (((-754) $) 71) (((-754) $ (-627 |#4|)) 74)) (-4014 (($ $) 173)) (-2487 (((-412 $) $) 165)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 116)) (-4039 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-1703 ((|#2| $) NIL) (((-401 (-552)) $) NIL) (((-552) $) NIL) ((|#4| $) 59)) (-3116 (($ $ $ |#4|) 76)) (-1800 (((-671 (-552)) (-671 $)) NIL) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) 106) (((-671 |#2|) (-671 $)) 99)) (-1375 (($ $) 180) (($ $ |#4|) 183)) (-2003 (((-627 $) $) 63)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 199) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 192)) (-3056 (((-627 $) $) 28)) (-1832 (($ |#2| |#3|) NIL) (($ $ |#4| (-754)) NIL) (($ $ (-627 |#4|) (-627 (-754))) 57)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ |#4|) 162)) (-4035 (((-3 (-627 $) "failed") $) 42)) (-2746 (((-3 (-627 $) "failed") $) 31)) (-3815 (((-3 (-2 (|:| |var| |#4|) (|:| -4067 (-754))) "failed") $) 47)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 109)) (-3676 (((-412 (-1148 $)) (-1148 $)) 122)) (-3644 (((-412 (-1148 $)) (-1148 $)) 120)) (-1727 (((-412 $) $) 140)) (-3321 (($ $ (-627 (-288 $))) 21) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-627 |#4|) (-627 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-627 |#4|) (-627 $)) NIL)) (-1637 (($ $ |#4|) 78)) (-3562 (((-871 (-373)) $) 213) (((-871 (-552)) $) 206) (((-528) $) 221)) (-3495 ((|#2| $) NIL) (($ $ |#4|) 175)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 154)) (-1889 ((|#2| $ |#3|) NIL) (($ $ |#4| (-754)) 52) (($ $ (-627 |#4|) (-627 (-754))) 55)) (-3050 (((-3 $ "failed") $) 156)) (-2316 (((-111) $ $) 186))) +(((-927 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3128 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -2487 ((-412 |#1|) |#1|)) (-15 -4014 (|#1| |#1|)) (-15 -3050 ((-3 |#1| "failed") |#1|)) (-15 -2316 ((-111) |#1| |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -4208 ((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|))) (-15 -4208 ((-868 (-373) |#1|) |#1| (-871 (-373)) (-868 (-373) |#1|))) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -3644 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -3676 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -1964 ((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|))) (-15 -3319 ((-3 (-1235 |#1|) "failed") (-671 |#1|))) (-15 -1375 (|#1| |#1| |#4|)) (-15 -3495 (|#1| |#1| |#4|)) (-15 -1637 (|#1| |#1| |#4|)) (-15 -3116 (|#1| |#1| |#1| |#4|)) (-15 -2003 ((-627 |#1|) |#1|)) (-15 -3278 ((-754) |#1| (-627 |#4|))) (-15 -3278 ((-754) |#1|)) (-15 -3815 ((-3 (-2 (|:| |var| |#4|) (|:| -4067 (-754))) "failed") |#1|)) (-15 -4035 ((-3 (-627 |#1|) "failed") |#1|)) (-15 -2746 ((-3 (-627 |#1|) "failed") |#1|)) (-15 -1832 (|#1| |#1| (-627 |#4|) (-627 (-754)))) (-15 -1832 (|#1| |#1| |#4| (-754))) (-15 -1984 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1| |#4|)) (-15 -3056 ((-627 |#1|) |#1|)) (-15 -1889 (|#1| |#1| (-627 |#4|) (-627 (-754)))) (-15 -1889 (|#1| |#1| |#4| (-754))) (-15 -1800 ((-671 |#2|) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -1703 (|#4| |#1|)) (-15 -4039 ((-3 |#4| "failed") |#1|)) (-15 -3321 (|#1| |#1| (-627 |#4|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#4| |#1|)) (-15 -3321 (|#1| |#1| (-627 |#4|) (-627 |#2|))) (-15 -3321 (|#1| |#1| |#4| |#2|)) (-15 -3321 (|#1| |#1| (-627 |#1|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| (-288 |#1|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -1832 (|#1| |#2| |#3|)) (-15 -1889 (|#2| |#1| |#3|)) (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -3495 (|#2| |#1|)) (-15 -1375 (|#1| |#1|))) (-928 |#2| |#3| |#4|) (-1028) (-776) (-830)) (T -927)) +NIL +(-10 -8 (-15 -3128 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -2487 ((-412 |#1|) |#1|)) (-15 -4014 (|#1| |#1|)) (-15 -3050 ((-3 |#1| "failed") |#1|)) (-15 -2316 ((-111) |#1| |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -4208 ((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|))) (-15 -4208 ((-868 (-373) |#1|) |#1| (-871 (-373)) (-868 (-373) |#1|))) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -3644 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -3676 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -1964 ((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|))) (-15 -3319 ((-3 (-1235 |#1|) "failed") (-671 |#1|))) (-15 -1375 (|#1| |#1| |#4|)) (-15 -3495 (|#1| |#1| |#4|)) (-15 -1637 (|#1| |#1| |#4|)) (-15 -3116 (|#1| |#1| |#1| |#4|)) (-15 -2003 ((-627 |#1|) |#1|)) (-15 -3278 ((-754) |#1| (-627 |#4|))) (-15 -3278 ((-754) |#1|)) (-15 -3815 ((-3 (-2 (|:| |var| |#4|) (|:| -4067 (-754))) "failed") |#1|)) (-15 -4035 ((-3 (-627 |#1|) "failed") |#1|)) (-15 -2746 ((-3 (-627 |#1|) "failed") |#1|)) (-15 -1832 (|#1| |#1| (-627 |#4|) (-627 (-754)))) (-15 -1832 (|#1| |#1| |#4| (-754))) (-15 -1984 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1| |#4|)) (-15 -3056 ((-627 |#1|) |#1|)) (-15 -1889 (|#1| |#1| (-627 |#4|) (-627 (-754)))) (-15 -1889 (|#1| |#1| |#4| (-754))) (-15 -1800 ((-671 |#2|) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -1703 (|#4| |#1|)) (-15 -4039 ((-3 |#4| "failed") |#1|)) (-15 -3321 (|#1| |#1| (-627 |#4|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#4| |#1|)) (-15 -3321 (|#1| |#1| (-627 |#4|) (-627 |#2|))) (-15 -3321 (|#1| |#1| |#4| |#2|)) (-15 -3321 (|#1| |#1| (-627 |#1|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| (-288 |#1|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -1832 (|#1| |#2| |#3|)) (-15 -1889 (|#2| |#1| |#3|)) (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -3495 (|#2| |#1|)) (-15 -1375 (|#1| |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1853 (((-627 |#3|) $) 108)) (-1694 (((-1148 $) $ |#3|) 123) (((-1148 |#1|) $) 122)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 85 (|has| |#1| (-544)))) (-3245 (($ $) 86 (|has| |#1| (-544)))) (-4058 (((-111) $) 88 (|has| |#1| (-544)))) (-3278 (((-754) $) 110) (((-754) $ (-627 |#3|)) 109)) (-4136 (((-3 $ "failed") $ $) 19)) (-2246 (((-412 (-1148 $)) (-1148 $)) 98 (|has| |#1| (-888)))) (-4014 (($ $) 96 (|has| |#1| (-445)))) (-2487 (((-412 $) $) 95 (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 101 (|has| |#1| (-888)))) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#1| "failed") $) 162) (((-3 (-401 (-552)) "failed") $) 160 (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) 158 (|has| |#1| (-1017 (-552)))) (((-3 |#3| "failed") $) 134)) (-1703 ((|#1| $) 163) (((-401 (-552)) $) 159 (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) 157 (|has| |#1| (-1017 (-552)))) ((|#3| $) 133)) (-3116 (($ $ $ |#3|) 106 (|has| |#1| (-169)))) (-2014 (($ $) 152)) (-1800 (((-671 (-552)) (-671 $)) 132 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 131 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 130) (((-671 |#1|) (-671 $)) 129)) (-2040 (((-3 $ "failed") $) 32)) (-1375 (($ $) 174 (|has| |#1| (-445))) (($ $ |#3|) 103 (|has| |#1| (-445)))) (-2003 (((-627 $) $) 107)) (-1633 (((-111) $) 94 (|has| |#1| (-888)))) (-2061 (($ $ |#1| |#2| $) 170)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 82 (-12 (|has| |#3| (-865 (-373))) (|has| |#1| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 81 (-12 (|has| |#3| (-865 (-552))) (|has| |#1| (-865 (-552)))))) (-2624 (((-111) $) 30)) (-3522 (((-754) $) 167)) (-1842 (($ (-1148 |#1|) |#3|) 115) (($ (-1148 $) |#3|) 114)) (-3056 (((-627 $) $) 124)) (-3267 (((-111) $) 150)) (-1832 (($ |#1| |#2|) 151) (($ $ |#3| (-754)) 117) (($ $ (-627 |#3|) (-627 (-754))) 116)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ |#3|) 118)) (-3465 ((|#2| $) 168) (((-754) $ |#3|) 120) (((-627 (-754)) $ (-627 |#3|)) 119)) (-1816 (($ $ $) 77 (|has| |#1| (-830)))) (-4093 (($ $ $) 76 (|has| |#1| (-830)))) (-3813 (($ (-1 |#2| |#2|) $) 169)) (-3516 (($ (-1 |#1| |#1|) $) 149)) (-2685 (((-3 |#3| "failed") $) 121)) (-1981 (($ $) 147)) (-1993 ((|#1| $) 146)) (-1276 (($ (-627 $)) 92 (|has| |#1| (-445))) (($ $ $) 91 (|has| |#1| (-445)))) (-1595 (((-1134) $) 9)) (-4035 (((-3 (-627 $) "failed") $) 112)) (-2746 (((-3 (-627 $) "failed") $) 113)) (-3815 (((-3 (-2 (|:| |var| |#3|) (|:| -4067 (-754))) "failed") $) 111)) (-1498 (((-1096) $) 10)) (-1960 (((-111) $) 164)) (-1970 ((|#1| $) 165)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 93 (|has| |#1| (-445)))) (-1323 (($ (-627 $)) 90 (|has| |#1| (-445))) (($ $ $) 89 (|has| |#1| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) 100 (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) 99 (|has| |#1| (-888)))) (-1727 (((-412 $) $) 97 (|has| |#1| (-888)))) (-2761 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-3321 (($ $ (-627 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-627 $) (-627 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-627 |#3|) (-627 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-627 |#3|) (-627 $)) 136)) (-1637 (($ $ |#3|) 105 (|has| |#1| (-169)))) (-2942 (($ $ |#3|) 40) (($ $ (-627 |#3|)) 39) (($ $ |#3| (-754)) 38) (($ $ (-627 |#3|) (-627 (-754))) 37)) (-3567 ((|#2| $) 148) (((-754) $ |#3|) 128) (((-627 (-754)) $ (-627 |#3|)) 127)) (-3562 (((-871 (-373)) $) 80 (-12 (|has| |#3| (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373)))))) (((-871 (-552)) $) 79 (-12 (|has| |#3| (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552)))))) (((-528) $) 78 (-12 (|has| |#3| (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3495 ((|#1| $) 173 (|has| |#1| (-445))) (($ $ |#3|) 104 (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 102 (-2520 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-544))) (($ (-401 (-552))) 70 (-1559 (|has| |#1| (-1017 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552))))))) (-1493 (((-627 |#1|) $) 166)) (-1889 ((|#1| $ |#2|) 153) (($ $ |#3| (-754)) 126) (($ $ (-627 |#3|) (-627 (-754))) 125)) (-3050 (((-3 $ "failed") $) 71 (-1559 (-2520 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) 28)) (-3417 (($ $ $ (-754)) 171 (|has| |#1| (-169)))) (-3778 (((-111) $ $) 87 (|has| |#1| (-544)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ |#3|) 36) (($ $ (-627 |#3|)) 35) (($ $ |#3| (-754)) 34) (($ $ (-627 |#3|) (-627 (-754))) 33)) (-2351 (((-111) $ $) 74 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 73 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 75 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 72 (|has| |#1| (-830)))) (-2407 (($ $ |#1|) 154 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 156 (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) 155 (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-928 |#1| |#2| |#3|) (-137) (-1028) (-776) (-830)) (T -928)) +((-1375 (*1 *1 *1) (-12 (-4 *1 (-928 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-445)))) (-3567 (*1 *2 *1 *3) (-12 (-4 *1 (-928 *4 *5 *3)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) (-5 *2 (-754)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (-627 *6)) (-4 *1 (-928 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 (-754))))) (-1889 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-928 *4 *5 *2)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *2 (-830)))) (-1889 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 *6)) (-5 *3 (-627 (-754))) (-4 *1 (-928 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)))) (-3056 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-928 *3 *4 *5)))) (-1694 (*1 *2 *1 *3) (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) (-5 *2 (-1148 *1)) (-4 *1 (-928 *4 *5 *3)))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-928 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-1148 *3)))) (-2685 (*1 *2 *1) (|partial| -12 (-4 *1 (-928 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)))) (-3465 (*1 *2 *1 *3) (-12 (-4 *1 (-928 *4 *5 *3)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) (-5 *2 (-754)))) (-3465 (*1 *2 *1 *3) (-12 (-5 *3 (-627 *6)) (-4 *1 (-928 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 (-754))))) (-1984 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-928 *4 *5 *3)))) (-1832 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-928 *4 *5 *2)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *2 (-830)))) (-1832 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 *6)) (-5 *3 (-627 (-754))) (-4 *1 (-928 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)))) (-1842 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 *4)) (-4 *4 (-1028)) (-4 *1 (-928 *4 *5 *3)) (-4 *5 (-776)) (-4 *3 (-830)))) (-1842 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-928 *4 *5 *3)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)))) (-2746 (*1 *2 *1) (|partial| -12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-928 *3 *4 *5)))) (-4035 (*1 *2 *1) (|partial| -12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-928 *3 *4 *5)))) (-3815 (*1 *2 *1) (|partial| -12 (-4 *1 (-928 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-2 (|:| |var| *5) (|:| -4067 (-754)))))) (-3278 (*1 *2 *1) (-12 (-4 *1 (-928 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-754)))) (-3278 (*1 *2 *1 *3) (-12 (-5 *3 (-627 *6)) (-4 *1 (-928 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-754)))) (-1853 (*1 *2 *1) (-12 (-4 *1 (-928 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *5)))) (-2003 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-928 *3 *4 *5)))) (-3116 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-928 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)) (-4 *3 (-169)))) (-1637 (*1 *1 *1 *2) (-12 (-4 *1 (-928 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)) (-4 *3 (-169)))) (-3495 (*1 *1 *1 *2) (-12 (-4 *1 (-928 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)) (-4 *3 (-445)))) (-1375 (*1 *1 *1 *2) (-12 (-4 *1 (-928 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)) (-4 *3 (-445)))) (-4014 (*1 *1 *1) (-12 (-4 *1 (-928 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-445)))) (-2487 (*1 *2 *1) (-12 (-4 *3 (-445)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-412 *1)) (-4 *1 (-928 *3 *4 *5))))) +(-13 (-879 |t#3|) (-320 |t#1| |t#2|) (-303 $) (-506 |t#3| |t#1|) (-506 |t#3| $) (-1017 |t#3|) (-371 |t#1|) (-10 -8 (-15 -3567 ((-754) $ |t#3|)) (-15 -3567 ((-627 (-754)) $ (-627 |t#3|))) (-15 -1889 ($ $ |t#3| (-754))) (-15 -1889 ($ $ (-627 |t#3|) (-627 (-754)))) (-15 -3056 ((-627 $) $)) (-15 -1694 ((-1148 $) $ |t#3|)) (-15 -1694 ((-1148 |t#1|) $)) (-15 -2685 ((-3 |t#3| "failed") $)) (-15 -3465 ((-754) $ |t#3|)) (-15 -3465 ((-627 (-754)) $ (-627 |t#3|))) (-15 -1984 ((-2 (|:| -2404 $) (|:| -3401 $)) $ $ |t#3|)) (-15 -1832 ($ $ |t#3| (-754))) (-15 -1832 ($ $ (-627 |t#3|) (-627 (-754)))) (-15 -1842 ($ (-1148 |t#1|) |t#3|)) (-15 -1842 ($ (-1148 $) |t#3|)) (-15 -2746 ((-3 (-627 $) "failed") $)) (-15 -4035 ((-3 (-627 $) "failed") $)) (-15 -3815 ((-3 (-2 (|:| |var| |t#3|) (|:| -4067 (-754))) "failed") $)) (-15 -3278 ((-754) $)) (-15 -3278 ((-754) $ (-627 |t#3|))) (-15 -1853 ((-627 |t#3|) $)) (-15 -2003 ((-627 $) $)) (IF (|has| |t#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |t#1| (-600 (-528))) (IF (|has| |t#3| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-600 (-871 (-552)))) (IF (|has| |t#3| (-600 (-871 (-552)))) (-6 (-600 (-871 (-552)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-600 (-871 (-373)))) (IF (|has| |t#3| (-600 (-871 (-373)))) (-6 (-600 (-871 (-373)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-865 (-552))) (IF (|has| |t#3| (-865 (-552))) (-6 (-865 (-552))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-865 (-373))) (IF (|has| |t#3| (-865 (-373))) (-6 (-865 (-373))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-15 -3116 ($ $ $ |t#3|)) (-15 -1637 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-445)) (PROGN (-6 (-445)) (-15 -3495 ($ $ |t#3|)) (-15 -1375 ($ $)) (-15 -1375 ($ $ |t#3|)) (-15 -2487 ((-412 $) $)) (-15 -4014 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4364)) (-6 -4364) |%noBranch|) (IF (|has| |t#1| (-888)) (-6 (-888)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-600 (-528)) -12 (|has| |#1| (-600 (-528))) (|has| |#3| (-600 (-528)))) ((-600 (-871 (-373))) -12 (|has| |#1| (-600 (-871 (-373)))) (|has| |#3| (-600 (-871 (-373))))) ((-600 (-871 (-552))) -12 (|has| |#1| (-600 (-871 (-552)))) (|has| |#3| (-600 (-871 (-552))))) ((-284) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-303 $) . T) ((-320 |#1| |#2|) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-445) -1559 (|has| |#1| (-888)) (|has| |#1| (-445))) ((-506 |#3| |#1|) . T) ((-506 |#3| $) . T) ((-506 $ $) . T) ((-544) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-630 #0#) |has| |#1| (-38 (-401 (-552)))) ((-630 |#1|) . T) ((-630 $) . T) ((-623 (-552)) |has| |#1| (-623 (-552))) ((-623 |#1|) . T) ((-700 #0#) |has| |#1| (-38 (-401 (-552)))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-709) . T) ((-830) |has| |#1| (-830)) ((-879 |#3|) . T) ((-865 (-373)) -12 (|has| |#1| (-865 (-373))) (|has| |#3| (-865 (-373)))) ((-865 (-552)) -12 (|has| |#1| (-865 (-552))) (|has| |#3| (-865 (-552)))) ((-888) |has| |#1| (-888)) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T) ((-1017 |#3|) . T) ((-1034 #0#) |has| |#1| (-38 (-401 (-552)))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) |has| |#1| (-888))) +((-1853 (((-627 |#2|) |#5|) 36)) (-1694 (((-1148 |#5|) |#5| |#2| (-1148 |#5|)) 23) (((-401 (-1148 |#5|)) |#5| |#2|) 16)) (-1842 ((|#5| (-401 (-1148 |#5|)) |#2|) 30)) (-2685 (((-3 |#2| "failed") |#5|) 65)) (-4035 (((-3 (-627 |#5|) "failed") |#5|) 59)) (-1382 (((-3 (-2 (|:| |val| |#5|) (|:| -4067 (-552))) "failed") |#5|) 47)) (-2746 (((-3 (-627 |#5|) "failed") |#5|) 61)) (-3815 (((-3 (-2 (|:| |var| |#2|) (|:| -4067 (-552))) "failed") |#5|) 51))) +(((-929 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1853 ((-627 |#2|) |#5|)) (-15 -2685 ((-3 |#2| "failed") |#5|)) (-15 -1694 ((-401 (-1148 |#5|)) |#5| |#2|)) (-15 -1842 (|#5| (-401 (-1148 |#5|)) |#2|)) (-15 -1694 ((-1148 |#5|) |#5| |#2| (-1148 |#5|))) (-15 -2746 ((-3 (-627 |#5|) "failed") |#5|)) (-15 -4035 ((-3 (-627 |#5|) "failed") |#5|)) (-15 -3815 ((-3 (-2 (|:| |var| |#2|) (|:| -4067 (-552))) "failed") |#5|)) (-15 -1382 ((-3 (-2 (|:| |val| |#5|) (|:| -4067 (-552))) "failed") |#5|))) (-776) (-830) (-1028) (-928 |#3| |#1| |#2|) (-13 (-357) (-10 -8 (-15 -1477 ($ |#4|)) (-15 -2918 (|#4| $)) (-15 -2929 (|#4| $))))) (T -929)) +((-1382 (*1 *2 *3) (|partial| -12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -4067 (-552)))) (-5 *1 (-929 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))))) (-3815 (*1 *2 *3) (|partial| -12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -4067 (-552)))) (-5 *1 (-929 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))))) (-4035 (*1 *2 *3) (|partial| -12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-627 *3)) (-5 *1 (-929 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))))) (-2746 (*1 *2 *3) (|partial| -12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-627 *3)) (-5 *1 (-929 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))))) (-1694 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))) (-4 *7 (-928 *6 *5 *4)) (-4 *5 (-776)) (-4 *4 (-830)) (-4 *6 (-1028)) (-5 *1 (-929 *5 *4 *6 *7 *3)))) (-1842 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-1148 *2))) (-4 *5 (-776)) (-4 *4 (-830)) (-4 *6 (-1028)) (-4 *2 (-13 (-357) (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))) (-5 *1 (-929 *5 *4 *6 *7 *2)) (-4 *7 (-928 *6 *5 *4)))) (-1694 (*1 *2 *3 *4) (-12 (-4 *5 (-776)) (-4 *4 (-830)) (-4 *6 (-1028)) (-4 *7 (-928 *6 *5 *4)) (-5 *2 (-401 (-1148 *3))) (-5 *1 (-929 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))))) (-2685 (*1 *2 *3) (|partial| -12 (-4 *4 (-776)) (-4 *5 (-1028)) (-4 *6 (-928 *5 *4 *2)) (-4 *2 (-830)) (-5 *1 (-929 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -1477 ($ *6)) (-15 -2918 (*6 $)) (-15 -2929 (*6 $))))))) (-1853 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-627 *5)) (-5 *1 (-929 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-357) (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $)))))))) +(-10 -7 (-15 -1853 ((-627 |#2|) |#5|)) (-15 -2685 ((-3 |#2| "failed") |#5|)) (-15 -1694 ((-401 (-1148 |#5|)) |#5| |#2|)) (-15 -1842 (|#5| (-401 (-1148 |#5|)) |#2|)) (-15 -1694 ((-1148 |#5|) |#5| |#2| (-1148 |#5|))) (-15 -2746 ((-3 (-627 |#5|) "failed") |#5|)) (-15 -4035 ((-3 (-627 |#5|) "failed") |#5|)) (-15 -3815 ((-3 (-2 (|:| |var| |#2|) (|:| -4067 (-552))) "failed") |#5|)) (-15 -1382 ((-3 (-2 (|:| |val| |#5|) (|:| -4067 (-552))) "failed") |#5|))) +((-3516 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-930 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3516 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-776) (-830) (-1028) (-928 |#3| |#1| |#2|) (-13 (-1076) (-10 -8 (-15 -2384 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-754)))))) (T -930)) +((-3516 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-830)) (-4 *8 (-1028)) (-4 *6 (-776)) (-4 *2 (-13 (-1076) (-10 -8 (-15 -2384 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-754)))))) (-5 *1 (-930 *6 *7 *8 *5 *2)) (-4 *5 (-928 *8 *6 *7))))) +(-10 -7 (-15 -3516 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-1152)) $) 16)) (-1694 (((-1148 $) $ (-1152)) 21) (((-1148 |#1|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-1152))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4014 (($ $) NIL (|has| |#1| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) 8) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-1152) "failed") $) NIL)) (-1703 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-1152) $) NIL)) (-3116 (($ $ $ (-1152)) NIL (|has| |#1| (-169)))) (-2014 (($ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#1| (-445))) (($ $ (-1152)) NIL (|has| |#1| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#1| (-888)))) (-2061 (($ $ |#1| (-523 (-1152)) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-1152) (-865 (-373))) (|has| |#1| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-1152) (-865 (-552))) (|has| |#1| (-865 (-552)))))) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-1842 (($ (-1148 |#1|) (-1152)) NIL) (($ (-1148 $) (-1152)) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-523 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-1152)) NIL)) (-3465 (((-523 (-1152)) $) NIL) (((-754) $ (-1152)) NIL) (((-627 (-754)) $ (-627 (-1152))) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3813 (($ (-1 (-523 (-1152)) (-523 (-1152))) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-2685 (((-3 (-1152) "failed") $) 19)) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1595 (((-1134) $) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-1152)) (|:| -4067 (-754))) "failed") $) NIL)) (-2747 (($ $ (-1152)) 29 (|has| |#1| (-38 (-401 (-552)))))) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 ((|#1| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-888)))) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-1152) |#1|) NIL) (($ $ (-627 (-1152)) (-627 |#1|)) NIL) (($ $ (-1152) $) NIL) (($ $ (-627 (-1152)) (-627 $)) NIL)) (-1637 (($ $ (-1152)) NIL (|has| |#1| (-169)))) (-2942 (($ $ (-1152)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL)) (-3567 (((-523 (-1152)) $) NIL) (((-754) $ (-1152)) NIL) (((-627 (-754)) $ (-627 (-1152))) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-1152) (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-1152) (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-1152) (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3495 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ (-1152)) NIL (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) 25) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-1152)) 27) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-523 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#1| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-1152)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-931 |#1|) (-13 (-928 |#1| (-523 (-1152)) (-1152)) (-10 -8 (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1152))) |%noBranch|))) (-1028)) (T -931)) +((-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-931 *3)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028))))) +(-13 (-928 |#1| (-523 (-1152)) (-1152)) (-10 -8 (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1152))) |%noBranch|))) +((-3265 (((-2 (|:| -4067 (-754)) (|:| -3069 |#5|) (|:| |radicand| |#5|)) |#3| (-754)) 38)) (-1660 (((-2 (|:| -4067 (-754)) (|:| -3069 |#5|) (|:| |radicand| |#5|)) (-401 (-552)) (-754)) 34)) (-3261 (((-2 (|:| -4067 (-754)) (|:| -3069 |#4|) (|:| |radicand| (-627 |#4|))) |#4| (-754)) 54)) (-1499 (((-2 (|:| -4067 (-754)) (|:| -3069 |#5|) (|:| |radicand| |#5|)) |#5| (-754)) 64 (|has| |#3| (-445))))) +(((-932 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3265 ((-2 (|:| -4067 (-754)) (|:| -3069 |#5|) (|:| |radicand| |#5|)) |#3| (-754))) (-15 -1660 ((-2 (|:| -4067 (-754)) (|:| -3069 |#5|) (|:| |radicand| |#5|)) (-401 (-552)) (-754))) (IF (|has| |#3| (-445)) (-15 -1499 ((-2 (|:| -4067 (-754)) (|:| -3069 |#5|) (|:| |radicand| |#5|)) |#5| (-754))) |%noBranch|) (-15 -3261 ((-2 (|:| -4067 (-754)) (|:| -3069 |#4|) (|:| |radicand| (-627 |#4|))) |#4| (-754)))) (-776) (-830) (-544) (-928 |#3| |#1| |#2|) (-13 (-357) (-10 -8 (-15 -2918 (|#4| $)) (-15 -2929 (|#4| $)) (-15 -1477 ($ |#4|))))) (T -932)) +((-3261 (*1 *2 *3 *4) (-12 (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-544)) (-4 *3 (-928 *7 *5 *6)) (-5 *2 (-2 (|:| -4067 (-754)) (|:| -3069 *3) (|:| |radicand| (-627 *3)))) (-5 *1 (-932 *5 *6 *7 *3 *8)) (-5 *4 (-754)) (-4 *8 (-13 (-357) (-10 -8 (-15 -2918 (*3 $)) (-15 -2929 (*3 $)) (-15 -1477 ($ *3))))))) (-1499 (*1 *2 *3 *4) (-12 (-4 *7 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-544)) (-4 *8 (-928 *7 *5 *6)) (-5 *2 (-2 (|:| -4067 (-754)) (|:| -3069 *3) (|:| |radicand| *3))) (-5 *1 (-932 *5 *6 *7 *8 *3)) (-5 *4 (-754)) (-4 *3 (-13 (-357) (-10 -8 (-15 -2918 (*8 $)) (-15 -2929 (*8 $)) (-15 -1477 ($ *8))))))) (-1660 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-552))) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-544)) (-4 *8 (-928 *7 *5 *6)) (-5 *2 (-2 (|:| -4067 (-754)) (|:| -3069 *9) (|:| |radicand| *9))) (-5 *1 (-932 *5 *6 *7 *8 *9)) (-5 *4 (-754)) (-4 *9 (-13 (-357) (-10 -8 (-15 -2918 (*8 $)) (-15 -2929 (*8 $)) (-15 -1477 ($ *8))))))) (-3265 (*1 *2 *3 *4) (-12 (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-544)) (-4 *7 (-928 *3 *5 *6)) (-5 *2 (-2 (|:| -4067 (-754)) (|:| -3069 *8) (|:| |radicand| *8))) (-5 *1 (-932 *5 *6 *3 *7 *8)) (-5 *4 (-754)) (-4 *8 (-13 (-357) (-10 -8 (-15 -2918 (*7 $)) (-15 -2929 (*7 $)) (-15 -1477 ($ *7)))))))) +(-10 -7 (-15 -3265 ((-2 (|:| -4067 (-754)) (|:| -3069 |#5|) (|:| |radicand| |#5|)) |#3| (-754))) (-15 -1660 ((-2 (|:| -4067 (-754)) (|:| -3069 |#5|) (|:| |radicand| |#5|)) (-401 (-552)) (-754))) (IF (|has| |#3| (-445)) (-15 -1499 ((-2 (|:| -4067 (-754)) (|:| -3069 |#5|) (|:| |radicand| |#5|)) |#5| (-754))) |%noBranch|) (-15 -3261 ((-2 (|:| -4067 (-754)) (|:| -3069 |#4|) (|:| |radicand| (-627 |#4|))) |#4| (-754)))) +((-1465 (((-111) $ $) NIL)) (-1722 (($ (-1096)) 8)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 14) (((-1096) $) 11)) (-2292 (((-111) $ $) 10))) +(((-933) (-13 (-1076) (-599 (-1096)) (-10 -8 (-15 -1722 ($ (-1096)))))) (T -933)) +((-1722 (*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-933))))) +(-13 (-1076) (-599 (-1096)) (-10 -8 (-15 -1722 ($ (-1096))))) +((-3447 (((-1070 (-220)) $) 8)) (-3437 (((-1070 (-220)) $) 9)) (-2116 (((-627 (-627 (-922 (-220)))) $) 10)) (-1477 (((-842) $) 6))) +(((-934) (-137)) (T -934)) +((-2116 (*1 *2 *1) (-12 (-4 *1 (-934)) (-5 *2 (-627 (-627 (-922 (-220))))))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-934)) (-5 *2 (-1070 (-220))))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-934)) (-5 *2 (-1070 (-220)))))) +(-13 (-599 (-842)) (-10 -8 (-15 -2116 ((-627 (-627 (-922 (-220)))) $)) (-15 -3437 ((-1070 (-220)) $)) (-15 -3447 ((-1070 (-220)) $)))) +(((-599 (-842)) . T)) +((-3432 (((-3 (-671 |#1|) "failed") |#2| (-900)) 15))) +(((-935 |#1| |#2|) (-10 -7 (-15 -3432 ((-3 (-671 |#1|) "failed") |#2| (-900)))) (-544) (-638 |#1|)) (T -935)) +((-3432 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-900)) (-4 *5 (-544)) (-5 *2 (-671 *5)) (-5 *1 (-935 *5 *3)) (-4 *3 (-638 *5))))) +(-10 -7 (-15 -3432 ((-3 (-671 |#1|) "failed") |#2| (-900)))) +((-2169 (((-937 |#2|) (-1 |#2| |#1| |#2|) (-937 |#1|) |#2|) 16)) (-2091 ((|#2| (-1 |#2| |#1| |#2|) (-937 |#1|) |#2|) 18)) (-3516 (((-937 |#2|) (-1 |#2| |#1|) (-937 |#1|)) 13))) +(((-936 |#1| |#2|) (-10 -7 (-15 -2169 ((-937 |#2|) (-1 |#2| |#1| |#2|) (-937 |#1|) |#2|)) (-15 -2091 (|#2| (-1 |#2| |#1| |#2|) (-937 |#1|) |#2|)) (-15 -3516 ((-937 |#2|) (-1 |#2| |#1|) (-937 |#1|)))) (-1189) (-1189)) (T -936)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-937 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-937 *6)) (-5 *1 (-936 *5 *6)))) (-2091 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-937 *5)) (-4 *5 (-1189)) (-4 *2 (-1189)) (-5 *1 (-936 *5 *2)))) (-2169 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-937 *6)) (-4 *6 (-1189)) (-4 *5 (-1189)) (-5 *2 (-937 *5)) (-5 *1 (-936 *6 *5))))) +(-10 -7 (-15 -2169 ((-937 |#2|) (-1 |#2| |#1| |#2|) (-937 |#1|) |#2|)) (-15 -2091 (|#2| (-1 |#2| |#1| |#2|) (-937 |#1|) |#2|)) (-15 -3516 ((-937 |#2|) (-1 |#2| |#1|) (-937 |#1|)))) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-552) |#1|) 16 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) 15 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 13)) (-2967 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076)))) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-2655 (($ (-754) |#1|) 12)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) 10 (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3340 ((|#1| $) NIL (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) 17 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) 11)) (-1985 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) 14) (($ $ (-1202 (-552))) NIL)) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) NIL)) (-2668 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-627 $)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-1383 (((-754) $) 8 (|has| $ (-6 -4366))))) +(((-937 |#1|) (-19 |#1|) (-1189)) (T -937)) NIL (-19 |#1|) -((-4269 (($ $ (-1065 $)) 7) (($ $ (-1149)) 6))) -(((-935) (-138)) (T -935)) -((-4269 (*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-935)))) (-4269 (*1 *1 *1 *2) (-12 (-4 *1 (-935)) (-5 *2 (-1149))))) -(-13 (-10 -8 (-15 -4269 ($ $ (-1149))) (-15 -4269 ($ $ (-1065 $))))) -((-4279 (((-2 (|:| -3340 (-625 (-552))) (|:| |poly| (-625 (-1145 |#1|))) (|:| |prim| (-1145 |#1|))) (-625 (-928 |#1|)) (-625 (-1149)) (-1149)) 25) (((-2 (|:| -3340 (-625 (-552))) (|:| |poly| (-625 (-1145 |#1|))) (|:| |prim| (-1145 |#1|))) (-625 (-928 |#1|)) (-625 (-1149))) 26) (((-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) (|:| |prim| (-1145 |#1|))) (-928 |#1|) (-1149) (-928 |#1|) (-1149)) 43))) -(((-936 |#1|) (-10 -7 (-15 -4279 ((-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) (|:| |prim| (-1145 |#1|))) (-928 |#1|) (-1149) (-928 |#1|) (-1149))) (-15 -4279 ((-2 (|:| -3340 (-625 (-552))) (|:| |poly| (-625 (-1145 |#1|))) (|:| |prim| (-1145 |#1|))) (-625 (-928 |#1|)) (-625 (-1149)))) (-15 -4279 ((-2 (|:| -3340 (-625 (-552))) (|:| |poly| (-625 (-1145 |#1|))) (|:| |prim| (-1145 |#1|))) (-625 (-928 |#1|)) (-625 (-1149)) (-1149)))) (-13 (-358) (-145))) (T -936)) -((-4279 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 (-928 *6))) (-5 *4 (-625 (-1149))) (-5 *5 (-1149)) (-4 *6 (-13 (-358) (-145))) (-5 *2 (-2 (|:| -3340 (-625 (-552))) (|:| |poly| (-625 (-1145 *6))) (|:| |prim| (-1145 *6)))) (-5 *1 (-936 *6)))) (-4279 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-625 (-1149))) (-4 *5 (-13 (-358) (-145))) (-5 *2 (-2 (|:| -3340 (-625 (-552))) (|:| |poly| (-625 (-1145 *5))) (|:| |prim| (-1145 *5)))) (-5 *1 (-936 *5)))) (-4279 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-928 *5)) (-5 *4 (-1149)) (-4 *5 (-13 (-358) (-145))) (-5 *2 (-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) (|:| |prim| (-1145 *5)))) (-5 *1 (-936 *5))))) -(-10 -7 (-15 -4279 ((-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) (|:| |prim| (-1145 |#1|))) (-928 |#1|) (-1149) (-928 |#1|) (-1149))) (-15 -4279 ((-2 (|:| -3340 (-625 (-552))) (|:| |poly| (-625 (-1145 |#1|))) (|:| |prim| (-1145 |#1|))) (-625 (-928 |#1|)) (-625 (-1149)))) (-15 -4279 ((-2 (|:| -3340 (-625 (-552))) (|:| |poly| (-625 (-1145 |#1|))) (|:| |prim| (-1145 |#1|))) (-625 (-928 |#1|)) (-625 (-1149)) (-1149)))) -((-4309 (((-625 |#1|) |#1| |#1|) 42)) (-2951 (((-112) |#1|) 39)) (-4300 ((|#1| |#1|) 65)) (-4290 ((|#1| |#1|) 64))) -(((-937 |#1|) (-10 -7 (-15 -2951 ((-112) |#1|)) (-15 -4290 (|#1| |#1|)) (-15 -4300 (|#1| |#1|)) (-15 -4309 ((-625 |#1|) |#1| |#1|))) (-537)) (T -937)) -((-4309 (*1 *2 *3 *3) (-12 (-5 *2 (-625 *3)) (-5 *1 (-937 *3)) (-4 *3 (-537)))) (-4300 (*1 *2 *2) (-12 (-5 *1 (-937 *2)) (-4 *2 (-537)))) (-4290 (*1 *2 *2) (-12 (-5 *1 (-937 *2)) (-4 *2 (-537)))) (-2951 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-537))))) -(-10 -7 (-15 -2951 ((-112) |#1|)) (-15 -4290 (|#1| |#1|)) (-15 -4300 (|#1| |#1|)) (-15 -4309 ((-625 |#1|) |#1| |#1|))) -((-3871 (((-1237) (-839)) 9))) -(((-938) (-10 -7 (-15 -3871 ((-1237) (-839))))) (T -938)) -((-3871 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1237)) (-5 *1 (-938))))) -(-10 -7 (-15 -3871 ((-1237) (-839)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 61 (|has| |#1| (-544)))) (-3528 (($ $) 62 (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 28)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) NIL)) (-4169 (($ $) 24)) (-4174 (((-3 $ "failed") $) 35)) (-1294 (($ $) NIL (|has| |#1| (-446)))) (-1347 (($ $ |#1| |#2| $) 48)) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) 16)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| |#2|) NIL)) (-4134 ((|#2| $) 19)) (-1357 (($ (-1 |#2| |#2|) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-4131 (($ $) 23)) (-4144 ((|#1| $) 21)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) 40)) (-4117 ((|#1| $) NIL)) (-3044 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-130)) (|has| |#1| (-544))))) (-2802 (((-3 $ "failed") $ $) 74 (|has| |#1| (-544))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-544)))) (-4276 ((|#2| $) 17)) (-4108 ((|#1| $) NIL (|has| |#1| (-446)))) (-1683 (((-839) $) NIL) (($ (-552)) 39) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) 34) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552))))))) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ |#2|) 31)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) 15)) (-1336 (($ $ $ (-751)) 57 (|has| |#1| (-170)))) (-3518 (((-112) $ $) 67 (|has| |#1| (-544)))) (-2089 (($) 22 T CONST)) (-2100 (($) 12 T CONST)) (-2281 (((-112) $ $) 66)) (-2404 (($ $ |#1|) 75 (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) 54) (($ $ (-751)) 52)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))))) -(((-939 |#1| |#2|) (-13 (-321 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-544)) (IF (|has| |#2| (-130)) (-15 -3044 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|))) (-1025) (-772)) (T -939)) -((-3044 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-939 *3 *2)) (-4 *2 (-130)) (-4 *3 (-544)) (-4 *3 (-1025)) (-4 *2 (-772))))) -(-13 (-321 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-544)) (IF (|has| |#2| (-130)) (-15 -3044 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL (-1523 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))))) (-1282 (($ $ $) 63 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))))) (-2077 (((-3 $ "failed") $ $) 50 (-1523 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))))) (-2894 (((-751)) 34 (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-4319 ((|#2| $) 21)) (-4329 ((|#1| $) 20)) (-3101 (($) NIL (-1523 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))) CONST)) (-4174 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))))) (-3702 (($) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-3650 (((-112) $) NIL (-1523 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))))) (-3658 (($ $ $) NIL (-1523 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-3332 (($ $ $) NIL (-1523 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-1271 (($ |#1| |#2|) 19)) (-4318 (((-897) $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 37 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-3123 (($ (-897)) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-2831 (((-1093) $) NIL)) (-2410 (($ $ $) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-3828 (($ $ $) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-1683 (((-839) $) 14)) (-2089 (($) 40 (-1523 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))) CONST)) (-2100 (($) 24 (-1523 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))) CONST)) (-2346 (((-112) $ $) NIL (-1523 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-2320 (((-112) $ $) NIL (-1523 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-2281 (((-112) $ $) 18)) (-2334 (((-112) $ $) NIL (-1523 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-2307 (((-112) $ $) 66 (-1523 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-2404 (($ $ $) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-2393 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2382 (($ $ $) 43 (-1523 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))))) (** (($ $ (-552)) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467)))) (($ $ (-751)) 31 (-1523 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707))))) (($ $ (-897)) NIL (-1523 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))))) (* (($ (-552) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-751) $) 46 (-1523 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773))))) (($ (-897) $) NIL (-1523 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773))))) (($ $ $) 27 (-1523 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707))))))) -(((-940 |#1| |#2|) (-13 (-1073) (-10 -8 (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-707)) (IF (|has| |#2| (-707)) (-6 (-707)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-467)) (IF (|has| |#2| (-467)) (-6 (-467)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-773)) (IF (|has| |#2| (-773)) (-6 (-773)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-827)) (IF (|has| |#2| (-827)) (-6 (-827)) |%noBranch|) |%noBranch|) (-15 -1271 ($ |#1| |#2|)) (-15 -4329 (|#1| $)) (-15 -4319 (|#2| $)))) (-1073) (-1073)) (T -940)) -((-1271 (*1 *1 *2 *3) (-12 (-5 *1 (-940 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))) (-4329 (*1 *2 *1) (-12 (-4 *2 (-1073)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1073)))) (-4319 (*1 *2 *1) (-12 (-4 *2 (-1073)) (-5 *1 (-940 *3 *2)) (-4 *3 (-1073))))) -(-13 (-1073) (-10 -8 (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-707)) (IF (|has| |#2| (-707)) (-6 (-707)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-467)) (IF (|has| |#2| (-467)) (-6 (-467)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-773)) (IF (|has| |#2| (-773)) (-6 (-773)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-827)) (IF (|has| |#2| (-827)) (-6 (-827)) |%noBranch|) |%noBranch|) (-15 -1271 ($ |#1| |#2|)) (-15 -4329 (|#1| $)) (-15 -4319 (|#2| $)))) -((-3800 (((-1077) $) 12)) (-4085 (($ (-1149) (-1077)) 13)) (-1288 (((-1149) $) 10)) (-1683 (((-839) $) 22))) -(((-941) (-13 (-597 (-839)) (-10 -8 (-15 -1288 ((-1149) $)) (-15 -3800 ((-1077) $)) (-15 -4085 ($ (-1149) (-1077)))))) (T -941)) -((-1288 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-941)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-941)))) (-4085 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1077)) (-5 *1 (-941))))) -(-13 (-597 (-839)) (-10 -8 (-15 -1288 ((-1149) $)) (-15 -3800 ((-1077) $)) (-15 -4085 ($ (-1149) (-1077))))) -((-1671 (((-112) $ $) NIL)) (-3982 (((-1075 (-1149)) $) 19)) (-3226 (((-112) $) 26)) (-2195 (((-1149) $) 27)) (-3242 (((-112) $) 24)) (-3233 ((|#1| $) 25)) (-3179 (((-849 $ $) $) 34)) (-3188 (((-112) $) 33)) (-3152 (($ $ $) 12)) (-3215 (($ $) 29)) (-3005 (((-112) $) 28)) (-2960 (($ $) 10)) (-2883 (((-1131) $) NIL)) (-1304 (((-849 $ $) $) 36)) (-3171 (((-112) $) 35)) (-2221 (($ $ $) 13)) (-2831 (((-1093) $) NIL)) (-1281 (((-849 $ $) $) 38)) (-1292 (((-112) $) 37)) (-3251 (($ $ $) 14)) (-1683 (((-839) $) 40) (($ |#1|) 7) (($ (-1149)) 9)) (-3195 (((-849 $ $) $) 32)) (-3205 (((-112) $) 30)) (-3743 (($ $ $) 11)) (-2281 (((-112) $ $) NIL))) -(((-942 |#1|) (-13 (-943) (-10 -8 (-15 -1683 ($ |#1|)) (-15 -1683 ($ (-1149))) (-15 -3982 ((-1075 (-1149)) $)) (-15 -3242 ((-112) $)) (-15 -3233 (|#1| $)) (-15 -3226 ((-112) $)) (-15 -2195 ((-1149) $)) (-15 -3005 ((-112) $)) (-15 -3215 ($ $)) (-15 -3205 ((-112) $)) (-15 -3195 ((-849 $ $) $)) (-15 -3188 ((-112) $)) (-15 -3179 ((-849 $ $) $)) (-15 -3171 ((-112) $)) (-15 -1304 ((-849 $ $) $)) (-15 -1292 ((-112) $)) (-15 -1281 ((-849 $ $) $)))) (-943)) (T -942)) -((-1683 (*1 *1 *2) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3982 (*1 *2 *1) (-12 (-5 *2 (-1075 (-1149))) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3242 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3233 (*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943)))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3005 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3215 (*1 *1 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943)))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3195 (*1 *2 *1) (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3179 (*1 *2 *1) (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3171 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-1304 (*1 *2 *1) (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-1281 (*1 *2 *1) (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943))))) -(-13 (-943) (-10 -8 (-15 -1683 ($ |#1|)) (-15 -1683 ($ (-1149))) (-15 -3982 ((-1075 (-1149)) $)) (-15 -3242 ((-112) $)) (-15 -3233 (|#1| $)) (-15 -3226 ((-112) $)) (-15 -2195 ((-1149) $)) (-15 -3005 ((-112) $)) (-15 -3215 ($ $)) (-15 -3205 ((-112) $)) (-15 -3195 ((-849 $ $) $)) (-15 -3188 ((-112) $)) (-15 -3179 ((-849 $ $) $)) (-15 -3171 ((-112) $)) (-15 -1304 ((-849 $ $) $)) (-15 -1292 ((-112) $)) (-15 -1281 ((-849 $ $) $)))) -((-1671 (((-112) $ $) 7)) (-3152 (($ $ $) 15)) (-2960 (($ $) 17)) (-2883 (((-1131) $) 9)) (-2221 (($ $ $) 14)) (-2831 (((-1093) $) 10)) (-3251 (($ $ $) 13)) (-1683 (((-839) $) 11)) (-3743 (($ $ $) 16)) (-2281 (((-112) $ $) 6))) -(((-943) (-138)) (T -943)) -((-2960 (*1 *1 *1) (-4 *1 (-943))) (-3743 (*1 *1 *1 *1) (-4 *1 (-943))) (-3152 (*1 *1 *1 *1) (-4 *1 (-943))) (-2221 (*1 *1 *1 *1) (-4 *1 (-943))) (-3251 (*1 *1 *1 *1) (-4 *1 (-943)))) -(-13 (-1073) (-10 -8 (-15 -2960 ($ $)) (-15 -3743 ($ $ $)) (-15 -3152 ($ $ $)) (-15 -2221 ($ $ $)) (-15 -3251 ($ $ $)))) -(((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) 8)) (-3101 (($) 7 T CONST)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3260 (($ $ $) 43)) (-3280 (($ $ $) 44)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3332 ((|#1| $) 45)) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2953 ((|#1| $) 39)) (-3966 (($ |#1| $) 40)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-944 |#1|) (-138) (-827)) (T -944)) -((-3332 (*1 *2 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827)))) (-3280 (*1 *1 *1 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827)))) (-3260 (*1 *1 *1 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827))))) -(-13 (-106 |t#1|) (-10 -8 (-6 -4353) (-15 -3332 (|t#1| $)) (-15 -3280 ($ $ $)) (-15 -3260 ($ $ $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T)) -((-3373 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2633 |#2|)) |#2| |#2|) 85)) (-3197 ((|#2| |#2| |#2|) 83)) (-3384 (((-2 (|:| |coef2| |#2|) (|:| -2633 |#2|)) |#2| |#2|) 87)) (-3395 (((-2 (|:| |coef1| |#2|) (|:| -2633 |#2|)) |#2| |#2|) 89)) (-3471 (((-2 (|:| |coef2| |#2|) (|:| -3447 |#1|)) |#2| |#2|) 107 (|has| |#1| (-446)))) (-3538 (((-2 (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|) 46)) (-3279 (((-2 (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|) 64)) (-3289 (((-2 (|:| |coef1| |#2|) (|:| -3207 |#1|)) |#2| |#2|) 66)) (-3365 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-3318 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751)) 71)) (-3413 (((-2 (|:| |coef2| |#2|) (|:| -3217 |#1|)) |#2|) 97)) (-3347 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751)) 74)) (-3435 (((-625 (-751)) |#2| |#2|) 82)) (-3519 ((|#1| |#2| |#2|) 42)) (-3460 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3447 |#1|)) |#2| |#2|) 105 (|has| |#1| (-446)))) (-3447 ((|#1| |#2| |#2|) 103 (|has| |#1| (-446)))) (-3529 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|) 44)) (-3269 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|) 63)) (-3207 ((|#1| |#2| |#2|) 61)) (-3173 (((-2 (|:| -3340 |#1|) (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2|) 35)) (-3510 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3356 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-3662 ((|#2| |#2| |#2|) 75)) (-3308 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751)) 69)) (-3298 ((|#2| |#2| |#2| (-751)) 67)) (-2633 ((|#2| |#2| |#2|) 111 (|has| |#1| (-446)))) (-2802 (((-1232 |#2|) (-1232 |#2|) |#1|) 21)) (-3481 (((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2|) 39)) (-3405 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3217 |#1|)) |#2|) 95)) (-3217 ((|#1| |#2|) 92)) (-3337 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751)) 73)) (-3328 ((|#2| |#2| |#2| (-751)) 72)) (-3425 (((-625 |#2|) |#2| |#2|) 80)) (-3501 ((|#2| |#2| |#1| |#1| (-751)) 50)) (-3491 ((|#1| |#1| |#1| (-751)) 49)) (* (((-1232 |#2|) |#1| (-1232 |#2|)) 16))) -(((-945 |#1| |#2|) (-10 -7 (-15 -3207 (|#1| |#2| |#2|)) (-15 -3269 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|)) (-15 -3279 ((-2 (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|)) (-15 -3289 ((-2 (|:| |coef1| |#2|) (|:| -3207 |#1|)) |#2| |#2|)) (-15 -3298 (|#2| |#2| |#2| (-751))) (-15 -3308 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3318 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3328 (|#2| |#2| |#2| (-751))) (-15 -3337 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3347 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3662 (|#2| |#2| |#2|)) (-15 -3356 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3365 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3197 (|#2| |#2| |#2|)) (-15 -3373 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2633 |#2|)) |#2| |#2|)) (-15 -3384 ((-2 (|:| |coef2| |#2|) (|:| -2633 |#2|)) |#2| |#2|)) (-15 -3395 ((-2 (|:| |coef1| |#2|) (|:| -2633 |#2|)) |#2| |#2|)) (-15 -3217 (|#1| |#2|)) (-15 -3405 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3217 |#1|)) |#2|)) (-15 -3413 ((-2 (|:| |coef2| |#2|) (|:| -3217 |#1|)) |#2|)) (-15 -3425 ((-625 |#2|) |#2| |#2|)) (-15 -3435 ((-625 (-751)) |#2| |#2|)) (IF (|has| |#1| (-446)) (PROGN (-15 -3447 (|#1| |#2| |#2|)) (-15 -3460 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3447 |#1|)) |#2| |#2|)) (-15 -3471 ((-2 (|:| |coef2| |#2|) (|:| -3447 |#1|)) |#2| |#2|)) (-15 -2633 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1232 |#2|) |#1| (-1232 |#2|))) (-15 -2802 ((-1232 |#2|) (-1232 |#2|) |#1|)) (-15 -3173 ((-2 (|:| -3340 |#1|) (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2|)) (-15 -3481 ((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2|)) (-15 -3491 (|#1| |#1| |#1| (-751))) (-15 -3501 (|#2| |#2| |#1| |#1| (-751))) (-15 -3510 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3519 (|#1| |#2| |#2|)) (-15 -3529 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|)) (-15 -3538 ((-2 (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|))) (-544) (-1208 |#1|)) (T -945)) -((-3538 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3207 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3529 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3207 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3519 (*1 *2 *3 *3) (-12 (-4 *2 (-544)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1208 *2)))) (-3510 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-544)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1208 *3)))) (-3501 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-751)) (-4 *3 (-544)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1208 *3)))) (-3491 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *2 (-544)) (-5 *1 (-945 *2 *4)) (-4 *4 (-1208 *2)))) (-3481 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3173 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| -3340 *4) (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-2802 (*1 *2 *2 *3) (-12 (-5 *2 (-1232 *4)) (-4 *4 (-1208 *3)) (-4 *3 (-544)) (-5 *1 (-945 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1232 *4)) (-4 *4 (-1208 *3)) (-4 *3 (-544)) (-5 *1 (-945 *3 *4)))) (-2633 (*1 *2 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-544)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1208 *3)))) (-3471 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3447 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3460 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3447 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3447 (*1 *2 *3 *3) (-12 (-4 *2 (-544)) (-4 *2 (-446)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1208 *2)))) (-3435 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-625 (-751))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3425 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-625 *3)) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3413 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3217 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3405 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3217 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3217 (*1 *2 *3) (-12 (-4 *2 (-544)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1208 *2)))) (-3395 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2633 *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3384 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2633 *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3373 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2633 *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3197 (*1 *2 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1208 *3)))) (-3365 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3356 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3662 (*1 *2 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1208 *3)))) (-3347 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *5 *3)) (-4 *3 (-1208 *5)))) (-3337 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *5 *3)) (-4 *3 (-1208 *5)))) (-3328 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-544)) (-5 *1 (-945 *4 *2)) (-4 *2 (-1208 *4)))) (-3318 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *5 *3)) (-4 *3 (-1208 *5)))) (-3308 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *5 *3)) (-4 *3 (-1208 *5)))) (-3298 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-544)) (-5 *1 (-945 *4 *2)) (-4 *2 (-1208 *4)))) (-3289 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3207 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3279 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3207 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3207 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) (-3207 (*1 *2 *3 *3) (-12 (-4 *2 (-544)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1208 *2))))) -(-10 -7 (-15 -3207 (|#1| |#2| |#2|)) (-15 -3269 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|)) (-15 -3279 ((-2 (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|)) (-15 -3289 ((-2 (|:| |coef1| |#2|) (|:| -3207 |#1|)) |#2| |#2|)) (-15 -3298 (|#2| |#2| |#2| (-751))) (-15 -3308 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3318 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3328 (|#2| |#2| |#2| (-751))) (-15 -3337 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3347 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3662 (|#2| |#2| |#2|)) (-15 -3356 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3365 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3197 (|#2| |#2| |#2|)) (-15 -3373 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2633 |#2|)) |#2| |#2|)) (-15 -3384 ((-2 (|:| |coef2| |#2|) (|:| -2633 |#2|)) |#2| |#2|)) (-15 -3395 ((-2 (|:| |coef1| |#2|) (|:| -2633 |#2|)) |#2| |#2|)) (-15 -3217 (|#1| |#2|)) (-15 -3405 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3217 |#1|)) |#2|)) (-15 -3413 ((-2 (|:| |coef2| |#2|) (|:| -3217 |#1|)) |#2|)) (-15 -3425 ((-625 |#2|) |#2| |#2|)) (-15 -3435 ((-625 (-751)) |#2| |#2|)) (IF (|has| |#1| (-446)) (PROGN (-15 -3447 (|#1| |#2| |#2|)) (-15 -3460 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3447 |#1|)) |#2| |#2|)) (-15 -3471 ((-2 (|:| |coef2| |#2|) (|:| -3447 |#1|)) |#2| |#2|)) (-15 -2633 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1232 |#2|) |#1| (-1232 |#2|))) (-15 -2802 ((-1232 |#2|) (-1232 |#2|) |#1|)) (-15 -3173 ((-2 (|:| -3340 |#1|) (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2|)) (-15 -3481 ((-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) |#2| |#2|)) (-15 -3491 (|#1| |#1| |#1| (-751))) (-15 -3501 (|#2| |#2| |#1| |#1| (-751))) (-15 -3510 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3519 (|#1| |#2| |#2|)) (-15 -3529 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|)) (-15 -3538 ((-2 (|:| |coef2| |#2|) (|:| -3207 |#1|)) |#2| |#2|))) -((-1671 (((-112) $ $) NIL)) (-1711 (((-1185) $) 13)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3632 (((-1108) $) 10)) (-1683 (((-839) $) 22) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL))) -(((-946) (-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $)) (-15 -1711 ((-1185) $))))) (T -946)) -((-3632 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-946)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-946))))) -(-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $)) (-15 -1711 ((-1185) $)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) 27)) (-3101 (($) NIL T CONST)) (-3559 (((-625 (-625 (-552))) (-625 (-552))) 29)) (-3550 (((-552) $) 45)) (-3570 (($ (-625 (-552))) 17)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2042 (((-625 (-552)) $) 12)) (-2410 (($ $) 32)) (-1683 (((-839) $) 43) (((-625 (-552)) $) 10)) (-2089 (($) 7 T CONST)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 20)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 19)) (-2382 (($ $ $) 21)) (* (($ (-897) $) NIL) (($ (-751) $) 25))) -(((-947) (-13 (-775) (-598 (-625 (-552))) (-10 -8 (-15 -3570 ($ (-625 (-552)))) (-15 -3559 ((-625 (-625 (-552))) (-625 (-552)))) (-15 -3550 ((-552) $)) (-15 -2410 ($ $)) (-15 -1683 ((-625 (-552)) $))))) (T -947)) -((-3570 (*1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-947)))) (-3559 (*1 *2 *3) (-12 (-5 *2 (-625 (-625 (-552)))) (-5 *1 (-947)) (-5 *3 (-625 (-552))))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-947)))) (-2410 (*1 *1 *1) (-5 *1 (-947))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-947))))) -(-13 (-775) (-598 (-625 (-552))) (-10 -8 (-15 -3570 ($ (-625 (-552)))) (-15 -3559 ((-625 (-625 (-552))) (-625 (-552)))) (-15 -3550 ((-552) $)) (-15 -2410 ($ $)) (-15 -1683 ((-625 (-552)) $)))) -((-2404 (($ $ |#2|) 30)) (-2393 (($ $) 22) (($ $ $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-402 (-552)) $) 26) (($ $ (-402 (-552))) 28))) -(((-948 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-402 (-552)))) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 -2404 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|))) (-949 |#2| |#3| |#4|) (-1025) (-772) (-827)) (T -948)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-402 (-552)))) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 -2404 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-897) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3982 (((-625 |#3|) $) 72)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3528 (($ $) 50 (|has| |#1| (-544)))) (-3509 (((-112) $) 52 (|has| |#1| (-544)))) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4169 (($ $) 58)) (-4174 (((-3 $ "failed") $) 32)) (-3592 (((-112) $) 71)) (-3650 (((-112) $) 30)) (-4201 (((-112) $) 60)) (-3957 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-625 |#3|) (-625 |#2|)) 73)) (-1996 (($ (-1 |#1| |#1|) $) 61)) (-4131 (($ $) 63)) (-4144 ((|#1| $) 64)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-2802 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-4276 ((|#2| $) 62)) (-3580 (($ $) 70)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ (-402 (-552))) 55 (|has| |#1| (-38 (-402 (-552))))) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45 (|has| |#1| (-170)))) (-3637 ((|#1| $ |#2|) 57)) (-4243 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 51 (|has| |#1| (-544)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 56 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-552)) $) 54 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 53 (|has| |#1| (-38 (-402 (-552))))))) -(((-949 |#1| |#2| |#3|) (-138) (-1025) (-772) (-827)) (T -949)) -((-4144 (*1 *2 *1) (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *3 (-772)) (-4 *4 (-827)) (-4 *2 (-1025)))) (-4131 (*1 *1 *1) (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *4 (-827)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *2 *4)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *2 (-772)))) (-3957 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-949 *4 *3 *2)) (-4 *4 (-1025)) (-4 *3 (-772)) (-4 *2 (-827)))) (-3957 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 *6)) (-5 *3 (-625 *5)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-772)) (-4 *6 (-827)))) (-3982 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-772)) (-4 *5 (-827)) (-5 *2 (-625 *5)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-772)) (-4 *5 (-827)) (-5 *2 (-112)))) (-3580 (*1 *1 *1) (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *4 (-827))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3957 ($ $ |t#3| |t#2|)) (-15 -3957 ($ $ (-625 |t#3|) (-625 |t#2|))) (-15 -4131 ($ $)) (-15 -4144 (|t#1| $)) (-15 -4276 (|t#2| $)) (-15 -3982 ((-625 |t#3|) $)) (-15 -3592 ((-112) $)) (-15 -3580 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-552)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-285) |has| |#1| (-544)) ((-544) |has| |#1| (-544)) ((-628 #0#) |has| |#1| (-38 (-402 (-552)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #0#) |has| |#1| (-38 (-402 (-552)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-544)) ((-707) . T) ((-1031 #0#) |has| |#1| (-38 (-402 (-552)))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-3675 (((-1067 (-221)) $) 8)) (-3663 (((-1067 (-221)) $) 9)) (-3652 (((-1067 (-221)) $) 10)) (-3603 (((-625 (-625 (-919 (-221)))) $) 11)) (-1683 (((-839) $) 6))) -(((-950) (-138)) (T -950)) -((-3603 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-625 (-625 (-919 (-221))))))) (-3652 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1067 (-221))))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1067 (-221))))) (-3675 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1067 (-221)))))) -(-13 (-597 (-839)) (-10 -8 (-15 -3603 ((-625 (-625 (-919 (-221)))) $)) (-15 -3652 ((-1067 (-221)) $)) (-15 -3663 ((-1067 (-221)) $)) (-15 -3675 ((-1067 (-221)) $)))) -(((-597 (-839)) . T)) -((-3982 (((-625 |#4|) $) 23)) (-3707 (((-112) $) 48)) (-3613 (((-112) $) 47)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#4|) 36)) (-3667 (((-112) $) 49)) (-3688 (((-112) $ $) 55)) (-3678 (((-112) $ $) 58)) (-3697 (((-112) $) 53)) (-3624 (((-625 |#5|) (-625 |#5|) $) 90)) (-3635 (((-625 |#5|) (-625 |#5|) $) 87)) (-3645 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2615 (((-625 |#4|) $) 27)) (-2608 (((-112) |#4| $) 30)) (-3655 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3718 (($ $ |#4|) 33)) (-2595 (($ $ |#4|) 32)) (-2584 (($ $ |#4|) 34)) (-2281 (((-112) $ $) 40))) -(((-951 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3613 ((-112) |#1|)) (-15 -3624 ((-625 |#5|) (-625 |#5|) |#1|)) (-15 -3635 ((-625 |#5|) (-625 |#5|) |#1|)) (-15 -3645 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3655 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3667 ((-112) |#1|)) (-15 -3678 ((-112) |#1| |#1|)) (-15 -3688 ((-112) |#1| |#1|)) (-15 -3697 ((-112) |#1|)) (-15 -3707 ((-112) |#1|)) (-15 -1800 ((-2 (|:| |under| |#1|) (|:| -4189 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3718 (|#1| |#1| |#4|)) (-15 -2584 (|#1| |#1| |#4|)) (-15 -2595 (|#1| |#1| |#4|)) (-15 -2608 ((-112) |#4| |#1|)) (-15 -2615 ((-625 |#4|) |#1|)) (-15 -3982 ((-625 |#4|) |#1|)) (-15 -2281 ((-112) |#1| |#1|))) (-952 |#2| |#3| |#4| |#5|) (-1025) (-773) (-827) (-1039 |#2| |#3| |#4|)) (T -951)) -NIL -(-10 -8 (-15 -3613 ((-112) |#1|)) (-15 -3624 ((-625 |#5|) (-625 |#5|) |#1|)) (-15 -3635 ((-625 |#5|) (-625 |#5|) |#1|)) (-15 -3645 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3655 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3667 ((-112) |#1|)) (-15 -3678 ((-112) |#1| |#1|)) (-15 -3688 ((-112) |#1| |#1|)) (-15 -3697 ((-112) |#1|)) (-15 -3707 ((-112) |#1|)) (-15 -1800 ((-2 (|:| |under| |#1|) (|:| -4189 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3718 (|#1| |#1| |#4|)) (-15 -2584 (|#1| |#1| |#4|)) (-15 -2595 (|#1| |#1| |#4|)) (-15 -2608 ((-112) |#4| |#1|)) (-15 -2615 ((-625 |#4|) |#1|)) (-15 -3982 ((-625 |#4|) |#1|)) (-15 -2281 ((-112) |#1| |#1|))) -((-1671 (((-112) $ $) 7)) (-3982 (((-625 |#3|) $) 33)) (-3707 (((-112) $) 26)) (-3613 (((-112) $) 17 (|has| |#1| (-544)))) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) 27)) (-3495 (((-112) $ (-751)) 44)) (-3488 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353)))) (-3101 (($) 45 T CONST)) (-3667 (((-112) $) 22 (|has| |#1| (-544)))) (-3688 (((-112) $ $) 24 (|has| |#1| (-544)))) (-3678 (((-112) $ $) 23 (|has| |#1| (-544)))) (-3697 (((-112) $) 25 (|has| |#1| (-544)))) (-3624 (((-625 |#4|) (-625 |#4|) $) 18 (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) 19 (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) 36)) (-1895 (($ (-625 |#4|)) 35)) (-2959 (($ $) 68 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#4| $) 67 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353)))) (-3799 (((-625 |#4|) $) 52 (|has| $ (-6 -4353)))) (-3565 ((|#3| $) 34)) (-2909 (((-112) $ (-751)) 43)) (-3730 (((-625 |#4|) $) 53 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) 47)) (-2615 (((-625 |#3|) $) 32)) (-2608 (((-112) |#3| $) 31)) (-2878 (((-112) $ (-751)) 42)) (-2883 (((-1131) $) 9)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-2831 (((-1093) $) 10)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1888 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) 38)) (-1916 (((-112) $) 41)) (-3600 (($) 40)) (-2840 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-1871 (($ $) 39)) (-2042 (((-528) $) 69 (|has| |#4| (-598 (-528))))) (-1695 (($ (-625 |#4|)) 60)) (-3718 (($ $ |#3|) 28)) (-2595 (($ $ |#3|) 30)) (-2584 (($ $ |#3|) 29)) (-1683 (((-839) $) 11) (((-625 |#4|) $) 37)) (-1900 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 6)) (-1471 (((-751) $) 46 (|has| $ (-6 -4353))))) -(((-952 |#1| |#2| |#3| |#4|) (-138) (-1025) (-773) (-827) (-1039 |t#1| |t#2| |t#3|)) (T -952)) -((-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *1 (-952 *3 *4 *5 *6)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *1 (-952 *3 *4 *5 *6)))) (-3565 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-1039 *3 *4 *2)) (-4 *2 (-827)))) (-3982 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-625 *5)))) (-2615 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-625 *5)))) (-2608 (*1 *2 *3 *1) (-12 (-4 *1 (-952 *4 *5 *3 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-4 *6 (-1039 *4 *5 *3)) (-5 *2 (-112)))) (-2595 (*1 *1 *1 *2) (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *5 (-1039 *3 *4 *2)))) (-2584 (*1 *1 *1 *2) (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *5 (-1039 *3 *4 *2)))) (-3718 (*1 *1 *1 *2) (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *5 (-1039 *3 *4 *2)))) (-1800 (*1 *2 *1 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-4 *6 (-1039 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -4189 *1) (|:| |upper| *1))) (-4 *1 (-952 *4 *5 *3 *6)))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-112)))) (-3688 (*1 *2 *1 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-112)))) (-3678 (*1 *2 *1 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-112)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-112)))) (-3655 (*1 *2 *3 *1) (-12 (-4 *1 (-952 *4 *5 *6 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3645 (*1 *2 *3 *1) (-12 (-4 *1 (-952 *4 *5 *6 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3635 (*1 *2 *2 *1) (-12 (-5 *2 (-625 *6)) (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)))) (-3624 (*1 *2 *2 *1) (-12 (-5 *2 (-625 *6)) (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)))) (-3613 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-112))))) -(-13 (-1073) (-149 |t#4|) (-597 (-625 |t#4|)) (-10 -8 (-6 -4353) (-15 -1893 ((-3 $ "failed") (-625 |t#4|))) (-15 -1895 ($ (-625 |t#4|))) (-15 -3565 (|t#3| $)) (-15 -3982 ((-625 |t#3|) $)) (-15 -2615 ((-625 |t#3|) $)) (-15 -2608 ((-112) |t#3| $)) (-15 -2595 ($ $ |t#3|)) (-15 -2584 ($ $ |t#3|)) (-15 -3718 ($ $ |t#3|)) (-15 -1800 ((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |t#3|)) (-15 -3707 ((-112) $)) (IF (|has| |t#1| (-544)) (PROGN (-15 -3697 ((-112) $)) (-15 -3688 ((-112) $ $)) (-15 -3678 ((-112) $ $)) (-15 -3667 ((-112) $)) (-15 -3655 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3645 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3635 ((-625 |t#4|) (-625 |t#4|) $)) (-15 -3624 ((-625 |t#4|) (-625 |t#4|) $)) (-15 -3613 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-101) . T) ((-597 (-625 |#4|)) . T) ((-597 (-839)) . T) ((-149 |#4|) . T) ((-598 (-528)) |has| |#4| (-598 (-528))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-1073) . T) ((-1186) . T)) -((-2636 (((-625 |#4|) |#4| |#4|) 118)) (-2876 (((-625 |#4|) (-625 |#4|) (-112)) 107 (|has| |#1| (-446))) (((-625 |#4|) (-625 |#4|)) 108 (|has| |#1| (-446)))) (-2736 (((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|)) 35)) (-2726 (((-112) |#4|) 34)) (-2865 (((-625 |#4|) |#4|) 103 (|has| |#1| (-446)))) (-2688 (((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-1 (-112) |#4|) (-625 |#4|)) 20)) (-2698 (((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 (-1 (-112) |#4|)) (-625 |#4|)) 22)) (-2707 (((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 (-1 (-112) |#4|)) (-625 |#4|)) 23)) (-2817 (((-3 (-2 (|:| |bas| (-470 |#1| |#2| |#3| |#4|)) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|)) 73)) (-2843 (((-625 |#4|) (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2854 (((-625 |#4|) (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-2625 (((-625 |#4|) (-625 |#4|)) 110)) (-2785 (((-625 |#4|) (-625 |#4|) (-625 |#4|) (-112)) 48) (((-625 |#4|) (-625 |#4|) (-625 |#4|)) 50)) (-2794 ((|#4| |#4| (-625 |#4|)) 49)) (-2887 (((-625 |#4|) (-625 |#4|) (-625 |#4|)) 114 (|has| |#1| (-446)))) (-2907 (((-625 |#4|) (-625 |#4|) (-625 |#4|)) 117 (|has| |#1| (-446)))) (-2897 (((-625 |#4|) (-625 |#4|) (-625 |#4|)) 116 (|has| |#1| (-446)))) (-2646 (((-625 |#4|) (-625 |#4|) (-625 |#4|) (-1 (-625 |#4|) (-625 |#4|))) 87) (((-625 |#4|) (-625 |#4|) (-625 |#4|)) 89) (((-625 |#4|) (-625 |#4|) |#4|) 121) (((-625 |#4|) |#4| |#4|) 119) (((-625 |#4|) (-625 |#4|)) 88)) (-2939 (((-625 |#4|) (-625 |#4|) (-625 |#4|)) 100 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-2717 (((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|)) 41)) (-2676 (((-112) (-625 |#4|)) 62)) (-2666 (((-112) (-625 |#4|) (-625 (-625 |#4|))) 53)) (-2754 (((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|)) 29)) (-2745 (((-112) |#4|) 28)) (-2929 (((-625 |#4|) (-625 |#4|)) 98 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-2917 (((-625 |#4|) (-625 |#4|)) 99 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-2805 (((-625 |#4|) (-625 |#4|)) 66)) (-2830 (((-625 |#4|) (-625 |#4|)) 79)) (-2654 (((-112) (-625 |#4|) (-625 |#4|)) 51)) (-2774 (((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|)) 39)) (-2764 (((-112) |#4|) 36))) -(((-953 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2646 ((-625 |#4|) (-625 |#4|))) (-15 -2646 ((-625 |#4|) |#4| |#4|)) (-15 -2625 ((-625 |#4|) (-625 |#4|))) (-15 -2636 ((-625 |#4|) |#4| |#4|)) (-15 -2646 ((-625 |#4|) (-625 |#4|) |#4|)) (-15 -2646 ((-625 |#4|) (-625 |#4|) (-625 |#4|))) (-15 -2646 ((-625 |#4|) (-625 |#4|) (-625 |#4|) (-1 (-625 |#4|) (-625 |#4|)))) (-15 -2654 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -2666 ((-112) (-625 |#4|) (-625 (-625 |#4|)))) (-15 -2676 ((-112) (-625 |#4|))) (-15 -2688 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-1 (-112) |#4|) (-625 |#4|))) (-15 -2698 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 (-1 (-112) |#4|)) (-625 |#4|))) (-15 -2707 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 (-1 (-112) |#4|)) (-625 |#4|))) (-15 -2717 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|))) (-15 -2726 ((-112) |#4|)) (-15 -2736 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|))) (-15 -2745 ((-112) |#4|)) (-15 -2754 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|))) (-15 -2764 ((-112) |#4|)) (-15 -2774 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|))) (-15 -2785 ((-625 |#4|) (-625 |#4|) (-625 |#4|))) (-15 -2785 ((-625 |#4|) (-625 |#4|) (-625 |#4|) (-112))) (-15 -2794 (|#4| |#4| (-625 |#4|))) (-15 -2805 ((-625 |#4|) (-625 |#4|))) (-15 -2817 ((-3 (-2 (|:| |bas| (-470 |#1| |#2| |#3| |#4|)) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|))) (-15 -2830 ((-625 |#4|) (-625 |#4|))) (-15 -2843 ((-625 |#4|) (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2854 ((-625 |#4|) (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-446)) (PROGN (-15 -2865 ((-625 |#4|) |#4|)) (-15 -2876 ((-625 |#4|) (-625 |#4|))) (-15 -2876 ((-625 |#4|) (-625 |#4|) (-112))) (-15 -2887 ((-625 |#4|) (-625 |#4|) (-625 |#4|))) (-15 -2897 ((-625 |#4|) (-625 |#4|) (-625 |#4|))) (-15 -2907 ((-625 |#4|) (-625 |#4|) (-625 |#4|)))) |%noBranch|) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (PROGN (-15 -2917 ((-625 |#4|) (-625 |#4|))) (-15 -2929 ((-625 |#4|) (-625 |#4|))) (-15 -2939 ((-625 |#4|) (-625 |#4|) (-625 |#4|)))) |%noBranch|) |%noBranch|)) (-544) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -953)) -((-2939 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2929 (*1 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2917 (*1 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2907 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2897 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2887 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2876 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *7)) (-5 *3 (-112)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *7)))) (-2876 (*1 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2865 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *3)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-2854 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-625 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-953 *5 *6 *7 *8)))) (-2843 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-625 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-773)) (-4 *8 (-827)) (-5 *1 (-953 *6 *7 *8 *9)))) (-2830 (*1 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2817 (*1 *2 *3) (|partial| -12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-470 *4 *5 *6 *7)) (|:| -1549 (-625 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-625 *7)))) (-2805 (*1 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2794 (*1 *2 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *2)))) (-2785 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-625 *7)) (-5 *3 (-112)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *7)))) (-2785 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2774 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-625 *7)) (|:| |badPols| (-625 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-625 *7)))) (-2764 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-2754 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-625 *7)) (|:| |badPols| (-625 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-625 *7)))) (-2745 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-2736 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-625 *7)) (|:| |badPols| (-625 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-625 *7)))) (-2726 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-2717 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-625 *7)) (|:| |badPols| (-625 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-625 *7)))) (-2707 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-1 (-112) *8))) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-2 (|:| |goodPols| (-625 *8)) (|:| |badPols| (-625 *8)))) (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-625 *8)))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-1 (-112) *8))) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-2 (|:| |goodPols| (-625 *8)) (|:| |badPols| (-625 *8)))) (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-625 *8)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-2 (|:| |goodPols| (-625 *8)) (|:| |badPols| (-625 *8)))) (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-625 *8)))) (-2676 (*1 *2 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *7)))) (-2666 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-625 *8))) (-5 *3 (-625 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *5 *6 *7 *8)))) (-2654 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *7)))) (-2646 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-625 *7) (-625 *7))) (-5 *2 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *7)))) (-2646 (*1 *2 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2646 (*1 *2 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *3)))) (-2636 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *3)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-2625 (*1 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-2646 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *3)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-2646 (*1 *2 *2) (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6))))) -(-10 -7 (-15 -2646 ((-625 |#4|) (-625 |#4|))) (-15 -2646 ((-625 |#4|) |#4| |#4|)) (-15 -2625 ((-625 |#4|) (-625 |#4|))) (-15 -2636 ((-625 |#4|) |#4| |#4|)) (-15 -2646 ((-625 |#4|) (-625 |#4|) |#4|)) (-15 -2646 ((-625 |#4|) (-625 |#4|) (-625 |#4|))) (-15 -2646 ((-625 |#4|) (-625 |#4|) (-625 |#4|) (-1 (-625 |#4|) (-625 |#4|)))) (-15 -2654 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -2666 ((-112) (-625 |#4|) (-625 (-625 |#4|)))) (-15 -2676 ((-112) (-625 |#4|))) (-15 -2688 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-1 (-112) |#4|) (-625 |#4|))) (-15 -2698 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 (-1 (-112) |#4|)) (-625 |#4|))) (-15 -2707 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 (-1 (-112) |#4|)) (-625 |#4|))) (-15 -2717 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|))) (-15 -2726 ((-112) |#4|)) (-15 -2736 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|))) (-15 -2745 ((-112) |#4|)) (-15 -2754 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|))) (-15 -2764 ((-112) |#4|)) (-15 -2774 ((-2 (|:| |goodPols| (-625 |#4|)) (|:| |badPols| (-625 |#4|))) (-625 |#4|))) (-15 -2785 ((-625 |#4|) (-625 |#4|) (-625 |#4|))) (-15 -2785 ((-625 |#4|) (-625 |#4|) (-625 |#4|) (-112))) (-15 -2794 (|#4| |#4| (-625 |#4|))) (-15 -2805 ((-625 |#4|) (-625 |#4|))) (-15 -2817 ((-3 (-2 (|:| |bas| (-470 |#1| |#2| |#3| |#4|)) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|))) (-15 -2830 ((-625 |#4|) (-625 |#4|))) (-15 -2843 ((-625 |#4|) (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2854 ((-625 |#4|) (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-446)) (PROGN (-15 -2865 ((-625 |#4|) |#4|)) (-15 -2876 ((-625 |#4|) (-625 |#4|))) (-15 -2876 ((-625 |#4|) (-625 |#4|) (-112))) (-15 -2887 ((-625 |#4|) (-625 |#4|) (-625 |#4|))) (-15 -2897 ((-625 |#4|) (-625 |#4|) (-625 |#4|))) (-15 -2907 ((-625 |#4|) (-625 |#4|) (-625 |#4|)))) |%noBranch|) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (PROGN (-15 -2917 ((-625 |#4|) (-625 |#4|))) (-15 -2929 ((-625 |#4|) (-625 |#4|))) (-15 -2939 ((-625 |#4|) (-625 |#4|) (-625 |#4|)))) |%noBranch|) |%noBranch|)) -((-2949 (((-2 (|:| R (-669 |#1|)) (|:| A (-669 |#1|)) (|:| |Ainv| (-669 |#1|))) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 19)) (-2974 (((-625 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1232 |#1|)))) (-669 |#1|) (-1232 |#1|)) 36)) (-2963 (((-669 |#1|) (-669 |#1|) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 16))) -(((-954 |#1|) (-10 -7 (-15 -2949 ((-2 (|:| R (-669 |#1|)) (|:| A (-669 |#1|)) (|:| |Ainv| (-669 |#1|))) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2963 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2974 ((-625 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1232 |#1|)))) (-669 |#1|) (-1232 |#1|)))) (-358)) (T -954)) -((-2974 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-5 *2 (-625 (-2 (|:| C (-669 *5)) (|:| |g| (-1232 *5))))) (-5 *1 (-954 *5)) (-5 *3 (-669 *5)) (-5 *4 (-1232 *5)))) (-2963 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-669 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) (-5 *1 (-954 *5)))) (-2949 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-358)) (-5 *2 (-2 (|:| R (-669 *6)) (|:| A (-669 *6)) (|:| |Ainv| (-669 *6)))) (-5 *1 (-954 *6)) (-5 *3 (-669 *6))))) -(-10 -7 (-15 -2949 ((-2 (|:| R (-669 |#1|)) (|:| A (-669 |#1|)) (|:| |Ainv| (-669 |#1|))) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2963 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2974 ((-625 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1232 |#1|)))) (-669 |#1|) (-1232 |#1|)))) -((-1330 (((-413 |#4|) |#4|) 48))) -(((-955 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1330 ((-413 |#4|) |#4|))) (-827) (-773) (-446) (-925 |#3| |#2| |#1|)) (T -955)) -((-1330 (*1 *2 *3) (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-446)) (-5 *2 (-413 *3)) (-5 *1 (-955 *4 *5 *6 *3)) (-4 *3 (-925 *6 *5 *4))))) -(-10 -7 (-15 -1330 ((-413 |#4|) |#4|))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-2983 (($ (-751)) 112 (|has| |#1| (-23)))) (-2509 (((-1237) $ (-552) (-552)) 40 (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| |#1| (-827)) (|has| $ (-6 -4354))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) 8)) (-1851 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) 58 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-1883 (($ $) 90 (|has| $ (-6 -4354)))) (-2306 (($ $) 100)) (-2959 (($ $) 78 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#1| $) 77 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 51)) (-2483 (((-552) (-1 (-112) |#1|) $) 97) (((-552) |#1| $) 96 (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) 95 (|has| |#1| (-1073)))) (-3582 (($ (-625 |#1|)) 118)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3191 (((-669 |#1|) $ $) 105 (|has| |#1| (-1025)))) (-2183 (($ (-751) |#1|) 69)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 43 (|has| (-552) (-827)))) (-3658 (($ $ $) 87 (|has| |#1| (-827)))) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 44 (|has| (-552) (-827)))) (-3332 (($ $ $) 86 (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2638 ((|#1| $) 102 (-12 (|has| |#1| (-1025)) (|has| |#1| (-978))))) (-2878 (((-112) $ (-751)) 10)) (-3456 ((|#1| $) 103 (-12 (|has| |#1| (-1025)) (|has| |#1| (-978))))) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-2554 (((-625 (-552)) $) 46)) (-2564 (((-112) (-552) $) 47)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2924 ((|#1| $) 42 (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2518 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-2147 (($ $ (-625 |#1|)) 115)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1199 (-552))) 63)) (-1443 ((|#1| $ $) 106 (|has| |#1| (-1025)))) (-3904 (((-897) $) 117)) (-4001 (($ $ (-552)) 62) (($ $ (-1199 (-552))) 61)) (-1431 (($ $ $) 104)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3228 (($ $ $ (-552)) 91 (|has| $ (-6 -4354)))) (-1871 (($ $) 13)) (-2042 (((-528) $) 79 (|has| |#1| (-598 (-528)))) (($ (-625 |#1|)) 116)) (-1695 (($ (-625 |#1|)) 70)) (-3402 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-625 $)) 65)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) 84 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 83 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-2334 (((-112) $ $) 85 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 82 (|has| |#1| (-827)))) (-2393 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2382 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-552) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-707))) (($ $ |#1|) 107 (|has| |#1| (-707)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-956 |#1|) (-138) (-1025)) (T -956)) -((-3582 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1025)) (-4 *1 (-956 *3)))) (-3904 (*1 *2 *1) (-12 (-4 *1 (-956 *3)) (-4 *3 (-1025)) (-5 *2 (-897)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1025)) (-4 *1 (-956 *3)))) (-1431 (*1 *1 *1 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-1025)))) (-2147 (*1 *1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *1 (-956 *3)) (-4 *3 (-1025))))) -(-13 (-1230 |t#1|) (-10 -8 (-15 -3582 ($ (-625 |t#1|))) (-15 -3904 ((-897) $)) (-15 -2042 ($ (-625 |t#1|))) (-15 -1431 ($ $ $)) (-15 -2147 ($ $ (-625 |t#1|))))) -(((-34) . T) ((-101) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827))) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-281 #0=(-552) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-368 |#1|) . T) ((-483 |#1|) . T) ((-588 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-631 |#1|) . T) ((-19 |#1|) . T) ((-827) |has| |#1| (-827)) ((-1073) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827))) ((-1186) . T) ((-1230 |#1|) . T)) -((-1996 (((-919 |#2|) (-1 |#2| |#1|) (-919 |#1|)) 17))) -(((-957 |#1| |#2|) (-10 -7 (-15 -1996 ((-919 |#2|) (-1 |#2| |#1|) (-919 |#1|)))) (-1025) (-1025)) (T -957)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-919 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-5 *2 (-919 *6)) (-5 *1 (-957 *5 *6))))) -(-10 -7 (-15 -1996 ((-919 |#2|) (-1 |#2| |#1|) (-919 |#1|)))) -((-3009 ((|#1| (-919 |#1|)) 13)) (-2997 ((|#1| (-919 |#1|)) 12)) (-2985 ((|#1| (-919 |#1|)) 11)) (-3032 ((|#1| (-919 |#1|)) 15)) (-3074 ((|#1| (-919 |#1|)) 21)) (-3021 ((|#1| (-919 |#1|)) 14)) (-3042 ((|#1| (-919 |#1|)) 16)) (-3064 ((|#1| (-919 |#1|)) 20)) (-3053 ((|#1| (-919 |#1|)) 19))) -(((-958 |#1|) (-10 -7 (-15 -2985 (|#1| (-919 |#1|))) (-15 -2997 (|#1| (-919 |#1|))) (-15 -3009 (|#1| (-919 |#1|))) (-15 -3021 (|#1| (-919 |#1|))) (-15 -3032 (|#1| (-919 |#1|))) (-15 -3042 (|#1| (-919 |#1|))) (-15 -3053 (|#1| (-919 |#1|))) (-15 -3064 (|#1| (-919 |#1|))) (-15 -3074 (|#1| (-919 |#1|)))) (-1025)) (T -958)) -((-3074 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3042 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3032 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3021 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3009 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-2997 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-2985 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025))))) -(-10 -7 (-15 -2985 (|#1| (-919 |#1|))) (-15 -2997 (|#1| (-919 |#1|))) (-15 -3009 (|#1| (-919 |#1|))) (-15 -3021 (|#1| (-919 |#1|))) (-15 -3032 (|#1| (-919 |#1|))) (-15 -3042 (|#1| (-919 |#1|))) (-15 -3053 (|#1| (-919 |#1|))) (-15 -3064 (|#1| (-919 |#1|))) (-15 -3074 (|#1| (-919 |#1|)))) -((-2063 (((-3 |#1| "failed") |#1|) 18)) (-3125 (((-3 |#1| "failed") |#1|) 6)) (-2041 (((-3 |#1| "failed") |#1|) 16)) (-3107 (((-3 |#1| "failed") |#1|) 4)) (-2084 (((-3 |#1| "failed") |#1|) 20)) (-3144 (((-3 |#1| "failed") |#1|) 8)) (-3082 (((-3 |#1| "failed") |#1| (-751)) 1)) (-3097 (((-3 |#1| "failed") |#1|) 3)) (-3090 (((-3 |#1| "failed") |#1|) 2)) (-2095 (((-3 |#1| "failed") |#1|) 21)) (-3156 (((-3 |#1| "failed") |#1|) 9)) (-2074 (((-3 |#1| "failed") |#1|) 19)) (-3133 (((-3 |#1| "failed") |#1|) 7)) (-2050 (((-3 |#1| "failed") |#1|) 17)) (-3115 (((-3 |#1| "failed") |#1|) 5)) (-2124 (((-3 |#1| "failed") |#1|) 24)) (-2006 (((-3 |#1| "failed") |#1|) 12)) (-2106 (((-3 |#1| "failed") |#1|) 22)) (-1985 (((-3 |#1| "failed") |#1|) 10)) (-2145 (((-3 |#1| "failed") |#1|) 26)) (-2022 (((-3 |#1| "failed") |#1|) 14)) (-2160 (((-3 |#1| "failed") |#1|) 27)) (-2031 (((-3 |#1| "failed") |#1|) 15)) (-2136 (((-3 |#1| "failed") |#1|) 25)) (-2013 (((-3 |#1| "failed") |#1|) 13)) (-2115 (((-3 |#1| "failed") |#1|) 23)) (-1995 (((-3 |#1| "failed") |#1|) 11))) -(((-959 |#1|) (-138) (-1171)) (T -959)) -((-2160 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2145 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2136 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2124 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2115 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2106 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2095 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2084 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2074 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2063 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2050 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2041 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2031 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2022 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2013 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-2006 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-1995 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-1985 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3156 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3144 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3133 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3125 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3115 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3107 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3097 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3090 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3082 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-751)) (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(-13 (-10 -7 (-15 -3082 ((-3 |t#1| "failed") |t#1| (-751))) (-15 -3090 ((-3 |t#1| "failed") |t#1|)) (-15 -3097 ((-3 |t#1| "failed") |t#1|)) (-15 -3107 ((-3 |t#1| "failed") |t#1|)) (-15 -3115 ((-3 |t#1| "failed") |t#1|)) (-15 -3125 ((-3 |t#1| "failed") |t#1|)) (-15 -3133 ((-3 |t#1| "failed") |t#1|)) (-15 -3144 ((-3 |t#1| "failed") |t#1|)) (-15 -3156 ((-3 |t#1| "failed") |t#1|)) (-15 -1985 ((-3 |t#1| "failed") |t#1|)) (-15 -1995 ((-3 |t#1| "failed") |t#1|)) (-15 -2006 ((-3 |t#1| "failed") |t#1|)) (-15 -2013 ((-3 |t#1| "failed") |t#1|)) (-15 -2022 ((-3 |t#1| "failed") |t#1|)) (-15 -2031 ((-3 |t#1| "failed") |t#1|)) (-15 -2041 ((-3 |t#1| "failed") |t#1|)) (-15 -2050 ((-3 |t#1| "failed") |t#1|)) (-15 -2063 ((-3 |t#1| "failed") |t#1|)) (-15 -2074 ((-3 |t#1| "failed") |t#1|)) (-15 -2084 ((-3 |t#1| "failed") |t#1|)) (-15 -2095 ((-3 |t#1| "failed") |t#1|)) (-15 -2106 ((-3 |t#1| "failed") |t#1|)) (-15 -2115 ((-3 |t#1| "failed") |t#1|)) (-15 -2124 ((-3 |t#1| "failed") |t#1|)) (-15 -2136 ((-3 |t#1| "failed") |t#1|)) (-15 -2145 ((-3 |t#1| "failed") |t#1|)) (-15 -2160 ((-3 |t#1| "failed") |t#1|)))) -((-2180 ((|#4| |#4| (-625 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-2170 ((|#4| |#4| (-625 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-1996 ((|#4| (-1 |#4| (-928 |#1|)) |#4|) 30))) -(((-960 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2170 (|#4| |#4| |#3|)) (-15 -2170 (|#4| |#4| (-625 |#3|))) (-15 -2180 (|#4| |#4| |#3|)) (-15 -2180 (|#4| |#4| (-625 |#3|))) (-15 -1996 (|#4| (-1 |#4| (-928 |#1|)) |#4|))) (-1025) (-773) (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)) (-15 -2195 ((-3 $ "failed") (-1149))))) (-925 (-928 |#1|) |#2| |#3|)) (T -960)) -((-1996 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-928 *4))) (-4 *4 (-1025)) (-4 *2 (-925 (-928 *4) *5 *6)) (-4 *5 (-773)) (-4 *6 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)) (-15 -2195 ((-3 $ "failed") (-1149)))))) (-5 *1 (-960 *4 *5 *6 *2)))) (-2180 (*1 *2 *2 *3) (-12 (-5 *3 (-625 *6)) (-4 *6 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)) (-15 -2195 ((-3 $ "failed") (-1149)))))) (-4 *4 (-1025)) (-4 *5 (-773)) (-5 *1 (-960 *4 *5 *6 *2)) (-4 *2 (-925 (-928 *4) *5 *6)))) (-2180 (*1 *2 *2 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)) (-15 -2195 ((-3 $ "failed") (-1149)))))) (-5 *1 (-960 *4 *5 *3 *2)) (-4 *2 (-925 (-928 *4) *5 *3)))) (-2170 (*1 *2 *2 *3) (-12 (-5 *3 (-625 *6)) (-4 *6 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)) (-15 -2195 ((-3 $ "failed") (-1149)))))) (-4 *4 (-1025)) (-4 *5 (-773)) (-5 *1 (-960 *4 *5 *6 *2)) (-4 *2 (-925 (-928 *4) *5 *6)))) (-2170 (*1 *2 *2 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)) (-15 -2195 ((-3 $ "failed") (-1149)))))) (-5 *1 (-960 *4 *5 *3 *2)) (-4 *2 (-925 (-928 *4) *5 *3))))) -(-10 -7 (-15 -2170 (|#4| |#4| |#3|)) (-15 -2170 (|#4| |#4| (-625 |#3|))) (-15 -2180 (|#4| |#4| |#3|)) (-15 -2180 (|#4| |#4| (-625 |#3|))) (-15 -1996 (|#4| (-1 |#4| (-928 |#1|)) |#4|))) -((-2192 ((|#2| |#3|) 35)) (-4006 (((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|) 73)) (-3993 (((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) 89))) -(((-961 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3993 ((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))))) (-15 -4006 ((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|)) (-15 -2192 (|#2| |#3|))) (-344) (-1208 |#1|) (-1208 |#2|) (-705 |#2| |#3|)) (T -961)) -((-2192 (*1 *2 *3) (-12 (-4 *3 (-1208 *2)) (-4 *2 (-1208 *4)) (-5 *1 (-961 *4 *2 *3 *5)) (-4 *4 (-344)) (-4 *5 (-705 *2 *3)))) (-4006 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *3 (-1208 *4)) (-4 *5 (-1208 *3)) (-5 *2 (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-5 *1 (-961 *4 *3 *5 *6)) (-4 *6 (-705 *3 *5)))) (-3993 (*1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 *4)) (-5 *2 (-2 (|:| -1270 (-669 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-669 *4)))) (-5 *1 (-961 *3 *4 *5 *6)) (-4 *6 (-705 *4 *5))))) -(-10 -7 (-15 -3993 ((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))))) (-15 -4006 ((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|)) (-15 -2192 (|#2| |#3|))) -((-2256 (((-963 (-402 (-552)) (-841 |#1|) (-236 |#2| (-751)) (-243 |#1| (-402 (-552)))) (-963 (-402 (-552)) (-841 |#1|) (-236 |#2| (-751)) (-243 |#1| (-402 (-552))))) 69))) -(((-962 |#1| |#2|) (-10 -7 (-15 -2256 ((-963 (-402 (-552)) (-841 |#1|) (-236 |#2| (-751)) (-243 |#1| (-402 (-552)))) (-963 (-402 (-552)) (-841 |#1|) (-236 |#2| (-751)) (-243 |#1| (-402 (-552))))))) (-625 (-1149)) (-751)) (T -962)) -((-2256 (*1 *2 *2) (-12 (-5 *2 (-963 (-402 (-552)) (-841 *3) (-236 *4 (-751)) (-243 *3 (-402 (-552))))) (-14 *3 (-625 (-1149))) (-14 *4 (-751)) (-5 *1 (-962 *3 *4))))) -(-10 -7 (-15 -2256 ((-963 (-402 (-552)) (-841 |#1|) (-236 |#2| (-751)) (-243 |#1| (-402 (-552)))) (-963 (-402 (-552)) (-841 |#1|) (-236 |#2| (-751)) (-243 |#1| (-402 (-552))))))) -((-1671 (((-112) $ $) NIL)) (-2229 (((-3 (-112) "failed") $) 69)) (-1933 (($ $) 36 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-2236 (($ $ (-3 (-112) "failed")) 70)) (-2247 (($ (-625 |#4|) |#4|) 25)) (-2883 (((-1131) $) NIL)) (-2203 (($ $) 67)) (-2831 (((-1093) $) NIL)) (-1916 (((-112) $) 68)) (-3600 (($) 30)) (-2214 ((|#4| $) 72)) (-2224 (((-625 |#4|) $) 71)) (-1683 (((-839) $) 66)) (-2281 (((-112) $ $) NIL))) -(((-963 |#1| |#2| |#3| |#4|) (-13 (-1073) (-597 (-839)) (-10 -8 (-15 -3600 ($)) (-15 -2247 ($ (-625 |#4|) |#4|)) (-15 -2229 ((-3 (-112) "failed") $)) (-15 -2236 ($ $ (-3 (-112) "failed"))) (-15 -1916 ((-112) $)) (-15 -2224 ((-625 |#4|) $)) (-15 -2214 (|#4| $)) (-15 -2203 ($ $)) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (-15 -1933 ($ $)) |%noBranch|) |%noBranch|))) (-446) (-827) (-773) (-925 |#1| |#3| |#2|)) (T -963)) -((-3600 (*1 *1) (-12 (-4 *2 (-446)) (-4 *3 (-827)) (-4 *4 (-773)) (-5 *1 (-963 *2 *3 *4 *5)) (-4 *5 (-925 *2 *4 *3)))) (-2247 (*1 *1 *2 *3) (-12 (-5 *2 (-625 *3)) (-4 *3 (-925 *4 *6 *5)) (-4 *4 (-446)) (-4 *5 (-827)) (-4 *6 (-773)) (-5 *1 (-963 *4 *5 *6 *3)))) (-2229 (*1 *2 *1) (|partial| -12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-112)) (-5 *1 (-963 *3 *4 *5 *6)) (-4 *6 (-925 *3 *5 *4)))) (-2236 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *1 (-963 *3 *4 *5 *6)) (-4 *6 (-925 *3 *5 *4)))) (-1916 (*1 *2 *1) (-12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-112)) (-5 *1 (-963 *3 *4 *5 *6)) (-4 *6 (-925 *3 *5 *4)))) (-2224 (*1 *2 *1) (-12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-625 *6)) (-5 *1 (-963 *3 *4 *5 *6)) (-4 *6 (-925 *3 *5 *4)))) (-2214 (*1 *2 *1) (-12 (-4 *2 (-925 *3 *5 *4)) (-5 *1 (-963 *3 *4 *5 *2)) (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)))) (-2203 (*1 *1 *1) (-12 (-4 *2 (-446)) (-4 *3 (-827)) (-4 *4 (-773)) (-5 *1 (-963 *2 *3 *4 *5)) (-4 *5 (-925 *2 *4 *3)))) (-1933 (*1 *1 *1) (-12 (-4 *2 (-145)) (-4 *2 (-302)) (-4 *2 (-446)) (-4 *3 (-827)) (-4 *4 (-773)) (-5 *1 (-963 *2 *3 *4 *5)) (-4 *5 (-925 *2 *4 *3))))) -(-13 (-1073) (-597 (-839)) (-10 -8 (-15 -3600 ($)) (-15 -2247 ($ (-625 |#4|) |#4|)) (-15 -2229 ((-3 (-112) "failed") $)) (-15 -2236 ($ $ (-3 (-112) "failed"))) (-15 -1916 ((-112) $)) (-15 -2224 ((-625 |#4|) $)) (-15 -2214 (|#4| $)) (-15 -2203 ($ $)) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (-15 -1933 ($ $)) |%noBranch|) |%noBranch|))) -((-3070 (((-112) |#5| |#5|) 38)) (-3095 (((-112) |#5| |#5|) 52)) (-3140 (((-112) |#5| (-625 |#5|)) 74) (((-112) |#5| |#5|) 61)) (-3104 (((-112) (-625 |#4|) (-625 |#4|)) 58)) (-3161 (((-112) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) 63)) (-3060 (((-1237)) 33)) (-3049 (((-1237) (-1131) (-1131) (-1131)) 29)) (-3151 (((-625 |#5|) (-625 |#5|)) 81)) (-3168 (((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)))) 79)) (-3176 (((-625 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|)))) (-625 |#4|) (-625 |#5|) (-112) (-112)) 101)) (-3087 (((-112) |#5| |#5|) 47)) (-3130 (((-3 (-112) "failed") |#5| |#5|) 71)) (-3112 (((-112) (-625 |#4|) (-625 |#4|)) 57)) (-3121 (((-112) (-625 |#4|) (-625 |#4|)) 59)) (-2719 (((-112) (-625 |#4|) (-625 |#4|)) 60)) (-3185 (((-3 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|))) "failed") (-625 |#4|) |#5| (-625 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-3079 (((-625 |#5|) (-625 |#5|)) 43))) -(((-964 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3049 ((-1237) (-1131) (-1131) (-1131))) (-15 -3060 ((-1237))) (-15 -3070 ((-112) |#5| |#5|)) (-15 -3079 ((-625 |#5|) (-625 |#5|))) (-15 -3087 ((-112) |#5| |#5|)) (-15 -3095 ((-112) |#5| |#5|)) (-15 -3104 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3112 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3121 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -2719 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3130 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3140 ((-112) |#5| |#5|)) (-15 -3140 ((-112) |#5| (-625 |#5|))) (-15 -3151 ((-625 |#5|) (-625 |#5|))) (-15 -3161 ((-112) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)))) (-15 -3168 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) (-15 -3176 ((-625 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|)))) (-625 |#4|) (-625 |#5|) (-112) (-112))) (-15 -3185 ((-3 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|))) "failed") (-625 |#4|) |#5| (-625 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -964)) -((-3185 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| -2772 (-625 *9)) (|:| -3715 *4) (|:| |ineq| (-625 *9)))) (-5 *1 (-964 *6 *7 *8 *9 *4)) (-5 *3 (-625 *9)) (-4 *4 (-1045 *6 *7 *8 *9)))) (-3176 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-625 *10)) (-5 *5 (-112)) (-4 *10 (-1045 *6 *7 *8 *9)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8)) (-5 *2 (-625 (-2 (|:| -2772 (-625 *9)) (|:| -3715 *10) (|:| |ineq| (-625 *9))))) (-5 *1 (-964 *6 *7 *8 *9 *10)) (-5 *3 (-625 *9)))) (-3168 (*1 *2 *2) (-12 (-5 *2 (-625 (-2 (|:| |val| (-625 *6)) (|:| -3715 *7)))) (-4 *6 (-1039 *3 *4 *5)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-964 *3 *4 *5 *6 *7)))) (-3161 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-625 *7)) (|:| -3715 *8))) (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)))) (-3151 (*1 *2 *2) (-12 (-5 *2 (-625 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-964 *3 *4 *5 *6 *7)))) (-3140 (*1 *2 *3 *4) (-12 (-5 *4 (-625 *3)) (-4 *3 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-964 *5 *6 *7 *8 *3)))) (-3140 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3130 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-2719 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3121 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3112 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3104 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3095 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3087 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3079 (*1 *2 *2) (-12 (-5 *2 (-625 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-964 *3 *4 *5 *6 *7)))) (-3070 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3060 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-964 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-3049 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))) -(-10 -7 (-15 -3049 ((-1237) (-1131) (-1131) (-1131))) (-15 -3060 ((-1237))) (-15 -3070 ((-112) |#5| |#5|)) (-15 -3079 ((-625 |#5|) (-625 |#5|))) (-15 -3087 ((-112) |#5| |#5|)) (-15 -3095 ((-112) |#5| |#5|)) (-15 -3104 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3112 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3121 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -2719 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3130 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3140 ((-112) |#5| |#5|)) (-15 -3140 ((-112) |#5| (-625 |#5|))) (-15 -3151 ((-625 |#5|) (-625 |#5|))) (-15 -3161 ((-112) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)))) (-15 -3168 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) (-15 -3176 ((-625 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|)))) (-625 |#4|) (-625 |#5|) (-112) (-112))) (-15 -3185 ((-3 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|))) "failed") (-625 |#4|) |#5| (-625 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-2195 (((-1149) $) 15)) (-3800 (((-1131) $) 16)) (-2438 (($ (-1149) (-1131)) 14)) (-1683 (((-839) $) 13))) -(((-965) (-13 (-597 (-839)) (-10 -8 (-15 -2438 ($ (-1149) (-1131))) (-15 -2195 ((-1149) $)) (-15 -3800 ((-1131) $))))) (T -965)) -((-2438 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1131)) (-5 *1 (-965)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-965)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-965))))) -(-13 (-597 (-839)) (-10 -8 (-15 -2438 ($ (-1149) (-1131))) (-15 -2195 ((-1149) $)) (-15 -3800 ((-1131) $)))) -((-1996 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-966 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1996 (|#4| (-1 |#2| |#1|) |#3|))) (-544) (-544) (-968 |#1|) (-968 |#2|)) (T -966)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-544)) (-4 *6 (-544)) (-4 *2 (-968 *6)) (-5 *1 (-966 *5 *6 *4 *2)) (-4 *4 (-968 *5))))) -(-10 -7 (-15 -1996 (|#4| (-1 |#2| |#1|) |#3|))) -((-1893 (((-3 |#2| "failed") $) NIL) (((-3 (-1149) "failed") $) 65) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) 95)) (-1895 ((|#2| $) NIL) (((-1149) $) 60) (((-402 (-552)) $) NIL) (((-552) $) 92)) (-1794 (((-669 (-552)) (-669 $)) NIL) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) 112) (((-669 |#2|) (-669 $)) 28)) (-3702 (($) 98)) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 75) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 84)) (-2276 (($ $) 10)) (-4034 (((-3 $ "failed") $) 20)) (-1996 (($ (-1 |#2| |#2|) $) 22)) (-2071 (($) 16)) (-4166 (($ $) 54)) (-3072 (($ $) NIL) (($ $ (-751)) NIL) (($ $ (-1149)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2265 (($ $) 12)) (-2042 (((-868 (-552)) $) 70) (((-868 (-374)) $) 79) (((-528) $) 40) (((-374) $) 44) (((-221) $) 47)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) 90) (($ |#2|) NIL) (($ (-1149)) 57)) (-4141 (((-751)) 31)) (-2307 (((-112) $ $) 50))) -(((-967 |#1| |#2|) (-10 -8 (-15 -2307 ((-112) |#1| |#1|)) (-15 -2071 (|#1|)) (-15 -4034 ((-3 |#1| "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -2042 ((-221) |#1|)) (-15 -2042 ((-374) |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -1895 ((-1149) |#1|)) (-15 -1893 ((-3 (-1149) "failed") |#1|)) (-15 -1683 (|#1| (-1149))) (-15 -3702 (|#1|)) (-15 -4166 (|#1| |#1|)) (-15 -2265 (|#1| |#1|)) (-15 -2276 (|#1| |#1|)) (-15 -3841 ((-865 (-374) |#1|) |#1| (-868 (-374)) (-865 (-374) |#1|))) (-15 -3841 ((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|))) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -1794 ((-669 |#2|) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| |#1|)) (-15 -1683 (|#1| (-552))) (-15 -4141 ((-751))) (-15 -1683 ((-839) |#1|))) (-968 |#2|) (-544)) (T -967)) -((-4141 (*1 *2) (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-967 *3 *4)) (-4 *3 (-968 *4))))) -(-10 -8 (-15 -2307 ((-112) |#1| |#1|)) (-15 -2071 (|#1|)) (-15 -4034 ((-3 |#1| "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -2042 ((-221) |#1|)) (-15 -2042 ((-374) |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -1895 ((-1149) |#1|)) (-15 -1893 ((-3 (-1149) "failed") |#1|)) (-15 -1683 (|#1| (-1149))) (-15 -3702 (|#1|)) (-15 -4166 (|#1| |#1|)) (-15 -2265 (|#1| |#1|)) (-15 -2276 (|#1| |#1|)) (-15 -3841 ((-865 (-374) |#1|) |#1| (-868 (-374)) (-865 (-374) |#1|))) (-15 -3841 ((-865 (-552) |#1|) |#1| (-868 (-552)) (-865 (-552) |#1|))) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -1794 ((-669 |#2|) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| |#1|)) (-15 -1683 (|#1| (-552))) (-15 -4141 ((-751))) (-15 -1683 ((-839) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-4177 ((|#1| $) 136 (|has| |#1| (-302)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-4296 (((-413 (-1145 $)) (-1145 $)) 127 (|has| |#1| (-885)))) (-2194 (($ $) 70)) (-1330 (((-413 $) $) 69)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 130 (|has| |#1| (-885)))) (-2408 (((-112) $ $) 57)) (-4127 (((-552) $) 117 (|has| |#1| (-800)))) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#1| "failed") $) 175) (((-3 (-1149) "failed") $) 125 (|has| |#1| (-1014 (-1149)))) (((-3 (-402 (-552)) "failed") $) 109 (|has| |#1| (-1014 (-552)))) (((-3 (-552) "failed") $) 107 (|has| |#1| (-1014 (-552))))) (-1895 ((|#1| $) 174) (((-1149) $) 124 (|has| |#1| (-1014 (-1149)))) (((-402 (-552)) $) 108 (|has| |#1| (-1014 (-552)))) (((-552) $) 106 (|has| |#1| (-1014 (-552))))) (-2851 (($ $ $) 53)) (-1794 (((-669 (-552)) (-669 $)) 149 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 148 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 147) (((-669 |#1|) (-669 $)) 146)) (-4174 (((-3 $ "failed") $) 32)) (-3702 (($) 134 (|has| |#1| (-537)))) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-2951 (((-112) $) 68)) (-3620 (((-112) $) 119 (|has| |#1| (-800)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 143 (|has| |#1| (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 142 (|has| |#1| (-862 (-374))))) (-3650 (((-112) $) 30)) (-2276 (($ $) 138)) (-1356 ((|#1| $) 140)) (-4034 (((-3 $ "failed") $) 105 (|has| |#1| (-1124)))) (-3630 (((-112) $) 118 (|has| |#1| (-800)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-3658 (($ $ $) 115 (|has| |#1| (-827)))) (-3332 (($ $ $) 114 (|has| |#1| (-827)))) (-1996 (($ (-1 |#1| |#1|) $) 166)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 67)) (-2071 (($) 104 (|has| |#1| (-1124)) CONST)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-4166 (($ $) 135 (|has| |#1| (-302)))) (-4189 ((|#1| $) 132 (|has| |#1| (-537)))) (-4275 (((-413 (-1145 $)) (-1145 $)) 129 (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) 128 (|has| |#1| (-885)))) (-3824 (((-413 $) $) 71)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-4073 (($ $ (-625 |#1|) (-625 |#1|)) 172 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) 170 (|has| |#1| (-304 |#1|))) (($ $ (-625 (-289 |#1|))) 169 (|has| |#1| (-304 |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) 168 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) 167 (|has| |#1| (-507 (-1149) |#1|)))) (-2397 (((-751) $) 56)) (-2154 (($ $ |#1|) 173 (|has| |#1| (-281 |#1| |#1|)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-3072 (($ $) 165 (|has| |#1| (-229))) (($ $ (-751)) 163 (|has| |#1| (-229))) (($ $ (-1149)) 161 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 160 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 159 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) 158 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-2265 (($ $) 137)) (-1368 ((|#1| $) 139)) (-2042 (((-868 (-552)) $) 145 (|has| |#1| (-598 (-868 (-552))))) (((-868 (-374)) $) 144 (|has| |#1| (-598 (-868 (-374))))) (((-528) $) 122 (|has| |#1| (-598 (-528)))) (((-374) $) 121 (|has| |#1| (-998))) (((-221) $) 120 (|has| |#1| (-998)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 131 (-3743 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-402 (-552))) 63) (($ |#1|) 178) (($ (-1149)) 126 (|has| |#1| (-1014 (-1149))))) (-4243 (((-3 $ "failed") $) 123 (-1523 (|has| |#1| (-143)) (-3743 (|has| $ (-143)) (|has| |#1| (-885)))))) (-4141 (((-751)) 28)) (-4199 ((|#1| $) 133 (|has| |#1| (-537)))) (-3518 (((-112) $ $) 37)) (-1727 (($ $) 116 (|has| |#1| (-800)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $) 164 (|has| |#1| (-229))) (($ $ (-751)) 162 (|has| |#1| (-229))) (($ $ (-1149)) 157 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 156 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 155 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) 154 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2346 (((-112) $ $) 112 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 111 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 113 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 110 (|has| |#1| (-827)))) (-2404 (($ $ $) 62) (($ |#1| |#1|) 141)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 66)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 65) (($ (-402 (-552)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176))) -(((-968 |#1|) (-138) (-544)) (T -968)) -((-2404 (*1 *1 *2 *2) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)))) (-1356 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)))) (-1368 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)))) (-2276 (*1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)))) (-2265 (*1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)))) (-4177 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)) (-4 *2 (-302)))) (-4166 (*1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)) (-4 *2 (-302)))) (-3702 (*1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-537)) (-4 *2 (-544)))) (-4199 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)) (-4 *2 (-537)))) (-4189 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)) (-4 *2 (-537))))) -(-13 (-358) (-38 |t#1|) (-1014 |t#1|) (-333 |t#1|) (-227 |t#1|) (-372 |t#1|) (-860 |t#1|) (-395 |t#1|) (-10 -8 (-15 -2404 ($ |t#1| |t#1|)) (-15 -1356 (|t#1| $)) (-15 -1368 (|t#1| $)) (-15 -2276 ($ $)) (-15 -2265 ($ $)) (IF (|has| |t#1| (-1124)) (-6 (-1124)) |%noBranch|) (IF (|has| |t#1| (-1014 (-552))) (PROGN (-6 (-1014 (-552))) (-6 (-1014 (-402 (-552))))) |%noBranch|) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-800)) (-6 (-800)) |%noBranch|) (IF (|has| |t#1| (-998)) (-6 (-998)) |%noBranch|) (IF (|has| |t#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1014 (-1149))) (-6 (-1014 (-1149))) |%noBranch|) (IF (|has| |t#1| (-302)) (PROGN (-15 -4177 (|t#1| $)) (-15 -4166 ($ $))) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -3702 ($)) (-15 -4199 (|t#1| $)) (-15 -4189 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-885)) (-6 (-885)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) . T) ((-598 (-221)) |has| |#1| (-998)) ((-598 (-374)) |has| |#1| (-998)) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-598 (-868 (-374))) |has| |#1| (-598 (-868 (-374)))) ((-598 (-868 (-552))) |has| |#1| (-598 (-868 (-552)))) ((-227 |#1|) . T) ((-229) |has| |#1| (-229)) ((-239) . T) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-285) . T) ((-302) . T) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-358) . T) ((-333 |#1|) . T) ((-372 |#1|) . T) ((-395 |#1|) . T) ((-446) . T) ((-507 (-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-544) . T) ((-628 #0#) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-552)) |has| |#1| (-621 (-552))) ((-621 |#1|) . T) ((-698 #0#) . T) ((-698 |#1|) . T) ((-698 $) . T) ((-707) . T) ((-771) |has| |#1| (-800)) ((-772) |has| |#1| (-800)) ((-774) |has| |#1| (-800)) ((-775) |has| |#1| (-800)) ((-800) |has| |#1| (-800)) ((-825) |has| |#1| (-800)) ((-827) -1523 (|has| |#1| (-827)) (|has| |#1| (-800))) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-862 (-374)) |has| |#1| (-862 (-374))) ((-862 (-552)) |has| |#1| (-862 (-552))) ((-860 |#1|) . T) ((-885) |has| |#1| (-885)) ((-896) . T) ((-998) |has| |#1| (-998)) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-552))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 (-1149)) |has| |#1| (-1014 (-1149))) ((-1014 |#1|) . T) ((-1031 #0#) . T) ((-1031 |#1|) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1124) |has| |#1| (-1124)) ((-1186) . T) ((-1190) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2287 (($ (-1115 |#1| |#2|)) 11)) (-3907 (((-1115 |#1| |#2|) $) 12)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2154 ((|#2| $ (-236 |#1| |#2|)) 16)) (-1683 (((-839) $) NIL)) (-2089 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL))) -(((-969 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2287 ($ (-1115 |#1| |#2|))) (-15 -3907 ((-1115 |#1| |#2|) $)) (-15 -2154 (|#2| $ (-236 |#1| |#2|))))) (-897) (-358)) (T -969)) -((-2287 (*1 *1 *2) (-12 (-5 *2 (-1115 *3 *4)) (-14 *3 (-897)) (-4 *4 (-358)) (-5 *1 (-969 *3 *4)))) (-3907 (*1 *2 *1) (-12 (-5 *2 (-1115 *3 *4)) (-5 *1 (-969 *3 *4)) (-14 *3 (-897)) (-4 *4 (-358)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 (-236 *4 *2)) (-14 *4 (-897)) (-4 *2 (-358)) (-5 *1 (-969 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -2287 ($ (-1115 |#1| |#2|))) (-15 -3907 ((-1115 |#1| |#2|) $)) (-15 -2154 (|#2| $ (-236 |#1| |#2|))))) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3632 (((-1108) $) 9)) (-1683 (((-839) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL))) -(((-970) (-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $))))) (T -970)) -((-3632 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-970))))) -(-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $)))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) 8)) (-3101 (($) 7 T CONST)) (-2327 (($ $) 46)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-3456 (((-751) $) 45)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2953 ((|#1| $) 39)) (-3966 (($ |#1| $) 40)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2314 ((|#1| $) 44)) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2354 ((|#1| |#1| $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2340 ((|#1| $) 47)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) 42)) (-2299 ((|#1| $) 43)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-971 |#1|) (-138) (-1186)) (T -971)) -((-2354 (*1 *2 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1186)))) (-2340 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1186)))) (-2327 (*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1186)))) (-3456 (*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-1186)) (-5 *2 (-751)))) (-2314 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1186)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1186))))) -(-13 (-106 |t#1|) (-10 -8 (-6 -4353) (-15 -2354 (|t#1| |t#1| $)) (-15 -2340 (|t#1| $)) (-15 -2327 ($ $)) (-15 -3456 ((-751) $)) (-15 -2314 (|t#1| $)) (-15 -2299 (|t#1| $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T)) -((-3641 (((-112) $) 42)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-1895 (((-552) $) NIL) (((-402 (-552)) $) NIL) ((|#2| $) 43)) (-2555 (((-3 (-402 (-552)) "failed") $) 78)) (-2546 (((-112) $) 72)) (-2538 (((-402 (-552)) $) 76)) (-3650 (((-112) $) 41)) (-4209 ((|#2| $) 22)) (-1996 (($ (-1 |#2| |#2|) $) 19)) (-4092 (($ $) 61)) (-3072 (($ $) NIL) (($ $ (-751)) NIL) (($ $ (-1149)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-2042 (((-528) $) 67)) (-2410 (($ $) 17)) (-1683 (((-839) $) 56) (($ (-552)) 38) (($ |#2|) 36) (($ (-402 (-552))) NIL)) (-4141 (((-751)) 10)) (-1727 ((|#2| $) 71)) (-2281 (((-112) $ $) 25)) (-2307 (((-112) $ $) 69)) (-2393 (($ $) 29) (($ $ $) 28)) (-2382 (($ $ $) 26)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL))) -(((-972 |#1| |#2|) (-10 -8 (-15 -1683 (|#1| (-402 (-552)))) (-15 -2307 ((-112) |#1| |#1|)) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 * (|#1| |#1| (-402 (-552)))) (-15 -4092 (|#1| |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -2555 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -2538 ((-402 (-552)) |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -1727 (|#2| |#1|)) (-15 -4209 (|#2| |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -1683 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 -4141 ((-751))) (-15 -3650 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 -3641 ((-112) |#1|)) (-15 * (|#1| (-897) |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|))) (-973 |#2|) (-170)) (T -972)) -((-4141 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-972 *3 *4)) (-4 *3 (-973 *4))))) -(-10 -8 (-15 -1683 (|#1| (-402 (-552)))) (-15 -2307 ((-112) |#1| |#1|)) (-15 * (|#1| (-402 (-552)) |#1|)) (-15 * (|#1| |#1| (-402 (-552)))) (-15 -4092 (|#1| |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -2555 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -2538 ((-402 (-552)) |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -1727 (|#2| |#1|)) (-15 -4209 (|#2| |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -1996 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -1683 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1683 (|#1| (-552))) (-15 -4141 ((-751))) (-15 -3650 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 -3641 ((-112) |#1|)) (-15 * (|#1| (-897) |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-1893 (((-3 (-552) "failed") $) 116 (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) 114 (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) 113)) (-1895 (((-552) $) 117 (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) 115 (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) 112)) (-1794 (((-669 (-552)) (-669 $)) 87 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 86 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 85) (((-669 |#1|) (-669 $)) 84)) (-4174 (((-3 $ "failed") $) 32)) (-3852 ((|#1| $) 77)) (-2555 (((-3 (-402 (-552)) "failed") $) 73 (|has| |#1| (-537)))) (-2546 (((-112) $) 75 (|has| |#1| (-537)))) (-2538 (((-402 (-552)) $) 74 (|has| |#1| (-537)))) (-2366 (($ |#1| |#1| |#1| |#1|) 78)) (-3650 (((-112) $) 30)) (-4209 ((|#1| $) 79)) (-3658 (($ $ $) 66 (|has| |#1| (-827)))) (-3332 (($ $ $) 65 (|has| |#1| (-827)))) (-1996 (($ (-1 |#1| |#1|) $) 88)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 70 (|has| |#1| (-358)))) (-2377 ((|#1| $) 80)) (-2387 ((|#1| $) 81)) (-2399 ((|#1| $) 82)) (-2831 (((-1093) $) 10)) (-4073 (($ $ (-625 |#1|) (-625 |#1|)) 94 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) 92 (|has| |#1| (-304 |#1|))) (($ $ (-625 (-289 |#1|))) 91 (|has| |#1| (-304 |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) 90 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) 89 (|has| |#1| (-507 (-1149) |#1|)))) (-2154 (($ $ |#1|) 95 (|has| |#1| (-281 |#1| |#1|)))) (-3072 (($ $) 111 (|has| |#1| (-229))) (($ $ (-751)) 109 (|has| |#1| (-229))) (($ $ (-1149)) 107 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 106 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 105 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) 104 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-2042 (((-528) $) 71 (|has| |#1| (-598 (-528))))) (-2410 (($ $) 83)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 35) (($ (-402 (-552))) 60 (-1523 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-552))))))) (-4243 (((-3 $ "failed") $) 72 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-1727 ((|#1| $) 76 (|has| |#1| (-1034)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $) 110 (|has| |#1| (-229))) (($ $ (-751)) 108 (|has| |#1| (-229))) (($ $ (-1149)) 103 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 102 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 101 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) 100 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2346 (((-112) $ $) 63 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 62 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 64 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 61 (|has| |#1| (-827)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 69 (|has| |#1| (-358)))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-402 (-552))) 68 (|has| |#1| (-358))) (($ (-402 (-552)) $) 67 (|has| |#1| (-358))))) -(((-973 |#1|) (-138) (-170)) (T -973)) -((-2410 (*1 *1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)))) (-2399 (*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)))) (-2387 (*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)))) (-2377 (*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)))) (-2366 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-973 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112)))) (-2538 (*1 *2 *1) (-12 (-4 *1 (-973 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-552))))) (-2555 (*1 *2 *1) (|partial| -12 (-4 *1 (-973 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-552)))))) -(-13 (-38 |t#1|) (-406 |t#1|) (-227 |t#1|) (-333 |t#1|) (-372 |t#1|) (-10 -8 (-15 -2410 ($ $)) (-15 -2399 (|t#1| $)) (-15 -2387 (|t#1| $)) (-15 -2377 (|t#1| $)) (-15 -4209 (|t#1| $)) (-15 -2366 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3852 (|t#1| $)) (IF (|has| |t#1| (-285)) (-6 (-285)) |%noBranch|) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1034)) (-15 -1727 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -2546 ((-112) $)) (-15 -2538 ((-402 (-552)) $)) (-15 -2555 ((-3 (-402 (-552)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) |has| |#1| (-358)) ((-38 |#1|) . T) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-358)) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-358)) (|has| |#1| (-285))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-227 |#1|) . T) ((-229) |has| |#1| (-229)) ((-239) |has| |#1| (-358)) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-285) -1523 (|has| |#1| (-358)) (|has| |#1| (-285))) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-333 |#1|) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-507 (-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-628 #0#) |has| |#1| (-358)) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-552)) |has| |#1| (-621 (-552))) ((-621 |#1|) . T) ((-698 #0#) |has| |#1| (-358)) ((-698 |#1|) . T) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T) ((-1031 #0#) |has| |#1| (-358)) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-358)) (|has| |#1| (-285))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-1996 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-974 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1996 (|#3| (-1 |#4| |#2|) |#1|))) (-973 |#2|) (-170) (-973 |#4|) (-170)) (T -974)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-973 *6)) (-5 *1 (-974 *4 *5 *2 *6)) (-4 *4 (-973 *5))))) -(-10 -7 (-15 -1996 (|#3| (-1 |#4| |#2|) |#1|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3852 ((|#1| $) 12)) (-2555 (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-537)))) (-2546 (((-112) $) NIL (|has| |#1| (-537)))) (-2538 (((-402 (-552)) $) NIL (|has| |#1| (-537)))) (-2366 (($ |#1| |#1| |#1| |#1|) 16)) (-3650 (((-112) $) NIL)) (-4209 ((|#1| $) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| |#1| (-358)))) (-2377 ((|#1| $) 15)) (-2387 ((|#1| $) 14)) (-2399 ((|#1| $) 13)) (-2831 (((-1093) $) NIL)) (-4073 (($ $ (-625 |#1|) (-625 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-289 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-625 (-289 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-625 (-1149)) (-625 |#1|)) NIL (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-507 (-1149) |#1|)))) (-2154 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-3072 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-2410 (($ $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-552))))))) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-1727 ((|#1| $) NIL (|has| |#1| (-1034)))) (-2089 (($) 8 T CONST)) (-2100 (($) 10 T CONST)) (-3768 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| |#1| (-358)))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-402 (-552))) NIL (|has| |#1| (-358))) (($ (-402 (-552)) $) NIL (|has| |#1| (-358))))) -(((-975 |#1|) (-973 |#1|) (-170)) (T -975)) -NIL -(-973 |#1|) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3495 (((-112) $ (-751)) NIL)) (-3101 (($) NIL T CONST)) (-2327 (($ $) 20)) (-2419 (($ (-625 |#1|)) 29)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-3456 (((-751) $) 22)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2953 ((|#1| $) 24)) (-3966 (($ |#1| $) 15)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2314 ((|#1| $) 23)) (-2966 ((|#1| $) 19)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2354 ((|#1| |#1| $) 14)) (-1916 (((-112) $) 17)) (-3600 (($) NIL)) (-2340 ((|#1| $) 18)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) NIL)) (-2299 ((|#1| $) 26)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-976 |#1|) (-13 (-971 |#1|) (-10 -8 (-15 -2419 ($ (-625 |#1|))))) (-1073)) (T -976)) -((-2419 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-976 *3))))) -(-13 (-971 |#1|) (-10 -8 (-15 -2419 ($ (-625 |#1|))))) -((-3837 (($ $) 12)) (-2429 (($ $ (-552)) 13))) -(((-977 |#1|) (-10 -8 (-15 -3837 (|#1| |#1|)) (-15 -2429 (|#1| |#1| (-552)))) (-978)) (T -977)) -NIL -(-10 -8 (-15 -3837 (|#1| |#1|)) (-15 -2429 (|#1| |#1| (-552)))) -((-3837 (($ $) 6)) (-2429 (($ $ (-552)) 7)) (** (($ $ (-402 (-552))) 8))) -(((-978) (-138)) (T -978)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-402 (-552))))) (-2429 (*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-552)))) (-3837 (*1 *1 *1) (-4 *1 (-978)))) -(-13 (-10 -8 (-15 -3837 ($ $)) (-15 -2429 ($ $ (-552))) (-15 ** ($ $ (-402 (-552)))))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-1706 (((-2 (|:| |num| (-1232 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| (-402 |#2|) (-358)))) (-3528 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-3509 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-2570 (((-669 (-402 |#2|)) (-1232 $)) NIL) (((-669 (-402 |#2|))) NIL)) (-1650 (((-402 |#2|) $) NIL)) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| (-402 |#2|) (-344)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-1330 (((-413 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2408 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-2894 (((-751)) NIL (|has| (-402 |#2|) (-363)))) (-1861 (((-112)) NIL)) (-1852 (((-112) |#1|) 144) (((-112) |#2|) 149)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| (-402 |#2|) (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| (-402 |#2|) (-1014 (-402 (-552))))) (((-3 (-402 |#2|) "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| (-402 |#2|) (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| (-402 |#2|) (-1014 (-402 (-552))))) (((-402 |#2|) $) NIL)) (-2670 (($ (-1232 (-402 |#2|)) (-1232 $)) NIL) (($ (-1232 (-402 |#2|))) 70) (($ (-1232 |#2|) |#2|) NIL)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-402 |#2|) (-344)))) (-2851 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-2559 (((-669 (-402 |#2|)) $ (-1232 $)) NIL) (((-669 (-402 |#2|)) $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| (-402 |#2|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| (-402 |#2|) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-402 |#2|))) (|:| |vec| (-1232 (-402 |#2|)))) (-669 $) (-1232 $)) NIL) (((-669 (-402 |#2|)) (-669 $)) NIL)) (-1760 (((-1232 $) (-1232 $)) NIL)) (-2163 (($ |#3|) 65) (((-3 $ "failed") (-402 |#3|)) NIL (|has| (-402 |#2|) (-358)))) (-4174 (((-3 $ "failed") $) NIL)) (-1615 (((-625 (-625 |#1|))) NIL (|has| |#1| (-363)))) (-3701 (((-112) |#1| |#1|) NIL)) (-3442 (((-897)) NIL)) (-3702 (($) NIL (|has| (-402 |#2|) (-363)))) (-1839 (((-112)) NIL)) (-1826 (((-112) |#1|) 56) (((-112) |#2|) 146)) (-2826 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| (-402 |#2|) (-358)))) (-1294 (($ $) NIL)) (-4279 (($) NIL (|has| (-402 |#2|) (-344)))) (-3872 (((-112) $) NIL (|has| (-402 |#2|) (-344)))) (-3554 (($ $ (-751)) NIL (|has| (-402 |#2|) (-344))) (($ $) NIL (|has| (-402 |#2|) (-344)))) (-2951 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-2172 (((-897) $) NIL (|has| (-402 |#2|) (-344))) (((-813 (-897)) $) NIL (|has| (-402 |#2|) (-344)))) (-3650 (((-112) $) NIL)) (-1682 (((-751)) NIL)) (-1770 (((-1232 $) (-1232 $)) NIL)) (-4209 (((-402 |#2|) $) NIL)) (-1626 (((-625 (-928 |#1|)) (-1149)) NIL (|has| |#1| (-358)))) (-4034 (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-344)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| (-402 |#2|) (-358)))) (-1291 ((|#3| $) NIL (|has| (-402 |#2|) (-358)))) (-4318 (((-897) $) NIL (|has| (-402 |#2|) (-363)))) (-2148 ((|#3| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-2883 (((-1131) $) NIL)) (-1718 (((-669 (-402 |#2|))) 52)) (-1740 (((-669 (-402 |#2|))) 51)) (-4092 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-1684 (($ (-1232 |#2|) |#2|) 71)) (-1729 (((-669 (-402 |#2|))) 50)) (-1750 (((-669 (-402 |#2|))) 49)) (-1672 (((-2 (|:| |num| (-669 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1696 (((-2 (|:| |num| (-1232 |#2|)) (|:| |den| |#2|)) $) 77)) (-1816 (((-1232 $)) 46)) (-3993 (((-1232 $)) 45)) (-1805 (((-112) $) NIL)) (-1793 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2071 (($) NIL (|has| (-402 |#2|) (-344)) CONST)) (-3123 (($ (-897)) NIL (|has| (-402 |#2|) (-363)))) (-1649 (((-3 |#2| "failed")) 63)) (-2831 (((-1093) $) NIL)) (-3722 (((-751)) NIL)) (-3212 (($) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| (-402 |#2|) (-358)))) (-2633 (($ (-625 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| (-402 |#2|) (-344)))) (-3824 (((-413 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-402 |#2|) (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-2802 (((-3 $ "failed") $ $) NIL (|has| (-402 |#2|) (-358)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2397 (((-751) $) NIL (|has| (-402 |#2|) (-358)))) (-2154 ((|#1| $ |#1| |#1|) NIL)) (-1661 (((-3 |#2| "failed")) 62)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-3217 (((-402 |#2|) (-1232 $)) NIL) (((-402 |#2|)) 42)) (-3563 (((-751) $) NIL (|has| (-402 |#2|) (-344))) (((-3 (-751) "failed") $ $) NIL (|has| (-402 |#2|) (-344)))) (-3072 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-751)) NIL (-1523 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) NIL (-1523 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-3640 (((-669 (-402 |#2|)) (-1232 $) (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358)))) (-3610 ((|#3|) 53)) (-3798 (($) NIL (|has| (-402 |#2|) (-344)))) (-2780 (((-1232 (-402 |#2|)) $ (-1232 $)) NIL) (((-669 (-402 |#2|)) (-1232 $) (-1232 $)) NIL) (((-1232 (-402 |#2|)) $) 72) (((-669 (-402 |#2|)) (-1232 $)) NIL)) (-2042 (((-1232 (-402 |#2|)) $) NIL) (($ (-1232 (-402 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| (-402 |#2|) (-344)))) (-1781 (((-1232 $) (-1232 $)) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ (-402 |#2|)) NIL) (($ (-402 (-552))) NIL (-1523 (|has| (-402 |#2|) (-1014 (-402 (-552)))) (|has| (-402 |#2|) (-358)))) (($ $) NIL (|has| (-402 |#2|) (-358)))) (-4243 (($ $) NIL (|has| (-402 |#2|) (-344))) (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-143)))) (-3974 ((|#3| $) NIL)) (-4141 (((-751)) NIL)) (-1882 (((-112)) 60)) (-1872 (((-112) |#1|) 150) (((-112) |#2|) 151)) (-1270 (((-1232 $)) 121)) (-3518 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-1639 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3711 (((-112)) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-751)) NIL (-1523 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344)))) (($ $) NIL (-1523 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-344))))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| (-402 |#2|) (-358)))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 |#2|)) NIL) (($ (-402 |#2|) $) NIL) (($ (-402 (-552)) $) NIL (|has| (-402 |#2|) (-358))) (($ $ (-402 (-552))) NIL (|has| (-402 |#2|) (-358))))) -(((-979 |#1| |#2| |#3| |#4| |#5|) (-337 |#1| |#2| |#3|) (-1190) (-1208 |#1|) (-1208 (-402 |#2|)) (-402 |#2|) (-751)) (T -979)) -NIL -(-337 |#1| |#2| |#3|) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2491 (((-625 (-552)) $) 54)) (-2449 (($ (-625 (-552))) 62)) (-4177 (((-552) $) 40 (|has| (-552) (-302)))) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL (|has| (-552) (-800)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) 49) (((-3 (-1149) "failed") $) NIL (|has| (-552) (-1014 (-1149)))) (((-3 (-402 (-552)) "failed") $) 47 (|has| (-552) (-1014 (-552)))) (((-3 (-552) "failed") $) 49 (|has| (-552) (-1014 (-552))))) (-1895 (((-552) $) NIL) (((-1149) $) NIL (|has| (-552) (-1014 (-1149)))) (((-402 (-552)) $) NIL (|has| (-552) (-1014 (-552)))) (((-552) $) NIL (|has| (-552) (-1014 (-552))))) (-2851 (($ $ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| (-552) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| (-552) (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-669 (-552)) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-3702 (($) NIL (|has| (-552) (-537)))) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-2470 (((-625 (-552)) $) 60)) (-3620 (((-112) $) NIL (|has| (-552) (-800)))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (|has| (-552) (-862 (-552)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (|has| (-552) (-862 (-374))))) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL)) (-1356 (((-552) $) 37)) (-4034 (((-3 $ "failed") $) NIL (|has| (-552) (-1124)))) (-3630 (((-112) $) NIL (|has| (-552) (-800)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| (-552) (-827)))) (-1996 (($ (-1 (-552) (-552)) $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL)) (-2071 (($) NIL (|has| (-552) (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-4166 (($ $) NIL (|has| (-552) (-302))) (((-402 (-552)) $) 42)) (-2479 (((-1129 (-552)) $) 59)) (-2439 (($ (-625 (-552)) (-625 (-552))) 63)) (-4189 (((-552) $) 53 (|has| (-552) (-537)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| (-552) (-885)))) (-3824 (((-413 $) $) NIL)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-4073 (($ $ (-625 (-552)) (-625 (-552))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-552) (-552)) NIL (|has| (-552) (-304 (-552)))) (($ $ (-289 (-552))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-625 (-289 (-552)))) NIL (|has| (-552) (-304 (-552)))) (($ $ (-625 (-1149)) (-625 (-552))) NIL (|has| (-552) (-507 (-1149) (-552)))) (($ $ (-1149) (-552)) NIL (|has| (-552) (-507 (-1149) (-552))))) (-2397 (((-751) $) NIL)) (-2154 (($ $ (-552)) NIL (|has| (-552) (-281 (-552) (-552))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $) 11 (|has| (-552) (-229))) (($ $ (-751)) NIL (|has| (-552) (-229))) (($ $ (-1149)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1 (-552) (-552)) (-751)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2265 (($ $) NIL)) (-1368 (((-552) $) 39)) (-2461 (((-625 (-552)) $) 61)) (-2042 (((-868 (-552)) $) NIL (|has| (-552) (-598 (-868 (-552))))) (((-868 (-374)) $) NIL (|has| (-552) (-598 (-868 (-374))))) (((-528) $) NIL (|has| (-552) (-598 (-528)))) (((-374) $) NIL (|has| (-552) (-998))) (((-221) $) NIL (|has| (-552) (-998)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-552) (-885))))) (-1683 (((-839) $) 77) (($ (-552)) 43) (($ $) NIL) (($ (-402 (-552))) 20) (($ (-552)) 43) (($ (-1149)) NIL (|has| (-552) (-1014 (-1149)))) (((-402 (-552)) $) 18)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| (-552) (-885))) (|has| (-552) (-143))))) (-4141 (((-751)) 9)) (-4199 (((-552) $) 51 (|has| (-552) (-537)))) (-3518 (((-112) $ $) NIL)) (-1727 (($ $) NIL (|has| (-552) (-800)))) (-2089 (($) 10 T CONST)) (-2100 (($) 12 T CONST)) (-3768 (($ $) NIL (|has| (-552) (-229))) (($ $ (-751)) NIL (|has| (-552) (-229))) (($ $ (-1149)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| (-552) (-876 (-1149)))) (($ $ (-1 (-552) (-552)) (-751)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2346 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2281 (((-112) $ $) 14)) (-2334 (((-112) $ $) NIL (|has| (-552) (-827)))) (-2307 (((-112) $ $) 33 (|has| (-552) (-827)))) (-2404 (($ $ $) 29) (($ (-552) (-552)) 31)) (-2393 (($ $) 15) (($ $ $) 23)) (-2382 (($ $ $) 21)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 25) (($ $ $) 27) (($ $ (-402 (-552))) NIL) (($ (-402 (-552)) $) NIL) (($ (-552) $) 25) (($ $ (-552)) NIL))) -(((-980 |#1|) (-13 (-968 (-552)) (-10 -8 (-15 -1683 ((-402 (-552)) $)) (-15 -4166 ((-402 (-552)) $)) (-15 -2491 ((-625 (-552)) $)) (-15 -2479 ((-1129 (-552)) $)) (-15 -2470 ((-625 (-552)) $)) (-15 -2461 ((-625 (-552)) $)) (-15 -2449 ($ (-625 (-552)))) (-15 -2439 ($ (-625 (-552)) (-625 (-552)))))) (-552)) (T -980)) -((-1683 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))) (-2491 (*1 *2 *1) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))) (-2479 (*1 *2 *1) (-12 (-5 *2 (-1129 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))) (-2470 (*1 *2 *1) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))) (-2461 (*1 *2 *1) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))) (-2449 (*1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))) (-2439 (*1 *1 *2 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552))))) -(-13 (-968 (-552)) (-10 -8 (-15 -1683 ((-402 (-552)) $)) (-15 -4166 ((-402 (-552)) $)) (-15 -2491 ((-625 (-552)) $)) (-15 -2479 ((-1129 (-552)) $)) (-15 -2470 ((-625 (-552)) $)) (-15 -2461 ((-625 (-552)) $)) (-15 -2449 ($ (-625 (-552)))) (-15 -2439 ($ (-625 (-552)) (-625 (-552)))))) -((-2500 (((-52) (-402 (-552)) (-552)) 9))) -(((-981) (-10 -7 (-15 -2500 ((-52) (-402 (-552)) (-552))))) (T -981)) -((-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-552))) (-5 *4 (-552)) (-5 *2 (-52)) (-5 *1 (-981))))) -(-10 -7 (-15 -2500 ((-52) (-402 (-552)) (-552)))) -((-2894 (((-552)) 13)) (-2528 (((-552)) 16)) (-2519 (((-1237) (-552)) 15)) (-2510 (((-552) (-552)) 17) (((-552)) 12))) -(((-982) (-10 -7 (-15 -2510 ((-552))) (-15 -2894 ((-552))) (-15 -2510 ((-552) (-552))) (-15 -2519 ((-1237) (-552))) (-15 -2528 ((-552))))) (T -982)) -((-2528 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-982)))) (-2519 (*1 *2 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-982)))) (-2510 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-982)))) (-2894 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-982)))) (-2510 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-982))))) -(-10 -7 (-15 -2510 ((-552))) (-15 -2894 ((-552))) (-15 -2510 ((-552) (-552))) (-15 -2519 ((-1237) (-552))) (-15 -2528 ((-552)))) -((-3011 (((-413 |#1|) |#1|) 41)) (-3824 (((-413 |#1|) |#1|) 40))) -(((-983 |#1|) (-10 -7 (-15 -3824 ((-413 |#1|) |#1|)) (-15 -3011 ((-413 |#1|) |#1|))) (-1208 (-402 (-552)))) (T -983)) -((-3011 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-983 *3)) (-4 *3 (-1208 (-402 (-552)))))) (-3824 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-983 *3)) (-4 *3 (-1208 (-402 (-552))))))) -(-10 -7 (-15 -3824 ((-413 |#1|) |#1|)) (-15 -3011 ((-413 |#1|) |#1|))) -((-2555 (((-3 (-402 (-552)) "failed") |#1|) 15)) (-2546 (((-112) |#1|) 14)) (-2538 (((-402 (-552)) |#1|) 10))) -(((-984 |#1|) (-10 -7 (-15 -2538 ((-402 (-552)) |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -2555 ((-3 (-402 (-552)) "failed") |#1|))) (-1014 (-402 (-552)))) (T -984)) -((-2555 (*1 *2 *3) (|partial| -12 (-5 *2 (-402 (-552))) (-5 *1 (-984 *3)) (-4 *3 (-1014 *2)))) (-2546 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-984 *3)) (-4 *3 (-1014 (-402 (-552)))))) (-2538 (*1 *2 *3) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-984 *3)) (-4 *3 (-1014 *2))))) -(-10 -7 (-15 -2538 ((-402 (-552)) |#1|)) (-15 -2546 ((-112) |#1|)) (-15 -2555 ((-3 (-402 (-552)) "failed") |#1|))) -((-1851 ((|#2| $ "value" |#2|) 12)) (-2154 ((|#2| $ "value") 10)) (-1380 (((-112) $ $) 18))) -(((-985 |#1| |#2|) (-10 -8 (-15 -1851 (|#2| |#1| "value" |#2|)) (-15 -1380 ((-112) |#1| |#1|)) (-15 -2154 (|#2| |#1| "value"))) (-986 |#2|) (-1186)) (T -985)) -NIL -(-10 -8 (-15 -1851 (|#2| |#1| "value" |#2|)) (-15 -1380 ((-112) |#1| |#1|)) (-15 -2154 (|#2| |#1| "value"))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3800 ((|#1| $) 48)) (-3495 (((-112) $ (-751)) 8)) (-2565 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 41 (|has| $ (-6 -4354)))) (-3101 (($) 7 T CONST)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) 50)) (-1371 (((-112) $ $) 42 (|has| |#1| (-1073)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-3183 (((-625 |#1|) $) 45)) (-3367 (((-112) $) 49)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ "value") 47)) (-1389 (((-552) $ $) 44)) (-2316 (((-112) $) 46)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) 51)) (-1380 (((-112) $ $) 43 (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-986 |#1|) (-138) (-1186)) (T -986)) -((-3320 (*1 *2 *1) (-12 (-4 *3 (-1186)) (-5 *2 (-625 *1)) (-4 *1 (-986 *3)))) (-1399 (*1 *2 *1) (-12 (-4 *3 (-1186)) (-5 *2 (-625 *1)) (-4 *1 (-986 *3)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-5 *2 (-112)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-1186)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-986 *2)) (-4 *2 (-1186)))) (-2316 (*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-5 *2 (-112)))) (-3183 (*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-5 *2 (-625 *3)))) (-1389 (*1 *2 *1 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-5 *2 (-552)))) (-1380 (*1 *2 *1 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-4 *3 (-1073)) (-5 *2 (-112)))) (-1371 (*1 *2 *1 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-4 *3 (-1073)) (-5 *2 (-112)))) (-1359 (*1 *1 *1 *2) (-12 (-5 *2 (-625 *1)) (|has| *1 (-6 -4354)) (-4 *1 (-986 *3)) (-4 *3 (-1186)))) (-1851 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4354)) (-4 *1 (-986 *2)) (-4 *2 (-1186)))) (-2565 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-986 *2)) (-4 *2 (-1186))))) -(-13 (-483 |t#1|) (-10 -8 (-15 -3320 ((-625 $) $)) (-15 -1399 ((-625 $) $)) (-15 -3367 ((-112) $)) (-15 -3800 (|t#1| $)) (-15 -2154 (|t#1| $ "value")) (-15 -2316 ((-112) $)) (-15 -3183 ((-625 |t#1|) $)) (-15 -1389 ((-552) $ $)) (IF (|has| |t#1| (-1073)) (PROGN (-15 -1380 ((-112) $ $)) (-15 -1371 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4354)) (PROGN (-15 -1359 ($ $ (-625 $))) (-15 -1851 (|t#1| $ "value" |t#1|)) (-15 -2565 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T)) -((-3837 (($ $) 9) (($ $ (-897)) 43) (($ (-402 (-552))) 13) (($ (-552)) 15)) (-3588 (((-3 $ "failed") (-1145 $) (-897) (-839)) 23) (((-3 $ "failed") (-1145 $) (-897)) 28)) (-2429 (($ $ (-552)) 49)) (-4141 (((-751)) 17)) (-3599 (((-625 $) (-1145 $)) NIL) (((-625 $) (-1145 (-402 (-552)))) 54) (((-625 $) (-1145 (-552))) 59) (((-625 $) (-928 $)) 63) (((-625 $) (-928 (-402 (-552)))) 67) (((-625 $) (-928 (-552))) 71)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL) (($ $ (-402 (-552))) 47))) -(((-987 |#1|) (-10 -8 (-15 -3837 (|#1| (-552))) (-15 -3837 (|#1| (-402 (-552)))) (-15 -3837 (|#1| |#1| (-897))) (-15 -3599 ((-625 |#1|) (-928 (-552)))) (-15 -3599 ((-625 |#1|) (-928 (-402 (-552))))) (-15 -3599 ((-625 |#1|) (-928 |#1|))) (-15 -3599 ((-625 |#1|) (-1145 (-552)))) (-15 -3599 ((-625 |#1|) (-1145 (-402 (-552))))) (-15 -3599 ((-625 |#1|) (-1145 |#1|))) (-15 -3588 ((-3 |#1| "failed") (-1145 |#1|) (-897))) (-15 -3588 ((-3 |#1| "failed") (-1145 |#1|) (-897) (-839))) (-15 ** (|#1| |#1| (-402 (-552)))) (-15 -2429 (|#1| |#1| (-552))) (-15 -3837 (|#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -4141 ((-751))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-897)))) (-988)) (T -987)) -((-4141 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-987 *3)) (-4 *3 (-988))))) -(-10 -8 (-15 -3837 (|#1| (-552))) (-15 -3837 (|#1| (-402 (-552)))) (-15 -3837 (|#1| |#1| (-897))) (-15 -3599 ((-625 |#1|) (-928 (-552)))) (-15 -3599 ((-625 |#1|) (-928 (-402 (-552))))) (-15 -3599 ((-625 |#1|) (-928 |#1|))) (-15 -3599 ((-625 |#1|) (-1145 (-552)))) (-15 -3599 ((-625 |#1|) (-1145 (-402 (-552))))) (-15 -3599 ((-625 |#1|) (-1145 |#1|))) (-15 -3588 ((-3 |#1| "failed") (-1145 |#1|) (-897))) (-15 -3588 ((-3 |#1| "failed") (-1145 |#1|) (-897) (-839))) (-15 ** (|#1| |#1| (-402 (-552)))) (-15 -2429 (|#1| |#1| (-552))) (-15 -3837 (|#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -4141 ((-751))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-897)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 87)) (-3528 (($ $) 88)) (-3509 (((-112) $) 90)) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 107)) (-1330 (((-413 $) $) 108)) (-3837 (($ $) 71) (($ $ (-897)) 57) (($ (-402 (-552))) 56) (($ (-552)) 55)) (-2408 (((-112) $ $) 98)) (-4127 (((-552) $) 124)) (-3101 (($) 17 T CONST)) (-3588 (((-3 $ "failed") (-1145 $) (-897) (-839)) 65) (((-3 $ "failed") (-1145 $) (-897)) 64)) (-1893 (((-3 (-552) "failed") $) 83 (|has| (-402 (-552)) (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) 81 (|has| (-402 (-552)) (-1014 (-402 (-552))))) (((-3 (-402 (-552)) "failed") $) 79)) (-1895 (((-552) $) 84 (|has| (-402 (-552)) (-1014 (-552)))) (((-402 (-552)) $) 82 (|has| (-402 (-552)) (-1014 (-402 (-552))))) (((-402 (-552)) $) 78)) (-1419 (($ $ (-839)) 54)) (-1409 (($ $ (-839)) 53)) (-2851 (($ $ $) 102)) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 101)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 96)) (-2951 (((-112) $) 109)) (-3620 (((-112) $) 122)) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 70)) (-3630 (((-112) $) 123)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 105)) (-3658 (($ $ $) 121)) (-3332 (($ $ $) 120)) (-1429 (((-3 (-1145 $) "failed") $) 66)) (-1452 (((-3 (-839) "failed") $) 68)) (-1441 (((-3 (-1145 $) "failed") $) 67)) (-2605 (($ (-625 $)) 94) (($ $ $) 93)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 110)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 95)) (-2633 (($ (-625 $)) 92) (($ $ $) 91)) (-3824 (((-413 $) $) 106)) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 103)) (-2802 (((-3 $ "failed") $ $) 86)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 97)) (-2397 (((-751) $) 99)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 100)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ (-402 (-552))) 114) (($ $) 85) (($ (-402 (-552))) 80) (($ (-552)) 77) (($ (-402 (-552))) 74)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 89)) (-2874 (((-402 (-552)) $ $) 52)) (-3599 (((-625 $) (-1145 $)) 63) (((-625 $) (-1145 (-402 (-552)))) 62) (((-625 $) (-1145 (-552))) 61) (((-625 $) (-928 $)) 60) (((-625 $) (-928 (-402 (-552)))) 59) (((-625 $) (-928 (-552))) 58)) (-1727 (($ $) 125)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2346 (((-112) $ $) 118)) (-2320 (((-112) $ $) 117)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 119)) (-2307 (((-112) $ $) 116)) (-2404 (($ $ $) 115)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 111) (($ $ (-402 (-552))) 69)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ (-402 (-552)) $) 113) (($ $ (-402 (-552))) 112) (($ (-552) $) 76) (($ $ (-552)) 75) (($ (-402 (-552)) $) 73) (($ $ (-402 (-552))) 72))) -(((-988) (-138)) (T -988)) -((-3837 (*1 *1 *1) (-4 *1 (-988))) (-1452 (*1 *2 *1) (|partial| -12 (-4 *1 (-988)) (-5 *2 (-839)))) (-1441 (*1 *2 *1) (|partial| -12 (-5 *2 (-1145 *1)) (-4 *1 (-988)))) (-1429 (*1 *2 *1) (|partial| -12 (-5 *2 (-1145 *1)) (-4 *1 (-988)))) (-3588 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1145 *1)) (-5 *3 (-897)) (-5 *4 (-839)) (-4 *1 (-988)))) (-3588 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1145 *1)) (-5 *3 (-897)) (-4 *1 (-988)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-1145 *1)) (-4 *1 (-988)) (-5 *2 (-625 *1)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-1145 (-402 (-552)))) (-5 *2 (-625 *1)) (-4 *1 (-988)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-1145 (-552))) (-5 *2 (-625 *1)) (-4 *1 (-988)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-928 *1)) (-4 *1 (-988)) (-5 *2 (-625 *1)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-928 (-402 (-552)))) (-5 *2 (-625 *1)) (-4 *1 (-988)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-928 (-552))) (-5 *2 (-625 *1)) (-4 *1 (-988)))) (-3837 (*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-897)))) (-3837 (*1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-4 *1 (-988)))) (-3837 (*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-988)))) (-1419 (*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-839)))) (-1409 (*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-839)))) (-2874 (*1 *2 *1 *1) (-12 (-4 *1 (-988)) (-5 *2 (-402 (-552)))))) -(-13 (-145) (-825) (-170) (-358) (-406 (-402 (-552))) (-38 (-552)) (-38 (-402 (-552))) (-978) (-10 -8 (-15 -1452 ((-3 (-839) "failed") $)) (-15 -1441 ((-3 (-1145 $) "failed") $)) (-15 -1429 ((-3 (-1145 $) "failed") $)) (-15 -3588 ((-3 $ "failed") (-1145 $) (-897) (-839))) (-15 -3588 ((-3 $ "failed") (-1145 $) (-897))) (-15 -3599 ((-625 $) (-1145 $))) (-15 -3599 ((-625 $) (-1145 (-402 (-552))))) (-15 -3599 ((-625 $) (-1145 (-552)))) (-15 -3599 ((-625 $) (-928 $))) (-15 -3599 ((-625 $) (-928 (-402 (-552))))) (-15 -3599 ((-625 $) (-928 (-552)))) (-15 -3837 ($ $ (-897))) (-15 -3837 ($ $)) (-15 -3837 ($ (-402 (-552)))) (-15 -3837 ($ (-552))) (-15 -1419 ($ $ (-839))) (-15 -1409 ($ $ (-839))) (-15 -2874 ((-402 (-552)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 #1=(-552)) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-597 (-839)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-406 (-402 (-552))) . T) ((-446) . T) ((-544) . T) ((-628 #0#) . T) ((-628 #1#) . T) ((-628 $) . T) ((-698 #0#) . T) ((-698 #1#) . T) ((-698 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-775) . T) ((-825) . T) ((-827) . T) ((-896) . T) ((-978) . T) ((-1014 (-402 (-552))) . T) ((-1014 (-552)) |has| (-402 (-552)) (-1014 (-552))) ((-1031 #0#) . T) ((-1031 #1#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) . T)) -((-1463 (((-2 (|:| |ans| |#2|) (|:| -2303 |#2|) (|:| |sol?| (-112))) (-552) |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|)) (-1 (-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) -(((-989 |#1| |#2|) (-10 -7 (-15 -1463 ((-2 (|:| |ans| |#2|) (|:| -2303 |#2|) (|:| |sol?| (-112))) (-552) |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|)) (-1 (-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552))) (-13 (-1171) (-27) (-425 |#1|))) (T -989)) -((-1463 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1149)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-625 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3114 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1171) (-27) (-425 *8))) (-4 *8 (-13 (-446) (-827) (-145) (-1014 *3) (-621 *3))) (-5 *3 (-552)) (-5 *2 (-2 (|:| |ans| *4) (|:| -2303 *4) (|:| |sol?| (-112)))) (-5 *1 (-989 *8 *4))))) -(-10 -7 (-15 -1463 ((-2 (|:| |ans| |#2|) (|:| -2303 |#2|) (|:| |sol?| (-112))) (-552) |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|)) (-1 (-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-1475 (((-3 (-625 |#2|) "failed") (-552) |#2| |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|)) (-1 (-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) -(((-990 |#1| |#2|) (-10 -7 (-15 -1475 ((-3 (-625 |#2|) "failed") (-552) |#2| |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|)) (-1 (-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552))) (-13 (-1171) (-27) (-425 |#1|))) (T -990)) -((-1475 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1149)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-625 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3114 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1171) (-27) (-425 *8))) (-4 *8 (-13 (-446) (-827) (-145) (-1014 *3) (-621 *3))) (-5 *3 (-552)) (-5 *2 (-625 *4)) (-5 *1 (-990 *8 *4))))) -(-10 -7 (-15 -1475 ((-3 (-625 |#2|) "failed") (-552) |#2| |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-625 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-625 |#2|)) (-1 (-3 (-2 (|:| -3114 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-1506 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2772 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-552)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-552) (-1 |#2| |#2|)) 30)) (-1485 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |c| (-402 |#2|)) (|:| -2228 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|)) 58)) (-1495 (((-2 (|:| |ans| (-402 |#2|)) (|:| |nosol| (-112))) (-402 |#2|) (-402 |#2|)) 63))) -(((-991 |#1| |#2|) (-10 -7 (-15 -1485 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |c| (-402 |#2|)) (|:| -2228 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -1495 ((-2 (|:| |ans| (-402 |#2|)) (|:| |nosol| (-112))) (-402 |#2|) (-402 |#2|))) (-15 -1506 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2772 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-552)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-552) (-1 |#2| |#2|)))) (-13 (-358) (-145) (-1014 (-552))) (-1208 |#1|)) (T -991)) -((-1506 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1208 *6)) (-4 *6 (-13 (-358) (-145) (-1014 *4))) (-5 *4 (-552)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -2772 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-991 *6 *3)))) (-1495 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-552)))) (-4 *5 (-1208 *4)) (-5 *2 (-2 (|:| |ans| (-402 *5)) (|:| |nosol| (-112)))) (-5 *1 (-991 *4 *5)) (-5 *3 (-402 *5)))) (-1485 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |c| (-402 *6)) (|:| -2228 *6))) (-5 *1 (-991 *5 *6)) (-5 *3 (-402 *6))))) -(-10 -7 (-15 -1485 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |c| (-402 |#2|)) (|:| -2228 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -1495 ((-2 (|:| |ans| (-402 |#2|)) (|:| |nosol| (-112))) (-402 |#2|) (-402 |#2|))) (-15 -1506 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2772 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-552)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-552) (-1 |#2| |#2|)))) -((-1519 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |h| |#2|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| -2228 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|)) 22)) (-1530 (((-3 (-625 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|)) 33))) -(((-992 |#1| |#2|) (-10 -7 (-15 -1519 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |h| |#2|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| -2228 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -1530 ((-3 (-625 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|)))) (-13 (-358) (-145) (-1014 (-552))) (-1208 |#1|)) (T -992)) -((-1530 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1014 (-552)))) (-4 *5 (-1208 *4)) (-5 *2 (-625 (-402 *5))) (-5 *1 (-992 *4 *5)) (-5 *3 (-402 *5)))) (-1519 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |h| *6) (|:| |c1| (-402 *6)) (|:| |c2| (-402 *6)) (|:| -2228 *6))) (-5 *1 (-992 *5 *6)) (-5 *3 (-402 *6))))) -(-10 -7 (-15 -1519 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |h| |#2|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| -2228 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -1530 ((-3 (-625 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|)))) -((-1541 (((-1 |#1|) (-625 (-2 (|:| -3800 |#1|) (|:| -3469 (-552))))) 37)) (-3888 (((-1 |#1|) (-1075 |#1|)) 45)) (-1552 (((-1 |#1|) (-1232 |#1|) (-1232 (-552)) (-552)) 34))) -(((-993 |#1|) (-10 -7 (-15 -3888 ((-1 |#1|) (-1075 |#1|))) (-15 -1541 ((-1 |#1|) (-625 (-2 (|:| -3800 |#1|) (|:| -3469 (-552)))))) (-15 -1552 ((-1 |#1|) (-1232 |#1|) (-1232 (-552)) (-552)))) (-1073)) (T -993)) -((-1552 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1232 *6)) (-5 *4 (-1232 (-552))) (-5 *5 (-552)) (-4 *6 (-1073)) (-5 *2 (-1 *6)) (-5 *1 (-993 *6)))) (-1541 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| -3800 *4) (|:| -3469 (-552))))) (-4 *4 (-1073)) (-5 *2 (-1 *4)) (-5 *1 (-993 *4)))) (-3888 (*1 *2 *3) (-12 (-5 *3 (-1075 *4)) (-4 *4 (-1073)) (-5 *2 (-1 *4)) (-5 *1 (-993 *4))))) -(-10 -7 (-15 -3888 ((-1 |#1|) (-1075 |#1|))) (-15 -1541 ((-1 |#1|) (-625 (-2 (|:| -3800 |#1|) (|:| -3469 (-552)))))) (-15 -1552 ((-1 |#1|) (-1232 |#1|) (-1232 (-552)) (-552)))) -((-2172 (((-751) (-331 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-994 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2172 ((-751) (-331 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-358) (-1208 |#1|) (-1208 (-402 |#2|)) (-337 |#1| |#2| |#3|) (-13 (-363) (-358))) (T -994)) -((-2172 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-331 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-358)) (-4 *7 (-1208 *6)) (-4 *4 (-1208 (-402 *7))) (-4 *8 (-337 *6 *7 *4)) (-4 *9 (-13 (-363) (-358))) (-5 *2 (-751)) (-5 *1 (-994 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -2172 ((-751) (-331 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-1671 (((-112) $ $) NIL)) (-1563 (((-1108) $) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) NIL) (((-1154) $) NIL) (($ (-1154)) NIL)) (-1300 (((-1108) $) 11)) (-2281 (((-112) $ $) NIL))) -(((-995) (-13 (-1056) (-10 -8 (-15 -1563 ((-1108) $)) (-15 -1300 ((-1108) $))))) (T -995)) -((-1563 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-995)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-995))))) -(-13 (-1056) (-10 -8 (-15 -1563 ((-1108) $)) (-15 -1300 ((-1108) $)))) -((-4230 (((-3 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) "failed") |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) 31) (((-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552))) 28)) (-1596 (((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552))) 33) (((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-402 (-552))) 29) (((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) 32) (((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1|) 27)) (-1584 (((-625 (-402 (-552))) (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) 19)) (-1573 (((-402 (-552)) (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) 16))) -(((-996 |#1|) (-10 -7 (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1|)) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-402 (-552)))) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552)))) (-15 -4230 ((-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552)))) (-15 -4230 ((-3 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) "failed") |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-15 -1573 ((-402 (-552)) (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-15 -1584 ((-625 (-402 (-552))) (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))))) (-1208 (-552))) (T -996)) -((-1584 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-5 *2 (-625 (-402 (-552)))) (-5 *1 (-996 *4)) (-4 *4 (-1208 (-552))))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) (-5 *2 (-402 (-552))) (-5 *1 (-996 *4)) (-4 *4 (-1208 (-552))))) (-4230 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552))))) (-4230 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) (-5 *4 (-402 (-552))) (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552))))) (-1596 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-402 (-552))) (-5 *2 (-625 (-2 (|:| -2290 *5) (|:| -2303 *5)))) (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552))) (-5 *4 (-2 (|:| -2290 *5) (|:| -2303 *5))))) (-1596 (*1 *2 *3 *4) (-12 (-5 *2 (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552))) (-5 *4 (-402 (-552))))) (-1596 (*1 *2 *3 *4) (-12 (-5 *2 (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552))) (-5 *4 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))))) (-1596 (*1 *2 *3) (-12 (-5 *2 (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552)))))) -(-10 -7 (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1|)) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-402 (-552)))) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552)))) (-15 -4230 ((-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552)))) (-15 -4230 ((-3 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) "failed") |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-15 -1573 ((-402 (-552)) (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-15 -1584 ((-625 (-402 (-552))) (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))))) -((-4230 (((-3 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) "failed") |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) 35) (((-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552))) 32)) (-1596 (((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552))) 30) (((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-402 (-552))) 26) (((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) 28) (((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1|) 24))) -(((-997 |#1|) (-10 -7 (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1|)) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-402 (-552)))) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552)))) (-15 -4230 ((-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552)))) (-15 -4230 ((-3 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) "failed") |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))))) (-1208 (-402 (-552)))) (T -997)) -((-4230 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) (-5 *1 (-997 *3)) (-4 *3 (-1208 (-402 (-552)))))) (-4230 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) (-5 *4 (-402 (-552))) (-5 *1 (-997 *3)) (-4 *3 (-1208 *4)))) (-1596 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-402 (-552))) (-5 *2 (-625 (-2 (|:| -2290 *5) (|:| -2303 *5)))) (-5 *1 (-997 *3)) (-4 *3 (-1208 *5)) (-5 *4 (-2 (|:| -2290 *5) (|:| -2303 *5))))) (-1596 (*1 *2 *3 *4) (-12 (-5 *4 (-402 (-552))) (-5 *2 (-625 (-2 (|:| -2290 *4) (|:| -2303 *4)))) (-5 *1 (-997 *3)) (-4 *3 (-1208 *4)))) (-1596 (*1 *2 *3 *4) (-12 (-5 *2 (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-5 *1 (-997 *3)) (-4 *3 (-1208 (-402 (-552)))) (-5 *4 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))))) (-1596 (*1 *2 *3) (-12 (-5 *2 (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-5 *1 (-997 *3)) (-4 *3 (-1208 (-402 (-552))))))) -(-10 -7 (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1|)) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-402 (-552)))) (-15 -1596 ((-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552)))) (-15 -4230 ((-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-402 (-552)))) (-15 -4230 ((-3 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) "failed") |#1| (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))) (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))))) -((-2042 (((-221) $) 6) (((-374) $) 9))) -(((-998) (-138)) (T -998)) -NIL -(-13 (-598 (-221)) (-598 (-374))) -(((-598 (-221)) . T) ((-598 (-374)) . T)) -((-1728 (((-625 (-374)) (-928 (-552)) (-374)) 28) (((-625 (-374)) (-928 (-402 (-552))) (-374)) 27)) (-1311 (((-625 (-625 (-374))) (-625 (-928 (-552))) (-625 (-1149)) (-374)) 37))) -(((-999) (-10 -7 (-15 -1728 ((-625 (-374)) (-928 (-402 (-552))) (-374))) (-15 -1728 ((-625 (-374)) (-928 (-552)) (-374))) (-15 -1311 ((-625 (-625 (-374))) (-625 (-928 (-552))) (-625 (-1149)) (-374))))) (T -999)) -((-1311 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 (-928 (-552)))) (-5 *4 (-625 (-1149))) (-5 *2 (-625 (-625 (-374)))) (-5 *1 (-999)) (-5 *5 (-374)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-928 (-552))) (-5 *2 (-625 (-374))) (-5 *1 (-999)) (-5 *4 (-374)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-928 (-402 (-552)))) (-5 *2 (-625 (-374))) (-5 *1 (-999)) (-5 *4 (-374))))) -(-10 -7 (-15 -1728 ((-625 (-374)) (-928 (-402 (-552))) (-374))) (-15 -1728 ((-625 (-374)) (-928 (-552)) (-374))) (-15 -1311 ((-625 (-625 (-374))) (-625 (-928 (-552))) (-625 (-1149)) (-374)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 70)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-3837 (($ $) NIL) (($ $ (-897)) NIL) (($ (-402 (-552))) NIL) (($ (-552)) NIL)) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) 65)) (-3101 (($) NIL T CONST)) (-3588 (((-3 $ "failed") (-1145 $) (-897) (-839)) NIL) (((-3 $ "failed") (-1145 $) (-897)) 50)) (-1893 (((-3 (-402 (-552)) "failed") $) NIL (|has| (-402 (-552)) (-1014 (-402 (-552))))) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-552) "failed") $) NIL (-1523 (|has| (-402 (-552)) (-1014 (-552))) (|has| |#1| (-1014 (-552)))))) (-1895 (((-402 (-552)) $) 15 (|has| (-402 (-552)) (-1014 (-402 (-552))))) (((-402 (-552)) $) 15) ((|#1| $) 108) (((-552) $) NIL (-1523 (|has| (-402 (-552)) (-1014 (-552))) (|has| |#1| (-1014 (-552)))))) (-1419 (($ $ (-839)) 42)) (-1409 (($ $ (-839)) 43)) (-2851 (($ $ $) NIL)) (-3576 (((-402 (-552)) $ $) 19)) (-4174 (((-3 $ "failed") $) 83)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3620 (((-112) $) 61)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL)) (-3630 (((-112) $) 64)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-1429 (((-3 (-1145 $) "failed") $) 78)) (-1452 (((-3 (-839) "failed") $) 77)) (-1441 (((-3 (-1145 $) "failed") $) 75)) (-1607 (((-3 (-1035 $ (-1145 $)) "failed") $) 73)) (-2605 (($ (-625 $)) NIL) (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 84)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ (-625 $)) NIL) (($ $ $) NIL)) (-3824 (((-413 $) $) NIL)) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-1683 (((-839) $) 82) (($ (-552)) NIL) (($ (-402 (-552))) NIL) (($ $) 58) (($ (-402 (-552))) NIL) (($ (-552)) NIL) (($ (-402 (-552))) NIL) (($ |#1|) 110)) (-4141 (((-751)) NIL)) (-3518 (((-112) $ $) NIL)) (-2874 (((-402 (-552)) $ $) 25)) (-3599 (((-625 $) (-1145 $)) 56) (((-625 $) (-1145 (-402 (-552)))) NIL) (((-625 $) (-1145 (-552))) NIL) (((-625 $) (-928 $)) NIL) (((-625 $) (-928 (-402 (-552)))) NIL) (((-625 $) (-928 (-552))) NIL)) (-1617 (($ (-1035 $ (-1145 $)) (-839)) 41)) (-1727 (($ $) 20)) (-2089 (($) 29 T CONST)) (-2100 (($) 35 T CONST)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 71)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 22)) (-2404 (($ $ $) 33)) (-2393 (($ $) 34) (($ $ $) 69)) (-2382 (($ $ $) 103)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL) (($ $ (-402 (-552))) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 91) (($ $ $) 96) (($ (-402 (-552)) $) NIL) (($ $ (-402 (-552))) NIL) (($ (-552) $) 91) (($ $ (-552)) NIL) (($ (-402 (-552)) $) NIL) (($ $ (-402 (-552))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) -(((-1000 |#1|) (-13 (-988) (-406 |#1|) (-38 |#1|) (-10 -8 (-15 -1617 ($ (-1035 $ (-1145 $)) (-839))) (-15 -1607 ((-3 (-1035 $ (-1145 $)) "failed") $)) (-15 -3576 ((-402 (-552)) $ $)))) (-13 (-825) (-358) (-998))) (T -1000)) -((-1617 (*1 *1 *2 *3) (-12 (-5 *2 (-1035 (-1000 *4) (-1145 (-1000 *4)))) (-5 *3 (-839)) (-5 *1 (-1000 *4)) (-4 *4 (-13 (-825) (-358) (-998))))) (-1607 (*1 *2 *1) (|partial| -12 (-5 *2 (-1035 (-1000 *3) (-1145 (-1000 *3)))) (-5 *1 (-1000 *3)) (-4 *3 (-13 (-825) (-358) (-998))))) (-3576 (*1 *2 *1 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-1000 *3)) (-4 *3 (-13 (-825) (-358) (-998)))))) -(-13 (-988) (-406 |#1|) (-38 |#1|) (-10 -8 (-15 -1617 ($ (-1035 $ (-1145 $)) (-839))) (-15 -1607 ((-3 (-1035 $ (-1145 $)) "failed") $)) (-15 -3576 ((-402 (-552)) $ $)))) -((-1629 (((-2 (|:| -2772 |#2|) (|:| -3362 (-625 |#1|))) |#2| (-625 |#1|)) 20) ((|#2| |#2| |#1|) 15))) -(((-1001 |#1| |#2|) (-10 -7 (-15 -1629 (|#2| |#2| |#1|)) (-15 -1629 ((-2 (|:| -2772 |#2|) (|:| -3362 (-625 |#1|))) |#2| (-625 |#1|)))) (-358) (-636 |#1|)) (T -1001)) -((-1629 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-5 *2 (-2 (|:| -2772 *3) (|:| -3362 (-625 *5)))) (-5 *1 (-1001 *5 *3)) (-5 *4 (-625 *5)) (-4 *3 (-636 *5)))) (-1629 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-1001 *3 *2)) (-4 *2 (-636 *3))))) -(-10 -7 (-15 -1629 (|#2| |#2| |#1|)) (-15 -1629 ((-2 (|:| -2772 |#2|) (|:| -3362 (-625 |#1|))) |#2| (-625 |#1|)))) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1641 ((|#1| $ |#1|) 14)) (-1851 ((|#1| $ |#1|) 12)) (-1663 (($ |#1|) 10)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2154 ((|#1| $) 11)) (-1652 ((|#1| $) 13)) (-1683 (((-839) $) 21 (|has| |#1| (-1073)))) (-2281 (((-112) $ $) 9))) -(((-1002 |#1|) (-13 (-1186) (-10 -8 (-15 -1663 ($ |#1|)) (-15 -2154 (|#1| $)) (-15 -1851 (|#1| $ |#1|)) (-15 -1652 (|#1| $)) (-15 -1641 (|#1| $ |#1|)) (-15 -2281 ((-112) $ $)) (IF (|has| |#1| (-1073)) (-6 (-1073)) |%noBranch|))) (-1186)) (T -1002)) -((-1663 (*1 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1186)))) (-2154 (*1 *2 *1) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1186)))) (-1851 (*1 *2 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1186)))) (-1652 (*1 *2 *1) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1186)))) (-1641 (*1 *2 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1186)))) (-2281 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1002 *3)) (-4 *3 (-1186))))) -(-13 (-1186) (-10 -8 (-15 -1663 ($ |#1|)) (-15 -2154 (|#1| $)) (-15 -1851 (|#1| $ |#1|)) (-15 -1652 (|#1| $)) (-15 -1641 (|#1| $ |#1|)) (-15 -2281 ((-112) $ $)) (IF (|has| |#1| (-1073)) (-6 (-1073)) |%noBranch|))) -((-1671 (((-112) $ $) NIL)) (-3680 (((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 |#4|)))) (-625 |#4|)) NIL)) (-3690 (((-625 $) (-625 |#4|)) 105) (((-625 $) (-625 |#4|) (-112)) 106) (((-625 $) (-625 |#4|) (-112) (-112)) 104) (((-625 $) (-625 |#4|) (-112) (-112) (-112) (-112)) 107)) (-3982 (((-625 |#3|) $) NIL)) (-3707 (((-112) $) NIL)) (-3613 (((-112) $) NIL (|has| |#1| (-544)))) (-2656 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3748 ((|#4| |#4| $) NIL)) (-2194 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| $) 99)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-3488 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353))) (((-3 |#4| "failed") $ |#3|) 54)) (-3101 (($) NIL T CONST)) (-3667 (((-112) $) 26 (|has| |#1| (-544)))) (-3688 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3678 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3697 (((-112) $) NIL (|has| |#1| (-544)))) (-3757 (((-625 |#4|) (-625 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3624 (((-625 |#4|) (-625 |#4|) $) NIL (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) NIL (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) NIL)) (-1895 (($ (-625 |#4|)) NIL)) (-2936 (((-3 $ "failed") $) 39)) (-3720 ((|#4| |#4| $) 57)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-1416 (($ |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-544)))) (-2668 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3699 ((|#4| |#4| $) NIL)) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2689 (((-2 (|:| -1387 (-625 |#4|)) (|:| -2508 (-625 |#4|))) $) NIL)) (-3731 (((-112) |#4| $) NIL)) (-3714 (((-112) |#4| $) NIL)) (-3741 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3975 (((-2 (|:| |val| (-625 |#4|)) (|:| |towers| (-625 $))) (-625 |#4|) (-112) (-112)) 119)) (-3799 (((-625 |#4|) $) 16 (|has| $ (-6 -4353)))) (-2678 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3565 ((|#3| $) 33)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#4|) $) 17 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-3683 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) 21)) (-2615 (((-625 |#3|) $) NIL)) (-2608 (((-112) |#3| $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-3674 (((-3 |#4| (-625 $)) |#4| |#4| $) NIL)) (-3662 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| |#4| $) 97)) (-1437 (((-3 |#4| "failed") $) 37)) (-3685 (((-625 $) |#4| $) 80)) (-3704 (((-3 (-112) (-625 $)) |#4| $) NIL)) (-3694 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-2860 (((-625 $) |#4| $) 102) (((-625 $) (-625 |#4|) $) NIL) (((-625 $) (-625 |#4|) (-625 $)) 103) (((-625 $) |#4| (-625 $)) NIL)) (-3987 (((-625 $) (-625 |#4|) (-112) (-112) (-112)) 114)) (-3999 (($ |#4| $) 70) (($ (-625 |#4|) $) 71) (((-625 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-2699 (((-625 |#4|) $) NIL)) (-3777 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3727 ((|#4| |#4| $) NIL)) (-2719 (((-112) $ $) NIL)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-3788 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3737 ((|#4| |#4| $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 (((-3 |#4| "failed") $) 35)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3657 (((-3 $ "failed") $ |#4|) 48)) (-2147 (($ $ |#4|) NIL) (((-625 $) |#4| $) 82) (((-625 $) |#4| (-625 $)) NIL) (((-625 $) (-625 |#4|) $) NIL) (((-625 $) (-625 |#4|) (-625 $)) 77)) (-1888 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 15)) (-3600 (($) 13)) (-4276 (((-751) $) NIL)) (-2840 (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) 12)) (-2042 (((-528) $) NIL (|has| |#4| (-598 (-528))))) (-1695 (($ (-625 |#4|)) 20)) (-3718 (($ $ |#3|) 42)) (-2595 (($ $ |#3|) 44)) (-3709 (($ $) NIL)) (-2584 (($ $ |#3|) NIL)) (-1683 (((-839) $) 31) (((-625 |#4|) $) 40)) (-3647 (((-751) $) NIL (|has| |#3| (-363)))) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3767 (((-112) $ (-1 (-112) |#4| (-625 |#4|))) NIL)) (-3651 (((-625 $) |#4| $) 79) (((-625 $) |#4| (-625 $)) NIL) (((-625 $) (-625 |#4|) $) NIL) (((-625 $) (-625 |#4|) (-625 $)) NIL)) (-1900 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3669 (((-625 |#3|) $) NIL)) (-3724 (((-112) |#4| $) NIL)) (-4168 (((-112) |#3| $) 53)) (-2281 (((-112) $ $) NIL)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-1003 |#1| |#2| |#3| |#4|) (-13 (-1045 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3999 ((-625 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3690 ((-625 $) (-625 |#4|) (-112) (-112))) (-15 -3690 ((-625 $) (-625 |#4|) (-112) (-112) (-112) (-112))) (-15 -3987 ((-625 $) (-625 |#4|) (-112) (-112) (-112))) (-15 -3975 ((-2 (|:| |val| (-625 |#4|)) (|:| |towers| (-625 $))) (-625 |#4|) (-112) (-112))))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -1003)) -((-3999 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 (-1003 *5 *6 *7 *3))) (-5 *1 (-1003 *5 *6 *7 *3)) (-4 *3 (-1039 *5 *6 *7)))) (-3690 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 (-1003 *5 *6 *7 *8))) (-5 *1 (-1003 *5 *6 *7 *8)))) (-3690 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 (-1003 *5 *6 *7 *8))) (-5 *1 (-1003 *5 *6 *7 *8)))) (-3987 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 (-1003 *5 *6 *7 *8))) (-5 *1 (-1003 *5 *6 *7 *8)))) (-3975 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-625 *8)) (|:| |towers| (-625 (-1003 *5 *6 *7 *8))))) (-5 *1 (-1003 *5 *6 *7 *8)) (-5 *3 (-625 *8))))) -(-13 (-1045 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3999 ((-625 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3690 ((-625 $) (-625 |#4|) (-112) (-112))) (-15 -3690 ((-625 $) (-625 |#4|) (-112) (-112) (-112) (-112))) (-15 -3987 ((-625 $) (-625 |#4|) (-112) (-112) (-112))) (-15 -3975 ((-2 (|:| |val| (-625 |#4|)) (|:| |towers| (-625 $))) (-625 |#4|) (-112) (-112))))) -((-1783 (((-625 (-669 |#1|)) (-625 (-669 |#1|))) 58) (((-669 |#1|) (-669 |#1|)) 57) (((-625 (-669 |#1|)) (-625 (-669 |#1|)) (-625 (-669 |#1|))) 56) (((-669 |#1|) (-669 |#1|) (-669 |#1|)) 53)) (-1772 (((-625 (-669 |#1|)) (-625 (-669 |#1|)) (-897)) 52) (((-669 |#1|) (-669 |#1|) (-897)) 51)) (-1795 (((-625 (-669 (-552))) (-625 (-625 (-552)))) 68) (((-625 (-669 (-552))) (-625 (-881 (-552))) (-552)) 67) (((-669 (-552)) (-625 (-552))) 64) (((-669 (-552)) (-881 (-552)) (-552)) 63)) (-1762 (((-669 (-928 |#1|)) (-751)) 81)) (-1752 (((-625 (-669 |#1|)) (-625 (-669 |#1|)) (-897)) 37 (|has| |#1| (-6 (-4355 "*")))) (((-669 |#1|) (-669 |#1|) (-897)) 35 (|has| |#1| (-6 (-4355 "*")))))) -(((-1004 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4355 "*"))) (-15 -1752 ((-669 |#1|) (-669 |#1|) (-897))) |%noBranch|) (IF (|has| |#1| (-6 (-4355 "*"))) (-15 -1752 ((-625 (-669 |#1|)) (-625 (-669 |#1|)) (-897))) |%noBranch|) (-15 -1762 ((-669 (-928 |#1|)) (-751))) (-15 -1772 ((-669 |#1|) (-669 |#1|) (-897))) (-15 -1772 ((-625 (-669 |#1|)) (-625 (-669 |#1|)) (-897))) (-15 -1783 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -1783 ((-625 (-669 |#1|)) (-625 (-669 |#1|)) (-625 (-669 |#1|)))) (-15 -1783 ((-669 |#1|) (-669 |#1|))) (-15 -1783 ((-625 (-669 |#1|)) (-625 (-669 |#1|)))) (-15 -1795 ((-669 (-552)) (-881 (-552)) (-552))) (-15 -1795 ((-669 (-552)) (-625 (-552)))) (-15 -1795 ((-625 (-669 (-552))) (-625 (-881 (-552))) (-552))) (-15 -1795 ((-625 (-669 (-552))) (-625 (-625 (-552)))))) (-1025)) (T -1004)) -((-1795 (*1 *2 *3) (-12 (-5 *3 (-625 (-625 (-552)))) (-5 *2 (-625 (-669 (-552)))) (-5 *1 (-1004 *4)) (-4 *4 (-1025)))) (-1795 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-881 (-552)))) (-5 *4 (-552)) (-5 *2 (-625 (-669 *4))) (-5 *1 (-1004 *5)) (-4 *5 (-1025)))) (-1795 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-669 (-552))) (-5 *1 (-1004 *4)) (-4 *4 (-1025)))) (-1795 (*1 *2 *3 *4) (-12 (-5 *3 (-881 (-552))) (-5 *4 (-552)) (-5 *2 (-669 *4)) (-5 *1 (-1004 *5)) (-4 *5 (-1025)))) (-1783 (*1 *2 *2) (-12 (-5 *2 (-625 (-669 *3))) (-4 *3 (-1025)) (-5 *1 (-1004 *3)))) (-1783 (*1 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-1004 *3)))) (-1783 (*1 *2 *2 *2) (-12 (-5 *2 (-625 (-669 *3))) (-4 *3 (-1025)) (-5 *1 (-1004 *3)))) (-1783 (*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-1004 *3)))) (-1772 (*1 *2 *2 *3) (-12 (-5 *2 (-625 (-669 *4))) (-5 *3 (-897)) (-4 *4 (-1025)) (-5 *1 (-1004 *4)))) (-1772 (*1 *2 *2 *3) (-12 (-5 *2 (-669 *4)) (-5 *3 (-897)) (-4 *4 (-1025)) (-5 *1 (-1004 *4)))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-669 (-928 *4))) (-5 *1 (-1004 *4)) (-4 *4 (-1025)))) (-1752 (*1 *2 *2 *3) (-12 (-5 *2 (-625 (-669 *4))) (-5 *3 (-897)) (|has| *4 (-6 (-4355 "*"))) (-4 *4 (-1025)) (-5 *1 (-1004 *4)))) (-1752 (*1 *2 *2 *3) (-12 (-5 *2 (-669 *4)) (-5 *3 (-897)) (|has| *4 (-6 (-4355 "*"))) (-4 *4 (-1025)) (-5 *1 (-1004 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4355 "*"))) (-15 -1752 ((-669 |#1|) (-669 |#1|) (-897))) |%noBranch|) (IF (|has| |#1| (-6 (-4355 "*"))) (-15 -1752 ((-625 (-669 |#1|)) (-625 (-669 |#1|)) (-897))) |%noBranch|) (-15 -1762 ((-669 (-928 |#1|)) (-751))) (-15 -1772 ((-669 |#1|) (-669 |#1|) (-897))) (-15 -1772 ((-625 (-669 |#1|)) (-625 (-669 |#1|)) (-897))) (-15 -1783 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -1783 ((-625 (-669 |#1|)) (-625 (-669 |#1|)) (-625 (-669 |#1|)))) (-15 -1783 ((-669 |#1|) (-669 |#1|))) (-15 -1783 ((-625 (-669 |#1|)) (-625 (-669 |#1|)))) (-15 -1795 ((-669 (-552)) (-881 (-552)) (-552))) (-15 -1795 ((-669 (-552)) (-625 (-552)))) (-15 -1795 ((-625 (-669 (-552))) (-625 (-881 (-552))) (-552))) (-15 -1795 ((-625 (-669 (-552))) (-625 (-625 (-552)))))) -((-1842 (((-669 |#1|) (-625 (-669 |#1|)) (-1232 |#1|)) 50 (|has| |#1| (-302)))) (-3819 (((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-1232 (-1232 |#1|))) 76 (|has| |#1| (-358))) (((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-1232 |#1|)) 79 (|has| |#1| (-358)))) (-1884 (((-1232 |#1|) (-625 (-1232 |#1|)) (-552)) 93 (-12 (|has| |#1| (-358)) (|has| |#1| (-363))))) (-1874 (((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-897)) 85 (-12 (|has| |#1| (-358)) (|has| |#1| (-363)))) (((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-112)) 83 (-12 (|has| |#1| (-358)) (|has| |#1| (-363)))) (((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|))) 82 (-12 (|has| |#1| (-358)) (|has| |#1| (-363)))) (((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-112) (-552) (-552)) 81 (-12 (|has| |#1| (-358)) (|has| |#1| (-363))))) (-1863 (((-112) (-625 (-669 |#1|))) 71 (|has| |#1| (-358))) (((-112) (-625 (-669 |#1|)) (-552)) 73 (|has| |#1| (-358)))) (-1829 (((-1232 (-1232 |#1|)) (-625 (-669 |#1|)) (-1232 |#1|)) 48 (|has| |#1| (-302)))) (-1818 (((-669 |#1|) (-625 (-669 |#1|)) (-669 |#1|)) 34)) (-1807 (((-669 |#1|) (-1232 (-1232 |#1|))) 31)) (-1854 (((-669 |#1|) (-625 (-669 |#1|)) (-625 (-669 |#1|)) (-552)) 65 (|has| |#1| (-358))) (((-669 |#1|) (-625 (-669 |#1|)) (-625 (-669 |#1|))) 64 (|has| |#1| (-358))) (((-669 |#1|) (-625 (-669 |#1|)) (-625 (-669 |#1|)) (-112) (-552)) 69 (|has| |#1| (-358))))) -(((-1005 |#1|) (-10 -7 (-15 -1807 ((-669 |#1|) (-1232 (-1232 |#1|)))) (-15 -1818 ((-669 |#1|) (-625 (-669 |#1|)) (-669 |#1|))) (IF (|has| |#1| (-302)) (PROGN (-15 -1829 ((-1232 (-1232 |#1|)) (-625 (-669 |#1|)) (-1232 |#1|))) (-15 -1842 ((-669 |#1|) (-625 (-669 |#1|)) (-1232 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -1854 ((-669 |#1|) (-625 (-669 |#1|)) (-625 (-669 |#1|)) (-112) (-552))) (-15 -1854 ((-669 |#1|) (-625 (-669 |#1|)) (-625 (-669 |#1|)))) (-15 -1854 ((-669 |#1|) (-625 (-669 |#1|)) (-625 (-669 |#1|)) (-552))) (-15 -1863 ((-112) (-625 (-669 |#1|)) (-552))) (-15 -1863 ((-112) (-625 (-669 |#1|)))) (-15 -3819 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-1232 |#1|))) (-15 -3819 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-1232 (-1232 |#1|))))) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#1| (-358)) (PROGN (-15 -1874 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-112) (-552) (-552))) (-15 -1874 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)))) (-15 -1874 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-112))) (-15 -1874 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-897))) (-15 -1884 ((-1232 |#1|) (-625 (-1232 |#1|)) (-552)))) |%noBranch|) |%noBranch|)) (-1025)) (T -1005)) -((-1884 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-1232 *5))) (-5 *4 (-552)) (-5 *2 (-1232 *5)) (-5 *1 (-1005 *5)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025)))) (-1874 (*1 *2 *3 *4) (-12 (-5 *4 (-897)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025)) (-5 *2 (-625 (-625 (-669 *5)))) (-5 *1 (-1005 *5)) (-5 *3 (-625 (-669 *5))))) (-1874 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025)) (-5 *2 (-625 (-625 (-669 *5)))) (-5 *1 (-1005 *5)) (-5 *3 (-625 (-669 *5))))) (-1874 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *4 (-363)) (-4 *4 (-1025)) (-5 *2 (-625 (-625 (-669 *4)))) (-5 *1 (-1005 *4)) (-5 *3 (-625 (-669 *4))))) (-1874 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-552)) (-4 *6 (-358)) (-4 *6 (-363)) (-4 *6 (-1025)) (-5 *2 (-625 (-625 (-669 *6)))) (-5 *1 (-1005 *6)) (-5 *3 (-625 (-669 *6))))) (-3819 (*1 *2 *3 *4) (-12 (-5 *4 (-1232 (-1232 *5))) (-4 *5 (-358)) (-4 *5 (-1025)) (-5 *2 (-625 (-625 (-669 *5)))) (-5 *1 (-1005 *5)) (-5 *3 (-625 (-669 *5))))) (-3819 (*1 *2 *3 *4) (-12 (-5 *4 (-1232 *5)) (-4 *5 (-358)) (-4 *5 (-1025)) (-5 *2 (-625 (-625 (-669 *5)))) (-5 *1 (-1005 *5)) (-5 *3 (-625 (-669 *5))))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-625 (-669 *4))) (-4 *4 (-358)) (-4 *4 (-1025)) (-5 *2 (-112)) (-5 *1 (-1005 *4)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-669 *5))) (-5 *4 (-552)) (-4 *5 (-358)) (-4 *5 (-1025)) (-5 *2 (-112)) (-5 *1 (-1005 *5)))) (-1854 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-625 (-669 *5))) (-5 *4 (-552)) (-5 *2 (-669 *5)) (-5 *1 (-1005 *5)) (-4 *5 (-358)) (-4 *5 (-1025)))) (-1854 (*1 *2 *3 *3) (-12 (-5 *3 (-625 (-669 *4))) (-5 *2 (-669 *4)) (-5 *1 (-1005 *4)) (-4 *4 (-358)) (-4 *4 (-1025)))) (-1854 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-625 (-669 *6))) (-5 *4 (-112)) (-5 *5 (-552)) (-5 *2 (-669 *6)) (-5 *1 (-1005 *6)) (-4 *6 (-358)) (-4 *6 (-1025)))) (-1842 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-669 *5))) (-5 *4 (-1232 *5)) (-4 *5 (-302)) (-4 *5 (-1025)) (-5 *2 (-669 *5)) (-5 *1 (-1005 *5)))) (-1829 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-669 *5))) (-4 *5 (-302)) (-4 *5 (-1025)) (-5 *2 (-1232 (-1232 *5))) (-5 *1 (-1005 *5)) (-5 *4 (-1232 *5)))) (-1818 (*1 *2 *3 *2) (-12 (-5 *3 (-625 (-669 *4))) (-5 *2 (-669 *4)) (-4 *4 (-1025)) (-5 *1 (-1005 *4)))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-1232 (-1232 *4))) (-4 *4 (-1025)) (-5 *2 (-669 *4)) (-5 *1 (-1005 *4))))) -(-10 -7 (-15 -1807 ((-669 |#1|) (-1232 (-1232 |#1|)))) (-15 -1818 ((-669 |#1|) (-625 (-669 |#1|)) (-669 |#1|))) (IF (|has| |#1| (-302)) (PROGN (-15 -1829 ((-1232 (-1232 |#1|)) (-625 (-669 |#1|)) (-1232 |#1|))) (-15 -1842 ((-669 |#1|) (-625 (-669 |#1|)) (-1232 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -1854 ((-669 |#1|) (-625 (-669 |#1|)) (-625 (-669 |#1|)) (-112) (-552))) (-15 -1854 ((-669 |#1|) (-625 (-669 |#1|)) (-625 (-669 |#1|)))) (-15 -1854 ((-669 |#1|) (-625 (-669 |#1|)) (-625 (-669 |#1|)) (-552))) (-15 -1863 ((-112) (-625 (-669 |#1|)) (-552))) (-15 -1863 ((-112) (-625 (-669 |#1|)))) (-15 -3819 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-1232 |#1|))) (-15 -3819 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-1232 (-1232 |#1|))))) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#1| (-358)) (PROGN (-15 -1874 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-112) (-552) (-552))) (-15 -1874 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)))) (-15 -1874 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-112))) (-15 -1874 ((-625 (-625 (-669 |#1|))) (-625 (-669 |#1|)) (-897))) (-15 -1884 ((-1232 |#1|) (-625 (-1232 |#1|)) (-552)))) |%noBranch|) |%noBranch|)) -((-2596 ((|#1| (-897) |#1|) 9))) -(((-1006 |#1|) (-10 -7 (-15 -2596 (|#1| (-897) |#1|))) (-13 (-1073) (-10 -8 (-15 -2382 ($ $ $))))) (T -1006)) -((-2596 (*1 *2 *3 *2) (-12 (-5 *3 (-897)) (-5 *1 (-1006 *2)) (-4 *2 (-13 (-1073) (-10 -8 (-15 -2382 ($ $ $)))))))) -(-10 -7 (-15 -2596 (|#1| (-897) |#1|))) -((-1674 (((-625 (-2 (|:| |radval| (-311 (-552))) (|:| |radmult| (-552)) (|:| |radvect| (-625 (-669 (-311 (-552))))))) (-669 (-402 (-928 (-552))))) 59)) (-1686 (((-625 (-669 (-311 (-552)))) (-311 (-552)) (-669 (-402 (-928 (-552))))) 48)) (-1698 (((-625 (-311 (-552))) (-669 (-402 (-928 (-552))))) 41)) (-1742 (((-625 (-669 (-311 (-552)))) (-669 (-402 (-928 (-552))))) 68)) (-1720 (((-669 (-311 (-552))) (-669 (-311 (-552)))) 34)) (-1732 (((-625 (-669 (-311 (-552)))) (-625 (-669 (-311 (-552))))) 62)) (-1708 (((-3 (-669 (-311 (-552))) "failed") (-669 (-402 (-928 (-552))))) 66))) -(((-1007) (-10 -7 (-15 -1674 ((-625 (-2 (|:| |radval| (-311 (-552))) (|:| |radmult| (-552)) (|:| |radvect| (-625 (-669 (-311 (-552))))))) (-669 (-402 (-928 (-552)))))) (-15 -1686 ((-625 (-669 (-311 (-552)))) (-311 (-552)) (-669 (-402 (-928 (-552)))))) (-15 -1698 ((-625 (-311 (-552))) (-669 (-402 (-928 (-552)))))) (-15 -1708 ((-3 (-669 (-311 (-552))) "failed") (-669 (-402 (-928 (-552)))))) (-15 -1720 ((-669 (-311 (-552))) (-669 (-311 (-552))))) (-15 -1732 ((-625 (-669 (-311 (-552)))) (-625 (-669 (-311 (-552)))))) (-15 -1742 ((-625 (-669 (-311 (-552)))) (-669 (-402 (-928 (-552)))))))) (T -1007)) -((-1742 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-928 (-552))))) (-5 *2 (-625 (-669 (-311 (-552))))) (-5 *1 (-1007)))) (-1732 (*1 *2 *2) (-12 (-5 *2 (-625 (-669 (-311 (-552))))) (-5 *1 (-1007)))) (-1720 (*1 *2 *2) (-12 (-5 *2 (-669 (-311 (-552)))) (-5 *1 (-1007)))) (-1708 (*1 *2 *3) (|partial| -12 (-5 *3 (-669 (-402 (-928 (-552))))) (-5 *2 (-669 (-311 (-552)))) (-5 *1 (-1007)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-928 (-552))))) (-5 *2 (-625 (-311 (-552)))) (-5 *1 (-1007)))) (-1686 (*1 *2 *3 *4) (-12 (-5 *4 (-669 (-402 (-928 (-552))))) (-5 *2 (-625 (-669 (-311 (-552))))) (-5 *1 (-1007)) (-5 *3 (-311 (-552))))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-928 (-552))))) (-5 *2 (-625 (-2 (|:| |radval| (-311 (-552))) (|:| |radmult| (-552)) (|:| |radvect| (-625 (-669 (-311 (-552)))))))) (-5 *1 (-1007))))) -(-10 -7 (-15 -1674 ((-625 (-2 (|:| |radval| (-311 (-552))) (|:| |radmult| (-552)) (|:| |radvect| (-625 (-669 (-311 (-552))))))) (-669 (-402 (-928 (-552)))))) (-15 -1686 ((-625 (-669 (-311 (-552)))) (-311 (-552)) (-669 (-402 (-928 (-552)))))) (-15 -1698 ((-625 (-311 (-552))) (-669 (-402 (-928 (-552)))))) (-15 -1708 ((-3 (-669 (-311 (-552))) "failed") (-669 (-402 (-928 (-552)))))) (-15 -1720 ((-669 (-311 (-552))) (-669 (-311 (-552))))) (-15 -1732 ((-625 (-669 (-311 (-552)))) (-625 (-669 (-311 (-552)))))) (-15 -1742 ((-625 (-669 (-311 (-552)))) (-669 (-402 (-928 (-552))))))) -((-1894 ((|#1| |#1| (-897)) 9))) -(((-1008 |#1|) (-10 -7 (-15 -1894 (|#1| |#1| (-897)))) (-13 (-1073) (-10 -8 (-15 * ($ $ $))))) (T -1008)) -((-1894 (*1 *2 *2 *3) (-12 (-5 *3 (-897)) (-5 *1 (-1008 *2)) (-4 *2 (-13 (-1073) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -1894 (|#1| |#1| (-897)))) -((-1683 ((|#1| (-307)) 11) (((-1237) |#1|) 9))) -(((-1009 |#1|) (-10 -7 (-15 -1683 ((-1237) |#1|)) (-15 -1683 (|#1| (-307)))) (-1186)) (T -1009)) -((-1683 (*1 *2 *3) (-12 (-5 *3 (-307)) (-5 *1 (-1009 *2)) (-4 *2 (-1186)))) (-1683 (*1 *2 *3) (-12 (-5 *2 (-1237)) (-5 *1 (-1009 *3)) (-4 *3 (-1186))))) -(-10 -7 (-15 -1683 ((-1237) |#1|)) (-15 -1683 (|#1| (-307)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-2163 (($ |#4|) 25)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-2148 ((|#4| $) 27)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 46) (($ (-552)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-4141 (((-751)) 43)) (-2089 (($) 21 T CONST)) (-2100 (($) 23 T CONST)) (-2281 (((-112) $ $) 40)) (-2393 (($ $) 31) (($ $ $) NIL)) (-2382 (($ $ $) 29)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1010 |#1| |#2| |#3| |#4| |#5|) (-13 (-170) (-38 |#1|) (-10 -8 (-15 -2163 ($ |#4|)) (-15 -1683 ($ |#4|)) (-15 -2148 (|#4| $)))) (-358) (-773) (-827) (-925 |#1| |#2| |#3|) (-625 |#4|)) (T -1010)) -((-2163 (*1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *2 (-925 *3 *4 *5)) (-14 *6 (-625 *2)))) (-1683 (*1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *2 (-925 *3 *4 *5)) (-14 *6 (-625 *2)))) (-2148 (*1 *2 *1) (-12 (-4 *2 (-925 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-14 *6 (-625 *2))))) -(-13 (-170) (-38 |#1|) (-10 -8 (-15 -2163 ($ |#4|)) (-15 -1683 ($ |#4|)) (-15 -2148 (|#4| $)))) -((-1671 (((-112) $ $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073))))) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL)) (-2509 (((-1237) $ (-1149) (-1149)) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-1919 (((-112) (-112)) 39)) (-1908 (((-112) (-112)) 38)) (-1851 (((-52) $ (-1149) (-52)) NIL)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-3128 (((-3 (-52) "failed") (-1149) $) NIL)) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073))))) (-1938 (($ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-3 (-52) "failed") (-1149) $) NIL)) (-1416 (($ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (((-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-3692 (((-52) $ (-1149) (-52)) NIL (|has| $ (-6 -4354)))) (-3631 (((-52) $ (-1149)) NIL)) (-3799 (((-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-625 (-52)) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-1149) $) NIL (|has| (-1149) (-827)))) (-3730 (((-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-625 (-52)) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-52) (-1073))))) (-2537 (((-1149) $) NIL (|has| (-1149) (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4354))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073))))) (-3712 (((-625 (-1149)) $) 34)) (-1370 (((-112) (-1149) $) NIL)) (-2953 (((-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL)) (-3966 (($ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL)) (-2554 (((-625 (-1149)) $) NIL)) (-2564 (((-112) (-1149) $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073))))) (-2924 (((-52) $) NIL (|has| (-1149) (-827)))) (-2380 (((-3 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) "failed") (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL)) (-2518 (($ $ (-52)) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))))) NIL (-12 (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (($ $ (-289 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL (-12 (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (($ $ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) NIL (-12 (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (($ $ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL (-12 (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (($ $ (-625 (-52)) (-625 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073)))) (($ $ (-289 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073)))) (($ $ (-625 (-289 (-52)))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-52) (-1073))))) (-1358 (((-625 (-52)) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 (((-52) $ (-1149)) 35) (((-52) $ (-1149) (-52)) NIL)) (-4255 (($) NIL) (($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (((-751) (-52) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-52) (-1073)))) (((-751) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL)) (-1683 (((-839) $) 37 (-1523 (|has| (-52) (-597 (-839))) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-597 (-839)))))) (-2977 (($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-1011) (-13 (-1162 (-1149) (-52)) (-10 -7 (-15 -1919 ((-112) (-112))) (-15 -1908 ((-112) (-112))) (-6 -4353)))) (T -1011)) -((-1919 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1011)))) (-1908 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1011))))) -(-13 (-1162 (-1149) (-52)) (-10 -7 (-15 -1919 ((-112) (-112))) (-15 -1908 ((-112) (-112))) (-6 -4353))) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3632 (((-1108) $) 9)) (-1683 (((-839) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL))) -(((-1012) (-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $))))) (T -1012)) -((-3632 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1012))))) -(-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $)))) -((-1895 ((|#2| $) 10))) -(((-1013 |#1| |#2|) (-10 -8 (-15 -1895 (|#2| |#1|))) (-1014 |#2|) (-1186)) (T -1013)) -NIL -(-10 -8 (-15 -1895 (|#2| |#1|))) -((-1893 (((-3 |#1| "failed") $) 7)) (-1895 ((|#1| $) 8)) (-1683 (($ |#1|) 6))) -(((-1014 |#1|) (-138) (-1186)) (T -1014)) -((-1895 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1186)))) (-1893 (*1 *2 *1) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1186)))) (-1683 (*1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1186))))) -(-13 (-10 -8 (-15 -1683 ($ |t#1|)) (-15 -1893 ((-3 |t#1| "failed") $)) (-15 -1895 (|t#1| $)))) -((-1932 (((-625 (-625 (-289 (-402 (-928 |#2|))))) (-625 (-928 |#2|)) (-625 (-1149))) 38))) -(((-1015 |#1| |#2|) (-10 -7 (-15 -1932 ((-625 (-625 (-289 (-402 (-928 |#2|))))) (-625 (-928 |#2|)) (-625 (-1149))))) (-544) (-13 (-544) (-1014 |#1|))) (T -1015)) -((-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-928 *6))) (-5 *4 (-625 (-1149))) (-4 *6 (-13 (-544) (-1014 *5))) (-4 *5 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *6)))))) (-5 *1 (-1015 *5 *6))))) -(-10 -7 (-15 -1932 ((-625 (-625 (-289 (-402 (-928 |#2|))))) (-625 (-928 |#2|)) (-625 (-1149))))) -((-1954 (((-374)) 15)) (-3888 (((-1 (-374)) (-374) (-374)) 20)) (-2228 (((-1 (-374)) (-751)) 43)) (-1966 (((-374)) 34)) (-2992 (((-1 (-374)) (-374) (-374)) 35)) (-3772 (((-374)) 26)) (-3792 (((-1 (-374)) (-374)) 27)) (-3782 (((-374) (-751)) 38)) (-3802 (((-1 (-374)) (-751)) 39)) (-3281 (((-1 (-374)) (-751) (-751)) 42)) (-1739 (((-1 (-374)) (-751) (-751)) 40))) -(((-1016) (-10 -7 (-15 -1954 ((-374))) (-15 -1966 ((-374))) (-15 -3772 ((-374))) (-15 -3782 ((-374) (-751))) (-15 -3888 ((-1 (-374)) (-374) (-374))) (-15 -2992 ((-1 (-374)) (-374) (-374))) (-15 -3792 ((-1 (-374)) (-374))) (-15 -3802 ((-1 (-374)) (-751))) (-15 -1739 ((-1 (-374)) (-751) (-751))) (-15 -3281 ((-1 (-374)) (-751) (-751))) (-15 -2228 ((-1 (-374)) (-751))))) (T -1016)) -((-2228 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-374))) (-5 *1 (-1016)))) (-3281 (*1 *2 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-374))) (-5 *1 (-1016)))) (-1739 (*1 *2 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-374))) (-5 *1 (-1016)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-374))) (-5 *1 (-1016)))) (-3792 (*1 *2 *3) (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1016)) (-5 *3 (-374)))) (-2992 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1016)) (-5 *3 (-374)))) (-3888 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1016)) (-5 *3 (-374)))) (-3782 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-374)) (-5 *1 (-1016)))) (-3772 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1016)))) (-1966 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1016)))) (-1954 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1016))))) -(-10 -7 (-15 -1954 ((-374))) (-15 -1966 ((-374))) (-15 -3772 ((-374))) (-15 -3782 ((-374) (-751))) (-15 -3888 ((-1 (-374)) (-374) (-374))) (-15 -2992 ((-1 (-374)) (-374) (-374))) (-15 -3792 ((-1 (-374)) (-374))) (-15 -3802 ((-1 (-374)) (-751))) (-15 -1739 ((-1 (-374)) (-751) (-751))) (-15 -3281 ((-1 (-374)) (-751) (-751))) (-15 -2228 ((-1 (-374)) (-751)))) -((-3824 (((-413 |#1|) |#1|) 33))) -(((-1017 |#1|) (-10 -7 (-15 -3824 ((-413 |#1|) |#1|))) (-1208 (-402 (-928 (-552))))) (T -1017)) -((-3824 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-1017 *3)) (-4 *3 (-1208 (-402 (-928 (-552)))))))) -(-10 -7 (-15 -3824 ((-413 |#1|) |#1|))) -((-3813 (((-402 (-413 (-928 |#1|))) (-402 (-928 |#1|))) 14))) -(((-1018 |#1|) (-10 -7 (-15 -3813 ((-402 (-413 (-928 |#1|))) (-402 (-928 |#1|))))) (-302)) (T -1018)) -((-3813 (*1 *2 *3) (-12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-302)) (-5 *2 (-402 (-413 (-928 *4)))) (-5 *1 (-1018 *4))))) -(-10 -7 (-15 -3813 ((-402 (-413 (-928 |#1|))) (-402 (-928 |#1|))))) -((-3982 (((-625 (-1149)) (-402 (-928 |#1|))) 17)) (-3793 (((-402 (-1145 (-402 (-928 |#1|)))) (-402 (-928 |#1|)) (-1149)) 24)) (-3970 (((-402 (-928 |#1|)) (-402 (-1145 (-402 (-928 |#1|)))) (-1149)) 26)) (-1942 (((-3 (-1149) "failed") (-402 (-928 |#1|))) 20)) (-4073 (((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-625 (-289 (-402 (-928 |#1|))))) 32) (((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|)))) 33) (((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-625 (-1149)) (-625 (-402 (-928 |#1|)))) 28) (((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-1149) (-402 (-928 |#1|))) 29)) (-1683 (((-402 (-928 |#1|)) |#1|) 11))) -(((-1019 |#1|) (-10 -7 (-15 -3982 ((-625 (-1149)) (-402 (-928 |#1|)))) (-15 -1942 ((-3 (-1149) "failed") (-402 (-928 |#1|)))) (-15 -3793 ((-402 (-1145 (-402 (-928 |#1|)))) (-402 (-928 |#1|)) (-1149))) (-15 -3970 ((-402 (-928 |#1|)) (-402 (-1145 (-402 (-928 |#1|)))) (-1149))) (-15 -4073 ((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-1149) (-402 (-928 |#1|)))) (-15 -4073 ((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-625 (-1149)) (-625 (-402 (-928 |#1|))))) (-15 -4073 ((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|))))) (-15 -4073 ((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-625 (-289 (-402 (-928 |#1|)))))) (-15 -1683 ((-402 (-928 |#1|)) |#1|))) (-544)) (T -1019)) -((-1683 (*1 *2 *3) (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-1019 *3)) (-4 *3 (-544)))) (-4073 (*1 *2 *2 *3) (-12 (-5 *3 (-625 (-289 (-402 (-928 *4))))) (-5 *2 (-402 (-928 *4))) (-4 *4 (-544)) (-5 *1 (-1019 *4)))) (-4073 (*1 *2 *2 *3) (-12 (-5 *3 (-289 (-402 (-928 *4)))) (-5 *2 (-402 (-928 *4))) (-4 *4 (-544)) (-5 *1 (-1019 *4)))) (-4073 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-625 (-1149))) (-5 *4 (-625 (-402 (-928 *5)))) (-5 *2 (-402 (-928 *5))) (-4 *5 (-544)) (-5 *1 (-1019 *5)))) (-4073 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-402 (-928 *4))) (-5 *3 (-1149)) (-4 *4 (-544)) (-5 *1 (-1019 *4)))) (-3970 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-1145 (-402 (-928 *5))))) (-5 *4 (-1149)) (-5 *2 (-402 (-928 *5))) (-5 *1 (-1019 *5)) (-4 *5 (-544)))) (-3793 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-544)) (-5 *2 (-402 (-1145 (-402 (-928 *5))))) (-5 *1 (-1019 *5)) (-5 *3 (-402 (-928 *5))))) (-1942 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544)) (-5 *2 (-1149)) (-5 *1 (-1019 *4)))) (-3982 (*1 *2 *3) (-12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544)) (-5 *2 (-625 (-1149))) (-5 *1 (-1019 *4))))) -(-10 -7 (-15 -3982 ((-625 (-1149)) (-402 (-928 |#1|)))) (-15 -1942 ((-3 (-1149) "failed") (-402 (-928 |#1|)))) (-15 -3793 ((-402 (-1145 (-402 (-928 |#1|)))) (-402 (-928 |#1|)) (-1149))) (-15 -3970 ((-402 (-928 |#1|)) (-402 (-1145 (-402 (-928 |#1|)))) (-1149))) (-15 -4073 ((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-1149) (-402 (-928 |#1|)))) (-15 -4073 ((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-625 (-1149)) (-625 (-402 (-928 |#1|))))) (-15 -4073 ((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-289 (-402 (-928 |#1|))))) (-15 -4073 ((-402 (-928 |#1|)) (-402 (-928 |#1|)) (-625 (-289 (-402 (-928 |#1|)))))) (-15 -1683 ((-402 (-928 |#1|)) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3101 (($) 17 T CONST)) (-3861 ((|#1| $) 22)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3847 ((|#1| $) 21)) (-3822 ((|#1|) 19 T CONST)) (-1683 (((-839) $) 11)) (-3834 ((|#1| $) 20)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15))) -(((-1020 |#1|) (-138) (-23)) (T -1020)) -((-3861 (*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))) (-3834 (*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))) (-3822 (*1 *2) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -3861 (|t#1| $)) (-15 -3847 (|t#1| $)) (-15 -3834 (|t#1| $)) (-15 -3822 (|t#1|) -1426))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3874 (($) 24 T CONST)) (-3101 (($) 17 T CONST)) (-3861 ((|#1| $) 22)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3847 ((|#1| $) 21)) (-3822 ((|#1|) 19 T CONST)) (-1683 (((-839) $) 11)) (-3834 ((|#1| $) 20)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15))) -(((-1021 |#1|) (-138) (-23)) (T -1021)) -((-3874 (*1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-23))))) -(-13 (-1020 |t#1|) (-10 -8 (-15 -3874 ($) -1426))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-597 (-839)) . T) ((-1020 |#1|) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-3680 (((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 (-760 |#1| (-841 |#2|)))))) (-625 (-760 |#1| (-841 |#2|)))) NIL)) (-3690 (((-625 $) (-625 (-760 |#1| (-841 |#2|)))) NIL) (((-625 $) (-625 (-760 |#1| (-841 |#2|))) (-112)) NIL) (((-625 $) (-625 (-760 |#1| (-841 |#2|))) (-112) (-112)) NIL)) (-3982 (((-625 (-841 |#2|)) $) NIL)) (-3707 (((-112) $) NIL)) (-3613 (((-112) $) NIL (|has| |#1| (-544)))) (-2656 (((-112) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) $) NIL)) (-3748 (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-2194 (((-625 (-2 (|:| |val| (-760 |#1| (-841 |#2|))) (|:| -3715 $))) (-760 |#1| (-841 |#2|)) $) NIL)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ (-841 |#2|)) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-3488 (($ (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 (-760 |#1| (-841 |#2|)) "failed") $ (-841 |#2|)) NIL)) (-3101 (($) NIL T CONST)) (-3667 (((-112) $) NIL (|has| |#1| (-544)))) (-3688 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3678 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3697 (((-112) $) NIL (|has| |#1| (-544)))) (-3757 (((-625 (-760 |#1| (-841 |#2|))) (-625 (-760 |#1| (-841 |#2|))) $ (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) (-1 (-112) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)))) NIL)) (-3624 (((-625 (-760 |#1| (-841 |#2|))) (-625 (-760 |#1| (-841 |#2|))) $) NIL (|has| |#1| (-544)))) (-3635 (((-625 (-760 |#1| (-841 |#2|))) (-625 (-760 |#1| (-841 |#2|))) $) NIL (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 (-760 |#1| (-841 |#2|)))) NIL)) (-1895 (($ (-625 (-760 |#1| (-841 |#2|)))) NIL)) (-2936 (((-3 $ "failed") $) NIL)) (-3720 (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-760 |#1| (-841 |#2|)) (-1073))))) (-1416 (($ (-760 |#1| (-841 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-760 |#1| (-841 |#2|)) (-1073)))) (($ (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-760 |#1| (-841 |#2|))) (|:| |den| |#1|)) (-760 |#1| (-841 |#2|)) $) NIL (|has| |#1| (-544)))) (-2668 (((-112) (-760 |#1| (-841 |#2|)) $ (-1 (-112) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)))) NIL)) (-3699 (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-2163 (((-760 |#1| (-841 |#2|)) (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) $ (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-760 |#1| (-841 |#2|)) (-1073)))) (((-760 |#1| (-841 |#2|)) (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) $ (-760 |#1| (-841 |#2|))) NIL (|has| $ (-6 -4353))) (((-760 |#1| (-841 |#2|)) (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $ (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) (-1 (-112) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)))) NIL)) (-2689 (((-2 (|:| -1387 (-625 (-760 |#1| (-841 |#2|)))) (|:| -2508 (-625 (-760 |#1| (-841 |#2|))))) $) NIL)) (-3731 (((-112) (-760 |#1| (-841 |#2|)) $) NIL)) (-3714 (((-112) (-760 |#1| (-841 |#2|)) $) NIL)) (-3741 (((-112) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) $) NIL)) (-3799 (((-625 (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2678 (((-112) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) $) NIL)) (-3565 (((-841 |#2|) $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-760 |#1| (-841 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-760 |#1| (-841 |#2|)) (-1073))))) (-3683 (($ (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) $) NIL)) (-2615 (((-625 (-841 |#2|)) $) NIL)) (-2608 (((-112) (-841 |#2|) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-3674 (((-3 (-760 |#1| (-841 |#2|)) (-625 $)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-3662 (((-625 (-2 (|:| |val| (-760 |#1| (-841 |#2|))) (|:| -3715 $))) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-1437 (((-3 (-760 |#1| (-841 |#2|)) "failed") $) NIL)) (-3685 (((-625 $) (-760 |#1| (-841 |#2|)) $) NIL)) (-3704 (((-3 (-112) (-625 $)) (-760 |#1| (-841 |#2|)) $) NIL)) (-3694 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 $))) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) (-760 |#1| (-841 |#2|)) $) NIL)) (-2860 (((-625 $) (-760 |#1| (-841 |#2|)) $) NIL) (((-625 $) (-625 (-760 |#1| (-841 |#2|))) $) NIL) (((-625 $) (-625 (-760 |#1| (-841 |#2|))) (-625 $)) NIL) (((-625 $) (-760 |#1| (-841 |#2|)) (-625 $)) NIL)) (-3999 (($ (-760 |#1| (-841 |#2|)) $) NIL) (($ (-625 (-760 |#1| (-841 |#2|))) $) NIL)) (-2699 (((-625 (-760 |#1| (-841 |#2|))) $) NIL)) (-3777 (((-112) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) $) NIL)) (-3727 (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-2719 (((-112) $ $) NIL)) (-3655 (((-2 (|:| |num| (-760 |#1| (-841 |#2|))) (|:| |den| |#1|)) (-760 |#1| (-841 |#2|)) $) NIL (|has| |#1| (-544)))) (-3788 (((-112) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) $) NIL)) (-3737 (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 (((-3 (-760 |#1| (-841 |#2|)) "failed") $) NIL)) (-2380 (((-3 (-760 |#1| (-841 |#2|)) "failed") (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL)) (-3657 (((-3 $ "failed") $ (-760 |#1| (-841 |#2|))) NIL)) (-2147 (($ $ (-760 |#1| (-841 |#2|))) NIL) (((-625 $) (-760 |#1| (-841 |#2|)) $) NIL) (((-625 $) (-760 |#1| (-841 |#2|)) (-625 $)) NIL) (((-625 $) (-625 (-760 |#1| (-841 |#2|))) $) NIL) (((-625 $) (-625 (-760 |#1| (-841 |#2|))) (-625 $)) NIL)) (-1888 (((-112) (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-760 |#1| (-841 |#2|))) (-625 (-760 |#1| (-841 |#2|)))) NIL (-12 (|has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|)))) (|has| (-760 |#1| (-841 |#2|)) (-1073)))) (($ $ (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) NIL (-12 (|has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|)))) (|has| (-760 |#1| (-841 |#2|)) (-1073)))) (($ $ (-289 (-760 |#1| (-841 |#2|)))) NIL (-12 (|has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|)))) (|has| (-760 |#1| (-841 |#2|)) (-1073)))) (($ $ (-625 (-289 (-760 |#1| (-841 |#2|))))) NIL (-12 (|has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|)))) (|has| (-760 |#1| (-841 |#2|)) (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-4276 (((-751) $) NIL)) (-2840 (((-751) (-760 |#1| (-841 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-760 |#1| (-841 |#2|)) (-1073)))) (((-751) (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-760 |#1| (-841 |#2|)) (-598 (-528))))) (-1695 (($ (-625 (-760 |#1| (-841 |#2|)))) NIL)) (-3718 (($ $ (-841 |#2|)) NIL)) (-2595 (($ $ (-841 |#2|)) NIL)) (-3709 (($ $) NIL)) (-2584 (($ $ (-841 |#2|)) NIL)) (-1683 (((-839) $) NIL) (((-625 (-760 |#1| (-841 |#2|))) $) NIL)) (-3647 (((-751) $) NIL (|has| (-841 |#2|) (-363)))) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 (-760 |#1| (-841 |#2|))))) "failed") (-625 (-760 |#1| (-841 |#2|))) (-1 (-112) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 (-760 |#1| (-841 |#2|))))) "failed") (-625 (-760 |#1| (-841 |#2|))) (-1 (-112) (-760 |#1| (-841 |#2|))) (-1 (-112) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)))) NIL)) (-3767 (((-112) $ (-1 (-112) (-760 |#1| (-841 |#2|)) (-625 (-760 |#1| (-841 |#2|))))) NIL)) (-3651 (((-625 $) (-760 |#1| (-841 |#2|)) $) NIL) (((-625 $) (-760 |#1| (-841 |#2|)) (-625 $)) NIL) (((-625 $) (-625 (-760 |#1| (-841 |#2|))) $) NIL) (((-625 $) (-625 (-760 |#1| (-841 |#2|))) (-625 $)) NIL)) (-1900 (((-112) (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3669 (((-625 (-841 |#2|)) $) NIL)) (-3724 (((-112) (-760 |#1| (-841 |#2|)) $) NIL)) (-4168 (((-112) (-841 |#2|) $) NIL)) (-2281 (((-112) $ $) NIL)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-1022 |#1| |#2|) (-13 (-1045 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|))) (-10 -8 (-15 -3690 ((-625 $) (-625 (-760 |#1| (-841 |#2|))) (-112) (-112))))) (-446) (-625 (-1149))) (T -1022)) -((-3690 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-625 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-625 (-1149))) (-5 *2 (-625 (-1022 *5 *6))) (-5 *1 (-1022 *5 *6))))) -(-13 (-1045 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|))) (-10 -8 (-15 -3690 ((-625 $) (-625 (-760 |#1| (-841 |#2|))) (-112) (-112))))) -((-3888 (((-1 (-552)) (-1067 (-552))) 33)) (-3941 (((-552) (-552) (-552) (-552) (-552)) 30)) (-3914 (((-1 (-552)) |RationalNumber|) NIL)) (-3928 (((-1 (-552)) |RationalNumber|) NIL)) (-3901 (((-1 (-552)) (-552) |RationalNumber|) NIL))) -(((-1023) (-10 -7 (-15 -3888 ((-1 (-552)) (-1067 (-552)))) (-15 -3901 ((-1 (-552)) (-552) |RationalNumber|)) (-15 -3914 ((-1 (-552)) |RationalNumber|)) (-15 -3928 ((-1 (-552)) |RationalNumber|)) (-15 -3941 ((-552) (-552) (-552) (-552) (-552))))) (T -1023)) -((-3941 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1023)))) (-3928 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1023)))) (-3914 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1023)))) (-3901 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1023)) (-5 *3 (-552)))) (-3888 (*1 *2 *3) (-12 (-5 *3 (-1067 (-552))) (-5 *2 (-1 (-552))) (-5 *1 (-1023))))) -(-10 -7 (-15 -3888 ((-1 (-552)) (-1067 (-552)))) (-15 -3901 ((-1 (-552)) (-552) |RationalNumber|)) (-15 -3914 ((-1 (-552)) |RationalNumber|)) (-15 -3928 ((-1 (-552)) |RationalNumber|)) (-15 -3941 ((-552) (-552) (-552) (-552) (-552)))) -((-1683 (((-839) $) NIL) (($ (-552)) 10))) -(((-1024 |#1|) (-10 -8 (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|))) (-1025)) (T -1024)) -NIL -(-10 -8 (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-1025) (-138)) (T -1025)) -((-4141 (*1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-751)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1025))))) -(-13 (-1032) (-707) (-628 $) (-10 -8 (-15 -4141 ((-751))) (-15 -1683 ($ (-552))) (-6 -4350))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 $) . T) ((-707) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-3953 (((-402 (-928 |#2|)) (-625 |#2|) (-625 |#2|) (-751) (-751)) 46))) -(((-1026 |#1| |#2|) (-10 -7 (-15 -3953 ((-402 (-928 |#2|)) (-625 |#2|) (-625 |#2|) (-751) (-751)))) (-1149) (-358)) (T -1026)) -((-3953 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-625 *6)) (-5 *4 (-751)) (-4 *6 (-358)) (-5 *2 (-402 (-928 *6))) (-5 *1 (-1026 *5 *6)) (-14 *5 (-1149))))) -(-10 -7 (-15 -3953 ((-402 (-928 |#2|)) (-625 |#2|) (-625 |#2|) (-751) (-751)))) -((-4089 (((-112) $) 29)) (-4114 (((-112) $) 16)) (-1773 (((-751) $) 13)) (-1784 (((-751) $) 14)) (-4102 (((-112) $) 26)) (-4077 (((-112) $) 31))) -(((-1027 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1784 ((-751) |#1|)) (-15 -1773 ((-751) |#1|)) (-15 -4077 ((-112) |#1|)) (-15 -4089 ((-112) |#1|)) (-15 -4102 ((-112) |#1|)) (-15 -4114 ((-112) |#1|))) (-1028 |#2| |#3| |#4| |#5| |#6|) (-751) (-751) (-1025) (-234 |#3| |#4|) (-234 |#2| |#4|)) (T -1027)) -NIL -(-10 -8 (-15 -1784 ((-751) |#1|)) (-15 -1773 ((-751) |#1|)) (-15 -4077 ((-112) |#1|)) (-15 -4089 ((-112) |#1|)) (-15 -4102 ((-112) |#1|)) (-15 -4114 ((-112) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-4089 (((-112) $) 51)) (-2077 (((-3 $ "failed") $ $) 19)) (-4114 (((-112) $) 53)) (-3495 (((-112) $ (-751)) 61)) (-3101 (($) 17 T CONST)) (-3991 (($ $) 34 (|has| |#3| (-302)))) (-4015 ((|#4| $ (-552)) 39)) (-3442 (((-751) $) 33 (|has| |#3| (-544)))) (-3631 ((|#3| $ (-552) (-552)) 41)) (-3799 (((-625 |#3|) $) 68 (|has| $ (-6 -4353)))) (-3979 (((-751) $) 32 (|has| |#3| (-544)))) (-3967 (((-625 |#5|) $) 31 (|has| |#3| (-544)))) (-1773 (((-751) $) 45)) (-1784 (((-751) $) 44)) (-2909 (((-112) $ (-751)) 60)) (-4063 (((-552) $) 49)) (-4038 (((-552) $) 47)) (-3730 (((-625 |#3|) $) 69 (|has| $ (-6 -4353)))) (-2893 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1073)) (|has| $ (-6 -4353))))) (-4050 (((-552) $) 48)) (-4027 (((-552) $) 46)) (-3907 (($ (-625 (-625 |#3|))) 54)) (-3683 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3803 (((-625 (-625 |#3|)) $) 43)) (-2878 (((-112) $ (-751)) 59)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-2802 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-544)))) (-1888 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#3|) (-625 |#3|)) 75 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ (-289 |#3|)) 73 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ (-625 (-289 |#3|))) 72 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073))))) (-3504 (((-112) $ $) 55)) (-1916 (((-112) $) 58)) (-3600 (($) 57)) (-2154 ((|#3| $ (-552) (-552)) 42) ((|#3| $ (-552) (-552) |#3|) 40)) (-4102 (((-112) $) 52)) (-2840 (((-751) |#3| $) 70 (-12 (|has| |#3| (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4353)))) (-1871 (($ $) 56)) (-4004 ((|#5| $ (-552)) 38)) (-1683 (((-839) $) 11)) (-1900 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4353)))) (-4077 (((-112) $) 50)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#3|) 35 (|has| |#3| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-1471 (((-751) $) 62 (|has| $ (-6 -4353))))) -(((-1028 |#1| |#2| |#3| |#4| |#5|) (-138) (-751) (-751) (-1025) (-234 |t#2| |t#3|) (-234 |t#1| |t#3|)) (T -1028)) -((-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) (-3907 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 *5))) (-4 *5 (-1025)) (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-4102 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-4089 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-4077 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-4063 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-552)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-552)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-552)))) (-4027 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-552)))) (-1773 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-751)))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-751)))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-625 (-625 *5))))) (-2154 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)) (-4 *2 (-1025)))) (-3631 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)) (-4 *2 (-1025)))) (-2154 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-552)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) (-4 *2 (-1025)) (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)))) (-4015 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1028 *4 *5 *6 *2 *7)) (-4 *6 (-1025)) (-4 *7 (-234 *4 *6)) (-4 *2 (-234 *5 *6)))) (-4004 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1028 *4 *5 *6 *7 *2)) (-4 *6 (-1025)) (-4 *7 (-234 *5 *6)) (-4 *2 (-234 *4 *6)))) (-1996 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) (-2802 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1028 *3 *4 *2 *5 *6)) (-4 *2 (-1025)) (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-544)))) (-2404 (*1 *1 *1 *2) (-12 (-4 *1 (-1028 *3 *4 *2 *5 *6)) (-4 *2 (-1025)) (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-358)))) (-3991 (*1 *1 *1) (-12 (-4 *1 (-1028 *2 *3 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *2 *4)) (-4 *4 (-302)))) (-3442 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-544)) (-5 *2 (-751)))) (-3979 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-544)) (-5 *2 (-751)))) (-3967 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-544)) (-5 *2 (-625 *7))))) -(-13 (-111 |t#3| |t#3|) (-483 |t#3|) (-10 -8 (-6 -4353) (IF (|has| |t#3| (-170)) (-6 (-698 |t#3|)) |%noBranch|) (-15 -3907 ($ (-625 (-625 |t#3|)))) (-15 -4114 ((-112) $)) (-15 -4102 ((-112) $)) (-15 -4089 ((-112) $)) (-15 -4077 ((-112) $)) (-15 -4063 ((-552) $)) (-15 -4050 ((-552) $)) (-15 -4038 ((-552) $)) (-15 -4027 ((-552) $)) (-15 -1773 ((-751) $)) (-15 -1784 ((-751) $)) (-15 -3803 ((-625 (-625 |t#3|)) $)) (-15 -2154 (|t#3| $ (-552) (-552))) (-15 -3631 (|t#3| $ (-552) (-552))) (-15 -2154 (|t#3| $ (-552) (-552) |t#3|)) (-15 -4015 (|t#4| $ (-552))) (-15 -4004 (|t#5| $ (-552))) (-15 -1996 ($ (-1 |t#3| |t#3|) $)) (-15 -1996 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-544)) (-15 -2802 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-358)) (-15 -2404 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-302)) (-15 -3991 ($ $)) |%noBranch|) (IF (|has| |t#3| (-544)) (PROGN (-15 -3442 ((-751) $)) (-15 -3979 ((-751) $)) (-15 -3967 ((-625 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-101) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-597 (-839)) . T) ((-304 |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073))) ((-483 |#3|) . T) ((-507 |#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073))) ((-628 |#3|) . T) ((-698 |#3|) |has| |#3| (-170)) ((-1031 |#3|) . T) ((-1073) . T) ((-1186) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4089 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4114 (((-112) $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-3101 (($) NIL T CONST)) (-3991 (($ $) 43 (|has| |#3| (-302)))) (-4015 (((-236 |#2| |#3|) $ (-552)) 32)) (-4128 (($ (-669 |#3|)) 41)) (-3442 (((-751) $) 45 (|has| |#3| (-544)))) (-3631 ((|#3| $ (-552) (-552)) NIL)) (-3799 (((-625 |#3|) $) NIL (|has| $ (-6 -4353)))) (-3979 (((-751) $) 47 (|has| |#3| (-544)))) (-3967 (((-625 (-236 |#1| |#3|)) $) 51 (|has| |#3| (-544)))) (-1773 (((-751) $) NIL)) (-1784 (((-751) $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-4063 (((-552) $) NIL)) (-4038 (((-552) $) NIL)) (-3730 (((-625 |#3|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1073))))) (-4050 (((-552) $) NIL)) (-4027 (((-552) $) NIL)) (-3907 (($ (-625 (-625 |#3|))) 27)) (-3683 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3803 (((-625 (-625 |#3|)) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2802 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-544)))) (-1888 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#3|) (-625 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ (-289 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ (-625 (-289 |#3|))) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#3| $ (-552) (-552)) NIL) ((|#3| $ (-552) (-552) |#3|) NIL)) (-3904 (((-133)) 54 (|has| |#3| (-358)))) (-4102 (((-112) $) NIL)) (-2840 (((-751) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1073)))) (((-751) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) 63 (|has| |#3| (-598 (-528))))) (-4004 (((-236 |#1| |#3|) $ (-552)) 36)) (-1683 (((-839) $) 16) (((-669 |#3|) $) 38)) (-1900 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-4077 (((-112) $) NIL)) (-2089 (($) 13 T CONST)) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ |#3|) NIL (|has| |#3| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-1029 |#1| |#2| |#3|) (-13 (-1028 |#1| |#2| |#3| (-236 |#2| |#3|) (-236 |#1| |#3|)) (-597 (-669 |#3|)) (-10 -8 (IF (|has| |#3| (-358)) (-6 (-1239 |#3|)) |%noBranch|) (IF (|has| |#3| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) (-15 -4128 ($ (-669 |#3|))) (-15 -1683 ((-669 |#3|) $)))) (-751) (-751) (-1025)) (T -1029)) -((-1683 (*1 *2 *1) (-12 (-5 *2 (-669 *5)) (-5 *1 (-1029 *3 *4 *5)) (-14 *3 (-751)) (-14 *4 (-751)) (-4 *5 (-1025)))) (-4128 (*1 *1 *2) (-12 (-5 *2 (-669 *5)) (-4 *5 (-1025)) (-5 *1 (-1029 *3 *4 *5)) (-14 *3 (-751)) (-14 *4 (-751))))) -(-13 (-1028 |#1| |#2| |#3| (-236 |#2| |#3|) (-236 |#1| |#3|)) (-597 (-669 |#3|)) (-10 -8 (IF (|has| |#3| (-358)) (-6 (-1239 |#3|)) |%noBranch|) (IF (|has| |#3| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|) (-15 -4128 ($ (-669 |#3|))) (-15 -1683 ((-669 |#3|) $)))) -((-2163 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-1996 ((|#10| (-1 |#7| |#3|) |#6|) 32))) -(((-1030 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1996 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2163 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-751) (-751) (-1025) (-234 |#2| |#3|) (-234 |#1| |#3|) (-1028 |#1| |#2| |#3| |#4| |#5|) (-1025) (-234 |#2| |#7|) (-234 |#1| |#7|) (-1028 |#1| |#2| |#7| |#8| |#9|)) (T -1030)) -((-2163 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1025)) (-4 *2 (-1025)) (-14 *5 (-751)) (-14 *6 (-751)) (-4 *8 (-234 *6 *7)) (-4 *9 (-234 *5 *7)) (-4 *10 (-234 *6 *2)) (-4 *11 (-234 *5 *2)) (-5 *1 (-1030 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1028 *5 *6 *7 *8 *9)) (-4 *12 (-1028 *5 *6 *2 *10 *11)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1025)) (-4 *10 (-1025)) (-14 *5 (-751)) (-14 *6 (-751)) (-4 *8 (-234 *6 *7)) (-4 *9 (-234 *5 *7)) (-4 *2 (-1028 *5 *6 *10 *11 *12)) (-5 *1 (-1030 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1028 *5 *6 *7 *8 *9)) (-4 *11 (-234 *6 *10)) (-4 *12 (-234 *5 *10))))) -(-10 -7 (-15 -1996 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2163 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ |#1|) 23))) -(((-1031 |#1|) (-138) (-1032)) (T -1031)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1032))))) +((-3096 (($ $ (-1068 $)) 7) (($ $ (-1152)) 6))) +(((-938) (-137)) (T -938)) +((-3096 (*1 *1 *1 *2) (-12 (-5 *2 (-1068 *1)) (-4 *1 (-938)))) (-3096 (*1 *1 *1 *2) (-12 (-4 *1 (-938)) (-5 *2 (-1152))))) +(-13 (-10 -8 (-15 -3096 ($ $ (-1152))) (-15 -3096 ($ $ (-1068 $))))) +((-2740 (((-2 (|:| -3069 (-627 (-552))) (|:| |poly| (-627 (-1148 |#1|))) (|:| |prim| (-1148 |#1|))) (-627 (-931 |#1|)) (-627 (-1152)) (-1152)) 25) (((-2 (|:| -3069 (-627 (-552))) (|:| |poly| (-627 (-1148 |#1|))) (|:| |prim| (-1148 |#1|))) (-627 (-931 |#1|)) (-627 (-1152))) 26) (((-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) (|:| |prim| (-1148 |#1|))) (-931 |#1|) (-1152) (-931 |#1|) (-1152)) 43))) +(((-939 |#1|) (-10 -7 (-15 -2740 ((-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) (|:| |prim| (-1148 |#1|))) (-931 |#1|) (-1152) (-931 |#1|) (-1152))) (-15 -2740 ((-2 (|:| -3069 (-627 (-552))) (|:| |poly| (-627 (-1148 |#1|))) (|:| |prim| (-1148 |#1|))) (-627 (-931 |#1|)) (-627 (-1152)))) (-15 -2740 ((-2 (|:| -3069 (-627 (-552))) (|:| |poly| (-627 (-1148 |#1|))) (|:| |prim| (-1148 |#1|))) (-627 (-931 |#1|)) (-627 (-1152)) (-1152)))) (-13 (-357) (-144))) (T -939)) +((-2740 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 (-931 *6))) (-5 *4 (-627 (-1152))) (-5 *5 (-1152)) (-4 *6 (-13 (-357) (-144))) (-5 *2 (-2 (|:| -3069 (-627 (-552))) (|:| |poly| (-627 (-1148 *6))) (|:| |prim| (-1148 *6)))) (-5 *1 (-939 *6)))) (-2740 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-627 (-1152))) (-4 *5 (-13 (-357) (-144))) (-5 *2 (-2 (|:| -3069 (-627 (-552))) (|:| |poly| (-627 (-1148 *5))) (|:| |prim| (-1148 *5)))) (-5 *1 (-939 *5)))) (-2740 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-931 *5)) (-5 *4 (-1152)) (-4 *5 (-13 (-357) (-144))) (-5 *2 (-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) (|:| |prim| (-1148 *5)))) (-5 *1 (-939 *5))))) +(-10 -7 (-15 -2740 ((-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) (|:| |prim| (-1148 |#1|))) (-931 |#1|) (-1152) (-931 |#1|) (-1152))) (-15 -2740 ((-2 (|:| -3069 (-627 (-552))) (|:| |poly| (-627 (-1148 |#1|))) (|:| |prim| (-1148 |#1|))) (-627 (-931 |#1|)) (-627 (-1152)))) (-15 -2740 ((-2 (|:| -3069 (-627 (-552))) (|:| |poly| (-627 (-1148 |#1|))) (|:| |prim| (-1148 |#1|))) (-627 (-931 |#1|)) (-627 (-1152)) (-1152)))) +((-2628 (((-627 |#1|) |#1| |#1|) 42)) (-1633 (((-111) |#1|) 39)) (-3006 ((|#1| |#1|) 65)) (-1286 ((|#1| |#1|) 64))) +(((-940 |#1|) (-10 -7 (-15 -1633 ((-111) |#1|)) (-15 -1286 (|#1| |#1|)) (-15 -3006 (|#1| |#1|)) (-15 -2628 ((-627 |#1|) |#1| |#1|))) (-537)) (T -940)) +((-2628 (*1 *2 *3 *3) (-12 (-5 *2 (-627 *3)) (-5 *1 (-940 *3)) (-4 *3 (-537)))) (-3006 (*1 *2 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-537)))) (-1286 (*1 *2 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-537)))) (-1633 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-940 *3)) (-4 *3 (-537))))) +(-10 -7 (-15 -1633 ((-111) |#1|)) (-15 -1286 (|#1| |#1|)) (-15 -3006 (|#1| |#1|)) (-15 -2628 ((-627 |#1|) |#1| |#1|))) +((-1277 (((-1240) (-842)) 9))) +(((-941) (-10 -7 (-15 -1277 ((-1240) (-842))))) (T -941)) +((-1277 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1240)) (-5 *1 (-941))))) +(-10 -7 (-15 -1277 ((-1240) (-842)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 61 (|has| |#1| (-544)))) (-3245 (($ $) 62 (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 28)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) NIL)) (-2014 (($ $) 24)) (-2040 (((-3 $ "failed") $) 35)) (-1375 (($ $) NIL (|has| |#1| (-445)))) (-2061 (($ $ |#1| |#2| $) 48)) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) 16)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| |#2|) NIL)) (-3465 ((|#2| $) 19)) (-3813 (($ (-1 |#2| |#2|) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1981 (($ $) 23)) (-1993 ((|#1| $) 21)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) 40)) (-1970 ((|#1| $) NIL)) (-1839 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-129)) (|has| |#1| (-544))))) (-2761 (((-3 $ "failed") $ $) 74 (|has| |#1| (-544))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-544)))) (-3567 ((|#2| $) 17)) (-3495 ((|#1| $) NIL (|has| |#1| (-445)))) (-1477 (((-842) $) NIL) (($ (-552)) 39) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) 34) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552))))))) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ |#2|) 31)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) 15)) (-3417 (($ $ $ (-754)) 57 (|has| |#1| (-169)))) (-3778 (((-111) $ $) 67 (|has| |#1| (-544)))) (-1922 (($) 22 T CONST)) (-1933 (($) 12 T CONST)) (-2292 (((-111) $ $) 66)) (-2407 (($ $ |#1|) 75 (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) 54) (($ $ (-754)) 52)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-942 |#1| |#2|) (-13 (-320 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-544)) (IF (|has| |#2| (-129)) (-15 -1839 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4364)) (-6 -4364) |%noBranch|))) (-1028) (-775)) (T -942)) +((-1839 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-942 *3 *2)) (-4 *2 (-129)) (-4 *3 (-544)) (-4 *3 (-1028)) (-4 *2 (-775))))) +(-13 (-320 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-544)) (IF (|has| |#2| (-129)) (-15 -1839 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4364)) (-6 -4364) |%noBranch|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL (-1559 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-776)) (|has| |#2| (-776)))))) (-2796 (($ $ $) 63 (-12 (|has| |#1| (-776)) (|has| |#2| (-776))))) (-4136 (((-3 $ "failed") $ $) 50 (-1559 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-776)) (|has| |#2| (-776)))))) (-3307 (((-754)) 34 (-12 (|has| |#1| (-362)) (|has| |#2| (-362))))) (-3035 ((|#2| $) 21)) (-2754 ((|#1| $) 20)) (-3887 (($) NIL (-1559 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-709)) (|has| |#2| (-709))) (-12 (|has| |#1| (-776)) (|has| |#2| (-776)))) CONST)) (-2040 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-709)) (|has| |#2| (-709)))))) (-1279 (($) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-362))))) (-2624 (((-111) $) NIL (-1559 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-709)) (|has| |#2| (-709)))))) (-1816 (($ $ $) NIL (-1559 (-12 (|has| |#1| (-776)) (|has| |#2| (-776))) (-12 (|has| |#1| (-830)) (|has| |#2| (-830)))))) (-4093 (($ $ $) NIL (-1559 (-12 (|has| |#1| (-776)) (|has| |#2| (-776))) (-12 (|has| |#1| (-830)) (|has| |#2| (-830)))))) (-4308 (($ |#1| |#2|) 19)) (-2886 (((-900) $) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-362))))) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 37 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))))) (-4153 (($ (-900)) NIL (-12 (|has| |#1| (-362)) (|has| |#2| (-362))))) (-1498 (((-1096) $) NIL)) (-2616 (($ $ $) NIL (-12 (|has| |#1| (-466)) (|has| |#2| (-466))))) (-2493 (($ $ $) NIL (-12 (|has| |#1| (-466)) (|has| |#2| (-466))))) (-1477 (((-842) $) 14)) (-1922 (($) 40 (-1559 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-776)) (|has| |#2| (-776)))) CONST)) (-1933 (($) 24 (-1559 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-709)) (|has| |#2| (-709)))) CONST)) (-2351 (((-111) $ $) NIL (-1559 (-12 (|has| |#1| (-776)) (|has| |#2| (-776))) (-12 (|has| |#1| (-830)) (|has| |#2| (-830)))))) (-2329 (((-111) $ $) NIL (-1559 (-12 (|has| |#1| (-776)) (|has| |#2| (-776))) (-12 (|has| |#1| (-830)) (|has| |#2| (-830)))))) (-2292 (((-111) $ $) 18)) (-2340 (((-111) $ $) NIL (-1559 (-12 (|has| |#1| (-776)) (|has| |#2| (-776))) (-12 (|has| |#1| (-830)) (|has| |#2| (-830)))))) (-2316 (((-111) $ $) 66 (-1559 (-12 (|has| |#1| (-776)) (|has| |#2| (-776))) (-12 (|has| |#1| (-830)) (|has| |#2| (-830)))))) (-2407 (($ $ $) NIL (-12 (|has| |#1| (-466)) (|has| |#2| (-466))))) (-2396 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2384 (($ $ $) 43 (-1559 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-776)) (|has| |#2| (-776)))))) (** (($ $ (-552)) NIL (-12 (|has| |#1| (-466)) (|has| |#2| (-466)))) (($ $ (-754)) 31 (-1559 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-709)) (|has| |#2| (-709))))) (($ $ (-900)) NIL (-1559 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-709)) (|has| |#2| (-709)))))) (* (($ (-552) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-754) $) 46 (-1559 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-776)) (|has| |#2| (-776))))) (($ (-900) $) NIL (-1559 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-129)) (|has| |#2| (-129))) (-12 (|has| |#1| (-776)) (|has| |#2| (-776))))) (($ $ $) 27 (-1559 (-12 (|has| |#1| (-466)) (|has| |#2| (-466))) (-12 (|has| |#1| (-709)) (|has| |#2| (-709))))))) +(((-943 |#1| |#2|) (-13 (-1076) (-10 -8 (IF (|has| |#1| (-362)) (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-709)) (IF (|has| |#2| (-709)) (-6 (-709)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-129)) (IF (|has| |#2| (-129)) (-6 (-129)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-466)) (IF (|has| |#2| (-466)) (-6 (-466)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-776)) (IF (|has| |#2| (-776)) (-6 (-776)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-830)) (IF (|has| |#2| (-830)) (-6 (-830)) |%noBranch|) |%noBranch|) (-15 -4308 ($ |#1| |#2|)) (-15 -2754 (|#1| $)) (-15 -3035 (|#2| $)))) (-1076) (-1076)) (T -943)) +((-4308 (*1 *1 *2 *3) (-12 (-5 *1 (-943 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076)))) (-2754 (*1 *2 *1) (-12 (-4 *2 (-1076)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1076)))) (-3035 (*1 *2 *1) (-12 (-4 *2 (-1076)) (-5 *1 (-943 *3 *2)) (-4 *3 (-1076))))) +(-13 (-1076) (-10 -8 (IF (|has| |#1| (-362)) (IF (|has| |#2| (-362)) (-6 (-362)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-709)) (IF (|has| |#2| (-709)) (-6 (-709)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-129)) (IF (|has| |#2| (-129)) (-6 (-129)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-466)) (IF (|has| |#2| (-466)) (-6 (-466)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-776)) (IF (|has| |#2| (-776)) (-6 (-776)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-830)) (IF (|has| |#2| (-830)) (-6 (-830)) |%noBranch|) |%noBranch|) (-15 -4308 ($ |#1| |#2|)) (-15 -2754 (|#1| $)) (-15 -3035 (|#2| $)))) +((-4288 (((-1080) $) 12)) (-1481 (($ (-1152) (-1080)) 13)) (-3112 (((-1152) $) 10)) (-1477 (((-842) $) 22))) +(((-944) (-13 (-599 (-842)) (-10 -8 (-15 -3112 ((-1152) $)) (-15 -4288 ((-1080) $)) (-15 -1481 ($ (-1152) (-1080)))))) (T -944)) +((-3112 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-944)))) (-4288 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-944)))) (-1481 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1080)) (-5 *1 (-944))))) +(-13 (-599 (-842)) (-10 -8 (-15 -3112 ((-1152) $)) (-15 -4288 ((-1080) $)) (-15 -1481 ($ (-1152) (-1080))))) +((-1465 (((-111) $ $) NIL)) (-1853 (((-1078 (-1152)) $) 19)) (-3868 (((-111) $) 26)) (-4344 (((-1152) $) 27)) (-3191 (((-111) $) 24)) (-2362 ((|#1| $) 25)) (-2023 (((-852 $ $) $) 34)) (-3707 (((-111) $) 33)) (-1881 (($ $ $) 12)) (-4221 (($ $) 29)) (-4029 (((-111) $) 28)) (-1681 (($ $) 10)) (-1595 (((-1134) $) NIL)) (-1536 (((-852 $ $) $) 36)) (-2260 (((-111) $) 35)) (-2516 (($ $ $) 13)) (-1498 (((-1096) $) NIL)) (-2673 (((-852 $ $) $) 38)) (-4223 (((-111) $) 37)) (-1655 (($ $ $) 14)) (-1477 (((-842) $) 40) (($ |#1|) 7) (($ (-1152)) 9)) (-3460 (((-852 $ $) $) 32)) (-2029 (((-111) $) 30)) (-2520 (($ $ $) 11)) (-2292 (((-111) $ $) NIL))) +(((-945 |#1|) (-13 (-946) (-10 -8 (-15 -1477 ($ |#1|)) (-15 -1477 ($ (-1152))) (-15 -1853 ((-1078 (-1152)) $)) (-15 -3191 ((-111) $)) (-15 -2362 (|#1| $)) (-15 -3868 ((-111) $)) (-15 -4344 ((-1152) $)) (-15 -4029 ((-111) $)) (-15 -4221 ($ $)) (-15 -2029 ((-111) $)) (-15 -3460 ((-852 $ $) $)) (-15 -3707 ((-111) $)) (-15 -2023 ((-852 $ $) $)) (-15 -2260 ((-111) $)) (-15 -1536 ((-852 $ $) $)) (-15 -4223 ((-111) $)) (-15 -2673 ((-852 $ $) $)))) (-946)) (T -945)) +((-1477 (*1 *1 *2) (-12 (-5 *1 (-945 *2)) (-4 *2 (-946)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-1078 (-1152))) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-3191 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-2362 (*1 *2 *1) (-12 (-5 *1 (-945 *2)) (-4 *2 (-946)))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-4344 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-4029 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-4221 (*1 *1 *1) (-12 (-5 *1 (-945 *2)) (-4 *2 (-946)))) (-2029 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-3460 (*1 *2 *1) (-12 (-5 *2 (-852 (-945 *3) (-945 *3))) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-3707 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-852 (-945 *3) (-945 *3))) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-2260 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-1536 (*1 *2 *1) (-12 (-5 *2 (-852 (-945 *3) (-945 *3))) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-4223 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) (-2673 (*1 *2 *1) (-12 (-5 *2 (-852 (-945 *3) (-945 *3))) (-5 *1 (-945 *3)) (-4 *3 (-946))))) +(-13 (-946) (-10 -8 (-15 -1477 ($ |#1|)) (-15 -1477 ($ (-1152))) (-15 -1853 ((-1078 (-1152)) $)) (-15 -3191 ((-111) $)) (-15 -2362 (|#1| $)) (-15 -3868 ((-111) $)) (-15 -4344 ((-1152) $)) (-15 -4029 ((-111) $)) (-15 -4221 ($ $)) (-15 -2029 ((-111) $)) (-15 -3460 ((-852 $ $) $)) (-15 -3707 ((-111) $)) (-15 -2023 ((-852 $ $) $)) (-15 -2260 ((-111) $)) (-15 -1536 ((-852 $ $) $)) (-15 -4223 ((-111) $)) (-15 -2673 ((-852 $ $) $)))) +((-1465 (((-111) $ $) 7)) (-1881 (($ $ $) 15)) (-1681 (($ $) 17)) (-1595 (((-1134) $) 9)) (-2516 (($ $ $) 14)) (-1498 (((-1096) $) 10)) (-1655 (($ $ $) 13)) (-1477 (((-842) $) 11)) (-2520 (($ $ $) 16)) (-2292 (((-111) $ $) 6))) +(((-946) (-137)) (T -946)) +((-1681 (*1 *1 *1) (-4 *1 (-946))) (-2520 (*1 *1 *1 *1) (-4 *1 (-946))) (-1881 (*1 *1 *1 *1) (-4 *1 (-946))) (-2516 (*1 *1 *1 *1) (-4 *1 (-946))) (-1655 (*1 *1 *1 *1) (-4 *1 (-946)))) +(-13 (-1076) (-10 -8 (-15 -1681 ($ $)) (-15 -2520 ($ $ $)) (-15 -1881 ($ $ $)) (-15 -2516 ($ $ $)) (-15 -1655 ($ $ $)))) +(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) 8)) (-3887 (($) 7 T CONST)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-1438 (($ $ $) 43)) (-3759 (($ $ $) 44)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4093 ((|#1| $) 45)) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-4165 ((|#1| $) 39)) (-3954 (($ |#1| $) 40)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) 42)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-947 |#1|) (-137) (-830)) (T -947)) +((-4093 (*1 *2 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-830)))) (-3759 (*1 *1 *1 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-830)))) (-1438 (*1 *1 *1 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-830))))) +(-13 (-106 |t#1|) (-10 -8 (-6 -4366) (-15 -4093 (|t#1| $)) (-15 -3759 ($ $ $)) (-15 -1438 ($ $ $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) +((-3332 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1323 |#2|)) |#2| |#2|) 85)) (-1340 ((|#2| |#2| |#2|) 83)) (-1742 (((-2 (|:| |coef2| |#2|) (|:| -1323 |#2|)) |#2| |#2|) 87)) (-3382 (((-2 (|:| |coef1| |#2|) (|:| -1323 |#2|)) |#2| |#2|) 89)) (-4316 (((-2 (|:| |coef2| |#2|) (|:| -2006 |#1|)) |#2| |#2|) 107 (|has| |#1| (-445)))) (-3718 (((-2 (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|) 46)) (-3645 (((-2 (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|) 64)) (-3317 (((-2 (|:| |coef1| |#2|) (|:| -3116 |#1|)) |#2| |#2|) 66)) (-3716 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-2297 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754)) 71)) (-1562 (((-2 (|:| |coef2| |#2|) (|:| -1637 |#1|)) |#2|) 97)) (-2460 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754)) 74)) (-2282 (((-627 (-754)) |#2| |#2|) 82)) (-3350 ((|#1| |#2| |#2|) 42)) (-2706 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2006 |#1|)) |#2| |#2|) 105 (|has| |#1| (-445)))) (-2006 ((|#1| |#2| |#2|) 103 (|has| |#1| (-445)))) (-1992 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|) 44)) (-2017 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|) 63)) (-3116 ((|#1| |#2| |#2|) 61)) (-2148 (((-2 (|:| -3069 |#1|) (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2|) 35)) (-3875 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-2094 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-4318 ((|#2| |#2| |#2|) 75)) (-3673 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754)) 69)) (-1952 ((|#2| |#2| |#2| (-754)) 67)) (-1323 ((|#2| |#2| |#2|) 111 (|has| |#1| (-445)))) (-2761 (((-1235 |#2|) (-1235 |#2|) |#1|) 21)) (-3963 (((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2|) 39)) (-1910 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1637 |#1|)) |#2|) 95)) (-1637 ((|#1| |#2|) 92)) (-3739 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754)) 73)) (-2069 ((|#2| |#2| |#2| (-754)) 72)) (-3095 (((-627 |#2|) |#2| |#2|) 80)) (-4126 ((|#2| |#2| |#1| |#1| (-754)) 50)) (-1587 ((|#1| |#1| |#1| (-754)) 49)) (* (((-1235 |#2|) |#1| (-1235 |#2|)) 16))) +(((-948 |#1| |#2|) (-10 -7 (-15 -3116 (|#1| |#2| |#2|)) (-15 -2017 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|)) (-15 -3645 ((-2 (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|)) (-15 -3317 ((-2 (|:| |coef1| |#2|) (|:| -3116 |#1|)) |#2| |#2|)) (-15 -1952 (|#2| |#2| |#2| (-754))) (-15 -3673 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754))) (-15 -2297 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754))) (-15 -2069 (|#2| |#2| |#2| (-754))) (-15 -3739 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754))) (-15 -2460 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754))) (-15 -4318 (|#2| |#2| |#2|)) (-15 -2094 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3716 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1340 (|#2| |#2| |#2|)) (-15 -3332 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1323 |#2|)) |#2| |#2|)) (-15 -1742 ((-2 (|:| |coef2| |#2|) (|:| -1323 |#2|)) |#2| |#2|)) (-15 -3382 ((-2 (|:| |coef1| |#2|) (|:| -1323 |#2|)) |#2| |#2|)) (-15 -1637 (|#1| |#2|)) (-15 -1910 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1637 |#1|)) |#2|)) (-15 -1562 ((-2 (|:| |coef2| |#2|) (|:| -1637 |#1|)) |#2|)) (-15 -3095 ((-627 |#2|) |#2| |#2|)) (-15 -2282 ((-627 (-754)) |#2| |#2|)) (IF (|has| |#1| (-445)) (PROGN (-15 -2006 (|#1| |#2| |#2|)) (-15 -2706 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2006 |#1|)) |#2| |#2|)) (-15 -4316 ((-2 (|:| |coef2| |#2|) (|:| -2006 |#1|)) |#2| |#2|)) (-15 -1323 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1235 |#2|) |#1| (-1235 |#2|))) (-15 -2761 ((-1235 |#2|) (-1235 |#2|) |#1|)) (-15 -2148 ((-2 (|:| -3069 |#1|) (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2|)) (-15 -3963 ((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2|)) (-15 -1587 (|#1| |#1| |#1| (-754))) (-15 -4126 (|#2| |#2| |#1| |#1| (-754))) (-15 -3875 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3350 (|#1| |#2| |#2|)) (-15 -1992 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|)) (-15 -3718 ((-2 (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|))) (-544) (-1211 |#1|)) (T -948)) +((-3718 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3116 *4))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-1992 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3116 *4))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-3350 (*1 *2 *3 *3) (-12 (-4 *2 (-544)) (-5 *1 (-948 *2 *3)) (-4 *3 (-1211 *2)))) (-3875 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-544)) (-5 *1 (-948 *3 *2)) (-4 *2 (-1211 *3)))) (-4126 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-754)) (-4 *3 (-544)) (-5 *1 (-948 *3 *2)) (-4 *2 (-1211 *3)))) (-1587 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-754)) (-4 *2 (-544)) (-5 *1 (-948 *2 *4)) (-4 *4 (-1211 *2)))) (-3963 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-2148 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| -3069 *4) (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-2761 (*1 *2 *2 *3) (-12 (-5 *2 (-1235 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-544)) (-5 *1 (-948 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1235 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-544)) (-5 *1 (-948 *3 *4)))) (-1323 (*1 *2 *2 *2) (-12 (-4 *3 (-445)) (-4 *3 (-544)) (-5 *1 (-948 *3 *2)) (-4 *2 (-1211 *3)))) (-4316 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2006 *4))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-2706 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2006 *4))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-2006 (*1 *2 *3 *3) (-12 (-4 *2 (-544)) (-4 *2 (-445)) (-5 *1 (-948 *2 *3)) (-4 *3 (-1211 *2)))) (-2282 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-627 (-754))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-3095 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-627 *3)) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-1562 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1637 *4))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-1910 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1637 *4))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-1637 (*1 *2 *3) (-12 (-4 *2 (-544)) (-5 *1 (-948 *2 *3)) (-4 *3 (-1211 *2)))) (-3382 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1323 *3))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-1742 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1323 *3))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-3332 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1323 *3))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-1340 (*1 *2 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-948 *3 *2)) (-4 *2 (-1211 *3)))) (-3716 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-2094 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-4318 (*1 *2 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-948 *3 *2)) (-4 *2 (-1211 *3)))) (-2460 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-754)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-948 *5 *3)) (-4 *3 (-1211 *5)))) (-3739 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-754)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-948 *5 *3)) (-4 *3 (-1211 *5)))) (-2069 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-754)) (-4 *4 (-544)) (-5 *1 (-948 *4 *2)) (-4 *2 (-1211 *4)))) (-2297 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-754)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-948 *5 *3)) (-4 *3 (-1211 *5)))) (-3673 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-754)) (-4 *5 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-948 *5 *3)) (-4 *3 (-1211 *5)))) (-1952 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-754)) (-4 *4 (-544)) (-5 *1 (-948 *4 *2)) (-4 *2 (-1211 *4)))) (-3317 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3116 *4))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-3645 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3116 *4))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-2017 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3116 *4))) (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) (-3116 (*1 *2 *3 *3) (-12 (-4 *2 (-544)) (-5 *1 (-948 *2 *3)) (-4 *3 (-1211 *2))))) +(-10 -7 (-15 -3116 (|#1| |#2| |#2|)) (-15 -2017 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|)) (-15 -3645 ((-2 (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|)) (-15 -3317 ((-2 (|:| |coef1| |#2|) (|:| -3116 |#1|)) |#2| |#2|)) (-15 -1952 (|#2| |#2| |#2| (-754))) (-15 -3673 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754))) (-15 -2297 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754))) (-15 -2069 (|#2| |#2| |#2| (-754))) (-15 -3739 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754))) (-15 -2460 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-754))) (-15 -4318 (|#2| |#2| |#2|)) (-15 -2094 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3716 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1340 (|#2| |#2| |#2|)) (-15 -3332 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1323 |#2|)) |#2| |#2|)) (-15 -1742 ((-2 (|:| |coef2| |#2|) (|:| -1323 |#2|)) |#2| |#2|)) (-15 -3382 ((-2 (|:| |coef1| |#2|) (|:| -1323 |#2|)) |#2| |#2|)) (-15 -1637 (|#1| |#2|)) (-15 -1910 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1637 |#1|)) |#2|)) (-15 -1562 ((-2 (|:| |coef2| |#2|) (|:| -1637 |#1|)) |#2|)) (-15 -3095 ((-627 |#2|) |#2| |#2|)) (-15 -2282 ((-627 (-754)) |#2| |#2|)) (IF (|has| |#1| (-445)) (PROGN (-15 -2006 (|#1| |#2| |#2|)) (-15 -2706 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2006 |#1|)) |#2| |#2|)) (-15 -4316 ((-2 (|:| |coef2| |#2|) (|:| -2006 |#1|)) |#2| |#2|)) (-15 -1323 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1235 |#2|) |#1| (-1235 |#2|))) (-15 -2761 ((-1235 |#2|) (-1235 |#2|) |#1|)) (-15 -2148 ((-2 (|:| -3069 |#1|) (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2|)) (-15 -3963 ((-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) |#2| |#2|)) (-15 -1587 (|#1| |#1| |#1| (-754))) (-15 -4126 (|#2| |#2| |#1| |#1| (-754))) (-15 -3875 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3350 (|#1| |#2| |#2|)) (-15 -1992 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|)) (-15 -3718 ((-2 (|:| |coef2| |#2|) (|:| -3116 |#1|)) |#2| |#2|))) +((-1465 (((-111) $ $) NIL)) (-2816 (((-1188) $) 13)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2920 (((-1111) $) 10)) (-1477 (((-842) $) 22) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) +(((-949) (-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $)) (-15 -2816 ((-1188) $))))) (T -949)) +((-2920 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-949)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-949))))) +(-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $)) (-15 -2816 ((-1188) $)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) 27)) (-3887 (($) NIL T CONST)) (-1846 (((-627 (-627 (-552))) (-627 (-552))) 29)) (-3467 (((-552) $) 45)) (-1424 (($ (-627 (-552))) 17)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3562 (((-627 (-552)) $) 12)) (-2616 (($ $) 32)) (-1477 (((-842) $) 43) (((-627 (-552)) $) 10)) (-1922 (($) 7 T CONST)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 20)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 19)) (-2384 (($ $ $) 21)) (* (($ (-900) $) NIL) (($ (-754) $) 25))) +(((-950) (-13 (-778) (-600 (-627 (-552))) (-10 -8 (-15 -1424 ($ (-627 (-552)))) (-15 -1846 ((-627 (-627 (-552))) (-627 (-552)))) (-15 -3467 ((-552) $)) (-15 -2616 ($ $)) (-15 -1477 ((-627 (-552)) $))))) (T -950)) +((-1424 (*1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-950)))) (-1846 (*1 *2 *3) (-12 (-5 *2 (-627 (-627 (-552)))) (-5 *1 (-950)) (-5 *3 (-627 (-552))))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-950)))) (-2616 (*1 *1 *1) (-5 *1 (-950))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-950))))) +(-13 (-778) (-600 (-627 (-552))) (-10 -8 (-15 -1424 ($ (-627 (-552)))) (-15 -1846 ((-627 (-627 (-552))) (-627 (-552)))) (-15 -3467 ((-552) $)) (-15 -2616 ($ $)) (-15 -1477 ((-627 (-552)) $)))) +((-2407 (($ $ |#2|) 30)) (-2396 (($ $) 22) (($ $ $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-401 (-552)) $) 26) (($ $ (-401 (-552))) 28))) +(((-951 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -2407 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|))) (-952 |#2| |#3| |#4|) (-1028) (-775) (-830)) (T -951)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-401 (-552)))) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 -2407 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 * (|#1| (-900) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1853 (((-627 |#3|) $) 72)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3245 (($ $) 50 (|has| |#1| (-544)))) (-4058 (((-111) $) 52 (|has| |#1| (-544)))) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2014 (($ $) 58)) (-2040 (((-3 $ "failed") $) 32)) (-2391 (((-111) $) 71)) (-2624 (((-111) $) 30)) (-3267 (((-111) $) 60)) (-1832 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-627 |#3|) (-627 |#2|)) 73)) (-3516 (($ (-1 |#1| |#1|) $) 61)) (-1981 (($ $) 63)) (-1993 ((|#1| $) 64)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2761 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-3567 ((|#2| $) 62)) (-2890 (($ $) 70)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45 (|has| |#1| (-169)))) (-1889 ((|#1| $ |#2|) 57)) (-3050 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 51 (|has| |#1| (-544)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 56 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) +(((-952 |#1| |#2| |#3|) (-137) (-1028) (-775) (-830)) (T -952)) +((-1993 (*1 *2 *1) (-12 (-4 *1 (-952 *2 *3 *4)) (-4 *3 (-775)) (-4 *4 (-830)) (-4 *2 (-1028)))) (-1981 (*1 *1 *1) (-12 (-4 *1 (-952 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-775)) (-4 *4 (-830)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *2 *4)) (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *2 (-775)))) (-1832 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-952 *4 *3 *2)) (-4 *4 (-1028)) (-4 *3 (-775)) (-4 *2 (-830)))) (-1832 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 *6)) (-5 *3 (-627 *5)) (-4 *1 (-952 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-775)) (-4 *6 (-830)))) (-1853 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-775)) (-4 *5 (-830)) (-5 *2 (-627 *5)))) (-2391 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-775)) (-4 *5 (-830)) (-5 *2 (-111)))) (-2890 (*1 *1 *1) (-12 (-4 *1 (-952 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-775)) (-4 *4 (-830))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -1832 ($ $ |t#3| |t#2|)) (-15 -1832 ($ $ (-627 |t#3|) (-627 |t#2|))) (-15 -1981 ($ $)) (-15 -1993 (|t#1| $)) (-15 -3567 (|t#2| $)) (-15 -1853 ((-627 |t#3|) $)) (-15 -2391 ((-111) $)) (-15 -2890 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-284) |has| |#1| (-544)) ((-544) |has| |#1| (-544)) ((-630 #0#) |has| |#1| (-38 (-401 (-552)))) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #0#) |has| |#1| (-38 (-401 (-552)))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) |has| |#1| (-544)) ((-709) . T) ((-1034 #0#) |has| |#1| (-38 (-401 (-552)))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-3457 (((-1070 (-220)) $) 8)) (-3447 (((-1070 (-220)) $) 9)) (-3437 (((-1070 (-220)) $) 10)) (-2116 (((-627 (-627 (-922 (-220)))) $) 11)) (-1477 (((-842) $) 6))) +(((-953) (-137)) (T -953)) +((-2116 (*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-627 (-627 (-922 (-220))))))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-1070 (-220))))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-1070 (-220))))) (-3457 (*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-1070 (-220)))))) +(-13 (-599 (-842)) (-10 -8 (-15 -2116 ((-627 (-627 (-922 (-220)))) $)) (-15 -3437 ((-1070 (-220)) $)) (-15 -3447 ((-1070 (-220)) $)) (-15 -3457 ((-1070 (-220)) $)))) +(((-599 (-842)) . T)) +((-1853 (((-627 |#4|) $) 23)) (-2730 (((-111) $) 48)) (-3648 (((-111) $) 47)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#4|) 36)) (-3569 (((-111) $) 49)) (-2330 (((-111) $ $) 55)) (-2165 (((-111) $ $) 58)) (-3188 (((-111) $) 53)) (-4097 (((-627 |#5|) (-627 |#5|) $) 90)) (-3761 (((-627 |#5|) (-627 |#5|) $) 87)) (-3401 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-4198 (((-627 |#4|) $) 27)) (-1927 (((-111) |#4| $) 30)) (-1943 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-4237 (($ $ |#4|) 33)) (-2286 (($ $ |#4|) 32)) (-3911 (($ $ |#4|) 34)) (-2292 (((-111) $ $) 40))) +(((-954 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3648 ((-111) |#1|)) (-15 -4097 ((-627 |#5|) (-627 |#5|) |#1|)) (-15 -3761 ((-627 |#5|) (-627 |#5|) |#1|)) (-15 -3401 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1943 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3569 ((-111) |#1|)) (-15 -2165 ((-111) |#1| |#1|)) (-15 -2330 ((-111) |#1| |#1|)) (-15 -3188 ((-111) |#1|)) (-15 -2730 ((-111) |#1|)) (-15 -4298 ((-2 (|:| |under| |#1|) (|:| -2060 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4237 (|#1| |#1| |#4|)) (-15 -3911 (|#1| |#1| |#4|)) (-15 -2286 (|#1| |#1| |#4|)) (-15 -1927 ((-111) |#4| |#1|)) (-15 -4198 ((-627 |#4|) |#1|)) (-15 -1853 ((-627 |#4|) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) (-955 |#2| |#3| |#4| |#5|) (-1028) (-776) (-830) (-1042 |#2| |#3| |#4|)) (T -954)) +NIL +(-10 -8 (-15 -3648 ((-111) |#1|)) (-15 -4097 ((-627 |#5|) (-627 |#5|) |#1|)) (-15 -3761 ((-627 |#5|) (-627 |#5|) |#1|)) (-15 -3401 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1943 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3569 ((-111) |#1|)) (-15 -2165 ((-111) |#1| |#1|)) (-15 -2330 ((-111) |#1| |#1|)) (-15 -3188 ((-111) |#1|)) (-15 -2730 ((-111) |#1|)) (-15 -4298 ((-2 (|:| |under| |#1|) (|:| -2060 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -4237 (|#1| |#1| |#4|)) (-15 -3911 (|#1| |#1| |#4|)) (-15 -2286 (|#1| |#1| |#4|)) (-15 -1927 ((-111) |#4| |#1|)) (-15 -4198 ((-627 |#4|) |#1|)) (-15 -1853 ((-627 |#4|) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) +((-1465 (((-111) $ $) 7)) (-1853 (((-627 |#3|) $) 33)) (-2730 (((-111) $) 26)) (-3648 (((-111) $) 17 (|has| |#1| (-544)))) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) 27)) (-4031 (((-111) $ (-754)) 44)) (-2536 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4366)))) (-3887 (($) 45 T CONST)) (-3569 (((-111) $) 22 (|has| |#1| (-544)))) (-2330 (((-111) $ $) 24 (|has| |#1| (-544)))) (-2165 (((-111) $ $) 23 (|has| |#1| (-544)))) (-3188 (((-111) $) 25 (|has| |#1| (-544)))) (-4097 (((-627 |#4|) (-627 |#4|) $) 18 (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) 19 (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) 36)) (-1703 (($ (-627 |#4|)) 35)) (-3370 (($ $) 68 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#4| $) 67 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4366)))) (-3215 (((-627 |#4|) $) 52 (|has| $ (-6 -4366)))) (-4147 ((|#3| $) 34)) (-1602 (((-111) $ (-754)) 43)) (-3114 (((-627 |#4|) $) 53 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) 47)) (-4198 (((-627 |#3|) $) 32)) (-1927 (((-111) |#3| $) 31)) (-3971 (((-111) $ (-754)) 42)) (-1595 (((-1134) $) 9)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-1498 (((-1096) $) 10)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3509 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) 38)) (-1275 (((-111) $) 41)) (-2373 (($) 40)) (-1509 (((-754) |#4| $) 54 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4366)))) (-2973 (($ $) 39)) (-3562 (((-528) $) 69 (|has| |#4| (-600 (-528))))) (-1490 (($ (-627 |#4|)) 60)) (-4237 (($ $ |#3|) 28)) (-2286 (($ $ |#3|) 30)) (-3911 (($ $ |#3|) 29)) (-1477 (((-842) $) 11) (((-627 |#4|) $) 37)) (-3299 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 6)) (-1383 (((-754) $) 46 (|has| $ (-6 -4366))))) +(((-955 |#1| |#2| |#3| |#4|) (-137) (-1028) (-776) (-830) (-1042 |t#1| |t#2| |t#3|)) (T -955)) +((-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *1 (-955 *3 *4 *5 *6)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *1 (-955 *3 *4 *5 *6)))) (-4147 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *2 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-1042 *3 *4 *2)) (-4 *2 (-830)))) (-1853 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-627 *5)))) (-4198 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-627 *5)))) (-1927 (*1 *2 *3 *1) (-12 (-4 *1 (-955 *4 *5 *3 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) (-4 *6 (-1042 *4 *5 *3)) (-5 *2 (-111)))) (-2286 (*1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)) (-4 *5 (-1042 *3 *4 *2)))) (-3911 (*1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)) (-4 *5 (-1042 *3 *4 *2)))) (-4237 (*1 *1 *1 *2) (-12 (-4 *1 (-955 *3 *4 *2 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)) (-4 *5 (-1042 *3 *4 *2)))) (-4298 (*1 *2 *1 *3) (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) (-4 *6 (-1042 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2060 *1) (|:| |upper| *1))) (-4 *1 (-955 *4 *5 *3 *6)))) (-2730 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-111)))) (-2330 (*1 *2 *1 *1) (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-111)))) (-2165 (*1 *2 *1 *1) (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-111)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-111)))) (-1943 (*1 *2 *3 *1) (-12 (-4 *1 (-955 *4 *5 *6 *3)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3401 (*1 *2 *3 *1) (-12 (-4 *1 (-955 *4 *5 *6 *3)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3761 (*1 *2 *2 *1) (-12 (-5 *2 (-627 *6)) (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)))) (-4097 (*1 *2 *2 *1) (-12 (-5 *2 (-627 *6)) (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)))) (-3648 (*1 *2 *1) (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-5 *2 (-111))))) +(-13 (-1076) (-148 |t#4|) (-599 (-627 |t#4|)) (-10 -8 (-6 -4366) (-15 -4039 ((-3 $ "failed") (-627 |t#4|))) (-15 -1703 ($ (-627 |t#4|))) (-15 -4147 (|t#3| $)) (-15 -1853 ((-627 |t#3|) $)) (-15 -4198 ((-627 |t#3|) $)) (-15 -1927 ((-111) |t#3| $)) (-15 -2286 ($ $ |t#3|)) (-15 -3911 ($ $ |t#3|)) (-15 -4237 ($ $ |t#3|)) (-15 -4298 ((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |t#3|)) (-15 -2730 ((-111) $)) (IF (|has| |t#1| (-544)) (PROGN (-15 -3188 ((-111) $)) (-15 -2330 ((-111) $ $)) (-15 -2165 ((-111) $ $)) (-15 -3569 ((-111) $)) (-15 -1943 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3401 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3761 ((-627 |t#4|) (-627 |t#4|) $)) (-15 -4097 ((-627 |t#4|) (-627 |t#4|) $)) (-15 -3648 ((-111) $))) |%noBranch|))) +(((-34) . T) ((-101) . T) ((-599 (-627 |#4|)) . T) ((-599 (-842)) . T) ((-148 |#4|) . T) ((-600 (-528)) |has| |#4| (-600 (-528))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-482 |#4|) . T) ((-506 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-1076) . T) ((-1189) . T)) +((-2451 (((-627 |#4|) |#4| |#4|) 118)) (-4074 (((-627 |#4|) (-627 |#4|) (-111)) 107 (|has| |#1| (-445))) (((-627 |#4|) (-627 |#4|)) 108 (|has| |#1| (-445)))) (-4341 (((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|)) 35)) (-2508 (((-111) |#4|) 34)) (-2461 (((-627 |#4|) |#4|) 103 (|has| |#1| (-445)))) (-3635 (((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-1 (-111) |#4|) (-627 |#4|)) 20)) (-2271 (((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 (-1 (-111) |#4|)) (-627 |#4|)) 22)) (-2157 (((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 (-1 (-111) |#4|)) (-627 |#4|)) 23)) (-2206 (((-3 (-2 (|:| |bas| (-469 |#1| |#2| |#3| |#4|)) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|)) 73)) (-1329 (((-627 |#4|) (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2900 (((-627 |#4|) (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-3951 (((-627 |#4|) (-627 |#4|)) 110)) (-2247 (((-627 |#4|) (-627 |#4|) (-627 |#4|) (-111)) 48) (((-627 |#4|) (-627 |#4|) (-627 |#4|)) 50)) (-3869 ((|#4| |#4| (-627 |#4|)) 49)) (-3812 (((-627 |#4|) (-627 |#4|) (-627 |#4|)) 114 (|has| |#1| (-445)))) (-1884 (((-627 |#4|) (-627 |#4|) (-627 |#4|)) 117 (|has| |#1| (-445)))) (-3405 (((-627 |#4|) (-627 |#4|) (-627 |#4|)) 116 (|has| |#1| (-445)))) (-3279 (((-627 |#4|) (-627 |#4|) (-627 |#4|) (-1 (-627 |#4|) (-627 |#4|))) 87) (((-627 |#4|) (-627 |#4|) (-627 |#4|)) 89) (((-627 |#4|) (-627 |#4|) |#4|) 121) (((-627 |#4|) |#4| |#4|) 119) (((-627 |#4|) (-627 |#4|)) 88)) (-4238 (((-627 |#4|) (-627 |#4|) (-627 |#4|)) 100 (-12 (|has| |#1| (-144)) (|has| |#1| (-301))))) (-3864 (((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|)) 41)) (-1998 (((-111) (-627 |#4|)) 62)) (-1426 (((-111) (-627 |#4|) (-627 (-627 |#4|))) 53)) (-2583 (((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|)) 29)) (-2943 (((-111) |#4|) 28)) (-2541 (((-627 |#4|) (-627 |#4|)) 98 (-12 (|has| |#1| (-144)) (|has| |#1| (-301))))) (-4151 (((-627 |#4|) (-627 |#4|)) 99 (-12 (|has| |#1| (-144)) (|has| |#1| (-301))))) (-2328 (((-627 |#4|) (-627 |#4|)) 66)) (-2588 (((-627 |#4|) (-627 |#4|)) 79)) (-1743 (((-111) (-627 |#4|) (-627 |#4|)) 51)) (-3790 (((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|)) 39)) (-4089 (((-111) |#4|) 36))) +(((-956 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3279 ((-627 |#4|) (-627 |#4|))) (-15 -3279 ((-627 |#4|) |#4| |#4|)) (-15 -3951 ((-627 |#4|) (-627 |#4|))) (-15 -2451 ((-627 |#4|) |#4| |#4|)) (-15 -3279 ((-627 |#4|) (-627 |#4|) |#4|)) (-15 -3279 ((-627 |#4|) (-627 |#4|) (-627 |#4|))) (-15 -3279 ((-627 |#4|) (-627 |#4|) (-627 |#4|) (-1 (-627 |#4|) (-627 |#4|)))) (-15 -1743 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -1426 ((-111) (-627 |#4|) (-627 (-627 |#4|)))) (-15 -1998 ((-111) (-627 |#4|))) (-15 -3635 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-1 (-111) |#4|) (-627 |#4|))) (-15 -2271 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 (-1 (-111) |#4|)) (-627 |#4|))) (-15 -2157 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 (-1 (-111) |#4|)) (-627 |#4|))) (-15 -3864 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|))) (-15 -2508 ((-111) |#4|)) (-15 -4341 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|))) (-15 -2943 ((-111) |#4|)) (-15 -2583 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|))) (-15 -4089 ((-111) |#4|)) (-15 -3790 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|))) (-15 -2247 ((-627 |#4|) (-627 |#4|) (-627 |#4|))) (-15 -2247 ((-627 |#4|) (-627 |#4|) (-627 |#4|) (-111))) (-15 -3869 (|#4| |#4| (-627 |#4|))) (-15 -2328 ((-627 |#4|) (-627 |#4|))) (-15 -2206 ((-3 (-2 (|:| |bas| (-469 |#1| |#2| |#3| |#4|)) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|))) (-15 -2588 ((-627 |#4|) (-627 |#4|))) (-15 -1329 ((-627 |#4|) (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2900 ((-627 |#4|) (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-445)) (PROGN (-15 -2461 ((-627 |#4|) |#4|)) (-15 -4074 ((-627 |#4|) (-627 |#4|))) (-15 -4074 ((-627 |#4|) (-627 |#4|) (-111))) (-15 -3812 ((-627 |#4|) (-627 |#4|) (-627 |#4|))) (-15 -3405 ((-627 |#4|) (-627 |#4|) (-627 |#4|))) (-15 -1884 ((-627 |#4|) (-627 |#4|) (-627 |#4|)))) |%noBranch|) (IF (|has| |#1| (-301)) (IF (|has| |#1| (-144)) (PROGN (-15 -4151 ((-627 |#4|) (-627 |#4|))) (-15 -2541 ((-627 |#4|) (-627 |#4|))) (-15 -4238 ((-627 |#4|) (-627 |#4|) (-627 |#4|)))) |%noBranch|) |%noBranch|)) (-544) (-776) (-830) (-1042 |#1| |#2| |#3|)) (T -956)) +((-4238 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-144)) (-4 *3 (-301)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-2541 (*1 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-144)) (-4 *3 (-301)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-144)) (-4 *3 (-301)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-1884 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-445)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-3405 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-445)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-3812 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-445)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-4074 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *7)) (-5 *3 (-111)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-956 *4 *5 *6 *7)))) (-4074 (*1 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-445)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-2461 (*1 *2 *3) (-12 (-4 *4 (-445)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *3)) (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6)))) (-2900 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-627 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-956 *5 *6 *7 *8)))) (-1329 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-627 *9)) (-5 *3 (-1 (-111) *9)) (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1042 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-776)) (-4 *8 (-830)) (-5 *1 (-956 *6 *7 *8 *9)))) (-2588 (*1 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-2206 (*1 *2 *3) (|partial| -12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-469 *4 *5 *6 *7)) (|:| -2240 (-627 *7)))) (-5 *1 (-956 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) (-2328 (*1 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-3869 (*1 *2 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-956 *4 *5 *6 *2)))) (-2247 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-627 *7)) (-5 *3 (-111)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-956 *4 *5 *6 *7)))) (-2247 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-3790 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-627 *7)) (|:| |badPols| (-627 *7)))) (-5 *1 (-956 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) (-4089 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6)))) (-2583 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-627 *7)) (|:| |badPols| (-627 *7)))) (-5 *1 (-956 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) (-2943 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6)))) (-4341 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-627 *7)) (|:| |badPols| (-627 *7)))) (-5 *1 (-956 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) (-2508 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6)))) (-3864 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-627 *7)) (|:| |badPols| (-627 *7)))) (-5 *1 (-956 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) (-2157 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-1 (-111) *8))) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-2 (|:| |goodPols| (-627 *8)) (|:| |badPols| (-627 *8)))) (-5 *1 (-956 *5 *6 *7 *8)) (-5 *4 (-627 *8)))) (-2271 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-1 (-111) *8))) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-2 (|:| |goodPols| (-627 *8)) (|:| |badPols| (-627 *8)))) (-5 *1 (-956 *5 *6 *7 *8)) (-5 *4 (-627 *8)))) (-3635 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-111) *8)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-2 (|:| |goodPols| (-627 *8)) (|:| |badPols| (-627 *8)))) (-5 *1 (-956 *5 *6 *7 *8)) (-5 *4 (-627 *8)))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-956 *4 *5 *6 *7)))) (-1426 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-627 *8))) (-5 *3 (-627 *8)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-111)) (-5 *1 (-956 *5 *6 *7 *8)))) (-1743 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-956 *4 *5 *6 *7)))) (-3279 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-627 *7) (-627 *7))) (-5 *2 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-956 *4 *5 *6 *7)))) (-3279 (*1 *2 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-3279 (*1 *2 *2 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-956 *4 *5 *6 *3)))) (-2451 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *3)) (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6)))) (-3951 (*1 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) (-3279 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *3)) (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6)))) (-3279 (*1 *2 *2) (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6))))) +(-10 -7 (-15 -3279 ((-627 |#4|) (-627 |#4|))) (-15 -3279 ((-627 |#4|) |#4| |#4|)) (-15 -3951 ((-627 |#4|) (-627 |#4|))) (-15 -2451 ((-627 |#4|) |#4| |#4|)) (-15 -3279 ((-627 |#4|) (-627 |#4|) |#4|)) (-15 -3279 ((-627 |#4|) (-627 |#4|) (-627 |#4|))) (-15 -3279 ((-627 |#4|) (-627 |#4|) (-627 |#4|) (-1 (-627 |#4|) (-627 |#4|)))) (-15 -1743 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -1426 ((-111) (-627 |#4|) (-627 (-627 |#4|)))) (-15 -1998 ((-111) (-627 |#4|))) (-15 -3635 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-1 (-111) |#4|) (-627 |#4|))) (-15 -2271 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 (-1 (-111) |#4|)) (-627 |#4|))) (-15 -2157 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 (-1 (-111) |#4|)) (-627 |#4|))) (-15 -3864 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|))) (-15 -2508 ((-111) |#4|)) (-15 -4341 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|))) (-15 -2943 ((-111) |#4|)) (-15 -2583 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|))) (-15 -4089 ((-111) |#4|)) (-15 -3790 ((-2 (|:| |goodPols| (-627 |#4|)) (|:| |badPols| (-627 |#4|))) (-627 |#4|))) (-15 -2247 ((-627 |#4|) (-627 |#4|) (-627 |#4|))) (-15 -2247 ((-627 |#4|) (-627 |#4|) (-627 |#4|) (-111))) (-15 -3869 (|#4| |#4| (-627 |#4|))) (-15 -2328 ((-627 |#4|) (-627 |#4|))) (-15 -2206 ((-3 (-2 (|:| |bas| (-469 |#1| |#2| |#3| |#4|)) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|))) (-15 -2588 ((-627 |#4|) (-627 |#4|))) (-15 -1329 ((-627 |#4|) (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2900 ((-627 |#4|) (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-445)) (PROGN (-15 -2461 ((-627 |#4|) |#4|)) (-15 -4074 ((-627 |#4|) (-627 |#4|))) (-15 -4074 ((-627 |#4|) (-627 |#4|) (-111))) (-15 -3812 ((-627 |#4|) (-627 |#4|) (-627 |#4|))) (-15 -3405 ((-627 |#4|) (-627 |#4|) (-627 |#4|))) (-15 -1884 ((-627 |#4|) (-627 |#4|) (-627 |#4|)))) |%noBranch|) (IF (|has| |#1| (-301)) (IF (|has| |#1| (-144)) (PROGN (-15 -4151 ((-627 |#4|) (-627 |#4|))) (-15 -2541 ((-627 |#4|) (-627 |#4|))) (-15 -4238 ((-627 |#4|) (-627 |#4|) (-627 |#4|)))) |%noBranch|) |%noBranch|)) +((-2566 (((-2 (|:| R (-671 |#1|)) (|:| A (-671 |#1|)) (|:| |Ainv| (-671 |#1|))) (-671 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 19)) (-2467 (((-627 (-2 (|:| C (-671 |#1|)) (|:| |g| (-1235 |#1|)))) (-671 |#1|) (-1235 |#1|)) 36)) (-4222 (((-671 |#1|) (-671 |#1|) (-671 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 16))) +(((-957 |#1|) (-10 -7 (-15 -2566 ((-2 (|:| R (-671 |#1|)) (|:| A (-671 |#1|)) (|:| |Ainv| (-671 |#1|))) (-671 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -4222 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2467 ((-627 (-2 (|:| C (-671 |#1|)) (|:| |g| (-1235 |#1|)))) (-671 |#1|) (-1235 |#1|)))) (-357)) (T -957)) +((-2467 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-5 *2 (-627 (-2 (|:| C (-671 *5)) (|:| |g| (-1235 *5))))) (-5 *1 (-957 *5)) (-5 *3 (-671 *5)) (-5 *4 (-1235 *5)))) (-4222 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-671 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-357)) (-5 *1 (-957 *5)))) (-2566 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-357)) (-5 *2 (-2 (|:| R (-671 *6)) (|:| A (-671 *6)) (|:| |Ainv| (-671 *6)))) (-5 *1 (-957 *6)) (-5 *3 (-671 *6))))) +(-10 -7 (-15 -2566 ((-2 (|:| R (-671 |#1|)) (|:| A (-671 |#1|)) (|:| |Ainv| (-671 |#1|))) (-671 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -4222 ((-671 |#1|) (-671 |#1|) (-671 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -2467 ((-627 (-2 (|:| C (-671 |#1|)) (|:| |g| (-1235 |#1|)))) (-671 |#1|) (-1235 |#1|)))) +((-2487 (((-412 |#4|) |#4|) 48))) +(((-958 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2487 ((-412 |#4|) |#4|))) (-830) (-776) (-445) (-928 |#3| |#2| |#1|)) (T -958)) +((-2487 (*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-776)) (-4 *6 (-445)) (-5 *2 (-412 *3)) (-5 *1 (-958 *4 *5 *6 *3)) (-4 *3 (-928 *6 *5 *4))))) +(-10 -7 (-15 -2487 ((-412 |#4|) |#4|))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-2099 (($ (-754)) 112 (|has| |#1| (-23)))) (-3305 (((-1240) $ (-552) (-552)) 40 (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4367))) (($ $) 88 (-12 (|has| |#1| (-830)) (|has| $ (-6 -4367))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) 8)) (-2950 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) 58 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-2519 (($ $) 90 (|has| $ (-6 -4367)))) (-3429 (($ $) 100)) (-3370 (($ $) 78 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#1| $) 77 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 51)) (-2967 (((-552) (-1 (-111) |#1|) $) 97) (((-552) |#1| $) 96 (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) 95 (|has| |#1| (-1076)))) (-1745 (($ (-627 |#1|)) 118)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1541 (((-671 |#1|) $ $) 105 (|has| |#1| (-1028)))) (-2655 (($ (-754) |#1|) 69)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 43 (|has| (-552) (-830)))) (-1816 (($ $ $) 87 (|has| |#1| (-830)))) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 44 (|has| (-552) (-830)))) (-4093 (($ $ $) 86 (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2306 ((|#1| $) 102 (-12 (|has| |#1| (-1028)) (|has| |#1| (-981))))) (-3971 (((-111) $ (-754)) 10)) (-3593 ((|#1| $) 103 (-12 (|has| |#1| (-1028)) (|has| |#1| (-981))))) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-3892 (((-627 (-552)) $) 46)) (-2358 (((-111) (-552) $) 47)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3340 ((|#1| $) 42 (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-1942 (($ $ |#1|) 41 (|has| $ (-6 -4367)))) (-4168 (($ $ (-627 |#1|)) 115)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1202 (-552))) 63)) (-2395 ((|#1| $ $) 106 (|has| |#1| (-1028)))) (-2405 (((-900) $) 117)) (-3907 (($ $ (-552)) 62) (($ $ (-1202 (-552))) 61)) (-3917 (($ $ $) 104)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4105 (($ $ $ (-552)) 91 (|has| $ (-6 -4367)))) (-2973 (($ $) 13)) (-3562 (((-528) $) 79 (|has| |#1| (-600 (-528)))) (($ (-627 |#1|)) 116)) (-1490 (($ (-627 |#1|)) 70)) (-2668 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-627 $)) 65)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) 84 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 83 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-2340 (((-111) $ $) 85 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 82 (|has| |#1| (-830)))) (-2396 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2384 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-552) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-709))) (($ $ |#1|) 107 (|has| |#1| (-709)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-959 |#1|) (-137) (-1028)) (T -959)) +((-1745 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1028)) (-4 *1 (-959 *3)))) (-2405 (*1 *2 *1) (-12 (-4 *1 (-959 *3)) (-4 *3 (-1028)) (-5 *2 (-900)))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1028)) (-4 *1 (-959 *3)))) (-3917 (*1 *1 *1 *1) (-12 (-4 *1 (-959 *2)) (-4 *2 (-1028)))) (-4168 (*1 *1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *1 (-959 *3)) (-4 *3 (-1028))))) +(-13 (-1233 |t#1|) (-10 -8 (-15 -1745 ($ (-627 |t#1|))) (-15 -2405 ((-900) $)) (-15 -3562 ($ (-627 |t#1|))) (-15 -3917 ($ $ $)) (-15 -4168 ($ $ (-627 |t#1|))))) +(((-34) . T) ((-101) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830))) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-367 |#1|) . T) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-633 |#1|) . T) ((-19 |#1|) . T) ((-830) |has| |#1| (-830)) ((-1076) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830))) ((-1189) . T) ((-1233 |#1|) . T)) +((-3516 (((-922 |#2|) (-1 |#2| |#1|) (-922 |#1|)) 17))) +(((-960 |#1| |#2|) (-10 -7 (-15 -3516 ((-922 |#2|) (-1 |#2| |#1|) (-922 |#1|)))) (-1028) (-1028)) (T -960)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-922 *5)) (-4 *5 (-1028)) (-4 *6 (-1028)) (-5 *2 (-922 *6)) (-5 *1 (-960 *5 *6))))) +(-10 -7 (-15 -3516 ((-922 |#2|) (-1 |#2| |#1|) (-922 |#1|)))) +((-4282 ((|#1| (-922 |#1|)) 13)) (-1638 ((|#1| (-922 |#1|)) 12)) (-3991 ((|#1| (-922 |#1|)) 11)) (-3478 ((|#1| (-922 |#1|)) 15)) (-2291 ((|#1| (-922 |#1|)) 21)) (-3946 ((|#1| (-922 |#1|)) 14)) (-1871 ((|#1| (-922 |#1|)) 16)) (-3808 ((|#1| (-922 |#1|)) 20)) (-1552 ((|#1| (-922 |#1|)) 19))) +(((-961 |#1|) (-10 -7 (-15 -3991 (|#1| (-922 |#1|))) (-15 -1638 (|#1| (-922 |#1|))) (-15 -4282 (|#1| (-922 |#1|))) (-15 -3946 (|#1| (-922 |#1|))) (-15 -3478 (|#1| (-922 |#1|))) (-15 -1871 (|#1| (-922 |#1|))) (-15 -1552 (|#1| (-922 |#1|))) (-15 -3808 (|#1| (-922 |#1|))) (-15 -2291 (|#1| (-922 |#1|)))) (-1028)) (T -961)) +((-2291 (*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028)))) (-3808 (*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028)))) (-1552 (*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028)))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028)))) (-4282 (*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028)))) (-3991 (*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028))))) +(-10 -7 (-15 -3991 (|#1| (-922 |#1|))) (-15 -1638 (|#1| (-922 |#1|))) (-15 -4282 (|#1| (-922 |#1|))) (-15 -3946 (|#1| (-922 |#1|))) (-15 -3478 (|#1| (-922 |#1|))) (-15 -1871 (|#1| (-922 |#1|))) (-15 -1552 (|#1| (-922 |#1|))) (-15 -3808 (|#1| (-922 |#1|))) (-15 -2291 (|#1| (-922 |#1|)))) +((-2034 (((-3 |#1| "failed") |#1|) 18)) (-3118 (((-3 |#1| "failed") |#1|) 6)) (-1656 (((-3 |#1| "failed") |#1|) 16)) (-3940 (((-3 |#1| "failed") |#1|) 4)) (-3105 (((-3 |#1| "failed") |#1|) 20)) (-3578 (((-3 |#1| "failed") |#1|) 8)) (-3121 (((-3 |#1| "failed") |#1| (-754)) 1)) (-4310 (((-3 |#1| "failed") |#1|) 3)) (-1588 (((-3 |#1| "failed") |#1|) 2)) (-2207 (((-3 |#1| "failed") |#1|) 21)) (-3440 (((-3 |#1| "failed") |#1|) 9)) (-1687 (((-3 |#1| "failed") |#1|) 19)) (-1851 (((-3 |#1| "failed") |#1|) 7)) (-3392 (((-3 |#1| "failed") |#1|) 17)) (-2289 (((-3 |#1| "failed") |#1|) 5)) (-4101 (((-3 |#1| "failed") |#1|) 24)) (-2193 (((-3 |#1| "failed") |#1|) 12)) (-1944 (((-3 |#1| "failed") |#1|) 22)) (-2104 (((-3 |#1| "failed") |#1|) 10)) (-2818 (((-3 |#1| "failed") |#1|) 26)) (-3546 (((-3 |#1| "failed") |#1|) 14)) (-2448 (((-3 |#1| "failed") |#1|) 27)) (-3162 (((-3 |#1| "failed") |#1|) 15)) (-2088 (((-3 |#1| "failed") |#1|) 25)) (-2012 (((-3 |#1| "failed") |#1|) 13)) (-3489 (((-3 |#1| "failed") |#1|) 23)) (-3748 (((-3 |#1| "failed") |#1|) 11))) +(((-962 |#1|) (-137) (-1174)) (T -962)) +((-2448 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-2818 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-2088 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-4101 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3489 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-1944 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-2207 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3105 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-1687 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-2034 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3392 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-1656 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3162 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3546 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-2012 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-2193 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3748 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-2104 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3440 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3578 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-1851 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3118 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-2289 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3940 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-4310 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-1588 (*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174)))) (-3121 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-754)) (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(-13 (-10 -7 (-15 -3121 ((-3 |t#1| "failed") |t#1| (-754))) (-15 -1588 ((-3 |t#1| "failed") |t#1|)) (-15 -4310 ((-3 |t#1| "failed") |t#1|)) (-15 -3940 ((-3 |t#1| "failed") |t#1|)) (-15 -2289 ((-3 |t#1| "failed") |t#1|)) (-15 -3118 ((-3 |t#1| "failed") |t#1|)) (-15 -1851 ((-3 |t#1| "failed") |t#1|)) (-15 -3578 ((-3 |t#1| "failed") |t#1|)) (-15 -3440 ((-3 |t#1| "failed") |t#1|)) (-15 -2104 ((-3 |t#1| "failed") |t#1|)) (-15 -3748 ((-3 |t#1| "failed") |t#1|)) (-15 -2193 ((-3 |t#1| "failed") |t#1|)) (-15 -2012 ((-3 |t#1| "failed") |t#1|)) (-15 -3546 ((-3 |t#1| "failed") |t#1|)) (-15 -3162 ((-3 |t#1| "failed") |t#1|)) (-15 -1656 ((-3 |t#1| "failed") |t#1|)) (-15 -3392 ((-3 |t#1| "failed") |t#1|)) (-15 -2034 ((-3 |t#1| "failed") |t#1|)) (-15 -1687 ((-3 |t#1| "failed") |t#1|)) (-15 -3105 ((-3 |t#1| "failed") |t#1|)) (-15 -2207 ((-3 |t#1| "failed") |t#1|)) (-15 -1944 ((-3 |t#1| "failed") |t#1|)) (-15 -3489 ((-3 |t#1| "failed") |t#1|)) (-15 -4101 ((-3 |t#1| "failed") |t#1|)) (-15 -2088 ((-3 |t#1| "failed") |t#1|)) (-15 -2818 ((-3 |t#1| "failed") |t#1|)) (-15 -2448 ((-3 |t#1| "failed") |t#1|)))) +((-4007 ((|#4| |#4| (-627 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-4158 ((|#4| |#4| (-627 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-3516 ((|#4| (-1 |#4| (-931 |#1|)) |#4|) 30))) +(((-963 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4158 (|#4| |#4| |#3|)) (-15 -4158 (|#4| |#4| (-627 |#3|))) (-15 -4007 (|#4| |#4| |#3|)) (-15 -4007 (|#4| |#4| (-627 |#3|))) (-15 -3516 (|#4| (-1 |#4| (-931 |#1|)) |#4|))) (-1028) (-776) (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)) (-15 -4344 ((-3 $ "failed") (-1152))))) (-928 (-931 |#1|) |#2| |#3|)) (T -963)) +((-3516 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-931 *4))) (-4 *4 (-1028)) (-4 *2 (-928 (-931 *4) *5 *6)) (-4 *5 (-776)) (-4 *6 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)) (-15 -4344 ((-3 $ "failed") (-1152)))))) (-5 *1 (-963 *4 *5 *6 *2)))) (-4007 (*1 *2 *2 *3) (-12 (-5 *3 (-627 *6)) (-4 *6 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)) (-15 -4344 ((-3 $ "failed") (-1152)))))) (-4 *4 (-1028)) (-4 *5 (-776)) (-5 *1 (-963 *4 *5 *6 *2)) (-4 *2 (-928 (-931 *4) *5 *6)))) (-4007 (*1 *2 *2 *3) (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)) (-15 -4344 ((-3 $ "failed") (-1152)))))) (-5 *1 (-963 *4 *5 *3 *2)) (-4 *2 (-928 (-931 *4) *5 *3)))) (-4158 (*1 *2 *2 *3) (-12 (-5 *3 (-627 *6)) (-4 *6 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)) (-15 -4344 ((-3 $ "failed") (-1152)))))) (-4 *4 (-1028)) (-4 *5 (-776)) (-5 *1 (-963 *4 *5 *6 *2)) (-4 *2 (-928 (-931 *4) *5 *6)))) (-4158 (*1 *2 *2 *3) (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)) (-15 -4344 ((-3 $ "failed") (-1152)))))) (-5 *1 (-963 *4 *5 *3 *2)) (-4 *2 (-928 (-931 *4) *5 *3))))) +(-10 -7 (-15 -4158 (|#4| |#4| |#3|)) (-15 -4158 (|#4| |#4| (-627 |#3|))) (-15 -4007 (|#4| |#4| |#3|)) (-15 -4007 (|#4| |#4| (-627 |#3|))) (-15 -3516 (|#4| (-1 |#4| (-931 |#1|)) |#4|))) +((-2702 ((|#2| |#3|) 35)) (-2993 (((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) |#2|) 73)) (-3402 (((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) 89))) +(((-964 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3402 ((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))))) (-15 -2993 ((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) |#2|)) (-15 -2702 (|#2| |#3|))) (-343) (-1211 |#1|) (-1211 |#2|) (-707 |#2| |#3|)) (T -964)) +((-2702 (*1 *2 *3) (-12 (-4 *3 (-1211 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-964 *4 *2 *3 *5)) (-4 *4 (-343)) (-4 *5 (-707 *2 *3)))) (-2993 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 *3)) (-5 *2 (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-5 *1 (-964 *4 *3 *5 *6)) (-4 *6 (-707 *3 *5)))) (-3402 (*1 *2) (-12 (-4 *3 (-343)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| -2957 (-671 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-671 *4)))) (-5 *1 (-964 *3 *4 *5 *6)) (-4 *6 (-707 *4 *5))))) +(-10 -7 (-15 -3402 ((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))))) (-15 -2993 ((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) |#2|)) (-15 -2702 (|#2| |#3|))) +((-4160 (((-966 (-401 (-552)) (-844 |#1|) (-235 |#2| (-754)) (-242 |#1| (-401 (-552)))) (-966 (-401 (-552)) (-844 |#1|) (-235 |#2| (-754)) (-242 |#1| (-401 (-552))))) 69))) +(((-965 |#1| |#2|) (-10 -7 (-15 -4160 ((-966 (-401 (-552)) (-844 |#1|) (-235 |#2| (-754)) (-242 |#1| (-401 (-552)))) (-966 (-401 (-552)) (-844 |#1|) (-235 |#2| (-754)) (-242 |#1| (-401 (-552))))))) (-627 (-1152)) (-754)) (T -965)) +((-4160 (*1 *2 *2) (-12 (-5 *2 (-966 (-401 (-552)) (-844 *3) (-235 *4 (-754)) (-242 *3 (-401 (-552))))) (-14 *3 (-627 (-1152))) (-14 *4 (-754)) (-5 *1 (-965 *3 *4))))) +(-10 -7 (-15 -4160 ((-966 (-401 (-552)) (-844 |#1|) (-235 |#2| (-754)) (-242 |#1| (-401 (-552)))) (-966 (-401 (-552)) (-844 |#1|) (-235 |#2| (-754)) (-242 |#1| (-401 (-552))))))) +((-1465 (((-111) $ $) NIL)) (-2523 (((-3 (-111) "failed") $) 69)) (-2380 (($ $) 36 (-12 (|has| |#1| (-144)) (|has| |#1| (-301))))) (-4295 (($ $ (-3 (-111) "failed")) 70)) (-3033 (($ (-627 |#4|) |#4|) 25)) (-1595 (((-1134) $) NIL)) (-3817 (($ $) 67)) (-1498 (((-1096) $) NIL)) (-1275 (((-111) $) 68)) (-2373 (($) 30)) (-2609 ((|#4| $) 72)) (-2078 (((-627 |#4|) $) 71)) (-1477 (((-842) $) 66)) (-2292 (((-111) $ $) NIL))) +(((-966 |#1| |#2| |#3| |#4|) (-13 (-1076) (-599 (-842)) (-10 -8 (-15 -2373 ($)) (-15 -3033 ($ (-627 |#4|) |#4|)) (-15 -2523 ((-3 (-111) "failed") $)) (-15 -4295 ($ $ (-3 (-111) "failed"))) (-15 -1275 ((-111) $)) (-15 -2078 ((-627 |#4|) $)) (-15 -2609 (|#4| $)) (-15 -3817 ($ $)) (IF (|has| |#1| (-301)) (IF (|has| |#1| (-144)) (-15 -2380 ($ $)) |%noBranch|) |%noBranch|))) (-445) (-830) (-776) (-928 |#1| |#3| |#2|)) (T -966)) +((-2373 (*1 *1) (-12 (-4 *2 (-445)) (-4 *3 (-830)) (-4 *4 (-776)) (-5 *1 (-966 *2 *3 *4 *5)) (-4 *5 (-928 *2 *4 *3)))) (-3033 (*1 *1 *2 *3) (-12 (-5 *2 (-627 *3)) (-4 *3 (-928 *4 *6 *5)) (-4 *4 (-445)) (-4 *5 (-830)) (-4 *6 (-776)) (-5 *1 (-966 *4 *5 *6 *3)))) (-2523 (*1 *2 *1) (|partial| -12 (-4 *3 (-445)) (-4 *4 (-830)) (-4 *5 (-776)) (-5 *2 (-111)) (-5 *1 (-966 *3 *4 *5 *6)) (-4 *6 (-928 *3 *5 *4)))) (-4295 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-111) "failed")) (-4 *3 (-445)) (-4 *4 (-830)) (-4 *5 (-776)) (-5 *1 (-966 *3 *4 *5 *6)) (-4 *6 (-928 *3 *5 *4)))) (-1275 (*1 *2 *1) (-12 (-4 *3 (-445)) (-4 *4 (-830)) (-4 *5 (-776)) (-5 *2 (-111)) (-5 *1 (-966 *3 *4 *5 *6)) (-4 *6 (-928 *3 *5 *4)))) (-2078 (*1 *2 *1) (-12 (-4 *3 (-445)) (-4 *4 (-830)) (-4 *5 (-776)) (-5 *2 (-627 *6)) (-5 *1 (-966 *3 *4 *5 *6)) (-4 *6 (-928 *3 *5 *4)))) (-2609 (*1 *2 *1) (-12 (-4 *2 (-928 *3 *5 *4)) (-5 *1 (-966 *3 *4 *5 *2)) (-4 *3 (-445)) (-4 *4 (-830)) (-4 *5 (-776)))) (-3817 (*1 *1 *1) (-12 (-4 *2 (-445)) (-4 *3 (-830)) (-4 *4 (-776)) (-5 *1 (-966 *2 *3 *4 *5)) (-4 *5 (-928 *2 *4 *3)))) (-2380 (*1 *1 *1) (-12 (-4 *2 (-144)) (-4 *2 (-301)) (-4 *2 (-445)) (-4 *3 (-830)) (-4 *4 (-776)) (-5 *1 (-966 *2 *3 *4 *5)) (-4 *5 (-928 *2 *4 *3))))) +(-13 (-1076) (-599 (-842)) (-10 -8 (-15 -2373 ($)) (-15 -3033 ($ (-627 |#4|) |#4|)) (-15 -2523 ((-3 (-111) "failed") $)) (-15 -4295 ($ $ (-3 (-111) "failed"))) (-15 -1275 ((-111) $)) (-15 -2078 ((-627 |#4|) $)) (-15 -2609 (|#4| $)) (-15 -3817 ($ $)) (IF (|has| |#1| (-301)) (IF (|has| |#1| (-144)) (-15 -2380 ($ $)) |%noBranch|) |%noBranch|))) +((-3257 (((-111) |#5| |#5|) 38)) (-2172 (((-111) |#5| |#5|) 52)) (-1331 (((-111) |#5| (-627 |#5|)) 74) (((-111) |#5| |#5|) 61)) (-3701 (((-111) (-627 |#4|) (-627 |#4|)) 58)) (-1680 (((-111) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) 63)) (-3935 (((-1240)) 33)) (-4233 (((-1240) (-1134) (-1134) (-1134)) 29)) (-3115 (((-627 |#5|) (-627 |#5|)) 81)) (-1462 (((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)))) 79)) (-3155 (((-627 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|)))) (-627 |#4|) (-627 |#5|) (-111) (-111)) 101)) (-2506 (((-111) |#5| |#5|) 47)) (-2719 (((-3 (-111) "failed") |#5| |#5|) 71)) (-3306 (((-111) (-627 |#4|) (-627 |#4|)) 57)) (-3949 (((-111) (-627 |#4|) (-627 |#4|)) 59)) (-2654 (((-111) (-627 |#4|) (-627 |#4|)) 60)) (-1570 (((-3 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|))) "failed") (-627 |#4|) |#5| (-627 |#4|) (-111) (-111) (-111) (-111) (-111)) 97)) (-2937 (((-627 |#5|) (-627 |#5|)) 43))) +(((-967 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4233 ((-1240) (-1134) (-1134) (-1134))) (-15 -3935 ((-1240))) (-15 -3257 ((-111) |#5| |#5|)) (-15 -2937 ((-627 |#5|) (-627 |#5|))) (-15 -2506 ((-111) |#5| |#5|)) (-15 -2172 ((-111) |#5| |#5|)) (-15 -3701 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -3306 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -3949 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -2654 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -2719 ((-3 (-111) "failed") |#5| |#5|)) (-15 -1331 ((-111) |#5| |#5|)) (-15 -1331 ((-111) |#5| (-627 |#5|))) (-15 -3115 ((-627 |#5|) (-627 |#5|))) (-15 -1680 ((-111) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)))) (-15 -1462 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) (-15 -3155 ((-627 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|)))) (-627 |#4|) (-627 |#5|) (-111) (-111))) (-15 -1570 ((-3 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|))) "failed") (-627 |#4|) |#5| (-627 |#4|) (-111) (-111) (-111) (-111) (-111)))) (-445) (-776) (-830) (-1042 |#1| |#2| |#3|) (-1048 |#1| |#2| |#3| |#4|)) (T -967)) +((-1570 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *9 (-1042 *6 *7 *8)) (-5 *2 (-2 (|:| -1651 (-627 *9)) (|:| -3443 *4) (|:| |ineq| (-627 *9)))) (-5 *1 (-967 *6 *7 *8 *9 *4)) (-5 *3 (-627 *9)) (-4 *4 (-1048 *6 *7 *8 *9)))) (-3155 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-627 *10)) (-5 *5 (-111)) (-4 *10 (-1048 *6 *7 *8 *9)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *9 (-1042 *6 *7 *8)) (-5 *2 (-627 (-2 (|:| -1651 (-627 *9)) (|:| -3443 *10) (|:| |ineq| (-627 *9))))) (-5 *1 (-967 *6 *7 *8 *9 *10)) (-5 *3 (-627 *9)))) (-1462 (*1 *2 *2) (-12 (-5 *2 (-627 (-2 (|:| |val| (-627 *6)) (|:| -3443 *7)))) (-4 *6 (-1042 *3 *4 *5)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-967 *3 *4 *5 *6 *7)))) (-1680 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-627 *7)) (|:| -3443 *8))) (-4 *7 (-1042 *4 *5 *6)) (-4 *8 (-1048 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-967 *4 *5 *6 *7 *8)))) (-3115 (*1 *2 *2) (-12 (-5 *2 (-627 *7)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *1 (-967 *3 *4 *5 *6 *7)))) (-1331 (*1 *2 *3 *4) (-12 (-5 *4 (-627 *3)) (-4 *3 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-967 *5 *6 *7 *8 *3)))) (-1331 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) (-2719 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) (-2654 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-967 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) (-3949 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-967 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) (-3306 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-967 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) (-3701 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-967 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) (-2172 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) (-2506 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) (-2937 (*1 *2 *2) (-12 (-5 *2 (-627 *7)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *1 (-967 *3 *4 *5 *6 *7)))) (-3257 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) (-3935 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) (-5 *1 (-967 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6)))) (-4233 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) (-5 *1 (-967 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7))))) +(-10 -7 (-15 -4233 ((-1240) (-1134) (-1134) (-1134))) (-15 -3935 ((-1240))) (-15 -3257 ((-111) |#5| |#5|)) (-15 -2937 ((-627 |#5|) (-627 |#5|))) (-15 -2506 ((-111) |#5| |#5|)) (-15 -2172 ((-111) |#5| |#5|)) (-15 -3701 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -3306 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -3949 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -2654 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -2719 ((-3 (-111) "failed") |#5| |#5|)) (-15 -1331 ((-111) |#5| |#5|)) (-15 -1331 ((-111) |#5| (-627 |#5|))) (-15 -3115 ((-627 |#5|) (-627 |#5|))) (-15 -1680 ((-111) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)))) (-15 -1462 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) (-15 -3155 ((-627 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|)))) (-627 |#4|) (-627 |#5|) (-111) (-111))) (-15 -1570 ((-3 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|))) "failed") (-627 |#4|) |#5| (-627 |#4|) (-111) (-111) (-111) (-111) (-111)))) +((-4344 (((-1152) $) 15)) (-4288 (((-1134) $) 16)) (-3262 (($ (-1152) (-1134)) 14)) (-1477 (((-842) $) 13))) +(((-968) (-13 (-599 (-842)) (-10 -8 (-15 -3262 ($ (-1152) (-1134))) (-15 -4344 ((-1152) $)) (-15 -4288 ((-1134) $))))) (T -968)) +((-3262 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1134)) (-5 *1 (-968)))) (-4344 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-968)))) (-4288 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-968))))) +(-13 (-599 (-842)) (-10 -8 (-15 -3262 ($ (-1152) (-1134))) (-15 -4344 ((-1152) $)) (-15 -4288 ((-1134) $)))) +((-3516 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-969 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 (|#4| (-1 |#2| |#1|) |#3|))) (-544) (-544) (-971 |#1|) (-971 |#2|)) (T -969)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-544)) (-4 *6 (-544)) (-4 *2 (-971 *6)) (-5 *1 (-969 *5 *6 *4 *2)) (-4 *4 (-971 *5))))) +(-10 -7 (-15 -3516 (|#4| (-1 |#2| |#1|) |#3|))) +((-4039 (((-3 |#2| "failed") $) NIL) (((-3 (-1152) "failed") $) 65) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) 95)) (-1703 ((|#2| $) NIL) (((-1152) $) 60) (((-401 (-552)) $) NIL) (((-552) $) 92)) (-1800 (((-671 (-552)) (-671 $)) NIL) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) 112) (((-671 |#2|) (-671 $)) 28)) (-1279 (($) 98)) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 75) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 84)) (-3798 (($ $) 10)) (-4317 (((-3 $ "failed") $) 20)) (-3516 (($ (-1 |#2| |#2|) $) 22)) (-3002 (($) 16)) (-4328 (($ $) 54)) (-2942 (($ $) NIL) (($ $ (-754)) NIL) (($ $ (-1152)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1583 (($ $) 12)) (-3562 (((-871 (-552)) $) 70) (((-871 (-373)) $) 79) (((-528) $) 40) (((-373) $) 44) (((-220) $) 47)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) 90) (($ |#2|) NIL) (($ (-1152)) 57)) (-3995 (((-754)) 31)) (-2316 (((-111) $ $) 50))) +(((-970 |#1| |#2|) (-10 -8 (-15 -2316 ((-111) |#1| |#1|)) (-15 -3002 (|#1|)) (-15 -4317 ((-3 |#1| "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3562 ((-220) |#1|)) (-15 -3562 ((-373) |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -1703 ((-1152) |#1|)) (-15 -4039 ((-3 (-1152) "failed") |#1|)) (-15 -1477 (|#1| (-1152))) (-15 -1279 (|#1|)) (-15 -4328 (|#1| |#1|)) (-15 -1583 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -4208 ((-868 (-373) |#1|) |#1| (-871 (-373)) (-868 (-373) |#1|))) (-15 -4208 ((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|))) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -1800 ((-671 |#2|) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| |#1|)) (-15 -1477 (|#1| (-552))) (-15 -3995 ((-754))) (-15 -1477 ((-842) |#1|))) (-971 |#2|) (-544)) (T -970)) +((-3995 (*1 *2) (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-970 *3 *4)) (-4 *3 (-971 *4))))) +(-10 -8 (-15 -2316 ((-111) |#1| |#1|)) (-15 -3002 (|#1|)) (-15 -4317 ((-3 |#1| "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -3562 ((-220) |#1|)) (-15 -3562 ((-373) |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -1703 ((-1152) |#1|)) (-15 -4039 ((-3 (-1152) "failed") |#1|)) (-15 -1477 (|#1| (-1152))) (-15 -1279 (|#1|)) (-15 -4328 (|#1| |#1|)) (-15 -1583 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -4208 ((-868 (-373) |#1|) |#1| (-871 (-373)) (-868 (-373) |#1|))) (-15 -4208 ((-868 (-552) |#1|) |#1| (-871 (-552)) (-868 (-552) |#1|))) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -1800 ((-671 |#2|) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| |#1|)) (-15 -1477 (|#1| (-552))) (-15 -3995 ((-754))) (-15 -1477 ((-842) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3471 ((|#1| $) 136 (|has| |#1| (-301)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-2246 (((-412 (-1148 $)) (-1148 $)) 127 (|has| |#1| (-888)))) (-4014 (($ $) 70)) (-2487 (((-412 $) $) 69)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 130 (|has| |#1| (-888)))) (-4224 (((-111) $ $) 57)) (-2422 (((-552) $) 117 (|has| |#1| (-803)))) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#1| "failed") $) 175) (((-3 (-1152) "failed") $) 125 (|has| |#1| (-1017 (-1152)))) (((-3 (-401 (-552)) "failed") $) 109 (|has| |#1| (-1017 (-552)))) (((-3 (-552) "failed") $) 107 (|has| |#1| (-1017 (-552))))) (-1703 ((|#1| $) 174) (((-1152) $) 124 (|has| |#1| (-1017 (-1152)))) (((-401 (-552)) $) 108 (|has| |#1| (-1017 (-552)))) (((-552) $) 106 (|has| |#1| (-1017 (-552))))) (-2813 (($ $ $) 53)) (-1800 (((-671 (-552)) (-671 $)) 149 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 148 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 147) (((-671 |#1|) (-671 $)) 146)) (-2040 (((-3 $ "failed") $) 32)) (-1279 (($) 134 (|has| |#1| (-537)))) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-1633 (((-111) $) 68)) (-2983 (((-111) $) 119 (|has| |#1| (-803)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 143 (|has| |#1| (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 142 (|has| |#1| (-865 (-373))))) (-2624 (((-111) $) 30)) (-3798 (($ $) 138)) (-2918 ((|#1| $) 140)) (-4317 (((-3 $ "failed") $) 105 (|has| |#1| (-1127)))) (-1508 (((-111) $) 118 (|has| |#1| (-803)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-1816 (($ $ $) 115 (|has| |#1| (-830)))) (-4093 (($ $ $) 114 (|has| |#1| (-830)))) (-3516 (($ (-1 |#1| |#1|) $) 166)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 67)) (-3002 (($) 104 (|has| |#1| (-1127)) CONST)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-4328 (($ $) 135 (|has| |#1| (-301)))) (-2060 ((|#1| $) 132 (|has| |#1| (-537)))) (-3676 (((-412 (-1148 $)) (-1148 $)) 129 (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) 128 (|has| |#1| (-888)))) (-1727 (((-412 $) $) 71)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-3321 (($ $ (-627 |#1|) (-627 |#1|)) 172 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 170 (|has| |#1| (-303 |#1|))) (($ $ (-627 (-288 |#1|))) 169 (|has| |#1| (-303 |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) 168 (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-1152) |#1|) 167 (|has| |#1| (-506 (-1152) |#1|)))) (-2718 (((-754) $) 56)) (-1985 (($ $ |#1|) 173 (|has| |#1| (-280 |#1| |#1|)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-2942 (($ $) 165 (|has| |#1| (-228))) (($ $ (-754)) 163 (|has| |#1| (-228))) (($ $ (-1152)) 161 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 160 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 159 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) 158 (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-1583 (($ $) 137)) (-2929 ((|#1| $) 139)) (-3562 (((-871 (-552)) $) 145 (|has| |#1| (-600 (-871 (-552))))) (((-871 (-373)) $) 144 (|has| |#1| (-600 (-871 (-373))))) (((-528) $) 122 (|has| |#1| (-600 (-528)))) (((-373) $) 121 (|has| |#1| (-1001))) (((-220) $) 120 (|has| |#1| (-1001)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 131 (-2520 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63) (($ |#1|) 178) (($ (-1152)) 126 (|has| |#1| (-1017 (-1152))))) (-3050 (((-3 $ "failed") $) 123 (-1559 (|has| |#1| (-142)) (-2520 (|has| $ (-142)) (|has| |#1| (-888)))))) (-3995 (((-754)) 28)) (-3796 ((|#1| $) 133 (|has| |#1| (-537)))) (-3778 (((-111) $ $) 37)) (-3329 (($ $) 116 (|has| |#1| (-803)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $) 164 (|has| |#1| (-228))) (($ $ (-754)) 162 (|has| |#1| (-228))) (($ $ (-1152)) 157 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 156 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 155 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) 154 (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2351 (((-111) $ $) 112 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 111 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 113 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 110 (|has| |#1| (-830)))) (-2407 (($ $ $) 62) (($ |#1| |#1|) 141)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 66)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176))) +(((-971 |#1|) (-137) (-544)) (T -971)) +((-2407 (*1 *1 *2 *2) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)))) (-2918 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)))) (-2929 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)))) (-3798 (*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)))) (-1583 (*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)))) (-3471 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)) (-4 *2 (-301)))) (-4328 (*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)) (-4 *2 (-301)))) (-1279 (*1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-537)) (-4 *2 (-544)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)) (-4 *2 (-537)))) (-2060 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)) (-4 *2 (-537))))) +(-13 (-357) (-38 |t#1|) (-1017 |t#1|) (-332 |t#1|) (-226 |t#1|) (-371 |t#1|) (-863 |t#1|) (-394 |t#1|) (-10 -8 (-15 -2407 ($ |t#1| |t#1|)) (-15 -2918 (|t#1| $)) (-15 -2929 (|t#1| $)) (-15 -3798 ($ $)) (-15 -1583 ($ $)) (IF (|has| |t#1| (-1127)) (-6 (-1127)) |%noBranch|) (IF (|has| |t#1| (-1017 (-552))) (PROGN (-6 (-1017 (-552))) (-6 (-1017 (-401 (-552))))) |%noBranch|) (IF (|has| |t#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |t#1| (-803)) (-6 (-803)) |%noBranch|) (IF (|has| |t#1| (-1001)) (-6 (-1001)) |%noBranch|) (IF (|has| |t#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-1017 (-1152))) (-6 (-1017 (-1152))) |%noBranch|) (IF (|has| |t#1| (-301)) (PROGN (-15 -3471 (|t#1| $)) (-15 -4328 ($ $))) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -1279 ($)) (-15 -3796 (|t#1| $)) (-15 -2060 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-888)) (-6 (-888)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) . T) ((-600 (-220)) |has| |#1| (-1001)) ((-600 (-373)) |has| |#1| (-1001)) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-600 (-871 (-373))) |has| |#1| (-600 (-871 (-373)))) ((-600 (-871 (-552))) |has| |#1| (-600 (-871 (-552)))) ((-226 |#1|) . T) ((-228) |has| |#1| (-228)) ((-238) . T) ((-280 |#1| $) |has| |#1| (-280 |#1| |#1|)) ((-284) . T) ((-301) . T) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-357) . T) ((-332 |#1|) . T) ((-371 |#1|) . T) ((-394 |#1|) . T) ((-445) . T) ((-506 (-1152) |#1|) |has| |#1| (-506 (-1152) |#1|)) ((-506 |#1| |#1|) |has| |#1| (-303 |#1|)) ((-544) . T) ((-630 #0#) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-623 (-552)) |has| |#1| (-623 (-552))) ((-623 |#1|) . T) ((-700 #0#) . T) ((-700 |#1|) . T) ((-700 $) . T) ((-709) . T) ((-774) |has| |#1| (-803)) ((-775) |has| |#1| (-803)) ((-777) |has| |#1| (-803)) ((-778) |has| |#1| (-803)) ((-803) |has| |#1| (-803)) ((-828) |has| |#1| (-803)) ((-830) -1559 (|has| |#1| (-830)) (|has| |#1| (-803))) ((-879 (-1152)) |has| |#1| (-879 (-1152))) ((-865 (-373)) |has| |#1| (-865 (-373))) ((-865 (-552)) |has| |#1| (-865 (-552))) ((-863 |#1|) . T) ((-888) |has| |#1| (-888)) ((-899) . T) ((-1001) |has| |#1| (-1001)) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-552))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 (-1152)) |has| |#1| (-1017 (-1152))) ((-1017 |#1|) . T) ((-1034 #0#) . T) ((-1034 |#1|) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1127) |has| |#1| (-1127)) ((-1189) . T) ((-1193) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-3352 (($ (-1118 |#1| |#2|)) 11)) (-4176 (((-1118 |#1| |#2|) $) 12)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1985 ((|#2| $ (-235 |#1| |#2|)) 16)) (-1477 (((-842) $) NIL)) (-1922 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL))) +(((-972 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3352 ($ (-1118 |#1| |#2|))) (-15 -4176 ((-1118 |#1| |#2|) $)) (-15 -1985 (|#2| $ (-235 |#1| |#2|))))) (-900) (-357)) (T -972)) +((-3352 (*1 *1 *2) (-12 (-5 *2 (-1118 *3 *4)) (-14 *3 (-900)) (-4 *4 (-357)) (-5 *1 (-972 *3 *4)))) (-4176 (*1 *2 *1) (-12 (-5 *2 (-1118 *3 *4)) (-5 *1 (-972 *3 *4)) (-14 *3 (-900)) (-4 *4 (-357)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (-235 *4 *2)) (-14 *4 (-900)) (-4 *2 (-357)) (-5 *1 (-972 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -3352 ($ (-1118 |#1| |#2|))) (-15 -4176 ((-1118 |#1| |#2|) $)) (-15 -1985 (|#2| $ (-235 |#1| |#2|))))) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2920 (((-1111) $) 9)) (-1477 (((-842) $) 17) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) +(((-973) (-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $))))) (T -973)) +((-2920 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-973))))) +(-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $)))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) 8)) (-3887 (($) 7 T CONST)) (-3022 (($ $) 46)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-3593 (((-754) $) 45)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-4165 ((|#1| $) 39)) (-3954 (($ |#1| $) 40)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-1412 ((|#1| $) 44)) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1549 ((|#1| |#1| $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-4234 ((|#1| $) 47)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) 42)) (-2905 ((|#1| $) 43)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-974 |#1|) (-137) (-1189)) (T -974)) +((-1549 (*1 *2 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-1189)))) (-4234 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-1189)))) (-3022 (*1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-1189)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-974 *3)) (-4 *3 (-1189)) (-5 *2 (-754)))) (-1412 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-1189)))) (-2905 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-1189))))) +(-13 (-106 |t#1|) (-10 -8 (-6 -4366) (-15 -1549 (|t#1| |t#1| $)) (-15 -4234 (|t#1| $)) (-15 -3022 ($ $)) (-15 -3593 ((-754) $)) (-15 -1412 (|t#1| $)) (-15 -2905 (|t#1| $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) +((-3024 (((-111) $) 42)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-1703 (((-552) $) NIL) (((-401 (-552)) $) NIL) ((|#2| $) 43)) (-2859 (((-3 (-401 (-552)) "failed") $) 78)) (-4229 (((-111) $) 72)) (-2411 (((-401 (-552)) $) 76)) (-2624 (((-111) $) 41)) (-2349 ((|#2| $) 22)) (-3516 (($ (-1 |#2| |#2|) $) 19)) (-1951 (($ $) 61)) (-2942 (($ $) NIL) (($ $ (-754)) NIL) (($ $ (-1152)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3562 (((-528) $) 67)) (-2616 (($ $) 17)) (-1477 (((-842) $) 56) (($ (-552)) 38) (($ |#2|) 36) (($ (-401 (-552))) NIL)) (-3995 (((-754)) 10)) (-3329 ((|#2| $) 71)) (-2292 (((-111) $ $) 25)) (-2316 (((-111) $ $) 69)) (-2396 (($ $) 29) (($ $ $) 28)) (-2384 (($ $ $) 26)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL))) +(((-975 |#1| |#2|) (-10 -8 (-15 -1477 (|#1| (-401 (-552)))) (-15 -2316 ((-111) |#1| |#1|)) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 * (|#1| |#1| (-401 (-552)))) (-15 -1951 (|#1| |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -2859 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2411 ((-401 (-552)) |#1|)) (-15 -4229 ((-111) |#1|)) (-15 -3329 (|#2| |#1|)) (-15 -2349 (|#2| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -1477 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 -3995 ((-754))) (-15 -2624 ((-111) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 -3024 ((-111) |#1|)) (-15 * (|#1| (-900) |#1|)) (-15 -2384 (|#1| |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) (-976 |#2|) (-169)) (T -975)) +((-3995 (*1 *2) (-12 (-4 *4 (-169)) (-5 *2 (-754)) (-5 *1 (-975 *3 *4)) (-4 *3 (-976 *4))))) +(-10 -8 (-15 -1477 (|#1| (-401 (-552)))) (-15 -2316 ((-111) |#1| |#1|)) (-15 * (|#1| (-401 (-552)) |#1|)) (-15 * (|#1| |#1| (-401 (-552)))) (-15 -1951 (|#1| |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -2859 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -2411 ((-401 (-552)) |#1|)) (-15 -4229 ((-111) |#1|)) (-15 -3329 (|#2| |#1|)) (-15 -2349 (|#2| |#1|)) (-15 -2616 (|#1| |#1|)) (-15 -3516 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -1477 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1477 (|#1| (-552))) (-15 -3995 ((-754))) (-15 -2624 ((-111) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 * (|#1| (-754) |#1|)) (-15 -3024 ((-111) |#1|)) (-15 * (|#1| (-900) |#1|)) (-15 -2384 (|#1| |#1| |#1|)) (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-4039 (((-3 (-552) "failed") $) 116 (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) 114 (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) 113)) (-1703 (((-552) $) 117 (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) 115 (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) 112)) (-1800 (((-671 (-552)) (-671 $)) 87 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 86 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 85) (((-671 |#1|) (-671 $)) 84)) (-2040 (((-3 $ "failed") $) 32)) (-1749 ((|#1| $) 77)) (-2859 (((-3 (-401 (-552)) "failed") $) 73 (|has| |#1| (-537)))) (-4229 (((-111) $) 75 (|has| |#1| (-537)))) (-2411 (((-401 (-552)) $) 74 (|has| |#1| (-537)))) (-2272 (($ |#1| |#1| |#1| |#1|) 78)) (-2624 (((-111) $) 30)) (-2349 ((|#1| $) 79)) (-1816 (($ $ $) 66 (|has| |#1| (-830)))) (-4093 (($ $ $) 65 (|has| |#1| (-830)))) (-3516 (($ (-1 |#1| |#1|) $) 88)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 70 (|has| |#1| (-357)))) (-1715 ((|#1| $) 80)) (-1421 ((|#1| $) 81)) (-2963 ((|#1| $) 82)) (-1498 (((-1096) $) 10)) (-3321 (($ $ (-627 |#1|) (-627 |#1|)) 94 (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) 92 (|has| |#1| (-303 |#1|))) (($ $ (-627 (-288 |#1|))) 91 (|has| |#1| (-303 |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) 90 (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-1152) |#1|) 89 (|has| |#1| (-506 (-1152) |#1|)))) (-1985 (($ $ |#1|) 95 (|has| |#1| (-280 |#1| |#1|)))) (-2942 (($ $) 111 (|has| |#1| (-228))) (($ $ (-754)) 109 (|has| |#1| (-228))) (($ $ (-1152)) 107 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 106 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 105 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) 104 (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-3562 (((-528) $) 71 (|has| |#1| (-600 (-528))))) (-2616 (($ $) 83)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 35) (($ (-401 (-552))) 60 (-1559 (|has| |#1| (-357)) (|has| |#1| (-1017 (-401 (-552))))))) (-3050 (((-3 $ "failed") $) 72 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3329 ((|#1| $) 76 (|has| |#1| (-1037)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $) 110 (|has| |#1| (-228))) (($ $ (-754)) 108 (|has| |#1| (-228))) (($ $ (-1152)) 103 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 102 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 101 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) 100 (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2351 (((-111) $ $) 63 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 62 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 64 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 61 (|has| |#1| (-830)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 69 (|has| |#1| (-357)))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-401 (-552))) 68 (|has| |#1| (-357))) (($ (-401 (-552)) $) 67 (|has| |#1| (-357))))) +(((-976 |#1|) (-137) (-169)) (T -976)) +((-2616 (*1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)))) (-2963 (*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)))) (-1421 (*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)))) (-2272 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)))) (-1749 (*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)) (-4 *2 (-1037)))) (-4229 (*1 *2 *1) (-12 (-4 *1 (-976 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-111)))) (-2411 (*1 *2 *1) (-12 (-4 *1 (-976 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-401 (-552))))) (-2859 (*1 *2 *1) (|partial| -12 (-4 *1 (-976 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-401 (-552)))))) +(-13 (-38 |t#1|) (-405 |t#1|) (-226 |t#1|) (-332 |t#1|) (-371 |t#1|) (-10 -8 (-15 -2616 ($ $)) (-15 -2963 (|t#1| $)) (-15 -1421 (|t#1| $)) (-15 -1715 (|t#1| $)) (-15 -2349 (|t#1| $)) (-15 -2272 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1749 (|t#1| $)) (IF (|has| |t#1| (-284)) (-6 (-284)) |%noBranch|) (IF (|has| |t#1| (-830)) (-6 (-830)) |%noBranch|) (IF (|has| |t#1| (-357)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-142)) |%noBranch|) (IF (|has| |t#1| (-1037)) (-15 -3329 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -4229 ((-111) $)) (-15 -2411 ((-401 (-552)) $)) (-15 -2859 ((-3 (-401 (-552)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-357)) ((-38 |#1|) . T) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-357)) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-357)) (|has| |#1| (-284))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-226 |#1|) . T) ((-228) |has| |#1| (-228)) ((-238) |has| |#1| (-357)) ((-280 |#1| $) |has| |#1| (-280 |#1| |#1|)) ((-284) -1559 (|has| |#1| (-357)) (|has| |#1| (-284))) ((-303 |#1|) |has| |#1| (-303 |#1|)) ((-332 |#1|) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-506 (-1152) |#1|) |has| |#1| (-506 (-1152) |#1|)) ((-506 |#1| |#1|) |has| |#1| (-303 |#1|)) ((-630 #0#) |has| |#1| (-357)) ((-630 |#1|) . T) ((-630 $) . T) ((-623 (-552)) |has| |#1| (-623 (-552))) ((-623 |#1|) . T) ((-700 #0#) |has| |#1| (-357)) ((-700 |#1|) . T) ((-709) . T) ((-830) |has| |#1| (-830)) ((-879 (-1152)) |has| |#1| (-879 (-1152))) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T) ((-1034 #0#) |has| |#1| (-357)) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-357)) (|has| |#1| (-284))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-3516 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-977 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 (|#3| (-1 |#4| |#2|) |#1|))) (-976 |#2|) (-169) (-976 |#4|) (-169)) (T -977)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) (-4 *2 (-976 *6)) (-5 *1 (-977 *4 *5 *2 *6)) (-4 *4 (-976 *5))))) +(-10 -7 (-15 -3516 (|#3| (-1 |#4| |#2|) |#1|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1749 ((|#1| $) 12)) (-2859 (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-537)))) (-4229 (((-111) $) NIL (|has| |#1| (-537)))) (-2411 (((-401 (-552)) $) NIL (|has| |#1| (-537)))) (-2272 (($ |#1| |#1| |#1| |#1|) 16)) (-2624 (((-111) $) NIL)) (-2349 ((|#1| $) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| |#1| (-357)))) (-1715 ((|#1| $) 15)) (-1421 ((|#1| $) 14)) (-2963 ((|#1| $) 13)) (-1498 (((-1096) $) NIL)) (-3321 (($ $ (-627 |#1|) (-627 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-303 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-303 |#1|))) (($ $ (-627 (-288 |#1|))) NIL (|has| |#1| (-303 |#1|))) (($ $ (-627 (-1152)) (-627 |#1|)) NIL (|has| |#1| (-506 (-1152) |#1|))) (($ $ (-1152) |#1|) NIL (|has| |#1| (-506 (-1152) |#1|)))) (-1985 (($ $ |#1|) NIL (|has| |#1| (-280 |#1| |#1|)))) (-2942 (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-2616 (($ $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-357)) (|has| |#1| (-1017 (-401 (-552))))))) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-3329 ((|#1| $) NIL (|has| |#1| (-1037)))) (-1922 (($) 8 T CONST)) (-1933 (($) 10 T CONST)) (-4251 (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357)))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-401 (-552))) NIL (|has| |#1| (-357))) (($ (-401 (-552)) $) NIL (|has| |#1| (-357))))) +(((-978 |#1|) (-976 |#1|) (-169)) (T -978)) +NIL +(-976 |#1|) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4031 (((-111) $ (-754)) NIL)) (-3887 (($) NIL T CONST)) (-3022 (($ $) 20)) (-2126 (($ (-627 |#1|)) 29)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-3593 (((-754) $) 22)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-4165 ((|#1| $) 24)) (-3954 (($ |#1| $) 15)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1412 ((|#1| $) 23)) (-4133 ((|#1| $) 19)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1549 ((|#1| |#1| $) 14)) (-1275 (((-111) $) 17)) (-2373 (($) NIL)) (-4234 ((|#1| $) 18)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) NIL)) (-2905 ((|#1| $) 26)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-979 |#1|) (-13 (-974 |#1|) (-10 -8 (-15 -2126 ($ (-627 |#1|))))) (-1076)) (T -979)) +((-2126 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-979 *3))))) +(-13 (-974 |#1|) (-10 -8 (-15 -2126 ($ (-627 |#1|))))) +((-1737 (($ $) 12)) (-1352 (($ $ (-552)) 13))) +(((-980 |#1|) (-10 -8 (-15 -1737 (|#1| |#1|)) (-15 -1352 (|#1| |#1| (-552)))) (-981)) (T -980)) +NIL +(-10 -8 (-15 -1737 (|#1| |#1|)) (-15 -1352 (|#1| |#1| (-552)))) +((-1737 (($ $) 6)) (-1352 (($ $ (-552)) 7)) (** (($ $ (-401 (-552))) 8))) +(((-981) (-137)) (T -981)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-401 (-552))))) (-1352 (*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-552)))) (-1737 (*1 *1 *1) (-4 *1 (-981)))) +(-13 (-10 -8 (-15 -1737 ($ $)) (-15 -1352 ($ $ (-552))) (-15 ** ($ $ (-401 (-552)))))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2238 (((-2 (|:| |num| (-1235 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| (-401 |#2|) (-357)))) (-3245 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-4058 (((-111) $) NIL (|has| (-401 |#2|) (-357)))) (-3841 (((-671 (-401 |#2|)) (-1235 $)) NIL) (((-671 (-401 |#2|))) NIL)) (-3385 (((-401 |#2|) $) NIL)) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| (-401 |#2|) (-343)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-2487 (((-412 $) $) NIL (|has| (-401 |#2|) (-357)))) (-4224 (((-111) $ $) NIL (|has| (-401 |#2|) (-357)))) (-3307 (((-754)) NIL (|has| (-401 |#2|) (-362)))) (-3865 (((-111)) NIL)) (-2145 (((-111) |#1|) 144) (((-111) |#2|) 149)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| (-401 |#2|) (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-401 |#2|) (-1017 (-401 (-552))))) (((-3 (-401 |#2|) "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| (-401 |#2|) (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| (-401 |#2|) (-1017 (-401 (-552))))) (((-401 |#2|) $) NIL)) (-2342 (($ (-1235 (-401 |#2|)) (-1235 $)) NIL) (($ (-1235 (-401 |#2|))) 70) (($ (-1235 |#2|) |#2|) NIL)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-401 |#2|) (-343)))) (-2813 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-4088 (((-671 (-401 |#2|)) $ (-1235 $)) NIL) (((-671 (-401 |#2|)) $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| (-401 |#2|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| (-401 |#2|) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-401 |#2|))) (|:| |vec| (-1235 (-401 |#2|)))) (-671 $) (-1235 $)) NIL) (((-671 (-401 |#2|)) (-671 $)) NIL)) (-1913 (((-1235 $) (-1235 $)) NIL)) (-2091 (($ |#3|) 65) (((-3 $ "failed") (-401 |#3|)) NIL (|has| (-401 |#2|) (-357)))) (-2040 (((-3 $ "failed") $) NIL)) (-3814 (((-627 (-627 |#1|))) NIL (|has| |#1| (-362)))) (-3862 (((-111) |#1| |#1|) NIL)) (-4154 (((-900)) NIL)) (-1279 (($) NIL (|has| (-401 |#2|) (-362)))) (-2257 (((-111)) NIL)) (-3521 (((-111) |#1|) 56) (((-111) |#2|) 146)) (-2789 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| (-401 |#2|) (-357)))) (-1375 (($ $) NIL)) (-2740 (($) NIL (|has| (-401 |#2|) (-343)))) (-1415 (((-111) $) NIL (|has| (-401 |#2|) (-343)))) (-4294 (($ $ (-754)) NIL (|has| (-401 |#2|) (-343))) (($ $) NIL (|has| (-401 |#2|) (-343)))) (-1633 (((-111) $) NIL (|has| (-401 |#2|) (-357)))) (-2641 (((-900) $) NIL (|has| (-401 |#2|) (-343))) (((-816 (-900)) $) NIL (|has| (-401 |#2|) (-343)))) (-2624 (((-111) $) NIL)) (-4080 (((-754)) NIL)) (-1380 (((-1235 $) (-1235 $)) NIL)) (-2349 (((-401 |#2|) $) NIL)) (-2370 (((-627 (-931 |#1|)) (-1152)) NIL (|has| |#1| (-357)))) (-4317 (((-3 $ "failed") $) NIL (|has| (-401 |#2|) (-343)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| (-401 |#2|) (-357)))) (-4205 ((|#3| $) NIL (|has| (-401 |#2|) (-357)))) (-2886 (((-900) $) NIL (|has| (-401 |#2|) (-362)))) (-2079 ((|#3| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| (-401 |#2|) (-357))) (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-1595 (((-1134) $) NIL)) (-1486 (((-671 (-401 |#2|))) 52)) (-2659 (((-671 (-401 |#2|))) 51)) (-1951 (($ $) NIL (|has| (-401 |#2|) (-357)))) (-3093 (($ (-1235 |#2|) |#2|) 71)) (-3210 (((-671 (-401 |#2|))) 50)) (-2216 (((-671 (-401 |#2|))) 49)) (-1606 (((-2 (|:| |num| (-671 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-2559 (((-2 (|:| |num| (-1235 |#2|)) (|:| |den| |#2|)) $) 77)) (-1668 (((-1235 $)) 46)) (-3402 (((-1235 $)) 45)) (-3177 (((-111) $) NIL)) (-1505 (((-111) $) NIL) (((-111) $ |#1|) NIL) (((-111) $ |#2|) NIL)) (-3002 (($) NIL (|has| (-401 |#2|) (-343)) CONST)) (-4153 (($ (-900)) NIL (|has| (-401 |#2|) (-362)))) (-3945 (((-3 |#2| "failed")) 63)) (-1498 (((-1096) $) NIL)) (-2161 (((-754)) NIL)) (-2220 (($) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| (-401 |#2|) (-357)))) (-1323 (($ (-627 $)) NIL (|has| (-401 |#2|) (-357))) (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| (-401 |#2|) (-343)))) (-1727 (((-412 $) $) NIL (|has| (-401 |#2|) (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-401 |#2|) (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| (-401 |#2|) (-357)))) (-2761 (((-3 $ "failed") $ $) NIL (|has| (-401 |#2|) (-357)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| (-401 |#2|) (-357)))) (-2718 (((-754) $) NIL (|has| (-401 |#2|) (-357)))) (-1985 ((|#1| $ |#1| |#1|) NIL)) (-1758 (((-3 |#2| "failed")) 62)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| (-401 |#2|) (-357)))) (-1637 (((-401 |#2|) (-1235 $)) NIL) (((-401 |#2|)) 42)) (-4018 (((-754) $) NIL (|has| (-401 |#2|) (-343))) (((-3 (-754) "failed") $ $) NIL (|has| (-401 |#2|) (-343)))) (-2942 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-754)) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-754)) NIL (-1559 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) NIL (-1559 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-4070 (((-671 (-401 |#2|)) (-1235 $) (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357)))) (-1376 ((|#3|) 53)) (-3439 (($) NIL (|has| (-401 |#2|) (-343)))) (-3133 (((-1235 (-401 |#2|)) $ (-1235 $)) NIL) (((-671 (-401 |#2|)) (-1235 $) (-1235 $)) NIL) (((-1235 (-401 |#2|)) $) 72) (((-671 (-401 |#2|)) (-1235 $)) NIL)) (-3562 (((-1235 (-401 |#2|)) $) NIL) (($ (-1235 (-401 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| (-401 |#2|) (-343)))) (-2912 (((-1235 $) (-1235 $)) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ (-401 |#2|)) NIL) (($ (-401 (-552))) NIL (-1559 (|has| (-401 |#2|) (-1017 (-401 (-552)))) (|has| (-401 |#2|) (-357)))) (($ $) NIL (|has| (-401 |#2|) (-357)))) (-3050 (($ $) NIL (|has| (-401 |#2|) (-343))) (((-3 $ "failed") $) NIL (|has| (-401 |#2|) (-142)))) (-2410 ((|#3| $) NIL)) (-3995 (((-754)) NIL)) (-4073 (((-111)) 60)) (-2423 (((-111) |#1|) 150) (((-111) |#2|) 151)) (-2957 (((-1235 $)) 121)) (-3778 (((-111) $ $) NIL (|has| (-401 |#2|) (-357)))) (-4090 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2419 (((-111)) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-1 (-401 |#2|) (-401 |#2|)) (-754)) NIL (|has| (-401 |#2|) (-357))) (($ $ (-1 (-401 |#2|) (-401 |#2|))) NIL (|has| (-401 |#2|) (-357))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| (-401 |#2|) (-357)) (|has| (-401 |#2|) (-879 (-1152))))) (($ $ (-754)) NIL (-1559 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343)))) (($ $) NIL (-1559 (-12 (|has| (-401 |#2|) (-228)) (|has| (-401 |#2|) (-357))) (|has| (-401 |#2|) (-343))))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ $) NIL (|has| (-401 |#2|) (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| (-401 |#2|) (-357)))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 |#2|)) NIL) (($ (-401 |#2|) $) NIL) (($ (-401 (-552)) $) NIL (|has| (-401 |#2|) (-357))) (($ $ (-401 (-552))) NIL (|has| (-401 |#2|) (-357))))) +(((-982 |#1| |#2| |#3| |#4| |#5|) (-336 |#1| |#2| |#3|) (-1193) (-1211 |#1|) (-1211 (-401 |#2|)) (-401 |#2|) (-754)) (T -982)) +NIL +(-336 |#1| |#2| |#3|) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2113 (((-627 (-552)) $) 54)) (-2721 (($ (-627 (-552))) 62)) (-3471 (((-552) $) 40 (|has| (-552) (-301)))) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL (|has| (-552) (-803)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) 49) (((-3 (-1152) "failed") $) NIL (|has| (-552) (-1017 (-1152)))) (((-3 (-401 (-552)) "failed") $) 47 (|has| (-552) (-1017 (-552)))) (((-3 (-552) "failed") $) 49 (|has| (-552) (-1017 (-552))))) (-1703 (((-552) $) NIL) (((-1152) $) NIL (|has| (-552) (-1017 (-1152)))) (((-401 (-552)) $) NIL (|has| (-552) (-1017 (-552)))) (((-552) $) NIL (|has| (-552) (-1017 (-552))))) (-2813 (($ $ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| (-552) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| (-552) (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-671 (-552)) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1279 (($) NIL (|has| (-552) (-537)))) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-1967 (((-627 (-552)) $) 60)) (-2983 (((-111) $) NIL (|has| (-552) (-803)))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (|has| (-552) (-865 (-552)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (|has| (-552) (-865 (-373))))) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL)) (-2918 (((-552) $) 37)) (-4317 (((-3 $ "failed") $) NIL (|has| (-552) (-1127)))) (-1508 (((-111) $) NIL (|has| (-552) (-803)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| (-552) (-830)))) (-3516 (($ (-1 (-552) (-552)) $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL)) (-3002 (($) NIL (|has| (-552) (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-4328 (($ $) NIL (|has| (-552) (-301))) (((-401 (-552)) $) 42)) (-3515 (((-1132 (-552)) $) 59)) (-3044 (($ (-627 (-552)) (-627 (-552))) 63)) (-2060 (((-552) $) 53 (|has| (-552) (-537)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| (-552) (-888)))) (-1727 (((-412 $) $) NIL)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-3321 (($ $ (-627 (-552)) (-627 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-552) (-552)) NIL (|has| (-552) (-303 (-552)))) (($ $ (-288 (-552))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-627 (-288 (-552)))) NIL (|has| (-552) (-303 (-552)))) (($ $ (-627 (-1152)) (-627 (-552))) NIL (|has| (-552) (-506 (-1152) (-552)))) (($ $ (-1152) (-552)) NIL (|has| (-552) (-506 (-1152) (-552))))) (-2718 (((-754) $) NIL)) (-1985 (($ $ (-552)) NIL (|has| (-552) (-280 (-552) (-552))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $) 11 (|has| (-552) (-228))) (($ $ (-754)) NIL (|has| (-552) (-228))) (($ $ (-1152)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1 (-552) (-552)) (-754)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-1583 (($ $) NIL)) (-2929 (((-552) $) 39)) (-2266 (((-627 (-552)) $) 61)) (-3562 (((-871 (-552)) $) NIL (|has| (-552) (-600 (-871 (-552))))) (((-871 (-373)) $) NIL (|has| (-552) (-600 (-871 (-373))))) (((-528) $) NIL (|has| (-552) (-600 (-528)))) (((-373) $) NIL (|has| (-552) (-1001))) (((-220) $) NIL (|has| (-552) (-1001)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| (-552) (-888))))) (-1477 (((-842) $) 77) (($ (-552)) 43) (($ $) NIL) (($ (-401 (-552))) 20) (($ (-552)) 43) (($ (-1152)) NIL (|has| (-552) (-1017 (-1152)))) (((-401 (-552)) $) 18)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| (-552) (-888))) (|has| (-552) (-142))))) (-3995 (((-754)) 9)) (-3796 (((-552) $) 51 (|has| (-552) (-537)))) (-3778 (((-111) $ $) NIL)) (-3329 (($ $) NIL (|has| (-552) (-803)))) (-1922 (($) 10 T CONST)) (-1933 (($) 12 T CONST)) (-4251 (($ $) NIL (|has| (-552) (-228))) (($ $ (-754)) NIL (|has| (-552) (-228))) (($ $ (-1152)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| (-552) (-879 (-1152)))) (($ $ (-1 (-552) (-552)) (-754)) NIL) (($ $ (-1 (-552) (-552))) NIL)) (-2351 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2292 (((-111) $ $) 14)) (-2340 (((-111) $ $) NIL (|has| (-552) (-830)))) (-2316 (((-111) $ $) 33 (|has| (-552) (-830)))) (-2407 (($ $ $) 29) (($ (-552) (-552)) 31)) (-2396 (($ $) 15) (($ $ $) 23)) (-2384 (($ $ $) 21)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 25) (($ $ $) 27) (($ $ (-401 (-552))) NIL) (($ (-401 (-552)) $) NIL) (($ (-552) $) 25) (($ $ (-552)) NIL))) +(((-983 |#1|) (-13 (-971 (-552)) (-10 -8 (-15 -1477 ((-401 (-552)) $)) (-15 -4328 ((-401 (-552)) $)) (-15 -2113 ((-627 (-552)) $)) (-15 -3515 ((-1132 (-552)) $)) (-15 -1967 ((-627 (-552)) $)) (-15 -2266 ((-627 (-552)) $)) (-15 -2721 ($ (-627 (-552)))) (-15 -3044 ($ (-627 (-552)) (-627 (-552)))))) (-552)) (T -983)) +((-1477 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552)))) (-4328 (*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552)))) (-2113 (*1 *2 *1) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-1132 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552)))) (-1967 (*1 *2 *1) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552)))) (-2266 (*1 *2 *1) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552)))) (-2721 (*1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552)))) (-3044 (*1 *1 *2 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552))))) +(-13 (-971 (-552)) (-10 -8 (-15 -1477 ((-401 (-552)) $)) (-15 -4328 ((-401 (-552)) $)) (-15 -2113 ((-627 (-552)) $)) (-15 -3515 ((-1132 (-552)) $)) (-15 -1967 ((-627 (-552)) $)) (-15 -2266 ((-627 (-552)) $)) (-15 -2721 ($ (-627 (-552)))) (-15 -3044 ($ (-627 (-552)) (-627 (-552)))))) +((-3655 (((-52) (-401 (-552)) (-552)) 9))) +(((-984) (-10 -7 (-15 -3655 ((-52) (-401 (-552)) (-552))))) (T -984)) +((-3655 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-552))) (-5 *4 (-552)) (-5 *2 (-52)) (-5 *1 (-984))))) +(-10 -7 (-15 -3655 ((-52) (-401 (-552)) (-552)))) +((-3307 (((-552)) 13)) (-3784 (((-552)) 16)) (-2065 (((-1240) (-552)) 15)) (-3424 (((-552) (-552)) 17) (((-552)) 12))) +(((-985) (-10 -7 (-15 -3424 ((-552))) (-15 -3307 ((-552))) (-15 -3424 ((-552) (-552))) (-15 -2065 ((-1240) (-552))) (-15 -3784 ((-552))))) (T -985)) +((-3784 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-985)))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-985)))) (-3424 (*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-985)))) (-3307 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-985)))) (-3424 (*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-985))))) +(-10 -7 (-15 -3424 ((-552))) (-15 -3307 ((-552))) (-15 -3424 ((-552) (-552))) (-15 -2065 ((-1240) (-552))) (-15 -3784 ((-552)))) +((-1685 (((-412 |#1|) |#1|) 41)) (-1727 (((-412 |#1|) |#1|) 40))) +(((-986 |#1|) (-10 -7 (-15 -1727 ((-412 |#1|) |#1|)) (-15 -1685 ((-412 |#1|) |#1|))) (-1211 (-401 (-552)))) (T -986)) +((-1685 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-986 *3)) (-4 *3 (-1211 (-401 (-552)))))) (-1727 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-986 *3)) (-4 *3 (-1211 (-401 (-552))))))) +(-10 -7 (-15 -1727 ((-412 |#1|) |#1|)) (-15 -1685 ((-412 |#1|) |#1|))) +((-2859 (((-3 (-401 (-552)) "failed") |#1|) 15)) (-4229 (((-111) |#1|) 14)) (-2411 (((-401 (-552)) |#1|) 10))) +(((-987 |#1|) (-10 -7 (-15 -2411 ((-401 (-552)) |#1|)) (-15 -4229 ((-111) |#1|)) (-15 -2859 ((-3 (-401 (-552)) "failed") |#1|))) (-1017 (-401 (-552)))) (T -987)) +((-2859 (*1 *2 *3) (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-987 *3)) (-4 *3 (-1017 *2)))) (-4229 (*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-987 *3)) (-4 *3 (-1017 (-401 (-552)))))) (-2411 (*1 *2 *3) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-987 *3)) (-4 *3 (-1017 *2))))) +(-10 -7 (-15 -2411 ((-401 (-552)) |#1|)) (-15 -4229 ((-111) |#1|)) (-15 -2859 ((-3 (-401 (-552)) "failed") |#1|))) +((-2950 ((|#2| $ "value" |#2|) 12)) (-1985 ((|#2| $ "value") 10)) (-3415 (((-111) $ $) 18))) +(((-988 |#1| |#2|) (-10 -8 (-15 -2950 (|#2| |#1| "value" |#2|)) (-15 -3415 ((-111) |#1| |#1|)) (-15 -1985 (|#2| |#1| "value"))) (-989 |#2|) (-1189)) (T -988)) +NIL +(-10 -8 (-15 -2950 (|#2| |#1| "value" |#2|)) (-15 -3415 ((-111) |#1| |#1|)) (-15 -1985 (|#2| |#1| "value"))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4288 ((|#1| $) 48)) (-4031 (((-111) $ (-754)) 8)) (-2472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 41 (|has| $ (-6 -4367)))) (-3887 (($) 7 T CONST)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) 50)) (-3726 (((-111) $ $) 42 (|has| |#1| (-1076)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1823 (((-627 |#1|) $) 45)) (-3810 (((-111) $) 49)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ "value") 47)) (-1848 (((-552) $ $) 44)) (-2978 (((-111) $) 46)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) 51)) (-3415 (((-111) $ $) 43 (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-989 |#1|) (-137) (-1189)) (T -989)) +((-2535 (*1 *2 *1) (-12 (-4 *3 (-1189)) (-5 *2 (-627 *1)) (-4 *1 (-989 *3)))) (-2336 (*1 *2 *1) (-12 (-4 *3 (-1189)) (-5 *2 (-627 *1)) (-4 *1 (-989 *3)))) (-3810 (*1 *2 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-5 *2 (-111)))) (-4288 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-1189)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-989 *2)) (-4 *2 (-1189)))) (-2978 (*1 *2 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-5 *2 (-111)))) (-1823 (*1 *2 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-5 *2 (-627 *3)))) (-1848 (*1 *2 *1 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-5 *2 (-552)))) (-3415 (*1 *2 *1 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-4 *3 (-1076)) (-5 *2 (-111)))) (-3726 (*1 *2 *1 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-4 *3 (-1076)) (-5 *2 (-111)))) (-4017 (*1 *1 *1 *2) (-12 (-5 *2 (-627 *1)) (|has| *1 (-6 -4367)) (-4 *1 (-989 *3)) (-4 *3 (-1189)))) (-2950 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4367)) (-4 *1 (-989 *2)) (-4 *2 (-1189)))) (-2472 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-989 *2)) (-4 *2 (-1189))))) +(-13 (-482 |t#1|) (-10 -8 (-15 -2535 ((-627 $) $)) (-15 -2336 ((-627 $) $)) (-15 -3810 ((-111) $)) (-15 -4288 (|t#1| $)) (-15 -1985 (|t#1| $ "value")) (-15 -2978 ((-111) $)) (-15 -1823 ((-627 |t#1|) $)) (-15 -1848 ((-552) $ $)) (IF (|has| |t#1| (-1076)) (PROGN (-15 -3415 ((-111) $ $)) (-15 -3726 ((-111) $ $))) |%noBranch|) (IF (|has| $ (-6 -4367)) (PROGN (-15 -4017 ($ $ (-627 $))) (-15 -2950 (|t#1| $ "value" |t#1|)) (-15 -2472 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) +((-1737 (($ $) 9) (($ $ (-900)) 43) (($ (-401 (-552))) 13) (($ (-552)) 15)) (-3348 (((-3 $ "failed") (-1148 $) (-900) (-842)) 23) (((-3 $ "failed") (-1148 $) (-900)) 28)) (-1352 (($ $ (-552)) 49)) (-3995 (((-754)) 17)) (-1714 (((-627 $) (-1148 $)) NIL) (((-627 $) (-1148 (-401 (-552)))) 54) (((-627 $) (-1148 (-552))) 59) (((-627 $) (-931 $)) 63) (((-627 $) (-931 (-401 (-552)))) 67) (((-627 $) (-931 (-552))) 71)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL) (($ $ (-401 (-552))) 47))) +(((-990 |#1|) (-10 -8 (-15 -1737 (|#1| (-552))) (-15 -1737 (|#1| (-401 (-552)))) (-15 -1737 (|#1| |#1| (-900))) (-15 -1714 ((-627 |#1|) (-931 (-552)))) (-15 -1714 ((-627 |#1|) (-931 (-401 (-552))))) (-15 -1714 ((-627 |#1|) (-931 |#1|))) (-15 -1714 ((-627 |#1|) (-1148 (-552)))) (-15 -1714 ((-627 |#1|) (-1148 (-401 (-552))))) (-15 -1714 ((-627 |#1|) (-1148 |#1|))) (-15 -3348 ((-3 |#1| "failed") (-1148 |#1|) (-900))) (-15 -3348 ((-3 |#1| "failed") (-1148 |#1|) (-900) (-842))) (-15 ** (|#1| |#1| (-401 (-552)))) (-15 -1352 (|#1| |#1| (-552))) (-15 -1737 (|#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -3995 ((-754))) (-15 ** (|#1| |#1| (-754))) (-15 ** (|#1| |#1| (-900)))) (-991)) (T -990)) +((-3995 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-990 *3)) (-4 *3 (-991))))) +(-10 -8 (-15 -1737 (|#1| (-552))) (-15 -1737 (|#1| (-401 (-552)))) (-15 -1737 (|#1| |#1| (-900))) (-15 -1714 ((-627 |#1|) (-931 (-552)))) (-15 -1714 ((-627 |#1|) (-931 (-401 (-552))))) (-15 -1714 ((-627 |#1|) (-931 |#1|))) (-15 -1714 ((-627 |#1|) (-1148 (-552)))) (-15 -1714 ((-627 |#1|) (-1148 (-401 (-552))))) (-15 -1714 ((-627 |#1|) (-1148 |#1|))) (-15 -3348 ((-3 |#1| "failed") (-1148 |#1|) (-900))) (-15 -3348 ((-3 |#1| "failed") (-1148 |#1|) (-900) (-842))) (-15 ** (|#1| |#1| (-401 (-552)))) (-15 -1352 (|#1| |#1| (-552))) (-15 -1737 (|#1| |#1|)) (-15 ** (|#1| |#1| (-552))) (-15 -3995 ((-754))) (-15 ** (|#1| |#1| (-754))) (-15 ** (|#1| |#1| (-900)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 87)) (-3245 (($ $) 88)) (-4058 (((-111) $) 90)) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 107)) (-2487 (((-412 $) $) 108)) (-1737 (($ $) 71) (($ $ (-900)) 57) (($ (-401 (-552))) 56) (($ (-552)) 55)) (-4224 (((-111) $ $) 98)) (-2422 (((-552) $) 124)) (-3887 (($) 17 T CONST)) (-3348 (((-3 $ "failed") (-1148 $) (-900) (-842)) 65) (((-3 $ "failed") (-1148 $) (-900)) 64)) (-4039 (((-3 (-552) "failed") $) 83 (|has| (-401 (-552)) (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) 81 (|has| (-401 (-552)) (-1017 (-401 (-552))))) (((-3 (-401 (-552)) "failed") $) 79)) (-1703 (((-552) $) 84 (|has| (-401 (-552)) (-1017 (-552)))) (((-401 (-552)) $) 82 (|has| (-401 (-552)) (-1017 (-401 (-552))))) (((-401 (-552)) $) 78)) (-2734 (($ $ (-842)) 54)) (-4169 (($ $ (-842)) 53)) (-2813 (($ $ $) 102)) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 101)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 96)) (-1633 (((-111) $) 109)) (-2983 (((-111) $) 122)) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 70)) (-1508 (((-111) $) 123)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 105)) (-1816 (($ $ $) 121)) (-4093 (($ $ $) 120)) (-1441 (((-3 (-1148 $) "failed") $) 66)) (-2597 (((-3 (-842) "failed") $) 68)) (-1934 (((-3 (-1148 $) "failed") $) 67)) (-1276 (($ (-627 $)) 94) (($ $ $) 93)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 110)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 95)) (-1323 (($ (-627 $)) 92) (($ $ $) 91)) (-1727 (((-412 $) $) 106)) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 103)) (-2761 (((-3 $ "failed") $ $) 86)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 97)) (-2718 (((-754) $) 99)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 100)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 114) (($ $) 85) (($ (-401 (-552))) 80) (($ (-552)) 77) (($ (-401 (-552))) 74)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 89)) (-3030 (((-401 (-552)) $ $) 52)) (-1714 (((-627 $) (-1148 $)) 63) (((-627 $) (-1148 (-401 (-552)))) 62) (((-627 $) (-1148 (-552))) 61) (((-627 $) (-931 $)) 60) (((-627 $) (-931 (-401 (-552)))) 59) (((-627 $) (-931 (-552))) 58)) (-3329 (($ $) 125)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2351 (((-111) $ $) 118)) (-2329 (((-111) $ $) 117)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 119)) (-2316 (((-111) $ $) 116)) (-2407 (($ $ $) 115)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 111) (($ $ (-401 (-552))) 69)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ (-401 (-552)) $) 113) (($ $ (-401 (-552))) 112) (($ (-552) $) 76) (($ $ (-552)) 75) (($ (-401 (-552)) $) 73) (($ $ (-401 (-552))) 72))) +(((-991) (-137)) (T -991)) +((-1737 (*1 *1 *1) (-4 *1 (-991))) (-2597 (*1 *2 *1) (|partial| -12 (-4 *1 (-991)) (-5 *2 (-842)))) (-1934 (*1 *2 *1) (|partial| -12 (-5 *2 (-1148 *1)) (-4 *1 (-991)))) (-1441 (*1 *2 *1) (|partial| -12 (-5 *2 (-1148 *1)) (-4 *1 (-991)))) (-3348 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1148 *1)) (-5 *3 (-900)) (-5 *4 (-842)) (-4 *1 (-991)))) (-3348 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1148 *1)) (-5 *3 (-900)) (-4 *1 (-991)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-991)) (-5 *2 (-627 *1)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-1148 (-401 (-552)))) (-5 *2 (-627 *1)) (-4 *1 (-991)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-1148 (-552))) (-5 *2 (-627 *1)) (-4 *1 (-991)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-931 *1)) (-4 *1 (-991)) (-5 *2 (-627 *1)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-931 (-401 (-552)))) (-5 *2 (-627 *1)) (-4 *1 (-991)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-931 (-552))) (-5 *2 (-627 *1)) (-4 *1 (-991)))) (-1737 (*1 *1 *1 *2) (-12 (-4 *1 (-991)) (-5 *2 (-900)))) (-1737 (*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-4 *1 (-991)))) (-1737 (*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-991)))) (-2734 (*1 *1 *1 *2) (-12 (-4 *1 (-991)) (-5 *2 (-842)))) (-4169 (*1 *1 *1 *2) (-12 (-4 *1 (-991)) (-5 *2 (-842)))) (-3030 (*1 *2 *1 *1) (-12 (-4 *1 (-991)) (-5 *2 (-401 (-552)))))) +(-13 (-144) (-828) (-169) (-357) (-405 (-401 (-552))) (-38 (-552)) (-38 (-401 (-552))) (-981) (-10 -8 (-15 -2597 ((-3 (-842) "failed") $)) (-15 -1934 ((-3 (-1148 $) "failed") $)) (-15 -1441 ((-3 (-1148 $) "failed") $)) (-15 -3348 ((-3 $ "failed") (-1148 $) (-900) (-842))) (-15 -3348 ((-3 $ "failed") (-1148 $) (-900))) (-15 -1714 ((-627 $) (-1148 $))) (-15 -1714 ((-627 $) (-1148 (-401 (-552))))) (-15 -1714 ((-627 $) (-1148 (-552)))) (-15 -1714 ((-627 $) (-931 $))) (-15 -1714 ((-627 $) (-931 (-401 (-552))))) (-15 -1714 ((-627 $) (-931 (-552)))) (-15 -1737 ($ $ (-900))) (-15 -1737 ($ $)) (-15 -1737 ($ (-401 (-552)))) (-15 -1737 ($ (-552))) (-15 -2734 ($ $ (-842))) (-15 -4169 ($ $ (-842))) (-15 -3030 ((-401 (-552)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 #1=(-552)) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 #1# #1#) . T) ((-110 $ $) . T) ((-129) . T) ((-144) . T) ((-599 (-842)) . T) ((-169) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-405 (-401 (-552))) . T) ((-445) . T) ((-544) . T) ((-630 #0#) . T) ((-630 #1#) . T) ((-630 $) . T) ((-700 #0#) . T) ((-700 #1#) . T) ((-700 $) . T) ((-709) . T) ((-774) . T) ((-775) . T) ((-777) . T) ((-778) . T) ((-828) . T) ((-830) . T) ((-899) . T) ((-981) . T) ((-1017 (-401 (-552))) . T) ((-1017 (-552)) |has| (-401 (-552)) (-1017 (-552))) ((-1034 #0#) . T) ((-1034 #1#) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) . T)) +((-4091 (((-2 (|:| |ans| |#2|) (|:| -2791 |#2|) (|:| |sol?| (-111))) (-552) |#2| |#2| (-1152) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-627 |#2|)) (-1 (-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) +(((-992 |#1| |#2|) (-10 -7 (-15 -4091 ((-2 (|:| |ans| |#2|) (|:| -2791 |#2|) (|:| |sol?| (-111))) (-552) |#2| |#2| (-1152) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-627 |#2|)) (-1 (-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552))) (-13 (-1174) (-27) (-424 |#1|))) (T -992)) +((-4091 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1152)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-627 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3446 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1174) (-27) (-424 *8))) (-4 *8 (-13 (-445) (-830) (-144) (-1017 *3) (-623 *3))) (-5 *3 (-552)) (-5 *2 (-2 (|:| |ans| *4) (|:| -2791 *4) (|:| |sol?| (-111)))) (-5 *1 (-992 *8 *4))))) +(-10 -7 (-15 -4091 ((-2 (|:| |ans| |#2|) (|:| -2791 |#2|) (|:| |sol?| (-111))) (-552) |#2| |#2| (-1152) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-627 |#2|)) (-1 (-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3829 (((-3 (-627 |#2|) "failed") (-552) |#2| |#2| |#2| (-1152) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-627 |#2|)) (-1 (-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) +(((-993 |#1| |#2|) (-10 -7 (-15 -3829 ((-3 (-627 |#2|) "failed") (-552) |#2| |#2| |#2| (-1152) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-627 |#2|)) (-1 (-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552))) (-13 (-1174) (-27) (-424 |#1|))) (T -993)) +((-3829 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1152)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-627 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3446 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1174) (-27) (-424 *8))) (-4 *8 (-13 (-445) (-830) (-144) (-1017 *3) (-623 *3))) (-5 *3 (-552)) (-5 *2 (-627 *4)) (-5 *1 (-993 *8 *4))))) +(-10 -7 (-15 -3829 ((-3 (-627 |#2|) "failed") (-552) |#2| |#2| |#2| (-1152) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-627 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-627 |#2|)) (-1 (-3 (-2 (|:| -3446 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-1385 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -1651 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-552)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-552) (-1 |#2| |#2|)) 30)) (-3418 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |c| (-401 |#2|)) (|:| -3268 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|)) 58)) (-1814 (((-2 (|:| |ans| (-401 |#2|)) (|:| |nosol| (-111))) (-401 |#2|) (-401 |#2|)) 63))) +(((-994 |#1| |#2|) (-10 -7 (-15 -3418 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |c| (-401 |#2|)) (|:| -3268 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|))) (-15 -1814 ((-2 (|:| |ans| (-401 |#2|)) (|:| |nosol| (-111))) (-401 |#2|) (-401 |#2|))) (-15 -1385 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -1651 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-552)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-552) (-1 |#2| |#2|)))) (-13 (-357) (-144) (-1017 (-552))) (-1211 |#1|)) (T -994)) +((-1385 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1211 *6)) (-4 *6 (-13 (-357) (-144) (-1017 *4))) (-5 *4 (-552)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-111)))) (|:| -1651 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-994 *6 *3)))) (-1814 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-552)))) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| |ans| (-401 *5)) (|:| |nosol| (-111)))) (-5 *1 (-994 *4 *5)) (-5 *3 (-401 *5)))) (-3418 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-401 *6)) (|:| |c| (-401 *6)) (|:| -3268 *6))) (-5 *1 (-994 *5 *6)) (-5 *3 (-401 *6))))) +(-10 -7 (-15 -3418 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |c| (-401 |#2|)) (|:| -3268 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|))) (-15 -1814 ((-2 (|:| |ans| (-401 |#2|)) (|:| |nosol| (-111))) (-401 |#2|) (-401 |#2|))) (-15 -1385 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-111)))) (|:| -1651 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-552)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-552) (-1 |#2| |#2|)))) +((-3657 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |h| |#2|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| -3268 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|)) 22)) (-3393 (((-3 (-627 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|)) 33))) +(((-995 |#1| |#2|) (-10 -7 (-15 -3657 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |h| |#2|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| -3268 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|))) (-15 -3393 ((-3 (-627 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|)))) (-13 (-357) (-144) (-1017 (-552))) (-1211 |#1|)) (T -995)) +((-3393 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-357) (-144) (-1017 (-552)))) (-4 *5 (-1211 *4)) (-5 *2 (-627 (-401 *5))) (-5 *1 (-995 *4 *5)) (-5 *3 (-401 *5)))) (-3657 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-401 *6)) (|:| |h| *6) (|:| |c1| (-401 *6)) (|:| |c2| (-401 *6)) (|:| -3268 *6))) (-5 *1 (-995 *5 *6)) (-5 *3 (-401 *6))))) +(-10 -7 (-15 -3657 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-401 |#2|)) (|:| |h| |#2|) (|:| |c1| (-401 |#2|)) (|:| |c2| (-401 |#2|)) (|:| -3268 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|) (-1 |#2| |#2|))) (-15 -3393 ((-3 (-627 (-401 |#2|)) "failed") (-401 |#2|) (-401 |#2|) (-401 |#2|)))) +((-2982 (((-1 |#1|) (-627 (-2 (|:| -4288 |#1|) (|:| -2671 (-552))))) 37)) (-1738 (((-1 |#1|) (-1078 |#1|)) 45)) (-2664 (((-1 |#1|) (-1235 |#1|) (-1235 (-552)) (-552)) 34))) +(((-996 |#1|) (-10 -7 (-15 -1738 ((-1 |#1|) (-1078 |#1|))) (-15 -2982 ((-1 |#1|) (-627 (-2 (|:| -4288 |#1|) (|:| -2671 (-552)))))) (-15 -2664 ((-1 |#1|) (-1235 |#1|) (-1235 (-552)) (-552)))) (-1076)) (T -996)) +((-2664 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1235 *6)) (-5 *4 (-1235 (-552))) (-5 *5 (-552)) (-4 *6 (-1076)) (-5 *2 (-1 *6)) (-5 *1 (-996 *6)))) (-2982 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| -4288 *4) (|:| -2671 (-552))))) (-4 *4 (-1076)) (-5 *2 (-1 *4)) (-5 *1 (-996 *4)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-1078 *4)) (-4 *4 (-1076)) (-5 *2 (-1 *4)) (-5 *1 (-996 *4))))) +(-10 -7 (-15 -1738 ((-1 |#1|) (-1078 |#1|))) (-15 -2982 ((-1 |#1|) (-627 (-2 (|:| -4288 |#1|) (|:| -2671 (-552)))))) (-15 -2664 ((-1 |#1|) (-1235 |#1|) (-1235 (-552)) (-552)))) +((-2641 (((-754) (-330 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-997 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2641 ((-754) (-330 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-357) (-1211 |#1|) (-1211 (-401 |#2|)) (-336 |#1| |#2| |#3|) (-13 (-362) (-357))) (T -997)) +((-2641 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-330 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-357)) (-4 *7 (-1211 *6)) (-4 *4 (-1211 (-401 *7))) (-4 *8 (-336 *6 *7 *4)) (-4 *9 (-13 (-362) (-357))) (-5 *2 (-754)) (-5 *1 (-997 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -2641 ((-754) (-330 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-1465 (((-111) $ $) NIL)) (-4148 (((-1111) $) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) NIL) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3122 (((-1111) $) 11)) (-2292 (((-111) $ $) NIL))) +(((-998) (-13 (-1059) (-10 -8 (-15 -4148 ((-1111) $)) (-15 -3122 ((-1111) $))))) (T -998)) +((-4148 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-998)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-998))))) +(-13 (-1059) (-10 -8 (-15 -4148 ((-1111) $)) (-15 -3122 ((-1111) $)))) +((-3938 (((-3 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) "failed") |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) 31) (((-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552))) 28)) (-3993 (((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552))) 33) (((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-401 (-552))) 29) (((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) 32) (((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1|) 27)) (-4275 (((-627 (-401 (-552))) (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) 19)) (-3832 (((-401 (-552)) (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) 16))) +(((-999 |#1|) (-10 -7 (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1|)) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-401 (-552)))) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552)))) (-15 -3938 ((-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552)))) (-15 -3938 ((-3 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) "failed") |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-15 -3832 ((-401 (-552)) (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-15 -4275 ((-627 (-401 (-552))) (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))))) (-1211 (-552))) (T -999)) +((-4275 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-5 *2 (-627 (-401 (-552)))) (-5 *1 (-999 *4)) (-4 *4 (-1211 (-552))))) (-3832 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) (-5 *2 (-401 (-552))) (-5 *1 (-999 *4)) (-4 *4 (-1211 (-552))))) (-3938 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552))))) (-3938 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) (-5 *4 (-401 (-552))) (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552))))) (-3993 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-401 (-552))) (-5 *2 (-627 (-2 (|:| -2776 *5) (|:| -2791 *5)))) (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552))) (-5 *4 (-2 (|:| -2776 *5) (|:| -2791 *5))))) (-3993 (*1 *2 *3 *4) (-12 (-5 *2 (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552))) (-5 *4 (-401 (-552))))) (-3993 (*1 *2 *3 *4) (-12 (-5 *2 (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552))) (-5 *4 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))))) (-3993 (*1 *2 *3) (-12 (-5 *2 (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552)))))) +(-10 -7 (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1|)) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-401 (-552)))) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552)))) (-15 -3938 ((-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552)))) (-15 -3938 ((-3 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) "failed") |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-15 -3832 ((-401 (-552)) (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-15 -4275 ((-627 (-401 (-552))) (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))))) +((-3938 (((-3 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) "failed") |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) 35) (((-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552))) 32)) (-3993 (((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552))) 30) (((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-401 (-552))) 26) (((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) 28) (((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1|) 24))) +(((-1000 |#1|) (-10 -7 (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1|)) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-401 (-552)))) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552)))) (-15 -3938 ((-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552)))) (-15 -3938 ((-3 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) "failed") |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))))) (-1211 (-401 (-552)))) (T -1000)) +((-3938 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) (-5 *1 (-1000 *3)) (-4 *3 (-1211 (-401 (-552)))))) (-3938 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) (-5 *4 (-401 (-552))) (-5 *1 (-1000 *3)) (-4 *3 (-1211 *4)))) (-3993 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-401 (-552))) (-5 *2 (-627 (-2 (|:| -2776 *5) (|:| -2791 *5)))) (-5 *1 (-1000 *3)) (-4 *3 (-1211 *5)) (-5 *4 (-2 (|:| -2776 *5) (|:| -2791 *5))))) (-3993 (*1 *2 *3 *4) (-12 (-5 *4 (-401 (-552))) (-5 *2 (-627 (-2 (|:| -2776 *4) (|:| -2791 *4)))) (-5 *1 (-1000 *3)) (-4 *3 (-1211 *4)))) (-3993 (*1 *2 *3 *4) (-12 (-5 *2 (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-5 *1 (-1000 *3)) (-4 *3 (-1211 (-401 (-552)))) (-5 *4 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))))) (-3993 (*1 *2 *3) (-12 (-5 *2 (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-5 *1 (-1000 *3)) (-4 *3 (-1211 (-401 (-552))))))) +(-10 -7 (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1|)) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-401 (-552)))) (-15 -3993 ((-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552)))) (-15 -3938 ((-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-401 (-552)))) (-15 -3938 ((-3 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) "failed") |#1| (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))) (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))))) +((-3562 (((-220) $) 6) (((-373) $) 9))) +(((-1001) (-137)) (T -1001)) +NIL +(-13 (-600 (-220)) (-600 (-373))) +(((-600 (-220)) . T) ((-600 (-373)) . T)) +((-1696 (((-627 (-373)) (-931 (-552)) (-373)) 28) (((-627 (-373)) (-931 (-401 (-552))) (-373)) 27)) (-4078 (((-627 (-627 (-373))) (-627 (-931 (-552))) (-627 (-1152)) (-373)) 37))) +(((-1002) (-10 -7 (-15 -1696 ((-627 (-373)) (-931 (-401 (-552))) (-373))) (-15 -1696 ((-627 (-373)) (-931 (-552)) (-373))) (-15 -4078 ((-627 (-627 (-373))) (-627 (-931 (-552))) (-627 (-1152)) (-373))))) (T -1002)) +((-4078 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 (-931 (-552)))) (-5 *4 (-627 (-1152))) (-5 *2 (-627 (-627 (-373)))) (-5 *1 (-1002)) (-5 *5 (-373)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-931 (-552))) (-5 *2 (-627 (-373))) (-5 *1 (-1002)) (-5 *4 (-373)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-931 (-401 (-552)))) (-5 *2 (-627 (-373))) (-5 *1 (-1002)) (-5 *4 (-373))))) +(-10 -7 (-15 -1696 ((-627 (-373)) (-931 (-401 (-552))) (-373))) (-15 -1696 ((-627 (-373)) (-931 (-552)) (-373))) (-15 -4078 ((-627 (-627 (-373))) (-627 (-931 (-552))) (-627 (-1152)) (-373)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 70)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-1737 (($ $) NIL) (($ $ (-900)) NIL) (($ (-401 (-552))) NIL) (($ (-552)) NIL)) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) 65)) (-3887 (($) NIL T CONST)) (-3348 (((-3 $ "failed") (-1148 $) (-900) (-842)) NIL) (((-3 $ "failed") (-1148 $) (-900)) 50)) (-4039 (((-3 (-401 (-552)) "failed") $) NIL (|has| (-401 (-552)) (-1017 (-401 (-552))))) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-552) "failed") $) NIL (-1559 (|has| (-401 (-552)) (-1017 (-552))) (|has| |#1| (-1017 (-552)))))) (-1703 (((-401 (-552)) $) 15 (|has| (-401 (-552)) (-1017 (-401 (-552))))) (((-401 (-552)) $) 15) ((|#1| $) 108) (((-552) $) NIL (-1559 (|has| (-401 (-552)) (-1017 (-552))) (|has| |#1| (-1017 (-552)))))) (-2734 (($ $ (-842)) 42)) (-4169 (($ $ (-842)) 43)) (-2813 (($ $ $) NIL)) (-3758 (((-401 (-552)) $ $) 19)) (-2040 (((-3 $ "failed") $) 83)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-2983 (((-111) $) 61)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL)) (-1508 (((-111) $) 64)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1441 (((-3 (-1148 $) "failed") $) 78)) (-2597 (((-3 (-842) "failed") $) 77)) (-1934 (((-3 (-1148 $) "failed") $) 75)) (-2658 (((-3 (-1038 $ (-1148 $)) "failed") $) 73)) (-1276 (($ (-627 $)) NIL) (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 84)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ (-627 $)) NIL) (($ $ $) NIL)) (-1727 (((-412 $) $) NIL)) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-1477 (((-842) $) 82) (($ (-552)) NIL) (($ (-401 (-552))) NIL) (($ $) 58) (($ (-401 (-552))) NIL) (($ (-552)) NIL) (($ (-401 (-552))) NIL) (($ |#1|) 110)) (-3995 (((-754)) NIL)) (-3778 (((-111) $ $) NIL)) (-3030 (((-401 (-552)) $ $) 25)) (-1714 (((-627 $) (-1148 $)) 56) (((-627 $) (-1148 (-401 (-552)))) NIL) (((-627 $) (-1148 (-552))) NIL) (((-627 $) (-931 $)) NIL) (((-627 $) (-931 (-401 (-552)))) NIL) (((-627 $) (-931 (-552))) NIL)) (-4337 (($ (-1038 $ (-1148 $)) (-842)) 41)) (-3329 (($ $) 20)) (-1922 (($) 29 T CONST)) (-1933 (($) 35 T CONST)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 71)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 22)) (-2407 (($ $ $) 33)) (-2396 (($ $) 34) (($ $ $) 69)) (-2384 (($ $ $) 103)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL) (($ $ (-401 (-552))) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 91) (($ $ $) 96) (($ (-401 (-552)) $) NIL) (($ $ (-401 (-552))) NIL) (($ (-552) $) 91) (($ $ (-552)) NIL) (($ (-401 (-552)) $) NIL) (($ $ (-401 (-552))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) +(((-1003 |#1|) (-13 (-991) (-405 |#1|) (-38 |#1|) (-10 -8 (-15 -4337 ($ (-1038 $ (-1148 $)) (-842))) (-15 -2658 ((-3 (-1038 $ (-1148 $)) "failed") $)) (-15 -3758 ((-401 (-552)) $ $)))) (-13 (-828) (-357) (-1001))) (T -1003)) +((-4337 (*1 *1 *2 *3) (-12 (-5 *2 (-1038 (-1003 *4) (-1148 (-1003 *4)))) (-5 *3 (-842)) (-5 *1 (-1003 *4)) (-4 *4 (-13 (-828) (-357) (-1001))))) (-2658 (*1 *2 *1) (|partial| -12 (-5 *2 (-1038 (-1003 *3) (-1148 (-1003 *3)))) (-5 *1 (-1003 *3)) (-4 *3 (-13 (-828) (-357) (-1001))))) (-3758 (*1 *2 *1 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-1003 *3)) (-4 *3 (-13 (-828) (-357) (-1001)))))) +(-13 (-991) (-405 |#1|) (-38 |#1|) (-10 -8 (-15 -4337 ($ (-1038 $ (-1148 $)) (-842))) (-15 -2658 ((-3 (-1038 $ (-1148 $)) "failed") $)) (-15 -3758 ((-401 (-552)) $ $)))) +((-3059 (((-2 (|:| -1651 |#2|) (|:| -3354 (-627 |#1|))) |#2| (-627 |#1|)) 20) ((|#2| |#2| |#1|) 15))) +(((-1004 |#1| |#2|) (-10 -7 (-15 -3059 (|#2| |#2| |#1|)) (-15 -3059 ((-2 (|:| -1651 |#2|) (|:| -3354 (-627 |#1|))) |#2| (-627 |#1|)))) (-357) (-638 |#1|)) (T -1004)) +((-3059 (*1 *2 *3 *4) (-12 (-4 *5 (-357)) (-5 *2 (-2 (|:| -1651 *3) (|:| -3354 (-627 *5)))) (-5 *1 (-1004 *5 *3)) (-5 *4 (-627 *5)) (-4 *3 (-638 *5)))) (-3059 (*1 *2 *2 *3) (-12 (-4 *3 (-357)) (-5 *1 (-1004 *3 *2)) (-4 *2 (-638 *3))))) +(-10 -7 (-15 -3059 (|#2| |#2| |#1|)) (-15 -3059 ((-2 (|:| -1651 |#2|) (|:| -3354 (-627 |#1|))) |#2| (-627 |#1|)))) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2869 ((|#1| $ |#1|) 14)) (-2950 ((|#1| $ |#1|) 12)) (-3206 (($ |#1|) 10)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1985 ((|#1| $) 11)) (-3452 ((|#1| $) 13)) (-1477 (((-842) $) 21 (|has| |#1| (-1076)))) (-2292 (((-111) $ $) 9))) +(((-1005 |#1|) (-13 (-1189) (-10 -8 (-15 -3206 ($ |#1|)) (-15 -1985 (|#1| $)) (-15 -2950 (|#1| $ |#1|)) (-15 -3452 (|#1| $)) (-15 -2869 (|#1| $ |#1|)) (-15 -2292 ((-111) $ $)) (IF (|has| |#1| (-1076)) (-6 (-1076)) |%noBranch|))) (-1189)) (T -1005)) +((-3206 (*1 *1 *2) (-12 (-5 *1 (-1005 *2)) (-4 *2 (-1189)))) (-1985 (*1 *2 *1) (-12 (-5 *1 (-1005 *2)) (-4 *2 (-1189)))) (-2950 (*1 *2 *1 *2) (-12 (-5 *1 (-1005 *2)) (-4 *2 (-1189)))) (-3452 (*1 *2 *1) (-12 (-5 *1 (-1005 *2)) (-4 *2 (-1189)))) (-2869 (*1 *2 *1 *2) (-12 (-5 *1 (-1005 *2)) (-4 *2 (-1189)))) (-2292 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1005 *3)) (-4 *3 (-1189))))) +(-13 (-1189) (-10 -8 (-15 -3206 ($ |#1|)) (-15 -1985 (|#1| $)) (-15 -2950 (|#1| $ |#1|)) (-15 -3452 (|#1| $)) (-15 -2869 (|#1| $ |#1|)) (-15 -2292 ((-111) $ $)) (IF (|has| |#1| (-1076)) (-6 (-1076)) |%noBranch|))) +((-1465 (((-111) $ $) NIL)) (-1764 (((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 |#4|)))) (-627 |#4|)) NIL)) (-1361 (((-627 $) (-627 |#4|)) 105) (((-627 $) (-627 |#4|) (-111)) 106) (((-627 $) (-627 |#4|) (-111) (-111)) 104) (((-627 $) (-627 |#4|) (-111) (-111) (-111) (-111)) 107)) (-1853 (((-627 |#3|) $) NIL)) (-2730 (((-111) $) NIL)) (-3648 (((-111) $) NIL (|has| |#1| (-544)))) (-3691 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1553 ((|#4| |#4| $) NIL)) (-4014 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| $) 99)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2536 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366))) (((-3 |#4| "failed") $ |#3|) 54)) (-3887 (($) NIL T CONST)) (-3569 (((-111) $) 26 (|has| |#1| (-544)))) (-2330 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2165 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3188 (((-111) $) NIL (|has| |#1| (-544)))) (-3238 (((-627 |#4|) (-627 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4097 (((-627 |#4|) (-627 |#4|) $) NIL (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) NIL (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) NIL)) (-1703 (($ (-627 |#4|)) NIL)) (-3351 (((-3 $ "failed") $) 39)) (-4167 ((|#4| |#4| $) 57)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-4342 (($ |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-544)))) (-4104 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-2934 ((|#4| |#4| $) NIL)) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4366))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2415 (((-2 (|:| -4267 (-627 |#4|)) (|:| -2849 (-627 |#4|))) $) NIL)) (-3203 (((-111) |#4| $) NIL)) (-2004 (((-111) |#4| $) NIL)) (-2790 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2533 (((-2 (|:| |val| (-627 |#4|)) (|:| |towers| (-627 $))) (-627 |#4|) (-111) (-111)) 119)) (-3215 (((-627 |#4|) $) 16 (|has| $ (-6 -4366)))) (-3850 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4147 ((|#3| $) 33)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#4|) $) 17 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-3463 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) 21)) (-4198 (((-627 |#3|) $) NIL)) (-1927 (((-111) |#3| $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-2661 (((-3 |#4| (-627 $)) |#4| |#4| $) NIL)) (-4318 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| |#4| $) 97)) (-1294 (((-3 |#4| "failed") $) 37)) (-4314 (((-627 $) |#4| $) 80)) (-2338 (((-3 (-111) (-627 $)) |#4| $) NIL)) (-3984 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 $))) |#4| $) 90) (((-111) |#4| $) 52)) (-3383 (((-627 $) |#4| $) 102) (((-627 $) (-627 |#4|) $) NIL) (((-627 $) (-627 |#4|) (-627 $)) 103) (((-627 $) |#4| (-627 $)) NIL)) (-4219 (((-627 $) (-627 |#4|) (-111) (-111) (-111)) 114)) (-1892 (($ |#4| $) 70) (($ (-627 |#4|) $) 71) (((-627 $) |#4| $ (-111) (-111) (-111) (-111) (-111)) 67)) (-4122 (((-627 |#4|) $) NIL)) (-2481 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3921 ((|#4| |#4| $) NIL)) (-2654 (((-111) $ $) NIL)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-2163 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4116 ((|#4| |#4| $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 (((-3 |#4| "failed") $) 35)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3672 (((-3 $ "failed") $ |#4|) 48)) (-4168 (($ $ |#4|) NIL) (((-627 $) |#4| $) 82) (((-627 $) |#4| (-627 $)) NIL) (((-627 $) (-627 |#4|) $) NIL) (((-627 $) (-627 |#4|) (-627 $)) 77)) (-3509 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 15)) (-2373 (($) 13)) (-3567 (((-754) $) NIL)) (-1509 (((-754) |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) (((-754) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) 12)) (-3562 (((-528) $) NIL (|has| |#4| (-600 (-528))))) (-1490 (($ (-627 |#4|)) 20)) (-4237 (($ $ |#3|) 42)) (-2286 (($ $ |#3|) 44)) (-2462 (($ $) NIL)) (-3911 (($ $ |#3|) NIL)) (-1477 (((-842) $) 31) (((-627 |#4|) $) 40)) (-1641 (((-754) $) NIL (|has| |#3| (-362)))) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2925 (((-111) $ (-1 (-111) |#4| (-627 |#4|))) NIL)) (-2733 (((-627 $) |#4| $) 79) (((-627 $) |#4| (-627 $)) NIL) (((-627 $) (-627 |#4|) $) NIL) (((-627 $) (-627 |#4|) (-627 $)) NIL)) (-3299 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-2199 (((-627 |#3|) $) NIL)) (-3612 (((-111) |#4| $) NIL)) (-3528 (((-111) |#3| $) 53)) (-2292 (((-111) $ $) NIL)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-1006 |#1| |#2| |#3| |#4|) (-13 (-1048 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1892 ((-627 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -1361 ((-627 $) (-627 |#4|) (-111) (-111))) (-15 -1361 ((-627 $) (-627 |#4|) (-111) (-111) (-111) (-111))) (-15 -4219 ((-627 $) (-627 |#4|) (-111) (-111) (-111))) (-15 -2533 ((-2 (|:| |val| (-627 |#4|)) (|:| |towers| (-627 $))) (-627 |#4|) (-111) (-111))))) (-445) (-776) (-830) (-1042 |#1| |#2| |#3|)) (T -1006)) +((-1892 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 (-1006 *5 *6 *7 *3))) (-5 *1 (-1006 *5 *6 *7 *3)) (-4 *3 (-1042 *5 *6 *7)))) (-1361 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 (-1006 *5 *6 *7 *8))) (-5 *1 (-1006 *5 *6 *7 *8)))) (-1361 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 (-1006 *5 *6 *7 *8))) (-5 *1 (-1006 *5 *6 *7 *8)))) (-4219 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 (-1006 *5 *6 *7 *8))) (-5 *1 (-1006 *5 *6 *7 *8)))) (-2533 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-627 *8)) (|:| |towers| (-627 (-1006 *5 *6 *7 *8))))) (-5 *1 (-1006 *5 *6 *7 *8)) (-5 *3 (-627 *8))))) +(-13 (-1048 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1892 ((-627 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -1361 ((-627 $) (-627 |#4|) (-111) (-111))) (-15 -1361 ((-627 $) (-627 |#4|) (-111) (-111) (-111) (-111))) (-15 -4219 ((-627 $) (-627 |#4|) (-111) (-111) (-111))) (-15 -2533 ((-2 (|:| |val| (-627 |#4|)) (|:| |towers| (-627 $))) (-627 |#4|) (-111) (-111))))) +((-3391 (((-627 (-671 |#1|)) (-627 (-671 |#1|))) 58) (((-671 |#1|) (-671 |#1|)) 57) (((-627 (-671 |#1|)) (-627 (-671 |#1|)) (-627 (-671 |#1|))) 56) (((-671 |#1|) (-671 |#1|) (-671 |#1|)) 53)) (-3616 (((-627 (-671 |#1|)) (-627 (-671 |#1|)) (-900)) 52) (((-671 |#1|) (-671 |#1|) (-900)) 51)) (-1919 (((-627 (-671 (-552))) (-627 (-627 (-552)))) 68) (((-627 (-671 (-552))) (-627 (-884 (-552))) (-552)) 67) (((-671 (-552)) (-627 (-552))) 64) (((-671 (-552)) (-884 (-552)) (-552)) 63)) (-3085 (((-671 (-931 |#1|)) (-754)) 81)) (-3491 (((-627 (-671 |#1|)) (-627 (-671 |#1|)) (-900)) 37 (|has| |#1| (-6 (-4368 "*")))) (((-671 |#1|) (-671 |#1|) (-900)) 35 (|has| |#1| (-6 (-4368 "*")))))) +(((-1007 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4368 "*"))) (-15 -3491 ((-671 |#1|) (-671 |#1|) (-900))) |%noBranch|) (IF (|has| |#1| (-6 (-4368 "*"))) (-15 -3491 ((-627 (-671 |#1|)) (-627 (-671 |#1|)) (-900))) |%noBranch|) (-15 -3085 ((-671 (-931 |#1|)) (-754))) (-15 -3616 ((-671 |#1|) (-671 |#1|) (-900))) (-15 -3616 ((-627 (-671 |#1|)) (-627 (-671 |#1|)) (-900))) (-15 -3391 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -3391 ((-627 (-671 |#1|)) (-627 (-671 |#1|)) (-627 (-671 |#1|)))) (-15 -3391 ((-671 |#1|) (-671 |#1|))) (-15 -3391 ((-627 (-671 |#1|)) (-627 (-671 |#1|)))) (-15 -1919 ((-671 (-552)) (-884 (-552)) (-552))) (-15 -1919 ((-671 (-552)) (-627 (-552)))) (-15 -1919 ((-627 (-671 (-552))) (-627 (-884 (-552))) (-552))) (-15 -1919 ((-627 (-671 (-552))) (-627 (-627 (-552)))))) (-1028)) (T -1007)) +((-1919 (*1 *2 *3) (-12 (-5 *3 (-627 (-627 (-552)))) (-5 *2 (-627 (-671 (-552)))) (-5 *1 (-1007 *4)) (-4 *4 (-1028)))) (-1919 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-884 (-552)))) (-5 *4 (-552)) (-5 *2 (-627 (-671 *4))) (-5 *1 (-1007 *5)) (-4 *5 (-1028)))) (-1919 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-671 (-552))) (-5 *1 (-1007 *4)) (-4 *4 (-1028)))) (-1919 (*1 *2 *3 *4) (-12 (-5 *3 (-884 (-552))) (-5 *4 (-552)) (-5 *2 (-671 *4)) (-5 *1 (-1007 *5)) (-4 *5 (-1028)))) (-3391 (*1 *2 *2) (-12 (-5 *2 (-627 (-671 *3))) (-4 *3 (-1028)) (-5 *1 (-1007 *3)))) (-3391 (*1 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-1007 *3)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-627 (-671 *3))) (-4 *3 (-1028)) (-5 *1 (-1007 *3)))) (-3391 (*1 *2 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-1007 *3)))) (-3616 (*1 *2 *2 *3) (-12 (-5 *2 (-627 (-671 *4))) (-5 *3 (-900)) (-4 *4 (-1028)) (-5 *1 (-1007 *4)))) (-3616 (*1 *2 *2 *3) (-12 (-5 *2 (-671 *4)) (-5 *3 (-900)) (-4 *4 (-1028)) (-5 *1 (-1007 *4)))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-671 (-931 *4))) (-5 *1 (-1007 *4)) (-4 *4 (-1028)))) (-3491 (*1 *2 *2 *3) (-12 (-5 *2 (-627 (-671 *4))) (-5 *3 (-900)) (|has| *4 (-6 (-4368 "*"))) (-4 *4 (-1028)) (-5 *1 (-1007 *4)))) (-3491 (*1 *2 *2 *3) (-12 (-5 *2 (-671 *4)) (-5 *3 (-900)) (|has| *4 (-6 (-4368 "*"))) (-4 *4 (-1028)) (-5 *1 (-1007 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4368 "*"))) (-15 -3491 ((-671 |#1|) (-671 |#1|) (-900))) |%noBranch|) (IF (|has| |#1| (-6 (-4368 "*"))) (-15 -3491 ((-627 (-671 |#1|)) (-627 (-671 |#1|)) (-900))) |%noBranch|) (-15 -3085 ((-671 (-931 |#1|)) (-754))) (-15 -3616 ((-671 |#1|) (-671 |#1|) (-900))) (-15 -3616 ((-627 (-671 |#1|)) (-627 (-671 |#1|)) (-900))) (-15 -3391 ((-671 |#1|) (-671 |#1|) (-671 |#1|))) (-15 -3391 ((-627 (-671 |#1|)) (-627 (-671 |#1|)) (-627 (-671 |#1|)))) (-15 -3391 ((-671 |#1|) (-671 |#1|))) (-15 -3391 ((-627 (-671 |#1|)) (-627 (-671 |#1|)))) (-15 -1919 ((-671 (-552)) (-884 (-552)) (-552))) (-15 -1919 ((-671 (-552)) (-627 (-552)))) (-15 -1919 ((-627 (-671 (-552))) (-627 (-884 (-552))) (-552))) (-15 -1919 ((-627 (-671 (-552))) (-627 (-627 (-552)))))) +((-2901 (((-671 |#1|) (-627 (-671 |#1|)) (-1235 |#1|)) 50 (|has| |#1| (-301)))) (-2843 (((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-1235 (-1235 |#1|))) 76 (|has| |#1| (-357))) (((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-1235 |#1|)) 79 (|has| |#1| (-357)))) (-2652 (((-1235 |#1|) (-627 (-1235 |#1|)) (-552)) 93 (-12 (|has| |#1| (-357)) (|has| |#1| (-362))))) (-3027 (((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-900)) 85 (-12 (|has| |#1| (-357)) (|has| |#1| (-362)))) (((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-111)) 83 (-12 (|has| |#1| (-357)) (|has| |#1| (-362)))) (((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|))) 82 (-12 (|has| |#1| (-357)) (|has| |#1| (-362)))) (((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-111) (-552) (-552)) 81 (-12 (|has| |#1| (-357)) (|has| |#1| (-362))))) (-4280 (((-111) (-627 (-671 |#1|))) 71 (|has| |#1| (-357))) (((-111) (-627 (-671 |#1|)) (-552)) 73 (|has| |#1| (-357)))) (-4175 (((-1235 (-1235 |#1|)) (-627 (-671 |#1|)) (-1235 |#1|)) 48 (|has| |#1| (-301)))) (-2495 (((-671 |#1|) (-627 (-671 |#1|)) (-671 |#1|)) 34)) (-3845 (((-671 |#1|) (-1235 (-1235 |#1|))) 31)) (-2644 (((-671 |#1|) (-627 (-671 |#1|)) (-627 (-671 |#1|)) (-552)) 65 (|has| |#1| (-357))) (((-671 |#1|) (-627 (-671 |#1|)) (-627 (-671 |#1|))) 64 (|has| |#1| (-357))) (((-671 |#1|) (-627 (-671 |#1|)) (-627 (-671 |#1|)) (-111) (-552)) 69 (|has| |#1| (-357))))) +(((-1008 |#1|) (-10 -7 (-15 -3845 ((-671 |#1|) (-1235 (-1235 |#1|)))) (-15 -2495 ((-671 |#1|) (-627 (-671 |#1|)) (-671 |#1|))) (IF (|has| |#1| (-301)) (PROGN (-15 -4175 ((-1235 (-1235 |#1|)) (-627 (-671 |#1|)) (-1235 |#1|))) (-15 -2901 ((-671 |#1|) (-627 (-671 |#1|)) (-1235 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -2644 ((-671 |#1|) (-627 (-671 |#1|)) (-627 (-671 |#1|)) (-111) (-552))) (-15 -2644 ((-671 |#1|) (-627 (-671 |#1|)) (-627 (-671 |#1|)))) (-15 -2644 ((-671 |#1|) (-627 (-671 |#1|)) (-627 (-671 |#1|)) (-552))) (-15 -4280 ((-111) (-627 (-671 |#1|)) (-552))) (-15 -4280 ((-111) (-627 (-671 |#1|)))) (-15 -2843 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-1235 |#1|))) (-15 -2843 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-1235 (-1235 |#1|))))) |%noBranch|) (IF (|has| |#1| (-362)) (IF (|has| |#1| (-357)) (PROGN (-15 -3027 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-111) (-552) (-552))) (-15 -3027 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)))) (-15 -3027 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-111))) (-15 -3027 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-900))) (-15 -2652 ((-1235 |#1|) (-627 (-1235 |#1|)) (-552)))) |%noBranch|) |%noBranch|)) (-1028)) (T -1008)) +((-2652 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-1235 *5))) (-5 *4 (-552)) (-5 *2 (-1235 *5)) (-5 *1 (-1008 *5)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1028)))) (-3027 (*1 *2 *3 *4) (-12 (-5 *4 (-900)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1028)) (-5 *2 (-627 (-627 (-671 *5)))) (-5 *1 (-1008 *5)) (-5 *3 (-627 (-671 *5))))) (-3027 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1028)) (-5 *2 (-627 (-627 (-671 *5)))) (-5 *1 (-1008 *5)) (-5 *3 (-627 (-671 *5))))) (-3027 (*1 *2 *3) (-12 (-4 *4 (-357)) (-4 *4 (-362)) (-4 *4 (-1028)) (-5 *2 (-627 (-627 (-671 *4)))) (-5 *1 (-1008 *4)) (-5 *3 (-627 (-671 *4))))) (-3027 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-111)) (-5 *5 (-552)) (-4 *6 (-357)) (-4 *6 (-362)) (-4 *6 (-1028)) (-5 *2 (-627 (-627 (-671 *6)))) (-5 *1 (-1008 *6)) (-5 *3 (-627 (-671 *6))))) (-2843 (*1 *2 *3 *4) (-12 (-5 *4 (-1235 (-1235 *5))) (-4 *5 (-357)) (-4 *5 (-1028)) (-5 *2 (-627 (-627 (-671 *5)))) (-5 *1 (-1008 *5)) (-5 *3 (-627 (-671 *5))))) (-2843 (*1 *2 *3 *4) (-12 (-5 *4 (-1235 *5)) (-4 *5 (-357)) (-4 *5 (-1028)) (-5 *2 (-627 (-627 (-671 *5)))) (-5 *1 (-1008 *5)) (-5 *3 (-627 (-671 *5))))) (-4280 (*1 *2 *3) (-12 (-5 *3 (-627 (-671 *4))) (-4 *4 (-357)) (-4 *4 (-1028)) (-5 *2 (-111)) (-5 *1 (-1008 *4)))) (-4280 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-671 *5))) (-5 *4 (-552)) (-4 *5 (-357)) (-4 *5 (-1028)) (-5 *2 (-111)) (-5 *1 (-1008 *5)))) (-2644 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-627 (-671 *5))) (-5 *4 (-552)) (-5 *2 (-671 *5)) (-5 *1 (-1008 *5)) (-4 *5 (-357)) (-4 *5 (-1028)))) (-2644 (*1 *2 *3 *3) (-12 (-5 *3 (-627 (-671 *4))) (-5 *2 (-671 *4)) (-5 *1 (-1008 *4)) (-4 *4 (-357)) (-4 *4 (-1028)))) (-2644 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-627 (-671 *6))) (-5 *4 (-111)) (-5 *5 (-552)) (-5 *2 (-671 *6)) (-5 *1 (-1008 *6)) (-4 *6 (-357)) (-4 *6 (-1028)))) (-2901 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-671 *5))) (-5 *4 (-1235 *5)) (-4 *5 (-301)) (-4 *5 (-1028)) (-5 *2 (-671 *5)) (-5 *1 (-1008 *5)))) (-4175 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-671 *5))) (-4 *5 (-301)) (-4 *5 (-1028)) (-5 *2 (-1235 (-1235 *5))) (-5 *1 (-1008 *5)) (-5 *4 (-1235 *5)))) (-2495 (*1 *2 *3 *2) (-12 (-5 *3 (-627 (-671 *4))) (-5 *2 (-671 *4)) (-4 *4 (-1028)) (-5 *1 (-1008 *4)))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-1235 (-1235 *4))) (-4 *4 (-1028)) (-5 *2 (-671 *4)) (-5 *1 (-1008 *4))))) +(-10 -7 (-15 -3845 ((-671 |#1|) (-1235 (-1235 |#1|)))) (-15 -2495 ((-671 |#1|) (-627 (-671 |#1|)) (-671 |#1|))) (IF (|has| |#1| (-301)) (PROGN (-15 -4175 ((-1235 (-1235 |#1|)) (-627 (-671 |#1|)) (-1235 |#1|))) (-15 -2901 ((-671 |#1|) (-627 (-671 |#1|)) (-1235 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -2644 ((-671 |#1|) (-627 (-671 |#1|)) (-627 (-671 |#1|)) (-111) (-552))) (-15 -2644 ((-671 |#1|) (-627 (-671 |#1|)) (-627 (-671 |#1|)))) (-15 -2644 ((-671 |#1|) (-627 (-671 |#1|)) (-627 (-671 |#1|)) (-552))) (-15 -4280 ((-111) (-627 (-671 |#1|)) (-552))) (-15 -4280 ((-111) (-627 (-671 |#1|)))) (-15 -2843 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-1235 |#1|))) (-15 -2843 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-1235 (-1235 |#1|))))) |%noBranch|) (IF (|has| |#1| (-362)) (IF (|has| |#1| (-357)) (PROGN (-15 -3027 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-111) (-552) (-552))) (-15 -3027 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)))) (-15 -3027 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-111))) (-15 -3027 ((-627 (-627 (-671 |#1|))) (-627 (-671 |#1|)) (-900))) (-15 -2652 ((-1235 |#1|) (-627 (-1235 |#1|)) (-552)))) |%noBranch|) |%noBranch|)) +((-4054 ((|#1| (-900) |#1|) 9))) +(((-1009 |#1|) (-10 -7 (-15 -4054 (|#1| (-900) |#1|))) (-13 (-1076) (-10 -8 (-15 -2384 ($ $ $))))) (T -1009)) +((-4054 (*1 *2 *3 *2) (-12 (-5 *3 (-900)) (-5 *1 (-1009 *2)) (-4 *2 (-13 (-1076) (-10 -8 (-15 -2384 ($ $ $)))))))) +(-10 -7 (-15 -4054 (|#1| (-900) |#1|))) +((-1757 (((-627 (-2 (|:| |radval| (-310 (-552))) (|:| |radmult| (-552)) (|:| |radvect| (-627 (-671 (-310 (-552))))))) (-671 (-401 (-931 (-552))))) 59)) (-1316 (((-627 (-671 (-310 (-552)))) (-310 (-552)) (-671 (-401 (-931 (-552))))) 48)) (-2928 (((-627 (-310 (-552))) (-671 (-401 (-931 (-552))))) 41)) (-2124 (((-627 (-671 (-310 (-552)))) (-671 (-401 (-931 (-552))))) 68)) (-2894 (((-671 (-310 (-552))) (-671 (-310 (-552)))) 34)) (-2444 (((-627 (-671 (-310 (-552)))) (-627 (-671 (-310 (-552))))) 62)) (-2532 (((-3 (-671 (-310 (-552))) "failed") (-671 (-401 (-931 (-552))))) 66))) +(((-1010) (-10 -7 (-15 -1757 ((-627 (-2 (|:| |radval| (-310 (-552))) (|:| |radmult| (-552)) (|:| |radvect| (-627 (-671 (-310 (-552))))))) (-671 (-401 (-931 (-552)))))) (-15 -1316 ((-627 (-671 (-310 (-552)))) (-310 (-552)) (-671 (-401 (-931 (-552)))))) (-15 -2928 ((-627 (-310 (-552))) (-671 (-401 (-931 (-552)))))) (-15 -2532 ((-3 (-671 (-310 (-552))) "failed") (-671 (-401 (-931 (-552)))))) (-15 -2894 ((-671 (-310 (-552))) (-671 (-310 (-552))))) (-15 -2444 ((-627 (-671 (-310 (-552)))) (-627 (-671 (-310 (-552)))))) (-15 -2124 ((-627 (-671 (-310 (-552)))) (-671 (-401 (-931 (-552)))))))) (T -1010)) +((-2124 (*1 *2 *3) (-12 (-5 *3 (-671 (-401 (-931 (-552))))) (-5 *2 (-627 (-671 (-310 (-552))))) (-5 *1 (-1010)))) (-2444 (*1 *2 *2) (-12 (-5 *2 (-627 (-671 (-310 (-552))))) (-5 *1 (-1010)))) (-2894 (*1 *2 *2) (-12 (-5 *2 (-671 (-310 (-552)))) (-5 *1 (-1010)))) (-2532 (*1 *2 *3) (|partial| -12 (-5 *3 (-671 (-401 (-931 (-552))))) (-5 *2 (-671 (-310 (-552)))) (-5 *1 (-1010)))) (-2928 (*1 *2 *3) (-12 (-5 *3 (-671 (-401 (-931 (-552))))) (-5 *2 (-627 (-310 (-552)))) (-5 *1 (-1010)))) (-1316 (*1 *2 *3 *4) (-12 (-5 *4 (-671 (-401 (-931 (-552))))) (-5 *2 (-627 (-671 (-310 (-552))))) (-5 *1 (-1010)) (-5 *3 (-310 (-552))))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-671 (-401 (-931 (-552))))) (-5 *2 (-627 (-2 (|:| |radval| (-310 (-552))) (|:| |radmult| (-552)) (|:| |radvect| (-627 (-671 (-310 (-552)))))))) (-5 *1 (-1010))))) +(-10 -7 (-15 -1757 ((-627 (-2 (|:| |radval| (-310 (-552))) (|:| |radmult| (-552)) (|:| |radvect| (-627 (-671 (-310 (-552))))))) (-671 (-401 (-931 (-552)))))) (-15 -1316 ((-627 (-671 (-310 (-552)))) (-310 (-552)) (-671 (-401 (-931 (-552)))))) (-15 -2928 ((-627 (-310 (-552))) (-671 (-401 (-931 (-552)))))) (-15 -2532 ((-3 (-671 (-310 (-552))) "failed") (-671 (-401 (-931 (-552)))))) (-15 -2894 ((-671 (-310 (-552))) (-671 (-310 (-552))))) (-15 -2444 ((-627 (-671 (-310 (-552)))) (-627 (-671 (-310 (-552)))))) (-15 -2124 ((-627 (-671 (-310 (-552)))) (-671 (-401 (-931 (-552))))))) +((-3247 ((|#1| |#1| (-900)) 9))) +(((-1011 |#1|) (-10 -7 (-15 -3247 (|#1| |#1| (-900)))) (-13 (-1076) (-10 -8 (-15 * ($ $ $))))) (T -1011)) +((-3247 (*1 *2 *2 *3) (-12 (-5 *3 (-900)) (-5 *1 (-1011 *2)) (-4 *2 (-13 (-1076) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -3247 (|#1| |#1| (-900)))) +((-1477 ((|#1| (-306)) 11) (((-1240) |#1|) 9))) +(((-1012 |#1|) (-10 -7 (-15 -1477 ((-1240) |#1|)) (-15 -1477 (|#1| (-306)))) (-1189)) (T -1012)) +((-1477 (*1 *2 *3) (-12 (-5 *3 (-306)) (-5 *1 (-1012 *2)) (-4 *2 (-1189)))) (-1477 (*1 *2 *3) (-12 (-5 *2 (-1240)) (-5 *1 (-1012 *3)) (-4 *3 (-1189))))) +(-10 -7 (-15 -1477 ((-1240) |#1|)) (-15 -1477 (|#1| (-306)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2091 (($ |#4|) 25)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-2079 ((|#4| $) 27)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 46) (($ (-552)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3995 (((-754)) 43)) (-1922 (($) 21 T CONST)) (-1933 (($) 23 T CONST)) (-2292 (((-111) $ $) 40)) (-2396 (($ $) 31) (($ $ $) NIL)) (-2384 (($ $ $) 29)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1013 |#1| |#2| |#3| |#4| |#5|) (-13 (-169) (-38 |#1|) (-10 -8 (-15 -2091 ($ |#4|)) (-15 -1477 ($ |#4|)) (-15 -2079 (|#4| $)))) (-357) (-776) (-830) (-928 |#1| |#2| |#3|) (-627 |#4|)) (T -1013)) +((-2091 (*1 *1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-1013 *3 *4 *5 *2 *6)) (-4 *2 (-928 *3 *4 *5)) (-14 *6 (-627 *2)))) (-1477 (*1 *1 *2) (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-1013 *3 *4 *5 *2 *6)) (-4 *2 (-928 *3 *4 *5)) (-14 *6 (-627 *2)))) (-2079 (*1 *2 *1) (-12 (-4 *2 (-928 *3 *4 *5)) (-5 *1 (-1013 *3 *4 *5 *2 *6)) (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-14 *6 (-627 *2))))) +(-13 (-169) (-38 |#1|) (-10 -8 (-15 -2091 ($ |#4|)) (-15 -1477 ($ |#4|)) (-15 -2079 (|#4| $)))) +((-1465 (((-111) $ $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076))))) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL)) (-3305 (((-1240) $ (-1152) (-1152)) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-1629 (((-111) (-111)) 39)) (-1761 (((-111) (-111)) 38)) (-2950 (((-52) $ (-1152) (-52)) NIL)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-3602 (((-3 (-52) "failed") (-1152) $) NIL)) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076))))) (-2265 (($ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-3 (-52) "failed") (-1152) $) NIL)) (-4342 (($ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (((-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-3473 (((-52) $ (-1152) (-52)) NIL (|has| $ (-6 -4367)))) (-3413 (((-52) $ (-1152)) NIL)) (-3215 (((-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-627 (-52)) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-1152) $) NIL (|has| (-1152) (-830)))) (-3114 (((-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-627 (-52)) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-52) (-1076))))) (-2285 (((-1152) $) NIL (|has| (-1152) (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4367))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076))))) (-1296 (((-627 (-1152)) $) 34)) (-3619 (((-111) (-1152) $) NIL)) (-4165 (((-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL)) (-3954 (($ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL)) (-3892 (((-627 (-1152)) $) NIL)) (-2358 (((-111) (-1152) $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076))))) (-3340 (((-52) $) NIL (|has| (-1152) (-830)))) (-1503 (((-3 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) "failed") (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL)) (-1942 (($ $ (-52)) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))))) NIL (-12 (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (($ $ (-288 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL (-12 (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (($ $ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) NIL (-12 (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (($ $ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL (-12 (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (($ $ (-627 (-52)) (-627 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076)))) (($ $ (-288 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076)))) (($ $ (-627 (-288 (-52)))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-52) (-1076))))) (-2083 (((-627 (-52)) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 (((-52) $ (-1152)) 35) (((-52) $ (-1152) (-52)) NIL)) (-3028 (($) NIL) (($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (((-754) (-52) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-52) (-1076)))) (((-754) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL)) (-1477 (((-842) $) 37 (-1559 (|has| (-52) (-599 (-842))) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-599 (-842)))))) (-2577 (($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-1014) (-13 (-1165 (-1152) (-52)) (-10 -7 (-15 -1629 ((-111) (-111))) (-15 -1761 ((-111) (-111))) (-6 -4366)))) (T -1014)) +((-1629 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1014)))) (-1761 (*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1014))))) +(-13 (-1165 (-1152) (-52)) (-10 -7 (-15 -1629 ((-111) (-111))) (-15 -1761 ((-111) (-111))) (-6 -4366))) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2920 (((-1111) $) 9)) (-1477 (((-842) $) 17) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) +(((-1015) (-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $))))) (T -1015)) +((-2920 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1015))))) +(-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $)))) +((-1703 ((|#2| $) 10))) +(((-1016 |#1| |#2|) (-10 -8 (-15 -1703 (|#2| |#1|))) (-1017 |#2|) (-1189)) (T -1016)) +NIL +(-10 -8 (-15 -1703 (|#2| |#1|))) +((-4039 (((-3 |#1| "failed") $) 7)) (-1703 ((|#1| $) 8)) (-1477 (($ |#1|) 6))) +(((-1017 |#1|) (-137) (-1189)) (T -1017)) +((-1703 (*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1189)))) (-4039 (*1 *2 *1) (|partial| -12 (-4 *1 (-1017 *2)) (-4 *2 (-1189)))) (-1477 (*1 *1 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1189))))) +(-13 (-10 -8 (-15 -1477 ($ |t#1|)) (-15 -4039 ((-3 |t#1| "failed") $)) (-15 -1703 (|t#1| $)))) +((-3541 (((-627 (-627 (-288 (-401 (-931 |#2|))))) (-627 (-931 |#2|)) (-627 (-1152))) 38))) +(((-1018 |#1| |#2|) (-10 -7 (-15 -3541 ((-627 (-627 (-288 (-401 (-931 |#2|))))) (-627 (-931 |#2|)) (-627 (-1152))))) (-544) (-13 (-544) (-1017 |#1|))) (T -1018)) +((-3541 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-931 *6))) (-5 *4 (-627 (-1152))) (-4 *6 (-13 (-544) (-1017 *5))) (-4 *5 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *6)))))) (-5 *1 (-1018 *5 *6))))) +(-10 -7 (-15 -3541 ((-627 (-627 (-288 (-401 (-931 |#2|))))) (-627 (-931 |#2|)) (-627 (-1152))))) +((-4319 (((-373)) 15)) (-1738 (((-1 (-373)) (-373) (-373)) 20)) (-3268 (((-1 (-373)) (-754)) 43)) (-4066 (((-373)) 34)) (-1317 (((-1 (-373)) (-373) (-373)) 35)) (-3872 (((-373)) 26)) (-2210 (((-1 (-373)) (-373)) 27)) (-2412 (((-373) (-754)) 38)) (-3851 (((-1 (-373)) (-754)) 39)) (-1935 (((-1 (-373)) (-754) (-754)) 42)) (-1974 (((-1 (-373)) (-754) (-754)) 40))) +(((-1019) (-10 -7 (-15 -4319 ((-373))) (-15 -4066 ((-373))) (-15 -3872 ((-373))) (-15 -2412 ((-373) (-754))) (-15 -1738 ((-1 (-373)) (-373) (-373))) (-15 -1317 ((-1 (-373)) (-373) (-373))) (-15 -2210 ((-1 (-373)) (-373))) (-15 -3851 ((-1 (-373)) (-754))) (-15 -1974 ((-1 (-373)) (-754) (-754))) (-15 -1935 ((-1 (-373)) (-754) (-754))) (-15 -3268 ((-1 (-373)) (-754))))) (T -1019)) +((-3268 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1 (-373))) (-5 *1 (-1019)))) (-1935 (*1 *2 *3 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1 (-373))) (-5 *1 (-1019)))) (-1974 (*1 *2 *3 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1 (-373))) (-5 *1 (-1019)))) (-3851 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1 (-373))) (-5 *1 (-1019)))) (-2210 (*1 *2 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1019)) (-5 *3 (-373)))) (-1317 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1019)) (-5 *3 (-373)))) (-1738 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1019)) (-5 *3 (-373)))) (-2412 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-373)) (-5 *1 (-1019)))) (-3872 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1019)))) (-4066 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1019)))) (-4319 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1019))))) +(-10 -7 (-15 -4319 ((-373))) (-15 -4066 ((-373))) (-15 -3872 ((-373))) (-15 -2412 ((-373) (-754))) (-15 -1738 ((-1 (-373)) (-373) (-373))) (-15 -1317 ((-1 (-373)) (-373) (-373))) (-15 -2210 ((-1 (-373)) (-373))) (-15 -3851 ((-1 (-373)) (-754))) (-15 -1974 ((-1 (-373)) (-754) (-754))) (-15 -1935 ((-1 (-373)) (-754) (-754))) (-15 -3268 ((-1 (-373)) (-754)))) +((-1727 (((-412 |#1|) |#1|) 33))) +(((-1020 |#1|) (-10 -7 (-15 -1727 ((-412 |#1|) |#1|))) (-1211 (-401 (-931 (-552))))) (T -1020)) +((-1727 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-1020 *3)) (-4 *3 (-1211 (-401 (-931 (-552)))))))) +(-10 -7 (-15 -1727 ((-412 |#1|) |#1|))) +((-3448 (((-401 (-412 (-931 |#1|))) (-401 (-931 |#1|))) 14))) +(((-1021 |#1|) (-10 -7 (-15 -3448 ((-401 (-412 (-931 |#1|))) (-401 (-931 |#1|))))) (-301)) (T -1021)) +((-3448 (*1 *2 *3) (-12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-301)) (-5 *2 (-401 (-412 (-931 *4)))) (-5 *1 (-1021 *4))))) +(-10 -7 (-15 -3448 ((-401 (-412 (-931 |#1|))) (-401 (-931 |#1|))))) +((-1853 (((-627 (-1152)) (-401 (-931 |#1|))) 17)) (-1694 (((-401 (-1148 (-401 (-931 |#1|)))) (-401 (-931 |#1|)) (-1152)) 24)) (-1842 (((-401 (-931 |#1|)) (-401 (-1148 (-401 (-931 |#1|)))) (-1152)) 26)) (-2685 (((-3 (-1152) "failed") (-401 (-931 |#1|))) 20)) (-3321 (((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-627 (-288 (-401 (-931 |#1|))))) 32) (((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|)))) 33) (((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-627 (-1152)) (-627 (-401 (-931 |#1|)))) 28) (((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-1152) (-401 (-931 |#1|))) 29)) (-1477 (((-401 (-931 |#1|)) |#1|) 11))) +(((-1022 |#1|) (-10 -7 (-15 -1853 ((-627 (-1152)) (-401 (-931 |#1|)))) (-15 -2685 ((-3 (-1152) "failed") (-401 (-931 |#1|)))) (-15 -1694 ((-401 (-1148 (-401 (-931 |#1|)))) (-401 (-931 |#1|)) (-1152))) (-15 -1842 ((-401 (-931 |#1|)) (-401 (-1148 (-401 (-931 |#1|)))) (-1152))) (-15 -3321 ((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-1152) (-401 (-931 |#1|)))) (-15 -3321 ((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-627 (-1152)) (-627 (-401 (-931 |#1|))))) (-15 -3321 ((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|))))) (-15 -3321 ((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-627 (-288 (-401 (-931 |#1|)))))) (-15 -1477 ((-401 (-931 |#1|)) |#1|))) (-544)) (T -1022)) +((-1477 (*1 *2 *3) (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-1022 *3)) (-4 *3 (-544)))) (-3321 (*1 *2 *2 *3) (-12 (-5 *3 (-627 (-288 (-401 (-931 *4))))) (-5 *2 (-401 (-931 *4))) (-4 *4 (-544)) (-5 *1 (-1022 *4)))) (-3321 (*1 *2 *2 *3) (-12 (-5 *3 (-288 (-401 (-931 *4)))) (-5 *2 (-401 (-931 *4))) (-4 *4 (-544)) (-5 *1 (-1022 *4)))) (-3321 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-627 (-1152))) (-5 *4 (-627 (-401 (-931 *5)))) (-5 *2 (-401 (-931 *5))) (-4 *5 (-544)) (-5 *1 (-1022 *5)))) (-3321 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-401 (-931 *4))) (-5 *3 (-1152)) (-4 *4 (-544)) (-5 *1 (-1022 *4)))) (-1842 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-1148 (-401 (-931 *5))))) (-5 *4 (-1152)) (-5 *2 (-401 (-931 *5))) (-5 *1 (-1022 *5)) (-4 *5 (-544)))) (-1694 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-544)) (-5 *2 (-401 (-1148 (-401 (-931 *5))))) (-5 *1 (-1022 *5)) (-5 *3 (-401 (-931 *5))))) (-2685 (*1 *2 *3) (|partial| -12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) (-5 *2 (-1152)) (-5 *1 (-1022 *4)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) (-5 *2 (-627 (-1152))) (-5 *1 (-1022 *4))))) +(-10 -7 (-15 -1853 ((-627 (-1152)) (-401 (-931 |#1|)))) (-15 -2685 ((-3 (-1152) "failed") (-401 (-931 |#1|)))) (-15 -1694 ((-401 (-1148 (-401 (-931 |#1|)))) (-401 (-931 |#1|)) (-1152))) (-15 -1842 ((-401 (-931 |#1|)) (-401 (-1148 (-401 (-931 |#1|)))) (-1152))) (-15 -3321 ((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-1152) (-401 (-931 |#1|)))) (-15 -3321 ((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-627 (-1152)) (-627 (-401 (-931 |#1|))))) (-15 -3321 ((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-288 (-401 (-931 |#1|))))) (-15 -3321 ((-401 (-931 |#1|)) (-401 (-931 |#1|)) (-627 (-288 (-401 (-931 |#1|)))))) (-15 -1477 ((-401 (-931 |#1|)) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3887 (($) 17 T CONST)) (-3295 ((|#1| $) 22)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3534 ((|#1| $) 21)) (-3132 ((|#1|) 19 T CONST)) (-1477 (((-842) $) 11)) (-1775 ((|#1| $) 20)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15))) +(((-1023 |#1|) (-137) (-23)) (T -1023)) +((-3295 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-23)))) (-3534 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-23)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-23)))) (-3132 (*1 *2) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3295 (|t#1| $)) (-15 -3534 (|t#1| $)) (-15 -1775 (|t#1| $)) (-15 -3132 (|t#1|) -3488))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-2923 (($) 24 T CONST)) (-3887 (($) 17 T CONST)) (-3295 ((|#1| $) 22)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3534 ((|#1| $) 21)) (-3132 ((|#1|) 19 T CONST)) (-1477 (((-842) $) 11)) (-1775 ((|#1| $) 20)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15))) +(((-1024 |#1|) (-137) (-23)) (T -1024)) +((-2923 (*1 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-23))))) +(-13 (-1023 |t#1|) (-10 -8 (-15 -2923 ($) -3488))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-599 (-842)) . T) ((-1023 |#1|) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-1764 (((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 (-763 |#1| (-844 |#2|)))))) (-627 (-763 |#1| (-844 |#2|)))) NIL)) (-1361 (((-627 $) (-627 (-763 |#1| (-844 |#2|)))) NIL) (((-627 $) (-627 (-763 |#1| (-844 |#2|))) (-111)) NIL) (((-627 $) (-627 (-763 |#1| (-844 |#2|))) (-111) (-111)) NIL)) (-1853 (((-627 (-844 |#2|)) $) NIL)) (-2730 (((-111) $) NIL)) (-3648 (((-111) $) NIL (|has| |#1| (-544)))) (-3691 (((-111) (-763 |#1| (-844 |#2|)) $) NIL) (((-111) $) NIL)) (-1553 (((-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) $) NIL)) (-4014 (((-627 (-2 (|:| |val| (-763 |#1| (-844 |#2|))) (|:| -3443 $))) (-763 |#1| (-844 |#2|)) $) NIL)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ (-844 |#2|)) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2536 (($ (-1 (-111) (-763 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-3 (-763 |#1| (-844 |#2|)) "failed") $ (-844 |#2|)) NIL)) (-3887 (($) NIL T CONST)) (-3569 (((-111) $) NIL (|has| |#1| (-544)))) (-2330 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2165 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3188 (((-111) $) NIL (|has| |#1| (-544)))) (-3238 (((-627 (-763 |#1| (-844 |#2|))) (-627 (-763 |#1| (-844 |#2|))) $ (-1 (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|))) (-1 (-111) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)))) NIL)) (-4097 (((-627 (-763 |#1| (-844 |#2|))) (-627 (-763 |#1| (-844 |#2|))) $) NIL (|has| |#1| (-544)))) (-3761 (((-627 (-763 |#1| (-844 |#2|))) (-627 (-763 |#1| (-844 |#2|))) $) NIL (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 (-763 |#1| (-844 |#2|)))) NIL)) (-1703 (($ (-627 (-763 |#1| (-844 |#2|)))) NIL)) (-3351 (((-3 $ "failed") $) NIL)) (-4167 (((-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-763 |#1| (-844 |#2|)) (-1076))))) (-4342 (($ (-763 |#1| (-844 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-763 |#1| (-844 |#2|)) (-1076)))) (($ (-1 (-111) (-763 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-763 |#1| (-844 |#2|))) (|:| |den| |#1|)) (-763 |#1| (-844 |#2|)) $) NIL (|has| |#1| (-544)))) (-4104 (((-111) (-763 |#1| (-844 |#2|)) $ (-1 (-111) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)))) NIL)) (-2934 (((-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) $) NIL)) (-2091 (((-763 |#1| (-844 |#2|)) (-1 (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|))) $ (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-763 |#1| (-844 |#2|)) (-1076)))) (((-763 |#1| (-844 |#2|)) (-1 (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|))) $ (-763 |#1| (-844 |#2|))) NIL (|has| $ (-6 -4366))) (((-763 |#1| (-844 |#2|)) (-1 (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) $ (-1 (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|))) (-1 (-111) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)))) NIL)) (-2415 (((-2 (|:| -4267 (-627 (-763 |#1| (-844 |#2|)))) (|:| -2849 (-627 (-763 |#1| (-844 |#2|))))) $) NIL)) (-3203 (((-111) (-763 |#1| (-844 |#2|)) $) NIL)) (-2004 (((-111) (-763 |#1| (-844 |#2|)) $) NIL)) (-2790 (((-111) (-763 |#1| (-844 |#2|)) $) NIL) (((-111) $) NIL)) (-3215 (((-627 (-763 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3850 (((-111) (-763 |#1| (-844 |#2|)) $) NIL) (((-111) $) NIL)) (-4147 (((-844 |#2|) $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 (-763 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-763 |#1| (-844 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-763 |#1| (-844 |#2|)) (-1076))))) (-3463 (($ (-1 (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|))) $) NIL)) (-4198 (((-627 (-844 |#2|)) $) NIL)) (-1927 (((-111) (-844 |#2|) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-2661 (((-3 (-763 |#1| (-844 |#2|)) (-627 $)) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) $) NIL)) (-4318 (((-627 (-2 (|:| |val| (-763 |#1| (-844 |#2|))) (|:| -3443 $))) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) $) NIL)) (-1294 (((-3 (-763 |#1| (-844 |#2|)) "failed") $) NIL)) (-4314 (((-627 $) (-763 |#1| (-844 |#2|)) $) NIL)) (-2338 (((-3 (-111) (-627 $)) (-763 |#1| (-844 |#2|)) $) NIL)) (-3984 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 $))) (-763 |#1| (-844 |#2|)) $) NIL) (((-111) (-763 |#1| (-844 |#2|)) $) NIL)) (-3383 (((-627 $) (-763 |#1| (-844 |#2|)) $) NIL) (((-627 $) (-627 (-763 |#1| (-844 |#2|))) $) NIL) (((-627 $) (-627 (-763 |#1| (-844 |#2|))) (-627 $)) NIL) (((-627 $) (-763 |#1| (-844 |#2|)) (-627 $)) NIL)) (-1892 (($ (-763 |#1| (-844 |#2|)) $) NIL) (($ (-627 (-763 |#1| (-844 |#2|))) $) NIL)) (-4122 (((-627 (-763 |#1| (-844 |#2|))) $) NIL)) (-2481 (((-111) (-763 |#1| (-844 |#2|)) $) NIL) (((-111) $) NIL)) (-3921 (((-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) $) NIL)) (-2654 (((-111) $ $) NIL)) (-1943 (((-2 (|:| |num| (-763 |#1| (-844 |#2|))) (|:| |den| |#1|)) (-763 |#1| (-844 |#2|)) $) NIL (|has| |#1| (-544)))) (-2163 (((-111) (-763 |#1| (-844 |#2|)) $) NIL) (((-111) $) NIL)) (-4116 (((-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)) $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 (((-3 (-763 |#1| (-844 |#2|)) "failed") $) NIL)) (-1503 (((-3 (-763 |#1| (-844 |#2|)) "failed") (-1 (-111) (-763 |#1| (-844 |#2|))) $) NIL)) (-3672 (((-3 $ "failed") $ (-763 |#1| (-844 |#2|))) NIL)) (-4168 (($ $ (-763 |#1| (-844 |#2|))) NIL) (((-627 $) (-763 |#1| (-844 |#2|)) $) NIL) (((-627 $) (-763 |#1| (-844 |#2|)) (-627 $)) NIL) (((-627 $) (-627 (-763 |#1| (-844 |#2|))) $) NIL) (((-627 $) (-627 (-763 |#1| (-844 |#2|))) (-627 $)) NIL)) (-3509 (((-111) (-1 (-111) (-763 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-763 |#1| (-844 |#2|))) (-627 (-763 |#1| (-844 |#2|)))) NIL (-12 (|has| (-763 |#1| (-844 |#2|)) (-303 (-763 |#1| (-844 |#2|)))) (|has| (-763 |#1| (-844 |#2|)) (-1076)))) (($ $ (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|))) NIL (-12 (|has| (-763 |#1| (-844 |#2|)) (-303 (-763 |#1| (-844 |#2|)))) (|has| (-763 |#1| (-844 |#2|)) (-1076)))) (($ $ (-288 (-763 |#1| (-844 |#2|)))) NIL (-12 (|has| (-763 |#1| (-844 |#2|)) (-303 (-763 |#1| (-844 |#2|)))) (|has| (-763 |#1| (-844 |#2|)) (-1076)))) (($ $ (-627 (-288 (-763 |#1| (-844 |#2|))))) NIL (-12 (|has| (-763 |#1| (-844 |#2|)) (-303 (-763 |#1| (-844 |#2|)))) (|has| (-763 |#1| (-844 |#2|)) (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-3567 (((-754) $) NIL)) (-1509 (((-754) (-763 |#1| (-844 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-763 |#1| (-844 |#2|)) (-1076)))) (((-754) (-1 (-111) (-763 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-763 |#1| (-844 |#2|)) (-600 (-528))))) (-1490 (($ (-627 (-763 |#1| (-844 |#2|)))) NIL)) (-4237 (($ $ (-844 |#2|)) NIL)) (-2286 (($ $ (-844 |#2|)) NIL)) (-2462 (($ $) NIL)) (-3911 (($ $ (-844 |#2|)) NIL)) (-1477 (((-842) $) NIL) (((-627 (-763 |#1| (-844 |#2|))) $) NIL)) (-1641 (((-754) $) NIL (|has| (-844 |#2|) (-362)))) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 (-763 |#1| (-844 |#2|))))) "failed") (-627 (-763 |#1| (-844 |#2|))) (-1 (-111) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 (-763 |#1| (-844 |#2|))))) "failed") (-627 (-763 |#1| (-844 |#2|))) (-1 (-111) (-763 |#1| (-844 |#2|))) (-1 (-111) (-763 |#1| (-844 |#2|)) (-763 |#1| (-844 |#2|)))) NIL)) (-2925 (((-111) $ (-1 (-111) (-763 |#1| (-844 |#2|)) (-627 (-763 |#1| (-844 |#2|))))) NIL)) (-2733 (((-627 $) (-763 |#1| (-844 |#2|)) $) NIL) (((-627 $) (-763 |#1| (-844 |#2|)) (-627 $)) NIL) (((-627 $) (-627 (-763 |#1| (-844 |#2|))) $) NIL) (((-627 $) (-627 (-763 |#1| (-844 |#2|))) (-627 $)) NIL)) (-3299 (((-111) (-1 (-111) (-763 |#1| (-844 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2199 (((-627 (-844 |#2|)) $) NIL)) (-3612 (((-111) (-763 |#1| (-844 |#2|)) $) NIL)) (-3528 (((-111) (-844 |#2|) $) NIL)) (-2292 (((-111) $ $) NIL)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-1025 |#1| |#2|) (-13 (-1048 |#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|))) (-10 -8 (-15 -1361 ((-627 $) (-627 (-763 |#1| (-844 |#2|))) (-111) (-111))))) (-445) (-627 (-1152))) (T -1025)) +((-1361 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-627 (-763 *5 (-844 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) (-14 *6 (-627 (-1152))) (-5 *2 (-627 (-1025 *5 *6))) (-5 *1 (-1025 *5 *6))))) +(-13 (-1048 |#1| (-523 (-844 |#2|)) (-844 |#2|) (-763 |#1| (-844 |#2|))) (-10 -8 (-15 -1361 ((-627 $) (-627 (-763 |#1| (-844 |#2|))) (-111) (-111))))) +((-1738 (((-1 (-552)) (-1070 (-552))) 33)) (-1417 (((-552) (-552) (-552) (-552) (-552)) 30)) (-2560 (((-1 (-552)) |RationalNumber|) NIL)) (-1282 (((-1 (-552)) |RationalNumber|) NIL)) (-3697 (((-1 (-552)) (-552) |RationalNumber|) NIL))) +(((-1026) (-10 -7 (-15 -1738 ((-1 (-552)) (-1070 (-552)))) (-15 -3697 ((-1 (-552)) (-552) |RationalNumber|)) (-15 -2560 ((-1 (-552)) |RationalNumber|)) (-15 -1282 ((-1 (-552)) |RationalNumber|)) (-15 -1417 ((-552) (-552) (-552) (-552) (-552))))) (T -1026)) +((-1417 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1026)))) (-1282 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1026)))) (-2560 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1026)))) (-3697 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1026)) (-5 *3 (-552)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-1070 (-552))) (-5 *2 (-1 (-552))) (-5 *1 (-1026))))) +(-10 -7 (-15 -1738 ((-1 (-552)) (-1070 (-552)))) (-15 -3697 ((-1 (-552)) (-552) |RationalNumber|)) (-15 -2560 ((-1 (-552)) |RationalNumber|)) (-15 -1282 ((-1 (-552)) |RationalNumber|)) (-15 -1417 ((-552) (-552) (-552) (-552) (-552)))) +((-1477 (((-842) $) NIL) (($ (-552)) 10))) +(((-1027 |#1|) (-10 -8 (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) (-1028)) (T -1027)) +NIL +(-10 -8 (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-1028) (-137)) (T -1028)) +((-3995 (*1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-754)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1028))))) +(-13 (-1035) (-709) (-630 $) (-10 -8 (-15 -3995 ((-754))) (-15 -1477 ($ (-552))) (-6 -4363))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 $) . T) ((-709) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-3179 (((-401 (-931 |#2|)) (-627 |#2|) (-627 |#2|) (-754) (-754)) 45))) +(((-1029 |#1| |#2|) (-10 -7 (-15 -3179 ((-401 (-931 |#2|)) (-627 |#2|) (-627 |#2|) (-754) (-754)))) (-1152) (-357)) (T -1029)) +((-3179 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-627 *6)) (-5 *4 (-754)) (-4 *6 (-357)) (-5 *2 (-401 (-931 *6))) (-5 *1 (-1029 *5 *6)) (-14 *5 (-1152))))) +(-10 -7 (-15 -3179 ((-401 (-931 |#2|)) (-627 |#2|) (-627 |#2|) (-754) (-754)))) +((-2311 (((-111) $) 29)) (-3944 (((-111) $) 16)) (-3560 (((-754) $) 13)) (-3572 (((-754) $) 14)) (-4064 (((-111) $) 26)) (-3847 (((-111) $) 31))) +(((-1030 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3572 ((-754) |#1|)) (-15 -3560 ((-754) |#1|)) (-15 -3847 ((-111) |#1|)) (-15 -2311 ((-111) |#1|)) (-15 -4064 ((-111) |#1|)) (-15 -3944 ((-111) |#1|))) (-1031 |#2| |#3| |#4| |#5| |#6|) (-754) (-754) (-1028) (-233 |#3| |#4|) (-233 |#2| |#4|)) (T -1030)) +NIL +(-10 -8 (-15 -3572 ((-754) |#1|)) (-15 -3560 ((-754) |#1|)) (-15 -3847 ((-111) |#1|)) (-15 -2311 ((-111) |#1|)) (-15 -4064 ((-111) |#1|)) (-15 -3944 ((-111) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-2311 (((-111) $) 51)) (-4136 (((-3 $ "failed") $ $) 19)) (-3944 (((-111) $) 53)) (-4031 (((-111) $ (-754)) 61)) (-3887 (($) 17 T CONST)) (-1472 (($ $) 34 (|has| |#3| (-301)))) (-3884 ((|#4| $ (-552)) 39)) (-4154 (((-754) $) 33 (|has| |#3| (-544)))) (-3413 ((|#3| $ (-552) (-552)) 41)) (-3215 (((-627 |#3|) $) 68 (|has| $ (-6 -4366)))) (-1610 (((-754) $) 32 (|has| |#3| (-544)))) (-2960 (((-627 |#5|) $) 31 (|has| |#3| (-544)))) (-3560 (((-754) $) 45)) (-3572 (((-754) $) 44)) (-1602 (((-111) $ (-754)) 60)) (-4083 (((-552) $) 49)) (-3511 (((-552) $) 47)) (-3114 (((-627 |#3|) $) 69 (|has| $ (-6 -4366)))) (-3082 (((-111) |#3| $) 71 (-12 (|has| |#3| (-1076)) (|has| $ (-6 -4366))))) (-3479 (((-552) $) 48)) (-2780 (((-552) $) 46)) (-4176 (($ (-627 (-627 |#3|))) 54)) (-3463 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3127 (((-627 (-627 |#3|)) $) 43)) (-3971 (((-111) $ (-754)) 59)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2761 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-544)))) (-3509 (((-111) (-1 (-111) |#3|) $) 66 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#3|) (-627 |#3|)) 75 (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ (-288 |#3|)) 73 (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ (-627 (-288 |#3|))) 72 (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076))))) (-2432 (((-111) $ $) 55)) (-1275 (((-111) $) 58)) (-2373 (($) 57)) (-1985 ((|#3| $ (-552) (-552)) 42) ((|#3| $ (-552) (-552) |#3|) 40)) (-4064 (((-111) $) 52)) (-1509 (((-754) |#3| $) 70 (-12 (|has| |#3| (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) |#3|) $) 67 (|has| $ (-6 -4366)))) (-2973 (($ $) 56)) (-2152 ((|#5| $ (-552)) 38)) (-1477 (((-842) $) 11)) (-3299 (((-111) (-1 (-111) |#3|) $) 65 (|has| $ (-6 -4366)))) (-3847 (((-111) $) 50)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#3|) 35 (|has| |#3| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-1383 (((-754) $) 62 (|has| $ (-6 -4366))))) +(((-1031 |#1| |#2| |#3| |#4| |#5|) (-137) (-754) (-754) (-1028) (-233 |t#2| |t#3|) (-233 |t#1| |t#3|)) (T -1031)) +((-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)))) (-4176 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 *5))) (-4 *5 (-1028)) (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111)))) (-4064 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111)))) (-2311 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111)))) (-4083 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552)))) (-3479 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552)))) (-2780 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552)))) (-3560 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-754)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-754)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-627 (-627 *5))))) (-1985 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1031 *4 *5 *2 *6 *7)) (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)) (-4 *2 (-1028)))) (-3413 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1031 *4 *5 *2 *6 *7)) (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)) (-4 *2 (-1028)))) (-1985 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-552)) (-4 *1 (-1031 *4 *5 *2 *6 *7)) (-4 *2 (-1028)) (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1031 *4 *5 *6 *2 *7)) (-4 *6 (-1028)) (-4 *7 (-233 *4 *6)) (-4 *2 (-233 *5 *6)))) (-2152 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1031 *4 *5 *6 *7 *2)) (-4 *6 (-1028)) (-4 *7 (-233 *5 *6)) (-4 *2 (-233 *4 *6)))) (-3516 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)))) (-2761 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1031 *3 *4 *2 *5 *6)) (-4 *2 (-1028)) (-4 *5 (-233 *4 *2)) (-4 *6 (-233 *3 *2)) (-4 *2 (-544)))) (-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-1031 *3 *4 *2 *5 *6)) (-4 *2 (-1028)) (-4 *5 (-233 *4 *2)) (-4 *6 (-233 *3 *2)) (-4 *2 (-357)))) (-1472 (*1 *1 *1) (-12 (-4 *1 (-1031 *2 *3 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *2 *4)) (-4 *4 (-301)))) (-4154 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-544)) (-5 *2 (-754)))) (-1610 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-544)) (-5 *2 (-754)))) (-2960 (*1 *2 *1) (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-544)) (-5 *2 (-627 *7))))) +(-13 (-110 |t#3| |t#3|) (-482 |t#3|) (-10 -8 (-6 -4366) (IF (|has| |t#3| (-169)) (-6 (-700 |t#3|)) |%noBranch|) (-15 -4176 ($ (-627 (-627 |t#3|)))) (-15 -3944 ((-111) $)) (-15 -4064 ((-111) $)) (-15 -2311 ((-111) $)) (-15 -3847 ((-111) $)) (-15 -4083 ((-552) $)) (-15 -3479 ((-552) $)) (-15 -3511 ((-552) $)) (-15 -2780 ((-552) $)) (-15 -3560 ((-754) $)) (-15 -3572 ((-754) $)) (-15 -3127 ((-627 (-627 |t#3|)) $)) (-15 -1985 (|t#3| $ (-552) (-552))) (-15 -3413 (|t#3| $ (-552) (-552))) (-15 -1985 (|t#3| $ (-552) (-552) |t#3|)) (-15 -3884 (|t#4| $ (-552))) (-15 -2152 (|t#5| $ (-552))) (-15 -3516 ($ (-1 |t#3| |t#3|) $)) (-15 -3516 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-544)) (-15 -2761 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-357)) (-15 -2407 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-301)) (-15 -1472 ($ $)) |%noBranch|) (IF (|has| |t#3| (-544)) (PROGN (-15 -4154 ((-754) $)) (-15 -1610 ((-754) $)) (-15 -2960 ((-627 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-101) . T) ((-110 |#3| |#3|) . T) ((-129) . T) ((-599 (-842)) . T) ((-303 |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076))) ((-482 |#3|) . T) ((-506 |#3| |#3|) -12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076))) ((-630 |#3|) . T) ((-700 |#3|) |has| |#3| (-169)) ((-1034 |#3|) . T) ((-1076) . T) ((-1189) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2311 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3944 (((-111) $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-3887 (($) NIL T CONST)) (-1472 (($ $) 43 (|has| |#3| (-301)))) (-3884 (((-235 |#2| |#3|) $ (-552)) 32)) (-2505 (($ (-671 |#3|)) 41)) (-4154 (((-754) $) 45 (|has| |#3| (-544)))) (-3413 ((|#3| $ (-552) (-552)) NIL)) (-3215 (((-627 |#3|) $) NIL (|has| $ (-6 -4366)))) (-1610 (((-754) $) 47 (|has| |#3| (-544)))) (-2960 (((-627 (-235 |#1| |#3|)) $) 51 (|has| |#3| (-544)))) (-3560 (((-754) $) NIL)) (-3572 (((-754) $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-4083 (((-552) $) NIL)) (-3511 (((-552) $) NIL)) (-3114 (((-627 |#3|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#3| (-1076))))) (-3479 (((-552) $) NIL)) (-2780 (((-552) $) NIL)) (-4176 (($ (-627 (-627 |#3|))) 27)) (-3463 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3127 (((-627 (-627 |#3|)) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2761 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-544)))) (-3509 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#3|) (-627 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ (-288 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ (-627 (-288 |#3|))) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#3| $ (-552) (-552)) NIL) ((|#3| $ (-552) (-552) |#3|) NIL)) (-2405 (((-132)) 54 (|has| |#3| (-357)))) (-4064 (((-111) $) NIL)) (-1509 (((-754) |#3| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#3| (-1076)))) (((-754) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) 63 (|has| |#3| (-600 (-528))))) (-2152 (((-235 |#1| |#3|) $ (-552)) 36)) (-1477 (((-842) $) 16) (((-671 |#3|) $) 38)) (-3299 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4366)))) (-3847 (((-111) $) NIL)) (-1922 (($) 13 T CONST)) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ |#3|) NIL (|has| |#3| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-1032 |#1| |#2| |#3|) (-13 (-1031 |#1| |#2| |#3| (-235 |#2| |#3|) (-235 |#1| |#3|)) (-599 (-671 |#3|)) (-10 -8 (IF (|has| |#3| (-357)) (-6 (-1242 |#3|)) |%noBranch|) (IF (|has| |#3| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (-15 -2505 ($ (-671 |#3|))) (-15 -1477 ((-671 |#3|) $)))) (-754) (-754) (-1028)) (T -1032)) +((-1477 (*1 *2 *1) (-12 (-5 *2 (-671 *5)) (-5 *1 (-1032 *3 *4 *5)) (-14 *3 (-754)) (-14 *4 (-754)) (-4 *5 (-1028)))) (-2505 (*1 *1 *2) (-12 (-5 *2 (-671 *5)) (-4 *5 (-1028)) (-5 *1 (-1032 *3 *4 *5)) (-14 *3 (-754)) (-14 *4 (-754))))) +(-13 (-1031 |#1| |#2| |#3| (-235 |#2| |#3|) (-235 |#1| |#3|)) (-599 (-671 |#3|)) (-10 -8 (IF (|has| |#3| (-357)) (-6 (-1242 |#3|)) |%noBranch|) (IF (|has| |#3| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|) (-15 -2505 ($ (-671 |#3|))) (-15 -1477 ((-671 |#3|) $)))) +((-2091 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-3516 ((|#10| (-1 |#7| |#3|) |#6|) 32))) +(((-1033 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3516 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2091 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-754) (-754) (-1028) (-233 |#2| |#3|) (-233 |#1| |#3|) (-1031 |#1| |#2| |#3| |#4| |#5|) (-1028) (-233 |#2| |#7|) (-233 |#1| |#7|) (-1031 |#1| |#2| |#7| |#8| |#9|)) (T -1033)) +((-2091 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1028)) (-4 *2 (-1028)) (-14 *5 (-754)) (-14 *6 (-754)) (-4 *8 (-233 *6 *7)) (-4 *9 (-233 *5 *7)) (-4 *10 (-233 *6 *2)) (-4 *11 (-233 *5 *2)) (-5 *1 (-1033 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1031 *5 *6 *7 *8 *9)) (-4 *12 (-1031 *5 *6 *2 *10 *11)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1028)) (-4 *10 (-1028)) (-14 *5 (-754)) (-14 *6 (-754)) (-4 *8 (-233 *6 *7)) (-4 *9 (-233 *5 *7)) (-4 *2 (-1031 *5 *6 *10 *11 *12)) (-5 *1 (-1033 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1031 *5 *6 *7 *8 *9)) (-4 *11 (-233 *6 *10)) (-4 *12 (-233 *5 *10))))) +(-10 -7 (-15 -3516 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2091 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ |#1|) 23))) +(((-1034 |#1|) (-137) (-1035)) (T -1034)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1035))))) (-13 (-21) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-1032) (-138)) (T -1032)) -NIL -(-13 (-21) (-1085)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-839)) . T) ((-1085) . T) ((-1073) . T)) -((-2162 (($ $) 16)) (-4154 (($ $) 22)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 49)) (-4209 (($ $) 24)) (-4166 (($ $) 11)) (-4189 (($ $) 38)) (-2042 (((-374) $) NIL) (((-221) $) NIL) (((-868 (-374)) $) 33)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-402 (-552))) 28) (($ (-552)) NIL) (($ (-402 (-552))) 28)) (-4141 (((-751)) 8)) (-4199 (($ $) 39))) -(((-1033 |#1|) (-10 -8 (-15 -4154 (|#1| |#1|)) (-15 -2162 (|#1| |#1|)) (-15 -4166 (|#1| |#1|)) (-15 -4189 (|#1| |#1|)) (-15 -4199 (|#1| |#1|)) (-15 -4209 (|#1| |#1|)) (-15 -3841 ((-865 (-374) |#1|) |#1| (-868 (-374)) (-865 (-374) |#1|))) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| (-552))) (-15 -2042 ((-221) |#1|)) (-15 -2042 ((-374) |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| |#1|)) (-15 -1683 (|#1| (-552))) (-15 -4141 ((-751))) (-15 -1683 ((-839) |#1|))) (-1034)) (T -1033)) -((-4141 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1033 *3)) (-4 *3 (-1034))))) -(-10 -8 (-15 -4154 (|#1| |#1|)) (-15 -2162 (|#1| |#1|)) (-15 -4166 (|#1| |#1|)) (-15 -4189 (|#1| |#1|)) (-15 -4199 (|#1| |#1|)) (-15 -4209 (|#1| |#1|)) (-15 -3841 ((-865 (-374) |#1|) |#1| (-868 (-374)) (-865 (-374) |#1|))) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| (-552))) (-15 -2042 ((-221) |#1|)) (-15 -2042 ((-374) |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| |#1|)) (-15 -1683 (|#1| (-552))) (-15 -4141 ((-751))) (-15 -1683 ((-839) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-4177 (((-552) $) 86)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2162 (($ $) 84)) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 70)) (-1330 (((-413 $) $) 69)) (-3837 (($ $) 94)) (-2408 (((-112) $ $) 57)) (-4127 (((-552) $) 111)) (-3101 (($) 17 T CONST)) (-4154 (($ $) 83)) (-1893 (((-3 (-552) "failed") $) 99) (((-3 (-402 (-552)) "failed") $) 96)) (-1895 (((-552) $) 98) (((-402 (-552)) $) 95)) (-2851 (($ $ $) 53)) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-2951 (((-112) $) 68)) (-3620 (((-112) $) 109)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 90)) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 93)) (-4209 (($ $) 89)) (-3630 (((-112) $) 110)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-3658 (($ $ $) 108)) (-3332 (($ $ $) 107)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 67)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-4166 (($ $) 85)) (-4189 (($ $) 87)) (-3824 (((-413 $) $) 71)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-2397 (((-751) $) 56)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-2042 (((-374) $) 102) (((-221) $) 101) (((-868 (-374)) $) 91)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-402 (-552))) 63) (($ (-552)) 100) (($ (-402 (-552))) 97)) (-4141 (((-751)) 28)) (-4199 (($ $) 88)) (-3518 (((-112) $ $) 37)) (-1727 (($ $) 112)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2346 (((-112) $ $) 105)) (-2320 (((-112) $ $) 104)) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 106)) (-2307 (((-112) $ $) 103)) (-2404 (($ $ $) 62)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 66) (($ $ (-402 (-552))) 92)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 65) (($ (-402 (-552)) $) 64))) -(((-1034) (-138)) (T -1034)) -((-1727 (*1 *1 *1) (-4 *1 (-1034))) (-4209 (*1 *1 *1) (-4 *1 (-1034))) (-4199 (*1 *1 *1) (-4 *1 (-1034))) (-4189 (*1 *1 *1) (-4 *1 (-1034))) (-4177 (*1 *2 *1) (-12 (-4 *1 (-1034)) (-5 *2 (-552)))) (-4166 (*1 *1 *1) (-4 *1 (-1034))) (-2162 (*1 *1 *1) (-4 *1 (-1034))) (-4154 (*1 *1 *1) (-4 *1 (-1034)))) -(-13 (-358) (-825) (-998) (-1014 (-552)) (-1014 (-402 (-552))) (-978) (-598 (-868 (-374))) (-862 (-374)) (-145) (-10 -8 (-15 -4209 ($ $)) (-15 -4199 ($ $)) (-15 -4189 ($ $)) (-15 -4177 ((-552) $)) (-15 -4166 ($ $)) (-15 -2162 ($ $)) (-15 -4154 ($ $)) (-15 -1727 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-597 (-839)) . T) ((-170) . T) ((-598 (-221)) . T) ((-598 (-374)) . T) ((-598 (-868 (-374))) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-544) . T) ((-628 #0#) . T) ((-628 $) . T) ((-698 #0#) . T) ((-698 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-775) . T) ((-825) . T) ((-827) . T) ((-862 (-374)) . T) ((-896) . T) ((-978) . T) ((-998) . T) ((-1014 (-402 (-552))) . T) ((-1014 (-552)) . T) ((-1031 #0#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) |#2| $) 23)) (-2894 ((|#1| $) 10)) (-4127 (((-552) |#2| $) 88)) (-3588 (((-3 $ "failed") |#2| (-897)) 57)) (-2303 ((|#1| $) 28)) (-3576 ((|#1| |#2| $ |#1|) 37)) (-4230 (($ $) 25)) (-4174 (((-3 |#2| "failed") |#2| $) 87)) (-3620 (((-112) |#2| $) NIL)) (-3630 (((-112) |#2| $) NIL)) (-4220 (((-112) |#2| $) 24)) (-4242 ((|#1| $) 89)) (-2290 ((|#1| $) 27)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3610 ((|#2| $) 79)) (-1683 (((-839) $) 70)) (-2874 ((|#1| |#2| $ |#1|) 38)) (-3599 (((-625 $) |#2|) 59)) (-2281 (((-112) $ $) 74))) -(((-1035 |#1| |#2|) (-13 (-1042 |#1| |#2|) (-10 -8 (-15 -2290 (|#1| $)) (-15 -2303 (|#1| $)) (-15 -2894 (|#1| $)) (-15 -4242 (|#1| $)) (-15 -4230 ($ $)) (-15 -4220 ((-112) |#2| $)) (-15 -3576 (|#1| |#2| $ |#1|)))) (-13 (-825) (-358)) (-1208 |#1|)) (T -1035)) -((-3576 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1208 *2)))) (-2290 (*1 *2 *1) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1208 *2)))) (-2303 (*1 *2 *1) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1208 *2)))) (-2894 (*1 *2 *1) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1208 *2)))) (-4242 (*1 *2 *1) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1208 *2)))) (-4230 (*1 *1 *1) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1208 *2)))) (-4220 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-825) (-358))) (-5 *2 (-112)) (-5 *1 (-1035 *4 *3)) (-4 *3 (-1208 *4))))) -(-13 (-1042 |#1| |#2|) (-10 -8 (-15 -2290 (|#1| $)) (-15 -2303 (|#1| $)) (-15 -2894 (|#1| $)) (-15 -4242 (|#1| $)) (-15 -4230 ($ $)) (-15 -4220 ((-112) |#2| $)) (-15 -3576 (|#1| |#2| $ |#1|)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-3364 (($ $ $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3346 (($ $ $ $) NIL)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL)) (-3420 (($ $ $) NIL)) (-3101 (($) NIL T CONST)) (-4252 (($ (-1149)) 10) (($ (-552)) 7)) (-1893 (((-3 (-552) "failed") $) NIL)) (-1895 (((-552) $) NIL)) (-2851 (($ $ $) NIL)) (-1794 (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-669 (-552)) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2555 (((-3 (-402 (-552)) "failed") $) NIL)) (-2546 (((-112) $) NIL)) (-2538 (((-402 (-552)) $) NIL)) (-3702 (($) NIL) (($ $) NIL)) (-2826 (($ $ $) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3327 (($ $ $ $) NIL)) (-3372 (($ $ $) NIL)) (-3620 (((-112) $) NIL)) (-1302 (($ $ $) NIL)) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL)) (-3650 (((-112) $) NIL)) (-3932 (((-112) $) NIL)) (-4034 (((-3 $ "failed") $) NIL)) (-3630 (((-112) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3336 (($ $ $ $) NIL)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2059 (($ $) NIL)) (-3456 (($ $) NIL)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-3317 (($ $ $) NIL)) (-2071 (($) NIL T CONST)) (-1971 (($ $) NIL)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) NIL) (($ (-625 $)) NIL)) (-1279 (($ $) NIL)) (-3824 (((-413 $) $) NIL)) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3943 (((-112) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-3072 (($ $ (-751)) NIL) (($ $) NIL)) (-2715 (($ $) NIL)) (-1871 (($ $) NIL)) (-2042 (((-552) $) 16) (((-528) $) NIL) (((-868 (-552)) $) NIL) (((-374) $) NIL) (((-221) $) NIL) (($ (-1149)) 9)) (-1683 (((-839) $) 20) (($ (-552)) 6) (($ $) NIL) (($ (-552)) 6)) (-4141 (((-751)) NIL)) (-3383 (((-112) $ $) NIL)) (-3901 (($ $ $) NIL)) (-3929 (($) NIL)) (-3518 (((-112) $ $) NIL)) (-3355 (($ $ $ $) NIL)) (-1727 (($ $) NIL)) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-751)) NIL) (($ $) NIL)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) NIL)) (-2393 (($ $) 19) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL))) -(((-1036) (-13 (-537) (-10 -8 (-6 -4340) (-6 -4345) (-6 -4341) (-15 -2042 ($ (-1149))) (-15 -4252 ($ (-1149))) (-15 -4252 ($ (-552)))))) (T -1036)) -((-2042 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1036)))) (-4252 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1036)))) (-4252 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1036))))) -(-13 (-537) (-10 -8 (-6 -4340) (-6 -4345) (-6 -4341) (-15 -2042 ($ (-1149))) (-15 -4252 ($ (-1149))) (-15 -4252 ($ (-552))))) -((-1671 (((-112) $ $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073))))) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL)) (-2509 (((-1237) $ (-1149) (-1149)) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-4274 (($) 9)) (-1851 (((-52) $ (-1149) (-52)) NIL)) (-1287 (($ $) 30)) (-1317 (($ $) 28)) (-1328 (($ $) 27)) (-1309 (($ $) 29)) (-1276 (($ $) 32)) (-1266 (($ $) 33)) (-1338 (($ $) 26)) (-1299 (($ $) 31)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) 25 (|has| $ (-6 -4353)))) (-3128 (((-3 (-52) "failed") (-1149) $) 40)) (-3101 (($) NIL T CONST)) (-3201 (($) 7)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073))))) (-1938 (($ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) 50 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-3 (-52) "failed") (-1149) $) NIL)) (-1416 (($ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (((-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353)))) (-4263 (((-3 (-1131) "failed") $ (-1131) (-552)) 59)) (-3692 (((-52) $ (-1149) (-52)) NIL (|has| $ (-6 -4354)))) (-3631 (((-52) $ (-1149)) NIL)) (-3799 (((-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-625 (-52)) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-1149) $) NIL (|has| (-1149) (-827)))) (-3730 (((-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) 35 (|has| $ (-6 -4353))) (((-625 (-52)) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-52) (-1073))))) (-2537 (((-1149) $) NIL (|has| (-1149) (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4354))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073))))) (-3712 (((-625 (-1149)) $) NIL)) (-1370 (((-112) (-1149) $) NIL)) (-2953 (((-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL)) (-3966 (($ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) 43)) (-2554 (((-625 (-1149)) $) NIL)) (-2564 (((-112) (-1149) $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073))))) (-4305 (((-374) $ (-1149)) 49)) (-4295 (((-625 (-1131)) $ (-1131)) 60)) (-2924 (((-52) $) NIL (|has| (-1149) (-827)))) (-2380 (((-3 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) "failed") (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL)) (-2518 (($ $ (-52)) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))))) NIL (-12 (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (($ $ (-289 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL (-12 (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (($ $ (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) NIL (-12 (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (($ $ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL (-12 (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-304 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (($ $ (-625 (-52)) (-625 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073)))) (($ $ (-289 (-52))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073)))) (($ $ (-625 (-289 (-52)))) NIL (-12 (|has| (-52) (-304 (-52))) (|has| (-52) (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-52) (-1073))))) (-1358 (((-625 (-52)) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 (((-52) $ (-1149)) NIL) (((-52) $ (-1149) (-52)) NIL)) (-4255 (($) NIL) (($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL)) (-4285 (($ $ (-1149)) 51)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073)))) (((-751) (-52) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-52) (-1073)))) (((-751) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) 37)) (-3402 (($ $ $) 38)) (-1683 (((-839) $) NIL (-1523 (|has| (-52) (-597 (-839))) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-597 (-839)))))) (-4324 (($ $ (-1149) (-374)) 47)) (-4314 (($ $ (-1149) (-374)) 48)) (-2977 (($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))))) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 (-1149)) (|:| -4120 (-52)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (-1523 (|has| (-52) (-1073)) (|has| (-2 (|:| -2971 (-1149)) (|:| -4120 (-52))) (-1073))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-1037) (-13 (-1162 (-1149) (-52)) (-10 -8 (-15 -3402 ($ $ $)) (-15 -3201 ($)) (-15 -1338 ($ $)) (-15 -1328 ($ $)) (-15 -1317 ($ $)) (-15 -1309 ($ $)) (-15 -1299 ($ $)) (-15 -1287 ($ $)) (-15 -1276 ($ $)) (-15 -1266 ($ $)) (-15 -4324 ($ $ (-1149) (-374))) (-15 -4314 ($ $ (-1149) (-374))) (-15 -4305 ((-374) $ (-1149))) (-15 -4295 ((-625 (-1131)) $ (-1131))) (-15 -4285 ($ $ (-1149))) (-15 -4274 ($)) (-15 -4263 ((-3 (-1131) "failed") $ (-1131) (-552))) (-6 -4353)))) (T -1037)) -((-3402 (*1 *1 *1 *1) (-5 *1 (-1037))) (-3201 (*1 *1) (-5 *1 (-1037))) (-1338 (*1 *1 *1) (-5 *1 (-1037))) (-1328 (*1 *1 *1) (-5 *1 (-1037))) (-1317 (*1 *1 *1) (-5 *1 (-1037))) (-1309 (*1 *1 *1) (-5 *1 (-1037))) (-1299 (*1 *1 *1) (-5 *1 (-1037))) (-1287 (*1 *1 *1) (-5 *1 (-1037))) (-1276 (*1 *1 *1) (-5 *1 (-1037))) (-1266 (*1 *1 *1) (-5 *1 (-1037))) (-4324 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-374)) (-5 *1 (-1037)))) (-4314 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-374)) (-5 *1 (-1037)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-374)) (-5 *1 (-1037)))) (-4295 (*1 *2 *1 *3) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1037)) (-5 *3 (-1131)))) (-4285 (*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1037)))) (-4274 (*1 *1) (-5 *1 (-1037))) (-4263 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1131)) (-5 *3 (-552)) (-5 *1 (-1037))))) -(-13 (-1162 (-1149) (-52)) (-10 -8 (-15 -3402 ($ $ $)) (-15 -3201 ($)) (-15 -1338 ($ $)) (-15 -1328 ($ $)) (-15 -1317 ($ $)) (-15 -1309 ($ $)) (-15 -1299 ($ $)) (-15 -1287 ($ $)) (-15 -1276 ($ $)) (-15 -1266 ($ $)) (-15 -4324 ($ $ (-1149) (-374))) (-15 -4314 ($ $ (-1149) (-374))) (-15 -4305 ((-374) $ (-1149))) (-15 -4295 ((-625 (-1131)) $ (-1131))) (-15 -4285 ($ $ (-1149))) (-15 -4274 ($)) (-15 -4263 ((-3 (-1131) "failed") $ (-1131) (-552))) (-6 -4353))) -((-2101 (($ $) 45)) (-3431 (((-112) $ $) 74)) (-1893 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-928 (-402 (-552)))) 227) (((-3 $ "failed") (-928 (-552))) 226) (((-3 $ "failed") (-928 |#2|)) 229)) (-1895 ((|#2| $) NIL) (((-402 (-552)) $) NIL) (((-552) $) NIL) ((|#4| $) NIL) (($ (-928 (-402 (-552)))) 215) (($ (-928 (-552))) 211) (($ (-928 |#2|)) 231)) (-4169 (($ $) NIL) (($ $ |#4|) 43)) (-2668 (((-112) $ $) 112) (((-112) $ (-625 $)) 113)) (-3498 (((-112) $) 56)) (-3173 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 107)) (-3239 (($ $) 138)) (-3334 (($ $) 134)) (-3343 (($ $) 133)) (-3418 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3410 (($ $ $) 82) (($ $ $ |#4|) 86)) (-2678 (((-112) $ $) 121) (((-112) $ (-625 $)) 122)) (-3565 ((|#4| $) 33)) (-3361 (($ $ $) 110)) (-3507 (((-112) $) 55)) (-3556 (((-751) $) 35)) (-3211 (($ $) 152)) (-3222 (($ $) 149)) (-3454 (((-625 $) $) 68)) (-3487 (($ $) 57)) (-3230 (($ $) 145)) (-3466 (((-625 $) $) 65)) (-3477 (($ $) 59)) (-4144 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3352 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4321 (-751))) $ $) 111)) (-3370 (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $) 108) (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $ |#4|) 109)) (-3380 (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3645 $)) $ $) 104) (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3645 $)) $ $ |#4|) 105)) (-3401 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3390 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3525 (((-625 $) $) 51)) (-3777 (((-112) $ $) 118) (((-112) $ (-625 $)) 119)) (-3727 (($ $ $) 103)) (-2071 (($ $) 37)) (-2719 (((-112) $ $) 72)) (-3788 (((-112) $ $) 114) (((-112) $ (-625 $)) 116)) (-3737 (($ $ $) 101)) (-3545 (($ $) 40)) (-2633 ((|#2| |#2| $) 142) (($ (-625 $)) NIL) (($ $ $) NIL)) (-3314 (($ $ |#2|) NIL) (($ $ $) 131)) (-3325 (($ $ |#2|) 126) (($ $ $) 129)) (-3535 (($ $) 48)) (-3516 (($ $) 52)) (-2042 (((-868 (-374)) $) NIL) (((-868 (-552)) $) NIL) (((-528) $) NIL) (($ (-928 (-402 (-552)))) 217) (($ (-928 (-552))) 213) (($ (-928 |#2|)) 228) (((-1131) $) 250) (((-928 |#2|) $) 162)) (-1683 (((-839) $) 30) (($ (-552)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-928 |#2|) $) 163) (($ (-402 (-552))) NIL) (($ $) NIL)) (-3441 (((-3 (-112) "failed") $ $) 71))) -(((-1038 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1683 (|#1| |#1|)) (-15 -2633 (|#1| |#1| |#1|)) (-15 -2633 (|#1| (-625 |#1|))) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 ((-928 |#2|) |#1|)) (-15 -2042 ((-928 |#2|) |#1|)) (-15 -2042 ((-1131) |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -3222 (|#1| |#1|)) (-15 -3230 (|#1| |#1|)) (-15 -3239 (|#1| |#1|)) (-15 -2633 (|#2| |#2| |#1|)) (-15 -3314 (|#1| |#1| |#1|)) (-15 -3325 (|#1| |#1| |#1|)) (-15 -3314 (|#1| |#1| |#2|)) (-15 -3325 (|#1| |#1| |#2|)) (-15 -3334 (|#1| |#1|)) (-15 -3343 (|#1| |#1|)) (-15 -2042 (|#1| (-928 |#2|))) (-15 -1895 (|#1| (-928 |#2|))) (-15 -1893 ((-3 |#1| "failed") (-928 |#2|))) (-15 -2042 (|#1| (-928 (-552)))) (-15 -1895 (|#1| (-928 (-552)))) (-15 -1893 ((-3 |#1| "failed") (-928 (-552)))) (-15 -2042 (|#1| (-928 (-402 (-552))))) (-15 -1895 (|#1| (-928 (-402 (-552))))) (-15 -1893 ((-3 |#1| "failed") (-928 (-402 (-552))))) (-15 -3727 (|#1| |#1| |#1|)) (-15 -3737 (|#1| |#1| |#1|)) (-15 -3352 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4321 (-751))) |#1| |#1|)) (-15 -3361 (|#1| |#1| |#1|)) (-15 -3173 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -3370 ((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1| |#4|)) (-15 -3370 ((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -3380 ((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3645 |#1|)) |#1| |#1| |#4|)) (-15 -3380 ((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -3390 (|#1| |#1| |#1| |#4|)) (-15 -3401 (|#1| |#1| |#1| |#4|)) (-15 -3390 (|#1| |#1| |#1|)) (-15 -3401 (|#1| |#1| |#1|)) (-15 -3410 (|#1| |#1| |#1| |#4|)) (-15 -3418 (|#1| |#1| |#1| |#4|)) (-15 -3410 (|#1| |#1| |#1|)) (-15 -3418 (|#1| |#1| |#1|)) (-15 -2678 ((-112) |#1| (-625 |#1|))) (-15 -2678 ((-112) |#1| |#1|)) (-15 -3777 ((-112) |#1| (-625 |#1|))) (-15 -3777 ((-112) |#1| |#1|)) (-15 -3788 ((-112) |#1| (-625 |#1|))) (-15 -3788 ((-112) |#1| |#1|)) (-15 -2668 ((-112) |#1| (-625 |#1|))) (-15 -2668 ((-112) |#1| |#1|)) (-15 -3431 ((-112) |#1| |#1|)) (-15 -2719 ((-112) |#1| |#1|)) (-15 -3441 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3454 ((-625 |#1|) |#1|)) (-15 -3466 ((-625 |#1|) |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3498 ((-112) |#1|)) (-15 -3507 ((-112) |#1|)) (-15 -4169 (|#1| |#1| |#4|)) (-15 -4144 (|#1| |#1| |#4|)) (-15 -3516 (|#1| |#1|)) (-15 -3525 ((-625 |#1|) |#1|)) (-15 -3535 (|#1| |#1|)) (-15 -2101 (|#1| |#1|)) (-15 -3545 (|#1| |#1|)) (-15 -2071 (|#1| |#1|)) (-15 -3556 ((-751) |#1|)) (-15 -3565 (|#4| |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -1895 (|#4| |#1|)) (-15 -1893 ((-3 |#4| "failed") |#1|)) (-15 -1683 (|#1| |#4|)) (-15 -4144 (|#2| |#1|)) (-15 -4169 (|#1| |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|))) (-1039 |#2| |#3| |#4|) (-1025) (-773) (-827)) (T -1038)) -NIL -(-10 -8 (-15 -1683 (|#1| |#1|)) (-15 -2633 (|#1| |#1| |#1|)) (-15 -2633 (|#1| (-625 |#1|))) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 ((-928 |#2|) |#1|)) (-15 -2042 ((-928 |#2|) |#1|)) (-15 -2042 ((-1131) |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -3222 (|#1| |#1|)) (-15 -3230 (|#1| |#1|)) (-15 -3239 (|#1| |#1|)) (-15 -2633 (|#2| |#2| |#1|)) (-15 -3314 (|#1| |#1| |#1|)) (-15 -3325 (|#1| |#1| |#1|)) (-15 -3314 (|#1| |#1| |#2|)) (-15 -3325 (|#1| |#1| |#2|)) (-15 -3334 (|#1| |#1|)) (-15 -3343 (|#1| |#1|)) (-15 -2042 (|#1| (-928 |#2|))) (-15 -1895 (|#1| (-928 |#2|))) (-15 -1893 ((-3 |#1| "failed") (-928 |#2|))) (-15 -2042 (|#1| (-928 (-552)))) (-15 -1895 (|#1| (-928 (-552)))) (-15 -1893 ((-3 |#1| "failed") (-928 (-552)))) (-15 -2042 (|#1| (-928 (-402 (-552))))) (-15 -1895 (|#1| (-928 (-402 (-552))))) (-15 -1893 ((-3 |#1| "failed") (-928 (-402 (-552))))) (-15 -3727 (|#1| |#1| |#1|)) (-15 -3737 (|#1| |#1| |#1|)) (-15 -3352 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4321 (-751))) |#1| |#1|)) (-15 -3361 (|#1| |#1| |#1|)) (-15 -3173 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -3370 ((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1| |#4|)) (-15 -3370 ((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -3380 ((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3645 |#1|)) |#1| |#1| |#4|)) (-15 -3380 ((-2 (|:| -3340 |#1|) (|:| |gap| (-751)) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -3390 (|#1| |#1| |#1| |#4|)) (-15 -3401 (|#1| |#1| |#1| |#4|)) (-15 -3390 (|#1| |#1| |#1|)) (-15 -3401 (|#1| |#1| |#1|)) (-15 -3410 (|#1| |#1| |#1| |#4|)) (-15 -3418 (|#1| |#1| |#1| |#4|)) (-15 -3410 (|#1| |#1| |#1|)) (-15 -3418 (|#1| |#1| |#1|)) (-15 -2678 ((-112) |#1| (-625 |#1|))) (-15 -2678 ((-112) |#1| |#1|)) (-15 -3777 ((-112) |#1| (-625 |#1|))) (-15 -3777 ((-112) |#1| |#1|)) (-15 -3788 ((-112) |#1| (-625 |#1|))) (-15 -3788 ((-112) |#1| |#1|)) (-15 -2668 ((-112) |#1| (-625 |#1|))) (-15 -2668 ((-112) |#1| |#1|)) (-15 -3431 ((-112) |#1| |#1|)) (-15 -2719 ((-112) |#1| |#1|)) (-15 -3441 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3454 ((-625 |#1|) |#1|)) (-15 -3466 ((-625 |#1|) |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3498 ((-112) |#1|)) (-15 -3507 ((-112) |#1|)) (-15 -4169 (|#1| |#1| |#4|)) (-15 -4144 (|#1| |#1| |#4|)) (-15 -3516 (|#1| |#1|)) (-15 -3525 ((-625 |#1|) |#1|)) (-15 -3535 (|#1| |#1|)) (-15 -2101 (|#1| |#1|)) (-15 -3545 (|#1| |#1|)) (-15 -2071 (|#1| |#1|)) (-15 -3556 ((-751) |#1|)) (-15 -3565 (|#4| |#1|)) (-15 -2042 ((-528) |#1|)) (-15 -2042 ((-868 (-552)) |#1|)) (-15 -2042 ((-868 (-374)) |#1|)) (-15 -1895 (|#4| |#1|)) (-15 -1893 ((-3 |#4| "failed") |#1|)) (-15 -1683 (|#1| |#4|)) (-15 -4144 (|#2| |#1|)) (-15 -4169 (|#1| |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3982 (((-625 |#3|) $) 108)) (-3793 (((-1145 $) $ |#3|) 123) (((-1145 |#1|) $) 122)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 85 (|has| |#1| (-544)))) (-3528 (($ $) 86 (|has| |#1| (-544)))) (-3509 (((-112) $) 88 (|has| |#1| (-544)))) (-4121 (((-751) $) 110) (((-751) $ (-625 |#3|)) 109)) (-2101 (($ $) 269)) (-3431 (((-112) $ $) 255)) (-2077 (((-3 $ "failed") $ $) 19)) (-3197 (($ $ $) 214 (|has| |#1| (-544)))) (-3275 (((-625 $) $ $) 209 (|has| |#1| (-544)))) (-4296 (((-413 (-1145 $)) (-1145 $)) 98 (|has| |#1| (-885)))) (-2194 (($ $) 96 (|has| |#1| (-446)))) (-1330 (((-413 $) $) 95 (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 101 (|has| |#1| (-885)))) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#1| "failed") $) 162) (((-3 (-402 (-552)) "failed") $) 160 (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) 158 (|has| |#1| (-1014 (-552)))) (((-3 |#3| "failed") $) 134) (((-3 $ "failed") (-928 (-402 (-552)))) 229 (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#3| (-598 (-1149))))) (((-3 $ "failed") (-928 (-552))) 226 (-1523 (-12 (-2960 (|has| |#1| (-38 (-402 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-598 (-1149)))) (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#3| (-598 (-1149)))))) (((-3 $ "failed") (-928 |#1|)) 223 (-1523 (-12 (-2960 (|has| |#1| (-38 (-402 (-552))))) (-2960 (|has| |#1| (-38 (-552)))) (|has| |#3| (-598 (-1149)))) (-12 (-2960 (|has| |#1| (-537))) (-2960 (|has| |#1| (-38 (-402 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-598 (-1149)))) (-12 (-2960 (|has| |#1| (-968 (-552)))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#3| (-598 (-1149))))))) (-1895 ((|#1| $) 163) (((-402 (-552)) $) 159 (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) 157 (|has| |#1| (-1014 (-552)))) ((|#3| $) 133) (($ (-928 (-402 (-552)))) 228 (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#3| (-598 (-1149))))) (($ (-928 (-552))) 225 (-1523 (-12 (-2960 (|has| |#1| (-38 (-402 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-598 (-1149)))) (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#3| (-598 (-1149)))))) (($ (-928 |#1|)) 222 (-1523 (-12 (-2960 (|has| |#1| (-38 (-402 (-552))))) (-2960 (|has| |#1| (-38 (-552)))) (|has| |#3| (-598 (-1149)))) (-12 (-2960 (|has| |#1| (-537))) (-2960 (|has| |#1| (-38 (-402 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-598 (-1149)))) (-12 (-2960 (|has| |#1| (-968 (-552)))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#3| (-598 (-1149))))))) (-3207 (($ $ $ |#3|) 106 (|has| |#1| (-170))) (($ $ $) 210 (|has| |#1| (-544)))) (-4169 (($ $) 152) (($ $ |#3|) 264)) (-1794 (((-669 (-552)) (-669 $)) 132 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 131 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 130) (((-669 |#1|) (-669 $)) 129)) (-2668 (((-112) $ $) 254) (((-112) $ (-625 $)) 253)) (-4174 (((-3 $ "failed") $) 32)) (-3498 (((-112) $) 262)) (-3173 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 234)) (-3239 (($ $) 203 (|has| |#1| (-446)))) (-1294 (($ $) 174 (|has| |#1| (-446))) (($ $ |#3|) 103 (|has| |#1| (-446)))) (-4157 (((-625 $) $) 107)) (-2951 (((-112) $) 94 (|has| |#1| (-885)))) (-3334 (($ $) 219 (|has| |#1| (-544)))) (-3343 (($ $) 220 (|has| |#1| (-544)))) (-3418 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3410 (($ $ $) 245) (($ $ $ |#3|) 243)) (-1347 (($ $ |#1| |#2| $) 170)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 82 (-12 (|has| |#3| (-862 (-374))) (|has| |#1| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 81 (-12 (|has| |#3| (-862 (-552))) (|has| |#1| (-862 (-552)))))) (-3650 (((-112) $) 30)) (-3723 (((-751) $) 167)) (-2678 (((-112) $ $) 248) (((-112) $ (-625 $)) 247)) (-3248 (($ $ $ $ $) 205 (|has| |#1| (-544)))) (-3565 ((|#3| $) 273)) (-3970 (($ (-1145 |#1|) |#3|) 115) (($ (-1145 $) |#3|) 114)) (-4148 (((-625 $) $) 124)) (-4201 (((-112) $) 150)) (-3957 (($ |#1| |#2|) 151) (($ $ |#3| (-751)) 117) (($ $ (-625 |#3|) (-625 (-751))) 116)) (-3361 (($ $ $) 233)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ |#3|) 118)) (-3507 (((-112) $) 263)) (-4134 ((|#2| $) 168) (((-751) $ |#3|) 120) (((-625 (-751)) $ (-625 |#3|)) 119)) (-3658 (($ $ $) 77 (|has| |#1| (-827)))) (-3556 (((-751) $) 272)) (-3332 (($ $ $) 76 (|has| |#1| (-827)))) (-1357 (($ (-1 |#2| |#2|) $) 169)) (-1996 (($ (-1 |#1| |#1|) $) 149)) (-1942 (((-3 |#3| "failed") $) 121)) (-3211 (($ $) 200 (|has| |#1| (-446)))) (-3222 (($ $) 201 (|has| |#1| (-446)))) (-3454 (((-625 $) $) 258)) (-3487 (($ $) 261)) (-3230 (($ $) 202 (|has| |#1| (-446)))) (-3466 (((-625 $) $) 259)) (-3477 (($ $) 260)) (-4131 (($ $) 147)) (-4144 ((|#1| $) 146) (($ $ |#3|) 265)) (-2605 (($ (-625 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-3352 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4321 (-751))) $ $) 232)) (-3370 (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $) 236) (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $ |#3|) 235)) (-3380 (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3645 $)) $ $) 238) (((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3645 $)) $ $ |#3|) 237)) (-3401 (($ $ $) 242) (($ $ $ |#3|) 240)) (-3390 (($ $ $) 241) (($ $ $ |#3|) 239)) (-2883 (((-1131) $) 9)) (-3662 (($ $ $) 208 (|has| |#1| (-544)))) (-3525 (((-625 $) $) 267)) (-4172 (((-3 (-625 $) "failed") $) 112)) (-4160 (((-3 (-625 $) "failed") $) 113)) (-4182 (((-3 (-2 (|:| |var| |#3|) (|:| -3564 (-751))) "failed") $) 111)) (-3777 (((-112) $ $) 250) (((-112) $ (-625 $)) 249)) (-3727 (($ $ $) 230)) (-2071 (($ $) 271)) (-2719 (((-112) $ $) 256)) (-3788 (((-112) $ $) 252) (((-112) $ (-625 $)) 251)) (-3737 (($ $ $) 231)) (-3545 (($ $) 270)) (-2831 (((-1093) $) 10)) (-3285 (((-2 (|:| -2633 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-544)))) (-3294 (((-2 (|:| -2633 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-544)))) (-4105 (((-112) $) 164)) (-4117 ((|#1| $) 165)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 93 (|has| |#1| (-446)))) (-2633 ((|#1| |#1| $) 204 (|has| |#1| (-446))) (($ (-625 $)) 90 (|has| |#1| (-446))) (($ $ $) 89 (|has| |#1| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) 100 (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) 99 (|has| |#1| (-885)))) (-3824 (((-413 $) $) 97 (|has| |#1| (-885)))) (-3304 (((-2 (|:| -2633 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-544)))) (-2802 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-3314 (($ $ |#1|) 217 (|has| |#1| (-544))) (($ $ $) 215 (|has| |#1| (-544)))) (-3325 (($ $ |#1|) 218 (|has| |#1| (-544))) (($ $ $) 216 (|has| |#1| (-544)))) (-4073 (($ $ (-625 (-289 $))) 143) (($ $ (-289 $)) 142) (($ $ $ $) 141) (($ $ (-625 $) (-625 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-625 |#3|) (-625 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-625 |#3|) (-625 $)) 136)) (-3217 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-3072 (($ $ |#3|) 40) (($ $ (-625 |#3|)) 39) (($ $ |#3| (-751)) 38) (($ $ (-625 |#3|) (-625 (-751))) 37)) (-4276 ((|#2| $) 148) (((-751) $ |#3|) 128) (((-625 (-751)) $ (-625 |#3|)) 127)) (-3535 (($ $) 268)) (-3516 (($ $) 266)) (-2042 (((-868 (-374)) $) 80 (-12 (|has| |#3| (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374)))))) (((-868 (-552)) $) 79 (-12 (|has| |#3| (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552)))))) (((-528) $) 78 (-12 (|has| |#3| (-598 (-528))) (|has| |#1| (-598 (-528))))) (($ (-928 (-402 (-552)))) 227 (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#3| (-598 (-1149))))) (($ (-928 (-552))) 224 (-1523 (-12 (-2960 (|has| |#1| (-38 (-402 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-598 (-1149)))) (-12 (|has| |#1| (-38 (-402 (-552)))) (|has| |#3| (-598 (-1149)))))) (($ (-928 |#1|)) 221 (|has| |#3| (-598 (-1149)))) (((-1131) $) 199 (-12 (|has| |#1| (-1014 (-552))) (|has| |#3| (-598 (-1149))))) (((-928 |#1|) $) 198 (|has| |#3| (-598 (-1149))))) (-4108 ((|#1| $) 173 (|has| |#1| (-446))) (($ $ |#3|) 104 (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 102 (-3743 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-928 |#1|) $) 197 (|has| |#3| (-598 (-1149)))) (($ (-402 (-552))) 70 (-1523 (|has| |#1| (-1014 (-402 (-552)))) (|has| |#1| (-38 (-402 (-552)))))) (($ $) 83 (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) 166)) (-3637 ((|#1| $ |#2|) 153) (($ $ |#3| (-751)) 126) (($ $ (-625 |#3|) (-625 (-751))) 125)) (-4243 (((-3 $ "failed") $) 71 (-1523 (-3743 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) 28)) (-1336 (($ $ $ (-751)) 171 (|has| |#1| (-170)))) (-3518 (((-112) $ $) 87 (|has| |#1| (-544)))) (-2089 (($) 18 T CONST)) (-3441 (((-3 (-112) "failed") $ $) 257)) (-2100 (($) 29 T CONST)) (-3257 (($ $ $ $ (-751)) 206 (|has| |#1| (-544)))) (-3266 (($ $ $ (-751)) 207 (|has| |#1| (-544)))) (-3768 (($ $ |#3|) 36) (($ $ (-625 |#3|)) 35) (($ $ |#3| (-751)) 34) (($ $ (-625 |#3|) (-625 (-751))) 33)) (-2346 (((-112) $ $) 74 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 73 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 75 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 72 (|has| |#1| (-827)))) (-2404 (($ $ |#1|) 154 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 156 (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) 155 (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-1039 |#1| |#2| |#3|) (-138) (-1025) (-773) (-827)) (T -1039)) -((-3565 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-751)))) (-2071 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3545 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-2101 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3535 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3525 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-1039 *3 *4 *5)))) (-3516 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-4144 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-4169 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-3498 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-3487 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3477 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3466 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-1039 *3 *4 *5)))) (-3454 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-1039 *3 *4 *5)))) (-3441 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-2719 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-3431 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-2668 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-2668 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) (-3788 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-3788 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) (-3777 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-3777 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) (-2678 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-2678 (*1 *2 *1 *3) (-12 (-5 *3 (-625 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) (-3418 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3410 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3418 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3410 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3401 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3390 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3401 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3390 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3380 (*1 *2 *1 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -3340 *1) (|:| |gap| (-751)) (|:| -3645 *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3380 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-2 (|:| -3340 *1) (|:| |gap| (-751)) (|:| -3645 *1))) (-4 *1 (-1039 *4 *5 *3)))) (-3370 (*1 *2 *1 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -3340 *1) (|:| |gap| (-751)) (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3370 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-2 (|:| -3340 *1) (|:| |gap| (-751)) (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-1039 *4 *5 *3)))) (-3173 (*1 *2 *1 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3361 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3352 (*1 *2 *1 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4321 (-751)))) (-4 *1 (-1039 *3 *4 *5)))) (-3737 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3727 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-1893 (*1 *1 *2) (|partial| -12 (-5 *2 (-928 (-402 (-552)))) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-928 (-402 (-552)))) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-928 (-402 (-552)))) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))) (-1893 (*1 *1 *2) (|partial| -1523 (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-2960 (-4 *3 (-38 (-402 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))))) (-1895 (*1 *1 *2) (-1523 (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-2960 (-4 *3 (-38 (-402 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))))) (-2042 (*1 *1 *2) (-1523 (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-2960 (-4 *3 (-38 (-402 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))))) (-1893 (*1 *1 *2) (|partial| -1523 (-12 (-5 *2 (-928 *3)) (-12 (-2960 (-4 *3 (-38 (-402 (-552))))) (-2960 (-4 *3 (-38 (-552)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-928 *3)) (-12 (-2960 (-4 *3 (-537))) (-2960 (-4 *3 (-38 (-402 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-928 *3)) (-12 (-2960 (-4 *3 (-968 (-552)))) (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))))) (-1895 (*1 *1 *2) (-1523 (-12 (-5 *2 (-928 *3)) (-12 (-2960 (-4 *3 (-38 (-402 (-552))))) (-2960 (-4 *3 (-38 (-552)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-928 *3)) (-12 (-2960 (-4 *3 (-537))) (-2960 (-4 *3 (-38 (-402 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-928 *3)) (-12 (-2960 (-4 *3 (-968 (-552)))) (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *5 (-598 (-1149))) (-4 *4 (-773)) (-4 *5 (-827)))) (-3343 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-544)))) (-3334 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-544)))) (-3325 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-544)))) (-3314 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-544)))) (-3325 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-544)))) (-3314 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-544)))) (-3197 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-544)))) (-3304 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -2633 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3294 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -2633 *1) (|:| |coef1| *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3285 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -2633 *1) (|:| |coef2| *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3207 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-544)))) (-3275 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-1039 *3 *4 *5)))) (-3662 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-544)))) (-3266 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *3 (-544)))) (-3257 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *3 (-544)))) (-3248 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-544)))) (-2633 (*1 *2 *2 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-3239 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-3230 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-3222 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-3211 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446))))) -(-13 (-925 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3565 (|t#3| $)) (-15 -3556 ((-751) $)) (-15 -2071 ($ $)) (-15 -3545 ($ $)) (-15 -2101 ($ $)) (-15 -3535 ($ $)) (-15 -3525 ((-625 $) $)) (-15 -3516 ($ $)) (-15 -4144 ($ $ |t#3|)) (-15 -4169 ($ $ |t#3|)) (-15 -3507 ((-112) $)) (-15 -3498 ((-112) $)) (-15 -3487 ($ $)) (-15 -3477 ($ $)) (-15 -3466 ((-625 $) $)) (-15 -3454 ((-625 $) $)) (-15 -3441 ((-3 (-112) "failed") $ $)) (-15 -2719 ((-112) $ $)) (-15 -3431 ((-112) $ $)) (-15 -2668 ((-112) $ $)) (-15 -2668 ((-112) $ (-625 $))) (-15 -3788 ((-112) $ $)) (-15 -3788 ((-112) $ (-625 $))) (-15 -3777 ((-112) $ $)) (-15 -3777 ((-112) $ (-625 $))) (-15 -2678 ((-112) $ $)) (-15 -2678 ((-112) $ (-625 $))) (-15 -3418 ($ $ $)) (-15 -3410 ($ $ $)) (-15 -3418 ($ $ $ |t#3|)) (-15 -3410 ($ $ $ |t#3|)) (-15 -3401 ($ $ $)) (-15 -3390 ($ $ $)) (-15 -3401 ($ $ $ |t#3|)) (-15 -3390 ($ $ $ |t#3|)) (-15 -3380 ((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3645 $)) $ $)) (-15 -3380 ((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3645 $)) $ $ |t#3|)) (-15 -3370 ((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -3370 ((-2 (|:| -3340 $) (|:| |gap| (-751)) (|:| -3984 $) (|:| -3645 $)) $ $ |t#3|)) (-15 -3173 ((-2 (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -3361 ($ $ $)) (-15 -3352 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4321 (-751))) $ $)) (-15 -3737 ($ $ $)) (-15 -3727 ($ $ $)) (IF (|has| |t#3| (-598 (-1149))) (PROGN (-6 (-597 (-928 |t#1|))) (-6 (-598 (-928 |t#1|))) (IF (|has| |t#1| (-38 (-402 (-552)))) (PROGN (-15 -1893 ((-3 $ "failed") (-928 (-402 (-552))))) (-15 -1895 ($ (-928 (-402 (-552))))) (-15 -2042 ($ (-928 (-402 (-552))))) (-15 -1893 ((-3 $ "failed") (-928 (-552)))) (-15 -1895 ($ (-928 (-552)))) (-15 -2042 ($ (-928 (-552)))) (IF (|has| |t#1| (-968 (-552))) |%noBranch| (PROGN (-15 -1893 ((-3 $ "failed") (-928 |t#1|))) (-15 -1895 ($ (-928 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-552))) (IF (|has| |t#1| (-38 (-402 (-552)))) |%noBranch| (PROGN (-15 -1893 ((-3 $ "failed") (-928 (-552)))) (-15 -1895 ($ (-928 (-552)))) (-15 -2042 ($ (-928 (-552)))) (IF (|has| |t#1| (-537)) |%noBranch| (PROGN (-15 -1893 ((-3 $ "failed") (-928 |t#1|))) (-15 -1895 ($ (-928 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-552))) |%noBranch| (IF (|has| |t#1| (-38 (-402 (-552)))) |%noBranch| (PROGN (-15 -1893 ((-3 $ "failed") (-928 |t#1|))) (-15 -1895 ($ (-928 |t#1|)))))) (-15 -2042 ($ (-928 |t#1|))) (IF (|has| |t#1| (-1014 (-552))) (-6 (-598 (-1131))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -3343 ($ $)) (-15 -3334 ($ $)) (-15 -3325 ($ $ |t#1|)) (-15 -3314 ($ $ |t#1|)) (-15 -3325 ($ $ $)) (-15 -3314 ($ $ $)) (-15 -3197 ($ $ $)) (-15 -3304 ((-2 (|:| -2633 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3294 ((-2 (|:| -2633 $) (|:| |coef1| $)) $ $)) (-15 -3285 ((-2 (|:| -2633 $) (|:| |coef2| $)) $ $)) (-15 -3207 ($ $ $)) (-15 -3275 ((-625 $) $ $)) (-15 -3662 ($ $ $)) (-15 -3266 ($ $ $ (-751))) (-15 -3257 ($ $ $ $ (-751))) (-15 -3248 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-15 -2633 (|t#1| |t#1| $)) (-15 -3239 ($ $)) (-15 -3230 ($ $)) (-15 -3222 ($ $)) (-15 -3211 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-552)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-597 (-928 |#1|)) |has| |#3| (-598 (-1149))) ((-170) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-598 (-528)) -12 (|has| |#1| (-598 (-528))) (|has| |#3| (-598 (-528)))) ((-598 (-868 (-374))) -12 (|has| |#1| (-598 (-868 (-374)))) (|has| |#3| (-598 (-868 (-374))))) ((-598 (-868 (-552))) -12 (|has| |#1| (-598 (-868 (-552)))) (|has| |#3| (-598 (-868 (-552))))) ((-598 (-928 |#1|)) |has| |#3| (-598 (-1149))) ((-598 (-1131)) -12 (|has| |#1| (-1014 (-552))) (|has| |#3| (-598 (-1149)))) ((-285) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-304 $) . T) ((-321 |#1| |#2|) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-446) -1523 (|has| |#1| (-885)) (|has| |#1| (-446))) ((-507 |#3| |#1|) . T) ((-507 |#3| $) . T) ((-507 $ $) . T) ((-544) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-628 #0#) |has| |#1| (-38 (-402 (-552)))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-552)) |has| |#1| (-621 (-552))) ((-621 |#1|) . T) ((-698 #0#) |has| |#1| (-38 (-402 (-552)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446))) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 |#3|) . T) ((-862 (-374)) -12 (|has| |#1| (-862 (-374))) (|has| |#3| (-862 (-374)))) ((-862 (-552)) -12 (|has| |#1| (-862 (-552))) (|has| |#3| (-862 (-552)))) ((-925 |#1| |#2| |#3|) . T) ((-885) |has| |#1| (-885)) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 |#1|) . T) ((-1014 |#3|) . T) ((-1031 #0#) |has| |#1| (-38 (-402 (-552)))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) |has| |#1| (-885))) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2206 (((-625 (-1108)) $) 13)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 24) (((-1154) $) NIL) (($ (-1154)) NIL)) (-1300 (((-1108) $) 15)) (-2281 (((-112) $ $) NIL))) -(((-1040) (-13 (-1056) (-10 -8 (-15 -2206 ((-625 (-1108)) $)) (-15 -1300 ((-1108) $))))) (T -1040)) -((-2206 (*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-1040)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1040))))) -(-13 (-1056) (-10 -8 (-15 -2206 ((-625 (-1108)) $)) (-15 -1300 ((-1108) $)))) -((-3641 (((-112) |#3| $) 13)) (-3588 (((-3 $ "failed") |#3| (-897)) 23)) (-4174 (((-3 |#3| "failed") |#3| $) 38)) (-3620 (((-112) |#3| $) 16)) (-3630 (((-112) |#3| $) 14))) -(((-1041 |#1| |#2| |#3|) (-10 -8 (-15 -3588 ((-3 |#1| "failed") |#3| (-897))) (-15 -4174 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3620 ((-112) |#3| |#1|)) (-15 -3630 ((-112) |#3| |#1|)) (-15 -3641 ((-112) |#3| |#1|))) (-1042 |#2| |#3|) (-13 (-825) (-358)) (-1208 |#2|)) (T -1041)) -NIL -(-10 -8 (-15 -3588 ((-3 |#1| "failed") |#3| (-897))) (-15 -4174 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3620 ((-112) |#3| |#1|)) (-15 -3630 ((-112) |#3| |#1|)) (-15 -3641 ((-112) |#3| |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) |#2| $) 21)) (-4127 (((-552) |#2| $) 22)) (-3588 (((-3 $ "failed") |#2| (-897)) 15)) (-3576 ((|#1| |#2| $ |#1|) 13)) (-4174 (((-3 |#2| "failed") |#2| $) 18)) (-3620 (((-112) |#2| $) 19)) (-3630 (((-112) |#2| $) 20)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3610 ((|#2| $) 17)) (-1683 (((-839) $) 11)) (-2874 ((|#1| |#2| $ |#1|) 14)) (-3599 (((-625 $) |#2|) 16)) (-2281 (((-112) $ $) 6))) -(((-1042 |#1| |#2|) (-138) (-13 (-825) (-358)) (-1208 |t#1|)) (T -1042)) -((-4127 (*1 *2 *3 *1) (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1208 *4)) (-5 *2 (-552)))) (-3641 (*1 *2 *3 *1) (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1208 *4)) (-5 *2 (-112)))) (-3630 (*1 *2 *3 *1) (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1208 *4)) (-5 *2 (-112)))) (-3620 (*1 *2 *3 *1) (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1208 *4)) (-5 *2 (-112)))) (-4174 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1042 *3 *2)) (-4 *3 (-13 (-825) (-358))) (-4 *2 (-1208 *3)))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *2)) (-4 *3 (-13 (-825) (-358))) (-4 *2 (-1208 *3)))) (-3599 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1208 *4)) (-5 *2 (-625 *1)) (-4 *1 (-1042 *4 *3)))) (-3588 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-897)) (-4 *4 (-13 (-825) (-358))) (-4 *1 (-1042 *4 *2)) (-4 *2 (-1208 *4)))) (-2874 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1042 *2 *3)) (-4 *2 (-13 (-825) (-358))) (-4 *3 (-1208 *2)))) (-3576 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1042 *2 *3)) (-4 *2 (-13 (-825) (-358))) (-4 *3 (-1208 *2))))) -(-13 (-1073) (-10 -8 (-15 -4127 ((-552) |t#2| $)) (-15 -3641 ((-112) |t#2| $)) (-15 -3630 ((-112) |t#2| $)) (-15 -3620 ((-112) |t#2| $)) (-15 -4174 ((-3 |t#2| "failed") |t#2| $)) (-15 -3610 (|t#2| $)) (-15 -3599 ((-625 $) |t#2|)) (-15 -3588 ((-3 $ "failed") |t#2| (-897))) (-15 -2874 (|t#1| |t#2| $ |t#1|)) (-15 -3576 (|t#1| |t#2| $ |t#1|)))) -(((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-3963 (((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 |#4|) (-625 |#5|) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) (-751)) 96)) (-3924 (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751)) 56)) (-2125 (((-1237) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-751)) 87)) (-3896 (((-751) (-625 |#4|) (-625 |#5|)) 27)) (-3938 (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751)) 58) (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751) (-112)) 60)) (-3950 (((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112)) 79)) (-2042 (((-1131) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) 82)) (-3911 (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-112)) 55)) (-3883 (((-751) (-625 |#4|) (-625 |#5|)) 19))) -(((-1043 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3883 ((-751) (-625 |#4|) (-625 |#5|))) (-15 -3896 ((-751) (-625 |#4|) (-625 |#5|))) (-15 -3911 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-112))) (-15 -3924 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751))) (-15 -3924 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|)) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751) (-112))) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751))) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|)) (-15 -3950 ((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112))) (-15 -3950 ((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3963 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 |#4|) (-625 |#5|) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) (-751))) (-15 -2042 ((-1131) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)))) (-15 -2125 ((-1237) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-751)))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -1043)) -((-2125 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-2 (|:| |val| (-625 *8)) (|:| -3715 *9)))) (-5 *4 (-751)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-1237)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-625 *7)) (|:| -3715 *8))) (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1131)) (-5 *1 (-1043 *4 *5 *6 *7 *8)))) (-3963 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-625 *11)) (|:| |todo| (-625 (-2 (|:| |val| *3) (|:| -3715 *11)))))) (-5 *6 (-751)) (-5 *2 (-625 (-2 (|:| |val| (-625 *10)) (|:| -3715 *11)))) (-5 *3 (-625 *10)) (-5 *4 (-625 *11)) (-4 *10 (-1039 *7 *8 *9)) (-4 *11 (-1045 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-773)) (-4 *9 (-827)) (-5 *1 (-1043 *7 *8 *9 *10 *11)))) (-3950 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-625 *9)) (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-3950 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-625 *9)) (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-3938 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3938 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) (-3938 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-751)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-773)) (-4 *9 (-827)) (-4 *3 (-1039 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1043 *7 *8 *9 *3 *4)) (-4 *4 (-1045 *7 *8 *9 *3)))) (-3924 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3924 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) (-3911 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) (-3896 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 *9)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-3883 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 *9)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1043 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3883 ((-751) (-625 |#4|) (-625 |#5|))) (-15 -3896 ((-751) (-625 |#4|) (-625 |#5|))) (-15 -3911 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-112))) (-15 -3924 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751))) (-15 -3924 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|)) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751) (-112))) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751))) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|)) (-15 -3950 ((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112))) (-15 -3950 ((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3963 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 |#4|) (-625 |#5|) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) (-751))) (-15 -2042 ((-1131) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)))) (-15 -2125 ((-1237) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-751)))) -((-3731 (((-112) |#5| $) 21)) (-3714 (((-112) |#5| $) 24)) (-3741 (((-112) |#5| $) 16) (((-112) $) 45)) (-2860 (((-625 $) |#5| $) NIL) (((-625 $) (-625 |#5|) $) 77) (((-625 $) (-625 |#5|) (-625 $)) 75) (((-625 $) |#5| (-625 $)) 78)) (-2147 (($ $ |#5|) NIL) (((-625 $) |#5| $) NIL) (((-625 $) |#5| (-625 $)) 60) (((-625 $) (-625 |#5|) $) 62) (((-625 $) (-625 |#5|) (-625 $)) 64)) (-3651 (((-625 $) |#5| $) NIL) (((-625 $) |#5| (-625 $)) 54) (((-625 $) (-625 |#5|) $) 56) (((-625 $) (-625 |#5|) (-625 $)) 58)) (-3724 (((-112) |#5| $) 27))) -(((-1044 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2147 ((-625 |#1|) (-625 |#5|) (-625 |#1|))) (-15 -2147 ((-625 |#1|) (-625 |#5|) |#1|)) (-15 -2147 ((-625 |#1|) |#5| (-625 |#1|))) (-15 -2147 ((-625 |#1|) |#5| |#1|)) (-15 -3651 ((-625 |#1|) (-625 |#5|) (-625 |#1|))) (-15 -3651 ((-625 |#1|) (-625 |#5|) |#1|)) (-15 -3651 ((-625 |#1|) |#5| (-625 |#1|))) (-15 -3651 ((-625 |#1|) |#5| |#1|)) (-15 -2860 ((-625 |#1|) |#5| (-625 |#1|))) (-15 -2860 ((-625 |#1|) (-625 |#5|) (-625 |#1|))) (-15 -2860 ((-625 |#1|) (-625 |#5|) |#1|)) (-15 -2860 ((-625 |#1|) |#5| |#1|)) (-15 -3714 ((-112) |#5| |#1|)) (-15 -3741 ((-112) |#1|)) (-15 -3724 ((-112) |#5| |#1|)) (-15 -3731 ((-112) |#5| |#1|)) (-15 -3741 ((-112) |#5| |#1|)) (-15 -2147 (|#1| |#1| |#5|))) (-1045 |#2| |#3| |#4| |#5|) (-446) (-773) (-827) (-1039 |#2| |#3| |#4|)) (T -1044)) -NIL -(-10 -8 (-15 -2147 ((-625 |#1|) (-625 |#5|) (-625 |#1|))) (-15 -2147 ((-625 |#1|) (-625 |#5|) |#1|)) (-15 -2147 ((-625 |#1|) |#5| (-625 |#1|))) (-15 -2147 ((-625 |#1|) |#5| |#1|)) (-15 -3651 ((-625 |#1|) (-625 |#5|) (-625 |#1|))) (-15 -3651 ((-625 |#1|) (-625 |#5|) |#1|)) (-15 -3651 ((-625 |#1|) |#5| (-625 |#1|))) (-15 -3651 ((-625 |#1|) |#5| |#1|)) (-15 -2860 ((-625 |#1|) |#5| (-625 |#1|))) (-15 -2860 ((-625 |#1|) (-625 |#5|) (-625 |#1|))) (-15 -2860 ((-625 |#1|) (-625 |#5|) |#1|)) (-15 -2860 ((-625 |#1|) |#5| |#1|)) (-15 -3714 ((-112) |#5| |#1|)) (-15 -3741 ((-112) |#1|)) (-15 -3724 ((-112) |#5| |#1|)) (-15 -3731 ((-112) |#5| |#1|)) (-15 -3741 ((-112) |#5| |#1|)) (-15 -2147 (|#1| |#1| |#5|))) -((-1671 (((-112) $ $) 7)) (-3680 (((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 |#4|)))) (-625 |#4|)) 85)) (-3690 (((-625 $) (-625 |#4|)) 86) (((-625 $) (-625 |#4|) (-112)) 111)) (-3982 (((-625 |#3|) $) 33)) (-3707 (((-112) $) 26)) (-3613 (((-112) $) 17 (|has| |#1| (-544)))) (-2656 (((-112) |#4| $) 101) (((-112) $) 97)) (-3748 ((|#4| |#4| $) 92)) (-2194 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| $) 126)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) 27)) (-3495 (((-112) $ (-751)) 44)) (-3488 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353))) (((-3 |#4| "failed") $ |#3|) 79)) (-3101 (($) 45 T CONST)) (-3667 (((-112) $) 22 (|has| |#1| (-544)))) (-3688 (((-112) $ $) 24 (|has| |#1| (-544)))) (-3678 (((-112) $ $) 23 (|has| |#1| (-544)))) (-3697 (((-112) $) 25 (|has| |#1| (-544)))) (-3757 (((-625 |#4|) (-625 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3624 (((-625 |#4|) (-625 |#4|) $) 18 (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) 19 (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) 36)) (-1895 (($ (-625 |#4|)) 35)) (-2936 (((-3 $ "failed") $) 82)) (-3720 ((|#4| |#4| $) 89)) (-2959 (($ $) 68 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#4| $) 67 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-2668 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3699 ((|#4| |#4| $) 87)) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2689 (((-2 (|:| -1387 (-625 |#4|)) (|:| -2508 (-625 |#4|))) $) 105)) (-3731 (((-112) |#4| $) 136)) (-3714 (((-112) |#4| $) 133)) (-3741 (((-112) |#4| $) 137) (((-112) $) 134)) (-3799 (((-625 |#4|) $) 52 (|has| $ (-6 -4353)))) (-2678 (((-112) |#4| $) 104) (((-112) $) 103)) (-3565 ((|#3| $) 34)) (-2909 (((-112) $ (-751)) 43)) (-3730 (((-625 |#4|) $) 53 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) 47)) (-2615 (((-625 |#3|) $) 32)) (-2608 (((-112) |#3| $) 31)) (-2878 (((-112) $ (-751)) 42)) (-2883 (((-1131) $) 9)) (-3674 (((-3 |#4| (-625 $)) |#4| |#4| $) 128)) (-3662 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| |#4| $) 127)) (-1437 (((-3 |#4| "failed") $) 83)) (-3685 (((-625 $) |#4| $) 129)) (-3704 (((-3 (-112) (-625 $)) |#4| $) 132)) (-3694 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2860 (((-625 $) |#4| $) 125) (((-625 $) (-625 |#4|) $) 124) (((-625 $) (-625 |#4|) (-625 $)) 123) (((-625 $) |#4| (-625 $)) 122)) (-3999 (($ |#4| $) 117) (($ (-625 |#4|) $) 116)) (-2699 (((-625 |#4|) $) 107)) (-3777 (((-112) |#4| $) 99) (((-112) $) 95)) (-3727 ((|#4| |#4| $) 90)) (-2719 (((-112) $ $) 110)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-3788 (((-112) |#4| $) 100) (((-112) $) 96)) (-3737 ((|#4| |#4| $) 91)) (-2831 (((-1093) $) 10)) (-2924 (((-3 |#4| "failed") $) 84)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3657 (((-3 $ "failed") $ |#4|) 78)) (-2147 (($ $ |#4|) 77) (((-625 $) |#4| $) 115) (((-625 $) |#4| (-625 $)) 114) (((-625 $) (-625 |#4|) $) 113) (((-625 $) (-625 |#4|) (-625 $)) 112)) (-1888 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) 38)) (-1916 (((-112) $) 41)) (-3600 (($) 40)) (-4276 (((-751) $) 106)) (-2840 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-1871 (($ $) 39)) (-2042 (((-528) $) 69 (|has| |#4| (-598 (-528))))) (-1695 (($ (-625 |#4|)) 60)) (-3718 (($ $ |#3|) 28)) (-2595 (($ $ |#3|) 30)) (-3709 (($ $) 88)) (-2584 (($ $ |#3|) 29)) (-1683 (((-839) $) 11) (((-625 |#4|) $) 37)) (-3647 (((-751) $) 76 (|has| |#3| (-363)))) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3767 (((-112) $ (-1 (-112) |#4| (-625 |#4|))) 98)) (-3651 (((-625 $) |#4| $) 121) (((-625 $) |#4| (-625 $)) 120) (((-625 $) (-625 |#4|) $) 119) (((-625 $) (-625 |#4|) (-625 $)) 118)) (-1900 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-3669 (((-625 |#3|) $) 81)) (-3724 (((-112) |#4| $) 135)) (-4168 (((-112) |#3| $) 80)) (-2281 (((-112) $ $) 6)) (-1471 (((-751) $) 46 (|has| $ (-6 -4353))))) -(((-1045 |#1| |#2| |#3| |#4|) (-138) (-446) (-773) (-827) (-1039 |t#1| |t#2| |t#3|)) (T -1045)) -((-3741 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3731 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3724 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3741 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-3714 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3704 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-3 (-112) (-625 *1))) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3694 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *1)))) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3694 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3685 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3674 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-3 *3 (-625 *1))) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3662 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *1)))) (-4 *1 (-1045 *4 *5 *6 *3)))) (-2194 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *1)))) (-4 *1 (-1045 *4 *5 *6 *3)))) (-2860 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *3)))) (-2860 (*1 *2 *3 *1) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *7)))) (-2860 (*1 *2 *3 *2) (-12 (-5 *2 (-625 *1)) (-5 *3 (-625 *7)) (-4 *1 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)))) (-2860 (*1 *2 *3 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)))) (-3651 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3651 (*1 *2 *3 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)))) (-3651 (*1 *2 *3 *1) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *7)))) (-3651 (*1 *2 *3 *2) (-12 (-5 *2 (-625 *1)) (-5 *3 (-625 *7)) (-4 *1 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)))) (-3999 (*1 *1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *2)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-3999 (*1 *1 *2 *1) (-12 (-5 *2 (-625 *6)) (-4 *1 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)))) (-2147 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *3)))) (-2147 (*1 *2 *3 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)))) (-2147 (*1 *2 *3 *1) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *7)))) (-2147 (*1 *2 *3 *2) (-12 (-5 *2 (-625 *1)) (-5 *3 (-625 *7)) (-4 *1 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)))) (-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-1045 *5 *6 *7 *8))))) -(-13 (-1179 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3741 ((-112) |t#4| $)) (-15 -3731 ((-112) |t#4| $)) (-15 -3724 ((-112) |t#4| $)) (-15 -3741 ((-112) $)) (-15 -3714 ((-112) |t#4| $)) (-15 -3704 ((-3 (-112) (-625 $)) |t#4| $)) (-15 -3694 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 $))) |t#4| $)) (-15 -3694 ((-112) |t#4| $)) (-15 -3685 ((-625 $) |t#4| $)) (-15 -3674 ((-3 |t#4| (-625 $)) |t#4| |t#4| $)) (-15 -3662 ((-625 (-2 (|:| |val| |t#4|) (|:| -3715 $))) |t#4| |t#4| $)) (-15 -2194 ((-625 (-2 (|:| |val| |t#4|) (|:| -3715 $))) |t#4| $)) (-15 -2860 ((-625 $) |t#4| $)) (-15 -2860 ((-625 $) (-625 |t#4|) $)) (-15 -2860 ((-625 $) (-625 |t#4|) (-625 $))) (-15 -2860 ((-625 $) |t#4| (-625 $))) (-15 -3651 ((-625 $) |t#4| $)) (-15 -3651 ((-625 $) |t#4| (-625 $))) (-15 -3651 ((-625 $) (-625 |t#4|) $)) (-15 -3651 ((-625 $) (-625 |t#4|) (-625 $))) (-15 -3999 ($ |t#4| $)) (-15 -3999 ($ (-625 |t#4|) $)) (-15 -2147 ((-625 $) |t#4| $)) (-15 -2147 ((-625 $) |t#4| (-625 $))) (-15 -2147 ((-625 $) (-625 |t#4|) $)) (-15 -2147 ((-625 $) (-625 |t#4|) (-625 $))) (-15 -3690 ((-625 $) (-625 |t#4|) (-112))))) -(((-34) . T) ((-101) . T) ((-597 (-625 |#4|)) . T) ((-597 (-839)) . T) ((-149 |#4|) . T) ((-598 (-528)) |has| |#4| (-598 (-528))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-952 |#1| |#2| |#3| |#4|) . T) ((-1073) . T) ((-1179 |#1| |#2| |#3| |#4|) . T) ((-1186) . T)) -((-2672 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#5|) 81)) (-2642 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|) 113)) (-2660 (((-625 |#5|) |#4| |#5|) 70)) (-2650 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-2046 (((-1237)) 37)) (-2028 (((-1237)) 26)) (-2037 (((-1237) (-1131) (-1131) (-1131)) 33)) (-2019 (((-1237) (-1131) (-1131) (-1131)) 22)) (-3752 (((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#4| |#4| |#5|) 96)) (-2621 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#3| (-112)) 107) (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-2632 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|) 102))) -(((-1046 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2019 ((-1237) (-1131) (-1131) (-1131))) (-15 -2028 ((-1237))) (-15 -2037 ((-1237) (-1131) (-1131) (-1131))) (-15 -2046 ((-1237))) (-15 -3752 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2621 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2621 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#3| (-112))) (-15 -2632 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2642 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2650 ((-112) |#4| |#5|)) (-15 -2650 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|)) (-15 -2660 ((-625 |#5|) |#4| |#5|)) (-15 -2672 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#5|))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -1046)) -((-2672 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2660 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 *4)) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2650 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *4)))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2650 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2642 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2632 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2621 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 (-2 (|:| |val| (-625 *8)) (|:| -3715 *9)))) (-5 *5 (-112)) (-4 *8 (-1039 *6 *7 *4)) (-4 *9 (-1045 *6 *7 *4 *8)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *4 (-827)) (-5 *2 (-625 (-2 (|:| |val| *8) (|:| -3715 *9)))) (-5 *1 (-1046 *6 *7 *4 *8 *9)))) (-2621 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) (-3752 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2046 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-1046 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-2037 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1046 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-2028 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-1046 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-2019 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1046 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))) -(-10 -7 (-15 -2019 ((-1237) (-1131) (-1131) (-1131))) (-15 -2028 ((-1237))) (-15 -2037 ((-1237) (-1131) (-1131) (-1131))) (-15 -2046 ((-1237))) (-15 -3752 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2621 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2621 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#3| (-112))) (-15 -2632 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2642 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2650 ((-112) |#4| |#5|)) (-15 -2650 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|)) (-15 -2660 ((-625 |#5|) |#4| |#5|)) (-15 -2672 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#5|))) -((-1671 (((-112) $ $) NIL)) (-1711 (((-1185) $) 13)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3632 (((-1108) $) 10)) (-1683 (((-839) $) 22) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL))) -(((-1047) (-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $)) (-15 -1711 ((-1185) $))))) (T -1047)) -((-3632 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1047)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1047))))) -(-13 (-1056) (-10 -8 (-15 -3632 ((-1108) $)) (-15 -1711 ((-1185) $)))) -((-1671 (((-112) $ $) NIL)) (-1288 (((-1149) $) 8)) (-2883 (((-1131) $) 16)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 13))) -(((-1048 |#1|) (-13 (-1073) (-10 -8 (-15 -1288 ((-1149) $)))) (-1149)) (T -1048)) -((-1288 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1048 *3)) (-14 *3 *2)))) -(-13 (-1073) (-10 -8 (-15 -1288 ((-1149) $)))) -((-1671 (((-112) $ $) NIL)) (-3925 (($ $ (-625 (-1149)) (-1 (-112) (-625 |#3|))) 33)) (-2925 (($ |#3| |#3|) 22) (($ |#3| |#3| (-625 (-1149))) 20)) (-2662 ((|#3| $) 13)) (-1893 (((-3 (-289 |#3|) "failed") $) 58)) (-1895 (((-289 |#3|) $) NIL)) (-2684 (((-625 (-1149)) $) 16)) (-2092 (((-868 |#1|) $) 11)) (-2651 ((|#3| $) 12)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2154 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-897)) 39)) (-1683 (((-839) $) 86) (($ (-289 |#3|)) 21)) (-2281 (((-112) $ $) 36))) -(((-1049 |#1| |#2| |#3|) (-13 (-1073) (-281 |#3| |#3|) (-1014 (-289 |#3|)) (-10 -8 (-15 -2925 ($ |#3| |#3|)) (-15 -2925 ($ |#3| |#3| (-625 (-1149)))) (-15 -3925 ($ $ (-625 (-1149)) (-1 (-112) (-625 |#3|)))) (-15 -2092 ((-868 |#1|) $)) (-15 -2651 (|#3| $)) (-15 -2662 (|#3| $)) (-15 -2154 (|#3| $ |#3| (-897))) (-15 -2684 ((-625 (-1149)) $)))) (-1073) (-13 (-1025) (-862 |#1|) (-827) (-598 (-868 |#1|))) (-13 (-425 |#2|) (-862 |#1|) (-598 (-868 |#1|)))) (T -1049)) -((-2925 (*1 *1 *2 *2) (-12 (-4 *3 (-1073)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3)))) (-5 *1 (-1049 *3 *4 *2)) (-4 *2 (-13 (-425 *4) (-862 *3) (-598 (-868 *3)))))) (-2925 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-625 (-1149))) (-4 *4 (-1073)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4)))) (-5 *1 (-1049 *4 *5 *2)) (-4 *2 (-13 (-425 *5) (-862 *4) (-598 (-868 *4)))))) (-3925 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-1 (-112) (-625 *6))) (-4 *6 (-13 (-425 *5) (-862 *4) (-598 (-868 *4)))) (-4 *4 (-1073)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4)))) (-5 *1 (-1049 *4 *5 *6)))) (-2092 (*1 *2 *1) (-12 (-4 *3 (-1073)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 *2))) (-5 *2 (-868 *3)) (-5 *1 (-1049 *3 *4 *5)) (-4 *5 (-13 (-425 *4) (-862 *3) (-598 *2))))) (-2651 (*1 *2 *1) (-12 (-4 *3 (-1073)) (-4 *2 (-13 (-425 *4) (-862 *3) (-598 (-868 *3)))) (-5 *1 (-1049 *3 *4 *2)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3)))))) (-2662 (*1 *2 *1) (-12 (-4 *3 (-1073)) (-4 *2 (-13 (-425 *4) (-862 *3) (-598 (-868 *3)))) (-5 *1 (-1049 *3 *4 *2)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3)))))) (-2154 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-897)) (-4 *4 (-1073)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4)))) (-5 *1 (-1049 *4 *5 *2)) (-4 *2 (-13 (-425 *5) (-862 *4) (-598 (-868 *4)))))) (-2684 (*1 *2 *1) (-12 (-4 *3 (-1073)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3)))) (-5 *2 (-625 (-1149))) (-5 *1 (-1049 *3 *4 *5)) (-4 *5 (-13 (-425 *4) (-862 *3) (-598 (-868 *3))))))) -(-13 (-1073) (-281 |#3| |#3|) (-1014 (-289 |#3|)) (-10 -8 (-15 -2925 ($ |#3| |#3|)) (-15 -2925 ($ |#3| |#3| (-625 (-1149)))) (-15 -3925 ($ $ (-625 (-1149)) (-1 (-112) (-625 |#3|)))) (-15 -2092 ((-868 |#1|) $)) (-15 -2651 (|#3| $)) (-15 -2662 (|#3| $)) (-15 -2154 (|#3| $ |#3| (-897))) (-15 -2684 ((-625 (-1149)) $)))) -((-1671 (((-112) $ $) NIL)) (-3884 (($ (-625 (-1049 |#1| |#2| |#3|))) 13)) (-3542 (((-625 (-1049 |#1| |#2| |#3|)) $) 20)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2154 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-897)) 26)) (-1683 (((-839) $) 16)) (-2281 (((-112) $ $) 19))) -(((-1050 |#1| |#2| |#3|) (-13 (-1073) (-281 |#3| |#3|) (-10 -8 (-15 -3884 ($ (-625 (-1049 |#1| |#2| |#3|)))) (-15 -3542 ((-625 (-1049 |#1| |#2| |#3|)) $)) (-15 -2154 (|#3| $ |#3| (-897))))) (-1073) (-13 (-1025) (-862 |#1|) (-827) (-598 (-868 |#1|))) (-13 (-425 |#2|) (-862 |#1|) (-598 (-868 |#1|)))) (T -1050)) -((-3884 (*1 *1 *2) (-12 (-5 *2 (-625 (-1049 *3 *4 *5))) (-4 *3 (-1073)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3)))) (-4 *5 (-13 (-425 *4) (-862 *3) (-598 (-868 *3)))) (-5 *1 (-1050 *3 *4 *5)))) (-3542 (*1 *2 *1) (-12 (-4 *3 (-1073)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3)))) (-5 *2 (-625 (-1049 *3 *4 *5))) (-5 *1 (-1050 *3 *4 *5)) (-4 *5 (-13 (-425 *4) (-862 *3) (-598 (-868 *3)))))) (-2154 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-897)) (-4 *4 (-1073)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4)))) (-5 *1 (-1050 *4 *5 *2)) (-4 *2 (-13 (-425 *5) (-862 *4) (-598 (-868 *4))))))) -(-13 (-1073) (-281 |#3| |#3|) (-10 -8 (-15 -3884 ($ (-625 (-1049 |#1| |#2| |#3|)))) (-15 -3542 ((-625 (-1049 |#1| |#2| |#3|)) $)) (-15 -2154 (|#3| $ |#3| (-897))))) -((-2694 (((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112) (-112)) 75) (((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|))) 77) (((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112)) 76))) -(((-1051 |#1| |#2|) (-10 -7 (-15 -2694 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112))) (-15 -2694 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)))) (-15 -2694 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112) (-112)))) (-13 (-302) (-145)) (-625 (-1149))) (T -1051)) -((-2694 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-5 *2 (-625 (-2 (|:| -3368 (-1145 *5)) (|:| -2780 (-625 (-928 *5)))))) (-5 *1 (-1051 *5 *6)) (-5 *3 (-625 (-928 *5))) (-14 *6 (-625 (-1149))))) (-2694 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-5 *2 (-625 (-2 (|:| -3368 (-1145 *4)) (|:| -2780 (-625 (-928 *4)))))) (-5 *1 (-1051 *4 *5)) (-5 *3 (-625 (-928 *4))) (-14 *5 (-625 (-1149))))) (-2694 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-5 *2 (-625 (-2 (|:| -3368 (-1145 *5)) (|:| -2780 (-625 (-928 *5)))))) (-5 *1 (-1051 *5 *6)) (-5 *3 (-625 (-928 *5))) (-14 *6 (-625 (-1149)))))) -(-10 -7 (-15 -2694 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112))) (-15 -2694 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)))) (-15 -2694 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112) (-112)))) -((-3824 (((-413 |#3|) |#3|) 18))) -(((-1052 |#1| |#2| |#3|) (-10 -7 (-15 -3824 ((-413 |#3|) |#3|))) (-1208 (-402 (-552))) (-13 (-358) (-145) (-705 (-402 (-552)) |#1|)) (-1208 |#2|)) (T -1052)) -((-3824 (*1 *2 *3) (-12 (-4 *4 (-1208 (-402 (-552)))) (-4 *5 (-13 (-358) (-145) (-705 (-402 (-552)) *4))) (-5 *2 (-413 *3)) (-5 *1 (-1052 *4 *5 *3)) (-4 *3 (-1208 *5))))) -(-10 -7 (-15 -3824 ((-413 |#3|) |#3|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 126)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-358)))) (-3528 (($ $) NIL (|has| |#1| (-358)))) (-3509 (((-112) $) NIL (|has| |#1| (-358)))) (-2570 (((-669 |#1|) (-1232 $)) NIL) (((-669 |#1|)) 115)) (-1650 ((|#1| $) 119)) (-3811 (((-1159 (-897) (-751)) (-552)) NIL (|has| |#1| (-344)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL (|has| |#1| (-358)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-2894 (((-751)) 40 (|has| |#1| (-363)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) NIL)) (-2670 (($ (-1232 |#1|) (-1232 $)) NIL) (($ (-1232 |#1|)) 43)) (-3790 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-344)))) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-2559 (((-669 |#1|) $ (-1232 $)) NIL) (((-669 |#1|) $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 106) (((-669 |#1|) (-669 $)) 101)) (-2163 (($ |#2|) 61) (((-3 $ "failed") (-402 |#2|)) NIL (|has| |#1| (-358)))) (-4174 (((-3 $ "failed") $) NIL)) (-3442 (((-897)) 77)) (-3702 (($) 44 (|has| |#1| (-363)))) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-4279 (($) NIL (|has| |#1| (-344)))) (-3872 (((-112) $) NIL (|has| |#1| (-344)))) (-3554 (($ $ (-751)) NIL (|has| |#1| (-344))) (($ $) NIL (|has| |#1| (-344)))) (-2951 (((-112) $) NIL (|has| |#1| (-358)))) (-2172 (((-897) $) NIL (|has| |#1| (-344))) (((-813 (-897)) $) NIL (|has| |#1| (-344)))) (-3650 (((-112) $) NIL)) (-4209 ((|#1| $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-1291 ((|#2| $) 84 (|has| |#1| (-358)))) (-4318 (((-897) $) 131 (|has| |#1| (-363)))) (-2148 ((|#2| $) 58)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| |#1| (-358)))) (-2071 (($) NIL (|has| |#1| (-344)) CONST)) (-3123 (($ (-897)) 125 (|has| |#1| (-363)))) (-2831 (((-1093) $) NIL)) (-3212 (($) 121)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3820 (((-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552))))) NIL (|has| |#1| (-344)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-3217 ((|#1| (-1232 $)) NIL) ((|#1|) 109)) (-3563 (((-751) $) NIL (|has| |#1| (-344))) (((-3 (-751) "failed") $ $) NIL (|has| |#1| (-344)))) (-3072 (($ $) NIL (-1523 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-751)) NIL (-1523 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-1 |#1| |#1|) (-751)) NIL (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-3640 (((-669 |#1|) (-1232 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-3610 ((|#2|) 73)) (-3798 (($) NIL (|has| |#1| (-344)))) (-2780 (((-1232 |#1|) $ (-1232 $)) 89) (((-669 |#1|) (-1232 $) (-1232 $)) NIL) (((-1232 |#1|) $) 71) (((-669 |#1|) (-1232 $)) 85)) (-2042 (((-1232 |#1|) $) NIL) (($ (-1232 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (|has| |#1| (-344)))) (-1683 (((-839) $) 57) (($ (-552)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-358))) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-552))))))) (-4243 (($ $) NIL (|has| |#1| (-344))) (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3974 ((|#2| $) 82)) (-4141 (((-751)) 75)) (-1270 (((-1232 $)) 81)) (-3518 (((-112) $ $) NIL (|has| |#1| (-358)))) (-2089 (($) 30 T CONST)) (-2100 (($) 19 T CONST)) (-3768 (($ $) NIL (-1523 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-751)) NIL (-1523 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-344)))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-1 |#1| |#1|) (-751)) NIL (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-2281 (((-112) $ $) 63)) (-2404 (($ $ $) NIL (|has| |#1| (-358)))) (-2393 (($ $) 67) (($ $ $) NIL)) (-2382 (($ $ $) 65)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| |#1| (-358)))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-402 (-552)) $) NIL (|has| |#1| (-358))) (($ $ (-402 (-552))) NIL (|has| |#1| (-358))))) -(((-1053 |#1| |#2| |#3|) (-705 |#1| |#2|) (-170) (-1208 |#1|) |#2|) (T -1053)) -NIL -(-705 |#1| |#2|) -((-3824 (((-413 |#3|) |#3|) 19))) -(((-1054 |#1| |#2| |#3|) (-10 -7 (-15 -3824 ((-413 |#3|) |#3|))) (-1208 (-402 (-928 (-552)))) (-13 (-358) (-145) (-705 (-402 (-928 (-552))) |#1|)) (-1208 |#2|)) (T -1054)) -((-3824 (*1 *2 *3) (-12 (-4 *4 (-1208 (-402 (-928 (-552))))) (-4 *5 (-13 (-358) (-145) (-705 (-402 (-928 (-552))) *4))) (-5 *2 (-413 *3)) (-5 *1 (-1054 *4 *5 *3)) (-4 *3 (-1208 *5))))) -(-10 -7 (-15 -3824 ((-413 |#3|) |#3|))) -((-1671 (((-112) $ $) NIL)) (-3658 (($ $ $) 14)) (-3332 (($ $ $) 15)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2704 (($) 6)) (-2042 (((-1149) $) 18)) (-1683 (((-839) $) 12)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 13)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 8))) -(((-1055) (-13 (-827) (-10 -8 (-15 -2704 ($)) (-15 -2042 ((-1149) $))))) (T -1055)) -((-2704 (*1 *1) (-5 *1 (-1055))) (-2042 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1055))))) -(-13 (-827) (-10 -8 (-15 -2704 ($)) (-15 -2042 ((-1149) $)))) -((-1671 (((-112) $ $) 7)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (((-1154) $) 15) (($ (-1154)) 14)) (-2281 (((-112) $ $) 6))) -(((-1056) (-138)) (T -1056)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-1035) (-137)) (T -1035)) +NIL +(-13 (-21) (-1088)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-129) . T) ((-599 (-842)) . T) ((-1088) . T) ((-1076) . T)) +((-4019 (($ $) 16)) (-2635 (($ $) 22)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 49)) (-2349 (($ $) 24)) (-4328 (($ $) 11)) (-2060 (($ $) 38)) (-3562 (((-373) $) NIL) (((-220) $) NIL) (((-871 (-373)) $) 33)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL) (($ (-401 (-552))) 28) (($ (-552)) NIL) (($ (-401 (-552))) 28)) (-3995 (((-754)) 8)) (-3796 (($ $) 39))) +(((-1036 |#1|) (-10 -8 (-15 -2635 (|#1| |#1|)) (-15 -4019 (|#1| |#1|)) (-15 -4328 (|#1| |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -2349 (|#1| |#1|)) (-15 -4208 ((-868 (-373) |#1|) |#1| (-871 (-373)) (-868 (-373) |#1|))) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| (-552))) (-15 -3562 ((-220) |#1|)) (-15 -3562 ((-373) |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| |#1|)) (-15 -1477 (|#1| (-552))) (-15 -3995 ((-754))) (-15 -1477 ((-842) |#1|))) (-1037)) (T -1036)) +((-3995 (*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-1036 *3)) (-4 *3 (-1037))))) +(-10 -8 (-15 -2635 (|#1| |#1|)) (-15 -4019 (|#1| |#1|)) (-15 -4328 (|#1| |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -3796 (|#1| |#1|)) (-15 -2349 (|#1| |#1|)) (-15 -4208 ((-868 (-373) |#1|) |#1| (-871 (-373)) (-868 (-373) |#1|))) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| (-552))) (-15 -3562 ((-220) |#1|)) (-15 -3562 ((-373) |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| |#1|)) (-15 -1477 (|#1| (-552))) (-15 -3995 ((-754))) (-15 -1477 ((-842) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3471 (((-552) $) 86)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4019 (($ $) 84)) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 70)) (-2487 (((-412 $) $) 69)) (-1737 (($ $) 94)) (-4224 (((-111) $ $) 57)) (-2422 (((-552) $) 111)) (-3887 (($) 17 T CONST)) (-2635 (($ $) 83)) (-4039 (((-3 (-552) "failed") $) 99) (((-3 (-401 (-552)) "failed") $) 96)) (-1703 (((-552) $) 98) (((-401 (-552)) $) 95)) (-2813 (($ $ $) 53)) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-1633 (((-111) $) 68)) (-2983 (((-111) $) 109)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 90)) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 93)) (-2349 (($ $) 89)) (-1508 (((-111) $) 110)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-1816 (($ $ $) 108)) (-4093 (($ $ $) 107)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 67)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-4328 (($ $) 85)) (-2060 (($ $) 87)) (-1727 (((-412 $) $) 71)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-2718 (((-754) $) 56)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-3562 (((-373) $) 102) (((-220) $) 101) (((-871 (-373)) $) 91)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63) (($ (-552)) 100) (($ (-401 (-552))) 97)) (-3995 (((-754)) 28)) (-3796 (($ $) 88)) (-3778 (((-111) $ $) 37)) (-3329 (($ $) 112)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2351 (((-111) $ $) 105)) (-2329 (((-111) $ $) 104)) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 106)) (-2316 (((-111) $ $) 103)) (-2407 (($ $ $) 62)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 66) (($ $ (-401 (-552))) 92)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64))) +(((-1037) (-137)) (T -1037)) +((-3329 (*1 *1 *1) (-4 *1 (-1037))) (-2349 (*1 *1 *1) (-4 *1 (-1037))) (-3796 (*1 *1 *1) (-4 *1 (-1037))) (-2060 (*1 *1 *1) (-4 *1 (-1037))) (-3471 (*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-552)))) (-4328 (*1 *1 *1) (-4 *1 (-1037))) (-4019 (*1 *1 *1) (-4 *1 (-1037))) (-2635 (*1 *1 *1) (-4 *1 (-1037)))) +(-13 (-357) (-828) (-1001) (-1017 (-552)) (-1017 (-401 (-552))) (-981) (-600 (-871 (-373))) (-865 (-373)) (-144) (-10 -8 (-15 -2349 ($ $)) (-15 -3796 ($ $)) (-15 -2060 ($ $)) (-15 -3471 ((-552) $)) (-15 -4328 ($ $)) (-15 -4019 ($ $)) (-15 -2635 ($ $)) (-15 -3329 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 $ $) . T) ((-129) . T) ((-144) . T) ((-599 (-842)) . T) ((-169) . T) ((-600 (-220)) . T) ((-600 (-373)) . T) ((-600 (-871 (-373))) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-445) . T) ((-544) . T) ((-630 #0#) . T) ((-630 $) . T) ((-700 #0#) . T) ((-700 $) . T) ((-709) . T) ((-774) . T) ((-775) . T) ((-777) . T) ((-778) . T) ((-828) . T) ((-830) . T) ((-865 (-373)) . T) ((-899) . T) ((-981) . T) ((-1001) . T) ((-1017 (-401 (-552))) . T) ((-1017 (-552)) . T) ((-1034 #0#) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) |#2| $) 23)) (-3307 ((|#1| $) 10)) (-2422 (((-552) |#2| $) 88)) (-3348 (((-3 $ "failed") |#2| (-900)) 57)) (-2791 ((|#1| $) 28)) (-3758 ((|#1| |#2| $ |#1|) 37)) (-3938 (($ $) 25)) (-2040 (((-3 |#2| "failed") |#2| $) 87)) (-2983 (((-111) |#2| $) NIL)) (-1508 (((-111) |#2| $) NIL)) (-4075 (((-111) |#2| $) 24)) (-2594 ((|#1| $) 89)) (-2776 ((|#1| $) 27)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1376 ((|#2| $) 79)) (-1477 (((-842) $) 70)) (-3030 ((|#1| |#2| $ |#1|) 38)) (-1714 (((-627 $) |#2|) 59)) (-2292 (((-111) $ $) 74))) +(((-1038 |#1| |#2|) (-13 (-1045 |#1| |#2|) (-10 -8 (-15 -2776 (|#1| $)) (-15 -2791 (|#1| $)) (-15 -3307 (|#1| $)) (-15 -2594 (|#1| $)) (-15 -3938 ($ $)) (-15 -4075 ((-111) |#2| $)) (-15 -3758 (|#1| |#2| $ |#1|)))) (-13 (-828) (-357)) (-1211 |#1|)) (T -1038)) +((-3758 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) (-4 *3 (-1211 *2)))) (-2776 (*1 *2 *1) (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) (-4 *3 (-1211 *2)))) (-2791 (*1 *2 *1) (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) (-4 *3 (-1211 *2)))) (-3307 (*1 *2 *1) (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) (-4 *3 (-1211 *2)))) (-2594 (*1 *2 *1) (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) (-4 *3 (-1211 *2)))) (-3938 (*1 *1 *1) (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) (-4 *3 (-1211 *2)))) (-4075 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-828) (-357))) (-5 *2 (-111)) (-5 *1 (-1038 *4 *3)) (-4 *3 (-1211 *4))))) +(-13 (-1045 |#1| |#2|) (-10 -8 (-15 -2776 (|#1| $)) (-15 -2791 (|#1| $)) (-15 -3307 (|#1| $)) (-15 -2594 (|#1| $)) (-15 -3938 ($ $)) (-15 -4075 ((-111) |#2| $)) (-15 -3758 (|#1| |#2| $ |#1|)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-2002 (($ $ $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $ $ $) NIL)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL)) (-1452 (($ $ $) NIL)) (-3887 (($) NIL T CONST)) (-4172 (($ (-1152)) 10) (($ (-552)) 7)) (-4039 (((-3 (-552) "failed") $) NIL)) (-1703 (((-552) $) NIL)) (-2813 (($ $ $) NIL)) (-1800 (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-671 (-552)) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2859 (((-3 (-401 (-552)) "failed") $) NIL)) (-4229 (((-111) $) NIL)) (-2411 (((-401 (-552)) $) NIL)) (-1279 (($) NIL) (($ $) NIL)) (-2789 (($ $ $) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-3428 (($ $ $ $) NIL)) (-3537 (($ $ $) NIL)) (-2983 (((-111) $) NIL)) (-1868 (($ $ $) NIL)) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL)) (-2624 (((-111) $) NIL)) (-1394 (((-111) $) NIL)) (-4317 (((-3 $ "failed") $) NIL)) (-1508 (((-111) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1969 (($ $ $ $) NIL)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-4117 (($ $) NIL)) (-3593 (($ $) NIL)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-3556 (($ $ $) NIL)) (-3002 (($) NIL T CONST)) (-3445 (($ $) NIL)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) NIL) (($ (-627 $)) NIL)) (-2610 (($ $) NIL)) (-1727 (((-412 $) $) NIL)) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1507 (((-111) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-2942 (($ $ (-754)) NIL) (($ $) NIL)) (-1313 (($ $) NIL)) (-2973 (($ $) NIL)) (-3562 (((-552) $) 16) (((-528) $) NIL) (((-871 (-552)) $) NIL) (((-373) $) NIL) (((-220) $) NIL) (($ (-1152)) 9)) (-1477 (((-842) $) 20) (($ (-552)) 6) (($ $) NIL) (($ (-552)) 6)) (-3995 (((-754)) NIL)) (-3240 (((-111) $ $) NIL)) (-3697 (($ $ $) NIL)) (-2705 (($) NIL)) (-3778 (((-111) $ $) NIL)) (-2166 (($ $ $ $) NIL)) (-3329 (($ $) NIL)) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-754)) NIL) (($ $) NIL)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) NIL)) (-2396 (($ $) 19) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL))) +(((-1039) (-13 (-537) (-10 -8 (-6 -4353) (-6 -4358) (-6 -4354) (-15 -3562 ($ (-1152))) (-15 -4172 ($ (-1152))) (-15 -4172 ($ (-552)))))) (T -1039)) +((-3562 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1039)))) (-4172 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1039)))) (-4172 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1039))))) +(-13 (-537) (-10 -8 (-6 -4353) (-6 -4358) (-6 -4354) (-15 -3562 ($ (-1152))) (-15 -4172 ($ (-1152))) (-15 -4172 ($ (-552))))) +((-1465 (((-111) $ $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076))))) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL)) (-3305 (((-1240) $ (-1152) (-1152)) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-2325 (($) 9)) (-2950 (((-52) $ (-1152) (-52)) NIL)) (-3462 (($ $) 30)) (-2742 (($ $) 28)) (-1302 (($ $) 27)) (-3208 (($ $) 29)) (-3698 (($ $) 32)) (-2066 (($ $) 33)) (-3124 (($ $) 26)) (-2353 (($ $) 31)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) 25 (|has| $ (-6 -4366)))) (-3602 (((-3 (-52) "failed") (-1152) $) 40)) (-3887 (($) NIL T CONST)) (-2898 (($) 7)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076))))) (-2265 (($ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) 50 (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-3 (-52) "failed") (-1152) $) NIL)) (-4342 (($ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (((-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366)))) (-3857 (((-3 (-1134) "failed") $ (-1134) (-552)) 59)) (-3473 (((-52) $ (-1152) (-52)) NIL (|has| $ (-6 -4367)))) (-3413 (((-52) $ (-1152)) NIL)) (-3215 (((-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-627 (-52)) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-1152) $) NIL (|has| (-1152) (-830)))) (-3114 (((-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) 35 (|has| $ (-6 -4366))) (((-627 (-52)) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-52) (-1076))))) (-2285 (((-1152) $) NIL (|has| (-1152) (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4367))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076))))) (-1296 (((-627 (-1152)) $) NIL)) (-3619 (((-111) (-1152) $) NIL)) (-4165 (((-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL)) (-3954 (($ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) 43)) (-3892 (((-627 (-1152)) $) NIL)) (-2358 (((-111) (-1152) $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076))))) (-2209 (((-373) $ (-1152)) 49)) (-3671 (((-627 (-1134)) $ (-1134)) 60)) (-3340 (((-52) $) NIL (|has| (-1152) (-830)))) (-1503 (((-3 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) "failed") (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL)) (-1942 (($ $ (-52)) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))))) NIL (-12 (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (($ $ (-288 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL (-12 (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (($ $ (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) NIL (-12 (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (($ $ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL (-12 (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-303 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (($ $ (-627 (-52)) (-627 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076)))) (($ $ (-288 (-52))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076)))) (($ $ (-627 (-288 (-52)))) NIL (-12 (|has| (-52) (-303 (-52))) (|has| (-52) (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) (-52) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-52) (-1076))))) (-2083 (((-627 (-52)) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 (((-52) $ (-1152)) NIL) (((-52) $ (-1152) (-52)) NIL)) (-3028 (($) NIL) (($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL)) (-2041 (($ $ (-1152)) 51)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076)))) (((-754) (-52) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-52) (-1076)))) (((-754) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) 37)) (-2668 (($ $ $) 38)) (-1477 (((-842) $) NIL (-1559 (|has| (-52) (-599 (-842))) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-599 (-842)))))) (-3508 (($ $ (-1152) (-373)) 47)) (-3834 (($ $ (-1152) (-373)) 48)) (-2577 (($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))))) NIL)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 (-1152)) (|:| -2162 (-52)))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) (-52)) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (-1559 (|has| (-52) (-1076)) (|has| (-2 (|:| -3998 (-1152)) (|:| -2162 (-52))) (-1076))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-1040) (-13 (-1165 (-1152) (-52)) (-10 -8 (-15 -2668 ($ $ $)) (-15 -2898 ($)) (-15 -3124 ($ $)) (-15 -1302 ($ $)) (-15 -2742 ($ $)) (-15 -3208 ($ $)) (-15 -2353 ($ $)) (-15 -3462 ($ $)) (-15 -3698 ($ $)) (-15 -2066 ($ $)) (-15 -3508 ($ $ (-1152) (-373))) (-15 -3834 ($ $ (-1152) (-373))) (-15 -2209 ((-373) $ (-1152))) (-15 -3671 ((-627 (-1134)) $ (-1134))) (-15 -2041 ($ $ (-1152))) (-15 -2325 ($)) (-15 -3857 ((-3 (-1134) "failed") $ (-1134) (-552))) (-6 -4366)))) (T -1040)) +((-2668 (*1 *1 *1 *1) (-5 *1 (-1040))) (-2898 (*1 *1) (-5 *1 (-1040))) (-3124 (*1 *1 *1) (-5 *1 (-1040))) (-1302 (*1 *1 *1) (-5 *1 (-1040))) (-2742 (*1 *1 *1) (-5 *1 (-1040))) (-3208 (*1 *1 *1) (-5 *1 (-1040))) (-2353 (*1 *1 *1) (-5 *1 (-1040))) (-3462 (*1 *1 *1) (-5 *1 (-1040))) (-3698 (*1 *1 *1) (-5 *1 (-1040))) (-2066 (*1 *1 *1) (-5 *1 (-1040))) (-3508 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-373)) (-5 *1 (-1040)))) (-3834 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-373)) (-5 *1 (-1040)))) (-2209 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-373)) (-5 *1 (-1040)))) (-3671 (*1 *2 *1 *3) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1040)) (-5 *3 (-1134)))) (-2041 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1040)))) (-2325 (*1 *1) (-5 *1 (-1040))) (-3857 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1134)) (-5 *3 (-552)) (-5 *1 (-1040))))) +(-13 (-1165 (-1152) (-52)) (-10 -8 (-15 -2668 ($ $ $)) (-15 -2898 ($)) (-15 -3124 ($ $)) (-15 -1302 ($ $)) (-15 -2742 ($ $)) (-15 -3208 ($ $)) (-15 -2353 ($ $)) (-15 -3462 ($ $)) (-15 -3698 ($ $)) (-15 -2066 ($ $)) (-15 -3508 ($ $ (-1152) (-373))) (-15 -3834 ($ $ (-1152) (-373))) (-15 -2209 ((-373) $ (-1152))) (-15 -3671 ((-627 (-1134)) $ (-1134))) (-15 -2041 ($ $ (-1152))) (-15 -2325 ($)) (-15 -3857 ((-3 (-1134) "failed") $ (-1134) (-552))) (-6 -4366))) +((-1700 (($ $) 45)) (-4292 (((-111) $ $) 74)) (-4039 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-931 (-401 (-552)))) 227) (((-3 $ "failed") (-931 (-552))) 226) (((-3 $ "failed") (-931 |#2|)) 229)) (-1703 ((|#2| $) NIL) (((-401 (-552)) $) NIL) (((-552) $) NIL) ((|#4| $) NIL) (($ (-931 (-401 (-552)))) 215) (($ (-931 (-552))) 211) (($ (-931 |#2|)) 231)) (-2014 (($ $) NIL) (($ $ |#4|) 43)) (-4104 (((-111) $ $) 112) (((-111) $ (-627 $)) 113)) (-2870 (((-111) $) 56)) (-2148 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 107)) (-2914 (($ $) 138)) (-1483 (($ $) 134)) (-3145 (($ $) 133)) (-2612 (($ $ $) 79) (($ $ $ |#4|) 84)) (-4284 (($ $ $) 82) (($ $ $ |#4|) 86)) (-3850 (((-111) $ $) 121) (((-111) $ (-627 $)) 122)) (-4147 ((|#4| $) 33)) (-1355 (($ $ $) 110)) (-1283 (((-111) $) 55)) (-1526 (((-754) $) 35)) (-4313 (($ $) 152)) (-3535 (($ $) 149)) (-2314 (((-627 $) $) 68)) (-3346 (($ $) 57)) (-3228 (($ $) 145)) (-2075 (((-627 $) $) 65)) (-3674 (($ $) 59)) (-1993 ((|#2| $) NIL) (($ $ |#4|) 38)) (-1683 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3229 (-754))) $ $) 111)) (-2961 (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $) 108) (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $ |#4|) 109)) (-2568 (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -3401 $)) $ $) 104) (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -3401 $)) $ $ |#4|) 105)) (-2709 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3015 (($ $ $) 90) (($ $ $ |#4|) 96)) (-1639 (((-627 $) $) 51)) (-2481 (((-111) $ $) 118) (((-111) $ (-627 $)) 119)) (-3921 (($ $ $) 103)) (-3002 (($ $) 37)) (-2654 (((-111) $ $) 72)) (-2163 (((-111) $ $) 114) (((-111) $ (-627 $)) 116)) (-4116 (($ $ $) 101)) (-3134 (($ $) 40)) (-1323 ((|#2| |#2| $) 142) (($ (-627 $)) NIL) (($ $ $) NIL)) (-3094 (($ $ |#2|) NIL) (($ $ $) 131)) (-2899 (($ $ |#2|) 126) (($ $ $) 129)) (-1478 (($ $) 48)) (-3667 (($ $) 52)) (-3562 (((-871 (-373)) $) NIL) (((-871 (-552)) $) NIL) (((-528) $) NIL) (($ (-931 (-401 (-552)))) 217) (($ (-931 (-552))) 213) (($ (-931 |#2|)) 228) (((-1134) $) 250) (((-931 |#2|) $) 162)) (-1477 (((-842) $) 30) (($ (-552)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-931 |#2|) $) 163) (($ (-401 (-552))) NIL) (($ $) NIL)) (-1598 (((-3 (-111) "failed") $ $) 71))) +(((-1041 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1477 (|#1| |#1|)) (-15 -1323 (|#1| |#1| |#1|)) (-15 -1323 (|#1| (-627 |#1|))) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 ((-931 |#2|) |#1|)) (-15 -3562 ((-931 |#2|) |#1|)) (-15 -3562 ((-1134) |#1|)) (-15 -4313 (|#1| |#1|)) (-15 -3535 (|#1| |#1|)) (-15 -3228 (|#1| |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -1323 (|#2| |#2| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -2899 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1| |#2|)) (-15 -2899 (|#1| |#1| |#2|)) (-15 -1483 (|#1| |#1|)) (-15 -3145 (|#1| |#1|)) (-15 -3562 (|#1| (-931 |#2|))) (-15 -1703 (|#1| (-931 |#2|))) (-15 -4039 ((-3 |#1| "failed") (-931 |#2|))) (-15 -3562 (|#1| (-931 (-552)))) (-15 -1703 (|#1| (-931 (-552)))) (-15 -4039 ((-3 |#1| "failed") (-931 (-552)))) (-15 -3562 (|#1| (-931 (-401 (-552))))) (-15 -1703 (|#1| (-931 (-401 (-552))))) (-15 -4039 ((-3 |#1| "failed") (-931 (-401 (-552))))) (-15 -3921 (|#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| |#1|)) (-15 -1683 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3229 (-754))) |#1| |#1|)) (-15 -1355 (|#1| |#1| |#1|)) (-15 -2148 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -2961 ((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1| |#4|)) (-15 -2961 ((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -2568 ((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -3401 |#1|)) |#1| |#1| |#4|)) (-15 -2568 ((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -3015 (|#1| |#1| |#1| |#4|)) (-15 -2709 (|#1| |#1| |#1| |#4|)) (-15 -3015 (|#1| |#1| |#1|)) (-15 -2709 (|#1| |#1| |#1|)) (-15 -4284 (|#1| |#1| |#1| |#4|)) (-15 -2612 (|#1| |#1| |#1| |#4|)) (-15 -4284 (|#1| |#1| |#1|)) (-15 -2612 (|#1| |#1| |#1|)) (-15 -3850 ((-111) |#1| (-627 |#1|))) (-15 -3850 ((-111) |#1| |#1|)) (-15 -2481 ((-111) |#1| (-627 |#1|))) (-15 -2481 ((-111) |#1| |#1|)) (-15 -2163 ((-111) |#1| (-627 |#1|))) (-15 -2163 ((-111) |#1| |#1|)) (-15 -4104 ((-111) |#1| (-627 |#1|))) (-15 -4104 ((-111) |#1| |#1|)) (-15 -4292 ((-111) |#1| |#1|)) (-15 -2654 ((-111) |#1| |#1|)) (-15 -1598 ((-3 (-111) "failed") |#1| |#1|)) (-15 -2314 ((-627 |#1|) |#1|)) (-15 -2075 ((-627 |#1|) |#1|)) (-15 -3674 (|#1| |#1|)) (-15 -3346 (|#1| |#1|)) (-15 -2870 ((-111) |#1|)) (-15 -1283 ((-111) |#1|)) (-15 -2014 (|#1| |#1| |#4|)) (-15 -1993 (|#1| |#1| |#4|)) (-15 -3667 (|#1| |#1|)) (-15 -1639 ((-627 |#1|) |#1|)) (-15 -1478 (|#1| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -1526 ((-754) |#1|)) (-15 -4147 (|#4| |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -1703 (|#4| |#1|)) (-15 -4039 ((-3 |#4| "failed") |#1|)) (-15 -1477 (|#1| |#4|)) (-15 -1993 (|#2| |#1|)) (-15 -2014 (|#1| |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) (-1042 |#2| |#3| |#4|) (-1028) (-776) (-830)) (T -1041)) +NIL +(-10 -8 (-15 -1477 (|#1| |#1|)) (-15 -1323 (|#1| |#1| |#1|)) (-15 -1323 (|#1| (-627 |#1|))) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 ((-931 |#2|) |#1|)) (-15 -3562 ((-931 |#2|) |#1|)) (-15 -3562 ((-1134) |#1|)) (-15 -4313 (|#1| |#1|)) (-15 -3535 (|#1| |#1|)) (-15 -3228 (|#1| |#1|)) (-15 -2914 (|#1| |#1|)) (-15 -1323 (|#2| |#2| |#1|)) (-15 -3094 (|#1| |#1| |#1|)) (-15 -2899 (|#1| |#1| |#1|)) (-15 -3094 (|#1| |#1| |#2|)) (-15 -2899 (|#1| |#1| |#2|)) (-15 -1483 (|#1| |#1|)) (-15 -3145 (|#1| |#1|)) (-15 -3562 (|#1| (-931 |#2|))) (-15 -1703 (|#1| (-931 |#2|))) (-15 -4039 ((-3 |#1| "failed") (-931 |#2|))) (-15 -3562 (|#1| (-931 (-552)))) (-15 -1703 (|#1| (-931 (-552)))) (-15 -4039 ((-3 |#1| "failed") (-931 (-552)))) (-15 -3562 (|#1| (-931 (-401 (-552))))) (-15 -1703 (|#1| (-931 (-401 (-552))))) (-15 -4039 ((-3 |#1| "failed") (-931 (-401 (-552))))) (-15 -3921 (|#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| |#1|)) (-15 -1683 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3229 (-754))) |#1| |#1|)) (-15 -1355 (|#1| |#1| |#1|)) (-15 -2148 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -2961 ((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1| |#4|)) (-15 -2961 ((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -2568 ((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -3401 |#1|)) |#1| |#1| |#4|)) (-15 -2568 ((-2 (|:| -3069 |#1|) (|:| |gap| (-754)) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -3015 (|#1| |#1| |#1| |#4|)) (-15 -2709 (|#1| |#1| |#1| |#4|)) (-15 -3015 (|#1| |#1| |#1|)) (-15 -2709 (|#1| |#1| |#1|)) (-15 -4284 (|#1| |#1| |#1| |#4|)) (-15 -2612 (|#1| |#1| |#1| |#4|)) (-15 -4284 (|#1| |#1| |#1|)) (-15 -2612 (|#1| |#1| |#1|)) (-15 -3850 ((-111) |#1| (-627 |#1|))) (-15 -3850 ((-111) |#1| |#1|)) (-15 -2481 ((-111) |#1| (-627 |#1|))) (-15 -2481 ((-111) |#1| |#1|)) (-15 -2163 ((-111) |#1| (-627 |#1|))) (-15 -2163 ((-111) |#1| |#1|)) (-15 -4104 ((-111) |#1| (-627 |#1|))) (-15 -4104 ((-111) |#1| |#1|)) (-15 -4292 ((-111) |#1| |#1|)) (-15 -2654 ((-111) |#1| |#1|)) (-15 -1598 ((-3 (-111) "failed") |#1| |#1|)) (-15 -2314 ((-627 |#1|) |#1|)) (-15 -2075 ((-627 |#1|) |#1|)) (-15 -3674 (|#1| |#1|)) (-15 -3346 (|#1| |#1|)) (-15 -2870 ((-111) |#1|)) (-15 -1283 ((-111) |#1|)) (-15 -2014 (|#1| |#1| |#4|)) (-15 -1993 (|#1| |#1| |#4|)) (-15 -3667 (|#1| |#1|)) (-15 -1639 ((-627 |#1|) |#1|)) (-15 -1478 (|#1| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -3134 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -1526 ((-754) |#1|)) (-15 -4147 (|#4| |#1|)) (-15 -3562 ((-528) |#1|)) (-15 -3562 ((-871 (-552)) |#1|)) (-15 -3562 ((-871 (-373)) |#1|)) (-15 -1703 (|#4| |#1|)) (-15 -4039 ((-3 |#4| "failed") |#1|)) (-15 -1477 (|#1| |#4|)) (-15 -1993 (|#2| |#1|)) (-15 -2014 (|#1| |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1853 (((-627 |#3|) $) 108)) (-1694 (((-1148 $) $ |#3|) 123) (((-1148 |#1|) $) 122)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 85 (|has| |#1| (-544)))) (-3245 (($ $) 86 (|has| |#1| (-544)))) (-4058 (((-111) $) 88 (|has| |#1| (-544)))) (-3278 (((-754) $) 110) (((-754) $ (-627 |#3|)) 109)) (-1700 (($ $) 269)) (-4292 (((-111) $ $) 255)) (-4136 (((-3 $ "failed") $ $) 19)) (-1340 (($ $ $) 214 (|has| |#1| (-544)))) (-4311 (((-627 $) $ $) 209 (|has| |#1| (-544)))) (-2246 (((-412 (-1148 $)) (-1148 $)) 98 (|has| |#1| (-888)))) (-4014 (($ $) 96 (|has| |#1| (-445)))) (-2487 (((-412 $) $) 95 (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 101 (|has| |#1| (-888)))) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#1| "failed") $) 162) (((-3 (-401 (-552)) "failed") $) 160 (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) 158 (|has| |#1| (-1017 (-552)))) (((-3 |#3| "failed") $) 134) (((-3 $ "failed") (-931 (-401 (-552)))) 229 (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1152))))) (((-3 $ "failed") (-931 (-552))) 226 (-1559 (-12 (-1681 (|has| |#1| (-38 (-401 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-600 (-1152)))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1152)))))) (((-3 $ "failed") (-931 |#1|)) 223 (-1559 (-12 (-1681 (|has| |#1| (-38 (-401 (-552))))) (-1681 (|has| |#1| (-38 (-552)))) (|has| |#3| (-600 (-1152)))) (-12 (-1681 (|has| |#1| (-537))) (-1681 (|has| |#1| (-38 (-401 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-600 (-1152)))) (-12 (-1681 (|has| |#1| (-971 (-552)))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1152))))))) (-1703 ((|#1| $) 163) (((-401 (-552)) $) 159 (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) 157 (|has| |#1| (-1017 (-552)))) ((|#3| $) 133) (($ (-931 (-401 (-552)))) 228 (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1152))))) (($ (-931 (-552))) 225 (-1559 (-12 (-1681 (|has| |#1| (-38 (-401 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-600 (-1152)))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1152)))))) (($ (-931 |#1|)) 222 (-1559 (-12 (-1681 (|has| |#1| (-38 (-401 (-552))))) (-1681 (|has| |#1| (-38 (-552)))) (|has| |#3| (-600 (-1152)))) (-12 (-1681 (|has| |#1| (-537))) (-1681 (|has| |#1| (-38 (-401 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-600 (-1152)))) (-12 (-1681 (|has| |#1| (-971 (-552)))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1152))))))) (-3116 (($ $ $ |#3|) 106 (|has| |#1| (-169))) (($ $ $) 210 (|has| |#1| (-544)))) (-2014 (($ $) 152) (($ $ |#3|) 264)) (-1800 (((-671 (-552)) (-671 $)) 132 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 131 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 130) (((-671 |#1|) (-671 $)) 129)) (-4104 (((-111) $ $) 254) (((-111) $ (-627 $)) 253)) (-2040 (((-3 $ "failed") $) 32)) (-2870 (((-111) $) 262)) (-2148 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 234)) (-2914 (($ $) 203 (|has| |#1| (-445)))) (-1375 (($ $) 174 (|has| |#1| (-445))) (($ $ |#3|) 103 (|has| |#1| (-445)))) (-2003 (((-627 $) $) 107)) (-1633 (((-111) $) 94 (|has| |#1| (-888)))) (-1483 (($ $) 219 (|has| |#1| (-544)))) (-3145 (($ $) 220 (|has| |#1| (-544)))) (-2612 (($ $ $) 246) (($ $ $ |#3|) 244)) (-4284 (($ $ $) 245) (($ $ $ |#3|) 243)) (-2061 (($ $ |#1| |#2| $) 170)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 82 (-12 (|has| |#3| (-865 (-373))) (|has| |#1| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 81 (-12 (|has| |#3| (-865 (-552))) (|has| |#1| (-865 (-552)))))) (-2624 (((-111) $) 30)) (-3522 (((-754) $) 167)) (-3850 (((-111) $ $) 248) (((-111) $ (-627 $)) 247)) (-2469 (($ $ $ $ $) 205 (|has| |#1| (-544)))) (-4147 ((|#3| $) 273)) (-1842 (($ (-1148 |#1|) |#3|) 115) (($ (-1148 $) |#3|) 114)) (-3056 (((-627 $) $) 124)) (-3267 (((-111) $) 150)) (-1832 (($ |#1| |#2|) 151) (($ $ |#3| (-754)) 117) (($ $ (-627 |#3|) (-627 (-754))) 116)) (-1355 (($ $ $) 233)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ |#3|) 118)) (-1283 (((-111) $) 263)) (-3465 ((|#2| $) 168) (((-754) $ |#3|) 120) (((-627 (-754)) $ (-627 |#3|)) 119)) (-1816 (($ $ $) 77 (|has| |#1| (-830)))) (-1526 (((-754) $) 272)) (-4093 (($ $ $) 76 (|has| |#1| (-830)))) (-3813 (($ (-1 |#2| |#2|) $) 169)) (-3516 (($ (-1 |#1| |#1|) $) 149)) (-2685 (((-3 |#3| "failed") $) 121)) (-4313 (($ $) 200 (|has| |#1| (-445)))) (-3535 (($ $) 201 (|has| |#1| (-445)))) (-2314 (((-627 $) $) 258)) (-3346 (($ $) 261)) (-3228 (($ $) 202 (|has| |#1| (-445)))) (-2075 (((-627 $) $) 259)) (-3674 (($ $) 260)) (-1981 (($ $) 147)) (-1993 ((|#1| $) 146) (($ $ |#3|) 265)) (-1276 (($ (-627 $)) 92 (|has| |#1| (-445))) (($ $ $) 91 (|has| |#1| (-445)))) (-1683 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3229 (-754))) $ $) 232)) (-2961 (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $) 236) (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $ |#3|) 235)) (-2568 (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -3401 $)) $ $) 238) (((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -3401 $)) $ $ |#3|) 237)) (-2709 (($ $ $) 242) (($ $ $ |#3|) 240)) (-3015 (($ $ $) 241) (($ $ $ |#3|) 239)) (-1595 (((-1134) $) 9)) (-4318 (($ $ $) 208 (|has| |#1| (-544)))) (-1639 (((-627 $) $) 267)) (-4035 (((-3 (-627 $) "failed") $) 112)) (-2746 (((-3 (-627 $) "failed") $) 113)) (-3815 (((-3 (-2 (|:| |var| |#3|) (|:| -4067 (-754))) "failed") $) 111)) (-2481 (((-111) $ $) 250) (((-111) $ (-627 $)) 249)) (-3921 (($ $ $) 230)) (-3002 (($ $) 271)) (-2654 (((-111) $ $) 256)) (-2163 (((-111) $ $) 252) (((-111) $ (-627 $)) 251)) (-4116 (($ $ $) 231)) (-3134 (($ $) 270)) (-1498 (((-1096) $) 10)) (-2902 (((-2 (|:| -1323 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-544)))) (-2692 (((-2 (|:| -1323 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-544)))) (-1960 (((-111) $) 164)) (-1970 ((|#1| $) 165)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 93 (|has| |#1| (-445)))) (-1323 ((|#1| |#1| $) 204 (|has| |#1| (-445))) (($ (-627 $)) 90 (|has| |#1| (-445))) (($ $ $) 89 (|has| |#1| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) 100 (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) 99 (|has| |#1| (-888)))) (-1727 (((-412 $) $) 97 (|has| |#1| (-888)))) (-1303 (((-2 (|:| -1323 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-544)))) (-2761 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-3094 (($ $ |#1|) 217 (|has| |#1| (-544))) (($ $ $) 215 (|has| |#1| (-544)))) (-2899 (($ $ |#1|) 218 (|has| |#1| (-544))) (($ $ $) 216 (|has| |#1| (-544)))) (-3321 (($ $ (-627 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-627 $) (-627 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-627 |#3|) (-627 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-627 |#3|) (-627 $)) 136)) (-1637 (($ $ |#3|) 105 (|has| |#1| (-169)))) (-2942 (($ $ |#3|) 40) (($ $ (-627 |#3|)) 39) (($ $ |#3| (-754)) 38) (($ $ (-627 |#3|) (-627 (-754))) 37)) (-3567 ((|#2| $) 148) (((-754) $ |#3|) 128) (((-627 (-754)) $ (-627 |#3|)) 127)) (-1478 (($ $) 268)) (-3667 (($ $) 266)) (-3562 (((-871 (-373)) $) 80 (-12 (|has| |#3| (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373)))))) (((-871 (-552)) $) 79 (-12 (|has| |#3| (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552)))))) (((-528) $) 78 (-12 (|has| |#3| (-600 (-528))) (|has| |#1| (-600 (-528))))) (($ (-931 (-401 (-552)))) 227 (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1152))))) (($ (-931 (-552))) 224 (-1559 (-12 (-1681 (|has| |#1| (-38 (-401 (-552))))) (|has| |#1| (-38 (-552))) (|has| |#3| (-600 (-1152)))) (-12 (|has| |#1| (-38 (-401 (-552)))) (|has| |#3| (-600 (-1152)))))) (($ (-931 |#1|)) 221 (|has| |#3| (-600 (-1152)))) (((-1134) $) 199 (-12 (|has| |#1| (-1017 (-552))) (|has| |#3| (-600 (-1152))))) (((-931 |#1|) $) 198 (|has| |#3| (-600 (-1152))))) (-3495 ((|#1| $) 173 (|has| |#1| (-445))) (($ $ |#3|) 104 (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 102 (-2520 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-931 |#1|) $) 197 (|has| |#3| (-600 (-1152)))) (($ (-401 (-552))) 70 (-1559 (|has| |#1| (-1017 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))))) (($ $) 83 (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) 166)) (-1889 ((|#1| $ |#2|) 153) (($ $ |#3| (-754)) 126) (($ $ (-627 |#3|) (-627 (-754))) 125)) (-3050 (((-3 $ "failed") $) 71 (-1559 (-2520 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) 28)) (-3417 (($ $ $ (-754)) 171 (|has| |#1| (-169)))) (-3778 (((-111) $ $) 87 (|has| |#1| (-544)))) (-1922 (($) 18 T CONST)) (-1598 (((-3 (-111) "failed") $ $) 257)) (-1933 (($) 29 T CONST)) (-4085 (($ $ $ $ (-754)) 206 (|has| |#1| (-544)))) (-3867 (($ $ $ (-754)) 207 (|has| |#1| (-544)))) (-4251 (($ $ |#3|) 36) (($ $ (-627 |#3|)) 35) (($ $ |#3| (-754)) 34) (($ $ (-627 |#3|) (-627 (-754))) 33)) (-2351 (((-111) $ $) 74 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 73 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 75 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 72 (|has| |#1| (-830)))) (-2407 (($ $ |#1|) 154 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 156 (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) 155 (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-1042 |#1| |#2| |#3|) (-137) (-1028) (-776) (-830)) (T -1042)) +((-4147 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)))) (-1526 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-754)))) (-3002 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-3134 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-1700 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-1478 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-1639 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-1042 *3 *4 *5)))) (-3667 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-1993 (*1 *1 *1 *2) (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)))) (-2014 (*1 *1 *1 *2) (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)))) (-1283 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)))) (-2870 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)))) (-3346 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-3674 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-2075 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-1042 *3 *4 *5)))) (-2314 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-1042 *3 *4 *5)))) (-1598 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)))) (-2654 (*1 *2 *1 *1) (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)))) (-4292 (*1 *2 *1 *1) (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)))) (-4104 (*1 *2 *1 *1) (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)))) (-4104 (*1 *2 *1 *3) (-12 (-5 *3 (-627 *1)) (-4 *1 (-1042 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)))) (-2163 (*1 *2 *1 *1) (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)))) (-2163 (*1 *2 *1 *3) (-12 (-5 *3 (-627 *1)) (-4 *1 (-1042 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)))) (-2481 (*1 *2 *1 *1) (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)))) (-2481 (*1 *2 *1 *3) (-12 (-5 *3 (-627 *1)) (-4 *1 (-1042 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)))) (-3850 (*1 *2 *1 *1) (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)))) (-3850 (*1 *2 *1 *3) (-12 (-5 *3 (-627 *1)) (-4 *1 (-1042 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)))) (-2612 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-4284 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-2612 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)))) (-4284 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)))) (-2709 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-3015 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-2709 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)))) (-3015 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *2 (-830)))) (-2568 (*1 *2 *1 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-2 (|:| -3069 *1) (|:| |gap| (-754)) (|:| -3401 *1))) (-4 *1 (-1042 *3 *4 *5)))) (-2568 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) (-5 *2 (-2 (|:| -3069 *1) (|:| |gap| (-754)) (|:| -3401 *1))) (-4 *1 (-1042 *4 *5 *3)))) (-2961 (*1 *2 *1 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-2 (|:| -3069 *1) (|:| |gap| (-754)) (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-1042 *3 *4 *5)))) (-2961 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) (-5 *2 (-2 (|:| -3069 *1) (|:| |gap| (-754)) (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-1042 *4 *5 *3)))) (-2148 (*1 *2 *1 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-1042 *3 *4 *5)))) (-1355 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-1683 (*1 *2 *1 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3229 (-754)))) (-4 *1 (-1042 *3 *4 *5)))) (-4116 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-3921 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)))) (-4039 (*1 *1 *2) (|partial| -12 (-5 *2 (-931 (-401 (-552)))) (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152))) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-931 (-401 (-552)))) (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152))) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-931 (-401 (-552)))) (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152))) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)))) (-4039 (*1 *1 *2) (|partial| -1559 (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) (-12 (-1681 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))) (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))))) (-1703 (*1 *1 *2) (-1559 (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) (-12 (-1681 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))) (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))))) (-3562 (*1 *1 *2) (-1559 (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) (-12 (-1681 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))) (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))))) (-4039 (*1 *1 *2) (|partial| -1559 (-12 (-5 *2 (-931 *3)) (-12 (-1681 (-4 *3 (-38 (-401 (-552))))) (-1681 (-4 *3 (-38 (-552)))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) (-4 *5 (-830))) (-12 (-5 *2 (-931 *3)) (-12 (-1681 (-4 *3 (-537))) (-1681 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) (-4 *5 (-830))) (-12 (-5 *2 (-931 *3)) (-12 (-1681 (-4 *3 (-971 (-552)))) (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) (-4 *5 (-830))))) (-1703 (*1 *1 *2) (-1559 (-12 (-5 *2 (-931 *3)) (-12 (-1681 (-4 *3 (-38 (-401 (-552))))) (-1681 (-4 *3 (-38 (-552)))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) (-4 *5 (-830))) (-12 (-5 *2 (-931 *3)) (-12 (-1681 (-4 *3 (-537))) (-1681 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) (-4 *5 (-830))) (-12 (-5 *2 (-931 *3)) (-12 (-1681 (-4 *3 (-971 (-552)))) (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152)))) (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) (-4 *5 (-830))))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-931 *3)) (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *5 (-600 (-1152))) (-4 *4 (-776)) (-4 *5 (-830)))) (-3145 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-544)))) (-1483 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-544)))) (-2899 (*1 *1 *1 *2) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-544)))) (-3094 (*1 *1 *1 *2) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-544)))) (-2899 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-544)))) (-3094 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-544)))) (-1340 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-544)))) (-1303 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-2 (|:| -1323 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1042 *3 *4 *5)))) (-2692 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-2 (|:| -1323 *1) (|:| |coef1| *1))) (-4 *1 (-1042 *3 *4 *5)))) (-2902 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-2 (|:| -1323 *1) (|:| |coef2| *1))) (-4 *1 (-1042 *3 *4 *5)))) (-3116 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-544)))) (-4311 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-1042 *3 *4 *5)))) (-4318 (*1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-544)))) (-3867 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *3 (-544)))) (-4085 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *3 (-544)))) (-2469 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-544)))) (-1323 (*1 *2 *2 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-445)))) (-2914 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-445)))) (-3228 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-445)))) (-3535 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-445)))) (-4313 (*1 *1 *1) (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-445))))) +(-13 (-928 |t#1| |t#2| |t#3|) (-10 -8 (-15 -4147 (|t#3| $)) (-15 -1526 ((-754) $)) (-15 -3002 ($ $)) (-15 -3134 ($ $)) (-15 -1700 ($ $)) (-15 -1478 ($ $)) (-15 -1639 ((-627 $) $)) (-15 -3667 ($ $)) (-15 -1993 ($ $ |t#3|)) (-15 -2014 ($ $ |t#3|)) (-15 -1283 ((-111) $)) (-15 -2870 ((-111) $)) (-15 -3346 ($ $)) (-15 -3674 ($ $)) (-15 -2075 ((-627 $) $)) (-15 -2314 ((-627 $) $)) (-15 -1598 ((-3 (-111) "failed") $ $)) (-15 -2654 ((-111) $ $)) (-15 -4292 ((-111) $ $)) (-15 -4104 ((-111) $ $)) (-15 -4104 ((-111) $ (-627 $))) (-15 -2163 ((-111) $ $)) (-15 -2163 ((-111) $ (-627 $))) (-15 -2481 ((-111) $ $)) (-15 -2481 ((-111) $ (-627 $))) (-15 -3850 ((-111) $ $)) (-15 -3850 ((-111) $ (-627 $))) (-15 -2612 ($ $ $)) (-15 -4284 ($ $ $)) (-15 -2612 ($ $ $ |t#3|)) (-15 -4284 ($ $ $ |t#3|)) (-15 -2709 ($ $ $)) (-15 -3015 ($ $ $)) (-15 -2709 ($ $ $ |t#3|)) (-15 -3015 ($ $ $ |t#3|)) (-15 -2568 ((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -3401 $)) $ $)) (-15 -2568 ((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -3401 $)) $ $ |t#3|)) (-15 -2961 ((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -2961 ((-2 (|:| -3069 $) (|:| |gap| (-754)) (|:| -2404 $) (|:| -3401 $)) $ $ |t#3|)) (-15 -2148 ((-2 (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -1355 ($ $ $)) (-15 -1683 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3229 (-754))) $ $)) (-15 -4116 ($ $ $)) (-15 -3921 ($ $ $)) (IF (|has| |t#3| (-600 (-1152))) (PROGN (-6 (-599 (-931 |t#1|))) (-6 (-600 (-931 |t#1|))) (IF (|has| |t#1| (-38 (-401 (-552)))) (PROGN (-15 -4039 ((-3 $ "failed") (-931 (-401 (-552))))) (-15 -1703 ($ (-931 (-401 (-552))))) (-15 -3562 ($ (-931 (-401 (-552))))) (-15 -4039 ((-3 $ "failed") (-931 (-552)))) (-15 -1703 ($ (-931 (-552)))) (-15 -3562 ($ (-931 (-552)))) (IF (|has| |t#1| (-971 (-552))) |%noBranch| (PROGN (-15 -4039 ((-3 $ "failed") (-931 |t#1|))) (-15 -1703 ($ (-931 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-552))) (IF (|has| |t#1| (-38 (-401 (-552)))) |%noBranch| (PROGN (-15 -4039 ((-3 $ "failed") (-931 (-552)))) (-15 -1703 ($ (-931 (-552)))) (-15 -3562 ($ (-931 (-552)))) (IF (|has| |t#1| (-537)) |%noBranch| (PROGN (-15 -4039 ((-3 $ "failed") (-931 |t#1|))) (-15 -1703 ($ (-931 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-552))) |%noBranch| (IF (|has| |t#1| (-38 (-401 (-552)))) |%noBranch| (PROGN (-15 -4039 ((-3 $ "failed") (-931 |t#1|))) (-15 -1703 ($ (-931 |t#1|)))))) (-15 -3562 ($ (-931 |t#1|))) (IF (|has| |t#1| (-1017 (-552))) (-6 (-600 (-1134))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-15 -3145 ($ $)) (-15 -1483 ($ $)) (-15 -2899 ($ $ |t#1|)) (-15 -3094 ($ $ |t#1|)) (-15 -2899 ($ $ $)) (-15 -3094 ($ $ $)) (-15 -1340 ($ $ $)) (-15 -1303 ((-2 (|:| -1323 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2692 ((-2 (|:| -1323 $) (|:| |coef1| $)) $ $)) (-15 -2902 ((-2 (|:| -1323 $) (|:| |coef2| $)) $ $)) (-15 -3116 ($ $ $)) (-15 -4311 ((-627 $) $ $)) (-15 -4318 ($ $ $)) (-15 -3867 ($ $ $ (-754))) (-15 -4085 ($ $ $ $ (-754))) (-15 -2469 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-445)) (PROGN (-15 -1323 (|t#1| |t#1| $)) (-15 -2914 ($ $)) (-15 -3228 ($ $)) (-15 -3535 ($ $)) (-15 -4313 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-599 (-931 |#1|)) |has| |#3| (-600 (-1152))) ((-169) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-600 (-528)) -12 (|has| |#1| (-600 (-528))) (|has| |#3| (-600 (-528)))) ((-600 (-871 (-373))) -12 (|has| |#1| (-600 (-871 (-373)))) (|has| |#3| (-600 (-871 (-373))))) ((-600 (-871 (-552))) -12 (|has| |#1| (-600 (-871 (-552)))) (|has| |#3| (-600 (-871 (-552))))) ((-600 (-931 |#1|)) |has| |#3| (-600 (-1152))) ((-600 (-1134)) -12 (|has| |#1| (-1017 (-552))) (|has| |#3| (-600 (-1152)))) ((-284) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-303 $) . T) ((-320 |#1| |#2|) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-445) -1559 (|has| |#1| (-888)) (|has| |#1| (-445))) ((-506 |#3| |#1|) . T) ((-506 |#3| $) . T) ((-506 $ $) . T) ((-544) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-630 #0#) |has| |#1| (-38 (-401 (-552)))) ((-630 |#1|) . T) ((-630 $) . T) ((-623 (-552)) |has| |#1| (-623 (-552))) ((-623 |#1|) . T) ((-700 #0#) |has| |#1| (-38 (-401 (-552)))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445))) ((-709) . T) ((-830) |has| |#1| (-830)) ((-879 |#3|) . T) ((-865 (-373)) -12 (|has| |#1| (-865 (-373))) (|has| |#3| (-865 (-373)))) ((-865 (-552)) -12 (|has| |#1| (-865 (-552))) (|has| |#3| (-865 (-552)))) ((-928 |#1| |#2| |#3|) . T) ((-888) |has| |#1| (-888)) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 |#1|) . T) ((-1017 |#3|) . T) ((-1034 #0#) |has| |#1| (-38 (-401 (-552)))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) |has| |#1| (-888))) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1280 (((-627 (-1111)) $) 13)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 24) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3122 (((-1111) $) 15)) (-2292 (((-111) $ $) NIL))) +(((-1043) (-13 (-1059) (-10 -8 (-15 -1280 ((-627 (-1111)) $)) (-15 -3122 ((-1111) $))))) (T -1043)) +((-1280 (*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-1043)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1043))))) +(-13 (-1059) (-10 -8 (-15 -1280 ((-627 (-1111)) $)) (-15 -3122 ((-1111) $)))) +((-3024 (((-111) |#3| $) 13)) (-3348 (((-3 $ "failed") |#3| (-900)) 23)) (-2040 (((-3 |#3| "failed") |#3| $) 38)) (-2983 (((-111) |#3| $) 16)) (-1508 (((-111) |#3| $) 14))) +(((-1044 |#1| |#2| |#3|) (-10 -8 (-15 -3348 ((-3 |#1| "failed") |#3| (-900))) (-15 -2040 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2983 ((-111) |#3| |#1|)) (-15 -1508 ((-111) |#3| |#1|)) (-15 -3024 ((-111) |#3| |#1|))) (-1045 |#2| |#3|) (-13 (-828) (-357)) (-1211 |#2|)) (T -1044)) +NIL +(-10 -8 (-15 -3348 ((-3 |#1| "failed") |#3| (-900))) (-15 -2040 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2983 ((-111) |#3| |#1|)) (-15 -1508 ((-111) |#3| |#1|)) (-15 -3024 ((-111) |#3| |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) |#2| $) 21)) (-2422 (((-552) |#2| $) 22)) (-3348 (((-3 $ "failed") |#2| (-900)) 15)) (-3758 ((|#1| |#2| $ |#1|) 13)) (-2040 (((-3 |#2| "failed") |#2| $) 18)) (-2983 (((-111) |#2| $) 19)) (-1508 (((-111) |#2| $) 20)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1376 ((|#2| $) 17)) (-1477 (((-842) $) 11)) (-3030 ((|#1| |#2| $ |#1|) 14)) (-1714 (((-627 $) |#2|) 16)) (-2292 (((-111) $ $) 6))) +(((-1045 |#1| |#2|) (-137) (-13 (-828) (-357)) (-1211 |t#1|)) (T -1045)) +((-2422 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *3)) (-4 *4 (-13 (-828) (-357))) (-4 *3 (-1211 *4)) (-5 *2 (-552)))) (-3024 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *3)) (-4 *4 (-13 (-828) (-357))) (-4 *3 (-1211 *4)) (-5 *2 (-111)))) (-1508 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *3)) (-4 *4 (-13 (-828) (-357))) (-4 *3 (-1211 *4)) (-5 *2 (-111)))) (-2983 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *3)) (-4 *4 (-13 (-828) (-357))) (-4 *3 (-1211 *4)) (-5 *2 (-111)))) (-2040 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1045 *3 *2)) (-4 *3 (-13 (-828) (-357))) (-4 *2 (-1211 *3)))) (-1376 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *2)) (-4 *3 (-13 (-828) (-357))) (-4 *2 (-1211 *3)))) (-1714 (*1 *2 *3) (-12 (-4 *4 (-13 (-828) (-357))) (-4 *3 (-1211 *4)) (-5 *2 (-627 *1)) (-4 *1 (-1045 *4 *3)))) (-3348 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-900)) (-4 *4 (-13 (-828) (-357))) (-4 *1 (-1045 *4 *2)) (-4 *2 (-1211 *4)))) (-3030 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1045 *2 *3)) (-4 *2 (-13 (-828) (-357))) (-4 *3 (-1211 *2)))) (-3758 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1045 *2 *3)) (-4 *2 (-13 (-828) (-357))) (-4 *3 (-1211 *2))))) +(-13 (-1076) (-10 -8 (-15 -2422 ((-552) |t#2| $)) (-15 -3024 ((-111) |t#2| $)) (-15 -1508 ((-111) |t#2| $)) (-15 -2983 ((-111) |t#2| $)) (-15 -2040 ((-3 |t#2| "failed") |t#2| $)) (-15 -1376 (|t#2| $)) (-15 -1714 ((-627 $) |t#2|)) (-15 -3348 ((-3 $ "failed") |t#2| (-900))) (-15 -3030 (|t#1| |t#2| $ |t#1|)) (-15 -3758 (|t#1| |t#2| $ |t#1|)))) +(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-2767 (((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 |#4|) (-627 |#5|) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) (-754)) 96)) (-2211 (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754)) 56)) (-3809 (((-1240) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-754)) 87)) (-1455 (((-754) (-627 |#4|) (-627 |#5|)) 27)) (-4164 (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754)) 58) (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754) (-111)) 60)) (-4004 (((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111) (-111) (-111) (-111)) 78) (((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111)) 79)) (-3562 (((-1134) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) 82)) (-3451 (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-111)) 55)) (-2574 (((-754) (-627 |#4|) (-627 |#5|)) 19))) +(((-1046 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2574 ((-754) (-627 |#4|) (-627 |#5|))) (-15 -1455 ((-754) (-627 |#4|) (-627 |#5|))) (-15 -3451 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-111))) (-15 -2211 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754))) (-15 -2211 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|)) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754) (-111))) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754))) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|)) (-15 -4004 ((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111))) (-15 -4004 ((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -2767 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 |#4|) (-627 |#5|) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) (-754))) (-15 -3562 ((-1134) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)))) (-15 -3809 ((-1240) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-754)))) (-445) (-776) (-830) (-1042 |#1| |#2| |#3|) (-1048 |#1| |#2| |#3| |#4|)) (T -1046)) +((-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-2 (|:| |val| (-627 *8)) (|:| -3443 *9)))) (-5 *4 (-754)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-1240)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-627 *7)) (|:| -3443 *8))) (-4 *7 (-1042 *4 *5 *6)) (-4 *8 (-1048 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-1134)) (-5 *1 (-1046 *4 *5 *6 *7 *8)))) (-2767 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-627 *11)) (|:| |todo| (-627 (-2 (|:| |val| *3) (|:| -3443 *11)))))) (-5 *6 (-754)) (-5 *2 (-627 (-2 (|:| |val| (-627 *10)) (|:| -3443 *11)))) (-5 *3 (-627 *10)) (-5 *4 (-627 *11)) (-4 *10 (-1042 *7 *8 *9)) (-4 *11 (-1048 *7 *8 *9 *10)) (-4 *7 (-445)) (-4 *8 (-776)) (-4 *9 (-830)) (-5 *1 (-1046 *7 *8 *9 *10 *11)))) (-4004 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-627 *9)) (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))) (-4004 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-627 *9)) (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))) (-4164 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-4164 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-754)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *3 (-1042 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1048 *6 *7 *8 *3)))) (-4164 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-754)) (-5 *6 (-111)) (-4 *7 (-445)) (-4 *8 (-776)) (-4 *9 (-830)) (-4 *3 (-1042 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1046 *7 *8 *9 *3 *4)) (-4 *4 (-1048 *7 *8 *9 *3)))) (-2211 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-2211 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-754)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *3 (-1042 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1048 *6 *7 *8 *3)))) (-3451 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *3 (-1042 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1048 *6 *7 *8 *3)))) (-1455 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 *9)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-754)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))) (-2574 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 *9)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-754)) (-5 *1 (-1046 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -2574 ((-754) (-627 |#4|) (-627 |#5|))) (-15 -1455 ((-754) (-627 |#4|) (-627 |#5|))) (-15 -3451 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-111))) (-15 -2211 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754))) (-15 -2211 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|)) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754) (-111))) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754))) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|)) (-15 -4004 ((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111))) (-15 -4004 ((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -2767 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 |#4|) (-627 |#5|) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) (-754))) (-15 -3562 ((-1134) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)))) (-15 -3809 ((-1240) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-754)))) +((-3203 (((-111) |#5| $) 21)) (-2004 (((-111) |#5| $) 24)) (-2790 (((-111) |#5| $) 16) (((-111) $) 45)) (-3383 (((-627 $) |#5| $) NIL) (((-627 $) (-627 |#5|) $) 77) (((-627 $) (-627 |#5|) (-627 $)) 75) (((-627 $) |#5| (-627 $)) 78)) (-4168 (($ $ |#5|) NIL) (((-627 $) |#5| $) NIL) (((-627 $) |#5| (-627 $)) 60) (((-627 $) (-627 |#5|) $) 62) (((-627 $) (-627 |#5|) (-627 $)) 64)) (-2733 (((-627 $) |#5| $) NIL) (((-627 $) |#5| (-627 $)) 54) (((-627 $) (-627 |#5|) $) 56) (((-627 $) (-627 |#5|) (-627 $)) 58)) (-3612 (((-111) |#5| $) 27))) +(((-1047 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4168 ((-627 |#1|) (-627 |#5|) (-627 |#1|))) (-15 -4168 ((-627 |#1|) (-627 |#5|) |#1|)) (-15 -4168 ((-627 |#1|) |#5| (-627 |#1|))) (-15 -4168 ((-627 |#1|) |#5| |#1|)) (-15 -2733 ((-627 |#1|) (-627 |#5|) (-627 |#1|))) (-15 -2733 ((-627 |#1|) (-627 |#5|) |#1|)) (-15 -2733 ((-627 |#1|) |#5| (-627 |#1|))) (-15 -2733 ((-627 |#1|) |#5| |#1|)) (-15 -3383 ((-627 |#1|) |#5| (-627 |#1|))) (-15 -3383 ((-627 |#1|) (-627 |#5|) (-627 |#1|))) (-15 -3383 ((-627 |#1|) (-627 |#5|) |#1|)) (-15 -3383 ((-627 |#1|) |#5| |#1|)) (-15 -2004 ((-111) |#5| |#1|)) (-15 -2790 ((-111) |#1|)) (-15 -3612 ((-111) |#5| |#1|)) (-15 -3203 ((-111) |#5| |#1|)) (-15 -2790 ((-111) |#5| |#1|)) (-15 -4168 (|#1| |#1| |#5|))) (-1048 |#2| |#3| |#4| |#5|) (-445) (-776) (-830) (-1042 |#2| |#3| |#4|)) (T -1047)) +NIL +(-10 -8 (-15 -4168 ((-627 |#1|) (-627 |#5|) (-627 |#1|))) (-15 -4168 ((-627 |#1|) (-627 |#5|) |#1|)) (-15 -4168 ((-627 |#1|) |#5| (-627 |#1|))) (-15 -4168 ((-627 |#1|) |#5| |#1|)) (-15 -2733 ((-627 |#1|) (-627 |#5|) (-627 |#1|))) (-15 -2733 ((-627 |#1|) (-627 |#5|) |#1|)) (-15 -2733 ((-627 |#1|) |#5| (-627 |#1|))) (-15 -2733 ((-627 |#1|) |#5| |#1|)) (-15 -3383 ((-627 |#1|) |#5| (-627 |#1|))) (-15 -3383 ((-627 |#1|) (-627 |#5|) (-627 |#1|))) (-15 -3383 ((-627 |#1|) (-627 |#5|) |#1|)) (-15 -3383 ((-627 |#1|) |#5| |#1|)) (-15 -2004 ((-111) |#5| |#1|)) (-15 -2790 ((-111) |#1|)) (-15 -3612 ((-111) |#5| |#1|)) (-15 -3203 ((-111) |#5| |#1|)) (-15 -2790 ((-111) |#5| |#1|)) (-15 -4168 (|#1| |#1| |#5|))) +((-1465 (((-111) $ $) 7)) (-1764 (((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 |#4|)))) (-627 |#4|)) 85)) (-1361 (((-627 $) (-627 |#4|)) 86) (((-627 $) (-627 |#4|) (-111)) 111)) (-1853 (((-627 |#3|) $) 33)) (-2730 (((-111) $) 26)) (-3648 (((-111) $) 17 (|has| |#1| (-544)))) (-3691 (((-111) |#4| $) 101) (((-111) $) 97)) (-1553 ((|#4| |#4| $) 92)) (-4014 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| $) 126)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) 27)) (-4031 (((-111) $ (-754)) 44)) (-2536 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4366))) (((-3 |#4| "failed") $ |#3|) 79)) (-3887 (($) 45 T CONST)) (-3569 (((-111) $) 22 (|has| |#1| (-544)))) (-2330 (((-111) $ $) 24 (|has| |#1| (-544)))) (-2165 (((-111) $ $) 23 (|has| |#1| (-544)))) (-3188 (((-111) $) 25 (|has| |#1| (-544)))) (-3238 (((-627 |#4|) (-627 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-4097 (((-627 |#4|) (-627 |#4|) $) 18 (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) 19 (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) 36)) (-1703 (($ (-627 |#4|)) 35)) (-3351 (((-3 $ "failed") $) 82)) (-4167 ((|#4| |#4| $) 89)) (-3370 (($ $) 68 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#4| $) 67 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-4104 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-2934 ((|#4| |#4| $) 87)) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4366))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2415 (((-2 (|:| -4267 (-627 |#4|)) (|:| -2849 (-627 |#4|))) $) 105)) (-3203 (((-111) |#4| $) 136)) (-2004 (((-111) |#4| $) 133)) (-2790 (((-111) |#4| $) 137) (((-111) $) 134)) (-3215 (((-627 |#4|) $) 52 (|has| $ (-6 -4366)))) (-3850 (((-111) |#4| $) 104) (((-111) $) 103)) (-4147 ((|#3| $) 34)) (-1602 (((-111) $ (-754)) 43)) (-3114 (((-627 |#4|) $) 53 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) 47)) (-4198 (((-627 |#3|) $) 32)) (-1927 (((-111) |#3| $) 31)) (-3971 (((-111) $ (-754)) 42)) (-1595 (((-1134) $) 9)) (-2661 (((-3 |#4| (-627 $)) |#4| |#4| $) 128)) (-4318 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| |#4| $) 127)) (-1294 (((-3 |#4| "failed") $) 83)) (-4314 (((-627 $) |#4| $) 129)) (-2338 (((-3 (-111) (-627 $)) |#4| $) 132)) (-3984 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3383 (((-627 $) |#4| $) 125) (((-627 $) (-627 |#4|) $) 124) (((-627 $) (-627 |#4|) (-627 $)) 123) (((-627 $) |#4| (-627 $)) 122)) (-1892 (($ |#4| $) 117) (($ (-627 |#4|) $) 116)) (-4122 (((-627 |#4|) $) 107)) (-2481 (((-111) |#4| $) 99) (((-111) $) 95)) (-3921 ((|#4| |#4| $) 90)) (-2654 (((-111) $ $) 110)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-2163 (((-111) |#4| $) 100) (((-111) $) 96)) (-4116 ((|#4| |#4| $) 91)) (-1498 (((-1096) $) 10)) (-3340 (((-3 |#4| "failed") $) 84)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3672 (((-3 $ "failed") $ |#4|) 78)) (-4168 (($ $ |#4|) 77) (((-627 $) |#4| $) 115) (((-627 $) |#4| (-627 $)) 114) (((-627 $) (-627 |#4|) $) 113) (((-627 $) (-627 |#4|) (-627 $)) 112)) (-3509 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) 38)) (-1275 (((-111) $) 41)) (-2373 (($) 40)) (-3567 (((-754) $) 106)) (-1509 (((-754) |#4| $) 54 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4366)))) (-2973 (($ $) 39)) (-3562 (((-528) $) 69 (|has| |#4| (-600 (-528))))) (-1490 (($ (-627 |#4|)) 60)) (-4237 (($ $ |#3|) 28)) (-2286 (($ $ |#3|) 30)) (-2462 (($ $) 88)) (-3911 (($ $ |#3|) 29)) (-1477 (((-842) $) 11) (((-627 |#4|) $) 37)) (-1641 (((-754) $) 76 (|has| |#3| (-362)))) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-2925 (((-111) $ (-1 (-111) |#4| (-627 |#4|))) 98)) (-2733 (((-627 $) |#4| $) 121) (((-627 $) |#4| (-627 $)) 120) (((-627 $) (-627 |#4|) $) 119) (((-627 $) (-627 |#4|) (-627 $)) 118)) (-3299 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4366)))) (-2199 (((-627 |#3|) $) 81)) (-3612 (((-111) |#4| $) 135)) (-3528 (((-111) |#3| $) 80)) (-2292 (((-111) $ $) 6)) (-1383 (((-754) $) 46 (|has| $ (-6 -4366))))) +(((-1048 |#1| |#2| |#3| |#4|) (-137) (-445) (-776) (-830) (-1042 |t#1| |t#2| |t#3|)) (T -1048)) +((-2790 (*1 *2 *3 *1) (-12 (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111)))) (-3203 (*1 *2 *3 *1) (-12 (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111)))) (-3612 (*1 *2 *3 *1) (-12 (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111)))) (-2790 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) (-2004 (*1 *2 *3 *1) (-12 (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111)))) (-2338 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-3 (-111) (-627 *1))) (-4 *1 (-1048 *4 *5 *6 *3)))) (-3984 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *1)))) (-4 *1 (-1048 *4 *5 *6 *3)))) (-3984 (*1 *2 *3 *1) (-12 (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111)))) (-4314 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *3)))) (-2661 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-3 *3 (-627 *1))) (-4 *1 (-1048 *4 *5 *6 *3)))) (-4318 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *1)))) (-4 *1 (-1048 *4 *5 *6 *3)))) (-4014 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *1)))) (-4 *1 (-1048 *4 *5 *6 *3)))) (-3383 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *3)))) (-3383 (*1 *2 *3 *1) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *7)))) (-3383 (*1 *2 *3 *2) (-12 (-5 *2 (-627 *1)) (-5 *3 (-627 *7)) (-4 *1 (-1048 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)))) (-3383 (*1 *2 *3 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)))) (-2733 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *3)))) (-2733 (*1 *2 *3 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)))) (-2733 (*1 *2 *3 *1) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *7)))) (-2733 (*1 *2 *3 *2) (-12 (-5 *2 (-627 *1)) (-5 *3 (-627 *7)) (-4 *1 (-1048 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)))) (-1892 (*1 *1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *2)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) (-1892 (*1 *1 *2 *1) (-12 (-5 *2 (-627 *6)) (-4 *1 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)))) (-4168 (*1 *2 *3 *1) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *3)))) (-4168 (*1 *2 *3 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)))) (-4168 (*1 *2 *3 *1) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *7)))) (-4168 (*1 *2 *3 *2) (-12 (-5 *2 (-627 *1)) (-5 *3 (-627 *7)) (-4 *1 (-1048 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)))) (-1361 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-1048 *5 *6 *7 *8))))) +(-13 (-1182 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2790 ((-111) |t#4| $)) (-15 -3203 ((-111) |t#4| $)) (-15 -3612 ((-111) |t#4| $)) (-15 -2790 ((-111) $)) (-15 -2004 ((-111) |t#4| $)) (-15 -2338 ((-3 (-111) (-627 $)) |t#4| $)) (-15 -3984 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 $))) |t#4| $)) (-15 -3984 ((-111) |t#4| $)) (-15 -4314 ((-627 $) |t#4| $)) (-15 -2661 ((-3 |t#4| (-627 $)) |t#4| |t#4| $)) (-15 -4318 ((-627 (-2 (|:| |val| |t#4|) (|:| -3443 $))) |t#4| |t#4| $)) (-15 -4014 ((-627 (-2 (|:| |val| |t#4|) (|:| -3443 $))) |t#4| $)) (-15 -3383 ((-627 $) |t#4| $)) (-15 -3383 ((-627 $) (-627 |t#4|) $)) (-15 -3383 ((-627 $) (-627 |t#4|) (-627 $))) (-15 -3383 ((-627 $) |t#4| (-627 $))) (-15 -2733 ((-627 $) |t#4| $)) (-15 -2733 ((-627 $) |t#4| (-627 $))) (-15 -2733 ((-627 $) (-627 |t#4|) $)) (-15 -2733 ((-627 $) (-627 |t#4|) (-627 $))) (-15 -1892 ($ |t#4| $)) (-15 -1892 ($ (-627 |t#4|) $)) (-15 -4168 ((-627 $) |t#4| $)) (-15 -4168 ((-627 $) |t#4| (-627 $))) (-15 -4168 ((-627 $) (-627 |t#4|) $)) (-15 -4168 ((-627 $) (-627 |t#4|) (-627 $))) (-15 -1361 ((-627 $) (-627 |t#4|) (-111))))) +(((-34) . T) ((-101) . T) ((-599 (-627 |#4|)) . T) ((-599 (-842)) . T) ((-148 |#4|) . T) ((-600 (-528)) |has| |#4| (-600 (-528))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-482 |#4|) . T) ((-506 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-955 |#1| |#2| |#3| |#4|) . T) ((-1076) . T) ((-1182 |#1| |#2| |#3| |#4|) . T) ((-1189) . T)) +((-2788 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#5|) 81)) (-2897 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|) 113)) (-4069 (((-627 |#5|) |#4| |#5|) 70)) (-2569 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|) 46) (((-111) |#4| |#5|) 53)) (-4114 (((-1240)) 37)) (-2876 (((-1240)) 26)) (-2580 (((-1240) (-1134) (-1134) (-1134)) 33)) (-4325 (((-1240) (-1134) (-1134) (-1134)) 22)) (-1850 (((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#4| |#4| |#5|) 96)) (-1635 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#3| (-111)) 107) (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5| (-111) (-111)) 50)) (-3308 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|) 102))) +(((-1049 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4325 ((-1240) (-1134) (-1134) (-1134))) (-15 -2876 ((-1240))) (-15 -2580 ((-1240) (-1134) (-1134) (-1134))) (-15 -4114 ((-1240))) (-15 -1850 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -1635 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -1635 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#3| (-111))) (-15 -3308 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -2897 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -2569 ((-111) |#4| |#5|)) (-15 -2569 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|)) (-15 -4069 ((-627 |#5|) |#4| |#5|)) (-15 -2788 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#5|))) (-445) (-776) (-830) (-1042 |#1| |#2| |#3|) (-1048 |#1| |#2| |#3| |#4|)) (T -1049)) +((-2788 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-4069 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 *4)) (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-2569 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *4)))) (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-2569 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-2897 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-3308 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-1635 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 (-2 (|:| |val| (-627 *8)) (|:| -3443 *9)))) (-5 *5 (-111)) (-4 *8 (-1042 *6 *7 *4)) (-4 *9 (-1048 *6 *7 *4 *8)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *4 (-830)) (-5 *2 (-627 (-2 (|:| |val| *8) (|:| -3443 *9)))) (-5 *1 (-1049 *6 *7 *4 *8 *9)))) (-1635 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *3 (-1042 *6 *7 *8)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) (-5 *1 (-1049 *6 *7 *8 *3 *4)) (-4 *4 (-1048 *6 *7 *8 *3)))) (-1850 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))) (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-4114 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) (-5 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6)))) (-2580 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) (-5 *1 (-1049 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) (-2876 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) (-5 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6)))) (-4325 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) (-5 *1 (-1049 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7))))) +(-10 -7 (-15 -4325 ((-1240) (-1134) (-1134) (-1134))) (-15 -2876 ((-1240))) (-15 -2580 ((-1240) (-1134) (-1134) (-1134))) (-15 -4114 ((-1240))) (-15 -1850 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -1635 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -1635 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#3| (-111))) (-15 -3308 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -2897 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -2569 ((-111) |#4| |#5|)) (-15 -2569 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|)) (-15 -4069 ((-627 |#5|) |#4| |#5|)) (-15 -2788 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#5|))) +((-1465 (((-111) $ $) NIL)) (-2816 (((-1188) $) 13)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2920 (((-1111) $) 10)) (-1477 (((-842) $) 22) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) +(((-1050) (-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $)) (-15 -2816 ((-1188) $))))) (T -1050)) +((-2920 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1050)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1050))))) +(-13 (-1059) (-10 -8 (-15 -2920 ((-1111) $)) (-15 -2816 ((-1188) $)))) +((-1465 (((-111) $ $) NIL)) (-3112 (((-1152) $) 8)) (-1595 (((-1134) $) 16)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 13))) +(((-1051 |#1|) (-13 (-1076) (-10 -8 (-15 -3112 ((-1152) $)))) (-1152)) (T -1051)) +((-3112 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1051 *3)) (-14 *3 *2)))) +(-13 (-1076) (-10 -8 (-15 -3112 ((-1152) $)))) +((-1465 (((-111) $ $) NIL)) (-1792 (($ $ (-627 (-1152)) (-1 (-111) (-627 |#3|))) 33)) (-2269 (($ |#3| |#3|) 22) (($ |#3| |#3| (-627 (-1152))) 20)) (-3089 ((|#3| $) 13)) (-4039 (((-3 (-288 |#3|) "failed") $) 58)) (-1703 (((-288 |#3|) $) NIL)) (-4287 (((-627 (-1152)) $) 16)) (-3763 (((-871 |#1|) $) 11)) (-3078 ((|#3| $) 12)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1985 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-900)) 39)) (-1477 (((-842) $) 86) (($ (-288 |#3|)) 21)) (-2292 (((-111) $ $) 36))) +(((-1052 |#1| |#2| |#3|) (-13 (-1076) (-280 |#3| |#3|) (-1017 (-288 |#3|)) (-10 -8 (-15 -2269 ($ |#3| |#3|)) (-15 -2269 ($ |#3| |#3| (-627 (-1152)))) (-15 -1792 ($ $ (-627 (-1152)) (-1 (-111) (-627 |#3|)))) (-15 -3763 ((-871 |#1|) $)) (-15 -3078 (|#3| $)) (-15 -3089 (|#3| $)) (-15 -1985 (|#3| $ |#3| (-900))) (-15 -4287 ((-627 (-1152)) $)))) (-1076) (-13 (-1028) (-865 |#1|) (-830) (-600 (-871 |#1|))) (-13 (-424 |#2|) (-865 |#1|) (-600 (-871 |#1|)))) (T -1052)) +((-2269 (*1 *1 *2 *2) (-12 (-4 *3 (-1076)) (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))) (-5 *1 (-1052 *3 *4 *2)) (-4 *2 (-13 (-424 *4) (-865 *3) (-600 (-871 *3)))))) (-2269 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-627 (-1152))) (-4 *4 (-1076)) (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) (-5 *1 (-1052 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-865 *4) (-600 (-871 *4)))))) (-1792 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-1 (-111) (-627 *6))) (-4 *6 (-13 (-424 *5) (-865 *4) (-600 (-871 *4)))) (-4 *4 (-1076)) (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) (-5 *1 (-1052 *4 *5 *6)))) (-3763 (*1 *2 *1) (-12 (-4 *3 (-1076)) (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 *2))) (-5 *2 (-871 *3)) (-5 *1 (-1052 *3 *4 *5)) (-4 *5 (-13 (-424 *4) (-865 *3) (-600 *2))))) (-3078 (*1 *2 *1) (-12 (-4 *3 (-1076)) (-4 *2 (-13 (-424 *4) (-865 *3) (-600 (-871 *3)))) (-5 *1 (-1052 *3 *4 *2)) (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))))) (-3089 (*1 *2 *1) (-12 (-4 *3 (-1076)) (-4 *2 (-13 (-424 *4) (-865 *3) (-600 (-871 *3)))) (-5 *1 (-1052 *3 *4 *2)) (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))))) (-1985 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-900)) (-4 *4 (-1076)) (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) (-5 *1 (-1052 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-865 *4) (-600 (-871 *4)))))) (-4287 (*1 *2 *1) (-12 (-4 *3 (-1076)) (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))) (-5 *2 (-627 (-1152))) (-5 *1 (-1052 *3 *4 *5)) (-4 *5 (-13 (-424 *4) (-865 *3) (-600 (-871 *3))))))) +(-13 (-1076) (-280 |#3| |#3|) (-1017 (-288 |#3|)) (-10 -8 (-15 -2269 ($ |#3| |#3|)) (-15 -2269 ($ |#3| |#3| (-627 (-1152)))) (-15 -1792 ($ $ (-627 (-1152)) (-1 (-111) (-627 |#3|)))) (-15 -3763 ((-871 |#1|) $)) (-15 -3078 (|#3| $)) (-15 -3089 (|#3| $)) (-15 -1985 (|#3| $ |#3| (-900))) (-15 -4287 ((-627 (-1152)) $)))) +((-1465 (((-111) $ $) NIL)) (-1760 (($ (-627 (-1052 |#1| |#2| |#3|))) 13)) (-3773 (((-627 (-1052 |#1| |#2| |#3|)) $) 20)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1985 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-900)) 26)) (-1477 (((-842) $) 16)) (-2292 (((-111) $ $) 19))) +(((-1053 |#1| |#2| |#3|) (-13 (-1076) (-280 |#3| |#3|) (-10 -8 (-15 -1760 ($ (-627 (-1052 |#1| |#2| |#3|)))) (-15 -3773 ((-627 (-1052 |#1| |#2| |#3|)) $)) (-15 -1985 (|#3| $ |#3| (-900))))) (-1076) (-13 (-1028) (-865 |#1|) (-830) (-600 (-871 |#1|))) (-13 (-424 |#2|) (-865 |#1|) (-600 (-871 |#1|)))) (T -1053)) +((-1760 (*1 *1 *2) (-12 (-5 *2 (-627 (-1052 *3 *4 *5))) (-4 *3 (-1076)) (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))) (-4 *5 (-13 (-424 *4) (-865 *3) (-600 (-871 *3)))) (-5 *1 (-1053 *3 *4 *5)))) (-3773 (*1 *2 *1) (-12 (-4 *3 (-1076)) (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))) (-5 *2 (-627 (-1052 *3 *4 *5))) (-5 *1 (-1053 *3 *4 *5)) (-4 *5 (-13 (-424 *4) (-865 *3) (-600 (-871 *3)))))) (-1985 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-900)) (-4 *4 (-1076)) (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) (-5 *1 (-1053 *4 *5 *2)) (-4 *2 (-13 (-424 *5) (-865 *4) (-600 (-871 *4))))))) +(-13 (-1076) (-280 |#3| |#3|) (-10 -8 (-15 -1760 ($ (-627 (-1052 |#1| |#2| |#3|)))) (-15 -3773 ((-627 (-1052 |#1| |#2| |#3|)) $)) (-15 -1985 (|#3| $ |#3| (-900))))) +((-3001 (((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111) (-111)) 75) (((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|))) 77) (((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111)) 76))) +(((-1054 |#1| |#2|) (-10 -7 (-15 -3001 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111))) (-15 -3001 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)))) (-15 -3001 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111) (-111)))) (-13 (-301) (-144)) (-627 (-1152))) (T -1054)) +((-3001 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-5 *2 (-627 (-2 (|:| -2667 (-1148 *5)) (|:| -3133 (-627 (-931 *5)))))) (-5 *1 (-1054 *5 *6)) (-5 *3 (-627 (-931 *5))) (-14 *6 (-627 (-1152))))) (-3001 (*1 *2 *3) (-12 (-4 *4 (-13 (-301) (-144))) (-5 *2 (-627 (-2 (|:| -2667 (-1148 *4)) (|:| -3133 (-627 (-931 *4)))))) (-5 *1 (-1054 *4 *5)) (-5 *3 (-627 (-931 *4))) (-14 *5 (-627 (-1152))))) (-3001 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-5 *2 (-627 (-2 (|:| -2667 (-1148 *5)) (|:| -3133 (-627 (-931 *5)))))) (-5 *1 (-1054 *5 *6)) (-5 *3 (-627 (-931 *5))) (-14 *6 (-627 (-1152)))))) +(-10 -7 (-15 -3001 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111))) (-15 -3001 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)))) (-15 -3001 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111) (-111)))) +((-1727 (((-412 |#3|) |#3|) 18))) +(((-1055 |#1| |#2| |#3|) (-10 -7 (-15 -1727 ((-412 |#3|) |#3|))) (-1211 (-401 (-552))) (-13 (-357) (-144) (-707 (-401 (-552)) |#1|)) (-1211 |#2|)) (T -1055)) +((-1727 (*1 *2 *3) (-12 (-4 *4 (-1211 (-401 (-552)))) (-4 *5 (-13 (-357) (-144) (-707 (-401 (-552)) *4))) (-5 *2 (-412 *3)) (-5 *1 (-1055 *4 *5 *3)) (-4 *3 (-1211 *5))))) +(-10 -7 (-15 -1727 ((-412 |#3|) |#3|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 126)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-357)))) (-3245 (($ $) NIL (|has| |#1| (-357)))) (-4058 (((-111) $) NIL (|has| |#1| (-357)))) (-3841 (((-671 |#1|) (-1235 $)) NIL) (((-671 |#1|)) 115)) (-3385 ((|#1| $) 119)) (-2038 (((-1162 (-900) (-754)) (-552)) NIL (|has| |#1| (-343)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL (|has| |#1| (-357)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-357)))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-3307 (((-754)) 40 (|has| |#1| (-362)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) NIL)) (-2342 (($ (-1235 |#1|) (-1235 $)) NIL) (($ (-1235 |#1|)) 43)) (-3727 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-4088 (((-671 |#1|) $ (-1235 $)) NIL) (((-671 |#1|) $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 106) (((-671 |#1|) (-671 $)) 101)) (-2091 (($ |#2|) 61) (((-3 $ "failed") (-401 |#2|)) NIL (|has| |#1| (-357)))) (-2040 (((-3 $ "failed") $) NIL)) (-4154 (((-900)) 77)) (-1279 (($) 44 (|has| |#1| (-362)))) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-2740 (($) NIL (|has| |#1| (-343)))) (-1415 (((-111) $) NIL (|has| |#1| (-343)))) (-4294 (($ $ (-754)) NIL (|has| |#1| (-343))) (($ $) NIL (|has| |#1| (-343)))) (-1633 (((-111) $) NIL (|has| |#1| (-357)))) (-2641 (((-900) $) NIL (|has| |#1| (-343))) (((-816 (-900)) $) NIL (|has| |#1| (-343)))) (-2624 (((-111) $) NIL)) (-2349 ((|#1| $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-4205 ((|#2| $) 84 (|has| |#1| (-357)))) (-2886 (((-900) $) 131 (|has| |#1| (-362)))) (-2079 ((|#2| $) 58)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| |#1| (-357)))) (-3002 (($) NIL (|has| |#1| (-343)) CONST)) (-4153 (($ (-900)) 125 (|has| |#1| (-362)))) (-1498 (((-1096) $) NIL)) (-2220 (($) 121)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3703 (((-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552))))) NIL (|has| |#1| (-343)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-1637 ((|#1| (-1235 $)) NIL) ((|#1|) 109)) (-4018 (((-754) $) NIL (|has| |#1| (-343))) (((-3 (-754) "failed") $ $) NIL (|has| |#1| (-343)))) (-2942 (($ $) NIL (-1559 (-12 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-754)) NIL (-1559 (-12 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))))) (($ $ (-1 |#1| |#1|) (-754)) NIL (|has| |#1| (-357))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-357)))) (-4070 (((-671 |#1|) (-1235 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-357)))) (-1376 ((|#2|) 73)) (-3439 (($) NIL (|has| |#1| (-343)))) (-3133 (((-1235 |#1|) $ (-1235 $)) 89) (((-671 |#1|) (-1235 $) (-1235 $)) NIL) (((-1235 |#1|) $) 71) (((-671 |#1|) (-1235 $)) 85)) (-3562 (((-1235 |#1|) $) NIL) (($ (-1235 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (|has| |#1| (-343)))) (-1477 (((-842) $) 57) (($ (-552)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-357))) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-357)) (|has| |#1| (-1017 (-401 (-552))))))) (-3050 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-2410 ((|#2| $) 82)) (-3995 (((-754)) 75)) (-2957 (((-1235 $)) 81)) (-3778 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1922 (($) 30 T CONST)) (-1933 (($) 19 T CONST)) (-4251 (($ $) NIL (-1559 (-12 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-754)) NIL (-1559 (-12 (|has| |#1| (-228)) (|has| |#1| (-357))) (|has| |#1| (-343)))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-357)) (|has| |#1| (-879 (-1152))))) (($ $ (-1 |#1| |#1|) (-754)) NIL (|has| |#1| (-357))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-357)))) (-2292 (((-111) $ $) 63)) (-2407 (($ $ $) NIL (|has| |#1| (-357)))) (-2396 (($ $) 67) (($ $ $) NIL)) (-2384 (($ $ $) 65)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357)))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-401 (-552)) $) NIL (|has| |#1| (-357))) (($ $ (-401 (-552))) NIL (|has| |#1| (-357))))) +(((-1056 |#1| |#2| |#3|) (-707 |#1| |#2|) (-169) (-1211 |#1|) |#2|) (T -1056)) +NIL +(-707 |#1| |#2|) +((-1727 (((-412 |#3|) |#3|) 19))) +(((-1057 |#1| |#2| |#3|) (-10 -7 (-15 -1727 ((-412 |#3|) |#3|))) (-1211 (-401 (-931 (-552)))) (-13 (-357) (-144) (-707 (-401 (-931 (-552))) |#1|)) (-1211 |#2|)) (T -1057)) +((-1727 (*1 *2 *3) (-12 (-4 *4 (-1211 (-401 (-931 (-552))))) (-4 *5 (-13 (-357) (-144) (-707 (-401 (-931 (-552))) *4))) (-5 *2 (-412 *3)) (-5 *1 (-1057 *4 *5 *3)) (-4 *3 (-1211 *5))))) +(-10 -7 (-15 -1727 ((-412 |#3|) |#3|))) +((-1465 (((-111) $ $) NIL)) (-1816 (($ $ $) 14)) (-4093 (($ $ $) 15)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1695 (($) 6)) (-3562 (((-1152) $) 18)) (-1477 (((-842) $) 12)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 13)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 8))) +(((-1058) (-13 (-830) (-10 -8 (-15 -1695 ($)) (-15 -3562 ((-1152) $))))) (T -1058)) +((-1695 (*1 *1) (-5 *1 (-1058))) (-3562 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1058))))) +(-13 (-830) (-10 -8 (-15 -1695 ($)) (-15 -3562 ((-1152) $)))) +((-1465 (((-111) $ $) 7)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (((-1157) $) 15) (($ (-1157)) 14)) (-2292 (((-111) $ $) 6))) +(((-1059) (-137)) (T -1059)) NIL (-13 (-92)) -(((-92) . T) ((-101) . T) ((-597 (-839)) . T) ((-597 (-1154)) . T) ((-1073) . T)) -((-2713 ((|#1| |#1| (-1 (-552) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-112) |#1|)) 20)) (-1837 (((-1237)) 15)) (-3398 (((-625 |#1|)) 9))) -(((-1057 |#1|) (-10 -7 (-15 -1837 ((-1237))) (-15 -3398 ((-625 |#1|))) (-15 -2713 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2713 (|#1| |#1| (-1 (-552) |#1| |#1|)))) (-131)) (T -1057)) -((-2713 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-552) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1057 *2)))) (-2713 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1057 *2)))) (-3398 (*1 *2) (-12 (-5 *2 (-625 *3)) (-5 *1 (-1057 *3)) (-4 *3 (-131)))) (-1837 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1057 *3)) (-4 *3 (-131))))) -(-10 -7 (-15 -1837 ((-1237))) (-15 -3398 ((-625 |#1|))) (-15 -2713 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2713 (|#1| |#1| (-1 (-552) |#1| |#1|)))) -((-2742 (($ (-108) $) 16)) (-2751 (((-3 (-108) "failed") (-1149) $) 15)) (-3600 (($) 7)) (-2732 (($) 17)) (-2723 (($) 18)) (-2760 (((-625 (-173)) $) 10)) (-1683 (((-839) $) 21))) -(((-1058) (-13 (-597 (-839)) (-10 -8 (-15 -3600 ($)) (-15 -2760 ((-625 (-173)) $)) (-15 -2751 ((-3 (-108) "failed") (-1149) $)) (-15 -2742 ($ (-108) $)) (-15 -2732 ($)) (-15 -2723 ($))))) (T -1058)) -((-3600 (*1 *1) (-5 *1 (-1058))) (-2760 (*1 *2 *1) (-12 (-5 *2 (-625 (-173))) (-5 *1 (-1058)))) (-2751 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-108)) (-5 *1 (-1058)))) (-2742 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1058)))) (-2732 (*1 *1) (-5 *1 (-1058))) (-2723 (*1 *1) (-5 *1 (-1058)))) -(-13 (-597 (-839)) (-10 -8 (-15 -3600 ($)) (-15 -2760 ((-625 (-173)) $)) (-15 -2751 ((-3 (-108) "failed") (-1149) $)) (-15 -2742 ($ (-108) $)) (-15 -2732 ($)) (-15 -2723 ($)))) -((-2770 (((-1232 (-669 |#1|)) (-625 (-669 |#1|))) 42) (((-1232 (-669 (-928 |#1|))) (-625 (-1149)) (-669 (-928 |#1|))) 63) (((-1232 (-669 (-402 (-928 |#1|)))) (-625 (-1149)) (-669 (-402 (-928 |#1|)))) 79)) (-2780 (((-1232 |#1|) (-669 |#1|) (-625 (-669 |#1|))) 36))) -(((-1059 |#1|) (-10 -7 (-15 -2770 ((-1232 (-669 (-402 (-928 |#1|)))) (-625 (-1149)) (-669 (-402 (-928 |#1|))))) (-15 -2770 ((-1232 (-669 (-928 |#1|))) (-625 (-1149)) (-669 (-928 |#1|)))) (-15 -2770 ((-1232 (-669 |#1|)) (-625 (-669 |#1|)))) (-15 -2780 ((-1232 |#1|) (-669 |#1|) (-625 (-669 |#1|))))) (-358)) (T -1059)) -((-2780 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-669 *5))) (-5 *3 (-669 *5)) (-4 *5 (-358)) (-5 *2 (-1232 *5)) (-5 *1 (-1059 *5)))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-625 (-669 *4))) (-4 *4 (-358)) (-5 *2 (-1232 (-669 *4))) (-5 *1 (-1059 *4)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-1149))) (-4 *5 (-358)) (-5 *2 (-1232 (-669 (-928 *5)))) (-5 *1 (-1059 *5)) (-5 *4 (-669 (-928 *5))))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-1149))) (-4 *5 (-358)) (-5 *2 (-1232 (-669 (-402 (-928 *5))))) (-5 *1 (-1059 *5)) (-5 *4 (-669 (-402 (-928 *5))))))) -(-10 -7 (-15 -2770 ((-1232 (-669 (-402 (-928 |#1|)))) (-625 (-1149)) (-669 (-402 (-928 |#1|))))) (-15 -2770 ((-1232 (-669 (-928 |#1|))) (-625 (-1149)) (-669 (-928 |#1|)))) (-15 -2770 ((-1232 (-669 |#1|)) (-625 (-669 |#1|)))) (-15 -2780 ((-1232 |#1|) (-669 |#1|) (-625 (-669 |#1|))))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3169 (((-625 (-751)) $) NIL) (((-625 (-751)) $ (-1149)) NIL)) (-3469 (((-751) $) NIL) (((-751) $ (-1149)) NIL)) (-3982 (((-625 (-1061 (-1149))) $) NIL)) (-3793 (((-1145 $) $ (-1061 (-1149))) NIL) (((-1145 |#1|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-1061 (-1149)))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2194 (($ $) NIL (|has| |#1| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3153 (($ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-1061 (-1149)) "failed") $) NIL) (((-3 (-1149) "failed") $) NIL) (((-3 (-1098 |#1| (-1149)) "failed") $) NIL)) (-1895 ((|#1| $) NIL) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-1061 (-1149)) $) NIL) (((-1149) $) NIL) (((-1098 |#1| (-1149)) $) NIL)) (-3207 (($ $ $ (-1061 (-1149))) NIL (|has| |#1| (-170)))) (-4169 (($ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1061 (-1149))) NIL (|has| |#1| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#1| (-885)))) (-1347 (($ $ |#1| (-524 (-1061 (-1149))) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-1061 (-1149)) (-862 (-374))) (|has| |#1| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-1061 (-1149)) (-862 (-552))) (|has| |#1| (-862 (-552)))))) (-2172 (((-751) $ (-1149)) NIL) (((-751) $) NIL)) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-3970 (($ (-1145 |#1|) (-1061 (-1149))) NIL) (($ (-1145 $) (-1061 (-1149))) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-524 (-1061 (-1149)))) NIL) (($ $ (-1061 (-1149)) (-751)) NIL) (($ $ (-625 (-1061 (-1149))) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-1061 (-1149))) NIL)) (-4134 (((-524 (-1061 (-1149))) $) NIL) (((-751) $ (-1061 (-1149))) NIL) (((-625 (-751)) $ (-625 (-1061 (-1149)))) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1357 (($ (-1 (-524 (-1061 (-1149))) (-524 (-1061 (-1149)))) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-3479 (((-1 $ (-751)) (-1149)) NIL) (((-1 $ (-751)) $) NIL (|has| |#1| (-229)))) (-1942 (((-3 (-1061 (-1149)) "failed") $) NIL)) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2578 (((-1061 (-1149)) $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2883 (((-1131) $) NIL)) (-3162 (((-112) $) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-1061 (-1149))) (|:| -3564 (-751))) "failed") $) NIL)) (-4186 (($ $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 ((|#1| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-885)))) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-1061 (-1149)) |#1|) NIL) (($ $ (-625 (-1061 (-1149))) (-625 |#1|)) NIL) (($ $ (-1061 (-1149)) $) NIL) (($ $ (-625 (-1061 (-1149))) (-625 $)) NIL) (($ $ (-1149) $) NIL (|has| |#1| (-229))) (($ $ (-625 (-1149)) (-625 $)) NIL (|has| |#1| (-229))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-229))) (($ $ (-625 (-1149)) (-625 |#1|)) NIL (|has| |#1| (-229)))) (-3217 (($ $ (-1061 (-1149))) NIL (|has| |#1| (-170)))) (-3072 (($ $ (-1061 (-1149))) NIL) (($ $ (-625 (-1061 (-1149)))) NIL) (($ $ (-1061 (-1149)) (-751)) NIL) (($ $ (-625 (-1061 (-1149))) (-625 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3177 (((-625 (-1149)) $) NIL)) (-4276 (((-524 (-1061 (-1149))) $) NIL) (((-751) $ (-1061 (-1149))) NIL) (((-625 (-751)) $ (-625 (-1061 (-1149)))) NIL) (((-751) $ (-1149)) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-1061 (-1149)) (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-1061 (-1149)) (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-1061 (-1149)) (-598 (-528))) (|has| |#1| (-598 (-528)))))) (-4108 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1061 (-1149))) NIL (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-1061 (-1149))) NIL) (($ (-1149)) NIL) (($ (-1098 |#1| (-1149))) NIL) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-524 (-1061 (-1149)))) NIL) (($ $ (-1061 (-1149)) (-751)) NIL) (($ $ (-625 (-1061 (-1149))) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-1061 (-1149))) NIL) (($ $ (-625 (-1061 (-1149)))) NIL) (($ $ (-1061 (-1149)) (-751)) NIL) (($ $ (-625 (-1061 (-1149))) (-625 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1060 |#1|) (-13 (-248 |#1| (-1149) (-1061 (-1149)) (-524 (-1061 (-1149)))) (-1014 (-1098 |#1| (-1149)))) (-1025)) (T -1060)) -NIL -(-13 (-248 |#1| (-1149) (-1061 (-1149)) (-524 (-1061 (-1149)))) (-1014 (-1098 |#1| (-1149)))) -((-1671 (((-112) $ $) NIL)) (-3469 (((-751) $) NIL)) (-2195 ((|#1| $) 10)) (-1893 (((-3 |#1| "failed") $) NIL)) (-1895 ((|#1| $) NIL)) (-2172 (((-751) $) 11)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-3479 (($ |#1| (-751)) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3072 (($ $) NIL) (($ $ (-751)) NIL)) (-1683 (((-839) $) NIL) (($ |#1|) NIL)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 15))) -(((-1061 |#1|) (-261 |#1|) (-827)) (T -1061)) -NIL -(-261 |#1|) -((-1996 (((-625 |#2|) (-1 |#2| |#1|) (-1067 |#1|)) 24 (|has| |#1| (-825))) (((-1067 |#2|) (-1 |#2| |#1|) (-1067 |#1|)) 14))) -(((-1062 |#1| |#2|) (-10 -7 (-15 -1996 ((-1067 |#2|) (-1 |#2| |#1|) (-1067 |#1|))) (IF (|has| |#1| (-825)) (-15 -1996 ((-625 |#2|) (-1 |#2| |#1|) (-1067 |#1|))) |%noBranch|)) (-1186) (-1186)) (T -1062)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1067 *5)) (-4 *5 (-825)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-625 *6)) (-5 *1 (-1062 *5 *6)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1067 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-1067 *6)) (-5 *1 (-1062 *5 *6))))) -(-10 -7 (-15 -1996 ((-1067 |#2|) (-1 |#2| |#1|) (-1067 |#1|))) (IF (|has| |#1| (-825)) (-15 -1996 ((-625 |#2|) (-1 |#2| |#1|) (-1067 |#1|))) |%noBranch|)) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2791 (((-625 (-1108)) $) 9)) (-2281 (((-112) $ $) NIL))) -(((-1063) (-13 (-1056) (-10 -8 (-15 -2791 ((-625 (-1108)) $))))) (T -1063)) -((-2791 (*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-1063))))) -(-13 (-1056) (-10 -8 (-15 -2791 ((-625 (-1108)) $)))) -((-1996 (((-1065 |#2|) (-1 |#2| |#1|) (-1065 |#1|)) 19))) -(((-1064 |#1| |#2|) (-10 -7 (-15 -1996 ((-1065 |#2|) (-1 |#2| |#1|) (-1065 |#1|)))) (-1186) (-1186)) (T -1064)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1065 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-1065 *6)) (-5 *1 (-1064 *5 *6))))) -(-10 -7 (-15 -1996 ((-1065 |#2|) (-1 |#2| |#1|) (-1065 |#1|)))) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2195 (((-1149) $) 11)) (-2735 (((-1067 |#1|) $) 12)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2438 (($ (-1149) (-1067 |#1|)) 10)) (-1683 (((-839) $) 20 (|has| |#1| (-1073)))) (-2281 (((-112) $ $) 15 (|has| |#1| (-1073))))) -(((-1065 |#1|) (-13 (-1186) (-10 -8 (-15 -2438 ($ (-1149) (-1067 |#1|))) (-15 -2195 ((-1149) $)) (-15 -2735 ((-1067 |#1|) $)) (IF (|has| |#1| (-1073)) (-6 (-1073)) |%noBranch|))) (-1186)) (T -1065)) -((-2438 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1067 *4)) (-4 *4 (-1186)) (-5 *1 (-1065 *4)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1065 *3)) (-4 *3 (-1186)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-1067 *3)) (-5 *1 (-1065 *3)) (-4 *3 (-1186))))) -(-13 (-1186) (-10 -8 (-15 -2438 ($ (-1149) (-1067 |#1|))) (-15 -2195 ((-1149) $)) (-15 -2735 ((-1067 |#1|) $)) (IF (|has| |#1| (-1073)) (-6 (-1073)) |%noBranch|))) -((-2735 (($ |#1| |#1|) 7)) (-2811 ((|#1| $) 10)) (-3286 ((|#1| $) 12)) (-3295 (((-552) $) 8)) (-2800 ((|#1| $) 9)) (-3305 ((|#1| $) 11)) (-2042 (($ |#1|) 6)) (-1504 (($ |#1| |#1|) 14)) (-2060 (($ $ (-552)) 13))) -(((-1066 |#1|) (-138) (-1186)) (T -1066)) -((-1504 (*1 *1 *2 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186)))) (-2060 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1066 *3)) (-4 *3 (-1186)))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186)))) (-3305 (*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186)))) (-2811 (*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186)))) (-2800 (*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186)))) (-3295 (*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1186)) (-5 *2 (-552)))) (-2735 (*1 *1 *2 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186)))) (-2042 (*1 *1 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186))))) -(-13 (-1186) (-10 -8 (-15 -1504 ($ |t#1| |t#1|)) (-15 -2060 ($ $ (-552))) (-15 -3286 (|t#1| $)) (-15 -3305 (|t#1| $)) (-15 -2811 (|t#1| $)) (-15 -2800 (|t#1| $)) (-15 -3295 ((-552) $)) (-15 -2735 ($ |t#1| |t#1|)) (-15 -2042 ($ |t#1|)))) -(((-1186) . T)) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2735 (($ |#1| |#1|) 15)) (-1996 (((-625 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-825)))) (-2811 ((|#1| $) 10)) (-3286 ((|#1| $) 9)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3295 (((-552) $) 14)) (-2800 ((|#1| $) 12)) (-3305 ((|#1| $) 11)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-3455 (((-625 |#1|) $) 36 (|has| |#1| (-825))) (((-625 |#1|) (-625 $)) 35 (|has| |#1| (-825)))) (-2042 (($ |#1|) 26)) (-1683 (((-839) $) 25 (|has| |#1| (-1073)))) (-1504 (($ |#1| |#1|) 8)) (-2060 (($ $ (-552)) 16)) (-2281 (((-112) $ $) 19 (|has| |#1| (-1073))))) -(((-1067 |#1|) (-13 (-1066 |#1|) (-10 -7 (IF (|has| |#1| (-1073)) (-6 (-1073)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-1068 |#1| (-625 |#1|))) |%noBranch|))) (-1186)) (T -1067)) -NIL -(-13 (-1066 |#1|) (-10 -7 (IF (|has| |#1| (-1073)) (-6 (-1073)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-1068 |#1| (-625 |#1|))) |%noBranch|))) -((-2735 (($ |#1| |#1|) 7)) (-1996 ((|#2| (-1 |#1| |#1|) $) 16)) (-2811 ((|#1| $) 10)) (-3286 ((|#1| $) 12)) (-3295 (((-552) $) 8)) (-2800 ((|#1| $) 9)) (-3305 ((|#1| $) 11)) (-3455 ((|#2| (-625 $)) 18) ((|#2| $) 17)) (-2042 (($ |#1|) 6)) (-1504 (($ |#1| |#1|) 14)) (-2060 (($ $ (-552)) 13))) -(((-1068 |#1| |#2|) (-138) (-825) (-1122 |t#1|)) (T -1068)) -((-3455 (*1 *2 *3) (-12 (-5 *3 (-625 *1)) (-4 *1 (-1068 *4 *2)) (-4 *4 (-825)) (-4 *2 (-1122 *4)))) (-3455 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1122 *3)))) (-1996 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1068 *4 *2)) (-4 *4 (-825)) (-4 *2 (-1122 *4))))) -(-13 (-1066 |t#1|) (-10 -8 (-15 -3455 (|t#2| (-625 $))) (-15 -3455 (|t#2| $)) (-15 -1996 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-1066 |#1|) . T) ((-1186) . T)) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-1437 (((-1108) $) 12)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 20) (((-1154) $) NIL) (($ (-1154)) NIL)) (-1300 (((-625 (-1108)) $) 10)) (-2281 (((-112) $ $) NIL))) -(((-1069) (-13 (-1056) (-10 -8 (-15 -1300 ((-625 (-1108)) $)) (-15 -1437 ((-1108) $))))) (T -1069)) -((-1300 (*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-1069)))) (-1437 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1069))))) -(-13 (-1056) (-10 -8 (-15 -1300 ((-625 (-1108)) $)) (-15 -1437 ((-1108) $)))) -((-3419 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2837 (($ $ $) 10)) (-2849 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1070 |#1| |#2|) (-10 -8 (-15 -3419 (|#1| |#2| |#1|)) (-15 -3419 (|#1| |#1| |#2|)) (-15 -3419 (|#1| |#1| |#1|)) (-15 -2837 (|#1| |#1| |#1|)) (-15 -2849 (|#1| |#1| |#2|)) (-15 -2849 (|#1| |#1| |#1|))) (-1071 |#2|) (-1073)) (T -1070)) -NIL -(-10 -8 (-15 -3419 (|#1| |#2| |#1|)) (-15 -3419 (|#1| |#1| |#2|)) (-15 -3419 (|#1| |#1| |#1|)) (-15 -2837 (|#1| |#1| |#1|)) (-15 -2849 (|#1| |#1| |#2|)) (-15 -2849 (|#1| |#1| |#1|))) -((-1671 (((-112) $ $) 7)) (-3419 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2837 (($ $ $) 20)) (-2823 (((-112) $ $) 19)) (-3495 (((-112) $ (-751)) 35)) (-1517 (($) 25) (($ (-625 |#1|)) 24)) (-3488 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4353)))) (-3101 (($) 36 T CONST)) (-2959 (($ $) 59 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#1| $) 58 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4353)))) (-3799 (((-625 |#1|) $) 43 (|has| $ (-6 -4353)))) (-2871 (((-112) $ $) 28)) (-2909 (((-112) $ (-751)) 34)) (-3730 (((-625 |#1|) $) 44 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 38)) (-2878 (((-112) $ (-751)) 33)) (-2883 (((-1131) $) 9)) (-2860 (($ $ $) 23)) (-2831 (((-1093) $) 10)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1888 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#1|) (-625 |#1|)) 50 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 48 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 (-289 |#1|))) 47 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 29)) (-1916 (((-112) $) 32)) (-3600 (($) 31)) (-2849 (($ $ $) 22) (($ $ |#1|) 21)) (-2840 (((-751) |#1| $) 45 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4353)))) (-1871 (($ $) 30)) (-2042 (((-528) $) 60 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 51)) (-1683 (((-839) $) 11)) (-3761 (($) 27) (($ (-625 |#1|)) 26)) (-1900 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 6)) (-1471 (((-751) $) 37 (|has| $ (-6 -4353))))) -(((-1071 |#1|) (-138) (-1073)) (T -1071)) -((-2871 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3)) (-4 *3 (-1073)) (-5 *2 (-112)))) (-3761 (*1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))) (-3761 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-4 *1 (-1071 *3)))) (-1517 (*1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))) (-1517 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-4 *1 (-1071 *3)))) (-2860 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))) (-2849 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))) (-2849 (*1 *1 *1 *2) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))) (-2837 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))) (-2823 (*1 *2 *1 *1) (-12 (-4 *1 (-1071 *3)) (-4 *3 (-1073)) (-5 *2 (-112)))) (-3419 (*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))) (-3419 (*1 *1 *1 *2) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))) (-3419 (*1 *1 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073))))) -(-13 (-1073) (-149 |t#1|) (-10 -8 (-6 -4343) (-15 -2871 ((-112) $ $)) (-15 -3761 ($)) (-15 -3761 ($ (-625 |t#1|))) (-15 -1517 ($)) (-15 -1517 ($ (-625 |t#1|))) (-15 -2860 ($ $ $)) (-15 -2849 ($ $ $)) (-15 -2849 ($ $ |t#1|)) (-15 -2837 ($ $ $)) (-15 -2823 ((-112) $ $)) (-15 -3419 ($ $ $)) (-15 -3419 ($ $ |t#1|)) (-15 -3419 ($ |t#1| $)))) -(((-34) . T) ((-101) . T) ((-597 (-839)) . T) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) . T) ((-1186) . T)) -((-2883 (((-1131) $) 10)) (-2831 (((-1093) $) 8))) -(((-1072 |#1|) (-10 -8 (-15 -2883 ((-1131) |#1|)) (-15 -2831 ((-1093) |#1|))) (-1073)) (T -1072)) -NIL -(-10 -8 (-15 -2883 ((-1131) |#1|)) (-15 -2831 ((-1093) |#1|))) -((-1671 (((-112) $ $) 7)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 6))) -(((-1073) (-138)) (T -1073)) -((-2831 (*1 *2 *1) (-12 (-4 *1 (-1073)) (-5 *2 (-1093)))) (-2883 (*1 *2 *1) (-12 (-4 *1 (-1073)) (-5 *2 (-1131))))) -(-13 (-101) (-597 (-839)) (-10 -8 (-15 -2831 ((-1093) $)) (-15 -2883 ((-1131) $)))) -(((-101) . T) ((-597 (-839)) . T)) -((-1671 (((-112) $ $) NIL)) (-2894 (((-751)) 30)) (-2913 (($ (-625 (-897))) 52)) (-2935 (((-3 $ "failed") $ (-897) (-897)) 58)) (-3702 (($) 32)) (-2893 (((-112) (-897) $) 35)) (-4318 (((-897) $) 50)) (-2883 (((-1131) $) NIL)) (-3123 (($ (-897)) 31)) (-2945 (((-3 $ "failed") $ (-897)) 55)) (-2831 (((-1093) $) NIL)) (-2903 (((-1232 $)) 40)) (-2923 (((-625 (-897)) $) 24)) (-4057 (((-751) $ (-897) (-897)) 56)) (-1683 (((-839) $) 29)) (-2281 (((-112) $ $) 21))) -(((-1074 |#1| |#2|) (-13 (-363) (-10 -8 (-15 -2945 ((-3 $ "failed") $ (-897))) (-15 -2935 ((-3 $ "failed") $ (-897) (-897))) (-15 -2923 ((-625 (-897)) $)) (-15 -2913 ($ (-625 (-897)))) (-15 -2903 ((-1232 $))) (-15 -2893 ((-112) (-897) $)) (-15 -4057 ((-751) $ (-897) (-897))))) (-897) (-897)) (T -1074)) -((-2945 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-897)) (-5 *1 (-1074 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2935 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-897)) (-5 *1 (-1074 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-625 (-897))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-897)) (-14 *4 (-897)))) (-2913 (*1 *1 *2) (-12 (-5 *2 (-625 (-897))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-897)) (-14 *4 (-897)))) (-2903 (*1 *2) (-12 (-5 *2 (-1232 (-1074 *3 *4))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-897)) (-14 *4 (-897)))) (-2893 (*1 *2 *3 *1) (-12 (-5 *3 (-897)) (-5 *2 (-112)) (-5 *1 (-1074 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-4057 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-897)) (-5 *2 (-751)) (-5 *1 (-1074 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-363) (-10 -8 (-15 -2945 ((-3 $ "failed") $ (-897))) (-15 -2935 ((-3 $ "failed") $ (-897) (-897))) (-15 -2923 ((-625 (-897)) $)) (-15 -2913 ($ (-625 (-897)))) (-15 -2903 ((-1232 $))) (-15 -2893 ((-112) (-897) $)) (-15 -4057 ((-751) $ (-897) (-897))))) -((-1671 (((-112) $ $) NIL)) (-2740 (($) NIL (|has| |#1| (-363)))) (-3419 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-2837 (($ $ $) 72)) (-2823 (((-112) $ $) 73)) (-3495 (((-112) $ (-751)) NIL)) (-2894 (((-751)) NIL (|has| |#1| (-363)))) (-1517 (($ (-625 |#1|)) NIL) (($) 13)) (-2873 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1938 (($ |#1| $) 67 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4353)))) (-3702 (($) NIL (|has| |#1| (-363)))) (-3799 (((-625 |#1|) $) 19 (|has| $ (-6 -4353)))) (-2871 (((-112) $ $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-3658 ((|#1| $) 57 (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3332 ((|#1| $) 55 (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 34)) (-4318 (((-897) $) NIL (|has| |#1| (-363)))) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-2860 (($ $ $) 70)) (-2953 ((|#1| $) 25)) (-3966 (($ |#1| $) 65)) (-3123 (($ (-897)) NIL (|has| |#1| (-363)))) (-2831 (((-1093) $) NIL)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-2966 ((|#1| $) 27)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 21)) (-3600 (($) 11)) (-2849 (($ $ |#1|) NIL) (($ $ $) 71)) (-4255 (($) NIL) (($ (-625 |#1|)) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) 16)) (-2042 (((-528) $) 52 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 61)) (-2749 (($ $) NIL (|has| |#1| (-363)))) (-1683 (((-839) $) NIL)) (-2758 (((-751) $) NIL)) (-3761 (($ (-625 |#1|)) NIL) (($) 12)) (-2977 (($ (-625 |#1|)) NIL)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 54)) (-1471 (((-751) $) 10 (|has| $ (-6 -4353))))) -(((-1075 |#1|) (-420 |#1|) (-1073)) (T -1075)) -NIL -(-420 |#1|) -((-1671 (((-112) $ $) 7)) (-2981 (((-112) $) 32)) (-3621 ((|#2| $) 27)) (-2993 (((-112) $) 33)) (-4265 ((|#1| $) 28)) (-3016 (((-112) $) 35)) (-3039 (((-112) $) 37)) (-3004 (((-112) $) 34)) (-2883 (((-1131) $) 9)) (-2970 (((-112) $) 31)) (-3642 ((|#3| $) 26)) (-2831 (((-1093) $) 10)) (-2958 (((-112) $) 30)) (-2189 ((|#4| $) 25)) (-2149 ((|#5| $) 24)) (-2772 (((-112) $ $) 38)) (-2154 (($ $ (-552)) 14) (($ $ (-625 (-552))) 13)) (-3905 (((-625 $) $) 29)) (-2042 (($ (-625 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-1683 (((-839) $) 11)) (-2825 (($ $) 16)) (-2812 (($ $) 17)) (-3028 (((-112) $) 36)) (-2281 (((-112) $ $) 6)) (-1471 (((-552) $) 15))) -(((-1076 |#1| |#2| |#3| |#4| |#5|) (-138) (-1073) (-1073) (-1073) (-1073) (-1073)) (T -1076)) -((-2772 (*1 *2 *1 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))) (-3039 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))) (-3028 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))) (-2993 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))) (-2981 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))) (-2958 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112)))) (-3905 (*1 *2 *1) (-12 (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-625 *1)) (-4 *1 (-1076 *3 *4 *5 *6 *7)))) (-4265 (*1 *2 *1) (-12 (-4 *1 (-1076 *2 *3 *4 *5 *6)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073)))) (-3621 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *2 *4 *5 *6)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073)))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *2 *5 *6)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073)))) (-2189 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *2 *6)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073)))) (-2149 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *2)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)))) (-2042 (*1 *1 *2) (-12 (-4 *1 (-1076 *2 *3 *4 *5 *6)) (-4 *2 (-1073)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)))) (-2042 (*1 *1 *2) (-12 (-4 *1 (-1076 *3 *2 *4 *5 *6)) (-4 *3 (-1073)) (-4 *2 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)))) (-2042 (*1 *1 *2) (-12 (-4 *1 (-1076 *3 *4 *2 *5 *6)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *2 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)))) (-2042 (*1 *1 *2) (-12 (-4 *1 (-1076 *3 *4 *5 *2 *6)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *2 (-1073)) (-4 *6 (-1073)))) (-2042 (*1 *1 *2) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *2)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073)))) (-2812 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4 *5 *6)) (-4 *2 (-1073)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)))) (-2825 (*1 *1 *1) (-12 (-4 *1 (-1076 *2 *3 *4 *5 *6)) (-4 *2 (-1073)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)))) (-1471 (*1 *2 *1) (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-552)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073))))) -(-13 (-1073) (-10 -8 (-15 -2772 ((-112) $ $)) (-15 -3039 ((-112) $)) (-15 -3028 ((-112) $)) (-15 -3016 ((-112) $)) (-15 -3004 ((-112) $)) (-15 -2993 ((-112) $)) (-15 -2981 ((-112) $)) (-15 -2970 ((-112) $)) (-15 -2958 ((-112) $)) (-15 -3905 ((-625 $) $)) (-15 -4265 (|t#1| $)) (-15 -3621 (|t#2| $)) (-15 -3642 (|t#3| $)) (-15 -2189 (|t#4| $)) (-15 -2149 (|t#5| $)) (-15 -2042 ($ (-625 $))) (-15 -2042 ($ |t#1|)) (-15 -2042 ($ |t#2|)) (-15 -2042 ($ |t#3|)) (-15 -2042 ($ |t#4|)) (-15 -2042 ($ |t#5|)) (-15 -2812 ($ $)) (-15 -2825 ($ $)) (-15 -1471 ((-552) $)) (-15 -2154 ($ $ (-552))) (-15 -2154 ($ $ (-625 (-552)))))) -(((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-2981 (((-112) $) NIL)) (-3621 (((-1149) $) NIL)) (-2993 (((-112) $) NIL)) (-4265 (((-1131) $) NIL)) (-3016 (((-112) $) NIL)) (-3039 (((-112) $) NIL)) (-3004 (((-112) $) NIL)) (-2883 (((-1131) $) NIL)) (-2970 (((-112) $) NIL)) (-3642 (((-552) $) NIL)) (-2831 (((-1093) $) NIL)) (-2958 (((-112) $) NIL)) (-2189 (((-221) $) NIL)) (-2149 (((-839) $) NIL)) (-2772 (((-112) $ $) NIL)) (-2154 (($ $ (-552)) NIL) (($ $ (-625 (-552))) NIL)) (-3905 (((-625 $) $) NIL)) (-2042 (($ (-625 $)) NIL) (($ (-1131)) NIL) (($ (-1149)) NIL) (($ (-552)) NIL) (($ (-221)) NIL) (($ (-839)) NIL)) (-1683 (((-839) $) NIL)) (-2825 (($ $) NIL)) (-2812 (($ $) NIL)) (-3028 (((-112) $) NIL)) (-2281 (((-112) $ $) NIL)) (-1471 (((-552) $) NIL))) -(((-1077) (-1076 (-1131) (-1149) (-552) (-221) (-839))) (T -1077)) -NIL -(-1076 (-1131) (-1149) (-552) (-221) (-839)) -((-1671 (((-112) $ $) NIL)) (-2981 (((-112) $) 38)) (-3621 ((|#2| $) 42)) (-2993 (((-112) $) 37)) (-4265 ((|#1| $) 41)) (-3016 (((-112) $) 35)) (-3039 (((-112) $) 14)) (-3004 (((-112) $) 36)) (-2883 (((-1131) $) NIL)) (-2970 (((-112) $) 39)) (-3642 ((|#3| $) 44)) (-2831 (((-1093) $) NIL)) (-2958 (((-112) $) 40)) (-2189 ((|#4| $) 43)) (-2149 ((|#5| $) 45)) (-2772 (((-112) $ $) 34)) (-2154 (($ $ (-552)) 56) (($ $ (-625 (-552))) 58)) (-3905 (((-625 $) $) 22)) (-2042 (($ (-625 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-1683 (((-839) $) 23)) (-2825 (($ $) 21)) (-2812 (($ $) 52)) (-3028 (((-112) $) 18)) (-2281 (((-112) $ $) 33)) (-1471 (((-552) $) 54))) -(((-1078 |#1| |#2| |#3| |#4| |#5|) (-1076 |#1| |#2| |#3| |#4| |#5|) (-1073) (-1073) (-1073) (-1073) (-1073)) (T -1078)) -NIL -(-1076 |#1| |#2| |#3| |#4| |#5|) -((-2927 (((-1237) $) 23)) (-2452 (($ (-1149) (-429) |#2|) 11)) (-1683 (((-839) $) 16))) -(((-1079 |#1| |#2|) (-13 (-390) (-10 -8 (-15 -2452 ($ (-1149) (-429) |#2|)))) (-827) (-425 |#1|)) (T -1079)) -((-2452 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-429)) (-4 *5 (-827)) (-5 *1 (-1079 *5 *4)) (-4 *4 (-425 *5))))) -(-13 (-390) (-10 -8 (-15 -2452 ($ (-1149) (-429) |#2|)))) -((-3070 (((-112) |#5| |#5|) 38)) (-3095 (((-112) |#5| |#5|) 52)) (-3140 (((-112) |#5| (-625 |#5|)) 75) (((-112) |#5| |#5|) 61)) (-3104 (((-112) (-625 |#4|) (-625 |#4|)) 58)) (-3161 (((-112) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) 63)) (-3060 (((-1237)) 33)) (-3049 (((-1237) (-1131) (-1131) (-1131)) 29)) (-3151 (((-625 |#5|) (-625 |#5|)) 82)) (-3168 (((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)))) 80)) (-3176 (((-625 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|)))) (-625 |#4|) (-625 |#5|) (-112) (-112)) 102)) (-3087 (((-112) |#5| |#5|) 47)) (-3130 (((-3 (-112) "failed") |#5| |#5|) 71)) (-3112 (((-112) (-625 |#4|) (-625 |#4|)) 57)) (-3121 (((-112) (-625 |#4|) (-625 |#4|)) 59)) (-2719 (((-112) (-625 |#4|) (-625 |#4|)) 60)) (-3185 (((-3 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|))) "failed") (-625 |#4|) |#5| (-625 |#4|) (-112) (-112) (-112) (-112) (-112)) 98)) (-3079 (((-625 |#5|) (-625 |#5|)) 43))) -(((-1080 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3049 ((-1237) (-1131) (-1131) (-1131))) (-15 -3060 ((-1237))) (-15 -3070 ((-112) |#5| |#5|)) (-15 -3079 ((-625 |#5|) (-625 |#5|))) (-15 -3087 ((-112) |#5| |#5|)) (-15 -3095 ((-112) |#5| |#5|)) (-15 -3104 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3112 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3121 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -2719 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3130 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3140 ((-112) |#5| |#5|)) (-15 -3140 ((-112) |#5| (-625 |#5|))) (-15 -3151 ((-625 |#5|) (-625 |#5|))) (-15 -3161 ((-112) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)))) (-15 -3168 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) (-15 -3176 ((-625 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|)))) (-625 |#4|) (-625 |#5|) (-112) (-112))) (-15 -3185 ((-3 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|))) "failed") (-625 |#4|) |#5| (-625 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -1080)) -((-3185 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| -2772 (-625 *9)) (|:| -3715 *4) (|:| |ineq| (-625 *9)))) (-5 *1 (-1080 *6 *7 *8 *9 *4)) (-5 *3 (-625 *9)) (-4 *4 (-1045 *6 *7 *8 *9)))) (-3176 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-625 *10)) (-5 *5 (-112)) (-4 *10 (-1045 *6 *7 *8 *9)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8)) (-5 *2 (-625 (-2 (|:| -2772 (-625 *9)) (|:| -3715 *10) (|:| |ineq| (-625 *9))))) (-5 *1 (-1080 *6 *7 *8 *9 *10)) (-5 *3 (-625 *9)))) (-3168 (*1 *2 *2) (-12 (-5 *2 (-625 (-2 (|:| |val| (-625 *6)) (|:| -3715 *7)))) (-4 *6 (-1039 *3 *4 *5)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1080 *3 *4 *5 *6 *7)))) (-3161 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-625 *7)) (|:| -3715 *8))) (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)))) (-3151 (*1 *2 *2) (-12 (-5 *2 (-625 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-1080 *3 *4 *5 *6 *7)))) (-3140 (*1 *2 *3 *4) (-12 (-5 *4 (-625 *3)) (-4 *3 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1080 *5 *6 *7 *8 *3)))) (-3140 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3130 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-2719 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3121 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3112 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3104 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3095 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3087 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3079 (*1 *2 *2) (-12 (-5 *2 (-625 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-1080 *3 *4 *5 *6 *7)))) (-3070 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3060 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-1080 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-3049 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))) -(-10 -7 (-15 -3049 ((-1237) (-1131) (-1131) (-1131))) (-15 -3060 ((-1237))) (-15 -3070 ((-112) |#5| |#5|)) (-15 -3079 ((-625 |#5|) (-625 |#5|))) (-15 -3087 ((-112) |#5| |#5|)) (-15 -3095 ((-112) |#5| |#5|)) (-15 -3104 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3112 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3121 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -2719 ((-112) (-625 |#4|) (-625 |#4|))) (-15 -3130 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3140 ((-112) |#5| |#5|)) (-15 -3140 ((-112) |#5| (-625 |#5|))) (-15 -3151 ((-625 |#5|) (-625 |#5|))) (-15 -3161 ((-112) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)))) (-15 -3168 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) (-15 -3176 ((-625 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|)))) (-625 |#4|) (-625 |#5|) (-112) (-112))) (-15 -3185 ((-3 (-2 (|:| -2772 (-625 |#4|)) (|:| -3715 |#5|) (|:| |ineq| (-625 |#4|))) "failed") (-625 |#4|) |#5| (-625 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-2167 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#5|) 96)) (-2058 (((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#4| |#4| |#5|) 72)) (-2091 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|) 91)) (-2112 (((-625 |#5|) |#4| |#5|) 110)) (-2131 (((-625 |#5|) |#4| |#5|) 117)) (-2156 (((-625 |#5|) |#4| |#5|) 118)) (-2103 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|) 97)) (-2121 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|) 116)) (-2142 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-2070 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#3| (-112)) 84) (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-2081 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|) 79)) (-2046 (((-1237)) 37)) (-2028 (((-1237)) 26)) (-2037 (((-1237) (-1131) (-1131) (-1131)) 33)) (-2019 (((-1237) (-1131) (-1131) (-1131)) 22))) -(((-1081 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2019 ((-1237) (-1131) (-1131) (-1131))) (-15 -2028 ((-1237))) (-15 -2037 ((-1237) (-1131) (-1131) (-1131))) (-15 -2046 ((-1237))) (-15 -2058 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2070 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2070 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#3| (-112))) (-15 -2081 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2091 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2142 ((-112) |#4| |#5|)) (-15 -2103 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|)) (-15 -2112 ((-625 |#5|) |#4| |#5|)) (-15 -2121 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|)) (-15 -2131 ((-625 |#5|) |#4| |#5|)) (-15 -2142 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|)) (-15 -2156 ((-625 |#5|) |#4| |#5|)) (-15 -2167 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#5|))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -1081)) -((-2167 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2156 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 *4)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2142 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2131 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 *4)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2121 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2112 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 *4)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2103 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2142 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2091 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2081 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2070 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 (-2 (|:| |val| (-625 *8)) (|:| -3715 *9)))) (-5 *5 (-112)) (-4 *8 (-1039 *6 *7 *4)) (-4 *9 (-1045 *6 *7 *4 *8)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *4 (-827)) (-5 *2 (-625 (-2 (|:| |val| *8) (|:| -3715 *9)))) (-5 *1 (-1081 *6 *7 *4 *8 *9)))) (-2070 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) (-2058 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2046 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-2037 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1081 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-2028 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-2019 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1081 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))) -(-10 -7 (-15 -2019 ((-1237) (-1131) (-1131) (-1131))) (-15 -2028 ((-1237))) (-15 -2037 ((-1237) (-1131) (-1131) (-1131))) (-15 -2046 ((-1237))) (-15 -2058 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2070 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2070 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) |#3| (-112))) (-15 -2081 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2091 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#4| |#5|)) (-15 -2142 ((-112) |#4| |#5|)) (-15 -2103 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|)) (-15 -2112 ((-625 |#5|) |#4| |#5|)) (-15 -2121 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|)) (-15 -2131 ((-625 |#5|) |#4| |#5|)) (-15 -2142 ((-625 (-2 (|:| |val| (-112)) (|:| -3715 |#5|))) |#4| |#5|)) (-15 -2156 ((-625 |#5|) |#4| |#5|)) (-15 -2167 ((-625 (-2 (|:| |val| |#4|) (|:| -3715 |#5|))) |#4| |#5|))) -((-1671 (((-112) $ $) 7)) (-3680 (((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 |#4|)))) (-625 |#4|)) 85)) (-3690 (((-625 $) (-625 |#4|)) 86) (((-625 $) (-625 |#4|) (-112)) 111)) (-3982 (((-625 |#3|) $) 33)) (-3707 (((-112) $) 26)) (-3613 (((-112) $) 17 (|has| |#1| (-544)))) (-2656 (((-112) |#4| $) 101) (((-112) $) 97)) (-3748 ((|#4| |#4| $) 92)) (-2194 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| $) 126)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) 27)) (-3495 (((-112) $ (-751)) 44)) (-3488 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353))) (((-3 |#4| "failed") $ |#3|) 79)) (-3101 (($) 45 T CONST)) (-3667 (((-112) $) 22 (|has| |#1| (-544)))) (-3688 (((-112) $ $) 24 (|has| |#1| (-544)))) (-3678 (((-112) $ $) 23 (|has| |#1| (-544)))) (-3697 (((-112) $) 25 (|has| |#1| (-544)))) (-3757 (((-625 |#4|) (-625 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3624 (((-625 |#4|) (-625 |#4|) $) 18 (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) 19 (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) 36)) (-1895 (($ (-625 |#4|)) 35)) (-2936 (((-3 $ "failed") $) 82)) (-3720 ((|#4| |#4| $) 89)) (-2959 (($ $) 68 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#4| $) 67 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-2668 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3699 ((|#4| |#4| $) 87)) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2689 (((-2 (|:| -1387 (-625 |#4|)) (|:| -2508 (-625 |#4|))) $) 105)) (-3731 (((-112) |#4| $) 136)) (-3714 (((-112) |#4| $) 133)) (-3741 (((-112) |#4| $) 137) (((-112) $) 134)) (-3799 (((-625 |#4|) $) 52 (|has| $ (-6 -4353)))) (-2678 (((-112) |#4| $) 104) (((-112) $) 103)) (-3565 ((|#3| $) 34)) (-2909 (((-112) $ (-751)) 43)) (-3730 (((-625 |#4|) $) 53 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) 47)) (-2615 (((-625 |#3|) $) 32)) (-2608 (((-112) |#3| $) 31)) (-2878 (((-112) $ (-751)) 42)) (-2883 (((-1131) $) 9)) (-3674 (((-3 |#4| (-625 $)) |#4| |#4| $) 128)) (-3662 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| |#4| $) 127)) (-1437 (((-3 |#4| "failed") $) 83)) (-3685 (((-625 $) |#4| $) 129)) (-3704 (((-3 (-112) (-625 $)) |#4| $) 132)) (-3694 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2860 (((-625 $) |#4| $) 125) (((-625 $) (-625 |#4|) $) 124) (((-625 $) (-625 |#4|) (-625 $)) 123) (((-625 $) |#4| (-625 $)) 122)) (-3999 (($ |#4| $) 117) (($ (-625 |#4|) $) 116)) (-2699 (((-625 |#4|) $) 107)) (-3777 (((-112) |#4| $) 99) (((-112) $) 95)) (-3727 ((|#4| |#4| $) 90)) (-2719 (((-112) $ $) 110)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-3788 (((-112) |#4| $) 100) (((-112) $) 96)) (-3737 ((|#4| |#4| $) 91)) (-2831 (((-1093) $) 10)) (-2924 (((-3 |#4| "failed") $) 84)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3657 (((-3 $ "failed") $ |#4|) 78)) (-2147 (($ $ |#4|) 77) (((-625 $) |#4| $) 115) (((-625 $) |#4| (-625 $)) 114) (((-625 $) (-625 |#4|) $) 113) (((-625 $) (-625 |#4|) (-625 $)) 112)) (-1888 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) 38)) (-1916 (((-112) $) 41)) (-3600 (($) 40)) (-4276 (((-751) $) 106)) (-2840 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-1871 (($ $) 39)) (-2042 (((-528) $) 69 (|has| |#4| (-598 (-528))))) (-1695 (($ (-625 |#4|)) 60)) (-3718 (($ $ |#3|) 28)) (-2595 (($ $ |#3|) 30)) (-3709 (($ $) 88)) (-2584 (($ $ |#3|) 29)) (-1683 (((-839) $) 11) (((-625 |#4|) $) 37)) (-3647 (((-751) $) 76 (|has| |#3| (-363)))) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3767 (((-112) $ (-1 (-112) |#4| (-625 |#4|))) 98)) (-3651 (((-625 $) |#4| $) 121) (((-625 $) |#4| (-625 $)) 120) (((-625 $) (-625 |#4|) $) 119) (((-625 $) (-625 |#4|) (-625 $)) 118)) (-1900 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-3669 (((-625 |#3|) $) 81)) (-3724 (((-112) |#4| $) 135)) (-4168 (((-112) |#3| $) 80)) (-2281 (((-112) $ $) 6)) (-1471 (((-751) $) 46 (|has| $ (-6 -4353))))) -(((-1082 |#1| |#2| |#3| |#4|) (-138) (-446) (-773) (-827) (-1039 |t#1| |t#2| |t#3|)) (T -1082)) -NIL -(-13 (-1045 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-101) . T) ((-597 (-625 |#4|)) . T) ((-597 (-839)) . T) ((-149 |#4|) . T) ((-598 (-528)) |has| |#4| (-598 (-528))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-952 |#1| |#2| |#3| |#4|) . T) ((-1045 |#1| |#2| |#3| |#4|) . T) ((-1073) . T) ((-1179 |#1| |#2| |#3| |#4|) . T) ((-1186) . T)) -((-2283 (((-625 (-552)) (-552) (-552) (-552)) 22)) (-2271 (((-625 (-552)) (-552) (-552) (-552)) 12)) (-2262 (((-625 (-552)) (-552) (-552) (-552)) 18)) (-2253 (((-552) (-552) (-552)) 9)) (-2242 (((-1232 (-552)) (-625 (-552)) (-1232 (-552)) (-552)) 46) (((-1232 (-552)) (-1232 (-552)) (-1232 (-552)) (-552)) 41)) (-2233 (((-625 (-552)) (-625 (-552)) (-625 (-552)) (-112)) 28)) (-2220 (((-669 (-552)) (-625 (-552)) (-625 (-552)) (-669 (-552))) 45)) (-2211 (((-669 (-552)) (-625 (-552)) (-625 (-552))) 33)) (-2199 (((-625 (-669 (-552))) (-625 (-552))) 35)) (-2188 (((-625 (-552)) (-625 (-552)) (-625 (-552)) (-669 (-552))) 49)) (-2177 (((-669 (-552)) (-625 (-552)) (-625 (-552)) (-625 (-552))) 57))) -(((-1083) (-10 -7 (-15 -2177 ((-669 (-552)) (-625 (-552)) (-625 (-552)) (-625 (-552)))) (-15 -2188 ((-625 (-552)) (-625 (-552)) (-625 (-552)) (-669 (-552)))) (-15 -2199 ((-625 (-669 (-552))) (-625 (-552)))) (-15 -2211 ((-669 (-552)) (-625 (-552)) (-625 (-552)))) (-15 -2220 ((-669 (-552)) (-625 (-552)) (-625 (-552)) (-669 (-552)))) (-15 -2233 ((-625 (-552)) (-625 (-552)) (-625 (-552)) (-112))) (-15 -2242 ((-1232 (-552)) (-1232 (-552)) (-1232 (-552)) (-552))) (-15 -2242 ((-1232 (-552)) (-625 (-552)) (-1232 (-552)) (-552))) (-15 -2253 ((-552) (-552) (-552))) (-15 -2262 ((-625 (-552)) (-552) (-552) (-552))) (-15 -2271 ((-625 (-552)) (-552) (-552) (-552))) (-15 -2283 ((-625 (-552)) (-552) (-552) (-552))))) (T -1083)) -((-2283 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-1083)) (-5 *3 (-552)))) (-2271 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-1083)) (-5 *3 (-552)))) (-2262 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-1083)) (-5 *3 (-552)))) (-2253 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1083)))) (-2242 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1232 (-552))) (-5 *3 (-625 (-552))) (-5 *4 (-552)) (-5 *1 (-1083)))) (-2242 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1232 (-552))) (-5 *3 (-552)) (-5 *1 (-1083)))) (-2233 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-625 (-552))) (-5 *3 (-112)) (-5 *1 (-1083)))) (-2220 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-669 (-552))) (-5 *3 (-625 (-552))) (-5 *1 (-1083)))) (-2211 (*1 *2 *3 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-669 (-552))) (-5 *1 (-1083)))) (-2199 (*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-625 (-669 (-552)))) (-5 *1 (-1083)))) (-2188 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-625 (-552))) (-5 *3 (-669 (-552))) (-5 *1 (-1083)))) (-2177 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-669 (-552))) (-5 *1 (-1083))))) -(-10 -7 (-15 -2177 ((-669 (-552)) (-625 (-552)) (-625 (-552)) (-625 (-552)))) (-15 -2188 ((-625 (-552)) (-625 (-552)) (-625 (-552)) (-669 (-552)))) (-15 -2199 ((-625 (-669 (-552))) (-625 (-552)))) (-15 -2211 ((-669 (-552)) (-625 (-552)) (-625 (-552)))) (-15 -2220 ((-669 (-552)) (-625 (-552)) (-625 (-552)) (-669 (-552)))) (-15 -2233 ((-625 (-552)) (-625 (-552)) (-625 (-552)) (-112))) (-15 -2242 ((-1232 (-552)) (-1232 (-552)) (-1232 (-552)) (-552))) (-15 -2242 ((-1232 (-552)) (-625 (-552)) (-1232 (-552)) (-552))) (-15 -2253 ((-552) (-552) (-552))) (-15 -2262 ((-625 (-552)) (-552) (-552) (-552))) (-15 -2271 ((-625 (-552)) (-552) (-552) (-552))) (-15 -2283 ((-625 (-552)) (-552) (-552) (-552)))) -((** (($ $ (-897)) 10))) -(((-1084 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-897)))) (-1085)) (T -1084)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-897)))) -((-1671 (((-112) $ $) 7)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 6)) (** (($ $ (-897)) 13)) (* (($ $ $) 14))) -(((-1085) (-138)) (T -1085)) -((* (*1 *1 *1 *1) (-4 *1 (-1085))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1085)) (-5 *2 (-897))))) -(-13 (-1073) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-897))))) -(((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL (|has| |#3| (-1073)))) (-3641 (((-112) $) NIL (|has| |#3| (-130)))) (-2787 (($ (-897)) NIL (|has| |#3| (-1025)))) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-1282 (($ $ $) NIL (|has| |#3| (-773)))) (-2077 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-3495 (((-112) $ (-751)) NIL)) (-2894 (((-751)) NIL (|has| |#3| (-363)))) (-4127 (((-552) $) NIL (|has| |#3| (-825)))) (-1851 ((|#3| $ (-552) |#3|) NIL (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (-12 (|has| |#3| (-1014 (-552))) (|has| |#3| (-1073)))) (((-3 (-402 (-552)) "failed") $) NIL (-12 (|has| |#3| (-1014 (-402 (-552)))) (|has| |#3| (-1073)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1073)))) (-1895 (((-552) $) NIL (-12 (|has| |#3| (-1014 (-552))) (|has| |#3| (-1073)))) (((-402 (-552)) $) NIL (-12 (|has| |#3| (-1014 (-402 (-552)))) (|has| |#3| (-1073)))) ((|#3| $) NIL (|has| |#3| (-1073)))) (-1794 (((-669 (-552)) (-669 $)) NIL (-12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (-12 (|has| |#3| (-621 (-552))) (|has| |#3| (-1025)))) (((-2 (|:| -2351 (-669 |#3|)) (|:| |vec| (-1232 |#3|))) (-669 $) (-1232 $)) NIL (|has| |#3| (-1025))) (((-669 |#3|) (-669 $)) NIL (|has| |#3| (-1025)))) (-4174 (((-3 $ "failed") $) NIL (|has| |#3| (-707)))) (-3702 (($) NIL (|has| |#3| (-363)))) (-3692 ((|#3| $ (-552) |#3|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#3| $ (-552)) 12)) (-3620 (((-112) $) NIL (|has| |#3| (-825)))) (-3799 (((-625 |#3|) $) NIL (|has| $ (-6 -4353)))) (-3650 (((-112) $) NIL (|has| |#3| (-707)))) (-3630 (((-112) $) NIL (|has| |#3| (-825)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-3730 (((-625 |#3|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-3683 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#3| |#3|) $) NIL)) (-4318 (((-897) $) NIL (|has| |#3| (-363)))) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#3| (-1073)))) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-3123 (($ (-897)) NIL (|has| |#3| (-363)))) (-2831 (((-1093) $) NIL (|has| |#3| (-1073)))) (-2924 ((|#3| $) NIL (|has| (-552) (-827)))) (-2518 (($ $ |#3|) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#3|))) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ (-289 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073)))) (($ $ (-625 |#3|) (-625 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1073))))) (-1358 (((-625 |#3|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#3| $ (-552) |#3|) NIL) ((|#3| $ (-552)) NIL)) (-1443 ((|#3| $ $) NIL (|has| |#3| (-1025)))) (-3878 (($ (-1232 |#3|)) NIL)) (-3904 (((-133)) NIL (|has| |#3| (-358)))) (-3072 (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1 |#3| |#3|) (-751)) NIL (|has| |#3| (-1025))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1025)))) (-2840 (((-751) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353))) (((-751) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1073))))) (-1871 (($ $) NIL)) (-1683 (((-1232 |#3|) $) NIL) (($ (-552)) NIL (-1523 (-12 (|has| |#3| (-1014 (-552))) (|has| |#3| (-1073))) (|has| |#3| (-1025)))) (($ (-402 (-552))) NIL (-12 (|has| |#3| (-1014 (-402 (-552)))) (|has| |#3| (-1073)))) (($ |#3|) NIL (|has| |#3| (-1073))) (((-839) $) NIL (|has| |#3| (-597 (-839))))) (-4141 (((-751)) NIL (|has| |#3| (-1025)))) (-1900 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-1727 (($ $) NIL (|has| |#3| (-825)))) (-2089 (($) NIL (|has| |#3| (-130)) CONST)) (-2100 (($) NIL (|has| |#3| (-707)) CONST)) (-3768 (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1 |#3| |#3|) (-751)) NIL (|has| |#3| (-1025))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1025)))) (-2346 (((-112) $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2320 (((-112) $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2281 (((-112) $ $) NIL (|has| |#3| (-1073)))) (-2334 (((-112) $ $) NIL (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2307 (((-112) $ $) 17 (-1523 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2404 (($ $ |#3|) NIL (|has| |#3| (-358)))) (-2393 (($ $ $) NIL (|has| |#3| (-1025))) (($ $) NIL (|has| |#3| (-1025)))) (-2382 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-751)) NIL (|has| |#3| (-707))) (($ $ (-897)) NIL (|has| |#3| (-707)))) (* (($ (-552) $) NIL (|has| |#3| (-1025))) (($ $ $) NIL (|has| |#3| (-707))) (($ $ |#3|) NIL (|has| |#3| (-707))) (($ |#3| $) NIL (|has| |#3| (-707))) (($ (-751) $) NIL (|has| |#3| (-130))) (($ (-897) $) NIL (|has| |#3| (-25)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-1086 |#1| |#2| |#3|) (-234 |#1| |#3|) (-751) (-751) (-773)) (T -1086)) -NIL -(-234 |#1| |#3|) -((-2295 (((-625 (-1205 |#2| |#1|)) (-1205 |#2| |#1|) (-1205 |#2| |#1|)) 37)) (-2373 (((-552) (-1205 |#2| |#1|)) 69 (|has| |#1| (-446)))) (-2348 (((-552) (-1205 |#2| |#1|)) 54)) (-2309 (((-625 (-1205 |#2| |#1|)) (-1205 |#2| |#1|) (-1205 |#2| |#1|)) 45)) (-2362 (((-552) (-1205 |#2| |#1|) (-1205 |#2| |#1|)) 68 (|has| |#1| (-446)))) (-2322 (((-625 |#1|) (-1205 |#2| |#1|) (-1205 |#2| |#1|)) 48)) (-2336 (((-552) (-1205 |#2| |#1|) (-1205 |#2| |#1|)) 53))) -(((-1087 |#1| |#2|) (-10 -7 (-15 -2295 ((-625 (-1205 |#2| |#1|)) (-1205 |#2| |#1|) (-1205 |#2| |#1|))) (-15 -2309 ((-625 (-1205 |#2| |#1|)) (-1205 |#2| |#1|) (-1205 |#2| |#1|))) (-15 -2322 ((-625 |#1|) (-1205 |#2| |#1|) (-1205 |#2| |#1|))) (-15 -2336 ((-552) (-1205 |#2| |#1|) (-1205 |#2| |#1|))) (-15 -2348 ((-552) (-1205 |#2| |#1|))) (IF (|has| |#1| (-446)) (PROGN (-15 -2362 ((-552) (-1205 |#2| |#1|) (-1205 |#2| |#1|))) (-15 -2373 ((-552) (-1205 |#2| |#1|)))) |%noBranch|)) (-800) (-1149)) (T -1087)) -((-2373 (*1 *2 *3) (-12 (-5 *3 (-1205 *5 *4)) (-4 *4 (-446)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-552)) (-5 *1 (-1087 *4 *5)))) (-2362 (*1 *2 *3 *3) (-12 (-5 *3 (-1205 *5 *4)) (-4 *4 (-446)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-552)) (-5 *1 (-1087 *4 *5)))) (-2348 (*1 *2 *3) (-12 (-5 *3 (-1205 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-552)) (-5 *1 (-1087 *4 *5)))) (-2336 (*1 *2 *3 *3) (-12 (-5 *3 (-1205 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-552)) (-5 *1 (-1087 *4 *5)))) (-2322 (*1 *2 *3 *3) (-12 (-5 *3 (-1205 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-625 *4)) (-5 *1 (-1087 *4 *5)))) (-2309 (*1 *2 *3 *3) (-12 (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-625 (-1205 *5 *4))) (-5 *1 (-1087 *4 *5)) (-5 *3 (-1205 *5 *4)))) (-2295 (*1 *2 *3 *3) (-12 (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-625 (-1205 *5 *4))) (-5 *1 (-1087 *4 *5)) (-5 *3 (-1205 *5 *4))))) -(-10 -7 (-15 -2295 ((-625 (-1205 |#2| |#1|)) (-1205 |#2| |#1|) (-1205 |#2| |#1|))) (-15 -2309 ((-625 (-1205 |#2| |#1|)) (-1205 |#2| |#1|) (-1205 |#2| |#1|))) (-15 -2322 ((-625 |#1|) (-1205 |#2| |#1|) (-1205 |#2| |#1|))) (-15 -2336 ((-552) (-1205 |#2| |#1|) (-1205 |#2| |#1|))) (-15 -2348 ((-552) (-1205 |#2| |#1|))) (IF (|has| |#1| (-446)) (PROGN (-15 -2362 ((-552) (-1205 |#2| |#1|) (-1205 |#2| |#1|))) (-15 -2373 ((-552) (-1205 |#2| |#1|)))) |%noBranch|)) -((-1671 (((-112) $ $) NIL)) (-2384 (($ (-499) (-1091)) 14)) (-2055 (((-1091) $) 20)) (-1288 (((-499) $) 17)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 28) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL))) -(((-1088) (-13 (-1056) (-10 -8 (-15 -2384 ($ (-499) (-1091))) (-15 -1288 ((-499) $)) (-15 -2055 ((-1091) $))))) (T -1088)) -((-2384 (*1 *1 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-1091)) (-5 *1 (-1088)))) (-1288 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1088)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1088))))) -(-13 (-1056) (-10 -8 (-15 -2384 ($ (-499) (-1091))) (-15 -1288 ((-499) $)) (-15 -2055 ((-1091) $)))) -((-4127 (((-3 (-552) "failed") |#2| (-1149) |#2| (-1131)) 17) (((-3 (-552) "failed") |#2| (-1149) (-820 |#2|)) 15) (((-3 (-552) "failed") |#2|) 54))) -(((-1089 |#1| |#2|) (-10 -7 (-15 -4127 ((-3 (-552) "failed") |#2|)) (-15 -4127 ((-3 (-552) "failed") |#2| (-1149) (-820 |#2|))) (-15 -4127 ((-3 (-552) "failed") |#2| (-1149) |#2| (-1131)))) (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)) (-446)) (-13 (-27) (-1171) (-425 |#1|))) (T -1089)) -((-4127 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-1131)) (-4 *6 (-13 (-544) (-827) (-1014 *2) (-621 *2) (-446))) (-5 *2 (-552)) (-5 *1 (-1089 *6 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *6))))) (-4127 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-820 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *6))) (-4 *6 (-13 (-544) (-827) (-1014 *2) (-621 *2) (-446))) (-5 *2 (-552)) (-5 *1 (-1089 *6 *3)))) (-4127 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-544) (-827) (-1014 *2) (-621 *2) (-446))) (-5 *2 (-552)) (-5 *1 (-1089 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *4)))))) -(-10 -7 (-15 -4127 ((-3 (-552) "failed") |#2|)) (-15 -4127 ((-3 (-552) "failed") |#2| (-1149) (-820 |#2|))) (-15 -4127 ((-3 (-552) "failed") |#2| (-1149) |#2| (-1131)))) -((-4127 (((-3 (-552) "failed") (-402 (-928 |#1|)) (-1149) (-402 (-928 |#1|)) (-1131)) 35) (((-3 (-552) "failed") (-402 (-928 |#1|)) (-1149) (-820 (-402 (-928 |#1|)))) 30) (((-3 (-552) "failed") (-402 (-928 |#1|))) 13))) -(((-1090 |#1|) (-10 -7 (-15 -4127 ((-3 (-552) "failed") (-402 (-928 |#1|)))) (-15 -4127 ((-3 (-552) "failed") (-402 (-928 |#1|)) (-1149) (-820 (-402 (-928 |#1|))))) (-15 -4127 ((-3 (-552) "failed") (-402 (-928 |#1|)) (-1149) (-402 (-928 |#1|)) (-1131)))) (-446)) (T -1090)) -((-4127 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-402 (-928 *6))) (-5 *4 (-1149)) (-5 *5 (-1131)) (-4 *6 (-446)) (-5 *2 (-552)) (-5 *1 (-1090 *6)))) (-4127 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-820 (-402 (-928 *6)))) (-5 *3 (-402 (-928 *6))) (-4 *6 (-446)) (-5 *2 (-552)) (-5 *1 (-1090 *6)))) (-4127 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-446)) (-5 *2 (-552)) (-5 *1 (-1090 *4))))) -(-10 -7 (-15 -4127 ((-3 (-552) "failed") (-402 (-928 |#1|)))) (-15 -4127 ((-3 (-552) "failed") (-402 (-928 |#1|)) (-1149) (-820 (-402 (-928 |#1|))))) (-15 -4127 ((-3 (-552) "failed") (-402 (-928 |#1|)) (-1149) (-402 (-928 |#1|)) (-1131)))) -((-1671 (((-112) $ $) NIL)) (-1711 (((-1154) $) 10)) (-1655 (((-625 (-1154)) $) 11)) (-2055 (($ (-625 (-1154)) (-1154)) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 20)) (-2281 (((-112) $ $) 14))) -(((-1091) (-13 (-1073) (-10 -8 (-15 -2055 ($ (-625 (-1154)) (-1154))) (-15 -1711 ((-1154) $)) (-15 -1655 ((-625 (-1154)) $))))) (T -1091)) -((-2055 (*1 *1 *2 *3) (-12 (-5 *2 (-625 (-1154))) (-5 *3 (-1154)) (-5 *1 (-1091)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1091)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-625 (-1154))) (-5 *1 (-1091))))) -(-13 (-1073) (-10 -8 (-15 -2055 ($ (-625 (-1154)) (-1154))) (-15 -1711 ((-1154) $)) (-15 -1655 ((-625 (-1154)) $)))) -((-1933 (((-311 (-552)) (-48)) 12))) -(((-1092) (-10 -7 (-15 -1933 ((-311 (-552)) (-48))))) (T -1092)) -((-1933 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-311 (-552))) (-5 *1 (-1092))))) -(-10 -7 (-15 -1933 ((-311 (-552)) (-48)))) -((-1671 (((-112) $ $) NIL)) (-2488 (($ $) 41)) (-3641 (((-112) $) 65)) (-2244 (($ $ $) 48)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 86)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-3364 (($ $ $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3346 (($ $ $ $) 75)) (-2194 (($ $) NIL)) (-1330 (((-413 $) $) NIL)) (-2408 (((-112) $ $) NIL)) (-4127 (((-552) $) NIL)) (-3420 (($ $ $) 72)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL)) (-1895 (((-552) $) NIL)) (-2851 (($ $ $) 59)) (-1794 (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 80) (((-669 (-552)) (-669 $)) 28)) (-4174 (((-3 $ "failed") $) NIL)) (-2555 (((-3 (-402 (-552)) "failed") $) NIL)) (-2546 (((-112) $) NIL)) (-2538 (((-402 (-552)) $) NIL)) (-3702 (($) 83) (($ $) 84)) (-2826 (($ $ $) 58)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL)) (-2951 (((-112) $) NIL)) (-3327 (($ $ $ $) NIL)) (-3372 (($ $ $) 81)) (-3620 (((-112) $) NIL)) (-1302 (($ $ $) NIL)) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL)) (-3650 (((-112) $) 66)) (-3932 (((-112) $) 64)) (-2960 (($ $) 42)) (-4034 (((-3 $ "failed") $) NIL)) (-3630 (((-112) $) 76)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3336 (($ $ $ $) 73)) (-3658 (($ $ $) 68) (($) 39)) (-3332 (($ $ $) 67) (($) 38)) (-2059 (($ $) NIL)) (-3456 (($ $) 71)) (-2605 (($ $ $) NIL) (($ (-625 $)) NIL)) (-2883 (((-1131) $) NIL)) (-3317 (($ $ $) NIL)) (-2071 (($) NIL T CONST)) (-1971 (($ $) 50)) (-2831 (((-1093) $) 70)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL)) (-2633 (($ $ $) 62) (($ (-625 $)) NIL)) (-1279 (($ $) NIL)) (-3824 (((-413 $) $) NIL)) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL)) (-2802 (((-3 $ "failed") $ $) NIL)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL)) (-3943 (((-112) $) NIL)) (-2397 (((-751) $) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 61)) (-3072 (($ $ (-751)) NIL) (($ $) NIL)) (-2715 (($ $) 51)) (-1871 (($ $) NIL)) (-2042 (((-552) $) 32) (((-528) $) NIL) (((-868 (-552)) $) NIL) (((-374) $) NIL) (((-221) $) NIL)) (-1683 (((-839) $) 31) (($ (-552)) 82) (($ $) NIL) (($ (-552)) 82)) (-4141 (((-751)) NIL)) (-3383 (((-112) $ $) NIL)) (-3901 (($ $ $) NIL)) (-3929 (($) 37)) (-3518 (((-112) $ $) NIL)) (-3355 (($ $ $ $) 74)) (-1727 (($ $) 63)) (-2827 (($ $ $) 44)) (-2089 (($) 35 T CONST)) (-3019 (($ $ $) 47)) (-2100 (($) 36 T CONST)) (-3010 (((-1131) $) 21) (((-1131) $ (-112)) 23) (((-1237) (-802) $) 24) (((-1237) (-802) $ (-112)) 25)) (-3030 (($ $) 45)) (-3768 (($ $ (-751)) NIL) (($ $) NIL)) (-3007 (($ $ $) 46)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 40)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 49)) (-2814 (($ $ $) 43)) (-2393 (($ $) 52) (($ $ $) 54)) (-2382 (($ $ $) 53)) (** (($ $ (-897)) NIL) (($ $ (-751)) 57)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 34) (($ $ $) 55))) -(((-1093) (-13 (-537) (-641) (-808) (-10 -8 (-6 -4340) (-6 -4345) (-6 -4341) (-15 -3332 ($)) (-15 -3658 ($)) (-15 -2960 ($ $)) (-15 -2488 ($ $)) (-15 -2814 ($ $ $)) (-15 -2827 ($ $ $)) (-15 -2244 ($ $ $)) (-15 -3030 ($ $)) (-15 -3007 ($ $ $)) (-15 -3019 ($ $ $))))) (T -1093)) -((-2827 (*1 *1 *1 *1) (-5 *1 (-1093))) (-2814 (*1 *1 *1 *1) (-5 *1 (-1093))) (-2488 (*1 *1 *1) (-5 *1 (-1093))) (-3332 (*1 *1) (-5 *1 (-1093))) (-3658 (*1 *1) (-5 *1 (-1093))) (-2960 (*1 *1 *1) (-5 *1 (-1093))) (-2244 (*1 *1 *1 *1) (-5 *1 (-1093))) (-3030 (*1 *1 *1) (-5 *1 (-1093))) (-3007 (*1 *1 *1 *1) (-5 *1 (-1093))) (-3019 (*1 *1 *1 *1) (-5 *1 (-1093)))) -(-13 (-537) (-641) (-808) (-10 -8 (-6 -4340) (-6 -4345) (-6 -4341) (-15 -3332 ($)) (-15 -3658 ($)) (-15 -2960 ($ $)) (-15 -2488 ($ $)) (-15 -2814 ($ $ $)) (-15 -2827 ($ $ $)) (-15 -2244 ($ $ $)) (-15 -3030 ($ $)) (-15 -3007 ($ $ $)) (-15 -3019 ($ $ $)))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-1549 ((|#1| $) 44)) (-3495 (((-112) $ (-751)) 8)) (-3101 (($) 7 T CONST)) (-2406 ((|#1| |#1| $) 46)) (-2395 ((|#1| $) 45)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-2953 ((|#1| $) 39)) (-3966 (($ |#1| $) 40)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2966 ((|#1| $) 41)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2389 (((-751) $) 43)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-1094 |#1|) (-138) (-1186)) (T -1094)) -((-2406 (*1 *2 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1186)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1186)))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1186)))) (-2389 (*1 *2 *1) (-12 (-4 *1 (-1094 *3)) (-4 *3 (-1186)) (-5 *2 (-751))))) -(-13 (-106 |t#1|) (-10 -8 (-6 -4353) (-15 -2406 (|t#1| |t#1| $)) (-15 -2395 (|t#1| $)) (-15 -1549 (|t#1| $)) (-15 -2389 ((-751) $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-1073) |has| |#1| (-1073)) ((-1186) . T)) -((-1650 ((|#3| $) 76)) (-1893 (((-3 (-552) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-1895 (((-552) $) NIL) (((-402 (-552)) $) NIL) ((|#3| $) 37)) (-1794 (((-669 (-552)) (-669 $)) NIL) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL) (((-2 (|:| -2351 (-669 |#3|)) (|:| |vec| (-1232 |#3|))) (-669 $) (-1232 $)) 73) (((-669 |#3|) (-669 $)) 65)) (-3072 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)) (-2435 ((|#3| $) 78)) (-2446 ((|#4| $) 32)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ (-402 (-552))) NIL) (($ |#3|) 16)) (** (($ $ (-897)) NIL) (($ $ (-751)) 15) (($ $ (-552)) 82))) -(((-1095 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-552))) (-15 -2435 (|#3| |#1|)) (-15 -1650 (|#3| |#1|)) (-15 -2446 (|#4| |#1|)) (-15 -1794 ((-669 |#3|) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#3|)) (|:| |vec| (-1232 |#3|))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -1895 (|#3| |#1|)) (-15 -1893 ((-3 |#3| "failed") |#1|)) (-15 -1683 (|#1| |#3|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1 |#3| |#3|) (-751))) (-15 -3072 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1683 (|#1| (-552))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-897))) (-15 -1683 ((-839) |#1|))) (-1096 |#2| |#3| |#4| |#5|) (-751) (-1025) (-234 |#2| |#3|) (-234 |#2| |#3|)) (T -1095)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-552))) (-15 -2435 (|#3| |#1|)) (-15 -1650 (|#3| |#1|)) (-15 -2446 (|#4| |#1|)) (-15 -1794 ((-669 |#3|) (-669 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 |#3|)) (|:| |vec| (-1232 |#3|))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 |#1|) (-1232 |#1|))) (-15 -1794 ((-669 (-552)) (-669 |#1|))) (-15 -1895 (|#3| |#1|)) (-15 -1893 ((-3 |#3| "failed") |#1|)) (-15 -1683 (|#1| |#3|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-552) |#1|)) (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1 |#3| |#3|) (-751))) (-15 -3072 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1683 (|#1| (-552))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-897))) (-15 -1683 ((-839) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-1650 ((|#2| $) 70)) (-4089 (((-112) $) 110)) (-2077 (((-3 $ "failed") $ $) 19)) (-4114 (((-112) $) 108)) (-3495 (((-112) $ (-751)) 100)) (-2467 (($ |#2|) 73)) (-3101 (($) 17 T CONST)) (-3991 (($ $) 127 (|has| |#2| (-302)))) (-4015 ((|#3| $ (-552)) 122)) (-1893 (((-3 (-552) "failed") $) 84 (|has| |#2| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) 82 (|has| |#2| (-1014 (-402 (-552))))) (((-3 |#2| "failed") $) 79)) (-1895 (((-552) $) 85 (|has| |#2| (-1014 (-552)))) (((-402 (-552)) $) 83 (|has| |#2| (-1014 (-402 (-552))))) ((|#2| $) 78)) (-1794 (((-669 (-552)) (-669 $)) 77 (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 76 (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) 75) (((-669 |#2|) (-669 $)) 74)) (-4174 (((-3 $ "failed") $) 32)) (-3442 (((-751) $) 128 (|has| |#2| (-544)))) (-3631 ((|#2| $ (-552) (-552)) 120)) (-3799 (((-625 |#2|) $) 93 (|has| $ (-6 -4353)))) (-3650 (((-112) $) 30)) (-3979 (((-751) $) 129 (|has| |#2| (-544)))) (-3967 (((-625 |#4|) $) 130 (|has| |#2| (-544)))) (-1773 (((-751) $) 116)) (-1784 (((-751) $) 117)) (-2909 (((-112) $ (-751)) 101)) (-2416 ((|#2| $) 65 (|has| |#2| (-6 (-4355 "*"))))) (-4063 (((-552) $) 112)) (-4038 (((-552) $) 114)) (-3730 (((-625 |#2|) $) 92 (|has| $ (-6 -4353)))) (-2893 (((-112) |#2| $) 90 (-12 (|has| |#2| (-1073)) (|has| $ (-6 -4353))))) (-4050 (((-552) $) 113)) (-4027 (((-552) $) 115)) (-3907 (($ (-625 (-625 |#2|))) 107)) (-3683 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-3803 (((-625 (-625 |#2|)) $) 118)) (-2878 (((-112) $ (-751)) 102)) (-2883 (((-1131) $) 9)) (-3150 (((-3 $ "failed") $) 64 (|has| |#2| (-358)))) (-2831 (((-1093) $) 10)) (-2802 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-544)))) (-1888 (((-112) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#2|))) 89 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) 88 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) 86 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) 106)) (-1916 (((-112) $) 103)) (-3600 (($) 104)) (-2154 ((|#2| $ (-552) (-552) |#2|) 121) ((|#2| $ (-552) (-552)) 119)) (-3072 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-751)) 49) (($ $ (-625 (-1149)) (-625 (-751))) 42 (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) 41 (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) 40 (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) 39 (|has| |#2| (-876 (-1149)))) (($ $ (-751)) 37 (|has| |#2| (-229))) (($ $) 35 (|has| |#2| (-229)))) (-2435 ((|#2| $) 69)) (-2457 (($ (-625 |#2|)) 72)) (-4102 (((-112) $) 109)) (-2446 ((|#3| $) 71)) (-2426 ((|#2| $) 66 (|has| |#2| (-6 (-4355 "*"))))) (-2840 (((-751) (-1 (-112) |#2|) $) 94 (|has| $ (-6 -4353))) (((-751) |#2| $) 91 (-12 (|has| |#2| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 105)) (-4004 ((|#4| $ (-552)) 123)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ (-402 (-552))) 81 (|has| |#2| (-1014 (-402 (-552))))) (($ |#2|) 80)) (-4141 (((-751)) 28)) (-1900 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4353)))) (-4077 (((-112) $) 111)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-751)) 47) (($ $ (-625 (-1149)) (-625 (-751))) 46 (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) 45 (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) 44 (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) 43 (|has| |#2| (-876 (-1149)))) (($ $ (-751)) 38 (|has| |#2| (-229))) (($ $) 36 (|has| |#2| (-229)))) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#2|) 126 (|has| |#2| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 63 (|has| |#2| (-358)))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-1471 (((-751) $) 99 (|has| $ (-6 -4353))))) -(((-1096 |#1| |#2| |#3| |#4|) (-138) (-751) (-1025) (-234 |t#1| |t#2|) (-234 |t#1| |t#2|)) (T -1096)) -((-2467 (*1 *1 *2) (-12 (-4 *2 (-1025)) (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)))) (-2457 (*1 *1 *2) (-12 (-5 *2 (-625 *4)) (-4 *4 (-1025)) (-4 *1 (-1096 *3 *4 *5 *6)) (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4)))) (-2446 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *2 *5)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4)) (-4 *2 (-234 *3 *4)))) (-1650 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (-4 *2 (-1025)))) (-2435 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (-4 *2 (-1025)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4)) (-4 *2 (-234 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *2 *5)) (-4 *4 (-1025)) (-4 *2 (-234 *3 *4)) (-4 *5 (-234 *3 *4)))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025)))) (-2416 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025)))) (-3150 (*1 *1 *1) (|partial| -12 (-4 *1 (-1096 *2 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-234 *2 *3)) (-4 *5 (-234 *2 *3)) (-4 *3 (-358)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1096 *3 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4)) (-4 *4 (-358))))) -(-13 (-227 |t#2|) (-111 |t#2| |t#2|) (-1028 |t#1| |t#1| |t#2| |t#3| |t#4|) (-406 |t#2|) (-372 |t#2|) (-10 -8 (IF (|has| |t#2| (-170)) (-6 (-698 |t#2|)) |%noBranch|) (-15 -2467 ($ |t#2|)) (-15 -2457 ($ (-625 |t#2|))) (-15 -2446 (|t#3| $)) (-15 -1650 (|t#2| $)) (-15 -2435 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4355 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2426 (|t#2| $)) (-15 -2416 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-358)) (PROGN (-15 -3150 ((-3 $ "failed") $)) (-15 ** ($ $ (-552)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4355 "*"))) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-597 (-839)) . T) ((-227 |#2|) . T) ((-229) |has| |#2| (-229)) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((-372 |#2|) . T) ((-406 |#2|) . T) ((-483 |#2|) . T) ((-507 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((-628 |#2|) . T) ((-628 $) . T) ((-621 (-552)) |has| |#2| (-621 (-552))) ((-621 |#2|) . T) ((-698 |#2|) -1523 (|has| |#2| (-170)) (|has| |#2| (-6 (-4355 "*")))) ((-707) . T) ((-876 (-1149)) |has| |#2| (-876 (-1149))) ((-1028 |#1| |#1| |#2| |#3| |#4|) . T) ((-1014 (-402 (-552))) |has| |#2| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#2| (-1014 (-552))) ((-1014 |#2|) . T) ((-1031 |#2|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1186) . T)) -((-2497 ((|#4| |#4|) 70)) (-2475 ((|#4| |#4|) 65)) (-2516 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1270 (-625 |#3|))) |#4| |#3|) 78)) (-2507 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-2486 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) -(((-1097 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2475 (|#4| |#4|)) (-15 -2486 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2497 (|#4| |#4|)) (-15 -2507 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2516 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1270 (-625 |#3|))) |#4| |#3|))) (-302) (-368 |#1|) (-368 |#1|) (-667 |#1| |#2| |#3|)) (T -1097)) -((-2516 (*1 *2 *3 *4) (-12 (-4 *5 (-302)) (-4 *6 (-368 *5)) (-4 *4 (-368 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) (-5 *1 (-1097 *5 *6 *4 *3)) (-4 *3 (-667 *5 *6 *4)))) (-2507 (*1 *2 *3) (-12 (-4 *4 (-302)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1097 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))) (-2497 (*1 *2 *2) (-12 (-4 *3 (-302)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-1097 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))) (-2486 (*1 *2 *3) (-12 (-4 *4 (-302)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1097 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))) (-2475 (*1 *2 *2) (-12 (-4 *3 (-302)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-1097 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5))))) -(-10 -7 (-15 -2475 (|#4| |#4|)) (-15 -2486 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2497 (|#4| |#4|)) (-15 -2507 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2516 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1270 (-625 |#3|))) |#4| |#3|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 17)) (-3982 (((-625 |#2|) $) 159)) (-3793 (((-1145 $) $ |#2|) 54) (((-1145 |#1|) $) 43)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 108 (|has| |#1| (-544)))) (-3528 (($ $) 110 (|has| |#1| (-544)))) (-3509 (((-112) $) 112 (|has| |#1| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 |#2|)) 192)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-2194 (($ $) NIL (|has| |#1| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) 156) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 |#2| "failed") $) NIL)) (-1895 ((|#1| $) 154) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#1| (-1014 (-552)))) ((|#2| $) NIL)) (-3207 (($ $ $ |#2|) NIL (|has| |#1| (-170)))) (-4169 (($ $) 196)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) 82)) (-1294 (($ $) NIL (|has| |#1| (-446))) (($ $ |#2|) NIL (|has| |#1| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#1| (-885)))) (-1347 (($ $ |#1| (-524 |#2|) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| |#1| (-862 (-374))) (|has| |#2| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| |#1| (-862 (-552))) (|has| |#2| (-862 (-552)))))) (-3650 (((-112) $) 19)) (-3723 (((-751) $) 26)) (-3970 (($ (-1145 |#1|) |#2|) 48) (($ (-1145 $) |#2|) 64)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) 32)) (-3957 (($ |#1| (-524 |#2|)) 71) (($ $ |#2| (-751)) 52) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ |#2|) NIL)) (-4134 (((-524 |#2|) $) 186) (((-751) $ |#2|) 187) (((-625 (-751)) $ (-625 |#2|)) 188)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1357 (($ (-1 (-524 |#2|) (-524 |#2|)) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) 120)) (-1942 (((-3 |#2| "failed") $) 161)) (-4131 (($ $) 195)) (-4144 ((|#1| $) 37)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2883 (((-1131) $) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| |#2|) (|:| -3564 (-751))) "failed") $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) 33)) (-4117 ((|#1| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 138 (|has| |#1| (-446)))) (-2633 (($ (-625 $)) 143 (|has| |#1| (-446))) (($ $ $) 130 (|has| |#1| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#1| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-885)))) (-2802 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-544)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-625 |#2|) (-625 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-625 |#2|) (-625 $)) 176)) (-3217 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-3072 (($ $ |#2|) 194) (($ $ (-625 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-4276 (((-524 |#2|) $) 182) (((-751) $ |#2|) 178) (((-625 (-751)) $ (-625 |#2|)) 180)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| |#1| (-598 (-868 (-374)))) (|has| |#2| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| |#1| (-598 (-868 (-552)))) (|has| |#2| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| |#1| (-598 (-528))) (|has| |#2| (-598 (-528)))))) (-4108 ((|#1| $) 126 (|has| |#1| (-446))) (($ $ |#2|) 129 (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-885))))) (-1683 (((-839) $) 149) (($ (-552)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-544))) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552))))))) (-2512 (((-625 |#1|) $) 152)) (-3637 ((|#1| $ (-524 |#2|)) 73) (($ $ |#2| (-751)) NIL) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) 79)) (-1336 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-3518 (((-112) $ $) 115 (|has| |#1| (-544)))) (-2089 (($) 12 T CONST)) (-2100 (($) 14 T CONST)) (-3768 (($ $ |#2|) NIL) (($ $ (-625 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) 97)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2404 (($ $ |#1|) 124 (|has| |#1| (-358)))) (-2393 (($ $) 85) (($ $ $) 95)) (-2382 (($ $ $) 49)) (** (($ $ (-897)) 102) (($ $ (-751)) 100)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 88) (($ $ $) 65) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) -(((-1098 |#1| |#2|) (-925 |#1| (-524 |#2|) |#2|) (-1025) (-827)) (T -1098)) -NIL -(-925 |#1| (-524 |#2|) |#2|) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 |#2|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-3728 (($ $) 141 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 117 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3710 (($ $) 137 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 113 (|has| |#1| (-38 (-402 (-552)))))) (-3749 (($ $) 145 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 121 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-4098 (((-928 |#1|) $ (-751)) NIL) (((-928 |#1|) $ (-751) (-751)) NIL)) (-3592 (((-112) $) NIL)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-751) $ |#2|) NIL) (((-751) $ |#2| (-751)) NIL)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4201 (((-112) $) NIL)) (-3957 (($ $ (-625 |#2|) (-625 (-524 |#2|))) NIL) (($ $ |#2| (-524 |#2|)) NIL) (($ |#1| (-524 |#2|)) NIL) (($ $ |#2| (-751)) 56) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2458 (($ $) 111 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2481 (($ $ |#2|) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-402 (-552)))))) (-2831 (((-1093) $) NIL)) (-3626 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-402 (-552)))))) (-2147 (($ $ (-751)) 13)) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-2863 (($ $) 109 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (($ $ |#2| $) 95) (($ $ (-625 |#2|) (-625 $)) 88) (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL)) (-3072 (($ $ |#2|) 98) (($ $ (-625 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-4276 (((-524 |#2|) $) NIL)) (-2525 (((-1 (-1129 |#3|) |#3|) (-625 |#2|) (-625 (-1129 |#3|))) 77)) (-3759 (($ $) 147 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 123 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 143 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 119 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 139 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 115 (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) 15)) (-1683 (((-839) $) 180) (($ (-552)) NIL) (($ |#1|) 40 (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-544))) (($ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#2|) 63) (($ |#3|) 61)) (-3637 ((|#1| $ (-524 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-625 |#2|) (-625 (-751))) NIL) ((|#3| $ (-751)) 38)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-3789 (($ $) 153 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 129 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) 149 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 125 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 157 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 133 (|has| |#1| (-38 (-402 (-552)))))) (-3742 (($ $) 159 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 135 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 155 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 131 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 151 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 127 (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 47 T CONST)) (-2100 (($) 55 T CONST)) (-3768 (($ $ |#2|) NIL) (($ $ (-625 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-625 |#2|) (-625 (-751))) NIL)) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ |#1|) 182 (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 59)) (** (($ $ (-897)) NIL) (($ $ (-751)) 68) (($ $ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 101 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 58) (($ $ (-402 (-552))) 106 (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) 104 (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42))) -(((-1099 |#1| |#2| |#3|) (-13 (-721 |#1| |#2|) (-10 -8 (-15 -3637 (|#3| $ (-751))) (-15 -1683 ($ |#2|)) (-15 -1683 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2525 ((-1 (-1129 |#3|) |#3|) (-625 |#2|) (-625 (-1129 |#3|)))) (IF (|has| |#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ($ $ |#2| |#1|)) (-15 -3626 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1025) (-827) (-925 |#1| (-524 |#2|) |#2|)) (T -1099)) -((-3637 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *2 (-925 *4 (-524 *5) *5)) (-5 *1 (-1099 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-827)))) (-1683 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *2 (-827)) (-5 *1 (-1099 *3 *2 *4)) (-4 *4 (-925 *3 (-524 *2) *2)))) (-1683 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-5 *1 (-1099 *3 *4 *2)) (-4 *2 (-925 *3 (-524 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-5 *1 (-1099 *3 *4 *2)) (-4 *2 (-925 *3 (-524 *4) *4)))) (-2525 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *6)) (-5 *4 (-625 (-1129 *7))) (-4 *6 (-827)) (-4 *7 (-925 *5 (-524 *6) *6)) (-4 *5 (-1025)) (-5 *2 (-1 (-1129 *7) *7)) (-5 *1 (-1099 *5 *6 *7)))) (-2481 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-4 *2 (-827)) (-5 *1 (-1099 *3 *2 *4)) (-4 *4 (-925 *3 (-524 *2) *2)))) (-3626 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1099 *4 *3 *5))) (-4 *4 (-38 (-402 (-552)))) (-4 *4 (-1025)) (-4 *3 (-827)) (-5 *1 (-1099 *4 *3 *5)) (-4 *5 (-925 *4 (-524 *3) *3))))) -(-13 (-721 |#1| |#2|) (-10 -8 (-15 -3637 (|#3| $ (-751))) (-15 -1683 ($ |#2|)) (-15 -1683 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2525 ((-1 (-1129 |#3|) |#3|) (-625 |#2|) (-625 (-1129 |#3|)))) (IF (|has| |#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ($ $ |#2| |#1|)) (-15 -3626 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-1671 (((-112) $ $) 7)) (-3680 (((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 |#4|)))) (-625 |#4|)) 85)) (-3690 (((-625 $) (-625 |#4|)) 86) (((-625 $) (-625 |#4|) (-112)) 111)) (-3982 (((-625 |#3|) $) 33)) (-3707 (((-112) $) 26)) (-3613 (((-112) $) 17 (|has| |#1| (-544)))) (-2656 (((-112) |#4| $) 101) (((-112) $) 97)) (-3748 ((|#4| |#4| $) 92)) (-2194 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| $) 126)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) 27)) (-3495 (((-112) $ (-751)) 44)) (-3488 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353))) (((-3 |#4| "failed") $ |#3|) 79)) (-3101 (($) 45 T CONST)) (-3667 (((-112) $) 22 (|has| |#1| (-544)))) (-3688 (((-112) $ $) 24 (|has| |#1| (-544)))) (-3678 (((-112) $ $) 23 (|has| |#1| (-544)))) (-3697 (((-112) $) 25 (|has| |#1| (-544)))) (-3757 (((-625 |#4|) (-625 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3624 (((-625 |#4|) (-625 |#4|) $) 18 (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) 19 (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) 36)) (-1895 (($ (-625 |#4|)) 35)) (-2936 (((-3 $ "failed") $) 82)) (-3720 ((|#4| |#4| $) 89)) (-2959 (($ $) 68 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#4| $) 67 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-2668 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3699 ((|#4| |#4| $) 87)) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2689 (((-2 (|:| -1387 (-625 |#4|)) (|:| -2508 (-625 |#4|))) $) 105)) (-3731 (((-112) |#4| $) 136)) (-3714 (((-112) |#4| $) 133)) (-3741 (((-112) |#4| $) 137) (((-112) $) 134)) (-3799 (((-625 |#4|) $) 52 (|has| $ (-6 -4353)))) (-2678 (((-112) |#4| $) 104) (((-112) $) 103)) (-3565 ((|#3| $) 34)) (-2909 (((-112) $ (-751)) 43)) (-3730 (((-625 |#4|) $) 53 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) 47)) (-2615 (((-625 |#3|) $) 32)) (-2608 (((-112) |#3| $) 31)) (-2878 (((-112) $ (-751)) 42)) (-2883 (((-1131) $) 9)) (-3674 (((-3 |#4| (-625 $)) |#4| |#4| $) 128)) (-3662 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| |#4| $) 127)) (-1437 (((-3 |#4| "failed") $) 83)) (-3685 (((-625 $) |#4| $) 129)) (-3704 (((-3 (-112) (-625 $)) |#4| $) 132)) (-3694 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-2860 (((-625 $) |#4| $) 125) (((-625 $) (-625 |#4|) $) 124) (((-625 $) (-625 |#4|) (-625 $)) 123) (((-625 $) |#4| (-625 $)) 122)) (-3999 (($ |#4| $) 117) (($ (-625 |#4|) $) 116)) (-2699 (((-625 |#4|) $) 107)) (-3777 (((-112) |#4| $) 99) (((-112) $) 95)) (-3727 ((|#4| |#4| $) 90)) (-2719 (((-112) $ $) 110)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-3788 (((-112) |#4| $) 100) (((-112) $) 96)) (-3737 ((|#4| |#4| $) 91)) (-2831 (((-1093) $) 10)) (-2924 (((-3 |#4| "failed") $) 84)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3657 (((-3 $ "failed") $ |#4|) 78)) (-2147 (($ $ |#4|) 77) (((-625 $) |#4| $) 115) (((-625 $) |#4| (-625 $)) 114) (((-625 $) (-625 |#4|) $) 113) (((-625 $) (-625 |#4|) (-625 $)) 112)) (-1888 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) 38)) (-1916 (((-112) $) 41)) (-3600 (($) 40)) (-4276 (((-751) $) 106)) (-2840 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-1871 (($ $) 39)) (-2042 (((-528) $) 69 (|has| |#4| (-598 (-528))))) (-1695 (($ (-625 |#4|)) 60)) (-3718 (($ $ |#3|) 28)) (-2595 (($ $ |#3|) 30)) (-3709 (($ $) 88)) (-2584 (($ $ |#3|) 29)) (-1683 (((-839) $) 11) (((-625 |#4|) $) 37)) (-3647 (((-751) $) 76 (|has| |#3| (-363)))) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3767 (((-112) $ (-1 (-112) |#4| (-625 |#4|))) 98)) (-3651 (((-625 $) |#4| $) 121) (((-625 $) |#4| (-625 $)) 120) (((-625 $) (-625 |#4|) $) 119) (((-625 $) (-625 |#4|) (-625 $)) 118)) (-1900 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-3669 (((-625 |#3|) $) 81)) (-3724 (((-112) |#4| $) 135)) (-4168 (((-112) |#3| $) 80)) (-2281 (((-112) $ $) 6)) (-1471 (((-751) $) 46 (|has| $ (-6 -4353))))) -(((-1100 |#1| |#2| |#3| |#4|) (-138) (-446) (-773) (-827) (-1039 |t#1| |t#2| |t#3|)) (T -1100)) -NIL -(-13 (-1082 |t#1| |t#2| |t#3| |t#4|) (-764 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-101) . T) ((-597 (-625 |#4|)) . T) ((-597 (-839)) . T) ((-149 |#4|) . T) ((-598 (-528)) |has| |#4| (-598 (-528))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-764 |#1| |#2| |#3| |#4|) . T) ((-952 |#1| |#2| |#3| |#4|) . T) ((-1045 |#1| |#2| |#3| |#4|) . T) ((-1073) . T) ((-1082 |#1| |#2| |#3| |#4|) . T) ((-1179 |#1| |#2| |#3| |#4|) . T) ((-1186) . T)) -((-1728 (((-625 |#2|) |#1|) 12)) (-2572 (((-625 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-625 |#2|) |#1|) 52)) (-2552 (((-625 |#2|) |#2| |#2| |#2|) 39) (((-625 |#2|) |#1|) 50)) (-2535 ((|#2| |#1|) 46)) (-2543 (((-2 (|:| |solns| (-625 |#2|)) (|:| |maps| (-625 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-4072 (((-625 |#2|) |#2| |#2|) 38) (((-625 |#2|) |#1|) 49)) (-2561 (((-625 |#2|) |#2| |#2| |#2| |#2|) 40) (((-625 |#2|) |#1|) 51)) (-1395 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-2591 ((|#2| |#2| |#2| |#2|) 43)) (-2581 ((|#2| |#2| |#2|) 42)) (-2604 ((|#2| |#2| |#2| |#2| |#2|) 44))) -(((-1101 |#1| |#2|) (-10 -7 (-15 -1728 ((-625 |#2|) |#1|)) (-15 -2535 (|#2| |#1|)) (-15 -2543 ((-2 (|:| |solns| (-625 |#2|)) (|:| |maps| (-625 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4072 ((-625 |#2|) |#1|)) (-15 -2552 ((-625 |#2|) |#1|)) (-15 -2561 ((-625 |#2|) |#1|)) (-15 -2572 ((-625 |#2|) |#1|)) (-15 -4072 ((-625 |#2|) |#2| |#2|)) (-15 -2552 ((-625 |#2|) |#2| |#2| |#2|)) (-15 -2561 ((-625 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2572 ((-625 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2581 (|#2| |#2| |#2|)) (-15 -2591 (|#2| |#2| |#2| |#2|)) (-15 -2604 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1395 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1208 |#2|) (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (T -1101)) -((-1395 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1208 *2)))) (-2604 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1208 *2)))) (-2591 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1208 *2)))) (-2581 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1208 *2)))) (-2572 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *2 (-625 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1208 *3)))) (-2561 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *2 (-625 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1208 *3)))) (-2552 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *2 (-625 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1208 *3)))) (-4072 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *2 (-625 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1208 *3)))) (-2572 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *2 (-625 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1208 *4)))) (-2561 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *2 (-625 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1208 *4)))) (-2552 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *2 (-625 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1208 *4)))) (-4072 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *2 (-625 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1208 *4)))) (-2543 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *2 (-2 (|:| |solns| (-625 *5)) (|:| |maps| (-625 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1101 *3 *5)) (-4 *3 (-1208 *5)))) (-2535 (*1 *2 *3) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1208 *2)))) (-1728 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) (-5 *2 (-625 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1208 *4))))) -(-10 -7 (-15 -1728 ((-625 |#2|) |#1|)) (-15 -2535 (|#2| |#1|)) (-15 -2543 ((-2 (|:| |solns| (-625 |#2|)) (|:| |maps| (-625 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4072 ((-625 |#2|) |#1|)) (-15 -2552 ((-625 |#2|) |#1|)) (-15 -2561 ((-625 |#2|) |#1|)) (-15 -2572 ((-625 |#2|) |#1|)) (-15 -4072 ((-625 |#2|) |#2| |#2|)) (-15 -2552 ((-625 |#2|) |#2| |#2| |#2|)) (-15 -2561 ((-625 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2572 ((-625 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2581 (|#2| |#2| |#2|)) (-15 -2591 (|#2| |#2| |#2| |#2|)) (-15 -2604 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1395 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-1405 (((-625 (-625 (-289 (-311 |#1|)))) (-625 (-289 (-402 (-928 |#1|))))) 95) (((-625 (-625 (-289 (-311 |#1|)))) (-625 (-289 (-402 (-928 |#1|)))) (-625 (-1149))) 94) (((-625 (-625 (-289 (-311 |#1|)))) (-625 (-402 (-928 |#1|)))) 92) (((-625 (-625 (-289 (-311 |#1|)))) (-625 (-402 (-928 |#1|))) (-625 (-1149))) 90) (((-625 (-289 (-311 |#1|))) (-289 (-402 (-928 |#1|)))) 75) (((-625 (-289 (-311 |#1|))) (-289 (-402 (-928 |#1|))) (-1149)) 76) (((-625 (-289 (-311 |#1|))) (-402 (-928 |#1|))) 70) (((-625 (-289 (-311 |#1|))) (-402 (-928 |#1|)) (-1149)) 59)) (-1415 (((-625 (-625 (-311 |#1|))) (-625 (-402 (-928 |#1|))) (-625 (-1149))) 88) (((-625 (-311 |#1|)) (-402 (-928 |#1|)) (-1149)) 43)) (-1424 (((-1138 (-625 (-311 |#1|)) (-625 (-289 (-311 |#1|)))) (-402 (-928 |#1|)) (-1149)) 98) (((-1138 (-625 (-311 |#1|)) (-625 (-289 (-311 |#1|)))) (-289 (-402 (-928 |#1|))) (-1149)) 97))) -(((-1102 |#1|) (-10 -7 (-15 -1405 ((-625 (-289 (-311 |#1|))) (-402 (-928 |#1|)) (-1149))) (-15 -1405 ((-625 (-289 (-311 |#1|))) (-402 (-928 |#1|)))) (-15 -1405 ((-625 (-289 (-311 |#1|))) (-289 (-402 (-928 |#1|))) (-1149))) (-15 -1405 ((-625 (-289 (-311 |#1|))) (-289 (-402 (-928 |#1|))))) (-15 -1405 ((-625 (-625 (-289 (-311 |#1|)))) (-625 (-402 (-928 |#1|))) (-625 (-1149)))) (-15 -1405 ((-625 (-625 (-289 (-311 |#1|)))) (-625 (-402 (-928 |#1|))))) (-15 -1405 ((-625 (-625 (-289 (-311 |#1|)))) (-625 (-289 (-402 (-928 |#1|)))) (-625 (-1149)))) (-15 -1405 ((-625 (-625 (-289 (-311 |#1|)))) (-625 (-289 (-402 (-928 |#1|)))))) (-15 -1415 ((-625 (-311 |#1|)) (-402 (-928 |#1|)) (-1149))) (-15 -1415 ((-625 (-625 (-311 |#1|))) (-625 (-402 (-928 |#1|))) (-625 (-1149)))) (-15 -1424 ((-1138 (-625 (-311 |#1|)) (-625 (-289 (-311 |#1|)))) (-289 (-402 (-928 |#1|))) (-1149))) (-15 -1424 ((-1138 (-625 (-311 |#1|)) (-625 (-289 (-311 |#1|)))) (-402 (-928 |#1|)) (-1149)))) (-13 (-302) (-827) (-145))) (T -1102)) -((-1424 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-1138 (-625 (-311 *5)) (-625 (-289 (-311 *5))))) (-5 *1 (-1102 *5)))) (-1424 (*1 *2 *3 *4) (-12 (-5 *3 (-289 (-402 (-928 *5)))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-1138 (-625 (-311 *5)) (-625 (-289 (-311 *5))))) (-5 *1 (-1102 *5)))) (-1415 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-402 (-928 *5)))) (-5 *4 (-625 (-1149))) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-625 (-311 *5)))) (-5 *1 (-1102 *5)))) (-1415 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-311 *5))) (-5 *1 (-1102 *5)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-625 (-289 (-402 (-928 *4))))) (-4 *4 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-625 (-289 (-311 *4))))) (-5 *1 (-1102 *4)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-289 (-402 (-928 *5))))) (-5 *4 (-625 (-1149))) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-625 (-289 (-311 *5))))) (-5 *1 (-1102 *5)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-625 (-402 (-928 *4)))) (-4 *4 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-625 (-289 (-311 *4))))) (-5 *1 (-1102 *4)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-402 (-928 *5)))) (-5 *4 (-625 (-1149))) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-625 (-289 (-311 *5))))) (-5 *1 (-1102 *5)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-289 (-402 (-928 *4)))) (-4 *4 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-289 (-311 *4)))) (-5 *1 (-1102 *4)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-289 (-402 (-928 *5)))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-289 (-311 *5)))) (-5 *1 (-1102 *5)))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-289 (-311 *4)))) (-5 *1 (-1102 *4)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-289 (-311 *5)))) (-5 *1 (-1102 *5))))) -(-10 -7 (-15 -1405 ((-625 (-289 (-311 |#1|))) (-402 (-928 |#1|)) (-1149))) (-15 -1405 ((-625 (-289 (-311 |#1|))) (-402 (-928 |#1|)))) (-15 -1405 ((-625 (-289 (-311 |#1|))) (-289 (-402 (-928 |#1|))) (-1149))) (-15 -1405 ((-625 (-289 (-311 |#1|))) (-289 (-402 (-928 |#1|))))) (-15 -1405 ((-625 (-625 (-289 (-311 |#1|)))) (-625 (-402 (-928 |#1|))) (-625 (-1149)))) (-15 -1405 ((-625 (-625 (-289 (-311 |#1|)))) (-625 (-402 (-928 |#1|))))) (-15 -1405 ((-625 (-625 (-289 (-311 |#1|)))) (-625 (-289 (-402 (-928 |#1|)))) (-625 (-1149)))) (-15 -1405 ((-625 (-625 (-289 (-311 |#1|)))) (-625 (-289 (-402 (-928 |#1|)))))) (-15 -1415 ((-625 (-311 |#1|)) (-402 (-928 |#1|)) (-1149))) (-15 -1415 ((-625 (-625 (-311 |#1|))) (-625 (-402 (-928 |#1|))) (-625 (-1149)))) (-15 -1424 ((-1138 (-625 (-311 |#1|)) (-625 (-289 (-311 |#1|)))) (-289 (-402 (-928 |#1|))) (-1149))) (-15 -1424 ((-1138 (-625 (-311 |#1|)) (-625 (-289 (-311 |#1|)))) (-402 (-928 |#1|)) (-1149)))) -((-1449 (((-402 (-1145 (-311 |#1|))) (-1232 (-311 |#1|)) (-402 (-1145 (-311 |#1|))) (-552)) 29)) (-1436 (((-402 (-1145 (-311 |#1|))) (-402 (-1145 (-311 |#1|))) (-402 (-1145 (-311 |#1|))) (-402 (-1145 (-311 |#1|)))) 40))) -(((-1103 |#1|) (-10 -7 (-15 -1436 ((-402 (-1145 (-311 |#1|))) (-402 (-1145 (-311 |#1|))) (-402 (-1145 (-311 |#1|))) (-402 (-1145 (-311 |#1|))))) (-15 -1449 ((-402 (-1145 (-311 |#1|))) (-1232 (-311 |#1|)) (-402 (-1145 (-311 |#1|))) (-552)))) (-13 (-544) (-827))) (T -1103)) -((-1449 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-402 (-1145 (-311 *5)))) (-5 *3 (-1232 (-311 *5))) (-5 *4 (-552)) (-4 *5 (-13 (-544) (-827))) (-5 *1 (-1103 *5)))) (-1436 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-402 (-1145 (-311 *3)))) (-4 *3 (-13 (-544) (-827))) (-5 *1 (-1103 *3))))) -(-10 -7 (-15 -1436 ((-402 (-1145 (-311 |#1|))) (-402 (-1145 (-311 |#1|))) (-402 (-1145 (-311 |#1|))) (-402 (-1145 (-311 |#1|))))) (-15 -1449 ((-402 (-1145 (-311 |#1|))) (-1232 (-311 |#1|)) (-402 (-1145 (-311 |#1|))) (-552)))) -((-1728 (((-625 (-625 (-289 (-311 |#1|)))) (-625 (-289 (-311 |#1|))) (-625 (-1149))) 224) (((-625 (-289 (-311 |#1|))) (-311 |#1|) (-1149)) 20) (((-625 (-289 (-311 |#1|))) (-289 (-311 |#1|)) (-1149)) 26) (((-625 (-289 (-311 |#1|))) (-289 (-311 |#1|))) 25) (((-625 (-289 (-311 |#1|))) (-311 |#1|)) 21))) -(((-1104 |#1|) (-10 -7 (-15 -1728 ((-625 (-289 (-311 |#1|))) (-311 |#1|))) (-15 -1728 ((-625 (-289 (-311 |#1|))) (-289 (-311 |#1|)))) (-15 -1728 ((-625 (-289 (-311 |#1|))) (-289 (-311 |#1|)) (-1149))) (-15 -1728 ((-625 (-289 (-311 |#1|))) (-311 |#1|) (-1149))) (-15 -1728 ((-625 (-625 (-289 (-311 |#1|)))) (-625 (-289 (-311 |#1|))) (-625 (-1149))))) (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (T -1104)) -((-1728 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-1149))) (-4 *5 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-625 (-625 (-289 (-311 *5))))) (-5 *1 (-1104 *5)) (-5 *3 (-625 (-289 (-311 *5)))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-625 (-289 (-311 *5)))) (-5 *1 (-1104 *5)) (-5 *3 (-311 *5)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-625 (-289 (-311 *5)))) (-5 *1 (-1104 *5)) (-5 *3 (-289 (-311 *5))))) (-1728 (*1 *2 *3) (-12 (-4 *4 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-625 (-289 (-311 *4)))) (-5 *1 (-1104 *4)) (-5 *3 (-289 (-311 *4))))) (-1728 (*1 *2 *3) (-12 (-4 *4 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) (-5 *2 (-625 (-289 (-311 *4)))) (-5 *1 (-1104 *4)) (-5 *3 (-311 *4))))) -(-10 -7 (-15 -1728 ((-625 (-289 (-311 |#1|))) (-311 |#1|))) (-15 -1728 ((-625 (-289 (-311 |#1|))) (-289 (-311 |#1|)))) (-15 -1728 ((-625 (-289 (-311 |#1|))) (-289 (-311 |#1|)) (-1149))) (-15 -1728 ((-625 (-289 (-311 |#1|))) (-311 |#1|) (-1149))) (-15 -1728 ((-625 (-625 (-289 (-311 |#1|)))) (-625 (-289 (-311 |#1|))) (-625 (-1149))))) -((-1470 ((|#2| |#2|) 20 (|has| |#1| (-827))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-1459 ((|#2| |#2|) 19 (|has| |#1| (-827))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16))) -(((-1105 |#1| |#2|) (-10 -7 (-15 -1459 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1470 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-827)) (PROGN (-15 -1459 (|#2| |#2|)) (-15 -1470 (|#2| |#2|))) |%noBranch|)) (-1186) (-13 (-588 (-552) |#1|) (-10 -7 (-6 -4353) (-6 -4354)))) (T -1105)) -((-1470 (*1 *2 *2) (-12 (-4 *3 (-827)) (-4 *3 (-1186)) (-5 *1 (-1105 *3 *2)) (-4 *2 (-13 (-588 (-552) *3) (-10 -7 (-6 -4353) (-6 -4354)))))) (-1459 (*1 *2 *2) (-12 (-4 *3 (-827)) (-4 *3 (-1186)) (-5 *1 (-1105 *3 *2)) (-4 *2 (-13 (-588 (-552) *3) (-10 -7 (-6 -4353) (-6 -4354)))))) (-1470 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1186)) (-5 *1 (-1105 *4 *2)) (-4 *2 (-13 (-588 (-552) *4) (-10 -7 (-6 -4353) (-6 -4354)))))) (-1459 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1186)) (-5 *1 (-1105 *4 *2)) (-4 *2 (-13 (-588 (-552) *4) (-10 -7 (-6 -4353) (-6 -4354))))))) -(-10 -7 (-15 -1459 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1470 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-827)) (PROGN (-15 -1459 (|#2| |#2|)) (-15 -1470 (|#2| |#2|))) |%noBranch|)) -((-1671 (((-112) $ $) NIL)) (-1856 (((-1137 3 |#1|) $) 107)) (-1559 (((-112) $) 72)) (-1570 (($ $ (-625 (-919 |#1|))) 20) (($ $ (-625 (-625 |#1|))) 75) (($ (-625 (-919 |#1|))) 74) (((-625 (-919 |#1|)) $) 73)) (-1625 (((-112) $) 41)) (-3582 (($ $ (-919 |#1|)) 46) (($ $ (-625 |#1|)) 51) (($ $ (-751)) 53) (($ (-919 |#1|)) 47) (((-919 |#1|) $) 45)) (-3915 (((-2 (|:| -1521 (-751)) (|:| |curves| (-751)) (|:| |polygons| (-751)) (|:| |constructs| (-751))) $) 105)) (-1670 (((-751) $) 26)) (-1682 (((-751) $) 25)) (-1844 (($ $ (-751) (-919 |#1|)) 39)) (-1538 (((-112) $) 82)) (-1548 (($ $ (-625 (-625 (-919 |#1|))) (-625 (-169)) (-169)) 89) (($ $ (-625 (-625 (-625 |#1|))) (-625 (-169)) (-169)) 91) (($ $ (-625 (-625 (-919 |#1|))) (-112) (-112)) 85) (($ $ (-625 (-625 (-625 |#1|))) (-112) (-112)) 93) (($ (-625 (-625 (-919 |#1|)))) 86) (($ (-625 (-625 (-919 |#1|))) (-112) (-112)) 87) (((-625 (-625 (-919 |#1|))) $) 84)) (-3280 (($ (-625 $)) 28) (($ $ $) 29)) (-1492 (((-625 (-169)) $) 102)) (-2952 (((-625 (-919 |#1|)) $) 96)) (-1502 (((-625 (-625 (-169))) $) 101)) (-1515 (((-625 (-625 (-625 (-919 |#1|)))) $) NIL)) (-1527 (((-625 (-625 (-625 (-751)))) $) 99)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1637 (((-751) $ (-625 (-919 |#1|))) 37)) (-1603 (((-112) $) 54)) (-1614 (($ $ (-625 (-919 |#1|))) 56) (($ $ (-625 (-625 |#1|))) 62) (($ (-625 (-919 |#1|))) 57) (((-625 (-919 |#1|)) $) 55)) (-1694 (($) 23) (($ (-1137 3 |#1|)) 24)) (-1871 (($ $) 35)) (-1648 (((-625 $) $) 34)) (-3190 (($ (-625 $)) 31)) (-1660 (((-625 $) $) 33)) (-1683 (((-839) $) 111)) (-1580 (((-112) $) 64)) (-1592 (($ $ (-625 (-919 |#1|))) 66) (($ $ (-625 (-625 |#1|))) 69) (($ (-625 (-919 |#1|))) 67) (((-625 (-919 |#1|)) $) 65)) (-1482 (($ $) 106)) (-2281 (((-112) $ $) NIL))) -(((-1106 |#1|) (-1107 |#1|) (-1025)) (T -1106)) -NIL -(-1107 |#1|) -((-1671 (((-112) $ $) 7)) (-1856 (((-1137 3 |#1|) $) 13)) (-1559 (((-112) $) 29)) (-1570 (($ $ (-625 (-919 |#1|))) 33) (($ $ (-625 (-625 |#1|))) 32) (($ (-625 (-919 |#1|))) 31) (((-625 (-919 |#1|)) $) 30)) (-1625 (((-112) $) 44)) (-3582 (($ $ (-919 |#1|)) 49) (($ $ (-625 |#1|)) 48) (($ $ (-751)) 47) (($ (-919 |#1|)) 46) (((-919 |#1|) $) 45)) (-3915 (((-2 (|:| -1521 (-751)) (|:| |curves| (-751)) (|:| |polygons| (-751)) (|:| |constructs| (-751))) $) 15)) (-1670 (((-751) $) 58)) (-1682 (((-751) $) 59)) (-1844 (($ $ (-751) (-919 |#1|)) 50)) (-1538 (((-112) $) 21)) (-1548 (($ $ (-625 (-625 (-919 |#1|))) (-625 (-169)) (-169)) 28) (($ $ (-625 (-625 (-625 |#1|))) (-625 (-169)) (-169)) 27) (($ $ (-625 (-625 (-919 |#1|))) (-112) (-112)) 26) (($ $ (-625 (-625 (-625 |#1|))) (-112) (-112)) 25) (($ (-625 (-625 (-919 |#1|)))) 24) (($ (-625 (-625 (-919 |#1|))) (-112) (-112)) 23) (((-625 (-625 (-919 |#1|))) $) 22)) (-3280 (($ (-625 $)) 57) (($ $ $) 56)) (-1492 (((-625 (-169)) $) 16)) (-2952 (((-625 (-919 |#1|)) $) 20)) (-1502 (((-625 (-625 (-169))) $) 17)) (-1515 (((-625 (-625 (-625 (-919 |#1|)))) $) 18)) (-1527 (((-625 (-625 (-625 (-751)))) $) 19)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1637 (((-751) $ (-625 (-919 |#1|))) 51)) (-1603 (((-112) $) 39)) (-1614 (($ $ (-625 (-919 |#1|))) 43) (($ $ (-625 (-625 |#1|))) 42) (($ (-625 (-919 |#1|))) 41) (((-625 (-919 |#1|)) $) 40)) (-1694 (($) 61) (($ (-1137 3 |#1|)) 60)) (-1871 (($ $) 52)) (-1648 (((-625 $) $) 53)) (-3190 (($ (-625 $)) 55)) (-1660 (((-625 $) $) 54)) (-1683 (((-839) $) 11)) (-1580 (((-112) $) 34)) (-1592 (($ $ (-625 (-919 |#1|))) 38) (($ $ (-625 (-625 |#1|))) 37) (($ (-625 (-919 |#1|))) 36) (((-625 (-919 |#1|)) $) 35)) (-1482 (($ $) 14)) (-2281 (((-112) $ $) 6))) -(((-1107 |#1|) (-138) (-1025)) (T -1107)) -((-1683 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-839)))) (-1694 (*1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))) (-1694 (*1 *1 *2) (-12 (-5 *2 (-1137 3 *3)) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-1682 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-1670 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-3280 (*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3280 (*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))) (-3190 (*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-1660 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-625 *1)) (-4 *1 (-1107 *3)))) (-1648 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-625 *1)) (-4 *1 (-1107 *3)))) (-1871 (*1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))) (-1637 (*1 *2 *1 *3) (-12 (-5 *3 (-625 (-919 *4))) (-4 *1 (-1107 *4)) (-4 *4 (-1025)) (-5 *2 (-751)))) (-1844 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *3 (-919 *4)) (-4 *1 (-1107 *4)) (-4 *4 (-1025)))) (-3582 (*1 *1 *1 *2) (-12 (-5 *2 (-919 *3)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3582 (*1 *1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3582 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3582 (*1 *1 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-3582 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-919 *3)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))) (-1614 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-1614 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-625 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-1614 (*1 *1 *2) (-12 (-5 *2 (-625 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-1614 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-919 *3))))) (-1603 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))) (-1592 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-1592 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-625 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-1592 (*1 *1 *2) (-12 (-5 *2 (-625 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-1592 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-919 *3))))) (-1580 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))) (-1570 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-1570 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-625 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-1570 (*1 *1 *2) (-12 (-5 *2 (-625 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-1570 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-919 *3))))) (-1559 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))) (-1548 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-625 (-625 (-919 *5)))) (-5 *3 (-625 (-169))) (-5 *4 (-169)) (-4 *1 (-1107 *5)) (-4 *5 (-1025)))) (-1548 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-625 (-625 (-625 *5)))) (-5 *3 (-625 (-169))) (-5 *4 (-169)) (-4 *1 (-1107 *5)) (-4 *5 (-1025)))) (-1548 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-625 (-625 (-919 *4)))) (-5 *3 (-112)) (-4 *1 (-1107 *4)) (-4 *4 (-1025)))) (-1548 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-625 (-625 (-625 *4)))) (-5 *3 (-112)) (-4 *1 (-1107 *4)) (-4 *4 (-1025)))) (-1548 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 (-919 *3)))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-1548 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-625 (-625 (-919 *4)))) (-5 *3 (-112)) (-4 *4 (-1025)) (-4 *1 (-1107 *4)))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-625 (-919 *3)))))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-919 *3))))) (-1527 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-625 (-625 (-751))))))) (-1515 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-625 (-625 (-919 *3))))))) (-1502 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-625 (-169)))))) (-1492 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-169))))) (-3915 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -1521 (-751)) (|:| |curves| (-751)) (|:| |polygons| (-751)) (|:| |constructs| (-751)))))) (-1482 (*1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-1137 3 *3))))) -(-13 (-1073) (-10 -8 (-15 -1694 ($)) (-15 -1694 ($ (-1137 3 |t#1|))) (-15 -1682 ((-751) $)) (-15 -1670 ((-751) $)) (-15 -3280 ($ (-625 $))) (-15 -3280 ($ $ $)) (-15 -3190 ($ (-625 $))) (-15 -1660 ((-625 $) $)) (-15 -1648 ((-625 $) $)) (-15 -1871 ($ $)) (-15 -1637 ((-751) $ (-625 (-919 |t#1|)))) (-15 -1844 ($ $ (-751) (-919 |t#1|))) (-15 -3582 ($ $ (-919 |t#1|))) (-15 -3582 ($ $ (-625 |t#1|))) (-15 -3582 ($ $ (-751))) (-15 -3582 ($ (-919 |t#1|))) (-15 -3582 ((-919 |t#1|) $)) (-15 -1625 ((-112) $)) (-15 -1614 ($ $ (-625 (-919 |t#1|)))) (-15 -1614 ($ $ (-625 (-625 |t#1|)))) (-15 -1614 ($ (-625 (-919 |t#1|)))) (-15 -1614 ((-625 (-919 |t#1|)) $)) (-15 -1603 ((-112) $)) (-15 -1592 ($ $ (-625 (-919 |t#1|)))) (-15 -1592 ($ $ (-625 (-625 |t#1|)))) (-15 -1592 ($ (-625 (-919 |t#1|)))) (-15 -1592 ((-625 (-919 |t#1|)) $)) (-15 -1580 ((-112) $)) (-15 -1570 ($ $ (-625 (-919 |t#1|)))) (-15 -1570 ($ $ (-625 (-625 |t#1|)))) (-15 -1570 ($ (-625 (-919 |t#1|)))) (-15 -1570 ((-625 (-919 |t#1|)) $)) (-15 -1559 ((-112) $)) (-15 -1548 ($ $ (-625 (-625 (-919 |t#1|))) (-625 (-169)) (-169))) (-15 -1548 ($ $ (-625 (-625 (-625 |t#1|))) (-625 (-169)) (-169))) (-15 -1548 ($ $ (-625 (-625 (-919 |t#1|))) (-112) (-112))) (-15 -1548 ($ $ (-625 (-625 (-625 |t#1|))) (-112) (-112))) (-15 -1548 ($ (-625 (-625 (-919 |t#1|))))) (-15 -1548 ($ (-625 (-625 (-919 |t#1|))) (-112) (-112))) (-15 -1548 ((-625 (-625 (-919 |t#1|))) $)) (-15 -1538 ((-112) $)) (-15 -2952 ((-625 (-919 |t#1|)) $)) (-15 -1527 ((-625 (-625 (-625 (-751)))) $)) (-15 -1515 ((-625 (-625 (-625 (-919 |t#1|)))) $)) (-15 -1502 ((-625 (-625 (-169))) $)) (-15 -1492 ((-625 (-169)) $)) (-15 -3915 ((-2 (|:| -1521 (-751)) (|:| |curves| (-751)) (|:| |polygons| (-751)) (|:| |constructs| (-751))) $)) (-15 -1482 ($ $)) (-15 -1856 ((-1137 3 |t#1|) $)) (-15 -1683 ((-839) $)))) -(((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 176) (((-1154) $) 7) (($ (-1154)) NIL)) (-2079 (((-112) $ (|[\|\|]| (-517))) 17) (((-112) $ (|[\|\|]| (-214))) 21) (((-112) $ (|[\|\|]| (-656))) 25) (((-112) $ (|[\|\|]| (-1242))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1088))) 41) (((-112) $ (|[\|\|]| (-95))) 45) (((-112) $ (|[\|\|]| (-661))) 49) (((-112) $ (|[\|\|]| (-510))) 53) (((-112) $ (|[\|\|]| (-1040))) 57) (((-112) $ (|[\|\|]| (-1243))) 61) (((-112) $ (|[\|\|]| (-518))) 65) (((-112) $ (|[\|\|]| (-152))) 69) (((-112) $ (|[\|\|]| (-651))) 73) (((-112) $ (|[\|\|]| (-306))) 77) (((-112) $ (|[\|\|]| (-1012))) 81) (((-112) $ (|[\|\|]| (-178))) 85) (((-112) $ (|[\|\|]| (-946))) 89) (((-112) $ (|[\|\|]| (-1047))) 93) (((-112) $ (|[\|\|]| (-1063))) 97) (((-112) $ (|[\|\|]| (-1069))) 101) (((-112) $ (|[\|\|]| (-608))) 105) (((-112) $ (|[\|\|]| (-1139))) 109) (((-112) $ (|[\|\|]| (-154))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-472))) 121) (((-112) $ (|[\|\|]| (-577))) 125) (((-112) $ (|[\|\|]| (-499))) 131) (((-112) $ (|[\|\|]| (-1131))) 135) (((-112) $ (|[\|\|]| (-552))) 139)) (-1905 (((-517) $) 18) (((-214) $) 22) (((-656) $) 26) (((-1242) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1088) $) 42) (((-95) $) 46) (((-661) $) 50) (((-510) $) 54) (((-1040) $) 58) (((-1243) $) 62) (((-518) $) 66) (((-152) $) 70) (((-651) $) 74) (((-306) $) 78) (((-1012) $) 82) (((-178) $) 86) (((-946) $) 90) (((-1047) $) 94) (((-1063) $) 98) (((-1069) $) 102) (((-608) $) 106) (((-1139) $) 110) (((-154) $) 114) (((-136) $) 118) (((-472) $) 122) (((-577) $) 126) (((-499) $) 132) (((-1131) $) 136) (((-552) $) 140)) (-2281 (((-112) $ $) NIL))) -(((-1108) (-1110)) (T -1108)) -NIL -(-1110) -((-3017 (((-625 (-1154)) (-1131)) 9))) -(((-1109) (-10 -7 (-15 -3017 ((-625 (-1154)) (-1131))))) (T -1109)) -((-3017 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-625 (-1154))) (-5 *1 (-1109))))) -(-10 -7 (-15 -3017 ((-625 (-1154)) (-1131)))) -((-1671 (((-112) $ $) 7)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (((-1154) $) 15) (($ (-1154)) 14)) (-2079 (((-112) $ (|[\|\|]| (-517))) 80) (((-112) $ (|[\|\|]| (-214))) 78) (((-112) $ (|[\|\|]| (-656))) 76) (((-112) $ (|[\|\|]| (-1242))) 74) (((-112) $ (|[\|\|]| (-137))) 72) (((-112) $ (|[\|\|]| (-132))) 70) (((-112) $ (|[\|\|]| (-1088))) 68) (((-112) $ (|[\|\|]| (-95))) 66) (((-112) $ (|[\|\|]| (-661))) 64) (((-112) $ (|[\|\|]| (-510))) 62) (((-112) $ (|[\|\|]| (-1040))) 60) (((-112) $ (|[\|\|]| (-1243))) 58) (((-112) $ (|[\|\|]| (-518))) 56) (((-112) $ (|[\|\|]| (-152))) 54) (((-112) $ (|[\|\|]| (-651))) 52) (((-112) $ (|[\|\|]| (-306))) 50) (((-112) $ (|[\|\|]| (-1012))) 48) (((-112) $ (|[\|\|]| (-178))) 46) (((-112) $ (|[\|\|]| (-946))) 44) (((-112) $ (|[\|\|]| (-1047))) 42) (((-112) $ (|[\|\|]| (-1063))) 40) (((-112) $ (|[\|\|]| (-1069))) 38) (((-112) $ (|[\|\|]| (-608))) 36) (((-112) $ (|[\|\|]| (-1139))) 34) (((-112) $ (|[\|\|]| (-154))) 32) (((-112) $ (|[\|\|]| (-136))) 30) (((-112) $ (|[\|\|]| (-472))) 28) (((-112) $ (|[\|\|]| (-577))) 26) (((-112) $ (|[\|\|]| (-499))) 24) (((-112) $ (|[\|\|]| (-1131))) 22) (((-112) $ (|[\|\|]| (-552))) 20)) (-1905 (((-517) $) 79) (((-214) $) 77) (((-656) $) 75) (((-1242) $) 73) (((-137) $) 71) (((-132) $) 69) (((-1088) $) 67) (((-95) $) 65) (((-661) $) 63) (((-510) $) 61) (((-1040) $) 59) (((-1243) $) 57) (((-518) $) 55) (((-152) $) 53) (((-651) $) 51) (((-306) $) 49) (((-1012) $) 47) (((-178) $) 45) (((-946) $) 43) (((-1047) $) 41) (((-1063) $) 39) (((-1069) $) 37) (((-608) $) 35) (((-1139) $) 33) (((-154) $) 31) (((-136) $) 29) (((-472) $) 27) (((-577) $) 25) (((-499) $) 23) (((-1131) $) 21) (((-552) $) 19)) (-2281 (((-112) $ $) 6))) -(((-1110) (-138)) (T -1110)) -((-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-517)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-214))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-214)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-656))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-656)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1242))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1242)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-137)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-132)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1088))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1088)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-95)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-661))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-661)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-510))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-510)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1040))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1040)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1243))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1243)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-518)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-152)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-651))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-651)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-306))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-306)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1012))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1012)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-178)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-946))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-946)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1047))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1047)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1063))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1063)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1069))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1069)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-608))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-608)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1139))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1139)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-154)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-136)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-472))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-472)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-577)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-499))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-499)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1131))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1131)))) (-2079 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-552))) (-5 *2 (-112)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-552))))) -(-13 (-1056) (-1227) (-10 -8 (-15 -2079 ((-112) $ (|[\|\|]| (-517)))) (-15 -1905 ((-517) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-214)))) (-15 -1905 ((-214) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-656)))) (-15 -1905 ((-656) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-1242)))) (-15 -1905 ((-1242) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-137)))) (-15 -1905 ((-137) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-132)))) (-15 -1905 ((-132) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-1088)))) (-15 -1905 ((-1088) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-95)))) (-15 -1905 ((-95) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-661)))) (-15 -1905 ((-661) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-510)))) (-15 -1905 ((-510) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-1040)))) (-15 -1905 ((-1040) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-1243)))) (-15 -1905 ((-1243) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-518)))) (-15 -1905 ((-518) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-152)))) (-15 -1905 ((-152) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-651)))) (-15 -1905 ((-651) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-306)))) (-15 -1905 ((-306) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-1012)))) (-15 -1905 ((-1012) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-178)))) (-15 -1905 ((-178) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-946)))) (-15 -1905 ((-946) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-1047)))) (-15 -1905 ((-1047) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-1063)))) (-15 -1905 ((-1063) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-1069)))) (-15 -1905 ((-1069) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-608)))) (-15 -1905 ((-608) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-1139)))) (-15 -1905 ((-1139) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-154)))) (-15 -1905 ((-154) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-136)))) (-15 -1905 ((-136) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-472)))) (-15 -1905 ((-472) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-577)))) (-15 -1905 ((-577) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-499)))) (-15 -1905 ((-499) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-1131)))) (-15 -1905 ((-1131) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-552)))) (-15 -1905 ((-552) $)))) -(((-92) . T) ((-101) . T) ((-597 (-839)) . T) ((-597 (-1154)) . T) ((-1073) . T) ((-1056) . T) ((-1227) . T)) -((-1716 (((-1237) (-625 (-839))) 23) (((-1237) (-839)) 22)) (-1705 (((-1237) (-625 (-839))) 21) (((-1237) (-839)) 20)) (-2927 (((-1237) (-625 (-839))) 19) (((-1237) (-839)) 11) (((-1237) (-1131) (-839)) 17))) -(((-1111) (-10 -7 (-15 -2927 ((-1237) (-1131) (-839))) (-15 -2927 ((-1237) (-839))) (-15 -1705 ((-1237) (-839))) (-15 -1716 ((-1237) (-839))) (-15 -2927 ((-1237) (-625 (-839)))) (-15 -1705 ((-1237) (-625 (-839)))) (-15 -1716 ((-1237) (-625 (-839)))))) (T -1111)) -((-1716 (*1 *2 *3) (-12 (-5 *3 (-625 (-839))) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-625 (-839))) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-625 (-839))) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-1716 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-2927 (*1 *2 *3 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-839)) (-5 *2 (-1237)) (-5 *1 (-1111))))) -(-10 -7 (-15 -2927 ((-1237) (-1131) (-839))) (-15 -2927 ((-1237) (-839))) (-15 -1705 ((-1237) (-839))) (-15 -1716 ((-1237) (-839))) (-15 -2927 ((-1237) (-625 (-839)))) (-15 -1705 ((-1237) (-625 (-839)))) (-15 -1716 ((-1237) (-625 (-839))))) -((-1759 (($ $ $) 10)) (-1749 (($ $) 9)) (-1792 (($ $ $) 13)) (-1815 (($ $ $) 15)) (-1780 (($ $ $) 12)) (-1804 (($ $ $) 14)) (-1836 (($ $) 17)) (-1825 (($ $) 16)) (-1727 (($ $) 6)) (-1769 (($ $ $) 11) (($ $) 7)) (-1739 (($ $ $) 8))) -(((-1112) (-138)) (T -1112)) -((-1836 (*1 *1 *1) (-4 *1 (-1112))) (-1825 (*1 *1 *1) (-4 *1 (-1112))) (-1815 (*1 *1 *1 *1) (-4 *1 (-1112))) (-1804 (*1 *1 *1 *1) (-4 *1 (-1112))) (-1792 (*1 *1 *1 *1) (-4 *1 (-1112))) (-1780 (*1 *1 *1 *1) (-4 *1 (-1112))) (-1769 (*1 *1 *1 *1) (-4 *1 (-1112))) (-1759 (*1 *1 *1 *1) (-4 *1 (-1112))) (-1749 (*1 *1 *1) (-4 *1 (-1112))) (-1739 (*1 *1 *1 *1) (-4 *1 (-1112))) (-1769 (*1 *1 *1) (-4 *1 (-1112))) (-1727 (*1 *1 *1) (-4 *1 (-1112)))) -(-13 (-10 -8 (-15 -1727 ($ $)) (-15 -1769 ($ $)) (-15 -1739 ($ $ $)) (-15 -1749 ($ $)) (-15 -1759 ($ $ $)) (-15 -1769 ($ $ $)) (-15 -1780 ($ $ $)) (-15 -1792 ($ $ $)) (-15 -1804 ($ $ $)) (-15 -1815 ($ $ $)) (-15 -1825 ($ $)) (-15 -1836 ($ $)))) -((-1671 (((-112) $ $) 41)) (-3800 ((|#1| $) 15)) (-1849 (((-112) $ $ (-1 (-112) |#2| |#2|)) 36)) (-2229 (((-112) $) 17)) (-1903 (($ $ |#1|) 28)) (-1881 (($ $ (-112)) 30)) (-1870 (($ $) 31)) (-1891 (($ $ |#2|) 29)) (-2883 (((-1131) $) NIL)) (-1860 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 35)) (-2831 (((-1093) $) NIL)) (-1916 (((-112) $) 14)) (-3600 (($) 10)) (-1871 (($ $) 27)) (-1695 (($ |#1| |#2| (-112)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3715 |#2|))) 21) (((-625 $) (-625 (-2 (|:| |val| |#1|) (|:| -3715 |#2|)))) 24) (((-625 $) |#1| (-625 |#2|)) 26)) (-3848 ((|#2| $) 16)) (-1683 (((-839) $) 50)) (-2281 (((-112) $ $) 39))) -(((-1113 |#1| |#2|) (-13 (-1073) (-10 -8 (-15 -3600 ($)) (-15 -1916 ((-112) $)) (-15 -3800 (|#1| $)) (-15 -3848 (|#2| $)) (-15 -2229 ((-112) $)) (-15 -1695 ($ |#1| |#2| (-112))) (-15 -1695 ($ |#1| |#2|)) (-15 -1695 ($ (-2 (|:| |val| |#1|) (|:| -3715 |#2|)))) (-15 -1695 ((-625 $) (-625 (-2 (|:| |val| |#1|) (|:| -3715 |#2|))))) (-15 -1695 ((-625 $) |#1| (-625 |#2|))) (-15 -1871 ($ $)) (-15 -1903 ($ $ |#1|)) (-15 -1891 ($ $ |#2|)) (-15 -1881 ($ $ (-112))) (-15 -1870 ($ $)) (-15 -1860 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1849 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1073) (-34)) (-13 (-1073) (-34))) (T -1113)) -((-3600 (*1 *1) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34))))) (-1916 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))))) (-3800 (*1 *2 *1) (-12 (-4 *2 (-13 (-1073) (-34))) (-5 *1 (-1113 *2 *3)) (-4 *3 (-13 (-1073) (-34))))) (-3848 (*1 *2 *1) (-12 (-4 *2 (-13 (-1073) (-34))) (-5 *1 (-1113 *3 *2)) (-4 *3 (-13 (-1073) (-34))))) (-2229 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))))) (-1695 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34))))) (-1695 (*1 *1 *2 *3) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34))))) (-1695 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3715 *4))) (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))) (-5 *1 (-1113 *3 *4)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-625 (-2 (|:| |val| *4) (|:| -3715 *5)))) (-4 *4 (-13 (-1073) (-34))) (-4 *5 (-13 (-1073) (-34))) (-5 *2 (-625 (-1113 *4 *5))) (-5 *1 (-1113 *4 *5)))) (-1695 (*1 *2 *3 *4) (-12 (-5 *4 (-625 *5)) (-4 *5 (-13 (-1073) (-34))) (-5 *2 (-625 (-1113 *3 *5))) (-5 *1 (-1113 *3 *5)) (-4 *3 (-13 (-1073) (-34))))) (-1871 (*1 *1 *1) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34))))) (-1903 (*1 *1 *1 *2) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34))))) (-1891 (*1 *1 *1 *2) (-12 (-5 *1 (-1113 *3 *2)) (-4 *3 (-13 (-1073) (-34))) (-4 *2 (-13 (-1073) (-34))))) (-1881 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))))) (-1870 (*1 *1 *1) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34))))) (-1860 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1073) (-34))) (-4 *6 (-13 (-1073) (-34))) (-5 *2 (-112)) (-5 *1 (-1113 *5 *6)))) (-1849 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1073) (-34))) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5)) (-4 *4 (-13 (-1073) (-34)))))) -(-13 (-1073) (-10 -8 (-15 -3600 ($)) (-15 -1916 ((-112) $)) (-15 -3800 (|#1| $)) (-15 -3848 (|#2| $)) (-15 -2229 ((-112) $)) (-15 -1695 ($ |#1| |#2| (-112))) (-15 -1695 ($ |#1| |#2|)) (-15 -1695 ($ (-2 (|:| |val| |#1|) (|:| -3715 |#2|)))) (-15 -1695 ((-625 $) (-625 (-2 (|:| |val| |#1|) (|:| -3715 |#2|))))) (-15 -1695 ((-625 $) |#1| (-625 |#2|))) (-15 -1871 ($ $)) (-15 -1903 ($ $ |#1|)) (-15 -1891 ($ $ |#2|)) (-15 -1881 ($ $ (-112))) (-15 -1870 ($ $)) (-15 -1860 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -1849 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-1671 (((-112) $ $) NIL (|has| (-1113 |#1| |#2|) (-1073)))) (-3800 (((-1113 |#1| |#2|) $) 25)) (-1974 (($ $) 76)) (-1949 (((-112) (-1113 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-1928 (($ $ $ (-625 (-1113 |#1| |#2|))) 90) (($ $ $ (-625 (-1113 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-3495 (((-112) $ (-751)) NIL)) (-2565 (((-1113 |#1| |#2|) $ (-1113 |#1| |#2|)) 43 (|has| $ (-6 -4354)))) (-1851 (((-1113 |#1| |#2|) $ "value" (-1113 |#1| |#2|)) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 41 (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-3448 (((-625 (-2 (|:| |val| |#1|) (|:| -3715 |#2|))) $) 80)) (-1938 (($ (-1113 |#1| |#2|) $) 39)) (-1416 (($ (-1113 |#1| |#2|) $) 31)) (-3799 (((-625 (-1113 |#1| |#2|)) $) NIL (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) 51)) (-1962 (((-112) (-1113 |#1| |#2|) $) 82)) (-1371 (((-112) $ $) NIL (|has| (-1113 |#1| |#2|) (-1073)))) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 (-1113 |#1| |#2|)) $) 55 (|has| $ (-6 -4353)))) (-2893 (((-112) (-1113 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-1113 |#1| |#2|) (-1073))))) (-3683 (($ (-1 (-1113 |#1| |#2|) (-1113 |#1| |#2|)) $) 47 (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-1113 |#1| |#2|) (-1113 |#1| |#2|)) $) 46)) (-2878 (((-112) $ (-751)) NIL)) (-3183 (((-625 (-1113 |#1| |#2|)) $) 53)) (-3367 (((-112) $) 42)) (-2883 (((-1131) $) NIL (|has| (-1113 |#1| |#2|) (-1073)))) (-2831 (((-1093) $) NIL (|has| (-1113 |#1| |#2|) (-1073)))) (-1982 (((-3 $ "failed") $) 75)) (-1888 (((-112) (-1 (-112) (-1113 |#1| |#2|)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-1113 |#1| |#2|)))) NIL (-12 (|has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|))) (|has| (-1113 |#1| |#2|) (-1073)))) (($ $ (-289 (-1113 |#1| |#2|))) NIL (-12 (|has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|))) (|has| (-1113 |#1| |#2|) (-1073)))) (($ $ (-1113 |#1| |#2|) (-1113 |#1| |#2|)) NIL (-12 (|has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|))) (|has| (-1113 |#1| |#2|) (-1073)))) (($ $ (-625 (-1113 |#1| |#2|)) (-625 (-1113 |#1| |#2|))) NIL (-12 (|has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|))) (|has| (-1113 |#1| |#2|) (-1073))))) (-3504 (((-112) $ $) 50)) (-1916 (((-112) $) 22)) (-3600 (($) 24)) (-2154 (((-1113 |#1| |#2|) $ "value") NIL)) (-1389 (((-552) $ $) NIL)) (-2316 (((-112) $) 44)) (-2840 (((-751) (-1 (-112) (-1113 |#1| |#2|)) $) NIL (|has| $ (-6 -4353))) (((-751) (-1113 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-1113 |#1| |#2|) (-1073))))) (-1871 (($ $) 49)) (-1695 (($ (-1113 |#1| |#2|)) 9) (($ |#1| |#2| (-625 $)) 12) (($ |#1| |#2| (-625 (-1113 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-625 |#2|)) 17)) (-2332 (((-625 |#2|) $) 81)) (-1683 (((-839) $) 73 (|has| (-1113 |#1| |#2|) (-597 (-839))))) (-3320 (((-625 $) $) 28)) (-1380 (((-112) $ $) NIL (|has| (-1113 |#1| |#2|) (-1073)))) (-1900 (((-112) (-1 (-112) (-1113 |#1| |#2|)) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 64 (|has| (-1113 |#1| |#2|) (-1073)))) (-1471 (((-751) $) 58 (|has| $ (-6 -4353))))) -(((-1114 |#1| |#2|) (-13 (-986 (-1113 |#1| |#2|)) (-10 -8 (-6 -4354) (-6 -4353) (-15 -1982 ((-3 $ "failed") $)) (-15 -1974 ($ $)) (-15 -1695 ($ (-1113 |#1| |#2|))) (-15 -1695 ($ |#1| |#2| (-625 $))) (-15 -1695 ($ |#1| |#2| (-625 (-1113 |#1| |#2|)))) (-15 -1695 ($ |#1| |#2| |#1| (-625 |#2|))) (-15 -2332 ((-625 |#2|) $)) (-15 -3448 ((-625 (-2 (|:| |val| |#1|) (|:| -3715 |#2|))) $)) (-15 -1962 ((-112) (-1113 |#1| |#2|) $)) (-15 -1949 ((-112) (-1113 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1416 ($ (-1113 |#1| |#2|) $)) (-15 -1938 ($ (-1113 |#1| |#2|) $)) (-15 -1928 ($ $ $ (-625 (-1113 |#1| |#2|)))) (-15 -1928 ($ $ $ (-625 (-1113 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1073) (-34)) (-13 (-1073) (-34))) (T -1114)) -((-1982 (*1 *1 *1) (|partial| -12 (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34))))) (-1974 (*1 *1 *1) (-12 (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34))))) (-1695 (*1 *1 *2) (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))) (-5 *1 (-1114 *3 *4)))) (-1695 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-625 (-1114 *2 *3))) (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34))))) (-1695 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-625 (-1113 *2 *3))) (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34))) (-5 *1 (-1114 *2 *3)))) (-1695 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-625 *3)) (-4 *3 (-13 (-1073) (-34))) (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1073) (-34))))) (-2332 (*1 *2 *1) (-12 (-5 *2 (-625 *4)) (-5 *1 (-1114 *3 *4)) (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) (-5 *1 (-1114 *3 *4)) (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))))) (-1962 (*1 *2 *3 *1) (-12 (-5 *3 (-1113 *4 *5)) (-4 *4 (-13 (-1073) (-34))) (-4 *5 (-13 (-1073) (-34))) (-5 *2 (-112)) (-5 *1 (-1114 *4 *5)))) (-1949 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1113 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1073) (-34))) (-4 *6 (-13 (-1073) (-34))) (-5 *2 (-112)) (-5 *1 (-1114 *5 *6)))) (-1416 (*1 *1 *2 *1) (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))) (-5 *1 (-1114 *3 *4)))) (-1938 (*1 *1 *2 *1) (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))) (-5 *1 (-1114 *3 *4)))) (-1928 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-625 (-1113 *3 *4))) (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))) (-5 *1 (-1114 *3 *4)))) (-1928 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-1113 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1073) (-34))) (-4 *5 (-13 (-1073) (-34))) (-5 *1 (-1114 *4 *5))))) -(-13 (-986 (-1113 |#1| |#2|)) (-10 -8 (-6 -4354) (-6 -4353) (-15 -1982 ((-3 $ "failed") $)) (-15 -1974 ($ $)) (-15 -1695 ($ (-1113 |#1| |#2|))) (-15 -1695 ($ |#1| |#2| (-625 $))) (-15 -1695 ($ |#1| |#2| (-625 (-1113 |#1| |#2|)))) (-15 -1695 ($ |#1| |#2| |#1| (-625 |#2|))) (-15 -2332 ((-625 |#2|) $)) (-15 -3448 ((-625 (-2 (|:| |val| |#1|) (|:| -3715 |#2|))) $)) (-15 -1962 ((-112) (-1113 |#1| |#2|) $)) (-15 -1949 ((-112) (-1113 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1416 ($ (-1113 |#1| |#2|) $)) (-15 -1938 ($ (-1113 |#1| |#2|) $)) (-15 -1928 ($ $ $ (-625 (-1113 |#1| |#2|)))) (-15 -1928 ($ $ $ (-625 (-1113 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2003 (($ $) NIL)) (-1650 ((|#2| $) NIL)) (-4089 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-1991 (($ (-669 |#2|)) 50)) (-4114 (((-112) $) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-2467 (($ |#2|) 10)) (-3101 (($) NIL T CONST)) (-3991 (($ $) 63 (|has| |#2| (-302)))) (-4015 (((-236 |#1| |#2|) $ (-552)) 36)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#2| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-3 |#2| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#2| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#2| (-1014 (-402 (-552))))) ((|#2| $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) 77)) (-3442 (((-751) $) 65 (|has| |#2| (-544)))) (-3631 ((|#2| $ (-552) (-552)) NIL)) (-3799 (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3650 (((-112) $) NIL)) (-3979 (((-751) $) 67 (|has| |#2| (-544)))) (-3967 (((-625 (-236 |#1| |#2|)) $) 71 (|has| |#2| (-544)))) (-1773 (((-751) $) NIL)) (-2183 (($ |#2|) 20)) (-1784 (((-751) $) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2416 ((|#2| $) 61 (|has| |#2| (-6 (-4355 "*"))))) (-4063 (((-552) $) NIL)) (-4038 (((-552) $) NIL)) (-3730 (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-4050 (((-552) $) NIL)) (-4027 (((-552) $) NIL)) (-3907 (($ (-625 (-625 |#2|))) 31)) (-3683 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3803 (((-625 (-625 |#2|)) $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-3150 (((-3 $ "failed") $) 74 (|has| |#2| (-358)))) (-2831 (((-1093) $) NIL)) (-2802 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544)))) (-1888 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#2| $ (-552) (-552) |#2|) NIL) ((|#2| $ (-552) (-552)) NIL)) (-3072 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-2435 ((|#2| $) NIL)) (-2457 (($ (-625 |#2|)) 44)) (-4102 (((-112) $) NIL)) (-2446 (((-236 |#1| |#2|) $) NIL)) (-2426 ((|#2| $) 59 (|has| |#2| (-6 (-4355 "*"))))) (-2840 (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1871 (($ $) NIL)) (-2042 (((-528) $) 86 (|has| |#2| (-598 (-528))))) (-4004 (((-236 |#1| |#2|) $ (-552)) 38)) (-1683 (((-839) $) 41) (($ (-552)) NIL) (($ (-402 (-552))) NIL (|has| |#2| (-1014 (-402 (-552))))) (($ |#2|) NIL) (((-669 |#2|) $) 46)) (-4141 (((-751)) 18)) (-1900 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4077 (((-112) $) NIL)) (-2089 (($) 12 T CONST)) (-2100 (($) 15 T CONST)) (-3768 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) 57) (($ $ (-552)) 76 (|has| |#2| (-358)))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-236 |#1| |#2|) $ (-236 |#1| |#2|)) 53) (((-236 |#1| |#2|) (-236 |#1| |#2|) $) 55)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-1115 |#1| |#2|) (-13 (-1096 |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) (-597 (-669 |#2|)) (-10 -8 (-15 -2183 ($ |#2|)) (-15 -2003 ($ $)) (-15 -1991 ($ (-669 |#2|))) (IF (|has| |#2| (-6 (-4355 "*"))) (-6 -4342) |%noBranch|) (IF (|has| |#2| (-6 (-4355 "*"))) (IF (|has| |#2| (-6 -4350)) (-6 -4350) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|))) (-751) (-1025)) (T -1115)) -((-2183 (*1 *1 *2) (-12 (-5 *1 (-1115 *3 *2)) (-14 *3 (-751)) (-4 *2 (-1025)))) (-2003 (*1 *1 *1) (-12 (-5 *1 (-1115 *2 *3)) (-14 *2 (-751)) (-4 *3 (-1025)))) (-1991 (*1 *1 *2) (-12 (-5 *2 (-669 *4)) (-4 *4 (-1025)) (-5 *1 (-1115 *3 *4)) (-14 *3 (-751))))) -(-13 (-1096 |#1| |#2| (-236 |#1| |#2|) (-236 |#1| |#2|)) (-597 (-669 |#2|)) (-10 -8 (-15 -2183 ($ |#2|)) (-15 -2003 ($ $)) (-15 -1991 ($ (-669 |#2|))) (IF (|has| |#2| (-6 (-4355 "*"))) (-6 -4342) |%noBranch|) (IF (|has| |#2| (-6 (-4355 "*"))) (IF (|has| |#2| (-6 -4350)) (-6 -4350) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-598 (-528))) (-6 (-598 (-528))) |%noBranch|))) -((-3843 (($ $) 19)) (-3808 (($ $ (-142)) 10) (($ $ (-139)) 14)) (-1992 (((-112) $ $) 24)) (-3870 (($ $) 17)) (-2154 (((-142) $ (-552) (-142)) NIL) (((-142) $ (-552)) NIL) (($ $ (-1199 (-552))) NIL) (($ $ $) 29)) (-1683 (($ (-142)) 27) (((-839) $) NIL))) -(((-1116 |#1|) (-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -2154 (|#1| |#1| |#1|)) (-15 -3808 (|#1| |#1| (-139))) (-15 -3808 (|#1| |#1| (-142))) (-15 -1683 (|#1| (-142))) (-15 -1992 ((-112) |#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -3870 (|#1| |#1|)) (-15 -2154 (|#1| |#1| (-1199 (-552)))) (-15 -2154 ((-142) |#1| (-552))) (-15 -2154 ((-142) |#1| (-552) (-142)))) (-1117)) (T -1116)) -NIL -(-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -2154 (|#1| |#1| |#1|)) (-15 -3808 (|#1| |#1| (-139))) (-15 -3808 (|#1| |#1| (-142))) (-15 -1683 (|#1| (-142))) (-15 -1992 ((-112) |#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -3870 (|#1| |#1|)) (-15 -2154 (|#1| |#1| (-1199 (-552)))) (-15 -2154 ((-142) |#1| (-552))) (-15 -2154 ((-142) |#1| (-552) (-142)))) -((-1671 (((-112) $ $) 19 (|has| (-142) (-1073)))) (-3829 (($ $) 120)) (-3843 (($ $) 121)) (-3808 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-2509 (((-1237) $ (-552) (-552)) 40 (|has| $ (-6 -4354)))) (-1975 (((-112) $ $) 118)) (-1951 (((-112) $ $ (-552)) 117)) (-3819 (((-625 $) $ (-142)) 110) (((-625 $) $ (-139)) 109)) (-3237 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-827)))) (-3218 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| (-142) (-827)) (|has| $ (-6 -4354))))) (-1800 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-827)))) (-3495 (((-112) $ (-751)) 8)) (-1851 (((-142) $ (-552) (-142)) 52 (|has| $ (-6 -4354))) (((-142) $ (-1199 (-552)) (-142)) 58 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-3209 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-1883 (($ $) 90 (|has| $ (-6 -4354)))) (-2306 (($ $) 100)) (-1353 (($ $ (-1199 (-552)) $) 114)) (-2959 (($ $) 78 (-12 (|has| (-142) (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ (-142) $) 77 (-12 (|has| (-142) (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4353)))) (-2163 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1073)) (|has| $ (-6 -4353)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4353)))) (-3692 (((-142) $ (-552) (-142)) 53 (|has| $ (-6 -4354)))) (-3631 (((-142) $ (-552)) 51)) (-1992 (((-112) $ $) 119)) (-2483 (((-552) (-1 (-112) (-142)) $) 97) (((-552) (-142) $) 96 (|has| (-142) (-1073))) (((-552) (-142) $ (-552)) 95 (|has| (-142) (-1073))) (((-552) $ $ (-552)) 113) (((-552) (-139) $ (-552)) 112)) (-3799 (((-625 (-142)) $) 30 (|has| $ (-6 -4353)))) (-2183 (($ (-751) (-142)) 69)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 43 (|has| (-552) (-827)))) (-3658 (($ $ $) 87 (|has| (-142) (-827)))) (-3280 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-827)))) (-3730 (((-625 (-142)) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 44 (|has| (-552) (-827)))) (-3332 (($ $ $) 86 (|has| (-142) (-827)))) (-1899 (((-112) $ $ (-142)) 115)) (-2344 (((-751) $ $ (-142)) 116)) (-3683 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3857 (($ $) 122)) (-3870 (($ $) 123)) (-2878 (((-112) $ (-751)) 10)) (-3221 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-2883 (((-1131) $) 22 (|has| (-142) (-1073)))) (-3994 (($ (-142) $ (-552)) 60) (($ $ $ (-552)) 59)) (-2554 (((-625 (-552)) $) 46)) (-2564 (((-112) (-552) $) 47)) (-2831 (((-1093) $) 21 (|has| (-142) (-1073)))) (-2924 (((-142) $) 42 (|has| (-552) (-827)))) (-2380 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2518 (($ $ (-142)) 41 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-142)))) 26 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-289 (-142))) 25 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-625 (-142)) (-625 (-142))) 23 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-1358 (((-625 (-142)) $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 (((-142) $ (-552) (-142)) 50) (((-142) $ (-552)) 49) (($ $ (-1199 (-552))) 63) (($ $ $) 102)) (-4001 (($ $ (-552)) 62) (($ $ (-1199 (-552))) 61)) (-2840 (((-751) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4353))) (((-751) (-142) $) 28 (-12 (|has| (-142) (-1073)) (|has| $ (-6 -4353))))) (-3228 (($ $ $ (-552)) 91 (|has| $ (-6 -4354)))) (-1871 (($ $) 13)) (-2042 (((-528) $) 79 (|has| (-142) (-598 (-528))))) (-1695 (($ (-625 (-142))) 70)) (-3402 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-625 $)) 65)) (-1683 (($ (-142)) 111) (((-839) $) 18 (|has| (-142) (-597 (-839))))) (-1900 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) 84 (|has| (-142) (-827)))) (-2320 (((-112) $ $) 83 (|has| (-142) (-827)))) (-2281 (((-112) $ $) 20 (|has| (-142) (-1073)))) (-2334 (((-112) $ $) 85 (|has| (-142) (-827)))) (-2307 (((-112) $ $) 82 (|has| (-142) (-827)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-1117) (-138)) (T -1117)) -((-3870 (*1 *1 *1) (-4 *1 (-1117))) (-3857 (*1 *1 *1) (-4 *1 (-1117))) (-3843 (*1 *1 *1) (-4 *1 (-1117))) (-3829 (*1 *1 *1) (-4 *1 (-1117))) (-1992 (*1 *2 *1 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-112)))) (-1975 (*1 *2 *1 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-112)))) (-1951 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-552)) (-5 *2 (-112)))) (-2344 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-142)) (-5 *2 (-751)))) (-1899 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-142)) (-5 *2 (-112)))) (-1353 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-1199 (-552))))) (-2483 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-552)))) (-2483 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-552)) (-5 *3 (-139)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1117)))) (-3819 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-625 *1)) (-4 *1 (-1117)))) (-3819 (*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-625 *1)) (-4 *1 (-1117)))) (-3808 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142)))) (-3808 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139)))) (-3221 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142)))) (-3221 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139)))) (-3209 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142)))) (-3209 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139)))) (-2154 (*1 *1 *1 *1) (-4 *1 (-1117)))) -(-13 (-19 (-142)) (-10 -8 (-15 -3870 ($ $)) (-15 -3857 ($ $)) (-15 -3843 ($ $)) (-15 -3829 ($ $)) (-15 -1992 ((-112) $ $)) (-15 -1975 ((-112) $ $)) (-15 -1951 ((-112) $ $ (-552))) (-15 -2344 ((-751) $ $ (-142))) (-15 -1899 ((-112) $ $ (-142))) (-15 -1353 ($ $ (-1199 (-552)) $)) (-15 -2483 ((-552) $ $ (-552))) (-15 -2483 ((-552) (-139) $ (-552))) (-15 -1683 ($ (-142))) (-15 -3819 ((-625 $) $ (-142))) (-15 -3819 ((-625 $) $ (-139))) (-15 -3808 ($ $ (-142))) (-15 -3808 ($ $ (-139))) (-15 -3221 ($ $ (-142))) (-15 -3221 ($ $ (-139))) (-15 -3209 ($ $ (-142))) (-15 -3209 ($ $ (-139))) (-15 -2154 ($ $ $)))) -(((-34) . T) ((-101) -1523 (|has| (-142) (-1073)) (|has| (-142) (-827))) ((-597 (-839)) -1523 (|has| (-142) (-1073)) (|has| (-142) (-827)) (|has| (-142) (-597 (-839)))) ((-149 #0=(-142)) . T) ((-598 (-528)) |has| (-142) (-598 (-528))) ((-281 #1=(-552) #0#) . T) ((-283 #1# #0#) . T) ((-304 #0#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073))) ((-368 #0#) . T) ((-483 #0#) . T) ((-588 #1# #0#) . T) ((-507 #0# #0#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073))) ((-631 #0#) . T) ((-19 #0#) . T) ((-827) |has| (-142) (-827)) ((-1073) -1523 (|has| (-142) (-1073)) (|has| (-142) (-827))) ((-1186) . T)) -((-3963 (((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 |#4|) (-625 |#5|) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) (-751)) 94)) (-3924 (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751)) 54)) (-2125 (((-1237) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-751)) 85)) (-3896 (((-751) (-625 |#4|) (-625 |#5|)) 27)) (-3938 (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751)) 56) (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751) (-112)) 58)) (-3950 (((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112)) 77)) (-2042 (((-1131) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) 80)) (-3911 (((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|) 53)) (-3883 (((-751) (-625 |#4|) (-625 |#5|)) 19))) -(((-1118 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3883 ((-751) (-625 |#4|) (-625 |#5|))) (-15 -3896 ((-751) (-625 |#4|) (-625 |#5|))) (-15 -3911 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|)) (-15 -3924 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751))) (-15 -3924 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|)) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751) (-112))) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751))) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|)) (-15 -3950 ((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112))) (-15 -3950 ((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3963 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 |#4|) (-625 |#5|) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) (-751))) (-15 -2042 ((-1131) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)))) (-15 -2125 ((-1237) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-751)))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|)) (T -1118)) -((-2125 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-2 (|:| |val| (-625 *8)) (|:| -3715 *9)))) (-5 *4 (-751)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-1237)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-625 *7)) (|:| -3715 *8))) (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1082 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1131)) (-5 *1 (-1118 *4 *5 *6 *7 *8)))) (-3963 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-625 *11)) (|:| |todo| (-625 (-2 (|:| |val| *3) (|:| -3715 *11)))))) (-5 *6 (-751)) (-5 *2 (-625 (-2 (|:| |val| (-625 *10)) (|:| -3715 *11)))) (-5 *3 (-625 *10)) (-5 *4 (-625 *11)) (-4 *10 (-1039 *7 *8 *9)) (-4 *11 (-1082 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-773)) (-4 *9 (-827)) (-5 *1 (-1118 *7 *8 *9 *10 *11)))) (-3950 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-625 *9)) (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))) (-3950 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-625 *9)) (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))) (-3938 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3938 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1118 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) (-3938 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-751)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-773)) (-4 *9 (-827)) (-4 *3 (-1039 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1118 *7 *8 *9 *3 *4)) (-4 *4 (-1082 *7 *8 *9 *3)))) (-3924 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3924 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1118 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) (-3911 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-625 *4)) (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3896 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 *9)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))) (-3883 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 *9)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1118 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3883 ((-751) (-625 |#4|) (-625 |#5|))) (-15 -3896 ((-751) (-625 |#4|) (-625 |#5|))) (-15 -3911 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|)) (-15 -3924 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751))) (-15 -3924 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|)) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751) (-112))) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5| (-751))) (-15 -3938 ((-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) |#4| |#5|)) (-15 -3950 ((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112))) (-15 -3950 ((-625 |#5|) (-625 |#4|) (-625 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3963 ((-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-625 |#4|) (-625 |#5|) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-2 (|:| |done| (-625 |#5|)) (|:| |todo| (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))))) (-751))) (-15 -2042 ((-1131) (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|)))) (-15 -2125 ((-1237) (-625 (-2 (|:| |val| (-625 |#4|)) (|:| -3715 |#5|))) (-751)))) -((-1671 (((-112) $ $) NIL)) (-3680 (((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 |#4|)))) (-625 |#4|)) NIL)) (-3690 (((-625 $) (-625 |#4|)) 110) (((-625 $) (-625 |#4|) (-112)) 111) (((-625 $) (-625 |#4|) (-112) (-112)) 109) (((-625 $) (-625 |#4|) (-112) (-112) (-112) (-112)) 112)) (-3982 (((-625 |#3|) $) NIL)) (-3707 (((-112) $) NIL)) (-3613 (((-112) $) NIL (|has| |#1| (-544)))) (-2656 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3748 ((|#4| |#4| $) NIL)) (-2194 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| $) 84)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-3488 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353))) (((-3 |#4| "failed") $ |#3|) 62)) (-3101 (($) NIL T CONST)) (-3667 (((-112) $) 26 (|has| |#1| (-544)))) (-3688 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3678 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3697 (((-112) $) NIL (|has| |#1| (-544)))) (-3757 (((-625 |#4|) (-625 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3624 (((-625 |#4|) (-625 |#4|) $) NIL (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) NIL (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) NIL)) (-1895 (($ (-625 |#4|)) NIL)) (-2936 (((-3 $ "failed") $) 39)) (-3720 ((|#4| |#4| $) 65)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-1416 (($ |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-544)))) (-2668 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3699 ((|#4| |#4| $) NIL)) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2689 (((-2 (|:| -1387 (-625 |#4|)) (|:| -2508 (-625 |#4|))) $) NIL)) (-3731 (((-112) |#4| $) NIL)) (-3714 (((-112) |#4| $) NIL)) (-3741 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3975 (((-2 (|:| |val| (-625 |#4|)) (|:| |towers| (-625 $))) (-625 |#4|) (-112) (-112)) 124)) (-3799 (((-625 |#4|) $) 16 (|has| $ (-6 -4353)))) (-2678 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3565 ((|#3| $) 33)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#4|) $) 17 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-3683 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) 21)) (-2615 (((-625 |#3|) $) NIL)) (-2608 (((-112) |#3| $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-3674 (((-3 |#4| (-625 $)) |#4| |#4| $) NIL)) (-3662 (((-625 (-2 (|:| |val| |#4|) (|:| -3715 $))) |#4| |#4| $) 103)) (-1437 (((-3 |#4| "failed") $) 37)) (-3685 (((-625 $) |#4| $) 88)) (-3704 (((-3 (-112) (-625 $)) |#4| $) NIL)) (-3694 (((-625 (-2 (|:| |val| (-112)) (|:| -3715 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-2860 (((-625 $) |#4| $) 107) (((-625 $) (-625 |#4|) $) NIL) (((-625 $) (-625 |#4|) (-625 $)) 108) (((-625 $) |#4| (-625 $)) NIL)) (-3987 (((-625 $) (-625 |#4|) (-112) (-112) (-112)) 119)) (-3999 (($ |#4| $) 75) (($ (-625 |#4|) $) 76) (((-625 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-2699 (((-625 |#4|) $) NIL)) (-3777 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3727 ((|#4| |#4| $) NIL)) (-2719 (((-112) $ $) NIL)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-3788 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3737 ((|#4| |#4| $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 (((-3 |#4| "failed") $) 35)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3657 (((-3 $ "failed") $ |#4|) 48)) (-2147 (($ $ |#4|) NIL) (((-625 $) |#4| $) 90) (((-625 $) |#4| (-625 $)) NIL) (((-625 $) (-625 |#4|) $) NIL) (((-625 $) (-625 |#4|) (-625 $)) 86)) (-1888 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 15)) (-3600 (($) 13)) (-4276 (((-751) $) NIL)) (-2840 (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) 12)) (-2042 (((-528) $) NIL (|has| |#4| (-598 (-528))))) (-1695 (($ (-625 |#4|)) 20)) (-3718 (($ $ |#3|) 42)) (-2595 (($ $ |#3|) 44)) (-3709 (($ $) NIL)) (-2584 (($ $ |#3|) NIL)) (-1683 (((-839) $) 31) (((-625 |#4|) $) 40)) (-3647 (((-751) $) NIL (|has| |#3| (-363)))) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3767 (((-112) $ (-1 (-112) |#4| (-625 |#4|))) NIL)) (-3651 (((-625 $) |#4| $) 54) (((-625 $) |#4| (-625 $)) NIL) (((-625 $) (-625 |#4|) $) NIL) (((-625 $) (-625 |#4|) (-625 $)) NIL)) (-1900 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3669 (((-625 |#3|) $) NIL)) (-3724 (((-112) |#4| $) NIL)) (-4168 (((-112) |#3| $) 61)) (-2281 (((-112) $ $) NIL)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-1119 |#1| |#2| |#3| |#4|) (-13 (-1082 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3999 ((-625 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3690 ((-625 $) (-625 |#4|) (-112) (-112))) (-15 -3690 ((-625 $) (-625 |#4|) (-112) (-112) (-112) (-112))) (-15 -3987 ((-625 $) (-625 |#4|) (-112) (-112) (-112))) (-15 -3975 ((-2 (|:| |val| (-625 |#4|)) (|:| |towers| (-625 $))) (-625 |#4|) (-112) (-112))))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -1119)) -((-3999 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 (-1119 *5 *6 *7 *3))) (-5 *1 (-1119 *5 *6 *7 *3)) (-4 *3 (-1039 *5 *6 *7)))) (-3690 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 (-1119 *5 *6 *7 *8))) (-5 *1 (-1119 *5 *6 *7 *8)))) (-3690 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 (-1119 *5 *6 *7 *8))) (-5 *1 (-1119 *5 *6 *7 *8)))) (-3987 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 (-1119 *5 *6 *7 *8))) (-5 *1 (-1119 *5 *6 *7 *8)))) (-3975 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-625 *8)) (|:| |towers| (-625 (-1119 *5 *6 *7 *8))))) (-5 *1 (-1119 *5 *6 *7 *8)) (-5 *3 (-625 *8))))) -(-13 (-1082 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3999 ((-625 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3690 ((-625 $) (-625 |#4|) (-112) (-112))) (-15 -3690 ((-625 $) (-625 |#4|) (-112) (-112) (-112) (-112))) (-15 -3987 ((-625 $) (-625 |#4|) (-112) (-112) (-112))) (-15 -3975 ((-2 (|:| |val| (-625 |#4|)) (|:| |towers| (-625 $))) (-625 |#4|) (-112) (-112))))) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1549 ((|#1| $) 34)) (-2532 (($ (-625 |#1|)) 39)) (-3495 (((-112) $ (-751)) NIL)) (-3101 (($) NIL T CONST)) (-2406 ((|#1| |#1| $) 36)) (-2395 ((|#1| $) 32)) (-3799 (((-625 |#1|) $) 18 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 22)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2953 ((|#1| $) 35)) (-3966 (($ |#1| $) 37)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2966 ((|#1| $) 33)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 31)) (-3600 (($) 38)) (-2389 (((-751) $) 29)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) 27)) (-1683 (((-839) $) 14 (|has| |#1| (-597 (-839))))) (-2977 (($ (-625 |#1|)) NIL)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 17 (|has| |#1| (-1073)))) (-1471 (((-751) $) 30 (|has| $ (-6 -4353))))) -(((-1120 |#1|) (-13 (-1094 |#1|) (-10 -8 (-15 -2532 ($ (-625 |#1|))))) (-1186)) (T -1120)) -((-2532 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-1120 *3))))) -(-13 (-1094 |#1|) (-10 -8 (-15 -2532 ($ (-625 |#1|))))) -((-1851 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1199 (-552)) |#2|) 44) ((|#2| $ (-552) |#2|) 41)) (-4011 (((-112) $) 12)) (-3683 (($ (-1 |#2| |#2|) $) 39)) (-2924 ((|#2| $) NIL) (($ $ (-751)) 17)) (-2518 (($ $ |#2|) 40)) (-4022 (((-112) $) 11)) (-2154 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1199 (-552))) 31) ((|#2| $ (-552)) 23) ((|#2| $ (-552) |#2|) NIL)) (-2342 (($ $ $) 47) (($ $ |#2|) NIL)) (-3402 (($ $ $) 33) (($ |#2| $) NIL) (($ (-625 $)) 36) (($ $ |#2|) NIL))) -(((-1121 |#1| |#2|) (-10 -8 (-15 -4011 ((-112) |#1|)) (-15 -4022 ((-112) |#1|)) (-15 -1851 (|#2| |#1| (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552))) (-15 -2518 (|#1| |#1| |#2|)) (-15 -3402 (|#1| |#1| |#2|)) (-15 -3402 (|#1| (-625 |#1|))) (-15 -2154 (|#1| |#1| (-1199 (-552)))) (-15 -1851 (|#2| |#1| (-1199 (-552)) |#2|)) (-15 -1851 (|#2| |#1| "last" |#2|)) (-15 -1851 (|#1| |#1| "rest" |#1|)) (-15 -1851 (|#2| |#1| "first" |#2|)) (-15 -2342 (|#1| |#1| |#2|)) (-15 -2342 (|#1| |#1| |#1|)) (-15 -2154 (|#2| |#1| "last")) (-15 -2154 (|#1| |#1| "rest")) (-15 -2924 (|#1| |#1| (-751))) (-15 -2154 (|#2| |#1| "first")) (-15 -2924 (|#2| |#1|)) (-15 -3402 (|#1| |#2| |#1|)) (-15 -3402 (|#1| |#1| |#1|)) (-15 -1851 (|#2| |#1| "value" |#2|)) (-15 -2154 (|#2| |#1| "value")) (-15 -3683 (|#1| (-1 |#2| |#2|) |#1|))) (-1122 |#2|) (-1186)) (T -1121)) -NIL -(-10 -8 (-15 -4011 ((-112) |#1|)) (-15 -4022 ((-112) |#1|)) (-15 -1851 (|#2| |#1| (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552) |#2|)) (-15 -2154 (|#2| |#1| (-552))) (-15 -2518 (|#1| |#1| |#2|)) (-15 -3402 (|#1| |#1| |#2|)) (-15 -3402 (|#1| (-625 |#1|))) (-15 -2154 (|#1| |#1| (-1199 (-552)))) (-15 -1851 (|#2| |#1| (-1199 (-552)) |#2|)) (-15 -1851 (|#2| |#1| "last" |#2|)) (-15 -1851 (|#1| |#1| "rest" |#1|)) (-15 -1851 (|#2| |#1| "first" |#2|)) (-15 -2342 (|#1| |#1| |#2|)) (-15 -2342 (|#1| |#1| |#1|)) (-15 -2154 (|#2| |#1| "last")) (-15 -2154 (|#1| |#1| "rest")) (-15 -2924 (|#1| |#1| (-751))) (-15 -2154 (|#2| |#1| "first")) (-15 -2924 (|#2| |#1|)) (-15 -3402 (|#1| |#2| |#1|)) (-15 -3402 (|#1| |#1| |#1|)) (-15 -1851 (|#2| |#1| "value" |#2|)) (-15 -2154 (|#2| |#1| "value")) (-15 -3683 (|#1| (-1 |#2| |#2|) |#1|))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3800 ((|#1| $) 48)) (-3897 ((|#1| $) 65)) (-2101 (($ $) 67)) (-2509 (((-1237) $ (-552) (-552)) 97 (|has| $ (-6 -4354)))) (-2278 (($ $ (-552)) 52 (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) 8)) (-2565 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-2301 (($ $ $) 56 (|has| $ (-6 -4354)))) (-2289 ((|#1| $ |#1|) 54 (|has| $ (-6 -4354)))) (-2317 ((|#1| $ |#1|) 58 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4354))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4354))) (($ $ "rest" $) 55 (|has| $ (-6 -4354))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) 117 (|has| $ (-6 -4354))) ((|#1| $ (-552) |#1|) 86 (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 41 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4353)))) (-2673 ((|#1| $) 66)) (-3101 (($) 7 T CONST)) (-2936 (($ $) 73) (($ $ (-751)) 71)) (-2959 (($ $) 99 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4353))) (($ |#1| $) 100 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3692 ((|#1| $ (-552) |#1|) 85 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 87)) (-4011 (((-112) $) 83)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) 50)) (-1371 (((-112) $ $) 42 (|has| |#1| (-1073)))) (-2183 (($ (-751) |#1|) 108)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 95 (|has| (-552) (-827)))) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 94 (|has| (-552) (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2878 (((-112) $ (-751)) 10)) (-3183 (((-625 |#1|) $) 45)) (-3367 (((-112) $) 49)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-1437 ((|#1| $) 70) (($ $ (-751)) 68)) (-3994 (($ $ $ (-552)) 116) (($ |#1| $ (-552)) 115)) (-2554 (((-625 (-552)) $) 92)) (-2564 (((-112) (-552) $) 91)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2924 ((|#1| $) 76) (($ $ (-751)) 74)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2518 (($ $ |#1|) 96 (|has| $ (-6 -4354)))) (-4022 (((-112) $) 84)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) 90)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1199 (-552))) 112) ((|#1| $ (-552)) 89) ((|#1| $ (-552) |#1|) 88)) (-1389 (((-552) $ $) 44)) (-4001 (($ $ (-1199 (-552))) 114) (($ $ (-552)) 113)) (-2316 (((-112) $) 46)) (-2356 (($ $) 62)) (-2330 (($ $) 59 (|has| $ (-6 -4354)))) (-2368 (((-751) $) 63)) (-2379 (($ $) 64)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2042 (((-528) $) 98 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 107)) (-2342 (($ $ $) 61 (|has| $ (-6 -4354))) (($ $ |#1|) 60 (|has| $ (-6 -4354)))) (-3402 (($ $ $) 78) (($ |#1| $) 77) (($ (-625 $)) 110) (($ $ |#1|) 109)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) 51)) (-1380 (((-112) $ $) 43 (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-1122 |#1|) (-138) (-1186)) (T -1122)) -((-4022 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1186)) (-5 *2 (-112)))) (-4011 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1186)) (-5 *2 (-112))))) -(-13 (-1220 |t#1|) (-631 |t#1|) (-10 -8 (-15 -4022 ((-112) $)) (-15 -4011 ((-112) $)))) -(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-281 #0=(-552) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-588 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-631 |#1|) . T) ((-986 |#1|) . T) ((-1073) |has| |#1| (-1073)) ((-1186) . T) ((-1220 |#1|) . T)) -((-1671 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2509 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#2| $ |#1| |#2|) NIL)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3128 (((-3 |#2| "failed") |#1| $) NIL)) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1938 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) NIL)) (-1416 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) NIL)) (-3799 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 ((|#1| $) NIL (|has| |#1| (-827)))) (-3730 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-2537 ((|#1| $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-3712 (((-625 |#1|) $) NIL)) (-1370 (((-112) |#1| $) NIL)) (-2953 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-3966 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-2554 (((-625 |#1|) $) NIL)) (-2564 (((-112) |#1| $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2924 ((|#2| $) NIL (|has| |#1| (-827)))) (-2380 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL)) (-2518 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4255 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1683 (((-839) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839))) (|has| |#2| (-597 (-839)))))) (-2977 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-1123 |#1| |#2| |#3|) (-1162 |#1| |#2|) (-1073) (-1073) |#2|) (T -1123)) -NIL -(-1162 |#1| |#2|) -((-1671 (((-112) $ $) 7)) (-4034 (((-3 $ "failed") $) 13)) (-2883 (((-1131) $) 9)) (-2071 (($) 14 T CONST)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11)) (-2281 (((-112) $ $) 6))) -(((-1124) (-138)) (T -1124)) -((-2071 (*1 *1) (-4 *1 (-1124))) (-4034 (*1 *1 *1) (|partial| -4 *1 (-1124)))) -(-13 (-1073) (-10 -8 (-15 -2071 ($) -1426) (-15 -4034 ((-3 $ "failed") $)))) -(((-101) . T) ((-597 (-839)) . T) ((-1073) . T)) -((-4071 (((-1129 |#1|) (-1129 |#1|)) 17)) (-4046 (((-1129 |#1|) (-1129 |#1|)) 13)) (-4084 (((-1129 |#1|) (-1129 |#1|) (-552) (-552)) 20)) (-4059 (((-1129 |#1|) (-1129 |#1|)) 15))) -(((-1125 |#1|) (-10 -7 (-15 -4046 ((-1129 |#1|) (-1129 |#1|))) (-15 -4059 ((-1129 |#1|) (-1129 |#1|))) (-15 -4071 ((-1129 |#1|) (-1129 |#1|))) (-15 -4084 ((-1129 |#1|) (-1129 |#1|) (-552) (-552)))) (-13 (-544) (-145))) (T -1125)) -((-4084 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1129 *4)) (-5 *3 (-552)) (-4 *4 (-13 (-544) (-145))) (-5 *1 (-1125 *4)))) (-4071 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-13 (-544) (-145))) (-5 *1 (-1125 *3)))) (-4059 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-13 (-544) (-145))) (-5 *1 (-1125 *3)))) (-4046 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-13 (-544) (-145))) (-5 *1 (-1125 *3))))) -(-10 -7 (-15 -4046 ((-1129 |#1|) (-1129 |#1|))) (-15 -4059 ((-1129 |#1|) (-1129 |#1|))) (-15 -4071 ((-1129 |#1|) (-1129 |#1|))) (-15 -4084 ((-1129 |#1|) (-1129 |#1|) (-552) (-552)))) -((-3402 (((-1129 |#1|) (-1129 (-1129 |#1|))) 15))) -(((-1126 |#1|) (-10 -7 (-15 -3402 ((-1129 |#1|) (-1129 (-1129 |#1|))))) (-1186)) (T -1126)) -((-3402 (*1 *2 *3) (-12 (-5 *3 (-1129 (-1129 *4))) (-5 *2 (-1129 *4)) (-5 *1 (-1126 *4)) (-4 *4 (-1186))))) -(-10 -7 (-15 -3402 ((-1129 |#1|) (-1129 (-1129 |#1|))))) -((-1454 (((-1129 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1129 |#1|)) 25)) (-2163 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1129 |#1|)) 26)) (-1996 (((-1129 |#2|) (-1 |#2| |#1|) (-1129 |#1|)) 16))) -(((-1127 |#1| |#2|) (-10 -7 (-15 -1996 ((-1129 |#2|) (-1 |#2| |#1|) (-1129 |#1|))) (-15 -1454 ((-1129 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1129 |#1|))) (-15 -2163 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1129 |#1|)))) (-1186) (-1186)) (T -1127)) -((-2163 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1129 *5)) (-4 *5 (-1186)) (-4 *2 (-1186)) (-5 *1 (-1127 *5 *2)))) (-1454 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1129 *6)) (-4 *6 (-1186)) (-4 *3 (-1186)) (-5 *2 (-1129 *3)) (-5 *1 (-1127 *6 *3)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1129 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-1129 *6)) (-5 *1 (-1127 *5 *6))))) -(-10 -7 (-15 -1996 ((-1129 |#2|) (-1 |#2| |#1|) (-1129 |#1|))) (-15 -1454 ((-1129 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1129 |#1|))) (-15 -2163 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1129 |#1|)))) -((-1996 (((-1129 |#3|) (-1 |#3| |#1| |#2|) (-1129 |#1|) (-1129 |#2|)) 21))) -(((-1128 |#1| |#2| |#3|) (-10 -7 (-15 -1996 ((-1129 |#3|) (-1 |#3| |#1| |#2|) (-1129 |#1|) (-1129 |#2|)))) (-1186) (-1186) (-1186)) (T -1128)) -((-1996 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1129 *6)) (-5 *5 (-1129 *7)) (-4 *6 (-1186)) (-4 *7 (-1186)) (-4 *8 (-1186)) (-5 *2 (-1129 *8)) (-5 *1 (-1128 *6 *7 *8))))) -(-10 -7 (-15 -1996 ((-1129 |#3|) (-1 |#3| |#1| |#2|) (-1129 |#1|) (-1129 |#2|)))) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3800 ((|#1| $) NIL)) (-3897 ((|#1| $) NIL)) (-2101 (($ $) 52)) (-2509 (((-1237) $ (-552) (-552)) 77 (|has| $ (-6 -4354)))) (-2278 (($ $ (-552)) 111 (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-4110 (((-839) $) 41 (|has| |#1| (-1073)))) (-4097 (((-112)) 40 (|has| |#1| (-1073)))) (-2565 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-2301 (($ $ $) 99 (|has| $ (-6 -4354))) (($ $ (-552) $) 123)) (-2289 ((|#1| $ |#1|) 108 (|has| $ (-6 -4354)))) (-2317 ((|#1| $ |#1|) 103 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ "first" |#1|) 105 (|has| $ (-6 -4354))) (($ $ "rest" $) 107 (|has| $ (-6 -4354))) ((|#1| $ "last" |#1|) 110 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) 90 (|has| $ (-6 -4354))) ((|#1| $ (-552) |#1|) 56 (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) 59)) (-2673 ((|#1| $) NIL)) (-3101 (($) NIL T CONST)) (-3887 (($ $) 14)) (-2936 (($ $) 29) (($ $ (-751)) 89)) (-4150 (((-112) (-625 |#1|) $) 117 (|has| |#1| (-1073)))) (-4162 (($ (-625 |#1|)) 113)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) 58)) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3692 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) NIL)) (-4011 (((-112) $) NIL)) (-3799 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-4213 (((-1237) (-552) $) 122 (|has| |#1| (-1073)))) (-3873 (((-751) $) 119)) (-1399 (((-625 $) $) NIL)) (-1371 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2183 (($ (-751) |#1|) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-2878 (((-112) $ (-751)) NIL)) (-3183 (((-625 |#1|) $) NIL)) (-3367 (((-112) $) NIL)) (-3913 (($ $) 91)) (-3927 (((-112) $) 13)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-1437 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-3994 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) 75)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-3421 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-3900 ((|#1| $) 10)) (-2924 ((|#1| $) 28) (($ $ (-751)) 50)) (-4136 (((-2 (|:| |cycle?| (-112)) (|:| -2667 (-751)) (|:| |period| (-751))) (-751) $) 25)) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3467 (($ (-1 (-112) |#1|) $) 127)) (-3478 (($ (-1 (-112) |#1|) $) 128)) (-2518 (($ $ |#1|) 69 (|has| $ (-6 -4354)))) (-2147 (($ $ (-552)) 32)) (-4022 (((-112) $) 73)) (-3940 (((-112) $) 12)) (-3952 (((-112) $) 118)) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 20)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) 15)) (-3600 (($) 45)) (-2154 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1199 (-552))) NIL) ((|#1| $ (-552)) 55) ((|#1| $ (-552) |#1|) NIL)) (-1389 (((-552) $ $) 49)) (-4001 (($ $ (-1199 (-552))) NIL) (($ $ (-552)) NIL)) (-4123 (($ (-1 $)) 48)) (-2316 (((-112) $) 70)) (-2356 (($ $) 71)) (-2330 (($ $) 100 (|has| $ (-6 -4354)))) (-2368 (((-751) $) NIL)) (-2379 (($ $) NIL)) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) 44)) (-2042 (((-528) $) NIL (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 54)) (-1587 (($ |#1| $) 98)) (-2342 (($ $ $) 101 (|has| $ (-6 -4354))) (($ $ |#1|) 102 (|has| $ (-6 -4354)))) (-3402 (($ $ $) 79) (($ |#1| $) 46) (($ (-625 $)) 84) (($ $ |#1|) 78)) (-3580 (($ $) 51)) (-1683 (($ (-625 |#1|)) 112) (((-839) $) 42 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) NIL)) (-1380 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 115 (|has| |#1| (-1073)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-1129 |#1|) (-13 (-654 |#1|) (-10 -8 (-6 -4354) (-15 -1683 ($ (-625 |#1|))) (-15 -4162 ($ (-625 |#1|))) (IF (|has| |#1| (-1073)) (-15 -4150 ((-112) (-625 |#1|) $)) |%noBranch|) (-15 -4136 ((-2 (|:| |cycle?| (-112)) (|:| -2667 (-751)) (|:| |period| (-751))) (-751) $)) (-15 -4123 ($ (-1 $))) (-15 -1587 ($ |#1| $)) (IF (|has| |#1| (-1073)) (PROGN (-15 -4213 ((-1237) (-552) $)) (-15 -4110 ((-839) $)) (-15 -4097 ((-112)))) |%noBranch|) (-15 -2301 ($ $ (-552) $)) (-15 -3421 ($ (-1 |#1|))) (-15 -3421 ($ (-1 |#1| |#1|) |#1|)) (-15 -3467 ($ (-1 (-112) |#1|) $)) (-15 -3478 ($ (-1 (-112) |#1|) $)))) (-1186)) (T -1129)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3)))) (-4162 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3)))) (-4150 (*1 *2 *3 *1) (-12 (-5 *3 (-625 *4)) (-4 *4 (-1073)) (-4 *4 (-1186)) (-5 *2 (-112)) (-5 *1 (-1129 *4)))) (-4136 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2667 (-751)) (|:| |period| (-751)))) (-5 *1 (-1129 *4)) (-4 *4 (-1186)) (-5 *3 (-751)))) (-4123 (*1 *1 *2) (-12 (-5 *2 (-1 (-1129 *3))) (-5 *1 (-1129 *3)) (-4 *3 (-1186)))) (-1587 (*1 *1 *2 *1) (-12 (-5 *1 (-1129 *2)) (-4 *2 (-1186)))) (-4213 (*1 *2 *3 *1) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-1129 *4)) (-4 *4 (-1073)) (-4 *4 (-1186)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-1129 *3)) (-4 *3 (-1073)) (-4 *3 (-1186)))) (-4097 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1129 *3)) (-4 *3 (-1073)) (-4 *3 (-1186)))) (-2301 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1129 *3)) (-4 *3 (-1186)))) (-3421 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3)))) (-3421 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3)))) (-3467 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3)))) (-3478 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3))))) -(-13 (-654 |#1|) (-10 -8 (-6 -4354) (-15 -1683 ($ (-625 |#1|))) (-15 -4162 ($ (-625 |#1|))) (IF (|has| |#1| (-1073)) (-15 -4150 ((-112) (-625 |#1|) $)) |%noBranch|) (-15 -4136 ((-2 (|:| |cycle?| (-112)) (|:| -2667 (-751)) (|:| |period| (-751))) (-751) $)) (-15 -4123 ($ (-1 $))) (-15 -1587 ($ |#1| $)) (IF (|has| |#1| (-1073)) (PROGN (-15 -4213 ((-1237) (-552) $)) (-15 -4110 ((-839) $)) (-15 -4097 ((-112)))) |%noBranch|) (-15 -2301 ($ $ (-552) $)) (-15 -3421 ($ (-1 |#1|))) (-15 -3421 ($ (-1 |#1| |#1|) |#1|)) (-15 -3467 ($ (-1 (-112) |#1|) $)) (-15 -3478 ($ (-1 (-112) |#1|) $)))) -((-1671 (((-112) $ $) 19)) (-3829 (($ $) 120)) (-3843 (($ $) 121)) (-3808 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-2509 (((-1237) $ (-552) (-552)) 40 (|has| $ (-6 -4354)))) (-1975 (((-112) $ $) 118)) (-1951 (((-112) $ $ (-552)) 117)) (-4265 (($ (-552)) 127)) (-3819 (((-625 $) $ (-142)) 110) (((-625 $) $ (-139)) 109)) (-3237 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-827)))) (-3218 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| (-142) (-827)) (|has| $ (-6 -4354))))) (-1800 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-827)))) (-3495 (((-112) $ (-751)) 8)) (-1851 (((-142) $ (-552) (-142)) 52 (|has| $ (-6 -4354))) (((-142) $ (-1199 (-552)) (-142)) 58 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-3209 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-1883 (($ $) 90 (|has| $ (-6 -4354)))) (-2306 (($ $) 100)) (-1353 (($ $ (-1199 (-552)) $) 114)) (-2959 (($ $) 78 (-12 (|has| (-142) (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ (-142) $) 77 (-12 (|has| (-142) (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4353)))) (-2163 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1073)) (|has| $ (-6 -4353)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4353)))) (-3692 (((-142) $ (-552) (-142)) 53 (|has| $ (-6 -4354)))) (-3631 (((-142) $ (-552)) 51)) (-1992 (((-112) $ $) 119)) (-2483 (((-552) (-1 (-112) (-142)) $) 97) (((-552) (-142) $) 96 (|has| (-142) (-1073))) (((-552) (-142) $ (-552)) 95 (|has| (-142) (-1073))) (((-552) $ $ (-552)) 113) (((-552) (-139) $ (-552)) 112)) (-3799 (((-625 (-142)) $) 30 (|has| $ (-6 -4353)))) (-2183 (($ (-751) (-142)) 69)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 43 (|has| (-552) (-827)))) (-3658 (($ $ $) 87 (|has| (-142) (-827)))) (-3280 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-827)))) (-3730 (((-625 (-142)) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 44 (|has| (-552) (-827)))) (-3332 (($ $ $) 86 (|has| (-142) (-827)))) (-1899 (((-112) $ $ (-142)) 115)) (-2344 (((-751) $ $ (-142)) 116)) (-3683 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3857 (($ $) 122)) (-3870 (($ $) 123)) (-2878 (((-112) $ (-751)) 10)) (-3221 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-2883 (((-1131) $) 22)) (-3994 (($ (-142) $ (-552)) 60) (($ $ $ (-552)) 59)) (-2554 (((-625 (-552)) $) 46)) (-2564 (((-112) (-552) $) 47)) (-2831 (((-1093) $) 21)) (-2924 (((-142) $) 42 (|has| (-552) (-827)))) (-2380 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2518 (($ $ (-142)) 41 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-142)))) 26 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-289 (-142))) 25 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-625 (-142)) (-625 (-142))) 23 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-1358 (((-625 (-142)) $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 (((-142) $ (-552) (-142)) 50) (((-142) $ (-552)) 49) (($ $ (-1199 (-552))) 63) (($ $ $) 102)) (-4001 (($ $ (-552)) 62) (($ $ (-1199 (-552))) 61)) (-2840 (((-751) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4353))) (((-751) (-142) $) 28 (-12 (|has| (-142) (-1073)) (|has| $ (-6 -4353))))) (-3228 (($ $ $ (-552)) 91 (|has| $ (-6 -4354)))) (-1871 (($ $) 13)) (-2042 (((-528) $) 79 (|has| (-142) (-598 (-528))))) (-1695 (($ (-625 (-142))) 70)) (-3402 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-625 $)) 65)) (-1683 (($ (-142)) 111) (((-839) $) 18)) (-1900 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4353)))) (-3010 (((-1131) $) 131) (((-1131) $ (-112)) 130) (((-1237) (-802) $) 129) (((-1237) (-802) $ (-112)) 128)) (-2346 (((-112) $ $) 84 (|has| (-142) (-827)))) (-2320 (((-112) $ $) 83 (|has| (-142) (-827)))) (-2281 (((-112) $ $) 20)) (-2334 (((-112) $ $) 85 (|has| (-142) (-827)))) (-2307 (((-112) $ $) 82 (|has| (-142) (-827)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-1130) (-138)) (T -1130)) -((-4265 (*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1130))))) -(-13 (-1117) (-1073) (-808) (-10 -8 (-15 -4265 ($ (-552))))) -(((-34) . T) ((-101) . T) ((-597 (-839)) . T) ((-149 #0=(-142)) . T) ((-598 (-528)) |has| (-142) (-598 (-528))) ((-281 #1=(-552) #0#) . T) ((-283 #1# #0#) . T) ((-304 #0#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073))) ((-368 #0#) . T) ((-483 #0#) . T) ((-588 #1# #0#) . T) ((-507 #0# #0#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073))) ((-631 #0#) . T) ((-19 #0#) . T) ((-808) . T) ((-827) |has| (-142) (-827)) ((-1073) . T) ((-1117) . T) ((-1186) . T)) -((-1671 (((-112) $ $) NIL)) (-3829 (($ $) NIL)) (-3843 (($ $) NIL)) (-3808 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-1975 (((-112) $ $) NIL)) (-1951 (((-112) $ $ (-552)) NIL)) (-4265 (($ (-552)) 7)) (-3819 (((-625 $) $ (-142)) NIL) (((-625 $) $ (-139)) NIL)) (-3237 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-827)))) (-3218 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-142) (-827))))) (-1800 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 (((-142) $ (-552) (-142)) NIL (|has| $ (-6 -4354))) (((-142) $ (-1199 (-552)) (-142)) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-3209 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-1353 (($ $ (-1199 (-552)) $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-1416 (($ (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3692 (((-142) $ (-552) (-142)) NIL (|has| $ (-6 -4354)))) (-3631 (((-142) $ (-552)) NIL)) (-1992 (((-112) $ $) NIL)) (-2483 (((-552) (-1 (-112) (-142)) $) NIL) (((-552) (-142) $) NIL (|has| (-142) (-1073))) (((-552) (-142) $ (-552)) NIL (|has| (-142) (-1073))) (((-552) $ $ (-552)) NIL) (((-552) (-139) $ (-552)) NIL)) (-3799 (((-625 (-142)) $) NIL (|has| $ (-6 -4353)))) (-2183 (($ (-751) (-142)) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| (-142) (-827)))) (-3280 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-827)))) (-3730 (((-625 (-142)) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| (-142) (-827)))) (-1899 (((-112) $ $ (-142)) NIL)) (-2344 (((-751) $ $ (-142)) NIL)) (-3683 (($ (-1 (-142) (-142)) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3857 (($ $) NIL)) (-3870 (($ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-3221 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2883 (((-1131) $) NIL)) (-3994 (($ (-142) $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 (((-142) $) NIL (|has| (-552) (-827)))) (-2380 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2518 (($ $ (-142)) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-142)))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-289 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073)))) (($ $ (-625 (-142)) (-625 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-1358 (((-625 (-142)) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 (((-142) $ (-552) (-142)) NIL) (((-142) $ (-552)) NIL) (($ $ (-1199 (-552))) NIL) (($ $ $) NIL)) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-2840 (((-751) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353))) (((-751) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-142) (-598 (-528))))) (-1695 (($ (-625 (-142))) NIL)) (-3402 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) NIL) (($ (-625 $)) NIL)) (-1683 (($ (-142)) NIL) (((-839) $) NIL)) (-1900 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3010 (((-1131) $) 18) (((-1131) $ (-112)) 20) (((-1237) (-802) $) 21) (((-1237) (-802) $ (-112)) 22)) (-2346 (((-112) $ $) NIL (|has| (-142) (-827)))) (-2320 (((-112) $ $) NIL (|has| (-142) (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| (-142) (-827)))) (-2307 (((-112) $ $) NIL (|has| (-142) (-827)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-1131) (-1130)) (T -1131)) -NIL -(-1130) -((-1671 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)) (|has| |#1| (-1073))))) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL)) (-2509 (((-1237) $ (-1131) (-1131)) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-1131) |#1|) NIL)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-3128 (((-3 |#1| "failed") (-1131) $) NIL)) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073))))) (-1938 (($ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#1| "failed") (-1131) $) NIL)) (-1416 (($ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-1131) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-1131)) NIL)) (-3799 (((-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-1131) $) NIL (|has| (-1131) (-827)))) (-3730 (((-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-1131) $) NIL (|has| (-1131) (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (-1523 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)) (|has| |#1| (-1073))))) (-3712 (((-625 (-1131)) $) NIL)) (-1370 (((-112) (-1131) $) NIL)) (-2953 (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL)) (-3966 (($ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL)) (-2554 (((-625 (-1131)) $) NIL)) (-2564 (((-112) (-1131) $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)) (|has| |#1| (-1073))))) (-2924 ((|#1| $) NIL (|has| (-1131) (-827)))) (-2380 (((-3 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) "failed") (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL)) (-2518 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (($ $ (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL (-12 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-304 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-1131)) NIL) ((|#1| $ (-1131) |#1|) NIL)) (-4255 (($) NIL) (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL)) (-1683 (((-839) $) NIL (-1523 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-597 (-839))) (|has| |#1| (-597 (-839)))))) (-2977 (($ (-625 (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)))) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 (-1131)) (|:| -4120 |#1|)) (-1073)) (|has| |#1| (-1073))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-1132 |#1|) (-13 (-1162 (-1131) |#1|) (-10 -7 (-6 -4353))) (-1073)) (T -1132)) -NIL -(-13 (-1162 (-1131) |#1|) (-10 -7 (-6 -4353))) -((-2412 (((-1129 |#1|) (-1129 |#1|)) 77)) (-4174 (((-3 (-1129 |#1|) "failed") (-1129 |#1|)) 37)) (-4292 (((-1129 |#1|) (-402 (-552)) (-1129 |#1|)) 121 (|has| |#1| (-38 (-402 (-552)))))) (-4321 (((-1129 |#1|) |#1| (-1129 |#1|)) 127 (|has| |#1| (-358)))) (-2441 (((-1129 |#1|) (-1129 |#1|)) 90)) (-4196 (((-1129 (-552)) (-552)) 57)) (-4281 (((-1129 |#1|) (-1129 (-1129 |#1|))) 109 (|has| |#1| (-38 (-402 (-552)))))) (-2401 (((-1129 |#1|) (-552) (-552) (-1129 |#1|)) 95)) (-2243 (((-1129 |#1|) |#1| (-552)) 45)) (-4217 (((-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) 60)) (-4302 (((-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) 124 (|has| |#1| (-358)))) (-4271 (((-1129 |#1|) |#1| (-1 (-1129 |#1|))) 108 (|has| |#1| (-38 (-402 (-552)))))) (-4311 (((-1129 |#1|) (-1 |#1| (-552)) |#1| (-1 (-1129 |#1|))) 125 (|has| |#1| (-358)))) (-2451 (((-1129 |#1|) (-1129 |#1|)) 89)) (-2463 (((-1129 |#1|) (-1129 |#1|)) 76)) (-2390 (((-1129 |#1|) (-552) (-552) (-1129 |#1|)) 96)) (-2481 (((-1129 |#1|) |#1| (-1129 |#1|)) 105 (|has| |#1| (-38 (-402 (-552)))))) (-4184 (((-1129 (-552)) (-552)) 56)) (-4206 (((-1129 |#1|) |#1|) 59)) (-2421 (((-1129 |#1|) (-1129 |#1|) (-552) (-552)) 92)) (-4238 (((-1129 |#1|) (-1 |#1| (-552)) (-1129 |#1|)) 66)) (-2802 (((-3 (-1129 |#1|) "failed") (-1129 |#1|) (-1129 |#1|)) 35)) (-2431 (((-1129 |#1|) (-1129 |#1|)) 91)) (-4073 (((-1129 |#1|) (-1129 |#1|) |#1|) 71)) (-4227 (((-1129 |#1|) (-1129 |#1|)) 62)) (-4249 (((-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) 72)) (-1683 (((-1129 |#1|) |#1|) 67)) (-4259 (((-1129 |#1|) (-1129 (-1129 |#1|))) 82)) (-2404 (((-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) 36)) (-2393 (((-1129 |#1|) (-1129 |#1|)) 21) (((-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) 23)) (-2382 (((-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) 17)) (* (((-1129 |#1|) (-1129 |#1|) |#1|) 29) (((-1129 |#1|) |#1| (-1129 |#1|)) 26) (((-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) 27))) -(((-1133 |#1|) (-10 -7 (-15 -2382 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -2393 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -2393 ((-1129 |#1|) (-1129 |#1|))) (-15 * ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 * ((-1129 |#1|) |#1| (-1129 |#1|))) (-15 * ((-1129 |#1|) (-1129 |#1|) |#1|)) (-15 -2802 ((-3 (-1129 |#1|) "failed") (-1129 |#1|) (-1129 |#1|))) (-15 -2404 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -4174 ((-3 (-1129 |#1|) "failed") (-1129 |#1|))) (-15 -2243 ((-1129 |#1|) |#1| (-552))) (-15 -4184 ((-1129 (-552)) (-552))) (-15 -4196 ((-1129 (-552)) (-552))) (-15 -4206 ((-1129 |#1|) |#1|)) (-15 -4217 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -4227 ((-1129 |#1|) (-1129 |#1|))) (-15 -4238 ((-1129 |#1|) (-1 |#1| (-552)) (-1129 |#1|))) (-15 -1683 ((-1129 |#1|) |#1|)) (-15 -4073 ((-1129 |#1|) (-1129 |#1|) |#1|)) (-15 -4249 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -2463 ((-1129 |#1|) (-1129 |#1|))) (-15 -2412 ((-1129 |#1|) (-1129 |#1|))) (-15 -4259 ((-1129 |#1|) (-1129 (-1129 |#1|)))) (-15 -2451 ((-1129 |#1|) (-1129 |#1|))) (-15 -2441 ((-1129 |#1|) (-1129 |#1|))) (-15 -2431 ((-1129 |#1|) (-1129 |#1|))) (-15 -2421 ((-1129 |#1|) (-1129 |#1|) (-552) (-552))) (-15 -2401 ((-1129 |#1|) (-552) (-552) (-1129 |#1|))) (-15 -2390 ((-1129 |#1|) (-552) (-552) (-1129 |#1|))) (IF (|has| |#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ((-1129 |#1|) |#1| (-1129 |#1|))) (-15 -4271 ((-1129 |#1|) |#1| (-1 (-1129 |#1|)))) (-15 -4281 ((-1129 |#1|) (-1129 (-1129 |#1|)))) (-15 -4292 ((-1129 |#1|) (-402 (-552)) (-1129 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -4302 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -4311 ((-1129 |#1|) (-1 |#1| (-552)) |#1| (-1 (-1129 |#1|)))) (-15 -4321 ((-1129 |#1|) |#1| (-1129 |#1|)))) |%noBranch|)) (-1025)) (T -1133)) -((-4321 (*1 *2 *3 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4311 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-552))) (-5 *5 (-1 (-1129 *4))) (-4 *4 (-358)) (-4 *4 (-1025)) (-5 *2 (-1129 *4)) (-5 *1 (-1133 *4)))) (-4302 (*1 *2 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4292 (*1 *2 *3 *2) (-12 (-5 *2 (-1129 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1025)) (-5 *3 (-402 (-552))) (-5 *1 (-1133 *4)))) (-4281 (*1 *2 *3) (-12 (-5 *3 (-1129 (-1129 *4))) (-5 *2 (-1129 *4)) (-5 *1 (-1133 *4)) (-4 *4 (-38 (-402 (-552)))) (-4 *4 (-1025)))) (-4271 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1129 *3))) (-5 *2 (-1129 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)))) (-2481 (*1 *2 *3 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-2390 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1129 *4)) (-5 *3 (-552)) (-4 *4 (-1025)) (-5 *1 (-1133 *4)))) (-2401 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1129 *4)) (-5 *3 (-552)) (-4 *4 (-1025)) (-5 *1 (-1133 *4)))) (-2421 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1129 *4)) (-5 *3 (-552)) (-4 *4 (-1025)) (-5 *1 (-1133 *4)))) (-2431 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-2441 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-2451 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4259 (*1 *2 *3) (-12 (-5 *3 (-1129 (-1129 *4))) (-5 *2 (-1129 *4)) (-5 *1 (-1133 *4)) (-4 *4 (-1025)))) (-2412 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-2463 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4249 (*1 *2 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4073 (*1 *2 *2 *3) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-1683 (*1 *2 *3) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025)))) (-4238 (*1 *2 *3 *2) (-12 (-5 *2 (-1129 *4)) (-5 *3 (-1 *4 (-552))) (-4 *4 (-1025)) (-5 *1 (-1133 *4)))) (-4227 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4217 (*1 *2 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4206 (*1 *2 *3) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025)))) (-4196 (*1 *2 *3) (-12 (-5 *2 (-1129 (-552))) (-5 *1 (-1133 *4)) (-4 *4 (-1025)) (-5 *3 (-552)))) (-4184 (*1 *2 *3) (-12 (-5 *2 (-1129 (-552))) (-5 *1 (-1133 *4)) (-4 *4 (-1025)) (-5 *3 (-552)))) (-2243 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-5 *2 (-1129 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025)))) (-4174 (*1 *2 *2) (|partial| -12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-2404 (*1 *2 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-2802 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-2393 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-2393 (*1 *2 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-2382 (*1 *2 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))) -(-10 -7 (-15 -2382 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -2393 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -2393 ((-1129 |#1|) (-1129 |#1|))) (-15 * ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 * ((-1129 |#1|) |#1| (-1129 |#1|))) (-15 * ((-1129 |#1|) (-1129 |#1|) |#1|)) (-15 -2802 ((-3 (-1129 |#1|) "failed") (-1129 |#1|) (-1129 |#1|))) (-15 -2404 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -4174 ((-3 (-1129 |#1|) "failed") (-1129 |#1|))) (-15 -2243 ((-1129 |#1|) |#1| (-552))) (-15 -4184 ((-1129 (-552)) (-552))) (-15 -4196 ((-1129 (-552)) (-552))) (-15 -4206 ((-1129 |#1|) |#1|)) (-15 -4217 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -4227 ((-1129 |#1|) (-1129 |#1|))) (-15 -4238 ((-1129 |#1|) (-1 |#1| (-552)) (-1129 |#1|))) (-15 -1683 ((-1129 |#1|) |#1|)) (-15 -4073 ((-1129 |#1|) (-1129 |#1|) |#1|)) (-15 -4249 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -2463 ((-1129 |#1|) (-1129 |#1|))) (-15 -2412 ((-1129 |#1|) (-1129 |#1|))) (-15 -4259 ((-1129 |#1|) (-1129 (-1129 |#1|)))) (-15 -2451 ((-1129 |#1|) (-1129 |#1|))) (-15 -2441 ((-1129 |#1|) (-1129 |#1|))) (-15 -2431 ((-1129 |#1|) (-1129 |#1|))) (-15 -2421 ((-1129 |#1|) (-1129 |#1|) (-552) (-552))) (-15 -2401 ((-1129 |#1|) (-552) (-552) (-1129 |#1|))) (-15 -2390 ((-1129 |#1|) (-552) (-552) (-1129 |#1|))) (IF (|has| |#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ((-1129 |#1|) |#1| (-1129 |#1|))) (-15 -4271 ((-1129 |#1|) |#1| (-1 (-1129 |#1|)))) (-15 -4281 ((-1129 |#1|) (-1129 (-1129 |#1|)))) (-15 -4292 ((-1129 |#1|) (-402 (-552)) (-1129 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -4302 ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -4311 ((-1129 |#1|) (-1 |#1| (-552)) |#1| (-1 (-1129 |#1|)))) (-15 -4321 ((-1129 |#1|) |#1| (-1129 |#1|)))) |%noBranch|)) -((-3728 (((-1129 |#1|) (-1129 |#1|)) 57)) (-3604 (((-1129 |#1|) (-1129 |#1|)) 39)) (-3710 (((-1129 |#1|) (-1129 |#1|)) 53)) (-3581 (((-1129 |#1|) (-1129 |#1|)) 35)) (-3749 (((-1129 |#1|) (-1129 |#1|)) 60)) (-3627 (((-1129 |#1|) (-1129 |#1|)) 42)) (-2458 (((-1129 |#1|) (-1129 |#1|)) 31)) (-2863 (((-1129 |#1|) (-1129 |#1|)) 27)) (-3759 (((-1129 |#1|) (-1129 |#1|)) 61)) (-3638 (((-1129 |#1|) (-1129 |#1|)) 43)) (-3738 (((-1129 |#1|) (-1129 |#1|)) 58)) (-3614 (((-1129 |#1|) (-1129 |#1|)) 40)) (-3721 (((-1129 |#1|) (-1129 |#1|)) 55)) (-3593 (((-1129 |#1|) (-1129 |#1|)) 37)) (-3789 (((-1129 |#1|) (-1129 |#1|)) 65)) (-3670 (((-1129 |#1|) (-1129 |#1|)) 47)) (-3769 (((-1129 |#1|) (-1129 |#1|)) 63)) (-3648 (((-1129 |#1|) (-1129 |#1|)) 45)) (-3809 (((-1129 |#1|) (-1129 |#1|)) 68)) (-3691 (((-1129 |#1|) (-1129 |#1|)) 50)) (-3742 (((-1129 |#1|) (-1129 |#1|)) 69)) (-3700 (((-1129 |#1|) (-1129 |#1|)) 51)) (-3797 (((-1129 |#1|) (-1129 |#1|)) 67)) (-3681 (((-1129 |#1|) (-1129 |#1|)) 49)) (-3778 (((-1129 |#1|) (-1129 |#1|)) 66)) (-3659 (((-1129 |#1|) (-1129 |#1|)) 48)) (** (((-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) 33))) -(((-1134 |#1|) (-10 -7 (-15 -2863 ((-1129 |#1|) (-1129 |#1|))) (-15 -2458 ((-1129 |#1|) (-1129 |#1|))) (-15 ** ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -3581 ((-1129 |#1|) (-1129 |#1|))) (-15 -3593 ((-1129 |#1|) (-1129 |#1|))) (-15 -3604 ((-1129 |#1|) (-1129 |#1|))) (-15 -3614 ((-1129 |#1|) (-1129 |#1|))) (-15 -3627 ((-1129 |#1|) (-1129 |#1|))) (-15 -3638 ((-1129 |#1|) (-1129 |#1|))) (-15 -3648 ((-1129 |#1|) (-1129 |#1|))) (-15 -3659 ((-1129 |#1|) (-1129 |#1|))) (-15 -3670 ((-1129 |#1|) (-1129 |#1|))) (-15 -3681 ((-1129 |#1|) (-1129 |#1|))) (-15 -3691 ((-1129 |#1|) (-1129 |#1|))) (-15 -3700 ((-1129 |#1|) (-1129 |#1|))) (-15 -3710 ((-1129 |#1|) (-1129 |#1|))) (-15 -3721 ((-1129 |#1|) (-1129 |#1|))) (-15 -3728 ((-1129 |#1|) (-1129 |#1|))) (-15 -3738 ((-1129 |#1|) (-1129 |#1|))) (-15 -3749 ((-1129 |#1|) (-1129 |#1|))) (-15 -3759 ((-1129 |#1|) (-1129 |#1|))) (-15 -3769 ((-1129 |#1|) (-1129 |#1|))) (-15 -3778 ((-1129 |#1|) (-1129 |#1|))) (-15 -3789 ((-1129 |#1|) (-1129 |#1|))) (-15 -3797 ((-1129 |#1|) (-1129 |#1|))) (-15 -3809 ((-1129 |#1|) (-1129 |#1|))) (-15 -3742 ((-1129 |#1|) (-1129 |#1|)))) (-38 (-402 (-552)))) (T -1134)) -((-3742 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3797 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3778 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3769 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3759 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3749 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3738 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3728 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3721 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3710 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3700 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3691 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3681 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3670 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3659 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3648 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3627 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3614 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3604 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3593 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-3581 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-2458 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3)))) (-2863 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1134 *3))))) -(-10 -7 (-15 -2863 ((-1129 |#1|) (-1129 |#1|))) (-15 -2458 ((-1129 |#1|) (-1129 |#1|))) (-15 ** ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -3581 ((-1129 |#1|) (-1129 |#1|))) (-15 -3593 ((-1129 |#1|) (-1129 |#1|))) (-15 -3604 ((-1129 |#1|) (-1129 |#1|))) (-15 -3614 ((-1129 |#1|) (-1129 |#1|))) (-15 -3627 ((-1129 |#1|) (-1129 |#1|))) (-15 -3638 ((-1129 |#1|) (-1129 |#1|))) (-15 -3648 ((-1129 |#1|) (-1129 |#1|))) (-15 -3659 ((-1129 |#1|) (-1129 |#1|))) (-15 -3670 ((-1129 |#1|) (-1129 |#1|))) (-15 -3681 ((-1129 |#1|) (-1129 |#1|))) (-15 -3691 ((-1129 |#1|) (-1129 |#1|))) (-15 -3700 ((-1129 |#1|) (-1129 |#1|))) (-15 -3710 ((-1129 |#1|) (-1129 |#1|))) (-15 -3721 ((-1129 |#1|) (-1129 |#1|))) (-15 -3728 ((-1129 |#1|) (-1129 |#1|))) (-15 -3738 ((-1129 |#1|) (-1129 |#1|))) (-15 -3749 ((-1129 |#1|) (-1129 |#1|))) (-15 -3759 ((-1129 |#1|) (-1129 |#1|))) (-15 -3769 ((-1129 |#1|) (-1129 |#1|))) (-15 -3778 ((-1129 |#1|) (-1129 |#1|))) (-15 -3789 ((-1129 |#1|) (-1129 |#1|))) (-15 -3797 ((-1129 |#1|) (-1129 |#1|))) (-15 -3809 ((-1129 |#1|) (-1129 |#1|))) (-15 -3742 ((-1129 |#1|) (-1129 |#1|)))) -((-3728 (((-1129 |#1|) (-1129 |#1|)) 100)) (-3604 (((-1129 |#1|) (-1129 |#1|)) 64)) (-1273 (((-2 (|:| -3710 (-1129 |#1|)) (|:| -3721 (-1129 |#1|))) (-1129 |#1|)) 96)) (-3710 (((-1129 |#1|) (-1129 |#1|)) 97)) (-4331 (((-2 (|:| -3581 (-1129 |#1|)) (|:| -3593 (-1129 |#1|))) (-1129 |#1|)) 53)) (-3581 (((-1129 |#1|) (-1129 |#1|)) 54)) (-3749 (((-1129 |#1|) (-1129 |#1|)) 102)) (-3627 (((-1129 |#1|) (-1129 |#1|)) 71)) (-2458 (((-1129 |#1|) (-1129 |#1|)) 39)) (-2863 (((-1129 |#1|) (-1129 |#1|)) 36)) (-3759 (((-1129 |#1|) (-1129 |#1|)) 103)) (-3638 (((-1129 |#1|) (-1129 |#1|)) 72)) (-3738 (((-1129 |#1|) (-1129 |#1|)) 101)) (-3614 (((-1129 |#1|) (-1129 |#1|)) 67)) (-3721 (((-1129 |#1|) (-1129 |#1|)) 98)) (-3593 (((-1129 |#1|) (-1129 |#1|)) 55)) (-3789 (((-1129 |#1|) (-1129 |#1|)) 111)) (-3670 (((-1129 |#1|) (-1129 |#1|)) 86)) (-3769 (((-1129 |#1|) (-1129 |#1|)) 105)) (-3648 (((-1129 |#1|) (-1129 |#1|)) 82)) (-3809 (((-1129 |#1|) (-1129 |#1|)) 115)) (-3691 (((-1129 |#1|) (-1129 |#1|)) 90)) (-3742 (((-1129 |#1|) (-1129 |#1|)) 117)) (-3700 (((-1129 |#1|) (-1129 |#1|)) 92)) (-3797 (((-1129 |#1|) (-1129 |#1|)) 113)) (-3681 (((-1129 |#1|) (-1129 |#1|)) 88)) (-3778 (((-1129 |#1|) (-1129 |#1|)) 107)) (-3659 (((-1129 |#1|) (-1129 |#1|)) 84)) (** (((-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) 40))) -(((-1135 |#1|) (-10 -7 (-15 -2863 ((-1129 |#1|) (-1129 |#1|))) (-15 -2458 ((-1129 |#1|) (-1129 |#1|))) (-15 ** ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -4331 ((-2 (|:| -3581 (-1129 |#1|)) (|:| -3593 (-1129 |#1|))) (-1129 |#1|))) (-15 -3581 ((-1129 |#1|) (-1129 |#1|))) (-15 -3593 ((-1129 |#1|) (-1129 |#1|))) (-15 -3604 ((-1129 |#1|) (-1129 |#1|))) (-15 -3614 ((-1129 |#1|) (-1129 |#1|))) (-15 -3627 ((-1129 |#1|) (-1129 |#1|))) (-15 -3638 ((-1129 |#1|) (-1129 |#1|))) (-15 -3648 ((-1129 |#1|) (-1129 |#1|))) (-15 -3659 ((-1129 |#1|) (-1129 |#1|))) (-15 -3670 ((-1129 |#1|) (-1129 |#1|))) (-15 -3681 ((-1129 |#1|) (-1129 |#1|))) (-15 -3691 ((-1129 |#1|) (-1129 |#1|))) (-15 -3700 ((-1129 |#1|) (-1129 |#1|))) (-15 -1273 ((-2 (|:| -3710 (-1129 |#1|)) (|:| -3721 (-1129 |#1|))) (-1129 |#1|))) (-15 -3710 ((-1129 |#1|) (-1129 |#1|))) (-15 -3721 ((-1129 |#1|) (-1129 |#1|))) (-15 -3728 ((-1129 |#1|) (-1129 |#1|))) (-15 -3738 ((-1129 |#1|) (-1129 |#1|))) (-15 -3749 ((-1129 |#1|) (-1129 |#1|))) (-15 -3759 ((-1129 |#1|) (-1129 |#1|))) (-15 -3769 ((-1129 |#1|) (-1129 |#1|))) (-15 -3778 ((-1129 |#1|) (-1129 |#1|))) (-15 -3789 ((-1129 |#1|) (-1129 |#1|))) (-15 -3797 ((-1129 |#1|) (-1129 |#1|))) (-15 -3809 ((-1129 |#1|) (-1129 |#1|))) (-15 -3742 ((-1129 |#1|) (-1129 |#1|)))) (-38 (-402 (-552)))) (T -1135)) -((-3742 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3809 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3797 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3778 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3769 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3759 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3749 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3738 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3728 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3721 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3710 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-1273 (*1 *2 *3) (-12 (-4 *4 (-38 (-402 (-552)))) (-5 *2 (-2 (|:| -3710 (-1129 *4)) (|:| -3721 (-1129 *4)))) (-5 *1 (-1135 *4)) (-5 *3 (-1129 *4)))) (-3700 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3691 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3681 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3670 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3659 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3648 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3638 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3627 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3614 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3604 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3593 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-3581 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-4331 (*1 *2 *3) (-12 (-4 *4 (-38 (-402 (-552)))) (-5 *2 (-2 (|:| -3581 (-1129 *4)) (|:| -3593 (-1129 *4)))) (-5 *1 (-1135 *4)) (-5 *3 (-1129 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-2458 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3)))) (-2863 (*1 *2 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1135 *3))))) -(-10 -7 (-15 -2863 ((-1129 |#1|) (-1129 |#1|))) (-15 -2458 ((-1129 |#1|) (-1129 |#1|))) (-15 ** ((-1129 |#1|) (-1129 |#1|) (-1129 |#1|))) (-15 -4331 ((-2 (|:| -3581 (-1129 |#1|)) (|:| -3593 (-1129 |#1|))) (-1129 |#1|))) (-15 -3581 ((-1129 |#1|) (-1129 |#1|))) (-15 -3593 ((-1129 |#1|) (-1129 |#1|))) (-15 -3604 ((-1129 |#1|) (-1129 |#1|))) (-15 -3614 ((-1129 |#1|) (-1129 |#1|))) (-15 -3627 ((-1129 |#1|) (-1129 |#1|))) (-15 -3638 ((-1129 |#1|) (-1129 |#1|))) (-15 -3648 ((-1129 |#1|) (-1129 |#1|))) (-15 -3659 ((-1129 |#1|) (-1129 |#1|))) (-15 -3670 ((-1129 |#1|) (-1129 |#1|))) (-15 -3681 ((-1129 |#1|) (-1129 |#1|))) (-15 -3691 ((-1129 |#1|) (-1129 |#1|))) (-15 -3700 ((-1129 |#1|) (-1129 |#1|))) (-15 -1273 ((-2 (|:| -3710 (-1129 |#1|)) (|:| -3721 (-1129 |#1|))) (-1129 |#1|))) (-15 -3710 ((-1129 |#1|) (-1129 |#1|))) (-15 -3721 ((-1129 |#1|) (-1129 |#1|))) (-15 -3728 ((-1129 |#1|) (-1129 |#1|))) (-15 -3738 ((-1129 |#1|) (-1129 |#1|))) (-15 -3749 ((-1129 |#1|) (-1129 |#1|))) (-15 -3759 ((-1129 |#1|) (-1129 |#1|))) (-15 -3769 ((-1129 |#1|) (-1129 |#1|))) (-15 -3778 ((-1129 |#1|) (-1129 |#1|))) (-15 -3789 ((-1129 |#1|) (-1129 |#1|))) (-15 -3797 ((-1129 |#1|) (-1129 |#1|))) (-15 -3809 ((-1129 |#1|) (-1129 |#1|))) (-15 -3742 ((-1129 |#1|) (-1129 |#1|)))) -((-1283 (((-934 |#2|) |#2| |#2|) 35)) (-1294 ((|#2| |#2| |#1|) 19 (|has| |#1| (-302))))) -(((-1136 |#1| |#2|) (-10 -7 (-15 -1283 ((-934 |#2|) |#2| |#2|)) (IF (|has| |#1| (-302)) (-15 -1294 (|#2| |#2| |#1|)) |%noBranch|)) (-544) (-1208 |#1|)) (T -1136)) -((-1294 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-4 *3 (-544)) (-5 *1 (-1136 *3 *2)) (-4 *2 (-1208 *3)))) (-1283 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-934 *3)) (-5 *1 (-1136 *4 *3)) (-4 *3 (-1208 *4))))) -(-10 -7 (-15 -1283 ((-934 |#2|) |#2| |#2|)) (IF (|has| |#1| (-302)) (-15 -1294 (|#2| |#2| |#1|)) |%noBranch|)) -((-1671 (((-112) $ $) NIL)) (-1366 (($ $ (-625 (-751))) 67)) (-1856 (($) 26)) (-3300 (($ $) 42)) (-3165 (((-625 $) $) 51)) (-3358 (((-112) $) 16)) (-1306 (((-625 (-919 |#2|)) $) 74)) (-1314 (($ $) 68)) (-3310 (((-751) $) 37)) (-2183 (($) 25)) (-3244 (($ $ (-625 (-751)) (-919 |#2|)) 60) (($ $ (-625 (-751)) (-751)) 61) (($ $ (-751) (-919 |#2|)) 63)) (-3280 (($ $ $) 48) (($ (-625 $)) 50)) (-3671 (((-751) $) 75)) (-3367 (((-112) $) 15)) (-2883 (((-1131) $) NIL)) (-3349 (((-112) $) 18)) (-2831 (((-1093) $) NIL)) (-1325 (((-169) $) 73)) (-1355 (((-919 |#2|) $) 69)) (-1346 (((-751) $) 70)) (-1335 (((-112) $) 72)) (-1377 (($ $ (-625 (-751)) (-169)) 66)) (-3291 (($ $) 43)) (-1683 (((-839) $) 86)) (-3235 (($ $ (-625 (-751)) (-112)) 65)) (-3320 (((-625 $) $) 11)) (-3330 (($ $ (-751)) 36)) (-3339 (($ $) 32)) (-3253 (($ $ $ (-919 |#2|) (-751)) 56)) (-3262 (($ $ (-919 |#2|)) 55)) (-3271 (($ $ (-625 (-751)) (-919 |#2|)) 54) (($ $ (-625 (-751)) (-751)) 58) (((-751) $ (-919 |#2|)) 59)) (-2281 (((-112) $ $) 80))) -(((-1137 |#1| |#2|) (-13 (-1073) (-10 -8 (-15 -3367 ((-112) $)) (-15 -3358 ((-112) $)) (-15 -3349 ((-112) $)) (-15 -2183 ($)) (-15 -1856 ($)) (-15 -3339 ($ $)) (-15 -3330 ($ $ (-751))) (-15 -3320 ((-625 $) $)) (-15 -3310 ((-751) $)) (-15 -3300 ($ $)) (-15 -3291 ($ $)) (-15 -3280 ($ $ $)) (-15 -3280 ($ (-625 $))) (-15 -3165 ((-625 $) $)) (-15 -3271 ($ $ (-625 (-751)) (-919 |#2|))) (-15 -3262 ($ $ (-919 |#2|))) (-15 -3253 ($ $ $ (-919 |#2|) (-751))) (-15 -3244 ($ $ (-625 (-751)) (-919 |#2|))) (-15 -3271 ($ $ (-625 (-751)) (-751))) (-15 -3244 ($ $ (-625 (-751)) (-751))) (-15 -3271 ((-751) $ (-919 |#2|))) (-15 -3244 ($ $ (-751) (-919 |#2|))) (-15 -3235 ($ $ (-625 (-751)) (-112))) (-15 -1377 ($ $ (-625 (-751)) (-169))) (-15 -1366 ($ $ (-625 (-751)))) (-15 -1355 ((-919 |#2|) $)) (-15 -1346 ((-751) $)) (-15 -1335 ((-112) $)) (-15 -1325 ((-169) $)) (-15 -3671 ((-751) $)) (-15 -1314 ($ $)) (-15 -1306 ((-625 (-919 |#2|)) $)))) (-897) (-1025)) (T -1137)) -((-3367 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-3358 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-3349 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-2183 (*1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025)))) (-1856 (*1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025)))) (-3339 (*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025)))) (-3330 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-625 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-3310 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-3300 (*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025)))) (-3291 (*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025)))) (-3280 (*1 *1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025)))) (-3280 (*1 *1 *2) (-12 (-5 *2 (-625 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-3165 (*1 *2 *1) (-12 (-5 *2 (-625 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-3271 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-751))) (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)))) (-3262 (*1 *1 *1 *2) (-12 (-5 *2 (-919 *4)) (-4 *4 (-1025)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)))) (-3253 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-919 *5)) (-5 *3 (-751)) (-4 *5 (-1025)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)))) (-3244 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-751))) (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)))) (-3271 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-751))) (-5 *3 (-751)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)) (-4 *5 (-1025)))) (-3244 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-751))) (-5 *3 (-751)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)) (-4 *5 (-1025)))) (-3271 (*1 *2 *1 *3) (-12 (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *2 (-751)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)))) (-3244 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)))) (-3235 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-751))) (-5 *3 (-112)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)) (-4 *5 (-1025)))) (-1377 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-625 (-751))) (-5 *3 (-169)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)) (-4 *5 (-1025)))) (-1366 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-751))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-919 *4)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-1346 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-1335 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-3671 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025)))) (-1314 (*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025)))) (-1306 (*1 *2 *1) (-12 (-5 *2 (-625 (-919 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) (-4 *4 (-1025))))) -(-13 (-1073) (-10 -8 (-15 -3367 ((-112) $)) (-15 -3358 ((-112) $)) (-15 -3349 ((-112) $)) (-15 -2183 ($)) (-15 -1856 ($)) (-15 -3339 ($ $)) (-15 -3330 ($ $ (-751))) (-15 -3320 ((-625 $) $)) (-15 -3310 ((-751) $)) (-15 -3300 ($ $)) (-15 -3291 ($ $)) (-15 -3280 ($ $ $)) (-15 -3280 ($ (-625 $))) (-15 -3165 ((-625 $) $)) (-15 -3271 ($ $ (-625 (-751)) (-919 |#2|))) (-15 -3262 ($ $ (-919 |#2|))) (-15 -3253 ($ $ $ (-919 |#2|) (-751))) (-15 -3244 ($ $ (-625 (-751)) (-919 |#2|))) (-15 -3271 ($ $ (-625 (-751)) (-751))) (-15 -3244 ($ $ (-625 (-751)) (-751))) (-15 -3271 ((-751) $ (-919 |#2|))) (-15 -3244 ($ $ (-751) (-919 |#2|))) (-15 -3235 ($ $ (-625 (-751)) (-112))) (-15 -1377 ($ $ (-625 (-751)) (-169))) (-15 -1366 ($ $ (-625 (-751)))) (-15 -1355 ((-919 |#2|) $)) (-15 -1346 ((-751) $)) (-15 -1335 ((-112) $)) (-15 -1325 ((-169) $)) (-15 -3671 ((-751) $)) (-15 -1314 ($ $)) (-15 -1306 ((-625 (-919 |#2|)) $)))) -((-1671 (((-112) $ $) NIL)) (-2662 ((|#2| $) 11)) (-2651 ((|#1| $) 10)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1695 (($ |#1| |#2|) 9)) (-1683 (((-839) $) 16)) (-2281 (((-112) $ $) NIL))) -(((-1138 |#1| |#2|) (-13 (-1073) (-10 -8 (-15 -1695 ($ |#1| |#2|)) (-15 -2651 (|#1| $)) (-15 -2662 (|#2| $)))) (-1073) (-1073)) (T -1138)) -((-1695 (*1 *1 *2 *3) (-12 (-5 *1 (-1138 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))) (-2651 (*1 *2 *1) (-12 (-4 *2 (-1073)) (-5 *1 (-1138 *2 *3)) (-4 *3 (-1073)))) (-2662 (*1 *2 *1) (-12 (-4 *2 (-1073)) (-5 *1 (-1138 *3 *2)) (-4 *3 (-1073))))) -(-13 (-1073) (-10 -8 (-15 -1695 ($ |#1| |#2|)) (-15 -2651 (|#1| $)) (-15 -2662 (|#2| $)))) -((-1671 (((-112) $ $) NIL)) (-3321 (((-1108) $) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL))) -(((-1139) (-13 (-1056) (-10 -8 (-15 -3321 ((-1108) $))))) (T -1139)) -((-3321 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1139))))) -(-13 (-1056) (-10 -8 (-15 -3321 ((-1108) $)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4177 (((-1147 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) 11)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544))))) (-3528 (($ $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544))))) (-3509 (((-112) $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544))))) (-2162 (($ $ (-552)) NIL) (($ $ (-552) (-552)) 66)) (-2182 (((-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) NIL)) (-2999 (((-1147 |#1| |#2| |#3|) $) 36)) (-2976 (((-3 (-1147 |#1| |#2| |#3|) "failed") $) 29)) (-4041 (((-1147 |#1| |#2| |#3|) $) 30)) (-3728 (($ $) 107 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 83 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))))) (-2194 (($ $) NIL (|has| |#1| (-358)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-358)))) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3710 (($ $) 103 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 79 (|has| |#1| (-38 (-402 (-552)))))) (-4127 (((-552) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-3615 (($ (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) NIL)) (-3749 (($ $) 111 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 87 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-1147 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1149) "failed") $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (((-3 (-402 (-552)) "failed") $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-552))) (|has| |#1| (-358)))) (((-3 (-552) "failed") $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-552))) (|has| |#1| (-358))))) (-1895 (((-1147 |#1| |#2| |#3|) $) 131) (((-1149) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (((-402 (-552)) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-552))) (|has| |#1| (-358)))) (((-552) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-552))) (|has| |#1| (-358))))) (-2987 (($ $) 34) (($ (-552) $) 35)) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) NIL)) (-1794 (((-669 (-1147 |#1| |#2| |#3|)) (-669 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2351 (-669 (-1147 |#1| |#2| |#3|))) (|:| |vec| (-1232 (-1147 |#1| |#2| |#3|)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-621 (-552))) (|has| |#1| (-358)))) (((-669 (-552)) (-669 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-621 (-552))) (|has| |#1| (-358))))) (-4174 (((-3 $ "failed") $) 48)) (-2965 (((-402 (-928 |#1|)) $ (-552)) 65 (|has| |#1| (-544))) (((-402 (-928 |#1|)) $ (-552) (-552)) 67 (|has| |#1| (-544)))) (-3702 (($) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-2951 (((-112) $) NIL (|has| |#1| (-358)))) (-3620 (((-112) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-3592 (((-112) $) 25)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-862 (-552))) (|has| |#1| (-358)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-862 (-374))) (|has| |#1| (-358))))) (-2172 (((-552) $) NIL) (((-552) $ (-552)) 24)) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL (|has| |#1| (-358)))) (-1356 (((-1147 |#1| |#2| |#3|) $) 38 (|has| |#1| (-358)))) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4034 (((-3 $ "failed") $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1124)) (|has| |#1| (-358))))) (-3630 (((-112) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-2216 (($ $ (-897)) NIL)) (-2493 (($ (-1 |#1| (-552)) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-552)) 18) (($ $ (-1055) (-552)) NIL) (($ $ (-625 (-1055)) (-625 (-552))) NIL)) (-3658 (($ $ $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-3332 (($ $ $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-358)))) (-2458 (($ $) 72 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4053 (($ (-552) (-1147 |#1| |#2| |#3|)) 33)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| |#1| (-358)))) (-2481 (($ $) 70 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-935)) (|has| |#1| (-1171))))) (($ $ (-1228 |#2|)) 71 (|has| |#1| (-38 (-402 (-552)))))) (-2071 (($) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1124)) (|has| |#1| (-358))) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4166 (($ $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-4189 (((-1147 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))))) (-3824 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2147 (($ $ (-552)) 145)) (-2802 (((-3 $ "failed") $ $) 49 (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544))))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-2863 (($ $) 73 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-552))))) (($ $ (-1149) (-1147 |#1| |#2| |#3|)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-507 (-1149) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-625 (-1149)) (-625 (-1147 |#1| |#2| |#3|))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-507 (-1149) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-625 (-289 (-1147 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-289 (-1147 |#1| |#2| |#3|))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-625 (-1147 |#1| |#2| |#3|)) (-625 (-1147 |#1| |#2| |#3|))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ (-552)) NIL) (($ $ $) 54 (|has| (-552) (-1085))) (($ $ (-1147 |#1| |#2| |#3|)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-281 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-3072 (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) (-751)) NIL (|has| |#1| (-358))) (($ $ (-1228 |#2|)) 51) (($ $ (-751)) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 50 (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149) (-751)) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-625 (-1149))) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))))) (-2265 (($ $) NIL (|has| |#1| (-358)))) (-1368 (((-1147 |#1| |#2| |#3|) $) 41 (|has| |#1| (-358)))) (-4276 (((-552) $) 37)) (-3759 (($ $) 113 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 89 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 109 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 85 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 105 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 81 (|has| |#1| (-38 (-402 (-552)))))) (-2042 (((-528) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-598 (-528))) (|has| |#1| (-358)))) (((-374) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-998)) (|has| |#1| (-358)))) (((-221) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-998)) (|has| |#1| (-358)))) (((-868 (-374)) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-598 (-868 (-374)))) (|has| |#1| (-358)))) (((-868 (-552)) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-598 (-868 (-552)))) (|has| |#1| (-358))))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))))) (-3580 (($ $) NIL)) (-1683 (((-839) $) 149) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1147 |#1| |#2| |#3|)) 27) (($ (-1228 |#2|)) 23) (($ (-1149)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (($ $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544)))) (($ (-402 (-552))) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-552))) (|has| |#1| (-358))) (|has| |#1| (-38 (-402 (-552))))))) (-3637 ((|#1| $ (-552)) 68)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-143)) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-4141 (((-751)) NIL)) (-2845 ((|#1| $) 12)) (-4199 (((-1147 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-3789 (($ $) 119 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 95 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544))))) (-3769 (($ $) 115 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 91 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 123 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 99 (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-552)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) 125 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 101 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 121 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 97 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 117 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 93 (|has| |#1| (-38 (-402 (-552)))))) (-1727 (($ $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-2089 (($) 20 T CONST)) (-2100 (($) 16 T CONST)) (-3768 (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) (-751)) NIL (|has| |#1| (-358))) (($ $ (-751)) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149) (-751)) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-625 (-1149))) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))))) (-2346 (((-112) $ $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-2320 (((-112) $ $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-2307 (((-112) $ $) NIL (-1523 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 44 (|has| |#1| (-358))) (($ (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) 45 (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 21)) (** (($ $ (-897)) NIL) (($ $ (-751)) 53) (($ $ (-552)) NIL (|has| |#1| (-358))) (($ $ $) 74 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 128 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1147 |#1| |#2| |#3|)) 43 (|has| |#1| (-358))) (($ (-1147 |#1| |#2| |#3|) $) 42 (|has| |#1| (-358))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))))) -(((-1140 |#1| |#2| |#3|) (-13 (-1194 |#1| (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1140)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-2481 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3)))) -(-13 (-1194 |#1| (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|))) -((-1791 ((|#2| |#2| (-1065 |#2|)) 26) ((|#2| |#2| (-1149)) 28))) -(((-1141 |#1| |#2|) (-10 -7 (-15 -1791 (|#2| |#2| (-1149))) (-15 -1791 (|#2| |#2| (-1065 |#2|)))) (-13 (-544) (-827) (-1014 (-552)) (-621 (-552))) (-13 (-425 |#1|) (-158) (-27) (-1171))) (T -1141)) -((-1791 (*1 *2 *2 *3) (-12 (-5 *3 (-1065 *2)) (-4 *2 (-13 (-425 *4) (-158) (-27) (-1171))) (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-1141 *4 *2)))) (-1791 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-1141 *4 *2)) (-4 *2 (-13 (-425 *4) (-158) (-27) (-1171)))))) -(-10 -7 (-15 -1791 (|#2| |#2| (-1149))) (-15 -1791 (|#2| |#2| (-1065 |#2|)))) -((-1791 (((-3 (-402 (-928 |#1|)) (-311 |#1|)) (-402 (-928 |#1|)) (-1065 (-402 (-928 |#1|)))) 31) (((-402 (-928 |#1|)) (-928 |#1|) (-1065 (-928 |#1|))) 44) (((-3 (-402 (-928 |#1|)) (-311 |#1|)) (-402 (-928 |#1|)) (-1149)) 33) (((-402 (-928 |#1|)) (-928 |#1|) (-1149)) 36))) -(((-1142 |#1|) (-10 -7 (-15 -1791 ((-402 (-928 |#1|)) (-928 |#1|) (-1149))) (-15 -1791 ((-3 (-402 (-928 |#1|)) (-311 |#1|)) (-402 (-928 |#1|)) (-1149))) (-15 -1791 ((-402 (-928 |#1|)) (-928 |#1|) (-1065 (-928 |#1|)))) (-15 -1791 ((-3 (-402 (-928 |#1|)) (-311 |#1|)) (-402 (-928 |#1|)) (-1065 (-402 (-928 |#1|)))))) (-13 (-544) (-827) (-1014 (-552)))) (T -1142)) -((-1791 (*1 *2 *3 *4) (-12 (-5 *4 (-1065 (-402 (-928 *5)))) (-5 *3 (-402 (-928 *5))) (-4 *5 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-3 *3 (-311 *5))) (-5 *1 (-1142 *5)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *4 (-1065 (-928 *5))) (-5 *3 (-928 *5)) (-4 *5 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-402 *3)) (-5 *1 (-1142 *5)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-3 (-402 (-928 *5)) (-311 *5))) (-5 *1 (-1142 *5)) (-5 *3 (-402 (-928 *5))))) (-1791 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-402 (-928 *5))) (-5 *1 (-1142 *5)) (-5 *3 (-928 *5))))) -(-10 -7 (-15 -1791 ((-402 (-928 |#1|)) (-928 |#1|) (-1149))) (-15 -1791 ((-3 (-402 (-928 |#1|)) (-311 |#1|)) (-402 (-928 |#1|)) (-1149))) (-15 -1791 ((-402 (-928 |#1|)) (-928 |#1|) (-1065 (-928 |#1|)))) (-15 -1791 ((-3 (-402 (-928 |#1|)) (-311 |#1|)) (-402 (-928 |#1|)) (-1065 (-402 (-928 |#1|)))))) -((-1996 (((-1145 |#2|) (-1 |#2| |#1|) (-1145 |#1|)) 13))) -(((-1143 |#1| |#2|) (-10 -7 (-15 -1996 ((-1145 |#2|) (-1 |#2| |#1|) (-1145 |#1|)))) (-1025) (-1025)) (T -1143)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-5 *2 (-1145 *6)) (-5 *1 (-1143 *5 *6))))) -(-10 -7 (-15 -1996 ((-1145 |#2|) (-1 |#2| |#1|) (-1145 |#1|)))) -((-1330 (((-413 (-1145 (-402 |#4|))) (-1145 (-402 |#4|))) 51)) (-3824 (((-413 (-1145 (-402 |#4|))) (-1145 (-402 |#4|))) 52))) -(((-1144 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3824 ((-413 (-1145 (-402 |#4|))) (-1145 (-402 |#4|)))) (-15 -1330 ((-413 (-1145 (-402 |#4|))) (-1145 (-402 |#4|))))) (-773) (-827) (-446) (-925 |#3| |#1| |#2|)) (T -1144)) -((-1330 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-446)) (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-413 (-1145 (-402 *7)))) (-5 *1 (-1144 *4 *5 *6 *7)) (-5 *3 (-1145 (-402 *7))))) (-3824 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-446)) (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-413 (-1145 (-402 *7)))) (-5 *1 (-1144 *4 *5 *6 *7)) (-5 *3 (-1145 (-402 *7)))))) -(-10 -7 (-15 -3824 ((-413 (-1145 (-402 |#4|))) (-1145 (-402 |#4|)))) (-15 -1330 ((-413 (-1145 (-402 |#4|))) (-1145 (-402 |#4|))))) -((-1671 (((-112) $ $) 137)) (-3641 (((-112) $) 27)) (-2138 (((-1232 |#1|) $ (-751)) NIL)) (-3982 (((-625 (-1055)) $) NIL)) (-2117 (($ (-1145 |#1|)) NIL)) (-3793 (((-1145 $) $ (-1055)) 58) (((-1145 |#1|) $) 47)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) 132 (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-1055))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3197 (($ $ $) 126 (|has| |#1| (-544)))) (-4296 (((-413 (-1145 $)) (-1145 $)) 71 (|has| |#1| (-885)))) (-2194 (($ $) NIL (|has| |#1| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 91 (|has| |#1| (-885)))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-2076 (($ $ (-751)) 39)) (-2065 (($ $ (-751)) 40)) (-3165 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-446)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#1| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-1055) "failed") $) NIL)) (-1895 ((|#1| $) NIL) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-1055) $) NIL)) (-3207 (($ $ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $ $) 128 (|has| |#1| (-170)))) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) 56)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-2052 (($ $ $) 104)) (-3181 (($ $ $) NIL (|has| |#1| (-544)))) (-3173 (((-2 (|:| -3340 |#1|) (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-544)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-1294 (($ $) 133 (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#1| (-885)))) (-1347 (($ $ |#1| (-751) $) 45)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-1055) (-862 (-374))) (|has| |#1| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-1055) (-862 (-552))) (|has| |#1| (-862 (-552)))))) (-3375 (((-839) $ (-839)) 117)) (-2172 (((-751) $ $) NIL (|has| |#1| (-544)))) (-3650 (((-112) $) 30)) (-3723 (((-751) $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| |#1| (-1124)))) (-3970 (($ (-1145 |#1|) (-1055)) 49) (($ (-1145 $) (-1055)) 65)) (-2216 (($ $ (-751)) 32)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-751)) 63) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-1055)) NIL) (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 121)) (-4134 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-625 (-751)) $ (-625 (-1055))) NIL)) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-1357 (($ (-1 (-751) (-751)) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2127 (((-1145 |#1|) $) NIL)) (-1942 (((-3 (-1055) "failed") $) NIL)) (-4131 (($ $) NIL)) (-4144 ((|#1| $) 52)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2883 (((-1131) $) NIL)) (-2086 (((-2 (|:| -3984 $) (|:| -3645 $)) $ (-751)) 38)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-1055)) (|:| -3564 (-751))) "failed") $) NIL)) (-2481 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2071 (($) NIL (|has| |#1| (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) 31)) (-4117 ((|#1| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 79 (|has| |#1| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-446))) (($ $ $) 135 (|has| |#1| (-446)))) (-3044 (($ $ (-751) |#1| $) 99)) (-4275 (((-413 (-1145 $)) (-1145 $)) 77 (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) 76 (|has| |#1| (-885)))) (-3824 (((-413 $) $) 84 (|has| |#1| (-885)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2802 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-1055) |#1|) NIL) (($ $ (-625 (-1055)) (-625 |#1|)) NIL) (($ $ (-1055) $) NIL) (($ $ (-625 (-1055)) (-625 $)) NIL)) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#1| (-544))) ((|#1| (-402 $) |#1|) NIL (|has| |#1| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#1| (-544)))) (-2108 (((-3 $ "failed") $ (-751)) 35)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 138 (|has| |#1| (-358)))) (-3217 (($ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $) 124 (|has| |#1| (-170)))) (-3072 (($ $ (-1055)) NIL) (($ $ (-625 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4276 (((-751) $) 54) (((-751) $ (-1055)) NIL) (((-625 (-751)) $ (-625 (-1055))) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-1055) (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-1055) (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-1055) (-598 (-528))) (|has| |#1| (-598 (-528)))))) (-4108 ((|#1| $) 130 (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-885))))) (-3190 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544))) (((-3 (-402 $) "failed") (-402 $) $) NIL (|has| |#1| (-544)))) (-1683 (((-839) $) 118) (($ (-552)) NIL) (($ |#1|) 53) (($ (-1055)) NIL) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-751)) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) 25 (|has| |#1| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2089 (($) 15 T CONST)) (-2100 (($) 16 T CONST)) (-3768 (($ $ (-1055)) NIL) (($ $ (-625 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) 96)) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2404 (($ $ |#1|) 139 (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 66)) (** (($ $ (-897)) 14) (($ $ (-751)) 12)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 24) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1145 |#1|) (-13 (-1208 |#1|) (-10 -8 (-15 -3375 ((-839) $ (-839))) (-15 -3044 ($ $ (-751) |#1| $)))) (-1025)) (T -1145)) -((-3375 (*1 *2 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1145 *3)) (-4 *3 (-1025)))) (-3044 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1145 *3)) (-4 *3 (-1025))))) -(-13 (-1208 |#1|) (-10 -8 (-15 -3375 ((-839) $ (-839))) (-15 -3044 ($ $ (-751) |#1| $)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) 11)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2162 (($ $ (-402 (-552))) NIL) (($ $ (-402 (-552)) (-402 (-552))) NIL)) (-2182 (((-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|))) $) NIL)) (-3728 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL (|has| |#1| (-358)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-358)))) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3710 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-751) (-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|)))) NIL)) (-3749 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-1140 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1147 |#1| |#2| |#3|) "failed") $) 36)) (-1895 (((-1140 |#1| |#2| |#3|) $) NIL) (((-1147 |#1| |#2| |#3|) $) NIL)) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2249 (((-402 (-552)) $) 55)) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-4066 (($ (-402 (-552)) (-1140 |#1| |#2| |#3|)) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-2951 (((-112) $) NIL (|has| |#1| (-358)))) (-3592 (((-112) $) NIL)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-402 (-552)) $) NIL) (((-402 (-552)) $ (-402 (-552))) NIL)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2216 (($ $ (-897)) NIL) (($ $ (-402 (-552))) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-402 (-552))) 20) (($ $ (-1055) (-402 (-552))) NIL) (($ $ (-625 (-1055)) (-625 (-402 (-552)))) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2458 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2238 (((-1140 |#1| |#2| |#3|) $) 41)) (-2226 (((-3 (-1140 |#1| |#2| |#3|) "failed") $) NIL)) (-4053 (((-1140 |#1| |#2| |#3|) $) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| |#1| (-358)))) (-2481 (($ $) 39 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-935)) (|has| |#1| (-1171))))) (($ $ (-1228 |#2|)) 40 (|has| |#1| (-38 (-402 (-552)))))) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2147 (($ $ (-402 (-552))) NIL)) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-2863 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))))) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ (-402 (-552))) NIL) (($ $ $) NIL (|has| (-402 (-552)) (-1085)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $ (-1228 |#2|)) 38)) (-4276 (((-402 (-552)) $) NIL)) (-3759 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) NIL)) (-1683 (((-839) $) 58) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1140 |#1| |#2| |#3|)) 30) (($ (-1147 |#1| |#2| |#3|)) 31) (($ (-1228 |#2|)) 26) (($ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-3637 ((|#1| $ (-402 (-552))) NIL)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-2845 ((|#1| $) 12)) (-3789 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-402 (-552))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 22 T CONST)) (-2100 (($) 16 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 24)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))))) -(((-1146 |#1| |#2| |#3|) (-13 (-1215 |#1| (-1140 |#1| |#2| |#3|)) (-1014 (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1146)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-2481 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3)))) -(-13 (-1215 |#1| (-1140 |#1| |#2| |#3|)) (-1014 (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 125)) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) 116)) (-2472 (((-1205 |#2| |#1|) $ (-751)) 63)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2162 (($ $ (-751)) 79) (($ $ (-751) (-751)) 76)) (-2182 (((-1129 (-2 (|:| |k| (-751)) (|:| |c| |#1|))) $) 102)) (-3728 (($ $) 169 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 145 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3710 (($ $) 165 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 141 (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-1129 (-2 (|:| |k| (-751)) (|:| |c| |#1|)))) 115) (($ (-1129 |#1|)) 110)) (-3749 (($ $) 173 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 149 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) 23)) (-2502 (($ $) 26)) (-4098 (((-928 |#1|) $ (-751)) 75) (((-928 |#1|) $ (-751) (-751)) 77)) (-3592 (((-112) $) 120)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-751) $) 122) (((-751) $ (-751)) 124)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2216 (($ $ (-897)) NIL)) (-2493 (($ (-1 |#1| (-552)) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-751)) 13) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2458 (($ $) 131 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2481 (($ $) 129 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-935)) (|has| |#1| (-1171))))) (($ $ (-1228 |#2|)) 130 (|has| |#1| (-38 (-402 (-552)))))) (-2831 (((-1093) $) NIL)) (-2147 (($ $ (-751)) 15)) (-2802 (((-3 $ "failed") $ $) 24 (|has| |#1| (-544)))) (-2863 (($ $) 133 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-751)))))) (-2154 ((|#1| $ (-751)) 119) (($ $ $) 128 (|has| (-751) (-1085)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $ (-1228 |#2|)) 29)) (-4276 (((-751) $) NIL)) (-3759 (($ $) 175 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 151 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 171 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 147 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 167 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 143 (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) NIL)) (-1683 (((-839) $) 201) (($ (-552)) NIL) (($ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) 126 (|has| |#1| (-170))) (($ (-1205 |#2| |#1|)) 51) (($ (-1228 |#2|)) 32)) (-2512 (((-1129 |#1|) $) 98)) (-3637 ((|#1| $ (-751)) 118)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-2845 ((|#1| $) 54)) (-3789 (($ $) 181 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 157 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) 177 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 153 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 185 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 161 (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-751)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-751)))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) 187 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 163 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 183 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 159 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 179 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 155 (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 17 T CONST)) (-2100 (($) 19 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) 194)) (-2382 (($ $ $) 31)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ |#1|) 198 (|has| |#1| (-358))) (($ $ $) 134 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 137 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))))) -(((-1147 |#1| |#2| |#3|) (-13 (-1223 |#1|) (-10 -8 (-15 -1683 ($ (-1205 |#2| |#1|))) (-15 -2472 ((-1205 |#2| |#1|) $ (-751))) (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1147)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1205 *4 *3)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3) (-5 *1 (-1147 *3 *4 *5)))) (-2472 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1205 *5 *4)) (-5 *1 (-1147 *4 *5 *6)) (-4 *4 (-1025)) (-14 *5 (-1149)) (-14 *6 *4))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-2481 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3)))) -(-13 (-1223 |#1|) (-10 -8 (-15 -1683 ($ (-1205 |#2| |#1|))) (-15 -2472 ((-1205 |#2| |#1|) $ (-751))) (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|))) -((-1683 (((-839) $) 27) (($ (-1149)) 29)) (-1523 (($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 40)) (-1511 (($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 33) (($ $) 34)) (-2310 (($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 35)) (-2296 (($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 37)) (-2284 (($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 36)) (-2273 (($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 38)) (-3839 (($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $))) 39))) -(((-1148) (-13 (-597 (-839)) (-10 -8 (-15 -1683 ($ (-1149))) (-15 -2310 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2284 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2296 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2273 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -1523 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -3839 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -1511 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -1511 ($ $))))) (T -1148)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1148)))) (-2310 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-2284 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-2296 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-2273 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-1523 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-3839 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-1511 (*1 *1 *1) (-5 *1 (-1148)))) -(-13 (-597 (-839)) (-10 -8 (-15 -1683 ($ (-1149))) (-15 -2310 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2284 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2296 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -2273 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -1523 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -3839 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)) (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -1511 ($ (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) (|:| CF (-311 (-167 (-374)))) (|:| |switch| $)))) (-15 -1511 ($ $)))) -((-1671 (((-112) $ $) NIL)) (-3136 (($ $ (-625 (-839))) 59)) (-3147 (($ $ (-625 (-839))) 57)) (-4265 (((-1131) $) 84)) (-3468 (((-2 (|:| -2520 (-625 (-839))) (|:| -1282 (-625 (-839))) (|:| |presup| (-625 (-839))) (|:| -2501 (-625 (-839))) (|:| |args| (-625 (-839)))) $) 87)) (-3219 (((-112) $) 22)) (-2569 (($ $ (-625 (-625 (-839)))) 56) (($ $ (-2 (|:| -2520 (-625 (-839))) (|:| -1282 (-625 (-839))) (|:| |presup| (-625 (-839))) (|:| -2501 (-625 (-839))) (|:| |args| (-625 (-839))))) 82)) (-3101 (($) 124 T CONST)) (-3227 (((-1237)) 106)) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 66) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 73)) (-2183 (($) 95) (($ $) 101)) (-1288 (($ $) 83)) (-3658 (($ $ $) NIL)) (-3332 (($ $ $) NIL)) (-2801 (((-625 $) $) 107)) (-2883 (((-1131) $) 90)) (-2831 (((-1093) $) NIL)) (-2154 (($ $ (-625 (-839))) 58)) (-2042 (((-528) $) 46) (((-1149) $) 47) (((-868 (-552)) $) 77) (((-868 (-374)) $) 75)) (-1683 (((-839) $) 53) (($ (-1131)) 48)) (-3118 (($ $ (-625 (-839))) 60)) (-3010 (((-1131) $) 33) (((-1131) $ (-112)) 34) (((-1237) (-802) $) 35) (((-1237) (-802) $ (-112)) 36)) (-2346 (((-112) $ $) NIL)) (-2320 (((-112) $ $) NIL)) (-2281 (((-112) $ $) 49)) (-2334 (((-112) $ $) NIL)) (-2307 (((-112) $ $) 50))) -(((-1149) (-13 (-827) (-598 (-528)) (-808) (-598 (-1149)) (-598 (-868 (-552))) (-598 (-868 (-374))) (-862 (-552)) (-862 (-374)) (-10 -8 (-15 -2183 ($)) (-15 -2183 ($ $)) (-15 -3227 ((-1237))) (-15 -1683 ($ (-1131))) (-15 -1288 ($ $)) (-15 -3219 ((-112) $)) (-15 -3468 ((-2 (|:| -2520 (-625 (-839))) (|:| -1282 (-625 (-839))) (|:| |presup| (-625 (-839))) (|:| -2501 (-625 (-839))) (|:| |args| (-625 (-839)))) $)) (-15 -2569 ($ $ (-625 (-625 (-839))))) (-15 -2569 ($ $ (-2 (|:| -2520 (-625 (-839))) (|:| -1282 (-625 (-839))) (|:| |presup| (-625 (-839))) (|:| -2501 (-625 (-839))) (|:| |args| (-625 (-839)))))) (-15 -3147 ($ $ (-625 (-839)))) (-15 -3136 ($ $ (-625 (-839)))) (-15 -3118 ($ $ (-625 (-839)))) (-15 -2154 ($ $ (-625 (-839)))) (-15 -4265 ((-1131) $)) (-15 -2801 ((-625 $) $)) (-15 -3101 ($) -1426)))) (T -1149)) -((-2183 (*1 *1) (-5 *1 (-1149))) (-2183 (*1 *1 *1) (-5 *1 (-1149))) (-3227 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1149)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1149)))) (-1288 (*1 *1 *1) (-5 *1 (-1149))) (-3219 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1149)))) (-3468 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2520 (-625 (-839))) (|:| -1282 (-625 (-839))) (|:| |presup| (-625 (-839))) (|:| -2501 (-625 (-839))) (|:| |args| (-625 (-839))))) (-5 *1 (-1149)))) (-2569 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-625 (-839)))) (-5 *1 (-1149)))) (-2569 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2520 (-625 (-839))) (|:| -1282 (-625 (-839))) (|:| |presup| (-625 (-839))) (|:| -2501 (-625 (-839))) (|:| |args| (-625 (-839))))) (-5 *1 (-1149)))) (-3147 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-1149)))) (-3136 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-1149)))) (-3118 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-1149)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-1149)))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1149)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-1149)))) (-3101 (*1 *1) (-5 *1 (-1149)))) -(-13 (-827) (-598 (-528)) (-808) (-598 (-1149)) (-598 (-868 (-552))) (-598 (-868 (-374))) (-862 (-552)) (-862 (-374)) (-10 -8 (-15 -2183 ($)) (-15 -2183 ($ $)) (-15 -3227 ((-1237))) (-15 -1683 ($ (-1131))) (-15 -1288 ($ $)) (-15 -3219 ((-112) $)) (-15 -3468 ((-2 (|:| -2520 (-625 (-839))) (|:| -1282 (-625 (-839))) (|:| |presup| (-625 (-839))) (|:| -2501 (-625 (-839))) (|:| |args| (-625 (-839)))) $)) (-15 -2569 ($ $ (-625 (-625 (-839))))) (-15 -2569 ($ $ (-2 (|:| -2520 (-625 (-839))) (|:| -1282 (-625 (-839))) (|:| |presup| (-625 (-839))) (|:| -2501 (-625 (-839))) (|:| |args| (-625 (-839)))))) (-15 -3147 ($ $ (-625 (-839)))) (-15 -3136 ($ $ (-625 (-839)))) (-15 -3118 ($ $ (-625 (-839)))) (-15 -2154 ($ $ (-625 (-839)))) (-15 -4265 ((-1131) $)) (-15 -2801 ((-625 $) $)) (-15 -3101 ($) -1426))) -((-3236 (((-1232 |#1|) |#1| (-897)) 16) (((-1232 |#1|) (-625 |#1|)) 20))) -(((-1150 |#1|) (-10 -7 (-15 -3236 ((-1232 |#1|) (-625 |#1|))) (-15 -3236 ((-1232 |#1|) |#1| (-897)))) (-1025)) (T -1150)) -((-3236 (*1 *2 *3 *4) (-12 (-5 *4 (-897)) (-5 *2 (-1232 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1025)))) (-3236 (*1 *2 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-1025)) (-5 *2 (-1232 *4)) (-5 *1 (-1150 *4))))) -(-10 -7 (-15 -3236 ((-1232 |#1|) (-625 |#1|))) (-15 -3236 ((-1232 |#1|) |#1| (-897)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#1| (-1014 (-402 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1895 (((-552) $) NIL (|has| |#1| (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| |#1| (-1014 (-402 (-552))))) ((|#1| $) NIL)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-1294 (($ $) NIL (|has| |#1| (-446)))) (-1347 (($ $ |#1| (-947) $) NIL)) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-947)) NIL)) (-4134 (((-947) $) NIL)) (-1357 (($ (-1 (-947) (-947)) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 ((|#1| $) NIL)) (-3044 (($ $ (-947) |#1| $) NIL (-12 (|has| (-947) (-130)) (|has| |#1| (-544))))) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-4276 (((-947) $) NIL)) (-4108 ((|#1| $) NIL (|has| |#1| (-446)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) NIL) (($ (-402 (-552))) NIL (-1523 (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-1014 (-402 (-552))))))) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ (-947)) NIL)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-2089 (($) 9 T CONST)) (-2100 (($) 14 T CONST)) (-2281 (((-112) $ $) 16)) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 19)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))))) -(((-1151 |#1|) (-13 (-321 |#1| (-947)) (-10 -8 (IF (|has| |#1| (-544)) (IF (|has| (-947) (-130)) (-15 -3044 ($ $ (-947) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|))) (-1025)) (T -1151)) -((-3044 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-947)) (-4 *2 (-130)) (-5 *1 (-1151 *3)) (-4 *3 (-544)) (-4 *3 (-1025))))) -(-13 (-321 |#1| (-947)) (-10 -8 (IF (|has| |#1| (-544)) (IF (|has| (-947) (-130)) (-15 -3044 ($ $ (-947) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|))) -((-3245 (((-1153) (-1149) $) 25)) (-2350 (($) 29)) (-3263 (((-3 (|:| |fst| (-429)) (|:| -2781 "void")) (-1149) $) 22)) (-3282 (((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -2781 "void")) $) 41) (((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) 42) (((-1237) (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) 43)) (-2363 (((-1237) (-1149)) 58)) (-3272 (((-1237) (-1149) $) 55) (((-1237) (-1149)) 56) (((-1237)) 57)) (-2324 (((-1237) (-1149)) 37)) (-3898 (((-1149)) 36)) (-3600 (($) 34)) (-2665 (((-432) (-1149) (-432) (-1149) $) 45) (((-432) (-625 (-1149)) (-432) (-1149) $) 49) (((-432) (-1149) (-432)) 46) (((-432) (-1149) (-432) (-1149)) 50)) (-2311 (((-1149)) 35)) (-1683 (((-839) $) 28)) (-2337 (((-1237)) 30) (((-1237) (-1149)) 33)) (-3254 (((-625 (-1149)) (-1149) $) 24)) (-3885 (((-1237) (-1149) (-625 (-1149)) $) 38) (((-1237) (-1149) (-625 (-1149))) 39) (((-1237) (-625 (-1149))) 40))) -(((-1152) (-13 (-597 (-839)) (-10 -8 (-15 -2350 ($)) (-15 -2337 ((-1237))) (-15 -2337 ((-1237) (-1149))) (-15 -2665 ((-432) (-1149) (-432) (-1149) $)) (-15 -2665 ((-432) (-625 (-1149)) (-432) (-1149) $)) (-15 -2665 ((-432) (-1149) (-432))) (-15 -2665 ((-432) (-1149) (-432) (-1149))) (-15 -2324 ((-1237) (-1149))) (-15 -2311 ((-1149))) (-15 -3898 ((-1149))) (-15 -3885 ((-1237) (-1149) (-625 (-1149)) $)) (-15 -3885 ((-1237) (-1149) (-625 (-1149)))) (-15 -3885 ((-1237) (-625 (-1149)))) (-15 -3282 ((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -2781 "void")) $)) (-15 -3282 ((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -2781 "void")))) (-15 -3282 ((-1237) (-3 (|:| |fst| (-429)) (|:| -2781 "void")))) (-15 -3272 ((-1237) (-1149) $)) (-15 -3272 ((-1237) (-1149))) (-15 -3272 ((-1237))) (-15 -2363 ((-1237) (-1149))) (-15 -3600 ($)) (-15 -3263 ((-3 (|:| |fst| (-429)) (|:| -2781 "void")) (-1149) $)) (-15 -3254 ((-625 (-1149)) (-1149) $)) (-15 -3245 ((-1153) (-1149) $))))) (T -1152)) -((-2350 (*1 *1) (-5 *1 (-1152))) (-2337 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1152)))) (-2337 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-2665 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-432)) (-5 *3 (-1149)) (-5 *1 (-1152)))) (-2665 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-432)) (-5 *3 (-625 (-1149))) (-5 *4 (-1149)) (-5 *1 (-1152)))) (-2665 (*1 *2 *3 *2) (-12 (-5 *2 (-432)) (-5 *3 (-1149)) (-5 *1 (-1152)))) (-2665 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-432)) (-5 *3 (-1149)) (-5 *1 (-1152)))) (-2324 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-2311 (*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1152)))) (-3898 (*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1152)))) (-3885 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-625 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3885 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3885 (*1 *2 *3) (-12 (-5 *3 (-625 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3282 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1149)) (-5 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3282 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3272 (*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3272 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3272 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1152)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3600 (*1 *1) (-5 *1 (-1152))) (-3263 (*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-5 *1 (-1152)))) (-3254 (*1 *2 *3 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-1152)) (-5 *3 (-1149)))) (-3245 (*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-1153)) (-5 *1 (-1152))))) -(-13 (-597 (-839)) (-10 -8 (-15 -2350 ($)) (-15 -2337 ((-1237))) (-15 -2337 ((-1237) (-1149))) (-15 -2665 ((-432) (-1149) (-432) (-1149) $)) (-15 -2665 ((-432) (-625 (-1149)) (-432) (-1149) $)) (-15 -2665 ((-432) (-1149) (-432))) (-15 -2665 ((-432) (-1149) (-432) (-1149))) (-15 -2324 ((-1237) (-1149))) (-15 -2311 ((-1149))) (-15 -3898 ((-1149))) (-15 -3885 ((-1237) (-1149) (-625 (-1149)) $)) (-15 -3885 ((-1237) (-1149) (-625 (-1149)))) (-15 -3885 ((-1237) (-625 (-1149)))) (-15 -3282 ((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -2781 "void")) $)) (-15 -3282 ((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -2781 "void")))) (-15 -3282 ((-1237) (-3 (|:| |fst| (-429)) (|:| -2781 "void")))) (-15 -3272 ((-1237) (-1149) $)) (-15 -3272 ((-1237) (-1149))) (-15 -3272 ((-1237))) (-15 -2363 ((-1237) (-1149))) (-15 -3600 ($)) (-15 -3263 ((-3 (|:| |fst| (-429)) (|:| -2781 "void")) (-1149) $)) (-15 -3254 ((-625 (-1149)) (-1149) $)) (-15 -3245 ((-1153) (-1149) $)))) -((-2396 (((-625 (-625 (-3 (|:| -1288 (-1149)) (|:| -2791 (-625 (-3 (|:| S (-1149)) (|:| P (-928 (-552))))))))) $) 59)) (-3566 (((-625 (-3 (|:| -1288 (-1149)) (|:| -2791 (-625 (-3 (|:| S (-1149)) (|:| P (-928 (-552)))))))) (-429) $) 43)) (-2885 (($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-432))))) 17)) (-2363 (((-1237) $) 67)) (-3578 (((-625 (-1149)) $) 22)) (-2374 (((-1077) $) 55)) (-3589 (((-432) (-1149) $) 27)) (-2407 (((-625 (-1149)) $) 30)) (-3600 (($) 19)) (-2665 (((-432) (-625 (-1149)) (-432) $) 25) (((-432) (-1149) (-432) $) 24)) (-1683 (((-839) $) 9) (((-1159 (-1149) (-432)) $) 13))) -(((-1153) (-13 (-597 (-839)) (-10 -8 (-15 -1683 ((-1159 (-1149) (-432)) $)) (-15 -3600 ($)) (-15 -2665 ((-432) (-625 (-1149)) (-432) $)) (-15 -2665 ((-432) (-1149) (-432) $)) (-15 -3589 ((-432) (-1149) $)) (-15 -3578 ((-625 (-1149)) $)) (-15 -3566 ((-625 (-3 (|:| -1288 (-1149)) (|:| -2791 (-625 (-3 (|:| S (-1149)) (|:| P (-928 (-552)))))))) (-429) $)) (-15 -2407 ((-625 (-1149)) $)) (-15 -2396 ((-625 (-625 (-3 (|:| -1288 (-1149)) (|:| -2791 (-625 (-3 (|:| S (-1149)) (|:| P (-928 (-552))))))))) $)) (-15 -2374 ((-1077) $)) (-15 -2363 ((-1237) $)) (-15 -2885 ($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-432))))))))) (T -1153)) -((-1683 (*1 *2 *1) (-12 (-5 *2 (-1159 (-1149) (-432))) (-5 *1 (-1153)))) (-3600 (*1 *1) (-5 *1 (-1153))) (-2665 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-432)) (-5 *3 (-625 (-1149))) (-5 *1 (-1153)))) (-2665 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-432)) (-5 *3 (-1149)) (-5 *1 (-1153)))) (-3589 (*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-432)) (-5 *1 (-1153)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-1153)))) (-3566 (*1 *2 *3 *1) (-12 (-5 *3 (-429)) (-5 *2 (-625 (-3 (|:| -1288 (-1149)) (|:| -2791 (-625 (-3 (|:| S (-1149)) (|:| P (-928 (-552))))))))) (-5 *1 (-1153)))) (-2407 (*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-1153)))) (-2396 (*1 *2 *1) (-12 (-5 *2 (-625 (-625 (-3 (|:| -1288 (-1149)) (|:| -2791 (-625 (-3 (|:| S (-1149)) (|:| P (-928 (-552)))))))))) (-5 *1 (-1153)))) (-2374 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1153)))) (-2363 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1153)))) (-2885 (*1 *1 *2) (-12 (-5 *2 (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-432))))) (-5 *1 (-1153))))) -(-13 (-597 (-839)) (-10 -8 (-15 -1683 ((-1159 (-1149) (-432)) $)) (-15 -3600 ($)) (-15 -2665 ((-432) (-625 (-1149)) (-432) $)) (-15 -2665 ((-432) (-1149) (-432) $)) (-15 -3589 ((-432) (-1149) $)) (-15 -3578 ((-625 (-1149)) $)) (-15 -3566 ((-625 (-3 (|:| -1288 (-1149)) (|:| -2791 (-625 (-3 (|:| S (-1149)) (|:| P (-928 (-552)))))))) (-429) $)) (-15 -2407 ((-625 (-1149)) $)) (-15 -2396 ((-625 (-625 (-3 (|:| -1288 (-1149)) (|:| -2791 (-625 (-3 (|:| S (-1149)) (|:| P (-928 (-552))))))))) $)) (-15 -2374 ((-1077) $)) (-15 -2363 ((-1237) $)) (-15 -2885 ($ (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-432)))))))) -((-1671 (((-112) $ $) NIL)) (-2453 (((-112) $) 48)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2442 (((-3 (-552) (-221) (-1149) (-1131) $) $) 56)) (-1810 (((-625 $) $) 61)) (-2042 (((-1077) $) 30) (($ (-1077)) 31)) (-1798 (((-112) $) 58)) (-1683 (((-839) $) 29) (($ (-552)) 32) (((-552) $) 34) (($ (-221)) 35) (((-221) $) 37) (($ (-1149)) 38) (((-1149) $) 40) (($ (-1131)) 41) (((-1131) $) 43)) (-2079 (((-112) $ (|[\|\|]| (-552))) 13) (((-112) $ (|[\|\|]| (-221))) 17) (((-112) $ (|[\|\|]| (-1149))) 25) (((-112) $ (|[\|\|]| (-1131))) 21)) (-1717 (($ (-1149) (-625 $)) 45) (($ $ (-625 $)) 46)) (-1905 (((-552) $) 33) (((-221) $) 36) (((-1149) $) 39) (((-1131) $) 42)) (-2281 (((-112) $ $) 8))) -(((-1154) (-13 (-1227) (-1073) (-10 -8 (-15 -2042 ((-1077) $)) (-15 -2042 ($ (-1077))) (-15 -1683 ($ (-552))) (-15 -1683 ((-552) $)) (-15 -1905 ((-552) $)) (-15 -1683 ($ (-221))) (-15 -1683 ((-221) $)) (-15 -1905 ((-221) $)) (-15 -1683 ($ (-1149))) (-15 -1683 ((-1149) $)) (-15 -1905 ((-1149) $)) (-15 -1683 ($ (-1131))) (-15 -1683 ((-1131) $)) (-15 -1905 ((-1131) $)) (-15 -1717 ($ (-1149) (-625 $))) (-15 -1717 ($ $ (-625 $))) (-15 -2453 ((-112) $)) (-15 -2442 ((-3 (-552) (-221) (-1149) (-1131) $) $)) (-15 -1810 ((-625 $) $)) (-15 -1798 ((-112) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-552)))) (-15 -2079 ((-112) $ (|[\|\|]| (-221)))) (-15 -2079 ((-112) $ (|[\|\|]| (-1149)))) (-15 -2079 ((-112) $ (|[\|\|]| (-1131))))))) (T -1154)) -((-2042 (*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1154)))) (-2042 (*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1154)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1154)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1154)))) (-1905 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1154)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-1154)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1154)))) (-1905 (*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1154)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1154)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1154)))) (-1905 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1154)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1154)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1154)))) (-1905 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1154)))) (-1717 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-1154))) (-5 *1 (-1154)))) (-1717 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-1154))) (-5 *1 (-1154)))) (-2453 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154)))) (-2442 (*1 *2 *1) (-12 (-5 *2 (-3 (-552) (-221) (-1149) (-1131) (-1154))) (-5 *1 (-1154)))) (-1810 (*1 *2 *1) (-12 (-5 *2 (-625 (-1154))) (-5 *1 (-1154)))) (-1798 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154)))) (-2079 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-552))) (-5 *2 (-112)) (-5 *1 (-1154)))) (-2079 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-221))) (-5 *2 (-112)) (-5 *1 (-1154)))) (-2079 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1149))) (-5 *2 (-112)) (-5 *1 (-1154)))) (-2079 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1131))) (-5 *2 (-112)) (-5 *1 (-1154))))) -(-13 (-1227) (-1073) (-10 -8 (-15 -2042 ((-1077) $)) (-15 -2042 ($ (-1077))) (-15 -1683 ($ (-552))) (-15 -1683 ((-552) $)) (-15 -1905 ((-552) $)) (-15 -1683 ($ (-221))) (-15 -1683 ((-221) $)) (-15 -1905 ((-221) $)) (-15 -1683 ($ (-1149))) (-15 -1683 ((-1149) $)) (-15 -1905 ((-1149) $)) (-15 -1683 ($ (-1131))) (-15 -1683 ((-1131) $)) (-15 -1905 ((-1131) $)) (-15 -1717 ($ (-1149) (-625 $))) (-15 -1717 ($ $ (-625 $))) (-15 -2453 ((-112) $)) (-15 -2442 ((-3 (-552) (-221) (-1149) (-1131) $) $)) (-15 -1810 ((-625 $) $)) (-15 -1798 ((-112) $)) (-15 -2079 ((-112) $ (|[\|\|]| (-552)))) (-15 -2079 ((-112) $ (|[\|\|]| (-221)))) (-15 -2079 ((-112) $ (|[\|\|]| (-1149)))) (-15 -2079 ((-112) $ (|[\|\|]| (-1131)))))) -((-1838 (((-625 (-625 (-928 |#1|))) (-625 (-402 (-928 |#1|))) (-625 (-1149))) 57)) (-1728 (((-625 (-289 (-402 (-928 |#1|)))) (-289 (-402 (-928 |#1|)))) 69) (((-625 (-289 (-402 (-928 |#1|)))) (-402 (-928 |#1|))) 65) (((-625 (-289 (-402 (-928 |#1|)))) (-289 (-402 (-928 |#1|))) (-1149)) 70) (((-625 (-289 (-402 (-928 |#1|)))) (-402 (-928 |#1|)) (-1149)) 64) (((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-289 (-402 (-928 |#1|))))) 93) (((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-402 (-928 |#1|)))) 92) (((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-289 (-402 (-928 |#1|)))) (-625 (-1149))) 94) (((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-402 (-928 |#1|))) (-625 (-1149))) 91))) -(((-1155 |#1|) (-10 -7 (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-402 (-928 |#1|))) (-625 (-1149)))) (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-289 (-402 (-928 |#1|)))) (-625 (-1149)))) (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-402 (-928 |#1|))))) (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-289 (-402 (-928 |#1|)))))) (-15 -1728 ((-625 (-289 (-402 (-928 |#1|)))) (-402 (-928 |#1|)) (-1149))) (-15 -1728 ((-625 (-289 (-402 (-928 |#1|)))) (-289 (-402 (-928 |#1|))) (-1149))) (-15 -1728 ((-625 (-289 (-402 (-928 |#1|)))) (-402 (-928 |#1|)))) (-15 -1728 ((-625 (-289 (-402 (-928 |#1|)))) (-289 (-402 (-928 |#1|))))) (-15 -1838 ((-625 (-625 (-928 |#1|))) (-625 (-402 (-928 |#1|))) (-625 (-1149))))) (-544)) (T -1155)) -((-1838 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-402 (-928 *5)))) (-5 *4 (-625 (-1149))) (-4 *5 (-544)) (-5 *2 (-625 (-625 (-928 *5)))) (-5 *1 (-1155 *5)))) (-1728 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-625 (-289 (-402 (-928 *4))))) (-5 *1 (-1155 *4)) (-5 *3 (-289 (-402 (-928 *4)))))) (-1728 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-625 (-289 (-402 (-928 *4))))) (-5 *1 (-1155 *4)) (-5 *3 (-402 (-928 *4))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-544)) (-5 *2 (-625 (-289 (-402 (-928 *5))))) (-5 *1 (-1155 *5)) (-5 *3 (-289 (-402 (-928 *5)))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-544)) (-5 *2 (-625 (-289 (-402 (-928 *5))))) (-5 *1 (-1155 *5)) (-5 *3 (-402 (-928 *5))))) (-1728 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *4)))))) (-5 *1 (-1155 *4)) (-5 *3 (-625 (-289 (-402 (-928 *4))))))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-625 (-402 (-928 *4)))) (-4 *4 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *4)))))) (-5 *1 (-1155 *4)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *4 (-625 (-1149))) (-4 *5 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *5)))))) (-5 *1 (-1155 *5)) (-5 *3 (-625 (-289 (-402 (-928 *5))))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-402 (-928 *5)))) (-5 *4 (-625 (-1149))) (-4 *5 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *5)))))) (-5 *1 (-1155 *5))))) -(-10 -7 (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-402 (-928 |#1|))) (-625 (-1149)))) (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-289 (-402 (-928 |#1|)))) (-625 (-1149)))) (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-402 (-928 |#1|))))) (-15 -1728 ((-625 (-625 (-289 (-402 (-928 |#1|))))) (-625 (-289 (-402 (-928 |#1|)))))) (-15 -1728 ((-625 (-289 (-402 (-928 |#1|)))) (-402 (-928 |#1|)) (-1149))) (-15 -1728 ((-625 (-289 (-402 (-928 |#1|)))) (-289 (-402 (-928 |#1|))) (-1149))) (-15 -1728 ((-625 (-289 (-402 (-928 |#1|)))) (-402 (-928 |#1|)))) (-15 -1728 ((-625 (-289 (-402 (-928 |#1|)))) (-289 (-402 (-928 |#1|))))) (-15 -1838 ((-625 (-625 (-928 |#1|))) (-625 (-402 (-928 |#1|))) (-625 (-1149))))) -((-1850 (((-1131)) 7)) (-2969 (((-1131)) 9)) (-2357 (((-1237) (-1131)) 11)) (-2957 (((-1131)) 8))) -(((-1156) (-10 -7 (-15 -1850 ((-1131))) (-15 -2957 ((-1131))) (-15 -2969 ((-1131))) (-15 -2357 ((-1237) (-1131))))) (T -1156)) -((-2357 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1156)))) (-2969 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156)))) (-2957 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156)))) (-1850 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156))))) -(-10 -7 (-15 -1850 ((-1131))) (-15 -2957 ((-1131))) (-15 -2969 ((-1131))) (-15 -2357 ((-1237) (-1131)))) -((-3015 (((-625 (-625 |#1|)) (-625 (-625 |#1|)) (-625 (-625 (-625 |#1|)))) 38)) (-3048 (((-625 (-625 (-625 |#1|))) (-625 (-625 |#1|))) 24)) (-3059 (((-1158 (-625 |#1|)) (-625 |#1|)) 34)) (-3139 (((-625 (-625 |#1|)) (-625 |#1|)) 30)) (-1678 (((-2 (|:| |f1| (-625 |#1|)) (|:| |f2| (-625 (-625 (-625 |#1|)))) (|:| |f3| (-625 (-625 |#1|))) (|:| |f4| (-625 (-625 (-625 |#1|))))) (-625 (-625 (-625 |#1|)))) 37)) (-3381 (((-2 (|:| |f1| (-625 |#1|)) (|:| |f2| (-625 (-625 (-625 |#1|)))) (|:| |f3| (-625 (-625 |#1|))) (|:| |f4| (-625 (-625 (-625 |#1|))))) (-625 |#1|) (-625 (-625 (-625 |#1|))) (-625 (-625 |#1|)) (-625 (-625 (-625 |#1|))) (-625 (-625 (-625 |#1|))) (-625 (-625 (-625 |#1|)))) 36)) (-3069 (((-625 (-625 |#1|)) (-625 (-625 |#1|))) 28)) (-3150 (((-625 |#1|) (-625 |#1|)) 31)) (-3003 (((-625 (-625 (-625 |#1|))) (-625 |#1|) (-625 (-625 (-625 |#1|)))) 18)) (-2991 (((-625 (-625 (-625 |#1|))) (-1 (-112) |#1| |#1|) (-625 |#1|) (-625 (-625 (-625 |#1|)))) 16)) (-2980 (((-2 (|:| |fs| (-112)) (|:| |sd| (-625 |#1|)) (|:| |td| (-625 (-625 |#1|)))) (-1 (-112) |#1| |#1|) (-625 |#1|) (-625 (-625 |#1|))) 14)) (-3027 (((-625 (-625 |#1|)) (-625 (-625 (-625 |#1|)))) 39)) (-3038 (((-625 (-625 |#1|)) (-1158 (-625 |#1|))) 41))) -(((-1157 |#1|) (-10 -7 (-15 -2980 ((-2 (|:| |fs| (-112)) (|:| |sd| (-625 |#1|)) (|:| |td| (-625 (-625 |#1|)))) (-1 (-112) |#1| |#1|) (-625 |#1|) (-625 (-625 |#1|)))) (-15 -2991 ((-625 (-625 (-625 |#1|))) (-1 (-112) |#1| |#1|) (-625 |#1|) (-625 (-625 (-625 |#1|))))) (-15 -3003 ((-625 (-625 (-625 |#1|))) (-625 |#1|) (-625 (-625 (-625 |#1|))))) (-15 -3015 ((-625 (-625 |#1|)) (-625 (-625 |#1|)) (-625 (-625 (-625 |#1|))))) (-15 -3027 ((-625 (-625 |#1|)) (-625 (-625 (-625 |#1|))))) (-15 -3038 ((-625 (-625 |#1|)) (-1158 (-625 |#1|)))) (-15 -3048 ((-625 (-625 (-625 |#1|))) (-625 (-625 |#1|)))) (-15 -3059 ((-1158 (-625 |#1|)) (-625 |#1|))) (-15 -3069 ((-625 (-625 |#1|)) (-625 (-625 |#1|)))) (-15 -3139 ((-625 (-625 |#1|)) (-625 |#1|))) (-15 -3150 ((-625 |#1|) (-625 |#1|))) (-15 -3381 ((-2 (|:| |f1| (-625 |#1|)) (|:| |f2| (-625 (-625 (-625 |#1|)))) (|:| |f3| (-625 (-625 |#1|))) (|:| |f4| (-625 (-625 (-625 |#1|))))) (-625 |#1|) (-625 (-625 (-625 |#1|))) (-625 (-625 |#1|)) (-625 (-625 (-625 |#1|))) (-625 (-625 (-625 |#1|))) (-625 (-625 (-625 |#1|))))) (-15 -1678 ((-2 (|:| |f1| (-625 |#1|)) (|:| |f2| (-625 (-625 (-625 |#1|)))) (|:| |f3| (-625 (-625 |#1|))) (|:| |f4| (-625 (-625 (-625 |#1|))))) (-625 (-625 (-625 |#1|)))))) (-827)) (T -1157)) -((-1678 (*1 *2 *3) (-12 (-4 *4 (-827)) (-5 *2 (-2 (|:| |f1| (-625 *4)) (|:| |f2| (-625 (-625 (-625 *4)))) (|:| |f3| (-625 (-625 *4))) (|:| |f4| (-625 (-625 (-625 *4)))))) (-5 *1 (-1157 *4)) (-5 *3 (-625 (-625 (-625 *4)))))) (-3381 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-827)) (-5 *3 (-625 *6)) (-5 *5 (-625 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-625 *5)) (|:| |f3| *5) (|:| |f4| (-625 *5)))) (-5 *1 (-1157 *6)) (-5 *4 (-625 *5)))) (-3150 (*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-1157 *3)))) (-3139 (*1 *2 *3) (-12 (-4 *4 (-827)) (-5 *2 (-625 (-625 *4))) (-5 *1 (-1157 *4)) (-5 *3 (-625 *4)))) (-3069 (*1 *2 *2) (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-827)) (-5 *1 (-1157 *3)))) (-3059 (*1 *2 *3) (-12 (-4 *4 (-827)) (-5 *2 (-1158 (-625 *4))) (-5 *1 (-1157 *4)) (-5 *3 (-625 *4)))) (-3048 (*1 *2 *3) (-12 (-4 *4 (-827)) (-5 *2 (-625 (-625 (-625 *4)))) (-5 *1 (-1157 *4)) (-5 *3 (-625 (-625 *4))))) (-3038 (*1 *2 *3) (-12 (-5 *3 (-1158 (-625 *4))) (-4 *4 (-827)) (-5 *2 (-625 (-625 *4))) (-5 *1 (-1157 *4)))) (-3027 (*1 *2 *3) (-12 (-5 *3 (-625 (-625 (-625 *4)))) (-5 *2 (-625 (-625 *4))) (-5 *1 (-1157 *4)) (-4 *4 (-827)))) (-3015 (*1 *2 *2 *3) (-12 (-5 *3 (-625 (-625 (-625 *4)))) (-5 *2 (-625 (-625 *4))) (-4 *4 (-827)) (-5 *1 (-1157 *4)))) (-3003 (*1 *2 *3 *2) (-12 (-5 *2 (-625 (-625 (-625 *4)))) (-5 *3 (-625 *4)) (-4 *4 (-827)) (-5 *1 (-1157 *4)))) (-2991 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-625 (-625 (-625 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-625 *5)) (-4 *5 (-827)) (-5 *1 (-1157 *5)))) (-2980 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-827)) (-5 *4 (-625 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-625 *4)))) (-5 *1 (-1157 *6)) (-5 *5 (-625 *4))))) -(-10 -7 (-15 -2980 ((-2 (|:| |fs| (-112)) (|:| |sd| (-625 |#1|)) (|:| |td| (-625 (-625 |#1|)))) (-1 (-112) |#1| |#1|) (-625 |#1|) (-625 (-625 |#1|)))) (-15 -2991 ((-625 (-625 (-625 |#1|))) (-1 (-112) |#1| |#1|) (-625 |#1|) (-625 (-625 (-625 |#1|))))) (-15 -3003 ((-625 (-625 (-625 |#1|))) (-625 |#1|) (-625 (-625 (-625 |#1|))))) (-15 -3015 ((-625 (-625 |#1|)) (-625 (-625 |#1|)) (-625 (-625 (-625 |#1|))))) (-15 -3027 ((-625 (-625 |#1|)) (-625 (-625 (-625 |#1|))))) (-15 -3038 ((-625 (-625 |#1|)) (-1158 (-625 |#1|)))) (-15 -3048 ((-625 (-625 (-625 |#1|))) (-625 (-625 |#1|)))) (-15 -3059 ((-1158 (-625 |#1|)) (-625 |#1|))) (-15 -3069 ((-625 (-625 |#1|)) (-625 (-625 |#1|)))) (-15 -3139 ((-625 (-625 |#1|)) (-625 |#1|))) (-15 -3150 ((-625 |#1|) (-625 |#1|))) (-15 -3381 ((-2 (|:| |f1| (-625 |#1|)) (|:| |f2| (-625 (-625 (-625 |#1|)))) (|:| |f3| (-625 (-625 |#1|))) (|:| |f4| (-625 (-625 (-625 |#1|))))) (-625 |#1|) (-625 (-625 (-625 |#1|))) (-625 (-625 |#1|)) (-625 (-625 (-625 |#1|))) (-625 (-625 (-625 |#1|))) (-625 (-625 (-625 |#1|))))) (-15 -1678 ((-2 (|:| |f1| (-625 |#1|)) (|:| |f2| (-625 (-625 (-625 |#1|)))) (|:| |f3| (-625 (-625 |#1|))) (|:| |f4| (-625 (-625 (-625 |#1|))))) (-625 (-625 (-625 |#1|)))))) -((-3391 (($ (-625 (-625 |#1|))) 10)) (-3803 (((-625 (-625 |#1|)) $) 11)) (-1683 (((-839) $) 26))) -(((-1158 |#1|) (-10 -8 (-15 -3391 ($ (-625 (-625 |#1|)))) (-15 -3803 ((-625 (-625 |#1|)) $)) (-15 -1683 ((-839) $))) (-1073)) (T -1158)) -((-1683 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-1158 *3)) (-4 *3 (-1073)))) (-3803 (*1 *2 *1) (-12 (-5 *2 (-625 (-625 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1073)))) (-3391 (*1 *1 *2) (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1073)) (-5 *1 (-1158 *3))))) -(-10 -8 (-15 -3391 ($ (-625 (-625 |#1|)))) (-15 -3803 ((-625 (-625 |#1|)) $)) (-15 -1683 ((-839) $))) -((-1671 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2173 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2509 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#2| $ |#1| |#2|) NIL)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3128 (((-3 |#2| "failed") |#1| $) NIL)) (-3101 (($) NIL T CONST)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1938 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) NIL)) (-1416 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) NIL)) (-3799 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) NIL)) (-2527 ((|#1| $) NIL (|has| |#1| (-827)))) (-3730 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-625 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-2537 ((|#1| $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-3712 (((-625 |#1|) $) NIL)) (-1370 (((-112) |#1| $) NIL)) (-2953 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-3966 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-2554 (((-625 |#1|) $) NIL)) (-2564 (((-112) |#1| $) NIL)) (-2831 (((-1093) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-2924 ((|#2| $) NIL (|has| |#1| (-827)))) (-2380 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL)) (-2518 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4255 (($) NIL) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1683 (((-839) $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839))) (|has| |#2| (-597 (-839)))))) (-2977 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) NIL (-1523 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| |#2| (-1073))))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-1159 |#1| |#2|) (-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) (-1073) (-1073)) (T -1159)) -NIL -(-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) -((-3814 ((|#1| (-625 |#1|)) 32)) (-3835 ((|#1| |#1| (-552)) 18)) (-3823 (((-1145 |#1|) |#1| (-897)) 15))) -(((-1160 |#1|) (-10 -7 (-15 -3814 (|#1| (-625 |#1|))) (-15 -3823 ((-1145 |#1|) |#1| (-897))) (-15 -3835 (|#1| |#1| (-552)))) (-358)) (T -1160)) -((-3835 (*1 *2 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-1160 *2)) (-4 *2 (-358)))) (-3823 (*1 *2 *3 *4) (-12 (-5 *4 (-897)) (-5 *2 (-1145 *3)) (-5 *1 (-1160 *3)) (-4 *3 (-358)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-5 *1 (-1160 *2)) (-4 *2 (-358))))) -(-10 -7 (-15 -3814 (|#1| (-625 |#1|))) (-15 -3823 ((-1145 |#1|) |#1| (-897))) (-15 -3835 (|#1| |#1| (-552)))) -((-2173 (($) 10) (($ (-625 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)))) 14)) (-1938 (($ (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3799 (((-625 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) $) 39) (((-625 |#3|) $) 41)) (-3683 (($ (-1 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-1996 (($ (-1 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2953 (((-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) $) 54)) (-3966 (($ (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) $) 16)) (-2554 (((-625 |#2|) $) 19)) (-2564 (((-112) |#2| $) 59)) (-2380 (((-3 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) "failed") (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) $) 58)) (-2966 (((-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) $) 63)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 67)) (-1358 (((-625 |#3|) $) 43)) (-2154 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) $) NIL) (((-751) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) $) NIL) (((-751) |#3| $) NIL) (((-751) (-1 (-112) |#3|) $) 68)) (-1683 (((-839) $) 27)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-2281 (((-112) $ $) 49))) -(((-1161 |#1| |#2| |#3|) (-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -1996 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2173 (|#1| (-625 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))))) (-15 -2173 (|#1|)) (-15 -1996 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3683 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1888 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2840 ((-751) (-1 (-112) |#3|) |#1|)) (-15 -3799 ((-625 |#3|) |#1|)) (-15 -2840 ((-751) |#3| |#1|)) (-15 -2154 (|#3| |#1| |#2| |#3|)) (-15 -2154 (|#3| |#1| |#2|)) (-15 -1358 ((-625 |#3|) |#1|)) (-15 -2564 ((-112) |#2| |#1|)) (-15 -2554 ((-625 |#2|) |#1|)) (-15 -1938 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1938 (|#1| (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -1938 (|#1| (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|)) (-15 -2380 ((-3 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) "failed") (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -2953 ((-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|)) (-15 -3966 (|#1| (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|)) (-15 -2966 ((-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|)) (-15 -2840 ((-751) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|)) (-15 -3799 ((-625 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -2840 ((-751) (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -1888 ((-112) (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -1900 ((-112) (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -3683 (|#1| (-1 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -1996 (|#1| (-1 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|))) (-1162 |#2| |#3|) (-1073) (-1073)) (T -1161)) -NIL -(-10 -8 (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -1996 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2173 (|#1| (-625 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))))) (-15 -2173 (|#1|)) (-15 -1996 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3683 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1888 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2840 ((-751) (-1 (-112) |#3|) |#1|)) (-15 -3799 ((-625 |#3|) |#1|)) (-15 -2840 ((-751) |#3| |#1|)) (-15 -2154 (|#3| |#1| |#2| |#3|)) (-15 -2154 (|#3| |#1| |#2|)) (-15 -1358 ((-625 |#3|) |#1|)) (-15 -2564 ((-112) |#2| |#1|)) (-15 -2554 ((-625 |#2|) |#1|)) (-15 -1938 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1938 (|#1| (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -1938 (|#1| (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|)) (-15 -2380 ((-3 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) "failed") (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -2953 ((-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|)) (-15 -3966 (|#1| (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|)) (-15 -2966 ((-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|)) (-15 -2840 ((-751) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) |#1|)) (-15 -3799 ((-625 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -2840 ((-751) (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -1888 ((-112) (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -1900 ((-112) (-1 (-112) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -3683 (|#1| (-1 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|)) (-15 -1996 (|#1| (-1 (-2 (|:| -2971 |#2|) (|:| -4120 |#3|)) (-2 (|:| -2971 |#2|) (|:| -4120 |#3|))) |#1|))) -((-1671 (((-112) $ $) 19 (-1523 (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-2173 (($) 72) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 71)) (-2509 (((-1237) $ |#1| |#1|) 99 (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) 8)) (-1851 ((|#2| $ |#1| |#2|) 73)) (-2873 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 45 (|has| $ (-6 -4353)))) (-3488 (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 55 (|has| $ (-6 -4353)))) (-3128 (((-3 |#2| "failed") |#1| $) 61)) (-3101 (($) 7 T CONST)) (-2959 (($ $) 58 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353))))) (-1938 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 46 (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) 62)) (-1416 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 57 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 54 (|has| $ (-6 -4353)))) (-2163 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 56 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 53 (|has| $ (-6 -4353))) (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 52 (|has| $ (-6 -4353)))) (-3692 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4354)))) (-3631 ((|#2| $ |#1|) 88)) (-3799 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 30 (|has| $ (-6 -4353))) (((-625 |#2|) $) 79 (|has| $ (-6 -4353)))) (-2909 (((-112) $ (-751)) 9)) (-2527 ((|#1| $) 96 (|has| |#1| (-827)))) (-3730 (((-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 29 (|has| $ (-6 -4353))) (((-625 |#2|) $) 80 (|has| $ (-6 -4353)))) (-2893 (((-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 27 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1073)) (|has| $ (-6 -4353))))) (-2537 ((|#1| $) 95 (|has| |#1| (-827)))) (-3683 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 34 (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4354)))) (-1996 (($ (-1 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2878 (((-112) $ (-751)) 10)) (-2883 (((-1131) $) 22 (-1523 (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-3712 (((-625 |#1|) $) 63)) (-1370 (((-112) |#1| $) 64)) (-2953 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 39)) (-3966 (($ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 40)) (-2554 (((-625 |#1|) $) 93)) (-2564 (((-112) |#1| $) 92)) (-2831 (((-1093) $) 21 (-1523 (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-2924 ((|#2| $) 97 (|has| |#1| (-827)))) (-2380 (((-3 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) "failed") (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 51)) (-2518 (($ $ |#2|) 98 (|has| $ (-6 -4354)))) (-2966 (((-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 41)) (-1888 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 32 (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))))) 26 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-289 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 25 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) 24 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 23 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)))) (($ $ (-625 |#2|) (-625 |#2|)) 86 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-289 |#2|)) 84 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073)))) (($ $ (-625 (-289 |#2|))) 83 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1073))))) (-1358 (((-625 |#2|) $) 91)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-4255 (($) 49) (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 48)) (-2840 (((-751) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 31 (|has| $ (-6 -4353))) (((-751) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| $ (-6 -4353)))) (((-751) |#2| $) 81 (-12 (|has| |#2| (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4353)))) (-1871 (($ $) 13)) (-2042 (((-528) $) 59 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))))) (-1695 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 50)) (-1683 (((-839) $) 18 (-1523 (|has| |#2| (-597 (-839))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839)))))) (-2977 (($ (-625 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) 42)) (-1900 (((-112) (-1 (-112) (-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) $) 33 (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (-1523 (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-1162 |#1| |#2|) (-138) (-1073) (-1073)) (T -1162)) -((-1851 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073)))) (-2173 (*1 *1) (-12 (-4 *1 (-1162 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))) (-2173 (*1 *1 *2) (-12 (-5 *2 (-625 (-2 (|:| -2971 *3) (|:| -4120 *4)))) (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *1 (-1162 *3 *4)))) (-1996 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1162 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073))))) -(-13 (-594 |t#1| |t#2|) (-588 |t#1| |t#2|) (-10 -8 (-15 -1851 (|t#2| $ |t#1| |t#2|)) (-15 -2173 ($)) (-15 -2173 ($ (-625 (-2 (|:| -2971 |t#1|) (|:| -4120 |t#2|))))) (-15 -1996 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-106 #0=(-2 (|:| -2971 |#1|) (|:| -4120 |#2|))) . T) ((-101) -1523 (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))) ((-597 (-839)) -1523 (|has| |#2| (-1073)) (|has| |#2| (-597 (-839))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-597 (-839)))) ((-149 #0#) . T) ((-598 (-528)) |has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-598 (-528))) ((-225 #0#) . T) ((-231 #0#) . T) ((-281 |#1| |#2|) . T) ((-283 |#1| |#2|) . T) ((-304 #0#) -12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((-483 #0#) . T) ((-483 |#2|) . T) ((-588 |#1| |#2|) . T) ((-507 #0# #0#) -12 (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-304 (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)))) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))) ((-507 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1073))) ((-594 |#1| |#2|) . T) ((-1073) -1523 (|has| |#2| (-1073)) (|has| (-2 (|:| -2971 |#1|) (|:| -4120 |#2|)) (-1073))) ((-1186) . T)) -((-3916 (((-112)) 24)) (-3875 (((-1237) (-1131)) 26)) (-3930 (((-112)) 36)) (-3889 (((-1237)) 34)) (-3862 (((-1237) (-1131) (-1131)) 25)) (-3942 (((-112)) 37)) (-3966 (((-1237) |#1| |#2|) 44)) (-3849 (((-1237)) 20)) (-3954 (((-3 |#2| "failed") |#1|) 42)) (-3902 (((-1237)) 35))) -(((-1163 |#1| |#2|) (-10 -7 (-15 -3849 ((-1237))) (-15 -3862 ((-1237) (-1131) (-1131))) (-15 -3875 ((-1237) (-1131))) (-15 -3889 ((-1237))) (-15 -3902 ((-1237))) (-15 -3916 ((-112))) (-15 -3930 ((-112))) (-15 -3942 ((-112))) (-15 -3954 ((-3 |#2| "failed") |#1|)) (-15 -3966 ((-1237) |#1| |#2|))) (-1073) (-1073)) (T -1163)) -((-3966 (*1 *2 *3 *4) (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)))) (-3954 (*1 *2 *3) (|partial| -12 (-4 *2 (-1073)) (-5 *1 (-1163 *3 *2)) (-4 *3 (-1073)))) (-3942 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)))) (-3930 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)))) (-3916 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)))) (-3902 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)))) (-3889 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)))) (-3875 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1163 *4 *5)) (-4 *4 (-1073)) (-4 *5 (-1073)))) (-3862 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1163 *4 *5)) (-4 *4 (-1073)) (-4 *5 (-1073)))) (-3849 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073))))) -(-10 -7 (-15 -3849 ((-1237))) (-15 -3862 ((-1237) (-1131) (-1131))) (-15 -3875 ((-1237) (-1131))) (-15 -3889 ((-1237))) (-15 -3902 ((-1237))) (-15 -3916 ((-112))) (-15 -3930 ((-112))) (-15 -3942 ((-112))) (-15 -3954 ((-3 |#2| "failed") |#1|)) (-15 -3966 ((-1237) |#1| |#2|))) -((-3990 (((-1131) (-1131)) 18)) (-3978 (((-52) (-1131)) 21))) -(((-1164) (-10 -7 (-15 -3978 ((-52) (-1131))) (-15 -3990 ((-1131) (-1131))))) (T -1164)) -((-3990 (*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1164)))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-52)) (-5 *1 (-1164))))) -(-10 -7 (-15 -3978 ((-52) (-1131))) (-15 -3990 ((-1131) (-1131)))) -((-1683 (((-1166) |#1|) 11))) -(((-1165 |#1|) (-10 -7 (-15 -1683 ((-1166) |#1|))) (-1073)) (T -1165)) -((-1683 (*1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *1 (-1165 *3)) (-4 *3 (-1073))))) -(-10 -7 (-15 -1683 ((-1166) |#1|))) -((-1671 (((-112) $ $) NIL)) (-2601 (((-625 (-1131)) $) 34)) (-4014 (((-625 (-1131)) $ (-625 (-1131))) 37)) (-4003 (((-625 (-1131)) $ (-625 (-1131))) 36)) (-4026 (((-625 (-1131)) $ (-625 (-1131))) 38)) (-4037 (((-625 (-1131)) $) 33)) (-2183 (($) 22)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4049 (((-625 (-1131)) $) 35)) (-1407 (((-1237) $ (-552)) 29) (((-1237) $) 30)) (-2042 (($ (-839) (-552)) 26) (($ (-839) (-552) (-839)) NIL)) (-1683 (((-839) $) 40) (($ (-839)) 24)) (-2281 (((-112) $ $) NIL))) -(((-1166) (-13 (-1073) (-10 -8 (-15 -1683 ($ (-839))) (-15 -2042 ($ (-839) (-552))) (-15 -2042 ($ (-839) (-552) (-839))) (-15 -1407 ((-1237) $ (-552))) (-15 -1407 ((-1237) $)) (-15 -4049 ((-625 (-1131)) $)) (-15 -2601 ((-625 (-1131)) $)) (-15 -2183 ($)) (-15 -4037 ((-625 (-1131)) $)) (-15 -4026 ((-625 (-1131)) $ (-625 (-1131)))) (-15 -4014 ((-625 (-1131)) $ (-625 (-1131)))) (-15 -4003 ((-625 (-1131)) $ (-625 (-1131))))))) (T -1166)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1166)))) (-2042 (*1 *1 *2 *3) (-12 (-5 *2 (-839)) (-5 *3 (-552)) (-5 *1 (-1166)))) (-2042 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-839)) (-5 *3 (-552)) (-5 *1 (-1166)))) (-1407 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-1166)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1166)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166)))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166)))) (-2183 (*1 *1) (-5 *1 (-1166))) (-4037 (*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166)))) (-4026 (*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166)))) (-4014 (*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166)))) (-4003 (*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166))))) -(-13 (-1073) (-10 -8 (-15 -1683 ($ (-839))) (-15 -2042 ($ (-839) (-552))) (-15 -2042 ($ (-839) (-552) (-839))) (-15 -1407 ((-1237) $ (-552))) (-15 -1407 ((-1237) $)) (-15 -4049 ((-625 (-1131)) $)) (-15 -2601 ((-625 (-1131)) $)) (-15 -2183 ($)) (-15 -4037 ((-625 (-1131)) $)) (-15 -4026 ((-625 (-1131)) $ (-625 (-1131)))) (-15 -4014 ((-625 (-1131)) $ (-625 (-1131)))) (-15 -4003 ((-625 (-1131)) $ (-625 (-1131)))))) -((-1671 (((-112) $ $) NIL)) (-4113 (((-1131) $ (-1131)) 17) (((-1131) $) 16)) (-4086 (((-1131) $ (-1131)) 15)) (-4137 (($ $ (-1131)) NIL)) (-4088 (((-3 (-1131) "failed") $) 11)) (-4101 (((-1131) $) 8)) (-4076 (((-3 (-1131) "failed") $) 12)) (-4099 (((-1131) $) 9)) (-2508 (($ (-383)) NIL) (($ (-383) (-1131)) NIL)) (-1288 (((-383) $) NIL)) (-2883 (((-1131) $) NIL)) (-4111 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4062 (((-112) $) 18)) (-1683 (((-839) $) NIL)) (-4125 (($ $) NIL)) (-2281 (((-112) $ $) NIL))) -(((-1167) (-13 (-359 (-383) (-1131)) (-10 -8 (-15 -4113 ((-1131) $ (-1131))) (-15 -4113 ((-1131) $)) (-15 -4101 ((-1131) $)) (-15 -4088 ((-3 (-1131) "failed") $)) (-15 -4076 ((-3 (-1131) "failed") $)) (-15 -4062 ((-112) $))))) (T -1167)) -((-4113 (*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1167)))) (-4113 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1167)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1167)))) (-4088 (*1 *2 *1) (|partial| -12 (-5 *2 (-1131)) (-5 *1 (-1167)))) (-4076 (*1 *2 *1) (|partial| -12 (-5 *2 (-1131)) (-5 *1 (-1167)))) (-4062 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167))))) -(-13 (-359 (-383) (-1131)) (-10 -8 (-15 -4113 ((-1131) $ (-1131))) (-15 -4113 ((-1131) $)) (-15 -4101 ((-1131) $)) (-15 -4088 ((-3 (-1131) "failed") $)) (-15 -4076 ((-3 (-1131) "failed") $)) (-15 -4062 ((-112) $)))) -((-4127 (((-3 (-552) "failed") |#1|) 19)) (-4140 (((-3 (-552) "failed") |#1|) 14)) (-1586 (((-552) (-1131)) 28))) -(((-1168 |#1|) (-10 -7 (-15 -4127 ((-3 (-552) "failed") |#1|)) (-15 -4140 ((-3 (-552) "failed") |#1|)) (-15 -1586 ((-552) (-1131)))) (-1025)) (T -1168)) -((-1586 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-552)) (-5 *1 (-1168 *4)) (-4 *4 (-1025)))) (-4140 (*1 *2 *3) (|partial| -12 (-5 *2 (-552)) (-5 *1 (-1168 *3)) (-4 *3 (-1025)))) (-4127 (*1 *2 *3) (|partial| -12 (-5 *2 (-552)) (-5 *1 (-1168 *3)) (-4 *3 (-1025))))) -(-10 -7 (-15 -4127 ((-3 (-552) "failed") |#1|)) (-15 -4140 ((-3 (-552) "failed") |#1|)) (-15 -1586 ((-552) (-1131)))) -((-1598 (((-1106 (-221))) 9))) -(((-1169) (-10 -7 (-15 -1598 ((-1106 (-221)))))) (T -1169)) -((-1598 (*1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1169))))) -(-10 -7 (-15 -1598 ((-1106 (-221))))) -((-1385 (($) 11)) (-3789 (($ $) 35)) (-3769 (($ $) 33)) (-3648 (($ $) 25)) (-3809 (($ $) 17)) (-3742 (($ $) 15)) (-3797 (($ $) 19)) (-3681 (($ $) 30)) (-3778 (($ $) 34)) (-3659 (($ $) 29))) -(((-1170 |#1|) (-10 -8 (-15 -1385 (|#1|)) (-15 -3789 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3809 (|#1| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3681 (|#1| |#1|)) (-15 -3659 (|#1| |#1|))) (-1171)) (T -1170)) -NIL -(-10 -8 (-15 -1385 (|#1|)) (-15 -3789 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3809 (|#1| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3681 (|#1| |#1|)) (-15 -3659 (|#1| |#1|))) -((-3728 (($ $) 26)) (-3604 (($ $) 11)) (-3710 (($ $) 27)) (-3581 (($ $) 10)) (-3749 (($ $) 28)) (-3627 (($ $) 9)) (-1385 (($) 16)) (-2458 (($ $) 19)) (-2863 (($ $) 18)) (-3759 (($ $) 29)) (-3638 (($ $) 8)) (-3738 (($ $) 30)) (-3614 (($ $) 7)) (-3721 (($ $) 31)) (-3593 (($ $) 6)) (-3789 (($ $) 20)) (-3670 (($ $) 32)) (-3769 (($ $) 21)) (-3648 (($ $) 33)) (-3809 (($ $) 22)) (-3691 (($ $) 34)) (-3742 (($ $) 23)) (-3700 (($ $) 35)) (-3797 (($ $) 24)) (-3681 (($ $) 36)) (-3778 (($ $) 25)) (-3659 (($ $) 37)) (** (($ $ $) 17))) -(((-1171) (-138)) (T -1171)) -((-1385 (*1 *1) (-4 *1 (-1171)))) -(-13 (-1174) (-94) (-486) (-35) (-279) (-10 -8 (-15 -1385 ($)))) -(((-35) . T) ((-94) . T) ((-279) . T) ((-486) . T) ((-1174) . T)) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3800 ((|#1| $) 17)) (-2227 (($ |#1| (-625 $)) 23) (($ (-625 |#1|)) 27) (($ |#1|) 25)) (-3495 (((-112) $ (-751)) 48)) (-2565 ((|#1| $ |#1|) 14 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 13 (|has| $ (-6 -4354)))) (-3101 (($) NIL T CONST)) (-3799 (((-625 |#1|) $) 52 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) 43)) (-1371 (((-112) $ $) 33 (|has| |#1| (-1073)))) (-2909 (((-112) $ (-751)) 41)) (-3730 (((-625 |#1|) $) 53 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 51 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3683 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 22)) (-2878 (((-112) $ (-751)) 40)) (-3183 (((-625 |#1|) $) 37)) (-3367 (((-112) $) 36)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-1888 (((-112) (-1 (-112) |#1|) $) 50 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 74)) (-1916 (((-112) $) 9)) (-3600 (($) 10)) (-2154 ((|#1| $ "value") NIL)) (-1389 (((-552) $ $) 32)) (-2690 (((-625 $) $) 59)) (-2700 (((-112) $ $) 77)) (-3949 (((-625 $) $) 72)) (-3962 (($ $) 73)) (-2316 (((-112) $) 56)) (-2840 (((-751) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4353))) (((-751) |#1| $) 16 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1871 (($ $) 58)) (-1683 (((-839) $) 61 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) 12)) (-1380 (((-112) $ $) 29 (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 28 (|has| |#1| (-1073)))) (-1471 (((-751) $) 39 (|has| $ (-6 -4353))))) -(((-1172 |#1|) (-13 (-986 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -2227 ($ |#1| (-625 $))) (-15 -2227 ($ (-625 |#1|))) (-15 -2227 ($ |#1|)) (-15 -2316 ((-112) $)) (-15 -3962 ($ $)) (-15 -3949 ((-625 $) $)) (-15 -2700 ((-112) $ $)) (-15 -2690 ((-625 $) $)))) (-1073)) (T -1172)) -((-2316 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3)) (-4 *3 (-1073)))) (-2227 (*1 *1 *2 *3) (-12 (-5 *3 (-625 (-1172 *2))) (-5 *1 (-1172 *2)) (-4 *2 (-1073)))) (-2227 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-1172 *3)))) (-2227 (*1 *1 *2) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1073)))) (-3962 (*1 *1 *1) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1073)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-625 (-1172 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1073)))) (-2700 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3)) (-4 *3 (-1073)))) (-2690 (*1 *2 *1) (-12 (-5 *2 (-625 (-1172 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1073))))) -(-13 (-986 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -2227 ($ |#1| (-625 $))) (-15 -2227 ($ (-625 |#1|))) (-15 -2227 ($ |#1|)) (-15 -2316 ((-112) $)) (-15 -3962 ($ $)) (-15 -3949 ((-625 $) $)) (-15 -2700 ((-112) $ $)) (-15 -2690 ((-625 $) $)))) -((-3604 (($ $) 15)) (-3627 (($ $) 12)) (-3638 (($ $) 10)) (-3614 (($ $) 17))) -(((-1173 |#1|) (-10 -8 (-15 -3614 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3627 (|#1| |#1|)) (-15 -3604 (|#1| |#1|))) (-1174)) (T -1173)) -NIL -(-10 -8 (-15 -3614 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3627 (|#1| |#1|)) (-15 -3604 (|#1| |#1|))) -((-3604 (($ $) 11)) (-3581 (($ $) 10)) (-3627 (($ $) 9)) (-3638 (($ $) 8)) (-3614 (($ $) 7)) (-3593 (($ $) 6))) -(((-1174) (-138)) (T -1174)) -((-3604 (*1 *1 *1) (-4 *1 (-1174))) (-3581 (*1 *1 *1) (-4 *1 (-1174))) (-3627 (*1 *1 *1) (-4 *1 (-1174))) (-3638 (*1 *1 *1) (-4 *1 (-1174))) (-3614 (*1 *1 *1) (-4 *1 (-1174))) (-3593 (*1 *1 *1) (-4 *1 (-1174)))) -(-13 (-10 -8 (-15 -3593 ($ $)) (-15 -3614 ($ $)) (-15 -3638 ($ $)) (-15 -3627 ($ $)) (-15 -3581 ($ $)) (-15 -3604 ($ $)))) -((-2598 ((|#2| |#2|) 88)) (-3301 (((-112) |#2|) 26)) (-3852 ((|#2| |#2|) 30)) (-3865 ((|#2| |#2|) 32)) (-2329 ((|#2| |#2| (-1149)) 83) ((|#2| |#2|) 84)) (-3311 (((-167 |#2|) |#2|) 28)) (-2586 ((|#2| |#2| (-1149)) 85) ((|#2| |#2|) 86))) -(((-1175 |#1| |#2|) (-10 -7 (-15 -2329 (|#2| |#2|)) (-15 -2329 (|#2| |#2| (-1149))) (-15 -2586 (|#2| |#2|)) (-15 -2586 (|#2| |#2| (-1149))) (-15 -2598 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3865 (|#2| |#2|)) (-15 -3301 ((-112) |#2|)) (-15 -3311 ((-167 |#2|) |#2|))) (-13 (-446) (-827) (-1014 (-552)) (-621 (-552))) (-13 (-27) (-1171) (-425 |#1|))) (T -1175)) -((-3311 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-167 *3)) (-5 *1 (-1175 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *4))))) (-3301 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *2 (-112)) (-5 *1 (-1175 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *4))))) (-3865 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3))))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3))))) (-2598 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3))))) (-2586 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4))))) (-2586 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3))))) (-2329 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4))))) (-2329 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3)))))) -(-10 -7 (-15 -2329 (|#2| |#2|)) (-15 -2329 (|#2| |#2| (-1149))) (-15 -2586 (|#2| |#2|)) (-15 -2586 (|#2| |#2| (-1149))) (-15 -2598 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3865 (|#2| |#2|)) (-15 -3301 ((-112) |#2|)) (-15 -3311 ((-167 |#2|) |#2|))) -((-3344 ((|#4| |#4| |#1|) 27)) (-3919 ((|#4| |#4| |#1|) 28))) -(((-1176 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3344 (|#4| |#4| |#1|)) (-15 -3919 (|#4| |#4| |#1|))) (-544) (-368 |#1|) (-368 |#1|) (-667 |#1| |#2| |#3|)) (T -1176)) -((-3919 (*1 *2 *2 *3) (-12 (-4 *3 (-544)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-1176 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))) (-3344 (*1 *2 *2 *3) (-12 (-4 *3 (-544)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-5 *1 (-1176 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5))))) -(-10 -7 (-15 -3344 (|#4| |#4| |#1|)) (-15 -3919 (|#4| |#4| |#1|))) -((-3521 ((|#2| |#2|) 133)) (-3540 ((|#2| |#2|) 130)) (-3512 ((|#2| |#2|) 121)) (-3531 ((|#2| |#2|) 118)) (-3503 ((|#2| |#2|) 126)) (-3493 ((|#2| |#2|) 114)) (-1967 ((|#2| |#2|) 43)) (-1955 ((|#2| |#2|) 94)) (-1933 ((|#2| |#2|) 74)) (-3483 ((|#2| |#2|) 128)) (-3473 ((|#2| |#2|) 116)) (-3606 ((|#2| |#2|) 138)) (-3584 ((|#2| |#2|) 136)) (-3595 ((|#2| |#2|) 137)) (-3572 ((|#2| |#2|) 135)) (-1943 ((|#2| |#2|) 148)) (-3617 ((|#2| |#2|) 30 (-12 (|has| |#2| (-598 (-868 |#1|))) (|has| |#2| (-862 |#1|)) (|has| |#1| (-598 (-868 |#1|))) (|has| |#1| (-862 |#1|))))) (-3386 ((|#2| |#2|) 75)) (-3397 ((|#2| |#2|) 139)) (-3455 ((|#2| |#2|) 140)) (-3462 ((|#2| |#2|) 127)) (-3450 ((|#2| |#2|) 115)) (-3437 ((|#2| |#2|) 134)) (-3561 ((|#2| |#2|) 132)) (-3427 ((|#2| |#2|) 122)) (-3552 ((|#2| |#2|) 120)) (-3415 ((|#2| |#2|) 124)) (-3407 ((|#2| |#2|) 112))) -(((-1177 |#1| |#2|) (-10 -7 (-15 -3455 (|#2| |#2|)) (-15 -1933 (|#2| |#2|)) (-15 -1943 (|#2| |#2|)) (-15 -1955 (|#2| |#2|)) (-15 -1967 (|#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -3397 (|#2| |#2|)) (-15 -3407 (|#2| |#2|)) (-15 -3415 (|#2| |#2|)) (-15 -3427 (|#2| |#2|)) (-15 -3437 (|#2| |#2|)) (-15 -3450 (|#2| |#2|)) (-15 -3462 (|#2| |#2|)) (-15 -3473 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -3503 (|#2| |#2|)) (-15 -3512 (|#2| |#2|)) (-15 -3521 (|#2| |#2|)) (-15 -3531 (|#2| |#2|)) (-15 -3540 (|#2| |#2|)) (-15 -3552 (|#2| |#2|)) (-15 -3561 (|#2| |#2|)) (-15 -3572 (|#2| |#2|)) (-15 -3584 (|#2| |#2|)) (-15 -3595 (|#2| |#2|)) (-15 -3606 (|#2| |#2|)) (IF (|has| |#1| (-862 |#1|)) (IF (|has| |#1| (-598 (-868 |#1|))) (IF (|has| |#2| (-598 (-868 |#1|))) (IF (|has| |#2| (-862 |#1|)) (-15 -3617 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-827) (-446)) (-13 (-425 |#1|) (-1171))) (T -1177)) -((-3617 (*1 *2 *2) (-12 (-4 *3 (-598 (-868 *3))) (-4 *3 (-862 *3)) (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-598 (-868 *3))) (-4 *2 (-862 *3)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3606 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3595 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3584 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3572 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3561 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3552 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3540 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3531 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3521 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3512 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3493 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3473 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3462 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3450 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3437 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3427 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3415 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3407 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3397 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3386 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-1967 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-1955 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-1943 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-1933 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171))))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-425 *3) (-1171)))))) -(-10 -7 (-15 -3455 (|#2| |#2|)) (-15 -1933 (|#2| |#2|)) (-15 -1943 (|#2| |#2|)) (-15 -1955 (|#2| |#2|)) (-15 -1967 (|#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -3397 (|#2| |#2|)) (-15 -3407 (|#2| |#2|)) (-15 -3415 (|#2| |#2|)) (-15 -3427 (|#2| |#2|)) (-15 -3437 (|#2| |#2|)) (-15 -3450 (|#2| |#2|)) (-15 -3462 (|#2| |#2|)) (-15 -3473 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -3493 (|#2| |#2|)) (-15 -3503 (|#2| |#2|)) (-15 -3512 (|#2| |#2|)) (-15 -3521 (|#2| |#2|)) (-15 -3531 (|#2| |#2|)) (-15 -3540 (|#2| |#2|)) (-15 -3552 (|#2| |#2|)) (-15 -3561 (|#2| |#2|)) (-15 -3572 (|#2| |#2|)) (-15 -3584 (|#2| |#2|)) (-15 -3595 (|#2| |#2|)) (-15 -3606 (|#2| |#2|)) (IF (|has| |#1| (-862 |#1|)) (IF (|has| |#1| (-598 (-868 |#1|))) (IF (|has| |#2| (-598 (-868 |#1|))) (IF (|has| |#2| (-862 |#1|)) (-15 -3617 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-2656 (((-112) |#5| $) 60) (((-112) $) 102)) (-3748 ((|#5| |#5| $) 75)) (-3488 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-3757 (((-625 |#5|) (-625 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 73)) (-1893 (((-3 $ "failed") (-625 |#5|)) 126)) (-2936 (((-3 $ "failed") $) 112)) (-3720 ((|#5| |#5| $) 94)) (-2668 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 31)) (-3699 ((|#5| |#5| $) 98)) (-2163 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 69)) (-2689 (((-2 (|:| -1387 (-625 |#5|)) (|:| -2508 (-625 |#5|))) $) 55)) (-2678 (((-112) |#5| $) 58) (((-112) $) 103)) (-3565 ((|#4| $) 108)) (-1437 (((-3 |#5| "failed") $) 110)) (-2699 (((-625 |#5|) $) 49)) (-3777 (((-112) |#5| $) 67) (((-112) $) 107)) (-3727 ((|#5| |#5| $) 81)) (-2719 (((-112) $ $) 27)) (-3788 (((-112) |#5| $) 63) (((-112) $) 105)) (-3737 ((|#5| |#5| $) 78)) (-2924 (((-3 |#5| "failed") $) 109)) (-2147 (($ $ |#5|) 127)) (-4276 (((-751) $) 52)) (-1695 (($ (-625 |#5|)) 124)) (-3718 (($ $ |#4|) 122)) (-2595 (($ $ |#4|) 121)) (-3709 (($ $) 120)) (-1683 (((-839) $) NIL) (((-625 |#5|) $) 113)) (-3647 (((-751) $) 130)) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#5|))) "failed") (-625 |#5|) (-1 (-112) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#5|))) "failed") (-625 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 45)) (-3767 (((-112) $ (-1 (-112) |#5| (-625 |#5|))) 100)) (-3669 (((-625 |#4|) $) 115)) (-4168 (((-112) |#4| $) 118)) (-2281 (((-112) $ $) 19))) -(((-1178 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3647 ((-751) |#1|)) (-15 -2147 (|#1| |#1| |#5|)) (-15 -3488 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4168 ((-112) |#4| |#1|)) (-15 -3669 ((-625 |#4|) |#1|)) (-15 -2936 ((-3 |#1| "failed") |#1|)) (-15 -1437 ((-3 |#5| "failed") |#1|)) (-15 -2924 ((-3 |#5| "failed") |#1|)) (-15 -3699 (|#5| |#5| |#1|)) (-15 -3709 (|#1| |#1|)) (-15 -3720 (|#5| |#5| |#1|)) (-15 -3727 (|#5| |#5| |#1|)) (-15 -3737 (|#5| |#5| |#1|)) (-15 -3748 (|#5| |#5| |#1|)) (-15 -3757 ((-625 |#5|) (-625 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2163 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3777 ((-112) |#1|)) (-15 -3788 ((-112) |#1|)) (-15 -2656 ((-112) |#1|)) (-15 -3767 ((-112) |#1| (-1 (-112) |#5| (-625 |#5|)))) (-15 -3777 ((-112) |#5| |#1|)) (-15 -3788 ((-112) |#5| |#1|)) (-15 -2656 ((-112) |#5| |#1|)) (-15 -2668 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2678 ((-112) |#1|)) (-15 -2678 ((-112) |#5| |#1|)) (-15 -2689 ((-2 (|:| -1387 (-625 |#5|)) (|:| -2508 (-625 |#5|))) |#1|)) (-15 -4276 ((-751) |#1|)) (-15 -2699 ((-625 |#5|) |#1|)) (-15 -2709 ((-3 (-2 (|:| |bas| |#1|) (|:| -1549 (-625 |#5|))) "failed") (-625 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2709 ((-3 (-2 (|:| |bas| |#1|) (|:| -1549 (-625 |#5|))) "failed") (-625 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2719 ((-112) |#1| |#1|)) (-15 -3718 (|#1| |#1| |#4|)) (-15 -2595 (|#1| |#1| |#4|)) (-15 -3565 (|#4| |#1|)) (-15 -1893 ((-3 |#1| "failed") (-625 |#5|))) (-15 -1683 ((-625 |#5|) |#1|)) (-15 -1695 (|#1| (-625 |#5|))) (-15 -2163 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2163 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3488 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2163 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|))) (-1179 |#2| |#3| |#4| |#5|) (-544) (-773) (-827) (-1039 |#2| |#3| |#4|)) (T -1178)) -NIL -(-10 -8 (-15 -3647 ((-751) |#1|)) (-15 -2147 (|#1| |#1| |#5|)) (-15 -3488 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4168 ((-112) |#4| |#1|)) (-15 -3669 ((-625 |#4|) |#1|)) (-15 -2936 ((-3 |#1| "failed") |#1|)) (-15 -1437 ((-3 |#5| "failed") |#1|)) (-15 -2924 ((-3 |#5| "failed") |#1|)) (-15 -3699 (|#5| |#5| |#1|)) (-15 -3709 (|#1| |#1|)) (-15 -3720 (|#5| |#5| |#1|)) (-15 -3727 (|#5| |#5| |#1|)) (-15 -3737 (|#5| |#5| |#1|)) (-15 -3748 (|#5| |#5| |#1|)) (-15 -3757 ((-625 |#5|) (-625 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2163 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3777 ((-112) |#1|)) (-15 -3788 ((-112) |#1|)) (-15 -2656 ((-112) |#1|)) (-15 -3767 ((-112) |#1| (-1 (-112) |#5| (-625 |#5|)))) (-15 -3777 ((-112) |#5| |#1|)) (-15 -3788 ((-112) |#5| |#1|)) (-15 -2656 ((-112) |#5| |#1|)) (-15 -2668 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -2678 ((-112) |#1|)) (-15 -2678 ((-112) |#5| |#1|)) (-15 -2689 ((-2 (|:| -1387 (-625 |#5|)) (|:| -2508 (-625 |#5|))) |#1|)) (-15 -4276 ((-751) |#1|)) (-15 -2699 ((-625 |#5|) |#1|)) (-15 -2709 ((-3 (-2 (|:| |bas| |#1|) (|:| -1549 (-625 |#5|))) "failed") (-625 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2709 ((-3 (-2 (|:| |bas| |#1|) (|:| -1549 (-625 |#5|))) "failed") (-625 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2719 ((-112) |#1| |#1|)) (-15 -3718 (|#1| |#1| |#4|)) (-15 -2595 (|#1| |#1| |#4|)) (-15 -3565 (|#4| |#1|)) (-15 -1893 ((-3 |#1| "failed") (-625 |#5|))) (-15 -1683 ((-625 |#5|) |#1|)) (-15 -1695 (|#1| (-625 |#5|))) (-15 -2163 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2163 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3488 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2163 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1683 ((-839) |#1|)) (-15 -2281 ((-112) |#1| |#1|))) -((-1671 (((-112) $ $) 7)) (-3680 (((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 |#4|)))) (-625 |#4|)) 85)) (-3690 (((-625 $) (-625 |#4|)) 86)) (-3982 (((-625 |#3|) $) 33)) (-3707 (((-112) $) 26)) (-3613 (((-112) $) 17 (|has| |#1| (-544)))) (-2656 (((-112) |#4| $) 101) (((-112) $) 97)) (-3748 ((|#4| |#4| $) 92)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) 27)) (-3495 (((-112) $ (-751)) 44)) (-3488 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353))) (((-3 |#4| "failed") $ |#3|) 79)) (-3101 (($) 45 T CONST)) (-3667 (((-112) $) 22 (|has| |#1| (-544)))) (-3688 (((-112) $ $) 24 (|has| |#1| (-544)))) (-3678 (((-112) $ $) 23 (|has| |#1| (-544)))) (-3697 (((-112) $) 25 (|has| |#1| (-544)))) (-3757 (((-625 |#4|) (-625 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3624 (((-625 |#4|) (-625 |#4|) $) 18 (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) 19 (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) 36)) (-1895 (($ (-625 |#4|)) 35)) (-2936 (((-3 $ "failed") $) 82)) (-3720 ((|#4| |#4| $) 89)) (-2959 (($ $) 68 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#4| $) 67 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-2668 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-3699 ((|#4| |#4| $) 87)) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2689 (((-2 (|:| -1387 (-625 |#4|)) (|:| -2508 (-625 |#4|))) $) 105)) (-3799 (((-625 |#4|) $) 52 (|has| $ (-6 -4353)))) (-2678 (((-112) |#4| $) 104) (((-112) $) 103)) (-3565 ((|#3| $) 34)) (-2909 (((-112) $ (-751)) 43)) (-3730 (((-625 |#4|) $) 53 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) 47)) (-2615 (((-625 |#3|) $) 32)) (-2608 (((-112) |#3| $) 31)) (-2878 (((-112) $ (-751)) 42)) (-2883 (((-1131) $) 9)) (-1437 (((-3 |#4| "failed") $) 83)) (-2699 (((-625 |#4|) $) 107)) (-3777 (((-112) |#4| $) 99) (((-112) $) 95)) (-3727 ((|#4| |#4| $) 90)) (-2719 (((-112) $ $) 110)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-3788 (((-112) |#4| $) 100) (((-112) $) 96)) (-3737 ((|#4| |#4| $) 91)) (-2831 (((-1093) $) 10)) (-2924 (((-3 |#4| "failed") $) 84)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3657 (((-3 $ "failed") $ |#4|) 78)) (-2147 (($ $ |#4|) 77)) (-1888 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) 38)) (-1916 (((-112) $) 41)) (-3600 (($) 40)) (-4276 (((-751) $) 106)) (-2840 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1073)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-1871 (($ $) 39)) (-2042 (((-528) $) 69 (|has| |#4| (-598 (-528))))) (-1695 (($ (-625 |#4|)) 60)) (-3718 (($ $ |#3|) 28)) (-2595 (($ $ |#3|) 30)) (-3709 (($ $) 88)) (-2584 (($ $ |#3|) 29)) (-1683 (((-839) $) 11) (((-625 |#4|) $) 37)) (-3647 (((-751) $) 76 (|has| |#3| (-363)))) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-3767 (((-112) $ (-1 (-112) |#4| (-625 |#4|))) 98)) (-1900 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-3669 (((-625 |#3|) $) 81)) (-4168 (((-112) |#3| $) 80)) (-2281 (((-112) $ $) 6)) (-1471 (((-751) $) 46 (|has| $ (-6 -4353))))) -(((-1179 |#1| |#2| |#3| |#4|) (-138) (-544) (-773) (-827) (-1039 |t#1| |t#2| |t#3|)) (T -1179)) -((-2719 (*1 *2 *1 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-2709 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1549 (-625 *8)))) (-5 *3 (-625 *8)) (-4 *1 (-1179 *5 *6 *7 *8)))) (-2709 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-773)) (-4 *8 (-827)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1549 (-625 *9)))) (-5 *3 (-625 *9)) (-4 *1 (-1179 *6 *7 *8 *9)))) (-2699 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-625 *6)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-751)))) (-2689 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-2 (|:| -1387 (-625 *6)) (|:| -2508 (-625 *6)))))) (-2678 (*1 *2 *3 *1) (-12 (-4 *1 (-1179 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-2678 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-2668 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1179 *5 *6 *7 *3)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-112)))) (-2656 (*1 *2 *3 *1) (-12 (-4 *1 (-1179 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3788 (*1 *2 *3 *1) (-12 (-4 *1 (-1179 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3777 (*1 *2 *3 *1) (-12 (-4 *1 (-1179 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3767 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-625 *7))) (-4 *1 (-1179 *4 *5 *6 *7)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-2656 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-3788 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-2163 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1179 *5 *6 *7 *2)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *2 (-1039 *5 *6 *7)))) (-3757 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-625 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1179 *5 *6 *7 *8)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)))) (-3748 (*1 *2 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-3737 (*1 *2 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-3727 (*1 *2 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-3720 (*1 *2 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-3709 (*1 *1 *1) (-12 (-4 *1 (-1179 *2 *3 *4 *5)) (-4 *2 (-544)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-1039 *2 *3 *4)))) (-3699 (*1 *2 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-3690 (*1 *2 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *1)) (-4 *1 (-1179 *4 *5 *6 *7)))) (-3680 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-625 (-2 (|:| -1387 *1) (|:| -2508 (-625 *7))))) (-5 *3 (-625 *7)) (-4 *1 (-1179 *4 *5 *6 *7)))) (-2924 (*1 *2 *1) (|partial| -12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-1437 (*1 *2 *1) (|partial| -12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-2936 (*1 *1 *1) (|partial| -12 (-4 *1 (-1179 *2 *3 *4 *5)) (-4 *2 (-544)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-1039 *2 *3 *4)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-625 *5)))) (-4168 (*1 *2 *3 *1) (-12 (-4 *1 (-1179 *4 *5 *3 *6)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *3 (-827)) (-4 *6 (-1039 *4 *5 *3)) (-5 *2 (-112)))) (-3488 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1179 *4 *5 *3 *2)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *3 (-827)) (-4 *2 (-1039 *4 *5 *3)))) (-3657 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-2147 (*1 *1 *1 *2) (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *5 (-363)) (-5 *2 (-751))))) -(-13 (-952 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -2719 ((-112) $ $)) (-15 -2709 ((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |t#4|))) "failed") (-625 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2709 ((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |t#4|))) "failed") (-625 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2699 ((-625 |t#4|) $)) (-15 -4276 ((-751) $)) (-15 -2689 ((-2 (|:| -1387 (-625 |t#4|)) (|:| -2508 (-625 |t#4|))) $)) (-15 -2678 ((-112) |t#4| $)) (-15 -2678 ((-112) $)) (-15 -2668 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2656 ((-112) |t#4| $)) (-15 -3788 ((-112) |t#4| $)) (-15 -3777 ((-112) |t#4| $)) (-15 -3767 ((-112) $ (-1 (-112) |t#4| (-625 |t#4|)))) (-15 -2656 ((-112) $)) (-15 -3788 ((-112) $)) (-15 -3777 ((-112) $)) (-15 -2163 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3757 ((-625 |t#4|) (-625 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3748 (|t#4| |t#4| $)) (-15 -3737 (|t#4| |t#4| $)) (-15 -3727 (|t#4| |t#4| $)) (-15 -3720 (|t#4| |t#4| $)) (-15 -3709 ($ $)) (-15 -3699 (|t#4| |t#4| $)) (-15 -3690 ((-625 $) (-625 |t#4|))) (-15 -3680 ((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 |t#4|)))) (-625 |t#4|))) (-15 -2924 ((-3 |t#4| "failed") $)) (-15 -1437 ((-3 |t#4| "failed") $)) (-15 -2936 ((-3 $ "failed") $)) (-15 -3669 ((-625 |t#3|) $)) (-15 -4168 ((-112) |t#3| $)) (-15 -3488 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3657 ((-3 $ "failed") $ |t#4|)) (-15 -2147 ($ $ |t#4|)) (IF (|has| |t#3| (-363)) (-15 -3647 ((-751) $)) |%noBranch|))) -(((-34) . T) ((-101) . T) ((-597 (-625 |#4|)) . T) ((-597 (-839)) . T) ((-149 |#4|) . T) ((-598 (-528)) |has| |#4| (-598 (-528))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))) ((-952 |#1| |#2| |#3| |#4|) . T) ((-1073) . T) ((-1186) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-1149)) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-3728 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3710 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3749 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-4098 (((-928 |#1|) $ (-751)) 17) (((-928 |#1|) $ (-751) (-751)) NIL)) (-3592 (((-112) $) NIL)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-751) $ (-1149)) NIL) (((-751) $ (-1149) (-751)) NIL)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4201 (((-112) $) NIL)) (-3957 (($ $ (-625 (-1149)) (-625 (-524 (-1149)))) NIL) (($ $ (-1149) (-524 (-1149))) NIL) (($ |#1| (-524 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2458 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2481 (($ $ (-1149)) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2831 (((-1093) $) NIL)) (-3626 (($ (-1 $) (-1149) |#1|) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2147 (($ $ (-751)) NIL)) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-2863 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4073 (($ $ (-1149) $) NIL) (($ $ (-625 (-1149)) (-625 $)) NIL) (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL)) (-3072 (($ $ (-1149)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL)) (-4276 (((-524 (-1149)) $) NIL)) (-3759 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-544))) (($ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-1149)) NIL) (($ (-928 |#1|)) NIL)) (-3637 ((|#1| $ (-524 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (((-928 |#1|) $ (-751)) NIL)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-3789 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3742 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) NIL T CONST)) (-2100 (($) NIL T CONST)) (-3768 (($ $ (-1149)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL)) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1180 |#1|) (-13 (-721 |#1| (-1149)) (-10 -8 (-15 -3637 ((-928 |#1|) $ (-751))) (-15 -1683 ($ (-1149))) (-15 -1683 ($ (-928 |#1|))) (IF (|has| |#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ($ $ (-1149) |#1|)) (-15 -3626 ($ (-1 $) (-1149) |#1|))) |%noBranch|))) (-1025)) (T -1180)) -((-3637 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-928 *4)) (-5 *1 (-1180 *4)) (-4 *4 (-1025)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1180 *3)) (-4 *3 (-1025)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-928 *3)) (-4 *3 (-1025)) (-5 *1 (-1180 *3)))) (-2481 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *1 (-1180 *3)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)))) (-3626 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1180 *4))) (-5 *3 (-1149)) (-5 *1 (-1180 *4)) (-4 *4 (-38 (-402 (-552)))) (-4 *4 (-1025))))) -(-13 (-721 |#1| (-1149)) (-10 -8 (-15 -3637 ((-928 |#1|) $ (-751))) (-15 -1683 ($ (-1149))) (-15 -1683 ($ (-928 |#1|))) (IF (|has| |#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ($ $ (-1149) |#1|)) (-15 -3626 ($ (-1 $) (-1149) |#1|))) |%noBranch|))) -((-2776 (($ |#1| (-625 (-625 (-919 (-221)))) (-112)) 19)) (-2766 (((-112) $ (-112)) 18)) (-2756 (((-112) $) 17)) (-2738 (((-625 (-625 (-919 (-221)))) $) 13)) (-2728 ((|#1| $) 8)) (-2747 (((-112) $) 15))) -(((-1181 |#1|) (-10 -8 (-15 -2728 (|#1| $)) (-15 -2738 ((-625 (-625 (-919 (-221)))) $)) (-15 -2747 ((-112) $)) (-15 -2756 ((-112) $)) (-15 -2766 ((-112) $ (-112))) (-15 -2776 ($ |#1| (-625 (-625 (-919 (-221)))) (-112)))) (-950)) (T -1181)) -((-2776 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *4 (-112)) (-5 *1 (-1181 *2)) (-4 *2 (-950)))) (-2766 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950)))) (-2756 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950)))) (-2747 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950)))) (-2738 (*1 *2 *1) (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *1 (-1181 *3)) (-4 *3 (-950)))) (-2728 (*1 *2 *1) (-12 (-5 *1 (-1181 *2)) (-4 *2 (-950))))) -(-10 -8 (-15 -2728 (|#1| $)) (-15 -2738 ((-625 (-625 (-919 (-221)))) $)) (-15 -2747 ((-112) $)) (-15 -2756 ((-112) $)) (-15 -2766 ((-112) $ (-112))) (-15 -2776 ($ |#1| (-625 (-625 (-919 (-221)))) (-112)))) -((-2787 (((-919 (-221)) (-919 (-221))) 25)) (-3582 (((-919 (-221)) (-221) (-221) (-221) (-221)) 10)) (-2807 (((-625 (-919 (-221))) (-919 (-221)) (-919 (-221)) (-919 (-221)) (-221) (-625 (-625 (-221)))) 37)) (-1443 (((-221) (-919 (-221)) (-919 (-221))) 21)) (-1431 (((-919 (-221)) (-919 (-221)) (-919 (-221))) 22)) (-2796 (((-625 (-625 (-221))) (-552)) 31)) (-2393 (((-919 (-221)) (-919 (-221)) (-919 (-221))) 20)) (-2382 (((-919 (-221)) (-919 (-221)) (-919 (-221))) 19)) (* (((-919 (-221)) (-221) (-919 (-221))) 18))) -(((-1182) (-10 -7 (-15 -3582 ((-919 (-221)) (-221) (-221) (-221) (-221))) (-15 * ((-919 (-221)) (-221) (-919 (-221)))) (-15 -2382 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -2393 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -1443 ((-221) (-919 (-221)) (-919 (-221)))) (-15 -1431 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -2787 ((-919 (-221)) (-919 (-221)))) (-15 -2796 ((-625 (-625 (-221))) (-552))) (-15 -2807 ((-625 (-919 (-221))) (-919 (-221)) (-919 (-221)) (-919 (-221)) (-221) (-625 (-625 (-221))))))) (T -1182)) -((-2807 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-625 (-625 (-221)))) (-5 *4 (-221)) (-5 *2 (-625 (-919 *4))) (-5 *1 (-1182)) (-5 *3 (-919 *4)))) (-2796 (*1 *2 *3) (-12 (-5 *3 (-552)) (-5 *2 (-625 (-625 (-221)))) (-5 *1 (-1182)))) (-2787 (*1 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) (-1431 (*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) (-1443 (*1 *2 *3 *3) (-12 (-5 *3 (-919 (-221))) (-5 *2 (-221)) (-5 *1 (-1182)))) (-2393 (*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) (-2382 (*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-919 (-221))) (-5 *3 (-221)) (-5 *1 (-1182)))) (-3582 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)) (-5 *3 (-221))))) -(-10 -7 (-15 -3582 ((-919 (-221)) (-221) (-221) (-221) (-221))) (-15 * ((-919 (-221)) (-221) (-919 (-221)))) (-15 -2382 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -2393 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -1443 ((-221) (-919 (-221)) (-919 (-221)))) (-15 -1431 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -2787 ((-919 (-221)) (-919 (-221)))) (-15 -2796 ((-625 (-625 (-221))) (-552))) (-15 -2807 ((-625 (-919 (-221))) (-919 (-221)) (-919 (-221)) (-919 (-221)) (-221) (-625 (-625 (-221)))))) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-3488 ((|#1| $ (-751)) 13)) (-3456 (((-751) $) 12)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-1683 (((-934 |#1|) $) 10) (($ (-934 |#1|)) 9) (((-839) $) 23 (|has| |#1| (-597 (-839))))) (-2281 (((-112) $ $) 16 (|has| |#1| (-1073))))) -(((-1183 |#1|) (-13 (-597 (-934 |#1|)) (-10 -8 (-15 -1683 ($ (-934 |#1|))) (-15 -3488 (|#1| $ (-751))) (-15 -3456 ((-751) $)) (IF (|has| |#1| (-597 (-839))) (-6 (-597 (-839))) |%noBranch|) (IF (|has| |#1| (-1073)) (-6 (-1073)) |%noBranch|))) (-1186)) (T -1183)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-934 *3)) (-4 *3 (-1186)) (-5 *1 (-1183 *3)))) (-3488 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-1183 *2)) (-4 *2 (-1186)))) (-3456 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1183 *3)) (-4 *3 (-1186))))) -(-13 (-597 (-934 |#1|)) (-10 -8 (-15 -1683 ($ (-934 |#1|))) (-15 -3488 (|#1| $ (-751))) (-15 -3456 ((-751) $)) (IF (|has| |#1| (-597 (-839))) (-6 (-597 (-839))) |%noBranch|) (IF (|has| |#1| (-1073)) (-6 (-1073)) |%noBranch|))) -((-2844 (((-413 (-1145 (-1145 |#1|))) (-1145 (-1145 |#1|)) (-552)) 80)) (-2819 (((-413 (-1145 (-1145 |#1|))) (-1145 (-1145 |#1|))) 74)) (-2833 (((-413 (-1145 (-1145 |#1|))) (-1145 (-1145 |#1|))) 59))) -(((-1184 |#1|) (-10 -7 (-15 -2819 ((-413 (-1145 (-1145 |#1|))) (-1145 (-1145 |#1|)))) (-15 -2833 ((-413 (-1145 (-1145 |#1|))) (-1145 (-1145 |#1|)))) (-15 -2844 ((-413 (-1145 (-1145 |#1|))) (-1145 (-1145 |#1|)) (-552)))) (-344)) (T -1184)) -((-2844 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-4 *5 (-344)) (-5 *2 (-413 (-1145 (-1145 *5)))) (-5 *1 (-1184 *5)) (-5 *3 (-1145 (-1145 *5))))) (-2833 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-413 (-1145 (-1145 *4)))) (-5 *1 (-1184 *4)) (-5 *3 (-1145 (-1145 *4))))) (-2819 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-413 (-1145 (-1145 *4)))) (-5 *1 (-1184 *4)) (-5 *3 (-1145 (-1145 *4)))))) -(-10 -7 (-15 -2819 ((-413 (-1145 (-1145 |#1|))) (-1145 (-1145 |#1|)))) (-15 -2833 ((-413 (-1145 (-1145 |#1|))) (-1145 (-1145 |#1|)))) (-15 -2844 ((-413 (-1145 (-1145 |#1|))) (-1145 (-1145 |#1|)) (-552)))) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 9) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL))) -(((-1185) (-1056)) (T -1185)) -NIL -(-1056) -NIL -(((-1186) (-138)) (T -1186)) -NIL -(-13 (-10 -7 (-6 -3526))) -((-2889 (((-112)) 15)) (-2856 (((-1237) (-625 |#1|) (-625 |#1|)) 19) (((-1237) (-625 |#1|)) 20)) (-2909 (((-112) |#1| |#1|) 32 (|has| |#1| (-827)))) (-2878 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 27) (((-3 (-112) "failed") |#1| |#1|) 25)) (-2899 ((|#1| (-625 |#1|)) 33 (|has| |#1| (-827))) ((|#1| (-625 |#1|) (-1 (-112) |#1| |#1|)) 28)) (-2867 (((-2 (|:| -2811 (-625 |#1|)) (|:| -2800 (-625 |#1|)))) 17))) -(((-1187 |#1|) (-10 -7 (-15 -2856 ((-1237) (-625 |#1|))) (-15 -2856 ((-1237) (-625 |#1|) (-625 |#1|))) (-15 -2867 ((-2 (|:| -2811 (-625 |#1|)) (|:| -2800 (-625 |#1|))))) (-15 -2878 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2878 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2899 (|#1| (-625 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2889 ((-112))) (IF (|has| |#1| (-827)) (PROGN (-15 -2899 (|#1| (-625 |#1|))) (-15 -2909 ((-112) |#1| |#1|))) |%noBranch|)) (-1073)) (T -1187)) -((-2909 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-827)) (-4 *3 (-1073)))) (-2899 (*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-4 *2 (-1073)) (-4 *2 (-827)) (-5 *1 (-1187 *2)))) (-2889 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-1073)))) (-2899 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1187 *2)) (-4 *2 (-1073)))) (-2878 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1073)) (-5 *2 (-112)) (-5 *1 (-1187 *3)))) (-2878 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-1073)))) (-2867 (*1 *2) (-12 (-5 *2 (-2 (|:| -2811 (-625 *3)) (|:| -2800 (-625 *3)))) (-5 *1 (-1187 *3)) (-4 *3 (-1073)))) (-2856 (*1 *2 *3 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-1073)) (-5 *2 (-1237)) (-5 *1 (-1187 *4)))) (-2856 (*1 *2 *3) (-12 (-5 *3 (-625 *4)) (-4 *4 (-1073)) (-5 *2 (-1237)) (-5 *1 (-1187 *4))))) -(-10 -7 (-15 -2856 ((-1237) (-625 |#1|))) (-15 -2856 ((-1237) (-625 |#1|) (-625 |#1|))) (-15 -2867 ((-2 (|:| -2811 (-625 |#1|)) (|:| -2800 (-625 |#1|))))) (-15 -2878 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2878 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2899 (|#1| (-625 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2889 ((-112))) (IF (|has| |#1| (-827)) (PROGN (-15 -2899 (|#1| (-625 |#1|))) (-15 -2909 ((-112) |#1| |#1|))) |%noBranch|)) -((-2919 (((-1237) (-625 (-1149)) (-625 (-1149))) 13) (((-1237) (-625 (-1149))) 11)) (-2941 (((-1237)) 14)) (-2931 (((-2 (|:| -2800 (-625 (-1149))) (|:| -2811 (-625 (-1149))))) 18))) -(((-1188) (-10 -7 (-15 -2919 ((-1237) (-625 (-1149)))) (-15 -2919 ((-1237) (-625 (-1149)) (-625 (-1149)))) (-15 -2931 ((-2 (|:| -2800 (-625 (-1149))) (|:| -2811 (-625 (-1149)))))) (-15 -2941 ((-1237))))) (T -1188)) -((-2941 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1188)))) (-2931 (*1 *2) (-12 (-5 *2 (-2 (|:| -2800 (-625 (-1149))) (|:| -2811 (-625 (-1149))))) (-5 *1 (-1188)))) (-2919 (*1 *2 *3 *3) (-12 (-5 *3 (-625 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1188)))) (-2919 (*1 *2 *3) (-12 (-5 *3 (-625 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1188))))) -(-10 -7 (-15 -2919 ((-1237) (-625 (-1149)))) (-15 -2919 ((-1237) (-625 (-1149)) (-625 (-1149)))) (-15 -2931 ((-2 (|:| -2800 (-625 (-1149))) (|:| -2811 (-625 (-1149)))))) (-15 -2941 ((-1237)))) -((-2194 (($ $) 17)) (-2951 (((-112) $) 24))) -(((-1189 |#1|) (-10 -8 (-15 -2194 (|#1| |#1|)) (-15 -2951 ((-112) |#1|))) (-1190)) (T -1189)) -NIL -(-10 -8 (-15 -2194 (|#1| |#1|)) (-15 -2951 ((-112) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 49)) (-1330 (((-413 $) $) 50)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-2951 (((-112) $) 51)) (-3650 (((-112) $) 30)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-3824 (((-413 $) $) 48)) (-2802 (((-3 $ "failed") $ $) 40)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41)) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24))) -(((-1190) (-138)) (T -1190)) -((-2951 (*1 *2 *1) (-12 (-4 *1 (-1190)) (-5 *2 (-112)))) (-1330 (*1 *2 *1) (-12 (-5 *2 (-413 *1)) (-4 *1 (-1190)))) (-2194 (*1 *1 *1) (-4 *1 (-1190))) (-3824 (*1 *2 *1) (-12 (-5 *2 (-413 *1)) (-4 *1 (-1190))))) -(-13 (-446) (-10 -8 (-15 -2951 ((-112) $)) (-15 -1330 ((-413 $) $)) (-15 -2194 ($ $)) (-15 -3824 ((-413 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-839)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-544) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-1996 (((-1196 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1196 |#1| |#3| |#5|)) 23))) -(((-1191 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1996 ((-1196 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1196 |#1| |#3| |#5|)))) (-1025) (-1025) (-1149) (-1149) |#1| |#2|) (T -1191)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1196 *5 *7 *9)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-14 *7 (-1149)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1196 *6 *8 *10)) (-5 *1 (-1191 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1149))))) -(-10 -7 (-15 -1996 ((-1196 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1196 |#1| |#3| |#5|)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3982 (((-625 (-1055)) $) 72)) (-2195 (((-1149) $) 101)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3528 (($ $) 50 (|has| |#1| (-544)))) (-3509 (((-112) $) 52 (|has| |#1| (-544)))) (-2162 (($ $ (-552)) 96) (($ $ (-552) (-552)) 95)) (-2182 (((-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 103)) (-3728 (($ $) 133 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 116 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 160 (|has| |#1| (-358)))) (-1330 (((-413 $) $) 161 (|has| |#1| (-358)))) (-3837 (($ $) 115 (|has| |#1| (-38 (-402 (-552)))))) (-2408 (((-112) $ $) 151 (|has| |#1| (-358)))) (-3710 (($ $) 132 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 117 (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 171)) (-3749 (($ $) 131 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 118 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) 17 T CONST)) (-2851 (($ $ $) 155 (|has| |#1| (-358)))) (-4169 (($ $) 58)) (-4174 (((-3 $ "failed") $) 32)) (-2965 (((-402 (-928 |#1|)) $ (-552)) 169 (|has| |#1| (-544))) (((-402 (-928 |#1|)) $ (-552) (-552)) 168 (|has| |#1| (-544)))) (-2826 (($ $ $) 154 (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 149 (|has| |#1| (-358)))) (-2951 (((-112) $) 162 (|has| |#1| (-358)))) (-3592 (((-112) $) 71)) (-1385 (($) 143 (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-552) $) 98) (((-552) $ (-552)) 97)) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 114 (|has| |#1| (-38 (-402 (-552)))))) (-2216 (($ $ (-897)) 99)) (-2493 (($ (-1 |#1| (-552)) $) 170)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 158 (|has| |#1| (-358)))) (-4201 (((-112) $) 60)) (-3957 (($ |#1| (-552)) 59) (($ $ (-1055) (-552)) 74) (($ $ (-625 (-1055)) (-625 (-552))) 73)) (-1996 (($ (-1 |#1| |#1|) $) 61)) (-2458 (($ $) 140 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) 63)) (-4144 ((|#1| $) 64)) (-2605 (($ (-625 $)) 147 (|has| |#1| (-358))) (($ $ $) 146 (|has| |#1| (-358)))) (-2883 (((-1131) $) 9)) (-4092 (($ $) 163 (|has| |#1| (-358)))) (-2481 (($ $) 167 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) 166 (-1523 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-935)) (|has| |#1| (-1171)) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-38 (-402 (-552)))))))) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 148 (|has| |#1| (-358)))) (-2633 (($ (-625 $)) 145 (|has| |#1| (-358))) (($ $ $) 144 (|has| |#1| (-358)))) (-3824 (((-413 $) $) 159 (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 156 (|has| |#1| (-358)))) (-2147 (($ $ (-552)) 93)) (-2802 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 150 (|has| |#1| (-358)))) (-2863 (($ $) 141 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-552)))))) (-2397 (((-751) $) 152 (|has| |#1| (-358)))) (-2154 ((|#1| $ (-552)) 102) (($ $ $) 79 (|has| (-552) (-1085)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 153 (|has| |#1| (-358)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) 87 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-1149) (-751)) 86 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-625 (-1149))) 85 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-1149)) 84 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-751)) 82 (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (-4276 (((-552) $) 62)) (-3759 (($ $) 130 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 119 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 129 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 120 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 128 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 121 (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) 70)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-402 (-552))) 55 (|has| |#1| (-38 (-402 (-552))))) (($ $) 47 (|has| |#1| (-544)))) (-3637 ((|#1| $ (-552)) 57)) (-4243 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-2845 ((|#1| $) 100)) (-3789 (($ $) 139 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 127 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) 51 (|has| |#1| (-544)))) (-3769 (($ $) 138 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 126 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 137 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 125 (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-552)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) 136 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 124 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 135 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 123 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 134 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 122 (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) 91 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-1149) (-751)) 90 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-625 (-1149))) 89 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-1149)) 88 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-751)) 83 (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 56 (|has| |#1| (-358))) (($ $ $) 165 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 164 (|has| |#1| (-358))) (($ $ $) 142 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 113 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-552)) $) 54 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 53 (|has| |#1| (-38 (-402 (-552))))))) -(((-1192 |#1|) (-138) (-1025)) (T -1192)) -((-3615 (*1 *1 *2) (-12 (-5 *2 (-1129 (-2 (|:| |k| (-552)) (|:| |c| *3)))) (-4 *3 (-1025)) (-4 *1 (-1192 *3)))) (-2493 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-552))) (-4 *1 (-1192 *3)) (-4 *3 (-1025)))) (-2965 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1192 *4)) (-4 *4 (-1025)) (-4 *4 (-544)) (-5 *2 (-402 (-928 *4))))) (-2965 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1192 *4)) (-4 *4 (-1025)) (-4 *4 (-544)) (-5 *2 (-402 (-928 *4))))) (-2481 (*1 *1 *1) (-12 (-4 *1 (-1192 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-552)))))) (-2481 (*1 *1 *1 *2) (-1523 (-12 (-5 *2 (-1149)) (-4 *1 (-1192 *3)) (-4 *3 (-1025)) (-12 (-4 *3 (-29 (-552))) (-4 *3 (-935)) (-4 *3 (-1171)) (-4 *3 (-38 (-402 (-552)))))) (-12 (-5 *2 (-1149)) (-4 *1 (-1192 *3)) (-4 *3 (-1025)) (-12 (|has| *3 (-15 -3982 ((-625 *2) *3))) (|has| *3 (-15 -2481 (*3 *3 *2))) (-4 *3 (-38 (-402 (-552))))))))) -(-13 (-1210 |t#1| (-552)) (-10 -8 (-15 -3615 ($ (-1129 (-2 (|:| |k| (-552)) (|:| |c| |t#1|))))) (-15 -2493 ($ (-1 |t#1| (-552)) $)) (IF (|has| |t#1| (-544)) (PROGN (-15 -2965 ((-402 (-928 |t#1|)) $ (-552))) (-15 -2965 ((-402 (-928 |t#1|)) $ (-552) (-552)))) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ($ $)) (IF (|has| |t#1| (-15 -2481 (|t#1| |t#1| (-1149)))) (IF (|has| |t#1| (-15 -3982 ((-625 (-1149)) |t#1|))) (-15 -2481 ($ $ (-1149))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1171)) (IF (|has| |t#1| (-935)) (IF (|has| |t#1| (-29 (-552))) (-15 -2481 ($ $ (-1149))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-978)) (-6 (-1171))) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-552)) . T) ((-25) . T) ((-38 #1=(-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-552)))) ((-94) |has| |#1| (-38 (-402 (-552)))) ((-101) . T) ((-111 #1# #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-552) |#1|))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-552)))) ((-281 $ $) |has| (-552) (-1085)) ((-285) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-358) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-486) |has| |#1| (-38 (-402 (-552)))) ((-544) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-628 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))) ((-949 |#1| #0# (-1055)) . T) ((-896) |has| |#1| (-358)) ((-978) |has| |#1| (-38 (-402 (-552)))) ((-1031 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1171) |has| |#1| (-38 (-402 (-552)))) ((-1174) |has| |#1| (-38 (-402 (-552)))) ((-1190) |has| |#1| (-358)) ((-1210 |#1| #0#) . T)) -((-3641 (((-112) $) 12)) (-1893 (((-3 |#3| "failed") $) 17) (((-3 (-1149) "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL)) (-1895 ((|#3| $) 14) (((-1149) $) NIL) (((-402 (-552)) $) NIL) (((-552) $) NIL))) -(((-1193 |#1| |#2| |#3|) (-10 -8 (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-1149) |#1|)) (-15 -1893 ((-3 (-1149) "failed") |#1|)) (-15 -1895 (|#3| |#1|)) (-15 -1893 ((-3 |#3| "failed") |#1|)) (-15 -3641 ((-112) |#1|))) (-1194 |#2| |#3|) (-1025) (-1223 |#2|)) (T -1193)) -NIL -(-10 -8 (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1895 ((-1149) |#1|)) (-15 -1893 ((-3 (-1149) "failed") |#1|)) (-15 -1895 (|#3| |#1|)) (-15 -1893 ((-3 |#3| "failed") |#1|)) (-15 -3641 ((-112) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-4177 ((|#2| $) 228 (-3743 (|has| |#2| (-302)) (|has| |#1| (-358))))) (-3982 (((-625 (-1055)) $) 72)) (-2195 (((-1149) $) 101)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3528 (($ $) 50 (|has| |#1| (-544)))) (-3509 (((-112) $) 52 (|has| |#1| (-544)))) (-2162 (($ $ (-552)) 96) (($ $ (-552) (-552)) 95)) (-2182 (((-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 103)) (-2999 ((|#2| $) 264)) (-2976 (((-3 |#2| "failed") $) 260)) (-4041 ((|#2| $) 261)) (-3728 (($ $) 133 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 116 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) 19)) (-4296 (((-413 (-1145 $)) (-1145 $)) 237 (-3743 (|has| |#2| (-885)) (|has| |#1| (-358))))) (-2194 (($ $) 160 (|has| |#1| (-358)))) (-1330 (((-413 $) $) 161 (|has| |#1| (-358)))) (-3837 (($ $) 115 (|has| |#1| (-38 (-402 (-552)))))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 234 (-3743 (|has| |#2| (-885)) (|has| |#1| (-358))))) (-2408 (((-112) $ $) 151 (|has| |#1| (-358)))) (-3710 (($ $) 132 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 117 (|has| |#1| (-38 (-402 (-552)))))) (-4127 (((-552) $) 246 (-3743 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-3615 (($ (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 171)) (-3749 (($ $) 131 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 118 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#2| "failed") $) 267) (((-3 (-552) "failed") $) 256 (-3743 (|has| |#2| (-1014 (-552))) (|has| |#1| (-358)))) (((-3 (-402 (-552)) "failed") $) 254 (-3743 (|has| |#2| (-1014 (-552))) (|has| |#1| (-358)))) (((-3 (-1149) "failed") $) 239 (-3743 (|has| |#2| (-1014 (-1149))) (|has| |#1| (-358))))) (-1895 ((|#2| $) 266) (((-552) $) 257 (-3743 (|has| |#2| (-1014 (-552))) (|has| |#1| (-358)))) (((-402 (-552)) $) 255 (-3743 (|has| |#2| (-1014 (-552))) (|has| |#1| (-358)))) (((-1149) $) 240 (-3743 (|has| |#2| (-1014 (-1149))) (|has| |#1| (-358))))) (-2987 (($ $) 263) (($ (-552) $) 262)) (-2851 (($ $ $) 155 (|has| |#1| (-358)))) (-4169 (($ $) 58)) (-1794 (((-669 |#2|) (-669 $)) 218 (|has| |#1| (-358))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) 217 (|has| |#1| (-358))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 216 (-3743 (|has| |#2| (-621 (-552))) (|has| |#1| (-358)))) (((-669 (-552)) (-669 $)) 215 (-3743 (|has| |#2| (-621 (-552))) (|has| |#1| (-358))))) (-4174 (((-3 $ "failed") $) 32)) (-2965 (((-402 (-928 |#1|)) $ (-552)) 169 (|has| |#1| (-544))) (((-402 (-928 |#1|)) $ (-552) (-552)) 168 (|has| |#1| (-544)))) (-3702 (($) 230 (-3743 (|has| |#2| (-537)) (|has| |#1| (-358))))) (-2826 (($ $ $) 154 (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 149 (|has| |#1| (-358)))) (-2951 (((-112) $) 162 (|has| |#1| (-358)))) (-3620 (((-112) $) 244 (-3743 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-3592 (((-112) $) 71)) (-1385 (($) 143 (|has| |#1| (-38 (-402 (-552)))))) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 222 (-3743 (|has| |#2| (-862 (-374))) (|has| |#1| (-358)))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 221 (-3743 (|has| |#2| (-862 (-552))) (|has| |#1| (-358))))) (-2172 (((-552) $) 98) (((-552) $ (-552)) 97)) (-3650 (((-112) $) 30)) (-2276 (($ $) 226 (|has| |#1| (-358)))) (-1356 ((|#2| $) 224 (|has| |#1| (-358)))) (-2429 (($ $ (-552)) 114 (|has| |#1| (-38 (-402 (-552)))))) (-4034 (((-3 $ "failed") $) 258 (-3743 (|has| |#2| (-1124)) (|has| |#1| (-358))))) (-3630 (((-112) $) 245 (-3743 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-2216 (($ $ (-897)) 99)) (-2493 (($ (-1 |#1| (-552)) $) 170)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 158 (|has| |#1| (-358)))) (-4201 (((-112) $) 60)) (-3957 (($ |#1| (-552)) 59) (($ $ (-1055) (-552)) 74) (($ $ (-625 (-1055)) (-625 (-552))) 73)) (-3658 (($ $ $) 248 (-3743 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-3332 (($ $ $) 249 (-3743 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-1996 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-358)))) (-2458 (($ $) 140 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) 63)) (-4144 ((|#1| $) 64)) (-2605 (($ (-625 $)) 147 (|has| |#1| (-358))) (($ $ $) 146 (|has| |#1| (-358)))) (-4053 (($ (-552) |#2|) 265)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 163 (|has| |#1| (-358)))) (-2481 (($ $) 167 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) 166 (-1523 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-935)) (|has| |#1| (-1171)) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-38 (-402 (-552)))))))) (-2071 (($) 259 (-3743 (|has| |#2| (-1124)) (|has| |#1| (-358))) CONST)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 148 (|has| |#1| (-358)))) (-2633 (($ (-625 $)) 145 (|has| |#1| (-358))) (($ $ $) 144 (|has| |#1| (-358)))) (-4166 (($ $) 229 (-3743 (|has| |#2| (-302)) (|has| |#1| (-358))))) (-4189 ((|#2| $) 232 (-3743 (|has| |#2| (-537)) (|has| |#1| (-358))))) (-4275 (((-413 (-1145 $)) (-1145 $)) 235 (-3743 (|has| |#2| (-885)) (|has| |#1| (-358))))) (-4286 (((-413 (-1145 $)) (-1145 $)) 236 (-3743 (|has| |#2| (-885)) (|has| |#1| (-358))))) (-3824 (((-413 $) $) 159 (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 156 (|has| |#1| (-358)))) (-2147 (($ $ (-552)) 93)) (-2802 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 150 (|has| |#1| (-358)))) (-2863 (($ $) 141 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-552))))) (($ $ (-1149) |#2|) 209 (-3743 (|has| |#2| (-507 (-1149) |#2|)) (|has| |#1| (-358)))) (($ $ (-625 (-1149)) (-625 |#2|)) 208 (-3743 (|has| |#2| (-507 (-1149) |#2|)) (|has| |#1| (-358)))) (($ $ (-625 (-289 |#2|))) 207 (-3743 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ (-289 |#2|)) 206 (-3743 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ |#2| |#2|) 205 (-3743 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ (-625 |#2|) (-625 |#2|)) 204 (-3743 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358))))) (-2397 (((-751) $) 152 (|has| |#1| (-358)))) (-2154 ((|#1| $ (-552)) 102) (($ $ $) 79 (|has| (-552) (-1085))) (($ $ |#2|) 203 (-3743 (|has| |#2| (-281 |#2| |#2|)) (|has| |#1| (-358))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 153 (|has| |#1| (-358)))) (-3072 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-751)) 213 (|has| |#1| (-358))) (($ $ (-751)) 82 (-1523 (-3743 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 80 (-1523 (-3743 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-625 (-1149)) (-625 (-751))) 87 (-1523 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-1149) (-751)) 86 (-1523 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-625 (-1149))) 85 (-1523 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-1149)) 84 (-1523 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))))) (-2265 (($ $) 227 (|has| |#1| (-358)))) (-1368 ((|#2| $) 225 (|has| |#1| (-358)))) (-4276 (((-552) $) 62)) (-3759 (($ $) 130 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 119 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 129 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 120 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 128 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 121 (|has| |#1| (-38 (-402 (-552)))))) (-2042 (((-221) $) 243 (-3743 (|has| |#2| (-998)) (|has| |#1| (-358)))) (((-374) $) 242 (-3743 (|has| |#2| (-998)) (|has| |#1| (-358)))) (((-528) $) 241 (-3743 (|has| |#2| (-598 (-528))) (|has| |#1| (-358)))) (((-868 (-374)) $) 220 (-3743 (|has| |#2| (-598 (-868 (-374)))) (|has| |#1| (-358)))) (((-868 (-552)) $) 219 (-3743 (|has| |#2| (-598 (-868 (-552)))) (|has| |#1| (-358))))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 233 (-3743 (-3743 (|has| $ (-143)) (|has| |#2| (-885))) (|has| |#1| (-358))))) (-3580 (($ $) 70)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 268) (($ (-1149)) 238 (-3743 (|has| |#2| (-1014 (-1149))) (|has| |#1| (-358)))) (($ (-402 (-552))) 55 (|has| |#1| (-38 (-402 (-552))))) (($ $) 47 (|has| |#1| (-544)))) (-3637 ((|#1| $ (-552)) 57)) (-4243 (((-3 $ "failed") $) 46 (-1523 (-3743 (-1523 (|has| |#2| (-143)) (-3743 (|has| $ (-143)) (|has| |#2| (-885)))) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-4141 (((-751)) 28)) (-2845 ((|#1| $) 100)) (-4199 ((|#2| $) 231 (-3743 (|has| |#2| (-537)) (|has| |#1| (-358))))) (-3789 (($ $) 139 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 127 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) 51 (|has| |#1| (-544)))) (-3769 (($ $) 138 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 126 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 137 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 125 (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-552)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) 136 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 124 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 135 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 123 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 134 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 122 (|has| |#1| (-38 (-402 (-552)))))) (-1727 (($ $) 247 (-3743 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-751)) 211 (|has| |#1| (-358))) (($ $ (-751)) 83 (-1523 (-3743 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 81 (-1523 (-3743 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-625 (-1149)) (-625 (-751))) 91 (-1523 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-1149) (-751)) 90 (-1523 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-625 (-1149))) 89 (-1523 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-1149)) 88 (-1523 (-3743 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))))) (-2346 (((-112) $ $) 251 (-3743 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-2320 (((-112) $ $) 252 (-3743 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 250 (-3743 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-2307 (((-112) $ $) 253 (-3743 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-2404 (($ $ |#1|) 56 (|has| |#1| (-358))) (($ $ $) 165 (|has| |#1| (-358))) (($ |#2| |#2|) 223 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 164 (|has| |#1| (-358))) (($ $ $) 142 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 113 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-358))) (($ |#2| $) 201 (|has| |#1| (-358))) (($ (-402 (-552)) $) 54 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 53 (|has| |#1| (-38 (-402 (-552))))))) -(((-1194 |#1| |#2|) (-138) (-1025) (-1223 |t#1|)) (T -1194)) -((-4276 (*1 *2 *1) (-12 (-4 *1 (-1194 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1223 *3)) (-5 *2 (-552)))) (-1683 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *1 (-1194 *3 *2)) (-4 *2 (-1223 *3)))) (-4053 (*1 *1 *2 *3) (-12 (-5 *2 (-552)) (-4 *4 (-1025)) (-4 *1 (-1194 *4 *3)) (-4 *3 (-1223 *4)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-1194 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1223 *3)))) (-2987 (*1 *1 *1) (-12 (-4 *1 (-1194 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1223 *2)))) (-2987 (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-4 *1 (-1194 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1223 *3)))) (-4041 (*1 *2 *1) (-12 (-4 *1 (-1194 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1223 *3)))) (-2976 (*1 *2 *1) (|partial| -12 (-4 *1 (-1194 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1223 *3))))) -(-13 (-1192 |t#1|) (-1014 |t#2|) (-10 -8 (-15 -4053 ($ (-552) |t#2|)) (-15 -4276 ((-552) $)) (-15 -2999 (|t#2| $)) (-15 -2987 ($ $)) (-15 -2987 ($ (-552) $)) (-15 -1683 ($ |t#2|)) (-15 -4041 (|t#2| $)) (-15 -2976 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-358)) (-6 (-968 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-552)) . T) ((-25) . T) ((-38 #1=(-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 |#2|) |has| |#1| (-358)) ((-38 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-552)))) ((-94) |has| |#1| (-38 (-402 (-552)))) ((-101) . T) ((-111 #1# #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-358)) ((-111 $ $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) -1523 (-12 (|has| |#1| (-358)) (|has| |#2| (-143))) (|has| |#1| (-143))) ((-145) -1523 (-12 (|has| |#1| (-358)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-598 (-221)) -12 (|has| |#1| (-358)) (|has| |#2| (-998))) ((-598 (-374)) -12 (|has| |#1| (-358)) (|has| |#2| (-998))) ((-598 (-528)) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-528)))) ((-598 (-868 (-374))) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-868 (-374))))) ((-598 (-868 (-552))) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-868 (-552))))) ((-227 |#2|) |has| |#1| (-358)) ((-229) -1523 (-12 (|has| |#1| (-358)) (|has| |#2| (-229))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-552)))) ((-281 |#2| $) -12 (|has| |#1| (-358)) (|has| |#2| (-281 |#2| |#2|))) ((-281 $ $) |has| (-552) (-1085)) ((-285) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-304 |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))) ((-358) |has| |#1| (-358)) ((-333 |#2|) |has| |#1| (-358)) ((-372 |#2|) |has| |#1| (-358)) ((-395 |#2|) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-486) |has| |#1| (-38 (-402 (-552)))) ((-507 (-1149) |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-507 (-1149) |#2|))) ((-507 |#2| |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))) ((-544) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-628 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-628 |#1|) . T) ((-628 |#2|) |has| |#1| (-358)) ((-628 $) . T) ((-621 (-552)) -12 (|has| |#1| (-358)) (|has| |#2| (-621 (-552)))) ((-621 |#2|) |has| |#1| (-358)) ((-698 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-698 |#1|) |has| |#1| (-170)) ((-698 |#2|) |has| |#1| (-358)) ((-698 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-707) . T) ((-771) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-772) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-774) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-775) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-800) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-825) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-827) -1523 (-12 (|has| |#1| (-358)) (|has| |#2| (-827))) (-12 (|has| |#1| (-358)) (|has| |#2| (-800)))) ((-876 (-1149)) -1523 (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149)))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))) ((-862 (-374)) -12 (|has| |#1| (-358)) (|has| |#2| (-862 (-374)))) ((-862 (-552)) -12 (|has| |#1| (-358)) (|has| |#2| (-862 (-552)))) ((-860 |#2|) |has| |#1| (-358)) ((-885) -12 (|has| |#1| (-358)) (|has| |#2| (-885))) ((-949 |#1| #0# (-1055)) . T) ((-896) |has| |#1| (-358)) ((-968 |#2|) |has| |#1| (-358)) ((-978) |has| |#1| (-38 (-402 (-552)))) ((-998) -12 (|has| |#1| (-358)) (|has| |#2| (-998))) ((-1014 (-402 (-552))) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-552)))) ((-1014 (-552)) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-552)))) ((-1014 (-1149)) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-1149)))) ((-1014 |#2|) . T) ((-1031 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-1031 |#1|) . T) ((-1031 |#2|) |has| |#1| (-358)) ((-1031 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1124) -12 (|has| |#1| (-358)) (|has| |#2| (-1124))) ((-1171) |has| |#1| (-38 (-402 (-552)))) ((-1174) |has| |#1| (-38 (-402 (-552)))) ((-1186) |has| |#1| (-358)) ((-1190) |has| |#1| (-358)) ((-1192 |#1|) . T) ((-1210 |#1| #0#) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 70)) (-4177 ((|#2| $) NIL (-12 (|has| |#2| (-302)) (|has| |#1| (-358))))) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) 88)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2162 (($ $ (-552)) 97) (($ $ (-552) (-552)) 99)) (-2182 (((-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 47)) (-2999 ((|#2| $) 11)) (-2976 (((-3 |#2| "failed") $) 30)) (-4041 ((|#2| $) 31)) (-3728 (($ $) 192 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 168 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| |#2| (-885)) (|has| |#1| (-358))))) (-2194 (($ $) NIL (|has| |#1| (-358)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-358)))) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (-12 (|has| |#2| (-885)) (|has| |#1| (-358))))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3710 (($ $) 188 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 164 (|has| |#1| (-38 (-402 (-552)))))) (-4127 (((-552) $) NIL (-12 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-3615 (($ (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 57)) (-3749 (($ $) 196 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 172 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) 144) (((-3 (-552) "failed") $) NIL (-12 (|has| |#2| (-1014 (-552))) (|has| |#1| (-358)))) (((-3 (-402 (-552)) "failed") $) NIL (-12 (|has| |#2| (-1014 (-552))) (|has| |#1| (-358)))) (((-3 (-1149) "failed") $) NIL (-12 (|has| |#2| (-1014 (-1149))) (|has| |#1| (-358))))) (-1895 ((|#2| $) 143) (((-552) $) NIL (-12 (|has| |#2| (-1014 (-552))) (|has| |#1| (-358)))) (((-402 (-552)) $) NIL (-12 (|has| |#2| (-1014 (-552))) (|has| |#1| (-358)))) (((-1149) $) NIL (-12 (|has| |#2| (-1014 (-1149))) (|has| |#1| (-358))))) (-2987 (($ $) 61) (($ (-552) $) 24)) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) NIL)) (-1794 (((-669 |#2|) (-669 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (-12 (|has| |#2| (-621 (-552))) (|has| |#1| (-358)))) (((-669 (-552)) (-669 $)) NIL (-12 (|has| |#2| (-621 (-552))) (|has| |#1| (-358))))) (-4174 (((-3 $ "failed") $) 77)) (-2965 (((-402 (-928 |#1|)) $ (-552)) 112 (|has| |#1| (-544))) (((-402 (-928 |#1|)) $ (-552) (-552)) 114 (|has| |#1| (-544)))) (-3702 (($) NIL (-12 (|has| |#2| (-537)) (|has| |#1| (-358))))) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-2951 (((-112) $) NIL (|has| |#1| (-358)))) (-3620 (((-112) $) NIL (-12 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-3592 (((-112) $) 64)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| |#2| (-862 (-374))) (|has| |#1| (-358)))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| |#2| (-862 (-552))) (|has| |#1| (-358))))) (-2172 (((-552) $) 93) (((-552) $ (-552)) 95)) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL (|has| |#1| (-358)))) (-1356 ((|#2| $) 151 (|has| |#1| (-358)))) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4034 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1124)) (|has| |#1| (-358))))) (-3630 (((-112) $) NIL (-12 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-2216 (($ $ (-897)) 136)) (-2493 (($ (-1 |#1| (-552)) $) 132)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-552)) 19) (($ $ (-1055) (-552)) NIL) (($ $ (-625 (-1055)) (-625 (-552))) NIL)) (-3658 (($ $ $) NIL (-12 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-3332 (($ $ $) NIL (-12 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-1996 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-358)))) (-2458 (($ $) 162 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4053 (($ (-552) |#2|) 10)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 145 (|has| |#1| (-358)))) (-2481 (($ $) 214 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) 219 (-1523 (-12 (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-935)) (|has| |#1| (-1171)))))) (-2071 (($) NIL (-12 (|has| |#2| (-1124)) (|has| |#1| (-358))) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4166 (($ $) NIL (-12 (|has| |#2| (-302)) (|has| |#1| (-358))))) (-4189 ((|#2| $) NIL (-12 (|has| |#2| (-537)) (|has| |#1| (-358))))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| |#2| (-885)) (|has| |#1| (-358))))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| |#2| (-885)) (|has| |#1| (-358))))) (-3824 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2147 (($ $ (-552)) 126)) (-2802 (((-3 $ "failed") $ $) 116 (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-2863 (($ $) 160 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-552))))) (($ $ (-1149) |#2|) NIL (-12 (|has| |#2| (-507 (-1149) |#2|)) (|has| |#1| (-358)))) (($ $ (-625 (-1149)) (-625 |#2|)) NIL (-12 (|has| |#2| (-507 (-1149) |#2|)) (|has| |#1| (-358)))) (($ $ (-625 (-289 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ (-289 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ (-625 |#2|) (-625 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358))))) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ (-552)) 91) (($ $ $) 79 (|has| (-552) (-1085))) (($ $ |#2|) NIL (-12 (|has| |#2| (-281 |#2| |#2|)) (|has| |#1| (-358))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-3072 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#1| (-358))) (($ $ (-751)) NIL (-1523 (-12 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 137 (-1523 (-12 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-1523 (-12 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149) (-751)) NIL (-1523 (-12 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-625 (-1149))) NIL (-1523 (-12 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149)) 140 (-1523 (-12 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))))) (-2265 (($ $) NIL (|has| |#1| (-358)))) (-1368 ((|#2| $) 152 (|has| |#1| (-358)))) (-4276 (((-552) $) 12)) (-3759 (($ $) 198 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 174 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 194 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 170 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 190 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 166 (|has| |#1| (-38 (-402 (-552)))))) (-2042 (((-221) $) NIL (-12 (|has| |#2| (-998)) (|has| |#1| (-358)))) (((-374) $) NIL (-12 (|has| |#2| (-998)) (|has| |#1| (-358)))) (((-528) $) NIL (-12 (|has| |#2| (-598 (-528))) (|has| |#1| (-358)))) (((-868 (-374)) $) NIL (-12 (|has| |#2| (-598 (-868 (-374)))) (|has| |#1| (-358)))) (((-868 (-552)) $) NIL (-12 (|has| |#2| (-598 (-868 (-552)))) (|has| |#1| (-358))))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-885)) (|has| |#1| (-358))))) (-3580 (($ $) 124)) (-1683 (((-839) $) 245) (($ (-552)) 23) (($ |#1|) 21 (|has| |#1| (-170))) (($ |#2|) 20) (($ (-1149)) NIL (-12 (|has| |#2| (-1014 (-1149))) (|has| |#1| (-358)))) (($ (-402 (-552))) 155 (|has| |#1| (-38 (-402 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-3637 ((|#1| $ (-552)) 74)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#2| (-885)) (|has| |#1| (-358))) (-12 (|has| |#2| (-143)) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-4141 (((-751)) 142)) (-2845 ((|#1| $) 90)) (-4199 ((|#2| $) NIL (-12 (|has| |#2| (-537)) (|has| |#1| (-358))))) (-3789 (($ $) 204 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 180 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) 200 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 176 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 208 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 184 (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-552)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) 210 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 186 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 206 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 182 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 202 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 178 (|has| |#1| (-38 (-402 (-552)))))) (-1727 (($ $) NIL (-12 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-2089 (($) 13 T CONST)) (-2100 (($) 17 T CONST)) (-3768 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#1| (-358))) (($ $ (-751)) NIL (-1523 (-12 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) NIL (-1523 (-12 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-1523 (-12 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149) (-751)) NIL (-1523 (-12 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-625 (-1149))) NIL (-1523 (-12 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))))) (-2346 (((-112) $ $) NIL (-12 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-2320 (((-112) $ $) NIL (-12 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-2281 (((-112) $ $) 63)) (-2334 (((-112) $ $) NIL (-12 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-2307 (((-112) $ $) NIL (-12 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 149 (|has| |#1| (-358))) (($ |#2| |#2|) 150 (|has| |#1| (-358)))) (-2393 (($ $) 213) (($ $ $) 68)) (-2382 (($ $ $) 66)) (** (($ $ (-897)) NIL) (($ $ (-751)) 73) (($ $ (-552)) 146 (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 158 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-358))) (($ |#2| $) 147 (|has| |#1| (-358))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))))) -(((-1195 |#1| |#2|) (-1194 |#1| |#2|) (-1025) (-1223 |#1|)) (T -1195)) -NIL -(-1194 |#1| |#2|) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-4177 (((-1224 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) 10)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544))))) (-3528 (($ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544))))) (-3509 (((-112) $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544))))) (-2162 (($ $ (-552)) NIL) (($ $ (-552) (-552)) NIL)) (-2182 (((-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) NIL)) (-2999 (((-1224 |#1| |#2| |#3|) $) NIL)) (-2976 (((-3 (-1224 |#1| |#2| |#3|) "failed") $) NIL)) (-4041 (((-1224 |#1| |#2| |#3|) $) NIL)) (-3728 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))))) (-2194 (($ $) NIL (|has| |#1| (-358)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-358)))) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3710 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4127 (((-552) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-3615 (($ (-1129 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) NIL)) (-3749 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-1224 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1149) "failed") $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (((-3 (-402 (-552)) "failed") $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-1014 (-552))) (|has| |#1| (-358)))) (((-3 (-552) "failed") $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-1014 (-552))) (|has| |#1| (-358))))) (-1895 (((-1224 |#1| |#2| |#3|) $) NIL) (((-1149) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (((-402 (-552)) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-1014 (-552))) (|has| |#1| (-358)))) (((-552) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-1014 (-552))) (|has| |#1| (-358))))) (-2987 (($ $) NIL) (($ (-552) $) NIL)) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) NIL)) (-1794 (((-669 (-1224 |#1| |#2| |#3|)) (-669 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2351 (-669 (-1224 |#1| |#2| |#3|))) (|:| |vec| (-1232 (-1224 |#1| |#2| |#3|)))) (-669 $) (-1232 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-621 (-552))) (|has| |#1| (-358)))) (((-669 (-552)) (-669 $)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-621 (-552))) (|has| |#1| (-358))))) (-4174 (((-3 $ "failed") $) NIL)) (-2965 (((-402 (-928 |#1|)) $ (-552)) NIL (|has| |#1| (-544))) (((-402 (-928 |#1|)) $ (-552) (-552)) NIL (|has| |#1| (-544)))) (-3702 (($) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-2951 (((-112) $) NIL (|has| |#1| (-358)))) (-3620 (((-112) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-3592 (((-112) $) NIL)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3841 (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-862 (-552))) (|has| |#1| (-358)))) (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-862 (-374))) (|has| |#1| (-358))))) (-2172 (((-552) $) NIL) (((-552) $ (-552)) NIL)) (-3650 (((-112) $) NIL)) (-2276 (($ $) NIL (|has| |#1| (-358)))) (-1356 (((-1224 |#1| |#2| |#3|) $) NIL (|has| |#1| (-358)))) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4034 (((-3 $ "failed") $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-1124)) (|has| |#1| (-358))))) (-3630 (((-112) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-2216 (($ $ (-897)) NIL)) (-2493 (($ (-1 |#1| (-552)) $) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-552)) 17) (($ $ (-1055) (-552)) NIL) (($ $ (-625 (-1055)) (-625 (-552))) NIL)) (-3658 (($ $ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-3332 (($ $ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-358)))) (-2458 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4053 (($ (-552) (-1224 |#1| |#2| |#3|)) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| |#1| (-358)))) (-2481 (($ $) 25 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-935)) (|has| |#1| (-1171))))) (($ $ (-1228 |#2|)) 26 (|has| |#1| (-38 (-402 (-552)))))) (-2071 (($) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-1124)) (|has| |#1| (-358))) CONST)) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4166 (($ $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-4189 (((-1224 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))))) (-3824 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2147 (($ $ (-552)) NIL)) (-2802 (((-3 $ "failed") $ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544))))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-2863 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-552))))) (($ $ (-1149) (-1224 |#1| |#2| |#3|)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-507 (-1149) (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-625 (-1149)) (-625 (-1224 |#1| |#2| |#3|))) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-507 (-1149) (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-625 (-289 (-1224 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-304 (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-289 (-1224 |#1| |#2| |#3|))) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-304 (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-304 (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-625 (-1224 |#1| |#2| |#3|)) (-625 (-1224 |#1| |#2| |#3|))) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-304 (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ (-552)) NIL) (($ $ $) NIL (|has| (-552) (-1085))) (($ $ (-1224 |#1| |#2| |#3|)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-281 (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-3072 (($ $ (-1 (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|)) (-751)) NIL (|has| |#1| (-358))) (($ $ (-1228 |#2|)) 24) (($ $ (-751)) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 23 (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149) (-751)) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-625 (-1149))) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))))) (-2265 (($ $) NIL (|has| |#1| (-358)))) (-1368 (((-1224 |#1| |#2| |#3|) $) NIL (|has| |#1| (-358)))) (-4276 (((-552) $) NIL)) (-3759 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2042 (((-528) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-598 (-528))) (|has| |#1| (-358)))) (((-374) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-998)) (|has| |#1| (-358)))) (((-221) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-998)) (|has| |#1| (-358)))) (((-868 (-374)) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-598 (-868 (-374)))) (|has| |#1| (-358)))) (((-868 (-552)) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-598 (-868 (-552)))) (|has| |#1| (-358))))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))))) (-3580 (($ $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1224 |#1| |#2| |#3|)) NIL) (($ (-1228 |#2|)) 22) (($ (-1149)) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (($ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544)))) (($ (-402 (-552))) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-1014 (-552))) (|has| |#1| (-358))) (|has| |#1| (-38 (-402 (-552))))))) (-3637 ((|#1| $ (-552)) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-143)) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-4141 (((-751)) NIL)) (-2845 ((|#1| $) 11)) (-4199 (((-1224 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-3789 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-885)) (|has| |#1| (-358))) (|has| |#1| (-544))))) (-3769 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-552)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-1727 (($ $) NIL (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-2089 (($) 19 T CONST)) (-2100 (($) 15 T CONST)) (-3768 (($ $ (-1 (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|)) (-751)) NIL (|has| |#1| (-358))) (($ $ (-751)) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149) (-751)) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-625 (-1149))) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149)))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-876 (-1149))))))) (-2346 (((-112) $ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-2320 (((-112) $ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-2307 (((-112) $ $) NIL (-1523 (-12 (|has| (-1224 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1224 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358))) (($ (-1224 |#1| |#2| |#3|) (-1224 |#1| |#2| |#3|)) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 20)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1224 |#1| |#2| |#3|)) NIL (|has| |#1| (-358))) (($ (-1224 |#1| |#2| |#3|) $) NIL (|has| |#1| (-358))) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))))) -(((-1196 |#1| |#2| |#3|) (-13 (-1194 |#1| (-1224 |#1| |#2| |#3|)) (-10 -8 (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1196)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1196 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1196 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-2481 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1196 *3 *4 *5)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3)))) -(-13 (-1194 |#1| (-1224 |#1| |#2| |#3|)) (-10 -8 (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|))) -((-3023 (((-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))) |#1| (-112)) 12)) (-3011 (((-413 |#1|) |#1|) 22)) (-3824 (((-413 |#1|) |#1|) 21))) -(((-1197 |#1|) (-10 -7 (-15 -3824 ((-413 |#1|) |#1|)) (-15 -3011 ((-413 |#1|) |#1|)) (-15 -3023 ((-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))) |#1| (-112)))) (-1208 (-552))) (T -1197)) -((-3023 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| *3) (|:| -3515 (-552))))))) (-5 *1 (-1197 *3)) (-4 *3 (-1208 (-552))))) (-3011 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-1208 (-552))))) (-3824 (*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-1208 (-552)))))) -(-10 -7 (-15 -3824 ((-413 |#1|) |#1|)) (-15 -3011 ((-413 |#1|) |#1|)) (-15 -3023 ((-2 (|:| |contp| (-552)) (|:| -3449 (-625 (-2 (|:| |irr| |#1|) (|:| -3515 (-552)))))) |#1| (-112)))) -((-1996 (((-1129 |#2|) (-1 |#2| |#1|) (-1199 |#1|)) 23 (|has| |#1| (-825))) (((-1199 |#2|) (-1 |#2| |#1|) (-1199 |#1|)) 17))) -(((-1198 |#1| |#2|) (-10 -7 (-15 -1996 ((-1199 |#2|) (-1 |#2| |#1|) (-1199 |#1|))) (IF (|has| |#1| (-825)) (-15 -1996 ((-1129 |#2|) (-1 |#2| |#1|) (-1199 |#1|))) |%noBranch|)) (-1186) (-1186)) (T -1198)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1199 *5)) (-4 *5 (-825)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-1129 *6)) (-5 *1 (-1198 *5 *6)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1199 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-1199 *6)) (-5 *1 (-1198 *5 *6))))) -(-10 -7 (-15 -1996 ((-1199 |#2|) (-1 |#2| |#1|) (-1199 |#1|))) (IF (|has| |#1| (-825)) (-15 -1996 ((-1129 |#2|) (-1 |#2| |#1|) (-1199 |#1|))) |%noBranch|)) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2735 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-1996 (((-1129 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-825)))) (-2811 ((|#1| $) 14)) (-3286 ((|#1| $) 10)) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3295 (((-552) $) 18)) (-2800 ((|#1| $) 17)) (-3305 ((|#1| $) 11)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-3034 (((-112) $) 16)) (-3455 (((-1129 |#1|) $) 38 (|has| |#1| (-825))) (((-1129 |#1|) (-625 $)) 37 (|has| |#1| (-825)))) (-2042 (($ |#1|) 25)) (-1683 (($ (-1067 |#1|)) 24) (((-839) $) 34 (|has| |#1| (-1073)))) (-1504 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-2060 (($ $ (-552)) 13)) (-2281 (((-112) $ $) 27 (|has| |#1| (-1073))))) -(((-1199 |#1|) (-13 (-1066 |#1|) (-10 -8 (-15 -1504 ($ |#1|)) (-15 -2735 ($ |#1|)) (-15 -1683 ($ (-1067 |#1|))) (-15 -3034 ((-112) $)) (IF (|has| |#1| (-1073)) (-6 (-1073)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-1068 |#1| (-1129 |#1|))) |%noBranch|))) (-1186)) (T -1199)) -((-1504 (*1 *1 *2) (-12 (-5 *1 (-1199 *2)) (-4 *2 (-1186)))) (-2735 (*1 *1 *2) (-12 (-5 *1 (-1199 *2)) (-4 *2 (-1186)))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1067 *3)) (-4 *3 (-1186)) (-5 *1 (-1199 *3)))) (-3034 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1199 *3)) (-4 *3 (-1186))))) -(-13 (-1066 |#1|) (-10 -8 (-15 -1504 ($ |#1|)) (-15 -2735 ($ |#1|)) (-15 -1683 ($ (-1067 |#1|))) (-15 -3034 ((-112) $)) (IF (|has| |#1| (-1073)) (-6 (-1073)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-1068 |#1| (-1129 |#1|))) |%noBranch|))) -((-1996 (((-1205 |#3| |#4|) (-1 |#4| |#2|) (-1205 |#1| |#2|)) 15))) -(((-1200 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1996 ((-1205 |#3| |#4|) (-1 |#4| |#2|) (-1205 |#1| |#2|)))) (-1149) (-1025) (-1149) (-1025)) (T -1200)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1205 *5 *6)) (-14 *5 (-1149)) (-4 *6 (-1025)) (-4 *8 (-1025)) (-5 *2 (-1205 *7 *8)) (-5 *1 (-1200 *5 *6 *7 *8)) (-14 *7 (-1149))))) -(-10 -7 (-15 -1996 ((-1205 |#3| |#4|) (-1 |#4| |#2|) (-1205 |#1| |#2|)))) -((-3076 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3055 ((|#1| |#3|) 13)) (-3066 ((|#3| |#3|) 19))) -(((-1201 |#1| |#2| |#3|) (-10 -7 (-15 -3055 (|#1| |#3|)) (-15 -3066 (|#3| |#3|)) (-15 -3076 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-544) (-968 |#1|) (-1208 |#2|)) (T -1201)) -((-3076 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-968 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1201 *4 *5 *3)) (-4 *3 (-1208 *5)))) (-3066 (*1 *2 *2) (-12 (-4 *3 (-544)) (-4 *4 (-968 *3)) (-5 *1 (-1201 *3 *4 *2)) (-4 *2 (-1208 *4)))) (-3055 (*1 *2 *3) (-12 (-4 *4 (-968 *2)) (-4 *2 (-544)) (-5 *1 (-1201 *2 *4 *3)) (-4 *3 (-1208 *4))))) -(-10 -7 (-15 -3055 (|#1| |#3|)) (-15 -3066 (|#3| |#3|)) (-15 -3076 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3092 (((-3 |#2| "failed") |#2| (-751) |#1|) 29)) (-3084 (((-3 |#2| "failed") |#2| (-751)) 30)) (-3109 (((-3 (-2 (|:| -2290 |#2|) (|:| -2303 |#2|)) "failed") |#2|) 43)) (-3117 (((-625 |#2|) |#2|) 45)) (-3099 (((-3 |#2| "failed") |#2| |#2|) 40))) -(((-1202 |#1| |#2|) (-10 -7 (-15 -3084 ((-3 |#2| "failed") |#2| (-751))) (-15 -3092 ((-3 |#2| "failed") |#2| (-751) |#1|)) (-15 -3099 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3109 ((-3 (-2 (|:| -2290 |#2|) (|:| -2303 |#2|)) "failed") |#2|)) (-15 -3117 ((-625 |#2|) |#2|))) (-13 (-544) (-145)) (-1208 |#1|)) (T -1202)) -((-3117 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-145))) (-5 *2 (-625 *3)) (-5 *1 (-1202 *4 *3)) (-4 *3 (-1208 *4)))) (-3109 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-544) (-145))) (-5 *2 (-2 (|:| -2290 *3) (|:| -2303 *3))) (-5 *1 (-1202 *4 *3)) (-4 *3 (-1208 *4)))) (-3099 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-544) (-145))) (-5 *1 (-1202 *3 *2)) (-4 *2 (-1208 *3)))) (-3092 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-751)) (-4 *4 (-13 (-544) (-145))) (-5 *1 (-1202 *4 *2)) (-4 *2 (-1208 *4)))) (-3084 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-751)) (-4 *4 (-13 (-544) (-145))) (-5 *1 (-1202 *4 *2)) (-4 *2 (-1208 *4))))) -(-10 -7 (-15 -3084 ((-3 |#2| "failed") |#2| (-751))) (-15 -3092 ((-3 |#2| "failed") |#2| (-751) |#1|)) (-15 -3099 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3109 ((-3 (-2 (|:| -2290 |#2|) (|:| -2303 |#2|)) "failed") |#2|)) (-15 -3117 ((-625 |#2|) |#2|))) -((-3127 (((-3 (-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) "failed") |#2| |#2|) 32))) -(((-1203 |#1| |#2|) (-10 -7 (-15 -3127 ((-3 (-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) "failed") |#2| |#2|))) (-544) (-1208 |#1|)) (T -1203)) -((-3127 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-544)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-1203 *4 *3)) (-4 *3 (-1208 *4))))) -(-10 -7 (-15 -3127 ((-3 (-2 (|:| -3984 |#2|) (|:| -3645 |#2|)) "failed") |#2| |#2|))) -((-3135 ((|#2| |#2| |#2|) 19)) (-3146 ((|#2| |#2| |#2|) 30)) (-3158 ((|#2| |#2| |#2| (-751) (-751)) 36))) -(((-1204 |#1| |#2|) (-10 -7 (-15 -3135 (|#2| |#2| |#2|)) (-15 -3146 (|#2| |#2| |#2|)) (-15 -3158 (|#2| |#2| |#2| (-751) (-751)))) (-1025) (-1208 |#1|)) (T -1204)) -((-3158 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *1 (-1204 *4 *2)) (-4 *2 (-1208 *4)))) (-3146 (*1 *2 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-1204 *3 *2)) (-4 *2 (-1208 *3)))) (-3135 (*1 *2 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-1204 *3 *2)) (-4 *2 (-1208 *3))))) -(-10 -7 (-15 -3135 (|#2| |#2| |#2|)) (-15 -3146 (|#2| |#2| |#2|)) (-15 -3158 (|#2| |#2| |#2| (-751) (-751)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2138 (((-1232 |#2|) $ (-751)) NIL)) (-3982 (((-625 (-1055)) $) NIL)) (-2117 (($ (-1145 |#2|)) NIL)) (-3793 (((-1145 $) $ (-1055)) NIL) (((-1145 |#2|) $) NIL)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3528 (($ $) NIL (|has| |#2| (-544)))) (-3509 (((-112) $) NIL (|has| |#2| (-544)))) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-1055))) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3197 (($ $ $) NIL (|has| |#2| (-544)))) (-4296 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-2194 (($ $) NIL (|has| |#2| (-446)))) (-1330 (((-413 $) $) NIL (|has| |#2| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-2408 (((-112) $ $) NIL (|has| |#2| (-358)))) (-2076 (($ $ (-751)) NIL)) (-2065 (($ $ (-751)) NIL)) (-3165 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-446)))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) NIL) (((-3 (-402 (-552)) "failed") $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1014 (-552)))) (((-3 (-1055) "failed") $) NIL)) (-1895 ((|#2| $) NIL) (((-402 (-552)) $) NIL (|has| |#2| (-1014 (-402 (-552))))) (((-552) $) NIL (|has| |#2| (-1014 (-552)))) (((-1055) $) NIL)) (-3207 (($ $ $ (-1055)) NIL (|has| |#2| (-170))) ((|#2| $ $) NIL (|has| |#2| (-170)))) (-2851 (($ $ $) NIL (|has| |#2| (-358)))) (-4169 (($ $) NIL)) (-1794 (((-669 (-552)) (-669 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) NIL (|has| |#2| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#2|)) (|:| |vec| (-1232 |#2|))) (-669 $) (-1232 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2826 (($ $ $) NIL (|has| |#2| (-358)))) (-2052 (($ $ $) NIL)) (-3181 (($ $ $) NIL (|has| |#2| (-544)))) (-3173 (((-2 (|:| -3340 |#2|) (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#2| (-544)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#2| (-358)))) (-1294 (($ $) NIL (|has| |#2| (-446))) (($ $ (-1055)) NIL (|has| |#2| (-446)))) (-4157 (((-625 $) $) NIL)) (-2951 (((-112) $) NIL (|has| |#2| (-885)))) (-1347 (($ $ |#2| (-751) $) NIL)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) NIL (-12 (|has| (-1055) (-862 (-374))) (|has| |#2| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) NIL (-12 (|has| (-1055) (-862 (-552))) (|has| |#2| (-862 (-552)))))) (-2172 (((-751) $ $) NIL (|has| |#2| (-544)))) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-4034 (((-3 $ "failed") $) NIL (|has| |#2| (-1124)))) (-3970 (($ (-1145 |#2|) (-1055)) NIL) (($ (-1145 $) (-1055)) NIL)) (-2216 (($ $ (-751)) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#2| (-358)))) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-3957 (($ |#2| (-751)) 17) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-1055)) NIL) (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL)) (-4134 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-625 (-751)) $ (-625 (-1055))) NIL)) (-3658 (($ $ $) NIL (|has| |#2| (-827)))) (-3332 (($ $ $) NIL (|has| |#2| (-827)))) (-1357 (($ (-1 (-751) (-751)) $) NIL)) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-2127 (((-1145 |#2|) $) NIL)) (-1942 (((-3 (-1055) "failed") $) NIL)) (-4131 (($ $) NIL)) (-4144 ((|#2| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-2883 (((-1131) $) NIL)) (-2086 (((-2 (|:| -3984 $) (|:| -3645 $)) $ (-751)) NIL)) (-4172 (((-3 (-625 $) "failed") $) NIL)) (-4160 (((-3 (-625 $) "failed") $) NIL)) (-4182 (((-3 (-2 (|:| |var| (-1055)) (|:| -3564 (-751))) "failed") $) NIL)) (-2481 (($ $) NIL (|has| |#2| (-38 (-402 (-552)))))) (-2071 (($) NIL (|has| |#2| (-1124)) CONST)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 ((|#2| $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#2| (-446)))) (-2633 (($ (-625 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-3044 (($ $ (-751) |#2| $) NIL)) (-4275 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) NIL (|has| |#2| (-885)))) (-3824 (((-413 $) $) NIL (|has| |#2| (-885)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#2| (-358)))) (-2802 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#2| (-358)))) (-4073 (($ $ (-625 (-289 $))) NIL) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-1055) |#2|) NIL) (($ $ (-625 (-1055)) (-625 |#2|)) NIL) (($ $ (-1055) $) NIL) (($ $ (-625 (-1055)) (-625 $)) NIL)) (-2397 (((-751) $) NIL (|has| |#2| (-358)))) (-2154 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#2| (-544))) ((|#2| (-402 $) |#2|) NIL (|has| |#2| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#2| (-544)))) (-2108 (((-3 $ "failed") $ (-751)) NIL)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#2| (-358)))) (-3217 (($ $ (-1055)) NIL (|has| |#2| (-170))) ((|#2| $) NIL (|has| |#2| (-170)))) (-3072 (($ $ (-1055)) NIL) (($ $ (-625 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4276 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-625 (-751)) $ (-625 (-1055))) NIL)) (-2042 (((-868 (-374)) $) NIL (-12 (|has| (-1055) (-598 (-868 (-374)))) (|has| |#2| (-598 (-868 (-374)))))) (((-868 (-552)) $) NIL (-12 (|has| (-1055) (-598 (-868 (-552)))) (|has| |#2| (-598 (-868 (-552)))))) (((-528) $) NIL (-12 (|has| (-1055) (-598 (-528))) (|has| |#2| (-598 (-528)))))) (-4108 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-1055)) NIL (|has| |#2| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-885))))) (-3190 (((-3 $ "failed") $ $) NIL (|has| |#2| (-544))) (((-3 (-402 $) "failed") (-402 $) $) NIL (|has| |#2| (-544)))) (-1683 (((-839) $) 13) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-1055)) NIL) (($ (-1228 |#1|)) 19) (($ (-402 (-552))) NIL (-1523 (|has| |#2| (-38 (-402 (-552)))) (|has| |#2| (-1014 (-402 (-552)))))) (($ $) NIL (|has| |#2| (-544)))) (-2512 (((-625 |#2|) $) NIL)) (-3637 ((|#2| $ (-751)) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-4243 (((-3 $ "failed") $) NIL (-1523 (-12 (|has| $ (-143)) (|has| |#2| (-885))) (|has| |#2| (-143))))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| |#2| (-170)))) (-3518 (((-112) $ $) NIL (|has| |#2| (-544)))) (-2089 (($) NIL T CONST)) (-2100 (($) 14 T CONST)) (-3768 (($ $ (-1055)) NIL) (($ $ (-625 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2346 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2281 (((-112) $ $) NIL)) (-2334 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2404 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-402 (-552))) NIL (|has| |#2| (-38 (-402 (-552))))) (($ (-402 (-552)) $) NIL (|has| |#2| (-38 (-402 (-552))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1205 |#1| |#2|) (-13 (-1208 |#2|) (-10 -8 (-15 -1683 ($ (-1228 |#1|))) (-15 -3044 ($ $ (-751) |#2| $)))) (-1149) (-1025)) (T -1205)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1228 *3)) (-14 *3 (-1149)) (-5 *1 (-1205 *3 *4)) (-4 *4 (-1025)))) (-3044 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1205 *4 *3)) (-14 *4 (-1149)) (-4 *3 (-1025))))) -(-13 (-1208 |#2|) (-10 -8 (-15 -1683 ($ (-1228 |#1|))) (-15 -3044 ($ $ (-751) |#2| $)))) -((-1996 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1206 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1996 (|#4| (-1 |#3| |#1|) |#2|))) (-1025) (-1208 |#1|) (-1025) (-1208 |#3|)) (T -1206)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-4 *2 (-1208 *6)) (-5 *1 (-1206 *5 *4 *6 *2)) (-4 *4 (-1208 *5))))) -(-10 -7 (-15 -1996 (|#4| (-1 |#3| |#1|) |#2|))) -((-2138 (((-1232 |#2|) $ (-751)) 114)) (-3982 (((-625 (-1055)) $) 15)) (-2117 (($ (-1145 |#2|)) 67)) (-4121 (((-751) $) NIL) (((-751) $ (-625 (-1055))) 18)) (-4296 (((-413 (-1145 $)) (-1145 $)) 185)) (-2194 (($ $) 175)) (-1330 (((-413 $) $) 173)) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 82)) (-2076 (($ $ (-751)) 71)) (-2065 (($ $ (-751)) 73)) (-3165 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-1893 (((-3 |#2| "failed") $) 117) (((-3 (-402 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 (-1055) "failed") $) NIL)) (-1895 ((|#2| $) 115) (((-402 (-552)) $) NIL) (((-552) $) NIL) (((-1055) $) NIL)) (-3181 (($ $ $) 151)) (-3173 (((-2 (|:| -3340 |#2|) (|:| -3984 $) (|:| -3645 $)) $ $) 153)) (-2172 (((-751) $ $) 170)) (-4034 (((-3 $ "failed") $) 123)) (-3957 (($ |#2| (-751)) NIL) (($ $ (-1055) (-751)) 47) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-4134 (((-751) $) NIL) (((-751) $ (-1055)) 42) (((-625 (-751)) $ (-625 (-1055))) 43)) (-2127 (((-1145 |#2|) $) 59)) (-1942 (((-3 (-1055) "failed") $) 40)) (-2086 (((-2 (|:| -3984 $) (|:| -3645 $)) $ (-751)) 70)) (-2481 (($ $) 197)) (-2071 (($) 119)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 182)) (-4275 (((-413 (-1145 $)) (-1145 $)) 88)) (-4286 (((-413 (-1145 $)) (-1145 $)) 86)) (-3824 (((-413 $) $) 107)) (-4073 (($ $ (-625 (-289 $))) 39) (($ $ (-289 $)) NIL) (($ $ $ $) NIL) (($ $ (-625 $) (-625 $)) NIL) (($ $ (-1055) |#2|) 31) (($ $ (-625 (-1055)) (-625 |#2|)) 28) (($ $ (-1055) $) 25) (($ $ (-625 (-1055)) (-625 $)) 23)) (-2397 (((-751) $) 188)) (-2154 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) 147) ((|#2| (-402 $) |#2|) 187) (((-402 $) $ (-402 $)) 169)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 191)) (-3072 (($ $ (-1055)) 140) (($ $ (-625 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL) (($ $ (-751)) NIL) (($ $) 138) (($ $ (-1149)) NIL) (($ $ (-625 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-625 (-1149)) (-625 (-751))) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-4276 (((-751) $) NIL) (((-751) $ (-1055)) 16) (((-625 (-751)) $ (-625 (-1055))) 20)) (-4108 ((|#2| $) NIL) (($ $ (-1055)) 125)) (-3190 (((-3 $ "failed") $ $) 161) (((-3 (-402 $) "failed") (-402 $) $) 157)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-1055)) 51) (($ (-402 (-552))) NIL) (($ $) NIL))) -(((-1207 |#1| |#2|) (-10 -8 (-15 -1683 (|#1| |#1|)) (-15 -4306 ((-1145 |#1|) (-1145 |#1|) (-1145 |#1|))) (-15 -1330 ((-413 |#1|) |#1|)) (-15 -2194 (|#1| |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -2071 (|#1|)) (-15 -4034 ((-3 |#1| "failed") |#1|)) (-15 -2154 ((-402 |#1|) |#1| (-402 |#1|))) (-15 -2397 ((-751) |#1|)) (-15 -3481 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -2481 (|#1| |#1|)) (-15 -2154 (|#2| (-402 |#1|) |#2|)) (-15 -3165 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3173 ((-2 (|:| -3340 |#2|) (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -3181 (|#1| |#1| |#1|)) (-15 -3190 ((-3 (-402 |#1|) "failed") (-402 |#1|) |#1|)) (-15 -3190 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2172 ((-751) |#1| |#1|)) (-15 -2154 ((-402 |#1|) (-402 |#1|) (-402 |#1|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2065 (|#1| |#1| (-751))) (-15 -2076 (|#1| |#1| (-751))) (-15 -2086 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| (-751))) (-15 -2117 (|#1| (-1145 |#2|))) (-15 -2127 ((-1145 |#2|) |#1|)) (-15 -2138 ((-1232 |#2|) |#1| (-751))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -2154 (|#1| |#1| |#1|)) (-15 -2154 (|#2| |#1| |#2|)) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -4296 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4286 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4275 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4264 ((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|))) (-15 -4108 (|#1| |#1| (-1055))) (-15 -3982 ((-625 (-1055)) |#1|)) (-15 -4121 ((-751) |#1| (-625 (-1055)))) (-15 -4121 ((-751) |#1|)) (-15 -3957 (|#1| |#1| (-625 (-1055)) (-625 (-751)))) (-15 -3957 (|#1| |#1| (-1055) (-751))) (-15 -4134 ((-625 (-751)) |#1| (-625 (-1055)))) (-15 -4134 ((-751) |#1| (-1055))) (-15 -1942 ((-3 (-1055) "failed") |#1|)) (-15 -4276 ((-625 (-751)) |#1| (-625 (-1055)))) (-15 -4276 ((-751) |#1| (-1055))) (-15 -1895 ((-1055) |#1|)) (-15 -1893 ((-3 (-1055) "failed") |#1|)) (-15 -1683 (|#1| (-1055))) (-15 -4073 (|#1| |#1| (-625 (-1055)) (-625 |#1|))) (-15 -4073 (|#1| |#1| (-1055) |#1|)) (-15 -4073 (|#1| |#1| (-625 (-1055)) (-625 |#2|))) (-15 -4073 (|#1| |#1| (-1055) |#2|)) (-15 -4073 (|#1| |#1| (-625 |#1|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| (-289 |#1|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -4276 ((-751) |#1|)) (-15 -3957 (|#1| |#2| (-751))) (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -4134 ((-751) |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -3072 (|#1| |#1| (-625 (-1055)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1055) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1055)))) (-15 -3072 (|#1| |#1| (-1055))) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|))) (-1208 |#2|) (-1025)) (T -1207)) -NIL -(-10 -8 (-15 -1683 (|#1| |#1|)) (-15 -4306 ((-1145 |#1|) (-1145 |#1|) (-1145 |#1|))) (-15 -1330 ((-413 |#1|) |#1|)) (-15 -2194 (|#1| |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -2071 (|#1|)) (-15 -4034 ((-3 |#1| "failed") |#1|)) (-15 -2154 ((-402 |#1|) |#1| (-402 |#1|))) (-15 -2397 ((-751) |#1|)) (-15 -3481 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -2481 (|#1| |#1|)) (-15 -2154 (|#2| (-402 |#1|) |#2|)) (-15 -3165 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3173 ((-2 (|:| -3340 |#2|) (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| |#1|)) (-15 -3181 (|#1| |#1| |#1|)) (-15 -3190 ((-3 (-402 |#1|) "failed") (-402 |#1|) |#1|)) (-15 -3190 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2172 ((-751) |#1| |#1|)) (-15 -2154 ((-402 |#1|) (-402 |#1|) (-402 |#1|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2065 (|#1| |#1| (-751))) (-15 -2076 (|#1| |#1| (-751))) (-15 -2086 ((-2 (|:| -3984 |#1|) (|:| -3645 |#1|)) |#1| (-751))) (-15 -2117 (|#1| (-1145 |#2|))) (-15 -2127 ((-1145 |#2|) |#1|)) (-15 -2138 ((-1232 |#2|) |#1| (-751))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3072 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1149) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1149)))) (-15 -3072 (|#1| |#1| (-1149))) (-15 -3072 (|#1| |#1|)) (-15 -3072 (|#1| |#1| (-751))) (-15 -2154 (|#1| |#1| |#1|)) (-15 -2154 (|#2| |#1| |#2|)) (-15 -3824 ((-413 |#1|) |#1|)) (-15 -4296 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4286 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4275 ((-413 (-1145 |#1|)) (-1145 |#1|))) (-15 -4264 ((-3 (-625 (-1145 |#1|)) "failed") (-625 (-1145 |#1|)) (-1145 |#1|))) (-15 -4108 (|#1| |#1| (-1055))) (-15 -3982 ((-625 (-1055)) |#1|)) (-15 -4121 ((-751) |#1| (-625 (-1055)))) (-15 -4121 ((-751) |#1|)) (-15 -3957 (|#1| |#1| (-625 (-1055)) (-625 (-751)))) (-15 -3957 (|#1| |#1| (-1055) (-751))) (-15 -4134 ((-625 (-751)) |#1| (-625 (-1055)))) (-15 -4134 ((-751) |#1| (-1055))) (-15 -1942 ((-3 (-1055) "failed") |#1|)) (-15 -4276 ((-625 (-751)) |#1| (-625 (-1055)))) (-15 -4276 ((-751) |#1| (-1055))) (-15 -1895 ((-1055) |#1|)) (-15 -1893 ((-3 (-1055) "failed") |#1|)) (-15 -1683 (|#1| (-1055))) (-15 -4073 (|#1| |#1| (-625 (-1055)) (-625 |#1|))) (-15 -4073 (|#1| |#1| (-1055) |#1|)) (-15 -4073 (|#1| |#1| (-625 (-1055)) (-625 |#2|))) (-15 -4073 (|#1| |#1| (-1055) |#2|)) (-15 -4073 (|#1| |#1| (-625 |#1|) (-625 |#1|))) (-15 -4073 (|#1| |#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| (-289 |#1|))) (-15 -4073 (|#1| |#1| (-625 (-289 |#1|)))) (-15 -4276 ((-751) |#1|)) (-15 -3957 (|#1| |#2| (-751))) (-15 -1895 ((-552) |#1|)) (-15 -1893 ((-3 (-552) "failed") |#1|)) (-15 -1895 ((-402 (-552)) |#1|)) (-15 -1893 ((-3 (-402 (-552)) "failed") |#1|)) (-15 -1683 (|#1| |#2|)) (-15 -1893 ((-3 |#2| "failed") |#1|)) (-15 -1895 (|#2| |#1|)) (-15 -4134 ((-751) |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -3072 (|#1| |#1| (-625 (-1055)) (-625 (-751)))) (-15 -3072 (|#1| |#1| (-1055) (-751))) (-15 -3072 (|#1| |#1| (-625 (-1055)))) (-15 -3072 (|#1| |#1| (-1055))) (-15 -1683 (|#1| (-552))) (-15 -1683 ((-839) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2138 (((-1232 |#1|) $ (-751)) 236)) (-3982 (((-625 (-1055)) $) 108)) (-2117 (($ (-1145 |#1|)) 234)) (-3793 (((-1145 $) $ (-1055)) 123) (((-1145 |#1|) $) 122)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 85 (|has| |#1| (-544)))) (-3528 (($ $) 86 (|has| |#1| (-544)))) (-3509 (((-112) $) 88 (|has| |#1| (-544)))) (-4121 (((-751) $) 110) (((-751) $ (-625 (-1055))) 109)) (-2077 (((-3 $ "failed") $ $) 19)) (-3197 (($ $ $) 221 (|has| |#1| (-544)))) (-4296 (((-413 (-1145 $)) (-1145 $)) 98 (|has| |#1| (-885)))) (-2194 (($ $) 96 (|has| |#1| (-446)))) (-1330 (((-413 $) $) 95 (|has| |#1| (-446)))) (-4264 (((-3 (-625 (-1145 $)) "failed") (-625 (-1145 $)) (-1145 $)) 101 (|has| |#1| (-885)))) (-2408 (((-112) $ $) 206 (|has| |#1| (-358)))) (-2076 (($ $ (-751)) 229)) (-2065 (($ $ (-751)) 228)) (-3165 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-446)))) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#1| "failed") $) 162) (((-3 (-402 (-552)) "failed") $) 160 (|has| |#1| (-1014 (-402 (-552))))) (((-3 (-552) "failed") $) 158 (|has| |#1| (-1014 (-552)))) (((-3 (-1055) "failed") $) 134)) (-1895 ((|#1| $) 163) (((-402 (-552)) $) 159 (|has| |#1| (-1014 (-402 (-552))))) (((-552) $) 157 (|has| |#1| (-1014 (-552)))) (((-1055) $) 133)) (-3207 (($ $ $ (-1055)) 106 (|has| |#1| (-170))) ((|#1| $ $) 224 (|has| |#1| (-170)))) (-2851 (($ $ $) 210 (|has| |#1| (-358)))) (-4169 (($ $) 152)) (-1794 (((-669 (-552)) (-669 $)) 132 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 (-552))) (|:| |vec| (-1232 (-552)))) (-669 $) (-1232 $)) 131 (|has| |#1| (-621 (-552)))) (((-2 (|:| -2351 (-669 |#1|)) (|:| |vec| (-1232 |#1|))) (-669 $) (-1232 $)) 130) (((-669 |#1|) (-669 $)) 129)) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 209 (|has| |#1| (-358)))) (-2052 (($ $ $) 227)) (-3181 (($ $ $) 218 (|has| |#1| (-544)))) (-3173 (((-2 (|:| -3340 |#1|) (|:| -3984 $) (|:| -3645 $)) $ $) 217 (|has| |#1| (-544)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 204 (|has| |#1| (-358)))) (-1294 (($ $) 174 (|has| |#1| (-446))) (($ $ (-1055)) 103 (|has| |#1| (-446)))) (-4157 (((-625 $) $) 107)) (-2951 (((-112) $) 94 (|has| |#1| (-885)))) (-1347 (($ $ |#1| (-751) $) 170)) (-3841 (((-865 (-374) $) $ (-868 (-374)) (-865 (-374) $)) 82 (-12 (|has| (-1055) (-862 (-374))) (|has| |#1| (-862 (-374))))) (((-865 (-552) $) $ (-868 (-552)) (-865 (-552) $)) 81 (-12 (|has| (-1055) (-862 (-552))) (|has| |#1| (-862 (-552)))))) (-2172 (((-751) $ $) 222 (|has| |#1| (-544)))) (-3650 (((-112) $) 30)) (-3723 (((-751) $) 167)) (-4034 (((-3 $ "failed") $) 202 (|has| |#1| (-1124)))) (-3970 (($ (-1145 |#1|) (-1055)) 115) (($ (-1145 $) (-1055)) 114)) (-2216 (($ $ (-751)) 233)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 213 (|has| |#1| (-358)))) (-4148 (((-625 $) $) 124)) (-4201 (((-112) $) 150)) (-3957 (($ |#1| (-751)) 151) (($ $ (-1055) (-751)) 117) (($ $ (-625 (-1055)) (-625 (-751))) 116)) (-2097 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $ (-1055)) 118) (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 231)) (-4134 (((-751) $) 168) (((-751) $ (-1055)) 120) (((-625 (-751)) $ (-625 (-1055))) 119)) (-3658 (($ $ $) 77 (|has| |#1| (-827)))) (-3332 (($ $ $) 76 (|has| |#1| (-827)))) (-1357 (($ (-1 (-751) (-751)) $) 169)) (-1996 (($ (-1 |#1| |#1|) $) 149)) (-2127 (((-1145 |#1|) $) 235)) (-1942 (((-3 (-1055) "failed") $) 121)) (-4131 (($ $) 147)) (-4144 ((|#1| $) 146)) (-2605 (($ (-625 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-2883 (((-1131) $) 9)) (-2086 (((-2 (|:| -3984 $) (|:| -3645 $)) $ (-751)) 230)) (-4172 (((-3 (-625 $) "failed") $) 112)) (-4160 (((-3 (-625 $) "failed") $) 113)) (-4182 (((-3 (-2 (|:| |var| (-1055)) (|:| -3564 (-751))) "failed") $) 111)) (-2481 (($ $) 214 (|has| |#1| (-38 (-402 (-552)))))) (-2071 (($) 201 (|has| |#1| (-1124)) CONST)) (-2831 (((-1093) $) 10)) (-4105 (((-112) $) 164)) (-4117 ((|#1| $) 165)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 93 (|has| |#1| (-446)))) (-2633 (($ (-625 $)) 90 (|has| |#1| (-446))) (($ $ $) 89 (|has| |#1| (-446)))) (-4275 (((-413 (-1145 $)) (-1145 $)) 100 (|has| |#1| (-885)))) (-4286 (((-413 (-1145 $)) (-1145 $)) 99 (|has| |#1| (-885)))) (-3824 (((-413 $) $) 97 (|has| |#1| (-885)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 212 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 211 (|has| |#1| (-358)))) (-2802 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 205 (|has| |#1| (-358)))) (-4073 (($ $ (-625 (-289 $))) 143) (($ $ (-289 $)) 142) (($ $ $ $) 141) (($ $ (-625 $) (-625 $)) 140) (($ $ (-1055) |#1|) 139) (($ $ (-625 (-1055)) (-625 |#1|)) 138) (($ $ (-1055) $) 137) (($ $ (-625 (-1055)) (-625 $)) 136)) (-2397 (((-751) $) 207 (|has| |#1| (-358)))) (-2154 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-402 $) (-402 $) (-402 $)) 223 (|has| |#1| (-544))) ((|#1| (-402 $) |#1|) 215 (|has| |#1| (-358))) (((-402 $) $ (-402 $)) 203 (|has| |#1| (-544)))) (-2108 (((-3 $ "failed") $ (-751)) 232)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 208 (|has| |#1| (-358)))) (-3217 (($ $ (-1055)) 105 (|has| |#1| (-170))) ((|#1| $) 225 (|has| |#1| (-170)))) (-3072 (($ $ (-1055)) 40) (($ $ (-625 (-1055))) 39) (($ $ (-1055) (-751)) 38) (($ $ (-625 (-1055)) (-625 (-751))) 37) (($ $ (-751)) 251) (($ $) 249) (($ $ (-1149)) 248 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 247 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 246 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) 245 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-4276 (((-751) $) 148) (((-751) $ (-1055)) 128) (((-625 (-751)) $ (-625 (-1055))) 127)) (-2042 (((-868 (-374)) $) 80 (-12 (|has| (-1055) (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374)))))) (((-868 (-552)) $) 79 (-12 (|has| (-1055) (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552)))))) (((-528) $) 78 (-12 (|has| (-1055) (-598 (-528))) (|has| |#1| (-598 (-528)))))) (-4108 ((|#1| $) 173 (|has| |#1| (-446))) (($ $ (-1055)) 104 (|has| |#1| (-446)))) (-4253 (((-3 (-1232 $) "failed") (-669 $)) 102 (-3743 (|has| $ (-143)) (|has| |#1| (-885))))) (-3190 (((-3 $ "failed") $ $) 220 (|has| |#1| (-544))) (((-3 (-402 $) "failed") (-402 $) $) 219 (|has| |#1| (-544)))) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 161) (($ (-1055)) 135) (($ (-402 (-552))) 70 (-1523 (|has| |#1| (-1014 (-402 (-552)))) (|has| |#1| (-38 (-402 (-552)))))) (($ $) 83 (|has| |#1| (-544)))) (-2512 (((-625 |#1|) $) 166)) (-3637 ((|#1| $ (-751)) 153) (($ $ (-1055) (-751)) 126) (($ $ (-625 (-1055)) (-625 (-751))) 125)) (-4243 (((-3 $ "failed") $) 71 (-1523 (-3743 (|has| $ (-143)) (|has| |#1| (-885))) (|has| |#1| (-143))))) (-4141 (((-751)) 28)) (-1336 (($ $ $ (-751)) 171 (|has| |#1| (-170)))) (-3518 (((-112) $ $) 87 (|has| |#1| (-544)))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-1055)) 36) (($ $ (-625 (-1055))) 35) (($ $ (-1055) (-751)) 34) (($ $ (-625 (-1055)) (-625 (-751))) 33) (($ $ (-751)) 252) (($ $) 250) (($ $ (-1149)) 244 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149))) 243 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 242 (|has| |#1| (-876 (-1149)))) (($ $ (-625 (-1149)) (-625 (-751))) 241 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2346 (((-112) $ $) 74 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 73 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 6)) (-2334 (((-112) $ $) 75 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 72 (|has| |#1| (-827)))) (-2404 (($ $ |#1|) 154 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 156 (|has| |#1| (-38 (-402 (-552))))) (($ (-402 (-552)) $) 155 (|has| |#1| (-38 (-402 (-552))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-1208 |#1|) (-138) (-1025)) (T -1208)) -((-2138 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-1208 *4)) (-4 *4 (-1025)) (-5 *2 (-1232 *4)))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-1208 *3)) (-4 *3 (-1025)) (-5 *2 (-1145 *3)))) (-2117 (*1 *1 *2) (-12 (-5 *2 (-1145 *3)) (-4 *3 (-1025)) (-4 *1 (-1208 *3)))) (-2216 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1208 *3)) (-4 *3 (-1025)))) (-2108 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-751)) (-4 *1 (-1208 *3)) (-4 *3 (-1025)))) (-2097 (*1 *2 *1 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-1208 *3)))) (-2086 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-1208 *4)))) (-2076 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1208 *3)) (-4 *3 (-1025)))) (-2065 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1208 *3)) (-4 *3 (-1025)))) (-2052 (*1 *1 *1 *1) (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)))) (-3072 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1208 *3)) (-4 *3 (-1025)))) (-3217 (*1 *2 *1) (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-170)))) (-3207 (*1 *2 *1 *1) (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-170)))) (-2154 (*1 *2 *2 *2) (-12 (-5 *2 (-402 *1)) (-4 *1 (-1208 *3)) (-4 *3 (-1025)) (-4 *3 (-544)))) (-2172 (*1 *2 *1 *1) (-12 (-4 *1 (-1208 *3)) (-4 *3 (-1025)) (-4 *3 (-544)) (-5 *2 (-751)))) (-3197 (*1 *1 *1 *1) (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-544)))) (-3190 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-544)))) (-3190 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-402 *1)) (-4 *1 (-1208 *3)) (-4 *3 (-1025)) (-4 *3 (-544)))) (-3181 (*1 *1 *1 *1) (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-544)))) (-3173 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -3340 *3) (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-1208 *3)))) (-3165 (*1 *2 *1 *1) (-12 (-4 *3 (-446)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1208 *3)))) (-2154 (*1 *2 *3 *2) (-12 (-5 *3 (-402 *1)) (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2481 (*1 *1 *1) (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-552))))))) -(-13 (-925 |t#1| (-751) (-1055)) (-281 |t#1| |t#1|) (-281 $ $) (-229) (-227 |t#1|) (-10 -8 (-15 -2138 ((-1232 |t#1|) $ (-751))) (-15 -2127 ((-1145 |t#1|) $)) (-15 -2117 ($ (-1145 |t#1|))) (-15 -2216 ($ $ (-751))) (-15 -2108 ((-3 $ "failed") $ (-751))) (-15 -2097 ((-2 (|:| -3984 $) (|:| -3645 $)) $ $)) (-15 -2086 ((-2 (|:| -3984 $) (|:| -3645 $)) $ (-751))) (-15 -2076 ($ $ (-751))) (-15 -2065 ($ $ (-751))) (-15 -2052 ($ $ $)) (-15 -3072 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1124)) (-6 (-1124)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -3217 (|t#1| $)) (-15 -3207 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-6 (-281 (-402 $) (-402 $))) (-15 -2154 ((-402 $) (-402 $) (-402 $))) (-15 -2172 ((-751) $ $)) (-15 -3197 ($ $ $)) (-15 -3190 ((-3 $ "failed") $ $)) (-15 -3190 ((-3 (-402 $) "failed") (-402 $) $)) (-15 -3181 ($ $ $)) (-15 -3173 ((-2 (|:| -3340 |t#1|) (|:| -3984 $) (|:| -3645 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-446)) (-15 -3165 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-6 (-302)) (-6 -4349) (-15 -2154 (|t#1| (-402 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-552)))) (-15 -2481 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-751)) . T) ((-25) . T) ((-38 #1=(-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-552)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-598 (-528)) -12 (|has| (-1055) (-598 (-528))) (|has| |#1| (-598 (-528)))) ((-598 (-868 (-374))) -12 (|has| (-1055) (-598 (-868 (-374)))) (|has| |#1| (-598 (-868 (-374))))) ((-598 (-868 (-552))) -12 (|has| (-1055) (-598 (-868 (-552)))) (|has| |#1| (-598 (-868 (-552))))) ((-227 |#1|) . T) ((-229) . T) ((-281 (-402 $) (-402 $)) |has| |#1| (-544)) ((-281 |#1| |#1|) . T) ((-281 $ $) . T) ((-285) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-304 $) . T) ((-321 |#1| #0#) . T) ((-372 |#1|) . T) ((-406 |#1|) . T) ((-446) -1523 (|has| |#1| (-885)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-507 #2=(-1055) |#1|) . T) ((-507 #2# $) . T) ((-507 $ $) . T) ((-544) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-628 #1#) |has| |#1| (-38 (-402 (-552)))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-552)) |has| |#1| (-621 (-552))) ((-621 |#1|) . T) ((-698 #1#) |has| |#1| (-38 (-402 (-552)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 #2#) . T) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-862 (-374)) -12 (|has| (-1055) (-862 (-374))) (|has| |#1| (-862 (-374)))) ((-862 (-552)) -12 (|has| (-1055) (-862 (-552))) (|has| |#1| (-862 (-552)))) ((-925 |#1| #0# #2#) . T) ((-885) |has| |#1| (-885)) ((-896) |has| |#1| (-358)) ((-1014 (-402 (-552))) |has| |#1| (-1014 (-402 (-552)))) ((-1014 (-552)) |has| |#1| (-1014 (-552))) ((-1014 #2#) . T) ((-1014 |#1|) . T) ((-1031 #1#) |has| |#1| (-38 (-402 (-552)))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-885)) (|has| |#1| (-544)) (|has| |#1| (-446)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1124) |has| |#1| (-1124)) ((-1190) |has| |#1| (-885))) -((-3982 (((-625 (-1055)) $) 28)) (-4169 (($ $) 25)) (-3957 (($ |#2| |#3|) NIL) (($ $ (-1055) |#3|) 22) (($ $ (-625 (-1055)) (-625 |#3|)) 21)) (-4131 (($ $) 14)) (-4144 ((|#2| $) 12)) (-4276 ((|#3| $) 10))) -(((-1209 |#1| |#2| |#3|) (-10 -8 (-15 -3982 ((-625 (-1055)) |#1|)) (-15 -3957 (|#1| |#1| (-625 (-1055)) (-625 |#3|))) (-15 -3957 (|#1| |#1| (-1055) |#3|)) (-15 -4169 (|#1| |#1|)) (-15 -3957 (|#1| |#2| |#3|)) (-15 -4276 (|#3| |#1|)) (-15 -4131 (|#1| |#1|)) (-15 -4144 (|#2| |#1|))) (-1210 |#2| |#3|) (-1025) (-772)) (T -1209)) -NIL -(-10 -8 (-15 -3982 ((-625 (-1055)) |#1|)) (-15 -3957 (|#1| |#1| (-625 (-1055)) (-625 |#3|))) (-15 -3957 (|#1| |#1| (-1055) |#3|)) (-15 -4169 (|#1| |#1|)) (-15 -3957 (|#1| |#2| |#3|)) (-15 -4276 (|#3| |#1|)) (-15 -4131 (|#1| |#1|)) (-15 -4144 (|#2| |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3982 (((-625 (-1055)) $) 72)) (-2195 (((-1149) $) 101)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3528 (($ $) 50 (|has| |#1| (-544)))) (-3509 (((-112) $) 52 (|has| |#1| (-544)))) (-2162 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-2182 (((-1129 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4169 (($ $) 58)) (-4174 (((-3 $ "failed") $) 32)) (-3592 (((-112) $) 71)) (-2172 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-3650 (((-112) $) 30)) (-2216 (($ $ (-897)) 99)) (-4201 (((-112) $) 60)) (-3957 (($ |#1| |#2|) 59) (($ $ (-1055) |#2|) 74) (($ $ (-625 (-1055)) (-625 |#2|)) 73)) (-1996 (($ (-1 |#1| |#1|) $) 61)) (-4131 (($ $) 63)) (-4144 ((|#1| $) 64)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-2147 (($ $ |#2|) 93)) (-2802 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-4073 (((-1129 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2154 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1085)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) 87 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1149) (-751)) 86 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-625 (-1149))) 85 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1149)) 84 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-751)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4276 ((|#2| $) 62)) (-3580 (($ $) 70)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ (-402 (-552))) 55 (|has| |#1| (-38 (-402 (-552))))) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45 (|has| |#1| (-170)))) (-3637 ((|#1| $ |#2|) 57)) (-4243 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-2845 ((|#1| $) 100)) (-3518 (((-112) $ $) 51 (|has| |#1| (-544)))) (-2874 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) 91 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1149) (-751)) 90 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-625 (-1149))) 89 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1149)) 88 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-751)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 56 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-552)) $) 54 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 53 (|has| |#1| (-38 (-402 (-552))))))) -(((-1210 |#1| |#2|) (-138) (-1025) (-772)) (T -1210)) -((-2182 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-1129 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2154 (*1 *2 *1 *3) (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-1149)))) (-2845 (*1 *2 *1) (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) (-2216 (*1 *1 *1 *2) (-12 (-5 *2 (-897)) (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)))) (-2172 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-2172 (*1 *2 *1 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-2162 (*1 *1 *1 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-2162 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-2874 (*1 *2 *1 *3) (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1683 (*2 (-1149)))) (-4 *2 (-1025)))) (-2147 (*1 *1 *1 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-4073 (*1 *2 *1 *3) (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1129 *3))))) -(-13 (-949 |t#1| |t#2| (-1055)) (-10 -8 (-15 -2182 ((-1129 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2154 (|t#1| $ |t#2|)) (-15 -2195 ((-1149) $)) (-15 -2845 (|t#1| $)) (-15 -2216 ($ $ (-897))) (-15 -2172 (|t#2| $)) (-15 -2172 (|t#2| $ |t#2|)) (-15 -2162 ($ $ |t#2|)) (-15 -2162 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -1683 (|t#1| (-1149)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2874 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2147 ($ $ |t#2|)) (IF (|has| |t#2| (-1085)) (-6 (-281 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-229)) (IF (|has| |t#1| (-876 (-1149))) (-6 (-876 (-1149))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4073 ((-1129 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-111 #0# #0#) |has| |#1| (-38 (-402 (-552)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-281 $ $) |has| |#2| (-1085)) ((-285) |has| |#1| (-544)) ((-544) |has| |#1| (-544)) ((-628 #0#) |has| |#1| (-38 (-402 (-552)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #0#) |has| |#1| (-38 (-402 (-552)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-544)) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-876 (-1149)))) ((-949 |#1| |#2| (-1055)) . T) ((-1031 #0#) |has| |#1| (-38 (-402 (-552)))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-2194 ((|#2| |#2|) 12)) (-1330 (((-413 |#2|) |#2|) 14)) (-2205 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552)))) 30))) -(((-1211 |#1| |#2|) (-10 -7 (-15 -1330 ((-413 |#2|) |#2|)) (-15 -2194 (|#2| |#2|)) (-15 -2205 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552)))))) (-544) (-13 (-1208 |#1|) (-544) (-10 -8 (-15 -2633 ($ $ $))))) (T -1211)) -((-2205 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-552)))) (-4 *4 (-13 (-1208 *3) (-544) (-10 -8 (-15 -2633 ($ $ $))))) (-4 *3 (-544)) (-5 *1 (-1211 *3 *4)))) (-2194 (*1 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-1208 *3) (-544) (-10 -8 (-15 -2633 ($ $ $))))))) (-1330 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-413 *3)) (-5 *1 (-1211 *4 *3)) (-4 *3 (-13 (-1208 *4) (-544) (-10 -8 (-15 -2633 ($ $ $)))))))) -(-10 -7 (-15 -1330 ((-413 |#2|) |#2|)) (-15 -2194 (|#2| |#2|)) (-15 -2205 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552)))))) -((-1996 (((-1217 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1217 |#1| |#3| |#5|)) 24))) -(((-1212 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1996 ((-1217 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1217 |#1| |#3| |#5|)))) (-1025) (-1025) (-1149) (-1149) |#1| |#2|) (T -1212)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1217 *5 *7 *9)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-14 *7 (-1149)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1217 *6 *8 *10)) (-5 *1 (-1212 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1149))))) -(-10 -7 (-15 -1996 ((-1217 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1217 |#1| |#3| |#5|)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3982 (((-625 (-1055)) $) 72)) (-2195 (((-1149) $) 101)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3528 (($ $) 50 (|has| |#1| (-544)))) (-3509 (((-112) $) 52 (|has| |#1| (-544)))) (-2162 (($ $ (-402 (-552))) 96) (($ $ (-402 (-552)) (-402 (-552))) 95)) (-2182 (((-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|))) $) 103)) (-3728 (($ $) 133 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 116 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 160 (|has| |#1| (-358)))) (-1330 (((-413 $) $) 161 (|has| |#1| (-358)))) (-3837 (($ $) 115 (|has| |#1| (-38 (-402 (-552)))))) (-2408 (((-112) $ $) 151 (|has| |#1| (-358)))) (-3710 (($ $) 132 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 117 (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-751) (-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|)))) 169)) (-3749 (($ $) 131 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 118 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) 17 T CONST)) (-2851 (($ $ $) 155 (|has| |#1| (-358)))) (-4169 (($ $) 58)) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 154 (|has| |#1| (-358)))) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 149 (|has| |#1| (-358)))) (-2951 (((-112) $) 162 (|has| |#1| (-358)))) (-3592 (((-112) $) 71)) (-1385 (($) 143 (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-402 (-552)) $) 98) (((-402 (-552)) $ (-402 (-552))) 97)) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 114 (|has| |#1| (-38 (-402 (-552)))))) (-2216 (($ $ (-897)) 99) (($ $ (-402 (-552))) 168)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 158 (|has| |#1| (-358)))) (-4201 (((-112) $) 60)) (-3957 (($ |#1| (-402 (-552))) 59) (($ $ (-1055) (-402 (-552))) 74) (($ $ (-625 (-1055)) (-625 (-402 (-552)))) 73)) (-1996 (($ (-1 |#1| |#1|) $) 61)) (-2458 (($ $) 140 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) 63)) (-4144 ((|#1| $) 64)) (-2605 (($ (-625 $)) 147 (|has| |#1| (-358))) (($ $ $) 146 (|has| |#1| (-358)))) (-2883 (((-1131) $) 9)) (-4092 (($ $) 163 (|has| |#1| (-358)))) (-2481 (($ $) 167 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) 166 (-1523 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-935)) (|has| |#1| (-1171)) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-38 (-402 (-552)))))))) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 148 (|has| |#1| (-358)))) (-2633 (($ (-625 $)) 145 (|has| |#1| (-358))) (($ $ $) 144 (|has| |#1| (-358)))) (-3824 (((-413 $) $) 159 (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 156 (|has| |#1| (-358)))) (-2147 (($ $ (-402 (-552))) 93)) (-2802 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 150 (|has| |#1| (-358)))) (-2863 (($ $) 141 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))))) (-2397 (((-751) $) 152 (|has| |#1| (-358)))) (-2154 ((|#1| $ (-402 (-552))) 102) (($ $ $) 79 (|has| (-402 (-552)) (-1085)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 153 (|has| |#1| (-358)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) 87 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-1149) (-751)) 86 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-625 (-1149))) 85 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-1149)) 84 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-751)) 82 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-4276 (((-402 (-552)) $) 62)) (-3759 (($ $) 130 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 119 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 129 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 120 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 128 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 121 (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) 70)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-402 (-552))) 55 (|has| |#1| (-38 (-402 (-552))))) (($ $) 47 (|has| |#1| (-544)))) (-3637 ((|#1| $ (-402 (-552))) 57)) (-4243 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-2845 ((|#1| $) 100)) (-3789 (($ $) 139 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 127 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) 51 (|has| |#1| (-544)))) (-3769 (($ $) 138 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 126 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 137 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 125 (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-402 (-552))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) 136 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 124 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 135 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 123 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 134 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 122 (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) 91 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-1149) (-751)) 90 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-625 (-1149))) 89 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-1149)) 88 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-751)) 83 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 56 (|has| |#1| (-358))) (($ $ $) 165 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 164 (|has| |#1| (-358))) (($ $ $) 142 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 113 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-552)) $) 54 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 53 (|has| |#1| (-38 (-402 (-552))))))) -(((-1213 |#1|) (-138) (-1025)) (T -1213)) -((-3615 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *3 (-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| *4)))) (-4 *4 (-1025)) (-4 *1 (-1213 *4)))) (-2216 (*1 *1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-4 *1 (-1213 *3)) (-4 *3 (-1025)))) (-2481 (*1 *1 *1) (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-552)))))) (-2481 (*1 *1 *1 *2) (-1523 (-12 (-5 *2 (-1149)) (-4 *1 (-1213 *3)) (-4 *3 (-1025)) (-12 (-4 *3 (-29 (-552))) (-4 *3 (-935)) (-4 *3 (-1171)) (-4 *3 (-38 (-402 (-552)))))) (-12 (-5 *2 (-1149)) (-4 *1 (-1213 *3)) (-4 *3 (-1025)) (-12 (|has| *3 (-15 -3982 ((-625 *2) *3))) (|has| *3 (-15 -2481 (*3 *3 *2))) (-4 *3 (-38 (-402 (-552))))))))) -(-13 (-1210 |t#1| (-402 (-552))) (-10 -8 (-15 -3615 ($ (-751) (-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |t#1|))))) (-15 -2216 ($ $ (-402 (-552)))) (IF (|has| |t#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ($ $)) (IF (|has| |t#1| (-15 -2481 (|t#1| |t#1| (-1149)))) (IF (|has| |t#1| (-15 -3982 ((-625 (-1149)) |t#1|))) (-15 -2481 ($ $ (-1149))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1171)) (IF (|has| |t#1| (-935)) (IF (|has| |t#1| (-29 (-552))) (-15 -2481 ($ $ (-1149))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-978)) (-6 (-1171))) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-402 (-552))) . T) ((-25) . T) ((-38 #1=(-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-552)))) ((-94) |has| |#1| (-38 (-402 (-552)))) ((-101) . T) ((-111 #1# #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-552)))) ((-281 $ $) |has| (-402 (-552)) (-1085)) ((-285) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-358) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-486) |has| |#1| (-38 (-402 (-552)))) ((-544) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-628 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149)))) ((-949 |#1| #0# (-1055)) . T) ((-896) |has| |#1| (-358)) ((-978) |has| |#1| (-38 (-402 (-552)))) ((-1031 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1171) |has| |#1| (-38 (-402 (-552)))) ((-1174) |has| |#1| (-38 (-402 (-552)))) ((-1190) |has| |#1| (-358)) ((-1210 |#1| #0#) . T)) -((-3641 (((-112) $) 12)) (-1893 (((-3 |#3| "failed") $) 17)) (-1895 ((|#3| $) 14))) -(((-1214 |#1| |#2| |#3|) (-10 -8 (-15 -1895 (|#3| |#1|)) (-15 -1893 ((-3 |#3| "failed") |#1|)) (-15 -3641 ((-112) |#1|))) (-1215 |#2| |#3|) (-1025) (-1192 |#2|)) (T -1214)) -NIL -(-10 -8 (-15 -1895 (|#3| |#1|)) (-15 -1893 ((-3 |#3| "failed") |#1|)) (-15 -3641 ((-112) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3982 (((-625 (-1055)) $) 72)) (-2195 (((-1149) $) 101)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3528 (($ $) 50 (|has| |#1| (-544)))) (-3509 (((-112) $) 52 (|has| |#1| (-544)))) (-2162 (($ $ (-402 (-552))) 96) (($ $ (-402 (-552)) (-402 (-552))) 95)) (-2182 (((-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|))) $) 103)) (-3728 (($ $) 133 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 116 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 160 (|has| |#1| (-358)))) (-1330 (((-413 $) $) 161 (|has| |#1| (-358)))) (-3837 (($ $) 115 (|has| |#1| (-38 (-402 (-552)))))) (-2408 (((-112) $ $) 151 (|has| |#1| (-358)))) (-3710 (($ $) 132 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 117 (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-751) (-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|)))) 169)) (-3749 (($ $) 131 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 118 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#2| "failed") $) 180)) (-1895 ((|#2| $) 179)) (-2851 (($ $ $) 155 (|has| |#1| (-358)))) (-4169 (($ $) 58)) (-4174 (((-3 $ "failed") $) 32)) (-2249 (((-402 (-552)) $) 177)) (-2826 (($ $ $) 154 (|has| |#1| (-358)))) (-4066 (($ (-402 (-552)) |#2|) 178)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 149 (|has| |#1| (-358)))) (-2951 (((-112) $) 162 (|has| |#1| (-358)))) (-3592 (((-112) $) 71)) (-1385 (($) 143 (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-402 (-552)) $) 98) (((-402 (-552)) $ (-402 (-552))) 97)) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 114 (|has| |#1| (-38 (-402 (-552)))))) (-2216 (($ $ (-897)) 99) (($ $ (-402 (-552))) 168)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 158 (|has| |#1| (-358)))) (-4201 (((-112) $) 60)) (-3957 (($ |#1| (-402 (-552))) 59) (($ $ (-1055) (-402 (-552))) 74) (($ $ (-625 (-1055)) (-625 (-402 (-552)))) 73)) (-1996 (($ (-1 |#1| |#1|) $) 61)) (-2458 (($ $) 140 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) 63)) (-4144 ((|#1| $) 64)) (-2605 (($ (-625 $)) 147 (|has| |#1| (-358))) (($ $ $) 146 (|has| |#1| (-358)))) (-2238 ((|#2| $) 176)) (-2226 (((-3 |#2| "failed") $) 174)) (-4053 ((|#2| $) 175)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 163 (|has| |#1| (-358)))) (-2481 (($ $) 167 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) 166 (-1523 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-935)) (|has| |#1| (-1171)) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-38 (-402 (-552)))))))) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 148 (|has| |#1| (-358)))) (-2633 (($ (-625 $)) 145 (|has| |#1| (-358))) (($ $ $) 144 (|has| |#1| (-358)))) (-3824 (((-413 $) $) 159 (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 156 (|has| |#1| (-358)))) (-2147 (($ $ (-402 (-552))) 93)) (-2802 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 150 (|has| |#1| (-358)))) (-2863 (($ $) 141 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))))) (-2397 (((-751) $) 152 (|has| |#1| (-358)))) (-2154 ((|#1| $ (-402 (-552))) 102) (($ $ $) 79 (|has| (-402 (-552)) (-1085)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 153 (|has| |#1| (-358)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) 87 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-1149) (-751)) 86 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-625 (-1149))) 85 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-1149)) 84 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-751)) 82 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-4276 (((-402 (-552)) $) 62)) (-3759 (($ $) 130 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 119 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 129 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 120 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 128 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 121 (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) 70)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 181) (($ (-402 (-552))) 55 (|has| |#1| (-38 (-402 (-552))))) (($ $) 47 (|has| |#1| (-544)))) (-3637 ((|#1| $ (-402 (-552))) 57)) (-4243 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-2845 ((|#1| $) 100)) (-3789 (($ $) 139 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 127 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) 51 (|has| |#1| (-544)))) (-3769 (($ $) 138 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 126 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 137 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 125 (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-402 (-552))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) 136 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 124 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 135 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 123 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 134 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 122 (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) 91 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-1149) (-751)) 90 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-625 (-1149))) 89 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-1149)) 88 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (($ $ (-751)) 83 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 56 (|has| |#1| (-358))) (($ $ $) 165 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 164 (|has| |#1| (-358))) (($ $ $) 142 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 113 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-552)) $) 54 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 53 (|has| |#1| (-38 (-402 (-552))))))) -(((-1215 |#1| |#2|) (-138) (-1025) (-1192 |t#1|)) (T -1215)) -((-4276 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1192 *3)) (-5 *2 (-402 (-552))))) (-1683 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *1 (-1215 *3 *2)) (-4 *2 (-1192 *3)))) (-4066 (*1 *1 *2 *3) (-12 (-5 *2 (-402 (-552))) (-4 *4 (-1025)) (-4 *1 (-1215 *4 *3)) (-4 *3 (-1192 *4)))) (-2249 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1192 *3)) (-5 *2 (-402 (-552))))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1192 *3)))) (-4053 (*1 *2 *1) (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1192 *3)))) (-2226 (*1 *2 *1) (|partial| -12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1192 *3))))) -(-13 (-1213 |t#1|) (-1014 |t#2|) (-10 -8 (-15 -4066 ($ (-402 (-552)) |t#2|)) (-15 -2249 ((-402 (-552)) $)) (-15 -2238 (|t#2| $)) (-15 -4276 ((-402 (-552)) $)) (-15 -1683 ($ |t#2|)) (-15 -4053 (|t#2| $)) (-15 -2226 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-402 (-552))) . T) ((-25) . T) ((-38 #1=(-402 (-552))) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-552)))) ((-94) |has| |#1| (-38 (-402 (-552)))) ((-101) . T) ((-111 #1# #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-552)))) ((-281 $ $) |has| (-402 (-552)) (-1085)) ((-285) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-358) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-486) |has| |#1| (-38 (-402 (-552)))) ((-544) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-628 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358))) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149)))) ((-949 |#1| #0# (-1055)) . T) ((-896) |has| |#1| (-358)) ((-978) |has| |#1| (-38 (-402 (-552)))) ((-1014 |#2|) . T) ((-1031 #1#) -1523 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-552))))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1171) |has| |#1| (-38 (-402 (-552)))) ((-1174) |has| |#1| (-38 (-402 (-552)))) ((-1190) |has| |#1| (-358)) ((-1210 |#1| #0#) . T) ((-1213 |#1|) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) 96)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2162 (($ $ (-402 (-552))) 106) (($ $ (-402 (-552)) (-402 (-552))) 108)) (-2182 (((-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|))) $) 51)) (-3728 (($ $) 180 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 156 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL (|has| |#1| (-358)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-358)))) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3710 (($ $) 176 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 152 (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-751) (-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|)))) 61)) (-3749 (($ $) 184 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 160 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) NIL)) (-1895 ((|#2| $) NIL)) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) 79)) (-2249 (((-402 (-552)) $) 13)) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-4066 (($ (-402 (-552)) |#2|) 11)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-2951 (((-112) $) NIL (|has| |#1| (-358)))) (-3592 (((-112) $) 68)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-402 (-552)) $) 103) (((-402 (-552)) $ (-402 (-552))) 104)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2216 (($ $ (-897)) 120) (($ $ (-402 (-552))) 118)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-402 (-552))) 31) (($ $ (-1055) (-402 (-552))) NIL) (($ $ (-625 (-1055)) (-625 (-402 (-552)))) NIL)) (-1996 (($ (-1 |#1| |#1|) $) 115)) (-2458 (($ $) 150 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2238 ((|#2| $) 12)) (-2226 (((-3 |#2| "failed") $) 41)) (-4053 ((|#2| $) 42)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) 93 (|has| |#1| (-358)))) (-2481 (($ $) 135 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) 140 (-1523 (-12 (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-935)) (|has| |#1| (-1171)))))) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2147 (($ $ (-402 (-552))) 112)) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-2863 (($ $) 148 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))))) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ (-402 (-552))) 100) (($ $ $) 86 (|has| (-402 (-552)) (-1085)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) 127 (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-4276 (((-402 (-552)) $) 16)) (-3759 (($ $) 186 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 162 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 182 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 158 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 178 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 154 (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) 110)) (-1683 (((-839) $) NIL) (($ (-552)) 35) (($ |#1|) 27 (|has| |#1| (-170))) (($ |#2|) 32) (($ (-402 (-552))) 128 (|has| |#1| (-38 (-402 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-3637 ((|#1| $ (-402 (-552))) 99)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) 117)) (-2845 ((|#1| $) 98)) (-3789 (($ $) 192 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 168 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) 188 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 164 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 196 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 172 (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-402 (-552))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) 198 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 174 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 194 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 170 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 190 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 166 (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 21 T CONST)) (-2100 (($) 17 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-2281 (((-112) $ $) 66)) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 92 (|has| |#1| (-358)))) (-2393 (($ $) 131) (($ $ $) 72)) (-2382 (($ $ $) 70)) (** (($ $ (-897)) NIL) (($ $ (-751)) 76) (($ $ (-552)) 145 (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 146 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))))) -(((-1216 |#1| |#2|) (-1215 |#1| |#2|) (-1025) (-1192 |#1|)) (T -1216)) -NIL -(-1215 |#1| |#2|) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) 11)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) NIL (|has| |#1| (-544)))) (-2162 (($ $ (-402 (-552))) NIL) (($ $ (-402 (-552)) (-402 (-552))) NIL)) (-2182 (((-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|))) $) NIL)) (-3728 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-2194 (($ $) NIL (|has| |#1| (-358)))) (-1330 (((-413 $) $) NIL (|has| |#1| (-358)))) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2408 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3710 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-751) (-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#1|)))) NIL)) (-3749 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-1196 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1224 |#1| |#2| |#3|) "failed") $) 22)) (-1895 (((-1196 |#1| |#2| |#3|) $) NIL) (((-1224 |#1| |#2| |#3|) $) NIL)) (-2851 (($ $ $) NIL (|has| |#1| (-358)))) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2249 (((-402 (-552)) $) 57)) (-2826 (($ $ $) NIL (|has| |#1| (-358)))) (-4066 (($ (-402 (-552)) (-1196 |#1| |#2| |#3|)) NIL)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) NIL (|has| |#1| (-358)))) (-2951 (((-112) $) NIL (|has| |#1| (-358)))) (-3592 (((-112) $) NIL)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-402 (-552)) $) NIL) (((-402 (-552)) $ (-402 (-552))) NIL)) (-3650 (((-112) $) NIL)) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2216 (($ $ (-897)) NIL) (($ $ (-402 (-552))) NIL)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-402 (-552))) 30) (($ $ (-1055) (-402 (-552))) NIL) (($ $ (-625 (-1055)) (-625 (-402 (-552)))) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-2458 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2605 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2238 (((-1196 |#1| |#2| |#3|) $) 60)) (-2226 (((-3 (-1196 |#1| |#2| |#3|) "failed") $) NIL)) (-4053 (((-1196 |#1| |#2| |#3|) $) NIL)) (-2883 (((-1131) $) NIL)) (-4092 (($ $) NIL (|has| |#1| (-358)))) (-2481 (($ $) 39 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) NIL (-1523 (-12 (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-935)) (|has| |#1| (-1171))))) (($ $ (-1228 |#2|)) 40 (|has| |#1| (-38 (-402 (-552)))))) (-2831 (((-1093) $) NIL)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) NIL (|has| |#1| (-358)))) (-2633 (($ (-625 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3824 (((-413 $) $) NIL (|has| |#1| (-358)))) (-2385 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) NIL (|has| |#1| (-358)))) (-2147 (($ $ (-402 (-552))) NIL)) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1468 (((-3 (-625 $) "failed") (-625 $) $) NIL (|has| |#1| (-358)))) (-2863 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))))) (-2397 (((-751) $) NIL (|has| |#1| (-358)))) (-2154 ((|#1| $ (-402 (-552))) NIL) (($ $ $) NIL (|has| (-402 (-552)) (-1085)))) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) NIL (|has| |#1| (-358)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $ (-1228 |#2|)) 38)) (-4276 (((-402 (-552)) $) NIL)) (-3759 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) NIL)) (-1683 (((-839) $) 89) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1196 |#1| |#2| |#3|)) 16) (($ (-1224 |#1| |#2| |#3|)) 17) (($ (-1228 |#2|)) 36) (($ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-3637 ((|#1| $ (-402 (-552))) NIL)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-2845 ((|#1| $) 12)) (-3789 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-402 (-552))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-552))))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 32 T CONST)) (-2100 (($) 26 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-552)) |#1|))))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 34)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ (-552)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))))) -(((-1217 |#1| |#2| |#3|) (-13 (-1215 |#1| (-1196 |#1| |#2| |#3|)) (-1014 (-1224 |#1| |#2| |#3|)) (-10 -8 (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1217)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1217 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1217 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-2481 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1217 *3 *4 *5)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3)))) -(-13 (-1215 |#1| (-1196 |#1| |#2| |#3|)) (-1014 (-1224 |#1| |#2| |#3|)) (-10 -8 (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 34)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-3528 (($ $) NIL)) (-3509 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 (-552) "failed") $) NIL (|has| (-1217 |#2| |#3| |#4|) (-1014 (-552)))) (((-3 (-402 (-552)) "failed") $) NIL (|has| (-1217 |#2| |#3| |#4|) (-1014 (-402 (-552))))) (((-3 (-1217 |#2| |#3| |#4|) "failed") $) 20)) (-1895 (((-552) $) NIL (|has| (-1217 |#2| |#3| |#4|) (-1014 (-552)))) (((-402 (-552)) $) NIL (|has| (-1217 |#2| |#3| |#4|) (-1014 (-402 (-552))))) (((-1217 |#2| |#3| |#4|) $) NIL)) (-4169 (($ $) 35)) (-4174 (((-3 $ "failed") $) 25)) (-1294 (($ $) NIL (|has| (-1217 |#2| |#3| |#4|) (-446)))) (-1347 (($ $ (-1217 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|) $) NIL)) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) 11)) (-4201 (((-112) $) NIL)) (-3957 (($ (-1217 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) 23)) (-4134 (((-314 |#2| |#3| |#4|) $) NIL)) (-1357 (($ (-1 (-314 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) $) NIL)) (-1996 (($ (-1 (-1217 |#2| |#3| |#4|) (-1217 |#2| |#3| |#4|)) $) NIL)) (-2267 (((-3 (-820 |#2|) "failed") $) 75)) (-4131 (($ $) NIL)) (-4144 (((-1217 |#2| |#3| |#4|) $) 18)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4105 (((-112) $) NIL)) (-4117 (((-1217 |#2| |#3| |#4|) $) NIL)) (-2802 (((-3 $ "failed") $ (-1217 |#2| |#3| |#4|)) NIL (|has| (-1217 |#2| |#3| |#4|) (-544))) (((-3 $ "failed") $ $) NIL)) (-2258 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1217 |#2| |#3| |#4|)) (|:| |%expon| (-314 |#2| |#3| |#4|)) (|:| |%expTerms| (-625 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#2|)))))) (|:| |%type| (-1131))) "failed") $) 58)) (-4276 (((-314 |#2| |#3| |#4|) $) 14)) (-4108 (((-1217 |#2| |#3| |#4|) $) NIL (|has| (-1217 |#2| |#3| |#4|) (-446)))) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ (-1217 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-402 (-552))) NIL (-1523 (|has| (-1217 |#2| |#3| |#4|) (-38 (-402 (-552)))) (|has| (-1217 |#2| |#3| |#4|) (-1014 (-402 (-552))))))) (-2512 (((-625 (-1217 |#2| |#3| |#4|)) $) NIL)) (-3637 (((-1217 |#2| |#3| |#4|) $ (-314 |#2| |#3| |#4|)) NIL)) (-4243 (((-3 $ "failed") $) NIL (|has| (-1217 |#2| |#3| |#4|) (-143)))) (-4141 (((-751)) NIL)) (-1336 (($ $ $ (-751)) NIL (|has| (-1217 |#2| |#3| |#4|) (-170)))) (-3518 (((-112) $ $) NIL)) (-2089 (($) 63 T CONST)) (-2100 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ (-1217 |#2| |#3| |#4|)) NIL (|has| (-1217 |#2| |#3| |#4|) (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-1217 |#2| |#3| |#4|)) NIL) (($ (-1217 |#2| |#3| |#4|) $) NIL) (($ (-402 (-552)) $) NIL (|has| (-1217 |#2| |#3| |#4|) (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| (-1217 |#2| |#3| |#4|) (-38 (-402 (-552))))))) -(((-1218 |#1| |#2| |#3| |#4|) (-13 (-321 (-1217 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) (-544) (-10 -8 (-15 -2267 ((-3 (-820 |#2|) "failed") $)) (-15 -2258 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1217 |#2| |#3| |#4|)) (|:| |%expon| (-314 |#2| |#3| |#4|)) (|:| |%expTerms| (-625 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#2|)))))) (|:| |%type| (-1131))) "failed") $)))) (-13 (-827) (-1014 (-552)) (-621 (-552)) (-446)) (-13 (-27) (-1171) (-425 |#1|)) (-1149) |#2|) (T -1218)) -((-2267 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-827) (-1014 (-552)) (-621 (-552)) (-446))) (-5 *2 (-820 *4)) (-5 *1 (-1218 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-425 *3))) (-14 *5 (-1149)) (-14 *6 *4))) (-2258 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-827) (-1014 (-552)) (-621 (-552)) (-446))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1217 *4 *5 *6)) (|:| |%expon| (-314 *4 *5 *6)) (|:| |%expTerms| (-625 (-2 (|:| |k| (-402 (-552))) (|:| |c| *4)))))) (|:| |%type| (-1131)))) (-5 *1 (-1218 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-425 *3))) (-14 *5 (-1149)) (-14 *6 *4)))) -(-13 (-321 (-1217 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) (-544) (-10 -8 (-15 -2267 ((-3 (-820 |#2|) "failed") $)) (-15 -2258 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1217 |#2| |#3| |#4|)) (|:| |%expon| (-314 |#2| |#3| |#4|)) (|:| |%expTerms| (-625 (-2 (|:| |k| (-402 (-552))) (|:| |c| |#2|)))))) (|:| |%type| (-1131))) "failed") $)))) -((-3800 ((|#2| $) 29)) (-3897 ((|#2| $) 18)) (-2101 (($ $) 36)) (-2278 (($ $ (-552)) 64)) (-3495 (((-112) $ (-751)) 33)) (-2565 ((|#2| $ |#2|) 61)) (-2289 ((|#2| $ |#2|) 59)) (-1851 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-1359 (($ $ (-625 $)) 60)) (-2673 ((|#2| $) 17)) (-2936 (($ $) NIL) (($ $ (-751)) 42)) (-1399 (((-625 $) $) 26)) (-1371 (((-112) $ $) 50)) (-2909 (((-112) $ (-751)) 32)) (-2878 (((-112) $ (-751)) 31)) (-3367 (((-112) $) 28)) (-1437 ((|#2| $) 24) (($ $ (-751)) 46)) (-2154 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2316 (((-112) $) 22)) (-2356 (($ $) 39)) (-2330 (($ $) 65)) (-2368 (((-751) $) 41)) (-2379 (($ $) 40)) (-3402 (($ $ $) 58) (($ |#2| $) NIL)) (-3320 (((-625 $) $) 27)) (-2281 (((-112) $ $) 48)) (-1471 (((-751) $) 35))) -(((-1219 |#1| |#2|) (-10 -8 (-15 -2278 (|#1| |#1| (-552))) (-15 -1851 (|#2| |#1| "last" |#2|)) (-15 -2289 (|#2| |#1| |#2|)) (-15 -1851 (|#1| |#1| "rest" |#1|)) (-15 -1851 (|#2| |#1| "first" |#2|)) (-15 -2330 (|#1| |#1|)) (-15 -2356 (|#1| |#1|)) (-15 -2368 ((-751) |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -3897 (|#2| |#1|)) (-15 -2673 (|#2| |#1|)) (-15 -2101 (|#1| |#1|)) (-15 -1437 (|#1| |#1| (-751))) (-15 -2154 (|#2| |#1| "last")) (-15 -1437 (|#2| |#1|)) (-15 -2936 (|#1| |#1| (-751))) (-15 -2154 (|#1| |#1| "rest")) (-15 -2936 (|#1| |#1|)) (-15 -2154 (|#2| |#1| "first")) (-15 -3402 (|#1| |#2| |#1|)) (-15 -3402 (|#1| |#1| |#1|)) (-15 -2565 (|#2| |#1| |#2|)) (-15 -1851 (|#2| |#1| "value" |#2|)) (-15 -1359 (|#1| |#1| (-625 |#1|))) (-15 -1371 ((-112) |#1| |#1|)) (-15 -2316 ((-112) |#1|)) (-15 -2154 (|#2| |#1| "value")) (-15 -3800 (|#2| |#1|)) (-15 -3367 ((-112) |#1|)) (-15 -1399 ((-625 |#1|) |#1|)) (-15 -3320 ((-625 |#1|) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -1471 ((-751) |#1|)) (-15 -3495 ((-112) |#1| (-751))) (-15 -2909 ((-112) |#1| (-751))) (-15 -2878 ((-112) |#1| (-751)))) (-1220 |#2|) (-1186)) (T -1219)) -NIL -(-10 -8 (-15 -2278 (|#1| |#1| (-552))) (-15 -1851 (|#2| |#1| "last" |#2|)) (-15 -2289 (|#2| |#1| |#2|)) (-15 -1851 (|#1| |#1| "rest" |#1|)) (-15 -1851 (|#2| |#1| "first" |#2|)) (-15 -2330 (|#1| |#1|)) (-15 -2356 (|#1| |#1|)) (-15 -2368 ((-751) |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -3897 (|#2| |#1|)) (-15 -2673 (|#2| |#1|)) (-15 -2101 (|#1| |#1|)) (-15 -1437 (|#1| |#1| (-751))) (-15 -2154 (|#2| |#1| "last")) (-15 -1437 (|#2| |#1|)) (-15 -2936 (|#1| |#1| (-751))) (-15 -2154 (|#1| |#1| "rest")) (-15 -2936 (|#1| |#1|)) (-15 -2154 (|#2| |#1| "first")) (-15 -3402 (|#1| |#2| |#1|)) (-15 -3402 (|#1| |#1| |#1|)) (-15 -2565 (|#2| |#1| |#2|)) (-15 -1851 (|#2| |#1| "value" |#2|)) (-15 -1359 (|#1| |#1| (-625 |#1|))) (-15 -1371 ((-112) |#1| |#1|)) (-15 -2316 ((-112) |#1|)) (-15 -2154 (|#2| |#1| "value")) (-15 -3800 (|#2| |#1|)) (-15 -3367 ((-112) |#1|)) (-15 -1399 ((-625 |#1|) |#1|)) (-15 -3320 ((-625 |#1|) |#1|)) (-15 -2281 ((-112) |#1| |#1|)) (-15 -1471 ((-751) |#1|)) (-15 -3495 ((-112) |#1| (-751))) (-15 -2909 ((-112) |#1| (-751))) (-15 -2878 ((-112) |#1| (-751)))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-3800 ((|#1| $) 48)) (-3897 ((|#1| $) 65)) (-2101 (($ $) 67)) (-2278 (($ $ (-552)) 52 (|has| $ (-6 -4354)))) (-3495 (((-112) $ (-751)) 8)) (-2565 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-2301 (($ $ $) 56 (|has| $ (-6 -4354)))) (-2289 ((|#1| $ |#1|) 54 (|has| $ (-6 -4354)))) (-2317 ((|#1| $ |#1|) 58 (|has| $ (-6 -4354)))) (-1851 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4354))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4354))) (($ $ "rest" $) 55 (|has| $ (-6 -4354))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4354)))) (-1359 (($ $ (-625 $)) 41 (|has| $ (-6 -4354)))) (-2673 ((|#1| $) 66)) (-3101 (($) 7 T CONST)) (-2936 (($ $) 73) (($ $ (-751)) 71)) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-1399 (((-625 $) $) 50)) (-1371 (((-112) $ $) 42 (|has| |#1| (-1073)))) (-2909 (((-112) $ (-751)) 9)) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35)) (-2878 (((-112) $ (-751)) 10)) (-3183 (((-625 |#1|) $) 45)) (-3367 (((-112) $) 49)) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-1437 ((|#1| $) 70) (($ $ (-751)) 68)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2924 ((|#1| $) 76) (($ $ (-751)) 74)) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-1389 (((-552) $ $) 44)) (-2316 (((-112) $) 46)) (-2356 (($ $) 62)) (-2330 (($ $) 59 (|has| $ (-6 -4354)))) (-2368 (((-751) $) 63)) (-2379 (($ $) 64)) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1871 (($ $) 13)) (-2342 (($ $ $) 61 (|has| $ (-6 -4354))) (($ $ |#1|) 60 (|has| $ (-6 -4354)))) (-3402 (($ $ $) 78) (($ |#1| $) 77)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-3320 (((-625 $) $) 51)) (-1380 (((-112) $ $) 43 (|has| |#1| (-1073)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-1220 |#1|) (-138) (-1186)) (T -1220)) -((-3402 (*1 *1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-3402 (*1 *1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2924 (*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2924 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1186)))) (-2936 (*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1220 *3)) (-4 *3 (-1186)))) (-2936 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1186)))) (-1437 (*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2154 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-1437 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1186)))) (-2101 (*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2673 (*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-3897 (*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2379 (*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2368 (*1 *2 *1) (-12 (-4 *1 (-1220 *3)) (-4 *3 (-1186)) (-5 *2 (-751)))) (-2356 (*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2342 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2342 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2330 (*1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2317 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-1851 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2301 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-1851 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *3)) (-4 *3 (-1186)))) (-2289 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-1851 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) (-2278 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (|has| *1 (-6 -4354)) (-4 *1 (-1220 *3)) (-4 *3 (-1186))))) -(-13 (-986 |t#1|) (-10 -8 (-15 -3402 ($ $ $)) (-15 -3402 ($ |t#1| $)) (-15 -2924 (|t#1| $)) (-15 -2154 (|t#1| $ "first")) (-15 -2924 ($ $ (-751))) (-15 -2936 ($ $)) (-15 -2154 ($ $ "rest")) (-15 -2936 ($ $ (-751))) (-15 -1437 (|t#1| $)) (-15 -2154 (|t#1| $ "last")) (-15 -1437 ($ $ (-751))) (-15 -2101 ($ $)) (-15 -2673 (|t#1| $)) (-15 -3897 (|t#1| $)) (-15 -2379 ($ $)) (-15 -2368 ((-751) $)) (-15 -2356 ($ $)) (IF (|has| $ (-6 -4354)) (PROGN (-15 -2342 ($ $ $)) (-15 -2342 ($ $ |t#1|)) (-15 -2330 ($ $)) (-15 -2317 (|t#1| $ |t#1|)) (-15 -1851 (|t#1| $ "first" |t#1|)) (-15 -2301 ($ $ $)) (-15 -1851 ($ $ "rest" $)) (-15 -2289 (|t#1| $ |t#1|)) (-15 -1851 (|t#1| $ "last" |t#1|)) (-15 -2278 ($ $ (-552)))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1073)) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-597 (-839)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-986 |#1|) . T) ((-1073) |has| |#1| (-1073)) ((-1186) . T)) -((-1996 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1221 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1996 (|#4| (-1 |#2| |#1|) |#3|))) (-1025) (-1025) (-1223 |#1|) (-1223 |#2|)) (T -1221)) -((-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-4 *2 (-1223 *6)) (-5 *1 (-1221 *5 *6 *4 *2)) (-4 *4 (-1223 *5))))) -(-10 -7 (-15 -1996 (|#4| (-1 |#2| |#1|) |#3|))) -((-3641 (((-112) $) 15)) (-3728 (($ $) 92)) (-3604 (($ $) 68)) (-3710 (($ $) 88)) (-3581 (($ $) 64)) (-3749 (($ $) 96)) (-3627 (($ $) 72)) (-2458 (($ $) 62)) (-2863 (($ $) 60)) (-3759 (($ $) 98)) (-3638 (($ $) 74)) (-3738 (($ $) 94)) (-3614 (($ $) 70)) (-3721 (($ $) 90)) (-3593 (($ $) 66)) (-1683 (((-839) $) 48) (($ (-552)) NIL) (($ (-402 (-552))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3789 (($ $) 104)) (-3670 (($ $) 80)) (-3769 (($ $) 100)) (-3648 (($ $) 76)) (-3809 (($ $) 108)) (-3691 (($ $) 84)) (-3742 (($ $) 110)) (-3700 (($ $) 86)) (-3797 (($ $) 106)) (-3681 (($ $) 82)) (-3778 (($ $) 102)) (-3659 (($ $) 78)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-402 (-552))) 58))) -(((-1222 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-402 (-552)))) (-15 -3604 (|#1| |#1|)) (-15 -3581 (|#1| |#1|)) (-15 -3627 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3614 (|#1| |#1|)) (-15 -3593 (|#1| |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -3681 (|#1| |#1|)) (-15 -3700 (|#1| |#1|)) (-15 -3691 (|#1| |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3721 (|#1| |#1|)) (-15 -3738 (|#1| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3749 (|#1| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -3728 (|#1| |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 -3809 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3789 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 -2863 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1683 (|#1| |#2|)) (-15 -1683 (|#1| |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| (-552))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-897))) (-15 -3641 ((-112) |#1|)) (-15 -1683 ((-839) |#1|))) (-1223 |#2|) (-1025)) (T -1222)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-402 (-552)))) (-15 -3604 (|#1| |#1|)) (-15 -3581 (|#1| |#1|)) (-15 -3627 (|#1| |#1|)) (-15 -3638 (|#1| |#1|)) (-15 -3614 (|#1| |#1|)) (-15 -3593 (|#1| |#1|)) (-15 -3659 (|#1| |#1|)) (-15 -3681 (|#1| |#1|)) (-15 -3700 (|#1| |#1|)) (-15 -3691 (|#1| |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3721 (|#1| |#1|)) (-15 -3738 (|#1| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3749 (|#1| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -3728 (|#1| |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 -3809 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -3789 (|#1| |#1|)) (-15 -2458 (|#1| |#1|)) (-15 -2863 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1683 (|#1| |#2|)) (-15 -1683 (|#1| |#1|)) (-15 -1683 (|#1| (-402 (-552)))) (-15 -1683 (|#1| (-552))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-897))) (-15 -3641 ((-112) |#1|)) (-15 -1683 ((-839) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3982 (((-625 (-1055)) $) 72)) (-2195 (((-1149) $) 101)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3528 (($ $) 50 (|has| |#1| (-544)))) (-3509 (((-112) $) 52 (|has| |#1| (-544)))) (-2162 (($ $ (-751)) 96) (($ $ (-751) (-751)) 95)) (-2182 (((-1129 (-2 (|:| |k| (-751)) (|:| |c| |#1|))) $) 103)) (-3728 (($ $) 133 (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) 116 (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) 19)) (-3837 (($ $) 115 (|has| |#1| (-38 (-402 (-552)))))) (-3710 (($ $) 132 (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) 117 (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-1129 (-2 (|:| |k| (-751)) (|:| |c| |#1|)))) 153) (($ (-1129 |#1|)) 151)) (-3749 (($ $) 131 (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) 118 (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) 17 T CONST)) (-4169 (($ $) 58)) (-4174 (((-3 $ "failed") $) 32)) (-2502 (($ $) 150)) (-4098 (((-928 |#1|) $ (-751)) 148) (((-928 |#1|) $ (-751) (-751)) 147)) (-3592 (((-112) $) 71)) (-1385 (($) 143 (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-751) $) 98) (((-751) $ (-751)) 97)) (-3650 (((-112) $) 30)) (-2429 (($ $ (-552)) 114 (|has| |#1| (-38 (-402 (-552)))))) (-2216 (($ $ (-897)) 99)) (-2493 (($ (-1 |#1| (-552)) $) 149)) (-4201 (((-112) $) 60)) (-3957 (($ |#1| (-751)) 59) (($ $ (-1055) (-751)) 74) (($ $ (-625 (-1055)) (-625 (-751))) 73)) (-1996 (($ (-1 |#1| |#1|) $) 61)) (-2458 (($ $) 140 (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) 63)) (-4144 ((|#1| $) 64)) (-2883 (((-1131) $) 9)) (-2481 (($ $) 145 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) 144 (-1523 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-935)) (|has| |#1| (-1171)) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-38 (-402 (-552)))))))) (-2831 (((-1093) $) 10)) (-2147 (($ $ (-751)) 93)) (-2802 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-2863 (($ $) 141 (|has| |#1| (-38 (-402 (-552)))))) (-4073 (((-1129 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-751)))))) (-2154 ((|#1| $ (-751)) 102) (($ $ $) 79 (|has| (-751) (-1085)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) 87 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149) (-751)) 86 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-625 (-1149))) 85 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149)) 84 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-751)) 82 (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (-4276 (((-751) $) 62)) (-3759 (($ $) 130 (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) 119 (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) 129 (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) 120 (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) 128 (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) 121 (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) 70)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ (-402 (-552))) 55 (|has| |#1| (-38 (-402 (-552))))) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45 (|has| |#1| (-170)))) (-2512 (((-1129 |#1|) $) 152)) (-3637 ((|#1| $ (-751)) 57)) (-4243 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-4141 (((-751)) 28)) (-2845 ((|#1| $) 100)) (-3789 (($ $) 139 (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) 127 (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) 51 (|has| |#1| (-544)))) (-3769 (($ $) 138 (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) 126 (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) 137 (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) 125 (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-751)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-751)))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) 136 (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) 124 (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) 135 (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) 123 (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) 134 (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) 122 (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) 91 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149) (-751)) 90 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-625 (-1149))) 89 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149)) 88 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-751)) 83 (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 56 (|has| |#1| (-358)))) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ |#1|) 146 (|has| |#1| (-358))) (($ $ $) 142 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 113 (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-552)) $) 54 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) 53 (|has| |#1| (-38 (-402 (-552))))))) -(((-1223 |#1|) (-138) (-1025)) (T -1223)) -((-3615 (*1 *1 *2) (-12 (-5 *2 (-1129 (-2 (|:| |k| (-751)) (|:| |c| *3)))) (-4 *3 (-1025)) (-4 *1 (-1223 *3)))) (-2512 (*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-1025)) (-5 *2 (-1129 *3)))) (-3615 (*1 *1 *2) (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-4 *1 (-1223 *3)))) (-2502 (*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1025)))) (-2493 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-552))) (-4 *1 (-1223 *3)) (-4 *3 (-1025)))) (-4098 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-1223 *4)) (-4 *4 (-1025)) (-5 *2 (-928 *4)))) (-4098 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-4 *1 (-1223 *4)) (-4 *4 (-1025)) (-5 *2 (-928 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2481 (*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-552)))))) (-2481 (*1 *1 *1 *2) (-1523 (-12 (-5 *2 (-1149)) (-4 *1 (-1223 *3)) (-4 *3 (-1025)) (-12 (-4 *3 (-29 (-552))) (-4 *3 (-935)) (-4 *3 (-1171)) (-4 *3 (-38 (-402 (-552)))))) (-12 (-5 *2 (-1149)) (-4 *1 (-1223 *3)) (-4 *3 (-1025)) (-12 (|has| *3 (-15 -3982 ((-625 *2) *3))) (|has| *3 (-15 -2481 (*3 *3 *2))) (-4 *3 (-38 (-402 (-552))))))))) -(-13 (-1210 |t#1| (-751)) (-10 -8 (-15 -3615 ($ (-1129 (-2 (|:| |k| (-751)) (|:| |c| |t#1|))))) (-15 -2512 ((-1129 |t#1|) $)) (-15 -3615 ($ (-1129 |t#1|))) (-15 -2502 ($ $)) (-15 -2493 ($ (-1 |t#1| (-552)) $)) (-15 -4098 ((-928 |t#1|) $ (-751))) (-15 -4098 ((-928 |t#1|) $ (-751) (-751))) (IF (|has| |t#1| (-358)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-552)))) (PROGN (-15 -2481 ($ $)) (IF (|has| |t#1| (-15 -2481 (|t#1| |t#1| (-1149)))) (IF (|has| |t#1| (-15 -3982 ((-625 (-1149)) |t#1|))) (-15 -2481 ($ $ (-1149))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1171)) (IF (|has| |t#1| (-935)) (IF (|has| |t#1| (-29 (-552))) (-15 -2481 ($ $ (-1149))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-978)) (-6 (-1171))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-751)) . T) ((-25) . T) ((-38 #1=(-402 (-552))) |has| |#1| (-38 (-402 (-552)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-544)) ((-35) |has| |#1| (-38 (-402 (-552)))) ((-94) |has| |#1| (-38 (-402 (-552)))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-552)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-751) |#1|))) ((-279) |has| |#1| (-38 (-402 (-552)))) ((-281 $ $) |has| (-751) (-1085)) ((-285) |has| |#1| (-544)) ((-486) |has| |#1| (-38 (-402 (-552)))) ((-544) |has| |#1| (-544)) ((-628 #1#) |has| |#1| (-38 (-402 (-552)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) |has| |#1| (-38 (-402 (-552)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-544)) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149)))) ((-949 |#1| #0# (-1055)) . T) ((-978) |has| |#1| (-38 (-402 (-552)))) ((-1031 #1#) |has| |#1| (-38 (-402 (-552)))) ((-1031 |#1|) . T) ((-1031 $) -1523 (|has| |#1| (-544)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1171) |has| |#1| (-38 (-402 (-552)))) ((-1174) |has| |#1| (-38 (-402 (-552)))) ((-1210 |#1| #0#) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3982 (((-625 (-1055)) $) NIL)) (-2195 (((-1149) $) 87)) (-2472 (((-1205 |#2| |#1|) $ (-751)) 73)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3528 (($ $) NIL (|has| |#1| (-544)))) (-3509 (((-112) $) 137 (|has| |#1| (-544)))) (-2162 (($ $ (-751)) 122) (($ $ (-751) (-751)) 124)) (-2182 (((-1129 (-2 (|:| |k| (-751)) (|:| |c| |#1|))) $) 42)) (-3728 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3604 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2077 (((-3 $ "failed") $ $) NIL)) (-3837 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3710 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3581 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3615 (($ (-1129 (-2 (|:| |k| (-751)) (|:| |c| |#1|)))) 53) (($ (-1129 |#1|)) NIL)) (-3749 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3627 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3101 (($) NIL T CONST)) (-2412 (($ $) 128)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-2502 (($ $) 135)) (-4098 (((-928 |#1|) $ (-751)) 63) (((-928 |#1|) $ (-751) (-751)) 65)) (-3592 (((-112) $) NIL)) (-1385 (($) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2172 (((-751) $) NIL) (((-751) $ (-751)) NIL)) (-3650 (((-112) $) NIL)) (-2441 (($ $) 112)) (-2429 (($ $ (-552)) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2401 (($ (-552) (-552) $) 130)) (-2216 (($ $ (-897)) 134)) (-2493 (($ (-1 |#1| (-552)) $) 106)) (-4201 (((-112) $) NIL)) (-3957 (($ |#1| (-751)) 15) (($ $ (-1055) (-751)) NIL) (($ $ (-625 (-1055)) (-625 (-751))) NIL)) (-1996 (($ (-1 |#1| |#1|) $) 94)) (-2458 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-4131 (($ $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2451 (($ $) 110)) (-2463 (($ $) 108)) (-2390 (($ (-552) (-552) $) 132)) (-2481 (($ $) 145 (|has| |#1| (-38 (-402 (-552))))) (($ $ (-1149)) 151 (-1523 (-12 (|has| |#1| (-15 -2481 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3982 ((-625 (-1149)) |#1|))) (|has| |#1| (-38 (-402 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-402 (-552)))) (|has| |#1| (-935)) (|has| |#1| (-1171))))) (($ $ (-1228 |#2|)) 146 (|has| |#1| (-38 (-402 (-552)))))) (-2831 (((-1093) $) NIL)) (-2421 (($ $ (-552) (-552)) 116)) (-2147 (($ $ (-751)) 118)) (-2802 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-2863 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2431 (($ $) 114)) (-4073 (((-1129 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-751)))))) (-2154 ((|#1| $ (-751)) 91) (($ $ $) 126 (|has| (-751) (-1085)))) (-3072 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) 103 (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $ (-1228 |#2|)) 99)) (-4276 (((-751) $) NIL)) (-3759 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3638 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3738 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3614 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3721 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3593 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3580 (($ $) 120)) (-1683 (((-839) $) NIL) (($ (-552)) 24) (($ (-402 (-552))) 143 (|has| |#1| (-38 (-402 (-552))))) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) 23 (|has| |#1| (-170))) (($ (-1205 |#2| |#1|)) 80) (($ (-1228 |#2|)) 20)) (-2512 (((-1129 |#1|) $) NIL)) (-3637 ((|#1| $ (-751)) 90)) (-4243 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-4141 (((-751)) NIL)) (-2845 ((|#1| $) 88)) (-3789 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3518 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3769 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3648 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3809 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3691 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2874 ((|#1| $ (-751)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-751)))) (|has| |#1| (-15 -1683 (|#1| (-1149))))))) (-3742 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3700 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3797 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3681 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-3659 (($ $) NIL (|has| |#1| (-38 (-402 (-552)))))) (-2089 (($) 17 T CONST)) (-2100 (($) 13 T CONST)) (-3768 (($ $ (-625 (-1149)) (-625 (-751))) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-625 (-1149))) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-15 * (|#1| (-751) |#1|))) (|has| |#1| (-876 (-1149))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (-2281 (((-112) $ $) NIL)) (-2404 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) 102)) (-2382 (($ $ $) 18)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL) (($ $ |#1|) 140 (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552)))))) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-402 (-552)) $) NIL (|has| |#1| (-38 (-402 (-552))))) (($ $ (-402 (-552))) NIL (|has| |#1| (-38 (-402 (-552))))))) -(((-1224 |#1| |#2| |#3|) (-13 (-1223 |#1|) (-10 -8 (-15 -1683 ($ (-1205 |#2| |#1|))) (-15 -2472 ((-1205 |#2| |#1|) $ (-751))) (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (-15 -2463 ($ $)) (-15 -2451 ($ $)) (-15 -2441 ($ $)) (-15 -2431 ($ $)) (-15 -2421 ($ $ (-552) (-552))) (-15 -2412 ($ $)) (-15 -2401 ($ (-552) (-552) $)) (-15 -2390 ($ (-552) (-552) $)) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1224)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-1205 *4 *3)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3) (-5 *1 (-1224 *3 *4 *5)))) (-2472 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1205 *5 *4)) (-5 *1 (-1224 *4 *5 *6)) (-4 *4 (-1025)) (-14 *5 (-1149)) (-14 *6 *4))) (-1683 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1224 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-3072 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1224 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-2463 (*1 *1 *1) (-12 (-5 *1 (-1224 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))) (-2451 (*1 *1 *1) (-12 (-5 *1 (-1224 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))) (-2441 (*1 *1 *1) (-12 (-5 *1 (-1224 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))) (-2431 (*1 *1 *1) (-12 (-5 *1 (-1224 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))) (-2421 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1224 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3))) (-2412 (*1 *1 *1) (-12 (-5 *1 (-1224 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))) (-2401 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1224 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3))) (-2390 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1224 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3))) (-2481 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1224 *3 *4 *5)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3)))) -(-13 (-1223 |#1|) (-10 -8 (-15 -1683 ($ (-1205 |#2| |#1|))) (-15 -2472 ((-1205 |#2| |#1|) $ (-751))) (-15 -1683 ($ (-1228 |#2|))) (-15 -3072 ($ $ (-1228 |#2|))) (-15 -2463 ($ $)) (-15 -2451 ($ $)) (-15 -2441 ($ $)) (-15 -2431 ($ $)) (-15 -2421 ($ $ (-552) (-552))) (-15 -2412 ($ $)) (-15 -2401 ($ (-552) (-552) $)) (-15 -2390 ($ (-552) (-552) $)) (IF (|has| |#1| (-38 (-402 (-552)))) (-15 -2481 ($ $ (-1228 |#2|))) |%noBranch|))) -((-2540 (((-1 (-1129 |#1|) (-625 (-1129 |#1|))) (-1 |#2| (-625 |#2|))) 24)) (-2530 (((-1 (-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2521 (((-1 (-1129 |#1|) (-1129 |#1|)) (-1 |#2| |#2|)) 13)) (-2567 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2557 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2576 ((|#2| (-1 |#2| (-625 |#2|)) (-625 |#1|)) 54)) (-2587 (((-625 |#2|) (-625 |#1|) (-625 (-1 |#2| (-625 |#2|)))) 61)) (-2548 ((|#2| |#2| |#2|) 43))) -(((-1225 |#1| |#2|) (-10 -7 (-15 -2521 ((-1 (-1129 |#1|) (-1129 |#1|)) (-1 |#2| |#2|))) (-15 -2530 ((-1 (-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2540 ((-1 (-1129 |#1|) (-625 (-1129 |#1|))) (-1 |#2| (-625 |#2|)))) (-15 -2548 (|#2| |#2| |#2|)) (-15 -2557 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2567 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2576 (|#2| (-1 |#2| (-625 |#2|)) (-625 |#1|))) (-15 -2587 ((-625 |#2|) (-625 |#1|) (-625 (-1 |#2| (-625 |#2|)))))) (-38 (-402 (-552))) (-1223 |#1|)) (T -1225)) -((-2587 (*1 *2 *3 *4) (-12 (-5 *3 (-625 *5)) (-5 *4 (-625 (-1 *6 (-625 *6)))) (-4 *5 (-38 (-402 (-552)))) (-4 *6 (-1223 *5)) (-5 *2 (-625 *6)) (-5 *1 (-1225 *5 *6)))) (-2576 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-625 *2))) (-5 *4 (-625 *5)) (-4 *5 (-38 (-402 (-552)))) (-4 *2 (-1223 *5)) (-5 *1 (-1225 *5 *2)))) (-2567 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1223 *4)) (-5 *1 (-1225 *4 *2)) (-4 *4 (-38 (-402 (-552)))))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1223 *4)) (-5 *1 (-1225 *4 *2)) (-4 *4 (-38 (-402 (-552)))))) (-2548 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-1223 *3)))) (-2540 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-625 *5))) (-4 *5 (-1223 *4)) (-4 *4 (-38 (-402 (-552)))) (-5 *2 (-1 (-1129 *4) (-625 (-1129 *4)))) (-5 *1 (-1225 *4 *5)))) (-2530 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1223 *4)) (-4 *4 (-38 (-402 (-552)))) (-5 *2 (-1 (-1129 *4) (-1129 *4) (-1129 *4))) (-5 *1 (-1225 *4 *5)))) (-2521 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1223 *4)) (-4 *4 (-38 (-402 (-552)))) (-5 *2 (-1 (-1129 *4) (-1129 *4))) (-5 *1 (-1225 *4 *5))))) -(-10 -7 (-15 -2521 ((-1 (-1129 |#1|) (-1129 |#1|)) (-1 |#2| |#2|))) (-15 -2530 ((-1 (-1129 |#1|) (-1129 |#1|) (-1129 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2540 ((-1 (-1129 |#1|) (-625 (-1129 |#1|))) (-1 |#2| (-625 |#2|)))) (-15 -2548 (|#2| |#2| |#2|)) (-15 -2557 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2567 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2576 (|#2| (-1 |#2| (-625 |#2|)) (-625 |#1|))) (-15 -2587 ((-625 |#2|) (-625 |#1|) (-625 (-1 |#2| (-625 |#2|)))))) -((-2610 ((|#2| |#4| (-751)) 30)) (-2599 ((|#4| |#2|) 25)) (-2627 ((|#4| (-402 |#2|)) 52 (|has| |#1| (-544)))) (-2617 (((-1 |#4| (-625 |#4|)) |#3|) 46))) -(((-1226 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2599 (|#4| |#2|)) (-15 -2610 (|#2| |#4| (-751))) (-15 -2617 ((-1 |#4| (-625 |#4|)) |#3|)) (IF (|has| |#1| (-544)) (-15 -2627 (|#4| (-402 |#2|))) |%noBranch|)) (-1025) (-1208 |#1|) (-636 |#2|) (-1223 |#1|)) (T -1226)) -((-2627 (*1 *2 *3) (-12 (-5 *3 (-402 *5)) (-4 *5 (-1208 *4)) (-4 *4 (-544)) (-4 *4 (-1025)) (-4 *2 (-1223 *4)) (-5 *1 (-1226 *4 *5 *6 *2)) (-4 *6 (-636 *5)))) (-2617 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-1208 *4)) (-5 *2 (-1 *6 (-625 *6))) (-5 *1 (-1226 *4 *5 *3 *6)) (-4 *3 (-636 *5)) (-4 *6 (-1223 *4)))) (-2610 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-1025)) (-4 *2 (-1208 *5)) (-5 *1 (-1226 *5 *2 *6 *3)) (-4 *6 (-636 *2)) (-4 *3 (-1223 *5)))) (-2599 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *3 (-1208 *4)) (-4 *2 (-1223 *4)) (-5 *1 (-1226 *4 *3 *5 *2)) (-4 *5 (-636 *3))))) -(-10 -7 (-15 -2599 (|#4| |#2|)) (-15 -2610 (|#2| |#4| (-751))) (-15 -2617 ((-1 |#4| (-625 |#4|)) |#3|)) (IF (|has| |#1| (-544)) (-15 -2627 (|#4| (-402 |#2|))) |%noBranch|)) -NIL -(((-1227) (-138)) (T -1227)) -NIL -(-13 (-10 -7 (-6 -3526))) -((-1671 (((-112) $ $) NIL)) (-2195 (((-1149)) 12)) (-2883 (((-1131) $) 17)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 11) (((-1149) $) 8)) (-2281 (((-112) $ $) 14))) -(((-1228 |#1|) (-13 (-1073) (-597 (-1149)) (-10 -8 (-15 -1683 ((-1149) $)) (-15 -2195 ((-1149))))) (-1149)) (T -1228)) -((-1683 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1228 *3)) (-14 *3 *2))) (-2195 (*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1228 *3)) (-14 *3 *2)))) -(-13 (-1073) (-597 (-1149)) (-10 -8 (-15 -1683 ((-1149) $)) (-15 -2195 ((-1149))))) -((-2983 (($ (-751)) 18)) (-3191 (((-669 |#2|) $ $) 40)) (-2638 ((|#2| $) 48)) (-3456 ((|#2| $) 47)) (-1443 ((|#2| $ $) 35)) (-1431 (($ $ $) 44)) (-2393 (($ $) 22) (($ $ $) 28)) (-2382 (($ $ $) 15)) (* (($ (-552) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) -(((-1229 |#1| |#2|) (-10 -8 (-15 -2638 (|#2| |#1|)) (-15 -3456 (|#2| |#1|)) (-15 -1431 (|#1| |#1| |#1|)) (-15 -3191 ((-669 |#2|) |#1| |#1|)) (-15 -1443 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2983 (|#1| (-751))) (-15 -2382 (|#1| |#1| |#1|))) (-1230 |#2|) (-1186)) (T -1229)) -NIL -(-10 -8 (-15 -2638 (|#2| |#1|)) (-15 -3456 (|#2| |#1|)) (-15 -1431 (|#1| |#1| |#1|)) (-15 -3191 ((-669 |#2|) |#1| |#1|)) (-15 -1443 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2393 (|#1| |#1| |#1|)) (-15 -2393 (|#1| |#1|)) (-15 -2983 (|#1| (-751))) (-15 -2382 (|#1| |#1| |#1|))) -((-1671 (((-112) $ $) 19 (|has| |#1| (-1073)))) (-2983 (($ (-751)) 112 (|has| |#1| (-23)))) (-2509 (((-1237) $ (-552) (-552)) 40 (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| |#1| (-827)) (|has| $ (-6 -4354))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) 8)) (-1851 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) 58 (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3101 (($) 7 T CONST)) (-1883 (($ $) 90 (|has| $ (-6 -4354)))) (-2306 (($ $) 100)) (-2959 (($ $) 78 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-1416 (($ |#1| $) 77 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) 51)) (-2483 (((-552) (-1 (-112) |#1|) $) 97) (((-552) |#1| $) 96 (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) 95 (|has| |#1| (-1073)))) (-3799 (((-625 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3191 (((-669 |#1|) $ $) 105 (|has| |#1| (-1025)))) (-2183 (($ (-751) |#1|) 69)) (-2909 (((-112) $ (-751)) 9)) (-2527 (((-552) $) 43 (|has| (-552) (-827)))) (-3658 (($ $ $) 87 (|has| |#1| (-827)))) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-2537 (((-552) $) 44 (|has| (-552) (-827)))) (-3332 (($ $ $) 86 (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2638 ((|#1| $) 102 (-12 (|has| |#1| (-1025)) (|has| |#1| (-978))))) (-2878 (((-112) $ (-751)) 10)) (-3456 ((|#1| $) 103 (-12 (|has| |#1| (-1025)) (|has| |#1| (-978))))) (-2883 (((-1131) $) 22 (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-2554 (((-625 (-552)) $) 46)) (-2564 (((-112) (-552) $) 47)) (-2831 (((-1093) $) 21 (|has| |#1| (-1073)))) (-2924 ((|#1| $) 42 (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2518 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) 14)) (-2545 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) 48)) (-1916 (((-112) $) 11)) (-3600 (($) 12)) (-2154 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1199 (-552))) 63)) (-1443 ((|#1| $ $) 106 (|has| |#1| (-1025)))) (-4001 (($ $ (-552)) 62) (($ $ (-1199 (-552))) 61)) (-1431 (($ $ $) 104 (|has| |#1| (-1025)))) (-2840 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1073)) (|has| $ (-6 -4353))))) (-3228 (($ $ $ (-552)) 91 (|has| $ (-6 -4354)))) (-1871 (($ $) 13)) (-2042 (((-528) $) 79 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 70)) (-3402 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-625 $)) 65)) (-1683 (((-839) $) 18 (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) 84 (|has| |#1| (-827)))) (-2320 (((-112) $ $) 83 (|has| |#1| (-827)))) (-2281 (((-112) $ $) 20 (|has| |#1| (-1073)))) (-2334 (((-112) $ $) 85 (|has| |#1| (-827)))) (-2307 (((-112) $ $) 82 (|has| |#1| (-827)))) (-2393 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2382 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-552) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-707))) (($ $ |#1|) 107 (|has| |#1| (-707)))) (-1471 (((-751) $) 6 (|has| $ (-6 -4353))))) -(((-1230 |#1|) (-138) (-1186)) (T -1230)) -((-2382 (*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-25)))) (-2983 (*1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1230 *3)) (-4 *3 (-23)) (-4 *3 (-1186)))) (-2393 (*1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-21)))) (-2393 (*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-4 *1 (-1230 *3)) (-4 *3 (-1186)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-707)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-707)))) (-1443 (*1 *2 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-1025)))) (-3191 (*1 *2 *1 *1) (-12 (-4 *1 (-1230 *3)) (-4 *3 (-1186)) (-4 *3 (-1025)) (-5 *2 (-669 *3)))) (-1431 (*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-1025)))) (-3456 (*1 *2 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-978)) (-4 *2 (-1025)))) (-2638 (*1 *2 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-978)) (-4 *2 (-1025))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2382 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2983 ($ (-751))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2393 ($ $)) (-15 -2393 ($ $ $)) (-15 * ($ (-552) $))) |%noBranch|) (IF (|has| |t#1| (-707)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1025)) (PROGN (-15 -1443 (|t#1| $ $)) (-15 -3191 ((-669 |t#1|) $ $)) (-15 -1431 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-978)) (IF (|has| |t#1| (-1025)) (PROGN (-15 -3456 (|t#1| $)) (-15 -2638 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-101) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827))) ((-597 (-839)) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827)) (|has| |#1| (-597 (-839)))) ((-149 |#1|) . T) ((-598 (-528)) |has| |#1| (-598 (-528))) ((-281 #0=(-552) |#1|) . T) ((-283 #0# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-368 |#1|) . T) ((-483 |#1|) . T) ((-588 #0# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))) ((-631 |#1|) . T) ((-19 |#1|) . T) ((-827) |has| |#1| (-827)) ((-1073) -1523 (|has| |#1| (-1073)) (|has| |#1| (-827))) ((-1186) . T)) -((-1454 (((-1232 |#2|) (-1 |#2| |#1| |#2|) (-1232 |#1|) |#2|) 13)) (-2163 ((|#2| (-1 |#2| |#1| |#2|) (-1232 |#1|) |#2|) 15)) (-1996 (((-3 (-1232 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1232 |#1|)) 28) (((-1232 |#2|) (-1 |#2| |#1|) (-1232 |#1|)) 18))) -(((-1231 |#1| |#2|) (-10 -7 (-15 -1454 ((-1232 |#2|) (-1 |#2| |#1| |#2|) (-1232 |#1|) |#2|)) (-15 -2163 (|#2| (-1 |#2| |#1| |#2|) (-1232 |#1|) |#2|)) (-15 -1996 ((-1232 |#2|) (-1 |#2| |#1|) (-1232 |#1|))) (-15 -1996 ((-3 (-1232 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1232 |#1|)))) (-1186) (-1186)) (T -1231)) -((-1996 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1232 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-1232 *6)) (-5 *1 (-1231 *5 *6)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1232 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-1232 *6)) (-5 *1 (-1231 *5 *6)))) (-2163 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1232 *5)) (-4 *5 (-1186)) (-4 *2 (-1186)) (-5 *1 (-1231 *5 *2)))) (-1454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1232 *6)) (-4 *6 (-1186)) (-4 *5 (-1186)) (-5 *2 (-1232 *5)) (-5 *1 (-1231 *6 *5))))) -(-10 -7 (-15 -1454 ((-1232 |#2|) (-1 |#2| |#1| |#2|) (-1232 |#1|) |#2|)) (-15 -2163 (|#2| (-1 |#2| |#1| |#2|) (-1232 |#1|) |#2|)) (-15 -1996 ((-1232 |#2|) (-1 |#2| |#1|) (-1232 |#1|))) (-15 -1996 ((-3 (-1232 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1232 |#1|)))) -((-1671 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2983 (($ (-751)) NIL (|has| |#1| (-23)))) (-3062 (($ (-625 |#1|)) 9)) (-2509 (((-1237) $ (-552) (-552)) NIL (|has| $ (-6 -4354)))) (-3237 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-3218 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-1800 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-3495 (((-112) $ (-751)) NIL)) (-1851 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1199 (-552)) |#1|) NIL (|has| $ (-6 -4354)))) (-3488 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3101 (($) NIL T CONST)) (-1883 (($ $) NIL (|has| $ (-6 -4354)))) (-2306 (($ $) NIL)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1416 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2163 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-3692 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4354)))) (-3631 ((|#1| $ (-552)) NIL)) (-2483 (((-552) (-1 (-112) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1073))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1073)))) (-3799 (((-625 |#1|) $) 15 (|has| $ (-6 -4353)))) (-3191 (((-669 |#1|) $ $) NIL (|has| |#1| (-1025)))) (-2183 (($ (-751) |#1|) NIL)) (-2909 (((-112) $ (-751)) NIL)) (-2527 (((-552) $) NIL (|has| (-552) (-827)))) (-3658 (($ $ $) NIL (|has| |#1| (-827)))) (-3280 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-3730 (((-625 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2893 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-2537 (((-552) $) NIL (|has| (-552) (-827)))) (-3332 (($ $ $) NIL (|has| |#1| (-827)))) (-3683 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2638 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-2878 (((-112) $ (-751)) NIL)) (-3456 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-2883 (((-1131) $) NIL (|has| |#1| (-1073)))) (-3994 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-2554 (((-625 (-552)) $) NIL)) (-2564 (((-112) (-552) $) NIL)) (-2831 (((-1093) $) NIL (|has| |#1| (-1073)))) (-2924 ((|#1| $) NIL (|has| (-552) (-827)))) (-2380 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2518 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-1888 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 (-289 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-289 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073)))) (($ $ (-625 |#1|) (-625 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1073))))) (-3504 (((-112) $ $) NIL)) (-2545 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-1358 (((-625 |#1|) $) NIL)) (-1916 (((-112) $) NIL)) (-3600 (($) NIL)) (-2154 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-1443 ((|#1| $ $) NIL (|has| |#1| (-1025)))) (-4001 (($ $ (-552)) NIL) (($ $ (-1199 (-552))) NIL)) (-1431 (($ $ $) NIL (|has| |#1| (-1025)))) (-2840 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1073))))) (-3228 (($ $ $ (-552)) NIL (|has| $ (-6 -4354)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) 19 (|has| |#1| (-598 (-528))))) (-1695 (($ (-625 |#1|)) 8)) (-3402 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-625 $)) NIL)) (-1683 (((-839) $) NIL (|has| |#1| (-597 (-839))))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2346 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2320 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2281 (((-112) $ $) NIL (|has| |#1| (-1073)))) (-2334 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2307 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2393 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2382 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-552) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-707))) (($ $ |#1|) NIL (|has| |#1| (-707)))) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-1232 |#1|) (-13 (-1230 |#1|) (-10 -8 (-15 -3062 ($ (-625 |#1|))))) (-1186)) (T -1232)) -((-3062 (*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-1232 *3))))) -(-13 (-1230 |#1|) (-10 -8 (-15 -3062 ($ (-625 |#1|))))) -((-1671 (((-112) $ $) NIL)) (-1339 (((-1131) $ (-1131)) 90) (((-1131) $ (-1131) (-1131)) 88) (((-1131) $ (-1131) (-625 (-1131))) 87)) (-1597 (($) 59)) (-2423 (((-1237) $ (-462) (-897)) 45)) (-4124 (((-1237) $ (-897) (-1131)) 73) (((-1237) $ (-897) (-850)) 74)) (-1618 (((-1237) $ (-897) (-374) (-374)) 48)) (-4332 (((-1237) $ (-1131)) 69)) (-1627 (((-1237) $ (-897) (-1131)) 78)) (-1487 (((-1237) $ (-897) (-374) (-374)) 49)) (-1820 (((-1237) $ (-897) (-897)) 46)) (-1318 (((-1237) $) 70)) (-1508 (((-1237) $ (-897) (-1131)) 77)) (-1543 (((-1237) $ (-462) (-897)) 31)) (-1521 (((-1237) $ (-897) (-1131)) 76)) (-4232 (((-625 (-258)) $) 23) (($ $ (-625 (-258))) 24)) (-1831 (((-1237) $ (-751) (-751)) 43)) (-1585 (($ $) 60) (($ (-462) (-625 (-258))) 61)) (-2883 (((-1131) $) NIL)) (-2971 (((-552) $) 38)) (-2831 (((-1093) $) NIL)) (-1554 (((-1232 (-3 (-462) "undefined")) $) 37)) (-1565 (((-1232 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -1521 (-552)) (|:| -1497 (-552)) (|:| |spline| (-552)) (|:| -1775 (-552)) (|:| |axesColor| (-850)) (|:| -4124 (-552)) (|:| |unitsColor| (-850)) (|:| |showing| (-552)))) $) 36)) (-1575 (((-1237) $ (-897) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-552) (-850) (-552) (-850) (-552)) 68)) (-1609 (((-625 (-919 (-221))) $) NIL)) (-1532 (((-462) $ (-897)) 33)) (-1809 (((-1237) $ (-751) (-751) (-897) (-897)) 40)) (-1786 (((-1237) $ (-1131)) 79)) (-1497 (((-1237) $ (-897) (-1131)) 75)) (-1683 (((-839) $) 85)) (-1387 (((-1237) $) 80)) (-1775 (((-1237) $ (-897) (-1131)) 71) (((-1237) $ (-897) (-850)) 72)) (-2281 (((-112) $ $) NIL))) -(((-1233) (-13 (-1073) (-10 -8 (-15 -1609 ((-625 (-919 (-221))) $)) (-15 -1597 ($)) (-15 -1585 ($ $)) (-15 -4232 ((-625 (-258)) $)) (-15 -4232 ($ $ (-625 (-258)))) (-15 -1585 ($ (-462) (-625 (-258)))) (-15 -1575 ((-1237) $ (-897) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-552) (-850) (-552) (-850) (-552))) (-15 -1565 ((-1232 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -1521 (-552)) (|:| -1497 (-552)) (|:| |spline| (-552)) (|:| -1775 (-552)) (|:| |axesColor| (-850)) (|:| -4124 (-552)) (|:| |unitsColor| (-850)) (|:| |showing| (-552)))) $)) (-15 -1554 ((-1232 (-3 (-462) "undefined")) $)) (-15 -4332 ((-1237) $ (-1131))) (-15 -1543 ((-1237) $ (-462) (-897))) (-15 -1532 ((-462) $ (-897))) (-15 -1775 ((-1237) $ (-897) (-1131))) (-15 -1775 ((-1237) $ (-897) (-850))) (-15 -4124 ((-1237) $ (-897) (-1131))) (-15 -4124 ((-1237) $ (-897) (-850))) (-15 -1521 ((-1237) $ (-897) (-1131))) (-15 -1508 ((-1237) $ (-897) (-1131))) (-15 -1497 ((-1237) $ (-897) (-1131))) (-15 -1786 ((-1237) $ (-1131))) (-15 -1387 ((-1237) $)) (-15 -1809 ((-1237) $ (-751) (-751) (-897) (-897))) (-15 -1487 ((-1237) $ (-897) (-374) (-374))) (-15 -1618 ((-1237) $ (-897) (-374) (-374))) (-15 -1627 ((-1237) $ (-897) (-1131))) (-15 -1831 ((-1237) $ (-751) (-751))) (-15 -2423 ((-1237) $ (-462) (-897))) (-15 -1820 ((-1237) $ (-897) (-897))) (-15 -1339 ((-1131) $ (-1131))) (-15 -1339 ((-1131) $ (-1131) (-1131))) (-15 -1339 ((-1131) $ (-1131) (-625 (-1131)))) (-15 -1318 ((-1237) $)) (-15 -2971 ((-552) $)) (-15 -1683 ((-839) $))))) (T -1233)) -((-1683 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-1233)))) (-1609 (*1 *2 *1) (-12 (-5 *2 (-625 (-919 (-221)))) (-5 *1 (-1233)))) (-1597 (*1 *1) (-5 *1 (-1233))) (-1585 (*1 *1 *1) (-5 *1 (-1233))) (-4232 (*1 *2 *1) (-12 (-5 *2 (-625 (-258))) (-5 *1 (-1233)))) (-4232 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-258))) (-5 *1 (-1233)))) (-1585 (*1 *1 *2 *3) (-12 (-5 *2 (-462)) (-5 *3 (-625 (-258))) (-5 *1 (-1233)))) (-1575 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-897)) (-5 *4 (-221)) (-5 *5 (-552)) (-5 *6 (-850)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-1232 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -1521 (-552)) (|:| -1497 (-552)) (|:| |spline| (-552)) (|:| -1775 (-552)) (|:| |axesColor| (-850)) (|:| -4124 (-552)) (|:| |unitsColor| (-850)) (|:| |showing| (-552))))) (-5 *1 (-1233)))) (-1554 (*1 *2 *1) (-12 (-5 *2 (-1232 (-3 (-462) "undefined"))) (-5 *1 (-1233)))) (-4332 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1543 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-462)) (-5 *4 (-897)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1532 (*1 *2 *1 *3) (-12 (-5 *3 (-897)) (-5 *2 (-462)) (-5 *1 (-1233)))) (-1775 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1775 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-897)) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-4124 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-4124 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-897)) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1521 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1508 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1497 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1786 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1809 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-751)) (-5 *4 (-897)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1487 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-897)) (-5 *4 (-374)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1618 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-897)) (-5 *4 (-374)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1627 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1831 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-2423 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-462)) (-5 *4 (-897)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1820 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1237)) (-5 *1 (-1233)))) (-1339 (*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1233)))) (-1339 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1233)))) (-1339 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-1131)) (-5 *1 (-1233)))) (-1318 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1233)))) (-2971 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1233))))) -(-13 (-1073) (-10 -8 (-15 -1609 ((-625 (-919 (-221))) $)) (-15 -1597 ($)) (-15 -1585 ($ $)) (-15 -4232 ((-625 (-258)) $)) (-15 -4232 ($ $ (-625 (-258)))) (-15 -1585 ($ (-462) (-625 (-258)))) (-15 -1575 ((-1237) $ (-897) (-221) (-221) (-221) (-221) (-552) (-552) (-552) (-552) (-850) (-552) (-850) (-552))) (-15 -1565 ((-1232 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -1521 (-552)) (|:| -1497 (-552)) (|:| |spline| (-552)) (|:| -1775 (-552)) (|:| |axesColor| (-850)) (|:| -4124 (-552)) (|:| |unitsColor| (-850)) (|:| |showing| (-552)))) $)) (-15 -1554 ((-1232 (-3 (-462) "undefined")) $)) (-15 -4332 ((-1237) $ (-1131))) (-15 -1543 ((-1237) $ (-462) (-897))) (-15 -1532 ((-462) $ (-897))) (-15 -1775 ((-1237) $ (-897) (-1131))) (-15 -1775 ((-1237) $ (-897) (-850))) (-15 -4124 ((-1237) $ (-897) (-1131))) (-15 -4124 ((-1237) $ (-897) (-850))) (-15 -1521 ((-1237) $ (-897) (-1131))) (-15 -1508 ((-1237) $ (-897) (-1131))) (-15 -1497 ((-1237) $ (-897) (-1131))) (-15 -1786 ((-1237) $ (-1131))) (-15 -1387 ((-1237) $)) (-15 -1809 ((-1237) $ (-751) (-751) (-897) (-897))) (-15 -1487 ((-1237) $ (-897) (-374) (-374))) (-15 -1618 ((-1237) $ (-897) (-374) (-374))) (-15 -1627 ((-1237) $ (-897) (-1131))) (-15 -1831 ((-1237) $ (-751) (-751))) (-15 -2423 ((-1237) $ (-462) (-897))) (-15 -1820 ((-1237) $ (-897) (-897))) (-15 -1339 ((-1131) $ (-1131))) (-15 -1339 ((-1131) $ (-1131) (-1131))) (-15 -1339 ((-1131) $ (-1131) (-625 (-1131)))) (-15 -1318 ((-1237) $)) (-15 -2971 ((-552) $)) (-15 -1683 ((-839) $)))) -((-1671 (((-112) $ $) NIL)) (-1722 (((-1237) $ (-374)) 140) (((-1237) $ (-374) (-374) (-374)) 141)) (-1339 (((-1131) $ (-1131)) 148) (((-1131) $ (-1131) (-1131)) 146) (((-1131) $ (-1131) (-625 (-1131))) 145)) (-1876 (($) 50)) (-1797 (((-1237) $ (-374) (-374) (-374) (-374) (-374)) 116) (((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) $) 114) (((-1237) $ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) 115) (((-1237) $ (-552) (-552) (-374) (-374) (-374)) 117) (((-1237) $ (-374) (-374)) 118) (((-1237) $ (-374) (-374) (-374)) 125)) (-1910 (((-374)) 97) (((-374) (-374)) 98)) (-1935 (((-374)) 92) (((-374) (-374)) 94)) (-1921 (((-374)) 95) (((-374) (-374)) 96)) (-1886 (((-374)) 101) (((-374) (-374)) 102)) (-1897 (((-374)) 99) (((-374) (-374)) 100)) (-1618 (((-1237) $ (-374) (-374)) 142)) (-4332 (((-1237) $ (-1131)) 126)) (-1856 (((-1106 (-221)) $) 51) (($ $ (-1106 (-221))) 52)) (-1676 (((-1237) $ (-1131)) 154)) (-1665 (((-1237) $ (-1131)) 155)) (-1734 (((-1237) $ (-374) (-374)) 124) (((-1237) $ (-552) (-552)) 139)) (-1820 (((-1237) $ (-897) (-897)) 132)) (-1318 (((-1237) $) 112)) (-1710 (((-1237) $ (-1131)) 153)) (-1754 (((-1237) $ (-1131)) 109)) (-4232 (((-625 (-258)) $) 53) (($ $ (-625 (-258))) 54)) (-1831 (((-1237) $ (-751) (-751)) 131)) (-1844 (((-1237) $ (-751) (-919 (-221))) 160)) (-1865 (($ $) 56) (($ (-1106 (-221)) (-1131)) 57) (($ (-1106 (-221)) (-625 (-258))) 58)) (-1643 (((-1237) $ (-374) (-374) (-374)) 106)) (-2883 (((-1131) $) NIL)) (-2971 (((-552) $) 103)) (-1631 (((-1237) $ (-374)) 143)) (-1688 (((-1237) $ (-374)) 158)) (-2831 (((-1093) $) NIL)) (-1700 (((-1237) $ (-374)) 157)) (-1744 (((-1237) $ (-1131)) 111)) (-1809 (((-1237) $ (-751) (-751) (-897) (-897)) 130)) (-1764 (((-1237) $ (-1131)) 108)) (-1786 (((-1237) $ (-1131)) 110)) (-1620 (((-1237) $ (-155) (-155)) 129)) (-1683 (((-839) $) 137)) (-1387 (((-1237) $) 113)) (-1654 (((-1237) $ (-1131)) 156)) (-1775 (((-1237) $ (-1131)) 107)) (-2281 (((-112) $ $) NIL))) -(((-1234) (-13 (-1073) (-10 -8 (-15 -1935 ((-374))) (-15 -1935 ((-374) (-374))) (-15 -1921 ((-374))) (-15 -1921 ((-374) (-374))) (-15 -1910 ((-374))) (-15 -1910 ((-374) (-374))) (-15 -1897 ((-374))) (-15 -1897 ((-374) (-374))) (-15 -1886 ((-374))) (-15 -1886 ((-374) (-374))) (-15 -1876 ($)) (-15 -1865 ($ $)) (-15 -1865 ($ (-1106 (-221)) (-1131))) (-15 -1865 ($ (-1106 (-221)) (-625 (-258)))) (-15 -1856 ((-1106 (-221)) $)) (-15 -1856 ($ $ (-1106 (-221)))) (-15 -1844 ((-1237) $ (-751) (-919 (-221)))) (-15 -4232 ((-625 (-258)) $)) (-15 -4232 ($ $ (-625 (-258)))) (-15 -1831 ((-1237) $ (-751) (-751))) (-15 -1820 ((-1237) $ (-897) (-897))) (-15 -4332 ((-1237) $ (-1131))) (-15 -1809 ((-1237) $ (-751) (-751) (-897) (-897))) (-15 -1797 ((-1237) $ (-374) (-374) (-374) (-374) (-374))) (-15 -1797 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) $)) (-15 -1797 ((-1237) $ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -1797 ((-1237) $ (-552) (-552) (-374) (-374) (-374))) (-15 -1797 ((-1237) $ (-374) (-374))) (-15 -1797 ((-1237) $ (-374) (-374) (-374))) (-15 -1786 ((-1237) $ (-1131))) (-15 -1775 ((-1237) $ (-1131))) (-15 -1764 ((-1237) $ (-1131))) (-15 -1754 ((-1237) $ (-1131))) (-15 -1744 ((-1237) $ (-1131))) (-15 -1734 ((-1237) $ (-374) (-374))) (-15 -1734 ((-1237) $ (-552) (-552))) (-15 -1722 ((-1237) $ (-374))) (-15 -1722 ((-1237) $ (-374) (-374) (-374))) (-15 -1618 ((-1237) $ (-374) (-374))) (-15 -1710 ((-1237) $ (-1131))) (-15 -1700 ((-1237) $ (-374))) (-15 -1688 ((-1237) $ (-374))) (-15 -1676 ((-1237) $ (-1131))) (-15 -1665 ((-1237) $ (-1131))) (-15 -1654 ((-1237) $ (-1131))) (-15 -1643 ((-1237) $ (-374) (-374) (-374))) (-15 -1631 ((-1237) $ (-374))) (-15 -1318 ((-1237) $)) (-15 -1620 ((-1237) $ (-155) (-155))) (-15 -1339 ((-1131) $ (-1131))) (-15 -1339 ((-1131) $ (-1131) (-1131))) (-15 -1339 ((-1131) $ (-1131) (-625 (-1131)))) (-15 -1387 ((-1237) $)) (-15 -2971 ((-552) $))))) (T -1234)) -((-1935 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) (-1935 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) (-1921 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) (-1921 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) (-1910 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) (-1910 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) (-1897 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) (-1897 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) (-1886 (*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) (-1886 (*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) (-1876 (*1 *1) (-5 *1 (-1234))) (-1865 (*1 *1 *1) (-5 *1 (-1234))) (-1865 (*1 *1 *2 *3) (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-1131)) (-5 *1 (-1234)))) (-1865 (*1 *1 *2 *3) (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-625 (-258))) (-5 *1 (-1234)))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1234)))) (-1856 (*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1234)))) (-1844 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-751)) (-5 *4 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4232 (*1 *2 *1) (-12 (-5 *2 (-625 (-258))) (-5 *1 (-1234)))) (-4232 (*1 *1 *1 *2) (-12 (-5 *2 (-625 (-258))) (-5 *1 (-1234)))) (-1831 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1820 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4332 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1809 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-751)) (-5 *4 (-897)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1797 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1797 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *1 (-1234)))) (-1797 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1797 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-552)) (-5 *4 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1797 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1797 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1786 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1775 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1764 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1754 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1744 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1734 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1734 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1722 (*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1722 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1618 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1710 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1700 (*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1688 (*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1676 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1665 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1654 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1643 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1631 (*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1318 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1620 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-155)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-1339 (*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1234)))) (-1339 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1234)))) (-1339 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-1131)) (-5 *1 (-1234)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1234)))) (-2971 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1234))))) -(-13 (-1073) (-10 -8 (-15 -1935 ((-374))) (-15 -1935 ((-374) (-374))) (-15 -1921 ((-374))) (-15 -1921 ((-374) (-374))) (-15 -1910 ((-374))) (-15 -1910 ((-374) (-374))) (-15 -1897 ((-374))) (-15 -1897 ((-374) (-374))) (-15 -1886 ((-374))) (-15 -1886 ((-374) (-374))) (-15 -1876 ($)) (-15 -1865 ($ $)) (-15 -1865 ($ (-1106 (-221)) (-1131))) (-15 -1865 ($ (-1106 (-221)) (-625 (-258)))) (-15 -1856 ((-1106 (-221)) $)) (-15 -1856 ($ $ (-1106 (-221)))) (-15 -1844 ((-1237) $ (-751) (-919 (-221)))) (-15 -4232 ((-625 (-258)) $)) (-15 -4232 ($ $ (-625 (-258)))) (-15 -1831 ((-1237) $ (-751) (-751))) (-15 -1820 ((-1237) $ (-897) (-897))) (-15 -4332 ((-1237) $ (-1131))) (-15 -1809 ((-1237) $ (-751) (-751) (-897) (-897))) (-15 -1797 ((-1237) $ (-374) (-374) (-374) (-374) (-374))) (-15 -1797 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) $)) (-15 -1797 ((-1237) $ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -1797 ((-1237) $ (-552) (-552) (-374) (-374) (-374))) (-15 -1797 ((-1237) $ (-374) (-374))) (-15 -1797 ((-1237) $ (-374) (-374) (-374))) (-15 -1786 ((-1237) $ (-1131))) (-15 -1775 ((-1237) $ (-1131))) (-15 -1764 ((-1237) $ (-1131))) (-15 -1754 ((-1237) $ (-1131))) (-15 -1744 ((-1237) $ (-1131))) (-15 -1734 ((-1237) $ (-374) (-374))) (-15 -1734 ((-1237) $ (-552) (-552))) (-15 -1722 ((-1237) $ (-374))) (-15 -1722 ((-1237) $ (-374) (-374) (-374))) (-15 -1618 ((-1237) $ (-374) (-374))) (-15 -1710 ((-1237) $ (-1131))) (-15 -1700 ((-1237) $ (-374))) (-15 -1688 ((-1237) $ (-374))) (-15 -1676 ((-1237) $ (-1131))) (-15 -1665 ((-1237) $ (-1131))) (-15 -1654 ((-1237) $ (-1131))) (-15 -1643 ((-1237) $ (-374) (-374) (-374))) (-15 -1631 ((-1237) $ (-374))) (-15 -1318 ((-1237) $)) (-15 -1620 ((-1237) $ (-155) (-155))) (-15 -1339 ((-1131) $ (-1131))) (-15 -1339 ((-1131) $ (-1131) (-1131))) (-15 -1339 ((-1131) $ (-1131) (-625 (-1131)))) (-15 -1387 ((-1237) $)) (-15 -2971 ((-552) $)))) -((-2024 (((-625 (-1131)) (-625 (-1131))) 94) (((-625 (-1131))) 90)) (-2033 (((-625 (-1131))) 88)) (-2008 (((-625 (-897)) (-625 (-897))) 63) (((-625 (-897))) 60)) (-1998 (((-625 (-751)) (-625 (-751))) 57) (((-625 (-751))) 53)) (-2015 (((-1237)) 65)) (-3864 (((-897) (-897)) 81) (((-897)) 80)) (-3851 (((-897) (-897)) 79) (((-897)) 78)) (-1978 (((-850) (-850)) 75) (((-850)) 74)) (-3891 (((-221)) 85) (((-221) (-374)) 87)) (-3877 (((-897)) 82) (((-897) (-897)) 83)) (-1987 (((-897) (-897)) 77) (((-897)) 76)) (-1945 (((-850) (-850)) 69) (((-850)) 67)) (-1957 (((-850) (-850)) 71) (((-850)) 70)) (-1969 (((-850) (-850)) 73) (((-850)) 72))) -(((-1235) (-10 -7 (-15 -1945 ((-850))) (-15 -1945 ((-850) (-850))) (-15 -1957 ((-850))) (-15 -1957 ((-850) (-850))) (-15 -1969 ((-850))) (-15 -1969 ((-850) (-850))) (-15 -1978 ((-850))) (-15 -1978 ((-850) (-850))) (-15 -1987 ((-897))) (-15 -1987 ((-897) (-897))) (-15 -1998 ((-625 (-751)))) (-15 -1998 ((-625 (-751)) (-625 (-751)))) (-15 -2008 ((-625 (-897)))) (-15 -2008 ((-625 (-897)) (-625 (-897)))) (-15 -2015 ((-1237))) (-15 -2024 ((-625 (-1131)))) (-15 -2024 ((-625 (-1131)) (-625 (-1131)))) (-15 -2033 ((-625 (-1131)))) (-15 -3851 ((-897))) (-15 -3864 ((-897))) (-15 -3851 ((-897) (-897))) (-15 -3864 ((-897) (-897))) (-15 -3877 ((-897) (-897))) (-15 -3877 ((-897))) (-15 -3891 ((-221) (-374))) (-15 -3891 ((-221))))) (T -1235)) -((-3891 (*1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-1235)))) (-3891 (*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-221)) (-5 *1 (-1235)))) (-3877 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))) (-3864 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))) (-3851 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))) (-3864 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))) (-3851 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))) (-2033 (*1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1235)))) (-2024 (*1 *2 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1235)))) (-2024 (*1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1235)))) (-2015 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1235)))) (-2008 (*1 *2 *2) (-12 (-5 *2 (-625 (-897))) (-5 *1 (-1235)))) (-2008 (*1 *2) (-12 (-5 *2 (-625 (-897))) (-5 *1 (-1235)))) (-1998 (*1 *2 *2) (-12 (-5 *2 (-625 (-751))) (-5 *1 (-1235)))) (-1998 (*1 *2) (-12 (-5 *2 (-625 (-751))) (-5 *1 (-1235)))) (-1987 (*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))) (-1987 (*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))) (-1978 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))) (-1969 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))) (-1969 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))) (-1957 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))) (-1957 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))) (-1945 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))) (-1945 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235))))) -(-10 -7 (-15 -1945 ((-850))) (-15 -1945 ((-850) (-850))) (-15 -1957 ((-850))) (-15 -1957 ((-850) (-850))) (-15 -1969 ((-850))) (-15 -1969 ((-850) (-850))) (-15 -1978 ((-850))) (-15 -1978 ((-850) (-850))) (-15 -1987 ((-897))) (-15 -1987 ((-897) (-897))) (-15 -1998 ((-625 (-751)))) (-15 -1998 ((-625 (-751)) (-625 (-751)))) (-15 -2008 ((-625 (-897)))) (-15 -2008 ((-625 (-897)) (-625 (-897)))) (-15 -2015 ((-1237))) (-15 -2024 ((-625 (-1131)))) (-15 -2024 ((-625 (-1131)) (-625 (-1131)))) (-15 -2033 ((-625 (-1131)))) (-15 -3851 ((-897))) (-15 -3864 ((-897))) (-15 -3851 ((-897) (-897))) (-15 -3864 ((-897) (-897))) (-15 -3877 ((-897) (-897))) (-15 -3877 ((-897))) (-15 -3891 ((-221) (-374))) (-15 -3891 ((-221)))) -((-1465 (((-462) (-625 (-625 (-919 (-221)))) (-625 (-258))) 21) (((-462) (-625 (-625 (-919 (-221))))) 20) (((-462) (-625 (-625 (-919 (-221)))) (-850) (-850) (-897) (-625 (-258))) 19)) (-1477 (((-1233) (-625 (-625 (-919 (-221)))) (-625 (-258))) 27) (((-1233) (-625 (-625 (-919 (-221)))) (-850) (-850) (-897) (-625 (-258))) 26)) (-1683 (((-1233) (-462)) 38))) -(((-1236) (-10 -7 (-15 -1465 ((-462) (-625 (-625 (-919 (-221)))) (-850) (-850) (-897) (-625 (-258)))) (-15 -1465 ((-462) (-625 (-625 (-919 (-221)))))) (-15 -1465 ((-462) (-625 (-625 (-919 (-221)))) (-625 (-258)))) (-15 -1477 ((-1233) (-625 (-625 (-919 (-221)))) (-850) (-850) (-897) (-625 (-258)))) (-15 -1477 ((-1233) (-625 (-625 (-919 (-221)))) (-625 (-258)))) (-15 -1683 ((-1233) (-462))))) (T -1236)) -((-1683 (*1 *2 *3) (-12 (-5 *3 (-462)) (-5 *2 (-1233)) (-5 *1 (-1236)))) (-1477 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *4 (-625 (-258))) (-5 *2 (-1233)) (-5 *1 (-1236)))) (-1477 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *4 (-850)) (-5 *5 (-897)) (-5 *6 (-625 (-258))) (-5 *2 (-1233)) (-5 *1 (-1236)))) (-1465 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *4 (-625 (-258))) (-5 *2 (-462)) (-5 *1 (-1236)))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *2 (-462)) (-5 *1 (-1236)))) (-1465 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *4 (-850)) (-5 *5 (-897)) (-5 *6 (-625 (-258))) (-5 *2 (-462)) (-5 *1 (-1236))))) -(-10 -7 (-15 -1465 ((-462) (-625 (-625 (-919 (-221)))) (-850) (-850) (-897) (-625 (-258)))) (-15 -1465 ((-462) (-625 (-625 (-919 (-221)))))) (-15 -1465 ((-462) (-625 (-625 (-919 (-221)))) (-625 (-258)))) (-15 -1477 ((-1233) (-625 (-625 (-919 (-221)))) (-850) (-850) (-897) (-625 (-258)))) (-15 -1477 ((-1233) (-625 (-625 (-919 (-221)))) (-625 (-258)))) (-15 -1683 ((-1233) (-462)))) -((-2781 (($) 7)) (-1683 (((-839) $) 10))) -(((-1237) (-10 -8 (-15 -2781 ($)) (-15 -1683 ((-839) $)))) (T -1237)) -((-1683 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-1237)))) (-2781 (*1 *1) (-5 *1 (-1237)))) -(-10 -8 (-15 -2781 ($)) (-15 -1683 ((-839) $))) -((-2404 (($ $ |#2|) 10))) -(((-1238 |#1| |#2|) (-10 -8 (-15 -2404 (|#1| |#1| |#2|))) (-1239 |#2|) (-358)) (T -1238)) -NIL -(-10 -8 (-15 -2404 (|#1| |#1| |#2|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-3904 (((-133)) 28)) (-1683 (((-839) $) 11)) (-2089 (($) 18 T CONST)) (-2281 (((-112) $ $) 6)) (-2404 (($ $ |#1|) 29)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-1239 |#1|) (-138) (-358)) (T -1239)) -((-2404 (*1 *1 *1 *2) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-358)))) (-3904 (*1 *2) (-12 (-4 *1 (-1239 *3)) (-4 *3 (-358)) (-5 *2 (-133))))) -(-13 (-698 |t#1|) (-10 -8 (-15 -2404 ($ $ |t#1|)) (-15 -3904 ((-133))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-698 |#1|) . T) ((-1031 |#1|) . T) ((-1073) . T)) -((-3969 (((-625 (-1180 |#1|)) (-1149) (-1180 |#1|)) 74)) (-3944 (((-1129 (-1129 (-928 |#1|))) (-1149) (-1129 (-928 |#1|))) 53)) (-3981 (((-1 (-1129 (-1180 |#1|)) (-1129 (-1180 |#1|))) (-751) (-1180 |#1|) (-1129 (-1180 |#1|))) 64)) (-3918 (((-1 (-1129 (-928 |#1|)) (-1129 (-928 |#1|))) (-751)) 55)) (-3956 (((-1 (-1145 (-928 |#1|)) (-928 |#1|)) (-1149)) 29)) (-3933 (((-1 (-1129 (-928 |#1|)) (-1129 (-928 |#1|))) (-751)) 54))) -(((-1240 |#1|) (-10 -7 (-15 -3918 ((-1 (-1129 (-928 |#1|)) (-1129 (-928 |#1|))) (-751))) (-15 -3933 ((-1 (-1129 (-928 |#1|)) (-1129 (-928 |#1|))) (-751))) (-15 -3944 ((-1129 (-1129 (-928 |#1|))) (-1149) (-1129 (-928 |#1|)))) (-15 -3956 ((-1 (-1145 (-928 |#1|)) (-928 |#1|)) (-1149))) (-15 -3969 ((-625 (-1180 |#1|)) (-1149) (-1180 |#1|))) (-15 -3981 ((-1 (-1129 (-1180 |#1|)) (-1129 (-1180 |#1|))) (-751) (-1180 |#1|) (-1129 (-1180 |#1|))))) (-358)) (T -1240)) -((-3981 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-751)) (-4 *6 (-358)) (-5 *4 (-1180 *6)) (-5 *2 (-1 (-1129 *4) (-1129 *4))) (-5 *1 (-1240 *6)) (-5 *5 (-1129 *4)))) (-3969 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-4 *5 (-358)) (-5 *2 (-625 (-1180 *5))) (-5 *1 (-1240 *5)) (-5 *4 (-1180 *5)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1 (-1145 (-928 *4)) (-928 *4))) (-5 *1 (-1240 *4)) (-4 *4 (-358)))) (-3944 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-4 *5 (-358)) (-5 *2 (-1129 (-1129 (-928 *5)))) (-5 *1 (-1240 *5)) (-5 *4 (-1129 (-928 *5))))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-1129 (-928 *4)) (-1129 (-928 *4)))) (-5 *1 (-1240 *4)) (-4 *4 (-358)))) (-3918 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-1129 (-928 *4)) (-1129 (-928 *4)))) (-5 *1 (-1240 *4)) (-4 *4 (-358))))) -(-10 -7 (-15 -3918 ((-1 (-1129 (-928 |#1|)) (-1129 (-928 |#1|))) (-751))) (-15 -3933 ((-1 (-1129 (-928 |#1|)) (-1129 (-928 |#1|))) (-751))) (-15 -3944 ((-1129 (-1129 (-928 |#1|))) (-1149) (-1129 (-928 |#1|)))) (-15 -3956 ((-1 (-1145 (-928 |#1|)) (-928 |#1|)) (-1149))) (-15 -3969 ((-625 (-1180 |#1|)) (-1149) (-1180 |#1|))) (-15 -3981 ((-1 (-1129 (-1180 |#1|)) (-1129 (-1180 |#1|))) (-751) (-1180 |#1|) (-1129 (-1180 |#1|))))) -((-4006 (((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|) 75)) (-3993 (((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) 74))) -(((-1241 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3993 ((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))))) (-15 -4006 ((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|))) (-344) (-1208 |#1|) (-1208 |#2|) (-404 |#2| |#3|)) (T -1241)) -((-4006 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *3 (-1208 *4)) (-4 *5 (-1208 *3)) (-5 *2 (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-5 *1 (-1241 *4 *3 *5 *6)) (-4 *6 (-404 *3 *5)))) (-3993 (*1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 *4)) (-5 *2 (-2 (|:| -1270 (-669 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-669 *4)))) (-5 *1 (-1241 *3 *4 *5 *6)) (-4 *6 (-404 *4 *5))))) -(-10 -7 (-15 -3993 ((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))))) (-15 -4006 ((-2 (|:| -1270 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|))) -((-1671 (((-112) $ $) NIL)) (-4017 (((-1108) $) 11)) (-4029 (((-1108) $) 9)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL))) -(((-1242) (-13 (-1056) (-10 -8 (-15 -4029 ((-1108) $)) (-15 -4017 ((-1108) $))))) (T -1242)) -((-4029 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1242)))) (-4017 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1242))))) -(-13 (-1056) (-10 -8 (-15 -4029 ((-1108) $)) (-15 -4017 ((-1108) $)))) -((-1671 (((-112) $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3848 (((-1108) $) 9)) (-1683 (((-839) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-2281 (((-112) $ $) NIL))) -(((-1243) (-13 (-1056) (-10 -8 (-15 -3848 ((-1108) $))))) (T -1243)) -((-3848 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1243))))) -(-13 (-1056) (-10 -8 (-15 -3848 ((-1108) $)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 43)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) NIL)) (-3650 (((-112) $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-1683 (((-839) $) 64) (($ (-552)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-170)))) (-4141 (((-751)) NIL)) (-4040 (((-1237) (-751)) 16)) (-2089 (($) 27 T CONST)) (-2100 (($) 67 T CONST)) (-2281 (((-112) $ $) 69)) (-2404 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-2393 (($ $) 71) (($ $ $) NIL)) (-2382 (($ $ $) 47)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) -(((-1244 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1025) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -1683 (|#4| $)) (IF (|has| |#1| (-358)) (-15 -2404 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1683 ($ |#4|)) (-15 -4040 ((-1237) (-751))))) (-1025) (-827) (-773) (-925 |#1| |#3| |#2|) (-625 |#2|) (-625 (-751)) (-751)) (T -1244)) -((-1683 (*1 *2 *1) (-12 (-4 *2 (-925 *3 *5 *4)) (-5 *1 (-1244 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773)) (-14 *6 (-625 *4)) (-14 *7 (-625 (-751))) (-14 *8 (-751)))) (-2404 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-358)) (-4 *2 (-1025)) (-4 *3 (-827)) (-4 *4 (-773)) (-14 *6 (-625 *3)) (-5 *1 (-1244 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-925 *2 *4 *3)) (-14 *7 (-625 (-751))) (-14 *8 (-751)))) (-1683 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773)) (-14 *6 (-625 *4)) (-5 *1 (-1244 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-925 *3 *5 *4)) (-14 *7 (-625 (-751))) (-14 *8 (-751)))) (-4040 (*1 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-1025)) (-4 *5 (-827)) (-4 *6 (-773)) (-14 *8 (-625 *5)) (-5 *2 (-1237)) (-5 *1 (-1244 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-925 *4 *6 *5)) (-14 *9 (-625 *3)) (-14 *10 *3)))) -(-13 (-1025) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -1683 (|#4| $)) (IF (|has| |#1| (-358)) (-15 -2404 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1683 ($ |#4|)) (-15 -4040 ((-1237) (-751))))) -((-1671 (((-112) $ $) NIL)) (-3680 (((-625 (-2 (|:| -1387 $) (|:| -2508 (-625 |#4|)))) (-625 |#4|)) NIL)) (-3690 (((-625 $) (-625 |#4|)) 88)) (-3982 (((-625 |#3|) $) NIL)) (-3707 (((-112) $) NIL)) (-3613 (((-112) $) NIL (|has| |#1| (-544)))) (-2656 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3748 ((|#4| |#4| $) NIL)) (-1800 (((-2 (|:| |under| $) (|:| -4189 $) (|:| |upper| $)) $ |#3|) NIL)) (-3495 (((-112) $ (-751)) NIL)) (-3488 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3101 (($) NIL T CONST)) (-3667 (((-112) $) NIL (|has| |#1| (-544)))) (-3688 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3678 (((-112) $ $) NIL (|has| |#1| (-544)))) (-3697 (((-112) $) NIL (|has| |#1| (-544)))) (-3757 (((-625 |#4|) (-625 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-3624 (((-625 |#4|) (-625 |#4|) $) 25 (|has| |#1| (-544)))) (-3635 (((-625 |#4|) (-625 |#4|) $) NIL (|has| |#1| (-544)))) (-1893 (((-3 $ "failed") (-625 |#4|)) NIL)) (-1895 (($ (-625 |#4|)) NIL)) (-2936 (((-3 $ "failed") $) 70)) (-3720 ((|#4| |#4| $) 75)) (-2959 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-1416 (($ |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3645 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-2668 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3699 ((|#4| |#4| $) NIL)) (-2163 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2689 (((-2 (|:| -1387 (-625 |#4|)) (|:| -2508 (-625 |#4|))) $) NIL)) (-3799 (((-625 |#4|) $) NIL (|has| $ (-6 -4353)))) (-2678 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3565 ((|#3| $) 76)) (-2909 (((-112) $ (-751)) NIL)) (-3730 (((-625 |#4|) $) 29 (|has| $ (-6 -4353)))) (-2893 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073))))) (-4079 (((-3 $ "failed") (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-625 |#4|)) 35)) (-3683 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4354)))) (-1996 (($ (-1 |#4| |#4|) $) NIL)) (-2615 (((-625 |#3|) $) NIL)) (-2608 (((-112) |#3| $) NIL)) (-2878 (((-112) $ (-751)) NIL)) (-2883 (((-1131) $) NIL)) (-1437 (((-3 |#4| "failed") $) NIL)) (-2699 (((-625 |#4|) $) 50)) (-3777 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3727 ((|#4| |#4| $) 74)) (-2719 (((-112) $ $) 85)) (-3655 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-3788 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3737 ((|#4| |#4| $) NIL)) (-2831 (((-1093) $) NIL)) (-2924 (((-3 |#4| "failed") $) 69)) (-2380 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3657 (((-3 $ "failed") $ |#4|) NIL)) (-2147 (($ $ |#4|) NIL)) (-1888 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ $ (-625 |#4|) (-625 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-289 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073)))) (($ $ (-625 (-289 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1073))))) (-3504 (((-112) $ $) NIL)) (-1916 (((-112) $) 67)) (-3600 (($) 42)) (-4276 (((-751) $) NIL)) (-2840 (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1073)))) (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-1871 (($ $) NIL)) (-2042 (((-528) $) NIL (|has| |#4| (-598 (-528))))) (-1695 (($ (-625 |#4|)) NIL)) (-3718 (($ $ |#3|) NIL)) (-2595 (($ $ |#3|) NIL)) (-3709 (($ $) NIL)) (-2584 (($ $ |#3|) NIL)) (-1683 (((-839) $) NIL) (((-625 |#4|) $) 57)) (-3647 (((-751) $) NIL (|has| |#3| (-363)))) (-4065 (((-3 $ "failed") (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-625 |#4|)) 41)) (-4052 (((-625 $) (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-625 $) (-625 |#4|)) 66)) (-2709 (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -1549 (-625 |#4|))) "failed") (-625 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3767 (((-112) $ (-1 (-112) |#4| (-625 |#4|))) NIL)) (-1900 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3669 (((-625 |#3|) $) NIL)) (-4168 (((-112) |#3| $) NIL)) (-2281 (((-112) $ $) NIL)) (-1471 (((-751) $) NIL (|has| $ (-6 -4353))))) -(((-1245 |#1| |#2| |#3| |#4|) (-13 (-1179 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4079 ((-3 $ "failed") (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4079 ((-3 $ "failed") (-625 |#4|))) (-15 -4065 ((-3 $ "failed") (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4065 ((-3 $ "failed") (-625 |#4|))) (-15 -4052 ((-625 $) (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4052 ((-625 $) (-625 |#4|))))) (-544) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -1245)) -((-4079 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-625 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1245 *5 *6 *7 *8)))) (-4079 (*1 *1 *2) (|partial| -12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1245 *3 *4 *5 *6)))) (-4065 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-625 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1245 *5 *6 *7 *8)))) (-4065 (*1 *1 *2) (|partial| -12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1245 *3 *4 *5 *6)))) (-4052 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-625 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-773)) (-4 *8 (-827)) (-5 *2 (-625 (-1245 *6 *7 *8 *9))) (-5 *1 (-1245 *6 *7 *8 *9)))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 (-1245 *4 *5 *6 *7))) (-5 *1 (-1245 *4 *5 *6 *7))))) -(-13 (-1179 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4079 ((-3 $ "failed") (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4079 ((-3 $ "failed") (-625 |#4|))) (-15 -4065 ((-3 $ "failed") (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4065 ((-3 $ "failed") (-625 |#4|))) (-15 -4052 ((-625 $) (-625 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4052 ((-625 $) (-625 |#4|))))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-2077 (((-3 $ "failed") $ $) 19)) (-3101 (($) 17 T CONST)) (-4174 (((-3 $ "failed") $) 32)) (-3650 (((-112) $) 30)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#1|) 36)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37))) -(((-1246 |#1|) (-138) (-1025)) (T -1246)) -((-1683 (*1 *1 *2) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1025))))) -(-13 (-1025) (-111 |t#1| |t#1|) (-10 -8 (-15 -1683 ($ |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) |has| |#1| (-170)) ((-707) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T)) -((-1671 (((-112) $ $) 60)) (-3641 (((-112) $) NIL)) (-3202 (((-625 |#1|) $) 45)) (-4266 (($ $ (-751)) 39)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4179 (($ $ (-751)) 18 (|has| |#2| (-170))) (($ $ $) 19 (|has| |#2| (-170)))) (-3101 (($) NIL T CONST)) (-4211 (($ $ $) 63) (($ $ (-799 |#1|)) 49) (($ $ |#1|) 53)) (-1893 (((-3 (-799 |#1|) "failed") $) NIL)) (-1895 (((-799 |#1|) $) NIL)) (-4169 (($ $) 32)) (-4174 (((-3 $ "failed") $) NIL)) (-4297 (((-112) $) NIL)) (-4287 (($ $) NIL)) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-2243 (($ (-799 |#1|) |#2|) 31)) (-4191 (($ $) 33)) (-4233 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) 12)) (-4316 (((-799 |#1|) $) NIL)) (-4326 (((-799 |#1|) $) 34)) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-4222 (($ $ $) 62) (($ $ (-799 |#1|)) 51) (($ $ |#1|) 55)) (-3388 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4131 (((-799 |#1|) $) 28)) (-4144 ((|#2| $) 30)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4276 (((-751) $) 36)) (-4307 (((-112) $) 40)) (-1426 ((|#2| $) NIL)) (-1683 (((-839) $) NIL) (($ (-799 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-552)) NIL)) (-2512 (((-625 |#2|) $) NIL)) (-3637 ((|#2| $ (-799 |#1|)) NIL)) (-3340 ((|#2| $ $) 65) ((|#2| $ (-799 |#1|)) NIL)) (-4141 (((-751)) NIL)) (-2089 (($) 13 T CONST)) (-2100 (($) 15 T CONST)) (-2032 (((-625 (-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2281 (((-112) $ $) 38)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 22)) (** (($ $ (-751)) NIL) (($ $ (-897)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-799 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) -(((-1247 |#1| |#2|) (-13 (-377 |#2| (-799 |#1|)) (-1253 |#1| |#2|)) (-827) (-1025)) (T -1247)) -NIL -(-13 (-377 |#2| (-799 |#1|)) (-1253 |#1| |#2|)) -((-2458 ((|#3| |#3| (-751)) 23)) (-2863 ((|#3| |#3| (-751)) 27)) (-4091 ((|#3| |#3| |#3| (-751)) 28))) -(((-1248 |#1| |#2| |#3|) (-10 -7 (-15 -2863 (|#3| |#3| (-751))) (-15 -2458 (|#3| |#3| (-751))) (-15 -4091 (|#3| |#3| |#3| (-751)))) (-13 (-1025) (-698 (-402 (-552)))) (-827) (-1253 |#2| |#1|)) (T -1248)) -((-4091 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-552))))) (-4 *5 (-827)) (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1253 *5 *4)))) (-2458 (*1 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-552))))) (-4 *5 (-827)) (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1253 *5 *4)))) (-2863 (*1 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-552))))) (-4 *5 (-827)) (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1253 *5 *4))))) -(-10 -7 (-15 -2863 (|#3| |#3| (-751))) (-15 -2458 (|#3| |#3| (-751))) (-15 -4091 (|#3| |#3| |#3| (-751)))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3202 (((-625 |#1|) $) 38)) (-2077 (((-3 $ "failed") $ $) 19)) (-4179 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-751)) 40 (|has| |#2| (-170)))) (-3101 (($) 17 T CONST)) (-4211 (($ $ |#1|) 52) (($ $ (-799 |#1|)) 51) (($ $ $) 50)) (-1893 (((-3 (-799 |#1|) "failed") $) 62)) (-1895 (((-799 |#1|) $) 61)) (-4174 (((-3 $ "failed") $) 32)) (-4297 (((-112) $) 43)) (-4287 (($ $) 42)) (-3650 (((-112) $) 30)) (-4201 (((-112) $) 48)) (-2243 (($ (-799 |#1|) |#2|) 49)) (-4191 (($ $) 47)) (-4233 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) 58)) (-4316 (((-799 |#1|) $) 59)) (-1996 (($ (-1 |#2| |#2|) $) 39)) (-4222 (($ $ |#1|) 55) (($ $ (-799 |#1|)) 54) (($ $ $) 53)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4307 (((-112) $) 45)) (-1426 ((|#2| $) 44)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#2|) 66) (($ (-799 |#1|)) 63) (($ |#1|) 46)) (-3340 ((|#2| $ (-799 |#1|)) 57) ((|#2| $ $) 56)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) -(((-1249 |#1| |#2|) (-138) (-827) (-1025)) (T -1249)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4316 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-799 *3)))) (-4233 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-2 (|:| |k| (-799 *3)) (|:| |c| *4))))) (-3340 (*1 *2 *1 *3) (-12 (-5 *3 (-799 *4)) (-4 *1 (-1249 *4 *2)) (-4 *4 (-827)) (-4 *2 (-1025)))) (-3340 (*1 *2 *1 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025)))) (-4222 (*1 *1 *1 *2) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4222 (*1 *1 *1 *2) (-12 (-5 *2 (-799 *3)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))) (-4222 (*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4211 (*1 *1 *1 *2) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4211 (*1 *1 *1 *2) (-12 (-5 *2 (-799 *3)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))) (-4211 (*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-2243 (*1 *1 *2 *3) (-12 (-5 *2 (-799 *4)) (-4 *4 (-827)) (-4 *1 (-1249 *4 *3)) (-4 *3 (-1025)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-112)))) (-4191 (*1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-1683 (*1 *1 *2) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-112)))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025)))) (-4297 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-112)))) (-4287 (*1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4179 (*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)) (-4 *3 (-170)))) (-4179 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-4 *4 (-170)))) (-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-625 *3))))) -(-13 (-1025) (-1246 |t#2|) (-1014 (-799 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4316 ((-799 |t#1|) $)) (-15 -4233 ((-2 (|:| |k| (-799 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3340 (|t#2| $ (-799 |t#1|))) (-15 -3340 (|t#2| $ $)) (-15 -4222 ($ $ |t#1|)) (-15 -4222 ($ $ (-799 |t#1|))) (-15 -4222 ($ $ $)) (-15 -4211 ($ $ |t#1|)) (-15 -4211 ($ $ (-799 |t#1|))) (-15 -4211 ($ $ $)) (-15 -2243 ($ (-799 |t#1|) |t#2|)) (-15 -4201 ((-112) $)) (-15 -4191 ($ $)) (-15 -1683 ($ |t#1|)) (-15 -4307 ((-112) $)) (-15 -1426 (|t#2| $)) (-15 -4297 ((-112) $)) (-15 -4287 ($ $)) (IF (|has| |t#2| (-170)) (PROGN (-15 -4179 ($ $ $)) (-15 -4179 ($ $ (-751)))) |%noBranch|) (-15 -1996 ($ (-1 |t#2| |t#2|) $)) (-15 -3202 ((-625 |t#1|) $)) (IF (|has| |t#2| (-6 -4346)) (-6 -4346) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#2|) . T) ((-628 $) . T) ((-698 |#2|) |has| |#2| (-170)) ((-707) . T) ((-1014 (-799 |#1|)) . T) ((-1031 |#2|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1246 |#2|) . T)) -((-4156 (((-112) $) 15)) (-4168 (((-112) $) 14)) (-4104 (($ $) 19) (($ $ (-751)) 20))) -(((-1250 |#1| |#2|) (-10 -8 (-15 -4104 (|#1| |#1| (-751))) (-15 -4104 (|#1| |#1|)) (-15 -4156 ((-112) |#1|)) (-15 -4168 ((-112) |#1|))) (-1251 |#2|) (-358)) (T -1250)) -NIL -(-10 -8 (-15 -4104 (|#1| |#1| (-751))) (-15 -4104 (|#1| |#1|)) (-15 -4156 ((-112) |#1|)) (-15 -4168 ((-112) |#1|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3537 (((-2 (|:| -3618 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-3528 (($ $) 38)) (-3509 (((-112) $) 36)) (-4156 (((-112) $) 91)) (-4116 (((-751)) 87)) (-2077 (((-3 $ "failed") $ $) 19)) (-2194 (($ $) 70)) (-1330 (((-413 $) $) 69)) (-2408 (((-112) $ $) 57)) (-3101 (($) 17 T CONST)) (-1893 (((-3 |#1| "failed") $) 98)) (-1895 ((|#1| $) 97)) (-2851 (($ $ $) 53)) (-4174 (((-3 $ "failed") $) 32)) (-2826 (($ $ $) 54)) (-1480 (((-2 (|:| -3340 (-625 $)) (|:| -3212 $)) (-625 $)) 49)) (-3554 (($ $ (-751)) 84 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) 83 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2951 (((-112) $) 68)) (-2172 (((-813 (-897)) $) 81 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3650 (((-112) $) 30)) (-2375 (((-3 (-625 $) "failed") (-625 $) $) 50)) (-2605 (($ $ $) 44) (($ (-625 $)) 43)) (-2883 (((-1131) $) 9)) (-4092 (($ $) 67)) (-4143 (((-112) $) 90)) (-2831 (((-1093) $) 10)) (-4306 (((-1145 $) (-1145 $) (-1145 $)) 42)) (-2633 (($ $ $) 46) (($ (-625 $)) 45)) (-3824 (((-413 $) $) 71)) (-4130 (((-813 (-897))) 88)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3212 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2802 (((-3 $ "failed") $ $) 40)) (-1468 (((-3 (-625 $) "failed") (-625 $) $) 48)) (-2397 (((-751) $) 56)) (-3481 (((-2 (|:| -3984 $) (|:| -3645 $)) $ $) 55)) (-3563 (((-3 (-751) "failed") $ $) 82 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3904 (((-133)) 96)) (-4276 (((-813 (-897)) $) 89)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-402 (-552))) 63) (($ |#1|) 99)) (-4243 (((-3 $ "failed") $) 80 (-1523 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4141 (((-751)) 28)) (-3518 (((-112) $ $) 37)) (-4168 (((-112) $) 92)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-4104 (($ $) 86 (|has| |#1| (-363))) (($ $ (-751)) 85 (|has| |#1| (-363)))) (-2281 (((-112) $ $) 6)) (-2404 (($ $ $) 62) (($ $ |#1|) 95)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31) (($ $ (-552)) 66)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-402 (-552))) 65) (($ (-402 (-552)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) -(((-1251 |#1|) (-138) (-358)) (T -1251)) -((-4168 (*1 *2 *1) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-112)))) (-4156 (*1 *2 *1) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-112)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-813 (-897))))) (-4130 (*1 *2) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-813 (-897))))) (-4116 (*1 *2) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-751)))) (-4104 (*1 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-358)) (-4 *2 (-363)))) (-4104 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-4 *3 (-363))))) -(-13 (-358) (-1014 |t#1|) (-1239 |t#1|) (-10 -8 (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-397)) |%noBranch|) (-15 -4168 ((-112) $)) (-15 -4156 ((-112) $)) (-15 -4143 ((-112) $)) (-15 -4276 ((-813 (-897)) $)) (-15 -4130 ((-813 (-897)))) (-15 -4116 ((-751))) (IF (|has| |t#1| (-363)) (PROGN (-6 (-397)) (-15 -4104 ($ $)) (-15 -4104 ($ $ (-751)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-402 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -1523 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-597 (-839)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-397) -1523 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-446) . T) ((-544) . T) ((-628 #0#) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #0#) . T) ((-698 |#1|) . T) ((-698 $) . T) ((-707) . T) ((-896) . T) ((-1014 |#1|) . T) ((-1031 #0#) . T) ((-1031 |#1|) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1190) . T) ((-1239 |#1|) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3202 (((-625 |#1|) $) 86)) (-4266 (($ $ (-751)) 89)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4179 (($ $ $) NIL (|has| |#2| (-170))) (($ $ (-751)) NIL (|has| |#2| (-170)))) (-3101 (($) NIL T CONST)) (-4211 (($ $ |#1|) NIL) (($ $ (-799 |#1|)) NIL) (($ $ $) NIL)) (-1893 (((-3 (-799 |#1|) "failed") $) NIL) (((-3 (-869 |#1|) "failed") $) NIL)) (-1895 (((-799 |#1|) $) NIL) (((-869 |#1|) $) NIL)) (-4169 (($ $) 88)) (-4174 (((-3 $ "failed") $) NIL)) (-4297 (((-112) $) 77)) (-4287 (($ $) 81)) (-4244 (($ $ $ (-751)) 90)) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-2243 (($ (-799 |#1|) |#2|) NIL) (($ (-869 |#1|) |#2|) 26)) (-4191 (($ $) 103)) (-4233 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4316 (((-799 |#1|) $) NIL)) (-4326 (((-799 |#1|) $) NIL)) (-1996 (($ (-1 |#2| |#2|) $) NIL)) (-4222 (($ $ |#1|) NIL) (($ $ (-799 |#1|)) NIL) (($ $ $) NIL)) (-2458 (($ $ (-751)) 97 (|has| |#2| (-698 (-402 (-552)))))) (-3388 (((-2 (|:| |k| (-869 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4131 (((-869 |#1|) $) 70)) (-4144 ((|#2| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-2863 (($ $ (-751)) 94 (|has| |#2| (-698 (-402 (-552)))))) (-4276 (((-751) $) 87)) (-4307 (((-112) $) 71)) (-1426 ((|#2| $) 75)) (-1683 (((-839) $) 57) (($ (-552)) NIL) (($ |#2|) 51) (($ (-799 |#1|)) NIL) (($ |#1|) 59) (($ (-869 |#1|)) NIL) (($ (-644 |#1| |#2|)) 43) (((-1247 |#1| |#2|) $) 64) (((-1256 |#1| |#2|) $) 69)) (-2512 (((-625 |#2|) $) NIL)) (-3637 ((|#2| $ (-869 |#1|)) NIL)) (-3340 ((|#2| $ (-799 |#1|)) NIL) ((|#2| $ $) NIL)) (-4141 (((-751)) NIL)) (-2089 (($) 21 T CONST)) (-2100 (($) 25 T CONST)) (-2032 (((-625 (-2 (|:| |k| (-869 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4254 (((-3 (-644 |#1| |#2|) "failed") $) 102)) (-2281 (((-112) $ $) 65)) (-2393 (($ $) 96) (($ $ $) 95)) (-2382 (($ $ $) 20)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-869 |#1|)) NIL))) -(((-1252 |#1| |#2|) (-13 (-1253 |#1| |#2|) (-377 |#2| (-869 |#1|)) (-10 -8 (-15 -1683 ($ (-644 |#1| |#2|))) (-15 -1683 ((-1247 |#1| |#2|) $)) (-15 -1683 ((-1256 |#1| |#2|) $)) (-15 -4254 ((-3 (-644 |#1| |#2|) "failed") $)) (-15 -4244 ($ $ $ (-751))) (IF (|has| |#2| (-698 (-402 (-552)))) (PROGN (-15 -2863 ($ $ (-751))) (-15 -2458 ($ $ (-751)))) |%noBranch|))) (-827) (-170)) (T -1252)) -((-1683 (*1 *1 *2) (-12 (-5 *2 (-644 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *1 (-1252 *3 *4)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-1256 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-4254 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-4244 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-2863 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) (-4 *4 (-698 (-402 (-552)))) (-4 *3 (-827)) (-4 *4 (-170)))) (-2458 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) (-4 *4 (-698 (-402 (-552)))) (-4 *3 (-827)) (-4 *4 (-170))))) -(-13 (-1253 |#1| |#2|) (-377 |#2| (-869 |#1|)) (-10 -8 (-15 -1683 ($ (-644 |#1| |#2|))) (-15 -1683 ((-1247 |#1| |#2|) $)) (-15 -1683 ((-1256 |#1| |#2|) $)) (-15 -4254 ((-3 (-644 |#1| |#2|) "failed") $)) (-15 -4244 ($ $ $ (-751))) (IF (|has| |#2| (-698 (-402 (-552)))) (PROGN (-15 -2863 ($ $ (-751))) (-15 -2458 ($ $ (-751)))) |%noBranch|))) -((-1671 (((-112) $ $) 7)) (-3641 (((-112) $) 16)) (-3202 (((-625 |#1|) $) 38)) (-4266 (($ $ (-751)) 71)) (-2077 (((-3 $ "failed") $ $) 19)) (-4179 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-751)) 40 (|has| |#2| (-170)))) (-3101 (($) 17 T CONST)) (-4211 (($ $ |#1|) 52) (($ $ (-799 |#1|)) 51) (($ $ $) 50)) (-1893 (((-3 (-799 |#1|) "failed") $) 62)) (-1895 (((-799 |#1|) $) 61)) (-4174 (((-3 $ "failed") $) 32)) (-4297 (((-112) $) 43)) (-4287 (($ $) 42)) (-3650 (((-112) $) 30)) (-4201 (((-112) $) 48)) (-2243 (($ (-799 |#1|) |#2|) 49)) (-4191 (($ $) 47)) (-4233 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) 58)) (-4316 (((-799 |#1|) $) 59)) (-4326 (((-799 |#1|) $) 73)) (-1996 (($ (-1 |#2| |#2|) $) 39)) (-4222 (($ $ |#1|) 55) (($ $ (-799 |#1|)) 54) (($ $ $) 53)) (-2883 (((-1131) $) 9)) (-2831 (((-1093) $) 10)) (-4276 (((-751) $) 72)) (-4307 (((-112) $) 45)) (-1426 ((|#2| $) 44)) (-1683 (((-839) $) 11) (($ (-552)) 27) (($ |#2|) 66) (($ (-799 |#1|)) 63) (($ |#1|) 46)) (-3340 ((|#2| $ (-799 |#1|)) 57) ((|#2| $ $) 56)) (-4141 (((-751)) 28)) (-2089 (($) 18 T CONST)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 6)) (-2393 (($ $) 22) (($ $ $) 21)) (-2382 (($ $ $) 14)) (** (($ $ (-897)) 25) (($ $ (-751)) 31)) (* (($ (-897) $) 13) (($ (-751) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) -(((-1253 |#1| |#2|) (-138) (-827) (-1025)) (T -1253)) -((-4326 (*1 *2 *1) (-12 (-4 *1 (-1253 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-799 *3)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1253 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-751)))) (-4266 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1253 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025))))) -(-13 (-1249 |t#1| |t#2|) (-10 -8 (-15 -4326 ((-799 |t#1|) $)) (-15 -4276 ((-751) $)) (-15 -4266 ($ $ (-751))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-597 (-839)) . T) ((-628 |#2|) . T) ((-628 $) . T) ((-698 |#2|) |has| |#2| (-170)) ((-707) . T) ((-1014 (-799 |#1|)) . T) ((-1031 |#2|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1073) . T) ((-1246 |#2|) . T) ((-1249 |#1| |#2|) . T)) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-3202 (((-625 (-1149)) $) NIL)) (-1278 (($ (-1247 (-1149) |#1|)) NIL)) (-4266 (($ $ (-751)) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4179 (($ $ $) NIL (|has| |#1| (-170))) (($ $ (-751)) NIL (|has| |#1| (-170)))) (-3101 (($) NIL T CONST)) (-4211 (($ $ (-1149)) NIL) (($ $ (-799 (-1149))) NIL) (($ $ $) NIL)) (-1893 (((-3 (-799 (-1149)) "failed") $) NIL)) (-1895 (((-799 (-1149)) $) NIL)) (-4174 (((-3 $ "failed") $) NIL)) (-4297 (((-112) $) NIL)) (-4287 (($ $) NIL)) (-3650 (((-112) $) NIL)) (-4201 (((-112) $) NIL)) (-2243 (($ (-799 (-1149)) |#1|) NIL)) (-4191 (($ $) NIL)) (-4233 (((-2 (|:| |k| (-799 (-1149))) (|:| |c| |#1|)) $) NIL)) (-4316 (((-799 (-1149)) $) NIL)) (-4326 (((-799 (-1149)) $) NIL)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-4222 (($ $ (-1149)) NIL) (($ $ (-799 (-1149))) NIL) (($ $ $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3455 (((-1247 (-1149) |#1|) $) NIL)) (-4276 (((-751) $) NIL)) (-4307 (((-112) $) NIL)) (-1426 ((|#1| $) NIL)) (-1683 (((-839) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-799 (-1149))) NIL) (($ (-1149)) NIL)) (-3340 ((|#1| $ (-799 (-1149))) NIL) ((|#1| $ $) NIL)) (-4141 (((-751)) NIL)) (-2089 (($) NIL T CONST)) (-1268 (((-625 (-2 (|:| |k| (-1149)) (|:| |c| $))) $) NIL)) (-2100 (($) NIL T CONST)) (-2281 (((-112) $ $) NIL)) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) NIL)) (** (($ $ (-897)) NIL) (($ $ (-751)) NIL)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1149) $) NIL))) -(((-1254 |#1|) (-13 (-1253 (-1149) |#1|) (-10 -8 (-15 -3455 ((-1247 (-1149) |#1|) $)) (-15 -1278 ($ (-1247 (-1149) |#1|))) (-15 -1268 ((-625 (-2 (|:| |k| (-1149)) (|:| |c| $))) $)))) (-1025)) (T -1254)) -((-3455 (*1 *2 *1) (-12 (-5 *2 (-1247 (-1149) *3)) (-5 *1 (-1254 *3)) (-4 *3 (-1025)))) (-1278 (*1 *1 *2) (-12 (-5 *2 (-1247 (-1149) *3)) (-4 *3 (-1025)) (-5 *1 (-1254 *3)))) (-1268 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |k| (-1149)) (|:| |c| (-1254 *3))))) (-5 *1 (-1254 *3)) (-4 *3 (-1025))))) -(-13 (-1253 (-1149) |#1|) (-10 -8 (-15 -3455 ((-1247 (-1149) |#1|) $)) (-15 -1278 ($ (-1247 (-1149) |#1|))) (-15 -1268 ((-625 (-2 (|:| |k| (-1149)) (|:| |c| $))) $)))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) NIL)) (-2077 (((-3 $ "failed") $ $) NIL)) (-3101 (($) NIL T CONST)) (-1893 (((-3 |#2| "failed") $) NIL)) (-1895 ((|#2| $) NIL)) (-4169 (($ $) NIL)) (-4174 (((-3 $ "failed") $) 36)) (-4297 (((-112) $) 30)) (-4287 (($ $) 32)) (-3650 (((-112) $) NIL)) (-3723 (((-751) $) NIL)) (-4148 (((-625 $) $) NIL)) (-4201 (((-112) $) NIL)) (-2243 (($ |#2| |#1|) NIL)) (-4316 ((|#2| $) 19)) (-4326 ((|#2| $) 16)) (-1996 (($ (-1 |#1| |#1|) $) NIL)) (-3388 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-4131 ((|#2| $) NIL)) (-4144 ((|#1| $) NIL)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-4307 (((-112) $) 27)) (-1426 ((|#1| $) 28)) (-1683 (((-839) $) 55) (($ (-552)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-2512 (((-625 |#1|) $) NIL)) (-3637 ((|#1| $ |#2|) NIL)) (-3340 ((|#1| $ |#2|) 24)) (-4141 (((-751)) 14)) (-2089 (($) 25 T CONST)) (-2100 (($) 11 T CONST)) (-2032 (((-625 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2281 (((-112) $ $) 26)) (-2404 (($ $ |#1|) 57 (|has| |#1| (-358)))) (-2393 (($ $) NIL) (($ $ $) NIL)) (-2382 (($ $ $) 44)) (** (($ $ (-897)) NIL) (($ $ (-751)) 46)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-1471 (((-751) $) 15))) -(((-1255 |#1| |#2|) (-13 (-1025) (-1246 |#1|) (-377 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1471 ((-751) $)) (-15 -1683 ($ |#2|)) (-15 -4326 (|#2| $)) (-15 -4316 (|#2| $)) (-15 -4169 ($ $)) (-15 -3340 (|#1| $ |#2|)) (-15 -4307 ((-112) $)) (-15 -1426 (|#1| $)) (-15 -4297 ((-112) $)) (-15 -4287 ($ $)) (-15 -1996 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-358)) (-15 -2404 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4346)) (-6 -4346) |%noBranch|) (IF (|has| |#1| (-6 -4350)) (-6 -4350) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|))) (-1025) (-823)) (T -1255)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823)))) (-4169 (*1 *1 *1) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823)))) (-1996 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-1255 *3 *4)) (-4 *4 (-823)))) (-1683 (*1 *1 *2) (-12 (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-823)))) (-1471 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-823)))) (-4326 (*1 *2 *1) (-12 (-4 *2 (-823)) (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025)))) (-4316 (*1 *2 *1) (-12 (-4 *2 (-823)) (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025)))) (-3340 (*1 *2 *1 *3) (-12 (-4 *2 (-1025)) (-5 *1 (-1255 *2 *3)) (-4 *3 (-823)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-823)))) (-1426 (*1 *2 *1) (-12 (-4 *2 (-1025)) (-5 *1 (-1255 *2 *3)) (-4 *3 (-823)))) (-4297 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-823)))) (-4287 (*1 *1 *1) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823)))) (-2404 (*1 *1 *1 *2) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-358)) (-4 *2 (-1025)) (-4 *3 (-823))))) -(-13 (-1025) (-1246 |#1|) (-377 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1471 ((-751) $)) (-15 -1683 ($ |#2|)) (-15 -4326 (|#2| $)) (-15 -4316 (|#2| $)) (-15 -4169 ($ $)) (-15 -3340 (|#1| $ |#2|)) (-15 -4307 ((-112) $)) (-15 -1426 (|#1| $)) (-15 -4297 ((-112) $)) (-15 -4287 ($ $)) (-15 -1996 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-358)) (-15 -2404 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4346)) (-6 -4346) |%noBranch|) (IF (|has| |#1| (-6 -4350)) (-6 -4350) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|))) -((-1671 (((-112) $ $) 26)) (-3641 (((-112) $) NIL)) (-3202 (((-625 |#1|) $) 120)) (-1278 (($ (-1247 |#1| |#2|)) 44)) (-4266 (($ $ (-751)) 32)) (-2077 (((-3 $ "failed") $ $) NIL)) (-4179 (($ $ $) 48 (|has| |#2| (-170))) (($ $ (-751)) 46 (|has| |#2| (-170)))) (-3101 (($) NIL T CONST)) (-4211 (($ $ |#1|) 102) (($ $ (-799 |#1|)) 103) (($ $ $) 25)) (-1893 (((-3 (-799 |#1|) "failed") $) NIL)) (-1895 (((-799 |#1|) $) NIL)) (-4174 (((-3 $ "failed") $) 110)) (-4297 (((-112) $) 105)) (-4287 (($ $) 106)) (-3650 (((-112) $) NIL)) (-4201 (((-112) $) NIL)) (-2243 (($ (-799 |#1|) |#2|) 19)) (-4191 (($ $) NIL)) (-4233 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4316 (((-799 |#1|) $) 111)) (-4326 (((-799 |#1|) $) 114)) (-1996 (($ (-1 |#2| |#2|) $) 119)) (-4222 (($ $ |#1|) 100) (($ $ (-799 |#1|)) 101) (($ $ $) 56)) (-2883 (((-1131) $) NIL)) (-2831 (((-1093) $) NIL)) (-3455 (((-1247 |#1| |#2|) $) 84)) (-4276 (((-751) $) 117)) (-4307 (((-112) $) 70)) (-1426 ((|#2| $) 28)) (-1683 (((-839) $) 63) (($ (-552)) 77) (($ |#2|) 74) (($ (-799 |#1|)) 17) (($ |#1|) 73)) (-3340 ((|#2| $ (-799 |#1|)) 104) ((|#2| $ $) 27)) (-4141 (((-751)) 108)) (-2089 (($) 14 T CONST)) (-1268 (((-625 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2100 (($) 29 T CONST)) (-2281 (((-112) $ $) 13)) (-2393 (($ $) 88) (($ $ $) 91)) (-2382 (($ $ $) 55)) (** (($ $ (-897)) NIL) (($ $ (-751)) 49)) (* (($ (-897) $) NIL) (($ (-751) $) 47) (($ (-552) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) -(((-1256 |#1| |#2|) (-13 (-1253 |#1| |#2|) (-10 -8 (-15 -3455 ((-1247 |#1| |#2|) $)) (-15 -1278 ($ (-1247 |#1| |#2|))) (-15 -1268 ((-625 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-827) (-1025)) (T -1256)) -((-3455 (*1 *2 *1) (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-1256 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))) (-1278 (*1 *1 *2) (-12 (-5 *2 (-1247 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *1 (-1256 *3 *4)))) (-1268 (*1 *2 *1) (-12 (-5 *2 (-625 (-2 (|:| |k| *3) (|:| |c| (-1256 *3 *4))))) (-5 *1 (-1256 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025))))) -(-13 (-1253 |#1| |#2|) (-10 -8 (-15 -3455 ((-1247 |#1| |#2|) $)) (-15 -1278 ($ (-1247 |#1| |#2|))) (-15 -1268 ((-625 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-1367 (((-625 (-1129 |#1|)) (-1 (-625 (-1129 |#1|)) (-625 (-1129 |#1|))) (-552)) 15) (((-1129 |#1|) (-1 (-1129 |#1|) (-1129 |#1|))) 11))) -(((-1257 |#1|) (-10 -7 (-15 -1367 ((-1129 |#1|) (-1 (-1129 |#1|) (-1129 |#1|)))) (-15 -1367 ((-625 (-1129 |#1|)) (-1 (-625 (-1129 |#1|)) (-625 (-1129 |#1|))) (-552)))) (-1186)) (T -1257)) -((-1367 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-625 (-1129 *5)) (-625 (-1129 *5)))) (-5 *4 (-552)) (-5 *2 (-625 (-1129 *5))) (-5 *1 (-1257 *5)) (-4 *5 (-1186)))) (-1367 (*1 *2 *3) (-12 (-5 *3 (-1 (-1129 *4) (-1129 *4))) (-5 *2 (-1129 *4)) (-5 *1 (-1257 *4)) (-4 *4 (-1186))))) -(-10 -7 (-15 -1367 ((-1129 |#1|) (-1 (-1129 |#1|) (-1129 |#1|)))) (-15 -1367 ((-625 (-1129 |#1|)) (-1 (-625 (-1129 |#1|)) (-625 (-1129 |#1|))) (-552)))) -((-1301 (((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|))) 148) (((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112)) 147) (((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112) (-112)) 146) (((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112) (-112) (-112)) 145) (((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-1022 |#1| |#2|)) 130)) (-1289 (((-625 (-1022 |#1| |#2|)) (-625 (-928 |#1|))) 72) (((-625 (-1022 |#1| |#2|)) (-625 (-928 |#1|)) (-112)) 71) (((-625 (-1022 |#1| |#2|)) (-625 (-928 |#1|)) (-112) (-112)) 70)) (-1330 (((-625 (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))) (-1022 |#1| |#2|)) 61)) (-1311 (((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|))) 115) (((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112)) 114) (((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112) (-112)) 113) (((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112) (-112) (-112)) 112) (((-625 (-625 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|)) 107)) (-1320 (((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|))) 120) (((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112)) 119) (((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112) (-112)) 118) (((-625 (-625 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|)) 117)) (-2042 (((-625 (-760 |#1| (-841 |#3|))) (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))) 98) (((-1145 (-1000 (-402 |#1|))) (-1145 |#1|)) 89) (((-928 (-1000 (-402 |#1|))) (-760 |#1| (-841 |#3|))) 96) (((-928 (-1000 (-402 |#1|))) (-928 |#1|)) 94) (((-760 |#1| (-841 |#3|)) (-760 |#1| (-841 |#2|))) 33))) -(((-1258 |#1| |#2| |#3|) (-10 -7 (-15 -1289 ((-625 (-1022 |#1| |#2|)) (-625 (-928 |#1|)) (-112) (-112))) (-15 -1289 ((-625 (-1022 |#1| |#2|)) (-625 (-928 |#1|)) (-112))) (-15 -1289 ((-625 (-1022 |#1| |#2|)) (-625 (-928 |#1|)))) (-15 -1301 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-1022 |#1| |#2|))) (-15 -1301 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112) (-112) (-112))) (-15 -1301 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112) (-112))) (-15 -1301 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112))) (-15 -1301 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)))) (-15 -1311 ((-625 (-625 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|))) (-15 -1311 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112) (-112) (-112))) (-15 -1311 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112) (-112))) (-15 -1311 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112))) (-15 -1311 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)))) (-15 -1320 ((-625 (-625 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|))) (-15 -1320 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112) (-112))) (-15 -1320 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112))) (-15 -1320 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)))) (-15 -1330 ((-625 (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))) (-1022 |#1| |#2|))) (-15 -2042 ((-760 |#1| (-841 |#3|)) (-760 |#1| (-841 |#2|)))) (-15 -2042 ((-928 (-1000 (-402 |#1|))) (-928 |#1|))) (-15 -2042 ((-928 (-1000 (-402 |#1|))) (-760 |#1| (-841 |#3|)))) (-15 -2042 ((-1145 (-1000 (-402 |#1|))) (-1145 |#1|))) (-15 -2042 ((-625 (-760 |#1| (-841 |#3|))) (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))))) (-13 (-825) (-302) (-145) (-998)) (-625 (-1149)) (-625 (-1149))) (T -1258)) -((-2042 (*1 *2 *3) (-12 (-5 *3 (-1119 *4 (-524 (-841 *6)) (-841 *6) (-760 *4 (-841 *6)))) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-14 *6 (-625 (-1149))) (-5 *2 (-625 (-760 *4 (-841 *6)))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-625 (-1149))))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-1145 *4)) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-1145 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149))))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-760 *4 (-841 *6))) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-14 *6 (-625 (-1149))) (-5 *2 (-928 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-625 (-1149))))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-928 *4)) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-928 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149))))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-760 *4 (-841 *5))) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-14 *5 (-625 (-1149))) (-5 *2 (-760 *4 (-841 *6))) (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-625 (-1149))))) (-1330 (*1 *2 *3) (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-14 *5 (-625 (-1149))) (-5 *2 (-625 (-1119 *4 (-524 (-841 *6)) (-841 *6) (-760 *4 (-841 *6))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-625 (-1149))))) (-1320 (*1 *2 *3) (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-625 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149))))) (-1320 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-625 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) (-1320 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-625 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) (-1320 (*1 *2 *3) (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-14 *5 (-625 (-1149))) (-5 *2 (-625 (-625 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-625 (-1149))))) (-1311 (*1 *2 *3) (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-625 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149))))) (-1311 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-625 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) (-1311 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-625 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) (-1311 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-625 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) (-1311 (*1 *2 *3) (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-14 *5 (-625 (-1149))) (-5 *2 (-625 (-625 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-625 (-1149))))) (-1301 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-2 (|:| -3368 (-1145 *4)) (|:| -2780 (-625 (-928 *4)))))) (-5 *1 (-1258 *4 *5 *6)) (-5 *3 (-625 (-928 *4))) (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149))))) (-1301 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-2 (|:| -3368 (-1145 *5)) (|:| -2780 (-625 (-928 *5)))))) (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-625 (-928 *5))) (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) (-1301 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-2 (|:| -3368 (-1145 *5)) (|:| -2780 (-625 (-928 *5)))))) (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-625 (-928 *5))) (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) (-1301 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-2 (|:| -3368 (-1145 *5)) (|:| -2780 (-625 (-928 *5)))))) (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-625 (-928 *5))) (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) (-1301 (*1 *2 *3) (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-14 *5 (-625 (-1149))) (-5 *2 (-625 (-2 (|:| -3368 (-1145 *4)) (|:| -2780 (-625 (-928 *4)))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-625 (-1149))))) (-1289 (*1 *2 *3) (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-1022 *4 *5))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149))))) (-1289 (*1 *2 *3 *4) (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-1022 *5 *6))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) (-1289 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) (-5 *2 (-625 (-1022 *5 *6))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149)))))) -(-10 -7 (-15 -1289 ((-625 (-1022 |#1| |#2|)) (-625 (-928 |#1|)) (-112) (-112))) (-15 -1289 ((-625 (-1022 |#1| |#2|)) (-625 (-928 |#1|)) (-112))) (-15 -1289 ((-625 (-1022 |#1| |#2|)) (-625 (-928 |#1|)))) (-15 -1301 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-1022 |#1| |#2|))) (-15 -1301 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112) (-112) (-112))) (-15 -1301 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112) (-112))) (-15 -1301 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)) (-112))) (-15 -1301 ((-625 (-2 (|:| -3368 (-1145 |#1|)) (|:| -2780 (-625 (-928 |#1|))))) (-625 (-928 |#1|)))) (-15 -1311 ((-625 (-625 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|))) (-15 -1311 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112) (-112) (-112))) (-15 -1311 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112) (-112))) (-15 -1311 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112))) (-15 -1311 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)))) (-15 -1320 ((-625 (-625 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|))) (-15 -1320 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112) (-112))) (-15 -1320 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)) (-112))) (-15 -1320 ((-625 (-625 (-1000 (-402 |#1|)))) (-625 (-928 |#1|)))) (-15 -1330 ((-625 (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))) (-1022 |#1| |#2|))) (-15 -2042 ((-760 |#1| (-841 |#3|)) (-760 |#1| (-841 |#2|)))) (-15 -2042 ((-928 (-1000 (-402 |#1|))) (-928 |#1|))) (-15 -2042 ((-928 (-1000 (-402 |#1|))) (-760 |#1| (-841 |#3|)))) (-15 -2042 ((-1145 (-1000 (-402 |#1|))) (-1145 |#1|))) (-15 -2042 ((-625 (-760 |#1| (-841 |#3|))) (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))))) -((-1361 (((-3 (-1232 (-402 (-552))) "failed") (-1232 |#1|) |#1|) 21)) (-1341 (((-112) (-1232 |#1|)) 12)) (-1349 (((-3 (-1232 (-552)) "failed") (-1232 |#1|)) 16))) -(((-1259 |#1|) (-10 -7 (-15 -1341 ((-112) (-1232 |#1|))) (-15 -1349 ((-3 (-1232 (-552)) "failed") (-1232 |#1|))) (-15 -1361 ((-3 (-1232 (-402 (-552))) "failed") (-1232 |#1|) |#1|))) (-621 (-552))) (T -1259)) -((-1361 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1232 *4)) (-4 *4 (-621 (-552))) (-5 *2 (-1232 (-402 (-552)))) (-5 *1 (-1259 *4)))) (-1349 (*1 *2 *3) (|partial| -12 (-5 *3 (-1232 *4)) (-4 *4 (-621 (-552))) (-5 *2 (-1232 (-552))) (-5 *1 (-1259 *4)))) (-1341 (*1 *2 *3) (-12 (-5 *3 (-1232 *4)) (-4 *4 (-621 (-552))) (-5 *2 (-112)) (-5 *1 (-1259 *4))))) -(-10 -7 (-15 -1341 ((-112) (-1232 |#1|))) (-15 -1349 ((-3 (-1232 (-552)) "failed") (-1232 |#1|))) (-15 -1361 ((-3 (-1232 (-402 (-552))) "failed") (-1232 |#1|) |#1|))) -((-1671 (((-112) $ $) NIL)) (-3641 (((-112) $) 11)) (-2077 (((-3 $ "failed") $ $) NIL)) (-2894 (((-751)) 8)) (-3101 (($) NIL T CONST)) (-4174 (((-3 $ "failed") $) 43)) (-3702 (($) 36)) (-3650 (((-112) $) NIL)) (-4034 (((-3 $ "failed") $) 29)) (-4318 (((-897) $) 15)) (-2883 (((-1131) $) NIL)) (-2071 (($) 25 T CONST)) (-3123 (($ (-897)) 37)) (-2831 (((-1093) $) NIL)) (-2042 (((-552) $) 13)) (-1683 (((-839) $) 22) (($ (-552)) 19)) (-4141 (((-751)) 9)) (-2089 (($) 23 T CONST)) (-2100 (($) 24 T CONST)) (-2281 (((-112) $ $) 27)) (-2393 (($ $) 38) (($ $ $) 35)) (-2382 (($ $ $) 26)) (** (($ $ (-897)) NIL) (($ $ (-751)) 40)) (* (($ (-897) $) NIL) (($ (-751) $) NIL) (($ (-552) $) 32) (($ $ $) 31))) -(((-1260 |#1|) (-13 (-170) (-363) (-598 (-552)) (-1124)) (-897)) (T -1260)) -NIL -(-13 (-170) (-363) (-598 (-552)) (-1124)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3178533 3178538 3178543 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3178518 3178523 3178528 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3178503 3178508 3178513 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3178488 3178493 3178498 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1260 3177664 3178363 3178440 "ZMOD" 3178445 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1259 3176774 3176938 3177147 "ZLINDEP" 3177496 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1258 3166102 3167866 3169837 "ZDSOLVE" 3174904 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1257 3165348 3165489 3165678 "YSTREAM" 3165948 NIL YSTREAM (NIL T) -7 NIL NIL) (-1256 3163159 3164649 3164853 "XRPOLY" 3165191 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1255 3159651 3160934 3161518 "XPR" 3162622 NIL XPR (NIL T T) -8 NIL NIL) (-1254 3157407 3158982 3159186 "XPOLY" 3159482 NIL XPOLY (NIL T) -8 NIL NIL) (-1253 3155256 3156590 3156645 "XPOLYC" 3156933 NIL XPOLYC (NIL T T) -9 NIL 3157046) (-1252 3151674 3153773 3154161 "XPBWPOLY" 3154914 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1251 3147659 3149907 3149949 "XF" 3150570 NIL XF (NIL T) -9 NIL 3150970) (-1250 3147280 3147368 3147537 "XF-" 3147542 NIL XF- (NIL T T) -8 NIL NIL) (-1249 3142672 3143927 3143982 "XFALG" 3146154 NIL XFALG (NIL T T) -9 NIL 3146943) (-1248 3141805 3141909 3142114 "XEXPPKG" 3142564 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1247 3139949 3141655 3141751 "XDPOLY" 3141756 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1246 3138865 3139431 3139474 "XALG" 3139537 NIL XALG (NIL T) -9 NIL 3139657) (-1245 3132334 3136842 3137336 "WUTSET" 3138457 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1244 3130185 3130946 3131299 "WP" 3132115 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1243 3129814 3130007 3130077 "WHILEAST" 3130137 T WHILEAST (NIL) -8 NIL NIL) (-1242 3129313 3129531 3129625 "WHEREAST" 3129742 T WHEREAST (NIL) -8 NIL NIL) (-1241 3128199 3128397 3128692 "WFFINTBS" 3129110 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1240 3126103 3126530 3126992 "WEIER" 3127771 NIL WEIER (NIL T) -7 NIL NIL) (-1239 3125250 3125674 3125716 "VSPACE" 3125852 NIL VSPACE (NIL T) -9 NIL 3125926) (-1238 3125088 3125115 3125206 "VSPACE-" 3125211 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1237 3124834 3124877 3124948 "VOID" 3125039 T VOID (NIL) -8 NIL NIL) (-1236 3122970 3123329 3123735 "VIEW" 3124450 T VIEW (NIL) -7 NIL NIL) (-1235 3119395 3120033 3120770 "VIEWDEF" 3122255 T VIEWDEF (NIL) -7 NIL NIL) (-1234 3108733 3110943 3113116 "VIEW3D" 3117244 T VIEW3D (NIL) -8 NIL NIL) (-1233 3101015 3102644 3104223 "VIEW2D" 3107176 T VIEW2D (NIL) -8 NIL NIL) (-1232 3096419 3100785 3100877 "VECTOR" 3100958 NIL VECTOR (NIL T) -8 NIL NIL) (-1231 3094996 3095255 3095573 "VECTOR2" 3096149 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1230 3088523 3092780 3092823 "VECTCAT" 3093816 NIL VECTCAT (NIL T) -9 NIL 3094402) (-1229 3087537 3087791 3088181 "VECTCAT-" 3088186 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1228 3087018 3087188 3087308 "VARIABLE" 3087452 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1227 3086951 3086956 3086986 "UTYPE" 3086991 T UTYPE (NIL) -9 NIL NIL) (-1226 3085781 3085935 3086197 "UTSODETL" 3086777 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1225 3083221 3083681 3084205 "UTSODE" 3085322 NIL UTSODE (NIL T T) -7 NIL NIL) (-1224 3075097 3080847 3081336 "UTS" 3082790 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1223 3066470 3071789 3071832 "UTSCAT" 3072944 NIL UTSCAT (NIL T) -9 NIL 3073701) (-1222 3063824 3064540 3065529 "UTSCAT-" 3065534 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1221 3063451 3063494 3063627 "UTS2" 3063775 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1220 3057726 3060291 3060334 "URAGG" 3062404 NIL URAGG (NIL T) -9 NIL 3063126) (-1219 3054665 3055528 3056651 "URAGG-" 3056656 NIL URAGG- (NIL T T) -8 NIL NIL) (-1218 3050389 3053279 3053751 "UPXSSING" 3054329 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1217 3042359 3049504 3049786 "UPXS" 3050165 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1216 3035472 3042263 3042335 "UPXSCONS" 3042340 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1215 3025830 3032575 3032637 "UPXSCCA" 3033293 NIL UPXSCCA (NIL T T) -9 NIL 3033535) (-1214 3025468 3025553 3025727 "UPXSCCA-" 3025732 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1213 3015752 3022270 3022313 "UPXSCAT" 3022961 NIL UPXSCAT (NIL T) -9 NIL 3023569) (-1212 3015182 3015261 3015440 "UPXS2" 3015667 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1211 3013836 3014089 3014440 "UPSQFREE" 3014925 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1210 3007754 3010763 3010818 "UPSCAT" 3011979 NIL UPSCAT (NIL T T) -9 NIL 3012753) (-1209 3006958 3007165 3007492 "UPSCAT-" 3007497 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1208 2993049 3001045 3001088 "UPOLYC" 3003189 NIL UPOLYC (NIL T) -9 NIL 3004410) (-1207 2984378 2986803 2989950 "UPOLYC-" 2989955 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1206 2984005 2984048 2984181 "UPOLYC2" 2984329 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1205 2975462 2983571 2983709 "UP" 2983915 NIL UP (NIL NIL T) -8 NIL NIL) (-1204 2974801 2974908 2975072 "UPMP" 2975351 NIL UPMP (NIL T T) -7 NIL NIL) (-1203 2974354 2974435 2974574 "UPDIVP" 2974714 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1202 2972922 2973171 2973487 "UPDECOMP" 2974103 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1201 2972157 2972269 2972454 "UPCDEN" 2972806 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1200 2971676 2971745 2971894 "UP2" 2972082 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1199 2970193 2970880 2971157 "UNISEG" 2971434 NIL UNISEG (NIL T) -8 NIL NIL) (-1198 2969408 2969535 2969740 "UNISEG2" 2970036 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1197 2968468 2968648 2968874 "UNIFACT" 2969224 NIL UNIFACT (NIL T) -7 NIL NIL) (-1196 2952437 2967645 2967896 "ULS" 2968275 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1195 2940479 2952341 2952413 "ULSCONS" 2952418 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1194 2923283 2935218 2935280 "ULSCCAT" 2936000 NIL ULSCCAT (NIL T T) -9 NIL 2936297) (-1193 2922333 2922578 2922966 "ULSCCAT-" 2922971 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1192 2912394 2918826 2918869 "ULSCAT" 2919732 NIL ULSCAT (NIL T) -9 NIL 2920462) (-1191 2911824 2911903 2912082 "ULS2" 2912309 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1190 2910262 2911185 2911215 "UFD" 2911427 T UFD (NIL) -9 NIL 2911541) (-1189 2910056 2910102 2910197 "UFD-" 2910202 NIL UFD- (NIL T) -8 NIL NIL) (-1188 2909138 2909321 2909537 "UDVO" 2909862 T UDVO (NIL) -7 NIL NIL) (-1187 2906954 2907363 2907834 "UDPO" 2908702 NIL UDPO (NIL T) -7 NIL NIL) (-1186 2906887 2906892 2906922 "TYPE" 2906927 T TYPE (NIL) -9 NIL NIL) (-1185 2906674 2906842 2906873 "TYPEAST" 2906878 T TYPEAST (NIL) -8 NIL NIL) (-1184 2905645 2905847 2906087 "TWOFACT" 2906468 NIL TWOFACT (NIL T) -7 NIL NIL) (-1183 2904583 2904920 2905183 "TUPLE" 2905417 NIL TUPLE (NIL T) -8 NIL NIL) (-1182 2902274 2902793 2903332 "TUBETOOL" 2904066 T TUBETOOL (NIL) -7 NIL NIL) (-1181 2901123 2901328 2901569 "TUBE" 2902067 NIL TUBE (NIL T) -8 NIL NIL) (-1180 2895887 2900095 2900378 "TS" 2900875 NIL TS (NIL T) -8 NIL NIL) (-1179 2884554 2888646 2888743 "TSETCAT" 2894012 NIL TSETCAT (NIL T T T T) -9 NIL 2895543) (-1178 2879288 2880886 2882777 "TSETCAT-" 2882782 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1177 2873551 2874397 2875339 "TRMANIP" 2878424 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1176 2872992 2873055 2873218 "TRIMAT" 2873483 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1175 2870788 2871025 2871389 "TRIGMNIP" 2872741 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1174 2870308 2870421 2870451 "TRIGCAT" 2870664 T TRIGCAT (NIL) -9 NIL NIL) (-1173 2869977 2870056 2870197 "TRIGCAT-" 2870202 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1172 2866876 2868837 2869117 "TREE" 2869732 NIL TREE (NIL T) -8 NIL NIL) (-1171 2866150 2866678 2866708 "TRANFUN" 2866743 T TRANFUN (NIL) -9 NIL 2866809) (-1170 2865429 2865620 2865900 "TRANFUN-" 2865905 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1169 2865233 2865265 2865326 "TOPSP" 2865390 T TOPSP (NIL) -7 NIL NIL) (-1168 2864581 2864696 2864850 "TOOLSIGN" 2865114 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1167 2863242 2863758 2863997 "TEXTFILE" 2864364 T TEXTFILE (NIL) -8 NIL NIL) (-1166 2861107 2861621 2862059 "TEX" 2862826 T TEX (NIL) -8 NIL NIL) (-1165 2860888 2860919 2860991 "TEX1" 2861070 NIL TEX1 (NIL T) -7 NIL NIL) (-1164 2860536 2860599 2860689 "TEMUTL" 2860820 T TEMUTL (NIL) -7 NIL NIL) (-1163 2858690 2858970 2859295 "TBCMPPK" 2860259 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1162 2850578 2856850 2856906 "TBAGG" 2857306 NIL TBAGG (NIL T T) -9 NIL 2857517) (-1161 2845648 2847136 2848890 "TBAGG-" 2848895 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1160 2845032 2845139 2845284 "TANEXP" 2845537 NIL TANEXP (NIL T) -7 NIL NIL) (-1159 2838533 2844889 2844982 "TABLE" 2844987 NIL TABLE (NIL T T) -8 NIL NIL) (-1158 2837945 2838044 2838182 "TABLEAU" 2838430 NIL TABLEAU (NIL T) -8 NIL NIL) (-1157 2832553 2833773 2835021 "TABLBUMP" 2836731 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1156 2831981 2832081 2832209 "SYSTEM" 2832447 T SYSTEM (NIL) -7 NIL NIL) (-1155 2828444 2829139 2829922 "SYSSOLP" 2831232 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1154 2824736 2825443 2826177 "SYNTAX" 2827732 T SYNTAX (NIL) -8 NIL NIL) (-1153 2821894 2822496 2823128 "SYMTAB" 2824126 T SYMTAB (NIL) -8 NIL NIL) (-1152 2817143 2818045 2819028 "SYMS" 2820933 T SYMS (NIL) -8 NIL NIL) (-1151 2814415 2816601 2816831 "SYMPOLY" 2816948 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1150 2813932 2814007 2814130 "SYMFUNC" 2814327 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1149 2809909 2811169 2811991 "SYMBOL" 2813132 T SYMBOL (NIL) -8 NIL NIL) (-1148 2803448 2805137 2806857 "SWITCH" 2808211 T SWITCH (NIL) -8 NIL NIL) (-1147 2796718 2802269 2802572 "SUTS" 2803203 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1146 2788687 2795833 2796115 "SUPXS" 2796494 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1145 2780216 2788305 2788431 "SUP" 2788596 NIL SUP (NIL T) -8 NIL NIL) (-1144 2779375 2779502 2779719 "SUPFRACF" 2780084 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1143 2778996 2779055 2779168 "SUP2" 2779310 NIL SUP2 (NIL T T) -7 NIL NIL) (-1142 2777409 2777683 2778046 "SUMRF" 2778695 NIL SUMRF (NIL T) -7 NIL NIL) (-1141 2776723 2776789 2776988 "SUMFS" 2777330 NIL SUMFS (NIL T T) -7 NIL NIL) (-1140 2760732 2775900 2776151 "SULS" 2776530 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1139 2760361 2760554 2760624 "SUCHTAST" 2760684 T SUCHTAST (NIL) -8 NIL NIL) (-1138 2759683 2759886 2760026 "SUCH" 2760269 NIL SUCH (NIL T T) -8 NIL NIL) (-1137 2753577 2754589 2755548 "SUBSPACE" 2758771 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1136 2753007 2753097 2753261 "SUBRESP" 2753465 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1135 2746376 2747672 2748983 "STTF" 2751743 NIL STTF (NIL T) -7 NIL NIL) (-1134 2740549 2741669 2742816 "STTFNC" 2745276 NIL STTFNC (NIL T) -7 NIL NIL) (-1133 2731864 2733731 2735525 "STTAYLOR" 2738790 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1132 2725108 2731728 2731811 "STRTBL" 2731816 NIL STRTBL (NIL T) -8 NIL NIL) (-1131 2720499 2725063 2725094 "STRING" 2725099 T STRING (NIL) -8 NIL NIL) (-1130 2715387 2719872 2719902 "STRICAT" 2719961 T STRICAT (NIL) -9 NIL 2720023) (-1129 2708100 2712910 2713530 "STREAM" 2714802 NIL STREAM (NIL T) -8 NIL NIL) (-1128 2707610 2707687 2707831 "STREAM3" 2708017 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1127 2706592 2706775 2707010 "STREAM2" 2707423 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1126 2706280 2706332 2706425 "STREAM1" 2706534 NIL STREAM1 (NIL T) -7 NIL NIL) (-1125 2705296 2705477 2705708 "STINPROD" 2706096 NIL STINPROD (NIL T) -7 NIL NIL) (-1124 2704874 2705058 2705088 "STEP" 2705168 T STEP (NIL) -9 NIL 2705246) (-1123 2698417 2704773 2704850 "STBL" 2704855 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1122 2693592 2697639 2697682 "STAGG" 2697835 NIL STAGG (NIL T) -9 NIL 2697924) (-1121 2691294 2691896 2692768 "STAGG-" 2692773 NIL STAGG- (NIL T T) -8 NIL NIL) (-1120 2689489 2691064 2691156 "STACK" 2691237 NIL STACK (NIL T) -8 NIL NIL) (-1119 2682214 2687630 2688086 "SREGSET" 2689119 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1118 2674640 2676008 2677521 "SRDCMPK" 2680820 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1117 2667607 2672080 2672110 "SRAGG" 2673413 T SRAGG (NIL) -9 NIL 2674021) (-1116 2666624 2666879 2667258 "SRAGG-" 2667263 NIL SRAGG- (NIL T) -8 NIL NIL) (-1115 2661119 2665571 2665992 "SQMATRIX" 2666250 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1114 2654871 2657839 2658565 "SPLTREE" 2660465 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1113 2650861 2651527 2652173 "SPLNODE" 2654297 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1112 2649908 2650141 2650171 "SPFCAT" 2650615 T SPFCAT (NIL) -9 NIL NIL) (-1111 2648645 2648855 2649119 "SPECOUT" 2649666 T SPECOUT (NIL) -7 NIL NIL) (-1110 2640334 2642078 2642108 "SPADXPT" 2646500 T SPADXPT (NIL) -9 NIL 2648534) (-1109 2640095 2640135 2640204 "SPADPRSR" 2640287 T SPADPRSR (NIL) -7 NIL NIL) (-1108 2638278 2640050 2640081 "SPADAST" 2640086 T SPADAST (NIL) -8 NIL NIL) (-1107 2630249 2631996 2632039 "SPACEC" 2636412 NIL SPACEC (NIL T) -9 NIL 2638228) (-1106 2628420 2630181 2630230 "SPACE3" 2630235 NIL SPACE3 (NIL T) -8 NIL NIL) (-1105 2627172 2627343 2627634 "SORTPAK" 2628225 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1104 2625222 2625525 2625944 "SOLVETRA" 2626836 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1103 2624233 2624455 2624729 "SOLVESER" 2624995 NIL SOLVESER (NIL T) -7 NIL NIL) (-1102 2619453 2620334 2621336 "SOLVERAD" 2623285 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1101 2615268 2615877 2616606 "SOLVEFOR" 2618820 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1100 2609565 2614617 2614714 "SNTSCAT" 2614719 NIL SNTSCAT (NIL T T T T) -9 NIL 2614789) (-1099 2603708 2607888 2608279 "SMTS" 2609255 NIL SMTS (NIL T T T) -8 NIL NIL) (-1098 2598158 2603596 2603673 "SMP" 2603678 NIL SMP (NIL T T) -8 NIL NIL) (-1097 2596317 2596618 2597016 "SMITH" 2597855 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1096 2589300 2593455 2593558 "SMATCAT" 2594909 NIL SMATCAT (NIL NIL T T T) -9 NIL 2595459) (-1095 2586240 2587063 2588241 "SMATCAT-" 2588246 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1094 2583953 2585476 2585519 "SKAGG" 2585780 NIL SKAGG (NIL T) -9 NIL 2585915) (-1093 2580069 2583057 2583335 "SINT" 2583697 T SINT (NIL) -8 NIL NIL) (-1092 2579841 2579879 2579945 "SIMPAN" 2580025 T SIMPAN (NIL) -7 NIL NIL) (-1091 2579148 2579376 2579516 "SIG" 2579723 T SIG (NIL) -8 NIL NIL) (-1090 2577986 2578207 2578482 "SIGNRF" 2578907 NIL SIGNRF (NIL T) -7 NIL NIL) (-1089 2576791 2576942 2577233 "SIGNEF" 2577815 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1088 2576124 2576374 2576498 "SIGAST" 2576689 T SIGAST (NIL) -8 NIL NIL) (-1087 2573814 2574268 2574774 "SHP" 2575665 NIL SHP (NIL T NIL) -7 NIL NIL) (-1086 2567720 2573715 2573791 "SHDP" 2573796 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1085 2567319 2567485 2567515 "SGROUP" 2567608 T SGROUP (NIL) -9 NIL 2567670) (-1084 2567177 2567203 2567276 "SGROUP-" 2567281 NIL SGROUP- (NIL T) -8 NIL NIL) (-1083 2564013 2564710 2565433 "SGCF" 2566476 T SGCF (NIL) -7 NIL NIL) (-1082 2558408 2563460 2563557 "SFRTCAT" 2563562 NIL SFRTCAT (NIL T T T T) -9 NIL 2563601) (-1081 2551832 2552847 2553983 "SFRGCD" 2557391 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1080 2544960 2546031 2547217 "SFQCMPK" 2550765 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1079 2544582 2544671 2544781 "SFORT" 2544901 NIL SFORT (NIL T T) -8 NIL NIL) (-1078 2543727 2544422 2544543 "SEXOF" 2544548 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1077 2542861 2543608 2543676 "SEX" 2543681 T SEX (NIL) -8 NIL NIL) (-1076 2537637 2538326 2538421 "SEXCAT" 2542192 NIL SEXCAT (NIL T T T T T) -9 NIL 2542811) (-1075 2534817 2537571 2537619 "SET" 2537624 NIL SET (NIL T) -8 NIL NIL) (-1074 2533068 2533530 2533835 "SETMN" 2534558 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1073 2532674 2532800 2532830 "SETCAT" 2532947 T SETCAT (NIL) -9 NIL 2533032) (-1072 2532454 2532506 2532605 "SETCAT-" 2532610 NIL SETCAT- (NIL T) -8 NIL NIL) (-1071 2528841 2530915 2530958 "SETAGG" 2531828 NIL SETAGG (NIL T) -9 NIL 2532168) (-1070 2528299 2528415 2528652 "SETAGG-" 2528657 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1069 2527769 2527995 2528096 "SEQAST" 2528220 T SEQAST (NIL) -8 NIL NIL) (-1068 2526973 2527266 2527327 "SEGXCAT" 2527613 NIL SEGXCAT (NIL T T) -9 NIL 2527733) (-1067 2526029 2526639 2526821 "SEG" 2526826 NIL SEG (NIL T) -8 NIL NIL) (-1066 2524936 2525149 2525192 "SEGCAT" 2525774 NIL SEGCAT (NIL T) -9 NIL 2526012) (-1065 2523985 2524315 2524515 "SEGBIND" 2524771 NIL SEGBIND (NIL T) -8 NIL NIL) (-1064 2523606 2523665 2523778 "SEGBIND2" 2523920 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1063 2523207 2523407 2523484 "SEGAST" 2523551 T SEGAST (NIL) -8 NIL NIL) (-1062 2522426 2522552 2522756 "SEG2" 2523051 NIL SEG2 (NIL T T) -7 NIL NIL) (-1061 2521863 2522361 2522408 "SDVAR" 2522413 NIL SDVAR (NIL T) -8 NIL NIL) (-1060 2514153 2521633 2521763 "SDPOL" 2521768 NIL SDPOL (NIL T) -8 NIL NIL) (-1059 2512746 2513012 2513331 "SCPKG" 2513868 NIL SCPKG (NIL T) -7 NIL NIL) (-1058 2511882 2512062 2512262 "SCOPE" 2512568 T SCOPE (NIL) -8 NIL NIL) (-1057 2511103 2511236 2511415 "SCACHE" 2511737 NIL SCACHE (NIL T) -7 NIL NIL) (-1056 2510812 2510972 2511002 "SASTCAT" 2511007 T SASTCAT (NIL) -9 NIL 2511020) (-1055 2510251 2510572 2510657 "SAOS" 2510749 T SAOS (NIL) -8 NIL NIL) (-1054 2509816 2509851 2510024 "SAERFFC" 2510210 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1053 2503790 2509713 2509793 "SAE" 2509798 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1052 2503383 2503418 2503577 "SAEFACT" 2503749 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1051 2501704 2502018 2502419 "RURPK" 2503049 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1050 2500340 2500619 2500931 "RULESET" 2501538 NIL RULESET (NIL T T T) -8 NIL NIL) (-1049 2497527 2498030 2498495 "RULE" 2500021 NIL RULE (NIL T T T) -8 NIL NIL) (-1048 2497166 2497321 2497404 "RULECOLD" 2497479 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1047 2496664 2496883 2496977 "RSTRCAST" 2497094 T RSTRCAST (NIL) -8 NIL NIL) (-1046 2491513 2492307 2493227 "RSETGCD" 2495863 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1045 2480770 2485822 2485919 "RSETCAT" 2490038 NIL RSETCAT (NIL T T T T) -9 NIL 2491135) (-1044 2478697 2479236 2480060 "RSETCAT-" 2480065 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1043 2471084 2472459 2473979 "RSDCMPK" 2477296 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1042 2469089 2469530 2469604 "RRCC" 2470690 NIL RRCC (NIL T T) -9 NIL 2471034) (-1041 2468440 2468614 2468893 "RRCC-" 2468898 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1040 2467910 2468136 2468237 "RPTAST" 2468361 T RPTAST (NIL) -8 NIL NIL) (-1039 2442138 2451723 2451790 "RPOLCAT" 2462454 NIL RPOLCAT (NIL T T T) -9 NIL 2465613) (-1038 2433638 2435976 2439098 "RPOLCAT-" 2439103 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1037 2424685 2431849 2432331 "ROUTINE" 2433178 T ROUTINE (NIL) -8 NIL NIL) (-1036 2421443 2424236 2424385 "ROMAN" 2424558 T ROMAN (NIL) -8 NIL NIL) (-1035 2419718 2420303 2420563 "ROIRC" 2421248 NIL ROIRC (NIL T T) -8 NIL NIL) (-1034 2416169 2418408 2418438 "RNS" 2418742 T RNS (NIL) -9 NIL 2419014) (-1033 2414678 2415061 2415595 "RNS-" 2415670 NIL RNS- (NIL T) -8 NIL NIL) (-1032 2414127 2414509 2414539 "RNG" 2414544 T RNG (NIL) -9 NIL 2414565) (-1031 2413519 2413881 2413924 "RMODULE" 2413986 NIL RMODULE (NIL T) -9 NIL 2414028) (-1030 2412355 2412449 2412785 "RMCAT2" 2413420 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1029 2409060 2411529 2411854 "RMATRIX" 2412089 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1028 2402002 2404236 2404351 "RMATCAT" 2407710 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2408692) (-1027 2401377 2401524 2401831 "RMATCAT-" 2401836 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1026 2400944 2401019 2401147 "RINTERP" 2401296 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1025 2400032 2400552 2400582 "RING" 2400694 T RING (NIL) -9 NIL 2400789) (-1024 2399824 2399868 2399965 "RING-" 2399970 NIL RING- (NIL T) -8 NIL NIL) (-1023 2398665 2398902 2399160 "RIDIST" 2399588 T RIDIST (NIL) -7 NIL NIL) (-1022 2389981 2398133 2398339 "RGCHAIN" 2398513 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1021 2389357 2389737 2389778 "RGBCSPC" 2389836 NIL RGBCSPC (NIL T) -9 NIL 2389888) (-1020 2388541 2388896 2388937 "RGBCMDL" 2389169 NIL RGBCMDL (NIL T) -9 NIL 2389283) (-1019 2385535 2386149 2386819 "RF" 2387905 NIL RF (NIL T) -7 NIL NIL) (-1018 2385181 2385244 2385347 "RFFACTOR" 2385466 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1017 2384906 2384941 2385038 "RFFACT" 2385140 NIL RFFACT (NIL T) -7 NIL NIL) (-1016 2383023 2383387 2383769 "RFDIST" 2384546 T RFDIST (NIL) -7 NIL NIL) (-1015 2382476 2382568 2382731 "RETSOL" 2382925 NIL RETSOL (NIL T T) -7 NIL NIL) (-1014 2382064 2382144 2382187 "RETRACT" 2382380 NIL RETRACT (NIL T) -9 NIL NIL) (-1013 2381913 2381938 2382025 "RETRACT-" 2382030 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1012 2381542 2381735 2381805 "RETAST" 2381865 T RETAST (NIL) -8 NIL NIL) (-1011 2374396 2381195 2381322 "RESULT" 2381437 T RESULT (NIL) -8 NIL NIL) (-1010 2373022 2373665 2373864 "RESRING" 2374299 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1009 2372658 2372707 2372805 "RESLATC" 2372959 NIL RESLATC (NIL T) -7 NIL NIL) (-1008 2372364 2372398 2372505 "REPSQ" 2372617 NIL REPSQ (NIL T) -7 NIL NIL) (-1007 2369786 2370366 2370968 "REP" 2371784 T REP (NIL) -7 NIL NIL) (-1006 2369484 2369518 2369629 "REPDB" 2369745 NIL REPDB (NIL T) -7 NIL NIL) (-1005 2363394 2364773 2365996 "REP2" 2368296 NIL REP2 (NIL T) -7 NIL NIL) (-1004 2359771 2360452 2361260 "REP1" 2362621 NIL REP1 (NIL T) -7 NIL NIL) (-1003 2352497 2357912 2358368 "REGSET" 2359401 NIL REGSET (NIL T T T T) -8 NIL NIL) (-1002 2351310 2351645 2351895 "REF" 2352282 NIL REF (NIL T) -8 NIL NIL) (-1001 2350687 2350790 2350957 "REDORDER" 2351194 NIL REDORDER (NIL T T) -7 NIL NIL) (-1000 2346698 2349906 2350131 "RECLOS" 2350516 NIL RECLOS (NIL T) -8 NIL NIL) (-999 2345755 2345936 2346149 "REALSOLV" 2346505 T REALSOLV (NIL) -7 NIL NIL) (-998 2345603 2345644 2345672 "REAL" 2345677 T REAL (NIL) -9 NIL 2345712) (-997 2342094 2342896 2343778 "REAL0Q" 2344768 NIL REAL0Q (NIL T) -7 NIL NIL) (-996 2337705 2338693 2339752 "REAL0" 2341075 NIL REAL0 (NIL T) -7 NIL NIL) (-995 2337207 2337426 2337518 "RDUCEAST" 2337633 T RDUCEAST (NIL) -8 NIL NIL) (-994 2336615 2336687 2336892 "RDIV" 2337129 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-993 2335688 2335862 2336073 "RDIST" 2336437 NIL RDIST (NIL T) -7 NIL NIL) (-992 2334289 2334576 2334946 "RDETRS" 2335396 NIL RDETRS (NIL T T) -7 NIL NIL) (-991 2332106 2332560 2333096 "RDETR" 2333831 NIL RDETR (NIL T T) -7 NIL NIL) (-990 2330720 2330998 2331400 "RDEEFS" 2331822 NIL RDEEFS (NIL T T) -7 NIL NIL) (-989 2329218 2329524 2329954 "RDEEF" 2330408 NIL RDEEF (NIL T T) -7 NIL NIL) (-988 2323555 2326426 2326454 "RCFIELD" 2327731 T RCFIELD (NIL) -9 NIL 2328461) (-987 2321624 2322128 2322821 "RCFIELD-" 2322894 NIL RCFIELD- (NIL T) -8 NIL NIL) (-986 2317955 2319740 2319781 "RCAGG" 2320852 NIL RCAGG (NIL T) -9 NIL 2321317) (-985 2317586 2317680 2317840 "RCAGG-" 2317845 NIL RCAGG- (NIL T T) -8 NIL NIL) (-984 2316926 2317038 2317201 "RATRET" 2317470 NIL RATRET (NIL T) -7 NIL NIL) (-983 2316483 2316550 2316669 "RATFACT" 2316854 NIL RATFACT (NIL T) -7 NIL NIL) (-982 2315798 2315918 2316068 "RANDSRC" 2316353 T RANDSRC (NIL) -7 NIL NIL) (-981 2315535 2315579 2315650 "RADUTIL" 2315747 T RADUTIL (NIL) -7 NIL NIL) (-980 2308600 2314278 2314595 "RADIX" 2315250 NIL RADIX (NIL NIL) -8 NIL NIL) (-979 2300256 2308444 2308572 "RADFF" 2308577 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-978 2299908 2299983 2300011 "RADCAT" 2300168 T RADCAT (NIL) -9 NIL NIL) (-977 2299693 2299741 2299838 "RADCAT-" 2299843 NIL RADCAT- (NIL T) -8 NIL NIL) (-976 2297844 2299468 2299557 "QUEUE" 2299637 NIL QUEUE (NIL T) -8 NIL NIL) (-975 2294420 2297781 2297826 "QUAT" 2297831 NIL QUAT (NIL T) -8 NIL NIL) (-974 2294058 2294101 2294228 "QUATCT2" 2294371 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-973 2287918 2291219 2291259 "QUATCAT" 2292039 NIL QUATCAT (NIL T) -9 NIL 2292805) (-972 2284062 2285099 2286486 "QUATCAT-" 2286580 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-971 2281582 2283146 2283187 "QUAGG" 2283562 NIL QUAGG (NIL T) -9 NIL 2283737) (-970 2281214 2281407 2281475 "QQUTAST" 2281534 T QQUTAST (NIL) -8 NIL NIL) (-969 2280139 2280612 2280784 "QFORM" 2281086 NIL QFORM (NIL NIL T) -8 NIL NIL) (-968 2271472 2276675 2276715 "QFCAT" 2277373 NIL QFCAT (NIL T) -9 NIL 2278372) (-967 2267044 2268245 2269836 "QFCAT-" 2269930 NIL QFCAT- (NIL T T) -8 NIL NIL) (-966 2266682 2266725 2266852 "QFCAT2" 2266995 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-965 2266142 2266252 2266382 "QEQUAT" 2266572 T QEQUAT (NIL) -8 NIL NIL) (-964 2259290 2260361 2261545 "QCMPACK" 2265075 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-963 2256866 2257287 2257715 "QALGSET" 2258945 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-962 2256111 2256285 2256517 "QALGSET2" 2256686 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-961 2254802 2255025 2255342 "PWFFINTB" 2255884 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-960 2252984 2253152 2253506 "PUSHVAR" 2254616 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-959 2248902 2249956 2249997 "PTRANFN" 2251881 NIL PTRANFN (NIL T) -9 NIL NIL) (-958 2247304 2247595 2247917 "PTPACK" 2248613 NIL PTPACK (NIL T) -7 NIL NIL) (-957 2246936 2246993 2247102 "PTFUNC2" 2247241 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-956 2241402 2245747 2245788 "PTCAT" 2246161 NIL PTCAT (NIL T) -9 NIL 2246323) (-955 2241060 2241095 2241219 "PSQFR" 2241361 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-954 2239655 2239953 2240287 "PSEUDLIN" 2240758 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-953 2226424 2228789 2231113 "PSETPK" 2237415 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-952 2219468 2222182 2222278 "PSETCAT" 2225299 NIL PSETCAT (NIL T T T T) -9 NIL 2226113) (-951 2217304 2217938 2218759 "PSETCAT-" 2218764 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-950 2216653 2216818 2216846 "PSCURVE" 2217114 T PSCURVE (NIL) -9 NIL 2217281) (-949 2213134 2214616 2214681 "PSCAT" 2215525 NIL PSCAT (NIL T T T) -9 NIL 2215765) (-948 2212197 2212413 2212813 "PSCAT-" 2212818 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-947 2210849 2211482 2211696 "PRTITION" 2212003 T PRTITION (NIL) -8 NIL NIL) (-946 2210351 2210570 2210662 "PRTDAST" 2210777 T PRTDAST (NIL) -8 NIL NIL) (-945 2199449 2201655 2203843 "PRS" 2208213 NIL PRS (NIL T T) -7 NIL NIL) (-944 2197307 2198799 2198839 "PRQAGG" 2199022 NIL PRQAGG (NIL T) -9 NIL 2199124) (-943 2196693 2196922 2196950 "PROPLOG" 2197135 T PROPLOG (NIL) -9 NIL 2197257) (-942 2193863 2194507 2194971 "PROPFRML" 2196261 NIL PROPFRML (NIL T) -8 NIL NIL) (-941 2193323 2193433 2193563 "PROPERTY" 2193753 T PROPERTY (NIL) -8 NIL NIL) (-940 2187408 2191489 2192309 "PRODUCT" 2192549 NIL PRODUCT (NIL T T) -8 NIL NIL) (-939 2184721 2186866 2187100 "PR" 2187219 NIL PR (NIL T T) -8 NIL NIL) (-938 2184517 2184549 2184608 "PRINT" 2184682 T PRINT (NIL) -7 NIL NIL) (-937 2183857 2183974 2184126 "PRIMES" 2184397 NIL PRIMES (NIL T) -7 NIL NIL) (-936 2181922 2182323 2182789 "PRIMELT" 2183436 NIL PRIMELT (NIL T) -7 NIL NIL) (-935 2181651 2181700 2181728 "PRIMCAT" 2181852 T PRIMCAT (NIL) -9 NIL NIL) (-934 2177812 2181589 2181634 "PRIMARR" 2181639 NIL PRIMARR (NIL T) -8 NIL NIL) (-933 2176819 2176997 2177225 "PRIMARR2" 2177630 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-932 2176462 2176518 2176629 "PREASSOC" 2176757 NIL PREASSOC (NIL T T) -7 NIL NIL) (-931 2175937 2176070 2176098 "PPCURVE" 2176303 T PPCURVE (NIL) -9 NIL 2176439) (-930 2175559 2175732 2175815 "PORTNUM" 2175874 T PORTNUM (NIL) -8 NIL NIL) (-929 2172918 2173317 2173909 "POLYROOT" 2175140 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-928 2166863 2172522 2172682 "POLY" 2172791 NIL POLY (NIL T) -8 NIL NIL) (-927 2166246 2166304 2166538 "POLYLIFT" 2166799 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-926 2162521 2162970 2163599 "POLYCATQ" 2165791 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-925 2149560 2154916 2154981 "POLYCAT" 2158495 NIL POLYCAT (NIL T T T) -9 NIL 2160423) (-924 2143010 2144871 2147255 "POLYCAT-" 2147260 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-923 2142597 2142665 2142785 "POLY2UP" 2142936 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-922 2142229 2142286 2142395 "POLY2" 2142534 NIL POLY2 (NIL T T) -7 NIL NIL) (-921 2140914 2141153 2141429 "POLUTIL" 2142003 NIL POLUTIL (NIL T T) -7 NIL NIL) (-920 2139269 2139546 2139877 "POLTOPOL" 2140636 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-919 2134787 2139205 2139251 "POINT" 2139256 NIL POINT (NIL T) -8 NIL NIL) (-918 2132974 2133331 2133706 "PNTHEORY" 2134432 T PNTHEORY (NIL) -7 NIL NIL) (-917 2131393 2131690 2132102 "PMTOOLS" 2132672 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-916 2130986 2131064 2131181 "PMSYM" 2131309 NIL PMSYM (NIL T) -7 NIL NIL) (-915 2130496 2130565 2130739 "PMQFCAT" 2130911 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-914 2129851 2129961 2130117 "PMPRED" 2130373 NIL PMPRED (NIL T) -7 NIL NIL) (-913 2129247 2129333 2129494 "PMPREDFS" 2129752 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-912 2127890 2128098 2128483 "PMPLCAT" 2129009 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-911 2127422 2127501 2127653 "PMLSAGG" 2127805 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-910 2126897 2126973 2127154 "PMKERNEL" 2127340 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-909 2126514 2126589 2126702 "PMINS" 2126816 NIL PMINS (NIL T) -7 NIL NIL) (-908 2125942 2126011 2126227 "PMFS" 2126439 NIL PMFS (NIL T T T) -7 NIL NIL) (-907 2125170 2125288 2125493 "PMDOWN" 2125819 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-906 2124333 2124492 2124674 "PMASS" 2125008 T PMASS (NIL) -7 NIL NIL) (-905 2123607 2123718 2123881 "PMASSFS" 2124219 NIL PMASSFS (NIL T T) -7 NIL NIL) (-904 2123262 2123330 2123424 "PLOTTOOL" 2123533 T PLOTTOOL (NIL) -7 NIL NIL) (-903 2117884 2119073 2120221 "PLOT" 2122134 T PLOT (NIL) -8 NIL NIL) (-902 2113698 2114732 2115653 "PLOT3D" 2116983 T PLOT3D (NIL) -8 NIL NIL) (-901 2112610 2112787 2113022 "PLOT1" 2113502 NIL PLOT1 (NIL T) -7 NIL NIL) (-900 2088004 2092676 2097527 "PLEQN" 2107876 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-899 2087322 2087444 2087624 "PINTERP" 2087869 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-898 2087015 2087062 2087165 "PINTERPA" 2087269 NIL PINTERPA (NIL T T) -7 NIL NIL) (-897 2086300 2086821 2086908 "PI" 2086948 T PI (NIL) -8 NIL NIL) (-896 2084732 2085673 2085701 "PID" 2085883 T PID (NIL) -9 NIL 2086017) (-895 2084457 2084494 2084582 "PICOERCE" 2084689 NIL PICOERCE (NIL T) -7 NIL NIL) (-894 2083777 2083916 2084092 "PGROEB" 2084313 NIL PGROEB (NIL T) -7 NIL NIL) (-893 2079364 2080178 2081083 "PGE" 2082892 T PGE (NIL) -7 NIL NIL) (-892 2077488 2077734 2078100 "PGCD" 2079081 NIL PGCD (NIL T T T T) -7 NIL NIL) (-891 2076826 2076929 2077090 "PFRPAC" 2077372 NIL PFRPAC (NIL T) -7 NIL NIL) (-890 2073506 2075374 2075727 "PFR" 2076505 NIL PFR (NIL T) -8 NIL NIL) (-889 2071895 2072139 2072464 "PFOTOOLS" 2073253 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-888 2070428 2070667 2071018 "PFOQ" 2071652 NIL PFOQ (NIL T T T) -7 NIL NIL) (-887 2068901 2069113 2069476 "PFO" 2070212 NIL PFO (NIL T T T T T) -7 NIL NIL) (-886 2065489 2068790 2068859 "PF" 2068864 NIL PF (NIL NIL) -8 NIL NIL) (-885 2062958 2064195 2064223 "PFECAT" 2064808 T PFECAT (NIL) -9 NIL 2065192) (-884 2062403 2062557 2062771 "PFECAT-" 2062776 NIL PFECAT- (NIL T) -8 NIL NIL) (-883 2061007 2061258 2061559 "PFBRU" 2062152 NIL PFBRU (NIL T T) -7 NIL NIL) (-882 2058874 2059225 2059657 "PFBR" 2060658 NIL PFBR (NIL T T T T) -7 NIL NIL) (-881 2054790 2056250 2056926 "PERM" 2058231 NIL PERM (NIL T) -8 NIL NIL) (-880 2050056 2050997 2051867 "PERMGRP" 2053953 NIL PERMGRP (NIL T) -8 NIL NIL) (-879 2048188 2049119 2049160 "PERMCAT" 2049606 NIL PERMCAT (NIL T) -9 NIL 2049911) (-878 2047841 2047882 2048006 "PERMAN" 2048141 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-877 2045281 2047410 2047541 "PENDTREE" 2047743 NIL PENDTREE (NIL T) -8 NIL NIL) (-876 2043394 2044128 2044169 "PDRING" 2044826 NIL PDRING (NIL T) -9 NIL 2045112) (-875 2042497 2042715 2043077 "PDRING-" 2043082 NIL PDRING- (NIL T T) -8 NIL NIL) (-874 2039638 2040389 2041080 "PDEPROB" 2041826 T PDEPROB (NIL) -8 NIL NIL) (-873 2037185 2037687 2038242 "PDEPACK" 2039103 T PDEPACK (NIL) -7 NIL NIL) (-872 2036097 2036287 2036538 "PDECOMP" 2036984 NIL PDECOMP (NIL T T) -7 NIL NIL) (-871 2033702 2034519 2034547 "PDECAT" 2035334 T PDECAT (NIL) -9 NIL 2036047) (-870 2033453 2033486 2033576 "PCOMP" 2033663 NIL PCOMP (NIL T T) -7 NIL NIL) (-869 2031658 2032254 2032551 "PBWLB" 2033182 NIL PBWLB (NIL T) -8 NIL NIL) (-868 2024162 2025731 2027069 "PATTERN" 2030341 NIL PATTERN (NIL T) -8 NIL NIL) (-867 2023794 2023851 2023960 "PATTERN2" 2024099 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-866 2021551 2021939 2022396 "PATTERN1" 2023383 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-865 2018946 2019500 2019981 "PATRES" 2021116 NIL PATRES (NIL T T) -8 NIL NIL) (-864 2018510 2018577 2018709 "PATRES2" 2018873 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-863 2016393 2016798 2017205 "PATMATCH" 2018177 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-862 2015929 2016112 2016153 "PATMAB" 2016260 NIL PATMAB (NIL T) -9 NIL 2016343) (-861 2014474 2014783 2015041 "PATLRES" 2015734 NIL PATLRES (NIL T T T) -8 NIL NIL) (-860 2014020 2014143 2014184 "PATAB" 2014189 NIL PATAB (NIL T) -9 NIL 2014361) (-859 2011501 2012033 2012606 "PARTPERM" 2013467 T PARTPERM (NIL) -7 NIL NIL) (-858 2011122 2011185 2011287 "PARSURF" 2011432 NIL PARSURF (NIL T) -8 NIL NIL) (-857 2010754 2010811 2010920 "PARSU2" 2011059 NIL PARSU2 (NIL T T) -7 NIL NIL) (-856 2010518 2010558 2010625 "PARSER" 2010707 T PARSER (NIL) -7 NIL NIL) (-855 2010139 2010202 2010304 "PARSCURV" 2010449 NIL PARSCURV (NIL T) -8 NIL NIL) (-854 2009771 2009828 2009937 "PARSC2" 2010076 NIL PARSC2 (NIL T T) -7 NIL NIL) (-853 2009410 2009468 2009565 "PARPCURV" 2009707 NIL PARPCURV (NIL T) -8 NIL NIL) (-852 2009042 2009099 2009208 "PARPC2" 2009347 NIL PARPC2 (NIL T T) -7 NIL NIL) (-851 2008562 2008648 2008767 "PAN2EXPR" 2008943 T PAN2EXPR (NIL) -7 NIL NIL) (-850 2007368 2007683 2007911 "PALETTE" 2008354 T PALETTE (NIL) -8 NIL NIL) (-849 2005836 2006373 2006733 "PAIR" 2007054 NIL PAIR (NIL T T) -8 NIL NIL) (-848 1999744 2005095 2005289 "PADICRC" 2005691 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-847 1993010 1999090 1999274 "PADICRAT" 1999592 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-846 1991360 1992947 1992992 "PADIC" 1992997 NIL PADIC (NIL NIL) -8 NIL NIL) (-845 1988605 1990135 1990175 "PADICCT" 1990756 NIL PADICCT (NIL NIL) -9 NIL 1991038) (-844 1987562 1987762 1988030 "PADEPAC" 1988392 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-843 1986774 1986907 1987113 "PADE" 1987424 NIL PADE (NIL T T T) -7 NIL NIL) (-842 1984824 1985610 1985927 "OWP" 1986541 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-841 1983933 1984429 1984601 "OVAR" 1984692 NIL OVAR (NIL NIL) -8 NIL NIL) (-840 1983197 1983318 1983479 "OUT" 1983792 T OUT (NIL) -7 NIL NIL) (-839 1972104 1974306 1976506 "OUTFORM" 1981017 T OUTFORM (NIL) -8 NIL NIL) (-838 1971525 1971701 1971828 "OUTBFILE" 1971997 T OUTBFILE (NIL) -8 NIL NIL) (-837 1971162 1971245 1971273 "OUTBCON" 1971424 T OUTBCON (NIL) -9 NIL 1971509) (-836 1971002 1971037 1971113 "OUTBCON-" 1971118 NIL OUTBCON- (NIL T) -8 NIL NIL) (-835 1970410 1970731 1970820 "OSI" 1970933 T OSI (NIL) -8 NIL NIL) (-834 1969966 1970278 1970306 "OSGROUP" 1970311 T OSGROUP (NIL) -9 NIL 1970333) (-833 1968711 1968938 1969223 "ORTHPOL" 1969713 NIL ORTHPOL (NIL T) -7 NIL NIL) (-832 1966121 1968370 1968509 "OREUP" 1968654 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-831 1963559 1965812 1965939 "ORESUP" 1966063 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-830 1961087 1961587 1962148 "OREPCTO" 1963048 NIL OREPCTO (NIL T T) -7 NIL NIL) (-829 1954998 1957165 1957206 "OREPCAT" 1959554 NIL OREPCAT (NIL T) -9 NIL 1960658) (-828 1952145 1952927 1953985 "OREPCAT-" 1953990 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-827 1951322 1951594 1951622 "ORDSET" 1951931 T ORDSET (NIL) -9 NIL 1952095) (-826 1950841 1950963 1951156 "ORDSET-" 1951161 NIL ORDSET- (NIL T) -8 NIL NIL) (-825 1949495 1950252 1950280 "ORDRING" 1950482 T ORDRING (NIL) -9 NIL 1950607) (-824 1949140 1949234 1949378 "ORDRING-" 1949383 NIL ORDRING- (NIL T) -8 NIL NIL) (-823 1948546 1948983 1949011 "ORDMON" 1949016 T ORDMON (NIL) -9 NIL 1949037) (-822 1947708 1947855 1948050 "ORDFUNS" 1948395 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-821 1947219 1947578 1947606 "ORDFIN" 1947611 T ORDFIN (NIL) -9 NIL 1947632) (-820 1943811 1945805 1946214 "ORDCOMP" 1946843 NIL ORDCOMP (NIL T) -8 NIL NIL) (-819 1943077 1943204 1943390 "ORDCOMP2" 1943671 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-818 1939584 1940467 1941304 "OPTPROB" 1942260 T OPTPROB (NIL) -8 NIL NIL) (-817 1936386 1937025 1937729 "OPTPACK" 1938900 T OPTPACK (NIL) -7 NIL NIL) (-816 1934099 1934839 1934867 "OPTCAT" 1935686 T OPTCAT (NIL) -9 NIL 1936336) (-815 1933867 1933906 1933972 "OPQUERY" 1934053 T OPQUERY (NIL) -7 NIL NIL) (-814 1931033 1932178 1932682 "OP" 1933396 NIL OP (NIL T) -8 NIL NIL) (-813 1927878 1929830 1930199 "ONECOMP" 1930697 NIL ONECOMP (NIL T) -8 NIL NIL) (-812 1927183 1927298 1927472 "ONECOMP2" 1927750 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-811 1926602 1926708 1926838 "OMSERVER" 1927073 T OMSERVER (NIL) -7 NIL NIL) (-810 1923490 1926042 1926082 "OMSAGG" 1926143 NIL OMSAGG (NIL T) -9 NIL 1926207) (-809 1922113 1922376 1922658 "OMPKG" 1923228 T OMPKG (NIL) -7 NIL NIL) (-808 1921543 1921646 1921674 "OM" 1921973 T OM (NIL) -9 NIL NIL) (-807 1920125 1921092 1921261 "OMLO" 1921424 NIL OMLO (NIL T T) -8 NIL NIL) (-806 1919050 1919197 1919424 "OMEXPR" 1919951 NIL OMEXPR (NIL T) -7 NIL NIL) (-805 1918368 1918596 1918732 "OMERR" 1918934 T OMERR (NIL) -8 NIL NIL) (-804 1917546 1917789 1917949 "OMERRK" 1918228 T OMERRK (NIL) -8 NIL NIL) (-803 1917024 1917223 1917331 "OMENC" 1917458 T OMENC (NIL) -8 NIL NIL) (-802 1910919 1912104 1913275 "OMDEV" 1915873 T OMDEV (NIL) -8 NIL NIL) (-801 1909988 1910159 1910353 "OMCONN" 1910745 T OMCONN (NIL) -8 NIL NIL) (-800 1908644 1909586 1909614 "OINTDOM" 1909619 T OINTDOM (NIL) -9 NIL 1909640) (-799 1904450 1905634 1906350 "OFMONOID" 1907960 NIL OFMONOID (NIL T) -8 NIL NIL) (-798 1903888 1904387 1904432 "ODVAR" 1904437 NIL ODVAR (NIL T) -8 NIL NIL) (-797 1901098 1903385 1903570 "ODR" 1903763 NIL ODR (NIL T T NIL) -8 NIL NIL) (-796 1893442 1900874 1901000 "ODPOL" 1901005 NIL ODPOL (NIL T) -8 NIL NIL) (-795 1887318 1893314 1893419 "ODP" 1893424 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-794 1886084 1886299 1886574 "ODETOOLS" 1887092 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-793 1883053 1883709 1884425 "ODESYS" 1885417 NIL ODESYS (NIL T T) -7 NIL NIL) (-792 1877935 1878843 1879868 "ODERTRIC" 1882128 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-791 1877361 1877443 1877637 "ODERED" 1877847 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-790 1874249 1874797 1875474 "ODERAT" 1876784 NIL ODERAT (NIL T T) -7 NIL NIL) (-789 1871209 1871673 1872270 "ODEPRRIC" 1873778 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-788 1869078 1869647 1870156 "ODEPROB" 1870720 T ODEPROB (NIL) -8 NIL NIL) (-787 1865600 1866083 1866730 "ODEPRIM" 1868557 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-786 1864849 1864951 1865211 "ODEPAL" 1865492 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-785 1861011 1861802 1862666 "ODEPACK" 1864005 T ODEPACK (NIL) -7 NIL NIL) (-784 1860044 1860151 1860380 "ODEINT" 1860900 NIL ODEINT (NIL T T) -7 NIL NIL) (-783 1854145 1855570 1857017 "ODEIFTBL" 1858617 T ODEIFTBL (NIL) -8 NIL NIL) (-782 1849480 1850266 1851225 "ODEEF" 1853304 NIL ODEEF (NIL T T) -7 NIL NIL) (-781 1848815 1848904 1849134 "ODECONST" 1849385 NIL ODECONST (NIL T T T) -7 NIL NIL) (-780 1846966 1847601 1847629 "ODECAT" 1848234 T ODECAT (NIL) -9 NIL 1848765) (-779 1843873 1846678 1846797 "OCT" 1846879 NIL OCT (NIL T) -8 NIL NIL) (-778 1843511 1843554 1843681 "OCTCT2" 1843824 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-777 1838372 1840772 1840812 "OC" 1841909 NIL OC (NIL T) -9 NIL 1842767) (-776 1835599 1836347 1837337 "OC-" 1837431 NIL OC- (NIL T T) -8 NIL NIL) (-775 1834977 1835419 1835447 "OCAMON" 1835452 T OCAMON (NIL) -9 NIL 1835473) (-774 1834534 1834849 1834877 "OASGP" 1834882 T OASGP (NIL) -9 NIL 1834902) (-773 1833821 1834284 1834312 "OAMONS" 1834352 T OAMONS (NIL) -9 NIL 1834395) (-772 1833261 1833668 1833696 "OAMON" 1833701 T OAMON (NIL) -9 NIL 1833721) (-771 1832565 1833057 1833085 "OAGROUP" 1833090 T OAGROUP (NIL) -9 NIL 1833110) (-770 1832255 1832305 1832393 "NUMTUBE" 1832509 NIL NUMTUBE (NIL T) -7 NIL NIL) (-769 1825828 1827346 1828882 "NUMQUAD" 1830739 T NUMQUAD (NIL) -7 NIL NIL) (-768 1821584 1822572 1823597 "NUMODE" 1824823 T NUMODE (NIL) -7 NIL NIL) (-767 1818965 1819819 1819847 "NUMINT" 1820770 T NUMINT (NIL) -9 NIL 1821534) (-766 1817913 1818110 1818328 "NUMFMT" 1818767 T NUMFMT (NIL) -7 NIL NIL) (-765 1804272 1807217 1809749 "NUMERIC" 1815420 NIL NUMERIC (NIL T) -7 NIL NIL) (-764 1798669 1803721 1803816 "NTSCAT" 1803821 NIL NTSCAT (NIL T T T T) -9 NIL 1803860) (-763 1797863 1798028 1798221 "NTPOLFN" 1798508 NIL NTPOLFN (NIL T) -7 NIL NIL) (-762 1785703 1794688 1795500 "NSUP" 1797084 NIL NSUP (NIL T) -8 NIL NIL) (-761 1785335 1785392 1785501 "NSUP2" 1785640 NIL NSUP2 (NIL T T) -7 NIL NIL) (-760 1775332 1785109 1785242 "NSMP" 1785247 NIL NSMP (NIL T T) -8 NIL NIL) (-759 1773764 1774065 1774422 "NREP" 1775020 NIL NREP (NIL T) -7 NIL NIL) (-758 1772355 1772607 1772965 "NPCOEF" 1773507 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-757 1771421 1771536 1771752 "NORMRETR" 1772236 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-756 1769462 1769752 1770161 "NORMPK" 1771129 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-755 1769147 1769175 1769299 "NORMMA" 1769428 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-754 1768974 1769104 1769133 "NONE" 1769138 T NONE (NIL) -8 NIL NIL) (-753 1768763 1768792 1768861 "NONE1" 1768938 NIL NONE1 (NIL T) -7 NIL NIL) (-752 1768246 1768308 1768494 "NODE1" 1768695 NIL NODE1 (NIL T T) -7 NIL NIL) (-751 1766586 1767409 1767664 "NNI" 1768011 T NNI (NIL) -8 NIL NIL) (-750 1765006 1765319 1765683 "NLINSOL" 1766254 NIL NLINSOL (NIL T) -7 NIL NIL) (-749 1761173 1762141 1763063 "NIPROB" 1764104 T NIPROB (NIL) -8 NIL NIL) (-748 1759930 1760164 1760466 "NFINTBAS" 1760935 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-747 1758638 1758869 1759150 "NCODIV" 1759698 NIL NCODIV (NIL T T) -7 NIL NIL) (-746 1758400 1758437 1758512 "NCNTFRAC" 1758595 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-745 1756580 1756944 1757364 "NCEP" 1758025 NIL NCEP (NIL T) -7 NIL NIL) (-744 1755491 1756230 1756258 "NASRING" 1756368 T NASRING (NIL) -9 NIL 1756442) (-743 1755286 1755330 1755424 "NASRING-" 1755429 NIL NASRING- (NIL T) -8 NIL NIL) (-742 1754439 1754938 1754966 "NARNG" 1755083 T NARNG (NIL) -9 NIL 1755174) (-741 1754131 1754198 1754332 "NARNG-" 1754337 NIL NARNG- (NIL T) -8 NIL NIL) (-740 1753010 1753217 1753452 "NAGSP" 1753916 T NAGSP (NIL) -7 NIL NIL) (-739 1744282 1745966 1747639 "NAGS" 1751357 T NAGS (NIL) -7 NIL NIL) (-738 1742830 1743138 1743469 "NAGF07" 1743971 T NAGF07 (NIL) -7 NIL NIL) (-737 1737368 1738659 1739966 "NAGF04" 1741543 T NAGF04 (NIL) -7 NIL NIL) (-736 1730336 1731950 1733583 "NAGF02" 1735755 T NAGF02 (NIL) -7 NIL NIL) (-735 1725560 1726660 1727777 "NAGF01" 1729239 T NAGF01 (NIL) -7 NIL NIL) (-734 1719188 1720754 1722339 "NAGE04" 1723995 T NAGE04 (NIL) -7 NIL NIL) (-733 1710357 1712478 1714608 "NAGE02" 1717078 T NAGE02 (NIL) -7 NIL NIL) (-732 1706310 1707257 1708221 "NAGE01" 1709413 T NAGE01 (NIL) -7 NIL NIL) (-731 1704105 1704639 1705197 "NAGD03" 1705772 T NAGD03 (NIL) -7 NIL NIL) (-730 1695855 1697783 1699737 "NAGD02" 1702171 T NAGD02 (NIL) -7 NIL NIL) (-729 1689666 1691091 1692531 "NAGD01" 1694435 T NAGD01 (NIL) -7 NIL NIL) (-728 1685875 1686697 1687534 "NAGC06" 1688849 T NAGC06 (NIL) -7 NIL NIL) (-727 1684340 1684672 1685028 "NAGC05" 1685539 T NAGC05 (NIL) -7 NIL NIL) (-726 1683716 1683835 1683979 "NAGC02" 1684216 T NAGC02 (NIL) -7 NIL NIL) (-725 1682776 1683333 1683373 "NAALG" 1683452 NIL NAALG (NIL T) -9 NIL 1683513) (-724 1682611 1682640 1682730 "NAALG-" 1682735 NIL NAALG- (NIL T T) -8 NIL NIL) (-723 1676561 1677669 1678856 "MULTSQFR" 1681507 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-722 1675880 1675955 1676139 "MULTFACT" 1676473 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-721 1669103 1672968 1673021 "MTSCAT" 1674091 NIL MTSCAT (NIL T T) -9 NIL 1674605) (-720 1668815 1668869 1668961 "MTHING" 1669043 NIL MTHING (NIL T) -7 NIL NIL) (-719 1668607 1668640 1668700 "MSYSCMD" 1668775 T MSYSCMD (NIL) -7 NIL NIL) (-718 1664719 1667362 1667682 "MSET" 1668320 NIL MSET (NIL T) -8 NIL NIL) (-717 1661814 1664280 1664321 "MSETAGG" 1664326 NIL MSETAGG (NIL T) -9 NIL 1664360) (-716 1657697 1659193 1659938 "MRING" 1661114 NIL MRING (NIL T T) -8 NIL NIL) (-715 1657263 1657330 1657461 "MRF2" 1657624 NIL MRF2 (NIL T T T) -7 NIL NIL) (-714 1656881 1656916 1657060 "MRATFAC" 1657222 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-713 1654493 1654788 1655219 "MPRFF" 1656586 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-712 1648553 1654347 1654444 "MPOLY" 1654449 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-711 1648043 1648078 1648286 "MPCPF" 1648512 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-710 1647557 1647600 1647784 "MPC3" 1647994 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-709 1646752 1646833 1647054 "MPC2" 1647472 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-708 1645053 1645390 1645780 "MONOTOOL" 1646412 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-707 1644304 1644595 1644623 "MONOID" 1644842 T MONOID (NIL) -9 NIL 1644989) (-706 1643850 1643969 1644150 "MONOID-" 1644155 NIL MONOID- (NIL T) -8 NIL NIL) (-705 1634900 1640806 1640865 "MONOGEN" 1641539 NIL MONOGEN (NIL T T) -9 NIL 1641995) (-704 1632118 1632853 1633853 "MONOGEN-" 1633972 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-703 1630977 1631397 1631425 "MONADWU" 1631817 T MONADWU (NIL) -9 NIL 1632055) (-702 1630349 1630508 1630756 "MONADWU-" 1630761 NIL MONADWU- (NIL T) -8 NIL NIL) (-701 1629734 1629952 1629980 "MONAD" 1630187 T MONAD (NIL) -9 NIL 1630299) (-700 1629419 1629497 1629629 "MONAD-" 1629634 NIL MONAD- (NIL T) -8 NIL NIL) (-699 1627735 1628332 1628611 "MOEBIUS" 1629172 NIL MOEBIUS (NIL T) -8 NIL NIL) (-698 1627127 1627505 1627545 "MODULE" 1627550 NIL MODULE (NIL T) -9 NIL 1627576) (-697 1626695 1626791 1626981 "MODULE-" 1626986 NIL MODULE- (NIL T T) -8 NIL NIL) (-696 1624410 1625059 1625386 "MODRING" 1626519 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-695 1621396 1622515 1623036 "MODOP" 1623939 NIL MODOP (NIL T T) -8 NIL NIL) (-694 1619583 1620035 1620376 "MODMONOM" 1621195 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-693 1609291 1617775 1618198 "MODMON" 1619211 NIL MODMON (NIL T T) -8 NIL NIL) (-692 1606482 1608135 1608411 "MODFIELD" 1609166 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-691 1605486 1605763 1605953 "MMLFORM" 1606312 T MMLFORM (NIL) -8 NIL NIL) (-690 1605012 1605055 1605234 "MMAP" 1605437 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-689 1603281 1604014 1604055 "MLO" 1604478 NIL MLO (NIL T) -9 NIL 1604720) (-688 1600648 1601163 1601765 "MLIFT" 1602762 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-687 1600039 1600123 1600277 "MKUCFUNC" 1600559 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-686 1599638 1599708 1599831 "MKRECORD" 1599962 NIL MKRECORD (NIL T T) -7 NIL NIL) (-685 1598686 1598847 1599075 "MKFUNC" 1599449 NIL MKFUNC (NIL T) -7 NIL NIL) (-684 1598074 1598178 1598334 "MKFLCFN" 1598569 NIL MKFLCFN (NIL T) -7 NIL NIL) (-683 1597500 1597867 1597956 "MKCHSET" 1598018 NIL MKCHSET (NIL T) -8 NIL NIL) (-682 1596777 1596879 1597064 "MKBCFUNC" 1597393 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-681 1593519 1596331 1596467 "MINT" 1596661 T MINT (NIL) -8 NIL NIL) (-680 1592331 1592574 1592851 "MHROWRED" 1593274 NIL MHROWRED (NIL T) -7 NIL NIL) (-679 1587757 1590866 1591271 "MFLOAT" 1591946 T MFLOAT (NIL) -8 NIL NIL) (-678 1587114 1587190 1587361 "MFINFACT" 1587669 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-677 1583429 1584277 1585161 "MESH" 1586250 T MESH (NIL) -7 NIL NIL) (-676 1581819 1582131 1582484 "MDDFACT" 1583116 NIL MDDFACT (NIL T) -7 NIL NIL) (-675 1578661 1580978 1581019 "MDAGG" 1581274 NIL MDAGG (NIL T) -9 NIL 1581417) (-674 1568441 1577954 1578161 "MCMPLX" 1578474 T MCMPLX (NIL) -8 NIL NIL) (-673 1567582 1567728 1567928 "MCDEN" 1568290 NIL MCDEN (NIL T T) -7 NIL NIL) (-672 1565472 1565742 1566122 "MCALCFN" 1567312 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-671 1564383 1564556 1564797 "MAYBE" 1565270 NIL MAYBE (NIL T) -8 NIL NIL) (-670 1561995 1562518 1563080 "MATSTOR" 1563854 NIL MATSTOR (NIL T) -7 NIL NIL) (-669 1558001 1561367 1561615 "MATRIX" 1561780 NIL MATRIX (NIL T) -8 NIL NIL) (-668 1553770 1554474 1555210 "MATLIN" 1557358 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-667 1543924 1547062 1547139 "MATCAT" 1552019 NIL MATCAT (NIL T T T) -9 NIL 1553436) (-666 1540288 1541301 1542657 "MATCAT-" 1542662 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-665 1538882 1539035 1539368 "MATCAT2" 1540123 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-664 1536994 1537318 1537702 "MAPPKG3" 1538557 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-663 1535975 1536148 1536370 "MAPPKG2" 1536818 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-662 1534474 1534758 1535085 "MAPPKG1" 1535681 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-661 1533580 1533880 1534057 "MAPPAST" 1534317 T MAPPAST (NIL) -8 NIL NIL) (-660 1533191 1533249 1533372 "MAPHACK3" 1533516 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-659 1532783 1532844 1532958 "MAPHACK2" 1533123 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-658 1532221 1532324 1532466 "MAPHACK1" 1532674 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-657 1530327 1530921 1531225 "MAGMA" 1531949 NIL MAGMA (NIL T) -8 NIL NIL) (-656 1529833 1530051 1530142 "MACROAST" 1530256 T MACROAST (NIL) -8 NIL NIL) (-655 1526300 1528072 1528533 "M3D" 1529405 NIL M3D (NIL T) -8 NIL NIL) (-654 1520455 1524670 1524711 "LZSTAGG" 1525493 NIL LZSTAGG (NIL T) -9 NIL 1525788) (-653 1516428 1517586 1519043 "LZSTAGG-" 1519048 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-652 1513542 1514319 1514806 "LWORD" 1515973 NIL LWORD (NIL T) -8 NIL NIL) (-651 1513145 1513346 1513421 "LSTAST" 1513487 T LSTAST (NIL) -8 NIL NIL) (-650 1506346 1512916 1513050 "LSQM" 1513055 NIL LSQM (NIL NIL T) -8 NIL NIL) (-649 1505570 1505709 1505937 "LSPP" 1506201 NIL LSPP (NIL T T T T) -7 NIL NIL) (-648 1503382 1503683 1504139 "LSMP" 1505259 NIL LSMP (NIL T T T T) -7 NIL NIL) (-647 1500161 1500835 1501565 "LSMP1" 1502684 NIL LSMP1 (NIL T) -7 NIL NIL) (-646 1494087 1499329 1499370 "LSAGG" 1499432 NIL LSAGG (NIL T) -9 NIL 1499510) (-645 1490782 1491706 1492919 "LSAGG-" 1492924 NIL LSAGG- (NIL T T) -8 NIL NIL) (-644 1488408 1489926 1490175 "LPOLY" 1490577 NIL LPOLY (NIL T T) -8 NIL NIL) (-643 1487990 1488075 1488198 "LPEFRAC" 1488317 NIL LPEFRAC (NIL T) -7 NIL NIL) (-642 1486337 1487084 1487337 "LO" 1487822 NIL LO (NIL T T T) -8 NIL NIL) (-641 1485989 1486101 1486129 "LOGIC" 1486240 T LOGIC (NIL) -9 NIL 1486321) (-640 1485851 1485874 1485945 "LOGIC-" 1485950 NIL LOGIC- (NIL T) -8 NIL NIL) (-639 1485044 1485184 1485377 "LODOOPS" 1485707 NIL LODOOPS (NIL T T) -7 NIL NIL) (-638 1482502 1484960 1485026 "LODO" 1485031 NIL LODO (NIL T NIL) -8 NIL NIL) (-637 1481040 1481275 1481628 "LODOF" 1482249 NIL LODOF (NIL T T) -7 NIL NIL) (-636 1477483 1479880 1479921 "LODOCAT" 1480359 NIL LODOCAT (NIL T) -9 NIL 1480570) (-635 1477216 1477274 1477401 "LODOCAT-" 1477406 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-634 1474571 1477057 1477175 "LODO2" 1477180 NIL LODO2 (NIL T T) -8 NIL NIL) (-633 1472041 1474508 1474553 "LODO1" 1474558 NIL LODO1 (NIL T) -8 NIL NIL) (-632 1470901 1471066 1471378 "LODEEF" 1471864 NIL LODEEF (NIL T T T) -7 NIL NIL) (-631 1466187 1469031 1469072 "LNAGG" 1470019 NIL LNAGG (NIL T) -9 NIL 1470463) (-630 1465334 1465548 1465890 "LNAGG-" 1465895 NIL LNAGG- (NIL T T) -8 NIL NIL) (-629 1461497 1462259 1462898 "LMOPS" 1464749 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-628 1460892 1461254 1461295 "LMODULE" 1461356 NIL LMODULE (NIL T) -9 NIL 1461398) (-627 1458138 1460537 1460660 "LMDICT" 1460802 NIL LMDICT (NIL T) -8 NIL NIL) (-626 1457864 1458046 1458106 "LITERAL" 1458111 NIL LITERAL (NIL T) -8 NIL NIL) (-625 1451091 1456810 1457108 "LIST" 1457599 NIL LIST (NIL T) -8 NIL NIL) (-624 1450616 1450690 1450829 "LIST3" 1451011 NIL LIST3 (NIL T T T) -7 NIL NIL) (-623 1449623 1449801 1450029 "LIST2" 1450434 NIL LIST2 (NIL T T) -7 NIL NIL) (-622 1447757 1448069 1448468 "LIST2MAP" 1449270 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-621 1446507 1447143 1447184 "LINEXP" 1447439 NIL LINEXP (NIL T) -9 NIL 1447588) (-620 1445154 1445414 1445711 "LINDEP" 1446259 NIL LINDEP (NIL T T) -7 NIL NIL) (-619 1441921 1442640 1443417 "LIMITRF" 1444409 NIL LIMITRF (NIL T) -7 NIL NIL) (-618 1440197 1440492 1440908 "LIMITPS" 1441616 NIL LIMITPS (NIL T T) -7 NIL NIL) (-617 1434652 1439708 1439936 "LIE" 1440018 NIL LIE (NIL T T) -8 NIL NIL) (-616 1433701 1434144 1434184 "LIECAT" 1434324 NIL LIECAT (NIL T) -9 NIL 1434475) (-615 1433542 1433569 1433657 "LIECAT-" 1433662 NIL LIECAT- (NIL T T) -8 NIL NIL) (-614 1426154 1432991 1433156 "LIB" 1433397 T LIB (NIL) -8 NIL NIL) (-613 1421791 1422672 1423607 "LGROBP" 1425271 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-612 1419657 1419931 1420293 "LF" 1421512 NIL LF (NIL T T) -7 NIL NIL) (-611 1418497 1419189 1419217 "LFCAT" 1419424 T LFCAT (NIL) -9 NIL 1419563) (-610 1415401 1416029 1416717 "LEXTRIPK" 1417861 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-609 1412172 1412971 1413474 "LEXP" 1414981 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-608 1411675 1411893 1411985 "LETAST" 1412100 T LETAST (NIL) -8 NIL NIL) (-607 1410073 1410386 1410787 "LEADCDET" 1411357 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-606 1409263 1409337 1409566 "LAZM3PK" 1409994 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-605 1404219 1407340 1407878 "LAUPOL" 1408775 NIL LAUPOL (NIL T T) -8 NIL NIL) (-604 1403784 1403828 1403996 "LAPLACE" 1404169 NIL LAPLACE (NIL T T) -7 NIL NIL) (-603 1401758 1402885 1403136 "LA" 1403617 NIL LA (NIL T T T) -8 NIL NIL) (-602 1400859 1401409 1401450 "LALG" 1401512 NIL LALG (NIL T) -9 NIL 1401571) (-601 1400573 1400632 1400768 "LALG-" 1400773 NIL LALG- (NIL T T) -8 NIL NIL) (-600 1399373 1399790 1400019 "KTVLOGIC" 1400364 T KTVLOGIC (NIL) -8 NIL NIL) (-599 1398277 1398464 1398763 "KOVACIC" 1399173 NIL KOVACIC (NIL T T) -7 NIL NIL) (-598 1398112 1398136 1398177 "KONVERT" 1398239 NIL KONVERT (NIL T) -9 NIL NIL) (-597 1397947 1397971 1398012 "KOERCE" 1398074 NIL KOERCE (NIL T) -9 NIL NIL) (-596 1395681 1396441 1396834 "KERNEL" 1397586 NIL KERNEL (NIL T) -8 NIL NIL) (-595 1395183 1395264 1395394 "KERNEL2" 1395595 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-594 1389034 1393722 1393776 "KDAGG" 1394153 NIL KDAGG (NIL T T) -9 NIL 1394359) (-593 1388563 1388687 1388892 "KDAGG-" 1388897 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-592 1381738 1388224 1388379 "KAFILE" 1388441 NIL KAFILE (NIL T) -8 NIL NIL) (-591 1376193 1381249 1381477 "JORDAN" 1381559 NIL JORDAN (NIL T T) -8 NIL NIL) (-590 1375599 1375842 1375963 "JOINAST" 1376092 T JOINAST (NIL) -8 NIL NIL) (-589 1375328 1375387 1375474 "JAVACODE" 1375532 T JAVACODE (NIL) -8 NIL NIL) (-588 1371627 1373533 1373587 "IXAGG" 1374516 NIL IXAGG (NIL T T) -9 NIL 1374975) (-587 1370546 1370852 1371271 "IXAGG-" 1371276 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-586 1366126 1370468 1370527 "IVECTOR" 1370532 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-585 1364892 1365129 1365395 "ITUPLE" 1365893 NIL ITUPLE (NIL T) -8 NIL NIL) (-584 1363328 1363505 1363811 "ITRIGMNP" 1364714 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-583 1362073 1362277 1362560 "ITFUN3" 1363104 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-582 1361705 1361762 1361871 "ITFUN2" 1362010 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-581 1359542 1360567 1360866 "ITAYLOR" 1361439 NIL ITAYLOR (NIL T) -8 NIL NIL) (-580 1348524 1353679 1354842 "ISUPS" 1358412 NIL ISUPS (NIL T) -8 NIL NIL) (-579 1347628 1347768 1348004 "ISUMP" 1348371 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-578 1342892 1347429 1347508 "ISTRING" 1347581 NIL ISTRING (NIL NIL) -8 NIL NIL) (-577 1342395 1342613 1342705 "ISAST" 1342820 T ISAST (NIL) -8 NIL NIL) (-576 1341605 1341686 1341902 "IRURPK" 1342309 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-575 1340541 1340742 1340982 "IRSN" 1341385 T IRSN (NIL) -7 NIL NIL) (-574 1338570 1338925 1339361 "IRRF2F" 1340179 NIL IRRF2F (NIL T) -7 NIL NIL) (-573 1338317 1338355 1338431 "IRREDFFX" 1338526 NIL IRREDFFX (NIL T) -7 NIL NIL) (-572 1336932 1337191 1337490 "IROOT" 1338050 NIL IROOT (NIL T) -7 NIL NIL) (-571 1333564 1334616 1335308 "IR" 1336272 NIL IR (NIL T) -8 NIL NIL) (-570 1331177 1331672 1332238 "IR2" 1333042 NIL IR2 (NIL T T) -7 NIL NIL) (-569 1330249 1330362 1330583 "IR2F" 1331060 NIL IR2F (NIL T T) -7 NIL NIL) (-568 1330040 1330074 1330134 "IPRNTPK" 1330209 T IPRNTPK (NIL) -7 NIL NIL) (-567 1326659 1329929 1329998 "IPF" 1330003 NIL IPF (NIL NIL) -8 NIL NIL) (-566 1325022 1326584 1326641 "IPADIC" 1326646 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-565 1324522 1324726 1324836 "IOMODE" 1324932 T IOMODE (NIL) -8 NIL NIL) (-564 1324286 1324426 1324454 "IOBCON" 1324459 T IOBCON (NIL) -9 NIL 1324480) (-563 1323783 1323841 1324031 "INVLAPLA" 1324222 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-562 1313432 1315785 1318171 "INTTR" 1321447 NIL INTTR (NIL T T) -7 NIL NIL) (-561 1309776 1310518 1311382 "INTTOOLS" 1312617 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-560 1309362 1309453 1309570 "INTSLPE" 1309679 T INTSLPE (NIL) -7 NIL NIL) (-559 1307357 1309285 1309344 "INTRVL" 1309349 NIL INTRVL (NIL T) -8 NIL NIL) (-558 1304959 1305471 1306046 "INTRF" 1306842 NIL INTRF (NIL T) -7 NIL NIL) (-557 1304370 1304467 1304609 "INTRET" 1304857 NIL INTRET (NIL T) -7 NIL NIL) (-556 1302367 1302756 1303226 "INTRAT" 1303978 NIL INTRAT (NIL T T) -7 NIL NIL) (-555 1299595 1300178 1300804 "INTPM" 1301852 NIL INTPM (NIL T T) -7 NIL NIL) (-554 1296298 1296897 1297642 "INTPAF" 1298981 NIL INTPAF (NIL T T T) -7 NIL NIL) (-553 1291477 1292439 1293490 "INTPACK" 1295267 T INTPACK (NIL) -7 NIL NIL) (-552 1288389 1291206 1291333 "INT" 1291370 T INT (NIL) -8 NIL NIL) (-551 1287641 1287793 1288001 "INTHERTR" 1288231 NIL INTHERTR (NIL T T) -7 NIL NIL) (-550 1287080 1287160 1287348 "INTHERAL" 1287555 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-549 1284926 1285369 1285826 "INTHEORY" 1286643 T INTHEORY (NIL) -7 NIL NIL) (-548 1276234 1277855 1279634 "INTG0" 1283278 NIL INTG0 (NIL T T T) -7 NIL NIL) (-547 1256807 1261597 1266407 "INTFTBL" 1271444 T INTFTBL (NIL) -8 NIL NIL) (-546 1256056 1256194 1256367 "INTFACT" 1256666 NIL INTFACT (NIL T) -7 NIL NIL) (-545 1253441 1253887 1254451 "INTEF" 1255610 NIL INTEF (NIL T T) -7 NIL NIL) (-544 1251943 1252648 1252676 "INTDOM" 1252977 T INTDOM (NIL) -9 NIL 1253184) (-543 1251312 1251486 1251728 "INTDOM-" 1251733 NIL INTDOM- (NIL T) -8 NIL NIL) (-542 1247845 1249731 1249785 "INTCAT" 1250584 NIL INTCAT (NIL T) -9 NIL 1250904) (-541 1247318 1247420 1247548 "INTBIT" 1247737 T INTBIT (NIL) -7 NIL NIL) (-540 1245989 1246143 1246457 "INTALG" 1247163 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-539 1245446 1245536 1245706 "INTAF" 1245893 NIL INTAF (NIL T T) -7 NIL NIL) (-538 1238900 1245256 1245396 "INTABL" 1245401 NIL INTABL (NIL T T T) -8 NIL NIL) (-537 1233955 1236626 1236654 "INS" 1237588 T INS (NIL) -9 NIL 1238252) (-536 1231195 1231966 1232940 "INS-" 1233013 NIL INS- (NIL T) -8 NIL NIL) (-535 1229970 1230197 1230495 "INPSIGN" 1230948 NIL INPSIGN (NIL T T) -7 NIL NIL) (-534 1229088 1229205 1229402 "INPRODPF" 1229850 NIL INPRODPF (NIL T T) -7 NIL NIL) (-533 1227982 1228099 1228336 "INPRODFF" 1228968 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-532 1226982 1227134 1227394 "INNMFACT" 1227818 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-531 1226179 1226276 1226464 "INMODGCD" 1226881 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-530 1224688 1224932 1225256 "INFSP" 1225924 NIL INFSP (NIL T T T) -7 NIL NIL) (-529 1223872 1223989 1224172 "INFPROD0" 1224568 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-528 1220754 1221937 1222452 "INFORM" 1223365 T INFORM (NIL) -8 NIL NIL) (-527 1220364 1220424 1220522 "INFORM1" 1220689 NIL INFORM1 (NIL T) -7 NIL NIL) (-526 1219887 1219976 1220090 "INFINITY" 1220270 T INFINITY (NIL) -7 NIL NIL) (-525 1218504 1218753 1219074 "INEP" 1219635 NIL INEP (NIL T T T) -7 NIL NIL) (-524 1217780 1218401 1218466 "INDE" 1218471 NIL INDE (NIL T) -8 NIL NIL) (-523 1217344 1217412 1217529 "INCRMAPS" 1217707 NIL INCRMAPS (NIL T) -7 NIL NIL) (-522 1216647 1216840 1216990 "INBFILE" 1217214 T INBFILE (NIL) -8 NIL NIL) (-521 1211958 1212883 1213827 "INBFF" 1215735 NIL INBFF (NIL T) -7 NIL NIL) (-520 1211627 1211703 1211731 "INBCON" 1211864 T INBCON (NIL) -9 NIL 1211942) (-519 1211467 1211502 1211578 "INBCON-" 1211583 NIL INBCON- (NIL T) -8 NIL NIL) (-518 1210969 1211188 1211280 "INAST" 1211395 T INAST (NIL) -8 NIL NIL) (-517 1210423 1210648 1210754 "IMPTAST" 1210883 T IMPTAST (NIL) -8 NIL NIL) (-516 1206917 1210267 1210371 "IMATRIX" 1210376 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-515 1205629 1205752 1206067 "IMATQF" 1206773 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-514 1203849 1204076 1204413 "IMATLIN" 1205385 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-513 1198475 1203773 1203831 "ILIST" 1203836 NIL ILIST (NIL T NIL) -8 NIL NIL) (-512 1196428 1198335 1198448 "IIARRAY2" 1198453 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-511 1191861 1196339 1196403 "IFF" 1196408 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-510 1191235 1191478 1191594 "IFAST" 1191765 T IFAST (NIL) -8 NIL NIL) (-509 1186278 1190527 1190715 "IFARRAY" 1191092 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-508 1185485 1186182 1186255 "IFAMON" 1186260 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-507 1185069 1185134 1185188 "IEVALAB" 1185395 NIL IEVALAB (NIL T T) -9 NIL NIL) (-506 1184744 1184812 1184972 "IEVALAB-" 1184977 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-505 1184402 1184658 1184721 "IDPO" 1184726 NIL IDPO (NIL T T) -8 NIL NIL) (-504 1183679 1184291 1184366 "IDPOAMS" 1184371 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-503 1183013 1183568 1183643 "IDPOAM" 1183648 NIL IDPOAM (NIL T T) -8 NIL NIL) (-502 1182098 1182348 1182401 "IDPC" 1182814 NIL IDPC (NIL T T) -9 NIL 1182963) (-501 1181594 1181990 1182063 "IDPAM" 1182068 NIL IDPAM (NIL T T) -8 NIL NIL) (-500 1180997 1181486 1181559 "IDPAG" 1181564 NIL IDPAG (NIL T T) -8 NIL NIL) (-499 1180727 1180912 1180962 "IDENT" 1180967 T IDENT (NIL) -8 NIL NIL) (-498 1176982 1177830 1178725 "IDECOMP" 1179884 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-497 1169855 1170905 1171952 "IDEAL" 1176018 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-496 1169019 1169131 1169330 "ICDEN" 1169739 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-495 1168118 1168499 1168646 "ICARD" 1168892 T ICARD (NIL) -8 NIL NIL) (-494 1166178 1166491 1166896 "IBPTOOLS" 1167795 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-493 1161812 1165798 1165911 "IBITS" 1166097 NIL IBITS (NIL NIL) -8 NIL NIL) (-492 1158535 1159111 1159806 "IBATOOL" 1161229 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-491 1156315 1156776 1157309 "IBACHIN" 1158070 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-490 1154192 1156161 1156264 "IARRAY2" 1156269 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-489 1150345 1154118 1154175 "IARRAY1" 1154180 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-488 1144340 1148759 1149239 "IAN" 1149885 T IAN (NIL) -8 NIL NIL) (-487 1143851 1143908 1144081 "IALGFACT" 1144277 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-486 1143379 1143492 1143520 "HYPCAT" 1143727 T HYPCAT (NIL) -9 NIL NIL) (-485 1142917 1143034 1143220 "HYPCAT-" 1143225 NIL HYPCAT- (NIL T) -8 NIL NIL) (-484 1142539 1142712 1142795 "HOSTNAME" 1142854 T HOSTNAME (NIL) -8 NIL NIL) (-483 1139218 1140549 1140590 "HOAGG" 1141571 NIL HOAGG (NIL T) -9 NIL 1142250) (-482 1137812 1138211 1138737 "HOAGG-" 1138742 NIL HOAGG- (NIL T T) -8 NIL NIL) (-481 1131700 1137253 1137419 "HEXADEC" 1137666 T HEXADEC (NIL) -8 NIL NIL) (-480 1130448 1130670 1130933 "HEUGCD" 1131477 NIL HEUGCD (NIL T) -7 NIL NIL) (-479 1129551 1130285 1130415 "HELLFDIV" 1130420 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-478 1127779 1129328 1129416 "HEAP" 1129495 NIL HEAP (NIL T) -8 NIL NIL) (-477 1127070 1127331 1127465 "HEADAST" 1127665 T HEADAST (NIL) -8 NIL NIL) (-476 1120990 1126985 1127047 "HDP" 1127052 NIL HDP (NIL NIL T) -8 NIL NIL) (-475 1114741 1120625 1120777 "HDMP" 1120891 NIL HDMP (NIL NIL T) -8 NIL NIL) (-474 1114066 1114205 1114369 "HB" 1114597 T HB (NIL) -7 NIL NIL) (-473 1107563 1113912 1114016 "HASHTBL" 1114021 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-472 1107066 1107284 1107376 "HASAST" 1107491 T HASAST (NIL) -8 NIL NIL) (-471 1104880 1106690 1106871 "HACKPI" 1106905 T HACKPI (NIL) -8 NIL NIL) (-470 1100575 1104733 1104846 "GTSET" 1104851 NIL GTSET (NIL T T T T) -8 NIL NIL) (-469 1094101 1100453 1100551 "GSTBL" 1100556 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-468 1086414 1093132 1093397 "GSERIES" 1093892 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-467 1085581 1085972 1086000 "GROUP" 1086203 T GROUP (NIL) -9 NIL 1086337) (-466 1084947 1085106 1085357 "GROUP-" 1085362 NIL GROUP- (NIL T) -8 NIL NIL) (-465 1083316 1083635 1084022 "GROEBSOL" 1084624 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-464 1082256 1082518 1082569 "GRMOD" 1083098 NIL GRMOD (NIL T T) -9 NIL 1083266) (-463 1082024 1082060 1082188 "GRMOD-" 1082193 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-462 1077349 1078378 1079378 "GRIMAGE" 1081044 T GRIMAGE (NIL) -8 NIL NIL) (-461 1075816 1076076 1076400 "GRDEF" 1077045 T GRDEF (NIL) -7 NIL NIL) (-460 1075260 1075376 1075517 "GRAY" 1075695 T GRAY (NIL) -7 NIL NIL) (-459 1074491 1074871 1074922 "GRALG" 1075075 NIL GRALG (NIL T T) -9 NIL 1075168) (-458 1074152 1074225 1074388 "GRALG-" 1074393 NIL GRALG- (NIL T T T) -8 NIL NIL) (-457 1070956 1073737 1073915 "GPOLSET" 1074059 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-456 1070310 1070367 1070625 "GOSPER" 1070893 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-455 1066069 1066748 1067274 "GMODPOL" 1070009 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-454 1065074 1065258 1065496 "GHENSEL" 1065881 NIL GHENSEL (NIL T T) -7 NIL NIL) (-453 1059125 1059968 1060995 "GENUPS" 1064158 NIL GENUPS (NIL T T) -7 NIL NIL) (-452 1058822 1058873 1058962 "GENUFACT" 1059068 NIL GENUFACT (NIL T) -7 NIL NIL) (-451 1058234 1058311 1058476 "GENPGCD" 1058740 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-450 1057708 1057743 1057956 "GENMFACT" 1058193 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-449 1056276 1056531 1056838 "GENEEZ" 1057451 NIL GENEEZ (NIL T T) -7 NIL NIL) (-448 1050189 1055887 1056049 "GDMP" 1056199 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-447 1039566 1043960 1045066 "GCNAALG" 1049172 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-446 1038028 1038856 1038884 "GCDDOM" 1039139 T GCDDOM (NIL) -9 NIL 1039296) (-445 1037498 1037625 1037840 "GCDDOM-" 1037845 NIL GCDDOM- (NIL T) -8 NIL NIL) (-444 1036170 1036355 1036659 "GB" 1037277 NIL GB (NIL T T T T) -7 NIL NIL) (-443 1024790 1027116 1029508 "GBINTERN" 1033861 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-442 1022627 1022919 1023340 "GBF" 1024465 NIL GBF (NIL T T T T) -7 NIL NIL) (-441 1021408 1021573 1021840 "GBEUCLID" 1022443 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-440 1020757 1020882 1021031 "GAUSSFAC" 1021279 T GAUSSFAC (NIL) -7 NIL NIL) (-439 1019124 1019426 1019740 "GALUTIL" 1020476 NIL GALUTIL (NIL T) -7 NIL NIL) (-438 1017432 1017706 1018030 "GALPOLYU" 1018851 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-437 1014797 1015087 1015494 "GALFACTU" 1017129 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-436 1006603 1008102 1009710 "GALFACT" 1013229 NIL GALFACT (NIL T) -7 NIL NIL) (-435 1003991 1004649 1004677 "FVFUN" 1005833 T FVFUN (NIL) -9 NIL 1006553) (-434 1003257 1003439 1003467 "FVC" 1003758 T FVC (NIL) -9 NIL 1003941) (-433 1002899 1003054 1003135 "FUNCTION" 1003209 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-432 1000569 1001120 1001609 "FT" 1002430 T FT (NIL) -8 NIL NIL) (-431 999387 999870 1000073 "FTEM" 1000386 T FTEM (NIL) -8 NIL NIL) (-430 997643 997932 998336 "FSUPFACT" 999078 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-429 996040 996329 996661 "FST" 997331 T FST (NIL) -8 NIL NIL) (-428 995211 995317 995512 "FSRED" 995922 NIL FSRED (NIL T T) -7 NIL NIL) (-427 993890 994145 994499 "FSPRMELT" 994926 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-426 990975 991413 991912 "FSPECF" 993453 NIL FSPECF (NIL T T) -7 NIL NIL) (-425 973417 981859 981899 "FS" 985747 NIL FS (NIL T) -9 NIL 988036) (-424 962067 965057 969113 "FS-" 969410 NIL FS- (NIL T T) -8 NIL NIL) (-423 961581 961635 961812 "FSINT" 962008 NIL FSINT (NIL T T) -7 NIL NIL) (-422 959908 960574 960877 "FSERIES" 961360 NIL FSERIES (NIL T T) -8 NIL NIL) (-421 958922 959038 959269 "FSCINT" 959788 NIL FSCINT (NIL T T) -7 NIL NIL) (-420 955156 957866 957907 "FSAGG" 958277 NIL FSAGG (NIL T) -9 NIL 958536) (-419 952918 953519 954315 "FSAGG-" 954410 NIL FSAGG- (NIL T T) -8 NIL NIL) (-418 951960 952103 952330 "FSAGG2" 952771 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-417 949615 949894 950448 "FS2UPS" 951678 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-416 949197 949240 949395 "FS2" 949566 NIL FS2 (NIL T T T T) -7 NIL NIL) (-415 948054 948225 948534 "FS2EXPXP" 949022 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-414 947480 947595 947747 "FRUTIL" 947934 NIL FRUTIL (NIL T) -7 NIL NIL) (-413 938941 942979 944335 "FR" 946156 NIL FR (NIL T) -8 NIL NIL) (-412 934016 936659 936699 "FRNAALG" 938095 NIL FRNAALG (NIL T) -9 NIL 938702) (-411 929694 930765 932040 "FRNAALG-" 932790 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-410 929332 929375 929502 "FRNAAF2" 929645 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-409 927739 928186 928481 "FRMOD" 929144 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-408 925518 926122 926439 "FRIDEAL" 927530 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-407 924713 924800 925089 "FRIDEAL2" 925425 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-406 923955 924369 924410 "FRETRCT" 924415 NIL FRETRCT (NIL T) -9 NIL 924591) (-405 923067 923298 923649 "FRETRCT-" 923654 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-404 920317 921493 921552 "FRAMALG" 922434 NIL FRAMALG (NIL T T) -9 NIL 922726) (-403 918451 918906 919536 "FRAMALG-" 919759 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-402 912411 917926 918202 "FRAC" 918207 NIL FRAC (NIL T) -8 NIL NIL) (-401 912047 912104 912211 "FRAC2" 912348 NIL FRAC2 (NIL T T) -7 NIL NIL) (-400 911683 911740 911847 "FR2" 911984 NIL FR2 (NIL T T) -7 NIL NIL) (-399 906413 909261 909289 "FPS" 910408 T FPS (NIL) -9 NIL 910965) (-398 905862 905971 906135 "FPS-" 906281 NIL FPS- (NIL T) -8 NIL NIL) (-397 903368 905003 905031 "FPC" 905256 T FPC (NIL) -9 NIL 905398) (-396 903161 903201 903298 "FPC-" 903303 NIL FPC- (NIL T) -8 NIL NIL) (-395 902039 902649 902690 "FPATMAB" 902695 NIL FPATMAB (NIL T) -9 NIL 902847) (-394 899739 900215 900641 "FPARFRAC" 901676 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-393 895132 895631 896313 "FORTRAN" 899171 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-392 892848 893348 893887 "FORT" 894613 T FORT (NIL) -7 NIL NIL) (-391 890524 891086 891114 "FORTFN" 892174 T FORTFN (NIL) -9 NIL 892798) (-390 890288 890338 890366 "FORTCAT" 890425 T FORTCAT (NIL) -9 NIL 890487) (-389 888348 888831 889230 "FORMULA" 889909 T FORMULA (NIL) -8 NIL NIL) (-388 888136 888166 888235 "FORMULA1" 888312 NIL FORMULA1 (NIL T) -7 NIL NIL) (-387 887659 887711 887884 "FORDER" 888078 NIL FORDER (NIL T T T T) -7 NIL NIL) (-386 886755 886919 887112 "FOP" 887486 T FOP (NIL) -7 NIL NIL) (-385 885363 886035 886209 "FNLA" 886637 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-384 884031 884420 884448 "FNCAT" 885020 T FNCAT (NIL) -9 NIL 885313) (-383 883597 883990 884018 "FNAME" 884023 T FNAME (NIL) -8 NIL NIL) (-382 882295 883224 883252 "FMTC" 883257 T FMTC (NIL) -9 NIL 883293) (-381 878657 879818 880447 "FMONOID" 881699 NIL FMONOID (NIL T) -8 NIL NIL) (-380 877876 878399 878548 "FM" 878553 NIL FM (NIL T T) -8 NIL NIL) (-379 875300 875946 875974 "FMFUN" 877118 T FMFUN (NIL) -9 NIL 877826) (-378 874569 874750 874778 "FMC" 875068 T FMC (NIL) -9 NIL 875250) (-377 871781 872615 872669 "FMCAT" 873864 NIL FMCAT (NIL T T) -9 NIL 874359) (-376 870674 871547 871647 "FM1" 871726 NIL FM1 (NIL T T) -8 NIL NIL) (-375 868448 868864 869358 "FLOATRP" 870225 NIL FLOATRP (NIL T) -7 NIL NIL) (-374 861999 866104 866734 "FLOAT" 867838 T FLOAT (NIL) -8 NIL NIL) (-373 859437 859937 860515 "FLOATCP" 861466 NIL FLOATCP (NIL T) -7 NIL NIL) (-372 858266 859070 859111 "FLINEXP" 859116 NIL FLINEXP (NIL T) -9 NIL 859209) (-371 857420 857655 857983 "FLINEXP-" 857988 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-370 856496 856640 856864 "FLASORT" 857272 NIL FLASORT (NIL T T) -7 NIL NIL) (-369 853713 854555 854607 "FLALG" 855834 NIL FLALG (NIL T T) -9 NIL 856301) (-368 847497 851199 851240 "FLAGG" 852502 NIL FLAGG (NIL T) -9 NIL 853154) (-367 846223 846562 847052 "FLAGG-" 847057 NIL FLAGG- (NIL T T) -8 NIL NIL) (-366 845265 845408 845635 "FLAGG2" 846076 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-365 842278 843252 843311 "FINRALG" 844439 NIL FINRALG (NIL T T) -9 NIL 844947) (-364 841438 841667 842006 "FINRALG-" 842011 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-363 840844 841057 841085 "FINITE" 841281 T FINITE (NIL) -9 NIL 841388) (-362 833302 835463 835503 "FINAALG" 839170 NIL FINAALG (NIL T) -9 NIL 840623) (-361 828643 829684 830828 "FINAALG-" 832207 NIL FINAALG- (NIL T T) -8 NIL NIL) (-360 828038 828398 828501 "FILE" 828573 NIL FILE (NIL T) -8 NIL NIL) (-359 826722 827034 827088 "FILECAT" 827772 NIL FILECAT (NIL T T) -9 NIL 827988) (-358 824642 826136 826164 "FIELD" 826204 T FIELD (NIL) -9 NIL 826284) (-357 823262 823647 824158 "FIELD-" 824163 NIL FIELD- (NIL T) -8 NIL NIL) (-356 821140 821897 822244 "FGROUP" 822948 NIL FGROUP (NIL T) -8 NIL NIL) (-355 820230 820394 820614 "FGLMICPK" 820972 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-354 816097 820155 820212 "FFX" 820217 NIL FFX (NIL T NIL) -8 NIL NIL) (-353 815698 815759 815894 "FFSLPE" 816030 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-352 811691 812470 813266 "FFPOLY" 814934 NIL FFPOLY (NIL T) -7 NIL NIL) (-351 811195 811231 811440 "FFPOLY2" 811649 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-350 807081 811114 811177 "FFP" 811182 NIL FFP (NIL T NIL) -8 NIL NIL) (-349 802514 806992 807056 "FF" 807061 NIL FF (NIL NIL NIL) -8 NIL NIL) (-348 797675 801857 802047 "FFNBX" 802368 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-347 792649 796810 797068 "FFNBP" 797529 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-346 787317 791933 792144 "FFNB" 792482 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-345 786149 786347 786662 "FFINTBAS" 787114 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-344 782433 784608 784636 "FFIELDC" 785256 T FFIELDC (NIL) -9 NIL 785632) (-343 781096 781466 781963 "FFIELDC-" 781968 NIL FFIELDC- (NIL T) -8 NIL NIL) (-342 780666 780711 780835 "FFHOM" 781038 NIL FFHOM (NIL T T T) -7 NIL NIL) (-341 778364 778848 779365 "FFF" 780181 NIL FFF (NIL T) -7 NIL NIL) (-340 774017 778106 778207 "FFCGX" 778307 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-339 769684 773749 773856 "FFCGP" 773960 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-338 764902 769411 769519 "FFCG" 769620 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-337 746960 755996 756082 "FFCAT" 761247 NIL FFCAT (NIL T T T) -9 NIL 762698) (-336 742158 743205 744519 "FFCAT-" 745749 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-335 741569 741612 741847 "FFCAT2" 742109 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-334 730781 734541 735761 "FEXPR" 740421 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-333 729781 730216 730257 "FEVALAB" 730341 NIL FEVALAB (NIL T) -9 NIL 730602) (-332 728940 729150 729488 "FEVALAB-" 729493 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-331 727533 728323 728526 "FDIV" 728839 NIL FDIV (NIL T T T T) -8 NIL NIL) (-330 724599 725314 725429 "FDIVCAT" 726997 NIL FDIVCAT (NIL T T T T) -9 NIL 727434) (-329 724361 724388 724558 "FDIVCAT-" 724563 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-328 723581 723668 723945 "FDIV2" 724268 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-327 722267 722526 722815 "FCPAK1" 723312 T FCPAK1 (NIL) -7 NIL NIL) (-326 721395 721767 721908 "FCOMP" 722158 NIL FCOMP (NIL T) -8 NIL NIL) (-325 705030 708444 712005 "FC" 717854 T FC (NIL) -8 NIL NIL) (-324 697683 701664 701704 "FAXF" 703506 NIL FAXF (NIL T) -9 NIL 704198) (-323 694962 695617 696442 "FAXF-" 696907 NIL FAXF- (NIL T T) -8 NIL NIL) (-322 690062 694338 694514 "FARRAY" 694819 NIL FARRAY (NIL T) -8 NIL NIL) (-321 685469 687501 687554 "FAMR" 688577 NIL FAMR (NIL T T) -9 NIL 689037) (-320 684359 684661 685096 "FAMR-" 685101 NIL FAMR- (NIL T T T) -8 NIL NIL) (-319 683555 684281 684334 "FAMONOID" 684339 NIL FAMONOID (NIL T) -8 NIL NIL) (-318 681385 682069 682122 "FAMONC" 683063 NIL FAMONC (NIL T T) -9 NIL 683449) (-317 680077 681139 681276 "FAGROUP" 681281 NIL FAGROUP (NIL T) -8 NIL NIL) (-316 677872 678191 678594 "FACUTIL" 679758 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-315 676971 677156 677378 "FACTFUNC" 677682 NIL FACTFUNC (NIL T) -7 NIL NIL) (-314 669376 676222 676434 "EXPUPXS" 676827 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-313 666859 667399 667985 "EXPRTUBE" 668810 T EXPRTUBE (NIL) -7 NIL NIL) (-312 663053 663645 664382 "EXPRODE" 666198 NIL EXPRODE (NIL T T) -7 NIL NIL) (-311 648427 661708 662136 "EXPR" 662657 NIL EXPR (NIL T) -8 NIL NIL) (-310 642834 643421 644234 "EXPR2UPS" 647725 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-309 642470 642527 642634 "EXPR2" 642771 NIL EXPR2 (NIL T T) -7 NIL NIL) (-308 633877 641602 641899 "EXPEXPAN" 642307 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-307 633704 633834 633863 "EXIT" 633868 T EXIT (NIL) -8 NIL NIL) (-306 633211 633428 633519 "EXITAST" 633633 T EXITAST (NIL) -8 NIL NIL) (-305 632838 632900 633013 "EVALCYC" 633143 NIL EVALCYC (NIL T) -7 NIL NIL) (-304 632379 632497 632538 "EVALAB" 632708 NIL EVALAB (NIL T) -9 NIL 632812) (-303 631860 631982 632203 "EVALAB-" 632208 NIL EVALAB- (NIL T T) -8 NIL NIL) (-302 629363 630631 630659 "EUCDOM" 631214 T EUCDOM (NIL) -9 NIL 631564) (-301 627768 628210 628800 "EUCDOM-" 628805 NIL EUCDOM- (NIL T) -8 NIL NIL) (-300 615308 618066 620816 "ESTOOLS" 625038 T ESTOOLS (NIL) -7 NIL NIL) (-299 614940 614997 615106 "ESTOOLS2" 615245 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-298 614691 614733 614813 "ESTOOLS1" 614892 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-297 608616 610344 610372 "ES" 613140 T ES (NIL) -9 NIL 614549) (-296 603563 604850 606667 "ES-" 606831 NIL ES- (NIL T) -8 NIL NIL) (-295 599938 600698 601478 "ESCONT" 602803 T ESCONT (NIL) -7 NIL NIL) (-294 599683 599715 599797 "ESCONT1" 599900 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-293 599358 599408 599508 "ES2" 599627 NIL ES2 (NIL T T) -7 NIL NIL) (-292 598988 599046 599155 "ES1" 599294 NIL ES1 (NIL T T) -7 NIL NIL) (-291 598204 598333 598509 "ERROR" 598832 T ERROR (NIL) -7 NIL NIL) (-290 591707 598063 598154 "EQTBL" 598159 NIL EQTBL (NIL T T) -8 NIL NIL) (-289 584264 587021 588470 "EQ" 590291 NIL -3839 (NIL T) -8 NIL NIL) (-288 583896 583953 584062 "EQ2" 584201 NIL EQ2 (NIL T T) -7 NIL NIL) (-287 579188 580234 581327 "EP" 582835 NIL EP (NIL T) -7 NIL NIL) (-286 577770 578071 578388 "ENV" 578891 T ENV (NIL) -8 NIL NIL) (-285 576969 577489 577517 "ENTIRER" 577522 T ENTIRER (NIL) -9 NIL 577568) (-284 573471 574924 575294 "EMR" 576768 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-283 572615 572800 572854 "ELTAGG" 573234 NIL ELTAGG (NIL T T) -9 NIL 573445) (-282 572334 572396 572537 "ELTAGG-" 572542 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-281 572123 572152 572206 "ELTAB" 572290 NIL ELTAB (NIL T T) -9 NIL NIL) (-280 571249 571395 571594 "ELFUTS" 571974 NIL ELFUTS (NIL T T) -7 NIL NIL) (-279 570991 571047 571075 "ELEMFUN" 571180 T ELEMFUN (NIL) -9 NIL NIL) (-278 570861 570882 570950 "ELEMFUN-" 570955 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-277 565752 568961 569002 "ELAGG" 569942 NIL ELAGG (NIL T) -9 NIL 570405) (-276 564037 564471 565134 "ELAGG-" 565139 NIL ELAGG- (NIL T T) -8 NIL NIL) (-275 562694 562974 563269 "ELABEXPR" 563762 T ELABEXPR (NIL) -8 NIL NIL) (-274 555560 557361 558188 "EFUPXS" 561970 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-273 549010 550811 551621 "EFULS" 554836 NIL EFULS (NIL T T T) -8 NIL NIL) (-272 546432 546790 547269 "EFSTRUC" 548642 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-271 535504 537069 538629 "EF" 544947 NIL EF (NIL T T) -7 NIL NIL) (-270 534605 534989 535138 "EAB" 535375 T EAB (NIL) -8 NIL NIL) (-269 533814 534564 534592 "E04UCFA" 534597 T E04UCFA (NIL) -8 NIL NIL) (-268 533023 533773 533801 "E04NAFA" 533806 T E04NAFA (NIL) -8 NIL NIL) (-267 532232 532982 533010 "E04MBFA" 533015 T E04MBFA (NIL) -8 NIL NIL) (-266 531441 532191 532219 "E04JAFA" 532224 T E04JAFA (NIL) -8 NIL NIL) (-265 530652 531400 531428 "E04GCFA" 531433 T E04GCFA (NIL) -8 NIL NIL) (-264 529863 530611 530639 "E04FDFA" 530644 T E04FDFA (NIL) -8 NIL NIL) (-263 529072 529822 529850 "E04DGFA" 529855 T E04DGFA (NIL) -8 NIL NIL) (-262 523250 524597 525961 "E04AGNT" 527728 T E04AGNT (NIL) -7 NIL NIL) (-261 521974 522454 522494 "DVARCAT" 522969 NIL DVARCAT (NIL T) -9 NIL 523168) (-260 521178 521390 521704 "DVARCAT-" 521709 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-259 514078 520977 521106 "DSMP" 521111 NIL DSMP (NIL T T T) -8 NIL NIL) (-258 508888 510023 511091 "DROPT" 513030 T DROPT (NIL) -8 NIL NIL) (-257 508553 508612 508710 "DROPT1" 508823 NIL DROPT1 (NIL T) -7 NIL NIL) (-256 503668 504794 505931 "DROPT0" 507436 T DROPT0 (NIL) -7 NIL NIL) (-255 502013 502338 502724 "DRAWPT" 503302 T DRAWPT (NIL) -7 NIL NIL) (-254 496600 497523 498602 "DRAW" 500987 NIL DRAW (NIL T) -7 NIL NIL) (-253 496233 496286 496404 "DRAWHACK" 496541 NIL DRAWHACK (NIL T) -7 NIL NIL) (-252 494964 495233 495524 "DRAWCX" 495962 T DRAWCX (NIL) -7 NIL NIL) (-251 494480 494548 494699 "DRAWCURV" 494890 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-250 484951 486910 489025 "DRAWCFUN" 492385 T DRAWCFUN (NIL) -7 NIL NIL) (-249 481764 483646 483687 "DQAGG" 484316 NIL DQAGG (NIL T) -9 NIL 484589) (-248 470283 476980 477063 "DPOLCAT" 478915 NIL DPOLCAT (NIL T T T T) -9 NIL 479460) (-247 465122 466468 468426 "DPOLCAT-" 468431 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-246 458277 464983 465081 "DPMO" 465086 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-245 451335 458057 458224 "DPMM" 458229 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-244 450755 450958 451072 "DOMAIN" 451241 T DOMAIN (NIL) -8 NIL NIL) (-243 444506 450390 450542 "DMP" 450656 NIL DMP (NIL NIL T) -8 NIL NIL) (-242 444106 444162 444306 "DLP" 444444 NIL DLP (NIL T) -7 NIL NIL) (-241 437750 443207 443434 "DLIST" 443911 NIL DLIST (NIL T) -8 NIL NIL) (-240 434596 436605 436646 "DLAGG" 437196 NIL DLAGG (NIL T) -9 NIL 437425) (-239 433446 434076 434104 "DIVRING" 434196 T DIVRING (NIL) -9 NIL 434279) (-238 432683 432873 433173 "DIVRING-" 433178 NIL DIVRING- (NIL T) -8 NIL NIL) (-237 430785 431142 431548 "DISPLAY" 432297 T DISPLAY (NIL) -7 NIL NIL) (-236 424727 430699 430762 "DIRPROD" 430767 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-235 423575 423778 424043 "DIRPROD2" 424520 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-234 413113 419065 419118 "DIRPCAT" 419528 NIL DIRPCAT (NIL NIL T) -9 NIL 420368) (-233 410439 411081 411962 "DIRPCAT-" 412299 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-232 409726 409886 410072 "DIOSP" 410273 T DIOSP (NIL) -7 NIL NIL) (-231 406428 408638 408679 "DIOPS" 409113 NIL DIOPS (NIL T) -9 NIL 409342) (-230 405977 406091 406282 "DIOPS-" 406287 NIL DIOPS- (NIL T T) -8 NIL NIL) (-229 404889 405483 405511 "DIFRING" 405698 T DIFRING (NIL) -9 NIL 405808) (-228 404535 404612 404764 "DIFRING-" 404769 NIL DIFRING- (NIL T) -8 NIL NIL) (-227 402360 403598 403639 "DIFEXT" 404002 NIL DIFEXT (NIL T) -9 NIL 404296) (-226 400645 401073 401739 "DIFEXT-" 401744 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-225 397967 400177 400218 "DIAGG" 400223 NIL DIAGG (NIL T) -9 NIL 400243) (-224 397351 397508 397760 "DIAGG-" 397765 NIL DIAGG- (NIL T T) -8 NIL NIL) (-223 392816 396310 396587 "DHMATRIX" 397120 NIL DHMATRIX (NIL T) -8 NIL NIL) (-222 388428 389337 390347 "DFSFUN" 391826 T DFSFUN (NIL) -7 NIL NIL) (-221 383544 387359 387671 "DFLOAT" 388136 T DFLOAT (NIL) -8 NIL NIL) (-220 381772 382053 382449 "DFINTTLS" 383252 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-219 378837 379793 380193 "DERHAM" 381438 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-218 376686 378612 378701 "DEQUEUE" 378781 NIL DEQUEUE (NIL T) -8 NIL NIL) (-217 375901 376034 376230 "DEGRED" 376548 NIL DEGRED (NIL T T) -7 NIL NIL) (-216 372296 373041 373894 "DEFINTRF" 375129 NIL DEFINTRF (NIL T) -7 NIL NIL) (-215 369823 370292 370891 "DEFINTEF" 371815 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-214 369200 369443 369558 "DEFAST" 369728 T DEFAST (NIL) -8 NIL NIL) (-213 363088 368641 368807 "DECIMAL" 369054 T DECIMAL (NIL) -8 NIL NIL) (-212 360600 361058 361564 "DDFACT" 362632 NIL DDFACT (NIL T T) -7 NIL NIL) (-211 360196 360239 360390 "DBLRESP" 360551 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-210 357906 358240 358609 "DBASE" 359954 NIL DBASE (NIL T) -8 NIL NIL) (-209 357175 357386 357532 "DATABUF" 357805 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-208 356308 357134 357162 "D03FAFA" 357167 T D03FAFA (NIL) -8 NIL NIL) (-207 355442 356267 356295 "D03EEFA" 356300 T D03EEFA (NIL) -8 NIL NIL) (-206 353392 353858 354347 "D03AGNT" 354973 T D03AGNT (NIL) -7 NIL NIL) (-205 352708 353351 353379 "D02EJFA" 353384 T D02EJFA (NIL) -8 NIL NIL) (-204 352024 352667 352695 "D02CJFA" 352700 T D02CJFA (NIL) -8 NIL NIL) (-203 351340 351983 352011 "D02BHFA" 352016 T D02BHFA (NIL) -8 NIL NIL) (-202 350656 351299 351327 "D02BBFA" 351332 T D02BBFA (NIL) -8 NIL NIL) (-201 343854 345442 347048 "D02AGNT" 349070 T D02AGNT (NIL) -7 NIL NIL) (-200 341623 342145 342691 "D01WGTS" 343328 T D01WGTS (NIL) -7 NIL NIL) (-199 340718 341582 341610 "D01TRNS" 341615 T D01TRNS (NIL) -8 NIL NIL) (-198 339813 340677 340705 "D01GBFA" 340710 T D01GBFA (NIL) -8 NIL NIL) (-197 338908 339772 339800 "D01FCFA" 339805 T D01FCFA (NIL) -8 NIL NIL) (-196 338003 338867 338895 "D01ASFA" 338900 T D01ASFA (NIL) -8 NIL NIL) (-195 337098 337962 337990 "D01AQFA" 337995 T D01AQFA (NIL) -8 NIL NIL) (-194 336193 337057 337085 "D01APFA" 337090 T D01APFA (NIL) -8 NIL NIL) (-193 335288 336152 336180 "D01ANFA" 336185 T D01ANFA (NIL) -8 NIL NIL) (-192 334383 335247 335275 "D01AMFA" 335280 T D01AMFA (NIL) -8 NIL NIL) (-191 333478 334342 334370 "D01ALFA" 334375 T D01ALFA (NIL) -8 NIL NIL) (-190 332573 333437 333465 "D01AKFA" 333470 T D01AKFA (NIL) -8 NIL NIL) (-189 331668 332532 332560 "D01AJFA" 332565 T D01AJFA (NIL) -8 NIL NIL) (-188 324965 326516 328077 "D01AGNT" 330127 T D01AGNT (NIL) -7 NIL NIL) (-187 324302 324430 324582 "CYCLOTOM" 324833 T CYCLOTOM (NIL) -7 NIL NIL) (-186 321037 321750 322477 "CYCLES" 323595 T CYCLES (NIL) -7 NIL NIL) (-185 320349 320483 320654 "CVMP" 320898 NIL CVMP (NIL T) -7 NIL NIL) (-184 318120 318378 318754 "CTRIGMNP" 320077 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-183 317537 317743 317857 "CTOR" 318026 T CTOR (NIL) -8 NIL NIL) (-182 317073 317268 317369 "CTORKIND" 317456 T CTORKIND (NIL) -8 NIL NIL) (-181 316584 316773 316872 "CTORCALL" 316994 T CTORCALL (NIL) -8 NIL NIL) (-180 315958 316057 316210 "CSTTOOLS" 316481 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-179 311757 312414 313172 "CRFP" 315270 NIL CRFP (NIL T T) -7 NIL NIL) (-178 311259 311478 311570 "CRCEAST" 311685 T CRCEAST (NIL) -8 NIL NIL) (-177 310306 310491 310719 "CRAPACK" 311063 NIL CRAPACK (NIL T) -7 NIL NIL) (-176 309690 309791 309995 "CPMATCH" 310182 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-175 309415 309443 309549 "CPIMA" 309656 NIL CPIMA (NIL T T T) -7 NIL NIL) (-174 305779 306451 307169 "COORDSYS" 308750 NIL COORDSYS (NIL T) -7 NIL NIL) (-173 305163 305292 305442 "CONTOUR" 305649 T CONTOUR (NIL) -8 NIL NIL) (-172 301089 303166 303658 "CONTFRAC" 304703 NIL CONTFRAC (NIL T) -8 NIL NIL) (-171 300969 300990 301018 "CONDUIT" 301055 T CONDUIT (NIL) -9 NIL NIL) (-170 300162 300682 300710 "COMRING" 300715 T COMRING (NIL) -9 NIL 300767) (-169 299243 299520 299704 "COMPPROP" 299998 T COMPPROP (NIL) -8 NIL NIL) (-168 298904 298939 299067 "COMPLPAT" 299202 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-167 288963 298713 298822 "COMPLEX" 298827 NIL COMPLEX (NIL T) -8 NIL NIL) (-166 288599 288656 288763 "COMPLEX2" 288900 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-165 288317 288352 288450 "COMPFACT" 288558 NIL COMPFACT (NIL T T) -7 NIL NIL) (-164 272715 282931 282971 "COMPCAT" 283975 NIL COMPCAT (NIL T) -9 NIL 285370) (-163 262230 265154 268781 "COMPCAT-" 269137 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-162 261959 261987 262090 "COMMUPC" 262196 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-161 261754 261787 261846 "COMMONOP" 261920 T COMMONOP (NIL) -7 NIL NIL) (-160 261337 261505 261592 "COMM" 261687 T COMM (NIL) -8 NIL NIL) (-159 260941 261141 261216 "COMMAAST" 261282 T COMMAAST (NIL) -8 NIL NIL) (-158 260190 260384 260412 "COMBOPC" 260750 T COMBOPC (NIL) -9 NIL 260925) (-157 259086 259296 259538 "COMBINAT" 259980 NIL COMBINAT (NIL T) -7 NIL NIL) (-156 255284 255857 256497 "COMBF" 258508 NIL COMBF (NIL T T) -7 NIL NIL) (-155 254070 254400 254635 "COLOR" 255069 T COLOR (NIL) -8 NIL NIL) (-154 253573 253791 253883 "COLONAST" 253998 T COLONAST (NIL) -8 NIL NIL) (-153 253213 253260 253385 "CMPLXRT" 253520 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-152 252688 252913 253012 "CLLCTAST" 253134 T CLLCTAST (NIL) -8 NIL NIL) (-151 248190 249218 250298 "CLIP" 251628 T CLIP (NIL) -7 NIL NIL) (-150 246572 247296 247535 "CLIF" 248017 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-149 242794 244718 244759 "CLAGG" 245688 NIL CLAGG (NIL T) -9 NIL 246224) (-148 241216 241673 242256 "CLAGG-" 242261 NIL CLAGG- (NIL T T) -8 NIL NIL) (-147 240760 240845 240985 "CINTSLPE" 241125 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-146 238261 238732 239280 "CHVAR" 240288 NIL CHVAR (NIL T T T) -7 NIL NIL) (-145 237524 238044 238072 "CHARZ" 238077 T CHARZ (NIL) -9 NIL 238092) (-144 237278 237318 237396 "CHARPOL" 237478 NIL CHARPOL (NIL T) -7 NIL NIL) (-143 236425 236978 237006 "CHARNZ" 237053 T CHARNZ (NIL) -9 NIL 237109) (-142 234450 235115 235450 "CHAR" 236110 T CHAR (NIL) -8 NIL NIL) (-141 234176 234237 234265 "CFCAT" 234376 T CFCAT (NIL) -9 NIL NIL) (-140 233421 233532 233714 "CDEN" 234060 NIL CDEN (NIL T T T) -7 NIL NIL) (-139 229413 232574 232854 "CCLASS" 233161 T CCLASS (NIL) -8 NIL NIL) (-138 229332 229358 229393 "CATEGORY" 229398 T -10 (NIL) -8 NIL NIL) (-137 228806 229032 229131 "CATAST" 229253 T CATAST (NIL) -8 NIL NIL) (-136 228309 228527 228619 "CASEAST" 228734 T CASEAST (NIL) -8 NIL NIL) (-135 223361 224338 225091 "CARTEN" 227612 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-134 222469 222617 222838 "CARTEN2" 223208 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-133 220811 221619 221876 "CARD" 222232 T CARD (NIL) -8 NIL NIL) (-132 220414 220615 220690 "CAPSLAST" 220756 T CAPSLAST (NIL) -8 NIL NIL) (-131 219786 220114 220142 "CACHSET" 220274 T CACHSET (NIL) -9 NIL 220351) (-130 219282 219578 219606 "CABMON" 219656 T CABMON (NIL) -9 NIL 219712) (-129 218209 218637 218833 "BYTE" 219106 T BYTE (NIL) -8 NIL NIL) (-128 214157 218156 218190 "BYTEARY" 218195 T BYTEARY (NIL) -8 NIL NIL) (-127 211714 213849 213956 "BTREE" 214083 NIL BTREE (NIL T) -8 NIL NIL) (-126 209212 211362 211484 "BTOURN" 211624 NIL BTOURN (NIL T) -8 NIL NIL) (-125 206630 208683 208724 "BTCAT" 208792 NIL BTCAT (NIL T) -9 NIL 208869) (-124 206297 206377 206526 "BTCAT-" 206531 NIL BTCAT- (NIL T T) -8 NIL NIL) (-123 201589 205440 205468 "BTAGG" 205690 T BTAGG (NIL) -9 NIL 205851) (-122 201079 201204 201410 "BTAGG-" 201415 NIL BTAGG- (NIL T) -8 NIL NIL) (-121 198123 200357 200572 "BSTREE" 200896 NIL BSTREE (NIL T) -8 NIL NIL) (-120 197261 197387 197571 "BRILL" 197979 NIL BRILL (NIL T) -7 NIL NIL) (-119 193962 195989 196030 "BRAGG" 196679 NIL BRAGG (NIL T) -9 NIL 196936) (-118 192491 192897 193452 "BRAGG-" 193457 NIL BRAGG- (NIL T T) -8 NIL NIL) (-117 185757 191837 192021 "BPADICRT" 192339 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-116 184107 185694 185739 "BPADIC" 185744 NIL BPADIC (NIL NIL) -8 NIL NIL) (-115 183805 183835 183949 "BOUNDZRO" 184071 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-114 179320 180411 181278 "BOP" 182958 T BOP (NIL) -8 NIL NIL) (-113 176941 177385 177905 "BOP1" 178833 NIL BOP1 (NIL T) -7 NIL NIL) (-112 175679 176365 176558 "BOOLEAN" 176768 T BOOLEAN (NIL) -8 NIL NIL) (-111 175041 175419 175473 "BMODULE" 175478 NIL BMODULE (NIL T T) -9 NIL 175543) (-110 170871 174839 174912 "BITS" 174988 T BITS (NIL) -8 NIL NIL) (-109 169968 170403 170555 "BINFILE" 170739 T BINFILE (NIL) -8 NIL NIL) (-108 169380 169502 169644 "BINDING" 169846 T BINDING (NIL) -8 NIL NIL) (-107 163272 168824 168989 "BINARY" 169235 T BINARY (NIL) -8 NIL NIL) (-106 161099 162527 162568 "BGAGG" 162828 NIL BGAGG (NIL T) -9 NIL 162965) (-105 160930 160962 161053 "BGAGG-" 161058 NIL BGAGG- (NIL T T) -8 NIL NIL) (-104 160028 160314 160519 "BFUNCT" 160745 T BFUNCT (NIL) -8 NIL NIL) (-103 158718 158896 159184 "BEZOUT" 159852 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-102 155235 157570 157900 "BBTREE" 158421 NIL BBTREE (NIL T) -8 NIL NIL) (-101 154969 155022 155050 "BASTYPE" 155169 T BASTYPE (NIL) -9 NIL NIL) (-100 154821 154850 154923 "BASTYPE-" 154928 NIL BASTYPE- (NIL T) -8 NIL NIL) (-99 154259 154335 154485 "BALFACT" 154732 NIL BALFACT (NIL T T) -7 NIL NIL) (-98 153142 153674 153860 "AUTOMOR" 154104 NIL AUTOMOR (NIL T) -8 NIL NIL) (-97 152868 152873 152899 "ATTREG" 152904 T ATTREG (NIL) -9 NIL NIL) (-96 151147 151565 151917 "ATTRBUT" 152534 T ATTRBUT (NIL) -8 NIL NIL) (-95 150782 150975 151041 "ATTRAST" 151099 T ATTRAST (NIL) -8 NIL NIL) (-94 150318 150431 150457 "ATRIG" 150658 T ATRIG (NIL) -9 NIL NIL) (-93 150127 150168 150255 "ATRIG-" 150260 NIL ATRIG- (NIL T) -8 NIL NIL) (-92 149749 149909 149935 "ASTCAT" 149993 T ASTCAT (NIL) -9 NIL 150056) (-91 149476 149535 149654 "ASTCAT-" 149659 NIL ASTCAT- (NIL T) -8 NIL NIL) (-90 147673 149252 149340 "ASTACK" 149419 NIL ASTACK (NIL T) -8 NIL NIL) (-89 146178 146475 146840 "ASSOCEQ" 147355 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-88 145210 145837 145961 "ASP9" 146085 NIL ASP9 (NIL NIL) -8 NIL NIL) (-87 144974 145158 145197 "ASP8" 145202 NIL ASP8 (NIL NIL) -8 NIL NIL) (-86 143843 144579 144721 "ASP80" 144863 NIL ASP80 (NIL NIL) -8 NIL NIL) (-85 142742 143478 143610 "ASP7" 143742 NIL ASP7 (NIL NIL) -8 NIL NIL) (-84 141696 142419 142537 "ASP78" 142655 NIL ASP78 (NIL NIL) -8 NIL NIL) (-83 140665 141376 141493 "ASP77" 141610 NIL ASP77 (NIL NIL) -8 NIL NIL) (-82 139577 140303 140434 "ASP74" 140565 NIL ASP74 (NIL NIL) -8 NIL NIL) (-81 138477 139212 139344 "ASP73" 139476 NIL ASP73 (NIL NIL) -8 NIL NIL) (-80 137432 138154 138272 "ASP6" 138390 NIL ASP6 (NIL NIL) -8 NIL NIL) (-79 136380 137109 137227 "ASP55" 137345 NIL ASP55 (NIL NIL) -8 NIL NIL) (-78 135330 136054 136173 "ASP50" 136292 NIL ASP50 (NIL NIL) -8 NIL NIL) (-77 134418 135031 135141 "ASP4" 135251 NIL ASP4 (NIL NIL) -8 NIL NIL) (-76 133506 134119 134229 "ASP49" 134339 NIL ASP49 (NIL NIL) -8 NIL NIL) (-75 132291 133045 133213 "ASP42" 133395 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-74 131068 131824 131994 "ASP41" 132178 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130018 130745 130863 "ASP35" 130981 NIL ASP35 (NIL NIL) -8 NIL NIL) (-72 129783 129966 130005 "ASP34" 130010 NIL ASP34 (NIL NIL) -8 NIL NIL) (-71 129520 129587 129663 "ASP33" 129738 NIL ASP33 (NIL NIL) -8 NIL NIL) (-70 128415 129155 129287 "ASP31" 129419 NIL ASP31 (NIL NIL) -8 NIL NIL) (-69 128180 128363 128402 "ASP30" 128407 NIL ASP30 (NIL NIL) -8 NIL NIL) (-68 127915 127984 128060 "ASP29" 128135 NIL ASP29 (NIL NIL) -8 NIL NIL) (-67 127680 127863 127902 "ASP28" 127907 NIL ASP28 (NIL NIL) -8 NIL NIL) (-66 127445 127628 127667 "ASP27" 127672 NIL ASP27 (NIL NIL) -8 NIL NIL) (-65 126529 127143 127254 "ASP24" 127365 NIL ASP24 (NIL NIL) -8 NIL NIL) (-64 125445 126170 126300 "ASP20" 126430 NIL ASP20 (NIL NIL) -8 NIL NIL) (-63 124533 125146 125256 "ASP1" 125366 NIL ASP1 (NIL NIL) -8 NIL NIL) (-62 123477 124207 124326 "ASP19" 124445 NIL ASP19 (NIL NIL) -8 NIL NIL) (-61 123214 123281 123357 "ASP12" 123432 NIL ASP12 (NIL NIL) -8 NIL NIL) (-60 122066 122813 122957 "ASP10" 123101 NIL ASP10 (NIL NIL) -8 NIL NIL) (-59 119965 121910 122001 "ARRAY2" 122006 NIL ARRAY2 (NIL T) -8 NIL NIL) (-58 115781 119613 119727 "ARRAY1" 119882 NIL ARRAY1 (NIL T) -8 NIL NIL) (-57 114813 114986 115207 "ARRAY12" 115604 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-56 109172 111043 111118 "ARR2CAT" 113748 NIL ARR2CAT (NIL T T T) -9 NIL 114506) (-55 106606 107350 108304 "ARR2CAT-" 108309 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-54 105354 105506 105812 "APPRULE" 106442 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 105005 105053 105172 "APPLYORE" 105300 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 103979 104270 104465 "ANY" 104828 T ANY (NIL) -8 NIL NIL) (-51 103257 103380 103537 "ANY1" 103853 NIL ANY1 (NIL T) -7 NIL NIL) (-50 100822 101694 102021 "ANTISYM" 102981 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100337 100526 100623 "ANON" 100743 T ANON (NIL) -8 NIL NIL) (-48 94471 98878 99331 "AN" 99902 T AN (NIL) -8 NIL NIL) (-47 90852 92206 92257 "AMR" 93005 NIL AMR (NIL T T) -9 NIL 93605) (-46 89964 90185 90548 "AMR-" 90553 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74514 89881 89942 "ALIST" 89947 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71351 74108 74277 "ALGSC" 74432 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 67907 68461 69068 "ALGPKG" 70791 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67184 67285 67469 "ALGMFACT" 67793 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 62923 63608 64263 "ALGMANIP" 66707 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54329 62549 62699 "ALGFF" 62856 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53525 53656 53835 "ALGFACT" 54187 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52555 53121 53159 "ALGEBRA" 53219 NIL ALGEBRA (NIL T) -9 NIL 53278) (-37 52273 52332 52464 "ALGEBRA-" 52469 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34533 50276 50328 "ALAGG" 50464 NIL ALAGG (NIL T T) -9 NIL 50625) (-35 34069 34182 34208 "AHYP" 34409 T AHYP (NIL) -9 NIL NIL) (-34 33000 33248 33274 "AGG" 33773 T AGG (NIL) -9 NIL 34052) (-33 32434 32596 32810 "AGG-" 32815 NIL AGG- (NIL T) -8 NIL NIL) (-32 30111 30533 30951 "AF" 32076 NIL AF (NIL T T) -7 NIL NIL) (-31 29618 29836 29926 "ADDAST" 30039 T ADDAST (NIL) -8 NIL NIL) (-30 28887 29145 29301 "ACPLOT" 29480 T ACPLOT (NIL) -8 NIL NIL) (-29 18358 26279 26330 "ACFS" 27041 NIL ACFS (NIL T) -9 NIL 27280) (-28 16372 16862 17637 "ACFS-" 17642 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file +(((-92) . T) ((-101) . T) ((-599 (-842)) . T) ((-599 (-1157)) . T) ((-1076) . T)) +((-1533 ((|#1| |#1| (-1 (-552) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-111) |#1|)) 20)) (-1435 (((-1240)) 15)) (-3325 (((-627 |#1|)) 9))) +(((-1060 |#1|) (-10 -7 (-15 -1435 ((-1240))) (-15 -3325 ((-627 |#1|))) (-15 -1533 (|#1| |#1| (-1 (-111) |#1|))) (-15 -1533 (|#1| |#1| (-1 (-552) |#1| |#1|)))) (-130)) (T -1060)) +((-1533 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-552) *2 *2)) (-4 *2 (-130)) (-5 *1 (-1060 *2)))) (-1533 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *2)) (-4 *2 (-130)) (-5 *1 (-1060 *2)))) (-3325 (*1 *2) (-12 (-5 *2 (-627 *3)) (-5 *1 (-1060 *3)) (-4 *3 (-130)))) (-1435 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1060 *3)) (-4 *3 (-130))))) +(-10 -7 (-15 -1435 ((-1240))) (-15 -3325 ((-627 |#1|))) (-15 -1533 (|#1| |#1| (-1 (-111) |#1|))) (-15 -1533 (|#1| |#1| (-1 (-552) |#1| |#1|)))) +((-3721 (($ (-108) $) 16)) (-2176 (((-3 (-108) "failed") (-1152) $) 15)) (-2373 (($) 7)) (-2077 (($) 17)) (-3292 (($) 18)) (-1886 (((-627 (-172)) $) 10)) (-1477 (((-842) $) 21))) +(((-1061) (-13 (-599 (-842)) (-10 -8 (-15 -2373 ($)) (-15 -1886 ((-627 (-172)) $)) (-15 -2176 ((-3 (-108) "failed") (-1152) $)) (-15 -3721 ($ (-108) $)) (-15 -2077 ($)) (-15 -3292 ($))))) (T -1061)) +((-2373 (*1 *1) (-5 *1 (-1061))) (-1886 (*1 *2 *1) (-12 (-5 *2 (-627 (-172))) (-5 *1 (-1061)))) (-2176 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-108)) (-5 *1 (-1061)))) (-3721 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1061)))) (-2077 (*1 *1) (-5 *1 (-1061))) (-3292 (*1 *1) (-5 *1 (-1061)))) +(-13 (-599 (-842)) (-10 -8 (-15 -2373 ($)) (-15 -1886 ((-627 (-172)) $)) (-15 -2176 ((-3 (-108) "failed") (-1152) $)) (-15 -3721 ($ (-108) $)) (-15 -2077 ($)) (-15 -3292 ($)))) +((-3449 (((-1235 (-671 |#1|)) (-627 (-671 |#1|))) 42) (((-1235 (-671 (-931 |#1|))) (-627 (-1152)) (-671 (-931 |#1|))) 63) (((-1235 (-671 (-401 (-931 |#1|)))) (-627 (-1152)) (-671 (-401 (-931 |#1|)))) 79)) (-3133 (((-1235 |#1|) (-671 |#1|) (-627 (-671 |#1|))) 36))) +(((-1062 |#1|) (-10 -7 (-15 -3449 ((-1235 (-671 (-401 (-931 |#1|)))) (-627 (-1152)) (-671 (-401 (-931 |#1|))))) (-15 -3449 ((-1235 (-671 (-931 |#1|))) (-627 (-1152)) (-671 (-931 |#1|)))) (-15 -3449 ((-1235 (-671 |#1|)) (-627 (-671 |#1|)))) (-15 -3133 ((-1235 |#1|) (-671 |#1|) (-627 (-671 |#1|))))) (-357)) (T -1062)) +((-3133 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-671 *5))) (-5 *3 (-671 *5)) (-4 *5 (-357)) (-5 *2 (-1235 *5)) (-5 *1 (-1062 *5)))) (-3449 (*1 *2 *3) (-12 (-5 *3 (-627 (-671 *4))) (-4 *4 (-357)) (-5 *2 (-1235 (-671 *4))) (-5 *1 (-1062 *4)))) (-3449 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-1152))) (-4 *5 (-357)) (-5 *2 (-1235 (-671 (-931 *5)))) (-5 *1 (-1062 *5)) (-5 *4 (-671 (-931 *5))))) (-3449 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-1152))) (-4 *5 (-357)) (-5 *2 (-1235 (-671 (-401 (-931 *5))))) (-5 *1 (-1062 *5)) (-5 *4 (-671 (-401 (-931 *5))))))) +(-10 -7 (-15 -3449 ((-1235 (-671 (-401 (-931 |#1|)))) (-627 (-1152)) (-671 (-401 (-931 |#1|))))) (-15 -3449 ((-1235 (-671 (-931 |#1|))) (-627 (-1152)) (-671 (-931 |#1|)))) (-15 -3449 ((-1235 (-671 |#1|)) (-627 (-671 |#1|)))) (-15 -3133 ((-1235 |#1|) (-671 |#1|) (-627 (-671 |#1|))))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3996 (((-627 (-754)) $) NIL) (((-627 (-754)) $ (-1152)) NIL)) (-2671 (((-754) $) NIL) (((-754) $ (-1152)) NIL)) (-1853 (((-627 (-1064 (-1152))) $) NIL)) (-1694 (((-1148 $) $ (-1064 (-1152))) NIL) (((-1148 |#1|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-1064 (-1152)))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4014 (($ $) NIL (|has| |#1| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-2252 (($ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-1064 (-1152)) "failed") $) NIL) (((-3 (-1152) "failed") $) NIL) (((-3 (-1101 |#1| (-1152)) "failed") $) NIL)) (-1703 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-1064 (-1152)) $) NIL) (((-1152) $) NIL) (((-1101 |#1| (-1152)) $) NIL)) (-3116 (($ $ $ (-1064 (-1152))) NIL (|has| |#1| (-169)))) (-2014 (($ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#1| (-445))) (($ $ (-1064 (-1152))) NIL (|has| |#1| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#1| (-888)))) (-2061 (($ $ |#1| (-523 (-1064 (-1152))) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-1064 (-1152)) (-865 (-373))) (|has| |#1| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-1064 (-1152)) (-865 (-552))) (|has| |#1| (-865 (-552)))))) (-2641 (((-754) $ (-1152)) NIL) (((-754) $) NIL)) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-1842 (($ (-1148 |#1|) (-1064 (-1152))) NIL) (($ (-1148 $) (-1064 (-1152))) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-523 (-1064 (-1152)))) NIL) (($ $ (-1064 (-1152)) (-754)) NIL) (($ $ (-627 (-1064 (-1152))) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-1064 (-1152))) NIL)) (-3465 (((-523 (-1064 (-1152))) $) NIL) (((-754) $ (-1064 (-1152))) NIL) (((-627 (-754)) $ (-627 (-1064 (-1152)))) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3813 (($ (-1 (-523 (-1064 (-1152))) (-523 (-1064 (-1152)))) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-4250 (((-1 $ (-754)) (-1152)) NIL) (((-1 $ (-754)) $) NIL (|has| |#1| (-228)))) (-2685 (((-3 (-1064 (-1152)) "failed") $) NIL)) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-4033 (((-1064 (-1152)) $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1595 (((-1134) $) NIL)) (-3675 (((-111) $) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-1064 (-1152))) (|:| -4067 (-754))) "failed") $) NIL)) (-2549 (($ $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 ((|#1| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-888)))) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-1064 (-1152)) |#1|) NIL) (($ $ (-627 (-1064 (-1152))) (-627 |#1|)) NIL) (($ $ (-1064 (-1152)) $) NIL) (($ $ (-627 (-1064 (-1152))) (-627 $)) NIL) (($ $ (-1152) $) NIL (|has| |#1| (-228))) (($ $ (-627 (-1152)) (-627 $)) NIL (|has| |#1| (-228))) (($ $ (-1152) |#1|) NIL (|has| |#1| (-228))) (($ $ (-627 (-1152)) (-627 |#1|)) NIL (|has| |#1| (-228)))) (-1637 (($ $ (-1064 (-1152))) NIL (|has| |#1| (-169)))) (-2942 (($ $ (-1064 (-1152))) NIL) (($ $ (-627 (-1064 (-1152)))) NIL) (($ $ (-1064 (-1152)) (-754)) NIL) (($ $ (-627 (-1064 (-1152))) (-627 (-754))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2544 (((-627 (-1152)) $) NIL)) (-3567 (((-523 (-1064 (-1152))) $) NIL) (((-754) $ (-1064 (-1152))) NIL) (((-627 (-754)) $ (-627 (-1064 (-1152)))) NIL) (((-754) $ (-1152)) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-1064 (-1152)) (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-1064 (-1152)) (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-1064 (-1152)) (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3495 ((|#1| $) NIL (|has| |#1| (-445))) (($ $ (-1064 (-1152))) NIL (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-1064 (-1152))) NIL) (($ (-1152)) NIL) (($ (-1101 |#1| (-1152))) NIL) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-523 (-1064 (-1152)))) NIL) (($ $ (-1064 (-1152)) (-754)) NIL) (($ $ (-627 (-1064 (-1152))) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#1| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-1064 (-1152))) NIL) (($ $ (-627 (-1064 (-1152)))) NIL) (($ $ (-1064 (-1152)) (-754)) NIL) (($ $ (-627 (-1064 (-1152))) (-627 (-754))) NIL) (($ $) NIL (|has| |#1| (-228))) (($ $ (-754)) NIL (|has| |#1| (-228))) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1063 |#1|) (-13 (-247 |#1| (-1152) (-1064 (-1152)) (-523 (-1064 (-1152)))) (-1017 (-1101 |#1| (-1152)))) (-1028)) (T -1063)) +NIL +(-13 (-247 |#1| (-1152) (-1064 (-1152)) (-523 (-1064 (-1152)))) (-1017 (-1101 |#1| (-1152)))) +((-1465 (((-111) $ $) NIL)) (-2671 (((-754) $) NIL)) (-4344 ((|#1| $) 10)) (-4039 (((-3 |#1| "failed") $) NIL)) (-1703 ((|#1| $) NIL)) (-2641 (((-754) $) 11)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-4250 (($ |#1| (-754)) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2942 (($ $) NIL) (($ $ (-754)) NIL)) (-1477 (((-842) $) NIL) (($ |#1|) NIL)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 15))) +(((-1064 |#1|) (-260 |#1|) (-830)) (T -1064)) +NIL +(-260 |#1|) +((-3516 (((-627 |#2|) (-1 |#2| |#1|) (-1070 |#1|)) 24 (|has| |#1| (-828))) (((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|)) 14))) +(((-1065 |#1| |#2|) (-10 -7 (-15 -3516 ((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|))) (IF (|has| |#1| (-828)) (-15 -3516 ((-627 |#2|) (-1 |#2| |#1|) (-1070 |#1|))) |%noBranch|)) (-1189) (-1189)) (T -1065)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-828)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-627 *6)) (-5 *1 (-1065 *5 *6)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-1070 *6)) (-5 *1 (-1065 *5 *6))))) +(-10 -7 (-15 -3516 ((-1070 |#2|) (-1 |#2| |#1|) (-1070 |#1|))) (IF (|has| |#1| (-828)) (-15 -3516 ((-627 |#2|) (-1 |#2| |#1|) (-1070 |#1|))) |%noBranch|)) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 17) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3536 (((-627 (-1111)) $) 9)) (-2292 (((-111) $ $) NIL))) +(((-1066) (-13 (-1059) (-10 -8 (-15 -3536 ((-627 (-1111)) $))))) (T -1066)) +((-3536 (*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-1066))))) +(-13 (-1059) (-10 -8 (-15 -3536 ((-627 (-1111)) $)))) +((-3516 (((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|)) 19))) +(((-1067 |#1| |#2|) (-10 -7 (-15 -3516 ((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|)))) (-1189) (-1189)) (T -1067)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1068 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-1068 *6)) (-5 *1 (-1067 *5 *6))))) +(-10 -7 (-15 -3516 ((-1068 |#2|) (-1 |#2| |#1|) (-1068 |#1|)))) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4344 (((-1152) $) 11)) (-4202 (((-1070 |#1|) $) 12)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3262 (($ (-1152) (-1070 |#1|)) 10)) (-1477 (((-842) $) 20 (|has| |#1| (-1076)))) (-2292 (((-111) $ $) 15 (|has| |#1| (-1076))))) +(((-1068 |#1|) (-13 (-1189) (-10 -8 (-15 -3262 ($ (-1152) (-1070 |#1|))) (-15 -4344 ((-1152) $)) (-15 -4202 ((-1070 |#1|) $)) (IF (|has| |#1| (-1076)) (-6 (-1076)) |%noBranch|))) (-1189)) (T -1068)) +((-3262 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1070 *4)) (-4 *4 (-1189)) (-5 *1 (-1068 *4)))) (-4344 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1068 *3)) (-4 *3 (-1189)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1068 *3)) (-4 *3 (-1189))))) +(-13 (-1189) (-10 -8 (-15 -3262 ($ (-1152) (-1070 |#1|))) (-15 -4344 ((-1152) $)) (-15 -4202 ((-1070 |#1|) $)) (IF (|has| |#1| (-1076)) (-6 (-1076)) |%noBranch|))) +((-4202 (($ |#1| |#1|) 7)) (-1781 ((|#1| $) 10)) (-2298 ((|#1| $) 12)) (-2309 (((-552) $) 8)) (-3180 ((|#1| $) 9)) (-2323 ((|#1| $) 11)) (-3562 (($ |#1|) 6)) (-2591 (($ |#1| |#1|) 14)) (-2089 (($ $ (-552)) 13))) +(((-1069 |#1|) (-137) (-1189)) (T -1069)) +((-2591 (*1 *1 *2 *2) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189)))) (-2089 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1069 *3)) (-4 *3 (-1189)))) (-2298 (*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189)))) (-2323 (*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189)))) (-1781 (*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189)))) (-3180 (*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189)))) (-2309 (*1 *2 *1) (-12 (-4 *1 (-1069 *3)) (-4 *3 (-1189)) (-5 *2 (-552)))) (-4202 (*1 *1 *2 *2) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189)))) (-3562 (*1 *1 *2) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189))))) +(-13 (-1189) (-10 -8 (-15 -2591 ($ |t#1| |t#1|)) (-15 -2089 ($ $ (-552))) (-15 -2298 (|t#1| $)) (-15 -2323 (|t#1| $)) (-15 -1781 (|t#1| $)) (-15 -3180 (|t#1| $)) (-15 -2309 ((-552) $)) (-15 -4202 ($ |t#1| |t#1|)) (-15 -3562 ($ |t#1|)))) +(((-1189) . T)) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4202 (($ |#1| |#1|) 15)) (-3516 (((-627 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-828)))) (-1781 ((|#1| $) 10)) (-2298 ((|#1| $) 9)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-2309 (((-552) $) 14)) (-3180 ((|#1| $) 12)) (-2323 ((|#1| $) 11)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-2496 (((-627 |#1|) $) 36 (|has| |#1| (-828))) (((-627 |#1|) (-627 $)) 35 (|has| |#1| (-828)))) (-3562 (($ |#1|) 26)) (-1477 (((-842) $) 25 (|has| |#1| (-1076)))) (-2591 (($ |#1| |#1|) 8)) (-2089 (($ $ (-552)) 16)) (-2292 (((-111) $ $) 19 (|has| |#1| (-1076))))) +(((-1070 |#1|) (-13 (-1069 |#1|) (-10 -7 (IF (|has| |#1| (-1076)) (-6 (-1076)) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-1071 |#1| (-627 |#1|))) |%noBranch|))) (-1189)) (T -1070)) +NIL +(-13 (-1069 |#1|) (-10 -7 (IF (|has| |#1| (-1076)) (-6 (-1076)) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-1071 |#1| (-627 |#1|))) |%noBranch|))) +((-4202 (($ |#1| |#1|) 7)) (-3516 ((|#2| (-1 |#1| |#1|) $) 16)) (-1781 ((|#1| $) 10)) (-2298 ((|#1| $) 12)) (-2309 (((-552) $) 8)) (-3180 ((|#1| $) 9)) (-2323 ((|#1| $) 11)) (-2496 ((|#2| (-627 $)) 18) ((|#2| $) 17)) (-3562 (($ |#1|) 6)) (-2591 (($ |#1| |#1|) 14)) (-2089 (($ $ (-552)) 13))) +(((-1071 |#1| |#2|) (-137) (-828) (-1125 |t#1|)) (T -1071)) +((-2496 (*1 *2 *3) (-12 (-5 *3 (-627 *1)) (-4 *1 (-1071 *4 *2)) (-4 *4 (-828)) (-4 *2 (-1125 *4)))) (-2496 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *2)) (-4 *3 (-828)) (-4 *2 (-1125 *3)))) (-3516 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1071 *4 *2)) (-4 *4 (-828)) (-4 *2 (-1125 *4))))) +(-13 (-1069 |t#1|) (-10 -8 (-15 -2496 (|t#2| (-627 $))) (-15 -2496 (|t#2| $)) (-15 -3516 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-1069 |#1|) . T) ((-1189) . T)) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1294 (((-1111) $) 12)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 20) (((-1157) $) NIL) (($ (-1157)) NIL)) (-3122 (((-627 (-1111)) $) 10)) (-2292 (((-111) $ $) NIL))) +(((-1072) (-13 (-1059) (-10 -8 (-15 -3122 ((-627 (-1111)) $)) (-15 -1294 ((-1111) $))))) (T -1072)) +((-3122 (*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-1072)))) (-1294 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1072))))) +(-13 (-1059) (-10 -8 (-15 -3122 ((-627 (-1111)) $)) (-15 -1294 ((-1111) $)))) +((-3416 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3694 (($ $ $) 10)) (-2613 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1073 |#1| |#2|) (-10 -8 (-15 -3416 (|#1| |#2| |#1|)) (-15 -3416 (|#1| |#1| |#2|)) (-15 -3416 (|#1| |#1| |#1|)) (-15 -3694 (|#1| |#1| |#1|)) (-15 -2613 (|#1| |#1| |#2|)) (-15 -2613 (|#1| |#1| |#1|))) (-1074 |#2|) (-1076)) (T -1073)) +NIL +(-10 -8 (-15 -3416 (|#1| |#2| |#1|)) (-15 -3416 (|#1| |#1| |#2|)) (-15 -3416 (|#1| |#1| |#1|)) (-15 -3694 (|#1| |#1| |#1|)) (-15 -2613 (|#1| |#1| |#2|)) (-15 -2613 (|#1| |#1| |#1|))) +((-1465 (((-111) $ $) 7)) (-3416 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3694 (($ $ $) 20)) (-3632 (((-111) $ $) 19)) (-4031 (((-111) $ (-754)) 35)) (-1342 (($) 25) (($ (-627 |#1|)) 24)) (-2536 (($ (-1 (-111) |#1|) $) 56 (|has| $ (-6 -4366)))) (-3887 (($) 36 T CONST)) (-3370 (($ $) 59 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#1| $) 58 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 55 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4366)))) (-3215 (((-627 |#1|) $) 43 (|has| $ (-6 -4366)))) (-1854 (((-111) $ $) 28)) (-1602 (((-111) $ (-754)) 34)) (-3114 (((-627 |#1|) $) 44 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 46 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 38)) (-3971 (((-111) $ (-754)) 33)) (-1595 (((-1134) $) 9)) (-3383 (($ $ $) 23)) (-1498 (((-1096) $) 10)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 52)) (-3509 (((-111) (-1 (-111) |#1|) $) 41 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#1|) (-627 |#1|)) 50 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 48 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 (-288 |#1|))) 47 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 29)) (-1275 (((-111) $) 32)) (-2373 (($) 31)) (-2613 (($ $ $) 22) (($ $ |#1|) 21)) (-1509 (((-754) |#1| $) 45 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) |#1|) $) 42 (|has| $ (-6 -4366)))) (-2973 (($ $) 30)) (-3562 (((-528) $) 60 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 51)) (-1477 (((-842) $) 11)) (-4243 (($) 27) (($ (-627 |#1|)) 26)) (-3299 (((-111) (-1 (-111) |#1|) $) 40 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 6)) (-1383 (((-754) $) 37 (|has| $ (-6 -4366))))) +(((-1074 |#1|) (-137) (-1076)) (T -1074)) +((-1854 (*1 *2 *1 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-1076)) (-5 *2 (-111)))) (-4243 (*1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) (-4243 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-4 *1 (-1074 *3)))) (-1342 (*1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) (-1342 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-4 *1 (-1074 *3)))) (-3383 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) (-2613 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) (-2613 (*1 *1 *1 *2) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) (-3694 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) (-3632 (*1 *2 *1 *1) (-12 (-4 *1 (-1074 *3)) (-4 *3 (-1076)) (-5 *2 (-111)))) (-3416 (*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) (-3416 (*1 *1 *1 *2) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) (-3416 (*1 *1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076))))) +(-13 (-1076) (-148 |t#1|) (-10 -8 (-6 -4356) (-15 -1854 ((-111) $ $)) (-15 -4243 ($)) (-15 -4243 ($ (-627 |t#1|))) (-15 -1342 ($)) (-15 -1342 ($ (-627 |t#1|))) (-15 -3383 ($ $ $)) (-15 -2613 ($ $ $)) (-15 -2613 ($ $ |t#1|)) (-15 -3694 ($ $ $)) (-15 -3632 ((-111) $ $)) (-15 -3416 ($ $ $)) (-15 -3416 ($ $ |t#1|)) (-15 -3416 ($ |t#1| $)))) +(((-34) . T) ((-101) . T) ((-599 (-842)) . T) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) . T) ((-1189) . T)) +((-1595 (((-1134) $) 10)) (-1498 (((-1096) $) 8))) +(((-1075 |#1|) (-10 -8 (-15 -1595 ((-1134) |#1|)) (-15 -1498 ((-1096) |#1|))) (-1076)) (T -1075)) +NIL +(-10 -8 (-15 -1595 ((-1134) |#1|)) (-15 -1498 ((-1096) |#1|))) +((-1465 (((-111) $ $) 7)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 6))) +(((-1076) (-137)) (T -1076)) +((-1498 (*1 *2 *1) (-12 (-4 *1 (-1076)) (-5 *2 (-1096)))) (-1595 (*1 *2 *1) (-12 (-4 *1 (-1076)) (-5 *2 (-1134))))) +(-13 (-101) (-599 (-842)) (-10 -8 (-15 -1498 ((-1096) $)) (-15 -1595 ((-1134) $)))) +(((-101) . T) ((-599 (-842)) . T)) +((-1465 (((-111) $ $) NIL)) (-3307 (((-754)) 30)) (-4256 (($ (-627 (-900))) 52)) (-3088 (((-3 $ "failed") $ (-900) (-900)) 58)) (-1279 (($) 32)) (-3082 (((-111) (-900) $) 35)) (-2886 (((-900) $) 50)) (-1595 (((-1134) $) NIL)) (-4153 (($ (-900)) 31)) (-2755 (((-3 $ "failed") $ (-900)) 55)) (-1498 (((-1096) $) NIL)) (-2748 (((-1235 $)) 40)) (-3575 (((-627 (-900)) $) 24)) (-3427 (((-754) $ (-900) (-900)) 56)) (-1477 (((-842) $) 29)) (-2292 (((-111) $ $) 21))) +(((-1077 |#1| |#2|) (-13 (-362) (-10 -8 (-15 -2755 ((-3 $ "failed") $ (-900))) (-15 -3088 ((-3 $ "failed") $ (-900) (-900))) (-15 -3575 ((-627 (-900)) $)) (-15 -4256 ($ (-627 (-900)))) (-15 -2748 ((-1235 $))) (-15 -3082 ((-111) (-900) $)) (-15 -3427 ((-754) $ (-900) (-900))))) (-900) (-900)) (T -1077)) +((-2755 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-900)) (-5 *1 (-1077 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3088 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-900)) (-5 *1 (-1077 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-627 (-900))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-900)) (-14 *4 (-900)))) (-4256 (*1 *1 *2) (-12 (-5 *2 (-627 (-900))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-900)) (-14 *4 (-900)))) (-2748 (*1 *2) (-12 (-5 *2 (-1235 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-900)) (-14 *4 (-900)))) (-3082 (*1 *2 *3 *1) (-12 (-5 *3 (-900)) (-5 *2 (-111)) (-5 *1 (-1077 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3427 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-900)) (-5 *2 (-754)) (-5 *1 (-1077 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-362) (-10 -8 (-15 -2755 ((-3 $ "failed") $ (-900))) (-15 -3088 ((-3 $ "failed") $ (-900) (-900))) (-15 -3575 ((-627 (-900)) $)) (-15 -4256 ($ (-627 (-900)))) (-15 -2748 ((-1235 $))) (-15 -3082 ((-111) (-900) $)) (-15 -3427 ((-754) $ (-900) (-900))))) +((-1465 (((-111) $ $) NIL)) (-3065 (($) NIL (|has| |#1| (-362)))) (-3416 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3694 (($ $ $) 72)) (-3632 (((-111) $ $) 73)) (-4031 (((-111) $ (-754)) NIL)) (-3307 (((-754)) NIL (|has| |#1| (-362)))) (-1342 (($ (-627 |#1|)) NIL) (($) 13)) (-4289 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2265 (($ |#1| $) 67 (|has| $ (-6 -4366))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4366)))) (-1279 (($) NIL (|has| |#1| (-362)))) (-3215 (((-627 |#1|) $) 19 (|has| $ (-6 -4366)))) (-1854 (((-111) $ $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-1816 ((|#1| $) 57 (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 66 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4093 ((|#1| $) 55 (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 34)) (-2886 (((-900) $) NIL (|has| |#1| (-362)))) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-3383 (($ $ $) 70)) (-4165 ((|#1| $) 25)) (-3954 (($ |#1| $) 65)) (-4153 (($ (-900)) NIL (|has| |#1| (-362)))) (-1498 (((-1096) $) NIL)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 31)) (-4133 ((|#1| $) 27)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 21)) (-2373 (($) 11)) (-2613 (($ $ |#1|) NIL) (($ $ $) 71)) (-3028 (($) NIL) (($ (-627 |#1|)) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) 16)) (-3562 (((-528) $) 52 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 61)) (-1901 (($ $) NIL (|has| |#1| (-362)))) (-1477 (((-842) $) NIL)) (-3550 (((-754) $) NIL)) (-4243 (($ (-627 |#1|)) NIL) (($) 12)) (-2577 (($ (-627 |#1|)) NIL)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 54)) (-1383 (((-754) $) 10 (|has| $ (-6 -4366))))) +(((-1078 |#1|) (-419 |#1|) (-1076)) (T -1078)) +NIL +(-419 |#1|) +((-1465 (((-111) $ $) 7)) (-1891 (((-111) $) 32)) (-2909 ((|#2| $) 27)) (-2563 (((-111) $) 33)) (-2258 ((|#1| $) 28)) (-3631 (((-111) $) 35)) (-2836 (((-111) $) 37)) (-2043 (((-111) $) 34)) (-1595 (((-1134) $) 9)) (-2170 (((-111) $) 31)) (-2933 ((|#3| $) 26)) (-1498 (((-1096) $) 10)) (-2305 (((-111) $) 30)) (-2103 ((|#4| $) 25)) (-4301 ((|#5| $) 24)) (-1651 (((-111) $ $) 38)) (-1985 (($ $ (-552)) 14) (($ $ (-627 (-552))) 13)) (-1790 (((-627 $) $) 29)) (-3562 (($ (-627 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-1477 (((-842) $) 11)) (-1328 (($ $) 16)) (-1314 (($ $) 17)) (-3233 (((-111) $) 36)) (-2292 (((-111) $ $) 6)) (-1383 (((-552) $) 15))) +(((-1079 |#1| |#2| |#3| |#4| |#5|) (-137) (-1076) (-1076) (-1076) (-1076) (-1076)) (T -1079)) +((-1651 (*1 *2 *1 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111)))) (-2836 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111)))) (-3233 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111)))) (-3631 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111)))) (-2563 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111)))) (-1891 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111)))) (-2170 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111)))) (-2305 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111)))) (-1790 (*1 *2 *1) (-12 (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-627 *1)) (-4 *1 (-1079 *3 *4 *5 *6 *7)))) (-2258 (*1 *2 *1) (-12 (-4 *1 (-1079 *2 *3 *4 *5 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076)))) (-2909 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *2 *4 *5 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076)))) (-2933 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *2 *5 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076)))) (-2103 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *2 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076)))) (-4301 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *2)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076)))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)))) (-3562 (*1 *1 *2) (-12 (-4 *1 (-1079 *2 *3 *4 *5 *6)) (-4 *2 (-1076)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)))) (-3562 (*1 *1 *2) (-12 (-4 *1 (-1079 *3 *2 *4 *5 *6)) (-4 *3 (-1076)) (-4 *2 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)))) (-3562 (*1 *1 *2) (-12 (-4 *1 (-1079 *3 *4 *2 *5 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *2 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)))) (-3562 (*1 *1 *2) (-12 (-4 *1 (-1079 *3 *4 *5 *2 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *2 (-1076)) (-4 *6 (-1076)))) (-3562 (*1 *1 *2) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *2)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076)))) (-1314 (*1 *1 *1) (-12 (-4 *1 (-1079 *2 *3 *4 *5 *6)) (-4 *2 (-1076)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)))) (-1328 (*1 *1 *1) (-12 (-4 *1 (-1079 *2 *3 *4 *5 *6)) (-4 *2 (-1076)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)))) (-1383 (*1 *2 *1) (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-552)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076))))) +(-13 (-1076) (-10 -8 (-15 -1651 ((-111) $ $)) (-15 -2836 ((-111) $)) (-15 -3233 ((-111) $)) (-15 -3631 ((-111) $)) (-15 -2043 ((-111) $)) (-15 -2563 ((-111) $)) (-15 -1891 ((-111) $)) (-15 -2170 ((-111) $)) (-15 -2305 ((-111) $)) (-15 -1790 ((-627 $) $)) (-15 -2258 (|t#1| $)) (-15 -2909 (|t#2| $)) (-15 -2933 (|t#3| $)) (-15 -2103 (|t#4| $)) (-15 -4301 (|t#5| $)) (-15 -3562 ($ (-627 $))) (-15 -3562 ($ |t#1|)) (-15 -3562 ($ |t#2|)) (-15 -3562 ($ |t#3|)) (-15 -3562 ($ |t#4|)) (-15 -3562 ($ |t#5|)) (-15 -1314 ($ $)) (-15 -1328 ($ $)) (-15 -1383 ((-552) $)) (-15 -1985 ($ $ (-552))) (-15 -1985 ($ $ (-627 (-552)))))) +(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-1891 (((-111) $) NIL)) (-2909 (((-1152) $) NIL)) (-2563 (((-111) $) NIL)) (-2258 (((-1134) $) NIL)) (-3631 (((-111) $) NIL)) (-2836 (((-111) $) NIL)) (-2043 (((-111) $) NIL)) (-1595 (((-1134) $) NIL)) (-2170 (((-111) $) NIL)) (-2933 (((-552) $) NIL)) (-1498 (((-1096) $) NIL)) (-2305 (((-111) $) NIL)) (-2103 (((-220) $) NIL)) (-4301 (((-842) $) NIL)) (-1651 (((-111) $ $) NIL)) (-1985 (($ $ (-552)) NIL) (($ $ (-627 (-552))) NIL)) (-1790 (((-627 $) $) NIL)) (-3562 (($ (-627 $)) NIL) (($ (-1134)) NIL) (($ (-1152)) NIL) (($ (-552)) NIL) (($ (-220)) NIL) (($ (-842)) NIL)) (-1477 (((-842) $) NIL)) (-1328 (($ $) NIL)) (-1314 (($ $) NIL)) (-3233 (((-111) $) NIL)) (-2292 (((-111) $ $) NIL)) (-1383 (((-552) $) NIL))) +(((-1080) (-1079 (-1134) (-1152) (-552) (-220) (-842))) (T -1080)) +NIL +(-1079 (-1134) (-1152) (-552) (-220) (-842)) +((-1465 (((-111) $ $) NIL)) (-1891 (((-111) $) 38)) (-2909 ((|#2| $) 42)) (-2563 (((-111) $) 37)) (-2258 ((|#1| $) 41)) (-3631 (((-111) $) 35)) (-2836 (((-111) $) 14)) (-2043 (((-111) $) 36)) (-1595 (((-1134) $) NIL)) (-2170 (((-111) $) 39)) (-2933 ((|#3| $) 44)) (-1498 (((-1096) $) NIL)) (-2305 (((-111) $) 40)) (-2103 ((|#4| $) 43)) (-4301 ((|#5| $) 45)) (-1651 (((-111) $ $) 34)) (-1985 (($ $ (-552)) 56) (($ $ (-627 (-552))) 58)) (-1790 (((-627 $) $) 22)) (-3562 (($ (-627 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-1477 (((-842) $) 23)) (-1328 (($ $) 21)) (-1314 (($ $) 52)) (-3233 (((-111) $) 18)) (-2292 (((-111) $ $) 33)) (-1383 (((-552) $) 54))) +(((-1081 |#1| |#2| |#3| |#4| |#5|) (-1079 |#1| |#2| |#3| |#4| |#5|) (-1076) (-1076) (-1076) (-1076) (-1076)) (T -1081)) +NIL +(-1079 |#1| |#2| |#3| |#4| |#5|) +((-2802 (((-1240) $) 23)) (-2459 (($ (-1152) (-428) |#2|) 11)) (-1477 (((-842) $) 16))) +(((-1082 |#1| |#2|) (-13 (-389) (-10 -8 (-15 -2459 ($ (-1152) (-428) |#2|)))) (-830) (-424 |#1|)) (T -1082)) +((-2459 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1152)) (-5 *3 (-428)) (-4 *5 (-830)) (-5 *1 (-1082 *5 *4)) (-4 *4 (-424 *5))))) +(-13 (-389) (-10 -8 (-15 -2459 ($ (-1152) (-428) |#2|)))) +((-3257 (((-111) |#5| |#5|) 38)) (-2172 (((-111) |#5| |#5|) 52)) (-1331 (((-111) |#5| (-627 |#5|)) 75) (((-111) |#5| |#5|) 61)) (-3701 (((-111) (-627 |#4|) (-627 |#4|)) 58)) (-1680 (((-111) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) 63)) (-3935 (((-1240)) 33)) (-4233 (((-1240) (-1134) (-1134) (-1134)) 29)) (-3115 (((-627 |#5|) (-627 |#5|)) 82)) (-1462 (((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)))) 80)) (-3155 (((-627 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|)))) (-627 |#4|) (-627 |#5|) (-111) (-111)) 102)) (-2506 (((-111) |#5| |#5|) 47)) (-2719 (((-3 (-111) "failed") |#5| |#5|) 71)) (-3306 (((-111) (-627 |#4|) (-627 |#4|)) 57)) (-3949 (((-111) (-627 |#4|) (-627 |#4|)) 59)) (-2654 (((-111) (-627 |#4|) (-627 |#4|)) 60)) (-1570 (((-3 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|))) "failed") (-627 |#4|) |#5| (-627 |#4|) (-111) (-111) (-111) (-111) (-111)) 98)) (-2937 (((-627 |#5|) (-627 |#5|)) 43))) +(((-1083 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4233 ((-1240) (-1134) (-1134) (-1134))) (-15 -3935 ((-1240))) (-15 -3257 ((-111) |#5| |#5|)) (-15 -2937 ((-627 |#5|) (-627 |#5|))) (-15 -2506 ((-111) |#5| |#5|)) (-15 -2172 ((-111) |#5| |#5|)) (-15 -3701 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -3306 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -3949 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -2654 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -2719 ((-3 (-111) "failed") |#5| |#5|)) (-15 -1331 ((-111) |#5| |#5|)) (-15 -1331 ((-111) |#5| (-627 |#5|))) (-15 -3115 ((-627 |#5|) (-627 |#5|))) (-15 -1680 ((-111) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)))) (-15 -1462 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) (-15 -3155 ((-627 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|)))) (-627 |#4|) (-627 |#5|) (-111) (-111))) (-15 -1570 ((-3 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|))) "failed") (-627 |#4|) |#5| (-627 |#4|) (-111) (-111) (-111) (-111) (-111)))) (-445) (-776) (-830) (-1042 |#1| |#2| |#3|) (-1048 |#1| |#2| |#3| |#4|)) (T -1083)) +((-1570 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *9 (-1042 *6 *7 *8)) (-5 *2 (-2 (|:| -1651 (-627 *9)) (|:| -3443 *4) (|:| |ineq| (-627 *9)))) (-5 *1 (-1083 *6 *7 *8 *9 *4)) (-5 *3 (-627 *9)) (-4 *4 (-1048 *6 *7 *8 *9)))) (-3155 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-627 *10)) (-5 *5 (-111)) (-4 *10 (-1048 *6 *7 *8 *9)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *9 (-1042 *6 *7 *8)) (-5 *2 (-627 (-2 (|:| -1651 (-627 *9)) (|:| -3443 *10) (|:| |ineq| (-627 *9))))) (-5 *1 (-1083 *6 *7 *8 *9 *10)) (-5 *3 (-627 *9)))) (-1462 (*1 *2 *2) (-12 (-5 *2 (-627 (-2 (|:| |val| (-627 *6)) (|:| -3443 *7)))) (-4 *6 (-1042 *3 *4 *5)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-1083 *3 *4 *5 *6 *7)))) (-1680 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-627 *7)) (|:| -3443 *8))) (-4 *7 (-1042 *4 *5 *6)) (-4 *8 (-1048 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5 *6 *7 *8)))) (-3115 (*1 *2 *2) (-12 (-5 *2 (-627 *7)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *1 (-1083 *3 *4 *5 *6 *7)))) (-1331 (*1 *2 *3 *4) (-12 (-5 *4 (-627 *3)) (-4 *3 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1083 *5 *6 *7 *8 *3)))) (-1331 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) (-2719 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) (-2654 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) (-3949 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) (-3306 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) (-3701 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) (-2172 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) (-2506 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) (-2937 (*1 *2 *2) (-12 (-5 *2 (-627 *7)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *1 (-1083 *3 *4 *5 *6 *7)))) (-3257 (*1 *2 *3 *3) (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) (-5 *1 (-1083 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) (-3935 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) (-5 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6)))) (-4233 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7))))) +(-10 -7 (-15 -4233 ((-1240) (-1134) (-1134) (-1134))) (-15 -3935 ((-1240))) (-15 -3257 ((-111) |#5| |#5|)) (-15 -2937 ((-627 |#5|) (-627 |#5|))) (-15 -2506 ((-111) |#5| |#5|)) (-15 -2172 ((-111) |#5| |#5|)) (-15 -3701 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -3306 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -3949 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -2654 ((-111) (-627 |#4|) (-627 |#4|))) (-15 -2719 ((-3 (-111) "failed") |#5| |#5|)) (-15 -1331 ((-111) |#5| |#5|)) (-15 -1331 ((-111) |#5| (-627 |#5|))) (-15 -3115 ((-627 |#5|) (-627 |#5|))) (-15 -1680 ((-111) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)))) (-15 -1462 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) (-15 -3155 ((-627 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|)))) (-627 |#4|) (-627 |#5|) (-111) (-111))) (-15 -1570 ((-3 (-2 (|:| -1651 (-627 |#4|)) (|:| -3443 |#5|) (|:| |ineq| (-627 |#4|))) "failed") (-627 |#4|) |#5| (-627 |#4|) (-111) (-111) (-111) (-111) (-111)))) +((-1982 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#5|) 96)) (-2841 (((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#4| |#4| |#5|) 72)) (-4304 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|) 91)) (-1308 (((-627 |#5|) |#4| |#5|) 110)) (-1699 (((-627 |#5|) |#4| |#5|) 117)) (-3961 (((-627 |#5|) |#4| |#5|) 118)) (-1618 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|) 97)) (-1994 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|) 116)) (-3270 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|) 46) (((-111) |#4| |#5|) 53)) (-1347 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#3| (-111)) 84) (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5| (-111) (-111)) 50)) (-2756 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|) 79)) (-4114 (((-1240)) 37)) (-2876 (((-1240)) 26)) (-2580 (((-1240) (-1134) (-1134) (-1134)) 33)) (-4325 (((-1240) (-1134) (-1134) (-1134)) 22))) +(((-1084 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4325 ((-1240) (-1134) (-1134) (-1134))) (-15 -2876 ((-1240))) (-15 -2580 ((-1240) (-1134) (-1134) (-1134))) (-15 -4114 ((-1240))) (-15 -2841 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -1347 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -1347 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#3| (-111))) (-15 -2756 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -4304 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -3270 ((-111) |#4| |#5|)) (-15 -1618 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|)) (-15 -1308 ((-627 |#5|) |#4| |#5|)) (-15 -1994 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|)) (-15 -1699 ((-627 |#5|) |#4| |#5|)) (-15 -3270 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|)) (-15 -3961 ((-627 |#5|) |#4| |#5|)) (-15 -1982 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#5|))) (-445) (-776) (-830) (-1042 |#1| |#2| |#3|) (-1048 |#1| |#2| |#3| |#4|)) (T -1084)) +((-1982 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-3961 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 *4)) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-3270 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-1699 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 *4)) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-1994 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-1308 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 *4)) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-1618 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-3270 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-111)) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-4304 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-2756 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-1347 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 (-2 (|:| |val| (-627 *8)) (|:| -3443 *9)))) (-5 *5 (-111)) (-4 *8 (-1042 *6 *7 *4)) (-4 *9 (-1048 *6 *7 *4 *8)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *4 (-830)) (-5 *2 (-627 (-2 (|:| |val| *8) (|:| -3443 *9)))) (-5 *1 (-1084 *6 *7 *4 *8 *9)))) (-1347 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *3 (-1042 *6 *7 *8)) (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) (-5 *1 (-1084 *6 *7 *8 *3 *4)) (-4 *4 (-1048 *6 *7 *8 *3)))) (-2841 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))) (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) (-4114 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) (-5 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6)))) (-2580 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) (-5 *1 (-1084 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) (-2876 (*1 *2) (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) (-5 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6)))) (-4325 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) (-5 *1 (-1084 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7))))) +(-10 -7 (-15 -4325 ((-1240) (-1134) (-1134) (-1134))) (-15 -2876 ((-1240))) (-15 -2580 ((-1240) (-1134) (-1134) (-1134))) (-15 -4114 ((-1240))) (-15 -2841 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -1347 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5| (-111) (-111))) (-15 -1347 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) |#3| (-111))) (-15 -2756 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -4304 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#4| |#5|)) (-15 -3270 ((-111) |#4| |#5|)) (-15 -1618 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|)) (-15 -1308 ((-627 |#5|) |#4| |#5|)) (-15 -1994 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|)) (-15 -1699 ((-627 |#5|) |#4| |#5|)) (-15 -3270 ((-627 (-2 (|:| |val| (-111)) (|:| -3443 |#5|))) |#4| |#5|)) (-15 -3961 ((-627 |#5|) |#4| |#5|)) (-15 -1982 ((-627 (-2 (|:| |val| |#4|) (|:| -3443 |#5|))) |#4| |#5|))) +((-1465 (((-111) $ $) 7)) (-1764 (((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 |#4|)))) (-627 |#4|)) 85)) (-1361 (((-627 $) (-627 |#4|)) 86) (((-627 $) (-627 |#4|) (-111)) 111)) (-1853 (((-627 |#3|) $) 33)) (-2730 (((-111) $) 26)) (-3648 (((-111) $) 17 (|has| |#1| (-544)))) (-3691 (((-111) |#4| $) 101) (((-111) $) 97)) (-1553 ((|#4| |#4| $) 92)) (-4014 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| $) 126)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) 27)) (-4031 (((-111) $ (-754)) 44)) (-2536 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4366))) (((-3 |#4| "failed") $ |#3|) 79)) (-3887 (($) 45 T CONST)) (-3569 (((-111) $) 22 (|has| |#1| (-544)))) (-2330 (((-111) $ $) 24 (|has| |#1| (-544)))) (-2165 (((-111) $ $) 23 (|has| |#1| (-544)))) (-3188 (((-111) $) 25 (|has| |#1| (-544)))) (-3238 (((-627 |#4|) (-627 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-4097 (((-627 |#4|) (-627 |#4|) $) 18 (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) 19 (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) 36)) (-1703 (($ (-627 |#4|)) 35)) (-3351 (((-3 $ "failed") $) 82)) (-4167 ((|#4| |#4| $) 89)) (-3370 (($ $) 68 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#4| $) 67 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-4104 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-2934 ((|#4| |#4| $) 87)) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4366))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2415 (((-2 (|:| -4267 (-627 |#4|)) (|:| -2849 (-627 |#4|))) $) 105)) (-3203 (((-111) |#4| $) 136)) (-2004 (((-111) |#4| $) 133)) (-2790 (((-111) |#4| $) 137) (((-111) $) 134)) (-3215 (((-627 |#4|) $) 52 (|has| $ (-6 -4366)))) (-3850 (((-111) |#4| $) 104) (((-111) $) 103)) (-4147 ((|#3| $) 34)) (-1602 (((-111) $ (-754)) 43)) (-3114 (((-627 |#4|) $) 53 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) 47)) (-4198 (((-627 |#3|) $) 32)) (-1927 (((-111) |#3| $) 31)) (-3971 (((-111) $ (-754)) 42)) (-1595 (((-1134) $) 9)) (-2661 (((-3 |#4| (-627 $)) |#4| |#4| $) 128)) (-4318 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| |#4| $) 127)) (-1294 (((-3 |#4| "failed") $) 83)) (-4314 (((-627 $) |#4| $) 129)) (-2338 (((-3 (-111) (-627 $)) |#4| $) 132)) (-3984 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3383 (((-627 $) |#4| $) 125) (((-627 $) (-627 |#4|) $) 124) (((-627 $) (-627 |#4|) (-627 $)) 123) (((-627 $) |#4| (-627 $)) 122)) (-1892 (($ |#4| $) 117) (($ (-627 |#4|) $) 116)) (-4122 (((-627 |#4|) $) 107)) (-2481 (((-111) |#4| $) 99) (((-111) $) 95)) (-3921 ((|#4| |#4| $) 90)) (-2654 (((-111) $ $) 110)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-2163 (((-111) |#4| $) 100) (((-111) $) 96)) (-4116 ((|#4| |#4| $) 91)) (-1498 (((-1096) $) 10)) (-3340 (((-3 |#4| "failed") $) 84)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3672 (((-3 $ "failed") $ |#4|) 78)) (-4168 (($ $ |#4|) 77) (((-627 $) |#4| $) 115) (((-627 $) |#4| (-627 $)) 114) (((-627 $) (-627 |#4|) $) 113) (((-627 $) (-627 |#4|) (-627 $)) 112)) (-3509 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) 38)) (-1275 (((-111) $) 41)) (-2373 (($) 40)) (-3567 (((-754) $) 106)) (-1509 (((-754) |#4| $) 54 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4366)))) (-2973 (($ $) 39)) (-3562 (((-528) $) 69 (|has| |#4| (-600 (-528))))) (-1490 (($ (-627 |#4|)) 60)) (-4237 (($ $ |#3|) 28)) (-2286 (($ $ |#3|) 30)) (-2462 (($ $) 88)) (-3911 (($ $ |#3|) 29)) (-1477 (((-842) $) 11) (((-627 |#4|) $) 37)) (-1641 (((-754) $) 76 (|has| |#3| (-362)))) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-2925 (((-111) $ (-1 (-111) |#4| (-627 |#4|))) 98)) (-2733 (((-627 $) |#4| $) 121) (((-627 $) |#4| (-627 $)) 120) (((-627 $) (-627 |#4|) $) 119) (((-627 $) (-627 |#4|) (-627 $)) 118)) (-3299 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4366)))) (-2199 (((-627 |#3|) $) 81)) (-3612 (((-111) |#4| $) 135)) (-3528 (((-111) |#3| $) 80)) (-2292 (((-111) $ $) 6)) (-1383 (((-754) $) 46 (|has| $ (-6 -4366))))) +(((-1085 |#1| |#2| |#3| |#4|) (-137) (-445) (-776) (-830) (-1042 |t#1| |t#2| |t#3|)) (T -1085)) +NIL +(-13 (-1048 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-101) . T) ((-599 (-627 |#4|)) . T) ((-599 (-842)) . T) ((-148 |#4|) . T) ((-600 (-528)) |has| |#4| (-600 (-528))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-482 |#4|) . T) ((-506 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-955 |#1| |#2| |#3| |#4|) . T) ((-1048 |#1| |#2| |#3| |#4|) . T) ((-1076) . T) ((-1182 |#1| |#2| |#3| |#4|) . T) ((-1189) . T)) +((-3077 (((-627 (-552)) (-552) (-552) (-552)) 22)) (-1647 (((-627 (-552)) (-552) (-552) (-552)) 12)) (-1877 (((-627 (-552)) (-552) (-552) (-552)) 18)) (-2082 (((-552) (-552) (-552)) 9)) (-4163 (((-1235 (-552)) (-627 (-552)) (-1235 (-552)) (-552)) 46) (((-1235 (-552)) (-1235 (-552)) (-1235 (-552)) (-552)) 41)) (-2759 (((-627 (-552)) (-627 (-552)) (-627 (-552)) (-111)) 28)) (-2374 (((-671 (-552)) (-627 (-552)) (-627 (-552)) (-671 (-552))) 45)) (-3149 (((-671 (-552)) (-627 (-552)) (-627 (-552))) 33)) (-2115 (((-627 (-671 (-552))) (-627 (-552))) 35)) (-2333 (((-627 (-552)) (-627 (-552)) (-627 (-552)) (-671 (-552))) 49)) (-3708 (((-671 (-552)) (-627 (-552)) (-627 (-552)) (-627 (-552))) 57))) +(((-1086) (-10 -7 (-15 -3708 ((-671 (-552)) (-627 (-552)) (-627 (-552)) (-627 (-552)))) (-15 -2333 ((-627 (-552)) (-627 (-552)) (-627 (-552)) (-671 (-552)))) (-15 -2115 ((-627 (-671 (-552))) (-627 (-552)))) (-15 -3149 ((-671 (-552)) (-627 (-552)) (-627 (-552)))) (-15 -2374 ((-671 (-552)) (-627 (-552)) (-627 (-552)) (-671 (-552)))) (-15 -2759 ((-627 (-552)) (-627 (-552)) (-627 (-552)) (-111))) (-15 -4163 ((-1235 (-552)) (-1235 (-552)) (-1235 (-552)) (-552))) (-15 -4163 ((-1235 (-552)) (-627 (-552)) (-1235 (-552)) (-552))) (-15 -2082 ((-552) (-552) (-552))) (-15 -1877 ((-627 (-552)) (-552) (-552) (-552))) (-15 -1647 ((-627 (-552)) (-552) (-552) (-552))) (-15 -3077 ((-627 (-552)) (-552) (-552) (-552))))) (T -1086)) +((-3077 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-1086)) (-5 *3 (-552)))) (-1647 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-1086)) (-5 *3 (-552)))) (-1877 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-1086)) (-5 *3 (-552)))) (-2082 (*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1086)))) (-4163 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1235 (-552))) (-5 *3 (-627 (-552))) (-5 *4 (-552)) (-5 *1 (-1086)))) (-4163 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1235 (-552))) (-5 *3 (-552)) (-5 *1 (-1086)))) (-2759 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-627 (-552))) (-5 *3 (-111)) (-5 *1 (-1086)))) (-2374 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-671 (-552))) (-5 *3 (-627 (-552))) (-5 *1 (-1086)))) (-3149 (*1 *2 *3 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-671 (-552))) (-5 *1 (-1086)))) (-2115 (*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-627 (-671 (-552)))) (-5 *1 (-1086)))) (-2333 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-627 (-552))) (-5 *3 (-671 (-552))) (-5 *1 (-1086)))) (-3708 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-671 (-552))) (-5 *1 (-1086))))) +(-10 -7 (-15 -3708 ((-671 (-552)) (-627 (-552)) (-627 (-552)) (-627 (-552)))) (-15 -2333 ((-627 (-552)) (-627 (-552)) (-627 (-552)) (-671 (-552)))) (-15 -2115 ((-627 (-671 (-552))) (-627 (-552)))) (-15 -3149 ((-671 (-552)) (-627 (-552)) (-627 (-552)))) (-15 -2374 ((-671 (-552)) (-627 (-552)) (-627 (-552)) (-671 (-552)))) (-15 -2759 ((-627 (-552)) (-627 (-552)) (-627 (-552)) (-111))) (-15 -4163 ((-1235 (-552)) (-1235 (-552)) (-1235 (-552)) (-552))) (-15 -4163 ((-1235 (-552)) (-627 (-552)) (-1235 (-552)) (-552))) (-15 -2082 ((-552) (-552) (-552))) (-15 -1877 ((-627 (-552)) (-552) (-552) (-552))) (-15 -1647 ((-627 (-552)) (-552) (-552) (-552))) (-15 -3077 ((-627 (-552)) (-552) (-552) (-552)))) +((** (($ $ (-900)) 10))) +(((-1087 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-900)))) (-1088)) (T -1087)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-900)))) +((-1465 (((-111) $ $) 7)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 6)) (** (($ $ (-900)) 13)) (* (($ $ $) 14))) +(((-1088) (-137)) (T -1088)) +((* (*1 *1 *1 *1) (-4 *1 (-1088))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1088)) (-5 *2 (-900))))) +(-13 (-1076) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-900))))) +(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL (|has| |#3| (-1076)))) (-3024 (((-111) $) NIL (|has| |#3| (-129)))) (-3969 (($ (-900)) NIL (|has| |#3| (-1028)))) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-2796 (($ $ $) NIL (|has| |#3| (-776)))) (-4136 (((-3 $ "failed") $ $) NIL (|has| |#3| (-129)))) (-4031 (((-111) $ (-754)) NIL)) (-3307 (((-754)) NIL (|has| |#3| (-362)))) (-2422 (((-552) $) NIL (|has| |#3| (-828)))) (-2950 ((|#3| $ (-552) |#3|) NIL (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (-12 (|has| |#3| (-1017 (-552))) (|has| |#3| (-1076)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| |#3| (-1017 (-401 (-552)))) (|has| |#3| (-1076)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1076)))) (-1703 (((-552) $) NIL (-12 (|has| |#3| (-1017 (-552))) (|has| |#3| (-1076)))) (((-401 (-552)) $) NIL (-12 (|has| |#3| (-1017 (-401 (-552)))) (|has| |#3| (-1076)))) ((|#3| $) NIL (|has| |#3| (-1076)))) (-1800 (((-671 (-552)) (-671 $)) NIL (-12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (-12 (|has| |#3| (-623 (-552))) (|has| |#3| (-1028)))) (((-2 (|:| -2515 (-671 |#3|)) (|:| |vec| (-1235 |#3|))) (-671 $) (-1235 $)) NIL (|has| |#3| (-1028))) (((-671 |#3|) (-671 $)) NIL (|has| |#3| (-1028)))) (-2040 (((-3 $ "failed") $) NIL (|has| |#3| (-709)))) (-1279 (($) NIL (|has| |#3| (-362)))) (-3473 ((|#3| $ (-552) |#3|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#3| $ (-552)) 12)) (-2983 (((-111) $) NIL (|has| |#3| (-828)))) (-3215 (((-627 |#3|) $) NIL (|has| $ (-6 -4366)))) (-2624 (((-111) $) NIL (|has| |#3| (-709)))) (-1508 (((-111) $) NIL (|has| |#3| (-828)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-3114 (((-627 |#3|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#3| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-3463 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#3| |#3|) $) NIL)) (-2886 (((-900) $) NIL (|has| |#3| (-362)))) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#3| (-1076)))) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-4153 (($ (-900)) NIL (|has| |#3| (-362)))) (-1498 (((-1096) $) NIL (|has| |#3| (-1076)))) (-3340 ((|#3| $) NIL (|has| (-552) (-830)))) (-1942 (($ $ |#3|) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#3|))) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ (-288 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076)))) (($ $ (-627 |#3|) (-627 |#3|)) NIL (-12 (|has| |#3| (-303 |#3|)) (|has| |#3| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#3| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#3| (-1076))))) (-2083 (((-627 |#3|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#3| $ (-552) |#3|) NIL) ((|#3| $ (-552)) NIL)) (-2395 ((|#3| $ $) NIL (|has| |#3| (-1028)))) (-1767 (($ (-1235 |#3|)) NIL)) (-2405 (((-132)) NIL (|has| |#3| (-357)))) (-2942 (($ $) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-1 |#3| |#3|) (-754)) NIL (|has| |#3| (-1028))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1028)))) (-1509 (((-754) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4366))) (((-754) |#3| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#3| (-1076))))) (-2973 (($ $) NIL)) (-1477 (((-1235 |#3|) $) NIL) (($ (-552)) NIL (-1559 (-12 (|has| |#3| (-1017 (-552))) (|has| |#3| (-1076))) (|has| |#3| (-1028)))) (($ (-401 (-552))) NIL (-12 (|has| |#3| (-1017 (-401 (-552)))) (|has| |#3| (-1076)))) (($ |#3|) NIL (|has| |#3| (-1076))) (((-842) $) NIL (|has| |#3| (-599 (-842))))) (-3995 (((-754)) NIL (|has| |#3| (-1028)))) (-3299 (((-111) (-1 (-111) |#3|) $) NIL (|has| $ (-6 -4366)))) (-3329 (($ $) NIL (|has| |#3| (-828)))) (-1922 (($) NIL (|has| |#3| (-129)) CONST)) (-1933 (($) NIL (|has| |#3| (-709)) CONST)) (-4251 (($ $) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1028)))) (($ $ (-754)) NIL (-12 (|has| |#3| (-228)) (|has| |#3| (-1028)))) (($ $ (-1152)) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#3| (-879 (-1152))) (|has| |#3| (-1028)))) (($ $ (-1 |#3| |#3|) (-754)) NIL (|has| |#3| (-1028))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1028)))) (-2351 (((-111) $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-2329 (((-111) $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-2292 (((-111) $ $) NIL (|has| |#3| (-1076)))) (-2340 (((-111) $ $) NIL (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-2316 (((-111) $ $) 17 (-1559 (|has| |#3| (-776)) (|has| |#3| (-828))))) (-2407 (($ $ |#3|) NIL (|has| |#3| (-357)))) (-2396 (($ $ $) NIL (|has| |#3| (-1028))) (($ $) NIL (|has| |#3| (-1028)))) (-2384 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-754)) NIL (|has| |#3| (-709))) (($ $ (-900)) NIL (|has| |#3| (-709)))) (* (($ (-552) $) NIL (|has| |#3| (-1028))) (($ $ $) NIL (|has| |#3| (-709))) (($ $ |#3|) NIL (|has| |#3| (-709))) (($ |#3| $) NIL (|has| |#3| (-709))) (($ (-754) $) NIL (|has| |#3| (-129))) (($ (-900) $) NIL (|has| |#3| (-25)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-1089 |#1| |#2| |#3|) (-233 |#1| |#3|) (-754) (-754) (-776)) (T -1089)) +NIL +(-233 |#1| |#3|) +((-2553 (((-627 (-1208 |#2| |#1|)) (-1208 |#2| |#1|) (-1208 |#2| |#1|)) 37)) (-3582 (((-552) (-1208 |#2| |#1|)) 69 (|has| |#1| (-445)))) (-2480 (((-552) (-1208 |#2| |#1|)) 54)) (-2196 (((-627 (-1208 |#2| |#1|)) (-1208 |#2| |#1|) (-1208 |#2| |#1|)) 45)) (-2037 (((-552) (-1208 |#2| |#1|) (-1208 |#2| |#1|)) 68 (|has| |#1| (-445)))) (-2440 (((-627 |#1|) (-1208 |#2| |#1|) (-1208 |#2| |#1|)) 48)) (-4140 (((-552) (-1208 |#2| |#1|) (-1208 |#2| |#1|)) 53))) +(((-1090 |#1| |#2|) (-10 -7 (-15 -2553 ((-627 (-1208 |#2| |#1|)) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -2196 ((-627 (-1208 |#2| |#1|)) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -2440 ((-627 |#1|) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -4140 ((-552) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -2480 ((-552) (-1208 |#2| |#1|))) (IF (|has| |#1| (-445)) (PROGN (-15 -2037 ((-552) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -3582 ((-552) (-1208 |#2| |#1|)))) |%noBranch|)) (-803) (-1152)) (T -1090)) +((-3582 (*1 *2 *3) (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-445)) (-4 *4 (-803)) (-14 *5 (-1152)) (-5 *2 (-552)) (-5 *1 (-1090 *4 *5)))) (-2037 (*1 *2 *3 *3) (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-445)) (-4 *4 (-803)) (-14 *5 (-1152)) (-5 *2 (-552)) (-5 *1 (-1090 *4 *5)))) (-2480 (*1 *2 *3) (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-803)) (-14 *5 (-1152)) (-5 *2 (-552)) (-5 *1 (-1090 *4 *5)))) (-4140 (*1 *2 *3 *3) (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-803)) (-14 *5 (-1152)) (-5 *2 (-552)) (-5 *1 (-1090 *4 *5)))) (-2440 (*1 *2 *3 *3) (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-803)) (-14 *5 (-1152)) (-5 *2 (-627 *4)) (-5 *1 (-1090 *4 *5)))) (-2196 (*1 *2 *3 *3) (-12 (-4 *4 (-803)) (-14 *5 (-1152)) (-5 *2 (-627 (-1208 *5 *4))) (-5 *1 (-1090 *4 *5)) (-5 *3 (-1208 *5 *4)))) (-2553 (*1 *2 *3 *3) (-12 (-4 *4 (-803)) (-14 *5 (-1152)) (-5 *2 (-627 (-1208 *5 *4))) (-5 *1 (-1090 *4 *5)) (-5 *3 (-1208 *5 *4))))) +(-10 -7 (-15 -2553 ((-627 (-1208 |#2| |#1|)) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -2196 ((-627 (-1208 |#2| |#1|)) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -2440 ((-627 |#1|) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -4140 ((-552) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -2480 ((-552) (-1208 |#2| |#1|))) (IF (|has| |#1| (-445)) (PROGN (-15 -2037 ((-552) (-1208 |#2| |#1|) (-1208 |#2| |#1|))) (-15 -3582 ((-552) (-1208 |#2| |#1|)))) |%noBranch|)) +((-1465 (((-111) $ $) NIL)) (-4144 (($ (-498) (-1094)) 14)) (-4199 (((-1094) $) 20)) (-3112 (((-498) $) 17)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 28) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) +(((-1091) (-13 (-1059) (-10 -8 (-15 -4144 ($ (-498) (-1094))) (-15 -3112 ((-498) $)) (-15 -4199 ((-1094) $))))) (T -1091)) +((-4144 (*1 *1 *2 *3) (-12 (-5 *2 (-498)) (-5 *3 (-1094)) (-5 *1 (-1091)))) (-3112 (*1 *2 *1) (-12 (-5 *2 (-498)) (-5 *1 (-1091)))) (-4199 (*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1091))))) +(-13 (-1059) (-10 -8 (-15 -4144 ($ (-498) (-1094))) (-15 -3112 ((-498) $)) (-15 -4199 ((-1094) $)))) +((-2422 (((-3 (-552) "failed") |#2| (-1152) |#2| (-1134)) 17) (((-3 (-552) "failed") |#2| (-1152) (-823 |#2|)) 15) (((-3 (-552) "failed") |#2|) 54))) +(((-1092 |#1| |#2|) (-10 -7 (-15 -2422 ((-3 (-552) "failed") |#2|)) (-15 -2422 ((-3 (-552) "failed") |#2| (-1152) (-823 |#2|))) (-15 -2422 ((-3 (-552) "failed") |#2| (-1152) |#2| (-1134)))) (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)) (-445)) (-13 (-27) (-1174) (-424 |#1|))) (T -1092)) +((-2422 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-1134)) (-4 *6 (-13 (-544) (-830) (-1017 *2) (-623 *2) (-445))) (-5 *2 (-552)) (-5 *1 (-1092 *6 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *6))))) (-2422 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-823 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *6))) (-4 *6 (-13 (-544) (-830) (-1017 *2) (-623 *2) (-445))) (-5 *2 (-552)) (-5 *1 (-1092 *6 *3)))) (-2422 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-544) (-830) (-1017 *2) (-623 *2) (-445))) (-5 *2 (-552)) (-5 *1 (-1092 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *4)))))) +(-10 -7 (-15 -2422 ((-3 (-552) "failed") |#2|)) (-15 -2422 ((-3 (-552) "failed") |#2| (-1152) (-823 |#2|))) (-15 -2422 ((-3 (-552) "failed") |#2| (-1152) |#2| (-1134)))) +((-2422 (((-3 (-552) "failed") (-401 (-931 |#1|)) (-1152) (-401 (-931 |#1|)) (-1134)) 35) (((-3 (-552) "failed") (-401 (-931 |#1|)) (-1152) (-823 (-401 (-931 |#1|)))) 30) (((-3 (-552) "failed") (-401 (-931 |#1|))) 13))) +(((-1093 |#1|) (-10 -7 (-15 -2422 ((-3 (-552) "failed") (-401 (-931 |#1|)))) (-15 -2422 ((-3 (-552) "failed") (-401 (-931 |#1|)) (-1152) (-823 (-401 (-931 |#1|))))) (-15 -2422 ((-3 (-552) "failed") (-401 (-931 |#1|)) (-1152) (-401 (-931 |#1|)) (-1134)))) (-445)) (T -1093)) +((-2422 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-401 (-931 *6))) (-5 *4 (-1152)) (-5 *5 (-1134)) (-4 *6 (-445)) (-5 *2 (-552)) (-5 *1 (-1093 *6)))) (-2422 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-823 (-401 (-931 *6)))) (-5 *3 (-401 (-931 *6))) (-4 *6 (-445)) (-5 *2 (-552)) (-5 *1 (-1093 *6)))) (-2422 (*1 *2 *3) (|partial| -12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-445)) (-5 *2 (-552)) (-5 *1 (-1093 *4))))) +(-10 -7 (-15 -2422 ((-3 (-552) "failed") (-401 (-931 |#1|)))) (-15 -2422 ((-3 (-552) "failed") (-401 (-931 |#1|)) (-1152) (-823 (-401 (-931 |#1|))))) (-15 -2422 ((-3 (-552) "failed") (-401 (-931 |#1|)) (-1152) (-401 (-931 |#1|)) (-1134)))) +((-1465 (((-111) $ $) NIL)) (-2816 (((-1157) $) 10)) (-3901 (((-627 (-1157)) $) 11)) (-4199 (($ (-627 (-1157)) (-1157)) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 20)) (-2292 (((-111) $ $) 14))) +(((-1094) (-13 (-1076) (-10 -8 (-15 -4199 ($ (-627 (-1157)) (-1157))) (-15 -2816 ((-1157) $)) (-15 -3901 ((-627 (-1157)) $))))) (T -1094)) +((-4199 (*1 *1 *2 *3) (-12 (-5 *2 (-627 (-1157))) (-5 *3 (-1157)) (-5 *1 (-1094)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1094)))) (-3901 (*1 *2 *1) (-12 (-5 *2 (-627 (-1157))) (-5 *1 (-1094))))) +(-13 (-1076) (-10 -8 (-15 -4199 ($ (-627 (-1157)) (-1157))) (-15 -2816 ((-1157) $)) (-15 -3901 ((-627 (-1157)) $)))) +((-2380 (((-310 (-552)) (-48)) 12))) +(((-1095) (-10 -7 (-15 -2380 ((-310 (-552)) (-48))))) (T -1095)) +((-2380 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-310 (-552))) (-5 *1 (-1095))))) +(-10 -7 (-15 -2380 ((-310 (-552)) (-48)))) +((-1465 (((-111) $ $) NIL)) (-2831 (($ $) 41)) (-3024 (((-111) $) 65)) (-2543 (($ $ $) 48)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 86)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-2002 (($ $ $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3633 (($ $ $ $) 75)) (-4014 (($ $) NIL)) (-2487 (((-412 $) $) NIL)) (-4224 (((-111) $ $) NIL)) (-2422 (((-552) $) NIL)) (-1452 (($ $ $) 72)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL)) (-1703 (((-552) $) NIL)) (-2813 (($ $ $) 59)) (-1800 (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 80) (((-671 (-552)) (-671 $)) 28)) (-2040 (((-3 $ "failed") $) NIL)) (-2859 (((-3 (-401 (-552)) "failed") $) NIL)) (-4229 (((-111) $) NIL)) (-2411 (((-401 (-552)) $) NIL)) (-1279 (($) 83) (($ $) 84)) (-2789 (($ $ $) 58)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL)) (-1633 (((-111) $) NIL)) (-3428 (($ $ $ $) NIL)) (-3537 (($ $ $) 81)) (-2983 (((-111) $) NIL)) (-1868 (($ $ $) NIL)) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL)) (-2624 (((-111) $) 66)) (-1394 (((-111) $) 64)) (-1681 (($ $) 42)) (-4317 (((-3 $ "failed") $) NIL)) (-1508 (((-111) $) 76)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1969 (($ $ $ $) 73)) (-1816 (($ $ $) 68) (($) 39)) (-4093 (($ $ $) 67) (($) 38)) (-4117 (($ $) NIL)) (-3593 (($ $) 71)) (-1276 (($ $ $) NIL) (($ (-627 $)) NIL)) (-1595 (((-1134) $) NIL)) (-3556 (($ $ $) NIL)) (-3002 (($) NIL T CONST)) (-3445 (($ $) 50)) (-1498 (((-1096) $) 70)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL)) (-1323 (($ $ $) 62) (($ (-627 $)) NIL)) (-2610 (($ $) NIL)) (-1727 (((-412 $) $) NIL)) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL)) (-2761 (((-3 $ "failed") $ $) NIL)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL)) (-1507 (((-111) $) NIL)) (-2718 (((-754) $) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 61)) (-2942 (($ $ (-754)) NIL) (($ $) NIL)) (-1313 (($ $) 51)) (-2973 (($ $) NIL)) (-3562 (((-552) $) 32) (((-528) $) NIL) (((-871 (-552)) $) NIL) (((-373) $) NIL) (((-220) $) NIL)) (-1477 (((-842) $) 31) (($ (-552)) 82) (($ $) NIL) (($ (-552)) 82)) (-3995 (((-754)) NIL)) (-3240 (((-111) $ $) NIL)) (-3697 (($ $ $) NIL)) (-2705 (($) 37)) (-3778 (((-111) $ $) NIL)) (-2166 (($ $ $ $) 74)) (-3329 (($ $) 63)) (-1872 (($ $ $) 44)) (-1922 (($) 35 T CONST)) (-2132 (($ $ $) 47)) (-1933 (($) 36 T CONST)) (-4157 (((-1134) $) 21) (((-1134) $ (-111)) 23) (((-1240) (-805) $) 24) (((-1240) (-805) $ (-111)) 25)) (-2142 (($ $) 45)) (-4251 (($ $ (-754)) NIL) (($ $) NIL)) (-2121 (($ $ $) 46)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 40)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 49)) (-1861 (($ $ $) 43)) (-2396 (($ $) 52) (($ $ $) 54)) (-2384 (($ $ $) 53)) (** (($ $ (-900)) NIL) (($ $ (-754)) 57)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 34) (($ $ $) 55))) +(((-1096) (-13 (-537) (-643) (-811) (-10 -8 (-6 -4353) (-6 -4358) (-6 -4354) (-15 -4093 ($)) (-15 -1816 ($)) (-15 -1681 ($ $)) (-15 -2831 ($ $)) (-15 -1861 ($ $ $)) (-15 -1872 ($ $ $)) (-15 -2543 ($ $ $)) (-15 -2142 ($ $)) (-15 -2121 ($ $ $)) (-15 -2132 ($ $ $))))) (T -1096)) +((-1872 (*1 *1 *1 *1) (-5 *1 (-1096))) (-1861 (*1 *1 *1 *1) (-5 *1 (-1096))) (-2831 (*1 *1 *1) (-5 *1 (-1096))) (-4093 (*1 *1) (-5 *1 (-1096))) (-1816 (*1 *1) (-5 *1 (-1096))) (-1681 (*1 *1 *1) (-5 *1 (-1096))) (-2543 (*1 *1 *1 *1) (-5 *1 (-1096))) (-2142 (*1 *1 *1) (-5 *1 (-1096))) (-2121 (*1 *1 *1 *1) (-5 *1 (-1096))) (-2132 (*1 *1 *1 *1) (-5 *1 (-1096)))) +(-13 (-537) (-643) (-811) (-10 -8 (-6 -4353) (-6 -4358) (-6 -4354) (-15 -4093 ($)) (-15 -1816 ($)) (-15 -1681 ($ $)) (-15 -2831 ($ $)) (-15 -1861 ($ $ $)) (-15 -1872 ($ $ $)) (-15 -2543 ($ $ $)) (-15 -2142 ($ $)) (-15 -2121 ($ $ $)) (-15 -2132 ($ $ $)))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-2240 ((|#1| $) 44)) (-4031 (((-111) $ (-754)) 8)) (-3887 (($) 7 T CONST)) (-3468 ((|#1| |#1| $) 46)) (-3846 ((|#1| $) 45)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-4165 ((|#1| $) 39)) (-3954 (($ |#1| $) 40)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-4133 ((|#1| $) 41)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-4170 (((-754) $) 43)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) 42)) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-1097 |#1|) (-137) (-1189)) (T -1097)) +((-3468 (*1 *2 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1189)))) (-3846 (*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1189)))) (-2240 (*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1189)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1189)) (-5 *2 (-754))))) +(-13 (-106 |t#1|) (-10 -8 (-6 -4366) (-15 -3468 (|t#1| |t#1| $)) (-15 -3846 (|t#1| $)) (-15 -2240 (|t#1| $)) (-15 -4170 ((-754) $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) +((-3385 ((|#3| $) 76)) (-4039 (((-3 (-552) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-1703 (((-552) $) NIL) (((-401 (-552)) $) NIL) ((|#3| $) 37)) (-1800 (((-671 (-552)) (-671 $)) NIL) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL) (((-2 (|:| -2515 (-671 |#3|)) (|:| |vec| (-1235 |#3|))) (-671 $) (-1235 $)) 73) (((-671 |#3|) (-671 $)) 65)) (-2942 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152)) NIL) (($ $ (-754)) NIL) (($ $) NIL)) (-3877 ((|#3| $) 78)) (-2372 ((|#4| $) 32)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ (-401 (-552))) NIL) (($ |#3|) 16)) (** (($ $ (-900)) NIL) (($ $ (-754)) 15) (($ $ (-552)) 82))) +(((-1098 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-552))) (-15 -3877 (|#3| |#1|)) (-15 -3385 (|#3| |#1|)) (-15 -2372 (|#4| |#1|)) (-15 -1800 ((-671 |#3|) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#3|)) (|:| |vec| (-1235 |#3|))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -1703 (|#3| |#1|)) (-15 -4039 ((-3 |#3| "failed") |#1|)) (-15 -1477 (|#1| |#3|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1 |#3| |#3|) (-754))) (-15 -2942 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1477 (|#1| (-552))) (-15 ** (|#1| |#1| (-754))) (-15 ** (|#1| |#1| (-900))) (-15 -1477 ((-842) |#1|))) (-1099 |#2| |#3| |#4| |#5|) (-754) (-1028) (-233 |#2| |#3|) (-233 |#2| |#3|)) (T -1098)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-552))) (-15 -3877 (|#3| |#1|)) (-15 -3385 (|#3| |#1|)) (-15 -2372 (|#4| |#1|)) (-15 -1800 ((-671 |#3|) (-671 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 |#3|)) (|:| |vec| (-1235 |#3|))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 |#1|) (-1235 |#1|))) (-15 -1800 ((-671 (-552)) (-671 |#1|))) (-15 -1703 (|#3| |#1|)) (-15 -4039 ((-3 |#3| "failed") |#1|)) (-15 -1477 (|#1| |#3|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-552) |#1|)) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1 |#3| |#3|) (-754))) (-15 -2942 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1477 (|#1| (-552))) (-15 ** (|#1| |#1| (-754))) (-15 ** (|#1| |#1| (-900))) (-15 -1477 ((-842) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3385 ((|#2| $) 70)) (-2311 (((-111) $) 110)) (-4136 (((-3 $ "failed") $ $) 19)) (-3944 (((-111) $) 108)) (-4031 (((-111) $ (-754)) 100)) (-1665 (($ |#2|) 73)) (-3887 (($) 17 T CONST)) (-1472 (($ $) 127 (|has| |#2| (-301)))) (-3884 ((|#3| $ (-552)) 122)) (-4039 (((-3 (-552) "failed") $) 84 (|has| |#2| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) 82 (|has| |#2| (-1017 (-401 (-552))))) (((-3 |#2| "failed") $) 79)) (-1703 (((-552) $) 85 (|has| |#2| (-1017 (-552)))) (((-401 (-552)) $) 83 (|has| |#2| (-1017 (-401 (-552))))) ((|#2| $) 78)) (-1800 (((-671 (-552)) (-671 $)) 77 (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 76 (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) 75) (((-671 |#2|) (-671 $)) 74)) (-2040 (((-3 $ "failed") $) 32)) (-4154 (((-754) $) 128 (|has| |#2| (-544)))) (-3413 ((|#2| $ (-552) (-552)) 120)) (-3215 (((-627 |#2|) $) 93 (|has| $ (-6 -4366)))) (-2624 (((-111) $) 30)) (-1610 (((-754) $) 129 (|has| |#2| (-544)))) (-2960 (((-627 |#4|) $) 130 (|has| |#2| (-544)))) (-3560 (((-754) $) 116)) (-3572 (((-754) $) 117)) (-1602 (((-111) $ (-754)) 101)) (-1744 ((|#2| $) 65 (|has| |#2| (-6 (-4368 "*"))))) (-4083 (((-552) $) 112)) (-3511 (((-552) $) 114)) (-3114 (((-627 |#2|) $) 92 (|has| $ (-6 -4366)))) (-3082 (((-111) |#2| $) 90 (-12 (|has| |#2| (-1076)) (|has| $ (-6 -4366))))) (-3479 (((-552) $) 113)) (-2780 (((-552) $) 115)) (-4176 (($ (-627 (-627 |#2|))) 107)) (-3463 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-3127 (((-627 (-627 |#2|)) $) 118)) (-3971 (((-111) $ (-754)) 102)) (-1595 (((-1134) $) 9)) (-2952 (((-3 $ "failed") $) 64 (|has| |#2| (-357)))) (-1498 (((-1096) $) 10)) (-2761 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-544)))) (-3509 (((-111) (-1 (-111) |#2|) $) 95 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#2|))) 89 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) 88 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) 86 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) 106)) (-1275 (((-111) $) 103)) (-2373 (($) 104)) (-1985 ((|#2| $ (-552) (-552) |#2|) 121) ((|#2| $ (-552) (-552)) 119)) (-2942 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-754)) 49) (($ $ (-627 (-1152)) (-627 (-754))) 42 (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) 41 (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) 40 (|has| |#2| (-879 (-1152)))) (($ $ (-1152)) 39 (|has| |#2| (-879 (-1152)))) (($ $ (-754)) 37 (|has| |#2| (-228))) (($ $) 35 (|has| |#2| (-228)))) (-3877 ((|#2| $) 69)) (-3202 (($ (-627 |#2|)) 72)) (-4064 (((-111) $) 109)) (-2372 ((|#3| $) 71)) (-1530 ((|#2| $) 66 (|has| |#2| (-6 (-4368 "*"))))) (-1509 (((-754) (-1 (-111) |#2|) $) 94 (|has| $ (-6 -4366))) (((-754) |#2| $) 91 (-12 (|has| |#2| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 105)) (-2152 ((|#4| $ (-552)) 123)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 81 (|has| |#2| (-1017 (-401 (-552))))) (($ |#2|) 80)) (-3995 (((-754)) 28)) (-3299 (((-111) (-1 (-111) |#2|) $) 96 (|has| $ (-6 -4366)))) (-3847 (((-111) $) 111)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-754)) 47) (($ $ (-627 (-1152)) (-627 (-754))) 46 (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) 45 (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) 44 (|has| |#2| (-879 (-1152)))) (($ $ (-1152)) 43 (|has| |#2| (-879 (-1152)))) (($ $ (-754)) 38 (|has| |#2| (-228))) (($ $) 36 (|has| |#2| (-228)))) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#2|) 126 (|has| |#2| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 63 (|has| |#2| (-357)))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-1383 (((-754) $) 99 (|has| $ (-6 -4366))))) +(((-1099 |#1| |#2| |#3| |#4|) (-137) (-754) (-1028) (-233 |t#1| |t#2|) (-233 |t#1| |t#2|)) (T -1099)) +((-1665 (*1 *1 *2) (-12 (-4 *2 (-1028)) (-4 *1 (-1099 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) (-4 *5 (-233 *3 *2)))) (-3202 (*1 *1 *2) (-12 (-5 *2 (-627 *4)) (-4 *4 (-1028)) (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *3 *4)))) (-2372 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *2 *5)) (-4 *4 (-1028)) (-4 *5 (-233 *3 *4)) (-4 *2 (-233 *3 *4)))) (-3385 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) (-4 *5 (-233 *3 *2)) (-4 *2 (-1028)))) (-3877 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) (-4 *5 (-233 *3 *2)) (-4 *2 (-1028)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *4 (-1028)) (-4 *5 (-233 *3 *4)) (-4 *2 (-233 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *2 *5)) (-4 *4 (-1028)) (-4 *2 (-233 *3 *4)) (-4 *5 (-233 *3 *4)))) (-1530 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) (-4 *5 (-233 *3 *2)) (|has| *2 (-6 (-4368 "*"))) (-4 *2 (-1028)))) (-1744 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) (-4 *5 (-233 *3 *2)) (|has| *2 (-6 (-4368 "*"))) (-4 *2 (-1028)))) (-2952 (*1 *1 *1) (|partial| -12 (-4 *1 (-1099 *2 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-233 *2 *3)) (-4 *5 (-233 *2 *3)) (-4 *3 (-357)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *4 (-1028)) (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *3 *4)) (-4 *4 (-357))))) +(-13 (-226 |t#2|) (-110 |t#2| |t#2|) (-1031 |t#1| |t#1| |t#2| |t#3| |t#4|) (-405 |t#2|) (-371 |t#2|) (-10 -8 (IF (|has| |t#2| (-169)) (-6 (-700 |t#2|)) |%noBranch|) (-15 -1665 ($ |t#2|)) (-15 -3202 ($ (-627 |t#2|))) (-15 -2372 (|t#3| $)) (-15 -3385 (|t#2| $)) (-15 -3877 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4368 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -1530 (|t#2| $)) (-15 -1744 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-357)) (PROGN (-15 -2952 ((-3 $ "failed") $)) (-15 ** ($ $ (-552)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4368 "*"))) ((-101) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-599 (-842)) . T) ((-226 |#2|) . T) ((-228) |has| |#2| (-228)) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((-371 |#2|) . T) ((-405 |#2|) . T) ((-482 |#2|) . T) ((-506 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((-630 |#2|) . T) ((-630 $) . T) ((-623 (-552)) |has| |#2| (-623 (-552))) ((-623 |#2|) . T) ((-700 |#2|) -1559 (|has| |#2| (-169)) (|has| |#2| (-6 (-4368 "*")))) ((-709) . T) ((-879 (-1152)) |has| |#2| (-879 (-1152))) ((-1031 |#1| |#1| |#2| |#3| |#4|) . T) ((-1017 (-401 (-552))) |has| |#2| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#2| (-1017 (-552))) ((-1017 |#2|) . T) ((-1034 |#2|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1189) . T)) +((-1448 ((|#4| |#4|) 70)) (-1324 ((|#4| |#4|) 65)) (-1716 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2957 (-627 |#3|))) |#4| |#3|) 78)) (-3129 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-2881 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) +(((-1100 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1324 (|#4| |#4|)) (-15 -2881 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1448 (|#4| |#4|)) (-15 -3129 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1716 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2957 (-627 |#3|))) |#4| |#3|))) (-301) (-367 |#1|) (-367 |#1|) (-669 |#1| |#2| |#3|)) (T -1100)) +((-1716 (*1 *2 *3 *4) (-12 (-4 *5 (-301)) (-4 *6 (-367 *5)) (-4 *4 (-367 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) (-5 *1 (-1100 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4)))) (-3129 (*1 *2 *3) (-12 (-4 *4 (-301)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1100 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-1448 (*1 *2 *2) (-12 (-4 *3 (-301)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1100 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-2881 (*1 *2 *3) (-12 (-4 *4 (-301)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1100 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) (-1324 (*1 *2 *2) (-12 (-4 *3 (-301)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1100 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) +(-10 -7 (-15 -1324 (|#4| |#4|)) (-15 -2881 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1448 (|#4| |#4|)) (-15 -3129 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1716 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2957 (-627 |#3|))) |#4| |#3|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 17)) (-1853 (((-627 |#2|) $) 159)) (-1694 (((-1148 $) $ |#2|) 54) (((-1148 |#1|) $) 43)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 108 (|has| |#1| (-544)))) (-3245 (($ $) 110 (|has| |#1| (-544)))) (-4058 (((-111) $) 112 (|has| |#1| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 |#2|)) 192)) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-4014 (($ $) NIL (|has| |#1| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) 156) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 |#2| "failed") $) NIL)) (-1703 ((|#1| $) 154) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1017 (-552)))) ((|#2| $) NIL)) (-3116 (($ $ $ |#2|) NIL (|has| |#1| (-169)))) (-2014 (($ $) 196)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) 82)) (-1375 (($ $) NIL (|has| |#1| (-445))) (($ $ |#2|) NIL (|has| |#1| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#1| (-888)))) (-2061 (($ $ |#1| (-523 |#2|) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| |#1| (-865 (-373))) (|has| |#2| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| |#1| (-865 (-552))) (|has| |#2| (-865 (-552)))))) (-2624 (((-111) $) 19)) (-3522 (((-754) $) 26)) (-1842 (($ (-1148 |#1|) |#2|) 48) (($ (-1148 $) |#2|) 64)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) 32)) (-1832 (($ |#1| (-523 |#2|)) 71) (($ $ |#2| (-754)) 52) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ |#2|) NIL)) (-3465 (((-523 |#2|) $) 186) (((-754) $ |#2|) 187) (((-627 (-754)) $ (-627 |#2|)) 188)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3813 (($ (-1 (-523 |#2|) (-523 |#2|)) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) 120)) (-2685 (((-3 |#2| "failed") $) 161)) (-1981 (($ $) 195)) (-1993 ((|#1| $) 37)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1595 (((-1134) $) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| |#2|) (|:| -4067 (-754))) "failed") $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) 33)) (-1970 ((|#1| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 138 (|has| |#1| (-445)))) (-1323 (($ (-627 $)) 143 (|has| |#1| (-445))) (($ $ $) 130 (|has| |#1| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#1| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-888)))) (-2761 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-544)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-627 |#2|) (-627 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-627 |#2|) (-627 $)) 176)) (-1637 (($ $ |#2|) NIL (|has| |#1| (-169)))) (-2942 (($ $ |#2|) 194) (($ $ (-627 |#2|)) NIL) (($ $ |#2| (-754)) NIL) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-3567 (((-523 |#2|) $) 182) (((-754) $ |#2|) 178) (((-627 (-754)) $ (-627 |#2|)) 180)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| |#1| (-600 (-871 (-373)))) (|has| |#2| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| |#1| (-600 (-871 (-552)))) (|has| |#2| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| |#1| (-600 (-528))) (|has| |#2| (-600 (-528)))))) (-3495 ((|#1| $) 126 (|has| |#1| (-445))) (($ $ |#2|) 129 (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-888))))) (-1477 (((-842) $) 149) (($ (-552)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-544))) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552))))))) (-1493 (((-627 |#1|) $) 152)) (-1889 ((|#1| $ (-523 |#2|)) 73) (($ $ |#2| (-754)) NIL) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) 79)) (-3417 (($ $ $ (-754)) NIL (|has| |#1| (-169)))) (-3778 (((-111) $ $) 115 (|has| |#1| (-544)))) (-1922 (($) 12 T CONST)) (-1933 (($) 14 T CONST)) (-4251 (($ $ |#2|) NIL) (($ $ (-627 |#2|)) NIL) (($ $ |#2| (-754)) NIL) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) 97)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2407 (($ $ |#1|) 124 (|has| |#1| (-357)))) (-2396 (($ $) 85) (($ $ $) 95)) (-2384 (($ $ $) 49)) (** (($ $ (-900)) 102) (($ $ (-754)) 100)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 88) (($ $ $) 65) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) +(((-1101 |#1| |#2|) (-928 |#1| (-523 |#2|) |#2|) (-1028) (-830)) (T -1101)) +NIL +(-928 |#1| (-523 |#2|) |#2|) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 |#2|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-1607 (($ $) 141 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 117 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1584 (($ $) 137 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 113 (|has| |#1| (-38 (-401 (-552)))))) (-1628 (($ $) 145 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 121 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2212 (((-931 |#1|) $ (-754)) NIL) (((-931 |#1|) $ (-754) (-754)) NIL)) (-2391 (((-111) $) NIL)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-754) $ |#2|) NIL) (((-754) $ |#2| (-754)) NIL)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3267 (((-111) $) NIL)) (-1832 (($ $ (-627 |#2|) (-627 (-523 |#2|))) NIL) (($ $ |#2| (-523 |#2|)) NIL) (($ |#1| (-523 |#2|)) NIL) (($ $ |#2| (-754)) 56) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-4135 (($ $) 111 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-2747 (($ $ |#2|) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-401 (-552)))))) (-1498 (((-1096) $) NIL)) (-2315 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-401 (-552)))))) (-4168 (($ $ (-754)) 13)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-3154 (($ $) 109 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (($ $ |#2| $) 95) (($ $ (-627 |#2|) (-627 $)) 88) (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL)) (-2942 (($ $ |#2|) 98) (($ $ (-627 |#2|)) NIL) (($ $ |#2| (-754)) NIL) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-3567 (((-523 |#2|) $) NIL)) (-1560 (((-1 (-1132 |#3|) |#3|) (-627 |#2|) (-627 (-1132 |#3|))) 77)) (-1640 (($ $) 147 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 123 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 143 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 119 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 139 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 115 (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) 15)) (-1477 (((-842) $) 180) (($ (-552)) NIL) (($ |#1|) 40 (|has| |#1| (-169))) (($ $) NIL (|has| |#1| (-544))) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#2|) 63) (($ |#3|) 61)) (-1889 ((|#1| $ (-523 |#2|)) NIL) (($ $ |#2| (-754)) NIL) (($ $ (-627 |#2|) (-627 (-754))) NIL) ((|#3| $ (-754)) 38)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-1673 (($ $) 153 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 129 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) 149 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 125 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 157 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 133 (|has| |#1| (-38 (-401 (-552)))))) (-3519 (($ $) 159 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 135 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 155 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 131 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 151 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 127 (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 47 T CONST)) (-1933 (($) 55 T CONST)) (-4251 (($ $ |#2|) NIL) (($ $ (-627 |#2|)) NIL) (($ $ |#2| (-754)) NIL) (($ $ (-627 |#2|) (-627 (-754))) NIL)) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ |#1|) 182 (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 59)) (** (($ $ (-900)) NIL) (($ $ (-754)) 68) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 101 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 58) (($ $ (-401 (-552))) 106 (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) 104 (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42))) +(((-1102 |#1| |#2| |#3|) (-13 (-723 |#1| |#2|) (-10 -8 (-15 -1889 (|#3| $ (-754))) (-15 -1477 ($ |#2|)) (-15 -1477 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1560 ((-1 (-1132 |#3|) |#3|) (-627 |#2|) (-627 (-1132 |#3|)))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ($ $ |#2| |#1|)) (-15 -2315 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1028) (-830) (-928 |#1| (-523 |#2|) |#2|)) (T -1102)) +((-1889 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *2 (-928 *4 (-523 *5) *5)) (-5 *1 (-1102 *4 *5 *2)) (-4 *4 (-1028)) (-4 *5 (-830)))) (-1477 (*1 *1 *2) (-12 (-4 *3 (-1028)) (-4 *2 (-830)) (-5 *1 (-1102 *3 *2 *4)) (-4 *4 (-928 *3 (-523 *2) *2)))) (-1477 (*1 *1 *2) (-12 (-4 *3 (-1028)) (-4 *4 (-830)) (-5 *1 (-1102 *3 *4 *2)) (-4 *2 (-928 *3 (-523 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1028)) (-4 *4 (-830)) (-5 *1 (-1102 *3 *4 *2)) (-4 *2 (-928 *3 (-523 *4) *4)))) (-1560 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *6)) (-5 *4 (-627 (-1132 *7))) (-4 *6 (-830)) (-4 *7 (-928 *5 (-523 *6) *6)) (-4 *5 (-1028)) (-5 *2 (-1 (-1132 *7) *7)) (-5 *1 (-1102 *5 *6 *7)))) (-2747 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-4 *2 (-830)) (-5 *1 (-1102 *3 *2 *4)) (-4 *4 (-928 *3 (-523 *2) *2)))) (-2315 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1102 *4 *3 *5))) (-4 *4 (-38 (-401 (-552)))) (-4 *4 (-1028)) (-4 *3 (-830)) (-5 *1 (-1102 *4 *3 *5)) (-4 *5 (-928 *4 (-523 *3) *3))))) +(-13 (-723 |#1| |#2|) (-10 -8 (-15 -1889 (|#3| $ (-754))) (-15 -1477 ($ |#2|)) (-15 -1477 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1560 ((-1 (-1132 |#3|) |#3|) (-627 |#2|) (-627 (-1132 |#3|)))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ($ $ |#2| |#1|)) (-15 -2315 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-1465 (((-111) $ $) 7)) (-1764 (((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 |#4|)))) (-627 |#4|)) 85)) (-1361 (((-627 $) (-627 |#4|)) 86) (((-627 $) (-627 |#4|) (-111)) 111)) (-1853 (((-627 |#3|) $) 33)) (-2730 (((-111) $) 26)) (-3648 (((-111) $) 17 (|has| |#1| (-544)))) (-3691 (((-111) |#4| $) 101) (((-111) $) 97)) (-1553 ((|#4| |#4| $) 92)) (-4014 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| $) 126)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) 27)) (-4031 (((-111) $ (-754)) 44)) (-2536 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4366))) (((-3 |#4| "failed") $ |#3|) 79)) (-3887 (($) 45 T CONST)) (-3569 (((-111) $) 22 (|has| |#1| (-544)))) (-2330 (((-111) $ $) 24 (|has| |#1| (-544)))) (-2165 (((-111) $ $) 23 (|has| |#1| (-544)))) (-3188 (((-111) $) 25 (|has| |#1| (-544)))) (-3238 (((-627 |#4|) (-627 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-4097 (((-627 |#4|) (-627 |#4|) $) 18 (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) 19 (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) 36)) (-1703 (($ (-627 |#4|)) 35)) (-3351 (((-3 $ "failed") $) 82)) (-4167 ((|#4| |#4| $) 89)) (-3370 (($ $) 68 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#4| $) 67 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-4104 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-2934 ((|#4| |#4| $) 87)) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4366))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2415 (((-2 (|:| -4267 (-627 |#4|)) (|:| -2849 (-627 |#4|))) $) 105)) (-3203 (((-111) |#4| $) 136)) (-2004 (((-111) |#4| $) 133)) (-2790 (((-111) |#4| $) 137) (((-111) $) 134)) (-3215 (((-627 |#4|) $) 52 (|has| $ (-6 -4366)))) (-3850 (((-111) |#4| $) 104) (((-111) $) 103)) (-4147 ((|#3| $) 34)) (-1602 (((-111) $ (-754)) 43)) (-3114 (((-627 |#4|) $) 53 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) 47)) (-4198 (((-627 |#3|) $) 32)) (-1927 (((-111) |#3| $) 31)) (-3971 (((-111) $ (-754)) 42)) (-1595 (((-1134) $) 9)) (-2661 (((-3 |#4| (-627 $)) |#4| |#4| $) 128)) (-4318 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| |#4| $) 127)) (-1294 (((-3 |#4| "failed") $) 83)) (-4314 (((-627 $) |#4| $) 129)) (-2338 (((-3 (-111) (-627 $)) |#4| $) 132)) (-3984 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 $))) |#4| $) 131) (((-111) |#4| $) 130)) (-3383 (((-627 $) |#4| $) 125) (((-627 $) (-627 |#4|) $) 124) (((-627 $) (-627 |#4|) (-627 $)) 123) (((-627 $) |#4| (-627 $)) 122)) (-1892 (($ |#4| $) 117) (($ (-627 |#4|) $) 116)) (-4122 (((-627 |#4|) $) 107)) (-2481 (((-111) |#4| $) 99) (((-111) $) 95)) (-3921 ((|#4| |#4| $) 90)) (-2654 (((-111) $ $) 110)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-2163 (((-111) |#4| $) 100) (((-111) $) 96)) (-4116 ((|#4| |#4| $) 91)) (-1498 (((-1096) $) 10)) (-3340 (((-3 |#4| "failed") $) 84)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3672 (((-3 $ "failed") $ |#4|) 78)) (-4168 (($ $ |#4|) 77) (((-627 $) |#4| $) 115) (((-627 $) |#4| (-627 $)) 114) (((-627 $) (-627 |#4|) $) 113) (((-627 $) (-627 |#4|) (-627 $)) 112)) (-3509 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) 38)) (-1275 (((-111) $) 41)) (-2373 (($) 40)) (-3567 (((-754) $) 106)) (-1509 (((-754) |#4| $) 54 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4366)))) (-2973 (($ $) 39)) (-3562 (((-528) $) 69 (|has| |#4| (-600 (-528))))) (-1490 (($ (-627 |#4|)) 60)) (-4237 (($ $ |#3|) 28)) (-2286 (($ $ |#3|) 30)) (-2462 (($ $) 88)) (-3911 (($ $ |#3|) 29)) (-1477 (((-842) $) 11) (((-627 |#4|) $) 37)) (-1641 (((-754) $) 76 (|has| |#3| (-362)))) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-2925 (((-111) $ (-1 (-111) |#4| (-627 |#4|))) 98)) (-2733 (((-627 $) |#4| $) 121) (((-627 $) |#4| (-627 $)) 120) (((-627 $) (-627 |#4|) $) 119) (((-627 $) (-627 |#4|) (-627 $)) 118)) (-3299 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4366)))) (-2199 (((-627 |#3|) $) 81)) (-3612 (((-111) |#4| $) 135)) (-3528 (((-111) |#3| $) 80)) (-2292 (((-111) $ $) 6)) (-1383 (((-754) $) 46 (|has| $ (-6 -4366))))) +(((-1103 |#1| |#2| |#3| |#4|) (-137) (-445) (-776) (-830) (-1042 |t#1| |t#2| |t#3|)) (T -1103)) +NIL +(-13 (-1085 |t#1| |t#2| |t#3| |t#4|) (-767 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-101) . T) ((-599 (-627 |#4|)) . T) ((-599 (-842)) . T) ((-148 |#4|) . T) ((-600 (-528)) |has| |#4| (-600 (-528))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-482 |#4|) . T) ((-506 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-767 |#1| |#2| |#3| |#4|) . T) ((-955 |#1| |#2| |#3| |#4|) . T) ((-1048 |#1| |#2| |#3| |#4|) . T) ((-1076) . T) ((-1085 |#1| |#2| |#3| |#4|) . T) ((-1182 |#1| |#2| |#3| |#4|) . T) ((-1189) . T)) +((-1696 (((-627 |#2|) |#1|) 12)) (-1907 (((-627 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-627 |#2|) |#1|) 52)) (-3653 (((-627 |#2|) |#2| |#2| |#2|) 39) (((-627 |#2|) |#1|) 50)) (-3313 ((|#2| |#1|) 46)) (-1895 (((-2 (|:| |solns| (-627 |#2|)) (|:| |maps| (-627 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-2191 (((-627 |#2|) |#2| |#2|) 38) (((-627 |#2|) |#1|) 49)) (-2183 (((-627 |#2|) |#2| |#2| |#2| |#2|) 40) (((-627 |#2|) |#1|) 51)) (-3199 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-3150 ((|#2| |#2| |#2| |#2|) 43)) (-3458 ((|#2| |#2| |#2|) 42)) (-2811 ((|#2| |#2| |#2| |#2| |#2|) 44))) +(((-1104 |#1| |#2|) (-10 -7 (-15 -1696 ((-627 |#2|) |#1|)) (-15 -3313 (|#2| |#1|)) (-15 -1895 ((-2 (|:| |solns| (-627 |#2|)) (|:| |maps| (-627 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2191 ((-627 |#2|) |#1|)) (-15 -3653 ((-627 |#2|) |#1|)) (-15 -2183 ((-627 |#2|) |#1|)) (-15 -1907 ((-627 |#2|) |#1|)) (-15 -2191 ((-627 |#2|) |#2| |#2|)) (-15 -3653 ((-627 |#2|) |#2| |#2| |#2|)) (-15 -2183 ((-627 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1907 ((-627 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3458 (|#2| |#2| |#2|)) (-15 -3150 (|#2| |#2| |#2| |#2|)) (-15 -2811 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3199 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1211 |#2|) (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (T -1104)) +((-3199 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *1 (-1104 *3 *2)) (-4 *3 (-1211 *2)))) (-2811 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *1 (-1104 *3 *2)) (-4 *3 (-1211 *2)))) (-3150 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *1 (-1104 *3 *2)) (-4 *3 (-1211 *2)))) (-3458 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *1 (-1104 *3 *2)) (-4 *3 (-1211 *2)))) (-1907 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-627 *3)) (-5 *1 (-1104 *4 *3)) (-4 *4 (-1211 *3)))) (-2183 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-627 *3)) (-5 *1 (-1104 *4 *3)) (-4 *4 (-1211 *3)))) (-3653 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-627 *3)) (-5 *1 (-1104 *4 *3)) (-4 *4 (-1211 *3)))) (-2191 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-627 *3)) (-5 *1 (-1104 *4 *3)) (-4 *4 (-1211 *3)))) (-1907 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-627 *4)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1211 *4)))) (-2183 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-627 *4)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1211 *4)))) (-3653 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-627 *4)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1211 *4)))) (-2191 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-627 *4)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1211 *4)))) (-1895 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-2 (|:| |solns| (-627 *5)) (|:| |maps| (-627 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1104 *3 *5)) (-4 *3 (-1211 *5)))) (-3313 (*1 *2 *3) (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *1 (-1104 *3 *2)) (-4 *3 (-1211 *2)))) (-1696 (*1 *2 *3) (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) (-5 *2 (-627 *4)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1211 *4))))) +(-10 -7 (-15 -1696 ((-627 |#2|) |#1|)) (-15 -3313 (|#2| |#1|)) (-15 -1895 ((-2 (|:| |solns| (-627 |#2|)) (|:| |maps| (-627 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2191 ((-627 |#2|) |#1|)) (-15 -3653 ((-627 |#2|) |#1|)) (-15 -2183 ((-627 |#2|) |#1|)) (-15 -1907 ((-627 |#2|) |#1|)) (-15 -2191 ((-627 |#2|) |#2| |#2|)) (-15 -3653 ((-627 |#2|) |#2| |#2| |#2|)) (-15 -2183 ((-627 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1907 ((-627 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3458 (|#2| |#2| |#2|)) (-15 -3150 (|#2| |#2| |#2| |#2|)) (-15 -2811 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3199 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-1921 (((-627 (-627 (-288 (-310 |#1|)))) (-627 (-288 (-401 (-931 |#1|))))) 95) (((-627 (-627 (-288 (-310 |#1|)))) (-627 (-288 (-401 (-931 |#1|)))) (-627 (-1152))) 94) (((-627 (-627 (-288 (-310 |#1|)))) (-627 (-401 (-931 |#1|)))) 92) (((-627 (-627 (-288 (-310 |#1|)))) (-627 (-401 (-931 |#1|))) (-627 (-1152))) 90) (((-627 (-288 (-310 |#1|))) (-288 (-401 (-931 |#1|)))) 75) (((-627 (-288 (-310 |#1|))) (-288 (-401 (-931 |#1|))) (-1152)) 76) (((-627 (-288 (-310 |#1|))) (-401 (-931 |#1|))) 70) (((-627 (-288 (-310 |#1|))) (-401 (-931 |#1|)) (-1152)) 59)) (-1571 (((-627 (-627 (-310 |#1|))) (-627 (-401 (-931 |#1|))) (-627 (-1152))) 88) (((-627 (-310 |#1|)) (-401 (-931 |#1|)) (-1152)) 43)) (-4072 (((-1141 (-627 (-310 |#1|)) (-627 (-288 (-310 |#1|)))) (-401 (-931 |#1|)) (-1152)) 98) (((-1141 (-627 (-310 |#1|)) (-627 (-288 (-310 |#1|)))) (-288 (-401 (-931 |#1|))) (-1152)) 97))) +(((-1105 |#1|) (-10 -7 (-15 -1921 ((-627 (-288 (-310 |#1|))) (-401 (-931 |#1|)) (-1152))) (-15 -1921 ((-627 (-288 (-310 |#1|))) (-401 (-931 |#1|)))) (-15 -1921 ((-627 (-288 (-310 |#1|))) (-288 (-401 (-931 |#1|))) (-1152))) (-15 -1921 ((-627 (-288 (-310 |#1|))) (-288 (-401 (-931 |#1|))))) (-15 -1921 ((-627 (-627 (-288 (-310 |#1|)))) (-627 (-401 (-931 |#1|))) (-627 (-1152)))) (-15 -1921 ((-627 (-627 (-288 (-310 |#1|)))) (-627 (-401 (-931 |#1|))))) (-15 -1921 ((-627 (-627 (-288 (-310 |#1|)))) (-627 (-288 (-401 (-931 |#1|)))) (-627 (-1152)))) (-15 -1921 ((-627 (-627 (-288 (-310 |#1|)))) (-627 (-288 (-401 (-931 |#1|)))))) (-15 -1571 ((-627 (-310 |#1|)) (-401 (-931 |#1|)) (-1152))) (-15 -1571 ((-627 (-627 (-310 |#1|))) (-627 (-401 (-931 |#1|))) (-627 (-1152)))) (-15 -4072 ((-1141 (-627 (-310 |#1|)) (-627 (-288 (-310 |#1|)))) (-288 (-401 (-931 |#1|))) (-1152))) (-15 -4072 ((-1141 (-627 (-310 |#1|)) (-627 (-288 (-310 |#1|)))) (-401 (-931 |#1|)) (-1152)))) (-13 (-301) (-830) (-144))) (T -1105)) +((-4072 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-1141 (-627 (-310 *5)) (-627 (-288 (-310 *5))))) (-5 *1 (-1105 *5)))) (-4072 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-401 (-931 *5)))) (-5 *4 (-1152)) (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-1141 (-627 (-310 *5)) (-627 (-288 (-310 *5))))) (-5 *1 (-1105 *5)))) (-1571 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-401 (-931 *5)))) (-5 *4 (-627 (-1152))) (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-627 (-310 *5)))) (-5 *1 (-1105 *5)))) (-1571 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-310 *5))) (-5 *1 (-1105 *5)))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-627 (-288 (-401 (-931 *4))))) (-4 *4 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-627 (-288 (-310 *4))))) (-5 *1 (-1105 *4)))) (-1921 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-288 (-401 (-931 *5))))) (-5 *4 (-627 (-1152))) (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-627 (-288 (-310 *5))))) (-5 *1 (-1105 *5)))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-627 (-401 (-931 *4)))) (-4 *4 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-627 (-288 (-310 *4))))) (-5 *1 (-1105 *4)))) (-1921 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-401 (-931 *5)))) (-5 *4 (-627 (-1152))) (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-627 (-288 (-310 *5))))) (-5 *1 (-1105 *5)))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-288 (-401 (-931 *4)))) (-4 *4 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-288 (-310 *4)))) (-5 *1 (-1105 *4)))) (-1921 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-401 (-931 *5)))) (-5 *4 (-1152)) (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-288 (-310 *5)))) (-5 *1 (-1105 *5)))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-288 (-310 *4)))) (-5 *1 (-1105 *4)))) (-1921 (*1 *2 *3 *4) (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-288 (-310 *5)))) (-5 *1 (-1105 *5))))) +(-10 -7 (-15 -1921 ((-627 (-288 (-310 |#1|))) (-401 (-931 |#1|)) (-1152))) (-15 -1921 ((-627 (-288 (-310 |#1|))) (-401 (-931 |#1|)))) (-15 -1921 ((-627 (-288 (-310 |#1|))) (-288 (-401 (-931 |#1|))) (-1152))) (-15 -1921 ((-627 (-288 (-310 |#1|))) (-288 (-401 (-931 |#1|))))) (-15 -1921 ((-627 (-627 (-288 (-310 |#1|)))) (-627 (-401 (-931 |#1|))) (-627 (-1152)))) (-15 -1921 ((-627 (-627 (-288 (-310 |#1|)))) (-627 (-401 (-931 |#1|))))) (-15 -1921 ((-627 (-627 (-288 (-310 |#1|)))) (-627 (-288 (-401 (-931 |#1|)))) (-627 (-1152)))) (-15 -1921 ((-627 (-627 (-288 (-310 |#1|)))) (-627 (-288 (-401 (-931 |#1|)))))) (-15 -1571 ((-627 (-310 |#1|)) (-401 (-931 |#1|)) (-1152))) (-15 -1571 ((-627 (-627 (-310 |#1|))) (-627 (-401 (-931 |#1|))) (-627 (-1152)))) (-15 -4072 ((-1141 (-627 (-310 |#1|)) (-627 (-288 (-310 |#1|)))) (-288 (-401 (-931 |#1|))) (-1152))) (-15 -4072 ((-1141 (-627 (-310 |#1|)) (-627 (-288 (-310 |#1|)))) (-401 (-931 |#1|)) (-1152)))) +((-2327 (((-401 (-1148 (-310 |#1|))) (-1235 (-310 |#1|)) (-401 (-1148 (-310 |#1|))) (-552)) 29)) (-1609 (((-401 (-1148 (-310 |#1|))) (-401 (-1148 (-310 |#1|))) (-401 (-1148 (-310 |#1|))) (-401 (-1148 (-310 |#1|)))) 40))) +(((-1106 |#1|) (-10 -7 (-15 -1609 ((-401 (-1148 (-310 |#1|))) (-401 (-1148 (-310 |#1|))) (-401 (-1148 (-310 |#1|))) (-401 (-1148 (-310 |#1|))))) (-15 -2327 ((-401 (-1148 (-310 |#1|))) (-1235 (-310 |#1|)) (-401 (-1148 (-310 |#1|))) (-552)))) (-13 (-544) (-830))) (T -1106)) +((-2327 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-401 (-1148 (-310 *5)))) (-5 *3 (-1235 (-310 *5))) (-5 *4 (-552)) (-4 *5 (-13 (-544) (-830))) (-5 *1 (-1106 *5)))) (-1609 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-401 (-1148 (-310 *3)))) (-4 *3 (-13 (-544) (-830))) (-5 *1 (-1106 *3))))) +(-10 -7 (-15 -1609 ((-401 (-1148 (-310 |#1|))) (-401 (-1148 (-310 |#1|))) (-401 (-1148 (-310 |#1|))) (-401 (-1148 (-310 |#1|))))) (-15 -2327 ((-401 (-1148 (-310 |#1|))) (-1235 (-310 |#1|)) (-401 (-1148 (-310 |#1|))) (-552)))) +((-1696 (((-627 (-627 (-288 (-310 |#1|)))) (-627 (-288 (-310 |#1|))) (-627 (-1152))) 224) (((-627 (-288 (-310 |#1|))) (-310 |#1|) (-1152)) 20) (((-627 (-288 (-310 |#1|))) (-288 (-310 |#1|)) (-1152)) 26) (((-627 (-288 (-310 |#1|))) (-288 (-310 |#1|))) 25) (((-627 (-288 (-310 |#1|))) (-310 |#1|)) 21))) +(((-1107 |#1|) (-10 -7 (-15 -1696 ((-627 (-288 (-310 |#1|))) (-310 |#1|))) (-15 -1696 ((-627 (-288 (-310 |#1|))) (-288 (-310 |#1|)))) (-15 -1696 ((-627 (-288 (-310 |#1|))) (-288 (-310 |#1|)) (-1152))) (-15 -1696 ((-627 (-288 (-310 |#1|))) (-310 |#1|) (-1152))) (-15 -1696 ((-627 (-627 (-288 (-310 |#1|)))) (-627 (-288 (-310 |#1|))) (-627 (-1152))))) (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (T -1107)) +((-1696 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-1152))) (-4 *5 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-627 (-627 (-288 (-310 *5))))) (-5 *1 (-1107 *5)) (-5 *3 (-627 (-288 (-310 *5)))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-627 (-288 (-310 *5)))) (-5 *1 (-1107 *5)) (-5 *3 (-310 *5)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-627 (-288 (-310 *5)))) (-5 *1 (-1107 *5)) (-5 *3 (-288 (-310 *5))))) (-1696 (*1 *2 *3) (-12 (-4 *4 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-627 (-288 (-310 *4)))) (-5 *1 (-1107 *4)) (-5 *3 (-288 (-310 *4))))) (-1696 (*1 *2 *3) (-12 (-4 *4 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 (-627 (-288 (-310 *4)))) (-5 *1 (-1107 *4)) (-5 *3 (-310 *4))))) +(-10 -7 (-15 -1696 ((-627 (-288 (-310 |#1|))) (-310 |#1|))) (-15 -1696 ((-627 (-288 (-310 |#1|))) (-288 (-310 |#1|)))) (-15 -1696 ((-627 (-288 (-310 |#1|))) (-288 (-310 |#1|)) (-1152))) (-15 -1696 ((-627 (-288 (-310 |#1|))) (-310 |#1|) (-1152))) (-15 -1696 ((-627 (-627 (-288 (-310 |#1|)))) (-627 (-288 (-310 |#1|))) (-627 (-1152))))) +((-3587 ((|#2| |#2|) 20 (|has| |#1| (-830))) ((|#2| |#2| (-1 (-111) |#1| |#1|)) 17)) (-1983 ((|#2| |#2|) 19 (|has| |#1| (-830))) ((|#2| |#2| (-1 (-111) |#1| |#1|)) 16))) +(((-1108 |#1| |#2|) (-10 -7 (-15 -1983 (|#2| |#2| (-1 (-111) |#1| |#1|))) (-15 -3587 (|#2| |#2| (-1 (-111) |#1| |#1|))) (IF (|has| |#1| (-830)) (PROGN (-15 -1983 (|#2| |#2|)) (-15 -3587 (|#2| |#2|))) |%noBranch|)) (-1189) (-13 (-590 (-552) |#1|) (-10 -7 (-6 -4366) (-6 -4367)))) (T -1108)) +((-3587 (*1 *2 *2) (-12 (-4 *3 (-830)) (-4 *3 (-1189)) (-5 *1 (-1108 *3 *2)) (-4 *2 (-13 (-590 (-552) *3) (-10 -7 (-6 -4366) (-6 -4367)))))) (-1983 (*1 *2 *2) (-12 (-4 *3 (-830)) (-4 *3 (-1189)) (-5 *1 (-1108 *3 *2)) (-4 *2 (-13 (-590 (-552) *3) (-10 -7 (-6 -4366) (-6 -4367)))))) (-3587 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1189)) (-5 *1 (-1108 *4 *2)) (-4 *2 (-13 (-590 (-552) *4) (-10 -7 (-6 -4366) (-6 -4367)))))) (-1983 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1189)) (-5 *1 (-1108 *4 *2)) (-4 *2 (-13 (-590 (-552) *4) (-10 -7 (-6 -4366) (-6 -4367))))))) +(-10 -7 (-15 -1983 (|#2| |#2| (-1 (-111) |#1| |#1|))) (-15 -3587 (|#2| |#2| (-1 (-111) |#1| |#1|))) (IF (|has| |#1| (-830)) (PROGN (-15 -1983 (|#2| |#2|)) (-15 -3587 (|#2| |#2|))) |%noBranch|)) +((-1465 (((-111) $ $) NIL)) (-3757 (((-1140 3 |#1|) $) 107)) (-2018 (((-111) $) 72)) (-3561 (($ $ (-627 (-922 |#1|))) 20) (($ $ (-627 (-627 |#1|))) 75) (($ (-627 (-922 |#1|))) 74) (((-627 (-922 |#1|)) $) 73)) (-3855 (((-111) $) 41)) (-1745 (($ $ (-922 |#1|)) 46) (($ $ (-627 |#1|)) 51) (($ $ (-754)) 53) (($ (-922 |#1|)) 47) (((-922 |#1|) $) 45)) (-2690 (((-2 (|:| -1432 (-754)) (|:| |curves| (-754)) (|:| |polygons| (-754)) (|:| |constructs| (-754))) $) 105)) (-2656 (((-754) $) 26)) (-4080 (((-754) $) 25)) (-2168 (($ $ (-754) (-922 |#1|)) 39)) (-2795 (((-111) $) 82)) (-2331 (($ $ (-627 (-627 (-922 |#1|))) (-627 (-168)) (-168)) 89) (($ $ (-627 (-627 (-627 |#1|))) (-627 (-168)) (-168)) 91) (($ $ (-627 (-627 (-922 |#1|))) (-111) (-111)) 85) (($ $ (-627 (-627 (-627 |#1|))) (-111) (-111)) 93) (($ (-627 (-627 (-922 |#1|)))) 86) (($ (-627 (-627 (-922 |#1|))) (-111) (-111)) 87) (((-627 (-627 (-922 |#1|))) $) 84)) (-3759 (($ (-627 $)) 28) (($ $ $) 29)) (-2774 (((-627 (-168)) $) 102)) (-2050 (((-627 (-922 |#1|)) $) 96)) (-4185 (((-627 (-627 (-168))) $) 101)) (-1520 (((-627 (-627 (-627 (-922 |#1|)))) $) NIL)) (-3100 (((-627 (-627 (-627 (-754)))) $) 99)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2617 (((-754) $ (-627 (-922 |#1|))) 37)) (-2261 (((-111) $) 54)) (-2139 (($ $ (-627 (-922 |#1|))) 56) (($ $ (-627 (-627 |#1|))) 62) (($ (-627 (-922 |#1|))) 57) (((-627 (-922 |#1|)) $) 55)) (-3764 (($) 23) (($ (-1140 3 |#1|)) 24)) (-2973 (($ $) 35)) (-4186 (((-627 $) $) 34)) (-2749 (($ (-627 $)) 31)) (-2921 (((-627 $) $) 33)) (-1477 (((-842) $) 111)) (-3167 (((-111) $) 64)) (-3711 (($ $ (-627 (-922 |#1|))) 66) (($ $ (-627 (-627 |#1|))) 69) (($ (-627 (-922 |#1|))) 67) (((-627 (-922 |#1|)) $) 65)) (-3184 (($ $) 106)) (-2292 (((-111) $ $) NIL))) +(((-1109 |#1|) (-1110 |#1|) (-1028)) (T -1109)) +NIL +(-1110 |#1|) +((-1465 (((-111) $ $) 7)) (-3757 (((-1140 3 |#1|) $) 13)) (-2018 (((-111) $) 29)) (-3561 (($ $ (-627 (-922 |#1|))) 33) (($ $ (-627 (-627 |#1|))) 32) (($ (-627 (-922 |#1|))) 31) (((-627 (-922 |#1|)) $) 30)) (-3855 (((-111) $) 44)) (-1745 (($ $ (-922 |#1|)) 49) (($ $ (-627 |#1|)) 48) (($ $ (-754)) 47) (($ (-922 |#1|)) 46) (((-922 |#1|) $) 45)) (-2690 (((-2 (|:| -1432 (-754)) (|:| |curves| (-754)) (|:| |polygons| (-754)) (|:| |constructs| (-754))) $) 15)) (-2656 (((-754) $) 58)) (-4080 (((-754) $) 59)) (-2168 (($ $ (-754) (-922 |#1|)) 50)) (-2795 (((-111) $) 21)) (-2331 (($ $ (-627 (-627 (-922 |#1|))) (-627 (-168)) (-168)) 28) (($ $ (-627 (-627 (-627 |#1|))) (-627 (-168)) (-168)) 27) (($ $ (-627 (-627 (-922 |#1|))) (-111) (-111)) 26) (($ $ (-627 (-627 (-627 |#1|))) (-111) (-111)) 25) (($ (-627 (-627 (-922 |#1|)))) 24) (($ (-627 (-627 (-922 |#1|))) (-111) (-111)) 23) (((-627 (-627 (-922 |#1|))) $) 22)) (-3759 (($ (-627 $)) 57) (($ $ $) 56)) (-2774 (((-627 (-168)) $) 16)) (-2050 (((-627 (-922 |#1|)) $) 20)) (-4185 (((-627 (-627 (-168))) $) 17)) (-1520 (((-627 (-627 (-627 (-922 |#1|)))) $) 18)) (-3100 (((-627 (-627 (-627 (-754)))) $) 19)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2617 (((-754) $ (-627 (-922 |#1|))) 51)) (-2261 (((-111) $) 39)) (-2139 (($ $ (-627 (-922 |#1|))) 43) (($ $ (-627 (-627 |#1|))) 42) (($ (-627 (-922 |#1|))) 41) (((-627 (-922 |#1|)) $) 40)) (-3764 (($) 61) (($ (-1140 3 |#1|)) 60)) (-2973 (($ $) 52)) (-4186 (((-627 $) $) 53)) (-2749 (($ (-627 $)) 55)) (-2921 (((-627 $) $) 54)) (-1477 (((-842) $) 11)) (-3167 (((-111) $) 34)) (-3711 (($ $ (-627 (-922 |#1|))) 38) (($ $ (-627 (-627 |#1|))) 37) (($ (-627 (-922 |#1|))) 36) (((-627 (-922 |#1|)) $) 35)) (-3184 (($ $) 14)) (-2292 (((-111) $ $) 6))) +(((-1110 |#1|) (-137) (-1028)) (T -1110)) +((-1477 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-842)))) (-3764 (*1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1028)))) (-3764 (*1 *1 *2) (-12 (-5 *2 (-1140 3 *3)) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) (-4080 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-754)))) (-2656 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-754)))) (-3759 (*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-3759 (*1 *1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1028)))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-2921 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-5 *2 (-627 *1)) (-4 *1 (-1110 *3)))) (-4186 (*1 *2 *1) (-12 (-4 *3 (-1028)) (-5 *2 (-627 *1)) (-4 *1 (-1110 *3)))) (-2973 (*1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1028)))) (-2617 (*1 *2 *1 *3) (-12 (-5 *3 (-627 (-922 *4))) (-4 *1 (-1110 *4)) (-4 *4 (-1028)) (-5 *2 (-754)))) (-2168 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-754)) (-5 *3 (-922 *4)) (-4 *1 (-1110 *4)) (-4 *4 (-1028)))) (-1745 (*1 *1 *1 *2) (-12 (-5 *2 (-922 *3)) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-1745 (*1 *1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-1745 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-1745 (*1 *1 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) (-1745 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-922 *3)))) (-3855 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-111)))) (-2139 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-922 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-2139 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-627 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-2139 (*1 *1 *2) (-12 (-5 *2 (-627 (-922 *3))) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) (-2139 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-922 *3))))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-111)))) (-3711 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-922 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-3711 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-627 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-3711 (*1 *1 *2) (-12 (-5 *2 (-627 (-922 *3))) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) (-3711 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-922 *3))))) (-3167 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-111)))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-922 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-627 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) (-3561 (*1 *1 *2) (-12 (-5 *2 (-627 (-922 *3))) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) (-3561 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-922 *3))))) (-2018 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-111)))) (-2331 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-627 (-627 (-922 *5)))) (-5 *3 (-627 (-168))) (-5 *4 (-168)) (-4 *1 (-1110 *5)) (-4 *5 (-1028)))) (-2331 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-627 (-627 (-627 *5)))) (-5 *3 (-627 (-168))) (-5 *4 (-168)) (-4 *1 (-1110 *5)) (-4 *5 (-1028)))) (-2331 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-627 (-627 (-922 *4)))) (-5 *3 (-111)) (-4 *1 (-1110 *4)) (-4 *4 (-1028)))) (-2331 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-627 (-627 (-627 *4)))) (-5 *3 (-111)) (-4 *1 (-1110 *4)) (-4 *4 (-1028)))) (-2331 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 (-922 *3)))) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) (-2331 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-627 (-627 (-922 *4)))) (-5 *3 (-111)) (-4 *4 (-1028)) (-4 *1 (-1110 *4)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-627 (-922 *3)))))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-111)))) (-2050 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-922 *3))))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-627 (-627 (-754))))))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-627 (-627 (-922 *3))))))) (-4185 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-627 (-168)))))) (-2774 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-168))))) (-2690 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-2 (|:| -1432 (-754)) (|:| |curves| (-754)) (|:| |polygons| (-754)) (|:| |constructs| (-754)))))) (-3184 (*1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1028)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-1140 3 *3))))) +(-13 (-1076) (-10 -8 (-15 -3764 ($)) (-15 -3764 ($ (-1140 3 |t#1|))) (-15 -4080 ((-754) $)) (-15 -2656 ((-754) $)) (-15 -3759 ($ (-627 $))) (-15 -3759 ($ $ $)) (-15 -2749 ($ (-627 $))) (-15 -2921 ((-627 $) $)) (-15 -4186 ((-627 $) $)) (-15 -2973 ($ $)) (-15 -2617 ((-754) $ (-627 (-922 |t#1|)))) (-15 -2168 ($ $ (-754) (-922 |t#1|))) (-15 -1745 ($ $ (-922 |t#1|))) (-15 -1745 ($ $ (-627 |t#1|))) (-15 -1745 ($ $ (-754))) (-15 -1745 ($ (-922 |t#1|))) (-15 -1745 ((-922 |t#1|) $)) (-15 -3855 ((-111) $)) (-15 -2139 ($ $ (-627 (-922 |t#1|)))) (-15 -2139 ($ $ (-627 (-627 |t#1|)))) (-15 -2139 ($ (-627 (-922 |t#1|)))) (-15 -2139 ((-627 (-922 |t#1|)) $)) (-15 -2261 ((-111) $)) (-15 -3711 ($ $ (-627 (-922 |t#1|)))) (-15 -3711 ($ $ (-627 (-627 |t#1|)))) (-15 -3711 ($ (-627 (-922 |t#1|)))) (-15 -3711 ((-627 (-922 |t#1|)) $)) (-15 -3167 ((-111) $)) (-15 -3561 ($ $ (-627 (-922 |t#1|)))) (-15 -3561 ($ $ (-627 (-627 |t#1|)))) (-15 -3561 ($ (-627 (-922 |t#1|)))) (-15 -3561 ((-627 (-922 |t#1|)) $)) (-15 -2018 ((-111) $)) (-15 -2331 ($ $ (-627 (-627 (-922 |t#1|))) (-627 (-168)) (-168))) (-15 -2331 ($ $ (-627 (-627 (-627 |t#1|))) (-627 (-168)) (-168))) (-15 -2331 ($ $ (-627 (-627 (-922 |t#1|))) (-111) (-111))) (-15 -2331 ($ $ (-627 (-627 (-627 |t#1|))) (-111) (-111))) (-15 -2331 ($ (-627 (-627 (-922 |t#1|))))) (-15 -2331 ($ (-627 (-627 (-922 |t#1|))) (-111) (-111))) (-15 -2331 ((-627 (-627 (-922 |t#1|))) $)) (-15 -2795 ((-111) $)) (-15 -2050 ((-627 (-922 |t#1|)) $)) (-15 -3100 ((-627 (-627 (-627 (-754)))) $)) (-15 -1520 ((-627 (-627 (-627 (-922 |t#1|)))) $)) (-15 -4185 ((-627 (-627 (-168))) $)) (-15 -2774 ((-627 (-168)) $)) (-15 -2690 ((-2 (|:| -1432 (-754)) (|:| |curves| (-754)) (|:| |polygons| (-754)) (|:| |constructs| (-754))) $)) (-15 -3184 ($ $)) (-15 -3757 ((-1140 3 |t#1|) $)) (-15 -1477 ((-842) $)))) +(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 176) (((-1157) $) 7) (($ (-1157)) NIL)) (-1911 (((-111) $ (|[\|\|]| (-516))) 17) (((-111) $ (|[\|\|]| (-213))) 21) (((-111) $ (|[\|\|]| (-658))) 25) (((-111) $ (|[\|\|]| (-1245))) 29) (((-111) $ (|[\|\|]| (-136))) 33) (((-111) $ (|[\|\|]| (-131))) 37) (((-111) $ (|[\|\|]| (-1091))) 41) (((-111) $ (|[\|\|]| (-95))) 45) (((-111) $ (|[\|\|]| (-663))) 49) (((-111) $ (|[\|\|]| (-509))) 53) (((-111) $ (|[\|\|]| (-1043))) 57) (((-111) $ (|[\|\|]| (-1246))) 61) (((-111) $ (|[\|\|]| (-517))) 65) (((-111) $ (|[\|\|]| (-151))) 69) (((-111) $ (|[\|\|]| (-653))) 73) (((-111) $ (|[\|\|]| (-305))) 77) (((-111) $ (|[\|\|]| (-1015))) 81) (((-111) $ (|[\|\|]| (-177))) 85) (((-111) $ (|[\|\|]| (-949))) 89) (((-111) $ (|[\|\|]| (-1050))) 93) (((-111) $ (|[\|\|]| (-1066))) 97) (((-111) $ (|[\|\|]| (-1072))) 101) (((-111) $ (|[\|\|]| (-610))) 105) (((-111) $ (|[\|\|]| (-1142))) 109) (((-111) $ (|[\|\|]| (-153))) 113) (((-111) $ (|[\|\|]| (-135))) 117) (((-111) $ (|[\|\|]| (-471))) 121) (((-111) $ (|[\|\|]| (-579))) 125) (((-111) $ (|[\|\|]| (-498))) 131) (((-111) $ (|[\|\|]| (-1134))) 135) (((-111) $ (|[\|\|]| (-552))) 139)) (-3007 (((-516) $) 18) (((-213) $) 22) (((-658) $) 26) (((-1245) $) 30) (((-136) $) 34) (((-131) $) 38) (((-1091) $) 42) (((-95) $) 46) (((-663) $) 50) (((-509) $) 54) (((-1043) $) 58) (((-1246) $) 62) (((-517) $) 66) (((-151) $) 70) (((-653) $) 74) (((-305) $) 78) (((-1015) $) 82) (((-177) $) 86) (((-949) $) 90) (((-1050) $) 94) (((-1066) $) 98) (((-1072) $) 102) (((-610) $) 106) (((-1142) $) 110) (((-153) $) 114) (((-135) $) 118) (((-471) $) 122) (((-579) $) 126) (((-498) $) 132) (((-1134) $) 136) (((-552) $) 140)) (-2292 (((-111) $ $) NIL))) +(((-1111) (-1113)) (T -1111)) +NIL +(-1113) +((-4043 (((-627 (-1157)) (-1134)) 9))) +(((-1112) (-10 -7 (-15 -4043 ((-627 (-1157)) (-1134))))) (T -1112)) +((-4043 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-627 (-1157))) (-5 *1 (-1112))))) +(-10 -7 (-15 -4043 ((-627 (-1157)) (-1134)))) +((-1465 (((-111) $ $) 7)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (((-1157) $) 15) (($ (-1157)) 14)) (-1911 (((-111) $ (|[\|\|]| (-516))) 80) (((-111) $ (|[\|\|]| (-213))) 78) (((-111) $ (|[\|\|]| (-658))) 76) (((-111) $ (|[\|\|]| (-1245))) 74) (((-111) $ (|[\|\|]| (-136))) 72) (((-111) $ (|[\|\|]| (-131))) 70) (((-111) $ (|[\|\|]| (-1091))) 68) (((-111) $ (|[\|\|]| (-95))) 66) (((-111) $ (|[\|\|]| (-663))) 64) (((-111) $ (|[\|\|]| (-509))) 62) (((-111) $ (|[\|\|]| (-1043))) 60) (((-111) $ (|[\|\|]| (-1246))) 58) (((-111) $ (|[\|\|]| (-517))) 56) (((-111) $ (|[\|\|]| (-151))) 54) (((-111) $ (|[\|\|]| (-653))) 52) (((-111) $ (|[\|\|]| (-305))) 50) (((-111) $ (|[\|\|]| (-1015))) 48) (((-111) $ (|[\|\|]| (-177))) 46) (((-111) $ (|[\|\|]| (-949))) 44) (((-111) $ (|[\|\|]| (-1050))) 42) (((-111) $ (|[\|\|]| (-1066))) 40) (((-111) $ (|[\|\|]| (-1072))) 38) (((-111) $ (|[\|\|]| (-610))) 36) (((-111) $ (|[\|\|]| (-1142))) 34) (((-111) $ (|[\|\|]| (-153))) 32) (((-111) $ (|[\|\|]| (-135))) 30) (((-111) $ (|[\|\|]| (-471))) 28) (((-111) $ (|[\|\|]| (-579))) 26) (((-111) $ (|[\|\|]| (-498))) 24) (((-111) $ (|[\|\|]| (-1134))) 22) (((-111) $ (|[\|\|]| (-552))) 20)) (-3007 (((-516) $) 79) (((-213) $) 77) (((-658) $) 75) (((-1245) $) 73) (((-136) $) 71) (((-131) $) 69) (((-1091) $) 67) (((-95) $) 65) (((-663) $) 63) (((-509) $) 61) (((-1043) $) 59) (((-1246) $) 57) (((-517) $) 55) (((-151) $) 53) (((-653) $) 51) (((-305) $) 49) (((-1015) $) 47) (((-177) $) 45) (((-949) $) 43) (((-1050) $) 41) (((-1066) $) 39) (((-1072) $) 37) (((-610) $) 35) (((-1142) $) 33) (((-153) $) 31) (((-135) $) 29) (((-471) $) 27) (((-579) $) 25) (((-498) $) 23) (((-1134) $) 21) (((-552) $) 19)) (-2292 (((-111) $ $) 6))) +(((-1113) (-137)) (T -1113)) +((-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-516)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-213))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-213)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-658))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-658)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1245))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1245)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-136)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-131))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-131)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1091))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1091)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-95)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-663))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-663)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-509)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1043))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1043)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1246))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1246)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-517)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-151))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-151)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-653))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-653)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-305))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-305)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1015))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1015)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-177))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-177)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-949))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-949)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1050))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1050)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1066)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1072)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-610))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-610)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1142))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1142)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-153)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-135)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-471))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-471)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-579))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-579)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-498))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-498)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1134))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1134)))) (-1911 (*1 *2 *1 *3) (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-552))) (-5 *2 (-111)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-552))))) +(-13 (-1059) (-1230) (-10 -8 (-15 -1911 ((-111) $ (|[\|\|]| (-516)))) (-15 -3007 ((-516) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-213)))) (-15 -3007 ((-213) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-658)))) (-15 -3007 ((-658) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-1245)))) (-15 -3007 ((-1245) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-136)))) (-15 -3007 ((-136) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-131)))) (-15 -3007 ((-131) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-1091)))) (-15 -3007 ((-1091) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-95)))) (-15 -3007 ((-95) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-663)))) (-15 -3007 ((-663) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-509)))) (-15 -3007 ((-509) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-1043)))) (-15 -3007 ((-1043) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-1246)))) (-15 -3007 ((-1246) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-517)))) (-15 -3007 ((-517) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-151)))) (-15 -3007 ((-151) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-653)))) (-15 -3007 ((-653) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-305)))) (-15 -3007 ((-305) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-1015)))) (-15 -3007 ((-1015) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-177)))) (-15 -3007 ((-177) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-949)))) (-15 -3007 ((-949) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-1050)))) (-15 -3007 ((-1050) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-1066)))) (-15 -3007 ((-1066) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-1072)))) (-15 -3007 ((-1072) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-610)))) (-15 -3007 ((-610) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-1142)))) (-15 -3007 ((-1142) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-153)))) (-15 -3007 ((-153) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-135)))) (-15 -3007 ((-135) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-471)))) (-15 -3007 ((-471) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-579)))) (-15 -3007 ((-579) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-498)))) (-15 -3007 ((-498) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-1134)))) (-15 -3007 ((-1134) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-552)))) (-15 -3007 ((-552) $)))) +(((-92) . T) ((-101) . T) ((-599 (-842)) . T) ((-599 (-1157)) . T) ((-1076) . T) ((-1059) . T) ((-1230) . T)) +((-1914 (((-1240) (-627 (-842))) 23) (((-1240) (-842)) 22)) (-2237 (((-1240) (-627 (-842))) 21) (((-1240) (-842)) 20)) (-2802 (((-1240) (-627 (-842))) 19) (((-1240) (-842)) 11) (((-1240) (-1134) (-842)) 17))) +(((-1114) (-10 -7 (-15 -2802 ((-1240) (-1134) (-842))) (-15 -2802 ((-1240) (-842))) (-15 -2237 ((-1240) (-842))) (-15 -1914 ((-1240) (-842))) (-15 -2802 ((-1240) (-627 (-842)))) (-15 -2237 ((-1240) (-627 (-842)))) (-15 -1914 ((-1240) (-627 (-842)))))) (T -1114)) +((-1914 (*1 *2 *3) (-12 (-5 *3 (-627 (-842))) (-5 *2 (-1240)) (-5 *1 (-1114)))) (-2237 (*1 *2 *3) (-12 (-5 *3 (-627 (-842))) (-5 *2 (-1240)) (-5 *1 (-1114)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-627 (-842))) (-5 *2 (-1240)) (-5 *1 (-1114)))) (-1914 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1240)) (-5 *1 (-1114)))) (-2237 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1240)) (-5 *1 (-1114)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1240)) (-5 *1 (-1114)))) (-2802 (*1 *2 *3 *4) (-12 (-5 *3 (-1134)) (-5 *4 (-842)) (-5 *2 (-1240)) (-5 *1 (-1114))))) +(-10 -7 (-15 -2802 ((-1240) (-1134) (-842))) (-15 -2802 ((-1240) (-842))) (-15 -2237 ((-1240) (-842))) (-15 -1914 ((-1240) (-842))) (-15 -2802 ((-1240) (-627 (-842)))) (-15 -2237 ((-1240) (-627 (-842)))) (-15 -1914 ((-1240) (-627 (-842))))) +((-3958 (($ $ $) 10)) (-3709 (($ $) 9)) (-2804 (($ $ $) 13)) (-3396 (($ $ $) 15)) (-3075 (($ $ $) 12)) (-1512 (($ $ $) 14)) (-3794 (($ $) 17)) (-2039 (($ $) 16)) (-3329 (($ $) 6)) (-1393 (($ $ $) 11) (($ $) 7)) (-1974 (($ $ $) 8))) +(((-1115) (-137)) (T -1115)) +((-3794 (*1 *1 *1) (-4 *1 (-1115))) (-2039 (*1 *1 *1) (-4 *1 (-1115))) (-3396 (*1 *1 *1 *1) (-4 *1 (-1115))) (-1512 (*1 *1 *1 *1) (-4 *1 (-1115))) (-2804 (*1 *1 *1 *1) (-4 *1 (-1115))) (-3075 (*1 *1 *1 *1) (-4 *1 (-1115))) (-1393 (*1 *1 *1 *1) (-4 *1 (-1115))) (-3958 (*1 *1 *1 *1) (-4 *1 (-1115))) (-3709 (*1 *1 *1) (-4 *1 (-1115))) (-1974 (*1 *1 *1 *1) (-4 *1 (-1115))) (-1393 (*1 *1 *1) (-4 *1 (-1115))) (-3329 (*1 *1 *1) (-4 *1 (-1115)))) +(-13 (-10 -8 (-15 -3329 ($ $)) (-15 -1393 ($ $)) (-15 -1974 ($ $ $)) (-15 -3709 ($ $)) (-15 -3958 ($ $ $)) (-15 -1393 ($ $ $)) (-15 -3075 ($ $ $)) (-15 -2804 ($ $ $)) (-15 -1512 ($ $ $)) (-15 -3396 ($ $ $)) (-15 -2039 ($ $)) (-15 -3794 ($ $)))) +((-1465 (((-111) $ $) 41)) (-4288 ((|#1| $) 15)) (-2335 (((-111) $ $ (-1 (-111) |#2| |#2|)) 36)) (-2523 (((-111) $) 17)) (-2660 (($ $ |#1|) 28)) (-2332 (($ $ (-111)) 30)) (-3782 (($ $) 31)) (-2080 (($ $ |#2|) 29)) (-1595 (((-1134) $) NIL)) (-3988 (((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|)) 35)) (-1498 (((-1096) $) NIL)) (-1275 (((-111) $) 14)) (-2373 (($) 10)) (-2973 (($ $) 27)) (-1490 (($ |#1| |#2| (-111)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3443 |#2|))) 21) (((-627 $) (-627 (-2 (|:| |val| |#1|) (|:| -3443 |#2|)))) 24) (((-627 $) |#1| (-627 |#2|)) 26)) (-2242 ((|#2| $) 16)) (-1477 (((-842) $) 50)) (-2292 (((-111) $ $) 39))) +(((-1116 |#1| |#2|) (-13 (-1076) (-10 -8 (-15 -2373 ($)) (-15 -1275 ((-111) $)) (-15 -4288 (|#1| $)) (-15 -2242 (|#2| $)) (-15 -2523 ((-111) $)) (-15 -1490 ($ |#1| |#2| (-111))) (-15 -1490 ($ |#1| |#2|)) (-15 -1490 ($ (-2 (|:| |val| |#1|) (|:| -3443 |#2|)))) (-15 -1490 ((-627 $) (-627 (-2 (|:| |val| |#1|) (|:| -3443 |#2|))))) (-15 -1490 ((-627 $) |#1| (-627 |#2|))) (-15 -2973 ($ $)) (-15 -2660 ($ $ |#1|)) (-15 -2080 ($ $ |#2|)) (-15 -2332 ($ $ (-111))) (-15 -3782 ($ $)) (-15 -3988 ((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|))) (-15 -2335 ((-111) $ $ (-1 (-111) |#2| |#2|))))) (-13 (-1076) (-34)) (-13 (-1076) (-34))) (T -1116)) +((-2373 (*1 *1) (-12 (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))))) (-1275 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))))) (-4288 (*1 *2 *1) (-12 (-4 *2 (-13 (-1076) (-34))) (-5 *1 (-1116 *2 *3)) (-4 *3 (-13 (-1076) (-34))))) (-2242 (*1 *2 *1) (-12 (-4 *2 (-13 (-1076) (-34))) (-5 *1 (-1116 *3 *2)) (-4 *3 (-13 (-1076) (-34))))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))))) (-1490 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))))) (-1490 (*1 *1 *2 *3) (-12 (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))))) (-1490 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3443 *4))) (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))) (-5 *1 (-1116 *3 *4)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-627 (-2 (|:| |val| *4) (|:| -3443 *5)))) (-4 *4 (-13 (-1076) (-34))) (-4 *5 (-13 (-1076) (-34))) (-5 *2 (-627 (-1116 *4 *5))) (-5 *1 (-1116 *4 *5)))) (-1490 (*1 *2 *3 *4) (-12 (-5 *4 (-627 *5)) (-4 *5 (-13 (-1076) (-34))) (-5 *2 (-627 (-1116 *3 *5))) (-5 *1 (-1116 *3 *5)) (-4 *3 (-13 (-1076) (-34))))) (-2973 (*1 *1 *1) (-12 (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))))) (-2660 (*1 *1 *1 *2) (-12 (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))))) (-2080 (*1 *1 *1 *2) (-12 (-5 *1 (-1116 *3 *2)) (-4 *3 (-13 (-1076) (-34))) (-4 *2 (-13 (-1076) (-34))))) (-2332 (*1 *1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))))) (-3782 (*1 *1 *1) (-12 (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))))) (-3988 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-1 (-111) *6 *6)) (-4 *5 (-13 (-1076) (-34))) (-4 *6 (-13 (-1076) (-34))) (-5 *2 (-111)) (-5 *1 (-1116 *5 *6)))) (-2335 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-111) *5 *5)) (-4 *5 (-13 (-1076) (-34))) (-5 *2 (-111)) (-5 *1 (-1116 *4 *5)) (-4 *4 (-13 (-1076) (-34)))))) +(-13 (-1076) (-10 -8 (-15 -2373 ($)) (-15 -1275 ((-111) $)) (-15 -4288 (|#1| $)) (-15 -2242 (|#2| $)) (-15 -2523 ((-111) $)) (-15 -1490 ($ |#1| |#2| (-111))) (-15 -1490 ($ |#1| |#2|)) (-15 -1490 ($ (-2 (|:| |val| |#1|) (|:| -3443 |#2|)))) (-15 -1490 ((-627 $) (-627 (-2 (|:| |val| |#1|) (|:| -3443 |#2|))))) (-15 -1490 ((-627 $) |#1| (-627 |#2|))) (-15 -2973 ($ $)) (-15 -2660 ($ $ |#1|)) (-15 -2080 ($ $ |#2|)) (-15 -2332 ($ $ (-111))) (-15 -3782 ($ $)) (-15 -3988 ((-111) $ $ (-1 (-111) |#1| |#1|) (-1 (-111) |#2| |#2|))) (-15 -2335 ((-111) $ $ (-1 (-111) |#2| |#2|))))) +((-1465 (((-111) $ $) NIL (|has| (-1116 |#1| |#2|) (-1076)))) (-4288 (((-1116 |#1| |#2|) $) 25)) (-3640 (($ $) 76)) (-4001 (((-111) (-1116 |#1| |#2|) $ (-1 (-111) |#2| |#2|)) 85)) (-3013 (($ $ $ (-627 (-1116 |#1| |#2|))) 90) (($ $ $ (-627 (-1116 |#1| |#2|)) (-1 (-111) |#2| |#2|)) 91)) (-4031 (((-111) $ (-754)) NIL)) (-2472 (((-1116 |#1| |#2|) $ (-1116 |#1| |#2|)) 43 (|has| $ (-6 -4367)))) (-2950 (((-1116 |#1| |#2|) $ "value" (-1116 |#1| |#2|)) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 41 (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-2441 (((-627 (-2 (|:| |val| |#1|) (|:| -3443 |#2|))) $) 80)) (-2265 (($ (-1116 |#1| |#2|) $) 39)) (-4342 (($ (-1116 |#1| |#2|) $) 31)) (-3215 (((-627 (-1116 |#1| |#2|)) $) NIL (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) 51)) (-1843 (((-111) (-1116 |#1| |#2|) $) 82)) (-3726 (((-111) $ $) NIL (|has| (-1116 |#1| |#2|) (-1076)))) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 (-1116 |#1| |#2|)) $) 55 (|has| $ (-6 -4366)))) (-3082 (((-111) (-1116 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-1116 |#1| |#2|) (-1076))))) (-3463 (($ (-1 (-1116 |#1| |#2|) (-1116 |#1| |#2|)) $) 47 (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-1116 |#1| |#2|) (-1116 |#1| |#2|)) $) 46)) (-3971 (((-111) $ (-754)) NIL)) (-1823 (((-627 (-1116 |#1| |#2|)) $) 53)) (-3810 (((-111) $) 42)) (-1595 (((-1134) $) NIL (|has| (-1116 |#1| |#2|) (-1076)))) (-1498 (((-1096) $) NIL (|has| (-1116 |#1| |#2|) (-1076)))) (-3397 (((-3 $ "failed") $) 75)) (-3509 (((-111) (-1 (-111) (-1116 |#1| |#2|)) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-1116 |#1| |#2|)))) NIL (-12 (|has| (-1116 |#1| |#2|) (-303 (-1116 |#1| |#2|))) (|has| (-1116 |#1| |#2|) (-1076)))) (($ $ (-288 (-1116 |#1| |#2|))) NIL (-12 (|has| (-1116 |#1| |#2|) (-303 (-1116 |#1| |#2|))) (|has| (-1116 |#1| |#2|) (-1076)))) (($ $ (-1116 |#1| |#2|) (-1116 |#1| |#2|)) NIL (-12 (|has| (-1116 |#1| |#2|) (-303 (-1116 |#1| |#2|))) (|has| (-1116 |#1| |#2|) (-1076)))) (($ $ (-627 (-1116 |#1| |#2|)) (-627 (-1116 |#1| |#2|))) NIL (-12 (|has| (-1116 |#1| |#2|) (-303 (-1116 |#1| |#2|))) (|has| (-1116 |#1| |#2|) (-1076))))) (-2432 (((-111) $ $) 50)) (-1275 (((-111) $) 22)) (-2373 (($) 24)) (-1985 (((-1116 |#1| |#2|) $ "value") NIL)) (-1848 (((-552) $ $) NIL)) (-2978 (((-111) $) 44)) (-1509 (((-754) (-1 (-111) (-1116 |#1| |#2|)) $) NIL (|has| $ (-6 -4366))) (((-754) (-1116 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-1116 |#1| |#2|) (-1076))))) (-2973 (($ $) 49)) (-1490 (($ (-1116 |#1| |#2|)) 9) (($ |#1| |#2| (-627 $)) 12) (($ |#1| |#2| (-627 (-1116 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-627 |#2|)) 17)) (-3826 (((-627 |#2|) $) 81)) (-1477 (((-842) $) 73 (|has| (-1116 |#1| |#2|) (-599 (-842))))) (-2535 (((-627 $) $) 28)) (-3415 (((-111) $ $) NIL (|has| (-1116 |#1| |#2|) (-1076)))) (-3299 (((-111) (-1 (-111) (-1116 |#1| |#2|)) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 64 (|has| (-1116 |#1| |#2|) (-1076)))) (-1383 (((-754) $) 58 (|has| $ (-6 -4366))))) +(((-1117 |#1| |#2|) (-13 (-989 (-1116 |#1| |#2|)) (-10 -8 (-6 -4367) (-6 -4366) (-15 -3397 ((-3 $ "failed") $)) (-15 -3640 ($ $)) (-15 -1490 ($ (-1116 |#1| |#2|))) (-15 -1490 ($ |#1| |#2| (-627 $))) (-15 -1490 ($ |#1| |#2| (-627 (-1116 |#1| |#2|)))) (-15 -1490 ($ |#1| |#2| |#1| (-627 |#2|))) (-15 -3826 ((-627 |#2|) $)) (-15 -2441 ((-627 (-2 (|:| |val| |#1|) (|:| -3443 |#2|))) $)) (-15 -1843 ((-111) (-1116 |#1| |#2|) $)) (-15 -4001 ((-111) (-1116 |#1| |#2|) $ (-1 (-111) |#2| |#2|))) (-15 -4342 ($ (-1116 |#1| |#2|) $)) (-15 -2265 ($ (-1116 |#1| |#2|) $)) (-15 -3013 ($ $ $ (-627 (-1116 |#1| |#2|)))) (-15 -3013 ($ $ $ (-627 (-1116 |#1| |#2|)) (-1 (-111) |#2| |#2|))))) (-13 (-1076) (-34)) (-13 (-1076) (-34))) (T -1117)) +((-3397 (*1 *1 *1) (|partial| -12 (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))))) (-3640 (*1 *1 *1) (-12 (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))))) (-1490 (*1 *1 *2) (-12 (-5 *2 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))) (-5 *1 (-1117 *3 *4)))) (-1490 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-627 (-1117 *2 *3))) (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))))) (-1490 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-627 (-1116 *2 *3))) (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))) (-5 *1 (-1117 *2 *3)))) (-1490 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-627 *3)) (-4 *3 (-13 (-1076) (-34))) (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1076) (-34))))) (-3826 (*1 *2 *1) (-12 (-5 *2 (-627 *4)) (-5 *1 (-1117 *3 *4)) (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))))) (-2441 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) (-5 *1 (-1117 *3 *4)) (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))))) (-1843 (*1 *2 *3 *1) (-12 (-5 *3 (-1116 *4 *5)) (-4 *4 (-13 (-1076) (-34))) (-4 *5 (-13 (-1076) (-34))) (-5 *2 (-111)) (-5 *1 (-1117 *4 *5)))) (-4001 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1116 *5 *6)) (-5 *4 (-1 (-111) *6 *6)) (-4 *5 (-13 (-1076) (-34))) (-4 *6 (-13 (-1076) (-34))) (-5 *2 (-111)) (-5 *1 (-1117 *5 *6)))) (-4342 (*1 *1 *2 *1) (-12 (-5 *2 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))) (-5 *1 (-1117 *3 *4)))) (-2265 (*1 *1 *2 *1) (-12 (-5 *2 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))) (-5 *1 (-1117 *3 *4)))) (-3013 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-627 (-1116 *3 *4))) (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))) (-5 *1 (-1117 *3 *4)))) (-3013 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-1116 *4 *5))) (-5 *3 (-1 (-111) *5 *5)) (-4 *4 (-13 (-1076) (-34))) (-4 *5 (-13 (-1076) (-34))) (-5 *1 (-1117 *4 *5))))) +(-13 (-989 (-1116 |#1| |#2|)) (-10 -8 (-6 -4367) (-6 -4366) (-15 -3397 ((-3 $ "failed") $)) (-15 -3640 ($ $)) (-15 -1490 ($ (-1116 |#1| |#2|))) (-15 -1490 ($ |#1| |#2| (-627 $))) (-15 -1490 ($ |#1| |#2| (-627 (-1116 |#1| |#2|)))) (-15 -1490 ($ |#1| |#2| |#1| (-627 |#2|))) (-15 -3826 ((-627 |#2|) $)) (-15 -2441 ((-627 (-2 (|:| |val| |#1|) (|:| -3443 |#2|))) $)) (-15 -1843 ((-111) (-1116 |#1| |#2|) $)) (-15 -4001 ((-111) (-1116 |#1| |#2|) $ (-1 (-111) |#2| |#2|))) (-15 -4342 ($ (-1116 |#1| |#2|) $)) (-15 -2265 ($ (-1116 |#1| |#2|) $)) (-15 -3013 ($ $ $ (-627 (-1116 |#1| |#2|)))) (-15 -3013 ($ $ $ (-627 (-1116 |#1| |#2|)) (-1 (-111) |#2| |#2|))))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3595 (($ $) NIL)) (-3385 ((|#2| $) NIL)) (-2311 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1959 (($ (-671 |#2|)) 50)) (-3944 (((-111) $) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-1665 (($ |#2|) 10)) (-3887 (($) NIL T CONST)) (-1472 (($ $) 63 (|has| |#2| (-301)))) (-3884 (((-235 |#1| |#2|) $ (-552)) 36)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#2| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-3 |#2| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#2| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#2| (-1017 (-401 (-552))))) ((|#2| $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) 77)) (-4154 (((-754) $) 65 (|has| |#2| (-544)))) (-3413 ((|#2| $ (-552) (-552)) NIL)) (-3215 (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-2624 (((-111) $) NIL)) (-1610 (((-754) $) 67 (|has| |#2| (-544)))) (-2960 (((-627 (-235 |#1| |#2|)) $) 71 (|has| |#2| (-544)))) (-3560 (((-754) $) NIL)) (-2655 (($ |#2|) 20)) (-3572 (((-754) $) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-1744 ((|#2| $) 61 (|has| |#2| (-6 (-4368 "*"))))) (-4083 (((-552) $) NIL)) (-3511 (((-552) $) NIL)) (-3114 (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-3479 (((-552) $) NIL)) (-2780 (((-552) $) NIL)) (-4176 (($ (-627 (-627 |#2|))) 31)) (-3463 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3127 (((-627 (-627 |#2|)) $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-2952 (((-3 $ "failed") $) 74 (|has| |#2| (-357)))) (-1498 (((-1096) $) NIL)) (-2761 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544)))) (-3509 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#2| $ (-552) (-552) |#2|) NIL) ((|#2| $ (-552) (-552)) NIL)) (-2942 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-754)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-3877 ((|#2| $) NIL)) (-3202 (($ (-627 |#2|)) 44)) (-4064 (((-111) $) NIL)) (-2372 (((-235 |#1| |#2|) $) NIL)) (-1530 ((|#2| $) 59 (|has| |#2| (-6 (-4368 "*"))))) (-1509 (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2973 (($ $) NIL)) (-3562 (((-528) $) 86 (|has| |#2| (-600 (-528))))) (-2152 (((-235 |#1| |#2|) $ (-552)) 38)) (-1477 (((-842) $) 41) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#2| (-1017 (-401 (-552))))) (($ |#2|) NIL) (((-671 |#2|) $) 46)) (-3995 (((-754)) 18)) (-3299 (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3847 (((-111) $) NIL)) (-1922 (($) 12 T CONST)) (-1933 (($) 15 T CONST)) (-4251 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-754)) NIL (|has| |#2| (-228))) (($ $) NIL (|has| |#2| (-228)))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) 57) (($ $ (-552)) 76 (|has| |#2| (-357)))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-235 |#1| |#2|) $ (-235 |#1| |#2|)) 53) (((-235 |#1| |#2|) (-235 |#1| |#2|) $) 55)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-1118 |#1| |#2|) (-13 (-1099 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-599 (-671 |#2|)) (-10 -8 (-15 -2655 ($ |#2|)) (-15 -3595 ($ $)) (-15 -1959 ($ (-671 |#2|))) (IF (|has| |#2| (-6 (-4368 "*"))) (-6 -4355) |%noBranch|) (IF (|has| |#2| (-6 (-4368 "*"))) (IF (|has| |#2| (-6 -4363)) (-6 -4363) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|))) (-754) (-1028)) (T -1118)) +((-2655 (*1 *1 *2) (-12 (-5 *1 (-1118 *3 *2)) (-14 *3 (-754)) (-4 *2 (-1028)))) (-3595 (*1 *1 *1) (-12 (-5 *1 (-1118 *2 *3)) (-14 *2 (-754)) (-4 *3 (-1028)))) (-1959 (*1 *1 *2) (-12 (-5 *2 (-671 *4)) (-4 *4 (-1028)) (-5 *1 (-1118 *3 *4)) (-14 *3 (-754))))) +(-13 (-1099 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-599 (-671 |#2|)) (-10 -8 (-15 -2655 ($ |#2|)) (-15 -3595 ($ $)) (-15 -1959 ($ (-671 |#2|))) (IF (|has| |#2| (-6 (-4368 "*"))) (-6 -4355) |%noBranch|) (IF (|has| |#2| (-6 (-4368 "*"))) (IF (|has| |#2| (-6 -4363)) (-6 -4363) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-600 (-528))) (-6 (-600 (-528))) |%noBranch|))) +((-1349 (($ $) 19)) (-3064 (($ $ (-141)) 10) (($ $ (-138)) 14)) (-4050 (((-111) $ $) 24)) (-3769 (($ $) 17)) (-1985 (((-141) $ (-552) (-141)) NIL) (((-141) $ (-552)) NIL) (($ $ (-1202 (-552))) NIL) (($ $ $) 29)) (-1477 (($ (-141)) 27) (((-842) $) NIL))) +(((-1119 |#1|) (-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -1985 (|#1| |#1| |#1|)) (-15 -3064 (|#1| |#1| (-138))) (-15 -3064 (|#1| |#1| (-141))) (-15 -1477 (|#1| (-141))) (-15 -4050 ((-111) |#1| |#1|)) (-15 -1349 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -1985 (|#1| |#1| (-1202 (-552)))) (-15 -1985 ((-141) |#1| (-552))) (-15 -1985 ((-141) |#1| (-552) (-141)))) (-1120)) (T -1119)) +NIL +(-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -1985 (|#1| |#1| |#1|)) (-15 -3064 (|#1| |#1| (-138))) (-15 -3064 (|#1| |#1| (-141))) (-15 -1477 (|#1| (-141))) (-15 -4050 ((-111) |#1| |#1|)) (-15 -1349 (|#1| |#1|)) (-15 -3769 (|#1| |#1|)) (-15 -1985 (|#1| |#1| (-1202 (-552)))) (-15 -1985 ((-141) |#1| (-552))) (-15 -1985 ((-141) |#1| (-552) (-141)))) +((-1465 (((-111) $ $) 19 (|has| (-141) (-1076)))) (-2726 (($ $) 120)) (-1349 (($ $) 121)) (-3064 (($ $ (-141)) 108) (($ $ (-138)) 107)) (-3305 (((-1240) $ (-552) (-552)) 40 (|has| $ (-6 -4367)))) (-4025 (((-111) $ $) 118)) (-4003 (((-111) $ $ (-552)) 117)) (-2843 (((-627 $) $ (-141)) 110) (((-627 $) $ (-138)) 109)) (-1439 (((-111) (-1 (-111) (-141) (-141)) $) 98) (((-111) $) 92 (|has| (-141) (-830)))) (-2701 (($ (-1 (-111) (-141) (-141)) $) 89 (|has| $ (-6 -4367))) (($ $) 88 (-12 (|has| (-141) (-830)) (|has| $ (-6 -4367))))) (-4298 (($ (-1 (-111) (-141) (-141)) $) 99) (($ $) 93 (|has| (-141) (-830)))) (-4031 (((-111) $ (-754)) 8)) (-2950 (((-141) $ (-552) (-141)) 52 (|has| $ (-6 -4367))) (((-141) $ (-1202 (-552)) (-141)) 58 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) (-141)) $) 75 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-3702 (($ $ (-141)) 104) (($ $ (-138)) 103)) (-2519 (($ $) 90 (|has| $ (-6 -4367)))) (-3429 (($ $) 100)) (-3754 (($ $ (-1202 (-552)) $) 114)) (-3370 (($ $) 78 (-12 (|has| (-141) (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ (-141) $) 77 (-12 (|has| (-141) (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) (-141)) $) 74 (|has| $ (-6 -4366)))) (-2091 (((-141) (-1 (-141) (-141) (-141)) $ (-141) (-141)) 76 (-12 (|has| (-141) (-1076)) (|has| $ (-6 -4366)))) (((-141) (-1 (-141) (-141) (-141)) $ (-141)) 73 (|has| $ (-6 -4366))) (((-141) (-1 (-141) (-141) (-141)) $) 72 (|has| $ (-6 -4366)))) (-3473 (((-141) $ (-552) (-141)) 53 (|has| $ (-6 -4367)))) (-3413 (((-141) $ (-552)) 51)) (-4050 (((-111) $ $) 119)) (-2967 (((-552) (-1 (-111) (-141)) $) 97) (((-552) (-141) $) 96 (|has| (-141) (-1076))) (((-552) (-141) $ (-552)) 95 (|has| (-141) (-1076))) (((-552) $ $ (-552)) 113) (((-552) (-138) $ (-552)) 112)) (-3215 (((-627 (-141)) $) 30 (|has| $ (-6 -4366)))) (-2655 (($ (-754) (-141)) 69)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 43 (|has| (-552) (-830)))) (-1816 (($ $ $) 87 (|has| (-141) (-830)))) (-3759 (($ (-1 (-111) (-141) (-141)) $ $) 101) (($ $ $) 94 (|has| (-141) (-830)))) (-3114 (((-627 (-141)) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) (-141) $) 27 (-12 (|has| (-141) (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 44 (|has| (-552) (-830)))) (-4093 (($ $ $) 86 (|has| (-141) (-830)))) (-2999 (((-111) $ $ (-141)) 115)) (-3835 (((-754) $ $ (-141)) 116)) (-3463 (($ (-1 (-141) (-141)) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-141) (-141)) $) 35) (($ (-1 (-141) (-141) (-141)) $ $) 64)) (-3053 (($ $) 122)) (-3769 (($ $) 123)) (-3971 (((-111) $ (-754)) 10)) (-3712 (($ $ (-141)) 106) (($ $ (-138)) 105)) (-1595 (((-1134) $) 22 (|has| (-141) (-1076)))) (-3252 (($ (-141) $ (-552)) 60) (($ $ $ (-552)) 59)) (-3892 (((-627 (-552)) $) 46)) (-2358 (((-111) (-552) $) 47)) (-1498 (((-1096) $) 21 (|has| (-141) (-1076)))) (-3340 (((-141) $) 42 (|has| (-552) (-830)))) (-1503 (((-3 (-141) "failed") (-1 (-111) (-141)) $) 71)) (-1942 (($ $ (-141)) 41 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) (-141)) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-141)))) 26 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-288 (-141))) 25 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-141) (-141)) 24 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-627 (-141)) (-627 (-141))) 23 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) (-141) $) 45 (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-2083 (((-627 (-141)) $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 (((-141) $ (-552) (-141)) 50) (((-141) $ (-552)) 49) (($ $ (-1202 (-552))) 63) (($ $ $) 102)) (-3907 (($ $ (-552)) 62) (($ $ (-1202 (-552))) 61)) (-1509 (((-754) (-1 (-111) (-141)) $) 31 (|has| $ (-6 -4366))) (((-754) (-141) $) 28 (-12 (|has| (-141) (-1076)) (|has| $ (-6 -4366))))) (-4105 (($ $ $ (-552)) 91 (|has| $ (-6 -4367)))) (-2973 (($ $) 13)) (-3562 (((-528) $) 79 (|has| (-141) (-600 (-528))))) (-1490 (($ (-627 (-141))) 70)) (-2668 (($ $ (-141)) 68) (($ (-141) $) 67) (($ $ $) 66) (($ (-627 $)) 65)) (-1477 (($ (-141)) 111) (((-842) $) 18 (|has| (-141) (-599 (-842))))) (-3299 (((-111) (-1 (-111) (-141)) $) 33 (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) 84 (|has| (-141) (-830)))) (-2329 (((-111) $ $) 83 (|has| (-141) (-830)))) (-2292 (((-111) $ $) 20 (|has| (-141) (-1076)))) (-2340 (((-111) $ $) 85 (|has| (-141) (-830)))) (-2316 (((-111) $ $) 82 (|has| (-141) (-830)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-1120) (-137)) (T -1120)) +((-3769 (*1 *1 *1) (-4 *1 (-1120))) (-3053 (*1 *1 *1) (-4 *1 (-1120))) (-1349 (*1 *1 *1) (-4 *1 (-1120))) (-2726 (*1 *1 *1) (-4 *1 (-1120))) (-4050 (*1 *2 *1 *1) (-12 (-4 *1 (-1120)) (-5 *2 (-111)))) (-4025 (*1 *2 *1 *1) (-12 (-4 *1 (-1120)) (-5 *2 (-111)))) (-4003 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1120)) (-5 *3 (-552)) (-5 *2 (-111)))) (-3835 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1120)) (-5 *3 (-141)) (-5 *2 (-754)))) (-2999 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1120)) (-5 *3 (-141)) (-5 *2 (-111)))) (-3754 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1120)) (-5 *2 (-1202 (-552))))) (-2967 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-552)))) (-2967 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-552)) (-5 *3 (-138)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-141)) (-4 *1 (-1120)))) (-2843 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-627 *1)) (-4 *1 (-1120)))) (-2843 (*1 *2 *1 *3) (-12 (-5 *3 (-138)) (-5 *2 (-627 *1)) (-4 *1 (-1120)))) (-3064 (*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-141)))) (-3064 (*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-138)))) (-3712 (*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-141)))) (-3712 (*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-138)))) (-3702 (*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-141)))) (-3702 (*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-138)))) (-1985 (*1 *1 *1 *1) (-4 *1 (-1120)))) +(-13 (-19 (-141)) (-10 -8 (-15 -3769 ($ $)) (-15 -3053 ($ $)) (-15 -1349 ($ $)) (-15 -2726 ($ $)) (-15 -4050 ((-111) $ $)) (-15 -4025 ((-111) $ $)) (-15 -4003 ((-111) $ $ (-552))) (-15 -3835 ((-754) $ $ (-141))) (-15 -2999 ((-111) $ $ (-141))) (-15 -3754 ($ $ (-1202 (-552)) $)) (-15 -2967 ((-552) $ $ (-552))) (-15 -2967 ((-552) (-138) $ (-552))) (-15 -1477 ($ (-141))) (-15 -2843 ((-627 $) $ (-141))) (-15 -2843 ((-627 $) $ (-138))) (-15 -3064 ($ $ (-141))) (-15 -3064 ($ $ (-138))) (-15 -3712 ($ $ (-141))) (-15 -3712 ($ $ (-138))) (-15 -3702 ($ $ (-141))) (-15 -3702 ($ $ (-138))) (-15 -1985 ($ $ $)))) +(((-34) . T) ((-101) -1559 (|has| (-141) (-1076)) (|has| (-141) (-830))) ((-599 (-842)) -1559 (|has| (-141) (-1076)) (|has| (-141) (-830)) (|has| (-141) (-599 (-842)))) ((-148 #0=(-141)) . T) ((-600 (-528)) |has| (-141) (-600 (-528))) ((-280 #1=(-552) #0#) . T) ((-282 #1# #0#) . T) ((-303 #0#) -12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076))) ((-367 #0#) . T) ((-482 #0#) . T) ((-590 #1# #0#) . T) ((-506 #0# #0#) -12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076))) ((-633 #0#) . T) ((-19 #0#) . T) ((-830) |has| (-141) (-830)) ((-1076) -1559 (|has| (-141) (-1076)) (|has| (-141) (-830))) ((-1189) . T)) +((-2767 (((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 |#4|) (-627 |#5|) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) (-754)) 94)) (-2211 (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754)) 54)) (-3809 (((-1240) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-754)) 85)) (-1455 (((-754) (-627 |#4|) (-627 |#5|)) 27)) (-4164 (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754)) 56) (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754) (-111)) 58)) (-4004 (((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111) (-111) (-111) (-111)) 76) (((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111)) 77)) (-3562 (((-1134) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) 80)) (-3451 (((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|) 53)) (-2574 (((-754) (-627 |#4|) (-627 |#5|)) 19))) +(((-1121 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2574 ((-754) (-627 |#4|) (-627 |#5|))) (-15 -1455 ((-754) (-627 |#4|) (-627 |#5|))) (-15 -3451 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|)) (-15 -2211 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754))) (-15 -2211 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|)) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754) (-111))) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754))) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|)) (-15 -4004 ((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111))) (-15 -4004 ((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -2767 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 |#4|) (-627 |#5|) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) (-754))) (-15 -3562 ((-1134) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)))) (-15 -3809 ((-1240) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-754)))) (-445) (-776) (-830) (-1042 |#1| |#2| |#3|) (-1085 |#1| |#2| |#3| |#4|)) (T -1121)) +((-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-2 (|:| |val| (-627 *8)) (|:| -3443 *9)))) (-5 *4 (-754)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1085 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-1240)) (-5 *1 (-1121 *5 *6 *7 *8 *9)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-627 *7)) (|:| -3443 *8))) (-4 *7 (-1042 *4 *5 *6)) (-4 *8 (-1085 *4 *5 *6 *7)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-1134)) (-5 *1 (-1121 *4 *5 *6 *7 *8)))) (-2767 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-627 *11)) (|:| |todo| (-627 (-2 (|:| |val| *3) (|:| -3443 *11)))))) (-5 *6 (-754)) (-5 *2 (-627 (-2 (|:| |val| (-627 *10)) (|:| -3443 *11)))) (-5 *3 (-627 *10)) (-5 *4 (-627 *11)) (-4 *10 (-1042 *7 *8 *9)) (-4 *11 (-1085 *7 *8 *9 *10)) (-4 *7 (-445)) (-4 *8 (-776)) (-4 *9 (-830)) (-5 *1 (-1121 *7 *8 *9 *10 *11)))) (-4004 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-627 *9)) (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1085 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1121 *5 *6 *7 *8 *9)))) (-4004 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-627 *9)) (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1085 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1121 *5 *6 *7 *8 *9)))) (-4164 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1085 *5 *6 *7 *3)))) (-4164 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-754)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *3 (-1042 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1121 *6 *7 *8 *3 *4)) (-4 *4 (-1085 *6 *7 *8 *3)))) (-4164 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-754)) (-5 *6 (-111)) (-4 *7 (-445)) (-4 *8 (-776)) (-4 *9 (-830)) (-4 *3 (-1042 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1121 *7 *8 *9 *3 *4)) (-4 *4 (-1085 *7 *8 *9 *3)))) (-2211 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1085 *5 *6 *7 *3)))) (-2211 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-754)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *3 (-1042 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1121 *6 *7 *8 *3 *4)) (-4 *4 (-1085 *6 *7 *8 *3)))) (-3451 (*1 *2 *3 *4) (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-627 *4)) (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1085 *5 *6 *7 *3)))) (-1455 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 *9)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1085 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-754)) (-5 *1 (-1121 *5 *6 *7 *8 *9)))) (-2574 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 *9)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1085 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-754)) (-5 *1 (-1121 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -2574 ((-754) (-627 |#4|) (-627 |#5|))) (-15 -1455 ((-754) (-627 |#4|) (-627 |#5|))) (-15 -3451 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|)) (-15 -2211 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754))) (-15 -2211 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|)) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754) (-111))) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5| (-754))) (-15 -4164 ((-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) |#4| |#5|)) (-15 -4004 ((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111))) (-15 -4004 ((-627 |#5|) (-627 |#4|) (-627 |#5|) (-111) (-111) (-111) (-111) (-111))) (-15 -2767 ((-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-627 |#4|) (-627 |#5|) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-2 (|:| |done| (-627 |#5|)) (|:| |todo| (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))))) (-754))) (-15 -3562 ((-1134) (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|)))) (-15 -3809 ((-1240) (-627 (-2 (|:| |val| (-627 |#4|)) (|:| -3443 |#5|))) (-754)))) +((-1465 (((-111) $ $) NIL)) (-1764 (((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 |#4|)))) (-627 |#4|)) NIL)) (-1361 (((-627 $) (-627 |#4|)) 110) (((-627 $) (-627 |#4|) (-111)) 111) (((-627 $) (-627 |#4|) (-111) (-111)) 109) (((-627 $) (-627 |#4|) (-111) (-111) (-111) (-111)) 112)) (-1853 (((-627 |#3|) $) NIL)) (-2730 (((-111) $) NIL)) (-3648 (((-111) $) NIL (|has| |#1| (-544)))) (-3691 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1553 ((|#4| |#4| $) NIL)) (-4014 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| $) 84)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2536 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366))) (((-3 |#4| "failed") $ |#3|) 62)) (-3887 (($) NIL T CONST)) (-3569 (((-111) $) 26 (|has| |#1| (-544)))) (-2330 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2165 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3188 (((-111) $) NIL (|has| |#1| (-544)))) (-3238 (((-627 |#4|) (-627 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-4097 (((-627 |#4|) (-627 |#4|) $) NIL (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) NIL (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) NIL)) (-1703 (($ (-627 |#4|)) NIL)) (-3351 (((-3 $ "failed") $) 39)) (-4167 ((|#4| |#4| $) 65)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-4342 (($ |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-544)))) (-4104 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-2934 ((|#4| |#4| $) NIL)) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4366))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2415 (((-2 (|:| -4267 (-627 |#4|)) (|:| -2849 (-627 |#4|))) $) NIL)) (-3203 (((-111) |#4| $) NIL)) (-2004 (((-111) |#4| $) NIL)) (-2790 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-2533 (((-2 (|:| |val| (-627 |#4|)) (|:| |towers| (-627 $))) (-627 |#4|) (-111) (-111)) 124)) (-3215 (((-627 |#4|) $) 16 (|has| $ (-6 -4366)))) (-3850 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4147 ((|#3| $) 33)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#4|) $) 17 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) 25 (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-3463 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) 21)) (-4198 (((-627 |#3|) $) NIL)) (-1927 (((-111) |#3| $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-2661 (((-3 |#4| (-627 $)) |#4| |#4| $) NIL)) (-4318 (((-627 (-2 (|:| |val| |#4|) (|:| -3443 $))) |#4| |#4| $) 103)) (-1294 (((-3 |#4| "failed") $) 37)) (-4314 (((-627 $) |#4| $) 88)) (-2338 (((-3 (-111) (-627 $)) |#4| $) NIL)) (-3984 (((-627 (-2 (|:| |val| (-111)) (|:| -3443 $))) |#4| $) 98) (((-111) |#4| $) 53)) (-3383 (((-627 $) |#4| $) 107) (((-627 $) (-627 |#4|) $) NIL) (((-627 $) (-627 |#4|) (-627 $)) 108) (((-627 $) |#4| (-627 $)) NIL)) (-4219 (((-627 $) (-627 |#4|) (-111) (-111) (-111)) 119)) (-1892 (($ |#4| $) 75) (($ (-627 |#4|) $) 76) (((-627 $) |#4| $ (-111) (-111) (-111) (-111) (-111)) 74)) (-4122 (((-627 |#4|) $) NIL)) (-2481 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3921 ((|#4| |#4| $) NIL)) (-2654 (((-111) $ $) NIL)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-2163 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4116 ((|#4| |#4| $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 (((-3 |#4| "failed") $) 35)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3672 (((-3 $ "failed") $ |#4|) 48)) (-4168 (($ $ |#4|) NIL) (((-627 $) |#4| $) 90) (((-627 $) |#4| (-627 $)) NIL) (((-627 $) (-627 |#4|) $) NIL) (((-627 $) (-627 |#4|) (-627 $)) 86)) (-3509 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 15)) (-2373 (($) 13)) (-3567 (((-754) $) NIL)) (-1509 (((-754) |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) (((-754) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) 12)) (-3562 (((-528) $) NIL (|has| |#4| (-600 (-528))))) (-1490 (($ (-627 |#4|)) 20)) (-4237 (($ $ |#3|) 42)) (-2286 (($ $ |#3|) 44)) (-2462 (($ $) NIL)) (-3911 (($ $ |#3|) NIL)) (-1477 (((-842) $) 31) (((-627 |#4|) $) 40)) (-1641 (((-754) $) NIL (|has| |#3| (-362)))) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2925 (((-111) $ (-1 (-111) |#4| (-627 |#4|))) NIL)) (-2733 (((-627 $) |#4| $) 54) (((-627 $) |#4| (-627 $)) NIL) (((-627 $) (-627 |#4|) $) NIL) (((-627 $) (-627 |#4|) (-627 $)) NIL)) (-3299 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-2199 (((-627 |#3|) $) NIL)) (-3612 (((-111) |#4| $) NIL)) (-3528 (((-111) |#3| $) 61)) (-2292 (((-111) $ $) NIL)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-1122 |#1| |#2| |#3| |#4|) (-13 (-1085 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1892 ((-627 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -1361 ((-627 $) (-627 |#4|) (-111) (-111))) (-15 -1361 ((-627 $) (-627 |#4|) (-111) (-111) (-111) (-111))) (-15 -4219 ((-627 $) (-627 |#4|) (-111) (-111) (-111))) (-15 -2533 ((-2 (|:| |val| (-627 |#4|)) (|:| |towers| (-627 $))) (-627 |#4|) (-111) (-111))))) (-445) (-776) (-830) (-1042 |#1| |#2| |#3|)) (T -1122)) +((-1892 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 (-1122 *5 *6 *7 *3))) (-5 *1 (-1122 *5 *6 *7 *3)) (-4 *3 (-1042 *5 *6 *7)))) (-1361 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 (-1122 *5 *6 *7 *8))) (-5 *1 (-1122 *5 *6 *7 *8)))) (-1361 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 (-1122 *5 *6 *7 *8))) (-5 *1 (-1122 *5 *6 *7 *8)))) (-4219 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 (-1122 *5 *6 *7 *8))) (-5 *1 (-1122 *5 *6 *7 *8)))) (-2533 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-627 *8)) (|:| |towers| (-627 (-1122 *5 *6 *7 *8))))) (-5 *1 (-1122 *5 *6 *7 *8)) (-5 *3 (-627 *8))))) +(-13 (-1085 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1892 ((-627 $) |#4| $ (-111) (-111) (-111) (-111) (-111))) (-15 -1361 ((-627 $) (-627 |#4|) (-111) (-111))) (-15 -1361 ((-627 $) (-627 |#4|) (-111) (-111) (-111) (-111))) (-15 -4219 ((-627 $) (-627 |#4|) (-111) (-111) (-111))) (-15 -2533 ((-2 (|:| |val| (-627 |#4|)) (|:| |towers| (-627 $))) (-627 |#4|) (-111) (-111))))) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2240 ((|#1| $) 34)) (-3690 (($ (-627 |#1|)) 39)) (-4031 (((-111) $ (-754)) NIL)) (-3887 (($) NIL T CONST)) (-3468 ((|#1| |#1| $) 36)) (-3846 ((|#1| $) 32)) (-3215 (((-627 |#1|) $) 18 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 22)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-4165 ((|#1| $) 35)) (-3954 (($ |#1| $) 37)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-4133 ((|#1| $) 33)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 31)) (-2373 (($) 38)) (-4170 (((-754) $) 29)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) 27)) (-1477 (((-842) $) 14 (|has| |#1| (-599 (-842))))) (-2577 (($ (-627 |#1|)) NIL)) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 17 (|has| |#1| (-1076)))) (-1383 (((-754) $) 30 (|has| $ (-6 -4366))))) +(((-1123 |#1|) (-13 (-1097 |#1|) (-10 -8 (-15 -3690 ($ (-627 |#1|))))) (-1189)) (T -1123)) +((-3690 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-1123 *3))))) +(-13 (-1097 |#1|) (-10 -8 (-15 -3690 ($ (-627 |#1|))))) +((-2950 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1202 (-552)) |#2|) 44) ((|#2| $ (-552) |#2|) 41)) (-3592 (((-111) $) 12)) (-3463 (($ (-1 |#2| |#2|) $) 39)) (-3340 ((|#2| $) NIL) (($ $ (-754)) 17)) (-1942 (($ $ |#2|) 40)) (-2361 (((-111) $) 11)) (-1985 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1202 (-552))) 31) ((|#2| $ (-552)) 23) ((|#2| $ (-552) |#2|) NIL)) (-3151 (($ $ $) 47) (($ $ |#2|) NIL)) (-2668 (($ $ $) 33) (($ |#2| $) NIL) (($ (-627 $)) 36) (($ $ |#2|) NIL))) +(((-1124 |#1| |#2|) (-10 -8 (-15 -3592 ((-111) |#1|)) (-15 -2361 ((-111) |#1|)) (-15 -2950 (|#2| |#1| (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552))) (-15 -1942 (|#1| |#1| |#2|)) (-15 -2668 (|#1| |#1| |#2|)) (-15 -2668 (|#1| (-627 |#1|))) (-15 -1985 (|#1| |#1| (-1202 (-552)))) (-15 -2950 (|#2| |#1| (-1202 (-552)) |#2|)) (-15 -2950 (|#2| |#1| "last" |#2|)) (-15 -2950 (|#1| |#1| "rest" |#1|)) (-15 -2950 (|#2| |#1| "first" |#2|)) (-15 -3151 (|#1| |#1| |#2|)) (-15 -3151 (|#1| |#1| |#1|)) (-15 -1985 (|#2| |#1| "last")) (-15 -1985 (|#1| |#1| "rest")) (-15 -3340 (|#1| |#1| (-754))) (-15 -1985 (|#2| |#1| "first")) (-15 -3340 (|#2| |#1|)) (-15 -2668 (|#1| |#2| |#1|)) (-15 -2668 (|#1| |#1| |#1|)) (-15 -2950 (|#2| |#1| "value" |#2|)) (-15 -1985 (|#2| |#1| "value")) (-15 -3463 (|#1| (-1 |#2| |#2|) |#1|))) (-1125 |#2|) (-1189)) (T -1124)) +NIL +(-10 -8 (-15 -3592 ((-111) |#1|)) (-15 -2361 ((-111) |#1|)) (-15 -2950 (|#2| |#1| (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552) |#2|)) (-15 -1985 (|#2| |#1| (-552))) (-15 -1942 (|#1| |#1| |#2|)) (-15 -2668 (|#1| |#1| |#2|)) (-15 -2668 (|#1| (-627 |#1|))) (-15 -1985 (|#1| |#1| (-1202 (-552)))) (-15 -2950 (|#2| |#1| (-1202 (-552)) |#2|)) (-15 -2950 (|#2| |#1| "last" |#2|)) (-15 -2950 (|#1| |#1| "rest" |#1|)) (-15 -2950 (|#2| |#1| "first" |#2|)) (-15 -3151 (|#1| |#1| |#2|)) (-15 -3151 (|#1| |#1| |#1|)) (-15 -1985 (|#2| |#1| "last")) (-15 -1985 (|#1| |#1| "rest")) (-15 -3340 (|#1| |#1| (-754))) (-15 -1985 (|#2| |#1| "first")) (-15 -3340 (|#2| |#1|)) (-15 -2668 (|#1| |#2| |#1|)) (-15 -2668 (|#1| |#1| |#1|)) (-15 -2950 (|#2| |#1| "value" |#2|)) (-15 -1985 (|#2| |#1| "value")) (-15 -3463 (|#1| (-1 |#2| |#2|) |#1|))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4288 ((|#1| $) 48)) (-4155 ((|#1| $) 65)) (-1700 (($ $) 67)) (-3305 (((-1240) $ (-552) (-552)) 97 (|has| $ (-6 -4367)))) (-3900 (($ $ (-552)) 52 (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) 8)) (-2472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4367)))) (-1474 (($ $ $) 56 (|has| $ (-6 -4367)))) (-2801 ((|#1| $ |#1|) 54 (|has| $ (-6 -4367)))) (-1612 ((|#1| $ |#1|) 58 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4367))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4367))) (($ $ "rest" $) 55 (|has| $ (-6 -4367))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) 117 (|has| $ (-6 -4367))) ((|#1| $ (-552) |#1|) 86 (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 41 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) 102 (|has| $ (-6 -4366)))) (-4143 ((|#1| $) 66)) (-3887 (($) 7 T CONST)) (-3351 (($ $) 73) (($ $ (-754)) 71)) (-3370 (($ $) 99 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ (-1 (-111) |#1|) $) 103 (|has| $ (-6 -4366))) (($ |#1| $) 100 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3473 ((|#1| $ (-552) |#1|) 85 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 87)) (-3592 (((-111) $) 83)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) 50)) (-3726 (((-111) $ $) 42 (|has| |#1| (-1076)))) (-2655 (($ (-754) |#1|) 108)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 95 (|has| (-552) (-830)))) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 94 (|has| (-552) (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3971 (((-111) $ (-754)) 10)) (-1823 (((-627 |#1|) $) 45)) (-3810 (((-111) $) 49)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1294 ((|#1| $) 70) (($ $ (-754)) 68)) (-3252 (($ $ $ (-552)) 116) (($ |#1| $ (-552)) 115)) (-3892 (((-627 (-552)) $) 92)) (-2358 (((-111) (-552) $) 91)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3340 ((|#1| $) 76) (($ $ (-754)) 74)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 106)) (-1942 (($ $ |#1|) 96 (|has| $ (-6 -4367)))) (-2361 (((-111) $) 84)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#1| $) 93 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) 90)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1202 (-552))) 112) ((|#1| $ (-552)) 89) ((|#1| $ (-552) |#1|) 88)) (-1848 (((-552) $ $) 44)) (-3907 (($ $ (-1202 (-552))) 114) (($ $ (-552)) 113)) (-2978 (((-111) $) 46)) (-1805 (($ $) 62)) (-3384 (($ $) 59 (|has| $ (-6 -4367)))) (-3543 (((-754) $) 63)) (-4149 (($ $) 64)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3562 (((-528) $) 98 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 107)) (-3151 (($ $ $) 61 (|has| $ (-6 -4367))) (($ $ |#1|) 60 (|has| $ (-6 -4367)))) (-2668 (($ $ $) 78) (($ |#1| $) 77) (($ (-627 $)) 110) (($ $ |#1|) 109)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) 51)) (-3415 (((-111) $ $) 43 (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-1125 |#1|) (-137) (-1189)) (T -1125)) +((-2361 (*1 *2 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-1189)) (-5 *2 (-111)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-1189)) (-5 *2 (-111))))) +(-13 (-1223 |t#1|) (-633 |t#1|) (-10 -8 (-15 -2361 ((-111) $)) (-15 -3592 ((-111) $)))) +(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-633 |#1|) . T) ((-989 |#1|) . T) ((-1076) |has| |#1| (-1076)) ((-1189) . T) ((-1223 |#1|) . T)) +((-1465 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3305 (((-1240) $ |#1| |#1|) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#2| $ |#1| |#2|) NIL)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3602 (((-3 |#2| "failed") |#1| $) NIL)) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2265 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-3 |#2| "failed") |#1| $) NIL)) (-4342 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) NIL)) (-3215 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 ((|#1| $) NIL (|has| |#1| (-830)))) (-3114 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2285 ((|#1| $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4367))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1296 (((-627 |#1|) $) NIL)) (-3619 (((-111) |#1| $) NIL)) (-4165 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3954 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3892 (((-627 |#1|) $) NIL)) (-2358 (((-111) |#1| $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-3340 ((|#2| $) NIL (|has| |#1| (-830)))) (-1503 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL)) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3028 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076)))) (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1477 (((-842) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842))) (|has| |#2| (-599 (-842)))))) (-2577 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-1126 |#1| |#2| |#3|) (-1165 |#1| |#2|) (-1076) (-1076) |#2|) (T -1126)) +NIL +(-1165 |#1| |#2|) +((-1465 (((-111) $ $) 7)) (-4317 (((-3 $ "failed") $) 13)) (-1595 (((-1134) $) 9)) (-3002 (($) 14 T CONST)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11)) (-2292 (((-111) $ $) 6))) +(((-1127) (-137)) (T -1127)) +((-3002 (*1 *1) (-4 *1 (-1127))) (-4317 (*1 *1 *1) (|partial| -4 *1 (-1127)))) +(-13 (-1076) (-10 -8 (-15 -3002 ($) -3488) (-15 -4317 ((-3 $ "failed") $)))) +(((-101) . T) ((-599 (-842)) . T) ((-1076) . T)) +((-3590 (((-1132 |#1|) (-1132 |#1|)) 17)) (-3153 (((-1132 |#1|) (-1132 |#1|)) 13)) (-3371 (((-1132 |#1|) (-1132 |#1|) (-552) (-552)) 20)) (-1817 (((-1132 |#1|) (-1132 |#1|)) 15))) +(((-1128 |#1|) (-10 -7 (-15 -3153 ((-1132 |#1|) (-1132 |#1|))) (-15 -1817 ((-1132 |#1|) (-1132 |#1|))) (-15 -3590 ((-1132 |#1|) (-1132 |#1|))) (-15 -3371 ((-1132 |#1|) (-1132 |#1|) (-552) (-552)))) (-13 (-544) (-144))) (T -1128)) +((-3371 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1132 *4)) (-5 *3 (-552)) (-4 *4 (-13 (-544) (-144))) (-5 *1 (-1128 *4)))) (-3590 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-13 (-544) (-144))) (-5 *1 (-1128 *3)))) (-1817 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-13 (-544) (-144))) (-5 *1 (-1128 *3)))) (-3153 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-13 (-544) (-144))) (-5 *1 (-1128 *3))))) +(-10 -7 (-15 -3153 ((-1132 |#1|) (-1132 |#1|))) (-15 -1817 ((-1132 |#1|) (-1132 |#1|))) (-15 -3590 ((-1132 |#1|) (-1132 |#1|))) (-15 -3371 ((-1132 |#1|) (-1132 |#1|) (-552) (-552)))) +((-2668 (((-1132 |#1|) (-1132 (-1132 |#1|))) 15))) +(((-1129 |#1|) (-10 -7 (-15 -2668 ((-1132 |#1|) (-1132 (-1132 |#1|))))) (-1189)) (T -1129)) +((-2668 (*1 *2 *3) (-12 (-5 *3 (-1132 (-1132 *4))) (-5 *2 (-1132 *4)) (-5 *1 (-1129 *4)) (-4 *4 (-1189))))) +(-10 -7 (-15 -2668 ((-1132 |#1|) (-1132 (-1132 |#1|))))) +((-2169 (((-1132 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1132 |#1|)) 25)) (-2091 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1132 |#1|)) 26)) (-3516 (((-1132 |#2|) (-1 |#2| |#1|) (-1132 |#1|)) 16))) +(((-1130 |#1| |#2|) (-10 -7 (-15 -3516 ((-1132 |#2|) (-1 |#2| |#1|) (-1132 |#1|))) (-15 -2169 ((-1132 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1132 |#1|))) (-15 -2091 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1132 |#1|)))) (-1189) (-1189)) (T -1130)) +((-2091 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1132 *5)) (-4 *5 (-1189)) (-4 *2 (-1189)) (-5 *1 (-1130 *5 *2)))) (-2169 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1132 *6)) (-4 *6 (-1189)) (-4 *3 (-1189)) (-5 *2 (-1132 *3)) (-5 *1 (-1130 *6 *3)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1132 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-1132 *6)) (-5 *1 (-1130 *5 *6))))) +(-10 -7 (-15 -3516 ((-1132 |#2|) (-1 |#2| |#1|) (-1132 |#1|))) (-15 -2169 ((-1132 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1132 |#1|))) (-15 -2091 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1132 |#1|)))) +((-3516 (((-1132 |#3|) (-1 |#3| |#1| |#2|) (-1132 |#1|) (-1132 |#2|)) 21))) +(((-1131 |#1| |#2| |#3|) (-10 -7 (-15 -3516 ((-1132 |#3|) (-1 |#3| |#1| |#2|) (-1132 |#1|) (-1132 |#2|)))) (-1189) (-1189) (-1189)) (T -1131)) +((-3516 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1132 *6)) (-5 *5 (-1132 *7)) (-4 *6 (-1189)) (-4 *7 (-1189)) (-4 *8 (-1189)) (-5 *2 (-1132 *8)) (-5 *1 (-1131 *6 *7 *8))))) +(-10 -7 (-15 -3516 ((-1132 |#3|) (-1 |#3| |#1| |#2|) (-1132 |#1|) (-1132 |#2|)))) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4288 ((|#1| $) NIL)) (-4155 ((|#1| $) NIL)) (-1700 (($ $) 52)) (-3305 (((-1240) $ (-552) (-552)) 77 (|has| $ (-6 -4367)))) (-3900 (($ $ (-552)) 111 (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-3576 (((-842) $) 41 (|has| |#1| (-1076)))) (-1852 (((-111)) 40 (|has| |#1| (-1076)))) (-2472 ((|#1| $ |#1|) NIL (|has| $ (-6 -4367)))) (-1474 (($ $ $) 99 (|has| $ (-6 -4367))) (($ $ (-552) $) 123)) (-2801 ((|#1| $ |#1|) 108 (|has| $ (-6 -4367)))) (-1612 ((|#1| $ |#1|) 103 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ "first" |#1|) 105 (|has| $ (-6 -4367))) (($ $ "rest" $) 107 (|has| $ (-6 -4367))) ((|#1| $ "last" |#1|) 110 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) 90 (|has| $ (-6 -4367))) ((|#1| $ (-552) |#1|) 56 (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) NIL (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) 59)) (-4143 ((|#1| $) NIL)) (-3887 (($) NIL T CONST)) (-2860 (($ $) 14)) (-3351 (($ $) 29) (($ $ (-754)) 89)) (-3518 (((-111) (-627 |#1|) $) 117 (|has| |#1| (-1076)))) (-2158 (($ (-627 |#1|)) 113)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) 58)) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3473 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) NIL)) (-3592 (((-111) $) NIL)) (-3215 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-1395 (((-1240) (-552) $) 122 (|has| |#1| (-1076)))) (-3939 (((-754) $) 119)) (-2336 (((-627 $) $) NIL)) (-3726 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2655 (($ (-754) |#1|) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-3971 (((-111) $ (-754)) NIL)) (-1823 (((-627 |#1|) $) NIL)) (-3810 (((-111) $) NIL)) (-2421 (($ $) 91)) (-4244 (((-111) $) 13)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1294 ((|#1| $) NIL) (($ $ (-754)) NIL)) (-3252 (($ $ $ (-552)) NIL) (($ |#1| $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) 75)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-2458 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-3566 ((|#1| $) 10)) (-3340 ((|#1| $) 28) (($ $ (-754)) 50)) (-3771 (((-2 (|:| |cycle?| (-111)) (|:| -4047 (-754)) (|:| |period| (-754))) (-754) $) 25)) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-2509 (($ (-1 (-111) |#1|) $) 127)) (-2524 (($ (-1 (-111) |#1|) $) 128)) (-1942 (($ $ |#1|) 69 (|has| $ (-6 -4367)))) (-4168 (($ $ (-552)) 32)) (-2361 (((-111) $) 73)) (-1298 (((-111) $) 12)) (-3076 (((-111) $) 118)) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 20)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) 15)) (-2373 (($) 45)) (-1985 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1202 (-552))) NIL) ((|#1| $ (-552)) 55) ((|#1| $ (-552) |#1|) NIL)) (-1848 (((-552) $ $) 49)) (-3907 (($ $ (-1202 (-552))) NIL) (($ $ (-552)) NIL)) (-2217 (($ (-1 $)) 48)) (-2978 (((-111) $) 70)) (-1805 (($ $) 71)) (-3384 (($ $) 100 (|has| $ (-6 -4367)))) (-3543 (((-754) $) NIL)) (-4149 (($ $) NIL)) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) 44)) (-3562 (((-528) $) NIL (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 54)) (-3848 (($ |#1| $) 98)) (-3151 (($ $ $) 101 (|has| $ (-6 -4367))) (($ $ |#1|) 102 (|has| $ (-6 -4367)))) (-2668 (($ $ $) 79) (($ |#1| $) 46) (($ (-627 $)) 84) (($ $ |#1|) 78)) (-2890 (($ $) 51)) (-1477 (($ (-627 |#1|)) 112) (((-842) $) 42 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) NIL)) (-3415 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 115 (|has| |#1| (-1076)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-1132 |#1|) (-13 (-656 |#1|) (-10 -8 (-6 -4367) (-15 -1477 ($ (-627 |#1|))) (-15 -2158 ($ (-627 |#1|))) (IF (|has| |#1| (-1076)) (-15 -3518 ((-111) (-627 |#1|) $)) |%noBranch|) (-15 -3771 ((-2 (|:| |cycle?| (-111)) (|:| -4047 (-754)) (|:| |period| (-754))) (-754) $)) (-15 -2217 ($ (-1 $))) (-15 -3848 ($ |#1| $)) (IF (|has| |#1| (-1076)) (PROGN (-15 -1395 ((-1240) (-552) $)) (-15 -3576 ((-842) $)) (-15 -1852 ((-111)))) |%noBranch|) (-15 -1474 ($ $ (-552) $)) (-15 -2458 ($ (-1 |#1|))) (-15 -2458 ($ (-1 |#1| |#1|) |#1|)) (-15 -2509 ($ (-1 (-111) |#1|) $)) (-15 -2524 ($ (-1 (-111) |#1|) $)))) (-1189)) (T -1132)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3)))) (-2158 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3)))) (-3518 (*1 *2 *3 *1) (-12 (-5 *3 (-627 *4)) (-4 *4 (-1076)) (-4 *4 (-1189)) (-5 *2 (-111)) (-5 *1 (-1132 *4)))) (-3771 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-111)) (|:| -4047 (-754)) (|:| |period| (-754)))) (-5 *1 (-1132 *4)) (-4 *4 (-1189)) (-5 *3 (-754)))) (-2217 (*1 *1 *2) (-12 (-5 *2 (-1 (-1132 *3))) (-5 *1 (-1132 *3)) (-4 *3 (-1189)))) (-3848 (*1 *1 *2 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1189)))) (-1395 (*1 *2 *3 *1) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-1132 *4)) (-4 *4 (-1076)) (-4 *4 (-1189)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1132 *3)) (-4 *3 (-1076)) (-4 *3 (-1189)))) (-1852 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1132 *3)) (-4 *3 (-1076)) (-4 *3 (-1189)))) (-1474 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1132 *3)) (-4 *3 (-1189)))) (-2458 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3)))) (-2458 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3)))) (-2509 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3)))) (-2524 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3))))) +(-13 (-656 |#1|) (-10 -8 (-6 -4367) (-15 -1477 ($ (-627 |#1|))) (-15 -2158 ($ (-627 |#1|))) (IF (|has| |#1| (-1076)) (-15 -3518 ((-111) (-627 |#1|) $)) |%noBranch|) (-15 -3771 ((-2 (|:| |cycle?| (-111)) (|:| -4047 (-754)) (|:| |period| (-754))) (-754) $)) (-15 -2217 ($ (-1 $))) (-15 -3848 ($ |#1| $)) (IF (|has| |#1| (-1076)) (PROGN (-15 -1395 ((-1240) (-552) $)) (-15 -3576 ((-842) $)) (-15 -1852 ((-111)))) |%noBranch|) (-15 -1474 ($ $ (-552) $)) (-15 -2458 ($ (-1 |#1|))) (-15 -2458 ($ (-1 |#1| |#1|) |#1|)) (-15 -2509 ($ (-1 (-111) |#1|) $)) (-15 -2524 ($ (-1 (-111) |#1|) $)))) +((-1465 (((-111) $ $) 19)) (-2726 (($ $) 120)) (-1349 (($ $) 121)) (-3064 (($ $ (-141)) 108) (($ $ (-138)) 107)) (-3305 (((-1240) $ (-552) (-552)) 40 (|has| $ (-6 -4367)))) (-4025 (((-111) $ $) 118)) (-4003 (((-111) $ $ (-552)) 117)) (-2258 (($ (-552)) 127)) (-2843 (((-627 $) $ (-141)) 110) (((-627 $) $ (-138)) 109)) (-1439 (((-111) (-1 (-111) (-141) (-141)) $) 98) (((-111) $) 92 (|has| (-141) (-830)))) (-2701 (($ (-1 (-111) (-141) (-141)) $) 89 (|has| $ (-6 -4367))) (($ $) 88 (-12 (|has| (-141) (-830)) (|has| $ (-6 -4367))))) (-4298 (($ (-1 (-111) (-141) (-141)) $) 99) (($ $) 93 (|has| (-141) (-830)))) (-4031 (((-111) $ (-754)) 8)) (-2950 (((-141) $ (-552) (-141)) 52 (|has| $ (-6 -4367))) (((-141) $ (-1202 (-552)) (-141)) 58 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) (-141)) $) 75 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-3702 (($ $ (-141)) 104) (($ $ (-138)) 103)) (-2519 (($ $) 90 (|has| $ (-6 -4367)))) (-3429 (($ $) 100)) (-3754 (($ $ (-1202 (-552)) $) 114)) (-3370 (($ $) 78 (-12 (|has| (-141) (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ (-141) $) 77 (-12 (|has| (-141) (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) (-141)) $) 74 (|has| $ (-6 -4366)))) (-2091 (((-141) (-1 (-141) (-141) (-141)) $ (-141) (-141)) 76 (-12 (|has| (-141) (-1076)) (|has| $ (-6 -4366)))) (((-141) (-1 (-141) (-141) (-141)) $ (-141)) 73 (|has| $ (-6 -4366))) (((-141) (-1 (-141) (-141) (-141)) $) 72 (|has| $ (-6 -4366)))) (-3473 (((-141) $ (-552) (-141)) 53 (|has| $ (-6 -4367)))) (-3413 (((-141) $ (-552)) 51)) (-4050 (((-111) $ $) 119)) (-2967 (((-552) (-1 (-111) (-141)) $) 97) (((-552) (-141) $) 96 (|has| (-141) (-1076))) (((-552) (-141) $ (-552)) 95 (|has| (-141) (-1076))) (((-552) $ $ (-552)) 113) (((-552) (-138) $ (-552)) 112)) (-3215 (((-627 (-141)) $) 30 (|has| $ (-6 -4366)))) (-2655 (($ (-754) (-141)) 69)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 43 (|has| (-552) (-830)))) (-1816 (($ $ $) 87 (|has| (-141) (-830)))) (-3759 (($ (-1 (-111) (-141) (-141)) $ $) 101) (($ $ $) 94 (|has| (-141) (-830)))) (-3114 (((-627 (-141)) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) (-141) $) 27 (-12 (|has| (-141) (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 44 (|has| (-552) (-830)))) (-4093 (($ $ $) 86 (|has| (-141) (-830)))) (-2999 (((-111) $ $ (-141)) 115)) (-3835 (((-754) $ $ (-141)) 116)) (-3463 (($ (-1 (-141) (-141)) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-141) (-141)) $) 35) (($ (-1 (-141) (-141) (-141)) $ $) 64)) (-3053 (($ $) 122)) (-3769 (($ $) 123)) (-3971 (((-111) $ (-754)) 10)) (-3712 (($ $ (-141)) 106) (($ $ (-138)) 105)) (-1595 (((-1134) $) 22)) (-3252 (($ (-141) $ (-552)) 60) (($ $ $ (-552)) 59)) (-3892 (((-627 (-552)) $) 46)) (-2358 (((-111) (-552) $) 47)) (-1498 (((-1096) $) 21)) (-3340 (((-141) $) 42 (|has| (-552) (-830)))) (-1503 (((-3 (-141) "failed") (-1 (-111) (-141)) $) 71)) (-1942 (($ $ (-141)) 41 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) (-141)) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-141)))) 26 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-288 (-141))) 25 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-141) (-141)) 24 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-627 (-141)) (-627 (-141))) 23 (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) (-141) $) 45 (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-2083 (((-627 (-141)) $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 (((-141) $ (-552) (-141)) 50) (((-141) $ (-552)) 49) (($ $ (-1202 (-552))) 63) (($ $ $) 102)) (-3907 (($ $ (-552)) 62) (($ $ (-1202 (-552))) 61)) (-1509 (((-754) (-1 (-111) (-141)) $) 31 (|has| $ (-6 -4366))) (((-754) (-141) $) 28 (-12 (|has| (-141) (-1076)) (|has| $ (-6 -4366))))) (-4105 (($ $ $ (-552)) 91 (|has| $ (-6 -4367)))) (-2973 (($ $) 13)) (-3562 (((-528) $) 79 (|has| (-141) (-600 (-528))))) (-1490 (($ (-627 (-141))) 70)) (-2668 (($ $ (-141)) 68) (($ (-141) $) 67) (($ $ $) 66) (($ (-627 $)) 65)) (-1477 (($ (-141)) 111) (((-842) $) 18)) (-3299 (((-111) (-1 (-111) (-141)) $) 33 (|has| $ (-6 -4366)))) (-4157 (((-1134) $) 131) (((-1134) $ (-111)) 130) (((-1240) (-805) $) 129) (((-1240) (-805) $ (-111)) 128)) (-2351 (((-111) $ $) 84 (|has| (-141) (-830)))) (-2329 (((-111) $ $) 83 (|has| (-141) (-830)))) (-2292 (((-111) $ $) 20)) (-2340 (((-111) $ $) 85 (|has| (-141) (-830)))) (-2316 (((-111) $ $) 82 (|has| (-141) (-830)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-1133) (-137)) (T -1133)) +((-2258 (*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1133))))) +(-13 (-1120) (-1076) (-811) (-10 -8 (-15 -2258 ($ (-552))))) +(((-34) . T) ((-101) . T) ((-599 (-842)) . T) ((-148 #0=(-141)) . T) ((-600 (-528)) |has| (-141) (-600 (-528))) ((-280 #1=(-552) #0#) . T) ((-282 #1# #0#) . T) ((-303 #0#) -12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076))) ((-367 #0#) . T) ((-482 #0#) . T) ((-590 #1# #0#) . T) ((-506 #0# #0#) -12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076))) ((-633 #0#) . T) ((-19 #0#) . T) ((-811) . T) ((-830) |has| (-141) (-830)) ((-1076) . T) ((-1120) . T) ((-1189) . T)) +((-1465 (((-111) $ $) NIL)) (-2726 (($ $) NIL)) (-1349 (($ $) NIL)) (-3064 (($ $ (-141)) NIL) (($ $ (-138)) NIL)) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-4025 (((-111) $ $) NIL)) (-4003 (((-111) $ $ (-552)) NIL)) (-2258 (($ (-552)) 7)) (-2843 (((-627 $) $ (-141)) NIL) (((-627 $) $ (-138)) NIL)) (-1439 (((-111) (-1 (-111) (-141) (-141)) $) NIL) (((-111) $) NIL (|has| (-141) (-830)))) (-2701 (($ (-1 (-111) (-141) (-141)) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| (-141) (-830))))) (-4298 (($ (-1 (-111) (-141) (-141)) $) NIL) (($ $) NIL (|has| (-141) (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 (((-141) $ (-552) (-141)) NIL (|has| $ (-6 -4367))) (((-141) $ (-1202 (-552)) (-141)) NIL (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-3702 (($ $ (-141)) NIL) (($ $ (-138)) NIL)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3754 (($ $ (-1202 (-552)) $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-4342 (($ (-141) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076)))) (($ (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-141) (-1 (-141) (-141) (-141)) $ (-141) (-141)) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076)))) (((-141) (-1 (-141) (-141) (-141)) $ (-141)) NIL (|has| $ (-6 -4366))) (((-141) (-1 (-141) (-141) (-141)) $) NIL (|has| $ (-6 -4366)))) (-3473 (((-141) $ (-552) (-141)) NIL (|has| $ (-6 -4367)))) (-3413 (((-141) $ (-552)) NIL)) (-4050 (((-111) $ $) NIL)) (-2967 (((-552) (-1 (-111) (-141)) $) NIL) (((-552) (-141) $) NIL (|has| (-141) (-1076))) (((-552) (-141) $ (-552)) NIL (|has| (-141) (-1076))) (((-552) $ $ (-552)) NIL) (((-552) (-138) $ (-552)) NIL)) (-3215 (((-627 (-141)) $) NIL (|has| $ (-6 -4366)))) (-2655 (($ (-754) (-141)) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| (-141) (-830)))) (-3759 (($ (-1 (-111) (-141) (-141)) $ $) NIL) (($ $ $) NIL (|has| (-141) (-830)))) (-3114 (((-627 (-141)) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-141) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| (-141) (-830)))) (-2999 (((-111) $ $ (-141)) NIL)) (-3835 (((-754) $ $ (-141)) NIL)) (-3463 (($ (-1 (-141) (-141)) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-141) (-141)) $) NIL) (($ (-1 (-141) (-141) (-141)) $ $) NIL)) (-3053 (($ $) NIL)) (-3769 (($ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-3712 (($ $ (-141)) NIL) (($ $ (-138)) NIL)) (-1595 (((-1134) $) NIL)) (-3252 (($ (-141) $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 (((-141) $) NIL (|has| (-552) (-830)))) (-1503 (((-3 (-141) "failed") (-1 (-111) (-141)) $) NIL)) (-1942 (($ $ (-141)) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-141)))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-288 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-141) (-141)) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076)))) (($ $ (-627 (-141)) (-627 (-141))) NIL (-12 (|has| (-141) (-303 (-141))) (|has| (-141) (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) (-141) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-2083 (((-627 (-141)) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 (((-141) $ (-552) (-141)) NIL) (((-141) $ (-552)) NIL) (($ $ (-1202 (-552))) NIL) (($ $ $) NIL)) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-1509 (((-754) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366))) (((-754) (-141) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-141) (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-141) (-600 (-528))))) (-1490 (($ (-627 (-141))) NIL)) (-2668 (($ $ (-141)) NIL) (($ (-141) $) NIL) (($ $ $) NIL) (($ (-627 $)) NIL)) (-1477 (($ (-141)) NIL) (((-842) $) NIL)) (-3299 (((-111) (-1 (-111) (-141)) $) NIL (|has| $ (-6 -4366)))) (-4157 (((-1134) $) 18) (((-1134) $ (-111)) 20) (((-1240) (-805) $) 21) (((-1240) (-805) $ (-111)) 22)) (-2351 (((-111) $ $) NIL (|has| (-141) (-830)))) (-2329 (((-111) $ $) NIL (|has| (-141) (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| (-141) (-830)))) (-2316 (((-111) $ $) NIL (|has| (-141) (-830)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-1134) (-1133)) (T -1134)) +NIL +(-1133) +((-1465 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)) (|has| |#1| (-1076))))) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL)) (-3305 (((-1240) $ (-1134) (-1134)) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-1134) |#1|) NIL)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-3602 (((-3 |#1| "failed") (-1134) $) NIL)) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076))))) (-2265 (($ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366))) (((-3 |#1| "failed") (-1134) $) NIL)) (-4342 (($ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-1134) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-1134)) NIL)) (-3215 (((-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-1134) $) NIL (|has| (-1134) (-830)))) (-3114 (((-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-1134) $) NIL (|has| (-1134) (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4367))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (-1559 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)) (|has| |#1| (-1076))))) (-1296 (((-627 (-1134)) $) NIL)) (-3619 (((-111) (-1134) $) NIL)) (-4165 (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL)) (-3954 (($ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL)) (-3892 (((-627 (-1134)) $) NIL)) (-2358 (((-111) (-1134) $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)) (|has| |#1| (-1076))))) (-3340 ((|#1| $) NIL (|has| (-1134) (-830)))) (-1503 (((-3 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) "failed") (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (($ $ (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL (-12 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-303 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-1134)) NIL) ((|#1| $ (-1134) |#1|) NIL)) (-3028 (($) NIL) (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL)) (-1477 (((-842) $) NIL (-1559 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-599 (-842))) (|has| |#1| (-599 (-842)))))) (-2577 (($ (-627 (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)))) NIL)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 (-1134)) (|:| -2162 |#1|)) (-1076)) (|has| |#1| (-1076))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-1135 |#1|) (-13 (-1165 (-1134) |#1|) (-10 -7 (-6 -4366))) (-1076)) (T -1135)) +NIL +(-13 (-1165 (-1134) |#1|) (-10 -7 (-6 -4366))) +((-3738 (((-1132 |#1|) (-1132 |#1|)) 77)) (-2040 (((-3 (-1132 |#1|) "failed") (-1132 |#1|)) 37)) (-1500 (((-1132 |#1|) (-401 (-552)) (-1132 |#1|)) 121 (|has| |#1| (-38 (-401 (-552)))))) (-3229 (((-1132 |#1|) |#1| (-1132 |#1|)) 127 (|has| |#1| (-357)))) (-2910 (((-1132 |#1|) (-1132 |#1|)) 90)) (-2429 (((-1132 (-552)) (-552)) 57)) (-1725 (((-1132 |#1|) (-1132 (-1132 |#1|))) 109 (|has| |#1| (-38 (-401 (-552)))))) (-1780 (((-1132 |#1|) (-552) (-552) (-1132 |#1|)) 95)) (-3755 (((-1132 |#1|) |#1| (-552)) 45)) (-1898 (((-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) 60)) (-3192 (((-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) 124 (|has| |#1| (-357)))) (-3273 (((-1132 |#1|) |#1| (-1 (-1132 |#1|))) 108 (|has| |#1| (-38 (-401 (-552)))))) (-3584 (((-1132 |#1|) (-1 |#1| (-552)) |#1| (-1 (-1132 |#1|))) 125 (|has| |#1| (-357)))) (-2525 (((-1132 |#1|) (-1132 |#1|)) 89)) (-4258 (((-1132 |#1|) (-1132 |#1|)) 76)) (-2956 (((-1132 |#1|) (-552) (-552) (-1132 |#1|)) 96)) (-2747 (((-1132 |#1|) |#1| (-1132 |#1|)) 105 (|has| |#1| (-38 (-401 (-552)))))) (-1632 (((-1132 (-552)) (-552)) 56)) (-3275 (((-1132 |#1|) |#1|) 59)) (-2483 (((-1132 |#1|) (-1132 |#1|) (-552) (-552)) 92)) (-3487 (((-1132 |#1|) (-1 |#1| (-552)) (-1132 |#1|)) 66)) (-2761 (((-3 (-1132 |#1|) "failed") (-1132 |#1|) (-1132 |#1|)) 35)) (-4286 (((-1132 |#1|) (-1132 |#1|)) 91)) (-3321 (((-1132 |#1|) (-1132 |#1|) |#1|) 71)) (-3621 (((-1132 |#1|) (-1132 |#1|)) 62)) (-2047 (((-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) 72)) (-1477 (((-1132 |#1|) |#1|) 67)) (-3604 (((-1132 |#1|) (-1132 (-1132 |#1|))) 82)) (-2407 (((-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) 36)) (-2396 (((-1132 |#1|) (-1132 |#1|)) 21) (((-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) 23)) (-2384 (((-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) 17)) (* (((-1132 |#1|) (-1132 |#1|) |#1|) 29) (((-1132 |#1|) |#1| (-1132 |#1|)) 26) (((-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) 27))) +(((-1136 |#1|) (-10 -7 (-15 -2384 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -2396 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -2396 ((-1132 |#1|) (-1132 |#1|))) (-15 * ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 * ((-1132 |#1|) |#1| (-1132 |#1|))) (-15 * ((-1132 |#1|) (-1132 |#1|) |#1|)) (-15 -2761 ((-3 (-1132 |#1|) "failed") (-1132 |#1|) (-1132 |#1|))) (-15 -2407 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -2040 ((-3 (-1132 |#1|) "failed") (-1132 |#1|))) (-15 -3755 ((-1132 |#1|) |#1| (-552))) (-15 -1632 ((-1132 (-552)) (-552))) (-15 -2429 ((-1132 (-552)) (-552))) (-15 -3275 ((-1132 |#1|) |#1|)) (-15 -1898 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -3621 ((-1132 |#1|) (-1132 |#1|))) (-15 -3487 ((-1132 |#1|) (-1 |#1| (-552)) (-1132 |#1|))) (-15 -1477 ((-1132 |#1|) |#1|)) (-15 -3321 ((-1132 |#1|) (-1132 |#1|) |#1|)) (-15 -2047 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -4258 ((-1132 |#1|) (-1132 |#1|))) (-15 -3738 ((-1132 |#1|) (-1132 |#1|))) (-15 -3604 ((-1132 |#1|) (-1132 (-1132 |#1|)))) (-15 -2525 ((-1132 |#1|) (-1132 |#1|))) (-15 -2910 ((-1132 |#1|) (-1132 |#1|))) (-15 -4286 ((-1132 |#1|) (-1132 |#1|))) (-15 -2483 ((-1132 |#1|) (-1132 |#1|) (-552) (-552))) (-15 -1780 ((-1132 |#1|) (-552) (-552) (-1132 |#1|))) (-15 -2956 ((-1132 |#1|) (-552) (-552) (-1132 |#1|))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ((-1132 |#1|) |#1| (-1132 |#1|))) (-15 -3273 ((-1132 |#1|) |#1| (-1 (-1132 |#1|)))) (-15 -1725 ((-1132 |#1|) (-1132 (-1132 |#1|)))) (-15 -1500 ((-1132 |#1|) (-401 (-552)) (-1132 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -3192 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -3584 ((-1132 |#1|) (-1 |#1| (-552)) |#1| (-1 (-1132 |#1|)))) (-15 -3229 ((-1132 |#1|) |#1| (-1132 |#1|)))) |%noBranch|)) (-1028)) (T -1136)) +((-3229 (*1 *2 *3 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-357)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-3584 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-552))) (-5 *5 (-1 (-1132 *4))) (-4 *4 (-357)) (-4 *4 (-1028)) (-5 *2 (-1132 *4)) (-5 *1 (-1136 *4)))) (-3192 (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-357)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-1500 (*1 *2 *3 *2) (-12 (-5 *2 (-1132 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1028)) (-5 *3 (-401 (-552))) (-5 *1 (-1136 *4)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-1132 (-1132 *4))) (-5 *2 (-1132 *4)) (-5 *1 (-1136 *4)) (-4 *4 (-38 (-401 (-552)))) (-4 *4 (-1028)))) (-3273 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1132 *3))) (-5 *2 (-1132 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)))) (-2747 (*1 *2 *3 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-2956 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1132 *4)) (-5 *3 (-552)) (-4 *4 (-1028)) (-5 *1 (-1136 *4)))) (-1780 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1132 *4)) (-5 *3 (-552)) (-4 *4 (-1028)) (-5 *1 (-1136 *4)))) (-2483 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1132 *4)) (-5 *3 (-552)) (-4 *4 (-1028)) (-5 *1 (-1136 *4)))) (-4286 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-2910 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-2525 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-1132 (-1132 *4))) (-5 *2 (-1132 *4)) (-5 *1 (-1136 *4)) (-4 *4 (-1028)))) (-3738 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-4258 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-2047 (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-3321 (*1 *2 *2 *3) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-1477 (*1 *2 *3) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-1028)))) (-3487 (*1 *2 *3 *2) (-12 (-5 *2 (-1132 *4)) (-5 *3 (-1 *4 (-552))) (-4 *4 (-1028)) (-5 *1 (-1136 *4)))) (-3621 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-1898 (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-3275 (*1 *2 *3) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-1028)))) (-2429 (*1 *2 *3) (-12 (-5 *2 (-1132 (-552))) (-5 *1 (-1136 *4)) (-4 *4 (-1028)) (-5 *3 (-552)))) (-1632 (*1 *2 *3) (-12 (-5 *2 (-1132 (-552))) (-5 *1 (-1136 *4)) (-4 *4 (-1028)) (-5 *3 (-552)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-5 *2 (-1132 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-1028)))) (-2040 (*1 *2 *2) (|partial| -12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-2407 (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-2761 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-2396 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-2396 (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) (-2384 (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3))))) +(-10 -7 (-15 -2384 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -2396 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -2396 ((-1132 |#1|) (-1132 |#1|))) (-15 * ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 * ((-1132 |#1|) |#1| (-1132 |#1|))) (-15 * ((-1132 |#1|) (-1132 |#1|) |#1|)) (-15 -2761 ((-3 (-1132 |#1|) "failed") (-1132 |#1|) (-1132 |#1|))) (-15 -2407 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -2040 ((-3 (-1132 |#1|) "failed") (-1132 |#1|))) (-15 -3755 ((-1132 |#1|) |#1| (-552))) (-15 -1632 ((-1132 (-552)) (-552))) (-15 -2429 ((-1132 (-552)) (-552))) (-15 -3275 ((-1132 |#1|) |#1|)) (-15 -1898 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -3621 ((-1132 |#1|) (-1132 |#1|))) (-15 -3487 ((-1132 |#1|) (-1 |#1| (-552)) (-1132 |#1|))) (-15 -1477 ((-1132 |#1|) |#1|)) (-15 -3321 ((-1132 |#1|) (-1132 |#1|) |#1|)) (-15 -2047 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -4258 ((-1132 |#1|) (-1132 |#1|))) (-15 -3738 ((-1132 |#1|) (-1132 |#1|))) (-15 -3604 ((-1132 |#1|) (-1132 (-1132 |#1|)))) (-15 -2525 ((-1132 |#1|) (-1132 |#1|))) (-15 -2910 ((-1132 |#1|) (-1132 |#1|))) (-15 -4286 ((-1132 |#1|) (-1132 |#1|))) (-15 -2483 ((-1132 |#1|) (-1132 |#1|) (-552) (-552))) (-15 -1780 ((-1132 |#1|) (-552) (-552) (-1132 |#1|))) (-15 -2956 ((-1132 |#1|) (-552) (-552) (-1132 |#1|))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ((-1132 |#1|) |#1| (-1132 |#1|))) (-15 -3273 ((-1132 |#1|) |#1| (-1 (-1132 |#1|)))) (-15 -1725 ((-1132 |#1|) (-1132 (-1132 |#1|)))) (-15 -1500 ((-1132 |#1|) (-401 (-552)) (-1132 |#1|)))) |%noBranch|) (IF (|has| |#1| (-357)) (PROGN (-15 -3192 ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -3584 ((-1132 |#1|) (-1 |#1| (-552)) |#1| (-1 (-1132 |#1|)))) (-15 -3229 ((-1132 |#1|) |#1| (-1132 |#1|)))) |%noBranch|)) +((-1607 (((-1132 |#1|) (-1132 |#1|)) 57)) (-1467 (((-1132 |#1|) (-1132 |#1|)) 39)) (-1584 (((-1132 |#1|) (-1132 |#1|)) 53)) (-1445 (((-1132 |#1|) (-1132 |#1|)) 35)) (-1628 (((-1132 |#1|) (-1132 |#1|)) 60)) (-1492 (((-1132 |#1|) (-1132 |#1|)) 42)) (-4135 (((-1132 |#1|) (-1132 |#1|)) 31)) (-3154 (((-1132 |#1|) (-1132 |#1|)) 27)) (-1640 (((-1132 |#1|) (-1132 |#1|)) 61)) (-1502 (((-1132 |#1|) (-1132 |#1|)) 43)) (-1615 (((-1132 |#1|) (-1132 |#1|)) 58)) (-1479 (((-1132 |#1|) (-1132 |#1|)) 40)) (-1596 (((-1132 |#1|) (-1132 |#1|)) 55)) (-1456 (((-1132 |#1|) (-1132 |#1|)) 37)) (-1673 (((-1132 |#1|) (-1132 |#1|)) 65)) (-1534 (((-1132 |#1|) (-1132 |#1|)) 47)) (-1652 (((-1132 |#1|) (-1132 |#1|)) 63)) (-1513 (((-1132 |#1|) (-1132 |#1|)) 45)) (-1697 (((-1132 |#1|) (-1132 |#1|)) 68)) (-1561 (((-1132 |#1|) (-1132 |#1|)) 50)) (-3519 (((-1132 |#1|) (-1132 |#1|)) 69)) (-1575 (((-1132 |#1|) (-1132 |#1|)) 51)) (-1686 (((-1132 |#1|) (-1132 |#1|)) 67)) (-1547 (((-1132 |#1|) (-1132 |#1|)) 49)) (-1661 (((-1132 |#1|) (-1132 |#1|)) 66)) (-1524 (((-1132 |#1|) (-1132 |#1|)) 48)) (** (((-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) 33))) +(((-1137 |#1|) (-10 -7 (-15 -3154 ((-1132 |#1|) (-1132 |#1|))) (-15 -4135 ((-1132 |#1|) (-1132 |#1|))) (-15 ** ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -1445 ((-1132 |#1|) (-1132 |#1|))) (-15 -1456 ((-1132 |#1|) (-1132 |#1|))) (-15 -1467 ((-1132 |#1|) (-1132 |#1|))) (-15 -1479 ((-1132 |#1|) (-1132 |#1|))) (-15 -1492 ((-1132 |#1|) (-1132 |#1|))) (-15 -1502 ((-1132 |#1|) (-1132 |#1|))) (-15 -1513 ((-1132 |#1|) (-1132 |#1|))) (-15 -1524 ((-1132 |#1|) (-1132 |#1|))) (-15 -1534 ((-1132 |#1|) (-1132 |#1|))) (-15 -1547 ((-1132 |#1|) (-1132 |#1|))) (-15 -1561 ((-1132 |#1|) (-1132 |#1|))) (-15 -1575 ((-1132 |#1|) (-1132 |#1|))) (-15 -1584 ((-1132 |#1|) (-1132 |#1|))) (-15 -1596 ((-1132 |#1|) (-1132 |#1|))) (-15 -1607 ((-1132 |#1|) (-1132 |#1|))) (-15 -1615 ((-1132 |#1|) (-1132 |#1|))) (-15 -1628 ((-1132 |#1|) (-1132 |#1|))) (-15 -1640 ((-1132 |#1|) (-1132 |#1|))) (-15 -1652 ((-1132 |#1|) (-1132 |#1|))) (-15 -1661 ((-1132 |#1|) (-1132 |#1|))) (-15 -1673 ((-1132 |#1|) (-1132 |#1|))) (-15 -1686 ((-1132 |#1|) (-1132 |#1|))) (-15 -1697 ((-1132 |#1|) (-1132 |#1|))) (-15 -3519 ((-1132 |#1|) (-1132 |#1|)))) (-38 (-401 (-552)))) (T -1137)) +((-3519 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1697 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1686 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1673 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1661 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1652 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1640 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1628 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1615 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1607 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1596 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1584 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1561 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1547 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1534 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1524 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1513 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1502 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1492 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1479 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1467 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1456 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-1445 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-4135 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3)))) (-3154 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1137 *3))))) +(-10 -7 (-15 -3154 ((-1132 |#1|) (-1132 |#1|))) (-15 -4135 ((-1132 |#1|) (-1132 |#1|))) (-15 ** ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -1445 ((-1132 |#1|) (-1132 |#1|))) (-15 -1456 ((-1132 |#1|) (-1132 |#1|))) (-15 -1467 ((-1132 |#1|) (-1132 |#1|))) (-15 -1479 ((-1132 |#1|) (-1132 |#1|))) (-15 -1492 ((-1132 |#1|) (-1132 |#1|))) (-15 -1502 ((-1132 |#1|) (-1132 |#1|))) (-15 -1513 ((-1132 |#1|) (-1132 |#1|))) (-15 -1524 ((-1132 |#1|) (-1132 |#1|))) (-15 -1534 ((-1132 |#1|) (-1132 |#1|))) (-15 -1547 ((-1132 |#1|) (-1132 |#1|))) (-15 -1561 ((-1132 |#1|) (-1132 |#1|))) (-15 -1575 ((-1132 |#1|) (-1132 |#1|))) (-15 -1584 ((-1132 |#1|) (-1132 |#1|))) (-15 -1596 ((-1132 |#1|) (-1132 |#1|))) (-15 -1607 ((-1132 |#1|) (-1132 |#1|))) (-15 -1615 ((-1132 |#1|) (-1132 |#1|))) (-15 -1628 ((-1132 |#1|) (-1132 |#1|))) (-15 -1640 ((-1132 |#1|) (-1132 |#1|))) (-15 -1652 ((-1132 |#1|) (-1132 |#1|))) (-15 -1661 ((-1132 |#1|) (-1132 |#1|))) (-15 -1673 ((-1132 |#1|) (-1132 |#1|))) (-15 -1686 ((-1132 |#1|) (-1132 |#1|))) (-15 -1697 ((-1132 |#1|) (-1132 |#1|))) (-15 -3519 ((-1132 |#1|) (-1132 |#1|)))) +((-1607 (((-1132 |#1|) (-1132 |#1|)) 100)) (-1467 (((-1132 |#1|) (-1132 |#1|)) 64)) (-1480 (((-2 (|:| -1584 (-1132 |#1|)) (|:| -1596 (-1132 |#1|))) (-1132 |#1|)) 96)) (-1584 (((-1132 |#1|) (-1132 |#1|)) 97)) (-1739 (((-2 (|:| -1445 (-1132 |#1|)) (|:| -1456 (-1132 |#1|))) (-1132 |#1|)) 53)) (-1445 (((-1132 |#1|) (-1132 |#1|)) 54)) (-1628 (((-1132 |#1|) (-1132 |#1|)) 102)) (-1492 (((-1132 |#1|) (-1132 |#1|)) 71)) (-4135 (((-1132 |#1|) (-1132 |#1|)) 39)) (-3154 (((-1132 |#1|) (-1132 |#1|)) 36)) (-1640 (((-1132 |#1|) (-1132 |#1|)) 103)) (-1502 (((-1132 |#1|) (-1132 |#1|)) 72)) (-1615 (((-1132 |#1|) (-1132 |#1|)) 101)) (-1479 (((-1132 |#1|) (-1132 |#1|)) 67)) (-1596 (((-1132 |#1|) (-1132 |#1|)) 98)) (-1456 (((-1132 |#1|) (-1132 |#1|)) 55)) (-1673 (((-1132 |#1|) (-1132 |#1|)) 111)) (-1534 (((-1132 |#1|) (-1132 |#1|)) 86)) (-1652 (((-1132 |#1|) (-1132 |#1|)) 105)) (-1513 (((-1132 |#1|) (-1132 |#1|)) 82)) (-1697 (((-1132 |#1|) (-1132 |#1|)) 115)) (-1561 (((-1132 |#1|) (-1132 |#1|)) 90)) (-3519 (((-1132 |#1|) (-1132 |#1|)) 117)) (-1575 (((-1132 |#1|) (-1132 |#1|)) 92)) (-1686 (((-1132 |#1|) (-1132 |#1|)) 113)) (-1547 (((-1132 |#1|) (-1132 |#1|)) 88)) (-1661 (((-1132 |#1|) (-1132 |#1|)) 107)) (-1524 (((-1132 |#1|) (-1132 |#1|)) 84)) (** (((-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) 40))) +(((-1138 |#1|) (-10 -7 (-15 -3154 ((-1132 |#1|) (-1132 |#1|))) (-15 -4135 ((-1132 |#1|) (-1132 |#1|))) (-15 ** ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -1739 ((-2 (|:| -1445 (-1132 |#1|)) (|:| -1456 (-1132 |#1|))) (-1132 |#1|))) (-15 -1445 ((-1132 |#1|) (-1132 |#1|))) (-15 -1456 ((-1132 |#1|) (-1132 |#1|))) (-15 -1467 ((-1132 |#1|) (-1132 |#1|))) (-15 -1479 ((-1132 |#1|) (-1132 |#1|))) (-15 -1492 ((-1132 |#1|) (-1132 |#1|))) (-15 -1502 ((-1132 |#1|) (-1132 |#1|))) (-15 -1513 ((-1132 |#1|) (-1132 |#1|))) (-15 -1524 ((-1132 |#1|) (-1132 |#1|))) (-15 -1534 ((-1132 |#1|) (-1132 |#1|))) (-15 -1547 ((-1132 |#1|) (-1132 |#1|))) (-15 -1561 ((-1132 |#1|) (-1132 |#1|))) (-15 -1575 ((-1132 |#1|) (-1132 |#1|))) (-15 -1480 ((-2 (|:| -1584 (-1132 |#1|)) (|:| -1596 (-1132 |#1|))) (-1132 |#1|))) (-15 -1584 ((-1132 |#1|) (-1132 |#1|))) (-15 -1596 ((-1132 |#1|) (-1132 |#1|))) (-15 -1607 ((-1132 |#1|) (-1132 |#1|))) (-15 -1615 ((-1132 |#1|) (-1132 |#1|))) (-15 -1628 ((-1132 |#1|) (-1132 |#1|))) (-15 -1640 ((-1132 |#1|) (-1132 |#1|))) (-15 -1652 ((-1132 |#1|) (-1132 |#1|))) (-15 -1661 ((-1132 |#1|) (-1132 |#1|))) (-15 -1673 ((-1132 |#1|) (-1132 |#1|))) (-15 -1686 ((-1132 |#1|) (-1132 |#1|))) (-15 -1697 ((-1132 |#1|) (-1132 |#1|))) (-15 -3519 ((-1132 |#1|) (-1132 |#1|)))) (-38 (-401 (-552)))) (T -1138)) +((-3519 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1697 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1686 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1673 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1661 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1652 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1640 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1628 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1615 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1607 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1596 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1584 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1480 (*1 *2 *3) (-12 (-4 *4 (-38 (-401 (-552)))) (-5 *2 (-2 (|:| -1584 (-1132 *4)) (|:| -1596 (-1132 *4)))) (-5 *1 (-1138 *4)) (-5 *3 (-1132 *4)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1561 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1547 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1534 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1524 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1513 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1502 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1492 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1479 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1467 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1456 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1445 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-1739 (*1 *2 *3) (-12 (-4 *4 (-38 (-401 (-552)))) (-5 *2 (-2 (|:| -1445 (-1132 *4)) (|:| -1456 (-1132 *4)))) (-5 *1 (-1138 *4)) (-5 *3 (-1132 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-4135 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3)))) (-3154 (*1 *2 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1138 *3))))) +(-10 -7 (-15 -3154 ((-1132 |#1|) (-1132 |#1|))) (-15 -4135 ((-1132 |#1|) (-1132 |#1|))) (-15 ** ((-1132 |#1|) (-1132 |#1|) (-1132 |#1|))) (-15 -1739 ((-2 (|:| -1445 (-1132 |#1|)) (|:| -1456 (-1132 |#1|))) (-1132 |#1|))) (-15 -1445 ((-1132 |#1|) (-1132 |#1|))) (-15 -1456 ((-1132 |#1|) (-1132 |#1|))) (-15 -1467 ((-1132 |#1|) (-1132 |#1|))) (-15 -1479 ((-1132 |#1|) (-1132 |#1|))) (-15 -1492 ((-1132 |#1|) (-1132 |#1|))) (-15 -1502 ((-1132 |#1|) (-1132 |#1|))) (-15 -1513 ((-1132 |#1|) (-1132 |#1|))) (-15 -1524 ((-1132 |#1|) (-1132 |#1|))) (-15 -1534 ((-1132 |#1|) (-1132 |#1|))) (-15 -1547 ((-1132 |#1|) (-1132 |#1|))) (-15 -1561 ((-1132 |#1|) (-1132 |#1|))) (-15 -1575 ((-1132 |#1|) (-1132 |#1|))) (-15 -1480 ((-2 (|:| -1584 (-1132 |#1|)) (|:| -1596 (-1132 |#1|))) (-1132 |#1|))) (-15 -1584 ((-1132 |#1|) (-1132 |#1|))) (-15 -1596 ((-1132 |#1|) (-1132 |#1|))) (-15 -1607 ((-1132 |#1|) (-1132 |#1|))) (-15 -1615 ((-1132 |#1|) (-1132 |#1|))) (-15 -1628 ((-1132 |#1|) (-1132 |#1|))) (-15 -1640 ((-1132 |#1|) (-1132 |#1|))) (-15 -1652 ((-1132 |#1|) (-1132 |#1|))) (-15 -1661 ((-1132 |#1|) (-1132 |#1|))) (-15 -1673 ((-1132 |#1|) (-1132 |#1|))) (-15 -1686 ((-1132 |#1|) (-1132 |#1|))) (-15 -1697 ((-1132 |#1|) (-1132 |#1|))) (-15 -3519 ((-1132 |#1|) (-1132 |#1|)))) +((-3200 (((-937 |#2|) |#2| |#2|) 35)) (-1375 ((|#2| |#2| |#1|) 19 (|has| |#1| (-301))))) +(((-1139 |#1| |#2|) (-10 -7 (-15 -3200 ((-937 |#2|) |#2| |#2|)) (IF (|has| |#1| (-301)) (-15 -1375 (|#2| |#2| |#1|)) |%noBranch|)) (-544) (-1211 |#1|)) (T -1139)) +((-1375 (*1 *2 *2 *3) (-12 (-4 *3 (-301)) (-4 *3 (-544)) (-5 *1 (-1139 *3 *2)) (-4 *2 (-1211 *3)))) (-3200 (*1 *2 *3 *3) (-12 (-4 *4 (-544)) (-5 *2 (-937 *3)) (-5 *1 (-1139 *4 *3)) (-4 *3 (-1211 *4))))) +(-10 -7 (-15 -3200 ((-937 |#2|) |#2| |#2|)) (IF (|has| |#1| (-301)) (-15 -1375 (|#2| |#2| |#1|)) |%noBranch|)) +((-1465 (((-111) $ $) NIL)) (-1373 (($ $ (-627 (-754))) 67)) (-3757 (($) 26)) (-2178 (($ $) 42)) (-4194 (((-627 $) $) 51)) (-4109 (((-111) $) 16)) (-1751 (((-627 (-922 |#2|)) $) 74)) (-2414 (($ $) 68)) (-3880 (((-754) $) 37)) (-2655 (($) 25)) (-3404 (($ $ (-627 (-754)) (-922 |#2|)) 60) (($ $ (-627 (-754)) (-754)) 61) (($ $ (-754) (-922 |#2|)) 63)) (-3759 (($ $ $) 48) (($ (-627 $)) 50)) (-2071 (((-754) $) 75)) (-3810 (((-111) $) 15)) (-1595 (((-1134) $) NIL)) (-2369 (((-111) $) 18)) (-1498 (((-1096) $) NIL)) (-2204 (((-168) $) 73)) (-2192 (((-922 |#2|) $) 69)) (-2401 (((-754) $) 70)) (-3856 (((-111) $) 72)) (-4071 (($ $ (-627 (-754)) (-168)) 66)) (-2290 (($ $) 43)) (-1477 (((-842) $) 86)) (-2599 (($ $ (-627 (-754)) (-111)) 65)) (-2535 (((-627 $) $) 11)) (-4241 (($ $ (-754)) 36)) (-3902 (($ $) 32)) (-1857 (($ $ $ (-922 |#2|) (-754)) 56)) (-3526 (($ $ (-922 |#2|)) 55)) (-4036 (($ $ (-627 (-754)) (-922 |#2|)) 54) (($ $ (-627 (-754)) (-754)) 58) (((-754) $ (-922 |#2|)) 59)) (-2292 (((-111) $ $) 80))) +(((-1140 |#1| |#2|) (-13 (-1076) (-10 -8 (-15 -3810 ((-111) $)) (-15 -4109 ((-111) $)) (-15 -2369 ((-111) $)) (-15 -2655 ($)) (-15 -3757 ($)) (-15 -3902 ($ $)) (-15 -4241 ($ $ (-754))) (-15 -2535 ((-627 $) $)) (-15 -3880 ((-754) $)) (-15 -2178 ($ $)) (-15 -2290 ($ $)) (-15 -3759 ($ $ $)) (-15 -3759 ($ (-627 $))) (-15 -4194 ((-627 $) $)) (-15 -4036 ($ $ (-627 (-754)) (-922 |#2|))) (-15 -3526 ($ $ (-922 |#2|))) (-15 -1857 ($ $ $ (-922 |#2|) (-754))) (-15 -3404 ($ $ (-627 (-754)) (-922 |#2|))) (-15 -4036 ($ $ (-627 (-754)) (-754))) (-15 -3404 ($ $ (-627 (-754)) (-754))) (-15 -4036 ((-754) $ (-922 |#2|))) (-15 -3404 ($ $ (-754) (-922 |#2|))) (-15 -2599 ($ $ (-627 (-754)) (-111))) (-15 -4071 ($ $ (-627 (-754)) (-168))) (-15 -1373 ($ $ (-627 (-754)))) (-15 -2192 ((-922 |#2|) $)) (-15 -2401 ((-754) $)) (-15 -3856 ((-111) $)) (-15 -2204 ((-168) $)) (-15 -2071 ((-754) $)) (-15 -2414 ($ $)) (-15 -1751 ((-627 (-922 |#2|)) $)))) (-900) (-1028)) (T -1140)) +((-3810 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-2369 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-2655 (*1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028)))) (-3757 (*1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028)))) (-3902 (*1 *1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028)))) (-4241 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-2535 (*1 *2 *1) (-12 (-5 *2 (-627 (-1140 *3 *4))) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-2178 (*1 *1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028)))) (-2290 (*1 *1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028)))) (-3759 (*1 *1 *1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028)))) (-3759 (*1 *1 *2) (-12 (-5 *2 (-627 (-1140 *3 *4))) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-4194 (*1 *2 *1) (-12 (-5 *2 (-627 (-1140 *3 *4))) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-4036 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-754))) (-5 *3 (-922 *5)) (-4 *5 (-1028)) (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-922 *4)) (-4 *4 (-1028)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)))) (-1857 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-922 *5)) (-5 *3 (-754)) (-4 *5 (-1028)) (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)))) (-3404 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-754))) (-5 *3 (-922 *5)) (-4 *5 (-1028)) (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)))) (-4036 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-754))) (-5 *3 (-754)) (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)) (-4 *5 (-1028)))) (-3404 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-754))) (-5 *3 (-754)) (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)) (-4 *5 (-1028)))) (-4036 (*1 *2 *1 *3) (-12 (-5 *3 (-922 *5)) (-4 *5 (-1028)) (-5 *2 (-754)) (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)))) (-3404 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-754)) (-5 *3 (-922 *5)) (-4 *5 (-1028)) (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)))) (-2599 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-754))) (-5 *3 (-111)) (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)) (-4 *5 (-1028)))) (-4071 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-627 (-754))) (-5 *3 (-168)) (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)) (-4 *5 (-1028)))) (-1373 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-754))) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-2192 (*1 *2 *1) (-12 (-5 *2 (-922 *4)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-2204 (*1 *2 *1) (-12 (-5 *2 (-168)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-2071 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028)))) (-2414 (*1 *1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028)))) (-1751 (*1 *2 *1) (-12 (-5 *2 (-627 (-922 *4))) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) (-4 *4 (-1028))))) +(-13 (-1076) (-10 -8 (-15 -3810 ((-111) $)) (-15 -4109 ((-111) $)) (-15 -2369 ((-111) $)) (-15 -2655 ($)) (-15 -3757 ($)) (-15 -3902 ($ $)) (-15 -4241 ($ $ (-754))) (-15 -2535 ((-627 $) $)) (-15 -3880 ((-754) $)) (-15 -2178 ($ $)) (-15 -2290 ($ $)) (-15 -3759 ($ $ $)) (-15 -3759 ($ (-627 $))) (-15 -4194 ((-627 $) $)) (-15 -4036 ($ $ (-627 (-754)) (-922 |#2|))) (-15 -3526 ($ $ (-922 |#2|))) (-15 -1857 ($ $ $ (-922 |#2|) (-754))) (-15 -3404 ($ $ (-627 (-754)) (-922 |#2|))) (-15 -4036 ($ $ (-627 (-754)) (-754))) (-15 -3404 ($ $ (-627 (-754)) (-754))) (-15 -4036 ((-754) $ (-922 |#2|))) (-15 -3404 ($ $ (-754) (-922 |#2|))) (-15 -2599 ($ $ (-627 (-754)) (-111))) (-15 -4071 ($ $ (-627 (-754)) (-168))) (-15 -1373 ($ $ (-627 (-754)))) (-15 -2192 ((-922 |#2|) $)) (-15 -2401 ((-754) $)) (-15 -3856 ((-111) $)) (-15 -2204 ((-168) $)) (-15 -2071 ((-754) $)) (-15 -2414 ($ $)) (-15 -1751 ((-627 (-922 |#2|)) $)))) +((-1465 (((-111) $ $) NIL)) (-3089 ((|#2| $) 11)) (-3078 ((|#1| $) 10)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1490 (($ |#1| |#2|) 9)) (-1477 (((-842) $) 16)) (-2292 (((-111) $ $) NIL))) +(((-1141 |#1| |#2|) (-13 (-1076) (-10 -8 (-15 -1490 ($ |#1| |#2|)) (-15 -3078 (|#1| $)) (-15 -3089 (|#2| $)))) (-1076) (-1076)) (T -1141)) +((-1490 (*1 *1 *2 *3) (-12 (-5 *1 (-1141 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076)))) (-3078 (*1 *2 *1) (-12 (-4 *2 (-1076)) (-5 *1 (-1141 *2 *3)) (-4 *3 (-1076)))) (-3089 (*1 *2 *1) (-12 (-4 *2 (-1076)) (-5 *1 (-1141 *3 *2)) (-4 *3 (-1076))))) +(-13 (-1076) (-10 -8 (-15 -1490 ($ |#1| |#2|)) (-15 -3078 (|#1| $)) (-15 -3089 (|#2| $)))) +((-1465 (((-111) $ $) NIL)) (-2714 (((-1111) $) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 17) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) +(((-1142) (-13 (-1059) (-10 -8 (-15 -2714 ((-1111) $))))) (T -1142)) +((-2714 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1142))))) +(-13 (-1059) (-10 -8 (-15 -2714 ((-1111) $)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3471 (((-1150 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-301)) (|has| |#1| (-357))))) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) 11)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-3245 (($ $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-4058 (((-111) $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-4019 (($ $ (-552)) NIL) (($ $ (-552) (-552)) 66)) (-4245 (((-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) NIL)) (-3086 (((-1150 |#1| |#2| |#3|) $) 36)) (-3967 (((-3 (-1150 |#1| |#2| |#3|) "failed") $) 29)) (-1909 (((-1150 |#1| |#2| |#3|) $) 30)) (-1607 (($ $) 107 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 83 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))))) (-4014 (($ $) NIL (|has| |#1| (-357)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1584 (($ $) 103 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 79 (|has| |#1| (-38 (-401 (-552)))))) (-2422 (((-552) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))))) (-1777 (($ (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) NIL)) (-1628 (($ $) 111 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 87 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-1150 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1152) "failed") $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1017 (-1152))) (|has| |#1| (-357)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1017 (-552))) (|has| |#1| (-357)))) (((-3 (-552) "failed") $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1017 (-552))) (|has| |#1| (-357))))) (-1703 (((-1150 |#1| |#2| |#3|) $) 131) (((-1152) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1017 (-1152))) (|has| |#1| (-357)))) (((-401 (-552)) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1017 (-552))) (|has| |#1| (-357)))) (((-552) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1017 (-552))) (|has| |#1| (-357))))) (-1405 (($ $) 34) (($ (-552) $) 35)) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) NIL)) (-1800 (((-671 (-1150 |#1| |#2| |#3|)) (-671 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -2515 (-671 (-1150 |#1| |#2| |#3|))) (|:| |vec| (-1235 (-1150 |#1| |#2| |#3|)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-623 (-552))) (|has| |#1| (-357)))) (((-671 (-552)) (-671 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-623 (-552))) (|has| |#1| (-357))))) (-2040 (((-3 $ "failed") $) 48)) (-1281 (((-401 (-931 |#1|)) $ (-552)) 65 (|has| |#1| (-544))) (((-401 (-931 |#1|)) $ (-552) (-552)) 67 (|has| |#1| (-544)))) (-1279 (($) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-537)) (|has| |#1| (-357))))) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1633 (((-111) $) NIL (|has| |#1| (-357)))) (-2983 (((-111) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))))) (-2391 (((-111) $) 25)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-865 (-552))) (|has| |#1| (-357)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-865 (-373))) (|has| |#1| (-357))))) (-2641 (((-552) $) NIL) (((-552) $ (-552)) 24)) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL (|has| |#1| (-357)))) (-2918 (((-1150 |#1| |#2| |#3|) $) 38 (|has| |#1| (-357)))) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4317 (((-3 $ "failed") $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1127)) (|has| |#1| (-357))))) (-1508 (((-111) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))))) (-3322 (($ $ (-900)) NIL)) (-3045 (($ (-1 |#1| (-552)) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-552)) 18) (($ $ (-1058) (-552)) NIL) (($ $ (-627 (-1058)) (-627 (-552))) NIL)) (-1816 (($ $ $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-4093 (($ $ $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-357)))) (-4135 (($ $) 72 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1920 (($ (-552) (-1150 |#1| |#2| |#3|)) 33)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| |#1| (-357)))) (-2747 (($ $) 70 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-938)) (|has| |#1| (-1174))))) (($ $ (-1231 |#2|)) 71 (|has| |#1| (-38 (-401 (-552)))))) (-3002 (($) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1127)) (|has| |#1| (-357))) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-4328 (($ $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-301)) (|has| |#1| (-357))))) (-2060 (((-1150 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-537)) (|has| |#1| (-357))))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))))) (-1727 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4168 (($ $ (-552)) 145)) (-2761 (((-3 $ "failed") $ $) 49 (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3154 (($ $) 73 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-552))))) (($ $ (-1152) (-1150 |#1| |#2| |#3|)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-506 (-1152) (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-627 (-1152)) (-627 (-1150 |#1| |#2| |#3|))) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-506 (-1152) (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-627 (-288 (-1150 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-303 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-288 (-1150 |#1| |#2| |#3|))) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-303 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-303 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-627 (-1150 |#1| |#2| |#3|)) (-627 (-1150 |#1| |#2| |#3|))) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-303 (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357))))) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ (-552)) NIL) (($ $ $) 54 (|has| (-552) (-1088))) (($ $ (-1150 |#1| |#2| |#3|)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-280 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|))) (|has| |#1| (-357))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-2942 (($ $ (-1 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|))) NIL (|has| |#1| (-357))) (($ $ (-1 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) (-754)) NIL (|has| |#1| (-357))) (($ $ (-1231 |#2|)) 51) (($ $ (-754)) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 50 (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152) (-754)) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-627 (-1152))) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))))) (-1583 (($ $) NIL (|has| |#1| (-357)))) (-2929 (((-1150 |#1| |#2| |#3|) $) 41 (|has| |#1| (-357)))) (-3567 (((-552) $) 37)) (-1640 (($ $) 113 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 89 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 109 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 85 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 105 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 81 (|has| |#1| (-38 (-401 (-552)))))) (-3562 (((-528) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-600 (-528))) (|has| |#1| (-357)))) (((-373) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1001)) (|has| |#1| (-357)))) (((-220) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1001)) (|has| |#1| (-357)))) (((-871 (-373)) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-600 (-871 (-373)))) (|has| |#1| (-357)))) (((-871 (-552)) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-600 (-871 (-552)))) (|has| |#1| (-357))))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))))) (-2890 (($ $) NIL)) (-1477 (((-842) $) 149) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1150 |#1| |#2| |#3|)) 27) (($ (-1231 |#2|)) 23) (($ (-1152)) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-1017 (-1152))) (|has| |#1| (-357)))) (($ $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544)))) (($ (-401 (-552))) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-1017 (-552))) (|has| |#1| (-357))) (|has| |#1| (-38 (-401 (-552))))))) (-1889 ((|#1| $ (-552)) 68)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-142)) (|has| |#1| (-357))) (|has| |#1| (-142))))) (-3995 (((-754)) NIL)) (-3174 ((|#1| $) 12)) (-3796 (((-1150 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-537)) (|has| |#1| (-357))))) (-1673 (($ $) 119 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 95 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-1652 (($ $) 115 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 91 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 123 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 99 (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-552)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) 125 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 101 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 121 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 97 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 117 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 93 (|has| |#1| (-38 (-401 (-552)))))) (-3329 (($ $) NIL (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))))) (-1922 (($) 20 T CONST)) (-1933 (($) 16 T CONST)) (-4251 (($ $ (-1 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|))) NIL (|has| |#1| (-357))) (($ $ (-1 (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) (-754)) NIL (|has| |#1| (-357))) (($ $ (-754)) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152) (-754)) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-627 (-1152))) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))))) (-2351 (((-111) $ $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-2329 (((-111) $ $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-2316 (((-111) $ $) NIL (-1559 (-12 (|has| (-1150 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1150 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) 44 (|has| |#1| (-357))) (($ (-1150 |#1| |#2| |#3|) (-1150 |#1| |#2| |#3|)) 45 (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 21)) (** (($ $ (-900)) NIL) (($ $ (-754)) 53) (($ $ (-552)) NIL (|has| |#1| (-357))) (($ $ $) 74 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 128 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1150 |#1| |#2| |#3|)) 43 (|has| |#1| (-357))) (($ (-1150 |#1| |#2| |#3|) $) 42 (|has| |#1| (-357))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-1143 |#1| |#2| |#3|) (-13 (-1197 |#1| (-1150 |#1| |#2| |#3|)) (-10 -8 (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) (-1028) (-1152) |#1|) (T -1143)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1143 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3)))) +(-13 (-1197 |#1| (-1150 |#1| |#2| |#3|)) (-10 -8 (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) +((-2707 ((|#2| |#2| (-1068 |#2|)) 26) ((|#2| |#2| (-1152)) 28))) +(((-1144 |#1| |#2|) (-10 -7 (-15 -2707 (|#2| |#2| (-1152))) (-15 -2707 (|#2| |#2| (-1068 |#2|)))) (-13 (-544) (-830) (-1017 (-552)) (-623 (-552))) (-13 (-424 |#1|) (-157) (-27) (-1174))) (T -1144)) +((-2707 (*1 *2 *2 *3) (-12 (-5 *3 (-1068 *2)) (-4 *2 (-13 (-424 *4) (-157) (-27) (-1174))) (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-1144 *4 *2)))) (-2707 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-1144 *4 *2)) (-4 *2 (-13 (-424 *4) (-157) (-27) (-1174)))))) +(-10 -7 (-15 -2707 (|#2| |#2| (-1152))) (-15 -2707 (|#2| |#2| (-1068 |#2|)))) +((-2707 (((-3 (-401 (-931 |#1|)) (-310 |#1|)) (-401 (-931 |#1|)) (-1068 (-401 (-931 |#1|)))) 31) (((-401 (-931 |#1|)) (-931 |#1|) (-1068 (-931 |#1|))) 44) (((-3 (-401 (-931 |#1|)) (-310 |#1|)) (-401 (-931 |#1|)) (-1152)) 33) (((-401 (-931 |#1|)) (-931 |#1|) (-1152)) 36))) +(((-1145 |#1|) (-10 -7 (-15 -2707 ((-401 (-931 |#1|)) (-931 |#1|) (-1152))) (-15 -2707 ((-3 (-401 (-931 |#1|)) (-310 |#1|)) (-401 (-931 |#1|)) (-1152))) (-15 -2707 ((-401 (-931 |#1|)) (-931 |#1|) (-1068 (-931 |#1|)))) (-15 -2707 ((-3 (-401 (-931 |#1|)) (-310 |#1|)) (-401 (-931 |#1|)) (-1068 (-401 (-931 |#1|)))))) (-13 (-544) (-830) (-1017 (-552)))) (T -1145)) +((-2707 (*1 *2 *3 *4) (-12 (-5 *4 (-1068 (-401 (-931 *5)))) (-5 *3 (-401 (-931 *5))) (-4 *5 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-3 *3 (-310 *5))) (-5 *1 (-1145 *5)))) (-2707 (*1 *2 *3 *4) (-12 (-5 *4 (-1068 (-931 *5))) (-5 *3 (-931 *5)) (-4 *5 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-401 *3)) (-5 *1 (-1145 *5)))) (-2707 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-3 (-401 (-931 *5)) (-310 *5))) (-5 *1 (-1145 *5)) (-5 *3 (-401 (-931 *5))))) (-2707 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-401 (-931 *5))) (-5 *1 (-1145 *5)) (-5 *3 (-931 *5))))) +(-10 -7 (-15 -2707 ((-401 (-931 |#1|)) (-931 |#1|) (-1152))) (-15 -2707 ((-3 (-401 (-931 |#1|)) (-310 |#1|)) (-401 (-931 |#1|)) (-1152))) (-15 -2707 ((-401 (-931 |#1|)) (-931 |#1|) (-1068 (-931 |#1|)))) (-15 -2707 ((-3 (-401 (-931 |#1|)) (-310 |#1|)) (-401 (-931 |#1|)) (-1068 (-401 (-931 |#1|)))))) +((-3516 (((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|)) 13))) +(((-1146 |#1| |#2|) (-10 -7 (-15 -3516 ((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|)))) (-1028) (-1028)) (T -1146)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1028)) (-4 *6 (-1028)) (-5 *2 (-1148 *6)) (-5 *1 (-1146 *5 *6))))) +(-10 -7 (-15 -3516 ((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|)))) +((-2487 (((-412 (-1148 (-401 |#4|))) (-1148 (-401 |#4|))) 51)) (-1727 (((-412 (-1148 (-401 |#4|))) (-1148 (-401 |#4|))) 52))) +(((-1147 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1727 ((-412 (-1148 (-401 |#4|))) (-1148 (-401 |#4|)))) (-15 -2487 ((-412 (-1148 (-401 |#4|))) (-1148 (-401 |#4|))))) (-776) (-830) (-445) (-928 |#3| |#1| |#2|)) (T -1147)) +((-2487 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-445)) (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-412 (-1148 (-401 *7)))) (-5 *1 (-1147 *4 *5 *6 *7)) (-5 *3 (-1148 (-401 *7))))) (-1727 (*1 *2 *3) (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-445)) (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-412 (-1148 (-401 *7)))) (-5 *1 (-1147 *4 *5 *6 *7)) (-5 *3 (-1148 (-401 *7)))))) +(-10 -7 (-15 -1727 ((-412 (-1148 (-401 |#4|))) (-1148 (-401 |#4|)))) (-15 -2487 ((-412 (-1148 (-401 |#4|))) (-1148 (-401 |#4|))))) +((-1465 (((-111) $ $) 137)) (-3024 (((-111) $) 27)) (-2449 (((-1235 |#1|) $ (-754)) NIL)) (-1853 (((-627 (-1058)) $) NIL)) (-4027 (($ (-1148 |#1|)) NIL)) (-1694 (((-1148 $) $ (-1058)) 58) (((-1148 |#1|) $) 47)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) 132 (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-1058))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1340 (($ $ $) 126 (|has| |#1| (-544)))) (-2246 (((-412 (-1148 $)) (-1148 $)) 71 (|has| |#1| (-888)))) (-4014 (($ $) NIL (|has| |#1| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 91 (|has| |#1| (-888)))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1611 (($ $ (-754)) 39)) (-3123 (($ $ (-754)) 40)) (-4194 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-445)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#1| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-1058) "failed") $) NIL)) (-1703 ((|#1| $) NIL) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-1058) $) NIL)) (-3116 (($ $ $ (-1058)) NIL (|has| |#1| (-169))) ((|#1| $ $) 128 (|has| |#1| (-169)))) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) 56)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) NIL) (((-671 |#1|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-1419 (($ $ $) 104)) (-3955 (($ $ $) NIL (|has| |#1| (-544)))) (-2148 (((-2 (|:| -3069 |#1|) (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-544)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1375 (($ $) 133 (|has| |#1| (-445))) (($ $ (-1058)) NIL (|has| |#1| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#1| (-888)))) (-2061 (($ $ |#1| (-754) $) 45)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-1058) (-865 (-373))) (|has| |#1| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-1058) (-865 (-552))) (|has| |#1| (-865 (-552)))))) (-2267 (((-842) $ (-842)) 117)) (-2641 (((-754) $ $) NIL (|has| |#1| (-544)))) (-2624 (((-111) $) 30)) (-3522 (((-754) $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| |#1| (-1127)))) (-1842 (($ (-1148 |#1|) (-1058)) 49) (($ (-1148 $) (-1058)) 65)) (-3322 (($ $ (-754)) 32)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-754)) 63) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-1058)) NIL) (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 121)) (-3465 (((-754) $) NIL) (((-754) $ (-1058)) NIL) (((-627 (-754)) $ (-627 (-1058))) NIL)) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3813 (($ (-1 (-754) (-754)) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1578 (((-1148 |#1|) $) NIL)) (-2685 (((-3 (-1058) "failed") $) NIL)) (-1981 (($ $) NIL)) (-1993 ((|#1| $) 52)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) NIL (|has| |#1| (-445)))) (-1595 (((-1134) $) NIL)) (-3341 (((-2 (|:| -2404 $) (|:| -3401 $)) $ (-754)) 38)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-1058)) (|:| -4067 (-754))) "failed") $) NIL)) (-2747 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3002 (($) NIL (|has| |#1| (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) 31)) (-1970 ((|#1| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 79 (|has| |#1| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-445))) (($ $ $) 135 (|has| |#1| (-445)))) (-1839 (($ $ (-754) |#1| $) 99)) (-3676 (((-412 (-1148 $)) (-1148 $)) 77 (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) 76 (|has| |#1| (-888)))) (-1727 (((-412 $) $) 84 (|has| |#1| (-888)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-2761 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-1058) |#1|) NIL) (($ $ (-627 (-1058)) (-627 |#1|)) NIL) (($ $ (-1058) $) NIL) (($ $ (-627 (-1058)) (-627 $)) NIL)) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-401 $) (-401 $) (-401 $)) NIL (|has| |#1| (-544))) ((|#1| (-401 $) |#1|) NIL (|has| |#1| (-357))) (((-401 $) $ (-401 $)) NIL (|has| |#1| (-544)))) (-3719 (((-3 $ "failed") $ (-754)) 35)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 138 (|has| |#1| (-357)))) (-1637 (($ $ (-1058)) NIL (|has| |#1| (-169))) ((|#1| $) 124 (|has| |#1| (-169)))) (-2942 (($ $ (-1058)) NIL) (($ $ (-627 (-1058))) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL) (($ $ (-754)) NIL) (($ $) NIL) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3567 (((-754) $) 54) (((-754) $ (-1058)) NIL) (((-627 (-754)) $ (-627 (-1058))) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-1058) (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-1058) (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-1058) (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3495 ((|#1| $) 130 (|has| |#1| (-445))) (($ $ (-1058)) NIL (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#1| (-888))))) (-2749 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544))) (((-3 (-401 $) "failed") (-401 $) $) NIL (|has| |#1| (-544)))) (-1477 (((-842) $) 118) (($ (-552)) NIL) (($ |#1|) 53) (($ (-1058)) NIL) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-754)) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) 25 (|has| |#1| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1922 (($) 15 T CONST)) (-1933 (($) 16 T CONST)) (-4251 (($ $ (-1058)) NIL) (($ $ (-627 (-1058))) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL) (($ $ (-754)) NIL) (($ $) NIL) (($ $ (-1152)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) 96)) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2407 (($ $ |#1|) 139 (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 66)) (** (($ $ (-900)) 14) (($ $ (-754)) 12)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 24) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1148 |#1|) (-13 (-1211 |#1|) (-10 -8 (-15 -2267 ((-842) $ (-842))) (-15 -1839 ($ $ (-754) |#1| $)))) (-1028)) (T -1148)) +((-2267 (*1 *2 *1 *2) (-12 (-5 *2 (-842)) (-5 *1 (-1148 *3)) (-4 *3 (-1028)))) (-1839 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-754)) (-5 *1 (-1148 *3)) (-4 *3 (-1028))))) +(-13 (-1211 |#1|) (-10 -8 (-15 -2267 ((-842) $ (-842))) (-15 -1839 ($ $ (-754) |#1| $)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) 11)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4019 (($ $ (-401 (-552))) NIL) (($ $ (-401 (-552)) (-401 (-552))) NIL)) (-4245 (((-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|))) $) NIL)) (-1607 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL (|has| |#1| (-357)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1584 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-754) (-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|)))) NIL)) (-1628 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-1143 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1150 |#1| |#2| |#3|) "failed") $) 36)) (-1703 (((-1143 |#1| |#2| |#3|) $) NIL) (((-1150 |#1| |#2| |#3|) $) NIL)) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-3455 (((-401 (-552)) $) 55)) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-1930 (($ (-401 (-552)) (-1143 |#1| |#2| |#3|)) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1633 (((-111) $) NIL (|has| |#1| (-357)))) (-2391 (((-111) $) NIL)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-401 (-552)) $) NIL) (((-401 (-552)) $ (-401 (-552))) NIL)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3322 (($ $ (-900)) NIL) (($ $ (-401 (-552))) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-401 (-552))) 20) (($ $ (-1058) (-401 (-552))) NIL) (($ $ (-627 (-1058)) (-627 (-401 (-552)))) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3713 (((-1143 |#1| |#2| |#3|) $) 41)) (-1977 (((-3 (-1143 |#1| |#2| |#3|) "failed") $) NIL)) (-1920 (((-1143 |#1| |#2| |#3|) $) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| |#1| (-357)))) (-2747 (($ $) 39 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-938)) (|has| |#1| (-1174))))) (($ $ (-1231 |#2|)) 40 (|has| |#1| (-38 (-401 (-552)))))) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4168 (($ $ (-401 (-552))) NIL)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3154 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))))) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ (-401 (-552))) NIL) (($ $ $) NIL (|has| (-401 (-552)) (-1088)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $ (-1231 |#2|)) 38)) (-3567 (((-401 (-552)) $) NIL)) (-1640 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) NIL)) (-1477 (((-842) $) 58) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1143 |#1| |#2| |#3|)) 30) (($ (-1150 |#1| |#2| |#3|)) 31) (($ (-1231 |#2|)) 26) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-1889 ((|#1| $ (-401 (-552))) NIL)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-3174 ((|#1| $) 12)) (-1673 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-401 (-552))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 22 T CONST)) (-1933 (($) 16 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 24)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-1149 |#1| |#2| |#3|) (-13 (-1218 |#1| (-1143 |#1| |#2| |#3|)) (-1017 (-1150 |#1| |#2| |#3|)) (-10 -8 (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) (-1028) (-1152) |#1|) (T -1149)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1149 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3)))) +(-13 (-1218 |#1| (-1143 |#1| |#2| |#3|)) (-1017 (-1150 |#1| |#2| |#3|)) (-10 -8 (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 125)) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) 116)) (-3017 (((-1208 |#2| |#1|) $ (-754)) 63)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4019 (($ $ (-754)) 79) (($ $ (-754) (-754)) 76)) (-4245 (((-1132 (-2 (|:| |k| (-754)) (|:| |c| |#1|))) $) 102)) (-1607 (($ $) 169 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 145 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1584 (($ $) 165 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 141 (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-1132 (-2 (|:| |k| (-754)) (|:| |c| |#1|)))) 115) (($ (-1132 |#1|)) 110)) (-1628 (($ $) 173 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 149 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) 23)) (-2872 (($ $) 26)) (-2212 (((-931 |#1|) $ (-754)) 75) (((-931 |#1|) $ (-754) (-754)) 77)) (-2391 (((-111) $) 120)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-754) $) 122) (((-754) $ (-754)) 124)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3322 (($ $ (-900)) NIL)) (-3045 (($ (-1 |#1| (-552)) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-754)) 13) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-4135 (($ $) 131 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-2747 (($ $) 129 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-938)) (|has| |#1| (-1174))))) (($ $ (-1231 |#2|)) 130 (|has| |#1| (-38 (-401 (-552)))))) (-1498 (((-1096) $) NIL)) (-4168 (($ $ (-754)) 15)) (-2761 (((-3 $ "failed") $ $) 24 (|has| |#1| (-544)))) (-3154 (($ $) 133 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-754)))))) (-1985 ((|#1| $ (-754)) 119) (($ $ $) 128 (|has| (-754) (-1088)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-754) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-754) |#1|)))) (($ $ (-1231 |#2|)) 29)) (-3567 (((-754) $) NIL)) (-1640 (($ $) 175 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 151 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 171 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 147 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 167 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 143 (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) NIL)) (-1477 (((-842) $) 201) (($ (-552)) NIL) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) 126 (|has| |#1| (-169))) (($ (-1208 |#2| |#1|)) 51) (($ (-1231 |#2|)) 32)) (-1493 (((-1132 |#1|) $) 98)) (-1889 ((|#1| $ (-754)) 118)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-3174 ((|#1| $) 54)) (-1673 (($ $) 181 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 157 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) 177 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 153 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 185 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 161 (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-754)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-754)))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) 187 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 163 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 183 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 159 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 179 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 155 (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 17 T CONST)) (-1933 (($) 19 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-754) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) 194)) (-2384 (($ $ $) 31)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ |#1|) 198 (|has| |#1| (-357))) (($ $ $) 134 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 137 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-1150 |#1| |#2| |#3|) (-13 (-1226 |#1|) (-10 -8 (-15 -1477 ($ (-1208 |#2| |#1|))) (-15 -3017 ((-1208 |#2| |#1|) $ (-754))) (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) (-1028) (-1152) |#1|) (T -1150)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1208 *4 *3)) (-4 *3 (-1028)) (-14 *4 (-1152)) (-14 *5 *3) (-5 *1 (-1150 *3 *4 *5)))) (-3017 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1208 *5 *4)) (-5 *1 (-1150 *4 *5 *6)) (-4 *4 (-1028)) (-14 *5 (-1152)) (-14 *6 *4))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1150 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3)))) +(-13 (-1226 |#1|) (-10 -8 (-15 -1477 ($ (-1208 |#2| |#1|))) (-15 -3017 ((-1208 |#2| |#1|) $ (-754))) (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) +((-1477 (((-842) $) 27) (($ (-1152)) 29)) (-1559 (($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 40)) (-1545 (($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 33) (($ $) 34)) (-4048 (($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 35)) (-4037 (($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 37)) (-4023 (($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 36)) (-4011 (($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 38)) (-3909 (($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $))) 39))) +(((-1151) (-13 (-599 (-842)) (-10 -8 (-15 -1477 ($ (-1152))) (-15 -4048 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -4023 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -4037 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -4011 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -1559 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -3909 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -1545 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -1545 ($ $))))) (T -1151)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1151)))) (-4048 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) (-5 *1 (-1151)))) (-4023 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) (-5 *1 (-1151)))) (-4037 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) (-5 *1 (-1151)))) (-4011 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) (-5 *1 (-1151)))) (-1559 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) (-5 *1 (-1151)))) (-3909 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) (-5 *1 (-1151)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) (-5 *1 (-1151)))) (-1545 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) (-5 *1 (-1151)))) (-1545 (*1 *1 *1) (-5 *1 (-1151)))) +(-13 (-599 (-842)) (-10 -8 (-15 -1477 ($ (-1152))) (-15 -4048 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -4023 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -4037 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -4011 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -1559 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -3909 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -1545 ($ (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) (|:| CF (-310 (-166 (-373)))) (|:| |switch| $)))) (-15 -1545 ($ $)))) +((-1465 (((-111) $ $) NIL)) (-2130 (($ $ (-627 (-842))) 59)) (-3651 (($ $ (-627 (-842))) 57)) (-2258 (((-1134) $) 84)) (-3606 (((-2 (|:| -2167 (-627 (-842))) (|:| -2796 (-627 (-842))) (|:| |presup| (-627 (-842))) (|:| -3750 (-627 (-842))) (|:| |args| (-627 (-842)))) $) 87)) (-2861 (((-111) $) 22)) (-2606 (($ $ (-627 (-627 (-842)))) 56) (($ $ (-2 (|:| -2167 (-627 (-842))) (|:| -2796 (-627 (-842))) (|:| |presup| (-627 (-842))) (|:| -3750 (-627 (-842))) (|:| |args| (-627 (-842))))) 82)) (-3887 (($) 124 T CONST)) (-2504 (((-1240)) 106)) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 66) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 73)) (-2655 (($) 95) (($ $) 101)) (-3112 (($ $) 83)) (-1816 (($ $ $) NIL)) (-4093 (($ $ $) NIL)) (-1299 (((-627 $) $) 107)) (-1595 (((-1134) $) 90)) (-1498 (((-1096) $) NIL)) (-1985 (($ $ (-627 (-842))) 58)) (-3562 (((-528) $) 46) (((-1152) $) 47) (((-871 (-552)) $) 77) (((-871 (-373)) $) 75)) (-1477 (((-842) $) 53) (($ (-1134)) 48)) (-2350 (($ $ (-627 (-842))) 60)) (-4157 (((-1134) $) 33) (((-1134) $ (-111)) 34) (((-1240) (-805) $) 35) (((-1240) (-805) $ (-111)) 36)) (-2351 (((-111) $ $) NIL)) (-2329 (((-111) $ $) NIL)) (-2292 (((-111) $ $) 49)) (-2340 (((-111) $ $) NIL)) (-2316 (((-111) $ $) 50))) +(((-1152) (-13 (-830) (-600 (-528)) (-811) (-600 (-1152)) (-600 (-871 (-552))) (-600 (-871 (-373))) (-865 (-552)) (-865 (-373)) (-10 -8 (-15 -2655 ($)) (-15 -2655 ($ $)) (-15 -2504 ((-1240))) (-15 -1477 ($ (-1134))) (-15 -3112 ($ $)) (-15 -2861 ((-111) $)) (-15 -3606 ((-2 (|:| -2167 (-627 (-842))) (|:| -2796 (-627 (-842))) (|:| |presup| (-627 (-842))) (|:| -3750 (-627 (-842))) (|:| |args| (-627 (-842)))) $)) (-15 -2606 ($ $ (-627 (-627 (-842))))) (-15 -2606 ($ $ (-2 (|:| -2167 (-627 (-842))) (|:| -2796 (-627 (-842))) (|:| |presup| (-627 (-842))) (|:| -3750 (-627 (-842))) (|:| |args| (-627 (-842)))))) (-15 -3651 ($ $ (-627 (-842)))) (-15 -2130 ($ $ (-627 (-842)))) (-15 -2350 ($ $ (-627 (-842)))) (-15 -1985 ($ $ (-627 (-842)))) (-15 -2258 ((-1134) $)) (-15 -1299 ((-627 $) $)) (-15 -3887 ($) -3488)))) (T -1152)) +((-2655 (*1 *1) (-5 *1 (-1152))) (-2655 (*1 *1 *1) (-5 *1 (-1152))) (-2504 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1152)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1152)))) (-3112 (*1 *1 *1) (-5 *1 (-1152))) (-2861 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1152)))) (-3606 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2167 (-627 (-842))) (|:| -2796 (-627 (-842))) (|:| |presup| (-627 (-842))) (|:| -3750 (-627 (-842))) (|:| |args| (-627 (-842))))) (-5 *1 (-1152)))) (-2606 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-627 (-842)))) (-5 *1 (-1152)))) (-2606 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2167 (-627 (-842))) (|:| -2796 (-627 (-842))) (|:| |presup| (-627 (-842))) (|:| -3750 (-627 (-842))) (|:| |args| (-627 (-842))))) (-5 *1 (-1152)))) (-3651 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-1152)))) (-2130 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-1152)))) (-2350 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-1152)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-1152)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1152)))) (-1299 (*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-1152)))) (-3887 (*1 *1) (-5 *1 (-1152)))) +(-13 (-830) (-600 (-528)) (-811) (-600 (-1152)) (-600 (-871 (-552))) (-600 (-871 (-373))) (-865 (-552)) (-865 (-373)) (-10 -8 (-15 -2655 ($)) (-15 -2655 ($ $)) (-15 -2504 ((-1240))) (-15 -1477 ($ (-1134))) (-15 -3112 ($ $)) (-15 -2861 ((-111) $)) (-15 -3606 ((-2 (|:| -2167 (-627 (-842))) (|:| -2796 (-627 (-842))) (|:| |presup| (-627 (-842))) (|:| -3750 (-627 (-842))) (|:| |args| (-627 (-842)))) $)) (-15 -2606 ($ $ (-627 (-627 (-842))))) (-15 -2606 ($ $ (-2 (|:| -2167 (-627 (-842))) (|:| -2796 (-627 (-842))) (|:| |presup| (-627 (-842))) (|:| -3750 (-627 (-842))) (|:| |args| (-627 (-842)))))) (-15 -3651 ($ $ (-627 (-842)))) (-15 -2130 ($ $ (-627 (-842)))) (-15 -2350 ($ $ (-627 (-842)))) (-15 -1985 ($ $ (-627 (-842)))) (-15 -2258 ((-1134) $)) (-15 -1299 ((-627 $) $)) (-15 -3887 ($) -3488))) +((-4046 (((-1235 |#1|) |#1| (-900)) 16) (((-1235 |#1|) (-627 |#1|)) 20))) +(((-1153 |#1|) (-10 -7 (-15 -4046 ((-1235 |#1|) (-627 |#1|))) (-15 -4046 ((-1235 |#1|) |#1| (-900)))) (-1028)) (T -1153)) +((-4046 (*1 *2 *3 *4) (-12 (-5 *4 (-900)) (-5 *2 (-1235 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1028)))) (-4046 (*1 *2 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-1028)) (-5 *2 (-1235 *4)) (-5 *1 (-1153 *4))))) +(-10 -7 (-15 -4046 ((-1235 |#1|) (-627 |#1|))) (-15 -4046 ((-1235 |#1|) |#1| (-900)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| |#1| (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#1| (-1017 (-401 (-552))))) (((-3 |#1| "failed") $) NIL)) (-1703 (((-552) $) NIL (|has| |#1| (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| |#1| (-1017 (-401 (-552))))) ((|#1| $) NIL)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-1375 (($ $) NIL (|has| |#1| (-445)))) (-2061 (($ $ |#1| (-950) $) NIL)) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-950)) NIL)) (-3465 (((-950) $) NIL)) (-3813 (($ (-1 (-950) (-950)) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 ((|#1| $) NIL)) (-1839 (($ $ (-950) |#1| $) NIL (-12 (|has| (-950) (-129)) (|has| |#1| (-544))))) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-544)))) (-3567 (((-950) $) NIL)) (-3495 ((|#1| $) NIL (|has| |#1| (-445)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) NIL) (($ (-401 (-552))) NIL (-1559 (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-1017 (-401 (-552))))))) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ (-950)) NIL)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#1| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1922 (($) 9 T CONST)) (-1933 (($) 14 T CONST)) (-2292 (((-111) $ $) 16)) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 19)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-1154 |#1|) (-13 (-320 |#1| (-950)) (-10 -8 (IF (|has| |#1| (-544)) (IF (|has| (-950) (-129)) (-15 -1839 ($ $ (-950) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4364)) (-6 -4364) |%noBranch|))) (-1028)) (T -1154)) +((-1839 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-950)) (-4 *2 (-129)) (-5 *1 (-1154 *3)) (-4 *3 (-544)) (-4 *3 (-1028))))) +(-13 (-320 |#1| (-950)) (-10 -8 (IF (|has| |#1| (-544)) (IF (|has| (-950) (-129)) (-15 -1839 ($ $ (-950) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4364)) (-6 -4364) |%noBranch|))) +((-1669 (((-1156) (-1152) $) 25)) (-2026 (($) 29)) (-3019 (((-3 (|:| |fst| (-428)) (|:| -3885 "void")) (-1152) $) 22)) (-2175 (((-1240) (-1152) (-3 (|:| |fst| (-428)) (|:| -3885 "void")) $) 41) (((-1240) (-1152) (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) 42) (((-1240) (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) 43)) (-3504 (((-1240) (-1152)) 58)) (-2457 (((-1240) (-1152) $) 55) (((-1240) (-1152)) 56) (((-1240)) 57)) (-3367 (((-1240) (-1152)) 37)) (-3109 (((-1152)) 36)) (-2373 (($) 34)) (-4120 (((-431) (-1152) (-431) (-1152) $) 45) (((-431) (-627 (-1152)) (-431) (-1152) $) 49) (((-431) (-1152) (-431)) 46) (((-431) (-1152) (-431) (-1152)) 50)) (-2554 (((-1152)) 35)) (-1477 (((-842) $) 28)) (-1826 (((-1240)) 30) (((-1240) (-1152)) 33)) (-1501 (((-627 (-1152)) (-1152) $) 24)) (-3743 (((-1240) (-1152) (-627 (-1152)) $) 38) (((-1240) (-1152) (-627 (-1152))) 39) (((-1240) (-627 (-1152))) 40))) +(((-1155) (-13 (-599 (-842)) (-10 -8 (-15 -2026 ($)) (-15 -1826 ((-1240))) (-15 -1826 ((-1240) (-1152))) (-15 -4120 ((-431) (-1152) (-431) (-1152) $)) (-15 -4120 ((-431) (-627 (-1152)) (-431) (-1152) $)) (-15 -4120 ((-431) (-1152) (-431))) (-15 -4120 ((-431) (-1152) (-431) (-1152))) (-15 -3367 ((-1240) (-1152))) (-15 -2554 ((-1152))) (-15 -3109 ((-1152))) (-15 -3743 ((-1240) (-1152) (-627 (-1152)) $)) (-15 -3743 ((-1240) (-1152) (-627 (-1152)))) (-15 -3743 ((-1240) (-627 (-1152)))) (-15 -2175 ((-1240) (-1152) (-3 (|:| |fst| (-428)) (|:| -3885 "void")) $)) (-15 -2175 ((-1240) (-1152) (-3 (|:| |fst| (-428)) (|:| -3885 "void")))) (-15 -2175 ((-1240) (-3 (|:| |fst| (-428)) (|:| -3885 "void")))) (-15 -2457 ((-1240) (-1152) $)) (-15 -2457 ((-1240) (-1152))) (-15 -2457 ((-1240))) (-15 -3504 ((-1240) (-1152))) (-15 -2373 ($)) (-15 -3019 ((-3 (|:| |fst| (-428)) (|:| -3885 "void")) (-1152) $)) (-15 -1501 ((-627 (-1152)) (-1152) $)) (-15 -1669 ((-1156) (-1152) $))))) (T -1155)) +((-2026 (*1 *1) (-5 *1 (-1155))) (-1826 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1155)))) (-1826 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-4120 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-431)) (-5 *3 (-1152)) (-5 *1 (-1155)))) (-4120 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-431)) (-5 *3 (-627 (-1152))) (-5 *4 (-1152)) (-5 *1 (-1155)))) (-4120 (*1 *2 *3 *2) (-12 (-5 *2 (-431)) (-5 *3 (-1152)) (-5 *1 (-1155)))) (-4120 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-431)) (-5 *3 (-1152)) (-5 *1 (-1155)))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-2554 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1155)))) (-3109 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1155)))) (-3743 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-627 (-1152))) (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-3743 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-1152))) (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-627 (-1152))) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-2175 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1152)) (-5 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-2175 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-2457 (*1 *2 *3 *1) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-2457 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1155)))) (-3504 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155)))) (-2373 (*1 *1) (-5 *1 (-1155))) (-3019 (*1 *2 *3 *1) (-12 (-5 *3 (-1152)) (-5 *2 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-5 *1 (-1155)))) (-1501 (*1 *2 *3 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-1155)) (-5 *3 (-1152)))) (-1669 (*1 *2 *3 *1) (-12 (-5 *3 (-1152)) (-5 *2 (-1156)) (-5 *1 (-1155))))) +(-13 (-599 (-842)) (-10 -8 (-15 -2026 ($)) (-15 -1826 ((-1240))) (-15 -1826 ((-1240) (-1152))) (-15 -4120 ((-431) (-1152) (-431) (-1152) $)) (-15 -4120 ((-431) (-627 (-1152)) (-431) (-1152) $)) (-15 -4120 ((-431) (-1152) (-431))) (-15 -4120 ((-431) (-1152) (-431) (-1152))) (-15 -3367 ((-1240) (-1152))) (-15 -2554 ((-1152))) (-15 -3109 ((-1152))) (-15 -3743 ((-1240) (-1152) (-627 (-1152)) $)) (-15 -3743 ((-1240) (-1152) (-627 (-1152)))) (-15 -3743 ((-1240) (-627 (-1152)))) (-15 -2175 ((-1240) (-1152) (-3 (|:| |fst| (-428)) (|:| -3885 "void")) $)) (-15 -2175 ((-1240) (-1152) (-3 (|:| |fst| (-428)) (|:| -3885 "void")))) (-15 -2175 ((-1240) (-3 (|:| |fst| (-428)) (|:| -3885 "void")))) (-15 -2457 ((-1240) (-1152) $)) (-15 -2457 ((-1240) (-1152))) (-15 -2457 ((-1240))) (-15 -3504 ((-1240) (-1152))) (-15 -2373 ($)) (-15 -3019 ((-3 (|:| |fst| (-428)) (|:| -3885 "void")) (-1152) $)) (-15 -1501 ((-627 (-1152)) (-1152) $)) (-15 -1669 ((-1156) (-1152) $)))) +((-2607 (((-627 (-627 (-3 (|:| -3112 (-1152)) (|:| -3536 (-627 (-3 (|:| S (-1152)) (|:| P (-931 (-552))))))))) $) 59)) (-3827 (((-627 (-3 (|:| -3112 (-1152)) (|:| -3536 (-627 (-3 (|:| S (-1152)) (|:| P (-931 (-552)))))))) (-428) $) 43)) (-2750 (($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-431))))) 17)) (-3504 (((-1240) $) 67)) (-4290 (((-627 (-1152)) $) 22)) (-3073 (((-1080) $) 55)) (-3896 (((-431) (-1152) $) 27)) (-4130 (((-627 (-1152)) $) 30)) (-2373 (($) 19)) (-4120 (((-431) (-627 (-1152)) (-431) $) 25) (((-431) (-1152) (-431) $) 24)) (-1477 (((-842) $) 9) (((-1162 (-1152) (-431)) $) 13))) +(((-1156) (-13 (-599 (-842)) (-10 -8 (-15 -1477 ((-1162 (-1152) (-431)) $)) (-15 -2373 ($)) (-15 -4120 ((-431) (-627 (-1152)) (-431) $)) (-15 -4120 ((-431) (-1152) (-431) $)) (-15 -3896 ((-431) (-1152) $)) (-15 -4290 ((-627 (-1152)) $)) (-15 -3827 ((-627 (-3 (|:| -3112 (-1152)) (|:| -3536 (-627 (-3 (|:| S (-1152)) (|:| P (-931 (-552)))))))) (-428) $)) (-15 -4130 ((-627 (-1152)) $)) (-15 -2607 ((-627 (-627 (-3 (|:| -3112 (-1152)) (|:| -3536 (-627 (-3 (|:| S (-1152)) (|:| P (-931 (-552))))))))) $)) (-15 -3073 ((-1080) $)) (-15 -3504 ((-1240) $)) (-15 -2750 ($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-431))))))))) (T -1156)) +((-1477 (*1 *2 *1) (-12 (-5 *2 (-1162 (-1152) (-431))) (-5 *1 (-1156)))) (-2373 (*1 *1) (-5 *1 (-1156))) (-4120 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-431)) (-5 *3 (-627 (-1152))) (-5 *1 (-1156)))) (-4120 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-431)) (-5 *3 (-1152)) (-5 *1 (-1156)))) (-3896 (*1 *2 *3 *1) (-12 (-5 *3 (-1152)) (-5 *2 (-431)) (-5 *1 (-1156)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-1156)))) (-3827 (*1 *2 *3 *1) (-12 (-5 *3 (-428)) (-5 *2 (-627 (-3 (|:| -3112 (-1152)) (|:| -3536 (-627 (-3 (|:| S (-1152)) (|:| P (-931 (-552))))))))) (-5 *1 (-1156)))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-1156)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-627 (-627 (-3 (|:| -3112 (-1152)) (|:| -3536 (-627 (-3 (|:| S (-1152)) (|:| P (-931 (-552)))))))))) (-5 *1 (-1156)))) (-3073 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-1156)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1156)))) (-2750 (*1 *1 *2) (-12 (-5 *2 (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-431))))) (-5 *1 (-1156))))) +(-13 (-599 (-842)) (-10 -8 (-15 -1477 ((-1162 (-1152) (-431)) $)) (-15 -2373 ($)) (-15 -4120 ((-431) (-627 (-1152)) (-431) $)) (-15 -4120 ((-431) (-1152) (-431) $)) (-15 -3896 ((-431) (-1152) $)) (-15 -4290 ((-627 (-1152)) $)) (-15 -3827 ((-627 (-3 (|:| -3112 (-1152)) (|:| -3536 (-627 (-3 (|:| S (-1152)) (|:| P (-931 (-552)))))))) (-428) $)) (-15 -4130 ((-627 (-1152)) $)) (-15 -2607 ((-627 (-627 (-3 (|:| -3112 (-1152)) (|:| -3536 (-627 (-3 (|:| S (-1152)) (|:| P (-931 (-552))))))))) $)) (-15 -3073 ((-1080) $)) (-15 -3504 ((-1240) $)) (-15 -2750 ($ (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-431)))))))) +((-1465 (((-111) $ $) NIL)) (-4039 (((-3 (-552) "failed") $) 29) (((-3 (-220) "failed") $) 35) (((-3 (-1152) "failed") $) 41) (((-3 (-1134) "failed") $) 47)) (-1703 (((-552) $) 30) (((-220) $) 36) (((-1152) $) 42) (((-1134) $) 48)) (-3760 (((-111) $) 53)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1882 (((-3 (-552) (-220) (-1152) (-1134) $) $) 55)) (-1295 (((-627 $) $) 57)) (-3562 (((-1080) $) 24) (($ (-1080)) 25)) (-2149 (((-111) $) 56)) (-1477 (((-842) $) 22) (($ (-552)) 26) (($ (-220)) 32) (($ (-1152)) 38) (($ (-1134)) 44) (((-552) $) 31) (((-220) $) 37) (((-1152) $) 43) (((-1134) $) 49)) (-1911 (((-111) $ (|[\|\|]| (-552))) 10) (((-111) $ (|[\|\|]| (-220))) 13) (((-111) $ (|[\|\|]| (-1152))) 19) (((-111) $ (|[\|\|]| (-1134))) 16)) (-3328 (($ (-1152) (-627 $)) 51) (($ $ (-627 $)) 52)) (-3007 (((-552) $) 27) (((-220) $) 33) (((-1152) $) 39) (((-1134) $) 45)) (-2292 (((-111) $ $) 7))) +(((-1157) (-13 (-1230) (-1076) (-1017 (-552)) (-1017 (-220)) (-1017 (-1152)) (-1017 (-1134)) (-10 -8 (-15 -3562 ((-1080) $)) (-15 -3562 ($ (-1080))) (-15 -1477 ((-552) $)) (-15 -3007 ((-552) $)) (-15 -1477 ((-220) $)) (-15 -3007 ((-220) $)) (-15 -1477 ((-1152) $)) (-15 -3007 ((-1152) $)) (-15 -1477 ((-1134) $)) (-15 -3007 ((-1134) $)) (-15 -3328 ($ (-1152) (-627 $))) (-15 -3328 ($ $ (-627 $))) (-15 -3760 ((-111) $)) (-15 -1882 ((-3 (-552) (-220) (-1152) (-1134) $) $)) (-15 -1295 ((-627 $) $)) (-15 -2149 ((-111) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-552)))) (-15 -1911 ((-111) $ (|[\|\|]| (-220)))) (-15 -1911 ((-111) $ (|[\|\|]| (-1152)))) (-15 -1911 ((-111) $ (|[\|\|]| (-1134))))))) (T -1157)) +((-3562 (*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-1157)))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-1157)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1157)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1157)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-1157)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-1157)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1157)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1157)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1157)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1157)))) (-3328 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-1157))) (-5 *1 (-1157)))) (-3328 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-1157))) (-5 *1 (-1157)))) (-3760 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1157)))) (-1882 (*1 *2 *1) (-12 (-5 *2 (-3 (-552) (-220) (-1152) (-1134) (-1157))) (-5 *1 (-1157)))) (-1295 (*1 *2 *1) (-12 (-5 *2 (-627 (-1157))) (-5 *1 (-1157)))) (-2149 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1157)))) (-1911 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-552))) (-5 *2 (-111)) (-5 *1 (-1157)))) (-1911 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-111)) (-5 *1 (-1157)))) (-1911 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-111)) (-5 *1 (-1157)))) (-1911 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1134))) (-5 *2 (-111)) (-5 *1 (-1157))))) +(-13 (-1230) (-1076) (-1017 (-552)) (-1017 (-220)) (-1017 (-1152)) (-1017 (-1134)) (-10 -8 (-15 -3562 ((-1080) $)) (-15 -3562 ($ (-1080))) (-15 -1477 ((-552) $)) (-15 -3007 ((-552) $)) (-15 -1477 ((-220) $)) (-15 -3007 ((-220) $)) (-15 -1477 ((-1152) $)) (-15 -3007 ((-1152) $)) (-15 -1477 ((-1134) $)) (-15 -3007 ((-1134) $)) (-15 -3328 ($ (-1152) (-627 $))) (-15 -3328 ($ $ (-627 $))) (-15 -3760 ((-111) $)) (-15 -1882 ((-3 (-552) (-220) (-1152) (-1134) $) $)) (-15 -1295 ((-627 $) $)) (-15 -2149 ((-111) $)) (-15 -1911 ((-111) $ (|[\|\|]| (-552)))) (-15 -1911 ((-111) $ (|[\|\|]| (-220)))) (-15 -1911 ((-111) $ (|[\|\|]| (-1152)))) (-15 -1911 ((-111) $ (|[\|\|]| (-1134)))))) +((-1411 (((-627 (-627 (-931 |#1|))) (-627 (-401 (-931 |#1|))) (-627 (-1152))) 57)) (-1696 (((-627 (-288 (-401 (-931 |#1|)))) (-288 (-401 (-931 |#1|)))) 69) (((-627 (-288 (-401 (-931 |#1|)))) (-401 (-931 |#1|))) 65) (((-627 (-288 (-401 (-931 |#1|)))) (-288 (-401 (-931 |#1|))) (-1152)) 70) (((-627 (-288 (-401 (-931 |#1|)))) (-401 (-931 |#1|)) (-1152)) 64) (((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-288 (-401 (-931 |#1|))))) 93) (((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-401 (-931 |#1|)))) 92) (((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-288 (-401 (-931 |#1|)))) (-627 (-1152))) 94) (((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-401 (-931 |#1|))) (-627 (-1152))) 91))) +(((-1158 |#1|) (-10 -7 (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-401 (-931 |#1|))) (-627 (-1152)))) (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-288 (-401 (-931 |#1|)))) (-627 (-1152)))) (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-401 (-931 |#1|))))) (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-288 (-401 (-931 |#1|)))))) (-15 -1696 ((-627 (-288 (-401 (-931 |#1|)))) (-401 (-931 |#1|)) (-1152))) (-15 -1696 ((-627 (-288 (-401 (-931 |#1|)))) (-288 (-401 (-931 |#1|))) (-1152))) (-15 -1696 ((-627 (-288 (-401 (-931 |#1|)))) (-401 (-931 |#1|)))) (-15 -1696 ((-627 (-288 (-401 (-931 |#1|)))) (-288 (-401 (-931 |#1|))))) (-15 -1411 ((-627 (-627 (-931 |#1|))) (-627 (-401 (-931 |#1|))) (-627 (-1152))))) (-544)) (T -1158)) +((-1411 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-401 (-931 *5)))) (-5 *4 (-627 (-1152))) (-4 *5 (-544)) (-5 *2 (-627 (-627 (-931 *5)))) (-5 *1 (-1158 *5)))) (-1696 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-627 (-288 (-401 (-931 *4))))) (-5 *1 (-1158 *4)) (-5 *3 (-288 (-401 (-931 *4)))))) (-1696 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-627 (-288 (-401 (-931 *4))))) (-5 *1 (-1158 *4)) (-5 *3 (-401 (-931 *4))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-544)) (-5 *2 (-627 (-288 (-401 (-931 *5))))) (-5 *1 (-1158 *5)) (-5 *3 (-288 (-401 (-931 *5)))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *4 (-1152)) (-4 *5 (-544)) (-5 *2 (-627 (-288 (-401 (-931 *5))))) (-5 *1 (-1158 *5)) (-5 *3 (-401 (-931 *5))))) (-1696 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *4)))))) (-5 *1 (-1158 *4)) (-5 *3 (-627 (-288 (-401 (-931 *4))))))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-627 (-401 (-931 *4)))) (-4 *4 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *4)))))) (-5 *1 (-1158 *4)))) (-1696 (*1 *2 *3 *4) (-12 (-5 *4 (-627 (-1152))) (-4 *5 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *5)))))) (-5 *1 (-1158 *5)) (-5 *3 (-627 (-288 (-401 (-931 *5))))))) (-1696 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-401 (-931 *5)))) (-5 *4 (-627 (-1152))) (-4 *5 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *5)))))) (-5 *1 (-1158 *5))))) +(-10 -7 (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-401 (-931 |#1|))) (-627 (-1152)))) (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-288 (-401 (-931 |#1|)))) (-627 (-1152)))) (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-401 (-931 |#1|))))) (-15 -1696 ((-627 (-627 (-288 (-401 (-931 |#1|))))) (-627 (-288 (-401 (-931 |#1|)))))) (-15 -1696 ((-627 (-288 (-401 (-931 |#1|)))) (-401 (-931 |#1|)) (-1152))) (-15 -1696 ((-627 (-288 (-401 (-931 |#1|)))) (-288 (-401 (-931 |#1|))) (-1152))) (-15 -1696 ((-627 (-288 (-401 (-931 |#1|)))) (-401 (-931 |#1|)))) (-15 -1696 ((-627 (-288 (-401 (-931 |#1|)))) (-288 (-401 (-931 |#1|))))) (-15 -1411 ((-627 (-627 (-931 |#1|))) (-627 (-401 (-931 |#1|))) (-627 (-1152))))) +((-2941 (((-1134)) 7)) (-2105 (((-1134)) 9)) (-4190 (((-1240) (-1134)) 11)) (-2482 (((-1134)) 8))) +(((-1159) (-10 -7 (-15 -2941 ((-1134))) (-15 -2482 ((-1134))) (-15 -2105 ((-1134))) (-15 -4190 ((-1240) (-1134))))) (T -1159)) +((-4190 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1159)))) (-2105 (*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1159)))) (-2482 (*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1159)))) (-2941 (*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1159))))) +(-10 -7 (-15 -2941 ((-1134))) (-15 -2482 ((-1134))) (-15 -2105 ((-1134))) (-15 -4190 ((-1240) (-1134)))) +((-2248 (((-627 (-627 |#1|)) (-627 (-627 |#1|)) (-627 (-627 (-627 |#1|)))) 38)) (-4012 (((-627 (-627 (-627 |#1|))) (-627 (-627 |#1|))) 24)) (-3833 (((-1161 (-627 |#1|)) (-627 |#1|)) 34)) (-4227 (((-627 (-627 |#1|)) (-627 |#1|)) 30)) (-2762 (((-2 (|:| |f1| (-627 |#1|)) (|:| |f2| (-627 (-627 (-627 |#1|)))) (|:| |f3| (-627 (-627 |#1|))) (|:| |f4| (-627 (-627 (-627 |#1|))))) (-627 (-627 (-627 |#1|)))) 37)) (-1688 (((-2 (|:| |f1| (-627 |#1|)) (|:| |f2| (-627 (-627 (-627 |#1|)))) (|:| |f3| (-627 (-627 |#1|))) (|:| |f4| (-627 (-627 (-627 |#1|))))) (-627 |#1|) (-627 (-627 (-627 |#1|))) (-627 (-627 |#1|)) (-627 (-627 (-627 |#1|))) (-627 (-627 (-627 |#1|))) (-627 (-627 (-627 |#1|)))) 36)) (-2527 (((-627 (-627 |#1|)) (-627 (-627 |#1|))) 28)) (-2952 (((-627 |#1|) (-627 |#1|)) 31)) (-2695 (((-627 (-627 (-627 |#1|))) (-627 |#1|) (-627 (-627 (-627 |#1|)))) 18)) (-3025 (((-627 (-627 (-627 |#1|))) (-1 (-111) |#1| |#1|) (-627 |#1|) (-627 (-627 (-627 |#1|)))) 16)) (-1362 (((-2 (|:| |fs| (-111)) (|:| |sd| (-627 |#1|)) (|:| |td| (-627 (-627 |#1|)))) (-1 (-111) |#1| |#1|) (-627 |#1|) (-627 (-627 |#1|))) 14)) (-1946 (((-627 (-627 |#1|)) (-627 (-627 (-627 |#1|)))) 39)) (-3506 (((-627 (-627 |#1|)) (-1161 (-627 |#1|))) 41))) +(((-1160 |#1|) (-10 -7 (-15 -1362 ((-2 (|:| |fs| (-111)) (|:| |sd| (-627 |#1|)) (|:| |td| (-627 (-627 |#1|)))) (-1 (-111) |#1| |#1|) (-627 |#1|) (-627 (-627 |#1|)))) (-15 -3025 ((-627 (-627 (-627 |#1|))) (-1 (-111) |#1| |#1|) (-627 |#1|) (-627 (-627 (-627 |#1|))))) (-15 -2695 ((-627 (-627 (-627 |#1|))) (-627 |#1|) (-627 (-627 (-627 |#1|))))) (-15 -2248 ((-627 (-627 |#1|)) (-627 (-627 |#1|)) (-627 (-627 (-627 |#1|))))) (-15 -1946 ((-627 (-627 |#1|)) (-627 (-627 (-627 |#1|))))) (-15 -3506 ((-627 (-627 |#1|)) (-1161 (-627 |#1|)))) (-15 -4012 ((-627 (-627 (-627 |#1|))) (-627 (-627 |#1|)))) (-15 -3833 ((-1161 (-627 |#1|)) (-627 |#1|))) (-15 -2527 ((-627 (-627 |#1|)) (-627 (-627 |#1|)))) (-15 -4227 ((-627 (-627 |#1|)) (-627 |#1|))) (-15 -2952 ((-627 |#1|) (-627 |#1|))) (-15 -1688 ((-2 (|:| |f1| (-627 |#1|)) (|:| |f2| (-627 (-627 (-627 |#1|)))) (|:| |f3| (-627 (-627 |#1|))) (|:| |f4| (-627 (-627 (-627 |#1|))))) (-627 |#1|) (-627 (-627 (-627 |#1|))) (-627 (-627 |#1|)) (-627 (-627 (-627 |#1|))) (-627 (-627 (-627 |#1|))) (-627 (-627 (-627 |#1|))))) (-15 -2762 ((-2 (|:| |f1| (-627 |#1|)) (|:| |f2| (-627 (-627 (-627 |#1|)))) (|:| |f3| (-627 (-627 |#1|))) (|:| |f4| (-627 (-627 (-627 |#1|))))) (-627 (-627 (-627 |#1|)))))) (-830)) (T -1160)) +((-2762 (*1 *2 *3) (-12 (-4 *4 (-830)) (-5 *2 (-2 (|:| |f1| (-627 *4)) (|:| |f2| (-627 (-627 (-627 *4)))) (|:| |f3| (-627 (-627 *4))) (|:| |f4| (-627 (-627 (-627 *4)))))) (-5 *1 (-1160 *4)) (-5 *3 (-627 (-627 (-627 *4)))))) (-1688 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-830)) (-5 *3 (-627 *6)) (-5 *5 (-627 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-627 *5)) (|:| |f3| *5) (|:| |f4| (-627 *5)))) (-5 *1 (-1160 *6)) (-5 *4 (-627 *5)))) (-2952 (*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-1160 *3)))) (-4227 (*1 *2 *3) (-12 (-4 *4 (-830)) (-5 *2 (-627 (-627 *4))) (-5 *1 (-1160 *4)) (-5 *3 (-627 *4)))) (-2527 (*1 *2 *2) (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-830)) (-5 *1 (-1160 *3)))) (-3833 (*1 *2 *3) (-12 (-4 *4 (-830)) (-5 *2 (-1161 (-627 *4))) (-5 *1 (-1160 *4)) (-5 *3 (-627 *4)))) (-4012 (*1 *2 *3) (-12 (-4 *4 (-830)) (-5 *2 (-627 (-627 (-627 *4)))) (-5 *1 (-1160 *4)) (-5 *3 (-627 (-627 *4))))) (-3506 (*1 *2 *3) (-12 (-5 *3 (-1161 (-627 *4))) (-4 *4 (-830)) (-5 *2 (-627 (-627 *4))) (-5 *1 (-1160 *4)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-627 (-627 (-627 *4)))) (-5 *2 (-627 (-627 *4))) (-5 *1 (-1160 *4)) (-4 *4 (-830)))) (-2248 (*1 *2 *2 *3) (-12 (-5 *3 (-627 (-627 (-627 *4)))) (-5 *2 (-627 (-627 *4))) (-4 *4 (-830)) (-5 *1 (-1160 *4)))) (-2695 (*1 *2 *3 *2) (-12 (-5 *2 (-627 (-627 (-627 *4)))) (-5 *3 (-627 *4)) (-4 *4 (-830)) (-5 *1 (-1160 *4)))) (-3025 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-627 (-627 (-627 *5)))) (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-627 *5)) (-4 *5 (-830)) (-5 *1 (-1160 *5)))) (-1362 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-111) *6 *6)) (-4 *6 (-830)) (-5 *4 (-627 *6)) (-5 *2 (-2 (|:| |fs| (-111)) (|:| |sd| *4) (|:| |td| (-627 *4)))) (-5 *1 (-1160 *6)) (-5 *5 (-627 *4))))) +(-10 -7 (-15 -1362 ((-2 (|:| |fs| (-111)) (|:| |sd| (-627 |#1|)) (|:| |td| (-627 (-627 |#1|)))) (-1 (-111) |#1| |#1|) (-627 |#1|) (-627 (-627 |#1|)))) (-15 -3025 ((-627 (-627 (-627 |#1|))) (-1 (-111) |#1| |#1|) (-627 |#1|) (-627 (-627 (-627 |#1|))))) (-15 -2695 ((-627 (-627 (-627 |#1|))) (-627 |#1|) (-627 (-627 (-627 |#1|))))) (-15 -2248 ((-627 (-627 |#1|)) (-627 (-627 |#1|)) (-627 (-627 (-627 |#1|))))) (-15 -1946 ((-627 (-627 |#1|)) (-627 (-627 (-627 |#1|))))) (-15 -3506 ((-627 (-627 |#1|)) (-1161 (-627 |#1|)))) (-15 -4012 ((-627 (-627 (-627 |#1|))) (-627 (-627 |#1|)))) (-15 -3833 ((-1161 (-627 |#1|)) (-627 |#1|))) (-15 -2527 ((-627 (-627 |#1|)) (-627 (-627 |#1|)))) (-15 -4227 ((-627 (-627 |#1|)) (-627 |#1|))) (-15 -2952 ((-627 |#1|) (-627 |#1|))) (-15 -1688 ((-2 (|:| |f1| (-627 |#1|)) (|:| |f2| (-627 (-627 (-627 |#1|)))) (|:| |f3| (-627 (-627 |#1|))) (|:| |f4| (-627 (-627 (-627 |#1|))))) (-627 |#1|) (-627 (-627 (-627 |#1|))) (-627 (-627 |#1|)) (-627 (-627 (-627 |#1|))) (-627 (-627 (-627 |#1|))) (-627 (-627 (-627 |#1|))))) (-15 -2762 ((-2 (|:| |f1| (-627 |#1|)) (|:| |f2| (-627 (-627 (-627 |#1|)))) (|:| |f3| (-627 (-627 |#1|))) (|:| |f4| (-627 (-627 (-627 |#1|))))) (-627 (-627 (-627 |#1|)))))) +((-1470 (($ (-627 (-627 |#1|))) 10)) (-3127 (((-627 (-627 |#1|)) $) 11)) (-1477 (((-842) $) 26))) +(((-1161 |#1|) (-10 -8 (-15 -1470 ($ (-627 (-627 |#1|)))) (-15 -3127 ((-627 (-627 |#1|)) $)) (-15 -1477 ((-842) $))) (-1076)) (T -1161)) +((-1477 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1161 *3)) (-4 *3 (-1076)))) (-3127 (*1 *2 *1) (-12 (-5 *2 (-627 (-627 *3))) (-5 *1 (-1161 *3)) (-4 *3 (-1076)))) (-1470 (*1 *1 *2) (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1076)) (-5 *1 (-1161 *3))))) +(-10 -8 (-15 -1470 ($ (-627 (-627 |#1|)))) (-15 -3127 ((-627 (-627 |#1|)) $)) (-15 -1477 ((-842) $))) +((-1465 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-2642 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3305 (((-1240) $ |#1| |#1|) NIL (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#2| $ |#1| |#2|) NIL)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3602 (((-3 |#2| "failed") |#1| $) NIL)) (-3887 (($) NIL T CONST)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2265 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-3 |#2| "failed") |#1| $) NIL)) (-4342 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) NIL)) (-3215 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) NIL)) (-3661 ((|#1| $) NIL (|has| |#1| (-830)))) (-3114 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-627 |#2|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2285 ((|#1| $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4367))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1296 (((-627 |#1|) $) NIL)) (-3619 (((-111) |#1| $) NIL)) (-4165 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3954 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3892 (((-627 |#1|) $) NIL)) (-2358 (((-111) |#1| $) NIL)) (-1498 (((-1096) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-3340 ((|#2| $) NIL (|has| |#1| (-830)))) (-1503 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL)) (-1942 (($ $ |#2|) NIL (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3028 (($) NIL) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) NIL (-12 (|has| $ (-6 -4366)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (((-754) |#2| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076)))) (((-754) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-1477 (((-842) $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842))) (|has| |#2| (-599 (-842)))))) (-2577 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) NIL)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) NIL (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) NIL (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) NIL (-1559 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| |#2| (-1076))))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-1162 |#1| |#2|) (-13 (-1165 |#1| |#2|) (-10 -7 (-6 -4366))) (-1076) (-1076)) (T -1162)) +NIL +(-13 (-1165 |#1| |#2|) (-10 -7 (-6 -4366))) +((-2777 ((|#1| (-627 |#1|)) 32)) (-2844 ((|#1| |#1| (-552)) 18)) (-4293 (((-1148 |#1|) |#1| (-900)) 15))) +(((-1163 |#1|) (-10 -7 (-15 -2777 (|#1| (-627 |#1|))) (-15 -4293 ((-1148 |#1|) |#1| (-900))) (-15 -2844 (|#1| |#1| (-552)))) (-357)) (T -1163)) +((-2844 (*1 *2 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-1163 *2)) (-4 *2 (-357)))) (-4293 (*1 *2 *3 *4) (-12 (-5 *4 (-900)) (-5 *2 (-1148 *3)) (-5 *1 (-1163 *3)) (-4 *3 (-357)))) (-2777 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-5 *1 (-1163 *2)) (-4 *2 (-357))))) +(-10 -7 (-15 -2777 (|#1| (-627 |#1|))) (-15 -4293 ((-1148 |#1|) |#1| (-900))) (-15 -2844 (|#1| |#1| (-552)))) +((-2642 (($) 10) (($ (-627 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)))) 14)) (-2265 (($ (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) $) 61) (($ (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3215 (((-627 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) $) 39) (((-627 |#3|) $) 41)) (-3463 (($ (-1 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-3516 (($ (-1 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-4165 (((-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) $) 54)) (-3954 (($ (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) $) 16)) (-3892 (((-627 |#2|) $) 19)) (-2358 (((-111) |#2| $) 59)) (-1503 (((-3 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) "failed") (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) $) 58)) (-4133 (((-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) $) 63)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) $) NIL) (((-111) (-1 (-111) |#3|) $) 67)) (-2083 (((-627 |#3|) $) 43)) (-1985 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) $) NIL) (((-754) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) $) NIL) (((-754) |#3| $) NIL) (((-754) (-1 (-111) |#3|) $) 68)) (-1477 (((-842) $) 27)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) $) NIL) (((-111) (-1 (-111) |#3|) $) 65)) (-2292 (((-111) $ $) 49))) +(((-1164 |#1| |#2| |#3|) (-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -3516 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2642 (|#1| (-627 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))))) (-15 -2642 (|#1|)) (-15 -3516 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3463 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -3509 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -1509 ((-754) (-1 (-111) |#3|) |#1|)) (-15 -3215 ((-627 |#3|) |#1|)) (-15 -1509 ((-754) |#3| |#1|)) (-15 -1985 (|#3| |#1| |#2| |#3|)) (-15 -1985 (|#3| |#1| |#2|)) (-15 -2083 ((-627 |#3|) |#1|)) (-15 -2358 ((-111) |#2| |#1|)) (-15 -3892 ((-627 |#2|) |#1|)) (-15 -2265 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2265 (|#1| (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -2265 (|#1| (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|)) (-15 -1503 ((-3 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) "failed") (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -4165 ((-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|)) (-15 -3954 (|#1| (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|)) (-15 -4133 ((-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|)) (-15 -1509 ((-754) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|)) (-15 -3215 ((-627 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -1509 ((-754) (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -3509 ((-111) (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -3299 ((-111) (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -3463 (|#1| (-1 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -3516 (|#1| (-1 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|))) (-1165 |#2| |#3|) (-1076) (-1076)) (T -1164)) +NIL +(-10 -8 (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -3516 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2642 (|#1| (-627 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))))) (-15 -2642 (|#1|)) (-15 -3516 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3463 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3299 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -3509 ((-111) (-1 (-111) |#3|) |#1|)) (-15 -1509 ((-754) (-1 (-111) |#3|) |#1|)) (-15 -3215 ((-627 |#3|) |#1|)) (-15 -1509 ((-754) |#3| |#1|)) (-15 -1985 (|#3| |#1| |#2| |#3|)) (-15 -1985 (|#3| |#1| |#2|)) (-15 -2083 ((-627 |#3|) |#1|)) (-15 -2358 ((-111) |#2| |#1|)) (-15 -3892 ((-627 |#2|) |#1|)) (-15 -2265 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2265 (|#1| (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -2265 (|#1| (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|)) (-15 -1503 ((-3 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) "failed") (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -4165 ((-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|)) (-15 -3954 (|#1| (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|)) (-15 -4133 ((-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|)) (-15 -1509 ((-754) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) |#1|)) (-15 -3215 ((-627 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -1509 ((-754) (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -3509 ((-111) (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -3299 ((-111) (-1 (-111) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -3463 (|#1| (-1 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|)) (-15 -3516 (|#1| (-1 (-2 (|:| -3998 |#2|) (|:| -2162 |#3|)) (-2 (|:| -3998 |#2|) (|:| -2162 |#3|))) |#1|))) +((-1465 (((-111) $ $) 19 (-1559 (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-2642 (($) 72) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 71)) (-3305 (((-1240) $ |#1| |#1|) 99 (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) 8)) (-2950 ((|#2| $ |#1| |#2|) 73)) (-4289 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 45 (|has| $ (-6 -4366)))) (-2536 (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 55 (|has| $ (-6 -4366)))) (-3602 (((-3 |#2| "failed") |#1| $) 61)) (-3887 (($) 7 T CONST)) (-3370 (($ $) 58 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366))))) (-2265 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 47 (|has| $ (-6 -4366))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 46 (|has| $ (-6 -4366))) (((-3 |#2| "failed") |#1| $) 62)) (-4342 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 54 (|has| $ (-6 -4366)))) (-2091 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 56 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 53 (|has| $ (-6 -4366))) (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 52 (|has| $ (-6 -4366)))) (-3473 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4367)))) (-3413 ((|#2| $ |#1|) 88)) (-3215 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 30 (|has| $ (-6 -4366))) (((-627 |#2|) $) 79 (|has| $ (-6 -4366)))) (-1602 (((-111) $ (-754)) 9)) (-3661 ((|#1| $) 96 (|has| |#1| (-830)))) (-3114 (((-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 29 (|has| $ (-6 -4366))) (((-627 |#2|) $) 80 (|has| $ (-6 -4366)))) (-3082 (((-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (((-111) |#2| $) 82 (-12 (|has| |#2| (-1076)) (|has| $ (-6 -4366))))) (-2285 ((|#1| $) 95 (|has| |#1| (-830)))) (-3463 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 34 (|has| $ (-6 -4367))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4367)))) (-3516 (($ (-1 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3971 (((-111) $ (-754)) 10)) (-1595 (((-1134) $) 22 (-1559 (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-1296 (((-627 |#1|) $) 63)) (-3619 (((-111) |#1| $) 64)) (-4165 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 39)) (-3954 (($ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 40)) (-3892 (((-627 |#1|) $) 93)) (-2358 (((-111) |#1| $) 92)) (-1498 (((-1096) $) 21 (-1559 (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-3340 ((|#2| $) 97 (|has| |#1| (-830)))) (-1503 (((-3 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) "failed") (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 51)) (-1942 (($ $ |#2|) 98 (|has| $ (-6 -4367)))) (-4133 (((-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 41)) (-3509 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 32 (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) 77 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))))) 26 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-288 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 25 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) 24 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 23 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)))) (($ $ (-627 |#2|) (-627 |#2|)) 86 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-288 |#2|)) 84 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076)))) (($ $ (-627 (-288 |#2|))) 83 (-12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#2| $) 94 (-12 (|has| $ (-6 -4366)) (|has| |#2| (-1076))))) (-2083 (((-627 |#2|) $) 91)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3028 (($) 49) (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 48)) (-1509 (((-754) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 31 (|has| $ (-6 -4366))) (((-754) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| $ (-6 -4366)))) (((-754) |#2| $) 81 (-12 (|has| |#2| (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) |#2|) $) 78 (|has| $ (-6 -4366)))) (-2973 (($ $) 13)) (-3562 (((-528) $) 59 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))))) (-1490 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 50)) (-1477 (((-842) $) 18 (-1559 (|has| |#2| (-599 (-842))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842)))))) (-2577 (($ (-627 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) 42)) (-3299 (((-111) (-1 (-111) (-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) $) 33 (|has| $ (-6 -4366))) (((-111) (-1 (-111) |#2|) $) 76 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (-1559 (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-1165 |#1| |#2|) (-137) (-1076) (-1076)) (T -1165)) +((-2950 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076)))) (-2642 (*1 *1) (-12 (-4 *1 (-1165 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076)))) (-2642 (*1 *1 *2) (-12 (-5 *2 (-627 (-2 (|:| -3998 *3) (|:| -2162 *4)))) (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *1 (-1165 *3 *4)))) (-3516 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1165 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076))))) +(-13 (-596 |t#1| |t#2|) (-590 |t#1| |t#2|) (-10 -8 (-15 -2950 (|t#2| $ |t#1| |t#2|)) (-15 -2642 ($)) (-15 -2642 ($ (-627 (-2 (|:| -3998 |t#1|) (|:| -2162 |t#2|))))) (-15 -3516 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-106 #0=(-2 (|:| -3998 |#1|) (|:| -2162 |#2|))) . T) ((-101) -1559 (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))) ((-599 (-842)) -1559 (|has| |#2| (-1076)) (|has| |#2| (-599 (-842))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-599 (-842)))) ((-148 #0#) . T) ((-600 (-528)) |has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-600 (-528))) ((-224 #0#) . T) ((-230 #0#) . T) ((-280 |#1| |#2|) . T) ((-282 |#1| |#2|) . T) ((-303 #0#) -12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))) ((-303 |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((-482 #0#) . T) ((-482 |#2|) . T) ((-590 |#1| |#2|) . T) ((-506 #0# #0#) -12 (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-303 (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)))) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))) ((-506 |#2| |#2|) -12 (|has| |#2| (-303 |#2|)) (|has| |#2| (-1076))) ((-596 |#1| |#2|) . T) ((-1076) -1559 (|has| |#2| (-1076)) (|has| (-2 (|:| -3998 |#1|) (|:| -2162 |#2|)) (-1076))) ((-1189) . T)) +((-2187 (((-111)) 24)) (-2564 (((-1240) (-1134)) 26)) (-3062 (((-111)) 36)) (-4261 (((-1240)) 34)) (-4040 (((-1240) (-1134) (-1134)) 25)) (-2681 (((-111)) 37)) (-3954 (((-1240) |#1| |#2|) 44)) (-1374 (((-1240)) 20)) (-4307 (((-3 |#2| "failed") |#1|) 42)) (-2854 (((-1240)) 35))) +(((-1166 |#1| |#2|) (-10 -7 (-15 -1374 ((-1240))) (-15 -4040 ((-1240) (-1134) (-1134))) (-15 -2564 ((-1240) (-1134))) (-15 -4261 ((-1240))) (-15 -2854 ((-1240))) (-15 -2187 ((-111))) (-15 -3062 ((-111))) (-15 -2681 ((-111))) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -3954 ((-1240) |#1| |#2|))) (-1076) (-1076)) (T -1166)) +((-3954 (*1 *2 *3 *4) (-12 (-5 *2 (-1240)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)))) (-4307 (*1 *2 *3) (|partial| -12 (-4 *2 (-1076)) (-5 *1 (-1166 *3 *2)) (-4 *3 (-1076)))) (-2681 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)))) (-3062 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)))) (-2187 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)))) (-2854 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)))) (-4261 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)))) (-2564 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1166 *4 *5)) (-4 *4 (-1076)) (-4 *5 (-1076)))) (-4040 (*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1166 *4 *5)) (-4 *4 (-1076)) (-4 *5 (-1076)))) (-1374 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076))))) +(-10 -7 (-15 -1374 ((-1240))) (-15 -4040 ((-1240) (-1134) (-1134))) (-15 -2564 ((-1240) (-1134))) (-15 -4261 ((-1240))) (-15 -2854 ((-1240))) (-15 -2187 ((-111))) (-15 -3062 ((-111))) (-15 -2681 ((-111))) (-15 -4307 ((-3 |#2| "failed") |#1|)) (-15 -3954 ((-1240) |#1| |#2|))) +((-2072 (((-1134) (-1134)) 18)) (-2334 (((-52) (-1134)) 21))) +(((-1167) (-10 -7 (-15 -2334 ((-52) (-1134))) (-15 -2072 ((-1134) (-1134))))) (T -1167)) +((-2072 (*1 *2 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1167)))) (-2334 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-52)) (-5 *1 (-1167))))) +(-10 -7 (-15 -2334 ((-52) (-1134))) (-15 -2072 ((-1134) (-1134)))) +((-1477 (((-1169) |#1|) 11))) +(((-1168 |#1|) (-10 -7 (-15 -1477 ((-1169) |#1|))) (-1076)) (T -1168)) +((-1477 (*1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *1 (-1168 *3)) (-4 *3 (-1076))))) +(-10 -7 (-15 -1477 ((-1169) |#1|))) +((-1465 (((-111) $ $) NIL)) (-2643 (((-627 (-1134)) $) 34)) (-3926 (((-627 (-1134)) $ (-627 (-1134))) 37)) (-1312 (((-627 (-1134)) $ (-627 (-1134))) 36)) (-2417 (((-627 (-1134)) $ (-627 (-1134))) 38)) (-3249 (((-627 (-1134)) $) 33)) (-2655 (($) 22)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1711 (((-627 (-1134)) $) 35)) (-4291 (((-1240) $ (-552)) 29) (((-1240) $) 30)) (-3562 (($ (-842) (-552)) 26) (($ (-842) (-552) (-842)) NIL)) (-1477 (((-842) $) 40) (($ (-842)) 24)) (-2292 (((-111) $ $) NIL))) +(((-1169) (-13 (-1076) (-10 -8 (-15 -1477 ($ (-842))) (-15 -3562 ($ (-842) (-552))) (-15 -3562 ($ (-842) (-552) (-842))) (-15 -4291 ((-1240) $ (-552))) (-15 -4291 ((-1240) $)) (-15 -1711 ((-627 (-1134)) $)) (-15 -2643 ((-627 (-1134)) $)) (-15 -2655 ($)) (-15 -3249 ((-627 (-1134)) $)) (-15 -2417 ((-627 (-1134)) $ (-627 (-1134)))) (-15 -3926 ((-627 (-1134)) $ (-627 (-1134)))) (-15 -1312 ((-627 (-1134)) $ (-627 (-1134))))))) (T -1169)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-842)) (-5 *1 (-1169)))) (-3562 (*1 *1 *2 *3) (-12 (-5 *2 (-842)) (-5 *3 (-552)) (-5 *1 (-1169)))) (-3562 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-842)) (-5 *3 (-552)) (-5 *1 (-1169)))) (-4291 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-1169)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1169)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169)))) (-2643 (*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169)))) (-2655 (*1 *1) (-5 *1 (-1169))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169)))) (-2417 (*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169)))) (-3926 (*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169)))) (-1312 (*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169))))) +(-13 (-1076) (-10 -8 (-15 -1477 ($ (-842))) (-15 -3562 ($ (-842) (-552))) (-15 -3562 ($ (-842) (-552) (-842))) (-15 -4291 ((-1240) $ (-552))) (-15 -4291 ((-1240) $)) (-15 -1711 ((-627 (-1134)) $)) (-15 -2643 ((-627 (-1134)) $)) (-15 -2655 ($)) (-15 -3249 ((-627 (-1134)) $)) (-15 -2417 ((-627 (-1134)) $ (-627 (-1134)))) (-15 -3926 ((-627 (-1134)) $ (-627 (-1134)))) (-15 -1312 ((-627 (-1134)) $ (-627 (-1134)))))) +((-1465 (((-111) $ $) NIL)) (-4008 (((-1134) $ (-1134)) 17) (((-1134) $) 16)) (-2035 (((-1134) $ (-1134)) 15)) (-1496 (($ $ (-1134)) NIL)) (-3498 (((-3 (-1134) "failed") $) 11)) (-1332 (((-1134) $) 8)) (-1783 (((-3 (-1134) "failed") $) 12)) (-3689 (((-1134) $) 9)) (-2849 (($ (-382)) NIL) (($ (-382) (-1134)) NIL)) (-3112 (((-382) $) NIL)) (-1595 (((-1134) $) NIL)) (-2548 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-4231 (((-111) $) 18)) (-1477 (((-842) $) NIL)) (-2219 (($ $) NIL)) (-2292 (((-111) $ $) NIL))) +(((-1170) (-13 (-358 (-382) (-1134)) (-10 -8 (-15 -4008 ((-1134) $ (-1134))) (-15 -4008 ((-1134) $)) (-15 -1332 ((-1134) $)) (-15 -3498 ((-3 (-1134) "failed") $)) (-15 -1783 ((-3 (-1134) "failed") $)) (-15 -4231 ((-111) $))))) (T -1170)) +((-4008 (*1 *2 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1170)))) (-4008 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1170)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1170)))) (-3498 (*1 *2 *1) (|partial| -12 (-5 *2 (-1134)) (-5 *1 (-1170)))) (-1783 (*1 *2 *1) (|partial| -12 (-5 *2 (-1134)) (-5 *1 (-1170)))) (-4231 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1170))))) +(-13 (-358 (-382) (-1134)) (-10 -8 (-15 -4008 ((-1134) $ (-1134))) (-15 -4008 ((-1134) $)) (-15 -1332 ((-1134) $)) (-15 -3498 ((-3 (-1134) "failed") $)) (-15 -1783 ((-3 (-1134) "failed") $)) (-15 -4231 ((-111) $)))) +((-2422 (((-3 (-552) "failed") |#1|) 19)) (-2051 (((-3 (-552) "failed") |#1|) 14)) (-3607 (((-552) (-1134)) 28))) +(((-1171 |#1|) (-10 -7 (-15 -2422 ((-3 (-552) "failed") |#1|)) (-15 -2051 ((-3 (-552) "failed") |#1|)) (-15 -3607 ((-552) (-1134)))) (-1028)) (T -1171)) +((-3607 (*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-552)) (-5 *1 (-1171 *4)) (-4 *4 (-1028)))) (-2051 (*1 *2 *3) (|partial| -12 (-5 *2 (-552)) (-5 *1 (-1171 *3)) (-4 *3 (-1028)))) (-2422 (*1 *2 *3) (|partial| -12 (-5 *2 (-552)) (-5 *1 (-1171 *3)) (-4 *3 (-1028))))) +(-10 -7 (-15 -2422 ((-3 (-552) "failed") |#1|)) (-15 -2051 ((-3 (-552) "failed") |#1|)) (-15 -3607 ((-552) (-1134)))) +((-3986 (((-1109 (-220))) 9))) +(((-1172) (-10 -7 (-15 -3986 ((-1109 (-220)))))) (T -1172)) +((-3986 (*1 *2) (-12 (-5 *2 (-1109 (-220))) (-5 *1 (-1172))))) +(-10 -7 (-15 -3986 ((-1109 (-220))))) +((-2951 (($) 11)) (-1673 (($ $) 35)) (-1652 (($ $) 33)) (-1513 (($ $) 25)) (-1697 (($ $) 17)) (-3519 (($ $) 15)) (-1686 (($ $) 19)) (-1547 (($ $) 30)) (-1661 (($ $) 34)) (-1524 (($ $) 29))) +(((-1173 |#1|) (-10 -8 (-15 -2951 (|#1|)) (-15 -1673 (|#1| |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -1686 (|#1| |#1|)) (-15 -1661 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -1524 (|#1| |#1|))) (-1174)) (T -1173)) +NIL +(-10 -8 (-15 -2951 (|#1|)) (-15 -1673 (|#1| |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -1686 (|#1| |#1|)) (-15 -1661 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -1524 (|#1| |#1|))) +((-1607 (($ $) 26)) (-1467 (($ $) 11)) (-1584 (($ $) 27)) (-1445 (($ $) 10)) (-1628 (($ $) 28)) (-1492 (($ $) 9)) (-2951 (($) 16)) (-4135 (($ $) 19)) (-3154 (($ $) 18)) (-1640 (($ $) 29)) (-1502 (($ $) 8)) (-1615 (($ $) 30)) (-1479 (($ $) 7)) (-1596 (($ $) 31)) (-1456 (($ $) 6)) (-1673 (($ $) 20)) (-1534 (($ $) 32)) (-1652 (($ $) 21)) (-1513 (($ $) 33)) (-1697 (($ $) 22)) (-1561 (($ $) 34)) (-3519 (($ $) 23)) (-1575 (($ $) 35)) (-1686 (($ $) 24)) (-1547 (($ $) 36)) (-1661 (($ $) 25)) (-1524 (($ $) 37)) (** (($ $ $) 17))) +(((-1174) (-137)) (T -1174)) +((-2951 (*1 *1) (-4 *1 (-1174)))) +(-13 (-1177) (-94) (-485) (-35) (-278) (-10 -8 (-15 -2951 ($)))) +(((-35) . T) ((-94) . T) ((-278) . T) ((-485) . T) ((-1177) . T)) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4288 ((|#1| $) 17)) (-2030 (($ |#1| (-627 $)) 23) (($ (-627 |#1|)) 27) (($ |#1|) 25)) (-4031 (((-111) $ (-754)) 48)) (-2472 ((|#1| $ |#1|) 14 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 13 (|has| $ (-6 -4367)))) (-3887 (($) NIL T CONST)) (-3215 (((-627 |#1|) $) 52 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) 43)) (-3726 (((-111) $ $) 33 (|has| |#1| (-1076)))) (-1602 (((-111) $ (-754)) 41)) (-3114 (((-627 |#1|) $) 53 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 51 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-3463 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 22)) (-3971 (((-111) $ (-754)) 40)) (-1823 (((-627 |#1|) $) 37)) (-3810 (((-111) $) 36)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3509 (((-111) (-1 (-111) |#1|) $) 50 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 74)) (-1275 (((-111) $) 9)) (-2373 (($) 10)) (-1985 ((|#1| $ "value") NIL)) (-1848 (((-552) $ $) 32)) (-2501 (((-627 $) $) 59)) (-3311 (((-111) $ $) 77)) (-1784 (((-627 $) $) 72)) (-1449 (($ $) 73)) (-2978 (((-111) $) 56)) (-1509 (((-754) (-1 (-111) |#1|) $) 20 (|has| $ (-6 -4366))) (((-754) |#1| $) 16 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2973 (($ $) 58)) (-1477 (((-842) $) 61 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) 12)) (-3415 (((-111) $ $) 29 (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) 49 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 28 (|has| |#1| (-1076)))) (-1383 (((-754) $) 39 (|has| $ (-6 -4366))))) +(((-1175 |#1|) (-13 (-989 |#1|) (-10 -8 (-6 -4366) (-6 -4367) (-15 -2030 ($ |#1| (-627 $))) (-15 -2030 ($ (-627 |#1|))) (-15 -2030 ($ |#1|)) (-15 -2978 ((-111) $)) (-15 -1449 ($ $)) (-15 -1784 ((-627 $) $)) (-15 -3311 ((-111) $ $)) (-15 -2501 ((-627 $) $)))) (-1076)) (T -1175)) +((-2978 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1175 *3)) (-4 *3 (-1076)))) (-2030 (*1 *1 *2 *3) (-12 (-5 *3 (-627 (-1175 *2))) (-5 *1 (-1175 *2)) (-4 *2 (-1076)))) (-2030 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-1175 *3)))) (-2030 (*1 *1 *2) (-12 (-5 *1 (-1175 *2)) (-4 *2 (-1076)))) (-1449 (*1 *1 *1) (-12 (-5 *1 (-1175 *2)) (-4 *2 (-1076)))) (-1784 (*1 *2 *1) (-12 (-5 *2 (-627 (-1175 *3))) (-5 *1 (-1175 *3)) (-4 *3 (-1076)))) (-3311 (*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1175 *3)) (-4 *3 (-1076)))) (-2501 (*1 *2 *1) (-12 (-5 *2 (-627 (-1175 *3))) (-5 *1 (-1175 *3)) (-4 *3 (-1076))))) +(-13 (-989 |#1|) (-10 -8 (-6 -4366) (-6 -4367) (-15 -2030 ($ |#1| (-627 $))) (-15 -2030 ($ (-627 |#1|))) (-15 -2030 ($ |#1|)) (-15 -2978 ((-111) $)) (-15 -1449 ($ $)) (-15 -1784 ((-627 $) $)) (-15 -3311 ((-111) $ $)) (-15 -2501 ((-627 $) $)))) +((-1467 (($ $) 15)) (-1492 (($ $) 12)) (-1502 (($ $) 10)) (-1479 (($ $) 17))) +(((-1176 |#1|) (-10 -8 (-15 -1479 (|#1| |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -1467 (|#1| |#1|))) (-1177)) (T -1176)) +NIL +(-10 -8 (-15 -1479 (|#1| |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -1467 (|#1| |#1|))) +((-1467 (($ $) 11)) (-1445 (($ $) 10)) (-1492 (($ $) 9)) (-1502 (($ $) 8)) (-1479 (($ $) 7)) (-1456 (($ $) 6))) +(((-1177) (-137)) (T -1177)) +((-1467 (*1 *1 *1) (-4 *1 (-1177))) (-1445 (*1 *1 *1) (-4 *1 (-1177))) (-1492 (*1 *1 *1) (-4 *1 (-1177))) (-1502 (*1 *1 *1) (-4 *1 (-1177))) (-1479 (*1 *1 *1) (-4 *1 (-1177))) (-1456 (*1 *1 *1) (-4 *1 (-1177)))) +(-13 (-10 -8 (-15 -1456 ($ $)) (-15 -1479 ($ $)) (-15 -1502 ($ $)) (-15 -1492 ($ $)) (-15 -1445 ($ $)) (-15 -1467 ($ $)))) +((-2085 ((|#2| |#2|) 88)) (-3802 (((-111) |#2|) 26)) (-1749 ((|#2| |#2|) 30)) (-1759 ((|#2| |#2|) 32)) (-3472 ((|#2| |#2| (-1152)) 83) ((|#2| |#2|) 84)) (-2433 (((-166 |#2|) |#2|) 28)) (-3339 ((|#2| |#2| (-1152)) 85) ((|#2| |#2|) 86))) +(((-1178 |#1| |#2|) (-10 -7 (-15 -3472 (|#2| |#2|)) (-15 -3472 (|#2| |#2| (-1152))) (-15 -3339 (|#2| |#2|)) (-15 -3339 (|#2| |#2| (-1152))) (-15 -2085 (|#2| |#2|)) (-15 -1749 (|#2| |#2|)) (-15 -1759 (|#2| |#2|)) (-15 -3802 ((-111) |#2|)) (-15 -2433 ((-166 |#2|) |#2|))) (-13 (-445) (-830) (-1017 (-552)) (-623 (-552))) (-13 (-27) (-1174) (-424 |#1|))) (T -1178)) +((-2433 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-166 *3)) (-5 *1 (-1178 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *4))))) (-3802 (*1 *2 *3) (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 (-111)) (-5 *1 (-1178 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *4))))) (-1759 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-1178 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3))))) (-1749 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-1178 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3))))) (-2085 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-1178 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3))))) (-3339 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-1178 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4))))) (-3339 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-1178 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3))))) (-3472 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-1178 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4))))) (-3472 (*1 *2 *2) (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *1 (-1178 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3)))))) +(-10 -7 (-15 -3472 (|#2| |#2|)) (-15 -3472 (|#2| |#2| (-1152))) (-15 -3339 (|#2| |#2|)) (-15 -3339 (|#2| |#2| (-1152))) (-15 -2085 (|#2| |#2|)) (-15 -1749 (|#2| |#2|)) (-15 -1759 (|#2| |#2|)) (-15 -3802 ((-111) |#2|)) (-15 -2433 ((-166 |#2|) |#2|))) +((-4128 ((|#4| |#4| |#1|) 27)) (-3913 ((|#4| |#4| |#1|) 28))) +(((-1179 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4128 (|#4| |#4| |#1|)) (-15 -3913 (|#4| |#4| |#1|))) (-544) (-367 |#1|) (-367 |#1|) (-669 |#1| |#2| |#3|)) (T -1179)) +((-3913 (*1 *2 *2 *3) (-12 (-4 *3 (-544)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1179 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) (-4128 (*1 *2 *2 *3) (-12 (-4 *3 (-544)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1179 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) +(-10 -7 (-15 -4128 (|#4| |#4| |#1|)) (-15 -3913 (|#4| |#4| |#1|))) +((-3125 ((|#2| |#2|) 133)) (-3906 ((|#2| |#2|) 130)) (-1346 ((|#2| |#2|) 121)) (-1692 ((|#2| |#2|) 118)) (-2731 ((|#2| |#2|) 126)) (-1401 ((|#2| |#2|) 114)) (-3344 ((|#2| |#2|) 43)) (-3638 ((|#2| |#2|) 94)) (-2380 ((|#2| |#2|) 74)) (-2205 ((|#2| |#2|) 128)) (-4338 ((|#2| |#2|) 116)) (-1363 ((|#2| |#2|) 138)) (-2512 ((|#2| |#2|) 136)) (-1736 ((|#2| |#2|) 137)) (-1704 ((|#2| |#2|) 135)) (-2106 ((|#2| |#2|) 148)) (-3942 ((|#2| |#2|) 30 (-12 (|has| |#2| (-600 (-871 |#1|))) (|has| |#2| (-865 |#1|)) (|has| |#1| (-600 (-871 |#1|))) (|has| |#1| (-865 |#1|))))) (-1858 ((|#2| |#2|) 75)) (-2363 ((|#2| |#2|) 139)) (-2496 ((|#2| |#2|) 140)) (-2829 ((|#2| |#2|) 127)) (-3956 ((|#2| |#2|) 115)) (-2418 ((|#2| |#2|) 134)) (-2565 ((|#2| |#2|) 132)) (-1619 ((|#2| |#2|) 122)) (-2716 ((|#2| |#2|) 120)) (-1593 ((|#2| |#2|) 124)) (-2140 ((|#2| |#2|) 112))) +(((-1180 |#1| |#2|) (-10 -7 (-15 -2496 (|#2| |#2|)) (-15 -2380 (|#2| |#2|)) (-15 -2106 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3344 (|#2| |#2|)) (-15 -1858 (|#2| |#2|)) (-15 -2363 (|#2| |#2|)) (-15 -2140 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -1619 (|#2| |#2|)) (-15 -2418 (|#2| |#2|)) (-15 -3956 (|#2| |#2|)) (-15 -2829 (|#2| |#2|)) (-15 -4338 (|#2| |#2|)) (-15 -2205 (|#2| |#2|)) (-15 -1401 (|#2| |#2|)) (-15 -2731 (|#2| |#2|)) (-15 -1346 (|#2| |#2|)) (-15 -3125 (|#2| |#2|)) (-15 -1692 (|#2| |#2|)) (-15 -3906 (|#2| |#2|)) (-15 -2716 (|#2| |#2|)) (-15 -2565 (|#2| |#2|)) (-15 -1704 (|#2| |#2|)) (-15 -2512 (|#2| |#2|)) (-15 -1736 (|#2| |#2|)) (-15 -1363 (|#2| |#2|)) (IF (|has| |#1| (-865 |#1|)) (IF (|has| |#1| (-600 (-871 |#1|))) (IF (|has| |#2| (-600 (-871 |#1|))) (IF (|has| |#2| (-865 |#1|)) (-15 -3942 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-830) (-445)) (-13 (-424 |#1|) (-1174))) (T -1180)) +((-3942 (*1 *2 *2) (-12 (-4 *3 (-600 (-871 *3))) (-4 *3 (-865 *3)) (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-600 (-871 *3))) (-4 *2 (-865 *3)) (-4 *2 (-13 (-424 *3) (-1174))))) (-1363 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-1736 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2512 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-1704 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2565 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2716 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-3906 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-1692 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-3125 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-1346 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2731 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-1401 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2205 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-4338 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2829 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-3956 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2418 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-1619 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2140 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2363 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-1858 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-3344 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2106 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2380 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174))))) (-2496 (*1 *2 *2) (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) (-4 *2 (-13 (-424 *3) (-1174)))))) +(-10 -7 (-15 -2496 (|#2| |#2|)) (-15 -2380 (|#2| |#2|)) (-15 -2106 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3344 (|#2| |#2|)) (-15 -1858 (|#2| |#2|)) (-15 -2363 (|#2| |#2|)) (-15 -2140 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -1619 (|#2| |#2|)) (-15 -2418 (|#2| |#2|)) (-15 -3956 (|#2| |#2|)) (-15 -2829 (|#2| |#2|)) (-15 -4338 (|#2| |#2|)) (-15 -2205 (|#2| |#2|)) (-15 -1401 (|#2| |#2|)) (-15 -2731 (|#2| |#2|)) (-15 -1346 (|#2| |#2|)) (-15 -3125 (|#2| |#2|)) (-15 -1692 (|#2| |#2|)) (-15 -3906 (|#2| |#2|)) (-15 -2716 (|#2| |#2|)) (-15 -2565 (|#2| |#2|)) (-15 -1704 (|#2| |#2|)) (-15 -2512 (|#2| |#2|)) (-15 -1736 (|#2| |#2|)) (-15 -1363 (|#2| |#2|)) (IF (|has| |#1| (-865 |#1|)) (IF (|has| |#1| (-600 (-871 |#1|))) (IF (|has| |#2| (-600 (-871 |#1|))) (IF (|has| |#2| (-865 |#1|)) (-15 -3942 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-3691 (((-111) |#5| $) 60) (((-111) $) 102)) (-1553 ((|#5| |#5| $) 75)) (-2536 (($ (-1 (-111) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-3238 (((-627 |#5|) (-627 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|)) 73)) (-4039 (((-3 $ "failed") (-627 |#5|)) 126)) (-3351 (((-3 $ "failed") $) 112)) (-4167 ((|#5| |#5| $) 94)) (-4104 (((-111) |#5| $ (-1 (-111) |#5| |#5|)) 31)) (-2934 ((|#5| |#5| $) 98)) (-2091 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|)) 69)) (-2415 (((-2 (|:| -4267 (-627 |#5|)) (|:| -2849 (-627 |#5|))) $) 55)) (-3850 (((-111) |#5| $) 58) (((-111) $) 103)) (-4147 ((|#4| $) 108)) (-1294 (((-3 |#5| "failed") $) 110)) (-4122 (((-627 |#5|) $) 49)) (-2481 (((-111) |#5| $) 67) (((-111) $) 107)) (-3921 ((|#5| |#5| $) 81)) (-2654 (((-111) $ $) 27)) (-2163 (((-111) |#5| $) 63) (((-111) $) 105)) (-4116 ((|#5| |#5| $) 78)) (-3340 (((-3 |#5| "failed") $) 109)) (-4168 (($ $ |#5|) 127)) (-3567 (((-754) $) 52)) (-1490 (($ (-627 |#5|)) 124)) (-4237 (($ $ |#4|) 122)) (-2286 (($ $ |#4|) 121)) (-2462 (($ $) 120)) (-1477 (((-842) $) NIL) (((-627 |#5|) $) 113)) (-1641 (((-754) $) 130)) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#5|))) "failed") (-627 |#5|) (-1 (-111) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#5|))) "failed") (-627 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|)) 45)) (-2925 (((-111) $ (-1 (-111) |#5| (-627 |#5|))) 100)) (-2199 (((-627 |#4|) $) 115)) (-3528 (((-111) |#4| $) 118)) (-2292 (((-111) $ $) 19))) +(((-1181 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1641 ((-754) |#1|)) (-15 -4168 (|#1| |#1| |#5|)) (-15 -2536 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3528 ((-111) |#4| |#1|)) (-15 -2199 ((-627 |#4|) |#1|)) (-15 -3351 ((-3 |#1| "failed") |#1|)) (-15 -1294 ((-3 |#5| "failed") |#1|)) (-15 -3340 ((-3 |#5| "failed") |#1|)) (-15 -2934 (|#5| |#5| |#1|)) (-15 -2462 (|#1| |#1|)) (-15 -4167 (|#5| |#5| |#1|)) (-15 -3921 (|#5| |#5| |#1|)) (-15 -4116 (|#5| |#5| |#1|)) (-15 -1553 (|#5| |#5| |#1|)) (-15 -3238 ((-627 |#5|) (-627 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -2091 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -2481 ((-111) |#1|)) (-15 -2163 ((-111) |#1|)) (-15 -3691 ((-111) |#1|)) (-15 -2925 ((-111) |#1| (-1 (-111) |#5| (-627 |#5|)))) (-15 -2481 ((-111) |#5| |#1|)) (-15 -2163 ((-111) |#5| |#1|)) (-15 -3691 ((-111) |#5| |#1|)) (-15 -4104 ((-111) |#5| |#1| (-1 (-111) |#5| |#5|))) (-15 -3850 ((-111) |#1|)) (-15 -3850 ((-111) |#5| |#1|)) (-15 -2415 ((-2 (|:| -4267 (-627 |#5|)) (|:| -2849 (-627 |#5|))) |#1|)) (-15 -3567 ((-754) |#1|)) (-15 -4122 ((-627 |#5|) |#1|)) (-15 -3981 ((-3 (-2 (|:| |bas| |#1|) (|:| -2240 (-627 |#5|))) "failed") (-627 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|))) (-15 -3981 ((-3 (-2 (|:| |bas| |#1|) (|:| -2240 (-627 |#5|))) "failed") (-627 |#5|) (-1 (-111) |#5| |#5|))) (-15 -2654 ((-111) |#1| |#1|)) (-15 -4237 (|#1| |#1| |#4|)) (-15 -2286 (|#1| |#1| |#4|)) (-15 -4147 (|#4| |#1|)) (-15 -4039 ((-3 |#1| "failed") (-627 |#5|))) (-15 -1477 ((-627 |#5|) |#1|)) (-15 -1490 (|#1| (-627 |#5|))) (-15 -2091 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2091 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2536 (|#1| (-1 (-111) |#5|) |#1|)) (-15 -2091 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) (-1182 |#2| |#3| |#4| |#5|) (-544) (-776) (-830) (-1042 |#2| |#3| |#4|)) (T -1181)) +NIL +(-10 -8 (-15 -1641 ((-754) |#1|)) (-15 -4168 (|#1| |#1| |#5|)) (-15 -2536 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3528 ((-111) |#4| |#1|)) (-15 -2199 ((-627 |#4|) |#1|)) (-15 -3351 ((-3 |#1| "failed") |#1|)) (-15 -1294 ((-3 |#5| "failed") |#1|)) (-15 -3340 ((-3 |#5| "failed") |#1|)) (-15 -2934 (|#5| |#5| |#1|)) (-15 -2462 (|#1| |#1|)) (-15 -4167 (|#5| |#5| |#1|)) (-15 -3921 (|#5| |#5| |#1|)) (-15 -4116 (|#5| |#5| |#1|)) (-15 -1553 (|#5| |#5| |#1|)) (-15 -3238 ((-627 |#5|) (-627 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -2091 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-111) |#5| |#5|))) (-15 -2481 ((-111) |#1|)) (-15 -2163 ((-111) |#1|)) (-15 -3691 ((-111) |#1|)) (-15 -2925 ((-111) |#1| (-1 (-111) |#5| (-627 |#5|)))) (-15 -2481 ((-111) |#5| |#1|)) (-15 -2163 ((-111) |#5| |#1|)) (-15 -3691 ((-111) |#5| |#1|)) (-15 -4104 ((-111) |#5| |#1| (-1 (-111) |#5| |#5|))) (-15 -3850 ((-111) |#1|)) (-15 -3850 ((-111) |#5| |#1|)) (-15 -2415 ((-2 (|:| -4267 (-627 |#5|)) (|:| -2849 (-627 |#5|))) |#1|)) (-15 -3567 ((-754) |#1|)) (-15 -4122 ((-627 |#5|) |#1|)) (-15 -3981 ((-3 (-2 (|:| |bas| |#1|) (|:| -2240 (-627 |#5|))) "failed") (-627 |#5|) (-1 (-111) |#5|) (-1 (-111) |#5| |#5|))) (-15 -3981 ((-3 (-2 (|:| |bas| |#1|) (|:| -2240 (-627 |#5|))) "failed") (-627 |#5|) (-1 (-111) |#5| |#5|))) (-15 -2654 ((-111) |#1| |#1|)) (-15 -4237 (|#1| |#1| |#4|)) (-15 -2286 (|#1| |#1| |#4|)) (-15 -4147 (|#4| |#1|)) (-15 -4039 ((-3 |#1| "failed") (-627 |#5|))) (-15 -1477 ((-627 |#5|) |#1|)) (-15 -1490 (|#1| (-627 |#5|))) (-15 -2091 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2091 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2536 (|#1| (-1 (-111) |#5|) |#1|)) (-15 -2091 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1477 ((-842) |#1|)) (-15 -2292 ((-111) |#1| |#1|))) +((-1465 (((-111) $ $) 7)) (-1764 (((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 |#4|)))) (-627 |#4|)) 85)) (-1361 (((-627 $) (-627 |#4|)) 86)) (-1853 (((-627 |#3|) $) 33)) (-2730 (((-111) $) 26)) (-3648 (((-111) $) 17 (|has| |#1| (-544)))) (-3691 (((-111) |#4| $) 101) (((-111) $) 97)) (-1553 ((|#4| |#4| $) 92)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) 27)) (-4031 (((-111) $ (-754)) 44)) (-2536 (($ (-1 (-111) |#4|) $) 65 (|has| $ (-6 -4366))) (((-3 |#4| "failed") $ |#3|) 79)) (-3887 (($) 45 T CONST)) (-3569 (((-111) $) 22 (|has| |#1| (-544)))) (-2330 (((-111) $ $) 24 (|has| |#1| (-544)))) (-2165 (((-111) $ $) 23 (|has| |#1| (-544)))) (-3188 (((-111) $) 25 (|has| |#1| (-544)))) (-3238 (((-627 |#4|) (-627 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 93)) (-4097 (((-627 |#4|) (-627 |#4|) $) 18 (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) 19 (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) 36)) (-1703 (($ (-627 |#4|)) 35)) (-3351 (((-3 $ "failed") $) 82)) (-4167 ((|#4| |#4| $) 89)) (-3370 (($ $) 68 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#4| $) 67 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#4|) $) 64 (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-544)))) (-4104 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) 102)) (-2934 ((|#4| |#4| $) 87)) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4366))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 94)) (-2415 (((-2 (|:| -4267 (-627 |#4|)) (|:| -2849 (-627 |#4|))) $) 105)) (-3215 (((-627 |#4|) $) 52 (|has| $ (-6 -4366)))) (-3850 (((-111) |#4| $) 104) (((-111) $) 103)) (-4147 ((|#3| $) 34)) (-1602 (((-111) $ (-754)) 43)) (-3114 (((-627 |#4|) $) 53 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) 55 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) 47)) (-4198 (((-627 |#3|) $) 32)) (-1927 (((-111) |#3| $) 31)) (-3971 (((-111) $ (-754)) 42)) (-1595 (((-1134) $) 9)) (-1294 (((-3 |#4| "failed") $) 83)) (-4122 (((-627 |#4|) $) 107)) (-2481 (((-111) |#4| $) 99) (((-111) $) 95)) (-3921 ((|#4| |#4| $) 90)) (-2654 (((-111) $ $) 110)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-544)))) (-2163 (((-111) |#4| $) 100) (((-111) $) 96)) (-4116 ((|#4| |#4| $) 91)) (-1498 (((-1096) $) 10)) (-3340 (((-3 |#4| "failed") $) 84)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) 61)) (-3672 (((-3 $ "failed") $ |#4|) 78)) (-4168 (($ $ |#4|) 77)) (-3509 (((-111) (-1 (-111) |#4|) $) 50 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) 59 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) 56 (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) 38)) (-1275 (((-111) $) 41)) (-2373 (($) 40)) (-3567 (((-754) $) 106)) (-1509 (((-754) |#4| $) 54 (-12 (|has| |#4| (-1076)) (|has| $ (-6 -4366)))) (((-754) (-1 (-111) |#4|) $) 51 (|has| $ (-6 -4366)))) (-2973 (($ $) 39)) (-3562 (((-528) $) 69 (|has| |#4| (-600 (-528))))) (-1490 (($ (-627 |#4|)) 60)) (-4237 (($ $ |#3|) 28)) (-2286 (($ $ |#3|) 30)) (-2462 (($ $) 88)) (-3911 (($ $ |#3|) 29)) (-1477 (((-842) $) 11) (((-627 |#4|) $) 37)) (-1641 (((-754) $) 76 (|has| |#3| (-362)))) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) 108)) (-2925 (((-111) $ (-1 (-111) |#4| (-627 |#4|))) 98)) (-3299 (((-111) (-1 (-111) |#4|) $) 49 (|has| $ (-6 -4366)))) (-2199 (((-627 |#3|) $) 81)) (-3528 (((-111) |#3| $) 80)) (-2292 (((-111) $ $) 6)) (-1383 (((-754) $) 46 (|has| $ (-6 -4366))))) +(((-1182 |#1| |#2| |#3| |#4|) (-137) (-544) (-776) (-830) (-1042 |t#1| |t#2| |t#3|)) (T -1182)) +((-2654 (*1 *2 *1 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) (-3981 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-111) *8 *8)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2240 (-627 *8)))) (-5 *3 (-627 *8)) (-4 *1 (-1182 *5 *6 *7 *8)))) (-3981 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-111) *9)) (-5 *5 (-1 (-111) *9 *9)) (-4 *9 (-1042 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-776)) (-4 *8 (-830)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2240 (-627 *9)))) (-5 *3 (-627 *9)) (-4 *1 (-1182 *6 *7 *8 *9)))) (-4122 (*1 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-627 *6)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-754)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-2 (|:| -4267 (-627 *6)) (|:| -2849 (-627 *6)))))) (-3850 (*1 *2 *3 *1) (-12 (-4 *1 (-1182 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) (-4104 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *1 (-1182 *5 *6 *7 *3)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-111)))) (-3691 (*1 *2 *3 *1) (-12 (-4 *1 (-1182 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111)))) (-2163 (*1 *2 *3 *1) (-12 (-4 *1 (-1182 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111)))) (-2481 (*1 *2 *3 *1) (-12 (-4 *1 (-1182 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111)))) (-2925 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-111) *7 (-627 *7))) (-4 *1 (-1182 *4 *5 *6 *7)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) (-2163 (*1 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) (-2481 (*1 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) (-2091 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-111) *2 *2)) (-4 *1 (-1182 *5 *6 *7 *2)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *2 (-1042 *5 *6 *7)))) (-3238 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-627 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-111) *8 *8)) (-4 *1 (-1182 *5 *6 *7 *8)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7)))) (-1553 (*1 *2 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) (-4116 (*1 *2 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) (-3921 (*1 *2 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) (-4167 (*1 *2 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) (-2462 (*1 *1 *1) (-12 (-4 *1 (-1182 *2 *3 *4 *5)) (-4 *2 (-544)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *5 (-1042 *2 *3 *4)))) (-2934 (*1 *2 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *1)) (-4 *1 (-1182 *4 *5 *6 *7)))) (-1764 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-627 (-2 (|:| -4267 *1) (|:| -2849 (-627 *7))))) (-5 *3 (-627 *7)) (-4 *1 (-1182 *4 *5 *6 *7)))) (-3340 (*1 *2 *1) (|partial| -12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) (-1294 (*1 *2 *1) (|partial| -12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) (-3351 (*1 *1 *1) (|partial| -12 (-4 *1 (-1182 *2 *3 *4 *5)) (-4 *2 (-544)) (-4 *3 (-776)) (-4 *4 (-830)) (-4 *5 (-1042 *2 *3 *4)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-627 *5)))) (-3528 (*1 *2 *3 *1) (-12 (-4 *1 (-1182 *4 *5 *3 *6)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *3 (-830)) (-4 *6 (-1042 *4 *5 *3)) (-5 *2 (-111)))) (-2536 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1182 *4 *5 *3 *2)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *3 (-830)) (-4 *2 (-1042 *4 *5 *3)))) (-3672 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) (-4168 (*1 *1 *1 *2) (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) (-1641 (*1 *2 *1) (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *5 (-362)) (-5 *2 (-754))))) +(-13 (-955 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4366) (-6 -4367) (-15 -2654 ((-111) $ $)) (-15 -3981 ((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |t#4|))) "failed") (-627 |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -3981 ((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |t#4|))) "failed") (-627 |t#4|) (-1 (-111) |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -4122 ((-627 |t#4|) $)) (-15 -3567 ((-754) $)) (-15 -2415 ((-2 (|:| -4267 (-627 |t#4|)) (|:| -2849 (-627 |t#4|))) $)) (-15 -3850 ((-111) |t#4| $)) (-15 -3850 ((-111) $)) (-15 -4104 ((-111) |t#4| $ (-1 (-111) |t#4| |t#4|))) (-15 -3691 ((-111) |t#4| $)) (-15 -2163 ((-111) |t#4| $)) (-15 -2481 ((-111) |t#4| $)) (-15 -2925 ((-111) $ (-1 (-111) |t#4| (-627 |t#4|)))) (-15 -3691 ((-111) $)) (-15 -2163 ((-111) $)) (-15 -2481 ((-111) $)) (-15 -2091 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -3238 ((-627 |t#4|) (-627 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-111) |t#4| |t#4|))) (-15 -1553 (|t#4| |t#4| $)) (-15 -4116 (|t#4| |t#4| $)) (-15 -3921 (|t#4| |t#4| $)) (-15 -4167 (|t#4| |t#4| $)) (-15 -2462 ($ $)) (-15 -2934 (|t#4| |t#4| $)) (-15 -1361 ((-627 $) (-627 |t#4|))) (-15 -1764 ((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 |t#4|)))) (-627 |t#4|))) (-15 -3340 ((-3 |t#4| "failed") $)) (-15 -1294 ((-3 |t#4| "failed") $)) (-15 -3351 ((-3 $ "failed") $)) (-15 -2199 ((-627 |t#3|) $)) (-15 -3528 ((-111) |t#3| $)) (-15 -2536 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3672 ((-3 $ "failed") $ |t#4|)) (-15 -4168 ($ $ |t#4|)) (IF (|has| |t#3| (-362)) (-15 -1641 ((-754) $)) |%noBranch|))) +(((-34) . T) ((-101) . T) ((-599 (-627 |#4|)) . T) ((-599 (-842)) . T) ((-148 |#4|) . T) ((-600 (-528)) |has| |#4| (-600 (-528))) ((-303 |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-482 |#4|) . T) ((-506 |#4| |#4|) -12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))) ((-955 |#1| |#2| |#3| |#4|) . T) ((-1076) . T) ((-1189) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-1152)) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-1607 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1584 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1628 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2212 (((-931 |#1|) $ (-754)) 17) (((-931 |#1|) $ (-754) (-754)) NIL)) (-2391 (((-111) $) NIL)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-754) $ (-1152)) NIL) (((-754) $ (-1152) (-754)) NIL)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3267 (((-111) $) NIL)) (-1832 (($ $ (-627 (-1152)) (-627 (-523 (-1152)))) NIL) (($ $ (-1152) (-523 (-1152))) NIL) (($ |#1| (-523 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-2747 (($ $ (-1152)) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152) |#1|) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1498 (((-1096) $) NIL)) (-2315 (($ (-1 $) (-1152) |#1|) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4168 (($ $ (-754)) NIL)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-3154 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3321 (($ $ (-1152) $) NIL) (($ $ (-627 (-1152)) (-627 $)) NIL) (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL)) (-2942 (($ $ (-1152)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL)) (-3567 (((-523 (-1152)) $) NIL)) (-1640 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ $) NIL (|has| |#1| (-544))) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-1152)) NIL) (($ (-931 |#1|)) NIL)) (-1889 ((|#1| $ (-523 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (((-931 |#1|) $ (-754)) NIL)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-1673 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3519 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) NIL T CONST)) (-1933 (($) NIL T CONST)) (-4251 (($ $ (-1152)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL)) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1183 |#1|) (-13 (-723 |#1| (-1152)) (-10 -8 (-15 -1889 ((-931 |#1|) $ (-754))) (-15 -1477 ($ (-1152))) (-15 -1477 ($ (-931 |#1|))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ($ $ (-1152) |#1|)) (-15 -2315 ($ (-1 $) (-1152) |#1|))) |%noBranch|))) (-1028)) (T -1183)) +((-1889 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *2 (-931 *4)) (-5 *1 (-1183 *4)) (-4 *4 (-1028)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1183 *3)) (-4 *3 (-1028)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-931 *3)) (-4 *3 (-1028)) (-5 *1 (-1183 *3)))) (-2747 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *1 (-1183 *3)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)))) (-2315 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1183 *4))) (-5 *3 (-1152)) (-5 *1 (-1183 *4)) (-4 *4 (-38 (-401 (-552)))) (-4 *4 (-1028))))) +(-13 (-723 |#1| (-1152)) (-10 -8 (-15 -1889 ((-931 |#1|) $ (-754))) (-15 -1477 ($ (-1152))) (-15 -1477 ($ (-931 |#1|))) (IF (|has| |#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ($ $ (-1152) |#1|)) (-15 -2315 ($ (-1 $) (-1152) |#1|))) |%noBranch|))) +((-2366 (($ |#1| (-627 (-627 (-922 (-220)))) (-111)) 19)) (-3898 (((-111) $ (-111)) 18)) (-4212 (((-111) $) 17)) (-3051 (((-627 (-627 (-922 (-220)))) $) 13)) (-1403 ((|#1| $) 8)) (-2691 (((-111) $) 15))) +(((-1184 |#1|) (-10 -8 (-15 -1403 (|#1| $)) (-15 -3051 ((-627 (-627 (-922 (-220)))) $)) (-15 -2691 ((-111) $)) (-15 -4212 ((-111) $)) (-15 -3898 ((-111) $ (-111))) (-15 -2366 ($ |#1| (-627 (-627 (-922 (-220)))) (-111)))) (-953)) (T -1184)) +((-2366 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *4 (-111)) (-5 *1 (-1184 *2)) (-4 *2 (-953)))) (-3898 (*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1184 *3)) (-4 *3 (-953)))) (-4212 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1184 *3)) (-4 *3 (-953)))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1184 *3)) (-4 *3 (-953)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *1 (-1184 *3)) (-4 *3 (-953)))) (-1403 (*1 *2 *1) (-12 (-5 *1 (-1184 *2)) (-4 *2 (-953))))) +(-10 -8 (-15 -1403 (|#1| $)) (-15 -3051 ((-627 (-627 (-922 (-220)))) $)) (-15 -2691 ((-111) $)) (-15 -4212 ((-111) $)) (-15 -3898 ((-111) $ (-111))) (-15 -2366 ($ |#1| (-627 (-627 (-922 (-220)))) (-111)))) +((-3969 (((-922 (-220)) (-922 (-220))) 25)) (-1745 (((-922 (-220)) (-220) (-220) (-220) (-220)) 10)) (-1320 (((-627 (-922 (-220))) (-922 (-220)) (-922 (-220)) (-922 (-220)) (-220) (-627 (-627 (-220)))) 37)) (-2395 (((-220) (-922 (-220)) (-922 (-220))) 21)) (-3917 (((-922 (-220)) (-922 (-220)) (-922 (-220))) 22)) (-2587 (((-627 (-627 (-220))) (-552)) 31)) (-2396 (((-922 (-220)) (-922 (-220)) (-922 (-220))) 20)) (-2384 (((-922 (-220)) (-922 (-220)) (-922 (-220))) 19)) (* (((-922 (-220)) (-220) (-922 (-220))) 18))) +(((-1185) (-10 -7 (-15 -1745 ((-922 (-220)) (-220) (-220) (-220) (-220))) (-15 * ((-922 (-220)) (-220) (-922 (-220)))) (-15 -2384 ((-922 (-220)) (-922 (-220)) (-922 (-220)))) (-15 -2396 ((-922 (-220)) (-922 (-220)) (-922 (-220)))) (-15 -2395 ((-220) (-922 (-220)) (-922 (-220)))) (-15 -3917 ((-922 (-220)) (-922 (-220)) (-922 (-220)))) (-15 -3969 ((-922 (-220)) (-922 (-220)))) (-15 -2587 ((-627 (-627 (-220))) (-552))) (-15 -1320 ((-627 (-922 (-220))) (-922 (-220)) (-922 (-220)) (-922 (-220)) (-220) (-627 (-627 (-220))))))) (T -1185)) +((-1320 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-627 (-627 (-220)))) (-5 *4 (-220)) (-5 *2 (-627 (-922 *4))) (-5 *1 (-1185)) (-5 *3 (-922 *4)))) (-2587 (*1 *2 *3) (-12 (-5 *3 (-552)) (-5 *2 (-627 (-627 (-220)))) (-5 *1 (-1185)))) (-3969 (*1 *2 *2) (-12 (-5 *2 (-922 (-220))) (-5 *1 (-1185)))) (-3917 (*1 *2 *2 *2) (-12 (-5 *2 (-922 (-220))) (-5 *1 (-1185)))) (-2395 (*1 *2 *3 *3) (-12 (-5 *3 (-922 (-220))) (-5 *2 (-220)) (-5 *1 (-1185)))) (-2396 (*1 *2 *2 *2) (-12 (-5 *2 (-922 (-220))) (-5 *1 (-1185)))) (-2384 (*1 *2 *2 *2) (-12 (-5 *2 (-922 (-220))) (-5 *1 (-1185)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-922 (-220))) (-5 *3 (-220)) (-5 *1 (-1185)))) (-1745 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-922 (-220))) (-5 *1 (-1185)) (-5 *3 (-220))))) +(-10 -7 (-15 -1745 ((-922 (-220)) (-220) (-220) (-220) (-220))) (-15 * ((-922 (-220)) (-220) (-922 (-220)))) (-15 -2384 ((-922 (-220)) (-922 (-220)) (-922 (-220)))) (-15 -2396 ((-922 (-220)) (-922 (-220)) (-922 (-220)))) (-15 -2395 ((-220) (-922 (-220)) (-922 (-220)))) (-15 -3917 ((-922 (-220)) (-922 (-220)) (-922 (-220)))) (-15 -3969 ((-922 (-220)) (-922 (-220)))) (-15 -2587 ((-627 (-627 (-220))) (-552))) (-15 -1320 ((-627 (-922 (-220))) (-922 (-220)) (-922 (-220)) (-922 (-220)) (-220) (-627 (-627 (-220)))))) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2536 ((|#1| $ (-754)) 13)) (-3593 (((-754) $) 12)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-1477 (((-937 |#1|) $) 10) (($ (-937 |#1|)) 9) (((-842) $) 23 (|has| |#1| (-599 (-842))))) (-2292 (((-111) $ $) 16 (|has| |#1| (-1076))))) +(((-1186 |#1|) (-13 (-599 (-937 |#1|)) (-10 -8 (-15 -1477 ($ (-937 |#1|))) (-15 -2536 (|#1| $ (-754))) (-15 -3593 ((-754) $)) (IF (|has| |#1| (-599 (-842))) (-6 (-599 (-842))) |%noBranch|) (IF (|has| |#1| (-1076)) (-6 (-1076)) |%noBranch|))) (-1189)) (T -1186)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-937 *3)) (-4 *3 (-1189)) (-5 *1 (-1186 *3)))) (-2536 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *1 (-1186 *2)) (-4 *2 (-1189)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-1186 *3)) (-4 *3 (-1189))))) +(-13 (-599 (-937 |#1|)) (-10 -8 (-15 -1477 ($ (-937 |#1|))) (-15 -2536 (|#1| $ (-754))) (-15 -3593 ((-754) $)) (IF (|has| |#1| (-599 (-842))) (-6 (-599 (-842))) |%noBranch|) (IF (|has| |#1| (-1076)) (-6 (-1076)) |%noBranch|))) +((-3947 (((-412 (-1148 (-1148 |#1|))) (-1148 (-1148 |#1|)) (-552)) 80)) (-2466 (((-412 (-1148 (-1148 |#1|))) (-1148 (-1148 |#1|))) 74)) (-2293 (((-412 (-1148 (-1148 |#1|))) (-1148 (-1148 |#1|))) 59))) +(((-1187 |#1|) (-10 -7 (-15 -2466 ((-412 (-1148 (-1148 |#1|))) (-1148 (-1148 |#1|)))) (-15 -2293 ((-412 (-1148 (-1148 |#1|))) (-1148 (-1148 |#1|)))) (-15 -3947 ((-412 (-1148 (-1148 |#1|))) (-1148 (-1148 |#1|)) (-552)))) (-343)) (T -1187)) +((-3947 (*1 *2 *3 *4) (-12 (-5 *4 (-552)) (-4 *5 (-343)) (-5 *2 (-412 (-1148 (-1148 *5)))) (-5 *1 (-1187 *5)) (-5 *3 (-1148 (-1148 *5))))) (-2293 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-412 (-1148 (-1148 *4)))) (-5 *1 (-1187 *4)) (-5 *3 (-1148 (-1148 *4))))) (-2466 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-412 (-1148 (-1148 *4)))) (-5 *1 (-1187 *4)) (-5 *3 (-1148 (-1148 *4)))))) +(-10 -7 (-15 -2466 ((-412 (-1148 (-1148 |#1|))) (-1148 (-1148 |#1|)))) (-15 -2293 ((-412 (-1148 (-1148 |#1|))) (-1148 (-1148 |#1|)))) (-15 -3947 ((-412 (-1148 (-1148 |#1|))) (-1148 (-1148 |#1|)) (-552)))) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 9) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) +(((-1188) (-1059)) (T -1188)) +NIL +(-1059) +NIL +(((-1189) (-137)) (T -1189)) +NIL +(-13 (-10 -7 (-6 -2997))) +((-2357 (((-111)) 15)) (-2805 (((-1240) (-627 |#1|) (-627 |#1|)) 19) (((-1240) (-627 |#1|)) 20)) (-1602 (((-111) |#1| |#1|) 32 (|has| |#1| (-830)))) (-3971 (((-111) |#1| |#1| (-1 (-111) |#1| |#1|)) 27) (((-3 (-111) "failed") |#1| |#1|) 25)) (-2000 ((|#1| (-627 |#1|)) 33 (|has| |#1| (-830))) ((|#1| (-627 |#1|) (-1 (-111) |#1| |#1|)) 28)) (-4327 (((-2 (|:| -1781 (-627 |#1|)) (|:| -3180 (-627 |#1|)))) 17))) +(((-1190 |#1|) (-10 -7 (-15 -2805 ((-1240) (-627 |#1|))) (-15 -2805 ((-1240) (-627 |#1|) (-627 |#1|))) (-15 -4327 ((-2 (|:| -1781 (-627 |#1|)) (|:| -3180 (-627 |#1|))))) (-15 -3971 ((-3 (-111) "failed") |#1| |#1|)) (-15 -3971 ((-111) |#1| |#1| (-1 (-111) |#1| |#1|))) (-15 -2000 (|#1| (-627 |#1|) (-1 (-111) |#1| |#1|))) (-15 -2357 ((-111))) (IF (|has| |#1| (-830)) (PROGN (-15 -2000 (|#1| (-627 |#1|))) (-15 -1602 ((-111) |#1| |#1|))) |%noBranch|)) (-1076)) (T -1190)) +((-1602 (*1 *2 *3 *3) (-12 (-5 *2 (-111)) (-5 *1 (-1190 *3)) (-4 *3 (-830)) (-4 *3 (-1076)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-1076)) (-4 *2 (-830)) (-5 *1 (-1190 *2)))) (-2357 (*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1190 *3)) (-4 *3 (-1076)))) (-2000 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *2)) (-5 *4 (-1 (-111) *2 *2)) (-5 *1 (-1190 *2)) (-4 *2 (-1076)))) (-3971 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *3 (-1076)) (-5 *2 (-111)) (-5 *1 (-1190 *3)))) (-3971 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-111)) (-5 *1 (-1190 *3)) (-4 *3 (-1076)))) (-4327 (*1 *2) (-12 (-5 *2 (-2 (|:| -1781 (-627 *3)) (|:| -3180 (-627 *3)))) (-5 *1 (-1190 *3)) (-4 *3 (-1076)))) (-2805 (*1 *2 *3 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-1076)) (-5 *2 (-1240)) (-5 *1 (-1190 *4)))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-627 *4)) (-4 *4 (-1076)) (-5 *2 (-1240)) (-5 *1 (-1190 *4))))) +(-10 -7 (-15 -2805 ((-1240) (-627 |#1|))) (-15 -2805 ((-1240) (-627 |#1|) (-627 |#1|))) (-15 -4327 ((-2 (|:| -1781 (-627 |#1|)) (|:| -3180 (-627 |#1|))))) (-15 -3971 ((-3 (-111) "failed") |#1| |#1|)) (-15 -3971 ((-111) |#1| |#1| (-1 (-111) |#1| |#1|))) (-15 -2000 (|#1| (-627 |#1|) (-1 (-111) |#1| |#1|))) (-15 -2357 ((-111))) (IF (|has| |#1| (-830)) (PROGN (-15 -2000 (|#1| (-627 |#1|))) (-15 -1602 ((-111) |#1| |#1|))) |%noBranch|)) +((-3852 (((-1240) (-627 (-1152)) (-627 (-1152))) 13) (((-1240) (-627 (-1152))) 11)) (-3172 (((-1240)) 14)) (-2339 (((-2 (|:| -3180 (-627 (-1152))) (|:| -1781 (-627 (-1152))))) 18))) +(((-1191) (-10 -7 (-15 -3852 ((-1240) (-627 (-1152)))) (-15 -3852 ((-1240) (-627 (-1152)) (-627 (-1152)))) (-15 -2339 ((-2 (|:| -3180 (-627 (-1152))) (|:| -1781 (-627 (-1152)))))) (-15 -3172 ((-1240))))) (T -1191)) +((-3172 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1191)))) (-2339 (*1 *2) (-12 (-5 *2 (-2 (|:| -3180 (-627 (-1152))) (|:| -1781 (-627 (-1152))))) (-5 *1 (-1191)))) (-3852 (*1 *2 *3 *3) (-12 (-5 *3 (-627 (-1152))) (-5 *2 (-1240)) (-5 *1 (-1191)))) (-3852 (*1 *2 *3) (-12 (-5 *3 (-627 (-1152))) (-5 *2 (-1240)) (-5 *1 (-1191))))) +(-10 -7 (-15 -3852 ((-1240) (-627 (-1152)))) (-15 -3852 ((-1240) (-627 (-1152)) (-627 (-1152)))) (-15 -2339 ((-2 (|:| -3180 (-627 (-1152))) (|:| -1781 (-627 (-1152)))))) (-15 -3172 ((-1240)))) +((-4014 (($ $) 17)) (-1633 (((-111) $) 24))) +(((-1192 |#1|) (-10 -8 (-15 -4014 (|#1| |#1|)) (-15 -1633 ((-111) |#1|))) (-1193)) (T -1192)) +NIL +(-10 -8 (-15 -4014 (|#1| |#1|)) (-15 -1633 ((-111) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 49)) (-2487 (((-412 $) $) 50)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-1633 (((-111) $) 51)) (-2624 (((-111) $) 30)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-1727 (((-412 $) $) 48)) (-2761 (((-3 $ "failed") $ $) 40)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41)) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24))) +(((-1193) (-137)) (T -1193)) +((-1633 (*1 *2 *1) (-12 (-4 *1 (-1193)) (-5 *2 (-111)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-412 *1)) (-4 *1 (-1193)))) (-4014 (*1 *1 *1) (-4 *1 (-1193))) (-1727 (*1 *2 *1) (-12 (-5 *2 (-412 *1)) (-4 *1 (-1193))))) +(-13 (-445) (-10 -8 (-15 -1633 ((-111) $)) (-15 -2487 ((-412 $) $)) (-15 -4014 ($ $)) (-15 -1727 ((-412 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-110 $ $) . T) ((-129) . T) ((-599 (-842)) . T) ((-169) . T) ((-284) . T) ((-445) . T) ((-544) . T) ((-630 $) . T) ((-700 $) . T) ((-709) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-3516 (((-1199 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1199 |#1| |#3| |#5|)) 23))) +(((-1194 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3516 ((-1199 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1199 |#1| |#3| |#5|)))) (-1028) (-1028) (-1152) (-1152) |#1| |#2|) (T -1194)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1199 *5 *7 *9)) (-4 *5 (-1028)) (-4 *6 (-1028)) (-14 *7 (-1152)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1199 *6 *8 *10)) (-5 *1 (-1194 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1152))))) +(-10 -7 (-15 -3516 ((-1199 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1199 |#1| |#3| |#5|)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1853 (((-627 (-1058)) $) 72)) (-4344 (((-1152) $) 101)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3245 (($ $) 50 (|has| |#1| (-544)))) (-4058 (((-111) $) 52 (|has| |#1| (-544)))) (-4019 (($ $ (-552)) 96) (($ $ (-552) (-552)) 95)) (-4245 (((-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 103)) (-1607 (($ $) 133 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 116 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 160 (|has| |#1| (-357)))) (-2487 (((-412 $) $) 161 (|has| |#1| (-357)))) (-1737 (($ $) 115 (|has| |#1| (-38 (-401 (-552)))))) (-4224 (((-111) $ $) 151 (|has| |#1| (-357)))) (-1584 (($ $) 132 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 117 (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 171)) (-1628 (($ $) 131 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 118 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) 17 T CONST)) (-2813 (($ $ $) 155 (|has| |#1| (-357)))) (-2014 (($ $) 58)) (-2040 (((-3 $ "failed") $) 32)) (-1281 (((-401 (-931 |#1|)) $ (-552)) 169 (|has| |#1| (-544))) (((-401 (-931 |#1|)) $ (-552) (-552)) 168 (|has| |#1| (-544)))) (-2789 (($ $ $) 154 (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 149 (|has| |#1| (-357)))) (-1633 (((-111) $) 162 (|has| |#1| (-357)))) (-2391 (((-111) $) 71)) (-2951 (($) 143 (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-552) $) 98) (((-552) $ (-552)) 97)) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 114 (|has| |#1| (-38 (-401 (-552)))))) (-3322 (($ $ (-900)) 99)) (-3045 (($ (-1 |#1| (-552)) $) 170)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 158 (|has| |#1| (-357)))) (-3267 (((-111) $) 60)) (-1832 (($ |#1| (-552)) 59) (($ $ (-1058) (-552)) 74) (($ $ (-627 (-1058)) (-627 (-552))) 73)) (-3516 (($ (-1 |#1| |#1|) $) 61)) (-4135 (($ $) 140 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) 63)) (-1993 ((|#1| $) 64)) (-1276 (($ (-627 $)) 147 (|has| |#1| (-357))) (($ $ $) 146 (|has| |#1| (-357)))) (-1595 (((-1134) $) 9)) (-1951 (($ $) 163 (|has| |#1| (-357)))) (-2747 (($ $) 167 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) 166 (-1559 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-938)) (|has| |#1| (-1174)) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-38 (-401 (-552)))))))) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 148 (|has| |#1| (-357)))) (-1323 (($ (-627 $)) 145 (|has| |#1| (-357))) (($ $ $) 144 (|has| |#1| (-357)))) (-1727 (((-412 $) $) 159 (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 156 (|has| |#1| (-357)))) (-4168 (($ $ (-552)) 93)) (-2761 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 150 (|has| |#1| (-357)))) (-3154 (($ $) 141 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-552)))))) (-2718 (((-754) $) 152 (|has| |#1| (-357)))) (-1985 ((|#1| $ (-552)) 102) (($ $ $) 79 (|has| (-552) (-1088)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 153 (|has| |#1| (-357)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) 87 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-1152) (-754)) 86 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-627 (-1152))) 85 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-1152)) 84 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-754)) 82 (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (-3567 (((-552) $) 62)) (-1640 (($ $) 130 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 119 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 129 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 120 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 128 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 121 (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) 70)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544)))) (-1889 ((|#1| $ (-552)) 57)) (-3050 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3174 ((|#1| $) 100)) (-1673 (($ $) 139 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 127 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) 51 (|has| |#1| (-544)))) (-1652 (($ $) 138 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 126 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 137 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 125 (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-552)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) 136 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 124 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 135 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 123 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 134 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 122 (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) 91 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-1152) (-754)) 90 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-627 (-1152))) 89 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-1152)) 88 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-754)) 83 (|has| |#1| (-15 * (|#1| (-552) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 56 (|has| |#1| (-357))) (($ $ $) 165 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 164 (|has| |#1| (-357))) (($ $ $) 142 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 113 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) +(((-1195 |#1|) (-137) (-1028)) (T -1195)) +((-1777 (*1 *1 *2) (-12 (-5 *2 (-1132 (-2 (|:| |k| (-552)) (|:| |c| *3)))) (-4 *3 (-1028)) (-4 *1 (-1195 *3)))) (-3045 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-552))) (-4 *1 (-1195 *3)) (-4 *3 (-1028)))) (-1281 (*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1195 *4)) (-4 *4 (-1028)) (-4 *4 (-544)) (-5 *2 (-401 (-931 *4))))) (-1281 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-4 *1 (-1195 *4)) (-4 *4 (-1028)) (-4 *4 (-544)) (-5 *2 (-401 (-931 *4))))) (-2747 (*1 *1 *1) (-12 (-4 *1 (-1195 *2)) (-4 *2 (-1028)) (-4 *2 (-38 (-401 (-552)))))) (-2747 (*1 *1 *1 *2) (-1559 (-12 (-5 *2 (-1152)) (-4 *1 (-1195 *3)) (-4 *3 (-1028)) (-12 (-4 *3 (-29 (-552))) (-4 *3 (-938)) (-4 *3 (-1174)) (-4 *3 (-38 (-401 (-552)))))) (-12 (-5 *2 (-1152)) (-4 *1 (-1195 *3)) (-4 *3 (-1028)) (-12 (|has| *3 (-15 -1853 ((-627 *2) *3))) (|has| *3 (-15 -2747 (*3 *3 *2))) (-4 *3 (-38 (-401 (-552))))))))) +(-13 (-1213 |t#1| (-552)) (-10 -8 (-15 -1777 ($ (-1132 (-2 (|:| |k| (-552)) (|:| |c| |t#1|))))) (-15 -3045 ($ (-1 |t#1| (-552)) $)) (IF (|has| |t#1| (-544)) (PROGN (-15 -1281 ((-401 (-931 |t#1|)) $ (-552))) (-15 -1281 ((-401 (-931 |t#1|)) $ (-552) (-552)))) |%noBranch|) (IF (|has| |t#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ($ $)) (IF (|has| |t#1| (-15 -2747 (|t#1| |t#1| (-1152)))) (IF (|has| |t#1| (-15 -1853 ((-627 (-1152)) |t#1|))) (-15 -2747 ($ $ (-1152))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1174)) (IF (|has| |t#1| (-938)) (IF (|has| |t#1| (-29 (-552))) (-15 -2747 ($ $ (-1152))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-981)) (-6 (-1174))) |%noBranch|) (IF (|has| |t#1| (-357)) (-6 (-357)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-552)) . T) ((-25) . T) ((-38 #1=(-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-35) |has| |#1| (-38 (-401 (-552)))) ((-94) |has| |#1| (-38 (-401 (-552)))) ((-101) . T) ((-110 #1# #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-228) |has| |#1| (-15 * (|#1| (-552) |#1|))) ((-238) |has| |#1| (-357)) ((-278) |has| |#1| (-38 (-401 (-552)))) ((-280 $ $) |has| (-552) (-1088)) ((-284) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-301) |has| |#1| (-357)) ((-357) |has| |#1| (-357)) ((-445) |has| |#1| (-357)) ((-485) |has| |#1| (-38 (-401 (-552)))) ((-544) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-630 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-709) . T) ((-879 (-1152)) -12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))) ((-952 |#1| #0# (-1058)) . T) ((-899) |has| |#1| (-357)) ((-981) |has| |#1| (-38 (-401 (-552)))) ((-1034 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1174) |has| |#1| (-38 (-401 (-552)))) ((-1177) |has| |#1| (-38 (-401 (-552)))) ((-1193) |has| |#1| (-357)) ((-1213 |#1| #0#) . T)) +((-3024 (((-111) $) 12)) (-4039 (((-3 |#3| "failed") $) 17) (((-3 (-1152) "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL)) (-1703 ((|#3| $) 14) (((-1152) $) NIL) (((-401 (-552)) $) NIL) (((-552) $) NIL))) +(((-1196 |#1| |#2| |#3|) (-10 -8 (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-1152) |#1|)) (-15 -4039 ((-3 (-1152) "failed") |#1|)) (-15 -1703 (|#3| |#1|)) (-15 -4039 ((-3 |#3| "failed") |#1|)) (-15 -3024 ((-111) |#1|))) (-1197 |#2| |#3|) (-1028) (-1226 |#2|)) (T -1196)) +NIL +(-10 -8 (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1703 ((-1152) |#1|)) (-15 -4039 ((-3 (-1152) "failed") |#1|)) (-15 -1703 (|#3| |#1|)) (-15 -4039 ((-3 |#3| "failed") |#1|)) (-15 -3024 ((-111) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-3471 ((|#2| $) 228 (-2520 (|has| |#2| (-301)) (|has| |#1| (-357))))) (-1853 (((-627 (-1058)) $) 72)) (-4344 (((-1152) $) 101)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3245 (($ $) 50 (|has| |#1| (-544)))) (-4058 (((-111) $) 52 (|has| |#1| (-544)))) (-4019 (($ $ (-552)) 96) (($ $ (-552) (-552)) 95)) (-4245 (((-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 103)) (-3086 ((|#2| $) 264)) (-3967 (((-3 |#2| "failed") $) 260)) (-1909 ((|#2| $) 261)) (-1607 (($ $) 133 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 116 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) 19)) (-2246 (((-412 (-1148 $)) (-1148 $)) 237 (-2520 (|has| |#2| (-888)) (|has| |#1| (-357))))) (-4014 (($ $) 160 (|has| |#1| (-357)))) (-2487 (((-412 $) $) 161 (|has| |#1| (-357)))) (-1737 (($ $) 115 (|has| |#1| (-38 (-401 (-552)))))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 234 (-2520 (|has| |#2| (-888)) (|has| |#1| (-357))))) (-4224 (((-111) $ $) 151 (|has| |#1| (-357)))) (-1584 (($ $) 132 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 117 (|has| |#1| (-38 (-401 (-552)))))) (-2422 (((-552) $) 246 (-2520 (|has| |#2| (-803)) (|has| |#1| (-357))))) (-1777 (($ (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 171)) (-1628 (($ $) 131 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 118 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#2| "failed") $) 267) (((-3 (-552) "failed") $) 256 (-2520 (|has| |#2| (-1017 (-552))) (|has| |#1| (-357)))) (((-3 (-401 (-552)) "failed") $) 254 (-2520 (|has| |#2| (-1017 (-552))) (|has| |#1| (-357)))) (((-3 (-1152) "failed") $) 239 (-2520 (|has| |#2| (-1017 (-1152))) (|has| |#1| (-357))))) (-1703 ((|#2| $) 266) (((-552) $) 257 (-2520 (|has| |#2| (-1017 (-552))) (|has| |#1| (-357)))) (((-401 (-552)) $) 255 (-2520 (|has| |#2| (-1017 (-552))) (|has| |#1| (-357)))) (((-1152) $) 240 (-2520 (|has| |#2| (-1017 (-1152))) (|has| |#1| (-357))))) (-1405 (($ $) 263) (($ (-552) $) 262)) (-2813 (($ $ $) 155 (|has| |#1| (-357)))) (-2014 (($ $) 58)) (-1800 (((-671 |#2|) (-671 $)) 218 (|has| |#1| (-357))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) 217 (|has| |#1| (-357))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 216 (-2520 (|has| |#2| (-623 (-552))) (|has| |#1| (-357)))) (((-671 (-552)) (-671 $)) 215 (-2520 (|has| |#2| (-623 (-552))) (|has| |#1| (-357))))) (-2040 (((-3 $ "failed") $) 32)) (-1281 (((-401 (-931 |#1|)) $ (-552)) 169 (|has| |#1| (-544))) (((-401 (-931 |#1|)) $ (-552) (-552)) 168 (|has| |#1| (-544)))) (-1279 (($) 230 (-2520 (|has| |#2| (-537)) (|has| |#1| (-357))))) (-2789 (($ $ $) 154 (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 149 (|has| |#1| (-357)))) (-1633 (((-111) $) 162 (|has| |#1| (-357)))) (-2983 (((-111) $) 244 (-2520 (|has| |#2| (-803)) (|has| |#1| (-357))))) (-2391 (((-111) $) 71)) (-2951 (($) 143 (|has| |#1| (-38 (-401 (-552)))))) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 222 (-2520 (|has| |#2| (-865 (-373))) (|has| |#1| (-357)))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 221 (-2520 (|has| |#2| (-865 (-552))) (|has| |#1| (-357))))) (-2641 (((-552) $) 98) (((-552) $ (-552)) 97)) (-2624 (((-111) $) 30)) (-3798 (($ $) 226 (|has| |#1| (-357)))) (-2918 ((|#2| $) 224 (|has| |#1| (-357)))) (-1352 (($ $ (-552)) 114 (|has| |#1| (-38 (-401 (-552)))))) (-4317 (((-3 $ "failed") $) 258 (-2520 (|has| |#2| (-1127)) (|has| |#1| (-357))))) (-1508 (((-111) $) 245 (-2520 (|has| |#2| (-803)) (|has| |#1| (-357))))) (-3322 (($ $ (-900)) 99)) (-3045 (($ (-1 |#1| (-552)) $) 170)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 158 (|has| |#1| (-357)))) (-3267 (((-111) $) 60)) (-1832 (($ |#1| (-552)) 59) (($ $ (-1058) (-552)) 74) (($ $ (-627 (-1058)) (-627 (-552))) 73)) (-1816 (($ $ $) 248 (-2520 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-4093 (($ $ $) 249 (-2520 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-3516 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-357)))) (-4135 (($ $) 140 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) 63)) (-1993 ((|#1| $) 64)) (-1276 (($ (-627 $)) 147 (|has| |#1| (-357))) (($ $ $) 146 (|has| |#1| (-357)))) (-1920 (($ (-552) |#2|) 265)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 163 (|has| |#1| (-357)))) (-2747 (($ $) 167 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) 166 (-1559 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-938)) (|has| |#1| (-1174)) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-38 (-401 (-552)))))))) (-3002 (($) 259 (-2520 (|has| |#2| (-1127)) (|has| |#1| (-357))) CONST)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 148 (|has| |#1| (-357)))) (-1323 (($ (-627 $)) 145 (|has| |#1| (-357))) (($ $ $) 144 (|has| |#1| (-357)))) (-4328 (($ $) 229 (-2520 (|has| |#2| (-301)) (|has| |#1| (-357))))) (-2060 ((|#2| $) 232 (-2520 (|has| |#2| (-537)) (|has| |#1| (-357))))) (-3676 (((-412 (-1148 $)) (-1148 $)) 235 (-2520 (|has| |#2| (-888)) (|has| |#1| (-357))))) (-3644 (((-412 (-1148 $)) (-1148 $)) 236 (-2520 (|has| |#2| (-888)) (|has| |#1| (-357))))) (-1727 (((-412 $) $) 159 (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 156 (|has| |#1| (-357)))) (-4168 (($ $ (-552)) 93)) (-2761 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 150 (|has| |#1| (-357)))) (-3154 (($ $) 141 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-552))))) (($ $ (-1152) |#2|) 209 (-2520 (|has| |#2| (-506 (-1152) |#2|)) (|has| |#1| (-357)))) (($ $ (-627 (-1152)) (-627 |#2|)) 208 (-2520 (|has| |#2| (-506 (-1152) |#2|)) (|has| |#1| (-357)))) (($ $ (-627 (-288 |#2|))) 207 (-2520 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ (-288 |#2|)) 206 (-2520 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ |#2| |#2|) 205 (-2520 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ (-627 |#2|) (-627 |#2|)) 204 (-2520 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357))))) (-2718 (((-754) $) 152 (|has| |#1| (-357)))) (-1985 ((|#1| $ (-552)) 102) (($ $ $) 79 (|has| (-552) (-1088))) (($ $ |#2|) 203 (-2520 (|has| |#2| (-280 |#2| |#2|)) (|has| |#1| (-357))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 153 (|has| |#1| (-357)))) (-2942 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-357))) (($ $ (-1 |#2| |#2|) (-754)) 213 (|has| |#1| (-357))) (($ $ (-754)) 82 (-1559 (-2520 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 80 (-1559 (-2520 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-627 (-1152)) (-627 (-754))) 87 (-1559 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-1152) (-754)) 86 (-1559 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-627 (-1152))) 85 (-1559 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-1152)) 84 (-1559 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))))) (-1583 (($ $) 227 (|has| |#1| (-357)))) (-2929 ((|#2| $) 225 (|has| |#1| (-357)))) (-3567 (((-552) $) 62)) (-1640 (($ $) 130 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 119 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 129 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 120 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 128 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 121 (|has| |#1| (-38 (-401 (-552)))))) (-3562 (((-220) $) 243 (-2520 (|has| |#2| (-1001)) (|has| |#1| (-357)))) (((-373) $) 242 (-2520 (|has| |#2| (-1001)) (|has| |#1| (-357)))) (((-528) $) 241 (-2520 (|has| |#2| (-600 (-528))) (|has| |#1| (-357)))) (((-871 (-373)) $) 220 (-2520 (|has| |#2| (-600 (-871 (-373)))) (|has| |#1| (-357)))) (((-871 (-552)) $) 219 (-2520 (|has| |#2| (-600 (-871 (-552)))) (|has| |#1| (-357))))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 233 (-2520 (-2520 (|has| $ (-142)) (|has| |#2| (-888))) (|has| |#1| (-357))))) (-2890 (($ $) 70)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ |#2|) 268) (($ (-1152)) 238 (-2520 (|has| |#2| (-1017 (-1152))) (|has| |#1| (-357)))) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544)))) (-1889 ((|#1| $ (-552)) 57)) (-3050 (((-3 $ "failed") $) 46 (-1559 (-2520 (-1559 (|has| |#2| (-142)) (-2520 (|has| $ (-142)) (|has| |#2| (-888)))) (|has| |#1| (-357))) (|has| |#1| (-142))))) (-3995 (((-754)) 28)) (-3174 ((|#1| $) 100)) (-3796 ((|#2| $) 231 (-2520 (|has| |#2| (-537)) (|has| |#1| (-357))))) (-1673 (($ $) 139 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 127 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) 51 (|has| |#1| (-544)))) (-1652 (($ $) 138 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 126 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 137 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 125 (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-552)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) 136 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 124 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 135 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 123 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 134 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 122 (|has| |#1| (-38 (-401 (-552)))))) (-3329 (($ $) 247 (-2520 (|has| |#2| (-803)) (|has| |#1| (-357))))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-357))) (($ $ (-1 |#2| |#2|) (-754)) 211 (|has| |#1| (-357))) (($ $ (-754)) 83 (-1559 (-2520 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 81 (-1559 (-2520 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-627 (-1152)) (-627 (-754))) 91 (-1559 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-1152) (-754)) 90 (-1559 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-627 (-1152))) 89 (-1559 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))))) (($ $ (-1152)) 88 (-1559 (-2520 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))))) (-2351 (((-111) $ $) 251 (-2520 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-2329 (((-111) $ $) 252 (-2520 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 250 (-2520 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-2316 (((-111) $ $) 253 (-2520 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-2407 (($ $ |#1|) 56 (|has| |#1| (-357))) (($ $ $) 165 (|has| |#1| (-357))) (($ |#2| |#2|) 223 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 164 (|has| |#1| (-357))) (($ $ $) 142 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 113 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-357))) (($ |#2| $) 201 (|has| |#1| (-357))) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) +(((-1197 |#1| |#2|) (-137) (-1028) (-1226 |t#1|)) (T -1197)) +((-3567 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1226 *3)) (-5 *2 (-552)))) (-1477 (*1 *1 *2) (-12 (-4 *3 (-1028)) (-4 *1 (-1197 *3 *2)) (-4 *2 (-1226 *3)))) (-1920 (*1 *1 *2 *3) (-12 (-5 *2 (-552)) (-4 *4 (-1028)) (-4 *1 (-1197 *4 *3)) (-4 *3 (-1226 *4)))) (-3086 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1226 *3)))) (-1405 (*1 *1 *1) (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-1226 *2)))) (-1405 (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1226 *3)))) (-1909 (*1 *2 *1) (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1226 *3)))) (-3967 (*1 *2 *1) (|partial| -12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1226 *3))))) +(-13 (-1195 |t#1|) (-1017 |t#2|) (-10 -8 (-15 -1920 ($ (-552) |t#2|)) (-15 -3567 ((-552) $)) (-15 -3086 (|t#2| $)) (-15 -1405 ($ $)) (-15 -1405 ($ (-552) $)) (-15 -1477 ($ |t#2|)) (-15 -1909 (|t#2| $)) (-15 -3967 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-357)) (-6 (-971 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-552)) . T) ((-25) . T) ((-38 #1=(-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 |#2|) |has| |#1| (-357)) ((-38 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-35) |has| |#1| (-38 (-401 (-552)))) ((-94) |has| |#1| (-38 (-401 (-552)))) ((-101) . T) ((-110 #1# #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-110 |#1| |#1|) . T) ((-110 |#2| |#2|) |has| |#1| (-357)) ((-110 $ $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-129) . T) ((-142) -1559 (-12 (|has| |#1| (-357)) (|has| |#2| (-142))) (|has| |#1| (-142))) ((-144) -1559 (-12 (|has| |#1| (-357)) (|has| |#2| (-144))) (|has| |#1| (-144))) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-600 (-220)) -12 (|has| |#1| (-357)) (|has| |#2| (-1001))) ((-600 (-373)) -12 (|has| |#1| (-357)) (|has| |#2| (-1001))) ((-600 (-528)) -12 (|has| |#1| (-357)) (|has| |#2| (-600 (-528)))) ((-600 (-871 (-373))) -12 (|has| |#1| (-357)) (|has| |#2| (-600 (-871 (-373))))) ((-600 (-871 (-552))) -12 (|has| |#1| (-357)) (|has| |#2| (-600 (-871 (-552))))) ((-226 |#2|) |has| |#1| (-357)) ((-228) -1559 (-12 (|has| |#1| (-357)) (|has| |#2| (-228))) (|has| |#1| (-15 * (|#1| (-552) |#1|)))) ((-238) |has| |#1| (-357)) ((-278) |has| |#1| (-38 (-401 (-552)))) ((-280 |#2| $) -12 (|has| |#1| (-357)) (|has| |#2| (-280 |#2| |#2|))) ((-280 $ $) |has| (-552) (-1088)) ((-284) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-301) |has| |#1| (-357)) ((-303 |#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-303 |#2|))) ((-357) |has| |#1| (-357)) ((-332 |#2|) |has| |#1| (-357)) ((-371 |#2|) |has| |#1| (-357)) ((-394 |#2|) |has| |#1| (-357)) ((-445) |has| |#1| (-357)) ((-485) |has| |#1| (-38 (-401 (-552)))) ((-506 (-1152) |#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-506 (-1152) |#2|))) ((-506 |#2| |#2|) -12 (|has| |#1| (-357)) (|has| |#2| (-303 |#2|))) ((-544) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-630 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-630 |#1|) . T) ((-630 |#2|) |has| |#1| (-357)) ((-630 $) . T) ((-623 (-552)) -12 (|has| |#1| (-357)) (|has| |#2| (-623 (-552)))) ((-623 |#2|) |has| |#1| (-357)) ((-700 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-700 |#1|) |has| |#1| (-169)) ((-700 |#2|) |has| |#1| (-357)) ((-700 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-709) . T) ((-774) -12 (|has| |#1| (-357)) (|has| |#2| (-803))) ((-775) -12 (|has| |#1| (-357)) (|has| |#2| (-803))) ((-777) -12 (|has| |#1| (-357)) (|has| |#2| (-803))) ((-778) -12 (|has| |#1| (-357)) (|has| |#2| (-803))) ((-803) -12 (|has| |#1| (-357)) (|has| |#2| (-803))) ((-828) -12 (|has| |#1| (-357)) (|has| |#2| (-803))) ((-830) -1559 (-12 (|has| |#1| (-357)) (|has| |#2| (-830))) (-12 (|has| |#1| (-357)) (|has| |#2| (-803)))) ((-879 (-1152)) -1559 (-12 (|has| |#1| (-357)) (|has| |#2| (-879 (-1152)))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))) ((-865 (-373)) -12 (|has| |#1| (-357)) (|has| |#2| (-865 (-373)))) ((-865 (-552)) -12 (|has| |#1| (-357)) (|has| |#2| (-865 (-552)))) ((-863 |#2|) |has| |#1| (-357)) ((-888) -12 (|has| |#1| (-357)) (|has| |#2| (-888))) ((-952 |#1| #0# (-1058)) . T) ((-899) |has| |#1| (-357)) ((-971 |#2|) |has| |#1| (-357)) ((-981) |has| |#1| (-38 (-401 (-552)))) ((-1001) -12 (|has| |#1| (-357)) (|has| |#2| (-1001))) ((-1017 (-401 (-552))) -12 (|has| |#1| (-357)) (|has| |#2| (-1017 (-552)))) ((-1017 (-552)) -12 (|has| |#1| (-357)) (|has| |#2| (-1017 (-552)))) ((-1017 (-1152)) -12 (|has| |#1| (-357)) (|has| |#2| (-1017 (-1152)))) ((-1017 |#2|) . T) ((-1034 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-1034 |#1|) . T) ((-1034 |#2|) |has| |#1| (-357)) ((-1034 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1127) -12 (|has| |#1| (-357)) (|has| |#2| (-1127))) ((-1174) |has| |#1| (-38 (-401 (-552)))) ((-1177) |has| |#1| (-38 (-401 (-552)))) ((-1189) |has| |#1| (-357)) ((-1193) |has| |#1| (-357)) ((-1195 |#1|) . T) ((-1213 |#1| #0#) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 70)) (-3471 ((|#2| $) NIL (-12 (|has| |#2| (-301)) (|has| |#1| (-357))))) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) 88)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4019 (($ $ (-552)) 97) (($ $ (-552) (-552)) 99)) (-4245 (((-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) 47)) (-3086 ((|#2| $) 11)) (-3967 (((-3 |#2| "failed") $) 30)) (-1909 ((|#2| $) 31)) (-1607 (($ $) 192 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 168 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| |#2| (-888)) (|has| |#1| (-357))))) (-4014 (($ $) NIL (|has| |#1| (-357)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (-12 (|has| |#2| (-888)) (|has| |#1| (-357))))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1584 (($ $) 188 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 164 (|has| |#1| (-38 (-401 (-552)))))) (-2422 (((-552) $) NIL (-12 (|has| |#2| (-803)) (|has| |#1| (-357))))) (-1777 (($ (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) 57)) (-1628 (($ $) 196 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 172 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) 144) (((-3 (-552) "failed") $) NIL (-12 (|has| |#2| (-1017 (-552))) (|has| |#1| (-357)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| |#2| (-1017 (-552))) (|has| |#1| (-357)))) (((-3 (-1152) "failed") $) NIL (-12 (|has| |#2| (-1017 (-1152))) (|has| |#1| (-357))))) (-1703 ((|#2| $) 143) (((-552) $) NIL (-12 (|has| |#2| (-1017 (-552))) (|has| |#1| (-357)))) (((-401 (-552)) $) NIL (-12 (|has| |#2| (-1017 (-552))) (|has| |#1| (-357)))) (((-1152) $) NIL (-12 (|has| |#2| (-1017 (-1152))) (|has| |#1| (-357))))) (-1405 (($ $) 61) (($ (-552) $) 24)) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) NIL)) (-1800 (((-671 |#2|) (-671 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (-12 (|has| |#2| (-623 (-552))) (|has| |#1| (-357)))) (((-671 (-552)) (-671 $)) NIL (-12 (|has| |#2| (-623 (-552))) (|has| |#1| (-357))))) (-2040 (((-3 $ "failed") $) 77)) (-1281 (((-401 (-931 |#1|)) $ (-552)) 112 (|has| |#1| (-544))) (((-401 (-931 |#1|)) $ (-552) (-552)) 114 (|has| |#1| (-544)))) (-1279 (($) NIL (-12 (|has| |#2| (-537)) (|has| |#1| (-357))))) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1633 (((-111) $) NIL (|has| |#1| (-357)))) (-2983 (((-111) $) NIL (-12 (|has| |#2| (-803)) (|has| |#1| (-357))))) (-2391 (((-111) $) 64)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| |#2| (-865 (-373))) (|has| |#1| (-357)))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| |#2| (-865 (-552))) (|has| |#1| (-357))))) (-2641 (((-552) $) 93) (((-552) $ (-552)) 95)) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL (|has| |#1| (-357)))) (-2918 ((|#2| $) 151 (|has| |#1| (-357)))) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4317 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1127)) (|has| |#1| (-357))))) (-1508 (((-111) $) NIL (-12 (|has| |#2| (-803)) (|has| |#1| (-357))))) (-3322 (($ $ (-900)) 136)) (-3045 (($ (-1 |#1| (-552)) $) 132)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-552)) 19) (($ $ (-1058) (-552)) NIL) (($ $ (-627 (-1058)) (-627 (-552))) NIL)) (-1816 (($ $ $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-4093 (($ $ $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-3516 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-357)))) (-4135 (($ $) 162 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1920 (($ (-552) |#2|) 10)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 145 (|has| |#1| (-357)))) (-2747 (($ $) 214 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) 219 (-1559 (-12 (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-938)) (|has| |#1| (-1174)))))) (-3002 (($) NIL (-12 (|has| |#2| (-1127)) (|has| |#1| (-357))) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-4328 (($ $) NIL (-12 (|has| |#2| (-301)) (|has| |#1| (-357))))) (-2060 ((|#2| $) NIL (-12 (|has| |#2| (-537)) (|has| |#1| (-357))))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| |#2| (-888)) (|has| |#1| (-357))))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| |#2| (-888)) (|has| |#1| (-357))))) (-1727 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4168 (($ $ (-552)) 126)) (-2761 (((-3 $ "failed") $ $) 116 (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3154 (($ $) 160 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-552))))) (($ $ (-1152) |#2|) NIL (-12 (|has| |#2| (-506 (-1152) |#2|)) (|has| |#1| (-357)))) (($ $ (-627 (-1152)) (-627 |#2|)) NIL (-12 (|has| |#2| (-506 (-1152) |#2|)) (|has| |#1| (-357)))) (($ $ (-627 (-288 |#2|))) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357)))) (($ $ (-627 |#2|) (-627 |#2|)) NIL (-12 (|has| |#2| (-303 |#2|)) (|has| |#1| (-357))))) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ (-552)) 91) (($ $ $) 79 (|has| (-552) (-1088))) (($ $ |#2|) NIL (-12 (|has| |#2| (-280 |#2| |#2|)) (|has| |#1| (-357))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-2942 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-357))) (($ $ (-1 |#2| |#2|) (-754)) NIL (|has| |#1| (-357))) (($ $ (-754)) NIL (-1559 (-12 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 137 (-1559 (-12 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-1559 (-12 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152) (-754)) NIL (-1559 (-12 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-627 (-1152))) NIL (-1559 (-12 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152)) 140 (-1559 (-12 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))))) (-1583 (($ $) NIL (|has| |#1| (-357)))) (-2929 ((|#2| $) 152 (|has| |#1| (-357)))) (-3567 (((-552) $) 12)) (-1640 (($ $) 198 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 174 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 194 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 170 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 190 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 166 (|has| |#1| (-38 (-401 (-552)))))) (-3562 (((-220) $) NIL (-12 (|has| |#2| (-1001)) (|has| |#1| (-357)))) (((-373) $) NIL (-12 (|has| |#2| (-1001)) (|has| |#1| (-357)))) (((-528) $) NIL (-12 (|has| |#2| (-600 (-528))) (|has| |#1| (-357)))) (((-871 (-373)) $) NIL (-12 (|has| |#2| (-600 (-871 (-373)))) (|has| |#1| (-357)))) (((-871 (-552)) $) NIL (-12 (|has| |#2| (-600 (-871 (-552)))) (|has| |#1| (-357))))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-888)) (|has| |#1| (-357))))) (-2890 (($ $) 124)) (-1477 (((-842) $) 245) (($ (-552)) 23) (($ |#1|) 21 (|has| |#1| (-169))) (($ |#2|) 20) (($ (-1152)) NIL (-12 (|has| |#2| (-1017 (-1152))) (|has| |#1| (-357)))) (($ (-401 (-552))) 155 (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-1889 ((|#1| $ (-552)) 74)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#2| (-888)) (|has| |#1| (-357))) (-12 (|has| |#2| (-142)) (|has| |#1| (-357))) (|has| |#1| (-142))))) (-3995 (((-754)) 142)) (-3174 ((|#1| $) 90)) (-3796 ((|#2| $) NIL (-12 (|has| |#2| (-537)) (|has| |#1| (-357))))) (-1673 (($ $) 204 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 180 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) 200 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 176 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 208 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 184 (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-552)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) 210 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 186 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 206 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 182 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 202 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 178 (|has| |#1| (-38 (-401 (-552)))))) (-3329 (($ $) NIL (-12 (|has| |#2| (-803)) (|has| |#1| (-357))))) (-1922 (($) 13 T CONST)) (-1933 (($) 17 T CONST)) (-4251 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-357))) (($ $ (-1 |#2| |#2|) (-754)) NIL (|has| |#1| (-357))) (($ $ (-754)) NIL (-1559 (-12 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) NIL (-1559 (-12 (|has| |#2| (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-1559 (-12 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152) (-754)) NIL (-1559 (-12 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-627 (-1152))) NIL (-1559 (-12 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| |#2| (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))))) (-2351 (((-111) $ $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-2329 (((-111) $ $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-2292 (((-111) $ $) 63)) (-2340 (((-111) $ $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-2316 (((-111) $ $) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-357))))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) 149 (|has| |#1| (-357))) (($ |#2| |#2|) 150 (|has| |#1| (-357)))) (-2396 (($ $) 213) (($ $ $) 68)) (-2384 (($ $ $) 66)) (** (($ $ (-900)) NIL) (($ $ (-754)) 73) (($ $ (-552)) 146 (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 158 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-357))) (($ |#2| $) 147 (|has| |#1| (-357))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-1198 |#1| |#2|) (-1197 |#1| |#2|) (-1028) (-1226 |#1|)) (T -1198)) +NIL +(-1197 |#1| |#2|) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-3471 (((-1227 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-301)) (|has| |#1| (-357))))) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) 10)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-3245 (($ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-4058 (((-111) $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-4019 (($ $ (-552)) NIL) (($ $ (-552) (-552)) NIL)) (-4245 (((-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|))) $) NIL)) (-3086 (((-1227 |#1| |#2| |#3|) $) NIL)) (-3967 (((-3 (-1227 |#1| |#2| |#3|) "failed") $) NIL)) (-1909 (((-1227 |#1| |#2| |#3|) $) NIL)) (-1607 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))))) (-4014 (($ $) NIL (|has| |#1| (-357)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1584 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2422 (((-552) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))))) (-1777 (($ (-1132 (-2 (|:| |k| (-552)) (|:| |c| |#1|)))) NIL)) (-1628 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-1227 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1152) "failed") $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1017 (-1152))) (|has| |#1| (-357)))) (((-3 (-401 (-552)) "failed") $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1017 (-552))) (|has| |#1| (-357)))) (((-3 (-552) "failed") $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1017 (-552))) (|has| |#1| (-357))))) (-1703 (((-1227 |#1| |#2| |#3|) $) NIL) (((-1152) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1017 (-1152))) (|has| |#1| (-357)))) (((-401 (-552)) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1017 (-552))) (|has| |#1| (-357)))) (((-552) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1017 (-552))) (|has| |#1| (-357))))) (-1405 (($ $) NIL) (($ (-552) $) NIL)) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) NIL)) (-1800 (((-671 (-1227 |#1| |#2| |#3|)) (-671 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -2515 (-671 (-1227 |#1| |#2| |#3|))) (|:| |vec| (-1235 (-1227 |#1| |#2| |#3|)))) (-671 $) (-1235 $)) NIL (|has| |#1| (-357))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-623 (-552))) (|has| |#1| (-357)))) (((-671 (-552)) (-671 $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-623 (-552))) (|has| |#1| (-357))))) (-2040 (((-3 $ "failed") $) NIL)) (-1281 (((-401 (-931 |#1|)) $ (-552)) NIL (|has| |#1| (-544))) (((-401 (-931 |#1|)) $ (-552) (-552)) NIL (|has| |#1| (-544)))) (-1279 (($) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-537)) (|has| |#1| (-357))))) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1633 (((-111) $) NIL (|has| |#1| (-357)))) (-2983 (((-111) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))))) (-2391 (((-111) $) NIL)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4208 (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-865 (-552))) (|has| |#1| (-357)))) (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-865 (-373))) (|has| |#1| (-357))))) (-2641 (((-552) $) NIL) (((-552) $ (-552)) NIL)) (-2624 (((-111) $) NIL)) (-3798 (($ $) NIL (|has| |#1| (-357)))) (-2918 (((-1227 |#1| |#2| |#3|) $) NIL (|has| |#1| (-357)))) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4317 (((-3 $ "failed") $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1127)) (|has| |#1| (-357))))) (-1508 (((-111) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))))) (-3322 (($ $ (-900)) NIL)) (-3045 (($ (-1 |#1| (-552)) $) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-552)) 17) (($ $ (-1058) (-552)) NIL) (($ $ (-627 (-1058)) (-627 (-552))) NIL)) (-1816 (($ $ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-4093 (($ $ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-357)))) (-4135 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1920 (($ (-552) (-1227 |#1| |#2| |#3|)) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| |#1| (-357)))) (-2747 (($ $) 25 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-938)) (|has| |#1| (-1174))))) (($ $ (-1231 |#2|)) 26 (|has| |#1| (-38 (-401 (-552)))))) (-3002 (($) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1127)) (|has| |#1| (-357))) CONST)) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-4328 (($ $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-301)) (|has| |#1| (-357))))) (-2060 (((-1227 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-537)) (|has| |#1| (-357))))) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))))) (-1727 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4168 (($ $ (-552)) NIL)) (-2761 (((-3 $ "failed") $ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3154 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-552))))) (($ $ (-1152) (-1227 |#1| |#2| |#3|)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-506 (-1152) (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-627 (-1152)) (-627 (-1227 |#1| |#2| |#3|))) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-506 (-1152) (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-627 (-288 (-1227 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-303 (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-288 (-1227 |#1| |#2| |#3|))) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-303 (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-303 (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357)))) (($ $ (-627 (-1227 |#1| |#2| |#3|)) (-627 (-1227 |#1| |#2| |#3|))) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-303 (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357))))) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ (-552)) NIL) (($ $ $) NIL (|has| (-552) (-1088))) (($ $ (-1227 |#1| |#2| |#3|)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-280 (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|))) (|has| |#1| (-357))))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-2942 (($ $ (-1 (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|))) NIL (|has| |#1| (-357))) (($ $ (-1 (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|)) (-754)) NIL (|has| |#1| (-357))) (($ $ (-1231 |#2|)) 24) (($ $ (-754)) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) 23 (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152) (-754)) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-627 (-1152))) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))))) (-1583 (($ $) NIL (|has| |#1| (-357)))) (-2929 (((-1227 |#1| |#2| |#3|) $) NIL (|has| |#1| (-357)))) (-3567 (((-552) $) NIL)) (-1640 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3562 (((-528) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-600 (-528))) (|has| |#1| (-357)))) (((-373) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1001)) (|has| |#1| (-357)))) (((-220) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1001)) (|has| |#1| (-357)))) (((-871 (-373)) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-600 (-871 (-373)))) (|has| |#1| (-357)))) (((-871 (-552)) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-600 (-871 (-552)))) (|has| |#1| (-357))))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))))) (-2890 (($ $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1227 |#1| |#2| |#3|)) NIL) (($ (-1231 |#2|)) 22) (($ (-1152)) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-1017 (-1152))) (|has| |#1| (-357)))) (($ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544)))) (($ (-401 (-552))) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-1017 (-552))) (|has| |#1| (-357))) (|has| |#1| (-38 (-401 (-552))))))) (-1889 ((|#1| $ (-552)) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-142)) (|has| |#1| (-357))) (|has| |#1| (-142))))) (-3995 (((-754)) NIL)) (-3174 ((|#1| $) 11)) (-3796 (((-1227 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-537)) (|has| |#1| (-357))))) (-1673 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-888)) (|has| |#1| (-357))) (|has| |#1| (-544))))) (-1652 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-552)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-552)))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3329 (($ $) NIL (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))))) (-1922 (($) 19 T CONST)) (-1933 (($) 15 T CONST)) (-4251 (($ $ (-1 (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|))) NIL (|has| |#1| (-357))) (($ $ (-1 (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|)) (-754)) NIL (|has| |#1| (-357))) (($ $ (-754)) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-228)) (|has| |#1| (-357))) (|has| |#1| (-15 * (|#1| (-552) |#1|))))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152) (-754)) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-627 (-1152))) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152)))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-879 (-1152))) (|has| |#1| (-357))) (-12 (|has| |#1| (-15 * (|#1| (-552) |#1|))) (|has| |#1| (-879 (-1152))))))) (-2351 (((-111) $ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-2329 (((-111) $ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-2316 (((-111) $ $) NIL (-1559 (-12 (|has| (-1227 |#1| |#2| |#3|) (-803)) (|has| |#1| (-357))) (-12 (|has| (-1227 |#1| |#2| |#3|) (-830)) (|has| |#1| (-357)))))) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357))) (($ (-1227 |#1| |#2| |#3|) (-1227 |#1| |#2| |#3|)) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 20)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1227 |#1| |#2| |#3|)) NIL (|has| |#1| (-357))) (($ (-1227 |#1| |#2| |#3|) $) NIL (|has| |#1| (-357))) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-1199 |#1| |#2| |#3|) (-13 (-1197 |#1| (-1227 |#1| |#2| |#3|)) (-10 -8 (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) (-1028) (-1152) |#1|) (T -1199)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1199 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1199 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1199 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3)))) +(-13 (-1197 |#1| (-1227 |#1| |#2| |#3|)) (-10 -8 (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) +((-1523 (((-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))) |#1| (-111)) 12)) (-1685 (((-412 |#1|) |#1|) 22)) (-1727 (((-412 |#1|) |#1|) 21))) +(((-1200 |#1|) (-10 -7 (-15 -1727 ((-412 |#1|) |#1|)) (-15 -1685 ((-412 |#1|) |#1|)) (-15 -1523 ((-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))) |#1| (-111)))) (-1211 (-552))) (T -1200)) +((-1523 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-5 *2 (-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| *3) (|:| -3594 (-552))))))) (-5 *1 (-1200 *3)) (-4 *3 (-1211 (-552))))) (-1685 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-1200 *3)) (-4 *3 (-1211 (-552))))) (-1727 (*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-1200 *3)) (-4 *3 (-1211 (-552)))))) +(-10 -7 (-15 -1727 ((-412 |#1|) |#1|)) (-15 -1685 ((-412 |#1|) |#1|)) (-15 -1523 ((-2 (|:| |contp| (-552)) (|:| -2101 (-627 (-2 (|:| |irr| |#1|) (|:| -3594 (-552)))))) |#1| (-111)))) +((-3516 (((-1132 |#2|) (-1 |#2| |#1|) (-1202 |#1|)) 23 (|has| |#1| (-828))) (((-1202 |#2|) (-1 |#2| |#1|) (-1202 |#1|)) 17))) +(((-1201 |#1| |#2|) (-10 -7 (-15 -3516 ((-1202 |#2|) (-1 |#2| |#1|) (-1202 |#1|))) (IF (|has| |#1| (-828)) (-15 -3516 ((-1132 |#2|) (-1 |#2| |#1|) (-1202 |#1|))) |%noBranch|)) (-1189) (-1189)) (T -1201)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1202 *5)) (-4 *5 (-828)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-1132 *6)) (-5 *1 (-1201 *5 *6)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1202 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-1202 *6)) (-5 *1 (-1201 *5 *6))))) +(-10 -7 (-15 -3516 ((-1202 |#2|) (-1 |#2| |#1|) (-1202 |#1|))) (IF (|has| |#1| (-828)) (-15 -3516 ((-1132 |#2|) (-1 |#2| |#1|) (-1202 |#1|))) |%noBranch|)) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-4202 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-3516 (((-1132 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-828)))) (-1781 ((|#1| $) 14)) (-2298 ((|#1| $) 10)) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-2309 (((-552) $) 18)) (-3180 ((|#1| $) 17)) (-2323 ((|#1| $) 11)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3280 (((-111) $) 16)) (-2496 (((-1132 |#1|) $) 38 (|has| |#1| (-828))) (((-1132 |#1|) (-627 $)) 37 (|has| |#1| (-828)))) (-3562 (($ |#1|) 25)) (-1477 (($ (-1070 |#1|)) 24) (((-842) $) 34 (|has| |#1| (-1076)))) (-2591 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-2089 (($ $ (-552)) 13)) (-2292 (((-111) $ $) 27 (|has| |#1| (-1076))))) +(((-1202 |#1|) (-13 (-1069 |#1|) (-10 -8 (-15 -2591 ($ |#1|)) (-15 -4202 ($ |#1|)) (-15 -1477 ($ (-1070 |#1|))) (-15 -3280 ((-111) $)) (IF (|has| |#1| (-1076)) (-6 (-1076)) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-1071 |#1| (-1132 |#1|))) |%noBranch|))) (-1189)) (T -1202)) +((-2591 (*1 *1 *2) (-12 (-5 *1 (-1202 *2)) (-4 *2 (-1189)))) (-4202 (*1 *1 *2) (-12 (-5 *1 (-1202 *2)) (-4 *2 (-1189)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1070 *3)) (-4 *3 (-1189)) (-5 *1 (-1202 *3)))) (-3280 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1202 *3)) (-4 *3 (-1189))))) +(-13 (-1069 |#1|) (-10 -8 (-15 -2591 ($ |#1|)) (-15 -4202 ($ |#1|)) (-15 -1477 ($ (-1070 |#1|))) (-15 -3280 ((-111) $)) (IF (|has| |#1| (-1076)) (-6 (-1076)) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-1071 |#1| (-1132 |#1|))) |%noBranch|))) +((-3516 (((-1208 |#3| |#4|) (-1 |#4| |#2|) (-1208 |#1| |#2|)) 15))) +(((-1203 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 ((-1208 |#3| |#4|) (-1 |#4| |#2|) (-1208 |#1| |#2|)))) (-1152) (-1028) (-1152) (-1028)) (T -1203)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1208 *5 *6)) (-14 *5 (-1152)) (-4 *6 (-1028)) (-4 *8 (-1028)) (-5 *2 (-1208 *7 *8)) (-5 *1 (-1203 *5 *6 *7 *8)) (-14 *7 (-1152))))) +(-10 -7 (-15 -3516 ((-1208 |#3| |#4|) (-1 |#4| |#2|) (-1208 |#1| |#2|)))) +((-1971 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3623 ((|#1| |#3|) 13)) (-2155 ((|#3| |#3|) 19))) +(((-1204 |#1| |#2| |#3|) (-10 -7 (-15 -3623 (|#1| |#3|)) (-15 -2155 (|#3| |#3|)) (-15 -1971 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-544) (-971 |#1|) (-1211 |#2|)) (T -1204)) +((-1971 (*1 *2 *3) (-12 (-4 *4 (-544)) (-4 *5 (-971 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1204 *4 *5 *3)) (-4 *3 (-1211 *5)))) (-2155 (*1 *2 *2) (-12 (-4 *3 (-544)) (-4 *4 (-971 *3)) (-5 *1 (-1204 *3 *4 *2)) (-4 *2 (-1211 *4)))) (-3623 (*1 *2 *3) (-12 (-4 *4 (-971 *2)) (-4 *2 (-544)) (-5 *1 (-1204 *2 *4 *3)) (-4 *3 (-1211 *4))))) +(-10 -7 (-15 -3623 (|#1| |#3|)) (-15 -2155 (|#3| |#3|)) (-15 -1971 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-3113 (((-3 |#2| "failed") |#2| (-754) |#1|) 29)) (-1522 (((-3 |#2| "failed") |#2| (-754)) 30)) (-2173 (((-3 (-2 (|:| -2776 |#2|) (|:| -2791 |#2|)) "failed") |#2|) 43)) (-2782 (((-627 |#2|) |#2|) 45)) (-2772 (((-3 |#2| "failed") |#2| |#2|) 40))) +(((-1205 |#1| |#2|) (-10 -7 (-15 -1522 ((-3 |#2| "failed") |#2| (-754))) (-15 -3113 ((-3 |#2| "failed") |#2| (-754) |#1|)) (-15 -2772 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2173 ((-3 (-2 (|:| -2776 |#2|) (|:| -2791 |#2|)) "failed") |#2|)) (-15 -2782 ((-627 |#2|) |#2|))) (-13 (-544) (-144)) (-1211 |#1|)) (T -1205)) +((-2782 (*1 *2 *3) (-12 (-4 *4 (-13 (-544) (-144))) (-5 *2 (-627 *3)) (-5 *1 (-1205 *4 *3)) (-4 *3 (-1211 *4)))) (-2173 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-544) (-144))) (-5 *2 (-2 (|:| -2776 *3) (|:| -2791 *3))) (-5 *1 (-1205 *4 *3)) (-4 *3 (-1211 *4)))) (-2772 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-1205 *3 *2)) (-4 *2 (-1211 *3)))) (-3113 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-754)) (-4 *4 (-13 (-544) (-144))) (-5 *1 (-1205 *4 *2)) (-4 *2 (-1211 *4)))) (-1522 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-754)) (-4 *4 (-13 (-544) (-144))) (-5 *1 (-1205 *4 *2)) (-4 *2 (-1211 *4))))) +(-10 -7 (-15 -1522 ((-3 |#2| "failed") |#2| (-754))) (-15 -3113 ((-3 |#2| "failed") |#2| (-754) |#1|)) (-15 -2772 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2173 ((-3 (-2 (|:| -2776 |#2|) (|:| -2791 |#2|)) "failed") |#2|)) (-15 -2782 ((-627 |#2|) |#2|))) +((-1402 (((-3 (-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) "failed") |#2| |#2|) 32))) +(((-1206 |#1| |#2|) (-10 -7 (-15 -1402 ((-3 (-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) "failed") |#2| |#2|))) (-544) (-1211 |#1|)) (T -1206)) +((-1402 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-544)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-1206 *4 *3)) (-4 *3 (-1211 *4))))) +(-10 -7 (-15 -1402 ((-3 (-2 (|:| -2404 |#2|) (|:| -3401 |#2|)) "failed") |#2| |#2|))) +((-2833 ((|#2| |#2| |#2|) 19)) (-4129 ((|#2| |#2| |#2|) 30)) (-2698 ((|#2| |#2| |#2| (-754) (-754)) 36))) +(((-1207 |#1| |#2|) (-10 -7 (-15 -2833 (|#2| |#2| |#2|)) (-15 -4129 (|#2| |#2| |#2|)) (-15 -2698 (|#2| |#2| |#2| (-754) (-754)))) (-1028) (-1211 |#1|)) (T -1207)) +((-2698 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-754)) (-4 *4 (-1028)) (-5 *1 (-1207 *4 *2)) (-4 *2 (-1211 *4)))) (-4129 (*1 *2 *2 *2) (-12 (-4 *3 (-1028)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-1211 *3)))) (-2833 (*1 *2 *2 *2) (-12 (-4 *3 (-1028)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-1211 *3))))) +(-10 -7 (-15 -2833 (|#2| |#2| |#2|)) (-15 -4129 (|#2| |#2| |#2|)) (-15 -2698 (|#2| |#2| |#2| (-754) (-754)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-2449 (((-1235 |#2|) $ (-754)) NIL)) (-1853 (((-627 (-1058)) $) NIL)) (-4027 (($ (-1148 |#2|)) NIL)) (-1694 (((-1148 $) $ (-1058)) NIL) (((-1148 |#2|) $) NIL)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#2| (-544)))) (-3245 (($ $) NIL (|has| |#2| (-544)))) (-4058 (((-111) $) NIL (|has| |#2| (-544)))) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-1058))) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-1340 (($ $ $) NIL (|has| |#2| (-544)))) (-2246 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-4014 (($ $) NIL (|has| |#2| (-445)))) (-2487 (((-412 $) $) NIL (|has| |#2| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-4224 (((-111) $ $) NIL (|has| |#2| (-357)))) (-1611 (($ $ (-754)) NIL)) (-3123 (($ $ (-754)) NIL)) (-4194 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-445)))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) NIL) (((-3 (-401 (-552)) "failed") $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) NIL (|has| |#2| (-1017 (-552)))) (((-3 (-1058) "failed") $) NIL)) (-1703 ((|#2| $) NIL) (((-401 (-552)) $) NIL (|has| |#2| (-1017 (-401 (-552))))) (((-552) $) NIL (|has| |#2| (-1017 (-552)))) (((-1058) $) NIL)) (-3116 (($ $ $ (-1058)) NIL (|has| |#2| (-169))) ((|#2| $ $) NIL (|has| |#2| (-169)))) (-2813 (($ $ $) NIL (|has| |#2| (-357)))) (-2014 (($ $) NIL)) (-1800 (((-671 (-552)) (-671 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) NIL (|has| |#2| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#2|)) (|:| |vec| (-1235 |#2|))) (-671 $) (-1235 $)) NIL) (((-671 |#2|) (-671 $)) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2789 (($ $ $) NIL (|has| |#2| (-357)))) (-1419 (($ $ $) NIL)) (-3955 (($ $ $) NIL (|has| |#2| (-544)))) (-2148 (((-2 (|:| -3069 |#2|) (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#2| (-544)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#2| (-357)))) (-1375 (($ $) NIL (|has| |#2| (-445))) (($ $ (-1058)) NIL (|has| |#2| (-445)))) (-2003 (((-627 $) $) NIL)) (-1633 (((-111) $) NIL (|has| |#2| (-888)))) (-2061 (($ $ |#2| (-754) $) NIL)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) NIL (-12 (|has| (-1058) (-865 (-373))) (|has| |#2| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) NIL (-12 (|has| (-1058) (-865 (-552))) (|has| |#2| (-865 (-552)))))) (-2641 (((-754) $ $) NIL (|has| |#2| (-544)))) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-4317 (((-3 $ "failed") $) NIL (|has| |#2| (-1127)))) (-1842 (($ (-1148 |#2|) (-1058)) NIL) (($ (-1148 $) (-1058)) NIL)) (-3322 (($ $ (-754)) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#2| (-357)))) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-1832 (($ |#2| (-754)) 17) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-1058)) NIL) (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL)) (-3465 (((-754) $) NIL) (((-754) $ (-1058)) NIL) (((-627 (-754)) $ (-627 (-1058))) NIL)) (-1816 (($ $ $) NIL (|has| |#2| (-830)))) (-4093 (($ $ $) NIL (|has| |#2| (-830)))) (-3813 (($ (-1 (-754) (-754)) $) NIL)) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-1578 (((-1148 |#2|) $) NIL)) (-2685 (((-3 (-1058) "failed") $) NIL)) (-1981 (($ $) NIL)) (-1993 ((|#2| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-1595 (((-1134) $) NIL)) (-3341 (((-2 (|:| -2404 $) (|:| -3401 $)) $ (-754)) NIL)) (-4035 (((-3 (-627 $) "failed") $) NIL)) (-2746 (((-3 (-627 $) "failed") $) NIL)) (-3815 (((-3 (-2 (|:| |var| (-1058)) (|:| -4067 (-754))) "failed") $) NIL)) (-2747 (($ $) NIL (|has| |#2| (-38 (-401 (-552)))))) (-3002 (($) NIL (|has| |#2| (-1127)) CONST)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 ((|#2| $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#2| (-445)))) (-1323 (($ (-627 $)) NIL (|has| |#2| (-445))) (($ $ $) NIL (|has| |#2| (-445)))) (-1839 (($ $ (-754) |#2| $) NIL)) (-3676 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) NIL (|has| |#2| (-888)))) (-1727 (((-412 $) $) NIL (|has| |#2| (-888)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#2| (-357)))) (-2761 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-544))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#2| (-357)))) (-3321 (($ $ (-627 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-1058) |#2|) NIL) (($ $ (-627 (-1058)) (-627 |#2|)) NIL) (($ $ (-1058) $) NIL) (($ $ (-627 (-1058)) (-627 $)) NIL)) (-2718 (((-754) $) NIL (|has| |#2| (-357)))) (-1985 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-401 $) (-401 $) (-401 $)) NIL (|has| |#2| (-544))) ((|#2| (-401 $) |#2|) NIL (|has| |#2| (-357))) (((-401 $) $ (-401 $)) NIL (|has| |#2| (-544)))) (-3719 (((-3 $ "failed") $ (-754)) NIL)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#2| (-357)))) (-1637 (($ $ (-1058)) NIL (|has| |#2| (-169))) ((|#2| $) NIL (|has| |#2| (-169)))) (-2942 (($ $ (-1058)) NIL) (($ $ (-627 (-1058))) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL) (($ $ (-754)) NIL) (($ $) NIL) (($ $ (-1152)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3567 (((-754) $) NIL) (((-754) $ (-1058)) NIL) (((-627 (-754)) $ (-627 (-1058))) NIL)) (-3562 (((-871 (-373)) $) NIL (-12 (|has| (-1058) (-600 (-871 (-373)))) (|has| |#2| (-600 (-871 (-373)))))) (((-871 (-552)) $) NIL (-12 (|has| (-1058) (-600 (-871 (-552)))) (|has| |#2| (-600 (-871 (-552)))))) (((-528) $) NIL (-12 (|has| (-1058) (-600 (-528))) (|has| |#2| (-600 (-528)))))) (-3495 ((|#2| $) NIL (|has| |#2| (-445))) (($ $ (-1058)) NIL (|has| |#2| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) NIL (-12 (|has| $ (-142)) (|has| |#2| (-888))))) (-2749 (((-3 $ "failed") $ $) NIL (|has| |#2| (-544))) (((-3 (-401 $) "failed") (-401 $) $) NIL (|has| |#2| (-544)))) (-1477 (((-842) $) 13) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-1058)) NIL) (($ (-1231 |#1|)) 19) (($ (-401 (-552))) NIL (-1559 (|has| |#2| (-38 (-401 (-552)))) (|has| |#2| (-1017 (-401 (-552)))))) (($ $) NIL (|has| |#2| (-544)))) (-1493 (((-627 |#2|) $) NIL)) (-1889 ((|#2| $ (-754)) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-3050 (((-3 $ "failed") $) NIL (-1559 (-12 (|has| $ (-142)) (|has| |#2| (-888))) (|has| |#2| (-142))))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| |#2| (-169)))) (-3778 (((-111) $ $) NIL (|has| |#2| (-544)))) (-1922 (($) NIL T CONST)) (-1933 (($) 14 T CONST)) (-4251 (($ $ (-1058)) NIL) (($ $ (-627 (-1058))) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL) (($ $ (-754)) NIL) (($ $) NIL) (($ $ (-1152)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1152) (-754)) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) NIL (|has| |#2| (-879 (-1152)))) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2351 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2292 (((-111) $ $) NIL)) (-2340 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#2| (-830)))) (-2407 (($ $ |#2|) NIL (|has| |#2| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-401 (-552))) NIL (|has| |#2| (-38 (-401 (-552))))) (($ (-401 (-552)) $) NIL (|has| |#2| (-38 (-401 (-552))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1208 |#1| |#2|) (-13 (-1211 |#2|) (-10 -8 (-15 -1477 ($ (-1231 |#1|))) (-15 -1839 ($ $ (-754) |#2| $)))) (-1152) (-1028)) (T -1208)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-14 *3 (-1152)) (-5 *1 (-1208 *3 *4)) (-4 *4 (-1028)))) (-1839 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-754)) (-5 *1 (-1208 *4 *3)) (-14 *4 (-1152)) (-4 *3 (-1028))))) +(-13 (-1211 |#2|) (-10 -8 (-15 -1477 ($ (-1231 |#1|))) (-15 -1839 ($ $ (-754) |#2| $)))) +((-3516 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1209 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 (|#4| (-1 |#3| |#1|) |#2|))) (-1028) (-1211 |#1|) (-1028) (-1211 |#3|)) (T -1209)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1028)) (-4 *6 (-1028)) (-4 *2 (-1211 *6)) (-5 *1 (-1209 *5 *4 *6 *2)) (-4 *4 (-1211 *5))))) +(-10 -7 (-15 -3516 (|#4| (-1 |#3| |#1|) |#2|))) +((-2449 (((-1235 |#2|) $ (-754)) 114)) (-1853 (((-627 (-1058)) $) 15)) (-4027 (($ (-1148 |#2|)) 67)) (-3278 (((-754) $) NIL) (((-754) $ (-627 (-1058))) 18)) (-2246 (((-412 (-1148 $)) (-1148 $)) 185)) (-4014 (($ $) 175)) (-2487 (((-412 $) $) 173)) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 82)) (-1611 (($ $ (-754)) 71)) (-3123 (($ $ (-754)) 73)) (-4194 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-4039 (((-3 |#2| "failed") $) 117) (((-3 (-401 (-552)) "failed") $) NIL) (((-3 (-552) "failed") $) NIL) (((-3 (-1058) "failed") $) NIL)) (-1703 ((|#2| $) 115) (((-401 (-552)) $) NIL) (((-552) $) NIL) (((-1058) $) NIL)) (-3955 (($ $ $) 151)) (-2148 (((-2 (|:| -3069 |#2|) (|:| -2404 $) (|:| -3401 $)) $ $) 153)) (-2641 (((-754) $ $) 170)) (-4317 (((-3 $ "failed") $) 123)) (-1832 (($ |#2| (-754)) NIL) (($ $ (-1058) (-754)) 47) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-3465 (((-754) $) NIL) (((-754) $ (-1058)) 42) (((-627 (-754)) $ (-627 (-1058))) 43)) (-1578 (((-1148 |#2|) $) 59)) (-2685 (((-3 (-1058) "failed") $) 40)) (-3341 (((-2 (|:| -2404 $) (|:| -3401 $)) $ (-754)) 70)) (-2747 (($ $) 197)) (-3002 (($) 119)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 182)) (-3676 (((-412 (-1148 $)) (-1148 $)) 88)) (-3644 (((-412 (-1148 $)) (-1148 $)) 86)) (-1727 (((-412 $) $) 107)) (-3321 (($ $ (-627 (-288 $))) 39) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-627 $) (-627 $)) NIL) (($ $ (-1058) |#2|) 31) (($ $ (-627 (-1058)) (-627 |#2|)) 28) (($ $ (-1058) $) 25) (($ $ (-627 (-1058)) (-627 $)) 23)) (-2718 (((-754) $) 188)) (-1985 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-401 $) (-401 $) (-401 $)) 147) ((|#2| (-401 $) |#2|) 187) (((-401 $) $ (-401 $)) 169)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 191)) (-2942 (($ $ (-1058)) 140) (($ $ (-627 (-1058))) NIL) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL) (($ $ (-754)) NIL) (($ $) 138) (($ $ (-1152)) NIL) (($ $ (-627 (-1152))) NIL) (($ $ (-1152) (-754)) NIL) (($ $ (-627 (-1152)) (-627 (-754))) NIL) (($ $ (-1 |#2| |#2|) (-754)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-3567 (((-754) $) NIL) (((-754) $ (-1058)) 16) (((-627 (-754)) $ (-627 (-1058))) 20)) (-3495 ((|#2| $) NIL) (($ $ (-1058)) 125)) (-2749 (((-3 $ "failed") $ $) 161) (((-3 (-401 $) "failed") (-401 $) $) 157)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#2|) NIL) (($ (-1058)) 51) (($ (-401 (-552))) NIL) (($ $) NIL))) +(((-1210 |#1| |#2|) (-10 -8 (-15 -1477 (|#1| |#1|)) (-15 -3128 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -2487 ((-412 |#1|) |#1|)) (-15 -4014 (|#1| |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -3002 (|#1|)) (-15 -4317 ((-3 |#1| "failed") |#1|)) (-15 -1985 ((-401 |#1|) |#1| (-401 |#1|))) (-15 -2718 ((-754) |#1|)) (-15 -3963 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -2747 (|#1| |#1|)) (-15 -1985 (|#2| (-401 |#1|) |#2|)) (-15 -4194 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2148 ((-2 (|:| -3069 |#2|) (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -3955 (|#1| |#1| |#1|)) (-15 -2749 ((-3 (-401 |#1|) "failed") (-401 |#1|) |#1|)) (-15 -2749 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2641 ((-754) |#1| |#1|)) (-15 -1985 ((-401 |#1|) (-401 |#1|) (-401 |#1|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3123 (|#1| |#1| (-754))) (-15 -1611 (|#1| |#1| (-754))) (-15 -3341 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| (-754))) (-15 -4027 (|#1| (-1148 |#2|))) (-15 -1578 ((-1148 |#2|) |#1|)) (-15 -2449 ((-1235 |#2|) |#1| (-754))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -1985 (|#1| |#1| |#1|)) (-15 -1985 (|#2| |#1| |#2|)) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -2246 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -3644 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -3676 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -1964 ((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|))) (-15 -3495 (|#1| |#1| (-1058))) (-15 -1853 ((-627 (-1058)) |#1|)) (-15 -3278 ((-754) |#1| (-627 (-1058)))) (-15 -3278 ((-754) |#1|)) (-15 -1832 (|#1| |#1| (-627 (-1058)) (-627 (-754)))) (-15 -1832 (|#1| |#1| (-1058) (-754))) (-15 -3465 ((-627 (-754)) |#1| (-627 (-1058)))) (-15 -3465 ((-754) |#1| (-1058))) (-15 -2685 ((-3 (-1058) "failed") |#1|)) (-15 -3567 ((-627 (-754)) |#1| (-627 (-1058)))) (-15 -3567 ((-754) |#1| (-1058))) (-15 -1703 ((-1058) |#1|)) (-15 -4039 ((-3 (-1058) "failed") |#1|)) (-15 -1477 (|#1| (-1058))) (-15 -3321 (|#1| |#1| (-627 (-1058)) (-627 |#1|))) (-15 -3321 (|#1| |#1| (-1058) |#1|)) (-15 -3321 (|#1| |#1| (-627 (-1058)) (-627 |#2|))) (-15 -3321 (|#1| |#1| (-1058) |#2|)) (-15 -3321 (|#1| |#1| (-627 |#1|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| (-288 |#1|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -3567 ((-754) |#1|)) (-15 -1832 (|#1| |#2| (-754))) (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -3465 ((-754) |#1|)) (-15 -3495 (|#2| |#1|)) (-15 -2942 (|#1| |#1| (-627 (-1058)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1058) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1058)))) (-15 -2942 (|#1| |#1| (-1058))) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) (-1211 |#2|) (-1028)) (T -1210)) +NIL +(-10 -8 (-15 -1477 (|#1| |#1|)) (-15 -3128 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -2487 ((-412 |#1|) |#1|)) (-15 -4014 (|#1| |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -3002 (|#1|)) (-15 -4317 ((-3 |#1| "failed") |#1|)) (-15 -1985 ((-401 |#1|) |#1| (-401 |#1|))) (-15 -2718 ((-754) |#1|)) (-15 -3963 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -2747 (|#1| |#1|)) (-15 -1985 (|#2| (-401 |#1|) |#2|)) (-15 -4194 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2148 ((-2 (|:| -3069 |#2|) (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| |#1|)) (-15 -3955 (|#1| |#1| |#1|)) (-15 -2749 ((-3 (-401 |#1|) "failed") (-401 |#1|) |#1|)) (-15 -2749 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2641 ((-754) |#1| |#1|)) (-15 -1985 ((-401 |#1|) (-401 |#1|) (-401 |#1|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3123 (|#1| |#1| (-754))) (-15 -1611 (|#1| |#1| (-754))) (-15 -3341 ((-2 (|:| -2404 |#1|) (|:| -3401 |#1|)) |#1| (-754))) (-15 -4027 (|#1| (-1148 |#2|))) (-15 -1578 ((-1148 |#2|) |#1|)) (-15 -2449 ((-1235 |#2|) |#1| (-754))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2942 (|#1| |#1| (-1 |#2| |#2|) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1152) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1152)))) (-15 -2942 (|#1| |#1| (-1152))) (-15 -2942 (|#1| |#1|)) (-15 -2942 (|#1| |#1| (-754))) (-15 -1985 (|#1| |#1| |#1|)) (-15 -1985 (|#2| |#1| |#2|)) (-15 -1727 ((-412 |#1|) |#1|)) (-15 -2246 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -3644 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -3676 ((-412 (-1148 |#1|)) (-1148 |#1|))) (-15 -1964 ((-3 (-627 (-1148 |#1|)) "failed") (-627 (-1148 |#1|)) (-1148 |#1|))) (-15 -3495 (|#1| |#1| (-1058))) (-15 -1853 ((-627 (-1058)) |#1|)) (-15 -3278 ((-754) |#1| (-627 (-1058)))) (-15 -3278 ((-754) |#1|)) (-15 -1832 (|#1| |#1| (-627 (-1058)) (-627 (-754)))) (-15 -1832 (|#1| |#1| (-1058) (-754))) (-15 -3465 ((-627 (-754)) |#1| (-627 (-1058)))) (-15 -3465 ((-754) |#1| (-1058))) (-15 -2685 ((-3 (-1058) "failed") |#1|)) (-15 -3567 ((-627 (-754)) |#1| (-627 (-1058)))) (-15 -3567 ((-754) |#1| (-1058))) (-15 -1703 ((-1058) |#1|)) (-15 -4039 ((-3 (-1058) "failed") |#1|)) (-15 -1477 (|#1| (-1058))) (-15 -3321 (|#1| |#1| (-627 (-1058)) (-627 |#1|))) (-15 -3321 (|#1| |#1| (-1058) |#1|)) (-15 -3321 (|#1| |#1| (-627 (-1058)) (-627 |#2|))) (-15 -3321 (|#1| |#1| (-1058) |#2|)) (-15 -3321 (|#1| |#1| (-627 |#1|) (-627 |#1|))) (-15 -3321 (|#1| |#1| |#1| |#1|)) (-15 -3321 (|#1| |#1| (-288 |#1|))) (-15 -3321 (|#1| |#1| (-627 (-288 |#1|)))) (-15 -3567 ((-754) |#1|)) (-15 -1832 (|#1| |#2| (-754))) (-15 -1703 ((-552) |#1|)) (-15 -4039 ((-3 (-552) "failed") |#1|)) (-15 -1703 ((-401 (-552)) |#1|)) (-15 -4039 ((-3 (-401 (-552)) "failed") |#1|)) (-15 -1477 (|#1| |#2|)) (-15 -4039 ((-3 |#2| "failed") |#1|)) (-15 -1703 (|#2| |#1|)) (-15 -3465 ((-754) |#1|)) (-15 -3495 (|#2| |#1|)) (-15 -2942 (|#1| |#1| (-627 (-1058)) (-627 (-754)))) (-15 -2942 (|#1| |#1| (-1058) (-754))) (-15 -2942 (|#1| |#1| (-627 (-1058)))) (-15 -2942 (|#1| |#1| (-1058))) (-15 -1477 (|#1| (-552))) (-15 -1477 ((-842) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-2449 (((-1235 |#1|) $ (-754)) 236)) (-1853 (((-627 (-1058)) $) 108)) (-4027 (($ (-1148 |#1|)) 234)) (-1694 (((-1148 $) $ (-1058)) 123) (((-1148 |#1|) $) 122)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 85 (|has| |#1| (-544)))) (-3245 (($ $) 86 (|has| |#1| (-544)))) (-4058 (((-111) $) 88 (|has| |#1| (-544)))) (-3278 (((-754) $) 110) (((-754) $ (-627 (-1058))) 109)) (-4136 (((-3 $ "failed") $ $) 19)) (-1340 (($ $ $) 221 (|has| |#1| (-544)))) (-2246 (((-412 (-1148 $)) (-1148 $)) 98 (|has| |#1| (-888)))) (-4014 (($ $) 96 (|has| |#1| (-445)))) (-2487 (((-412 $) $) 95 (|has| |#1| (-445)))) (-1964 (((-3 (-627 (-1148 $)) "failed") (-627 (-1148 $)) (-1148 $)) 101 (|has| |#1| (-888)))) (-4224 (((-111) $ $) 206 (|has| |#1| (-357)))) (-1611 (($ $ (-754)) 229)) (-3123 (($ $ (-754)) 228)) (-4194 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-445)))) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#1| "failed") $) 162) (((-3 (-401 (-552)) "failed") $) 160 (|has| |#1| (-1017 (-401 (-552))))) (((-3 (-552) "failed") $) 158 (|has| |#1| (-1017 (-552)))) (((-3 (-1058) "failed") $) 134)) (-1703 ((|#1| $) 163) (((-401 (-552)) $) 159 (|has| |#1| (-1017 (-401 (-552))))) (((-552) $) 157 (|has| |#1| (-1017 (-552)))) (((-1058) $) 133)) (-3116 (($ $ $ (-1058)) 106 (|has| |#1| (-169))) ((|#1| $ $) 224 (|has| |#1| (-169)))) (-2813 (($ $ $) 210 (|has| |#1| (-357)))) (-2014 (($ $) 152)) (-1800 (((-671 (-552)) (-671 $)) 132 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 (-552))) (|:| |vec| (-1235 (-552)))) (-671 $) (-1235 $)) 131 (|has| |#1| (-623 (-552)))) (((-2 (|:| -2515 (-671 |#1|)) (|:| |vec| (-1235 |#1|))) (-671 $) (-1235 $)) 130) (((-671 |#1|) (-671 $)) 129)) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 209 (|has| |#1| (-357)))) (-1419 (($ $ $) 227)) (-3955 (($ $ $) 218 (|has| |#1| (-544)))) (-2148 (((-2 (|:| -3069 |#1|) (|:| -2404 $) (|:| -3401 $)) $ $) 217 (|has| |#1| (-544)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 204 (|has| |#1| (-357)))) (-1375 (($ $) 174 (|has| |#1| (-445))) (($ $ (-1058)) 103 (|has| |#1| (-445)))) (-2003 (((-627 $) $) 107)) (-1633 (((-111) $) 94 (|has| |#1| (-888)))) (-2061 (($ $ |#1| (-754) $) 170)) (-4208 (((-868 (-373) $) $ (-871 (-373)) (-868 (-373) $)) 82 (-12 (|has| (-1058) (-865 (-373))) (|has| |#1| (-865 (-373))))) (((-868 (-552) $) $ (-871 (-552)) (-868 (-552) $)) 81 (-12 (|has| (-1058) (-865 (-552))) (|has| |#1| (-865 (-552)))))) (-2641 (((-754) $ $) 222 (|has| |#1| (-544)))) (-2624 (((-111) $) 30)) (-3522 (((-754) $) 167)) (-4317 (((-3 $ "failed") $) 202 (|has| |#1| (-1127)))) (-1842 (($ (-1148 |#1|) (-1058)) 115) (($ (-1148 $) (-1058)) 114)) (-3322 (($ $ (-754)) 233)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 213 (|has| |#1| (-357)))) (-3056 (((-627 $) $) 124)) (-3267 (((-111) $) 150)) (-1832 (($ |#1| (-754)) 151) (($ $ (-1058) (-754)) 117) (($ $ (-627 (-1058)) (-627 (-754))) 116)) (-1984 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $ (-1058)) 118) (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 231)) (-3465 (((-754) $) 168) (((-754) $ (-1058)) 120) (((-627 (-754)) $ (-627 (-1058))) 119)) (-1816 (($ $ $) 77 (|has| |#1| (-830)))) (-4093 (($ $ $) 76 (|has| |#1| (-830)))) (-3813 (($ (-1 (-754) (-754)) $) 169)) (-3516 (($ (-1 |#1| |#1|) $) 149)) (-1578 (((-1148 |#1|) $) 235)) (-2685 (((-3 (-1058) "failed") $) 121)) (-1981 (($ $) 147)) (-1993 ((|#1| $) 146)) (-1276 (($ (-627 $)) 92 (|has| |#1| (-445))) (($ $ $) 91 (|has| |#1| (-445)))) (-1595 (((-1134) $) 9)) (-3341 (((-2 (|:| -2404 $) (|:| -3401 $)) $ (-754)) 230)) (-4035 (((-3 (-627 $) "failed") $) 112)) (-2746 (((-3 (-627 $) "failed") $) 113)) (-3815 (((-3 (-2 (|:| |var| (-1058)) (|:| -4067 (-754))) "failed") $) 111)) (-2747 (($ $) 214 (|has| |#1| (-38 (-401 (-552)))))) (-3002 (($) 201 (|has| |#1| (-1127)) CONST)) (-1498 (((-1096) $) 10)) (-1960 (((-111) $) 164)) (-1970 ((|#1| $) 165)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 93 (|has| |#1| (-445)))) (-1323 (($ (-627 $)) 90 (|has| |#1| (-445))) (($ $ $) 89 (|has| |#1| (-445)))) (-3676 (((-412 (-1148 $)) (-1148 $)) 100 (|has| |#1| (-888)))) (-3644 (((-412 (-1148 $)) (-1148 $)) 99 (|has| |#1| (-888)))) (-1727 (((-412 $) $) 97 (|has| |#1| (-888)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 212 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 211 (|has| |#1| (-357)))) (-2761 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-544))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 205 (|has| |#1| (-357)))) (-3321 (($ $ (-627 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-627 $) (-627 $)) 140) (($ $ (-1058) |#1|) 139) (($ $ (-627 (-1058)) (-627 |#1|)) 138) (($ $ (-1058) $) 137) (($ $ (-627 (-1058)) (-627 $)) 136)) (-2718 (((-754) $) 207 (|has| |#1| (-357)))) (-1985 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-401 $) (-401 $) (-401 $)) 223 (|has| |#1| (-544))) ((|#1| (-401 $) |#1|) 215 (|has| |#1| (-357))) (((-401 $) $ (-401 $)) 203 (|has| |#1| (-544)))) (-3719 (((-3 $ "failed") $ (-754)) 232)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 208 (|has| |#1| (-357)))) (-1637 (($ $ (-1058)) 105 (|has| |#1| (-169))) ((|#1| $) 225 (|has| |#1| (-169)))) (-2942 (($ $ (-1058)) 40) (($ $ (-627 (-1058))) 39) (($ $ (-1058) (-754)) 38) (($ $ (-627 (-1058)) (-627 (-754))) 37) (($ $ (-754)) 251) (($ $) 249) (($ $ (-1152)) 248 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 247 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 246 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) 245 (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-3567 (((-754) $) 148) (((-754) $ (-1058)) 128) (((-627 (-754)) $ (-627 (-1058))) 127)) (-3562 (((-871 (-373)) $) 80 (-12 (|has| (-1058) (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373)))))) (((-871 (-552)) $) 79 (-12 (|has| (-1058) (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552)))))) (((-528) $) 78 (-12 (|has| (-1058) (-600 (-528))) (|has| |#1| (-600 (-528)))))) (-3495 ((|#1| $) 173 (|has| |#1| (-445))) (($ $ (-1058)) 104 (|has| |#1| (-445)))) (-3319 (((-3 (-1235 $) "failed") (-671 $)) 102 (-2520 (|has| $ (-142)) (|has| |#1| (-888))))) (-2749 (((-3 $ "failed") $ $) 220 (|has| |#1| (-544))) (((-3 (-401 $) "failed") (-401 $) $) 219 (|has| |#1| (-544)))) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 161) (($ (-1058)) 135) (($ (-401 (-552))) 70 (-1559 (|has| |#1| (-1017 (-401 (-552)))) (|has| |#1| (-38 (-401 (-552)))))) (($ $) 83 (|has| |#1| (-544)))) (-1493 (((-627 |#1|) $) 166)) (-1889 ((|#1| $ (-754)) 153) (($ $ (-1058) (-754)) 126) (($ $ (-627 (-1058)) (-627 (-754))) 125)) (-3050 (((-3 $ "failed") $) 71 (-1559 (-2520 (|has| $ (-142)) (|has| |#1| (-888))) (|has| |#1| (-142))))) (-3995 (((-754)) 28)) (-3417 (($ $ $ (-754)) 171 (|has| |#1| (-169)))) (-3778 (((-111) $ $) 87 (|has| |#1| (-544)))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-1058)) 36) (($ $ (-627 (-1058))) 35) (($ $ (-1058) (-754)) 34) (($ $ (-627 (-1058)) (-627 (-754))) 33) (($ $ (-754)) 252) (($ $) 250) (($ $ (-1152)) 244 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152))) 243 (|has| |#1| (-879 (-1152)))) (($ $ (-1152) (-754)) 242 (|has| |#1| (-879 (-1152)))) (($ $ (-627 (-1152)) (-627 (-754))) 241 (|has| |#1| (-879 (-1152)))) (($ $ (-1 |#1| |#1|) (-754)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2351 (((-111) $ $) 74 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 73 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 6)) (-2340 (((-111) $ $) 75 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 72 (|has| |#1| (-830)))) (-2407 (($ $ |#1|) 154 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 156 (|has| |#1| (-38 (-401 (-552))))) (($ (-401 (-552)) $) 155 (|has| |#1| (-38 (-401 (-552))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-1211 |#1|) (-137) (-1028)) (T -1211)) +((-2449 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *1 (-1211 *4)) (-4 *4 (-1028)) (-5 *2 (-1235 *4)))) (-1578 (*1 *2 *1) (-12 (-4 *1 (-1211 *3)) (-4 *3 (-1028)) (-5 *2 (-1148 *3)))) (-4027 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1028)) (-4 *1 (-1211 *3)))) (-3322 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)))) (-3719 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-754)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)))) (-1984 (*1 *2 *1 *1) (-12 (-4 *3 (-1028)) (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-1211 *3)))) (-3341 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *4 (-1028)) (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-1211 *4)))) (-1611 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)))) (-3123 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)))) (-1419 (*1 *1 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)))) (-2942 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)))) (-1637 (*1 *2 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-169)))) (-3116 (*1 *2 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-169)))) (-1985 (*1 *2 *2 *2) (-12 (-5 *2 (-401 *1)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)) (-4 *3 (-544)))) (-2641 (*1 *2 *1 *1) (-12 (-4 *1 (-1211 *3)) (-4 *3 (-1028)) (-4 *3 (-544)) (-5 *2 (-754)))) (-1340 (*1 *1 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-544)))) (-2749 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-544)))) (-2749 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-401 *1)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)) (-4 *3 (-544)))) (-3955 (*1 *1 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-544)))) (-2148 (*1 *2 *1 *1) (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-5 *2 (-2 (|:| -3069 *3) (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-1211 *3)))) (-4194 (*1 *2 *1 *1) (-12 (-4 *3 (-445)) (-4 *3 (-1028)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1211 *3)))) (-1985 (*1 *2 *3 *2) (-12 (-5 *3 (-401 *1)) (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-2747 (*1 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-38 (-401 (-552))))))) +(-13 (-928 |t#1| (-754) (-1058)) (-280 |t#1| |t#1|) (-280 $ $) (-228) (-226 |t#1|) (-10 -8 (-15 -2449 ((-1235 |t#1|) $ (-754))) (-15 -1578 ((-1148 |t#1|) $)) (-15 -4027 ($ (-1148 |t#1|))) (-15 -3322 ($ $ (-754))) (-15 -3719 ((-3 $ "failed") $ (-754))) (-15 -1984 ((-2 (|:| -2404 $) (|:| -3401 $)) $ $)) (-15 -3341 ((-2 (|:| -2404 $) (|:| -3401 $)) $ (-754))) (-15 -1611 ($ $ (-754))) (-15 -3123 ($ $ (-754))) (-15 -1419 ($ $ $)) (-15 -2942 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1127)) (-6 (-1127)) |%noBranch|) (IF (|has| |t#1| (-169)) (PROGN (-15 -1637 (|t#1| $)) (-15 -3116 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-544)) (PROGN (-6 (-280 (-401 $) (-401 $))) (-15 -1985 ((-401 $) (-401 $) (-401 $))) (-15 -2641 ((-754) $ $)) (-15 -1340 ($ $ $)) (-15 -2749 ((-3 $ "failed") $ $)) (-15 -2749 ((-3 (-401 $) "failed") (-401 $) $)) (-15 -3955 ($ $ $)) (-15 -2148 ((-2 (|:| -3069 |t#1|) (|:| -2404 $) (|:| -3401 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-445)) (-15 -4194 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-357)) (PROGN (-6 (-301)) (-6 -4362) (-15 -1985 (|t#1| (-401 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-401 (-552)))) (-15 -2747 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-754)) . T) ((-25) . T) ((-38 #1=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-357))) ((-101) . T) ((-110 #1# #1#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-600 (-528)) -12 (|has| (-1058) (-600 (-528))) (|has| |#1| (-600 (-528)))) ((-600 (-871 (-373))) -12 (|has| (-1058) (-600 (-871 (-373)))) (|has| |#1| (-600 (-871 (-373))))) ((-600 (-871 (-552))) -12 (|has| (-1058) (-600 (-871 (-552)))) (|has| |#1| (-600 (-871 (-552))))) ((-226 |#1|) . T) ((-228) . T) ((-280 (-401 $) (-401 $)) |has| |#1| (-544)) ((-280 |#1| |#1|) . T) ((-280 $ $) . T) ((-284) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-357))) ((-301) |has| |#1| (-357)) ((-303 $) . T) ((-320 |#1| #0#) . T) ((-371 |#1|) . T) ((-405 |#1|) . T) ((-445) -1559 (|has| |#1| (-888)) (|has| |#1| (-445)) (|has| |#1| (-357))) ((-506 #2=(-1058) |#1|) . T) ((-506 #2# $) . T) ((-506 $ $) . T) ((-544) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-357))) ((-630 #1#) |has| |#1| (-38 (-401 (-552)))) ((-630 |#1|) . T) ((-630 $) . T) ((-623 (-552)) |has| |#1| (-623 (-552))) ((-623 |#1|) . T) ((-700 #1#) |has| |#1| (-38 (-401 (-552)))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-357))) ((-709) . T) ((-830) |has| |#1| (-830)) ((-879 #2#) . T) ((-879 (-1152)) |has| |#1| (-879 (-1152))) ((-865 (-373)) -12 (|has| (-1058) (-865 (-373))) (|has| |#1| (-865 (-373)))) ((-865 (-552)) -12 (|has| (-1058) (-865 (-552))) (|has| |#1| (-865 (-552)))) ((-928 |#1| #0# #2#) . T) ((-888) |has| |#1| (-888)) ((-899) |has| |#1| (-357)) ((-1017 (-401 (-552))) |has| |#1| (-1017 (-401 (-552)))) ((-1017 (-552)) |has| |#1| (-1017 (-552))) ((-1017 #2#) . T) ((-1017 |#1|) . T) ((-1034 #1#) |has| |#1| (-38 (-401 (-552)))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-888)) (|has| |#1| (-544)) (|has| |#1| (-445)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1127) |has| |#1| (-1127)) ((-1193) |has| |#1| (-888))) +((-1853 (((-627 (-1058)) $) 28)) (-2014 (($ $) 25)) (-1832 (($ |#2| |#3|) NIL) (($ $ (-1058) |#3|) 22) (($ $ (-627 (-1058)) (-627 |#3|)) 21)) (-1981 (($ $) 14)) (-1993 ((|#2| $) 12)) (-3567 ((|#3| $) 10))) +(((-1212 |#1| |#2| |#3|) (-10 -8 (-15 -1853 ((-627 (-1058)) |#1|)) (-15 -1832 (|#1| |#1| (-627 (-1058)) (-627 |#3|))) (-15 -1832 (|#1| |#1| (-1058) |#3|)) (-15 -2014 (|#1| |#1|)) (-15 -1832 (|#1| |#2| |#3|)) (-15 -3567 (|#3| |#1|)) (-15 -1981 (|#1| |#1|)) (-15 -1993 (|#2| |#1|))) (-1213 |#2| |#3|) (-1028) (-775)) (T -1212)) +NIL +(-10 -8 (-15 -1853 ((-627 (-1058)) |#1|)) (-15 -1832 (|#1| |#1| (-627 (-1058)) (-627 |#3|))) (-15 -1832 (|#1| |#1| (-1058) |#3|)) (-15 -2014 (|#1| |#1|)) (-15 -1832 (|#1| |#2| |#3|)) (-15 -3567 (|#3| |#1|)) (-15 -1981 (|#1| |#1|)) (-15 -1993 (|#2| |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1853 (((-627 (-1058)) $) 72)) (-4344 (((-1152) $) 101)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3245 (($ $) 50 (|has| |#1| (-544)))) (-4058 (((-111) $) 52 (|has| |#1| (-544)))) (-4019 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-4245 (((-1132 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2014 (($ $) 58)) (-2040 (((-3 $ "failed") $) 32)) (-2391 (((-111) $) 71)) (-2641 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-2624 (((-111) $) 30)) (-3322 (($ $ (-900)) 99)) (-3267 (((-111) $) 60)) (-1832 (($ |#1| |#2|) 59) (($ $ (-1058) |#2|) 74) (($ $ (-627 (-1058)) (-627 |#2|)) 73)) (-3516 (($ (-1 |#1| |#1|) $) 61)) (-1981 (($ $) 63)) (-1993 ((|#1| $) 64)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-4168 (($ $ |#2|) 93)) (-2761 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-3321 (((-1132 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1985 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1088)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) 87 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1152) (-754)) 86 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-627 (-1152))) 85 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1152)) 84 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-754)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3567 ((|#2| $) 62)) (-2890 (($ $) 70)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45 (|has| |#1| (-169)))) (-1889 ((|#1| $ |#2|) 57)) (-3050 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3174 ((|#1| $) 100)) (-3778 (((-111) $ $) 51 (|has| |#1| (-544)))) (-3030 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) 91 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1152) (-754)) 90 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-627 (-1152))) 89 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1152)) 88 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-754)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 56 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) +(((-1213 |#1| |#2|) (-137) (-1028) (-775)) (T -1213)) +((-4245 (*1 *2 *1) (-12 (-4 *1 (-1213 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) (-5 *2 (-1132 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1985 (*1 *2 *1 *3) (-12 (-4 *1 (-1213 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)))) (-4344 (*1 *2 *1) (-12 (-4 *1 (-1213 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) (-5 *2 (-1152)))) (-3174 (*1 *2 *1) (-12 (-4 *1 (-1213 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)))) (-3322 (*1 *1 *1 *2) (-12 (-5 *2 (-900)) (-4 *1 (-1213 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) (-2641 (*1 *2 *1 *2) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) (-4019 (*1 *1 *1 *2) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) (-4019 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) (-3030 (*1 *2 *1 *3) (-12 (-4 *1 (-1213 *2 *3)) (-4 *3 (-775)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1477 (*2 (-1152)))) (-4 *2 (-1028)))) (-4168 (*1 *1 *1 *2) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) (-3321 (*1 *2 *1 *3) (-12 (-4 *1 (-1213 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1132 *3))))) +(-13 (-952 |t#1| |t#2| (-1058)) (-10 -8 (-15 -4245 ((-1132 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1985 (|t#1| $ |t#2|)) (-15 -4344 ((-1152) $)) (-15 -3174 (|t#1| $)) (-15 -3322 ($ $ (-900))) (-15 -2641 (|t#2| $)) (-15 -2641 (|t#2| $ |t#2|)) (-15 -4019 ($ $ |t#2|)) (-15 -4019 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -1477 (|t#1| (-1152)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3030 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4168 ($ $ |t#2|)) (IF (|has| |t#2| (-1088)) (-6 (-280 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-228)) (IF (|has| |t#1| (-879 (-1152))) (-6 (-879 (-1152))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3321 ((-1132 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-544)) ((-101) . T) ((-110 #0# #0#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-228) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-280 $ $) |has| |#2| (-1088)) ((-284) |has| |#1| (-544)) ((-544) |has| |#1| (-544)) ((-630 #0#) |has| |#1| (-38 (-401 (-552)))) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #0#) |has| |#1| (-38 (-401 (-552)))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) |has| |#1| (-544)) ((-709) . T) ((-879 (-1152)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-879 (-1152)))) ((-952 |#1| |#2| (-1058)) . T) ((-1034 #0#) |has| |#1| (-38 (-401 (-552)))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-4014 ((|#2| |#2|) 12)) (-2487 (((-412 |#2|) |#2|) 14)) (-2392 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552)))) 30))) +(((-1214 |#1| |#2|) (-10 -7 (-15 -2487 ((-412 |#2|) |#2|)) (-15 -4014 (|#2| |#2|)) (-15 -2392 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552)))))) (-544) (-13 (-1211 |#1|) (-544) (-10 -8 (-15 -1323 ($ $ $))))) (T -1214)) +((-2392 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-552)))) (-4 *4 (-13 (-1211 *3) (-544) (-10 -8 (-15 -1323 ($ $ $))))) (-4 *3 (-544)) (-5 *1 (-1214 *3 *4)))) (-4014 (*1 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-1214 *3 *2)) (-4 *2 (-13 (-1211 *3) (-544) (-10 -8 (-15 -1323 ($ $ $))))))) (-2487 (*1 *2 *3) (-12 (-4 *4 (-544)) (-5 *2 (-412 *3)) (-5 *1 (-1214 *4 *3)) (-4 *3 (-13 (-1211 *4) (-544) (-10 -8 (-15 -1323 ($ $ $)))))))) +(-10 -7 (-15 -2487 ((-412 |#2|) |#2|)) (-15 -4014 (|#2| |#2|)) (-15 -2392 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-552)))))) +((-3516 (((-1220 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1220 |#1| |#3| |#5|)) 24))) +(((-1215 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3516 ((-1220 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1220 |#1| |#3| |#5|)))) (-1028) (-1028) (-1152) (-1152) |#1| |#2|) (T -1215)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5 *7 *9)) (-4 *5 (-1028)) (-4 *6 (-1028)) (-14 *7 (-1152)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1220 *6 *8 *10)) (-5 *1 (-1215 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1152))))) +(-10 -7 (-15 -3516 ((-1220 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1220 |#1| |#3| |#5|)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1853 (((-627 (-1058)) $) 72)) (-4344 (((-1152) $) 101)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3245 (($ $) 50 (|has| |#1| (-544)))) (-4058 (((-111) $) 52 (|has| |#1| (-544)))) (-4019 (($ $ (-401 (-552))) 96) (($ $ (-401 (-552)) (-401 (-552))) 95)) (-4245 (((-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|))) $) 103)) (-1607 (($ $) 133 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 116 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 160 (|has| |#1| (-357)))) (-2487 (((-412 $) $) 161 (|has| |#1| (-357)))) (-1737 (($ $) 115 (|has| |#1| (-38 (-401 (-552)))))) (-4224 (((-111) $ $) 151 (|has| |#1| (-357)))) (-1584 (($ $) 132 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 117 (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-754) (-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|)))) 169)) (-1628 (($ $) 131 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 118 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) 17 T CONST)) (-2813 (($ $ $) 155 (|has| |#1| (-357)))) (-2014 (($ $) 58)) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 154 (|has| |#1| (-357)))) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 149 (|has| |#1| (-357)))) (-1633 (((-111) $) 162 (|has| |#1| (-357)))) (-2391 (((-111) $) 71)) (-2951 (($) 143 (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-401 (-552)) $) 98) (((-401 (-552)) $ (-401 (-552))) 97)) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 114 (|has| |#1| (-38 (-401 (-552)))))) (-3322 (($ $ (-900)) 99) (($ $ (-401 (-552))) 168)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 158 (|has| |#1| (-357)))) (-3267 (((-111) $) 60)) (-1832 (($ |#1| (-401 (-552))) 59) (($ $ (-1058) (-401 (-552))) 74) (($ $ (-627 (-1058)) (-627 (-401 (-552)))) 73)) (-3516 (($ (-1 |#1| |#1|) $) 61)) (-4135 (($ $) 140 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) 63)) (-1993 ((|#1| $) 64)) (-1276 (($ (-627 $)) 147 (|has| |#1| (-357))) (($ $ $) 146 (|has| |#1| (-357)))) (-1595 (((-1134) $) 9)) (-1951 (($ $) 163 (|has| |#1| (-357)))) (-2747 (($ $) 167 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) 166 (-1559 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-938)) (|has| |#1| (-1174)) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-38 (-401 (-552)))))))) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 148 (|has| |#1| (-357)))) (-1323 (($ (-627 $)) 145 (|has| |#1| (-357))) (($ $ $) 144 (|has| |#1| (-357)))) (-1727 (((-412 $) $) 159 (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 156 (|has| |#1| (-357)))) (-4168 (($ $ (-401 (-552))) 93)) (-2761 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 150 (|has| |#1| (-357)))) (-3154 (($ $) 141 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))))) (-2718 (((-754) $) 152 (|has| |#1| (-357)))) (-1985 ((|#1| $ (-401 (-552))) 102) (($ $ $) 79 (|has| (-401 (-552)) (-1088)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 153 (|has| |#1| (-357)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) 87 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1152) (-754)) 86 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-627 (-1152))) 85 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1152)) 84 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-754)) 82 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-3567 (((-401 (-552)) $) 62)) (-1640 (($ $) 130 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 119 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 129 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 120 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 128 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 121 (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) 70)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544)))) (-1889 ((|#1| $ (-401 (-552))) 57)) (-3050 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3174 ((|#1| $) 100)) (-1673 (($ $) 139 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 127 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) 51 (|has| |#1| (-544)))) (-1652 (($ $) 138 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 126 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 137 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 125 (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-401 (-552))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) 136 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 124 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 135 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 123 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 134 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 122 (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) 91 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1152) (-754)) 90 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-627 (-1152))) 89 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1152)) 88 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-754)) 83 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 56 (|has| |#1| (-357))) (($ $ $) 165 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 164 (|has| |#1| (-357))) (($ $ $) 142 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 113 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) +(((-1216 |#1|) (-137) (-1028)) (T -1216)) +((-1777 (*1 *1 *2 *3) (-12 (-5 *2 (-754)) (-5 *3 (-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| *4)))) (-4 *4 (-1028)) (-4 *1 (-1216 *4)))) (-3322 (*1 *1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-4 *1 (-1216 *3)) (-4 *3 (-1028)))) (-2747 (*1 *1 *1) (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1028)) (-4 *2 (-38 (-401 (-552)))))) (-2747 (*1 *1 *1 *2) (-1559 (-12 (-5 *2 (-1152)) (-4 *1 (-1216 *3)) (-4 *3 (-1028)) (-12 (-4 *3 (-29 (-552))) (-4 *3 (-938)) (-4 *3 (-1174)) (-4 *3 (-38 (-401 (-552)))))) (-12 (-5 *2 (-1152)) (-4 *1 (-1216 *3)) (-4 *3 (-1028)) (-12 (|has| *3 (-15 -1853 ((-627 *2) *3))) (|has| *3 (-15 -2747 (*3 *3 *2))) (-4 *3 (-38 (-401 (-552))))))))) +(-13 (-1213 |t#1| (-401 (-552))) (-10 -8 (-15 -1777 ($ (-754) (-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |t#1|))))) (-15 -3322 ($ $ (-401 (-552)))) (IF (|has| |t#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ($ $)) (IF (|has| |t#1| (-15 -2747 (|t#1| |t#1| (-1152)))) (IF (|has| |t#1| (-15 -1853 ((-627 (-1152)) |t#1|))) (-15 -2747 ($ $ (-1152))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1174)) (IF (|has| |t#1| (-938)) (IF (|has| |t#1| (-29 (-552))) (-15 -2747 ($ $ (-1152))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-981)) (-6 (-1174))) |%noBranch|) (IF (|has| |t#1| (-357)) (-6 (-357)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-401 (-552))) . T) ((-25) . T) ((-38 #1=(-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-35) |has| |#1| (-38 (-401 (-552)))) ((-94) |has| |#1| (-38 (-401 (-552)))) ((-101) . T) ((-110 #1# #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-228) |has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) ((-238) |has| |#1| (-357)) ((-278) |has| |#1| (-38 (-401 (-552)))) ((-280 $ $) |has| (-401 (-552)) (-1088)) ((-284) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-301) |has| |#1| (-357)) ((-357) |has| |#1| (-357)) ((-445) |has| |#1| (-357)) ((-485) |has| |#1| (-38 (-401 (-552)))) ((-544) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-630 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-709) . T) ((-879 (-1152)) -12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152)))) ((-952 |#1| #0# (-1058)) . T) ((-899) |has| |#1| (-357)) ((-981) |has| |#1| (-38 (-401 (-552)))) ((-1034 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1174) |has| |#1| (-38 (-401 (-552)))) ((-1177) |has| |#1| (-38 (-401 (-552)))) ((-1193) |has| |#1| (-357)) ((-1213 |#1| #0#) . T)) +((-3024 (((-111) $) 12)) (-4039 (((-3 |#3| "failed") $) 17)) (-1703 ((|#3| $) 14))) +(((-1217 |#1| |#2| |#3|) (-10 -8 (-15 -1703 (|#3| |#1|)) (-15 -4039 ((-3 |#3| "failed") |#1|)) (-15 -3024 ((-111) |#1|))) (-1218 |#2| |#3|) (-1028) (-1195 |#2|)) (T -1217)) +NIL +(-10 -8 (-15 -1703 (|#3| |#1|)) (-15 -4039 ((-3 |#3| "failed") |#1|)) (-15 -3024 ((-111) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1853 (((-627 (-1058)) $) 72)) (-4344 (((-1152) $) 101)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3245 (($ $) 50 (|has| |#1| (-544)))) (-4058 (((-111) $) 52 (|has| |#1| (-544)))) (-4019 (($ $ (-401 (-552))) 96) (($ $ (-401 (-552)) (-401 (-552))) 95)) (-4245 (((-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|))) $) 103)) (-1607 (($ $) 133 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 116 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 160 (|has| |#1| (-357)))) (-2487 (((-412 $) $) 161 (|has| |#1| (-357)))) (-1737 (($ $) 115 (|has| |#1| (-38 (-401 (-552)))))) (-4224 (((-111) $ $) 151 (|has| |#1| (-357)))) (-1584 (($ $) 132 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 117 (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-754) (-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|)))) 169)) (-1628 (($ $) 131 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 118 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#2| "failed") $) 180)) (-1703 ((|#2| $) 179)) (-2813 (($ $ $) 155 (|has| |#1| (-357)))) (-2014 (($ $) 58)) (-2040 (((-3 $ "failed") $) 32)) (-3455 (((-401 (-552)) $) 177)) (-2789 (($ $ $) 154 (|has| |#1| (-357)))) (-1930 (($ (-401 (-552)) |#2|) 178)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 149 (|has| |#1| (-357)))) (-1633 (((-111) $) 162 (|has| |#1| (-357)))) (-2391 (((-111) $) 71)) (-2951 (($) 143 (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-401 (-552)) $) 98) (((-401 (-552)) $ (-401 (-552))) 97)) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 114 (|has| |#1| (-38 (-401 (-552)))))) (-3322 (($ $ (-900)) 99) (($ $ (-401 (-552))) 168)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 158 (|has| |#1| (-357)))) (-3267 (((-111) $) 60)) (-1832 (($ |#1| (-401 (-552))) 59) (($ $ (-1058) (-401 (-552))) 74) (($ $ (-627 (-1058)) (-627 (-401 (-552)))) 73)) (-3516 (($ (-1 |#1| |#1|) $) 61)) (-4135 (($ $) 140 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) 63)) (-1993 ((|#1| $) 64)) (-1276 (($ (-627 $)) 147 (|has| |#1| (-357))) (($ $ $) 146 (|has| |#1| (-357)))) (-3713 ((|#2| $) 176)) (-1977 (((-3 |#2| "failed") $) 174)) (-1920 ((|#2| $) 175)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 163 (|has| |#1| (-357)))) (-2747 (($ $) 167 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) 166 (-1559 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-938)) (|has| |#1| (-1174)) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-38 (-401 (-552)))))))) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 148 (|has| |#1| (-357)))) (-1323 (($ (-627 $)) 145 (|has| |#1| (-357))) (($ $ $) 144 (|has| |#1| (-357)))) (-1727 (((-412 $) $) 159 (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 156 (|has| |#1| (-357)))) (-4168 (($ $ (-401 (-552))) 93)) (-2761 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 150 (|has| |#1| (-357)))) (-3154 (($ $) 141 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))))) (-2718 (((-754) $) 152 (|has| |#1| (-357)))) (-1985 ((|#1| $ (-401 (-552))) 102) (($ $ $) 79 (|has| (-401 (-552)) (-1088)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 153 (|has| |#1| (-357)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) 87 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1152) (-754)) 86 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-627 (-1152))) 85 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1152)) 84 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-754)) 82 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-3567 (((-401 (-552)) $) 62)) (-1640 (($ $) 130 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 119 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 129 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 120 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 128 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 121 (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) 70)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 45 (|has| |#1| (-169))) (($ |#2|) 181) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544)))) (-1889 ((|#1| $ (-401 (-552))) 57)) (-3050 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3174 ((|#1| $) 100)) (-1673 (($ $) 139 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 127 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) 51 (|has| |#1| (-544)))) (-1652 (($ $) 138 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 126 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 137 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 125 (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-401 (-552))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) 136 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 124 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 135 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 123 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 134 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 122 (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) 91 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1152) (-754)) 90 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-627 (-1152))) 89 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-1152)) 88 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (($ $ (-754)) 83 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 56 (|has| |#1| (-357))) (($ $ $) 165 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 164 (|has| |#1| (-357))) (($ $ $) 142 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 113 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) +(((-1218 |#1| |#2|) (-137) (-1028) (-1195 |t#1|)) (T -1218)) +((-3567 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1195 *3)) (-5 *2 (-401 (-552))))) (-1477 (*1 *1 *2) (-12 (-4 *3 (-1028)) (-4 *1 (-1218 *3 *2)) (-4 *2 (-1195 *3)))) (-1930 (*1 *1 *2 *3) (-12 (-5 *2 (-401 (-552))) (-4 *4 (-1028)) (-4 *1 (-1218 *4 *3)) (-4 *3 (-1195 *4)))) (-3455 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1195 *3)) (-5 *2 (-401 (-552))))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1195 *3)))) (-1920 (*1 *2 *1) (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1195 *3)))) (-1977 (*1 *2 *1) (|partial| -12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1195 *3))))) +(-13 (-1216 |t#1|) (-1017 |t#2|) (-10 -8 (-15 -1930 ($ (-401 (-552)) |t#2|)) (-15 -3455 ((-401 (-552)) $)) (-15 -3713 (|t#2| $)) (-15 -3567 ((-401 (-552)) $)) (-15 -1477 ($ |t#2|)) (-15 -1920 (|t#2| $)) (-15 -1977 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-401 (-552))) . T) ((-25) . T) ((-38 #1=(-401 (-552))) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-35) |has| |#1| (-38 (-401 (-552)))) ((-94) |has| |#1| (-38 (-401 (-552)))) ((-101) . T) ((-110 #1# #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-228) |has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) ((-238) |has| |#1| (-357)) ((-278) |has| |#1| (-38 (-401 (-552)))) ((-280 $ $) |has| (-401 (-552)) (-1088)) ((-284) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-301) |has| |#1| (-357)) ((-357) |has| |#1| (-357)) ((-445) |has| |#1| (-357)) ((-485) |has| |#1| (-38 (-401 (-552)))) ((-544) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-630 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357))) ((-709) . T) ((-879 (-1152)) -12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152)))) ((-952 |#1| #0# (-1058)) . T) ((-899) |has| |#1| (-357)) ((-981) |has| |#1| (-38 (-401 (-552)))) ((-1017 |#2|) . T) ((-1034 #1#) -1559 (|has| |#1| (-357)) (|has| |#1| (-38 (-401 (-552))))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-357)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1174) |has| |#1| (-38 (-401 (-552)))) ((-1177) |has| |#1| (-38 (-401 (-552)))) ((-1193) |has| |#1| (-357)) ((-1213 |#1| #0#) . T) ((-1216 |#1|) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) 96)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4019 (($ $ (-401 (-552))) 106) (($ $ (-401 (-552)) (-401 (-552))) 108)) (-4245 (((-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|))) $) 51)) (-1607 (($ $) 180 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 156 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL (|has| |#1| (-357)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1584 (($ $) 176 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 152 (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-754) (-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|)))) 61)) (-1628 (($ $) 184 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 160 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) NIL)) (-1703 ((|#2| $) NIL)) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) 79)) (-3455 (((-401 (-552)) $) 13)) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-1930 (($ (-401 (-552)) |#2|) 11)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1633 (((-111) $) NIL (|has| |#1| (-357)))) (-2391 (((-111) $) 68)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-401 (-552)) $) 103) (((-401 (-552)) $ (-401 (-552))) 104)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3322 (($ $ (-900)) 120) (($ $ (-401 (-552))) 118)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-401 (-552))) 31) (($ $ (-1058) (-401 (-552))) NIL) (($ $ (-627 (-1058)) (-627 (-401 (-552)))) NIL)) (-3516 (($ (-1 |#1| |#1|) $) 115)) (-4135 (($ $) 150 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3713 ((|#2| $) 12)) (-1977 (((-3 |#2| "failed") $) 41)) (-1920 ((|#2| $) 42)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) 93 (|has| |#1| (-357)))) (-2747 (($ $) 135 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) 140 (-1559 (-12 (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-938)) (|has| |#1| (-1174)))))) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4168 (($ $ (-401 (-552))) 112)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3154 (($ $) 148 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))))) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ (-401 (-552))) 100) (($ $ $) 86 (|has| (-401 (-552)) (-1088)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) 127 (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-3567 (((-401 (-552)) $) 16)) (-1640 (($ $) 186 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 162 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 182 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 158 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 178 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 154 (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) 110)) (-1477 (((-842) $) NIL) (($ (-552)) 35) (($ |#1|) 27 (|has| |#1| (-169))) (($ |#2|) 32) (($ (-401 (-552))) 128 (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-1889 ((|#1| $ (-401 (-552))) 99)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) 117)) (-3174 ((|#1| $) 98)) (-1673 (($ $) 192 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 168 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) 188 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 164 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 196 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 172 (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-401 (-552))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) 198 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 174 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 194 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 170 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 190 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 166 (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 21 T CONST)) (-1933 (($) 17 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-2292 (((-111) $ $) 66)) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) 92 (|has| |#1| (-357)))) (-2396 (($ $) 131) (($ $ $) 72)) (-2384 (($ $ $) 70)) (** (($ $ (-900)) NIL) (($ $ (-754)) 76) (($ $ (-552)) 145 (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 146 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-1219 |#1| |#2|) (-1218 |#1| |#2|) (-1028) (-1195 |#1|)) (T -1219)) +NIL +(-1218 |#1| |#2|) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) 11)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) NIL (|has| |#1| (-544)))) (-4019 (($ $ (-401 (-552))) NIL) (($ $ (-401 (-552)) (-401 (-552))) NIL)) (-4245 (((-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|))) $) NIL)) (-1607 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-4014 (($ $) NIL (|has| |#1| (-357)))) (-2487 (((-412 $) $) NIL (|has| |#1| (-357)))) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4224 (((-111) $ $) NIL (|has| |#1| (-357)))) (-1584 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-754) (-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#1|)))) NIL)) (-1628 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-1199 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1227 |#1| |#2| |#3|) "failed") $) 22)) (-1703 (((-1199 |#1| |#2| |#3|) $) NIL) (((-1227 |#1| |#2| |#3|) $) NIL)) (-2813 (($ $ $) NIL (|has| |#1| (-357)))) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-3455 (((-401 (-552)) $) 57)) (-2789 (($ $ $) NIL (|has| |#1| (-357)))) (-1930 (($ (-401 (-552)) (-1199 |#1| |#2| |#3|)) NIL)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) NIL (|has| |#1| (-357)))) (-1633 (((-111) $) NIL (|has| |#1| (-357)))) (-2391 (((-111) $) NIL)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-401 (-552)) $) NIL) (((-401 (-552)) $ (-401 (-552))) NIL)) (-2624 (((-111) $) NIL)) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3322 (($ $ (-900)) NIL) (($ $ (-401 (-552))) NIL)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-401 (-552))) 30) (($ $ (-1058) (-401 (-552))) NIL) (($ $ (-627 (-1058)) (-627 (-401 (-552)))) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-4135 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1276 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-3713 (((-1199 |#1| |#2| |#3|) $) 60)) (-1977 (((-3 (-1199 |#1| |#2| |#3|) "failed") $) NIL)) (-1920 (((-1199 |#1| |#2| |#3|) $) NIL)) (-1595 (((-1134) $) NIL)) (-1951 (($ $) NIL (|has| |#1| (-357)))) (-2747 (($ $) 39 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) NIL (-1559 (-12 (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-938)) (|has| |#1| (-1174))))) (($ $ (-1231 |#2|)) 40 (|has| |#1| (-38 (-401 (-552)))))) (-1498 (((-1096) $) NIL)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) NIL (|has| |#1| (-357)))) (-1323 (($ (-627 $)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-1727 (((-412 $) $) NIL (|has| |#1| (-357)))) (-3347 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-357))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) NIL (|has| |#1| (-357)))) (-4168 (($ $ (-401 (-552))) NIL)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-1491 (((-3 (-627 $) "failed") (-627 $) $) NIL (|has| |#1| (-357)))) (-3154 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))))) (-2718 (((-754) $) NIL (|has| |#1| (-357)))) (-1985 ((|#1| $ (-401 (-552))) NIL) (($ $ $) NIL (|has| (-401 (-552)) (-1088)))) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) NIL (|has| |#1| (-357)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $ (-1231 |#2|)) 38)) (-3567 (((-401 (-552)) $) NIL)) (-1640 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) NIL)) (-1477 (((-842) $) 89) (($ (-552)) NIL) (($ |#1|) NIL (|has| |#1| (-169))) (($ (-1199 |#1| |#2| |#3|)) 16) (($ (-1227 |#1| |#2| |#3|)) 17) (($ (-1231 |#2|)) 36) (($ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544)))) (-1889 ((|#1| $ (-401 (-552))) NIL)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-3174 ((|#1| $) 12)) (-1673 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-401 (-552))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-401 (-552))))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 32 T CONST)) (-1933 (($) 26 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-401 (-552)) |#1|))))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 34)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ (-552)) NIL (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-1220 |#1| |#2| |#3|) (-13 (-1218 |#1| (-1199 |#1| |#2| |#3|)) (-1017 (-1227 |#1| |#2| |#3|)) (-10 -8 (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) (-1028) (-1152) |#1|) (T -1220)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1220 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3)))) +(-13 (-1218 |#1| (-1199 |#1| |#2| |#3|)) (-1017 (-1227 |#1| |#2| |#3|)) (-10 -8 (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 34)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL)) (-3245 (($ $) NIL)) (-4058 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 (-552) "failed") $) NIL (|has| (-1220 |#2| |#3| |#4|) (-1017 (-552)))) (((-3 (-401 (-552)) "failed") $) NIL (|has| (-1220 |#2| |#3| |#4|) (-1017 (-401 (-552))))) (((-3 (-1220 |#2| |#3| |#4|) "failed") $) 20)) (-1703 (((-552) $) NIL (|has| (-1220 |#2| |#3| |#4|) (-1017 (-552)))) (((-401 (-552)) $) NIL (|has| (-1220 |#2| |#3| |#4|) (-1017 (-401 (-552))))) (((-1220 |#2| |#3| |#4|) $) NIL)) (-2014 (($ $) 35)) (-2040 (((-3 $ "failed") $) 25)) (-1375 (($ $) NIL (|has| (-1220 |#2| |#3| |#4|) (-445)))) (-2061 (($ $ (-1220 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|) $) NIL)) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) 11)) (-3267 (((-111) $) NIL)) (-1832 (($ (-1220 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) 23)) (-3465 (((-313 |#2| |#3| |#4|) $) NIL)) (-3813 (($ (-1 (-313 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) $) NIL)) (-3516 (($ (-1 (-1220 |#2| |#3| |#4|) (-1220 |#2| |#3| |#4|)) $) NIL)) (-1973 (((-3 (-823 |#2|) "failed") $) 75)) (-1981 (($ $) NIL)) (-1993 (((-1220 |#2| |#3| |#4|) $) 18)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1960 (((-111) $) NIL)) (-1970 (((-1220 |#2| |#3| |#4|) $) NIL)) (-2761 (((-3 $ "failed") $ (-1220 |#2| |#3| |#4|)) NIL (|has| (-1220 |#2| |#3| |#4|) (-544))) (((-3 $ "failed") $ $) NIL)) (-3138 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1220 |#2| |#3| |#4|)) (|:| |%expon| (-313 |#2| |#3| |#4|)) (|:| |%expTerms| (-627 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#2|)))))) (|:| |%type| (-1134))) "failed") $) 58)) (-3567 (((-313 |#2| |#3| |#4|) $) 14)) (-3495 (((-1220 |#2| |#3| |#4|) $) NIL (|has| (-1220 |#2| |#3| |#4|) (-445)))) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ (-1220 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-401 (-552))) NIL (-1559 (|has| (-1220 |#2| |#3| |#4|) (-38 (-401 (-552)))) (|has| (-1220 |#2| |#3| |#4|) (-1017 (-401 (-552))))))) (-1493 (((-627 (-1220 |#2| |#3| |#4|)) $) NIL)) (-1889 (((-1220 |#2| |#3| |#4|) $ (-313 |#2| |#3| |#4|)) NIL)) (-3050 (((-3 $ "failed") $) NIL (|has| (-1220 |#2| |#3| |#4|) (-142)))) (-3995 (((-754)) NIL)) (-3417 (($ $ $ (-754)) NIL (|has| (-1220 |#2| |#3| |#4|) (-169)))) (-3778 (((-111) $ $) NIL)) (-1922 (($) 63 T CONST)) (-1933 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ (-1220 |#2| |#3| |#4|)) NIL (|has| (-1220 |#2| |#3| |#4|) (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ (-1220 |#2| |#3| |#4|)) NIL) (($ (-1220 |#2| |#3| |#4|) $) NIL) (($ (-401 (-552)) $) NIL (|has| (-1220 |#2| |#3| |#4|) (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| (-1220 |#2| |#3| |#4|) (-38 (-401 (-552))))))) +(((-1221 |#1| |#2| |#3| |#4|) (-13 (-320 (-1220 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) (-544) (-10 -8 (-15 -1973 ((-3 (-823 |#2|) "failed") $)) (-15 -3138 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1220 |#2| |#3| |#4|)) (|:| |%expon| (-313 |#2| |#3| |#4|)) (|:| |%expTerms| (-627 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#2|)))))) (|:| |%type| (-1134))) "failed") $)))) (-13 (-830) (-1017 (-552)) (-623 (-552)) (-445)) (-13 (-27) (-1174) (-424 |#1|)) (-1152) |#2|) (T -1221)) +((-1973 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-830) (-1017 (-552)) (-623 (-552)) (-445))) (-5 *2 (-823 *4)) (-5 *1 (-1221 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1174) (-424 *3))) (-14 *5 (-1152)) (-14 *6 *4))) (-3138 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-830) (-1017 (-552)) (-623 (-552)) (-445))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1220 *4 *5 *6)) (|:| |%expon| (-313 *4 *5 *6)) (|:| |%expTerms| (-627 (-2 (|:| |k| (-401 (-552))) (|:| |c| *4)))))) (|:| |%type| (-1134)))) (-5 *1 (-1221 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1174) (-424 *3))) (-14 *5 (-1152)) (-14 *6 *4)))) +(-13 (-320 (-1220 |#2| |#3| |#4|) (-313 |#2| |#3| |#4|)) (-544) (-10 -8 (-15 -1973 ((-3 (-823 |#2|) "failed") $)) (-15 -3138 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1220 |#2| |#3| |#4|)) (|:| |%expon| (-313 |#2| |#3| |#4|)) (|:| |%expTerms| (-627 (-2 (|:| |k| (-401 (-552))) (|:| |c| |#2|)))))) (|:| |%type| (-1134))) "failed") $)))) +((-4288 ((|#2| $) 29)) (-4155 ((|#2| $) 18)) (-1700 (($ $) 36)) (-3900 (($ $ (-552)) 64)) (-4031 (((-111) $ (-754)) 33)) (-2472 ((|#2| $ |#2|) 61)) (-2801 ((|#2| $ |#2|) 59)) (-2950 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-4017 (($ $ (-627 $)) 60)) (-4143 ((|#2| $) 17)) (-3351 (($ $) NIL) (($ $ (-754)) 42)) (-2336 (((-627 $) $) 26)) (-3726 (((-111) $ $) 50)) (-1602 (((-111) $ (-754)) 32)) (-3971 (((-111) $ (-754)) 31)) (-3810 (((-111) $) 28)) (-1294 ((|#2| $) 24) (($ $ (-754)) 46)) (-1985 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2978 (((-111) $) 22)) (-1805 (($ $) 39)) (-3384 (($ $) 65)) (-3543 (((-754) $) 41)) (-4149 (($ $) 40)) (-2668 (($ $ $) 58) (($ |#2| $) NIL)) (-2535 (((-627 $) $) 27)) (-2292 (((-111) $ $) 48)) (-1383 (((-754) $) 35))) +(((-1222 |#1| |#2|) (-10 -8 (-15 -3900 (|#1| |#1| (-552))) (-15 -2950 (|#2| |#1| "last" |#2|)) (-15 -2801 (|#2| |#1| |#2|)) (-15 -2950 (|#1| |#1| "rest" |#1|)) (-15 -2950 (|#2| |#1| "first" |#2|)) (-15 -3384 (|#1| |#1|)) (-15 -1805 (|#1| |#1|)) (-15 -3543 ((-754) |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -4155 (|#2| |#1|)) (-15 -4143 (|#2| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -1294 (|#1| |#1| (-754))) (-15 -1985 (|#2| |#1| "last")) (-15 -1294 (|#2| |#1|)) (-15 -3351 (|#1| |#1| (-754))) (-15 -1985 (|#1| |#1| "rest")) (-15 -3351 (|#1| |#1|)) (-15 -1985 (|#2| |#1| "first")) (-15 -2668 (|#1| |#2| |#1|)) (-15 -2668 (|#1| |#1| |#1|)) (-15 -2472 (|#2| |#1| |#2|)) (-15 -2950 (|#2| |#1| "value" |#2|)) (-15 -4017 (|#1| |#1| (-627 |#1|))) (-15 -3726 ((-111) |#1| |#1|)) (-15 -2978 ((-111) |#1|)) (-15 -1985 (|#2| |#1| "value")) (-15 -4288 (|#2| |#1|)) (-15 -3810 ((-111) |#1|)) (-15 -2336 ((-627 |#1|) |#1|)) (-15 -2535 ((-627 |#1|) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -1383 ((-754) |#1|)) (-15 -4031 ((-111) |#1| (-754))) (-15 -1602 ((-111) |#1| (-754))) (-15 -3971 ((-111) |#1| (-754)))) (-1223 |#2|) (-1189)) (T -1222)) +NIL +(-10 -8 (-15 -3900 (|#1| |#1| (-552))) (-15 -2950 (|#2| |#1| "last" |#2|)) (-15 -2801 (|#2| |#1| |#2|)) (-15 -2950 (|#1| |#1| "rest" |#1|)) (-15 -2950 (|#2| |#1| "first" |#2|)) (-15 -3384 (|#1| |#1|)) (-15 -1805 (|#1| |#1|)) (-15 -3543 ((-754) |#1|)) (-15 -4149 (|#1| |#1|)) (-15 -4155 (|#2| |#1|)) (-15 -4143 (|#2| |#1|)) (-15 -1700 (|#1| |#1|)) (-15 -1294 (|#1| |#1| (-754))) (-15 -1985 (|#2| |#1| "last")) (-15 -1294 (|#2| |#1|)) (-15 -3351 (|#1| |#1| (-754))) (-15 -1985 (|#1| |#1| "rest")) (-15 -3351 (|#1| |#1|)) (-15 -1985 (|#2| |#1| "first")) (-15 -2668 (|#1| |#2| |#1|)) (-15 -2668 (|#1| |#1| |#1|)) (-15 -2472 (|#2| |#1| |#2|)) (-15 -2950 (|#2| |#1| "value" |#2|)) (-15 -4017 (|#1| |#1| (-627 |#1|))) (-15 -3726 ((-111) |#1| |#1|)) (-15 -2978 ((-111) |#1|)) (-15 -1985 (|#2| |#1| "value")) (-15 -4288 (|#2| |#1|)) (-15 -3810 ((-111) |#1|)) (-15 -2336 ((-627 |#1|) |#1|)) (-15 -2535 ((-627 |#1|) |#1|)) (-15 -2292 ((-111) |#1| |#1|)) (-15 -1383 ((-754) |#1|)) (-15 -4031 ((-111) |#1| (-754))) (-15 -1602 ((-111) |#1| (-754))) (-15 -3971 ((-111) |#1| (-754)))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-4288 ((|#1| $) 48)) (-4155 ((|#1| $) 65)) (-1700 (($ $) 67)) (-3900 (($ $ (-552)) 52 (|has| $ (-6 -4367)))) (-4031 (((-111) $ (-754)) 8)) (-2472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4367)))) (-1474 (($ $ $) 56 (|has| $ (-6 -4367)))) (-2801 ((|#1| $ |#1|) 54 (|has| $ (-6 -4367)))) (-1612 ((|#1| $ |#1|) 58 (|has| $ (-6 -4367)))) (-2950 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4367))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4367))) (($ $ "rest" $) 55 (|has| $ (-6 -4367))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4367)))) (-4017 (($ $ (-627 $)) 41 (|has| $ (-6 -4367)))) (-4143 ((|#1| $) 66)) (-3887 (($) 7 T CONST)) (-3351 (($ $) 73) (($ $ (-754)) 71)) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-2336 (((-627 $) $) 50)) (-3726 (((-111) $ $) 42 (|has| |#1| (-1076)))) (-1602 (((-111) $ (-754)) 9)) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35)) (-3971 (((-111) $ (-754)) 10)) (-1823 (((-627 |#1|) $) 45)) (-3810 (((-111) $) 49)) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-1294 ((|#1| $) 70) (($ $ (-754)) 68)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3340 ((|#1| $) 76) (($ $ (-754)) 74)) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-1848 (((-552) $ $) 44)) (-2978 (((-111) $) 46)) (-1805 (($ $) 62)) (-3384 (($ $) 59 (|has| $ (-6 -4367)))) (-3543 (((-754) $) 63)) (-4149 (($ $) 64)) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2973 (($ $) 13)) (-3151 (($ $ $) 61 (|has| $ (-6 -4367))) (($ $ |#1|) 60 (|has| $ (-6 -4367)))) (-2668 (($ $ $) 78) (($ |#1| $) 77)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-2535 (((-627 $) $) 51)) (-3415 (((-111) $ $) 43 (|has| |#1| (-1076)))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-1223 |#1|) (-137) (-1189)) (T -1223)) +((-2668 (*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-2668 (*1 *1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1223 *3)) (-4 *3 (-1189)))) (-3351 (*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-1985 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1223 *3)) (-4 *3 (-1189)))) (-3351 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1223 *3)) (-4 *3 (-1189)))) (-1294 (*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-1294 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1223 *3)) (-4 *3 (-1189)))) (-1700 (*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-4155 (*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-4149 (*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-3543 (*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-1189)) (-5 *2 (-754)))) (-1805 (*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-3151 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-3151 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-3384 (*1 *1 *1) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-1612 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-2950 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-1474 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-2950 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4367)) (-4 *1 (-1223 *3)) (-4 *3 (-1189)))) (-2801 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-2950 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) (-3900 (*1 *1 *1 *2) (-12 (-5 *2 (-552)) (|has| *1 (-6 -4367)) (-4 *1 (-1223 *3)) (-4 *3 (-1189))))) +(-13 (-989 |t#1|) (-10 -8 (-15 -2668 ($ $ $)) (-15 -2668 ($ |t#1| $)) (-15 -3340 (|t#1| $)) (-15 -1985 (|t#1| $ "first")) (-15 -3340 ($ $ (-754))) (-15 -3351 ($ $)) (-15 -1985 ($ $ "rest")) (-15 -3351 ($ $ (-754))) (-15 -1294 (|t#1| $)) (-15 -1985 (|t#1| $ "last")) (-15 -1294 ($ $ (-754))) (-15 -1700 ($ $)) (-15 -4143 (|t#1| $)) (-15 -4155 (|t#1| $)) (-15 -4149 ($ $)) (-15 -3543 ((-754) $)) (-15 -1805 ($ $)) (IF (|has| $ (-6 -4367)) (PROGN (-15 -3151 ($ $ $)) (-15 -3151 ($ $ |t#1|)) (-15 -3384 ($ $)) (-15 -1612 (|t#1| $ |t#1|)) (-15 -2950 (|t#1| $ "first" |t#1|)) (-15 -1474 ($ $ $)) (-15 -2950 ($ $ "rest" $)) (-15 -2801 (|t#1| $ |t#1|)) (-15 -2950 (|t#1| $ "last" |t#1|)) (-15 -3900 ($ $ (-552)))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1076)) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-599 (-842)))) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-482 |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-989 |#1|) . T) ((-1076) |has| |#1| (-1076)) ((-1189) . T)) +((-3516 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1224 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3516 (|#4| (-1 |#2| |#1|) |#3|))) (-1028) (-1028) (-1226 |#1|) (-1226 |#2|)) (T -1224)) +((-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1028)) (-4 *6 (-1028)) (-4 *2 (-1226 *6)) (-5 *1 (-1224 *5 *6 *4 *2)) (-4 *4 (-1226 *5))))) +(-10 -7 (-15 -3516 (|#4| (-1 |#2| |#1|) |#3|))) +((-3024 (((-111) $) 15)) (-1607 (($ $) 92)) (-1467 (($ $) 68)) (-1584 (($ $) 88)) (-1445 (($ $) 64)) (-1628 (($ $) 96)) (-1492 (($ $) 72)) (-4135 (($ $) 62)) (-3154 (($ $) 60)) (-1640 (($ $) 98)) (-1502 (($ $) 74)) (-1615 (($ $) 94)) (-1479 (($ $) 70)) (-1596 (($ $) 90)) (-1456 (($ $) 66)) (-1477 (((-842) $) 48) (($ (-552)) NIL) (($ (-401 (-552))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1673 (($ $) 104)) (-1534 (($ $) 80)) (-1652 (($ $) 100)) (-1513 (($ $) 76)) (-1697 (($ $) 108)) (-1561 (($ $) 84)) (-3519 (($ $) 110)) (-1575 (($ $) 86)) (-1686 (($ $) 106)) (-1547 (($ $) 82)) (-1661 (($ $) 102)) (-1524 (($ $) 78)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-401 (-552))) 58))) +(((-1225 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-401 (-552)))) (-15 -1467 (|#1| |#1|)) (-15 -1445 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1479 (|#1| |#1|)) (-15 -1456 (|#1| |#1|)) (-15 -1524 (|#1| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1561 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -1596 (|#1| |#1|)) (-15 -1615 (|#1| |#1|)) (-15 -1640 (|#1| |#1|)) (-15 -1628 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1607 (|#1| |#1|)) (-15 -1661 (|#1| |#1|)) (-15 -1686 (|#1| |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -1673 (|#1| |#1|)) (-15 -4135 (|#1| |#1|)) (-15 -3154 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1477 (|#1| |#2|)) (-15 -1477 (|#1| |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| (-552))) (-15 ** (|#1| |#1| (-754))) (-15 ** (|#1| |#1| (-900))) (-15 -3024 ((-111) |#1|)) (-15 -1477 ((-842) |#1|))) (-1226 |#2|) (-1028)) (T -1225)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-401 (-552)))) (-15 -1467 (|#1| |#1|)) (-15 -1445 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1479 (|#1| |#1|)) (-15 -1456 (|#1| |#1|)) (-15 -1524 (|#1| |#1|)) (-15 -1547 (|#1| |#1|)) (-15 -1575 (|#1| |#1|)) (-15 -1561 (|#1| |#1|)) (-15 -1513 (|#1| |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -1596 (|#1| |#1|)) (-15 -1615 (|#1| |#1|)) (-15 -1640 (|#1| |#1|)) (-15 -1628 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -1607 (|#1| |#1|)) (-15 -1661 (|#1| |#1|)) (-15 -1686 (|#1| |#1|)) (-15 -3519 (|#1| |#1|)) (-15 -1697 (|#1| |#1|)) (-15 -1652 (|#1| |#1|)) (-15 -1673 (|#1| |#1|)) (-15 -4135 (|#1| |#1|)) (-15 -3154 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1477 (|#1| |#2|)) (-15 -1477 (|#1| |#1|)) (-15 -1477 (|#1| (-401 (-552)))) (-15 -1477 (|#1| (-552))) (-15 ** (|#1| |#1| (-754))) (-15 ** (|#1| |#1| (-900))) (-15 -3024 ((-111) |#1|)) (-15 -1477 ((-842) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1853 (((-627 (-1058)) $) 72)) (-4344 (((-1152) $) 101)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 49 (|has| |#1| (-544)))) (-3245 (($ $) 50 (|has| |#1| (-544)))) (-4058 (((-111) $) 52 (|has| |#1| (-544)))) (-4019 (($ $ (-754)) 96) (($ $ (-754) (-754)) 95)) (-4245 (((-1132 (-2 (|:| |k| (-754)) (|:| |c| |#1|))) $) 103)) (-1607 (($ $) 133 (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) 116 (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) 19)) (-1737 (($ $) 115 (|has| |#1| (-38 (-401 (-552)))))) (-1584 (($ $) 132 (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) 117 (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-1132 (-2 (|:| |k| (-754)) (|:| |c| |#1|)))) 153) (($ (-1132 |#1|)) 151)) (-1628 (($ $) 131 (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) 118 (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) 17 T CONST)) (-2014 (($ $) 58)) (-2040 (((-3 $ "failed") $) 32)) (-2872 (($ $) 150)) (-2212 (((-931 |#1|) $ (-754)) 148) (((-931 |#1|) $ (-754) (-754)) 147)) (-2391 (((-111) $) 71)) (-2951 (($) 143 (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-754) $) 98) (((-754) $ (-754)) 97)) (-2624 (((-111) $) 30)) (-1352 (($ $ (-552)) 114 (|has| |#1| (-38 (-401 (-552)))))) (-3322 (($ $ (-900)) 99)) (-3045 (($ (-1 |#1| (-552)) $) 149)) (-3267 (((-111) $) 60)) (-1832 (($ |#1| (-754)) 59) (($ $ (-1058) (-754)) 74) (($ $ (-627 (-1058)) (-627 (-754))) 73)) (-3516 (($ (-1 |#1| |#1|) $) 61)) (-4135 (($ $) 140 (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) 63)) (-1993 ((|#1| $) 64)) (-1595 (((-1134) $) 9)) (-2747 (($ $) 145 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) 144 (-1559 (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-938)) (|has| |#1| (-1174)) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-38 (-401 (-552)))))))) (-1498 (((-1096) $) 10)) (-4168 (($ $ (-754)) 93)) (-2761 (((-3 $ "failed") $ $) 48 (|has| |#1| (-544)))) (-3154 (($ $) 141 (|has| |#1| (-38 (-401 (-552)))))) (-3321 (((-1132 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-754)))))) (-1985 ((|#1| $ (-754)) 102) (($ $ $) 79 (|has| (-754) (-1088)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) 87 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (($ $ (-1152) (-754)) 86 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (($ $ (-627 (-1152))) 85 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (($ $ (-1152)) 84 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (($ $ (-754)) 82 (|has| |#1| (-15 * (|#1| (-754) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (-3567 (((-754) $) 62)) (-1640 (($ $) 130 (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) 119 (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) 129 (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) 120 (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) 128 (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) 121 (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) 70)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ (-401 (-552))) 55 (|has| |#1| (-38 (-401 (-552))))) (($ $) 47 (|has| |#1| (-544))) (($ |#1|) 45 (|has| |#1| (-169)))) (-1493 (((-1132 |#1|) $) 152)) (-1889 ((|#1| $ (-754)) 57)) (-3050 (((-3 $ "failed") $) 46 (|has| |#1| (-142)))) (-3995 (((-754)) 28)) (-3174 ((|#1| $) 100)) (-1673 (($ $) 139 (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) 127 (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) 51 (|has| |#1| (-544)))) (-1652 (($ $) 138 (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) 126 (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) 137 (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) 125 (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-754)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-754)))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) 136 (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) 124 (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) 135 (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) 123 (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) 134 (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) 122 (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) 91 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (($ $ (-1152) (-754)) 90 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (($ $ (-627 (-1152))) 89 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (($ $ (-1152)) 88 (-12 (|has| |#1| (-879 (-1152))) (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (($ $ (-754)) 83 (|has| |#1| (-15 * (|#1| (-754) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 56 (|has| |#1| (-357)))) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ |#1|) 146 (|has| |#1| (-357))) (($ $ $) 142 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 113 (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-401 (-552)) $) 54 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) 53 (|has| |#1| (-38 (-401 (-552))))))) +(((-1226 |#1|) (-137) (-1028)) (T -1226)) +((-1777 (*1 *1 *2) (-12 (-5 *2 (-1132 (-2 (|:| |k| (-754)) (|:| |c| *3)))) (-4 *3 (-1028)) (-4 *1 (-1226 *3)))) (-1493 (*1 *2 *1) (-12 (-4 *1 (-1226 *3)) (-4 *3 (-1028)) (-5 *2 (-1132 *3)))) (-1777 (*1 *1 *2) (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-4 *1 (-1226 *3)))) (-2872 (*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1028)))) (-3045 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-552))) (-4 *1 (-1226 *3)) (-4 *3 (-1028)))) (-2212 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *1 (-1226 *4)) (-4 *4 (-1028)) (-5 *2 (-931 *4)))) (-2212 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-754)) (-4 *1 (-1226 *4)) (-4 *4 (-1028)) (-5 *2 (-931 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) (-2747 (*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1028)) (-4 *2 (-38 (-401 (-552)))))) (-2747 (*1 *1 *1 *2) (-1559 (-12 (-5 *2 (-1152)) (-4 *1 (-1226 *3)) (-4 *3 (-1028)) (-12 (-4 *3 (-29 (-552))) (-4 *3 (-938)) (-4 *3 (-1174)) (-4 *3 (-38 (-401 (-552)))))) (-12 (-5 *2 (-1152)) (-4 *1 (-1226 *3)) (-4 *3 (-1028)) (-12 (|has| *3 (-15 -1853 ((-627 *2) *3))) (|has| *3 (-15 -2747 (*3 *3 *2))) (-4 *3 (-38 (-401 (-552))))))))) +(-13 (-1213 |t#1| (-754)) (-10 -8 (-15 -1777 ($ (-1132 (-2 (|:| |k| (-754)) (|:| |c| |t#1|))))) (-15 -1493 ((-1132 |t#1|) $)) (-15 -1777 ($ (-1132 |t#1|))) (-15 -2872 ($ $)) (-15 -3045 ($ (-1 |t#1| (-552)) $)) (-15 -2212 ((-931 |t#1|) $ (-754))) (-15 -2212 ((-931 |t#1|) $ (-754) (-754))) (IF (|has| |t#1| (-357)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-401 (-552)))) (PROGN (-15 -2747 ($ $)) (IF (|has| |t#1| (-15 -2747 (|t#1| |t#1| (-1152)))) (IF (|has| |t#1| (-15 -1853 ((-627 (-1152)) |t#1|))) (-15 -2747 ($ $ (-1152))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1174)) (IF (|has| |t#1| (-938)) (IF (|has| |t#1| (-29 (-552))) (-15 -2747 ($ $ (-1152))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-981)) (-6 (-1174))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-754)) . T) ((-25) . T) ((-38 #1=(-401 (-552))) |has| |#1| (-38 (-401 (-552)))) ((-38 |#1|) |has| |#1| (-169)) ((-38 $) |has| |#1| (-544)) ((-35) |has| |#1| (-38 (-401 (-552)))) ((-94) |has| |#1| (-38 (-401 (-552)))) ((-101) . T) ((-110 #1# #1#) |has| |#1| (-38 (-401 (-552)))) ((-110 |#1| |#1|) . T) ((-110 $ $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-129) . T) ((-142) |has| |#1| (-142)) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-228) |has| |#1| (-15 * (|#1| (-754) |#1|))) ((-278) |has| |#1| (-38 (-401 (-552)))) ((-280 $ $) |has| (-754) (-1088)) ((-284) |has| |#1| (-544)) ((-485) |has| |#1| (-38 (-401 (-552)))) ((-544) |has| |#1| (-544)) ((-630 #1#) |has| |#1| (-38 (-401 (-552)))) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #1#) |has| |#1| (-38 (-401 (-552)))) ((-700 |#1|) |has| |#1| (-169)) ((-700 $) |has| |#1| (-544)) ((-709) . T) ((-879 (-1152)) -12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152)))) ((-952 |#1| #0# (-1058)) . T) ((-981) |has| |#1| (-38 (-401 (-552)))) ((-1034 #1#) |has| |#1| (-38 (-401 (-552)))) ((-1034 |#1|) . T) ((-1034 $) -1559 (|has| |#1| (-544)) (|has| |#1| (-169))) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1174) |has| |#1| (-38 (-401 (-552)))) ((-1177) |has| |#1| (-38 (-401 (-552)))) ((-1213 |#1| #0#) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1853 (((-627 (-1058)) $) NIL)) (-4344 (((-1152) $) 87)) (-3017 (((-1208 |#2| |#1|) $ (-754)) 73)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) NIL (|has| |#1| (-544)))) (-3245 (($ $) NIL (|has| |#1| (-544)))) (-4058 (((-111) $) 137 (|has| |#1| (-544)))) (-4019 (($ $ (-754)) 122) (($ $ (-754) (-754)) 124)) (-4245 (((-1132 (-2 (|:| |k| (-754)) (|:| |c| |#1|))) $) 42)) (-1607 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1467 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4136 (((-3 $ "failed") $ $) NIL)) (-1737 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1584 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1445 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1777 (($ (-1132 (-2 (|:| |k| (-754)) (|:| |c| |#1|)))) 53) (($ (-1132 |#1|)) NIL)) (-1628 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1492 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3887 (($) NIL T CONST)) (-3738 (($ $) 128)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2872 (($ $) 135)) (-2212 (((-931 |#1|) $ (-754)) 63) (((-931 |#1|) $ (-754) (-754)) 65)) (-2391 (((-111) $) NIL)) (-2951 (($) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2641 (((-754) $) NIL) (((-754) $ (-754)) NIL)) (-2624 (((-111) $) NIL)) (-2910 (($ $) 112)) (-1352 (($ $ (-552)) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1780 (($ (-552) (-552) $) 130)) (-3322 (($ $ (-900)) 134)) (-3045 (($ (-1 |#1| (-552)) $) 106)) (-3267 (((-111) $) NIL)) (-1832 (($ |#1| (-754)) 15) (($ $ (-1058) (-754)) NIL) (($ $ (-627 (-1058)) (-627 (-754))) NIL)) (-3516 (($ (-1 |#1| |#1|) $) 94)) (-4135 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1981 (($ $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-2525 (($ $) 110)) (-4258 (($ $) 108)) (-2956 (($ (-552) (-552) $) 132)) (-2747 (($ $) 145 (|has| |#1| (-38 (-401 (-552))))) (($ $ (-1152)) 151 (-1559 (-12 (|has| |#1| (-15 -2747 (|#1| |#1| (-1152)))) (|has| |#1| (-15 -1853 ((-627 (-1152)) |#1|))) (|has| |#1| (-38 (-401 (-552))))) (-12 (|has| |#1| (-29 (-552))) (|has| |#1| (-38 (-401 (-552)))) (|has| |#1| (-938)) (|has| |#1| (-1174))))) (($ $ (-1231 |#2|)) 146 (|has| |#1| (-38 (-401 (-552)))))) (-1498 (((-1096) $) NIL)) (-2483 (($ $ (-552) (-552)) 116)) (-4168 (($ $ (-754)) 118)) (-2761 (((-3 $ "failed") $ $) NIL (|has| |#1| (-544)))) (-3154 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-4286 (($ $) 114)) (-3321 (((-1132 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-754)))))) (-1985 ((|#1| $ (-754)) 91) (($ $ $) 126 (|has| (-754) (-1088)))) (-2942 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) 103 (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-754) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-754) |#1|)))) (($ $ (-1231 |#2|)) 99)) (-3567 (((-754) $) NIL)) (-1640 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1502 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1615 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1479 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1596 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1456 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-2890 (($ $) 120)) (-1477 (((-842) $) NIL) (($ (-552)) 24) (($ (-401 (-552))) 143 (|has| |#1| (-38 (-401 (-552))))) (($ $) NIL (|has| |#1| (-544))) (($ |#1|) 23 (|has| |#1| (-169))) (($ (-1208 |#2| |#1|)) 80) (($ (-1231 |#2|)) 20)) (-1493 (((-1132 |#1|) $) NIL)) (-1889 ((|#1| $ (-754)) 90)) (-3050 (((-3 $ "failed") $) NIL (|has| |#1| (-142)))) (-3995 (((-754)) NIL)) (-3174 ((|#1| $) 88)) (-1673 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1534 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3778 (((-111) $ $) NIL (|has| |#1| (-544)))) (-1652 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1513 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1697 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1561 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-3030 ((|#1| $ (-754)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-754)))) (|has| |#1| (-15 -1477 (|#1| (-1152))))))) (-3519 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1575 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1686 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1547 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1661 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1524 (($ $) NIL (|has| |#1| (-38 (-401 (-552)))))) (-1922 (($) 17 T CONST)) (-1933 (($) 13 T CONST)) (-4251 (($ $ (-627 (-1152)) (-627 (-754))) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152) (-754)) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-627 (-1152))) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-1152)) NIL (-12 (|has| |#1| (-15 * (|#1| (-754) |#1|))) (|has| |#1| (-879 (-1152))))) (($ $ (-754)) NIL (|has| |#1| (-15 * (|#1| (-754) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-754) |#1|))))) (-2292 (((-111) $ $) NIL)) (-2407 (($ $ |#1|) NIL (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) 102)) (-2384 (($ $ $) 18)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL) (($ $ |#1|) 140 (|has| |#1| (-357))) (($ $ $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552)))))) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-401 (-552)) $) NIL (|has| |#1| (-38 (-401 (-552))))) (($ $ (-401 (-552))) NIL (|has| |#1| (-38 (-401 (-552))))))) +(((-1227 |#1| |#2| |#3|) (-13 (-1226 |#1|) (-10 -8 (-15 -1477 ($ (-1208 |#2| |#1|))) (-15 -3017 ((-1208 |#2| |#1|) $ (-754))) (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (-15 -4258 ($ $)) (-15 -2525 ($ $)) (-15 -2910 ($ $)) (-15 -4286 ($ $)) (-15 -2483 ($ $ (-552) (-552))) (-15 -3738 ($ $)) (-15 -1780 ($ (-552) (-552) $)) (-15 -2956 ($ (-552) (-552) $)) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) (-1028) (-1152) |#1|) (T -1227)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-1208 *4 *3)) (-4 *3 (-1028)) (-14 *4 (-1152)) (-14 *5 *3) (-5 *1 (-1227 *3 *4 *5)))) (-3017 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1208 *5 *4)) (-5 *1 (-1227 *4 *5 *6)) (-4 *4 (-1028)) (-14 *5 (-1152)) (-14 *6 *4))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1028)) (-14 *5 *3))) (-4258 (*1 *1 *1) (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1028)) (-14 *3 (-1152)) (-14 *4 *2))) (-2525 (*1 *1 *1) (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1028)) (-14 *3 (-1152)) (-14 *4 *2))) (-2910 (*1 *1 *1) (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1028)) (-14 *3 (-1152)) (-14 *4 *2))) (-4286 (*1 *1 *1) (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1028)) (-14 *3 (-1152)) (-14 *4 *2))) (-2483 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1028)) (-14 *4 (-1152)) (-14 *5 *3))) (-3738 (*1 *1 *1) (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1028)) (-14 *3 (-1152)) (-14 *4 *2))) (-1780 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1028)) (-14 *4 (-1152)) (-14 *5 *3))) (-2956 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1028)) (-14 *4 (-1152)) (-14 *5 *3))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3)))) +(-13 (-1226 |#1|) (-10 -8 (-15 -1477 ($ (-1208 |#2| |#1|))) (-15 -3017 ((-1208 |#2| |#1|) $ (-754))) (-15 -1477 ($ (-1231 |#2|))) (-15 -2942 ($ $ (-1231 |#2|))) (-15 -4258 ($ $)) (-15 -2525 ($ $)) (-15 -2910 ($ $)) (-15 -4286 ($ $)) (-15 -2483 ($ $ (-552) (-552))) (-15 -3738 ($ $)) (-15 -1780 ($ (-552) (-552) $)) (-15 -2956 ($ (-552) (-552) $)) (IF (|has| |#1| (-38 (-401 (-552)))) (-15 -2747 ($ $ (-1231 |#2|))) |%noBranch|))) +((-1762 (((-1 (-1132 |#1|) (-627 (-1132 |#1|))) (-1 |#2| (-627 |#2|))) 24)) (-1386 (((-1 (-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2808 (((-1 (-1132 |#1|) (-1132 |#1|)) (-1 |#2| |#2|)) 13)) (-3530 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1931 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3135 ((|#2| (-1 |#2| (-627 |#2|)) (-627 |#1|)) 54)) (-4299 (((-627 |#2|) (-627 |#1|) (-627 (-1 |#2| (-627 |#2|)))) 61)) (-2425 ((|#2| |#2| |#2|) 43))) +(((-1228 |#1| |#2|) (-10 -7 (-15 -2808 ((-1 (-1132 |#1|) (-1132 |#1|)) (-1 |#2| |#2|))) (-15 -1386 ((-1 (-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1762 ((-1 (-1132 |#1|) (-627 (-1132 |#1|))) (-1 |#2| (-627 |#2|)))) (-15 -2425 (|#2| |#2| |#2|)) (-15 -1931 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3530 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3135 (|#2| (-1 |#2| (-627 |#2|)) (-627 |#1|))) (-15 -4299 ((-627 |#2|) (-627 |#1|) (-627 (-1 |#2| (-627 |#2|)))))) (-38 (-401 (-552))) (-1226 |#1|)) (T -1228)) +((-4299 (*1 *2 *3 *4) (-12 (-5 *3 (-627 *5)) (-5 *4 (-627 (-1 *6 (-627 *6)))) (-4 *5 (-38 (-401 (-552)))) (-4 *6 (-1226 *5)) (-5 *2 (-627 *6)) (-5 *1 (-1228 *5 *6)))) (-3135 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-627 *2))) (-5 *4 (-627 *5)) (-4 *5 (-38 (-401 (-552)))) (-4 *2 (-1226 *5)) (-5 *1 (-1228 *5 *2)))) (-3530 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1226 *4)) (-5 *1 (-1228 *4 *2)) (-4 *4 (-38 (-401 (-552)))))) (-1931 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1226 *4)) (-5 *1 (-1228 *4 *2)) (-4 *4 (-38 (-401 (-552)))))) (-2425 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1228 *3 *2)) (-4 *2 (-1226 *3)))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-627 *5))) (-4 *5 (-1226 *4)) (-4 *4 (-38 (-401 (-552)))) (-5 *2 (-1 (-1132 *4) (-627 (-1132 *4)))) (-5 *1 (-1228 *4 *5)))) (-1386 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1226 *4)) (-4 *4 (-38 (-401 (-552)))) (-5 *2 (-1 (-1132 *4) (-1132 *4) (-1132 *4))) (-5 *1 (-1228 *4 *5)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1226 *4)) (-4 *4 (-38 (-401 (-552)))) (-5 *2 (-1 (-1132 *4) (-1132 *4))) (-5 *1 (-1228 *4 *5))))) +(-10 -7 (-15 -2808 ((-1 (-1132 |#1|) (-1132 |#1|)) (-1 |#2| |#2|))) (-15 -1386 ((-1 (-1132 |#1|) (-1132 |#1|) (-1132 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1762 ((-1 (-1132 |#1|) (-627 (-1132 |#1|))) (-1 |#2| (-627 |#2|)))) (-15 -2425 (|#2| |#2| |#2|)) (-15 -1931 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3530 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3135 (|#2| (-1 |#2| (-627 |#2|)) (-627 |#1|))) (-15 -4299 ((-627 |#2|) (-627 |#1|) (-627 (-1 |#2| (-627 |#2|)))))) +((-2413 ((|#2| |#4| (-754)) 30)) (-2803 ((|#4| |#2|) 25)) (-3772 ((|#4| (-401 |#2|)) 52 (|has| |#1| (-544)))) (-2137 (((-1 |#4| (-627 |#4|)) |#3|) 46))) +(((-1229 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2803 (|#4| |#2|)) (-15 -2413 (|#2| |#4| (-754))) (-15 -2137 ((-1 |#4| (-627 |#4|)) |#3|)) (IF (|has| |#1| (-544)) (-15 -3772 (|#4| (-401 |#2|))) |%noBranch|)) (-1028) (-1211 |#1|) (-638 |#2|) (-1226 |#1|)) (T -1229)) +((-3772 (*1 *2 *3) (-12 (-5 *3 (-401 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-544)) (-4 *4 (-1028)) (-4 *2 (-1226 *4)) (-5 *1 (-1229 *4 *5 *6 *2)) (-4 *6 (-638 *5)))) (-2137 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-4 *5 (-1211 *4)) (-5 *2 (-1 *6 (-627 *6))) (-5 *1 (-1229 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-1226 *4)))) (-2413 (*1 *2 *3 *4) (-12 (-5 *4 (-754)) (-4 *5 (-1028)) (-4 *2 (-1211 *5)) (-5 *1 (-1229 *5 *2 *6 *3)) (-4 *6 (-638 *2)) (-4 *3 (-1226 *5)))) (-2803 (*1 *2 *3) (-12 (-4 *4 (-1028)) (-4 *3 (-1211 *4)) (-4 *2 (-1226 *4)) (-5 *1 (-1229 *4 *3 *5 *2)) (-4 *5 (-638 *3))))) +(-10 -7 (-15 -2803 (|#4| |#2|)) (-15 -2413 (|#2| |#4| (-754))) (-15 -2137 ((-1 |#4| (-627 |#4|)) |#3|)) (IF (|has| |#1| (-544)) (-15 -3772 (|#4| (-401 |#2|))) |%noBranch|)) +NIL +(((-1230) (-137)) (T -1230)) +NIL +(-13 (-10 -7 (-6 -2997))) +((-1465 (((-111) $ $) NIL)) (-4344 (((-1152)) 12)) (-1595 (((-1134) $) 17)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 11) (((-1152) $) 8)) (-2292 (((-111) $ $) 14))) +(((-1231 |#1|) (-13 (-1076) (-599 (-1152)) (-10 -8 (-15 -1477 ((-1152) $)) (-15 -4344 ((-1152))))) (-1152)) (T -1231)) +((-1477 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1231 *3)) (-14 *3 *2))) (-4344 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1231 *3)) (-14 *3 *2)))) +(-13 (-1076) (-599 (-1152)) (-10 -8 (-15 -1477 ((-1152) $)) (-15 -4344 ((-1152))))) +((-2099 (($ (-754)) 18)) (-1541 (((-671 |#2|) $ $) 40)) (-2306 ((|#2| $) 48)) (-3593 ((|#2| $) 47)) (-2395 ((|#2| $ $) 35)) (-3917 (($ $ $) 44)) (-2396 (($ $) 22) (($ $ $) 28)) (-2384 (($ $ $) 15)) (* (($ (-552) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) +(((-1232 |#1| |#2|) (-10 -8 (-15 -2306 (|#2| |#1|)) (-15 -3593 (|#2| |#1|)) (-15 -3917 (|#1| |#1| |#1|)) (-15 -1541 ((-671 |#2|) |#1| |#1|)) (-15 -2395 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 -2099 (|#1| (-754))) (-15 -2384 (|#1| |#1| |#1|))) (-1233 |#2|) (-1189)) (T -1232)) +NIL +(-10 -8 (-15 -2306 (|#2| |#1|)) (-15 -3593 (|#2| |#1|)) (-15 -3917 (|#1| |#1| |#1|)) (-15 -1541 ((-671 |#2|) |#1| |#1|)) (-15 -2395 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-552) |#1|)) (-15 -2396 (|#1| |#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 -2099 (|#1| (-754))) (-15 -2384 (|#1| |#1| |#1|))) +((-1465 (((-111) $ $) 19 (|has| |#1| (-1076)))) (-2099 (($ (-754)) 112 (|has| |#1| (-23)))) (-3305 (((-1240) $ (-552) (-552)) 40 (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) 98) (((-111) $) 92 (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) 89 (|has| $ (-6 -4367))) (($ $) 88 (-12 (|has| |#1| (-830)) (|has| $ (-6 -4367))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) 8)) (-2950 ((|#1| $ (-552) |#1|) 52 (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) 58 (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) 75 (|has| $ (-6 -4366)))) (-3887 (($) 7 T CONST)) (-2519 (($ $) 90 (|has| $ (-6 -4367)))) (-3429 (($ $) 100)) (-3370 (($ $) 78 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4342 (($ |#1| $) 77 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) (($ (-1 (-111) |#1|) $) 74 (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) 53 (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) 51)) (-2967 (((-552) (-1 (-111) |#1|) $) 97) (((-552) |#1| $) 96 (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) 95 (|has| |#1| (-1076)))) (-3215 (((-627 |#1|) $) 30 (|has| $ (-6 -4366)))) (-1541 (((-671 |#1|) $ $) 105 (|has| |#1| (-1028)))) (-2655 (($ (-754) |#1|) 69)) (-1602 (((-111) $ (-754)) 9)) (-3661 (((-552) $) 43 (|has| (-552) (-830)))) (-1816 (($ $ $) 87 (|has| |#1| (-830)))) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) 27 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-2285 (((-552) $) 44 (|has| (-552) (-830)))) (-4093 (($ $ $) 86 (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2306 ((|#1| $) 102 (-12 (|has| |#1| (-1028)) (|has| |#1| (-981))))) (-3971 (((-111) $ (-754)) 10)) (-3593 ((|#1| $) 103 (-12 (|has| |#1| (-1028)) (|has| |#1| (-981))))) (-1595 (((-1134) $) 22 (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) 60) (($ $ $ (-552)) 59)) (-3892 (((-627 (-552)) $) 46)) (-2358 (((-111) (-552) $) 47)) (-1498 (((-1096) $) 21 (|has| |#1| (-1076)))) (-3340 ((|#1| $) 42 (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) 71)) (-1942 (($ $ |#1|) 41 (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) 32 (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) 26 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) 23 (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) 14)) (-2181 (((-111) |#1| $) 45 (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) 48)) (-1275 (((-111) $) 11)) (-2373 (($) 12)) (-1985 ((|#1| $ (-552) |#1|) 50) ((|#1| $ (-552)) 49) (($ $ (-1202 (-552))) 63)) (-2395 ((|#1| $ $) 106 (|has| |#1| (-1028)))) (-3907 (($ $ (-552)) 62) (($ $ (-1202 (-552))) 61)) (-3917 (($ $ $) 104 (|has| |#1| (-1028)))) (-1509 (((-754) (-1 (-111) |#1|) $) 31 (|has| $ (-6 -4366))) (((-754) |#1| $) 28 (-12 (|has| |#1| (-1076)) (|has| $ (-6 -4366))))) (-4105 (($ $ $ (-552)) 91 (|has| $ (-6 -4367)))) (-2973 (($ $) 13)) (-3562 (((-528) $) 79 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 70)) (-2668 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-627 $)) 65)) (-1477 (((-842) $) 18 (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) 33 (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) 84 (|has| |#1| (-830)))) (-2329 (((-111) $ $) 83 (|has| |#1| (-830)))) (-2292 (((-111) $ $) 20 (|has| |#1| (-1076)))) (-2340 (((-111) $ $) 85 (|has| |#1| (-830)))) (-2316 (((-111) $ $) 82 (|has| |#1| (-830)))) (-2396 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2384 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-552) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-709))) (($ $ |#1|) 107 (|has| |#1| (-709)))) (-1383 (((-754) $) 6 (|has| $ (-6 -4366))))) +(((-1233 |#1|) (-137) (-1189)) (T -1233)) +((-2384 (*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-25)))) (-2099 (*1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1233 *3)) (-4 *3 (-23)) (-4 *3 (-1189)))) (-2396 (*1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-21)))) (-2396 (*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-4 *1 (-1233 *3)) (-4 *3 (-1189)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-709)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-709)))) (-2395 (*1 *2 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-1028)))) (-1541 (*1 *2 *1 *1) (-12 (-4 *1 (-1233 *3)) (-4 *3 (-1189)) (-4 *3 (-1028)) (-5 *2 (-671 *3)))) (-3917 (*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-1028)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-981)) (-4 *2 (-1028)))) (-2306 (*1 *2 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-981)) (-4 *2 (-1028))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2384 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2099 ($ (-754))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2396 ($ $)) (-15 -2396 ($ $ $)) (-15 * ($ (-552) $))) |%noBranch|) (IF (|has| |t#1| (-709)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1028)) (PROGN (-15 -2395 (|t#1| $ $)) (-15 -1541 ((-671 |t#1|) $ $)) (-15 -3917 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-981)) (IF (|has| |t#1| (-1028)) (PROGN (-15 -3593 (|t#1| $)) (-15 -2306 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-101) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830))) ((-599 (-842)) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830)) (|has| |#1| (-599 (-842)))) ((-148 |#1|) . T) ((-600 (-528)) |has| |#1| (-600 (-528))) ((-280 #0=(-552) |#1|) . T) ((-282 #0# |#1|) . T) ((-303 |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-367 |#1|) . T) ((-482 |#1|) . T) ((-590 #0# |#1|) . T) ((-506 |#1| |#1|) -12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))) ((-633 |#1|) . T) ((-19 |#1|) . T) ((-830) |has| |#1| (-830)) ((-1076) -1559 (|has| |#1| (-1076)) (|has| |#1| (-830))) ((-1189) . T)) +((-2169 (((-1235 |#2|) (-1 |#2| |#1| |#2|) (-1235 |#1|) |#2|) 13)) (-2091 ((|#2| (-1 |#2| |#1| |#2|) (-1235 |#1|) |#2|) 15)) (-3516 (((-3 (-1235 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1235 |#1|)) 28) (((-1235 |#2|) (-1 |#2| |#1|) (-1235 |#1|)) 18))) +(((-1234 |#1| |#2|) (-10 -7 (-15 -2169 ((-1235 |#2|) (-1 |#2| |#1| |#2|) (-1235 |#1|) |#2|)) (-15 -2091 (|#2| (-1 |#2| |#1| |#2|) (-1235 |#1|) |#2|)) (-15 -3516 ((-1235 |#2|) (-1 |#2| |#1|) (-1235 |#1|))) (-15 -3516 ((-3 (-1235 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1235 |#1|)))) (-1189) (-1189)) (T -1234)) +((-3516 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1235 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-1235 *6)) (-5 *1 (-1234 *5 *6)))) (-3516 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1235 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-1235 *6)) (-5 *1 (-1234 *5 *6)))) (-2091 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1235 *5)) (-4 *5 (-1189)) (-4 *2 (-1189)) (-5 *1 (-1234 *5 *2)))) (-2169 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1235 *6)) (-4 *6 (-1189)) (-4 *5 (-1189)) (-5 *2 (-1235 *5)) (-5 *1 (-1234 *6 *5))))) +(-10 -7 (-15 -2169 ((-1235 |#2|) (-1 |#2| |#1| |#2|) (-1235 |#1|) |#2|)) (-15 -2091 (|#2| (-1 |#2| |#1| |#2|) (-1235 |#1|) |#2|)) (-15 -3516 ((-1235 |#2|) (-1 |#2| |#1|) (-1235 |#1|))) (-15 -3516 ((-3 (-1235 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1235 |#1|)))) +((-1465 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2099 (($ (-754)) NIL (|has| |#1| (-23)))) (-2931 (($ (-627 |#1|)) 9)) (-3305 (((-1240) $ (-552) (-552)) NIL (|has| $ (-6 -4367)))) (-1439 (((-111) (-1 (-111) |#1| |#1|) $) NIL) (((-111) $) NIL (|has| |#1| (-830)))) (-2701 (($ (-1 (-111) |#1| |#1|) $) NIL (|has| $ (-6 -4367))) (($ $) NIL (-12 (|has| $ (-6 -4367)) (|has| |#1| (-830))))) (-4298 (($ (-1 (-111) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-830)))) (-4031 (((-111) $ (-754)) NIL)) (-2950 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367))) ((|#1| $ (-1202 (-552)) |#1|) NIL (|has| $ (-6 -4367)))) (-2536 (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3887 (($) NIL T CONST)) (-2519 (($ $) NIL (|has| $ (-6 -4367)))) (-3429 (($ $) NIL)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4342 (($ |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) (($ (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2091 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4366))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4366)))) (-3473 ((|#1| $ (-552) |#1|) NIL (|has| $ (-6 -4367)))) (-3413 ((|#1| $ (-552)) NIL)) (-2967 (((-552) (-1 (-111) |#1|) $) NIL) (((-552) |#1| $) NIL (|has| |#1| (-1076))) (((-552) |#1| $ (-552)) NIL (|has| |#1| (-1076)))) (-3215 (((-627 |#1|) $) 15 (|has| $ (-6 -4366)))) (-1541 (((-671 |#1|) $ $) NIL (|has| |#1| (-1028)))) (-2655 (($ (-754) |#1|) NIL)) (-1602 (((-111) $ (-754)) NIL)) (-3661 (((-552) $) NIL (|has| (-552) (-830)))) (-1816 (($ $ $) NIL (|has| |#1| (-830)))) (-3759 (($ (-1 (-111) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-830)))) (-3114 (((-627 |#1|) $) NIL (|has| $ (-6 -4366)))) (-3082 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2285 (((-552) $) NIL (|has| (-552) (-830)))) (-4093 (($ $ $) NIL (|has| |#1| (-830)))) (-3463 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2306 ((|#1| $) NIL (-12 (|has| |#1| (-981)) (|has| |#1| (-1028))))) (-3971 (((-111) $ (-754)) NIL)) (-3593 ((|#1| $) NIL (-12 (|has| |#1| (-981)) (|has| |#1| (-1028))))) (-1595 (((-1134) $) NIL (|has| |#1| (-1076)))) (-3252 (($ |#1| $ (-552)) NIL) (($ $ $ (-552)) NIL)) (-3892 (((-627 (-552)) $) NIL)) (-2358 (((-111) (-552) $) NIL)) (-1498 (((-1096) $) NIL (|has| |#1| (-1076)))) (-3340 ((|#1| $) NIL (|has| (-552) (-830)))) (-1503 (((-3 |#1| "failed") (-1 (-111) |#1|) $) NIL)) (-1942 (($ $ |#1|) NIL (|has| $ (-6 -4367)))) (-3509 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 (-288 |#1|))) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076)))) (($ $ (-627 |#1|) (-627 |#1|)) NIL (-12 (|has| |#1| (-303 |#1|)) (|has| |#1| (-1076))))) (-2432 (((-111) $ $) NIL)) (-2181 (((-111) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-2083 (((-627 |#1|) $) NIL)) (-1275 (((-111) $) NIL)) (-2373 (($) NIL)) (-1985 ((|#1| $ (-552) |#1|) NIL) ((|#1| $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-2395 ((|#1| $ $) NIL (|has| |#1| (-1028)))) (-3907 (($ $ (-552)) NIL) (($ $ (-1202 (-552))) NIL)) (-3917 (($ $ $) NIL (|has| |#1| (-1028)))) (-1509 (((-754) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366))) (((-754) |#1| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#1| (-1076))))) (-4105 (($ $ $ (-552)) NIL (|has| $ (-6 -4367)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) 19 (|has| |#1| (-600 (-528))))) (-1490 (($ (-627 |#1|)) 8)) (-2668 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-627 $)) NIL)) (-1477 (((-842) $) NIL (|has| |#1| (-599 (-842))))) (-3299 (((-111) (-1 (-111) |#1|) $) NIL (|has| $ (-6 -4366)))) (-2351 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2329 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2292 (((-111) $ $) NIL (|has| |#1| (-1076)))) (-2340 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2316 (((-111) $ $) NIL (|has| |#1| (-830)))) (-2396 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2384 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-552) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-709))) (($ $ |#1|) NIL (|has| |#1| (-709)))) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-1235 |#1|) (-13 (-1233 |#1|) (-10 -8 (-15 -2931 ($ (-627 |#1|))))) (-1189)) (T -1235)) +((-2931 (*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-1235 *3))))) +(-13 (-1233 |#1|) (-10 -8 (-15 -2931 ($ (-627 |#1|))))) +((-1465 (((-111) $ $) NIL)) (-1557 (((-1134) $ (-1134)) 90) (((-1134) $ (-1134) (-1134)) 88) (((-1134) $ (-1134) (-627 (-1134))) 87)) (-2592 (($) 59)) (-2903 (((-1240) $ (-461) (-900)) 45)) (-1516 (((-1240) $ (-900) (-1134)) 73) (((-1240) $ (-900) (-853)) 74)) (-3084 (((-1240) $ (-900) (-373) (-373)) 48)) (-2320 (((-1240) $ (-1134)) 69)) (-3365 (((-1240) $ (-900) (-1134)) 78)) (-2442 (((-1240) $ (-900) (-373) (-373)) 49)) (-1719 (((-1240) $ (-900) (-900)) 46)) (-2778 (((-1240) $) 70)) (-2862 (((-1240) $ (-900) (-1134)) 77)) (-1755 (((-1240) $ (-461) (-900)) 31)) (-1432 (((-1240) $ (-900) (-1134)) 76)) (-2230 (((-627 (-257)) $) 23) (($ $ (-627 (-257))) 24)) (-2394 (((-1240) $ (-754) (-754)) 43)) (-2917 (($ $) 60) (($ (-461) (-627 (-257))) 61)) (-1595 (((-1134) $) NIL)) (-3998 (((-552) $) 38)) (-1498 (((-1096) $) NIL)) (-1327 (((-1235 (-3 (-461) "undefined")) $) 37)) (-3626 (((-1235 (-2 (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)) (|:| -1432 (-552)) (|:| -3286 (-552)) (|:| |spline| (-552)) (|:| -2832 (-552)) (|:| |axesColor| (-853)) (|:| -1516 (-552)) (|:| |unitsColor| (-853)) (|:| |showing| (-552)))) $) 36)) (-3330 (((-1240) $ (-900) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-853) (-552) (-853) (-552)) 68)) (-4184 (((-627 (-922 (-220))) $) NIL)) (-3214 (((-461) $ (-900)) 33)) (-1343 (((-1240) $ (-754) (-754) (-900) (-900)) 40)) (-1333 (((-1240) $ (-1134)) 79)) (-3286 (((-1240) $ (-900) (-1134)) 75)) (-1477 (((-842) $) 85)) (-4267 (((-1240) $) 80)) (-2832 (((-1240) $ (-900) (-1134)) 71) (((-1240) $ (-900) (-853)) 72)) (-2292 (((-111) $ $) NIL))) +(((-1236) (-13 (-1076) (-10 -8 (-15 -4184 ((-627 (-922 (-220))) $)) (-15 -2592 ($)) (-15 -2917 ($ $)) (-15 -2230 ((-627 (-257)) $)) (-15 -2230 ($ $ (-627 (-257)))) (-15 -2917 ($ (-461) (-627 (-257)))) (-15 -3330 ((-1240) $ (-900) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-853) (-552) (-853) (-552))) (-15 -3626 ((-1235 (-2 (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)) (|:| -1432 (-552)) (|:| -3286 (-552)) (|:| |spline| (-552)) (|:| -2832 (-552)) (|:| |axesColor| (-853)) (|:| -1516 (-552)) (|:| |unitsColor| (-853)) (|:| |showing| (-552)))) $)) (-15 -1327 ((-1235 (-3 (-461) "undefined")) $)) (-15 -2320 ((-1240) $ (-1134))) (-15 -1755 ((-1240) $ (-461) (-900))) (-15 -3214 ((-461) $ (-900))) (-15 -2832 ((-1240) $ (-900) (-1134))) (-15 -2832 ((-1240) $ (-900) (-853))) (-15 -1516 ((-1240) $ (-900) (-1134))) (-15 -1516 ((-1240) $ (-900) (-853))) (-15 -1432 ((-1240) $ (-900) (-1134))) (-15 -2862 ((-1240) $ (-900) (-1134))) (-15 -3286 ((-1240) $ (-900) (-1134))) (-15 -1333 ((-1240) $ (-1134))) (-15 -4267 ((-1240) $)) (-15 -1343 ((-1240) $ (-754) (-754) (-900) (-900))) (-15 -2442 ((-1240) $ (-900) (-373) (-373))) (-15 -3084 ((-1240) $ (-900) (-373) (-373))) (-15 -3365 ((-1240) $ (-900) (-1134))) (-15 -2394 ((-1240) $ (-754) (-754))) (-15 -2903 ((-1240) $ (-461) (-900))) (-15 -1719 ((-1240) $ (-900) (-900))) (-15 -1557 ((-1134) $ (-1134))) (-15 -1557 ((-1134) $ (-1134) (-1134))) (-15 -1557 ((-1134) $ (-1134) (-627 (-1134)))) (-15 -2778 ((-1240) $)) (-15 -3998 ((-552) $)) (-15 -1477 ((-842) $))))) (T -1236)) +((-1477 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1236)))) (-4184 (*1 *2 *1) (-12 (-5 *2 (-627 (-922 (-220)))) (-5 *1 (-1236)))) (-2592 (*1 *1) (-5 *1 (-1236))) (-2917 (*1 *1 *1) (-5 *1 (-1236))) (-2230 (*1 *2 *1) (-12 (-5 *2 (-627 (-257))) (-5 *1 (-1236)))) (-2230 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-257))) (-5 *1 (-1236)))) (-2917 (*1 *1 *2 *3) (-12 (-5 *2 (-461)) (-5 *3 (-627 (-257))) (-5 *1 (-1236)))) (-3330 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-900)) (-5 *4 (-220)) (-5 *5 (-552)) (-5 *6 (-853)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-1235 (-2 (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)) (|:| -1432 (-552)) (|:| -3286 (-552)) (|:| |spline| (-552)) (|:| -2832 (-552)) (|:| |axesColor| (-853)) (|:| -1516 (-552)) (|:| |unitsColor| (-853)) (|:| |showing| (-552))))) (-5 *1 (-1236)))) (-1327 (*1 *2 *1) (-12 (-5 *2 (-1235 (-3 (-461) "undefined"))) (-5 *1 (-1236)))) (-2320 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-1755 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-461)) (-5 *4 (-900)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-3214 (*1 *2 *1 *3) (-12 (-5 *3 (-900)) (-5 *2 (-461)) (-5 *1 (-1236)))) (-2832 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-2832 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-853)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-1516 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-1516 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-853)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-1432 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-2862 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-3286 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-1333 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1236)))) (-1343 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-754)) (-5 *4 (-900)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-2442 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-900)) (-5 *4 (-373)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-3084 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-900)) (-5 *4 (-373)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-3365 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-2394 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-2903 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-461)) (-5 *4 (-900)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-1719 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1240)) (-5 *1 (-1236)))) (-1557 (*1 *2 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1236)))) (-1557 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1236)))) (-1557 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-1134)) (-5 *1 (-1236)))) (-2778 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1236)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1236))))) +(-13 (-1076) (-10 -8 (-15 -4184 ((-627 (-922 (-220))) $)) (-15 -2592 ($)) (-15 -2917 ($ $)) (-15 -2230 ((-627 (-257)) $)) (-15 -2230 ($ $ (-627 (-257)))) (-15 -2917 ($ (-461) (-627 (-257)))) (-15 -3330 ((-1240) $ (-900) (-220) (-220) (-220) (-220) (-552) (-552) (-552) (-552) (-853) (-552) (-853) (-552))) (-15 -3626 ((-1235 (-2 (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)) (|:| -1432 (-552)) (|:| -3286 (-552)) (|:| |spline| (-552)) (|:| -2832 (-552)) (|:| |axesColor| (-853)) (|:| -1516 (-552)) (|:| |unitsColor| (-853)) (|:| |showing| (-552)))) $)) (-15 -1327 ((-1235 (-3 (-461) "undefined")) $)) (-15 -2320 ((-1240) $ (-1134))) (-15 -1755 ((-1240) $ (-461) (-900))) (-15 -3214 ((-461) $ (-900))) (-15 -2832 ((-1240) $ (-900) (-1134))) (-15 -2832 ((-1240) $ (-900) (-853))) (-15 -1516 ((-1240) $ (-900) (-1134))) (-15 -1516 ((-1240) $ (-900) (-853))) (-15 -1432 ((-1240) $ (-900) (-1134))) (-15 -2862 ((-1240) $ (-900) (-1134))) (-15 -3286 ((-1240) $ (-900) (-1134))) (-15 -1333 ((-1240) $ (-1134))) (-15 -4267 ((-1240) $)) (-15 -1343 ((-1240) $ (-754) (-754) (-900) (-900))) (-15 -2442 ((-1240) $ (-900) (-373) (-373))) (-15 -3084 ((-1240) $ (-900) (-373) (-373))) (-15 -3365 ((-1240) $ (-900) (-1134))) (-15 -2394 ((-1240) $ (-754) (-754))) (-15 -2903 ((-1240) $ (-461) (-900))) (-15 -1719 ((-1240) $ (-900) (-900))) (-15 -1557 ((-1134) $ (-1134))) (-15 -1557 ((-1134) $ (-1134) (-1134))) (-15 -1557 ((-1134) $ (-1134) (-627 (-1134)))) (-15 -2778 ((-1240) $)) (-15 -3998 ((-552) $)) (-15 -1477 ((-842) $)))) +((-1465 (((-111) $ $) NIL)) (-1799 (((-1240) $ (-373)) 140) (((-1240) $ (-373) (-373) (-373)) 141)) (-1557 (((-1134) $ (-1134)) 148) (((-1134) $ (-1134) (-1134)) 146) (((-1134) $ (-1134) (-627 (-1134))) 145)) (-1723 (($) 50)) (-2745 (((-1240) $ (-373) (-373) (-373) (-373) (-373)) 116) (((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) $) 114) (((-1240) $ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) 115) (((-1240) $ (-552) (-552) (-373) (-373) (-373)) 117) (((-1240) $ (-373) (-373)) 118) (((-1240) $ (-373) (-373) (-373)) 125)) (-3297 (((-373)) 97) (((-373) (-373)) 98)) (-2558 (((-373)) 92) (((-373) (-373)) 94)) (-2887 (((-373)) 95) (((-373) (-373)) 96)) (-1396 (((-373)) 101) (((-373) (-373)) 102)) (-3762 (((-373)) 99) (((-373) (-373)) 100)) (-3084 (((-1240) $ (-373) (-373)) 142)) (-2320 (((-1240) $ (-1134)) 126)) (-3757 (((-1109 (-220)) $) 51) (($ $ (-1109 (-220))) 52)) (-3204 (((-1240) $ (-1134)) 154)) (-1433 (((-1240) $ (-1134)) 155)) (-1454 (((-1240) $ (-373) (-373)) 124) (((-1240) $ (-552) (-552)) 139)) (-1719 (((-1240) $ (-900) (-900)) 132)) (-2778 (((-1240) $) 112)) (-3234 (((-1240) $ (-1134)) 153)) (-2687 (((-1240) $ (-1134)) 109)) (-2230 (((-627 (-257)) $) 53) (($ $ (-627 (-257))) 54)) (-2394 (((-1240) $ (-754) (-754)) 131)) (-2168 (((-1240) $ (-754) (-922 (-220))) 160)) (-3430 (($ $) 56) (($ (-1109 (-220)) (-1134)) 57) (($ (-1109 (-220)) (-627 (-257))) 58)) (-3023 (((-1240) $ (-373) (-373) (-373)) 106)) (-1595 (((-1134) $) NIL)) (-3998 (((-552) $) 103)) (-1350 (((-1240) $ (-373)) 143)) (-1766 (((-1240) $ (-373)) 158)) (-1498 (((-1096) $) NIL)) (-3480 (((-1240) $ (-373)) 157)) (-3057 (((-1240) $ (-1134)) 111)) (-1343 (((-1240) $ (-754) (-754) (-900) (-900)) 130)) (-3110 (((-1240) $ (-1134)) 108)) (-1333 (((-1240) $ (-1134)) 110)) (-3933 (((-1240) $ (-154) (-154)) 129)) (-1477 (((-842) $) 137)) (-4267 (((-1240) $) 113)) (-2839 (((-1240) $ (-1134)) 156)) (-2832 (((-1240) $ (-1134)) 107)) (-2292 (((-111) $ $) NIL))) +(((-1237) (-13 (-1076) (-10 -8 (-15 -2558 ((-373))) (-15 -2558 ((-373) (-373))) (-15 -2887 ((-373))) (-15 -2887 ((-373) (-373))) (-15 -3297 ((-373))) (-15 -3297 ((-373) (-373))) (-15 -3762 ((-373))) (-15 -3762 ((-373) (-373))) (-15 -1396 ((-373))) (-15 -1396 ((-373) (-373))) (-15 -1723 ($)) (-15 -3430 ($ $)) (-15 -3430 ($ (-1109 (-220)) (-1134))) (-15 -3430 ($ (-1109 (-220)) (-627 (-257)))) (-15 -3757 ((-1109 (-220)) $)) (-15 -3757 ($ $ (-1109 (-220)))) (-15 -2168 ((-1240) $ (-754) (-922 (-220)))) (-15 -2230 ((-627 (-257)) $)) (-15 -2230 ($ $ (-627 (-257)))) (-15 -2394 ((-1240) $ (-754) (-754))) (-15 -1719 ((-1240) $ (-900) (-900))) (-15 -2320 ((-1240) $ (-1134))) (-15 -1343 ((-1240) $ (-754) (-754) (-900) (-900))) (-15 -2745 ((-1240) $ (-373) (-373) (-373) (-373) (-373))) (-15 -2745 ((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) $)) (-15 -2745 ((-1240) $ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -2745 ((-1240) $ (-552) (-552) (-373) (-373) (-373))) (-15 -2745 ((-1240) $ (-373) (-373))) (-15 -2745 ((-1240) $ (-373) (-373) (-373))) (-15 -1333 ((-1240) $ (-1134))) (-15 -2832 ((-1240) $ (-1134))) (-15 -3110 ((-1240) $ (-1134))) (-15 -2687 ((-1240) $ (-1134))) (-15 -3057 ((-1240) $ (-1134))) (-15 -1454 ((-1240) $ (-373) (-373))) (-15 -1454 ((-1240) $ (-552) (-552))) (-15 -1799 ((-1240) $ (-373))) (-15 -1799 ((-1240) $ (-373) (-373) (-373))) (-15 -3084 ((-1240) $ (-373) (-373))) (-15 -3234 ((-1240) $ (-1134))) (-15 -3480 ((-1240) $ (-373))) (-15 -1766 ((-1240) $ (-373))) (-15 -3204 ((-1240) $ (-1134))) (-15 -1433 ((-1240) $ (-1134))) (-15 -2839 ((-1240) $ (-1134))) (-15 -3023 ((-1240) $ (-373) (-373) (-373))) (-15 -1350 ((-1240) $ (-373))) (-15 -2778 ((-1240) $)) (-15 -3933 ((-1240) $ (-154) (-154))) (-15 -1557 ((-1134) $ (-1134))) (-15 -1557 ((-1134) $ (-1134) (-1134))) (-15 -1557 ((-1134) $ (-1134) (-627 (-1134)))) (-15 -4267 ((-1240) $)) (-15 -3998 ((-552) $))))) (T -1237)) +((-2558 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) (-2558 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) (-2887 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) (-2887 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) (-3297 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) (-3297 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) (-3762 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) (-3762 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) (-1396 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) (-1396 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) (-1723 (*1 *1) (-5 *1 (-1237))) (-3430 (*1 *1 *1) (-5 *1 (-1237))) (-3430 (*1 *1 *2 *3) (-12 (-5 *2 (-1109 (-220))) (-5 *3 (-1134)) (-5 *1 (-1237)))) (-3430 (*1 *1 *2 *3) (-12 (-5 *2 (-1109 (-220))) (-5 *3 (-627 (-257))) (-5 *1 (-1237)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-1109 (-220))) (-5 *1 (-1237)))) (-3757 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-220))) (-5 *1 (-1237)))) (-2168 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-922 (-220))) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2230 (*1 *2 *1) (-12 (-5 *2 (-627 (-257))) (-5 *1 (-1237)))) (-2230 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-257))) (-5 *1 (-1237)))) (-2394 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1719 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2320 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1343 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-754)) (-5 *4 (-900)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2745 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) (-5 *1 (-1237)))) (-2745 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2745 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-552)) (-5 *4 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2745 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2745 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1333 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2832 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-3110 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2687 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-3057 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1454 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1454 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1799 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1799 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-3084 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-3234 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-3480 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1766 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-3204 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1433 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2839 (*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-3023 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1350 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-2778 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1237)))) (-3933 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-154)) (-5 *2 (-1240)) (-5 *1 (-1237)))) (-1557 (*1 *2 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1237)))) (-1557 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1237)))) (-1557 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-1134)) (-5 *1 (-1237)))) (-4267 (*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1237)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1237))))) +(-13 (-1076) (-10 -8 (-15 -2558 ((-373))) (-15 -2558 ((-373) (-373))) (-15 -2887 ((-373))) (-15 -2887 ((-373) (-373))) (-15 -3297 ((-373))) (-15 -3297 ((-373) (-373))) (-15 -3762 ((-373))) (-15 -3762 ((-373) (-373))) (-15 -1396 ((-373))) (-15 -1396 ((-373) (-373))) (-15 -1723 ($)) (-15 -3430 ($ $)) (-15 -3430 ($ (-1109 (-220)) (-1134))) (-15 -3430 ($ (-1109 (-220)) (-627 (-257)))) (-15 -3757 ((-1109 (-220)) $)) (-15 -3757 ($ $ (-1109 (-220)))) (-15 -2168 ((-1240) $ (-754) (-922 (-220)))) (-15 -2230 ((-627 (-257)) $)) (-15 -2230 ($ $ (-627 (-257)))) (-15 -2394 ((-1240) $ (-754) (-754))) (-15 -1719 ((-1240) $ (-900) (-900))) (-15 -2320 ((-1240) $ (-1134))) (-15 -1343 ((-1240) $ (-754) (-754) (-900) (-900))) (-15 -2745 ((-1240) $ (-373) (-373) (-373) (-373) (-373))) (-15 -2745 ((-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))) $)) (-15 -2745 ((-1240) $ (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) (|:| |deltaX| (-220)) (|:| |deltaY| (-220))))) (-15 -2745 ((-1240) $ (-552) (-552) (-373) (-373) (-373))) (-15 -2745 ((-1240) $ (-373) (-373))) (-15 -2745 ((-1240) $ (-373) (-373) (-373))) (-15 -1333 ((-1240) $ (-1134))) (-15 -2832 ((-1240) $ (-1134))) (-15 -3110 ((-1240) $ (-1134))) (-15 -2687 ((-1240) $ (-1134))) (-15 -3057 ((-1240) $ (-1134))) (-15 -1454 ((-1240) $ (-373) (-373))) (-15 -1454 ((-1240) $ (-552) (-552))) (-15 -1799 ((-1240) $ (-373))) (-15 -1799 ((-1240) $ (-373) (-373) (-373))) (-15 -3084 ((-1240) $ (-373) (-373))) (-15 -3234 ((-1240) $ (-1134))) (-15 -3480 ((-1240) $ (-373))) (-15 -1766 ((-1240) $ (-373))) (-15 -3204 ((-1240) $ (-1134))) (-15 -1433 ((-1240) $ (-1134))) (-15 -2839 ((-1240) $ (-1134))) (-15 -3023 ((-1240) $ (-373) (-373) (-373))) (-15 -1350 ((-1240) $ (-373))) (-15 -2778 ((-1240) $)) (-15 -3933 ((-1240) $ (-154) (-154))) (-15 -1557 ((-1134) $ (-1134))) (-15 -1557 ((-1134) $ (-1134) (-1134))) (-15 -1557 ((-1134) $ (-1134) (-627 (-1134)))) (-15 -4267 ((-1240) $)) (-15 -3998 ((-552) $)))) +((-3120 (((-627 (-1134)) (-627 (-1134))) 94) (((-627 (-1134))) 90)) (-2853 (((-627 (-1134))) 88)) (-3091 (((-627 (-900)) (-627 (-900))) 63) (((-627 (-900))) 60)) (-1476 (((-627 (-754)) (-627 (-754))) 57) (((-627 (-754))) 53)) (-1613 (((-1240)) 65)) (-2784 (((-900) (-900)) 81) (((-900)) 80)) (-1369 (((-900) (-900)) 79) (((-900)) 78)) (-3723 (((-853) (-853)) 75) (((-853)) 74)) (-2935 (((-220)) 85) (((-220) (-373)) 87)) (-1365 (((-900)) 82) (((-900) (-900)) 83)) (-1830 (((-900) (-900)) 77) (((-900)) 76)) (-4059 (((-853) (-853)) 69) (((-853)) 67)) (-3573 (((-853) (-853)) 71) (((-853)) 70)) (-3178 (((-853) (-853)) 73) (((-853)) 72))) +(((-1238) (-10 -7 (-15 -4059 ((-853))) (-15 -4059 ((-853) (-853))) (-15 -3573 ((-853))) (-15 -3573 ((-853) (-853))) (-15 -3178 ((-853))) (-15 -3178 ((-853) (-853))) (-15 -3723 ((-853))) (-15 -3723 ((-853) (-853))) (-15 -1830 ((-900))) (-15 -1830 ((-900) (-900))) (-15 -1476 ((-627 (-754)))) (-15 -1476 ((-627 (-754)) (-627 (-754)))) (-15 -3091 ((-627 (-900)))) (-15 -3091 ((-627 (-900)) (-627 (-900)))) (-15 -1613 ((-1240))) (-15 -3120 ((-627 (-1134)))) (-15 -3120 ((-627 (-1134)) (-627 (-1134)))) (-15 -2853 ((-627 (-1134)))) (-15 -1369 ((-900))) (-15 -2784 ((-900))) (-15 -1369 ((-900) (-900))) (-15 -2784 ((-900) (-900))) (-15 -1365 ((-900) (-900))) (-15 -1365 ((-900))) (-15 -2935 ((-220) (-373))) (-15 -2935 ((-220))))) (T -1238)) +((-2935 (*1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-1238)))) (-2935 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-220)) (-5 *1 (-1238)))) (-1365 (*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) (-1365 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) (-2784 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) (-1369 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) (-2784 (*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) (-1369 (*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) (-2853 (*1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1238)))) (-3120 (*1 *2 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1238)))) (-3120 (*1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1238)))) (-1613 (*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1238)))) (-3091 (*1 *2 *2) (-12 (-5 *2 (-627 (-900))) (-5 *1 (-1238)))) (-3091 (*1 *2) (-12 (-5 *2 (-627 (-900))) (-5 *1 (-1238)))) (-1476 (*1 *2 *2) (-12 (-5 *2 (-627 (-754))) (-5 *1 (-1238)))) (-1476 (*1 *2) (-12 (-5 *2 (-627 (-754))) (-5 *1 (-1238)))) (-1830 (*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) (-1830 (*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) (-3723 (*1 *2 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) (-3723 (*1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) (-3178 (*1 *2 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) (-3178 (*1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) (-3573 (*1 *2 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) (-3573 (*1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) (-4059 (*1 *2 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) (-4059 (*1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238))))) +(-10 -7 (-15 -4059 ((-853))) (-15 -4059 ((-853) (-853))) (-15 -3573 ((-853))) (-15 -3573 ((-853) (-853))) (-15 -3178 ((-853))) (-15 -3178 ((-853) (-853))) (-15 -3723 ((-853))) (-15 -3723 ((-853) (-853))) (-15 -1830 ((-900))) (-15 -1830 ((-900) (-900))) (-15 -1476 ((-627 (-754)))) (-15 -1476 ((-627 (-754)) (-627 (-754)))) (-15 -3091 ((-627 (-900)))) (-15 -3091 ((-627 (-900)) (-627 (-900)))) (-15 -1613 ((-1240))) (-15 -3120 ((-627 (-1134)))) (-15 -3120 ((-627 (-1134)) (-627 (-1134)))) (-15 -2853 ((-627 (-1134)))) (-15 -1369 ((-900))) (-15 -2784 ((-900))) (-15 -1369 ((-900) (-900))) (-15 -2784 ((-900) (-900))) (-15 -1365 ((-900) (-900))) (-15 -1365 ((-900))) (-15 -2935 ((-220) (-373))) (-15 -2935 ((-220)))) +((-1309 (((-461) (-627 (-627 (-922 (-220)))) (-627 (-257))) 21) (((-461) (-627 (-627 (-922 (-220))))) 20) (((-461) (-627 (-627 (-922 (-220)))) (-853) (-853) (-900) (-627 (-257))) 19)) (-1893 (((-1236) (-627 (-627 (-922 (-220)))) (-627 (-257))) 27) (((-1236) (-627 (-627 (-922 (-220)))) (-853) (-853) (-900) (-627 (-257))) 26)) (-1477 (((-1236) (-461)) 38))) +(((-1239) (-10 -7 (-15 -1309 ((-461) (-627 (-627 (-922 (-220)))) (-853) (-853) (-900) (-627 (-257)))) (-15 -1309 ((-461) (-627 (-627 (-922 (-220)))))) (-15 -1309 ((-461) (-627 (-627 (-922 (-220)))) (-627 (-257)))) (-15 -1893 ((-1236) (-627 (-627 (-922 (-220)))) (-853) (-853) (-900) (-627 (-257)))) (-15 -1893 ((-1236) (-627 (-627 (-922 (-220)))) (-627 (-257)))) (-15 -1477 ((-1236) (-461))))) (T -1239)) +((-1477 (*1 *2 *3) (-12 (-5 *3 (-461)) (-5 *2 (-1236)) (-5 *1 (-1239)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *4 (-627 (-257))) (-5 *2 (-1236)) (-5 *1 (-1239)))) (-1893 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *4 (-853)) (-5 *5 (-900)) (-5 *6 (-627 (-257))) (-5 *2 (-1236)) (-5 *1 (-1239)))) (-1309 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *4 (-627 (-257))) (-5 *2 (-461)) (-5 *1 (-1239)))) (-1309 (*1 *2 *3) (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *2 (-461)) (-5 *1 (-1239)))) (-1309 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *4 (-853)) (-5 *5 (-900)) (-5 *6 (-627 (-257))) (-5 *2 (-461)) (-5 *1 (-1239))))) +(-10 -7 (-15 -1309 ((-461) (-627 (-627 (-922 (-220)))) (-853) (-853) (-900) (-627 (-257)))) (-15 -1309 ((-461) (-627 (-627 (-922 (-220)))))) (-15 -1309 ((-461) (-627 (-627 (-922 (-220)))) (-627 (-257)))) (-15 -1893 ((-1236) (-627 (-627 (-922 (-220)))) (-853) (-853) (-900) (-627 (-257)))) (-15 -1893 ((-1236) (-627 (-627 (-922 (-220)))) (-627 (-257)))) (-15 -1477 ((-1236) (-461)))) +((-3885 (($) 7)) (-1477 (((-842) $) 10))) +(((-1240) (-10 -8 (-15 -3885 ($)) (-15 -1477 ((-842) $)))) (T -1240)) +((-1477 (*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1240)))) (-3885 (*1 *1) (-5 *1 (-1240)))) +(-10 -8 (-15 -3885 ($)) (-15 -1477 ((-842) $))) +((-2407 (($ $ |#2|) 10))) +(((-1241 |#1| |#2|) (-10 -8 (-15 -2407 (|#1| |#1| |#2|))) (-1242 |#2|) (-357)) (T -1241)) +NIL +(-10 -8 (-15 -2407 (|#1| |#1| |#2|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2405 (((-132)) 28)) (-1477 (((-842) $) 11)) (-1922 (($) 18 T CONST)) (-2292 (((-111) $ $) 6)) (-2407 (($ $ |#1|) 29)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-1242 |#1|) (-137) (-357)) (T -1242)) +((-2407 (*1 *1 *1 *2) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-357)))) (-2405 (*1 *2) (-12 (-4 *1 (-1242 *3)) (-4 *3 (-357)) (-5 *2 (-132))))) +(-13 (-700 |t#1|) (-10 -8 (-15 -2407 ($ $ |t#1|)) (-15 -2405 ((-132))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-700 |#1|) . T) ((-1034 |#1|) . T) ((-1076) . T)) +((-1948 (((-627 (-1183 |#1|)) (-1152) (-1183 |#1|)) 74)) (-3281 (((-1132 (-1132 (-931 |#1|))) (-1152) (-1132 (-931 |#1|))) 53)) (-3608 (((-1 (-1132 (-1183 |#1|)) (-1132 (-1183 |#1|))) (-754) (-1183 |#1|) (-1132 (-1183 |#1|))) 64)) (-2096 (((-1 (-1132 (-931 |#1|)) (-1132 (-931 |#1|))) (-754)) 55)) (-2889 (((-1 (-1148 (-931 |#1|)) (-931 |#1|)) (-1152)) 29)) (-3685 (((-1 (-1132 (-931 |#1|)) (-1132 (-931 |#1|))) (-754)) 54))) +(((-1243 |#1|) (-10 -7 (-15 -2096 ((-1 (-1132 (-931 |#1|)) (-1132 (-931 |#1|))) (-754))) (-15 -3685 ((-1 (-1132 (-931 |#1|)) (-1132 (-931 |#1|))) (-754))) (-15 -3281 ((-1132 (-1132 (-931 |#1|))) (-1152) (-1132 (-931 |#1|)))) (-15 -2889 ((-1 (-1148 (-931 |#1|)) (-931 |#1|)) (-1152))) (-15 -1948 ((-627 (-1183 |#1|)) (-1152) (-1183 |#1|))) (-15 -3608 ((-1 (-1132 (-1183 |#1|)) (-1132 (-1183 |#1|))) (-754) (-1183 |#1|) (-1132 (-1183 |#1|))))) (-357)) (T -1243)) +((-3608 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-754)) (-4 *6 (-357)) (-5 *4 (-1183 *6)) (-5 *2 (-1 (-1132 *4) (-1132 *4))) (-5 *1 (-1243 *6)) (-5 *5 (-1132 *4)))) (-1948 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-4 *5 (-357)) (-5 *2 (-627 (-1183 *5))) (-5 *1 (-1243 *5)) (-5 *4 (-1183 *5)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1 (-1148 (-931 *4)) (-931 *4))) (-5 *1 (-1243 *4)) (-4 *4 (-357)))) (-3281 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-4 *5 (-357)) (-5 *2 (-1132 (-1132 (-931 *5)))) (-5 *1 (-1243 *5)) (-5 *4 (-1132 (-931 *5))))) (-3685 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1 (-1132 (-931 *4)) (-1132 (-931 *4)))) (-5 *1 (-1243 *4)) (-4 *4 (-357)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1 (-1132 (-931 *4)) (-1132 (-931 *4)))) (-5 *1 (-1243 *4)) (-4 *4 (-357))))) +(-10 -7 (-15 -2096 ((-1 (-1132 (-931 |#1|)) (-1132 (-931 |#1|))) (-754))) (-15 -3685 ((-1 (-1132 (-931 |#1|)) (-1132 (-931 |#1|))) (-754))) (-15 -3281 ((-1132 (-1132 (-931 |#1|))) (-1152) (-1132 (-931 |#1|)))) (-15 -2889 ((-1 (-1148 (-931 |#1|)) (-931 |#1|)) (-1152))) (-15 -1948 ((-627 (-1183 |#1|)) (-1152) (-1183 |#1|))) (-15 -3608 ((-1 (-1132 (-1183 |#1|)) (-1132 (-1183 |#1|))) (-754) (-1183 |#1|) (-1132 (-1183 |#1|))))) +((-2993 (((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) |#2|) 75)) (-3402 (((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|)))) 74))) +(((-1244 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3402 ((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))))) (-15 -2993 ((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) |#2|))) (-343) (-1211 |#1|) (-1211 |#2|) (-403 |#2| |#3|)) (T -1244)) +((-2993 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 *3)) (-5 *2 (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-671 *3)))) (-5 *1 (-1244 *4 *3 *5 *6)) (-4 *6 (-403 *3 *5)))) (-3402 (*1 *2) (-12 (-4 *3 (-343)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 *4)) (-5 *2 (-2 (|:| -2957 (-671 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-671 *4)))) (-5 *1 (-1244 *3 *4 *5 *6)) (-4 *6 (-403 *4 *5))))) +(-10 -7 (-15 -3402 ((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))))) (-15 -2993 ((-2 (|:| -2957 (-671 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-671 |#2|))) |#2|))) +((-1465 (((-111) $ $) NIL)) (-2676 (((-1111) $) 11)) (-4162 (((-1111) $) 9)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 19) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) +(((-1245) (-13 (-1059) (-10 -8 (-15 -4162 ((-1111) $)) (-15 -2676 ((-1111) $))))) (T -1245)) +((-4162 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1245)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1245))))) +(-13 (-1059) (-10 -8 (-15 -4162 ((-1111) $)) (-15 -2676 ((-1111) $)))) +((-1465 (((-111) $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2242 (((-1111) $) 9)) (-1477 (((-842) $) 17) (((-1157) $) NIL) (($ (-1157)) NIL)) (-2292 (((-111) $ $) NIL))) +(((-1246) (-13 (-1059) (-10 -8 (-15 -2242 ((-1111) $))))) (T -1246)) +((-2242 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1246))))) +(-13 (-1059) (-10 -8 (-15 -2242 ((-1111) $)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 43)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) NIL)) (-2624 (((-111) $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-1477 (((-842) $) 64) (($ (-552)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-169)))) (-3995 (((-754)) NIL)) (-1620 (((-1240) (-754)) 16)) (-1922 (($) 27 T CONST)) (-1933 (($) 67 T CONST)) (-2292 (((-111) $ $) 69)) (-2407 (((-3 $ "failed") $ $) NIL (|has| |#1| (-357)))) (-2396 (($ $) 71) (($ $ $) NIL)) (-2384 (($ $ $) 47)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-169))) (($ $ |#1|) NIL (|has| |#1| (-169))))) +(((-1247 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1028) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -1477 (|#4| $)) (IF (|has| |#1| (-357)) (-15 -2407 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1477 ($ |#4|)) (-15 -1620 ((-1240) (-754))))) (-1028) (-830) (-776) (-928 |#1| |#3| |#2|) (-627 |#2|) (-627 (-754)) (-754)) (T -1247)) +((-1477 (*1 *2 *1) (-12 (-4 *2 (-928 *3 *5 *4)) (-5 *1 (-1247 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-776)) (-14 *6 (-627 *4)) (-14 *7 (-627 (-754))) (-14 *8 (-754)))) (-2407 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-357)) (-4 *2 (-1028)) (-4 *3 (-830)) (-4 *4 (-776)) (-14 *6 (-627 *3)) (-5 *1 (-1247 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-928 *2 *4 *3)) (-14 *7 (-627 (-754))) (-14 *8 (-754)))) (-1477 (*1 *1 *2) (-12 (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-776)) (-14 *6 (-627 *4)) (-5 *1 (-1247 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-928 *3 *5 *4)) (-14 *7 (-627 (-754))) (-14 *8 (-754)))) (-1620 (*1 *2 *3) (-12 (-5 *3 (-754)) (-4 *4 (-1028)) (-4 *5 (-830)) (-4 *6 (-776)) (-14 *8 (-627 *5)) (-5 *2 (-1240)) (-5 *1 (-1247 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-928 *4 *6 *5)) (-14 *9 (-627 *3)) (-14 *10 *3)))) +(-13 (-1028) (-10 -8 (IF (|has| |#1| (-169)) (-6 (-38 |#1|)) |%noBranch|) (-15 -1477 (|#4| $)) (IF (|has| |#1| (-357)) (-15 -2407 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1477 ($ |#4|)) (-15 -1620 ((-1240) (-754))))) +((-1465 (((-111) $ $) NIL)) (-1764 (((-627 (-2 (|:| -4267 $) (|:| -2849 (-627 |#4|)))) (-627 |#4|)) NIL)) (-1361 (((-627 $) (-627 |#4|)) 88)) (-1853 (((-627 |#3|) $) NIL)) (-2730 (((-111) $) NIL)) (-3648 (((-111) $) NIL (|has| |#1| (-544)))) (-3691 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-1553 ((|#4| |#4| $) NIL)) (-4298 (((-2 (|:| |under| $) (|:| -2060 $) (|:| |upper| $)) $ |#3|) NIL)) (-4031 (((-111) $ (-754)) NIL)) (-2536 (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3887 (($) NIL T CONST)) (-3569 (((-111) $) NIL (|has| |#1| (-544)))) (-2330 (((-111) $ $) NIL (|has| |#1| (-544)))) (-2165 (((-111) $ $) NIL (|has| |#1| (-544)))) (-3188 (((-111) $) NIL (|has| |#1| (-544)))) (-3238 (((-627 |#4|) (-627 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) 28)) (-4097 (((-627 |#4|) (-627 |#4|) $) 25 (|has| |#1| (-544)))) (-3761 (((-627 |#4|) (-627 |#4|) $) NIL (|has| |#1| (-544)))) (-4039 (((-3 $ "failed") (-627 |#4|)) NIL)) (-1703 (($ (-627 |#4|)) NIL)) (-3351 (((-3 $ "failed") $) 70)) (-4167 ((|#4| |#4| $) 75)) (-3370 (($ $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-4342 (($ |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) (($ (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3401 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-4104 (((-111) |#4| $ (-1 (-111) |#4| |#4|)) NIL)) (-2934 ((|#4| |#4| $) NIL)) (-2091 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4366))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4366))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2415 (((-2 (|:| -4267 (-627 |#4|)) (|:| -2849 (-627 |#4|))) $) NIL)) (-3215 (((-627 |#4|) $) NIL (|has| $ (-6 -4366)))) (-3850 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4147 ((|#3| $) 76)) (-1602 (((-111) $ (-754)) NIL)) (-3114 (((-627 |#4|) $) 29 (|has| $ (-6 -4366)))) (-3082 (((-111) |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076))))) (-1810 (((-3 $ "failed") (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-627 |#4|)) 35)) (-3463 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4367)))) (-3516 (($ (-1 |#4| |#4|) $) NIL)) (-4198 (((-627 |#3|) $) NIL)) (-1927 (((-111) |#3| $) NIL)) (-3971 (((-111) $ (-754)) NIL)) (-1595 (((-1134) $) NIL)) (-1294 (((-3 |#4| "failed") $) NIL)) (-4122 (((-627 |#4|) $) 50)) (-2481 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-3921 ((|#4| |#4| $) 74)) (-2654 (((-111) $ $) 85)) (-1943 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-544)))) (-2163 (((-111) |#4| $) NIL) (((-111) $) NIL)) (-4116 ((|#4| |#4| $) NIL)) (-1498 (((-1096) $) NIL)) (-3340 (((-3 |#4| "failed") $) 69)) (-1503 (((-3 |#4| "failed") (-1 (-111) |#4|) $) NIL)) (-3672 (((-3 $ "failed") $ |#4|) NIL)) (-4168 (($ $ |#4|) NIL)) (-3509 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-3321 (($ $ (-627 |#4|) (-627 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076)))) (($ $ (-627 (-288 |#4|))) NIL (-12 (|has| |#4| (-303 |#4|)) (|has| |#4| (-1076))))) (-2432 (((-111) $ $) NIL)) (-1275 (((-111) $) 67)) (-2373 (($) 42)) (-3567 (((-754) $) NIL)) (-1509 (((-754) |#4| $) NIL (-12 (|has| $ (-6 -4366)) (|has| |#4| (-1076)))) (((-754) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-2973 (($ $) NIL)) (-3562 (((-528) $) NIL (|has| |#4| (-600 (-528))))) (-1490 (($ (-627 |#4|)) NIL)) (-4237 (($ $ |#3|) NIL)) (-2286 (($ $ |#3|) NIL)) (-2462 (($ $) NIL)) (-3911 (($ $ |#3|) NIL)) (-1477 (((-842) $) NIL) (((-627 |#4|) $) 57)) (-1641 (((-754) $) NIL (|has| |#3| (-362)))) (-3108 (((-3 $ "failed") (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-627 |#4|)) 41)) (-1325 (((-627 $) (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-627 $) (-627 |#4|)) 66)) (-3981 (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2240 (-627 |#4|))) "failed") (-627 |#4|) (-1 (-111) |#4|) (-1 (-111) |#4| |#4|)) NIL)) (-2925 (((-111) $ (-1 (-111) |#4| (-627 |#4|))) NIL)) (-3299 (((-111) (-1 (-111) |#4|) $) NIL (|has| $ (-6 -4366)))) (-2199 (((-627 |#3|) $) NIL)) (-3528 (((-111) |#3| $) NIL)) (-2292 (((-111) $ $) NIL)) (-1383 (((-754) $) NIL (|has| $ (-6 -4366))))) +(((-1248 |#1| |#2| |#3| |#4|) (-13 (-1182 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1810 ((-3 $ "failed") (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1810 ((-3 $ "failed") (-627 |#4|))) (-15 -3108 ((-3 $ "failed") (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3108 ((-3 $ "failed") (-627 |#4|))) (-15 -1325 ((-627 $) (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1325 ((-627 $) (-627 |#4|))))) (-544) (-776) (-830) (-1042 |#1| |#2| |#3|)) (T -1248)) +((-1810 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-627 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1248 *5 *6 *7 *8)))) (-1810 (*1 *1 *2) (|partial| -12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-1248 *3 *4 *5 *6)))) (-3108 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-627 *8)) (-5 *3 (-1 (-111) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1248 *5 *6 *7 *8)))) (-3108 (*1 *1 *2) (|partial| -12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-1248 *3 *4 *5 *6)))) (-1325 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-627 *9)) (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1042 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-776)) (-4 *8 (-830)) (-5 *2 (-627 (-1248 *6 *7 *8 *9))) (-5 *1 (-1248 *6 *7 *8 *9)))) (-1325 (*1 *2 *3) (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 (-1248 *4 *5 *6 *7))) (-5 *1 (-1248 *4 *5 *6 *7))))) +(-13 (-1182 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1810 ((-3 $ "failed") (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1810 ((-3 $ "failed") (-627 |#4|))) (-15 -3108 ((-3 $ "failed") (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3108 ((-3 $ "failed") (-627 |#4|))) (-15 -1325 ((-627 $) (-627 |#4|) (-1 (-111) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1325 ((-627 $) (-627 |#4|))))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-4136 (((-3 $ "failed") $ $) 19)) (-3887 (($) 17 T CONST)) (-2040 (((-3 $ "failed") $) 32)) (-2624 (((-111) $) 30)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#1|) 36)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37))) +(((-1249 |#1|) (-137) (-1028)) (T -1249)) +((-1477 (*1 *1 *2) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1028))))) +(-13 (-1028) (-110 |t#1| |t#1|) (-10 -8 (-15 -1477 ($ |t#1|)) (IF (|has| |t#1| (-169)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-169)) ((-101) . T) ((-110 |#1| |#1|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-700 |#1|) |has| |#1| (-169)) ((-709) . T) ((-1034 |#1|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T)) +((-1465 (((-111) $ $) 60)) (-3024 (((-111) $) NIL)) (-1671 (((-627 |#1|) $) 45)) (-1963 (($ $ (-754)) 39)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3222 (($ $ (-754)) 18 (|has| |#2| (-169))) (($ $ $) 19 (|has| |#2| (-169)))) (-3887 (($) NIL T CONST)) (-1899 (($ $ $) 63) (($ $ (-802 |#1|)) 49) (($ $ |#1|) 53)) (-4039 (((-3 (-802 |#1|) "failed") $) NIL)) (-1703 (((-802 |#1|) $) NIL)) (-2014 (($ $) 32)) (-2040 (((-3 $ "failed") $) NIL)) (-2846 (((-111) $) NIL)) (-3164 (($ $) NIL)) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-3755 (($ (-802 |#1|) |#2|) 31)) (-3627 (($ $) 33)) (-4052 (((-2 (|:| |k| (-802 |#1|)) (|:| |c| |#2|)) $) 12)) (-3647 (((-802 |#1|) $) NIL)) (-3190 (((-802 |#1|) $) 34)) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-1543 (($ $ $) 62) (($ $ (-802 |#1|)) 51) (($ $ |#1|) 55)) (-3888 (((-2 (|:| |k| (-802 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1981 (((-802 |#1|) $) 28)) (-1993 ((|#2| $) 30)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3567 (((-754) $) 36)) (-2020 (((-111) $) 40)) (-3488 ((|#2| $) NIL)) (-1477 (((-842) $) NIL) (($ (-802 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-552)) NIL)) (-1493 (((-627 |#2|) $) NIL)) (-1889 ((|#2| $ (-802 |#1|)) NIL)) (-3069 ((|#2| $ $) 65) ((|#2| $ (-802 |#1|)) NIL)) (-3995 (((-754)) NIL)) (-1922 (($) 13 T CONST)) (-1933 (($) 15 T CONST)) (-1880 (((-627 (-2 (|:| |k| (-802 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2292 (((-111) $ $) 38)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 22)) (** (($ $ (-754)) NIL) (($ $ (-900)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-802 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) +(((-1250 |#1| |#2|) (-13 (-376 |#2| (-802 |#1|)) (-1256 |#1| |#2|)) (-830) (-1028)) (T -1250)) +NIL +(-13 (-376 |#2| (-802 |#1|)) (-1256 |#1| |#2|)) +((-4135 ((|#3| |#3| (-754)) 23)) (-3154 ((|#3| |#3| (-754)) 27)) (-3539 ((|#3| |#3| |#3| (-754)) 28))) +(((-1251 |#1| |#2| |#3|) (-10 -7 (-15 -3154 (|#3| |#3| (-754))) (-15 -4135 (|#3| |#3| (-754))) (-15 -3539 (|#3| |#3| |#3| (-754)))) (-13 (-1028) (-700 (-401 (-552)))) (-830) (-1256 |#2| |#1|)) (T -1251)) +((-3539 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-754)) (-4 *4 (-13 (-1028) (-700 (-401 (-552))))) (-4 *5 (-830)) (-5 *1 (-1251 *4 *5 *2)) (-4 *2 (-1256 *5 *4)))) (-4135 (*1 *2 *2 *3) (-12 (-5 *3 (-754)) (-4 *4 (-13 (-1028) (-700 (-401 (-552))))) (-4 *5 (-830)) (-5 *1 (-1251 *4 *5 *2)) (-4 *2 (-1256 *5 *4)))) (-3154 (*1 *2 *2 *3) (-12 (-5 *3 (-754)) (-4 *4 (-13 (-1028) (-700 (-401 (-552))))) (-4 *5 (-830)) (-5 *1 (-1251 *4 *5 *2)) (-4 *2 (-1256 *5 *4))))) +(-10 -7 (-15 -3154 (|#3| |#3| (-754))) (-15 -4135 (|#3| |#3| (-754))) (-15 -3539 (|#3| |#3| |#3| (-754)))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1671 (((-627 |#1|) $) 38)) (-4136 (((-3 $ "failed") $ $) 19)) (-3222 (($ $ $) 41 (|has| |#2| (-169))) (($ $ (-754)) 40 (|has| |#2| (-169)))) (-3887 (($) 17 T CONST)) (-1899 (($ $ |#1|) 52) (($ $ (-802 |#1|)) 51) (($ $ $) 50)) (-4039 (((-3 (-802 |#1|) "failed") $) 62)) (-1703 (((-802 |#1|) $) 61)) (-2040 (((-3 $ "failed") $) 32)) (-2846 (((-111) $) 43)) (-3164 (($ $) 42)) (-2624 (((-111) $) 30)) (-3267 (((-111) $) 48)) (-3755 (($ (-802 |#1|) |#2|) 49)) (-3627 (($ $) 47)) (-4052 (((-2 (|:| |k| (-802 |#1|)) (|:| |c| |#2|)) $) 58)) (-3647 (((-802 |#1|) $) 59)) (-3516 (($ (-1 |#2| |#2|) $) 39)) (-1543 (($ $ |#1|) 55) (($ $ (-802 |#1|)) 54) (($ $ $) 53)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-2020 (((-111) $) 45)) (-3488 ((|#2| $) 44)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#2|) 66) (($ (-802 |#1|)) 63) (($ |#1|) 46)) (-3069 ((|#2| $ (-802 |#1|)) 57) ((|#2| $ $) 56)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) +(((-1252 |#1| |#2|) (-137) (-830) (-1028)) (T -1252)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-830)) (-4 *2 (-1028)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) (-5 *2 (-802 *3)))) (-4052 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) (-5 *2 (-2 (|:| |k| (-802 *3)) (|:| |c| *4))))) (-3069 (*1 *2 *1 *3) (-12 (-5 *3 (-802 *4)) (-4 *1 (-1252 *4 *2)) (-4 *4 (-830)) (-4 *2 (-1028)))) (-3069 (*1 *2 *1 *1) (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-830)) (-4 *2 (-1028)))) (-1543 (*1 *1 *1 *2) (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) (-1543 (*1 *1 *1 *2) (-12 (-5 *2 (-802 *3)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)))) (-1543 (*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) (-1899 (*1 *1 *1 *2) (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) (-1899 (*1 *1 *1 *2) (-12 (-5 *2 (-802 *3)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)))) (-1899 (*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) (-3755 (*1 *1 *2 *3) (-12 (-5 *2 (-802 *4)) (-4 *4 (-830)) (-4 *1 (-1252 *4 *3)) (-4 *3 (-1028)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) (-5 *2 (-111)))) (-3627 (*1 *1 *1) (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) (-1477 (*1 *1 *2) (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) (-2020 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) (-5 *2 (-111)))) (-3488 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-830)) (-4 *2 (-1028)))) (-2846 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) (-5 *2 (-111)))) (-3164 (*1 *1 *1) (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) (-3222 (*1 *1 *1 *1) (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)) (-4 *3 (-169)))) (-3222 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) (-4 *4 (-169)))) (-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)))) (-1671 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) (-5 *2 (-627 *3))))) +(-13 (-1028) (-1249 |t#2|) (-1017 (-802 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3647 ((-802 |t#1|) $)) (-15 -4052 ((-2 (|:| |k| (-802 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3069 (|t#2| $ (-802 |t#1|))) (-15 -3069 (|t#2| $ $)) (-15 -1543 ($ $ |t#1|)) (-15 -1543 ($ $ (-802 |t#1|))) (-15 -1543 ($ $ $)) (-15 -1899 ($ $ |t#1|)) (-15 -1899 ($ $ (-802 |t#1|))) (-15 -1899 ($ $ $)) (-15 -3755 ($ (-802 |t#1|) |t#2|)) (-15 -3267 ((-111) $)) (-15 -3627 ($ $)) (-15 -1477 ($ |t#1|)) (-15 -2020 ((-111) $)) (-15 -3488 (|t#2| $)) (-15 -2846 ((-111) $)) (-15 -3164 ($ $)) (IF (|has| |t#2| (-169)) (PROGN (-15 -3222 ($ $ $)) (-15 -3222 ($ $ (-754)))) |%noBranch|) (-15 -3516 ($ (-1 |t#2| |t#2|) $)) (-15 -1671 ((-627 |t#1|) $)) (IF (|has| |t#2| (-6 -4359)) (-6 -4359) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#2|) . T) ((-630 $) . T) ((-700 |#2|) |has| |#2| (-169)) ((-709) . T) ((-1017 (-802 |#1|)) . T) ((-1034 |#2|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1249 |#2|) . T)) +((-1991 (((-111) $) 15)) (-3528 (((-111) $) 14)) (-3406 (($ $) 19) (($ $ (-754)) 20))) +(((-1253 |#1| |#2|) (-10 -8 (-15 -3406 (|#1| |#1| (-754))) (-15 -3406 (|#1| |#1|)) (-15 -1991 ((-111) |#1|)) (-15 -3528 ((-111) |#1|))) (-1254 |#2|) (-357)) (T -1253)) +NIL +(-10 -8 (-15 -3406 (|#1| |#1| (-754))) (-15 -3406 (|#1| |#1|)) (-15 -1991 ((-111) |#1|)) (-15 -3528 ((-111) |#1|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1887 (((-2 (|:| -2717 $) (|:| -4353 $) (|:| |associate| $)) $) 39)) (-3245 (($ $) 38)) (-4058 (((-111) $) 36)) (-1991 (((-111) $) 91)) (-4010 (((-754)) 87)) (-4136 (((-3 $ "failed") $ $) 19)) (-4014 (($ $) 70)) (-2487 (((-412 $) $) 69)) (-4224 (((-111) $ $) 57)) (-3887 (($) 17 T CONST)) (-4039 (((-3 |#1| "failed") $) 98)) (-1703 ((|#1| $) 97)) (-2813 (($ $ $) 53)) (-2040 (((-3 $ "failed") $) 32)) (-2789 (($ $ $) 54)) (-3009 (((-2 (|:| -3069 (-627 $)) (|:| -2220 $)) (-627 $)) 49)) (-4294 (($ $ (-754)) 84 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362)))) (($ $) 83 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-1633 (((-111) $) 68)) (-2641 (((-816 (-900)) $) 81 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2624 (((-111) $) 30)) (-2556 (((-3 (-627 $) "failed") (-627 $) $) 50)) (-1276 (($ $ $) 44) (($ (-627 $)) 43)) (-1595 (((-1134) $) 9)) (-1951 (($ $) 67)) (-2249 (((-111) $) 90)) (-1498 (((-1096) $) 10)) (-3128 (((-1148 $) (-1148 $) (-1148 $)) 42)) (-1323 (($ $ $) 46) (($ (-627 $)) 45)) (-1727 (((-412 $) $) 71)) (-3804 (((-816 (-900))) 88)) (-3347 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2220 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-2761 (((-3 $ "failed") $ $) 40)) (-1491 (((-3 (-627 $) "failed") (-627 $) $) 48)) (-2718 (((-754) $) 56)) (-3963 (((-2 (|:| -2404 $) (|:| -3401 $)) $ $) 55)) (-4018 (((-3 (-754) "failed") $ $) 82 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-2405 (((-132)) 96)) (-3567 (((-816 (-900)) $) 89)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ $) 41) (($ (-401 (-552))) 63) (($ |#1|) 99)) (-3050 (((-3 $ "failed") $) 80 (-1559 (|has| |#1| (-142)) (|has| |#1| (-362))))) (-3995 (((-754)) 28)) (-3778 (((-111) $ $) 37)) (-3528 (((-111) $) 92)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-3406 (($ $) 86 (|has| |#1| (-362))) (($ $ (-754)) 85 (|has| |#1| (-362)))) (-2292 (((-111) $ $) 6)) (-2407 (($ $ $) 62) (($ $ |#1|) 95)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31) (($ $ (-552)) 66)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ $ (-401 (-552))) 65) (($ (-401 (-552)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) +(((-1254 |#1|) (-137) (-357)) (T -1254)) +((-3528 (*1 *2 *1) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-111)))) (-1991 (*1 *2 *1) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-111)))) (-2249 (*1 *2 *1) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-111)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-816 (-900))))) (-3804 (*1 *2) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-816 (-900))))) (-4010 (*1 *2) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-754)))) (-3406 (*1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-357)) (-4 *2 (-362)))) (-3406 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-4 *3 (-362))))) +(-13 (-357) (-1017 |t#1|) (-1242 |t#1|) (-10 -8 (IF (|has| |t#1| (-144)) (-6 (-144)) |%noBranch|) (IF (|has| |t#1| (-142)) (-6 (-396)) |%noBranch|) (-15 -3528 ((-111) $)) (-15 -1991 ((-111) $)) (-15 -2249 ((-111) $)) (-15 -3567 ((-816 (-900)) $)) (-15 -3804 ((-816 (-900)))) (-15 -4010 ((-754))) (IF (|has| |t#1| (-362)) (PROGN (-6 (-396)) (-15 -3406 ($ $)) (-15 -3406 ($ $ (-754)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-401 (-552))) . T) ((-38 $) . T) ((-101) . T) ((-110 #0# #0#) . T) ((-110 |#1| |#1|) . T) ((-110 $ $) . T) ((-129) . T) ((-142) -1559 (|has| |#1| (-362)) (|has| |#1| (-142))) ((-144) |has| |#1| (-144)) ((-599 (-842)) . T) ((-169) . T) ((-238) . T) ((-284) . T) ((-301) . T) ((-357) . T) ((-396) -1559 (|has| |#1| (-362)) (|has| |#1| (-142))) ((-445) . T) ((-544) . T) ((-630 #0#) . T) ((-630 |#1|) . T) ((-630 $) . T) ((-700 #0#) . T) ((-700 |#1|) . T) ((-700 $) . T) ((-709) . T) ((-899) . T) ((-1017 |#1|) . T) ((-1034 #0#) . T) ((-1034 |#1|) . T) ((-1034 $) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1193) . T) ((-1242 |#1|) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1671 (((-627 |#1|) $) 86)) (-1963 (($ $ (-754)) 89)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3222 (($ $ $) NIL (|has| |#2| (-169))) (($ $ (-754)) NIL (|has| |#2| (-169)))) (-3887 (($) NIL T CONST)) (-1899 (($ $ |#1|) NIL) (($ $ (-802 |#1|)) NIL) (($ $ $) NIL)) (-4039 (((-3 (-802 |#1|) "failed") $) NIL) (((-3 (-872 |#1|) "failed") $) NIL)) (-1703 (((-802 |#1|) $) NIL) (((-872 |#1|) $) NIL)) (-2014 (($ $) 88)) (-2040 (((-3 $ "failed") $) NIL)) (-2846 (((-111) $) 77)) (-3164 (($ $) 81)) (-2735 (($ $ $ (-754)) 90)) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-3755 (($ (-802 |#1|) |#2|) NIL) (($ (-872 |#1|) |#2|) 26)) (-3627 (($ $) 103)) (-4052 (((-2 (|:| |k| (-802 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3647 (((-802 |#1|) $) NIL)) (-3190 (((-802 |#1|) $) NIL)) (-3516 (($ (-1 |#2| |#2|) $) NIL)) (-1543 (($ $ |#1|) NIL) (($ $ (-802 |#1|)) NIL) (($ $ $) NIL)) (-4135 (($ $ (-754)) 97 (|has| |#2| (-700 (-401 (-552)))))) (-3888 (((-2 (|:| |k| (-872 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1981 (((-872 |#1|) $) 70)) (-1993 ((|#2| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-3154 (($ $ (-754)) 94 (|has| |#2| (-700 (-401 (-552)))))) (-3567 (((-754) $) 87)) (-2020 (((-111) $) 71)) (-3488 ((|#2| $) 75)) (-1477 (((-842) $) 57) (($ (-552)) NIL) (($ |#2|) 51) (($ (-802 |#1|)) NIL) (($ |#1|) 59) (($ (-872 |#1|)) NIL) (($ (-646 |#1| |#2|)) 43) (((-1250 |#1| |#2|) $) 64) (((-1259 |#1| |#2|) $) 69)) (-1493 (((-627 |#2|) $) NIL)) (-1889 ((|#2| $ (-872 |#1|)) NIL)) (-3069 ((|#2| $ (-802 |#1|)) NIL) ((|#2| $ $) NIL)) (-3995 (((-754)) NIL)) (-1922 (($) 21 T CONST)) (-1933 (($) 25 T CONST)) (-1880 (((-627 (-2 (|:| |k| (-872 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2223 (((-3 (-646 |#1| |#2|) "failed") $) 102)) (-2292 (((-111) $ $) 65)) (-2396 (($ $) 96) (($ $ $) 95)) (-2384 (($ $ $) 20)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-872 |#1|)) NIL))) +(((-1255 |#1| |#2|) (-13 (-1256 |#1| |#2|) (-376 |#2| (-872 |#1|)) (-10 -8 (-15 -1477 ($ (-646 |#1| |#2|))) (-15 -1477 ((-1250 |#1| |#2|) $)) (-15 -1477 ((-1259 |#1| |#2|) $)) (-15 -2223 ((-3 (-646 |#1| |#2|) "failed") $)) (-15 -2735 ($ $ $ (-754))) (IF (|has| |#2| (-700 (-401 (-552)))) (PROGN (-15 -3154 ($ $ (-754))) (-15 -4135 ($ $ (-754)))) |%noBranch|))) (-830) (-169)) (T -1255)) +((-1477 (*1 *1 *2) (-12 (-5 *2 (-646 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) (-5 *1 (-1255 *3 *4)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1250 *3 *4)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-1259 *3 *4)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)))) (-2223 (*1 *2 *1) (|partial| -12 (-5 *2 (-646 *3 *4)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)))) (-2735 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)))) (-3154 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-1255 *3 *4)) (-4 *4 (-700 (-401 (-552)))) (-4 *3 (-830)) (-4 *4 (-169)))) (-4135 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-1255 *3 *4)) (-4 *4 (-700 (-401 (-552)))) (-4 *3 (-830)) (-4 *4 (-169))))) +(-13 (-1256 |#1| |#2|) (-376 |#2| (-872 |#1|)) (-10 -8 (-15 -1477 ($ (-646 |#1| |#2|))) (-15 -1477 ((-1250 |#1| |#2|) $)) (-15 -1477 ((-1259 |#1| |#2|) $)) (-15 -2223 ((-3 (-646 |#1| |#2|) "failed") $)) (-15 -2735 ($ $ $ (-754))) (IF (|has| |#2| (-700 (-401 (-552)))) (PROGN (-15 -3154 ($ $ (-754))) (-15 -4135 ($ $ (-754)))) |%noBranch|))) +((-1465 (((-111) $ $) 7)) (-3024 (((-111) $) 16)) (-1671 (((-627 |#1|) $) 38)) (-1963 (($ $ (-754)) 71)) (-4136 (((-3 $ "failed") $ $) 19)) (-3222 (($ $ $) 41 (|has| |#2| (-169))) (($ $ (-754)) 40 (|has| |#2| (-169)))) (-3887 (($) 17 T CONST)) (-1899 (($ $ |#1|) 52) (($ $ (-802 |#1|)) 51) (($ $ $) 50)) (-4039 (((-3 (-802 |#1|) "failed") $) 62)) (-1703 (((-802 |#1|) $) 61)) (-2040 (((-3 $ "failed") $) 32)) (-2846 (((-111) $) 43)) (-3164 (($ $) 42)) (-2624 (((-111) $) 30)) (-3267 (((-111) $) 48)) (-3755 (($ (-802 |#1|) |#2|) 49)) (-3627 (($ $) 47)) (-4052 (((-2 (|:| |k| (-802 |#1|)) (|:| |c| |#2|)) $) 58)) (-3647 (((-802 |#1|) $) 59)) (-3190 (((-802 |#1|) $) 73)) (-3516 (($ (-1 |#2| |#2|) $) 39)) (-1543 (($ $ |#1|) 55) (($ $ (-802 |#1|)) 54) (($ $ $) 53)) (-1595 (((-1134) $) 9)) (-1498 (((-1096) $) 10)) (-3567 (((-754) $) 72)) (-2020 (((-111) $) 45)) (-3488 ((|#2| $) 44)) (-1477 (((-842) $) 11) (($ (-552)) 27) (($ |#2|) 66) (($ (-802 |#1|)) 63) (($ |#1|) 46)) (-3069 ((|#2| $ (-802 |#1|)) 57) ((|#2| $ $) 56)) (-3995 (((-754)) 28)) (-1922 (($) 18 T CONST)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 6)) (-2396 (($ $) 22) (($ $ $) 21)) (-2384 (($ $ $) 14)) (** (($ $ (-900)) 25) (($ $ (-754)) 31)) (* (($ (-900) $) 13) (($ (-754) $) 15) (($ (-552) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) +(((-1256 |#1| |#2|) (-137) (-830) (-1028)) (T -1256)) +((-3190 (*1 *2 *1) (-12 (-4 *1 (-1256 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) (-5 *2 (-802 *3)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-1256 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) (-5 *2 (-754)))) (-1963 (*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-1256 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028))))) +(-13 (-1252 |t#1| |t#2|) (-10 -8 (-15 -3190 ((-802 |t#1|) $)) (-15 -3567 ((-754) $)) (-15 -1963 ($ $ (-754))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-169)) ((-101) . T) ((-110 |#2| |#2|) . T) ((-129) . T) ((-599 (-842)) . T) ((-630 |#2|) . T) ((-630 $) . T) ((-700 |#2|) |has| |#2| (-169)) ((-709) . T) ((-1017 (-802 |#1|)) . T) ((-1034 |#2|) . T) ((-1028) . T) ((-1035) . T) ((-1088) . T) ((-1076) . T) ((-1249 |#2|) . T) ((-1252 |#1| |#2|) . T)) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-1671 (((-627 (-1152)) $) NIL)) (-2420 (($ (-1250 (-1152) |#1|)) NIL)) (-1963 (($ $ (-754)) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3222 (($ $ $) NIL (|has| |#1| (-169))) (($ $ (-754)) NIL (|has| |#1| (-169)))) (-3887 (($) NIL T CONST)) (-1899 (($ $ (-1152)) NIL) (($ $ (-802 (-1152))) NIL) (($ $ $) NIL)) (-4039 (((-3 (-802 (-1152)) "failed") $) NIL)) (-1703 (((-802 (-1152)) $) NIL)) (-2040 (((-3 $ "failed") $) NIL)) (-2846 (((-111) $) NIL)) (-3164 (($ $) NIL)) (-2624 (((-111) $) NIL)) (-3267 (((-111) $) NIL)) (-3755 (($ (-802 (-1152)) |#1|) NIL)) (-3627 (($ $) NIL)) (-4052 (((-2 (|:| |k| (-802 (-1152))) (|:| |c| |#1|)) $) NIL)) (-3647 (((-802 (-1152)) $) NIL)) (-3190 (((-802 (-1152)) $) NIL)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-1543 (($ $ (-1152)) NIL) (($ $ (-802 (-1152))) NIL) (($ $ $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2496 (((-1250 (-1152) |#1|) $) NIL)) (-3567 (((-754) $) NIL)) (-2020 (((-111) $) NIL)) (-3488 ((|#1| $) NIL)) (-1477 (((-842) $) NIL) (($ (-552)) NIL) (($ |#1|) NIL) (($ (-802 (-1152))) NIL) (($ (-1152)) NIL)) (-3069 ((|#1| $ (-802 (-1152))) NIL) ((|#1| $ $) NIL)) (-3995 (((-754)) NIL)) (-1922 (($) NIL T CONST)) (-2873 (((-627 (-2 (|:| |k| (-1152)) (|:| |c| $))) $) NIL)) (-1933 (($) NIL T CONST)) (-2292 (((-111) $ $) NIL)) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) NIL)) (** (($ $ (-900)) NIL) (($ $ (-754)) NIL)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1152) $) NIL))) +(((-1257 |#1|) (-13 (-1256 (-1152) |#1|) (-10 -8 (-15 -2496 ((-1250 (-1152) |#1|) $)) (-15 -2420 ($ (-1250 (-1152) |#1|))) (-15 -2873 ((-627 (-2 (|:| |k| (-1152)) (|:| |c| $))) $)))) (-1028)) (T -1257)) +((-2496 (*1 *2 *1) (-12 (-5 *2 (-1250 (-1152) *3)) (-5 *1 (-1257 *3)) (-4 *3 (-1028)))) (-2420 (*1 *1 *2) (-12 (-5 *2 (-1250 (-1152) *3)) (-4 *3 (-1028)) (-5 *1 (-1257 *3)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |k| (-1152)) (|:| |c| (-1257 *3))))) (-5 *1 (-1257 *3)) (-4 *3 (-1028))))) +(-13 (-1256 (-1152) |#1|) (-10 -8 (-15 -2496 ((-1250 (-1152) |#1|) $)) (-15 -2420 ($ (-1250 (-1152) |#1|))) (-15 -2873 ((-627 (-2 (|:| |k| (-1152)) (|:| |c| $))) $)))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) NIL)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3887 (($) NIL T CONST)) (-4039 (((-3 |#2| "failed") $) NIL)) (-1703 ((|#2| $) NIL)) (-2014 (($ $) NIL)) (-2040 (((-3 $ "failed") $) 36)) (-2846 (((-111) $) 30)) (-3164 (($ $) 32)) (-2624 (((-111) $) NIL)) (-3522 (((-754) $) NIL)) (-3056 (((-627 $) $) NIL)) (-3267 (((-111) $) NIL)) (-3755 (($ |#2| |#1|) NIL)) (-3647 ((|#2| $) 19)) (-3190 ((|#2| $) 16)) (-3516 (($ (-1 |#1| |#1|) $) NIL)) (-3888 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1981 ((|#2| $) NIL)) (-1993 ((|#1| $) NIL)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2020 (((-111) $) 27)) (-3488 ((|#1| $) 28)) (-1477 (((-842) $) 55) (($ (-552)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-1493 (((-627 |#1|) $) NIL)) (-1889 ((|#1| $ |#2|) NIL)) (-3069 ((|#1| $ |#2|) 24)) (-3995 (((-754)) 14)) (-1922 (($) 25 T CONST)) (-1933 (($) 11 T CONST)) (-1880 (((-627 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2292 (((-111) $ $) 26)) (-2407 (($ $ |#1|) 57 (|has| |#1| (-357)))) (-2396 (($ $) NIL) (($ $ $) NIL)) (-2384 (($ $ $) 44)) (** (($ $ (-900)) NIL) (($ $ (-754)) 46)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-1383 (((-754) $) 15))) +(((-1258 |#1| |#2|) (-13 (-1028) (-1249 |#1|) (-376 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1383 ((-754) $)) (-15 -1477 ($ |#2|)) (-15 -3190 (|#2| $)) (-15 -3647 (|#2| $)) (-15 -2014 ($ $)) (-15 -3069 (|#1| $ |#2|)) (-15 -2020 ((-111) $)) (-15 -3488 (|#1| $)) (-15 -2846 ((-111) $)) (-15 -3164 ($ $)) (-15 -3516 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-357)) (-15 -2407 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4359)) (-6 -4359) |%noBranch|) (IF (|has| |#1| (-6 -4363)) (-6 -4363) |%noBranch|) (IF (|has| |#1| (-6 -4364)) (-6 -4364) |%noBranch|))) (-1028) (-826)) (T -1258)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1258 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-826)))) (-2014 (*1 *1 *1) (-12 (-5 *1 (-1258 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-826)))) (-3516 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-1258 *3 *4)) (-4 *4 (-826)))) (-1477 (*1 *1 *2) (-12 (-5 *1 (-1258 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-826)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-1258 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-826)))) (-3190 (*1 *2 *1) (-12 (-4 *2 (-826)) (-5 *1 (-1258 *3 *2)) (-4 *3 (-1028)))) (-3647 (*1 *2 *1) (-12 (-4 *2 (-826)) (-5 *1 (-1258 *3 *2)) (-4 *3 (-1028)))) (-3069 (*1 *2 *1 *3) (-12 (-4 *2 (-1028)) (-5 *1 (-1258 *2 *3)) (-4 *3 (-826)))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1258 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-826)))) (-3488 (*1 *2 *1) (-12 (-4 *2 (-1028)) (-5 *1 (-1258 *2 *3)) (-4 *3 (-826)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1258 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-826)))) (-3164 (*1 *1 *1) (-12 (-5 *1 (-1258 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-826)))) (-2407 (*1 *1 *1 *2) (-12 (-5 *1 (-1258 *2 *3)) (-4 *2 (-357)) (-4 *2 (-1028)) (-4 *3 (-826))))) +(-13 (-1028) (-1249 |#1|) (-376 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1383 ((-754) $)) (-15 -1477 ($ |#2|)) (-15 -3190 (|#2| $)) (-15 -3647 (|#2| $)) (-15 -2014 ($ $)) (-15 -3069 (|#1| $ |#2|)) (-15 -2020 ((-111) $)) (-15 -3488 (|#1| $)) (-15 -2846 ((-111) $)) (-15 -3164 ($ $)) (-15 -3516 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-357)) (-15 -2407 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4359)) (-6 -4359) |%noBranch|) (IF (|has| |#1| (-6 -4363)) (-6 -4363) |%noBranch|) (IF (|has| |#1| (-6 -4364)) (-6 -4364) |%noBranch|))) +((-1465 (((-111) $ $) 26)) (-3024 (((-111) $) NIL)) (-1671 (((-627 |#1|) $) 120)) (-2420 (($ (-1250 |#1| |#2|)) 44)) (-1963 (($ $ (-754)) 32)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3222 (($ $ $) 48 (|has| |#2| (-169))) (($ $ (-754)) 46 (|has| |#2| (-169)))) (-3887 (($) NIL T CONST)) (-1899 (($ $ |#1|) 102) (($ $ (-802 |#1|)) 103) (($ $ $) 25)) (-4039 (((-3 (-802 |#1|) "failed") $) NIL)) (-1703 (((-802 |#1|) $) NIL)) (-2040 (((-3 $ "failed") $) 110)) (-2846 (((-111) $) 105)) (-3164 (($ $) 106)) (-2624 (((-111) $) NIL)) (-3267 (((-111) $) NIL)) (-3755 (($ (-802 |#1|) |#2|) 19)) (-3627 (($ $) NIL)) (-4052 (((-2 (|:| |k| (-802 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3647 (((-802 |#1|) $) 111)) (-3190 (((-802 |#1|) $) 114)) (-3516 (($ (-1 |#2| |#2|) $) 119)) (-1543 (($ $ |#1|) 100) (($ $ (-802 |#1|)) 101) (($ $ $) 56)) (-1595 (((-1134) $) NIL)) (-1498 (((-1096) $) NIL)) (-2496 (((-1250 |#1| |#2|) $) 84)) (-3567 (((-754) $) 117)) (-2020 (((-111) $) 70)) (-3488 ((|#2| $) 28)) (-1477 (((-842) $) 63) (($ (-552)) 77) (($ |#2|) 74) (($ (-802 |#1|)) 17) (($ |#1|) 73)) (-3069 ((|#2| $ (-802 |#1|)) 104) ((|#2| $ $) 27)) (-3995 (((-754)) 108)) (-1922 (($) 14 T CONST)) (-2873 (((-627 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-1933 (($) 29 T CONST)) (-2292 (((-111) $ $) 13)) (-2396 (($ $) 88) (($ $ $) 91)) (-2384 (($ $ $) 55)) (** (($ $ (-900)) NIL) (($ $ (-754)) 49)) (* (($ (-900) $) NIL) (($ (-754) $) 47) (($ (-552) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) +(((-1259 |#1| |#2|) (-13 (-1256 |#1| |#2|) (-10 -8 (-15 -2496 ((-1250 |#1| |#2|) $)) (-15 -2420 ($ (-1250 |#1| |#2|))) (-15 -2873 ((-627 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-830) (-1028)) (T -1259)) +((-2496 (*1 *2 *1) (-12 (-5 *2 (-1250 *3 *4)) (-5 *1 (-1259 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)))) (-2420 (*1 *1 *2) (-12 (-5 *2 (-1250 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) (-5 *1 (-1259 *3 *4)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-627 (-2 (|:| |k| *3) (|:| |c| (-1259 *3 *4))))) (-5 *1 (-1259 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028))))) +(-13 (-1256 |#1| |#2|) (-10 -8 (-15 -2496 ((-1250 |#1| |#2|) $)) (-15 -2420 ($ (-1250 |#1| |#2|))) (-15 -2873 ((-627 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-3156 (((-627 (-1132 |#1|)) (-1 (-627 (-1132 |#1|)) (-627 (-1132 |#1|))) (-552)) 15) (((-1132 |#1|) (-1 (-1132 |#1|) (-1132 |#1|))) 11))) +(((-1260 |#1|) (-10 -7 (-15 -3156 ((-1132 |#1|) (-1 (-1132 |#1|) (-1132 |#1|)))) (-15 -3156 ((-627 (-1132 |#1|)) (-1 (-627 (-1132 |#1|)) (-627 (-1132 |#1|))) (-552)))) (-1189)) (T -1260)) +((-3156 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-627 (-1132 *5)) (-627 (-1132 *5)))) (-5 *4 (-552)) (-5 *2 (-627 (-1132 *5))) (-5 *1 (-1260 *5)) (-4 *5 (-1189)))) (-3156 (*1 *2 *3) (-12 (-5 *3 (-1 (-1132 *4) (-1132 *4))) (-5 *2 (-1132 *4)) (-5 *1 (-1260 *4)) (-4 *4 (-1189))))) +(-10 -7 (-15 -3156 ((-1132 |#1|) (-1 (-1132 |#1|) (-1132 |#1|)))) (-15 -3156 ((-627 (-1132 |#1|)) (-1 (-627 (-1132 |#1|)) (-627 (-1132 |#1|))) (-552)))) +((-3552 (((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|))) 148) (((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111)) 147) (((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111) (-111)) 146) (((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111) (-111) (-111)) 145) (((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-1025 |#1| |#2|)) 130)) (-1903 (((-627 (-1025 |#1| |#2|)) (-627 (-931 |#1|))) 72) (((-627 (-1025 |#1| |#2|)) (-627 (-931 |#1|)) (-111)) 71) (((-627 (-1025 |#1| |#2|)) (-627 (-931 |#1|)) (-111) (-111)) 70)) (-2487 (((-627 (-1122 |#1| (-523 (-844 |#3|)) (-844 |#3|) (-763 |#1| (-844 |#3|)))) (-1025 |#1| |#2|)) 61)) (-4078 (((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|))) 115) (((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111)) 114) (((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111) (-111)) 113) (((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111) (-111) (-111)) 112) (((-627 (-627 (-1003 (-401 |#1|)))) (-1025 |#1| |#2|)) 107)) (-3975 (((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|))) 120) (((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111)) 119) (((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111) (-111)) 118) (((-627 (-627 (-1003 (-401 |#1|)))) (-1025 |#1| |#2|)) 117)) (-3562 (((-627 (-763 |#1| (-844 |#3|))) (-1122 |#1| (-523 (-844 |#3|)) (-844 |#3|) (-763 |#1| (-844 |#3|)))) 98) (((-1148 (-1003 (-401 |#1|))) (-1148 |#1|)) 89) (((-931 (-1003 (-401 |#1|))) (-763 |#1| (-844 |#3|))) 96) (((-931 (-1003 (-401 |#1|))) (-931 |#1|)) 94) (((-763 |#1| (-844 |#3|)) (-763 |#1| (-844 |#2|))) 33))) +(((-1261 |#1| |#2| |#3|) (-10 -7 (-15 -1903 ((-627 (-1025 |#1| |#2|)) (-627 (-931 |#1|)) (-111) (-111))) (-15 -1903 ((-627 (-1025 |#1| |#2|)) (-627 (-931 |#1|)) (-111))) (-15 -1903 ((-627 (-1025 |#1| |#2|)) (-627 (-931 |#1|)))) (-15 -3552 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-1025 |#1| |#2|))) (-15 -3552 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111) (-111) (-111))) (-15 -3552 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111) (-111))) (-15 -3552 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111))) (-15 -3552 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)))) (-15 -4078 ((-627 (-627 (-1003 (-401 |#1|)))) (-1025 |#1| |#2|))) (-15 -4078 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111) (-111) (-111))) (-15 -4078 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111) (-111))) (-15 -4078 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111))) (-15 -4078 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)))) (-15 -3975 ((-627 (-627 (-1003 (-401 |#1|)))) (-1025 |#1| |#2|))) (-15 -3975 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111) (-111))) (-15 -3975 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111))) (-15 -3975 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)))) (-15 -2487 ((-627 (-1122 |#1| (-523 (-844 |#3|)) (-844 |#3|) (-763 |#1| (-844 |#3|)))) (-1025 |#1| |#2|))) (-15 -3562 ((-763 |#1| (-844 |#3|)) (-763 |#1| (-844 |#2|)))) (-15 -3562 ((-931 (-1003 (-401 |#1|))) (-931 |#1|))) (-15 -3562 ((-931 (-1003 (-401 |#1|))) (-763 |#1| (-844 |#3|)))) (-15 -3562 ((-1148 (-1003 (-401 |#1|))) (-1148 |#1|))) (-15 -3562 ((-627 (-763 |#1| (-844 |#3|))) (-1122 |#1| (-523 (-844 |#3|)) (-844 |#3|) (-763 |#1| (-844 |#3|)))))) (-13 (-828) (-301) (-144) (-1001)) (-627 (-1152)) (-627 (-1152))) (T -1261)) +((-3562 (*1 *2 *3) (-12 (-5 *3 (-1122 *4 (-523 (-844 *6)) (-844 *6) (-763 *4 (-844 *6)))) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-14 *6 (-627 (-1152))) (-5 *2 (-627 (-763 *4 (-844 *6)))) (-5 *1 (-1261 *4 *5 *6)) (-14 *5 (-627 (-1152))))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-1148 (-1003 (-401 *4)))) (-5 *1 (-1261 *4 *5 *6)) (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152))))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-763 *4 (-844 *6))) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-14 *6 (-627 (-1152))) (-5 *2 (-931 (-1003 (-401 *4)))) (-5 *1 (-1261 *4 *5 *6)) (-14 *5 (-627 (-1152))))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-931 *4)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-931 (-1003 (-401 *4)))) (-5 *1 (-1261 *4 *5 *6)) (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152))))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-763 *4 (-844 *5))) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-14 *5 (-627 (-1152))) (-5 *2 (-763 *4 (-844 *6))) (-5 *1 (-1261 *4 *5 *6)) (-14 *6 (-627 (-1152))))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-1025 *4 *5)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-14 *5 (-627 (-1152))) (-5 *2 (-627 (-1122 *4 (-523 (-844 *6)) (-844 *6) (-763 *4 (-844 *6))))) (-5 *1 (-1261 *4 *5 *6)) (-14 *6 (-627 (-1152))))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-627 (-1003 (-401 *4))))) (-5 *1 (-1261 *4 *5 *6)) (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152))))) (-3975 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-627 (-1003 (-401 *5))))) (-5 *1 (-1261 *5 *6 *7)) (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) (-3975 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-627 (-1003 (-401 *5))))) (-5 *1 (-1261 *5 *6 *7)) (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-1025 *4 *5)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-14 *5 (-627 (-1152))) (-5 *2 (-627 (-627 (-1003 (-401 *4))))) (-5 *1 (-1261 *4 *5 *6)) (-14 *6 (-627 (-1152))))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-627 (-1003 (-401 *4))))) (-5 *1 (-1261 *4 *5 *6)) (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152))))) (-4078 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-627 (-1003 (-401 *5))))) (-5 *1 (-1261 *5 *6 *7)) (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) (-4078 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-627 (-1003 (-401 *5))))) (-5 *1 (-1261 *5 *6 *7)) (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) (-4078 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-627 (-1003 (-401 *5))))) (-5 *1 (-1261 *5 *6 *7)) (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-1025 *4 *5)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-14 *5 (-627 (-1152))) (-5 *2 (-627 (-627 (-1003 (-401 *4))))) (-5 *1 (-1261 *4 *5 *6)) (-14 *6 (-627 (-1152))))) (-3552 (*1 *2 *3) (-12 (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-2 (|:| -2667 (-1148 *4)) (|:| -3133 (-627 (-931 *4)))))) (-5 *1 (-1261 *4 *5 *6)) (-5 *3 (-627 (-931 *4))) (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152))))) (-3552 (*1 *2 *3 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-2 (|:| -2667 (-1148 *5)) (|:| -3133 (-627 (-931 *5)))))) (-5 *1 (-1261 *5 *6 *7)) (-5 *3 (-627 (-931 *5))) (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) (-3552 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-2 (|:| -2667 (-1148 *5)) (|:| -3133 (-627 (-931 *5)))))) (-5 *1 (-1261 *5 *6 *7)) (-5 *3 (-627 (-931 *5))) (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) (-3552 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-2 (|:| -2667 (-1148 *5)) (|:| -3133 (-627 (-931 *5)))))) (-5 *1 (-1261 *5 *6 *7)) (-5 *3 (-627 (-931 *5))) (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-1025 *4 *5)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-14 *5 (-627 (-1152))) (-5 *2 (-627 (-2 (|:| -2667 (-1148 *4)) (|:| -3133 (-627 (-931 *4)))))) (-5 *1 (-1261 *4 *5 *6)) (-14 *6 (-627 (-1152))))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-1025 *4 *5))) (-5 *1 (-1261 *4 *5 *6)) (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152))))) (-1903 (*1 *2 *3 *4) (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-1025 *5 *6))) (-5 *1 (-1261 *5 *6 *7)) (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) (-1903 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) (-5 *2 (-627 (-1025 *5 *6))) (-5 *1 (-1261 *5 *6 *7)) (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152)))))) +(-10 -7 (-15 -1903 ((-627 (-1025 |#1| |#2|)) (-627 (-931 |#1|)) (-111) (-111))) (-15 -1903 ((-627 (-1025 |#1| |#2|)) (-627 (-931 |#1|)) (-111))) (-15 -1903 ((-627 (-1025 |#1| |#2|)) (-627 (-931 |#1|)))) (-15 -3552 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-1025 |#1| |#2|))) (-15 -3552 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111) (-111) (-111))) (-15 -3552 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111) (-111))) (-15 -3552 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)) (-111))) (-15 -3552 ((-627 (-2 (|:| -2667 (-1148 |#1|)) (|:| -3133 (-627 (-931 |#1|))))) (-627 (-931 |#1|)))) (-15 -4078 ((-627 (-627 (-1003 (-401 |#1|)))) (-1025 |#1| |#2|))) (-15 -4078 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111) (-111) (-111))) (-15 -4078 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111) (-111))) (-15 -4078 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111))) (-15 -4078 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)))) (-15 -3975 ((-627 (-627 (-1003 (-401 |#1|)))) (-1025 |#1| |#2|))) (-15 -3975 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111) (-111))) (-15 -3975 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)) (-111))) (-15 -3975 ((-627 (-627 (-1003 (-401 |#1|)))) (-627 (-931 |#1|)))) (-15 -2487 ((-627 (-1122 |#1| (-523 (-844 |#3|)) (-844 |#3|) (-763 |#1| (-844 |#3|)))) (-1025 |#1| |#2|))) (-15 -3562 ((-763 |#1| (-844 |#3|)) (-763 |#1| (-844 |#2|)))) (-15 -3562 ((-931 (-1003 (-401 |#1|))) (-931 |#1|))) (-15 -3562 ((-931 (-1003 (-401 |#1|))) (-763 |#1| (-844 |#3|)))) (-15 -3562 ((-1148 (-1003 (-401 |#1|))) (-1148 |#1|))) (-15 -3562 ((-627 (-763 |#1| (-844 |#3|))) (-1122 |#1| (-523 (-844 |#3|)) (-844 |#3|) (-763 |#1| (-844 |#3|)))))) +((-4333 (((-3 (-1235 (-401 (-552))) "failed") (-1235 |#1|) |#1|) 21)) (-4192 (((-111) (-1235 |#1|)) 12)) (-2919 (((-3 (-1235 (-552)) "failed") (-1235 |#1|)) 16))) +(((-1262 |#1|) (-10 -7 (-15 -4192 ((-111) (-1235 |#1|))) (-15 -2919 ((-3 (-1235 (-552)) "failed") (-1235 |#1|))) (-15 -4333 ((-3 (-1235 (-401 (-552))) "failed") (-1235 |#1|) |#1|))) (-623 (-552))) (T -1262)) +((-4333 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1235 *4)) (-4 *4 (-623 (-552))) (-5 *2 (-1235 (-401 (-552)))) (-5 *1 (-1262 *4)))) (-2919 (*1 *2 *3) (|partial| -12 (-5 *3 (-1235 *4)) (-4 *4 (-623 (-552))) (-5 *2 (-1235 (-552))) (-5 *1 (-1262 *4)))) (-4192 (*1 *2 *3) (-12 (-5 *3 (-1235 *4)) (-4 *4 (-623 (-552))) (-5 *2 (-111)) (-5 *1 (-1262 *4))))) +(-10 -7 (-15 -4192 ((-111) (-1235 |#1|))) (-15 -2919 ((-3 (-1235 (-552)) "failed") (-1235 |#1|))) (-15 -4333 ((-3 (-1235 (-401 (-552))) "failed") (-1235 |#1|) |#1|))) +((-1465 (((-111) $ $) NIL)) (-3024 (((-111) $) 11)) (-4136 (((-3 $ "failed") $ $) NIL)) (-3307 (((-754)) 8)) (-3887 (($) NIL T CONST)) (-2040 (((-3 $ "failed") $) 43)) (-1279 (($) 36)) (-2624 (((-111) $) NIL)) (-4317 (((-3 $ "failed") $) 29)) (-2886 (((-900) $) 15)) (-1595 (((-1134) $) NIL)) (-3002 (($) 25 T CONST)) (-4153 (($ (-900)) 37)) (-1498 (((-1096) $) NIL)) (-3562 (((-552) $) 13)) (-1477 (((-842) $) 22) (($ (-552)) 19)) (-3995 (((-754)) 9)) (-1922 (($) 23 T CONST)) (-1933 (($) 24 T CONST)) (-2292 (((-111) $ $) 27)) (-2396 (($ $) 38) (($ $ $) 35)) (-2384 (($ $ $) 26)) (** (($ $ (-900)) NIL) (($ $ (-754)) 40)) (* (($ (-900) $) NIL) (($ (-754) $) NIL) (($ (-552) $) 32) (($ $ $) 31))) +(((-1263 |#1|) (-13 (-169) (-362) (-600 (-552)) (-1127)) (-900)) (T -1263)) +NIL +(-13 (-169) (-362) (-600 (-552)) (-1127)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3180888 3180893 3180898 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3180873 3180878 3180883 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3180858 3180863 3180868 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3180843 3180848 3180853 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1263 3180019 3180718 3180795 "ZMOD" 3180800 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1262 3179129 3179293 3179502 "ZLINDEP" 3179851 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1261 3168433 3170197 3172169 "ZDSOLVE" 3177259 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1260 3167679 3167820 3168009 "YSTREAM" 3168279 NIL YSTREAM (NIL T) -7 NIL NIL) (-1259 3165490 3166980 3167184 "XRPOLY" 3167522 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1258 3161982 3163265 3163849 "XPR" 3164953 NIL XPR (NIL T T) -8 NIL NIL) (-1257 3159738 3161313 3161517 "XPOLY" 3161813 NIL XPOLY (NIL T) -8 NIL NIL) (-1256 3157587 3158921 3158976 "XPOLYC" 3159264 NIL XPOLYC (NIL T T) -9 NIL 3159377) (-1255 3154005 3156104 3156492 "XPBWPOLY" 3157245 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1254 3149990 3152238 3152280 "XF" 3152901 NIL XF (NIL T) -9 NIL 3153301) (-1253 3149611 3149699 3149868 "XF-" 3149873 NIL XF- (NIL T T) -8 NIL NIL) (-1252 3145003 3146258 3146313 "XFALG" 3148485 NIL XFALG (NIL T T) -9 NIL 3149274) (-1251 3144136 3144240 3144445 "XEXPPKG" 3144895 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1250 3142280 3143986 3144082 "XDPOLY" 3144087 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1249 3141196 3141762 3141805 "XALG" 3141868 NIL XALG (NIL T) -9 NIL 3141988) (-1248 3134665 3139173 3139667 "WUTSET" 3140788 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1247 3132516 3133277 3133630 "WP" 3134446 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1246 3132145 3132338 3132408 "WHILEAST" 3132468 T WHILEAST (NIL) -8 NIL NIL) (-1245 3131644 3131862 3131956 "WHEREAST" 3132073 T WHEREAST (NIL) -8 NIL NIL) (-1244 3130530 3130728 3131023 "WFFINTBS" 3131441 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1243 3128434 3128861 3129323 "WEIER" 3130102 NIL WEIER (NIL T) -7 NIL NIL) (-1242 3127581 3128005 3128047 "VSPACE" 3128183 NIL VSPACE (NIL T) -9 NIL 3128257) (-1241 3127419 3127446 3127537 "VSPACE-" 3127542 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1240 3127165 3127208 3127279 "VOID" 3127370 T VOID (NIL) -8 NIL NIL) (-1239 3125301 3125660 3126066 "VIEW" 3126781 T VIEW (NIL) -7 NIL NIL) (-1238 3121726 3122364 3123101 "VIEWDEF" 3124586 T VIEWDEF (NIL) -7 NIL NIL) (-1237 3111064 3113274 3115447 "VIEW3D" 3119575 T VIEW3D (NIL) -8 NIL NIL) (-1236 3103346 3104975 3106554 "VIEW2D" 3109507 T VIEW2D (NIL) -8 NIL NIL) (-1235 3098750 3103116 3103208 "VECTOR" 3103289 NIL VECTOR (NIL T) -8 NIL NIL) (-1234 3097327 3097586 3097904 "VECTOR2" 3098480 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1233 3090854 3095111 3095154 "VECTCAT" 3096147 NIL VECTCAT (NIL T) -9 NIL 3096733) (-1232 3089868 3090122 3090512 "VECTCAT-" 3090517 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1231 3089349 3089519 3089639 "VARIABLE" 3089783 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1230 3089282 3089287 3089317 "UTYPE" 3089322 T UTYPE (NIL) -9 NIL NIL) (-1229 3088112 3088266 3088528 "UTSODETL" 3089108 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1228 3085552 3086012 3086536 "UTSODE" 3087653 NIL UTSODE (NIL T T) -7 NIL NIL) (-1227 3077428 3083178 3083667 "UTS" 3085121 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1226 3068801 3074120 3074163 "UTSCAT" 3075275 NIL UTSCAT (NIL T) -9 NIL 3076032) (-1225 3066155 3066871 3067860 "UTSCAT-" 3067865 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1224 3065782 3065825 3065958 "UTS2" 3066106 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1223 3060057 3062622 3062665 "URAGG" 3064735 NIL URAGG (NIL T) -9 NIL 3065457) (-1222 3056996 3057859 3058982 "URAGG-" 3058987 NIL URAGG- (NIL T T) -8 NIL NIL) (-1221 3052720 3055610 3056082 "UPXSSING" 3056660 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1220 3044690 3051835 3052117 "UPXS" 3052496 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1219 3037803 3044594 3044666 "UPXSCONS" 3044671 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1218 3028161 3034906 3034968 "UPXSCCA" 3035624 NIL UPXSCCA (NIL T T) -9 NIL 3035866) (-1217 3027799 3027884 3028058 "UPXSCCA-" 3028063 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1216 3018083 3024601 3024644 "UPXSCAT" 3025292 NIL UPXSCAT (NIL T) -9 NIL 3025900) (-1215 3017513 3017592 3017771 "UPXS2" 3017998 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1214 3016167 3016420 3016771 "UPSQFREE" 3017256 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1213 3010085 3013094 3013149 "UPSCAT" 3014310 NIL UPSCAT (NIL T T) -9 NIL 3015084) (-1212 3009289 3009496 3009823 "UPSCAT-" 3009828 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1211 2995380 3003376 3003419 "UPOLYC" 3005520 NIL UPOLYC (NIL T) -9 NIL 3006741) (-1210 2986709 2989134 2992281 "UPOLYC-" 2992286 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1209 2986336 2986379 2986512 "UPOLYC2" 2986660 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1208 2977793 2985902 2986040 "UP" 2986246 NIL UP (NIL NIL T) -8 NIL NIL) (-1207 2977132 2977239 2977403 "UPMP" 2977682 NIL UPMP (NIL T T) -7 NIL NIL) (-1206 2976685 2976766 2976905 "UPDIVP" 2977045 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1205 2975253 2975502 2975818 "UPDECOMP" 2976434 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1204 2974488 2974600 2974785 "UPCDEN" 2975137 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1203 2974007 2974076 2974225 "UP2" 2974413 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1202 2972524 2973211 2973488 "UNISEG" 2973765 NIL UNISEG (NIL T) -8 NIL NIL) (-1201 2971739 2971866 2972071 "UNISEG2" 2972367 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1200 2970799 2970979 2971205 "UNIFACT" 2971555 NIL UNIFACT (NIL T) -7 NIL NIL) (-1199 2954766 2969976 2970227 "ULS" 2970606 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1198 2942806 2954670 2954742 "ULSCONS" 2954747 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1197 2925604 2937541 2937603 "ULSCCAT" 2938323 NIL ULSCCAT (NIL T T) -9 NIL 2938620) (-1196 2924654 2924899 2925287 "ULSCCAT-" 2925292 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1195 2914715 2921147 2921190 "ULSCAT" 2922053 NIL ULSCAT (NIL T) -9 NIL 2922783) (-1194 2914145 2914224 2914403 "ULS2" 2914630 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1193 2912583 2913506 2913536 "UFD" 2913748 T UFD (NIL) -9 NIL 2913862) (-1192 2912377 2912423 2912518 "UFD-" 2912523 NIL UFD- (NIL T) -8 NIL NIL) (-1191 2911459 2911642 2911858 "UDVO" 2912183 T UDVO (NIL) -7 NIL NIL) (-1190 2909275 2909684 2910155 "UDPO" 2911023 NIL UDPO (NIL T) -7 NIL NIL) (-1189 2909208 2909213 2909243 "TYPE" 2909248 T TYPE (NIL) -9 NIL NIL) (-1188 2908995 2909163 2909194 "TYPEAST" 2909199 T TYPEAST (NIL) -8 NIL NIL) (-1187 2907966 2908168 2908408 "TWOFACT" 2908789 NIL TWOFACT (NIL T) -7 NIL NIL) (-1186 2906904 2907241 2907504 "TUPLE" 2907738 NIL TUPLE (NIL T) -8 NIL NIL) (-1185 2904595 2905114 2905653 "TUBETOOL" 2906387 T TUBETOOL (NIL) -7 NIL NIL) (-1184 2903444 2903649 2903890 "TUBE" 2904388 NIL TUBE (NIL T) -8 NIL NIL) (-1183 2898208 2902416 2902699 "TS" 2903196 NIL TS (NIL T) -8 NIL NIL) (-1182 2886875 2890967 2891064 "TSETCAT" 2896333 NIL TSETCAT (NIL T T T T) -9 NIL 2897864) (-1181 2881609 2883207 2885098 "TSETCAT-" 2885103 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1180 2875872 2876718 2877660 "TRMANIP" 2880745 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1179 2875313 2875376 2875539 "TRIMAT" 2875804 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1178 2873109 2873346 2873710 "TRIGMNIP" 2875062 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1177 2872629 2872742 2872772 "TRIGCAT" 2872985 T TRIGCAT (NIL) -9 NIL NIL) (-1176 2872298 2872377 2872518 "TRIGCAT-" 2872523 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1175 2869197 2871158 2871438 "TREE" 2872053 NIL TREE (NIL T) -8 NIL NIL) (-1174 2868471 2868999 2869029 "TRANFUN" 2869064 T TRANFUN (NIL) -9 NIL 2869130) (-1173 2867750 2867941 2868221 "TRANFUN-" 2868226 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1172 2867554 2867586 2867647 "TOPSP" 2867711 T TOPSP (NIL) -7 NIL NIL) (-1171 2866902 2867017 2867171 "TOOLSIGN" 2867435 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1170 2865563 2866079 2866318 "TEXTFILE" 2866685 T TEXTFILE (NIL) -8 NIL NIL) (-1169 2863428 2863942 2864380 "TEX" 2865147 T TEX (NIL) -8 NIL NIL) (-1168 2863209 2863240 2863312 "TEX1" 2863391 NIL TEX1 (NIL T) -7 NIL NIL) (-1167 2862857 2862920 2863010 "TEMUTL" 2863141 T TEMUTL (NIL) -7 NIL NIL) (-1166 2861011 2861291 2861616 "TBCMPPK" 2862580 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1165 2852899 2859171 2859227 "TBAGG" 2859627 NIL TBAGG (NIL T T) -9 NIL 2859838) (-1164 2847969 2849457 2851211 "TBAGG-" 2851216 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1163 2847353 2847460 2847605 "TANEXP" 2847858 NIL TANEXP (NIL T) -7 NIL NIL) (-1162 2840854 2847210 2847303 "TABLE" 2847308 NIL TABLE (NIL T T) -8 NIL NIL) (-1161 2840266 2840365 2840503 "TABLEAU" 2840751 NIL TABLEAU (NIL T) -8 NIL NIL) (-1160 2834874 2836094 2837342 "TABLBUMP" 2839052 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1159 2834302 2834402 2834530 "SYSTEM" 2834768 T SYSTEM (NIL) -7 NIL NIL) (-1158 2830765 2831460 2832243 "SYSSOLP" 2833553 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1157 2827143 2828054 2828756 "SYNTAX" 2830085 T SYNTAX (NIL) -8 NIL NIL) (-1156 2824301 2824903 2825535 "SYMTAB" 2826533 T SYMTAB (NIL) -8 NIL NIL) (-1155 2819550 2820452 2821435 "SYMS" 2823340 T SYMS (NIL) -8 NIL NIL) (-1154 2816822 2819008 2819238 "SYMPOLY" 2819355 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1153 2816339 2816414 2816537 "SYMFUNC" 2816734 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1152 2812316 2813576 2814398 "SYMBOL" 2815539 T SYMBOL (NIL) -8 NIL NIL) (-1151 2805855 2807544 2809264 "SWITCH" 2810618 T SWITCH (NIL) -8 NIL NIL) (-1150 2799125 2804676 2804979 "SUTS" 2805610 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1149 2791094 2798240 2798522 "SUPXS" 2798901 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1148 2782623 2790712 2790838 "SUP" 2791003 NIL SUP (NIL T) -8 NIL NIL) (-1147 2781782 2781909 2782126 "SUPFRACF" 2782491 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1146 2781403 2781462 2781575 "SUP2" 2781717 NIL SUP2 (NIL T T) -7 NIL NIL) (-1145 2779816 2780090 2780453 "SUMRF" 2781102 NIL SUMRF (NIL T) -7 NIL NIL) (-1144 2779130 2779196 2779395 "SUMFS" 2779737 NIL SUMFS (NIL T T) -7 NIL NIL) (-1143 2763137 2778307 2778558 "SULS" 2778937 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1142 2762766 2762959 2763029 "SUCHTAST" 2763089 T SUCHTAST (NIL) -8 NIL NIL) (-1141 2762088 2762291 2762431 "SUCH" 2762674 NIL SUCH (NIL T T) -8 NIL NIL) (-1140 2755982 2756994 2757953 "SUBSPACE" 2761176 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1139 2755412 2755502 2755666 "SUBRESP" 2755870 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1138 2748781 2750077 2751388 "STTF" 2754148 NIL STTF (NIL T) -7 NIL NIL) (-1137 2742954 2744074 2745221 "STTFNC" 2747681 NIL STTFNC (NIL T) -7 NIL NIL) (-1136 2734269 2736136 2737930 "STTAYLOR" 2741195 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1135 2727513 2734133 2734216 "STRTBL" 2734221 NIL STRTBL (NIL T) -8 NIL NIL) (-1134 2722904 2727468 2727499 "STRING" 2727504 T STRING (NIL) -8 NIL NIL) (-1133 2717792 2722277 2722307 "STRICAT" 2722366 T STRICAT (NIL) -9 NIL 2722428) (-1132 2710505 2715315 2715935 "STREAM" 2717207 NIL STREAM (NIL T) -8 NIL NIL) (-1131 2710015 2710092 2710236 "STREAM3" 2710422 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1130 2708997 2709180 2709415 "STREAM2" 2709828 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1129 2708685 2708737 2708830 "STREAM1" 2708939 NIL STREAM1 (NIL T) -7 NIL NIL) (-1128 2707701 2707882 2708113 "STINPROD" 2708501 NIL STINPROD (NIL T) -7 NIL NIL) (-1127 2707279 2707463 2707493 "STEP" 2707573 T STEP (NIL) -9 NIL 2707651) (-1126 2700822 2707178 2707255 "STBL" 2707260 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1125 2695997 2700044 2700087 "STAGG" 2700240 NIL STAGG (NIL T) -9 NIL 2700329) (-1124 2693699 2694301 2695173 "STAGG-" 2695178 NIL STAGG- (NIL T T) -8 NIL NIL) (-1123 2691894 2693469 2693561 "STACK" 2693642 NIL STACK (NIL T) -8 NIL NIL) (-1122 2684619 2690035 2690491 "SREGSET" 2691524 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1121 2677045 2678413 2679926 "SRDCMPK" 2683225 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1120 2670012 2674485 2674515 "SRAGG" 2675818 T SRAGG (NIL) -9 NIL 2676426) (-1119 2669029 2669284 2669663 "SRAGG-" 2669668 NIL SRAGG- (NIL T) -8 NIL NIL) (-1118 2663524 2667976 2668397 "SQMATRIX" 2668655 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1117 2657276 2660244 2660970 "SPLTREE" 2662870 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1116 2653266 2653932 2654578 "SPLNODE" 2656702 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1115 2652313 2652546 2652576 "SPFCAT" 2653020 T SPFCAT (NIL) -9 NIL NIL) (-1114 2651050 2651260 2651524 "SPECOUT" 2652071 T SPECOUT (NIL) -7 NIL NIL) (-1113 2642739 2644483 2644513 "SPADXPT" 2648905 T SPADXPT (NIL) -9 NIL 2650939) (-1112 2642500 2642540 2642609 "SPADPRSR" 2642692 T SPADPRSR (NIL) -7 NIL NIL) (-1111 2640683 2642455 2642486 "SPADAST" 2642491 T SPADAST (NIL) -8 NIL NIL) (-1110 2632654 2634401 2634444 "SPACEC" 2638817 NIL SPACEC (NIL T) -9 NIL 2640633) (-1109 2630825 2632586 2632635 "SPACE3" 2632640 NIL SPACE3 (NIL T) -8 NIL NIL) (-1108 2629577 2629748 2630039 "SORTPAK" 2630630 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1107 2627627 2627930 2628349 "SOLVETRA" 2629241 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1106 2626638 2626860 2627134 "SOLVESER" 2627400 NIL SOLVESER (NIL T) -7 NIL NIL) (-1105 2621858 2622739 2623741 "SOLVERAD" 2625690 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1104 2617673 2618282 2619011 "SOLVEFOR" 2621225 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1103 2611970 2617022 2617119 "SNTSCAT" 2617124 NIL SNTSCAT (NIL T T T T) -9 NIL 2617194) (-1102 2606113 2610293 2610684 "SMTS" 2611660 NIL SMTS (NIL T T T) -8 NIL NIL) (-1101 2600563 2606001 2606078 "SMP" 2606083 NIL SMP (NIL T T) -8 NIL NIL) (-1100 2598722 2599023 2599421 "SMITH" 2600260 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1099 2591705 2595860 2595963 "SMATCAT" 2597314 NIL SMATCAT (NIL NIL T T T) -9 NIL 2597864) (-1098 2588645 2589468 2590646 "SMATCAT-" 2590651 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1097 2586358 2587881 2587924 "SKAGG" 2588185 NIL SKAGG (NIL T) -9 NIL 2588320) (-1096 2582474 2585462 2585740 "SINT" 2586102 T SINT (NIL) -8 NIL NIL) (-1095 2582246 2582284 2582350 "SIMPAN" 2582430 T SIMPAN (NIL) -7 NIL NIL) (-1094 2581553 2581781 2581921 "SIG" 2582128 T SIG (NIL) -8 NIL NIL) (-1093 2580391 2580612 2580887 "SIGNRF" 2581312 NIL SIGNRF (NIL T) -7 NIL NIL) (-1092 2579196 2579347 2579638 "SIGNEF" 2580220 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1091 2578529 2578779 2578903 "SIGAST" 2579094 T SIGAST (NIL) -8 NIL NIL) (-1090 2576219 2576673 2577179 "SHP" 2578070 NIL SHP (NIL T NIL) -7 NIL NIL) (-1089 2570125 2576120 2576196 "SHDP" 2576201 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1088 2569724 2569890 2569920 "SGROUP" 2570013 T SGROUP (NIL) -9 NIL 2570075) (-1087 2569582 2569608 2569681 "SGROUP-" 2569686 NIL SGROUP- (NIL T) -8 NIL NIL) (-1086 2566418 2567115 2567838 "SGCF" 2568881 T SGCF (NIL) -7 NIL NIL) (-1085 2560813 2565865 2565962 "SFRTCAT" 2565967 NIL SFRTCAT (NIL T T T T) -9 NIL 2566006) (-1084 2554237 2555252 2556388 "SFRGCD" 2559796 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1083 2547365 2548436 2549622 "SFQCMPK" 2553170 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1082 2546987 2547076 2547186 "SFORT" 2547306 NIL SFORT (NIL T T) -8 NIL NIL) (-1081 2546132 2546827 2546948 "SEXOF" 2546953 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1080 2545266 2546013 2546081 "SEX" 2546086 T SEX (NIL) -8 NIL NIL) (-1079 2540042 2540731 2540826 "SEXCAT" 2544597 NIL SEXCAT (NIL T T T T T) -9 NIL 2545216) (-1078 2537222 2539976 2540024 "SET" 2540029 NIL SET (NIL T) -8 NIL NIL) (-1077 2535473 2535935 2536240 "SETMN" 2536963 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1076 2535079 2535205 2535235 "SETCAT" 2535352 T SETCAT (NIL) -9 NIL 2535437) (-1075 2534859 2534911 2535010 "SETCAT-" 2535015 NIL SETCAT- (NIL T) -8 NIL NIL) (-1074 2531246 2533320 2533363 "SETAGG" 2534233 NIL SETAGG (NIL T) -9 NIL 2534573) (-1073 2530704 2530820 2531057 "SETAGG-" 2531062 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1072 2530174 2530400 2530501 "SEQAST" 2530625 T SEQAST (NIL) -8 NIL NIL) (-1071 2529378 2529671 2529732 "SEGXCAT" 2530018 NIL SEGXCAT (NIL T T) -9 NIL 2530138) (-1070 2528434 2529044 2529226 "SEG" 2529231 NIL SEG (NIL T) -8 NIL NIL) (-1069 2527341 2527554 2527597 "SEGCAT" 2528179 NIL SEGCAT (NIL T) -9 NIL 2528417) (-1068 2526390 2526720 2526920 "SEGBIND" 2527176 NIL SEGBIND (NIL T) -8 NIL NIL) (-1067 2526011 2526070 2526183 "SEGBIND2" 2526325 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1066 2525612 2525812 2525889 "SEGAST" 2525956 T SEGAST (NIL) -8 NIL NIL) (-1065 2524831 2524957 2525161 "SEG2" 2525456 NIL SEG2 (NIL T T) -7 NIL NIL) (-1064 2524268 2524766 2524813 "SDVAR" 2524818 NIL SDVAR (NIL T) -8 NIL NIL) (-1063 2516558 2524038 2524168 "SDPOL" 2524173 NIL SDPOL (NIL T) -8 NIL NIL) (-1062 2515151 2515417 2515736 "SCPKG" 2516273 NIL SCPKG (NIL T) -7 NIL NIL) (-1061 2514287 2514467 2514667 "SCOPE" 2514973 T SCOPE (NIL) -8 NIL NIL) (-1060 2513508 2513641 2513820 "SCACHE" 2514142 NIL SCACHE (NIL T) -7 NIL NIL) (-1059 2513217 2513377 2513407 "SASTCAT" 2513412 T SASTCAT (NIL) -9 NIL 2513425) (-1058 2512656 2512977 2513062 "SAOS" 2513154 T SAOS (NIL) -8 NIL NIL) (-1057 2512221 2512256 2512429 "SAERFFC" 2512615 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1056 2506195 2512118 2512198 "SAE" 2512203 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1055 2505788 2505823 2505982 "SAEFACT" 2506154 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1054 2504109 2504423 2504824 "RURPK" 2505454 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1053 2502745 2503024 2503336 "RULESET" 2503943 NIL RULESET (NIL T T T) -8 NIL NIL) (-1052 2499932 2500435 2500900 "RULE" 2502426 NIL RULE (NIL T T T) -8 NIL NIL) (-1051 2499571 2499726 2499809 "RULECOLD" 2499884 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1050 2499069 2499288 2499382 "RSTRCAST" 2499499 T RSTRCAST (NIL) -8 NIL NIL) (-1049 2493918 2494712 2495632 "RSETGCD" 2498268 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1048 2483175 2488227 2488324 "RSETCAT" 2492443 NIL RSETCAT (NIL T T T T) -9 NIL 2493540) (-1047 2481102 2481641 2482465 "RSETCAT-" 2482470 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1046 2473489 2474864 2476384 "RSDCMPK" 2479701 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1045 2471494 2471935 2472009 "RRCC" 2473095 NIL RRCC (NIL T T) -9 NIL 2473439) (-1044 2470845 2471019 2471298 "RRCC-" 2471303 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1043 2470315 2470541 2470642 "RPTAST" 2470766 T RPTAST (NIL) -8 NIL NIL) (-1042 2444543 2454128 2454195 "RPOLCAT" 2464859 NIL RPOLCAT (NIL T T T) -9 NIL 2468018) (-1041 2436043 2438381 2441503 "RPOLCAT-" 2441508 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1040 2427090 2434254 2434736 "ROUTINE" 2435583 T ROUTINE (NIL) -8 NIL NIL) (-1039 2423848 2426641 2426790 "ROMAN" 2426963 T ROMAN (NIL) -8 NIL NIL) (-1038 2422123 2422708 2422968 "ROIRC" 2423653 NIL ROIRC (NIL T T) -8 NIL NIL) (-1037 2418572 2420811 2420841 "RNS" 2421145 T RNS (NIL) -9 NIL 2421418) (-1036 2417081 2417464 2417998 "RNS-" 2418073 NIL RNS- (NIL T) -8 NIL NIL) (-1035 2416530 2416912 2416942 "RNG" 2416947 T RNG (NIL) -9 NIL 2416968) (-1034 2415922 2416284 2416327 "RMODULE" 2416389 NIL RMODULE (NIL T) -9 NIL 2416431) (-1033 2414758 2414852 2415188 "RMCAT2" 2415823 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1032 2411463 2413932 2414257 "RMATRIX" 2414492 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1031 2404405 2406639 2406754 "RMATCAT" 2410113 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2411095) (-1030 2403780 2403927 2404234 "RMATCAT-" 2404239 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1029 2403347 2403422 2403550 "RINTERP" 2403699 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1028 2402435 2402955 2402985 "RING" 2403097 T RING (NIL) -9 NIL 2403192) (-1027 2402227 2402271 2402368 "RING-" 2402373 NIL RING- (NIL T) -8 NIL NIL) (-1026 2401068 2401305 2401563 "RIDIST" 2401991 T RIDIST (NIL) -7 NIL NIL) (-1025 2392384 2400536 2400742 "RGCHAIN" 2400916 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1024 2391760 2392140 2392181 "RGBCSPC" 2392239 NIL RGBCSPC (NIL T) -9 NIL 2392291) (-1023 2390944 2391299 2391340 "RGBCMDL" 2391572 NIL RGBCMDL (NIL T) -9 NIL 2391686) (-1022 2387938 2388552 2389222 "RF" 2390308 NIL RF (NIL T) -7 NIL NIL) (-1021 2387584 2387647 2387750 "RFFACTOR" 2387869 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1020 2387309 2387344 2387441 "RFFACT" 2387543 NIL RFFACT (NIL T) -7 NIL NIL) (-1019 2385426 2385790 2386172 "RFDIST" 2386949 T RFDIST (NIL) -7 NIL NIL) (-1018 2384879 2384971 2385134 "RETSOL" 2385328 NIL RETSOL (NIL T T) -7 NIL NIL) (-1017 2384467 2384547 2384590 "RETRACT" 2384783 NIL RETRACT (NIL T) -9 NIL NIL) (-1016 2384316 2384341 2384428 "RETRACT-" 2384433 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1015 2383945 2384138 2384208 "RETAST" 2384268 T RETAST (NIL) -8 NIL NIL) (-1014 2376799 2383598 2383725 "RESULT" 2383840 T RESULT (NIL) -8 NIL NIL) (-1013 2375425 2376068 2376267 "RESRING" 2376702 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1012 2375061 2375110 2375208 "RESLATC" 2375362 NIL RESLATC (NIL T) -7 NIL NIL) (-1011 2374767 2374801 2374908 "REPSQ" 2375020 NIL REPSQ (NIL T) -7 NIL NIL) (-1010 2372189 2372769 2373371 "REP" 2374187 T REP (NIL) -7 NIL NIL) (-1009 2371887 2371921 2372032 "REPDB" 2372148 NIL REPDB (NIL T) -7 NIL NIL) (-1008 2365797 2367176 2368399 "REP2" 2370699 NIL REP2 (NIL T) -7 NIL NIL) (-1007 2362174 2362855 2363663 "REP1" 2365024 NIL REP1 (NIL T) -7 NIL NIL) (-1006 2354900 2360315 2360771 "REGSET" 2361804 NIL REGSET (NIL T T T T) -8 NIL NIL) (-1005 2353713 2354048 2354298 "REF" 2354685 NIL REF (NIL T) -8 NIL NIL) (-1004 2353090 2353193 2353360 "REDORDER" 2353597 NIL REDORDER (NIL T T) -7 NIL NIL) (-1003 2349097 2352305 2352531 "RECLOS" 2352919 NIL RECLOS (NIL T) -8 NIL NIL) (-1002 2348149 2348330 2348545 "REALSOLV" 2348904 T REALSOLV (NIL) -7 NIL NIL) (-1001 2347995 2348036 2348066 "REAL" 2348071 T REAL (NIL) -9 NIL 2348106) (-1000 2344478 2345280 2346164 "REAL0Q" 2347160 NIL REAL0Q (NIL T) -7 NIL NIL) (-999 2340089 2341077 2342136 "REAL0" 2343459 NIL REAL0 (NIL T) -7 NIL NIL) (-998 2339591 2339810 2339902 "RDUCEAST" 2340017 T RDUCEAST (NIL) -8 NIL NIL) (-997 2338999 2339071 2339276 "RDIV" 2339513 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-996 2338072 2338246 2338457 "RDIST" 2338821 NIL RDIST (NIL T) -7 NIL NIL) (-995 2336673 2336960 2337330 "RDETRS" 2337780 NIL RDETRS (NIL T T) -7 NIL NIL) (-994 2334490 2334944 2335480 "RDETR" 2336215 NIL RDETR (NIL T T) -7 NIL NIL) (-993 2333104 2333382 2333784 "RDEEFS" 2334206 NIL RDEEFS (NIL T T) -7 NIL NIL) (-992 2331602 2331908 2332338 "RDEEF" 2332792 NIL RDEEF (NIL T T) -7 NIL NIL) (-991 2325939 2328810 2328838 "RCFIELD" 2330115 T RCFIELD (NIL) -9 NIL 2330845) (-990 2324008 2324512 2325205 "RCFIELD-" 2325278 NIL RCFIELD- (NIL T) -8 NIL NIL) (-989 2320339 2322124 2322165 "RCAGG" 2323236 NIL RCAGG (NIL T) -9 NIL 2323701) (-988 2319970 2320064 2320224 "RCAGG-" 2320229 NIL RCAGG- (NIL T T) -8 NIL NIL) (-987 2319310 2319422 2319585 "RATRET" 2319854 NIL RATRET (NIL T) -7 NIL NIL) (-986 2318867 2318934 2319053 "RATFACT" 2319238 NIL RATFACT (NIL T) -7 NIL NIL) (-985 2318182 2318302 2318452 "RANDSRC" 2318737 T RANDSRC (NIL) -7 NIL NIL) (-984 2317919 2317963 2318034 "RADUTIL" 2318131 T RADUTIL (NIL) -7 NIL NIL) (-983 2310982 2316662 2316979 "RADIX" 2317634 NIL RADIX (NIL NIL) -8 NIL NIL) (-982 2302638 2310826 2310954 "RADFF" 2310959 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-981 2302290 2302365 2302393 "RADCAT" 2302550 T RADCAT (NIL) -9 NIL NIL) (-980 2302075 2302123 2302220 "RADCAT-" 2302225 NIL RADCAT- (NIL T) -8 NIL NIL) (-979 2300226 2301850 2301939 "QUEUE" 2302019 NIL QUEUE (NIL T) -8 NIL NIL) (-978 2296802 2300163 2300208 "QUAT" 2300213 NIL QUAT (NIL T) -8 NIL NIL) (-977 2296440 2296483 2296610 "QUATCT2" 2296753 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-976 2290300 2293601 2293641 "QUATCAT" 2294421 NIL QUATCAT (NIL T) -9 NIL 2295187) (-975 2286444 2287481 2288868 "QUATCAT-" 2288962 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-974 2283964 2285528 2285569 "QUAGG" 2285944 NIL QUAGG (NIL T) -9 NIL 2286119) (-973 2283596 2283789 2283857 "QQUTAST" 2283916 T QQUTAST (NIL) -8 NIL NIL) (-972 2282521 2282994 2283166 "QFORM" 2283468 NIL QFORM (NIL NIL T) -8 NIL NIL) (-971 2273846 2279051 2279091 "QFCAT" 2279749 NIL QFCAT (NIL T) -9 NIL 2280750) (-970 2269418 2270619 2272210 "QFCAT-" 2272304 NIL QFCAT- (NIL T T) -8 NIL NIL) (-969 2269056 2269099 2269226 "QFCAT2" 2269369 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-968 2268516 2268626 2268756 "QEQUAT" 2268946 T QEQUAT (NIL) -8 NIL NIL) (-967 2261664 2262735 2263919 "QCMPACK" 2267449 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-966 2259240 2259661 2260089 "QALGSET" 2261319 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-965 2258485 2258659 2258891 "QALGSET2" 2259060 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-964 2257176 2257399 2257716 "PWFFINTB" 2258258 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-963 2255358 2255526 2255880 "PUSHVAR" 2256990 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-962 2251276 2252330 2252371 "PTRANFN" 2254255 NIL PTRANFN (NIL T) -9 NIL NIL) (-961 2249678 2249969 2250291 "PTPACK" 2250987 NIL PTPACK (NIL T) -7 NIL NIL) (-960 2249310 2249367 2249476 "PTFUNC2" 2249615 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-959 2243776 2248121 2248162 "PTCAT" 2248535 NIL PTCAT (NIL T) -9 NIL 2248697) (-958 2243434 2243469 2243593 "PSQFR" 2243735 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-957 2242029 2242327 2242661 "PSEUDLIN" 2243132 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-956 2228798 2231163 2233487 "PSETPK" 2239789 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-955 2221842 2224556 2224652 "PSETCAT" 2227673 NIL PSETCAT (NIL T T T T) -9 NIL 2228487) (-954 2219678 2220312 2221133 "PSETCAT-" 2221138 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-953 2219027 2219192 2219220 "PSCURVE" 2219488 T PSCURVE (NIL) -9 NIL 2219655) (-952 2215508 2216990 2217055 "PSCAT" 2217899 NIL PSCAT (NIL T T T) -9 NIL 2218139) (-951 2214571 2214787 2215187 "PSCAT-" 2215192 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-950 2213223 2213856 2214070 "PRTITION" 2214377 T PRTITION (NIL) -8 NIL NIL) (-949 2212725 2212944 2213036 "PRTDAST" 2213151 T PRTDAST (NIL) -8 NIL NIL) (-948 2201823 2204029 2206217 "PRS" 2210587 NIL PRS (NIL T T) -7 NIL NIL) (-947 2199681 2201173 2201213 "PRQAGG" 2201396 NIL PRQAGG (NIL T) -9 NIL 2201498) (-946 2199067 2199296 2199324 "PROPLOG" 2199509 T PROPLOG (NIL) -9 NIL 2199631) (-945 2196237 2196881 2197345 "PROPFRML" 2198635 NIL PROPFRML (NIL T) -8 NIL NIL) (-944 2195697 2195807 2195937 "PROPERTY" 2196127 T PROPERTY (NIL) -8 NIL NIL) (-943 2189782 2193863 2194683 "PRODUCT" 2194923 NIL PRODUCT (NIL T T) -8 NIL NIL) (-942 2187095 2189240 2189474 "PR" 2189593 NIL PR (NIL T T) -8 NIL NIL) (-941 2186891 2186923 2186982 "PRINT" 2187056 T PRINT (NIL) -7 NIL NIL) (-940 2186231 2186348 2186500 "PRIMES" 2186771 NIL PRIMES (NIL T) -7 NIL NIL) (-939 2184296 2184697 2185163 "PRIMELT" 2185810 NIL PRIMELT (NIL T) -7 NIL NIL) (-938 2184025 2184074 2184102 "PRIMCAT" 2184226 T PRIMCAT (NIL) -9 NIL NIL) (-937 2180186 2183963 2184008 "PRIMARR" 2184013 NIL PRIMARR (NIL T) -8 NIL NIL) (-936 2179193 2179371 2179599 "PRIMARR2" 2180004 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-935 2178836 2178892 2179003 "PREASSOC" 2179131 NIL PREASSOC (NIL T T) -7 NIL NIL) (-934 2178311 2178444 2178472 "PPCURVE" 2178677 T PPCURVE (NIL) -9 NIL 2178813) (-933 2177933 2178106 2178189 "PORTNUM" 2178248 T PORTNUM (NIL) -8 NIL NIL) (-932 2175292 2175691 2176283 "POLYROOT" 2177514 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-931 2169237 2174896 2175056 "POLY" 2175165 NIL POLY (NIL T) -8 NIL NIL) (-930 2168620 2168678 2168912 "POLYLIFT" 2169173 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-929 2164895 2165344 2165973 "POLYCATQ" 2168165 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-928 2151934 2157290 2157355 "POLYCAT" 2160869 NIL POLYCAT (NIL T T T) -9 NIL 2162797) (-927 2145384 2147245 2149629 "POLYCAT-" 2149634 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-926 2144971 2145039 2145159 "POLY2UP" 2145310 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-925 2144603 2144660 2144769 "POLY2" 2144908 NIL POLY2 (NIL T T) -7 NIL NIL) (-924 2143288 2143527 2143803 "POLUTIL" 2144377 NIL POLUTIL (NIL T T) -7 NIL NIL) (-923 2141643 2141920 2142251 "POLTOPOL" 2143010 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-922 2137161 2141579 2141625 "POINT" 2141630 NIL POINT (NIL T) -8 NIL NIL) (-921 2135348 2135705 2136080 "PNTHEORY" 2136806 T PNTHEORY (NIL) -7 NIL NIL) (-920 2133767 2134064 2134476 "PMTOOLS" 2135046 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-919 2133360 2133438 2133555 "PMSYM" 2133683 NIL PMSYM (NIL T) -7 NIL NIL) (-918 2132870 2132939 2133113 "PMQFCAT" 2133285 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-917 2132225 2132335 2132491 "PMPRED" 2132747 NIL PMPRED (NIL T) -7 NIL NIL) (-916 2131621 2131707 2131868 "PMPREDFS" 2132126 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-915 2130264 2130472 2130857 "PMPLCAT" 2131383 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-914 2129796 2129875 2130027 "PMLSAGG" 2130179 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-913 2129271 2129347 2129528 "PMKERNEL" 2129714 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-912 2128888 2128963 2129076 "PMINS" 2129190 NIL PMINS (NIL T) -7 NIL NIL) (-911 2128316 2128385 2128601 "PMFS" 2128813 NIL PMFS (NIL T T T) -7 NIL NIL) (-910 2127544 2127662 2127867 "PMDOWN" 2128193 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-909 2126707 2126866 2127048 "PMASS" 2127382 T PMASS (NIL) -7 NIL NIL) (-908 2125981 2126092 2126255 "PMASSFS" 2126593 NIL PMASSFS (NIL T T) -7 NIL NIL) (-907 2125636 2125704 2125798 "PLOTTOOL" 2125907 T PLOTTOOL (NIL) -7 NIL NIL) (-906 2120258 2121447 2122595 "PLOT" 2124508 T PLOT (NIL) -8 NIL NIL) (-905 2116072 2117106 2118027 "PLOT3D" 2119357 T PLOT3D (NIL) -8 NIL NIL) (-904 2114984 2115161 2115396 "PLOT1" 2115876 NIL PLOT1 (NIL T) -7 NIL NIL) (-903 2090378 2095050 2099901 "PLEQN" 2110250 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-902 2089696 2089818 2089998 "PINTERP" 2090243 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-901 2089389 2089436 2089539 "PINTERPA" 2089643 NIL PINTERPA (NIL T T) -7 NIL NIL) (-900 2088674 2089195 2089282 "PI" 2089322 T PI (NIL) -8 NIL NIL) (-899 2087106 2088047 2088075 "PID" 2088257 T PID (NIL) -9 NIL 2088391) (-898 2086831 2086868 2086956 "PICOERCE" 2087063 NIL PICOERCE (NIL T) -7 NIL NIL) (-897 2086151 2086290 2086466 "PGROEB" 2086687 NIL PGROEB (NIL T) -7 NIL NIL) (-896 2081738 2082552 2083457 "PGE" 2085266 T PGE (NIL) -7 NIL NIL) (-895 2079862 2080108 2080474 "PGCD" 2081455 NIL PGCD (NIL T T T T) -7 NIL NIL) (-894 2079200 2079303 2079464 "PFRPAC" 2079746 NIL PFRPAC (NIL T) -7 NIL NIL) (-893 2075880 2077748 2078101 "PFR" 2078879 NIL PFR (NIL T) -8 NIL NIL) (-892 2074269 2074513 2074838 "PFOTOOLS" 2075627 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-891 2072802 2073041 2073392 "PFOQ" 2074026 NIL PFOQ (NIL T T T) -7 NIL NIL) (-890 2071275 2071487 2071850 "PFO" 2072586 NIL PFO (NIL T T T T T) -7 NIL NIL) (-889 2067863 2071164 2071233 "PF" 2071238 NIL PF (NIL NIL) -8 NIL NIL) (-888 2065332 2066569 2066597 "PFECAT" 2067182 T PFECAT (NIL) -9 NIL 2067566) (-887 2064777 2064931 2065145 "PFECAT-" 2065150 NIL PFECAT- (NIL T) -8 NIL NIL) (-886 2063381 2063632 2063933 "PFBRU" 2064526 NIL PFBRU (NIL T T) -7 NIL NIL) (-885 2061248 2061599 2062031 "PFBR" 2063032 NIL PFBR (NIL T T T T) -7 NIL NIL) (-884 2057164 2058624 2059300 "PERM" 2060605 NIL PERM (NIL T) -8 NIL NIL) (-883 2052430 2053371 2054241 "PERMGRP" 2056327 NIL PERMGRP (NIL T) -8 NIL NIL) (-882 2050562 2051493 2051534 "PERMCAT" 2051980 NIL PERMCAT (NIL T) -9 NIL 2052285) (-881 2050215 2050256 2050380 "PERMAN" 2050515 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-880 2047655 2049784 2049915 "PENDTREE" 2050117 NIL PENDTREE (NIL T) -8 NIL NIL) (-879 2045768 2046502 2046543 "PDRING" 2047200 NIL PDRING (NIL T) -9 NIL 2047486) (-878 2044871 2045089 2045451 "PDRING-" 2045456 NIL PDRING- (NIL T T) -8 NIL NIL) (-877 2042012 2042763 2043454 "PDEPROB" 2044200 T PDEPROB (NIL) -8 NIL NIL) (-876 2039559 2040061 2040616 "PDEPACK" 2041477 T PDEPACK (NIL) -7 NIL NIL) (-875 2038471 2038661 2038912 "PDECOMP" 2039358 NIL PDECOMP (NIL T T) -7 NIL NIL) (-874 2036076 2036893 2036921 "PDECAT" 2037708 T PDECAT (NIL) -9 NIL 2038421) (-873 2035827 2035860 2035950 "PCOMP" 2036037 NIL PCOMP (NIL T T) -7 NIL NIL) (-872 2034032 2034628 2034925 "PBWLB" 2035556 NIL PBWLB (NIL T) -8 NIL NIL) (-871 2026536 2028105 2029443 "PATTERN" 2032715 NIL PATTERN (NIL T) -8 NIL NIL) (-870 2026168 2026225 2026334 "PATTERN2" 2026473 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-869 2023925 2024313 2024770 "PATTERN1" 2025757 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-868 2021320 2021874 2022355 "PATRES" 2023490 NIL PATRES (NIL T T) -8 NIL NIL) (-867 2020884 2020951 2021083 "PATRES2" 2021247 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-866 2018767 2019172 2019579 "PATMATCH" 2020551 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-865 2018303 2018486 2018527 "PATMAB" 2018634 NIL PATMAB (NIL T) -9 NIL 2018717) (-864 2016848 2017157 2017415 "PATLRES" 2018108 NIL PATLRES (NIL T T T) -8 NIL NIL) (-863 2016394 2016517 2016558 "PATAB" 2016563 NIL PATAB (NIL T) -9 NIL 2016735) (-862 2013875 2014407 2014980 "PARTPERM" 2015841 T PARTPERM (NIL) -7 NIL NIL) (-861 2013496 2013559 2013661 "PARSURF" 2013806 NIL PARSURF (NIL T) -8 NIL NIL) (-860 2013128 2013185 2013294 "PARSU2" 2013433 NIL PARSU2 (NIL T T) -7 NIL NIL) (-859 2012892 2012932 2012999 "PARSER" 2013081 T PARSER (NIL) -7 NIL NIL) (-858 2012513 2012576 2012678 "PARSCURV" 2012823 NIL PARSCURV (NIL T) -8 NIL NIL) (-857 2012145 2012202 2012311 "PARSC2" 2012450 NIL PARSC2 (NIL T T) -7 NIL NIL) (-856 2011784 2011842 2011939 "PARPCURV" 2012081 NIL PARPCURV (NIL T) -8 NIL NIL) (-855 2011416 2011473 2011582 "PARPC2" 2011721 NIL PARPC2 (NIL T T) -7 NIL NIL) (-854 2010936 2011022 2011141 "PAN2EXPR" 2011317 T PAN2EXPR (NIL) -7 NIL NIL) (-853 2009742 2010057 2010285 "PALETTE" 2010728 T PALETTE (NIL) -8 NIL NIL) (-852 2008210 2008747 2009107 "PAIR" 2009428 NIL PAIR (NIL T T) -8 NIL NIL) (-851 2002116 2007469 2007663 "PADICRC" 2008065 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-850 1995380 2001462 2001646 "PADICRAT" 2001964 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-849 1993730 1995317 1995362 "PADIC" 1995367 NIL PADIC (NIL NIL) -8 NIL NIL) (-848 1990975 1992505 1992545 "PADICCT" 1993126 NIL PADICCT (NIL NIL) -9 NIL 1993408) (-847 1989932 1990132 1990400 "PADEPAC" 1990762 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-846 1989144 1989277 1989483 "PADE" 1989794 NIL PADE (NIL T T T) -7 NIL NIL) (-845 1987194 1987980 1988297 "OWP" 1988911 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-844 1986303 1986799 1986971 "OVAR" 1987062 NIL OVAR (NIL NIL) -8 NIL NIL) (-843 1985567 1985688 1985849 "OUT" 1986162 T OUT (NIL) -7 NIL NIL) (-842 1974474 1976676 1978876 "OUTFORM" 1983387 T OUTFORM (NIL) -8 NIL NIL) (-841 1973895 1974071 1974198 "OUTBFILE" 1974367 T OUTBFILE (NIL) -8 NIL NIL) (-840 1973532 1973615 1973643 "OUTBCON" 1973794 T OUTBCON (NIL) -9 NIL 1973879) (-839 1973372 1973407 1973483 "OUTBCON-" 1973488 NIL OUTBCON- (NIL T) -8 NIL NIL) (-838 1972780 1973101 1973190 "OSI" 1973303 T OSI (NIL) -8 NIL NIL) (-837 1972336 1972648 1972676 "OSGROUP" 1972681 T OSGROUP (NIL) -9 NIL 1972703) (-836 1971081 1971308 1971593 "ORTHPOL" 1972083 NIL ORTHPOL (NIL T) -7 NIL NIL) (-835 1968491 1970740 1970879 "OREUP" 1971024 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-834 1965929 1968182 1968309 "ORESUP" 1968433 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-833 1963457 1963957 1964518 "OREPCTO" 1965418 NIL OREPCTO (NIL T T) -7 NIL NIL) (-832 1957368 1959535 1959576 "OREPCAT" 1961924 NIL OREPCAT (NIL T) -9 NIL 1963028) (-831 1954515 1955297 1956355 "OREPCAT-" 1956360 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-830 1953692 1953964 1953992 "ORDSET" 1954301 T ORDSET (NIL) -9 NIL 1954465) (-829 1953211 1953333 1953526 "ORDSET-" 1953531 NIL ORDSET- (NIL T) -8 NIL NIL) (-828 1951865 1952622 1952650 "ORDRING" 1952852 T ORDRING (NIL) -9 NIL 1952977) (-827 1951510 1951604 1951748 "ORDRING-" 1951753 NIL ORDRING- (NIL T) -8 NIL NIL) (-826 1950916 1951353 1951381 "ORDMON" 1951386 T ORDMON (NIL) -9 NIL 1951407) (-825 1950078 1950225 1950420 "ORDFUNS" 1950765 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-824 1949589 1949948 1949976 "ORDFIN" 1949981 T ORDFIN (NIL) -9 NIL 1950002) (-823 1946181 1948175 1948584 "ORDCOMP" 1949213 NIL ORDCOMP (NIL T) -8 NIL NIL) (-822 1945447 1945574 1945760 "ORDCOMP2" 1946041 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-821 1941954 1942837 1943674 "OPTPROB" 1944630 T OPTPROB (NIL) -8 NIL NIL) (-820 1938756 1939395 1940099 "OPTPACK" 1941270 T OPTPACK (NIL) -7 NIL NIL) (-819 1936469 1937209 1937237 "OPTCAT" 1938056 T OPTCAT (NIL) -9 NIL 1938706) (-818 1936237 1936276 1936342 "OPQUERY" 1936423 T OPQUERY (NIL) -7 NIL NIL) (-817 1933403 1934548 1935052 "OP" 1935766 NIL OP (NIL T) -8 NIL NIL) (-816 1930248 1932200 1932569 "ONECOMP" 1933067 NIL ONECOMP (NIL T) -8 NIL NIL) (-815 1929553 1929668 1929842 "ONECOMP2" 1930120 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-814 1928972 1929078 1929208 "OMSERVER" 1929443 T OMSERVER (NIL) -7 NIL NIL) (-813 1925860 1928412 1928452 "OMSAGG" 1928513 NIL OMSAGG (NIL T) -9 NIL 1928577) (-812 1924483 1924746 1925028 "OMPKG" 1925598 T OMPKG (NIL) -7 NIL NIL) (-811 1923913 1924016 1924044 "OM" 1924343 T OM (NIL) -9 NIL NIL) (-810 1922495 1923462 1923631 "OMLO" 1923794 NIL OMLO (NIL T T) -8 NIL NIL) (-809 1921420 1921567 1921794 "OMEXPR" 1922321 NIL OMEXPR (NIL T) -7 NIL NIL) (-808 1920738 1920966 1921102 "OMERR" 1921304 T OMERR (NIL) -8 NIL NIL) (-807 1919916 1920159 1920319 "OMERRK" 1920598 T OMERRK (NIL) -8 NIL NIL) (-806 1919394 1919593 1919701 "OMENC" 1919828 T OMENC (NIL) -8 NIL NIL) (-805 1913289 1914474 1915645 "OMDEV" 1918243 T OMDEV (NIL) -8 NIL NIL) (-804 1912358 1912529 1912723 "OMCONN" 1913115 T OMCONN (NIL) -8 NIL NIL) (-803 1911014 1911956 1911984 "OINTDOM" 1911989 T OINTDOM (NIL) -9 NIL 1912010) (-802 1906820 1908004 1908720 "OFMONOID" 1910330 NIL OFMONOID (NIL T) -8 NIL NIL) (-801 1906258 1906757 1906802 "ODVAR" 1906807 NIL ODVAR (NIL T) -8 NIL NIL) (-800 1903468 1905755 1905940 "ODR" 1906133 NIL ODR (NIL T T NIL) -8 NIL NIL) (-799 1895812 1903244 1903370 "ODPOL" 1903375 NIL ODPOL (NIL T) -8 NIL NIL) (-798 1889688 1895684 1895789 "ODP" 1895794 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-797 1888454 1888669 1888944 "ODETOOLS" 1889462 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-796 1885423 1886079 1886795 "ODESYS" 1887787 NIL ODESYS (NIL T T) -7 NIL NIL) (-795 1880305 1881213 1882238 "ODERTRIC" 1884498 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-794 1879731 1879813 1880007 "ODERED" 1880217 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-793 1876619 1877167 1877844 "ODERAT" 1879154 NIL ODERAT (NIL T T) -7 NIL NIL) (-792 1873579 1874043 1874640 "ODEPRRIC" 1876148 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-791 1871448 1872017 1872526 "ODEPROB" 1873090 T ODEPROB (NIL) -8 NIL NIL) (-790 1867970 1868453 1869100 "ODEPRIM" 1870927 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-789 1867219 1867321 1867581 "ODEPAL" 1867862 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-788 1863381 1864172 1865036 "ODEPACK" 1866375 T ODEPACK (NIL) -7 NIL NIL) (-787 1862414 1862521 1862750 "ODEINT" 1863270 NIL ODEINT (NIL T T) -7 NIL NIL) (-786 1856515 1857940 1859387 "ODEIFTBL" 1860987 T ODEIFTBL (NIL) -8 NIL NIL) (-785 1851850 1852636 1853595 "ODEEF" 1855674 NIL ODEEF (NIL T T) -7 NIL NIL) (-784 1851185 1851274 1851504 "ODECONST" 1851755 NIL ODECONST (NIL T T T) -7 NIL NIL) (-783 1849336 1849971 1849999 "ODECAT" 1850604 T ODECAT (NIL) -9 NIL 1851135) (-782 1846243 1849048 1849167 "OCT" 1849249 NIL OCT (NIL T) -8 NIL NIL) (-781 1845881 1845924 1846051 "OCTCT2" 1846194 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-780 1840742 1843142 1843182 "OC" 1844279 NIL OC (NIL T) -9 NIL 1845137) (-779 1837969 1838717 1839707 "OC-" 1839801 NIL OC- (NIL T T) -8 NIL NIL) (-778 1837347 1837789 1837817 "OCAMON" 1837822 T OCAMON (NIL) -9 NIL 1837843) (-777 1836904 1837219 1837247 "OASGP" 1837252 T OASGP (NIL) -9 NIL 1837272) (-776 1836191 1836654 1836682 "OAMONS" 1836722 T OAMONS (NIL) -9 NIL 1836765) (-775 1835631 1836038 1836066 "OAMON" 1836071 T OAMON (NIL) -9 NIL 1836091) (-774 1834935 1835427 1835455 "OAGROUP" 1835460 T OAGROUP (NIL) -9 NIL 1835480) (-773 1834625 1834675 1834763 "NUMTUBE" 1834879 NIL NUMTUBE (NIL T) -7 NIL NIL) (-772 1828198 1829716 1831252 "NUMQUAD" 1833109 T NUMQUAD (NIL) -7 NIL NIL) (-771 1823954 1824942 1825967 "NUMODE" 1827193 T NUMODE (NIL) -7 NIL NIL) (-770 1821335 1822189 1822217 "NUMINT" 1823140 T NUMINT (NIL) -9 NIL 1823904) (-769 1820283 1820480 1820698 "NUMFMT" 1821137 T NUMFMT (NIL) -7 NIL NIL) (-768 1806642 1809587 1812119 "NUMERIC" 1817790 NIL NUMERIC (NIL T) -7 NIL NIL) (-767 1801039 1806091 1806186 "NTSCAT" 1806191 NIL NTSCAT (NIL T T T T) -9 NIL 1806230) (-766 1800233 1800398 1800591 "NTPOLFN" 1800878 NIL NTPOLFN (NIL T) -7 NIL NIL) (-765 1788073 1797058 1797870 "NSUP" 1799454 NIL NSUP (NIL T) -8 NIL NIL) (-764 1787705 1787762 1787871 "NSUP2" 1788010 NIL NSUP2 (NIL T T) -7 NIL NIL) (-763 1777702 1787479 1787612 "NSMP" 1787617 NIL NSMP (NIL T T) -8 NIL NIL) (-762 1776134 1776435 1776792 "NREP" 1777390 NIL NREP (NIL T) -7 NIL NIL) (-761 1774725 1774977 1775335 "NPCOEF" 1775877 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-760 1773791 1773906 1774122 "NORMRETR" 1774606 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-759 1771832 1772122 1772531 "NORMPK" 1773499 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-758 1771517 1771545 1771669 "NORMMA" 1771798 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-757 1771344 1771474 1771503 "NONE" 1771508 T NONE (NIL) -8 NIL NIL) (-756 1771133 1771162 1771231 "NONE1" 1771308 NIL NONE1 (NIL T) -7 NIL NIL) (-755 1770616 1770678 1770864 "NODE1" 1771065 NIL NODE1 (NIL T T) -7 NIL NIL) (-754 1768956 1769779 1770034 "NNI" 1770381 T NNI (NIL) -8 NIL NIL) (-753 1767376 1767689 1768053 "NLINSOL" 1768624 NIL NLINSOL (NIL T) -7 NIL NIL) (-752 1763543 1764511 1765433 "NIPROB" 1766474 T NIPROB (NIL) -8 NIL NIL) (-751 1762300 1762534 1762836 "NFINTBAS" 1763305 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-750 1761744 1761951 1761992 "NETCLT" 1762156 NIL NETCLT (NIL T) -9 NIL 1762245) (-749 1760452 1760683 1760964 "NCODIV" 1761512 NIL NCODIV (NIL T T) -7 NIL NIL) (-748 1760214 1760251 1760326 "NCNTFRAC" 1760409 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-747 1758394 1758758 1759178 "NCEP" 1759839 NIL NCEP (NIL T) -7 NIL NIL) (-746 1757305 1758044 1758072 "NASRING" 1758182 T NASRING (NIL) -9 NIL 1758256) (-745 1757100 1757144 1757238 "NASRING-" 1757243 NIL NASRING- (NIL T) -8 NIL NIL) (-744 1756253 1756752 1756780 "NARNG" 1756897 T NARNG (NIL) -9 NIL 1756988) (-743 1755945 1756012 1756146 "NARNG-" 1756151 NIL NARNG- (NIL T) -8 NIL NIL) (-742 1754824 1755031 1755266 "NAGSP" 1755730 T NAGSP (NIL) -7 NIL NIL) (-741 1746096 1747780 1749453 "NAGS" 1753171 T NAGS (NIL) -7 NIL NIL) (-740 1744644 1744952 1745283 "NAGF07" 1745785 T NAGF07 (NIL) -7 NIL NIL) (-739 1739182 1740473 1741780 "NAGF04" 1743357 T NAGF04 (NIL) -7 NIL NIL) (-738 1732150 1733764 1735397 "NAGF02" 1737569 T NAGF02 (NIL) -7 NIL NIL) (-737 1727374 1728474 1729591 "NAGF01" 1731053 T NAGF01 (NIL) -7 NIL NIL) (-736 1721002 1722568 1724153 "NAGE04" 1725809 T NAGE04 (NIL) -7 NIL NIL) (-735 1712171 1714292 1716422 "NAGE02" 1718892 T NAGE02 (NIL) -7 NIL NIL) (-734 1708124 1709071 1710035 "NAGE01" 1711227 T NAGE01 (NIL) -7 NIL NIL) (-733 1705919 1706453 1707011 "NAGD03" 1707586 T NAGD03 (NIL) -7 NIL NIL) (-732 1697669 1699597 1701551 "NAGD02" 1703985 T NAGD02 (NIL) -7 NIL NIL) (-731 1691480 1692905 1694345 "NAGD01" 1696249 T NAGD01 (NIL) -7 NIL NIL) (-730 1687689 1688511 1689348 "NAGC06" 1690663 T NAGC06 (NIL) -7 NIL NIL) (-729 1686154 1686486 1686842 "NAGC05" 1687353 T NAGC05 (NIL) -7 NIL NIL) (-728 1685530 1685649 1685793 "NAGC02" 1686030 T NAGC02 (NIL) -7 NIL NIL) (-727 1684590 1685147 1685187 "NAALG" 1685266 NIL NAALG (NIL T) -9 NIL 1685327) (-726 1684425 1684454 1684544 "NAALG-" 1684549 NIL NAALG- (NIL T T) -8 NIL NIL) (-725 1678375 1679483 1680670 "MULTSQFR" 1683321 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-724 1677694 1677769 1677953 "MULTFACT" 1678287 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-723 1670917 1674782 1674835 "MTSCAT" 1675905 NIL MTSCAT (NIL T T) -9 NIL 1676419) (-722 1670629 1670683 1670775 "MTHING" 1670857 NIL MTHING (NIL T) -7 NIL NIL) (-721 1670421 1670454 1670514 "MSYSCMD" 1670589 T MSYSCMD (NIL) -7 NIL NIL) (-720 1666533 1669176 1669496 "MSET" 1670134 NIL MSET (NIL T) -8 NIL NIL) (-719 1663628 1666094 1666135 "MSETAGG" 1666140 NIL MSETAGG (NIL T) -9 NIL 1666174) (-718 1659511 1661007 1661752 "MRING" 1662928 NIL MRING (NIL T T) -8 NIL NIL) (-717 1659077 1659144 1659275 "MRF2" 1659438 NIL MRF2 (NIL T T T) -7 NIL NIL) (-716 1658695 1658730 1658874 "MRATFAC" 1659036 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-715 1656307 1656602 1657033 "MPRFF" 1658400 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-714 1650367 1656161 1656258 "MPOLY" 1656263 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-713 1649857 1649892 1650100 "MPCPF" 1650326 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-712 1649371 1649414 1649598 "MPC3" 1649808 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-711 1648566 1648647 1648868 "MPC2" 1649286 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-710 1646867 1647204 1647594 "MONOTOOL" 1648226 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-709 1646118 1646409 1646437 "MONOID" 1646656 T MONOID (NIL) -9 NIL 1646803) (-708 1645664 1645783 1645964 "MONOID-" 1645969 NIL MONOID- (NIL T) -8 NIL NIL) (-707 1636714 1642620 1642679 "MONOGEN" 1643353 NIL MONOGEN (NIL T T) -9 NIL 1643809) (-706 1633932 1634667 1635667 "MONOGEN-" 1635786 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-705 1632791 1633211 1633239 "MONADWU" 1633631 T MONADWU (NIL) -9 NIL 1633869) (-704 1632163 1632322 1632570 "MONADWU-" 1632575 NIL MONADWU- (NIL T) -8 NIL NIL) (-703 1631548 1631766 1631794 "MONAD" 1632001 T MONAD (NIL) -9 NIL 1632113) (-702 1631233 1631311 1631443 "MONAD-" 1631448 NIL MONAD- (NIL T) -8 NIL NIL) (-701 1629549 1630146 1630425 "MOEBIUS" 1630986 NIL MOEBIUS (NIL T) -8 NIL NIL) (-700 1628941 1629319 1629359 "MODULE" 1629364 NIL MODULE (NIL T) -9 NIL 1629390) (-699 1628509 1628605 1628795 "MODULE-" 1628800 NIL MODULE- (NIL T T) -8 NIL NIL) (-698 1626224 1626873 1627200 "MODRING" 1628333 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-697 1623210 1624329 1624850 "MODOP" 1625753 NIL MODOP (NIL T T) -8 NIL NIL) (-696 1621397 1621849 1622190 "MODMONOM" 1623009 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-695 1611105 1619589 1620012 "MODMON" 1621025 NIL MODMON (NIL T T) -8 NIL NIL) (-694 1608296 1609949 1610225 "MODFIELD" 1610980 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-693 1607300 1607577 1607767 "MMLFORM" 1608126 T MMLFORM (NIL) -8 NIL NIL) (-692 1606826 1606869 1607048 "MMAP" 1607251 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-691 1605095 1605828 1605869 "MLO" 1606292 NIL MLO (NIL T) -9 NIL 1606534) (-690 1602462 1602977 1603579 "MLIFT" 1604576 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-689 1601853 1601937 1602091 "MKUCFUNC" 1602373 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-688 1601452 1601522 1601645 "MKRECORD" 1601776 NIL MKRECORD (NIL T T) -7 NIL NIL) (-687 1600500 1600661 1600889 "MKFUNC" 1601263 NIL MKFUNC (NIL T) -7 NIL NIL) (-686 1599888 1599992 1600148 "MKFLCFN" 1600383 NIL MKFLCFN (NIL T) -7 NIL NIL) (-685 1599314 1599681 1599770 "MKCHSET" 1599832 NIL MKCHSET (NIL T) -8 NIL NIL) (-684 1598591 1598693 1598878 "MKBCFUNC" 1599207 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-683 1595333 1598145 1598281 "MINT" 1598475 T MINT (NIL) -8 NIL NIL) (-682 1594145 1594388 1594665 "MHROWRED" 1595088 NIL MHROWRED (NIL T) -7 NIL NIL) (-681 1589571 1592680 1593085 "MFLOAT" 1593760 T MFLOAT (NIL) -8 NIL NIL) (-680 1588928 1589004 1589175 "MFINFACT" 1589483 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-679 1585243 1586091 1586975 "MESH" 1588064 T MESH (NIL) -7 NIL NIL) (-678 1583633 1583945 1584298 "MDDFACT" 1584930 NIL MDDFACT (NIL T) -7 NIL NIL) (-677 1580475 1582792 1582833 "MDAGG" 1583088 NIL MDAGG (NIL T) -9 NIL 1583231) (-676 1570253 1579768 1579975 "MCMPLX" 1580288 T MCMPLX (NIL) -8 NIL NIL) (-675 1569394 1569540 1569740 "MCDEN" 1570102 NIL MCDEN (NIL T T) -7 NIL NIL) (-674 1567284 1567554 1567934 "MCALCFN" 1569124 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-673 1566195 1566368 1566609 "MAYBE" 1567082 NIL MAYBE (NIL T) -8 NIL NIL) (-672 1563807 1564330 1564892 "MATSTOR" 1565666 NIL MATSTOR (NIL T) -7 NIL NIL) (-671 1559813 1563179 1563427 "MATRIX" 1563592 NIL MATRIX (NIL T) -8 NIL NIL) (-670 1555582 1556286 1557022 "MATLIN" 1559170 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-669 1545736 1548874 1548951 "MATCAT" 1553831 NIL MATCAT (NIL T T T) -9 NIL 1555248) (-668 1542100 1543113 1544469 "MATCAT-" 1544474 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-667 1540694 1540847 1541180 "MATCAT2" 1541935 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-666 1538806 1539130 1539514 "MAPPKG3" 1540369 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-665 1537787 1537960 1538182 "MAPPKG2" 1538630 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-664 1536286 1536570 1536897 "MAPPKG1" 1537493 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-663 1535392 1535692 1535869 "MAPPAST" 1536129 T MAPPAST (NIL) -8 NIL NIL) (-662 1535003 1535061 1535184 "MAPHACK3" 1535328 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-661 1534595 1534656 1534770 "MAPHACK2" 1534935 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-660 1534033 1534136 1534278 "MAPHACK1" 1534486 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-659 1532139 1532733 1533037 "MAGMA" 1533761 NIL MAGMA (NIL T) -8 NIL NIL) (-658 1531645 1531863 1531954 "MACROAST" 1532068 T MACROAST (NIL) -8 NIL NIL) (-657 1528112 1529884 1530345 "M3D" 1531217 NIL M3D (NIL T) -8 NIL NIL) (-656 1522267 1526482 1526523 "LZSTAGG" 1527305 NIL LZSTAGG (NIL T) -9 NIL 1527600) (-655 1518240 1519398 1520855 "LZSTAGG-" 1520860 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-654 1515354 1516131 1516618 "LWORD" 1517785 NIL LWORD (NIL T) -8 NIL NIL) (-653 1514957 1515158 1515233 "LSTAST" 1515299 T LSTAST (NIL) -8 NIL NIL) (-652 1508158 1514728 1514862 "LSQM" 1514867 NIL LSQM (NIL NIL T) -8 NIL NIL) (-651 1507382 1507521 1507749 "LSPP" 1508013 NIL LSPP (NIL T T T T) -7 NIL NIL) (-650 1505194 1505495 1505951 "LSMP" 1507071 NIL LSMP (NIL T T T T) -7 NIL NIL) (-649 1501973 1502647 1503377 "LSMP1" 1504496 NIL LSMP1 (NIL T) -7 NIL NIL) (-648 1495899 1501141 1501182 "LSAGG" 1501244 NIL LSAGG (NIL T) -9 NIL 1501322) (-647 1492594 1493518 1494731 "LSAGG-" 1494736 NIL LSAGG- (NIL T T) -8 NIL NIL) (-646 1490220 1491738 1491987 "LPOLY" 1492389 NIL LPOLY (NIL T T) -8 NIL NIL) (-645 1489802 1489887 1490010 "LPEFRAC" 1490129 NIL LPEFRAC (NIL T) -7 NIL NIL) (-644 1488149 1488896 1489149 "LO" 1489634 NIL LO (NIL T T T) -8 NIL NIL) (-643 1487801 1487913 1487941 "LOGIC" 1488052 T LOGIC (NIL) -9 NIL 1488133) (-642 1487663 1487686 1487757 "LOGIC-" 1487762 NIL LOGIC- (NIL T) -8 NIL NIL) (-641 1486856 1486996 1487189 "LODOOPS" 1487519 NIL LODOOPS (NIL T T) -7 NIL NIL) (-640 1484314 1486772 1486838 "LODO" 1486843 NIL LODO (NIL T NIL) -8 NIL NIL) (-639 1482852 1483087 1483440 "LODOF" 1484061 NIL LODOF (NIL T T) -7 NIL NIL) (-638 1479295 1481692 1481733 "LODOCAT" 1482171 NIL LODOCAT (NIL T) -9 NIL 1482382) (-637 1479028 1479086 1479213 "LODOCAT-" 1479218 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-636 1476383 1478869 1478987 "LODO2" 1478992 NIL LODO2 (NIL T T) -8 NIL NIL) (-635 1473853 1476320 1476365 "LODO1" 1476370 NIL LODO1 (NIL T) -8 NIL NIL) (-634 1472713 1472878 1473190 "LODEEF" 1473676 NIL LODEEF (NIL T T T) -7 NIL NIL) (-633 1467999 1470843 1470884 "LNAGG" 1471831 NIL LNAGG (NIL T) -9 NIL 1472275) (-632 1467146 1467360 1467702 "LNAGG-" 1467707 NIL LNAGG- (NIL T T) -8 NIL NIL) (-631 1463309 1464071 1464710 "LMOPS" 1466561 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-630 1462704 1463066 1463107 "LMODULE" 1463168 NIL LMODULE (NIL T) -9 NIL 1463210) (-629 1459950 1462349 1462472 "LMDICT" 1462614 NIL LMDICT (NIL T) -8 NIL NIL) (-628 1459676 1459858 1459918 "LITERAL" 1459923 NIL LITERAL (NIL T) -8 NIL NIL) (-627 1452903 1458622 1458920 "LIST" 1459411 NIL LIST (NIL T) -8 NIL NIL) (-626 1452428 1452502 1452641 "LIST3" 1452823 NIL LIST3 (NIL T T T) -7 NIL NIL) (-625 1451435 1451613 1451841 "LIST2" 1452246 NIL LIST2 (NIL T T) -7 NIL NIL) (-624 1449569 1449881 1450280 "LIST2MAP" 1451082 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-623 1448319 1448955 1448996 "LINEXP" 1449251 NIL LINEXP (NIL T) -9 NIL 1449400) (-622 1446966 1447226 1447523 "LINDEP" 1448071 NIL LINDEP (NIL T T) -7 NIL NIL) (-621 1443733 1444452 1445229 "LIMITRF" 1446221 NIL LIMITRF (NIL T) -7 NIL NIL) (-620 1442009 1442304 1442720 "LIMITPS" 1443428 NIL LIMITPS (NIL T T) -7 NIL NIL) (-619 1436464 1441520 1441748 "LIE" 1441830 NIL LIE (NIL T T) -8 NIL NIL) (-618 1435513 1435956 1435996 "LIECAT" 1436136 NIL LIECAT (NIL T) -9 NIL 1436287) (-617 1435354 1435381 1435469 "LIECAT-" 1435474 NIL LIECAT- (NIL T T) -8 NIL NIL) (-616 1427966 1434803 1434968 "LIB" 1435209 T LIB (NIL) -8 NIL NIL) (-615 1423603 1424484 1425419 "LGROBP" 1427083 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-614 1421469 1421743 1422105 "LF" 1423324 NIL LF (NIL T T) -7 NIL NIL) (-613 1420309 1421001 1421029 "LFCAT" 1421236 T LFCAT (NIL) -9 NIL 1421375) (-612 1417213 1417841 1418529 "LEXTRIPK" 1419673 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-611 1413984 1414783 1415286 "LEXP" 1416793 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-610 1413487 1413705 1413797 "LETAST" 1413912 T LETAST (NIL) -8 NIL NIL) (-609 1411885 1412198 1412599 "LEADCDET" 1413169 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-608 1411075 1411149 1411378 "LAZM3PK" 1411806 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-607 1406031 1409152 1409690 "LAUPOL" 1410587 NIL LAUPOL (NIL T T) -8 NIL NIL) (-606 1405596 1405640 1405808 "LAPLACE" 1405981 NIL LAPLACE (NIL T T) -7 NIL NIL) (-605 1403570 1404697 1404948 "LA" 1405429 NIL LA (NIL T T T) -8 NIL NIL) (-604 1402671 1403221 1403262 "LALG" 1403324 NIL LALG (NIL T) -9 NIL 1403383) (-603 1402385 1402444 1402580 "LALG-" 1402585 NIL LALG- (NIL T T) -8 NIL NIL) (-602 1401185 1401602 1401831 "KTVLOGIC" 1402176 T KTVLOGIC (NIL) -8 NIL NIL) (-601 1400089 1400276 1400575 "KOVACIC" 1400985 NIL KOVACIC (NIL T T) -7 NIL NIL) (-600 1399924 1399948 1399989 "KONVERT" 1400051 NIL KONVERT (NIL T) -9 NIL NIL) (-599 1399759 1399783 1399824 "KOERCE" 1399886 NIL KOERCE (NIL T) -9 NIL NIL) (-598 1397493 1398253 1398646 "KERNEL" 1399398 NIL KERNEL (NIL T) -8 NIL NIL) (-597 1396995 1397076 1397206 "KERNEL2" 1397407 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-596 1390846 1395534 1395588 "KDAGG" 1395965 NIL KDAGG (NIL T T) -9 NIL 1396171) (-595 1390375 1390499 1390704 "KDAGG-" 1390709 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-594 1383550 1390036 1390191 "KAFILE" 1390253 NIL KAFILE (NIL T) -8 NIL NIL) (-593 1378005 1383061 1383289 "JORDAN" 1383371 NIL JORDAN (NIL T T) -8 NIL NIL) (-592 1377411 1377654 1377775 "JOINAST" 1377904 T JOINAST (NIL) -8 NIL NIL) (-591 1377140 1377199 1377286 "JAVACODE" 1377344 T JAVACODE (NIL) -8 NIL NIL) (-590 1373439 1375345 1375399 "IXAGG" 1376328 NIL IXAGG (NIL T T) -9 NIL 1376787) (-589 1372358 1372664 1373083 "IXAGG-" 1373088 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-588 1367938 1372280 1372339 "IVECTOR" 1372344 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-587 1366704 1366941 1367207 "ITUPLE" 1367705 NIL ITUPLE (NIL T) -8 NIL NIL) (-586 1365140 1365317 1365623 "ITRIGMNP" 1366526 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-585 1363885 1364089 1364372 "ITFUN3" 1364916 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-584 1363517 1363574 1363683 "ITFUN2" 1363822 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-583 1361354 1362379 1362678 "ITAYLOR" 1363251 NIL ITAYLOR (NIL T) -8 NIL NIL) (-582 1350336 1355491 1356654 "ISUPS" 1360224 NIL ISUPS (NIL T) -8 NIL NIL) (-581 1349440 1349580 1349816 "ISUMP" 1350183 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-580 1344704 1349241 1349320 "ISTRING" 1349393 NIL ISTRING (NIL NIL) -8 NIL NIL) (-579 1344207 1344425 1344517 "ISAST" 1344632 T ISAST (NIL) -8 NIL NIL) (-578 1343417 1343498 1343714 "IRURPK" 1344121 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-577 1342353 1342554 1342794 "IRSN" 1343197 T IRSN (NIL) -7 NIL NIL) (-576 1340382 1340737 1341173 "IRRF2F" 1341991 NIL IRRF2F (NIL T) -7 NIL NIL) (-575 1340129 1340167 1340243 "IRREDFFX" 1340338 NIL IRREDFFX (NIL T) -7 NIL NIL) (-574 1338744 1339003 1339302 "IROOT" 1339862 NIL IROOT (NIL T) -7 NIL NIL) (-573 1335376 1336428 1337120 "IR" 1338084 NIL IR (NIL T) -8 NIL NIL) (-572 1332989 1333484 1334050 "IR2" 1334854 NIL IR2 (NIL T T) -7 NIL NIL) (-571 1332061 1332174 1332395 "IR2F" 1332872 NIL IR2F (NIL T T) -7 NIL NIL) (-570 1331852 1331886 1331946 "IPRNTPK" 1332021 T IPRNTPK (NIL) -7 NIL NIL) (-569 1328471 1331741 1331810 "IPF" 1331815 NIL IPF (NIL NIL) -8 NIL NIL) (-568 1326834 1328396 1328453 "IPADIC" 1328458 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-567 1326165 1326392 1326529 "IP4ADDR" 1326717 T IP4ADDR (NIL) -8 NIL NIL) (-566 1325665 1325869 1325979 "IOMODE" 1326075 T IOMODE (NIL) -8 NIL NIL) (-565 1325023 1325262 1325389 "IOBFILE" 1325558 T IOBFILE (NIL) -8 NIL NIL) (-564 1324787 1324927 1324955 "IOBCON" 1324960 T IOBCON (NIL) -9 NIL 1324981) (-563 1324284 1324342 1324532 "INVLAPLA" 1324723 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-562 1313933 1316286 1318672 "INTTR" 1321948 NIL INTTR (NIL T T) -7 NIL NIL) (-561 1310277 1311019 1311883 "INTTOOLS" 1313118 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-560 1309863 1309954 1310071 "INTSLPE" 1310180 T INTSLPE (NIL) -7 NIL NIL) (-559 1307858 1309786 1309845 "INTRVL" 1309850 NIL INTRVL (NIL T) -8 NIL NIL) (-558 1305460 1305972 1306547 "INTRF" 1307343 NIL INTRF (NIL T) -7 NIL NIL) (-557 1304871 1304968 1305110 "INTRET" 1305358 NIL INTRET (NIL T) -7 NIL NIL) (-556 1302868 1303257 1303727 "INTRAT" 1304479 NIL INTRAT (NIL T T) -7 NIL NIL) (-555 1300096 1300679 1301305 "INTPM" 1302353 NIL INTPM (NIL T T) -7 NIL NIL) (-554 1296799 1297398 1298143 "INTPAF" 1299482 NIL INTPAF (NIL T T T) -7 NIL NIL) (-553 1291978 1292940 1293991 "INTPACK" 1295768 T INTPACK (NIL) -7 NIL NIL) (-552 1288890 1291707 1291834 "INT" 1291871 T INT (NIL) -8 NIL NIL) (-551 1288142 1288294 1288502 "INTHERTR" 1288732 NIL INTHERTR (NIL T T) -7 NIL NIL) (-550 1287581 1287661 1287849 "INTHERAL" 1288056 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-549 1285427 1285870 1286327 "INTHEORY" 1287144 T INTHEORY (NIL) -7 NIL NIL) (-548 1276735 1278356 1280135 "INTG0" 1283779 NIL INTG0 (NIL T T T) -7 NIL NIL) (-547 1257308 1262098 1266908 "INTFTBL" 1271945 T INTFTBL (NIL) -8 NIL NIL) (-546 1256557 1256695 1256868 "INTFACT" 1257167 NIL INTFACT (NIL T) -7 NIL NIL) (-545 1253942 1254388 1254952 "INTEF" 1256111 NIL INTEF (NIL T T) -7 NIL NIL) (-544 1252444 1253149 1253177 "INTDOM" 1253478 T INTDOM (NIL) -9 NIL 1253685) (-543 1251813 1251987 1252229 "INTDOM-" 1252234 NIL INTDOM- (NIL T) -8 NIL NIL) (-542 1248346 1250232 1250286 "INTCAT" 1251085 NIL INTCAT (NIL T) -9 NIL 1251405) (-541 1247819 1247921 1248049 "INTBIT" 1248238 T INTBIT (NIL) -7 NIL NIL) (-540 1246490 1246644 1246958 "INTALG" 1247664 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-539 1245947 1246037 1246207 "INTAF" 1246394 NIL INTAF (NIL T T) -7 NIL NIL) (-538 1239401 1245757 1245897 "INTABL" 1245902 NIL INTABL (NIL T T T) -8 NIL NIL) (-537 1234454 1237125 1237153 "INS" 1238087 T INS (NIL) -9 NIL 1238752) (-536 1231694 1232465 1233439 "INS-" 1233512 NIL INS- (NIL T) -8 NIL NIL) (-535 1230469 1230696 1230994 "INPSIGN" 1231447 NIL INPSIGN (NIL T T) -7 NIL NIL) (-534 1229587 1229704 1229901 "INPRODPF" 1230349 NIL INPRODPF (NIL T T) -7 NIL NIL) (-533 1228481 1228598 1228835 "INPRODFF" 1229467 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-532 1227481 1227633 1227893 "INNMFACT" 1228317 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-531 1226678 1226775 1226963 "INMODGCD" 1227380 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-530 1225187 1225431 1225755 "INFSP" 1226423 NIL INFSP (NIL T T T) -7 NIL NIL) (-529 1224371 1224488 1224671 "INFPROD0" 1225067 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-528 1221253 1222436 1222951 "INFORM" 1223864 T INFORM (NIL) -8 NIL NIL) (-527 1220863 1220923 1221021 "INFORM1" 1221188 NIL INFORM1 (NIL T) -7 NIL NIL) (-526 1220386 1220475 1220589 "INFINITY" 1220769 T INFINITY (NIL) -7 NIL NIL) (-525 1219829 1220104 1220212 "INETCLTS" 1220298 T INETCLTS (NIL) -8 NIL NIL) (-524 1218446 1218695 1219016 "INEP" 1219577 NIL INEP (NIL T T T) -7 NIL NIL) (-523 1217722 1218343 1218408 "INDE" 1218413 NIL INDE (NIL T) -8 NIL NIL) (-522 1217286 1217354 1217471 "INCRMAPS" 1217649 NIL INCRMAPS (NIL T) -7 NIL NIL) (-521 1216304 1216555 1216761 "INBFILE" 1217100 T INBFILE (NIL) -8 NIL NIL) (-520 1211615 1212540 1213484 "INBFF" 1215392 NIL INBFF (NIL T) -7 NIL NIL) (-519 1211284 1211360 1211388 "INBCON" 1211521 T INBCON (NIL) -9 NIL 1211599) (-518 1211124 1211159 1211235 "INBCON-" 1211240 NIL INBCON- (NIL T) -8 NIL NIL) (-517 1210626 1210845 1210937 "INAST" 1211052 T INAST (NIL) -8 NIL NIL) (-516 1210080 1210305 1210411 "IMPTAST" 1210540 T IMPTAST (NIL) -8 NIL NIL) (-515 1206574 1209924 1210028 "IMATRIX" 1210033 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-514 1205286 1205409 1205724 "IMATQF" 1206430 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-513 1203506 1203733 1204070 "IMATLIN" 1205042 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-512 1198132 1203430 1203488 "ILIST" 1203493 NIL ILIST (NIL T NIL) -8 NIL NIL) (-511 1196085 1197992 1198105 "IIARRAY2" 1198110 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-510 1191518 1195996 1196060 "IFF" 1196065 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-509 1190892 1191135 1191251 "IFAST" 1191422 T IFAST (NIL) -8 NIL NIL) (-508 1185935 1190184 1190372 "IFARRAY" 1190749 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-507 1185142 1185839 1185912 "IFAMON" 1185917 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-506 1184726 1184791 1184845 "IEVALAB" 1185052 NIL IEVALAB (NIL T T) -9 NIL NIL) (-505 1184401 1184469 1184629 "IEVALAB-" 1184634 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-504 1184059 1184315 1184378 "IDPO" 1184383 NIL IDPO (NIL T T) -8 NIL NIL) (-503 1183336 1183948 1184023 "IDPOAMS" 1184028 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-502 1182670 1183225 1183300 "IDPOAM" 1183305 NIL IDPOAM (NIL T T) -8 NIL NIL) (-501 1181755 1182005 1182058 "IDPC" 1182471 NIL IDPC (NIL T T) -9 NIL 1182620) (-500 1181251 1181647 1181720 "IDPAM" 1181725 NIL IDPAM (NIL T T) -8 NIL NIL) (-499 1180654 1181143 1181216 "IDPAG" 1181221 NIL IDPAG (NIL T T) -8 NIL NIL) (-498 1180384 1180569 1180619 "IDENT" 1180624 T IDENT (NIL) -8 NIL NIL) (-497 1176639 1177487 1178382 "IDECOMP" 1179541 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-496 1169512 1170562 1171609 "IDEAL" 1175675 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-495 1168676 1168788 1168987 "ICDEN" 1169396 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-494 1167775 1168156 1168303 "ICARD" 1168549 T ICARD (NIL) -8 NIL NIL) (-493 1165835 1166148 1166553 "IBPTOOLS" 1167452 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-492 1161469 1165455 1165568 "IBITS" 1165754 NIL IBITS (NIL NIL) -8 NIL NIL) (-491 1158192 1158768 1159463 "IBATOOL" 1160886 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-490 1155972 1156433 1156966 "IBACHIN" 1157727 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-489 1153849 1155818 1155921 "IARRAY2" 1155926 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-488 1150002 1153775 1153832 "IARRAY1" 1153837 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-487 1143995 1148414 1148895 "IAN" 1149541 T IAN (NIL) -8 NIL NIL) (-486 1143506 1143563 1143736 "IALGFACT" 1143932 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-485 1143034 1143147 1143175 "HYPCAT" 1143382 T HYPCAT (NIL) -9 NIL NIL) (-484 1142572 1142689 1142875 "HYPCAT-" 1142880 NIL HYPCAT- (NIL T) -8 NIL NIL) (-483 1142194 1142367 1142450 "HOSTNAME" 1142509 T HOSTNAME (NIL) -8 NIL NIL) (-482 1138873 1140204 1140245 "HOAGG" 1141226 NIL HOAGG (NIL T) -9 NIL 1141905) (-481 1137467 1137866 1138392 "HOAGG-" 1138397 NIL HOAGG- (NIL T T) -8 NIL NIL) (-480 1131353 1136908 1137074 "HEXADEC" 1137321 T HEXADEC (NIL) -8 NIL NIL) (-479 1130101 1130323 1130586 "HEUGCD" 1131130 NIL HEUGCD (NIL T) -7 NIL NIL) (-478 1129204 1129938 1130068 "HELLFDIV" 1130073 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-477 1127432 1128981 1129069 "HEAP" 1129148 NIL HEAP (NIL T) -8 NIL NIL) (-476 1126723 1126984 1127118 "HEADAST" 1127318 T HEADAST (NIL) -8 NIL NIL) (-475 1120643 1126638 1126700 "HDP" 1126705 NIL HDP (NIL NIL T) -8 NIL NIL) (-474 1114394 1120278 1120430 "HDMP" 1120544 NIL HDMP (NIL NIL T) -8 NIL NIL) (-473 1113719 1113858 1114022 "HB" 1114250 T HB (NIL) -7 NIL NIL) (-472 1107216 1113565 1113669 "HASHTBL" 1113674 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-471 1106719 1106937 1107029 "HASAST" 1107144 T HASAST (NIL) -8 NIL NIL) (-470 1104531 1106341 1106523 "HACKPI" 1106557 T HACKPI (NIL) -8 NIL NIL) (-469 1100226 1104384 1104497 "GTSET" 1104502 NIL GTSET (NIL T T T T) -8 NIL NIL) (-468 1093752 1100104 1100202 "GSTBL" 1100207 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-467 1086065 1092783 1093048 "GSERIES" 1093543 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-466 1085232 1085623 1085651 "GROUP" 1085854 T GROUP (NIL) -9 NIL 1085988) (-465 1084598 1084757 1085008 "GROUP-" 1085013 NIL GROUP- (NIL T) -8 NIL NIL) (-464 1082967 1083286 1083673 "GROEBSOL" 1084275 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-463 1081907 1082169 1082220 "GRMOD" 1082749 NIL GRMOD (NIL T T) -9 NIL 1082917) (-462 1081675 1081711 1081839 "GRMOD-" 1081844 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-461 1077000 1078029 1079029 "GRIMAGE" 1080695 T GRIMAGE (NIL) -8 NIL NIL) (-460 1075467 1075727 1076051 "GRDEF" 1076696 T GRDEF (NIL) -7 NIL NIL) (-459 1074911 1075027 1075168 "GRAY" 1075346 T GRAY (NIL) -7 NIL NIL) (-458 1074142 1074522 1074573 "GRALG" 1074726 NIL GRALG (NIL T T) -9 NIL 1074819) (-457 1073803 1073876 1074039 "GRALG-" 1074044 NIL GRALG- (NIL T T T) -8 NIL NIL) (-456 1070607 1073388 1073566 "GPOLSET" 1073710 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-455 1069961 1070018 1070276 "GOSPER" 1070544 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-454 1065720 1066399 1066925 "GMODPOL" 1069660 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-453 1064725 1064909 1065147 "GHENSEL" 1065532 NIL GHENSEL (NIL T T) -7 NIL NIL) (-452 1058776 1059619 1060646 "GENUPS" 1063809 NIL GENUPS (NIL T T) -7 NIL NIL) (-451 1058473 1058524 1058613 "GENUFACT" 1058719 NIL GENUFACT (NIL T) -7 NIL NIL) (-450 1057885 1057962 1058127 "GENPGCD" 1058391 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-449 1057359 1057394 1057607 "GENMFACT" 1057844 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-448 1055927 1056182 1056489 "GENEEZ" 1057102 NIL GENEEZ (NIL T T) -7 NIL NIL) (-447 1049840 1055538 1055700 "GDMP" 1055850 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-446 1039217 1043611 1044717 "GCNAALG" 1048823 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-445 1037679 1038507 1038535 "GCDDOM" 1038790 T GCDDOM (NIL) -9 NIL 1038947) (-444 1037149 1037276 1037491 "GCDDOM-" 1037496 NIL GCDDOM- (NIL T) -8 NIL NIL) (-443 1035821 1036006 1036310 "GB" 1036928 NIL GB (NIL T T T T) -7 NIL NIL) (-442 1024441 1026767 1029159 "GBINTERN" 1033512 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-441 1022278 1022570 1022991 "GBF" 1024116 NIL GBF (NIL T T T T) -7 NIL NIL) (-440 1021059 1021224 1021491 "GBEUCLID" 1022094 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-439 1020408 1020533 1020682 "GAUSSFAC" 1020930 T GAUSSFAC (NIL) -7 NIL NIL) (-438 1018775 1019077 1019391 "GALUTIL" 1020127 NIL GALUTIL (NIL T) -7 NIL NIL) (-437 1017083 1017357 1017681 "GALPOLYU" 1018502 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-436 1014448 1014738 1015145 "GALFACTU" 1016780 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-435 1006254 1007753 1009361 "GALFACT" 1012880 NIL GALFACT (NIL T) -7 NIL NIL) (-434 1003642 1004300 1004328 "FVFUN" 1005484 T FVFUN (NIL) -9 NIL 1006204) (-433 1002908 1003090 1003118 "FVC" 1003409 T FVC (NIL) -9 NIL 1003592) (-432 1002550 1002705 1002786 "FUNCTION" 1002860 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-431 1000220 1000771 1001260 "FT" 1002081 T FT (NIL) -8 NIL NIL) (-430 999038 999521 999724 "FTEM" 1000037 T FTEM (NIL) -8 NIL NIL) (-429 997294 997583 997987 "FSUPFACT" 998729 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-428 995691 995980 996312 "FST" 996982 T FST (NIL) -8 NIL NIL) (-427 994862 994968 995163 "FSRED" 995573 NIL FSRED (NIL T T) -7 NIL NIL) (-426 993541 993796 994150 "FSPRMELT" 994577 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-425 990626 991064 991563 "FSPECF" 993104 NIL FSPECF (NIL T T) -7 NIL NIL) (-424 973068 981510 981550 "FS" 985398 NIL FS (NIL T) -9 NIL 987687) (-423 961718 964708 968764 "FS-" 969061 NIL FS- (NIL T T) -8 NIL NIL) (-422 961232 961286 961463 "FSINT" 961659 NIL FSINT (NIL T T) -7 NIL NIL) (-421 959559 960225 960528 "FSERIES" 961011 NIL FSERIES (NIL T T) -8 NIL NIL) (-420 958573 958689 958920 "FSCINT" 959439 NIL FSCINT (NIL T T) -7 NIL NIL) (-419 954807 957517 957558 "FSAGG" 957928 NIL FSAGG (NIL T) -9 NIL 958187) (-418 952569 953170 953966 "FSAGG-" 954061 NIL FSAGG- (NIL T T) -8 NIL NIL) (-417 951611 951754 951981 "FSAGG2" 952422 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-416 949266 949545 950099 "FS2UPS" 951329 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-415 948848 948891 949046 "FS2" 949217 NIL FS2 (NIL T T T T) -7 NIL NIL) (-414 947705 947876 948185 "FS2EXPXP" 948673 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-413 947131 947246 947398 "FRUTIL" 947585 NIL FRUTIL (NIL T) -7 NIL NIL) (-412 938586 942626 943984 "FR" 945805 NIL FR (NIL T) -8 NIL NIL) (-411 933661 936304 936344 "FRNAALG" 937740 NIL FRNAALG (NIL T) -9 NIL 938347) (-410 929339 930410 931685 "FRNAALG-" 932435 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-409 928977 929020 929147 "FRNAAF2" 929290 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-408 927384 927831 928126 "FRMOD" 928789 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-407 925163 925767 926084 "FRIDEAL" 927175 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-406 924358 924445 924734 "FRIDEAL2" 925070 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-405 923600 924014 924055 "FRETRCT" 924060 NIL FRETRCT (NIL T) -9 NIL 924236) (-404 922712 922943 923294 "FRETRCT-" 923299 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-403 919962 921138 921197 "FRAMALG" 922079 NIL FRAMALG (NIL T T) -9 NIL 922371) (-402 918096 918551 919181 "FRAMALG-" 919404 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-401 912054 917571 917847 "FRAC" 917852 NIL FRAC (NIL T) -8 NIL NIL) (-400 911690 911747 911854 "FRAC2" 911991 NIL FRAC2 (NIL T T) -7 NIL NIL) (-399 911326 911383 911490 "FR2" 911627 NIL FR2 (NIL T T) -7 NIL NIL) (-398 906055 908903 908931 "FPS" 910050 T FPS (NIL) -9 NIL 910607) (-397 905504 905613 905777 "FPS-" 905923 NIL FPS- (NIL T) -8 NIL NIL) (-396 903010 904645 904673 "FPC" 904898 T FPC (NIL) -9 NIL 905040) (-395 902803 902843 902940 "FPC-" 902945 NIL FPC- (NIL T) -8 NIL NIL) (-394 901681 902291 902332 "FPATMAB" 902337 NIL FPATMAB (NIL T) -9 NIL 902489) (-393 899381 899857 900283 "FPARFRAC" 901318 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-392 894774 895273 895955 "FORTRAN" 898813 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-391 892490 892990 893529 "FORT" 894255 T FORT (NIL) -7 NIL NIL) (-390 890166 890728 890756 "FORTFN" 891816 T FORTFN (NIL) -9 NIL 892440) (-389 889930 889980 890008 "FORTCAT" 890067 T FORTCAT (NIL) -9 NIL 890129) (-388 887990 888473 888872 "FORMULA" 889551 T FORMULA (NIL) -8 NIL NIL) (-387 887778 887808 887877 "FORMULA1" 887954 NIL FORMULA1 (NIL T) -7 NIL NIL) (-386 887301 887353 887526 "FORDER" 887720 NIL FORDER (NIL T T T T) -7 NIL NIL) (-385 886397 886561 886754 "FOP" 887128 T FOP (NIL) -7 NIL NIL) (-384 885005 885677 885851 "FNLA" 886279 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-383 883673 884062 884090 "FNCAT" 884662 T FNCAT (NIL) -9 NIL 884955) (-382 883239 883632 883660 "FNAME" 883665 T FNAME (NIL) -8 NIL NIL) (-381 881937 882866 882894 "FMTC" 882899 T FMTC (NIL) -9 NIL 882935) (-380 878299 879460 880089 "FMONOID" 881341 NIL FMONOID (NIL T) -8 NIL NIL) (-379 877518 878041 878190 "FM" 878195 NIL FM (NIL T T) -8 NIL NIL) (-378 874942 875588 875616 "FMFUN" 876760 T FMFUN (NIL) -9 NIL 877468) (-377 874211 874392 874420 "FMC" 874710 T FMC (NIL) -9 NIL 874892) (-376 871423 872257 872311 "FMCAT" 873506 NIL FMCAT (NIL T T) -9 NIL 874001) (-375 870316 871189 871289 "FM1" 871368 NIL FM1 (NIL T T) -8 NIL NIL) (-374 868090 868506 869000 "FLOATRP" 869867 NIL FLOATRP (NIL T) -7 NIL NIL) (-373 861641 865746 866376 "FLOAT" 867480 T FLOAT (NIL) -8 NIL NIL) (-372 859079 859579 860157 "FLOATCP" 861108 NIL FLOATCP (NIL T) -7 NIL NIL) (-371 857908 858712 858753 "FLINEXP" 858758 NIL FLINEXP (NIL T) -9 NIL 858851) (-370 857062 857297 857625 "FLINEXP-" 857630 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-369 856138 856282 856506 "FLASORT" 856914 NIL FLASORT (NIL T T) -7 NIL NIL) (-368 853355 854197 854249 "FLALG" 855476 NIL FLALG (NIL T T) -9 NIL 855943) (-367 847139 850841 850882 "FLAGG" 852144 NIL FLAGG (NIL T) -9 NIL 852796) (-366 845865 846204 846694 "FLAGG-" 846699 NIL FLAGG- (NIL T T) -8 NIL NIL) (-365 844907 845050 845277 "FLAGG2" 845718 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-364 841920 842894 842953 "FINRALG" 844081 NIL FINRALG (NIL T T) -9 NIL 844589) (-363 841080 841309 841648 "FINRALG-" 841653 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-362 840486 840699 840727 "FINITE" 840923 T FINITE (NIL) -9 NIL 841030) (-361 832944 835105 835145 "FINAALG" 838812 NIL FINAALG (NIL T) -9 NIL 840265) (-360 828285 829326 830470 "FINAALG-" 831849 NIL FINAALG- (NIL T T) -8 NIL NIL) (-359 827680 828040 828143 "FILE" 828215 NIL FILE (NIL T) -8 NIL NIL) (-358 826364 826676 826730 "FILECAT" 827414 NIL FILECAT (NIL T T) -9 NIL 827630) (-357 824284 825778 825806 "FIELD" 825846 T FIELD (NIL) -9 NIL 825926) (-356 822904 823289 823800 "FIELD-" 823805 NIL FIELD- (NIL T) -8 NIL NIL) (-355 820782 821539 821886 "FGROUP" 822590 NIL FGROUP (NIL T) -8 NIL NIL) (-354 819872 820036 820256 "FGLMICPK" 820614 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-353 815739 819797 819854 "FFX" 819859 NIL FFX (NIL T NIL) -8 NIL NIL) (-352 815340 815401 815536 "FFSLPE" 815672 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-351 811333 812112 812908 "FFPOLY" 814576 NIL FFPOLY (NIL T) -7 NIL NIL) (-350 810837 810873 811082 "FFPOLY2" 811291 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-349 806723 810756 810819 "FFP" 810824 NIL FFP (NIL T NIL) -8 NIL NIL) (-348 802156 806634 806698 "FF" 806703 NIL FF (NIL NIL NIL) -8 NIL NIL) (-347 797317 801499 801689 "FFNBX" 802010 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-346 792291 796452 796710 "FFNBP" 797171 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-345 786959 791575 791786 "FFNB" 792124 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-344 785791 785989 786304 "FFINTBAS" 786756 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-343 782075 784250 784278 "FFIELDC" 784898 T FFIELDC (NIL) -9 NIL 785274) (-342 780738 781108 781605 "FFIELDC-" 781610 NIL FFIELDC- (NIL T) -8 NIL NIL) (-341 780308 780353 780477 "FFHOM" 780680 NIL FFHOM (NIL T T T) -7 NIL NIL) (-340 778006 778490 779007 "FFF" 779823 NIL FFF (NIL T) -7 NIL NIL) (-339 773659 777748 777849 "FFCGX" 777949 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-338 769326 773391 773498 "FFCGP" 773602 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-337 764544 769053 769161 "FFCG" 769262 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-336 746602 755638 755724 "FFCAT" 760889 NIL FFCAT (NIL T T T) -9 NIL 762340) (-335 741800 742847 744161 "FFCAT-" 745391 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-334 741211 741254 741489 "FFCAT2" 741751 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-333 730423 734183 735403 "FEXPR" 740063 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-332 729423 729858 729899 "FEVALAB" 729983 NIL FEVALAB (NIL T) -9 NIL 730244) (-331 728582 728792 729130 "FEVALAB-" 729135 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-330 727175 727965 728168 "FDIV" 728481 NIL FDIV (NIL T T T T) -8 NIL NIL) (-329 724241 724956 725071 "FDIVCAT" 726639 NIL FDIVCAT (NIL T T T T) -9 NIL 727076) (-328 724003 724030 724200 "FDIVCAT-" 724205 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-327 723223 723310 723587 "FDIV2" 723910 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-326 721909 722168 722457 "FCPAK1" 722954 T FCPAK1 (NIL) -7 NIL NIL) (-325 721037 721409 721550 "FCOMP" 721800 NIL FCOMP (NIL T) -8 NIL NIL) (-324 704672 708086 711647 "FC" 717496 T FC (NIL) -8 NIL NIL) (-323 697325 701306 701346 "FAXF" 703148 NIL FAXF (NIL T) -9 NIL 703840) (-322 694604 695259 696084 "FAXF-" 696549 NIL FAXF- (NIL T T) -8 NIL NIL) (-321 689704 693980 694156 "FARRAY" 694461 NIL FARRAY (NIL T) -8 NIL NIL) (-320 685111 687143 687196 "FAMR" 688219 NIL FAMR (NIL T T) -9 NIL 688679) (-319 684001 684303 684738 "FAMR-" 684743 NIL FAMR- (NIL T T T) -8 NIL NIL) (-318 683197 683923 683976 "FAMONOID" 683981 NIL FAMONOID (NIL T) -8 NIL NIL) (-317 681027 681711 681764 "FAMONC" 682705 NIL FAMONC (NIL T T) -9 NIL 683091) (-316 679719 680781 680918 "FAGROUP" 680923 NIL FAGROUP (NIL T) -8 NIL NIL) (-315 677514 677833 678236 "FACUTIL" 679400 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-314 676613 676798 677020 "FACTFUNC" 677324 NIL FACTFUNC (NIL T) -7 NIL NIL) (-313 669018 675864 676076 "EXPUPXS" 676469 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-312 666501 667041 667627 "EXPRTUBE" 668452 T EXPRTUBE (NIL) -7 NIL NIL) (-311 662695 663287 664024 "EXPRODE" 665840 NIL EXPRODE (NIL T T) -7 NIL NIL) (-310 648069 661350 661778 "EXPR" 662299 NIL EXPR (NIL T) -8 NIL NIL) (-309 642476 643063 643876 "EXPR2UPS" 647367 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-308 642112 642169 642276 "EXPR2" 642413 NIL EXPR2 (NIL T T) -7 NIL NIL) (-307 633517 641244 641541 "EXPEXPAN" 641949 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-306 633344 633474 633503 "EXIT" 633508 T EXIT (NIL) -8 NIL NIL) (-305 632851 633068 633159 "EXITAST" 633273 T EXITAST (NIL) -8 NIL NIL) (-304 632478 632540 632653 "EVALCYC" 632783 NIL EVALCYC (NIL T) -7 NIL NIL) (-303 632019 632137 632178 "EVALAB" 632348 NIL EVALAB (NIL T) -9 NIL 632452) (-302 631500 631622 631843 "EVALAB-" 631848 NIL EVALAB- (NIL T T) -8 NIL NIL) (-301 629003 630271 630299 "EUCDOM" 630854 T EUCDOM (NIL) -9 NIL 631204) (-300 627408 627850 628440 "EUCDOM-" 628445 NIL EUCDOM- (NIL T) -8 NIL NIL) (-299 614948 617706 620456 "ESTOOLS" 624678 T ESTOOLS (NIL) -7 NIL NIL) (-298 614580 614637 614746 "ESTOOLS2" 614885 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-297 614331 614373 614453 "ESTOOLS1" 614532 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-296 608256 609984 610012 "ES" 612780 T ES (NIL) -9 NIL 614189) (-295 603203 604490 606307 "ES-" 606471 NIL ES- (NIL T) -8 NIL NIL) (-294 599578 600338 601118 "ESCONT" 602443 T ESCONT (NIL) -7 NIL NIL) (-293 599323 599355 599437 "ESCONT1" 599540 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-292 598998 599048 599148 "ES2" 599267 NIL ES2 (NIL T T) -7 NIL NIL) (-291 598628 598686 598795 "ES1" 598934 NIL ES1 (NIL T T) -7 NIL NIL) (-290 597844 597973 598149 "ERROR" 598472 T ERROR (NIL) -7 NIL NIL) (-289 591347 597703 597794 "EQTBL" 597799 NIL EQTBL (NIL T T) -8 NIL NIL) (-288 583904 586661 588110 "EQ" 589931 NIL -3909 (NIL T) -8 NIL NIL) (-287 583536 583593 583702 "EQ2" 583841 NIL EQ2 (NIL T T) -7 NIL NIL) (-286 578828 579874 580967 "EP" 582475 NIL EP (NIL T) -7 NIL NIL) (-285 577410 577711 578028 "ENV" 578531 T ENV (NIL) -8 NIL NIL) (-284 576609 577129 577157 "ENTIRER" 577162 T ENTIRER (NIL) -9 NIL 577208) (-283 573111 574564 574934 "EMR" 576408 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-282 572255 572440 572494 "ELTAGG" 572874 NIL ELTAGG (NIL T T) -9 NIL 573085) (-281 571974 572036 572177 "ELTAGG-" 572182 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-280 571763 571792 571846 "ELTAB" 571930 NIL ELTAB (NIL T T) -9 NIL NIL) (-279 570889 571035 571234 "ELFUTS" 571614 NIL ELFUTS (NIL T T) -7 NIL NIL) (-278 570631 570687 570715 "ELEMFUN" 570820 T ELEMFUN (NIL) -9 NIL NIL) (-277 570501 570522 570590 "ELEMFUN-" 570595 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-276 565392 568601 568642 "ELAGG" 569582 NIL ELAGG (NIL T) -9 NIL 570045) (-275 563677 564111 564774 "ELAGG-" 564779 NIL ELAGG- (NIL T T) -8 NIL NIL) (-274 562334 562614 562909 "ELABEXPR" 563402 T ELABEXPR (NIL) -8 NIL NIL) (-273 555200 557001 557828 "EFUPXS" 561610 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-272 548650 550451 551261 "EFULS" 554476 NIL EFULS (NIL T T T) -8 NIL NIL) (-271 546072 546430 546909 "EFSTRUC" 548282 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-270 535144 536709 538269 "EF" 544587 NIL EF (NIL T T) -7 NIL NIL) (-269 534245 534629 534778 "EAB" 535015 T EAB (NIL) -8 NIL NIL) (-268 533454 534204 534232 "E04UCFA" 534237 T E04UCFA (NIL) -8 NIL NIL) (-267 532663 533413 533441 "E04NAFA" 533446 T E04NAFA (NIL) -8 NIL NIL) (-266 531872 532622 532650 "E04MBFA" 532655 T E04MBFA (NIL) -8 NIL NIL) (-265 531081 531831 531859 "E04JAFA" 531864 T E04JAFA (NIL) -8 NIL NIL) (-264 530292 531040 531068 "E04GCFA" 531073 T E04GCFA (NIL) -8 NIL NIL) (-263 529503 530251 530279 "E04FDFA" 530284 T E04FDFA (NIL) -8 NIL NIL) (-262 528712 529462 529490 "E04DGFA" 529495 T E04DGFA (NIL) -8 NIL NIL) (-261 522890 524237 525601 "E04AGNT" 527368 T E04AGNT (NIL) -7 NIL NIL) (-260 521614 522094 522134 "DVARCAT" 522609 NIL DVARCAT (NIL T) -9 NIL 522808) (-259 520818 521030 521344 "DVARCAT-" 521349 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-258 513718 520617 520746 "DSMP" 520751 NIL DSMP (NIL T T T) -8 NIL NIL) (-257 508528 509663 510731 "DROPT" 512670 T DROPT (NIL) -8 NIL NIL) (-256 508193 508252 508350 "DROPT1" 508463 NIL DROPT1 (NIL T) -7 NIL NIL) (-255 503308 504434 505571 "DROPT0" 507076 T DROPT0 (NIL) -7 NIL NIL) (-254 501653 501978 502364 "DRAWPT" 502942 T DRAWPT (NIL) -7 NIL NIL) (-253 496240 497163 498242 "DRAW" 500627 NIL DRAW (NIL T) -7 NIL NIL) (-252 495873 495926 496044 "DRAWHACK" 496181 NIL DRAWHACK (NIL T) -7 NIL NIL) (-251 494604 494873 495164 "DRAWCX" 495602 T DRAWCX (NIL) -7 NIL NIL) (-250 494120 494188 494339 "DRAWCURV" 494530 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-249 484591 486550 488665 "DRAWCFUN" 492025 T DRAWCFUN (NIL) -7 NIL NIL) (-248 481404 483286 483327 "DQAGG" 483956 NIL DQAGG (NIL T) -9 NIL 484229) (-247 469923 476620 476703 "DPOLCAT" 478555 NIL DPOLCAT (NIL T T T T) -9 NIL 479100) (-246 464762 466108 468066 "DPOLCAT-" 468071 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-245 457917 464623 464721 "DPMO" 464726 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-244 450975 457697 457864 "DPMM" 457869 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-243 450395 450598 450712 "DOMAIN" 450881 T DOMAIN (NIL) -8 NIL NIL) (-242 444146 450030 450182 "DMP" 450296 NIL DMP (NIL NIL T) -8 NIL NIL) (-241 443746 443802 443946 "DLP" 444084 NIL DLP (NIL T) -7 NIL NIL) (-240 437390 442847 443074 "DLIST" 443551 NIL DLIST (NIL T) -8 NIL NIL) (-239 434236 436245 436286 "DLAGG" 436836 NIL DLAGG (NIL T) -9 NIL 437065) (-238 433086 433716 433744 "DIVRING" 433836 T DIVRING (NIL) -9 NIL 433919) (-237 432323 432513 432813 "DIVRING-" 432818 NIL DIVRING- (NIL T) -8 NIL NIL) (-236 430425 430782 431188 "DISPLAY" 431937 T DISPLAY (NIL) -7 NIL NIL) (-235 424367 430339 430402 "DIRPROD" 430407 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-234 423215 423418 423683 "DIRPROD2" 424160 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-233 412753 418705 418758 "DIRPCAT" 419168 NIL DIRPCAT (NIL NIL T) -9 NIL 420008) (-232 410079 410721 411602 "DIRPCAT-" 411939 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-231 409366 409526 409712 "DIOSP" 409913 T DIOSP (NIL) -7 NIL NIL) (-230 406068 408278 408319 "DIOPS" 408753 NIL DIOPS (NIL T) -9 NIL 408982) (-229 405617 405731 405922 "DIOPS-" 405927 NIL DIOPS- (NIL T T) -8 NIL NIL) (-228 404529 405123 405151 "DIFRING" 405338 T DIFRING (NIL) -9 NIL 405448) (-227 404175 404252 404404 "DIFRING-" 404409 NIL DIFRING- (NIL T) -8 NIL NIL) (-226 402000 403238 403279 "DIFEXT" 403642 NIL DIFEXT (NIL T) -9 NIL 403936) (-225 400285 400713 401379 "DIFEXT-" 401384 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-224 397607 399817 399858 "DIAGG" 399863 NIL DIAGG (NIL T) -9 NIL 399883) (-223 396991 397148 397400 "DIAGG-" 397405 NIL DIAGG- (NIL T T) -8 NIL NIL) (-222 392456 395950 396227 "DHMATRIX" 396760 NIL DHMATRIX (NIL T) -8 NIL NIL) (-221 388068 388977 389987 "DFSFUN" 391466 T DFSFUN (NIL) -7 NIL NIL) (-220 383184 386999 387311 "DFLOAT" 387776 T DFLOAT (NIL) -8 NIL NIL) (-219 381412 381693 382089 "DFINTTLS" 382892 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-218 378477 379433 379833 "DERHAM" 381078 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-217 376326 378252 378341 "DEQUEUE" 378421 NIL DEQUEUE (NIL T) -8 NIL NIL) (-216 375541 375674 375870 "DEGRED" 376188 NIL DEGRED (NIL T T) -7 NIL NIL) (-215 371936 372681 373534 "DEFINTRF" 374769 NIL DEFINTRF (NIL T) -7 NIL NIL) (-214 369463 369932 370531 "DEFINTEF" 371455 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-213 368840 369083 369198 "DEFAST" 369368 T DEFAST (NIL) -8 NIL NIL) (-212 362726 368281 368447 "DECIMAL" 368694 T DECIMAL (NIL) -8 NIL NIL) (-211 360238 360696 361202 "DDFACT" 362270 NIL DDFACT (NIL T T) -7 NIL NIL) (-210 359834 359877 360028 "DBLRESP" 360189 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-209 357544 357878 358247 "DBASE" 359592 NIL DBASE (NIL T) -8 NIL NIL) (-208 356813 357024 357170 "DATAARY" 357443 NIL DATAARY (NIL NIL T) -8 NIL NIL) (-207 355946 356772 356800 "D03FAFA" 356805 T D03FAFA (NIL) -8 NIL NIL) (-206 355080 355905 355933 "D03EEFA" 355938 T D03EEFA (NIL) -8 NIL NIL) (-205 353030 353496 353985 "D03AGNT" 354611 T D03AGNT (NIL) -7 NIL NIL) (-204 352346 352989 353017 "D02EJFA" 353022 T D02EJFA (NIL) -8 NIL NIL) (-203 351662 352305 352333 "D02CJFA" 352338 T D02CJFA (NIL) -8 NIL NIL) (-202 350978 351621 351649 "D02BHFA" 351654 T D02BHFA (NIL) -8 NIL NIL) (-201 350294 350937 350965 "D02BBFA" 350970 T D02BBFA (NIL) -8 NIL NIL) (-200 343492 345080 346686 "D02AGNT" 348708 T D02AGNT (NIL) -7 NIL NIL) (-199 341261 341783 342329 "D01WGTS" 342966 T D01WGTS (NIL) -7 NIL NIL) (-198 340356 341220 341248 "D01TRNS" 341253 T D01TRNS (NIL) -8 NIL NIL) (-197 339451 340315 340343 "D01GBFA" 340348 T D01GBFA (NIL) -8 NIL NIL) (-196 338546 339410 339438 "D01FCFA" 339443 T D01FCFA (NIL) -8 NIL NIL) (-195 337641 338505 338533 "D01ASFA" 338538 T D01ASFA (NIL) -8 NIL NIL) (-194 336736 337600 337628 "D01AQFA" 337633 T D01AQFA (NIL) -8 NIL NIL) (-193 335831 336695 336723 "D01APFA" 336728 T D01APFA (NIL) -8 NIL NIL) (-192 334926 335790 335818 "D01ANFA" 335823 T D01ANFA (NIL) -8 NIL NIL) (-191 334021 334885 334913 "D01AMFA" 334918 T D01AMFA (NIL) -8 NIL NIL) (-190 333116 333980 334008 "D01ALFA" 334013 T D01ALFA (NIL) -8 NIL NIL) (-189 332211 333075 333103 "D01AKFA" 333108 T D01AKFA (NIL) -8 NIL NIL) (-188 331306 332170 332198 "D01AJFA" 332203 T D01AJFA (NIL) -8 NIL NIL) (-187 324603 326154 327715 "D01AGNT" 329765 T D01AGNT (NIL) -7 NIL NIL) (-186 323940 324068 324220 "CYCLOTOM" 324471 T CYCLOTOM (NIL) -7 NIL NIL) (-185 320675 321388 322115 "CYCLES" 323233 T CYCLES (NIL) -7 NIL NIL) (-184 319987 320121 320292 "CVMP" 320536 NIL CVMP (NIL T) -7 NIL NIL) (-183 317758 318016 318392 "CTRIGMNP" 319715 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-182 317175 317381 317495 "CTOR" 317664 T CTOR (NIL) -8 NIL NIL) (-181 316711 316906 317007 "CTORKIND" 317094 T CTORKIND (NIL) -8 NIL NIL) (-180 316222 316411 316510 "CTORCALL" 316632 T CTORCALL (NIL) -8 NIL NIL) (-179 315596 315695 315848 "CSTTOOLS" 316119 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-178 311395 312052 312810 "CRFP" 314908 NIL CRFP (NIL T T) -7 NIL NIL) (-177 310897 311116 311208 "CRCEAST" 311323 T CRCEAST (NIL) -8 NIL NIL) (-176 309944 310129 310357 "CRAPACK" 310701 NIL CRAPACK (NIL T) -7 NIL NIL) (-175 309328 309429 309633 "CPMATCH" 309820 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-174 309053 309081 309187 "CPIMA" 309294 NIL CPIMA (NIL T T T) -7 NIL NIL) (-173 305417 306089 306807 "COORDSYS" 308388 NIL COORDSYS (NIL T) -7 NIL NIL) (-172 304801 304930 305080 "CONTOUR" 305287 T CONTOUR (NIL) -8 NIL NIL) (-171 300727 302804 303296 "CONTFRAC" 304341 NIL CONTFRAC (NIL T) -8 NIL NIL) (-170 300607 300628 300656 "CONDUIT" 300693 T CONDUIT (NIL) -9 NIL NIL) (-169 299800 300320 300348 "COMRING" 300353 T COMRING (NIL) -9 NIL 300405) (-168 298881 299158 299342 "COMPPROP" 299636 T COMPPROP (NIL) -8 NIL NIL) (-167 298542 298577 298705 "COMPLPAT" 298840 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-166 288599 298351 298460 "COMPLEX" 298465 NIL COMPLEX (NIL T) -8 NIL NIL) (-165 288235 288292 288399 "COMPLEX2" 288536 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-164 287953 287988 288086 "COMPFACT" 288194 NIL COMPFACT (NIL T T) -7 NIL NIL) (-163 272357 282575 282615 "COMPCAT" 283619 NIL COMPCAT (NIL T) -9 NIL 285004) (-162 261872 264796 268423 "COMPCAT-" 268779 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-161 261601 261629 261732 "COMMUPC" 261838 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-160 261396 261429 261488 "COMMONOP" 261562 T COMMONOP (NIL) -7 NIL NIL) (-159 260979 261147 261234 "COMM" 261329 T COMM (NIL) -8 NIL NIL) (-158 260583 260783 260858 "COMMAAST" 260924 T COMMAAST (NIL) -8 NIL NIL) (-157 259832 260026 260054 "COMBOPC" 260392 T COMBOPC (NIL) -9 NIL 260567) (-156 258728 258938 259180 "COMBINAT" 259622 NIL COMBINAT (NIL T) -7 NIL NIL) (-155 254926 255499 256139 "COMBF" 258150 NIL COMBF (NIL T T) -7 NIL NIL) (-154 253712 254042 254277 "COLOR" 254711 T COLOR (NIL) -8 NIL NIL) (-153 253215 253433 253525 "COLONAST" 253640 T COLONAST (NIL) -8 NIL NIL) (-152 252855 252902 253027 "CMPLXRT" 253162 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-151 252330 252555 252654 "CLLCTAST" 252776 T CLLCTAST (NIL) -8 NIL NIL) (-150 247832 248860 249940 "CLIP" 251270 T CLIP (NIL) -7 NIL NIL) (-149 246214 246938 247177 "CLIF" 247659 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-148 242436 244360 244401 "CLAGG" 245330 NIL CLAGG (NIL T) -9 NIL 245866) (-147 240858 241315 241898 "CLAGG-" 241903 NIL CLAGG- (NIL T T) -8 NIL NIL) (-146 240402 240487 240627 "CINTSLPE" 240767 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-145 237903 238374 238922 "CHVAR" 239930 NIL CHVAR (NIL T T T) -7 NIL NIL) (-144 237166 237686 237714 "CHARZ" 237719 T CHARZ (NIL) -9 NIL 237734) (-143 236920 236960 237038 "CHARPOL" 237120 NIL CHARPOL (NIL T) -7 NIL NIL) (-142 236067 236620 236648 "CHARNZ" 236695 T CHARNZ (NIL) -9 NIL 236751) (-141 234092 234757 235092 "CHAR" 235752 T CHAR (NIL) -8 NIL NIL) (-140 233818 233879 233907 "CFCAT" 234018 T CFCAT (NIL) -9 NIL NIL) (-139 233063 233174 233356 "CDEN" 233702 NIL CDEN (NIL T T T) -7 NIL NIL) (-138 229055 232216 232496 "CCLASS" 232803 T CCLASS (NIL) -8 NIL NIL) (-137 228974 229000 229035 "CATEGORY" 229040 T -10 (NIL) -8 NIL NIL) (-136 228448 228674 228773 "CATAST" 228895 T CATAST (NIL) -8 NIL NIL) (-135 227951 228169 228261 "CASEAST" 228376 T CASEAST (NIL) -8 NIL NIL) (-134 223003 223980 224733 "CARTEN" 227254 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-133 222111 222259 222480 "CARTEN2" 222850 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-132 220453 221261 221518 "CARD" 221874 T CARD (NIL) -8 NIL NIL) (-131 220056 220257 220332 "CAPSLAST" 220398 T CAPSLAST (NIL) -8 NIL NIL) (-130 219428 219756 219784 "CACHSET" 219916 T CACHSET (NIL) -9 NIL 219993) (-129 218924 219220 219248 "CABMON" 219298 T CABMON (NIL) -9 NIL 219354) (-128 217851 218279 218475 "BYTE" 218748 T BYTE (NIL) -8 NIL NIL) (-127 213260 217319 217482 "BYTEBUF" 217708 T BYTEBUF (NIL) -8 NIL NIL) (-126 210817 212952 213059 "BTREE" 213186 NIL BTREE (NIL T) -8 NIL NIL) (-125 208315 210465 210587 "BTOURN" 210727 NIL BTOURN (NIL T) -8 NIL NIL) (-124 205733 207786 207827 "BTCAT" 207895 NIL BTCAT (NIL T) -9 NIL 207972) (-123 205400 205480 205629 "BTCAT-" 205634 NIL BTCAT- (NIL T T) -8 NIL NIL) (-122 200692 204543 204571 "BTAGG" 204793 T BTAGG (NIL) -9 NIL 204954) (-121 200182 200307 200513 "BTAGG-" 200518 NIL BTAGG- (NIL T) -8 NIL NIL) (-120 197226 199460 199675 "BSTREE" 199999 NIL BSTREE (NIL T) -8 NIL NIL) (-119 196364 196490 196674 "BRILL" 197082 NIL BRILL (NIL T) -7 NIL NIL) (-118 193065 195092 195133 "BRAGG" 195782 NIL BRAGG (NIL T) -9 NIL 196039) (-117 191594 192000 192555 "BRAGG-" 192560 NIL BRAGG- (NIL T T) -8 NIL NIL) (-116 184858 190940 191124 "BPADICRT" 191442 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-115 183208 184795 184840 "BPADIC" 184845 NIL BPADIC (NIL NIL) -8 NIL NIL) (-114 182906 182936 183050 "BOUNDZRO" 183172 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-113 178421 179512 180379 "BOP" 182059 T BOP (NIL) -8 NIL NIL) (-112 176042 176486 177006 "BOP1" 177934 NIL BOP1 (NIL T) -7 NIL NIL) (-111 174780 175466 175659 "BOOLEAN" 175869 T BOOLEAN (NIL) -8 NIL NIL) (-110 174142 174520 174574 "BMODULE" 174579 NIL BMODULE (NIL T T) -9 NIL 174644) (-109 169972 173940 174013 "BITS" 174089 T BITS (NIL) -8 NIL NIL) (-108 169384 169506 169648 "BINDING" 169850 T BINDING (NIL) -8 NIL NIL) (-107 163274 168828 168993 "BINARY" 169239 T BINARY (NIL) -8 NIL NIL) (-106 161101 162529 162570 "BGAGG" 162830 NIL BGAGG (NIL T) -9 NIL 162967) (-105 160932 160964 161055 "BGAGG-" 161060 NIL BGAGG- (NIL T T) -8 NIL NIL) (-104 160030 160316 160521 "BFUNCT" 160747 T BFUNCT (NIL) -8 NIL NIL) (-103 158720 158898 159186 "BEZOUT" 159854 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-102 155237 157572 157902 "BBTREE" 158423 NIL BBTREE (NIL T) -8 NIL NIL) (-101 154971 155024 155052 "BASTYPE" 155171 T BASTYPE (NIL) -9 NIL NIL) (-100 154823 154852 154925 "BASTYPE-" 154930 NIL BASTYPE- (NIL T) -8 NIL NIL) (-99 154261 154337 154487 "BALFACT" 154734 NIL BALFACT (NIL T T) -7 NIL NIL) (-98 153144 153676 153862 "AUTOMOR" 154106 NIL AUTOMOR (NIL T) -8 NIL NIL) (-97 152870 152875 152901 "ATTREG" 152906 T ATTREG (NIL) -9 NIL NIL) (-96 151149 151567 151919 "ATTRBUT" 152536 T ATTRBUT (NIL) -8 NIL NIL) (-95 150784 150977 151043 "ATTRAST" 151101 T ATTRAST (NIL) -8 NIL NIL) (-94 150320 150433 150459 "ATRIG" 150660 T ATRIG (NIL) -9 NIL NIL) (-93 150129 150170 150257 "ATRIG-" 150262 NIL ATRIG- (NIL T) -8 NIL NIL) (-92 149751 149911 149937 "ASTCAT" 149995 T ASTCAT (NIL) -9 NIL 150058) (-91 149478 149537 149656 "ASTCAT-" 149661 NIL ASTCAT- (NIL T) -8 NIL NIL) (-90 147675 149254 149342 "ASTACK" 149421 NIL ASTACK (NIL T) -8 NIL NIL) (-89 146180 146477 146842 "ASSOCEQ" 147357 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-88 145212 145839 145963 "ASP9" 146087 NIL ASP9 (NIL NIL) -8 NIL NIL) (-87 144976 145160 145199 "ASP8" 145204 NIL ASP8 (NIL NIL) -8 NIL NIL) (-86 143845 144581 144723 "ASP80" 144865 NIL ASP80 (NIL NIL) -8 NIL NIL) (-85 142744 143480 143612 "ASP7" 143744 NIL ASP7 (NIL NIL) -8 NIL NIL) (-84 141698 142421 142539 "ASP78" 142657 NIL ASP78 (NIL NIL) -8 NIL NIL) (-83 140667 141378 141495 "ASP77" 141612 NIL ASP77 (NIL NIL) -8 NIL NIL) (-82 139579 140305 140436 "ASP74" 140567 NIL ASP74 (NIL NIL) -8 NIL NIL) (-81 138479 139214 139346 "ASP73" 139478 NIL ASP73 (NIL NIL) -8 NIL NIL) (-80 137434 138156 138274 "ASP6" 138392 NIL ASP6 (NIL NIL) -8 NIL NIL) (-79 136382 137111 137229 "ASP55" 137347 NIL ASP55 (NIL NIL) -8 NIL NIL) (-78 135332 136056 136175 "ASP50" 136294 NIL ASP50 (NIL NIL) -8 NIL NIL) (-77 134420 135033 135143 "ASP4" 135253 NIL ASP4 (NIL NIL) -8 NIL NIL) (-76 133508 134121 134231 "ASP49" 134341 NIL ASP49 (NIL NIL) -8 NIL NIL) (-75 132293 133047 133215 "ASP42" 133397 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-74 131070 131826 131996 "ASP41" 132180 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130020 130747 130865 "ASP35" 130983 NIL ASP35 (NIL NIL) -8 NIL NIL) (-72 129785 129968 130007 "ASP34" 130012 NIL ASP34 (NIL NIL) -8 NIL NIL) (-71 129522 129589 129665 "ASP33" 129740 NIL ASP33 (NIL NIL) -8 NIL NIL) (-70 128417 129157 129289 "ASP31" 129421 NIL ASP31 (NIL NIL) -8 NIL NIL) (-69 128182 128365 128404 "ASP30" 128409 NIL ASP30 (NIL NIL) -8 NIL NIL) (-68 127917 127986 128062 "ASP29" 128137 NIL ASP29 (NIL NIL) -8 NIL NIL) (-67 127682 127865 127904 "ASP28" 127909 NIL ASP28 (NIL NIL) -8 NIL NIL) (-66 127447 127630 127669 "ASP27" 127674 NIL ASP27 (NIL NIL) -8 NIL NIL) (-65 126531 127145 127256 "ASP24" 127367 NIL ASP24 (NIL NIL) -8 NIL NIL) (-64 125447 126172 126302 "ASP20" 126432 NIL ASP20 (NIL NIL) -8 NIL NIL) (-63 124535 125148 125258 "ASP1" 125368 NIL ASP1 (NIL NIL) -8 NIL NIL) (-62 123479 124209 124328 "ASP19" 124447 NIL ASP19 (NIL NIL) -8 NIL NIL) (-61 123216 123283 123359 "ASP12" 123434 NIL ASP12 (NIL NIL) -8 NIL NIL) (-60 122068 122815 122959 "ASP10" 123103 NIL ASP10 (NIL NIL) -8 NIL NIL) (-59 119967 121912 122003 "ARRAY2" 122008 NIL ARRAY2 (NIL T) -8 NIL NIL) (-58 115783 119615 119729 "ARRAY1" 119884 NIL ARRAY1 (NIL T) -8 NIL NIL) (-57 114815 114988 115209 "ARRAY12" 115606 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-56 109174 111045 111120 "ARR2CAT" 113750 NIL ARR2CAT (NIL T T T) -9 NIL 114508) (-55 106608 107352 108306 "ARR2CAT-" 108311 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-54 105356 105508 105814 "APPRULE" 106444 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 105007 105055 105174 "APPLYORE" 105302 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 103981 104272 104467 "ANY" 104830 T ANY (NIL) -8 NIL NIL) (-51 103259 103382 103539 "ANY1" 103855 NIL ANY1 (NIL T) -7 NIL NIL) (-50 100824 101696 102023 "ANTISYM" 102983 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100339 100528 100625 "ANON" 100745 T ANON (NIL) -8 NIL NIL) (-48 94471 98878 99332 "AN" 99903 T AN (NIL) -8 NIL NIL) (-47 90852 92206 92257 "AMR" 93005 NIL AMR (NIL T T) -9 NIL 93605) (-46 89964 90185 90548 "AMR-" 90553 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74514 89881 89942 "ALIST" 89947 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71351 74108 74277 "ALGSC" 74432 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 67907 68461 69068 "ALGPKG" 70791 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67184 67285 67469 "ALGMFACT" 67793 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 62923 63608 64263 "ALGMANIP" 66707 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54329 62549 62699 "ALGFF" 62856 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53525 53656 53835 "ALGFACT" 54187 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52555 53121 53159 "ALGEBRA" 53219 NIL ALGEBRA (NIL T) -9 NIL 53278) (-37 52273 52332 52464 "ALGEBRA-" 52469 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34533 50276 50328 "ALAGG" 50464 NIL ALAGG (NIL T T) -9 NIL 50625) (-35 34069 34182 34208 "AHYP" 34409 T AHYP (NIL) -9 NIL NIL) (-34 33000 33248 33274 "AGG" 33773 T AGG (NIL) -9 NIL 34052) (-33 32434 32596 32810 "AGG-" 32815 NIL AGG- (NIL T) -8 NIL NIL) (-32 30111 30533 30951 "AF" 32076 NIL AF (NIL T T) -7 NIL NIL) (-31 29618 29836 29926 "ADDAST" 30039 T ADDAST (NIL) -8 NIL NIL) (-30 28887 29145 29301 "ACPLOT" 29480 T ACPLOT (NIL) -8 NIL NIL) (-29 18358 26279 26330 "ACFS" 27041 NIL ACFS (NIL T) -9 NIL 27280) (-28 16372 16862 17637 "ACFS-" 17642 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14591 14617 "ACF" 15496 T ACF (NIL) -9 NIL 15908) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index e2e4bfa8..36cc0e44 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,2351 +1,1972 @@ -(738747 . 3432784496) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) - (-4 *3 (-362 *4)))) - ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1131)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) - ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-258)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-402 (-552)))) - (-5 *2 (-2 (|:| -3581 (-1129 *4)) (|:| -3593 (-1129 *4)))) - (-5 *1 (-1135 *4)) (-5 *3 (-1129 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) - (-5 *2 - (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) - (|:| |success| (-112)))) - (-5 *1 (-769)) (-5 *5 (-552))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1073)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1073))))) -(((*1 *2 *1) - (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1145 *4)) (-4 *4 (-344)) (-5 *2 (-112)) - (-5 *1 (-352 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1232 *4)) (-4 *4 (-344)) (-5 *2 (-112)) - (-5 *1 (-521 *4))))) +(739292 . 3433818807) (((*1 *2 *3) - (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-827) (-544)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1253 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) - (-5 *2 (-799 *3)))) + (-12 (-5 *3 (-627 *4)) (-4 *4 (-830)) (-5 *2 (-627 (-646 *4 *5))) + (-5 *1 (-611 *4 *5 *6)) (-4 *5 (-13 (-169) (-700 (-401 (-552))))) + (-14 *6 (-900))))) +(((*1 *2 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) +(((*1 *2 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-830)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-844 *3)) (-14 *3 (-627 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-968)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1068 *3)) (-4 *3 (-1189)))) ((*1 *2 *1) - (-12 (-4 *2 (-823)) (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4)) - (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6))) - (-4 *8 (-337 *5 *6 *7)) - (-4 *4 (-13 (-827) (-544) (-1014 (-552)))) - (-5 *2 (-2 (|:| -2172 (-751)) (|:| -2487 *8))) - (-5 *1 (-887 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-331 (-402 (-552)) *4 *5 *6)) - (-4 *4 (-1208 (-402 (-552)))) (-4 *5 (-1208 (-402 *4))) - (-4 *6 (-337 (-402 (-552)) *4 *5)) - (-5 *2 (-2 (|:| -2172 (-751)) (|:| -2487 *6))) - (-5 *1 (-888 *4 *5 *6))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-374)) (-5 *1 (-1037))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3))))) + (-12 (-4 *1 (-1213 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) + (-5 *2 (-1152)))) + ((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1231 *3)) (-14 *3 *2)))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906))))) +(((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4366)) (-4 *1 (-148 *2)) (-4 *2 (-1189)) + (-4 *2 (-1076)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4366)) (-4 *1 (-148 *3)) + (-4 *3 (-1189)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-656 *3)) (-4 *3 (-1189)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-552)) (-4 *4 (-1076)) + (-5 *1 (-720 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-5 *1 (-720 *2)) (-4 *2 (-1076)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) + (-4 *4 (-13 (-1076) (-34))) (-5 *1 (-1117 *3 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-627 *7)) (|:| |badPols| (-627 *7)))) + (-5 *1 (-956 *4 *5 *6 *7)) (-5 *3 (-627 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-343)) + (-5 *2 (-627 (-2 (|:| |deg| (-754)) (|:| -1451 *3)))) + (-5 *1 (-211 *4 *3)) (-4 *3 (-1211 *4))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-871 *4)) (-4 *4 (-1076)) (-5 *1 (-868 *4 *3)) + (-4 *3 (-1076))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1038 (-1003 *4) (-1148 (-1003 *4)))) (-5 *3 (-842)) + (-5 *1 (-1003 *4)) (-4 *4 (-13 (-828) (-357) (-1001)))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) + ((*1 *1 *1) (|partial| -4 *1 (-705)))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-627 (-1148 *7))) (-5 *3 (-1148 *7)) + (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-888)) (-4 *5 (-776)) + (-4 *6 (-830)) (-5 *1 (-885 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-627 (-1148 *5))) (-5 *3 (-1148 *5)) + (-4 *5 (-1211 *4)) (-4 *4 (-888)) (-5 *1 (-886 *4 *5))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-324)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-324))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1235 *4)) (-4 *4 (-623 (-552))) + (-5 *2 (-1235 (-401 (-552)))) (-5 *1 (-1262 *4))))) +(((*1 *1) (-5 *1 (-786)))) +(((*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(((*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-107)))) + ((*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-212)))) + ((*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-480)))) + ((*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)) (-4 *2 (-301)))) + ((*1 *2 *1) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552)))) + ((*1 *1 *1) (-4 *1 (-1037)))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) - (-4 *3 (-362 *4)))) - ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-358)) (-4 *3 (-1025)) - (-5 *1 (-1133 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) - (-5 *2 - (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) - (|:| |success| (-112)))) - (-5 *1 (-769)) (-5 *5 (-552))))) + (-12 (-5 *2 (-2 (|:| -1781 (-627 *3)) (|:| -3180 (-627 *3)))) + (-5 *1 (-1190 *3)) (-4 *3 (-1076))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) + (-5 *1 (-1049 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) + (-5 *1 (-1084 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169))))) (((*1 *2 *1) - (-12 (-4 *2 (-1073)) (-5 *1 (-940 *3 *2)) (-4 *3 (-1073))))) -(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-897)))) + (-12 (-5 *2 (-1132 (-2 (|:| |k| (-552)) (|:| |c| *3)))) + (-5 *1 (-582 *3)) (-4 *3 (-1028))))) +(((*1 *2) + (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-411 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-552))) (-5 *4 (-884 (-552))) + (-5 *2 (-671 (-552))) (-5 *1 (-577)))) ((*1 *2 *3) - (-12 (-5 *3 (-1232 *4)) (-4 *4 (-344)) (-5 *2 (-897)) - (-5 *1 (-521 *4))))) + (-12 (-5 *3 (-627 (-552))) (-5 *2 (-627 (-671 (-552)))) + (-5 *1 (-577)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-552))) (-5 *4 (-627 (-884 (-552)))) + (-5 *2 (-627 (-671 (-552)))) (-5 *1 (-577))))) +(((*1 *1) (-5 *1 (-138)))) +(((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1019))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-544)) (-4 *2 (-1028)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-544)) (-5 *1 (-948 *3 *2)) (-4 *2 (-1211 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830)) (-4 *2 (-544)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *3 (-1042 *4 *5 *6)) + (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *1)))) + (-4 *1 (-1048 *4 *5 *6 *3))))) +(((*1 *1 *1) (|partial| -4 *1 (-1127)))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-445)) (-4 *4 (-544)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -2006 *4))) (-5 *1 (-948 *4 *3)) + (-4 *3 (-1211 *4))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-671 *3)) (-4 *3 (-301)) (-5 *1 (-682 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 *1)) + (-4 *1 (-1048 *4 *5 *6 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830)) (-4 *2 (-445))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *2 (-627 *1)) (-4 *1 (-1042 *3 *4 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *1) (-5 *1 (-154)))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-943 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076))))) (((*1 *2 *3) - (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-827) (-544)))))) + (|partial| -12 (-4 *2 (-1076)) (-5 *1 (-1166 *3 *2)) (-4 *3 (-1076))))) +(((*1 *1) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1148 (-401 (-931 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) + (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) + (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) + (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) +(((*1 *2 *3) + (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-552)) + (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-928 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) - (-5 *2 (-799 *3)))) + (-12 (-4 *1 (-1079 *3 *4 *5 *6 *2)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076))))) +(((*1 *2 *1) (-12 (-5 *2 (-412 *3)) (-5 *1 (-893 *3)) (-4 *3 (-301))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 *5)) (-5 *4 (-627 (-1 *6 (-627 *6)))) + (-4 *5 (-38 (-401 (-552)))) (-4 *6 (-1226 *5)) (-5 *2 (-627 *6)) + (-5 *1 (-1228 *5 *6))))) +(((*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1189)) (-4 *2 (-830)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1189)))) + ((*1 *2 *2) + (-12 (-5 *2 (-627 (-884 *3))) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) + (-4 *6 (-1042 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -2060 *1) (|:| |upper| *1))) + (-4 *1 (-955 *4 *5 *3 *6))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-744)))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) + (-5 *2 (-1014)) (-5 *1 (-735))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-111) "failed")) (-4 *3 (-445)) (-4 *4 (-830)) + (-4 *5 (-776)) (-5 *1 (-966 *3 *4 *5 *6)) (-4 *6 (-928 *3 *5 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-396)) (-5 *2 (-754)))) + ((*1 *1 *1) (-4 *1 (-396)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-900)) (-5 *2 (-1148 *3)) (-5 *1 (-1163 *3)) + (-4 *3 (-357))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-830)) (-5 *2 (-111))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-842) (-842))) (-5 *1 (-113)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-842) (-627 (-842)))) (-5 *1 (-113)))) ((*1 *2 *1) - (-12 (-4 *2 (-823)) (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025))))) -(((*1 *2 *3) - (-12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4)) (-4 *6 (-1208 *5)) - (-4 *7 (-1208 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) - (-4 *4 (-13 (-827) (-544) (-1014 (-552)))) (-5 *2 (-112)) - (-5 *1 (-887 *4 *5 *6 *7 *8)))) + (|partial| -12 (-5 *2 (-1 (-842) (-627 (-842)))) (-5 *1 (-113)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1240)) (-5 *1 (-209 *3)) + (-4 *3 + (-13 (-830) + (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 (*2 $)) + (-15 -4103 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-388)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-388)))) + ((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-494)))) + ((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-693)))) + ((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1169)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-1169))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-1156))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4366)) (-4 *1 (-230 *3)) + (-4 *3 (-1076)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-276 *3)) (-4 *3 (-1189))))) +(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-838)))) + ((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-944)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-968)))) + ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-1189)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1076) (-34))) (-5 *1 (-1116 *2 *3)) + (-4 *3 (-13 (-1076) (-34)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1076)) + (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))) + (-5 *2 (-627 (-1152))) (-5 *1 (-1052 *3 *4 *5)) + (-4 *5 (-13 (-424 *4) (-865 *3) (-600 (-871 *3))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1028)) (-14 *3 (-1152)) + (-14 *4 *2)))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-738))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *2 (-830)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-324)))) + ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-324))))) +(((*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-671 *5))) (-5 *4 (-552)) (-4 *5 (-357)) + (-4 *5 (-1028)) (-5 *2 (-111)) (-5 *1 (-1008 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-331 (-402 (-552)) *4 *5 *6)) - (-4 *4 (-1208 (-402 (-552)))) (-4 *5 (-1208 (-402 *4))) - (-4 *6 (-337 (-402 (-552)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-888 *4 *5 *6))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-374)) (-5 *1 (-1037))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3))))) + (-12 (-5 *3 (-627 (-671 *4))) (-4 *4 (-357)) (-4 *4 (-1028)) + (-5 *2 (-111)) (-5 *1 (-1008 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-1157))) (-5 *1 (-180))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-598 *5))) (-4 *4 (-830)) (-5 *2 (-598 *5)) + (-5 *1 (-561 *4 *5)) (-4 *5 (-424 *4))))) +(((*1 *1) (-5 *1 (-806)))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) - (-4 *3 (-362 *4)))) - ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-552))) (-5 *5 (-1 (-1129 *4))) (-4 *4 (-358)) - (-4 *4 (-1025)) (-5 *2 (-1129 *4)) (-5 *1 (-1133 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) - (-5 *2 - (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) - (|:| |success| (-112)))) - (-5 *1 (-769)) (-5 *5 (-552))))) + (-12 (-4 *3 (-1028)) (-5 *2 (-937 (-695 *3 *4))) (-5 *1 (-695 *3 *4)) + (-4 *4 (-1211 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) + (-5 *2 (-627 (-401 (-552)))) (-5 *1 (-999 *4)) + (-4 *4 (-1211 (-552)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-625 *3)) (-5 *1 (-937 *3)) (-4 *3 (-537))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1232 *4)) (-5 *3 (-552)) (-4 *4 (-344)) - (-5 *1 (-521 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025)) - (-4 *4 (-823))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1145 *1)) (-4 *1 (-446)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1145 *6)) (-4 *6 (-925 *5 *3 *4)) (-4 *3 (-773)) - (-4 *4 (-827)) (-4 *5 (-885)) (-5 *1 (-451 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1145 *1)) (-4 *1 (-885))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-374)) (-5 *1 (-1037))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3))))) + (-12 (-4 *4 (-357)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) + (-5 *1 (-749 *3 *4)) (-4 *3 (-691 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-357)) (-4 *3 (-1028)) + (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-832 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-357)) (-4 *5 (-1028)) + (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-833 *5 *3)) + (-4 *3 (-832 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-169)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-921)) (-5 *3 (-552))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) - (-4 *3 (-362 *4)))) - ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) + (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-411 *3))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-627 *6)) (-5 *4 (-627 (-242 *5 *6))) (-4 *6 (-445)) + (-5 *2 (-242 *5 *6)) (-14 *5 (-627 (-1152))) (-5 *1 (-615 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-5 *1 (-324))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) + ((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1236)))) + ((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1237))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-358)) (-4 *3 (-1025)) - (-5 *1 (-1133 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) - (-5 *2 - (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) - (|:| |success| (-112)))) - (-5 *1 (-769)) (-5 *5 (-552))))) -(((*1 *2 *2) (-12 (-5 *1 (-937 *2)) (-4 *2 (-537))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1232 *4)) (-5 *3 (-1093)) (-4 *4 (-344)) - (-5 *1 (-521 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-552)) (-5 *1 (-237)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-552)) (-5 *1 (-237))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025)) - (-4 *4 (-823))))) + (|partial| -12 (-4 *3 (-357)) (-5 *1 (-749 *2 *3)) (-4 *2 (-691 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1152)) (-5 *4 (-931 (-552))) (-5 *2 (-324)) + (-5 *1 (-326))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-906))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-251))))) (((*1 *2 *3) - (-12 (-5 *2 (-413 (-1145 *1))) (-5 *1 (-311 *4)) (-5 *3 (-1145 *1)) - (-4 *4 (-446)) (-4 *4 (-544)) (-4 *4 (-827)))) - ((*1 *2 *3) - (-12 (-4 *1 (-885)) (-5 *2 (-413 (-1145 *1))) (-5 *3 (-1145 *1))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1037)) (-5 *3 (-1131))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-544)) (-4 *3 (-170)) (-4 *4 (-368 *3)) - (-4 *5 (-368 *3)) (-5 *1 (-668 *3 *4 *5 *2)) - (-4 *2 (-667 *3 *4 *5))))) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) + (|:| |lb| (-627 (-823 (-220)))) + (|:| |cf| (-627 (-310 (-220)))) + (|:| |ub| (-627 (-823 (-220)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-627 (-310 (-220)))) + (|:| -3002 (-627 (-220))))))) + (-5 *2 (-627 (-1134))) (-5 *1 (-261))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) - (-4 *3 (-362 *4)))) - ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1129 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1025)) - (-5 *3 (-402 (-552))) (-5 *1 (-1133 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) - (-5 *2 - (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) - (|:| |success| (-112)))) - (-5 *1 (-769)) (-5 *5 (-552))))) -(((*1 *2 *2) (-12 (-5 *1 (-937 *2)) (-4 *2 (-537))))) + (-12 (-5 *2 (-1240)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) + (-4 *4 (-1076))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-734))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1232 *4)) (-5 *3 (-751)) (-4 *4 (-344)) - (-5 *1 (-521 *4))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-552)) (-5 *1 (-237))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) + (-12 (-4 *4 (-1076)) (-4 *2 (-879 *4)) (-5 *1 (-674 *4 *2 *5 *3)) + (-4 *5 (-367 *2)) (-4 *3 (-13 (-367 *4) (-10 -7 (-6 -4366))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823))))) -(((*1 *2 *3) - (-12 (-5 *2 (-413 (-1145 *1))) (-5 *1 (-311 *4)) (-5 *3 (-1145 *1)) - (-4 *4 (-446)) (-4 *4 (-544)) (-4 *4 (-827)))) - ((*1 *2 *3) - (-12 (-4 *1 (-885)) (-5 *2 (-413 (-1145 *1))) (-5 *3 (-1145 *1))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1037))))) + (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1028)) (-14 *3 (-1152)) + (-14 *4 *2)))) (((*1 *2 *2) - (-12 (-4 *3 (-544)) (-4 *3 (-170)) (-4 *4 (-368 *3)) - (-4 *5 (-368 *3)) (-5 *1 (-668 *3 *4 *5 *2)) - (-4 *2 (-667 *3 *4 *5))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) - (-4 *3 (-362 *4)))) - ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-52))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1129 (-1129 *4))) (-5 *2 (-1129 *4)) (-5 *1 (-1133 *4)) - (-4 *4 (-38 (-402 (-552)))) (-4 *4 (-1025))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) + (-12 (-5 *2 - (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) - (|:| |success| (-112)))) - (-5 *1 (-769)) (-5 *5 (-552))))) -(((*1 *1) (-4 *1 (-344))) + (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) + (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) + (|:| |ub| (-627 (-823 (-220)))))) + (-5 *1 (-261))))) +(((*1 *1 *2) + (-12 (-5 *2 (-627 (-900))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-900)) + (-14 *4 (-900))))) +(((*1 *2 *3) + (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) + (-4 *4 (-343))))) +(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853))))) +(((*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174)))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) + (-5 *2 (-1014)) (-5 *1 (-735))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-754)) (-4 *1 (-226 *4)) + (-4 *4 (-1028)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-226 *3)) (-4 *3 (-1028)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-228)) (-5 *2 (-754)))) + ((*1 *1 *1) (-4 *1 (-228))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)) + (-4 *4 (-1211 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-357) (-144))) (-5 *1 (-393 *2 *3)) + (-4 *3 (-1211 *2)))) + ((*1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1028)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 *4)) (-5 *3 (-627 (-754))) (-4 *1 (-879 *4)) + (-4 *4 (-1076)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-754)) (-4 *1 (-879 *2)) (-4 *2 (-1076)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-627 *3)) (-4 *1 (-879 *3)) (-4 *3 (-1076)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-879 *2)) (-4 *2 (-1076))))) +(((*1 *2 *1) + (-12 (-4 *3 (-228)) (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-260 *4)) + (-4 *6 (-776)) (-5 *2 (-1 *1 (-754))) (-4 *1 (-247 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-625 *5)) (-4 *5 (-425 *4)) - (-4 *4 (-13 (-544) (-827) (-145))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-625 (-1145 *5))) - (|:| |prim| (-1145 *5)))) - (-5 *1 (-427 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-544) (-827) (-145))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1145 *3)) - (|:| |pol2| (-1145 *3)) (|:| |prim| (-1145 *3)))) - (-5 *1 (-427 *4 *3)) (-4 *3 (-27)) (-4 *3 (-425 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-928 *5)) (-5 *4 (-1149)) (-4 *5 (-13 (-358) (-145))) - (-5 *2 - (-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) - (|:| |prim| (-1145 *5)))) - (-5 *1 (-936 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-625 (-1149))) - (-4 *5 (-13 (-358) (-145))) - (-5 *2 - (-2 (|:| -3340 (-625 (-552))) (|:| |poly| (-625 (-1145 *5))) - (|:| |prim| (-1145 *5)))) - (-5 *1 (-936 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-625 (-928 *6))) (-5 *4 (-625 (-1149))) (-5 *5 (-1149)) - (-4 *6 (-13 (-358) (-145))) - (-5 *2 - (-2 (|:| -3340 (-625 (-552))) (|:| |poly| (-625 (-1145 *6))) - (|:| |prim| (-1145 *6)))) - (-5 *1 (-936 *6))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1232 *5)) (-5 *3 (-751)) (-5 *4 (-1093)) (-4 *5 (-344)) - (-5 *1 (-521 *5))))) -(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-237))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) - ((*1 *2 *1) - (-12 (-5 *2 (-751)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) - (-14 *4 (-625 (-1149))))) - ((*1 *2 *1) - (-12 (-5 *2 (-552)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) - (-14 *4 (-625 (-1149))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) - (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751)))) - ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-270)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1145 *8)) (-5 *4 (-625 *6)) (-4 *6 (-827)) - (-4 *8 (-925 *7 *5 *6)) (-4 *5 (-773)) (-4 *7 (-1025)) - (-5 *2 (-625 (-751))) (-5 *1 (-316 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-897)))) + (-12 (-4 *4 (-1028)) (-4 *3 (-830)) (-4 *5 (-260 *3)) (-4 *6 (-776)) + (-5 *2 (-1 *1 (-754))) (-4 *1 (-247 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-260 *2)) (-4 *2 (-830))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) + (-5 *5 (-1070 (-220))) (-5 *6 (-627 (-257))) (-5 *2 (-1109 (-220))) + (-5 *1 (-679))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1235 *4)) (-5 *3 (-552)) (-4 *4 (-343)) + (-5 *1 (-520 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-627 (-552))) (-5 *2 (-1154 (-401 (-552)))) + (-5 *1 (-185))))) +(((*1 *2 *1) + (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-129)) + (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 *4)))))) ((*1 *2 *1) - (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) - (-5 *2 (-751)))) - ((*1 *2 *1) (-12 (-4 *1 (-464 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) + (-12 (-5 *2 (-627 (-2 (|:| -3069 *3) (|:| -3755 *4)))) + (-5 *1 (-718 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-709)))) ((*1 *2 *1) - (-12 (-4 *3 (-544)) (-5 *2 (-552)) (-5 *1 (-605 *3 *4)) - (-4 *4 (-1208 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-689 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) - ((*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) - ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) - ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-625 *6)) (-4 *1 (-925 *4 *5 *6)) (-4 *4 (-1025)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 (-751))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-925 *4 *5 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) - (-4 *3 (-827)) (-5 *2 (-751)))) - ((*1 *2 *1) - (-12 (-4 *1 (-949 *3 *2 *4)) (-4 *3 (-1025)) (-4 *4 (-827)) - (-4 *2 (-772)))) + (-12 (-4 *1 (-1213 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) + (-5 *2 (-1132 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1189)) (-5 *2 (-111))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) + ((*1 *1 *1) (-5 *1 (-842))) + ((*1 *1 *2) + (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-4 *1 (-1074 *3)))) + ((*1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-627 (-844 *5))) (-14 *5 (-627 (-1152))) (-4 *6 (-445)) + (-5 *2 + (-2 (|:| |dpolys| (-627 (-242 *5 *6))) + (|:| |coords| (-627 (-552))))) + (-5 *1 (-464 *5 *6 *7)) (-5 *3 (-627 (-242 *5 *6))) (-4 *7 (-445))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) + (-4 *4 (-1028))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-132))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-906))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-144)) + (-4 *3 (-301)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *1 (-956 *3 *4 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-955 *3 *4 *2 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *2 (-830)) (-4 *5 (-1042 *3 *4 *2))))) +(((*1 *2) + (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) + (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-552)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-412 *2)) (-4 *2 (-544))))) +(((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-1189))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) + (-5 *1 (-967 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) + (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-168))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1170))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1134)) (-5 *1 (-96)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1134)) (-5 *1 (-96))))) +(((*1 *2 *1) + (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-751)))) + (-12 (-5 *2 (-111)) (-5 *1 (-412 *3)) (-4 *3 (-537)) (-4 *3 (-544)))) + ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-4 *1 (-1194 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1223 *3)) - (-5 *2 (-552)))) + (-12 (-4 *1 (-780 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-4 *1 (-1215 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1192 *3)) - (-5 *2 (-402 (-552))))) + (-12 (-5 *2 (-111)) (-5 *1 (-816 *3)) (-4 *3 (-537)) (-4 *3 (-1076)))) ((*1 *2 *1) - (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-813 (-897))))) + (-12 (-5 *2 (-111)) (-5 *1 (-823 *3)) (-4 *3 (-537)) (-4 *3 (-1076)))) ((*1 *2 *1) - (-12 (-4 *1 (-1253 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) - (-5 *2 (-751))))) + (-12 (-4 *1 (-976 *3)) (-4 *3 (-169)) (-4 *3 (-537)) (-5 *2 (-111)))) + ((*1 *2 *3) + (-12 (-5 *2 (-111)) (-5 *1 (-987 *3)) (-4 *3 (-1017 (-401 (-552))))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905))))) (((*1 *2 *3) - (-12 (-4 *1 (-885)) (-5 *2 (-413 (-1145 *1))) (-5 *3 (-1145 *1))))) -(((*1 *1) (-5 *1 (-1037)))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-552)) (-4 *3 (-170)) (-4 *5 (-368 *3)) - (-4 *6 (-368 *3)) (-5 *1 (-668 *3 *5 *6 *2)) - (-4 *2 (-667 *3 *5 *6))))) -(((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) + (-12 (-4 *4 (-830)) (-5 *2 (-627 (-627 *4))) (-5 *1 (-1160 *4)) + (-5 *3 (-627 *4))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1076)) (-5 *2 (-868 *3 *5)) (-5 *1 (-864 *3 *4 *5)) + (-4 *3 (-1076)) (-4 *5 (-648 *4))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-734))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-301)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-900)) (-5 *1 (-681)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-671 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-357)) (-5 *1 (-957 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-945 *2)) (-4 *2 (-946))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1129 *3))) (-5 *2 (-1129 *3)) (-5 *1 (-1133 *3)) - (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) - (-5 *2 - (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) - (|:| |success| (-112)))) - (-5 *1 (-769)) (-5 *5 (-552))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1149)) (-5 *1 (-571 *2)) (-4 *2 (-1014 *3)) - (-4 *2 (-358)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-571 *2)) (-4 *2 (-358)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-612 *4 *2)) - (-4 *2 (-13 (-425 *4) (-978) (-1171))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1065 *2)) (-4 *2 (-13 (-425 *4) (-978) (-1171))) - (-4 *4 (-13 (-827) (-544))) (-5 *1 (-612 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-935)) (-5 *2 (-1149)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-935))))) + (-12 (-5 *3 (-1235 (-310 (-220)))) (-5 *4 (-627 (-1152))) + (-5 *2 (-671 (-310 (-220)))) (-5 *1 (-200)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1076)) (-4 *6 (-879 *5)) (-5 *2 (-671 *6)) + (-5 *1 (-674 *5 *6 *3 *4)) (-4 *3 (-367 *6)) + (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4366))))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) + (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-5 *2 (-627 (-1006 *5 *6 *7 *8))) (-5 *1 (-1006 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) + (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-5 *2 (-627 (-1122 *5 *6 *7 *8))) (-5 *1 (-1122 *5 *6 *7 *8))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-1152)) (-5 *1 (-528)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1152)) (-5 *1 (-687 *3)) (-4 *3 (-600 (-528))))) + ((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-1152)) (-5 *1 (-687 *3)) (-4 *3 (-600 (-528))))) + ((*1 *2 *3 *2 *2 *2) + (-12 (-5 *2 (-1152)) (-5 *1 (-687 *3)) (-4 *3 (-600 (-528))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *4 (-627 (-1152))) (-5 *2 (-1152)) (-5 *1 (-687 *3)) + (-4 *3 (-600 (-528)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1152)) (-4 *5 (-600 (-871 (-552)))) + (-4 *5 (-865 (-552))) + (-4 *5 (-13 (-830) (-1017 (-552)) (-445) (-623 (-552)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-555 *5 *3)) (-4 *3 (-613)) + (-4 *3 (-13 (-27) (-1174) (-424 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1152)) (-5 *4 (-823 *2)) (-4 *2 (-1115)) + (-4 *2 (-13 (-27) (-1174) (-424 *5))) + (-4 *5 (-600 (-871 (-552)))) (-4 *5 (-865 (-552))) + (-4 *5 (-13 (-830) (-1017 (-552)) (-445) (-623 (-552)))) + (-5 *1 (-555 *5 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-751)) (-5 *2 (-1145 *4)) (-5 *1 (-521 *4)) - (-4 *4 (-344))))) + (-12 (-5 *3 (-310 (-220))) (-5 *2 (-401 (-552))) (-5 *1 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-289 (-928 (-552)))) - (-5 *2 - (-2 (|:| |varOrder| (-625 (-1149))) - (|:| |inhom| (-3 (-625 (-1232 (-751))) "failed")) - (|:| |hom| (-625 (-1232 (-751)))))) - (-5 *1 (-232))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) - (-4 *4 (-170)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *1 (-1253 *3 *4)) (-4 *3 (-827)) - (-4 *4 (-1025))))) -(((*1 *1 *1) (-5 *1 (-839))) - ((*1 *2 *1) - (-12 (-4 *1 (-1076 *2 *3 *4 *5 *6)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073)))) - ((*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1130)))) - ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1149))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-625 (-1145 *5))) (-5 *3 (-1145 *5)) - (-4 *5 (-164 *4)) (-4 *4 (-537)) (-5 *1 (-147 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-625 *3)) (-4 *3 (-1208 *5)) - (-4 *5 (-1208 *4)) (-4 *4 (-344)) (-5 *1 (-353 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-625 (-1145 (-552)))) (-5 *3 (-1145 (-552))) - (-5 *1 (-560)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-625 (-1145 *1))) (-5 *3 (-1145 *1)) - (-4 *1 (-885))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1131)) (-5 *3 (-552)) (-5 *1 (-1037))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-552)) (-4 *3 (-170)) (-4 *5 (-368 *3)) - (-4 *6 (-368 *3)) (-5 *1 (-668 *3 *5 *6 *2)) - (-4 *2 (-667 *3 *5 *6))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) - (-4 *3 (-362 *4)))) - ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1223 *3))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1076)) (-4 *5 (-1076)) + (-4 *6 (-1076)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-666 *4 *5 *6))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) (((*1 *2 *3) - (-12 (-5 *3 (-1129 (-1129 *4))) (-5 *2 (-1129 *4)) (-5 *1 (-1133 *4)) - (-4 *4 (-1025))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) + (-12 (-5 *3 (-627 (-474 *4 *5))) (-14 *4 (-627 (-1152))) + (-4 *5 (-445)) (-5 *2 - (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) - (|:| |success| (-112)))) - (-5 *1 (-769)) (-5 *5 (-552))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-897)) (-4 *5 (-544)) (-5 *2 (-669 *5)) - (-5 *1 (-932 *5 *3)) (-4 *3 (-636 *5))))) + (-2 (|:| |gblist| (-627 (-242 *4 *5))) + (|:| |gvlist| (-627 (-552))))) + (-5 *1 (-615 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1184 *3)) (-4 *3 (-953))))) (((*1 *2 *3) - (-12 (-5 *3 (-1232 *4)) (-4 *4 (-344)) (-5 *2 (-1145 *4)) - (-5 *1 (-521 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-4 *1 (-231 *3)))) - ((*1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1073))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1247 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) - (-5 *1 (-644 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-644 *3 *4)) (-5 *1 (-1252 *3 *4)) - (-4 *3 (-827)) (-4 *4 (-170))))) + (-12 (-4 *4 (-776)) + (-4 *5 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))) (-4 *6 (-544)) + (-5 *2 (-2 (|:| -2796 (-931 *6)) (|:| -4191 (-931 *6)))) + (-5 *1 (-715 *4 *5 *6 *3)) (-4 *3 (-928 (-401 (-931 *6)) *4 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-669 *1)) (-4 *1 (-344)) (-5 *2 (-1232 *1)))) + (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-312)) (-5 *3 (-220))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4368 "*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) + (-4 *2 (-1028)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1211 *2)) + (-4 *4 (-669 *2 *5 *6))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-868 *5 *3)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) + (-4 *3 (-163 *6)) (-4 (-931 *6) (-865 *5)) + (-4 *6 (-13 (-865 *5) (-169))) (-5 *1 (-175 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-868 *4 *1)) (-5 *3 (-871 *4)) (-4 *1 (-865 *4)) + (-4 *4 (-1076)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-868 *5 *6)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) + (-4 *6 (-13 (-1076) (-1017 *3))) (-4 *3 (-865 *5)) + (-5 *1 (-910 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-868 *5 *3)) (-4 *5 (-1076)) + (-4 *3 (-13 (-424 *6) (-600 *4) (-865 *5) (-1017 (-598 $)))) + (-5 *4 (-871 *5)) (-4 *6 (-13 (-544) (-830) (-865 *5))) + (-5 *1 (-911 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-868 (-552) *3)) (-5 *4 (-871 (-552))) (-4 *3 (-537)) + (-5 *1 (-912 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-868 *5 *6)) (-5 *3 (-598 *6)) (-4 *5 (-1076)) + (-4 *6 (-13 (-830) (-1017 (-598 $)) (-600 *4) (-865 *5))) + (-5 *4 (-871 *5)) (-5 *1 (-913 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-864 *5 *6 *3)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) + (-4 *6 (-865 *5)) (-4 *3 (-648 *6)) (-5 *1 (-914 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-868 *6 *3) *8 (-871 *6) (-868 *6 *3))) + (-4 *8 (-830)) (-5 *2 (-868 *6 *3)) (-5 *4 (-871 *6)) + (-4 *6 (-1076)) (-4 *3 (-13 (-928 *9 *7 *8) (-600 *4))) + (-4 *7 (-776)) (-4 *9 (-13 (-1028) (-830) (-865 *6))) + (-5 *1 (-915 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-868 *5 *3)) (-4 *5 (-1076)) + (-4 *3 (-13 (-928 *8 *6 *7) (-600 *4))) (-5 *4 (-871 *5)) + (-4 *7 (-865 *5)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *8 (-13 (-1028) (-830) (-865 *5))) + (-5 *1 (-915 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-868 *5 *3)) (-4 *5 (-1076)) (-4 *3 (-971 *6)) + (-4 *6 (-13 (-544) (-865 *5) (-600 *4))) (-5 *4 (-871 *5)) + (-5 *1 (-918 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-868 *5 (-1152))) (-5 *3 (-1152)) (-5 *4 (-871 *5)) + (-4 *5 (-1076)) (-5 *1 (-919 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-627 (-871 *7))) (-5 *5 (-1 *9 (-627 *9))) + (-5 *6 (-1 (-868 *7 *9) *9 (-871 *7) (-868 *7 *9))) (-4 *7 (-1076)) + (-4 *9 (-13 (-1028) (-600 (-871 *7)) (-1017 *8))) + (-5 *2 (-868 *7 *9)) (-5 *3 (-627 *9)) (-4 *8 (-13 (-1028) (-830))) + (-5 *1 (-920 *7 *8 *9))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-754)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) + (-4 *2 (-1211 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-552)) (-5 *1 (-678 *2)) (-4 *2 (-1211 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) + (|:| |explanations| (-627 (-1134))))) + (-5 *2 (-1014)) (-5 *1 (-299)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-669 *1)) (-4 *1 (-143)) (-4 *1 (-885)) - (-5 *2 (-1232 *1))))) -(((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1036)))) - ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1036))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-552)) (-4 *4 (-170)) (-4 *5 (-368 *4)) - (-4 *6 (-368 *4)) (-5 *1 (-668 *4 *5 *6 *2)) - (-4 *2 (-667 *4 *5 *6))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) - (-4 *3 (-362 *4)))) - ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1025)) (-5 *1 (-870 *2 *3)) (-4 *2 (-1208 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1237) (-1232 *5) (-1232 *5) (-374))) - (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237)) - (-5 *1 (-768))))) -(((*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-930))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093)))))) - (-4 *4 (-344)) (-5 *2 (-1237)) (-5 *1 (-521 *4))))) -(((*1 *1) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171)))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751)) - (-4 *4 (-170)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-156 *4 *2)) - (-4 *2 (-425 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1065 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-827) (-544))) - (-5 *1 (-156 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-158)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1149)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) - (-4 *4 (-170))))) -(((*1 *1 *1) (|partial| -4 *1 (-143))) ((*1 *1 *1) (-4 *1 (-344))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-885))))) + (-12 + (-5 *3 + (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) + (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014)))) + (-5 *2 (-1014)) (-5 *1 (-299))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-900)) (-4 *4 (-362)) (-4 *4 (-357)) (-5 *2 (-1148 *1)) + (-4 *1 (-323 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1148 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-169)) (-4 *3 (-357)) + (-4 *2 (-1211 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1235 *4)) (-4 *4 (-343)) (-5 *2 (-1148 *4)) + (-5 *1 (-520 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-842))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-477 *3))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) - (-4 *3 (-1208 *2))))) -(((*1 *1 *1) - (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) - (-4 *4 (-368 *2))))) + (-12 (-5 *2 (-1070 *3)) (-5 *1 (-1068 *3)) (-4 *3 (-1189)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189)))) + ((*1 *1 *2) (-12 (-5 *1 (-1202 *2)) (-4 *2 (-1189))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-220)) + (-5 *2 + (-2 (|:| |brans| (-627 (-627 (-922 *4)))) + (|:| |xValues| (-1070 *4)) (|:| |yValues| (-1070 *4)))) + (-5 *1 (-150)) (-5 *3 (-627 (-627 (-922 *4))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-213)))) + ((*1 *2 *1) (-12 (-5 *2 (-1094)) (-5 *1 (-1091)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-627 (-1157))) (-5 *3 (-1157)) (-5 *1 (-1094))))) +(((*1 *2 *1) + (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-627 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *1) + (-12 (-5 *2 (-627 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-573 *3)) (-4 *3 (-357))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1073)) - (-4 *6 (-1073)) (-4 *2 (-1073)) (-5 *1 (-660 *5 *6 *2))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) - (-4 *3 (-362 *4)))) - ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1129 *4)) (-5 *3 (-1 *4 (-552))) (-4 *4 (-1025)) - (-5 *1 (-1133 *4))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-552)) - (-5 *6 - (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -2824 (-374)))) - (-5 *7 (-1 (-1237) (-1232 *5) (-1232 *5) (-374))) - (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237)) - (-5 *1 (-768)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-552)) - (-5 *6 - (-2 (|:| |try| (-374)) (|:| |did| (-374)) (|:| -2824 (-374)))) - (-5 *7 (-1 (-1237) (-1232 *5) (-1232 *5) (-374))) - (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237)) - (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-544)) - (-4 *3 (-925 *7 *5 *6)) + (-12 (-5 *3 (-2 (|:| |totdeg| (-754)) (|:| -3144 *4))) (-5 *5 (-754)) + (-4 *4 (-928 *6 *7 *8)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) (-5 *2 - (-2 (|:| -3564 (-751)) (|:| -3340 *3) (|:| |radicand| (-625 *3)))) - (-5 *1 (-929 *5 *6 *7 *3 *8)) (-5 *4 (-751)) - (-4 *8 - (-13 (-358) - (-10 -8 (-15 -1356 (*3 $)) (-15 -1368 (*3 $)) (-15 -1683 ($ *3)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-520)) (-5 *2 (-1093))))) -(((*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171)))))) + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-442 *6 *7 *8 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-357)) (-4 *4 (-544)) (-4 *5 (-1211 *4)) + (-5 *2 (-2 (|:| -3043 (-607 *4 *5)) (|:| -1469 (-401 *5)))) + (-5 *1 (-607 *4 *5)) (-5 *3 (-401 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-627 (-1140 *3 *4))) (-5 *1 (-1140 *3 *4)) + (-14 *3 (-900)) (-4 *4 (-1028)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-445)) (-4 *3 (-1028)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1211 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-357)) + (-5 *2 (-2 (|:| -1317 (-412 *3)) (|:| |special| (-412 *3)))) + (-5 *1 (-710 *5 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1235 *4)) (-4 *4 (-623 (-552))) (-5 *2 (-111)) + (-5 *1 (-1262 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1159))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-852 *2 *3)) (-4 *2 (-1189)) (-4 *3 (-1189))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) + (-5 *2 (-1014)) (-5 *1 (-735))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-627 (-401 (-931 (-552))))) (-5 *4 (-627 (-1152))) + (-5 *2 (-627 (-627 *5))) (-5 *1 (-374 *5)) + (-4 *5 (-13 (-828) (-357))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-401 (-931 (-552)))) (-5 *2 (-627 *4)) (-5 *1 (-374 *4)) + (-4 *4 (-13 (-828) (-357)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) - (-5 *2 (-2 (|:| |k| (-799 *3)) (|:| |c| *4)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-258))) (-5 *1 (-1233)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 (-258))) (-5 *1 (-1233)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-258))) (-5 *1 (-1234)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 (-258))) (-5 *1 (-1234))))) + (-12 (-4 *3 (-1028)) (-5 *2 (-627 *1)) (-4 *1 (-1110 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-627 (-168))))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-922 (-220)))) (-5 *1 (-1236))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-827)) (-4 *5 (-885)) (-4 *6 (-773)) - (-4 *8 (-925 *5 *6 *7)) (-5 *2 (-413 (-1145 *8))) - (-5 *1 (-882 *5 *6 *7 *8)) (-5 *4 (-1145 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-885)) (-4 *5 (-1208 *4)) (-5 *2 (-413 (-1145 *5))) - (-5 *1 (-883 *4 *5)) (-5 *3 (-1145 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-413 *4) *4)) (-4 *4 (-544)) (-5 *2 (-413 *4)) - (-5 *1 (-414 *4)))) - ((*1 *1 *1) (-5 *1 (-902))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-902)))) - ((*1 *1 *1) (-5 *1 (-903))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-903)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) - (-5 *4 (-402 (-552))) (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) - (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) - (-5 *4 (-402 (-552))) (-5 *1 (-997 *3)) (-4 *3 (-1208 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) - (-5 *1 (-997 *3)) (-4 *3 (-1208 (-402 (-552)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) - (-4 *3 (-1208 *2))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) - (-4 *4 (-368 *2))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) - (-4 *3 (-362 *4)))) - ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1237) (-1232 *5) (-1232 *5) (-374))) - (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237)) - (-5 *1 (-768))))) + (-12 (-5 *3 (-552)) (-5 *4 (-412 *2)) (-4 *2 (-928 *7 *5 *6)) + (-5 *1 (-725 *5 *6 *7 *2)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-301))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-357)) (-5 *1 (-641 *4 *2)) + (-4 *2 (-638 *4))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1028)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1211 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-805))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -3116 *3) (|:| |coef1| (-765 *3)) (|:| |coef2| (-765 *3)))) + (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-627 (-1148 *11))) (-5 *3 (-1148 *11)) + (-5 *4 (-627 *10)) (-5 *5 (-627 *8)) (-5 *6 (-627 (-754))) + (-5 *7 (-1235 (-627 (-1148 *8)))) (-4 *10 (-830)) + (-4 *8 (-301)) (-4 *11 (-928 *8 *9 *10)) (-4 *9 (-776)) + (-5 *1 (-690 *9 *10 *8 *11))))) +(((*1 *1 *2) + (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *5)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-627 (-627 (-842)))) (-5 *1 (-842)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1118 *3 *4)) (-5 *1 (-972 *3 *4)) (-14 *3 (-900)) + (-4 *4 (-357)))) + ((*1 *1 *2) + (-12 (-5 *2 (-627 (-627 *5))) (-4 *5 (-1028)) + (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *6 (-233 *4 *5)) + (-4 *7 (-233 *3 *5))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-544)) - (-4 *8 (-925 *7 *5 *6)) - (-5 *2 (-2 (|:| -3564 (-751)) (|:| -3340 *3) (|:| |radicand| *3))) - (-5 *1 (-929 *5 *6 *7 *8 *3)) (-5 *4 (-751)) - (-4 *3 - (-13 (-358) - (-10 -8 (-15 -1356 (*8 $)) (-15 -1368 (*8 $)) (-15 -1683 ($ *8)))))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-520)) (-5 *3 (-128)) (-5 *2 (-1093))))) -(((*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1256 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) - (-4 *4 (-170)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1073)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) + (-12 (-5 *3 (-627 (-671 *5))) (-4 *5 (-301)) (-4 *5 (-1028)) + (-5 *2 (-1235 (-1235 *5))) (-5 *1 (-1008 *5)) (-5 *4 (-1235 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-893 *3)) (-4 *3 (-301))))) +(((*1 *1 *1) (-4 *1 (-613))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981) (-1174)))))) +(((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1039)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1039))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-411 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) + ((*1 *2 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1189)) (-5 *2 (-754))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-991)) (-5 *2 (-842))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-171 *3)) (-4 *3 (-301)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-656 *3)) (-4 *3 (-1189)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-799 *3)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) - (-4 *4 (-1025)))) + (-12 (-5 *2 (-754)) (-4 *1 (-723 *3 *4)) (-4 *3 (-1028)) + (-4 *4 (-830)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-848 *3)) (-5 *2 (-552)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025))))) -(((*1 *2) - (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-885)) - (-5 *1 (-451 *3 *4 *2 *5)) (-4 *5 (-925 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-885)) - (-5 *1 (-882 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-885)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1208 *2))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-825) (-358))) (-5 *2 (-112)) (-5 *1 (-1035 *4 *3)) - (-4 *3 (-1208 *4))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) - (-4 *4 (-368 *2))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) - (-4 *3 (-362 *4)))) - ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1237) (-1232 *5) (-1232 *5) (-374))) - (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237)) - (-5 *1 (-768)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1237) (-1232 *5) (-1232 *5) (-374))) - (-5 *3 (-1232 (-374))) (-5 *5 (-374)) (-5 *2 (-1237)) - (-5 *1 (-768))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-402 (-552))) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-544)) (-4 *8 (-925 *7 *5 *6)) - (-5 *2 (-2 (|:| -3564 (-751)) (|:| -3340 *9) (|:| |radicand| *9))) - (-5 *1 (-929 *5 *6 *7 *8 *9)) (-5 *4 (-751)) - (-4 *9 - (-13 (-358) - (-10 -8 (-15 -1356 (*8 $)) (-15 -1368 (*8 $)) (-15 -1683 ($ *8)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-518))))) -(((*1 *1) (-5 *1 (-565))) - ((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-840)))) - ((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1237)) (-5 *1 (-840)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1131)) (-5 *4 (-839)) (-5 *2 (-1237)) (-5 *1 (-840)))) + (-12 (-5 *2 (-627 *3)) (-4 *1 (-959 *3)) (-4 *3 (-1028)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-627 *1)) (-5 *3 (-627 *7)) (-4 *1 (-1048 *4 *5 *6 *7)) + (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-1129 *4)) - (-4 *4 (-1073)) (-4 *4 (-1186))))) -(((*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1256 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) - (-4 *4 (-170)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1073)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) + (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *1)) + (-4 *1 (-1048 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) + (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 *1)) + (-4 *1 (-1048 *4 *5 *6 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-799 *3)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) - (-4 *4 (-1025)))) + (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025))))) + (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1226 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1189))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-754)) (-5 *6 (-111)) (-4 *7 (-445)) (-4 *8 (-776)) + (-4 *9 (-830)) (-4 *3 (-1042 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-627 *4)) + (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) + (-5 *1 (-1046 *7 *8 *9 *3 *4)) (-4 *4 (-1048 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-754)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) + (-4 *3 (-1042 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-627 *4)) + (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) + (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1048 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-627 *4)) + (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) + (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-754)) (-5 *6 (-111)) (-4 *7 (-445)) (-4 *8 (-776)) + (-4 *9 (-830)) (-4 *3 (-1042 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-627 *4)) + (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) + (-5 *1 (-1121 *7 *8 *9 *3 *4)) (-4 *4 (-1085 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-754)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) + (-4 *3 (-1042 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-627 *4)) + (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) + (-5 *1 (-1121 *6 *7 *8 *3 *4)) (-4 *4 (-1085 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-627 *4)) + (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) + (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1085 *5 *6 *7 *3))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1235 (-552))) (-5 *3 (-552)) (-5 *1 (-1086)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1235 (-552))) (-5 *3 (-627 (-552))) (-5 *4 (-552)) + (-5 *1 (-1086))))) +(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1245))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-552)) (-5 *2 (-111)) (-5 *1 (-473))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-966 (-401 (-552)) (-844 *3) (-235 *4 (-754)) + (-242 *3 (-401 (-552))))) + (-14 *3 (-627 (-1152))) (-14 *4 (-754)) (-5 *1 (-965 *3 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-885)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-925 *4 *5 *6)) (-5 *2 (-413 (-1145 *7))) - (-5 *1 (-882 *4 *5 *6 *7)) (-5 *3 (-1145 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-885)) (-4 *5 (-1208 *4)) (-5 *2 (-413 (-1145 *5))) - (-5 *1 (-883 *4 *5)) (-5 *3 (-1145 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-596 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-596 (-48))) (-5 *1 (-48)))) + (-12 (-5 *3 (-1152)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *4 *5 *6)) + (-4 *4 (-600 (-528))) (-4 *5 (-1189)) (-4 *6 (-1189))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-776)) + (-4 *3 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))) (-4 *5 (-544)) + (-5 *1 (-715 *4 *3 *5 *2)) (-4 *2 (-928 (-401 (-931 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1145 (-48))) (-5 *3 (-625 (-596 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *4 (-1028)) (-4 *5 (-776)) + (-4 *3 + (-13 (-830) + (-10 -8 (-15 -3562 ((-1152) $)) + (-15 -4344 ((-3 $ "failed") (-1152)))))) + (-5 *1 (-963 *4 *5 *3 *2)) (-4 *2 (-928 (-931 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1145 (-48))) (-5 *3 (-596 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) + (-12 (-5 *3 (-627 *6)) + (-4 *6 + (-13 (-830) + (-10 -8 (-15 -3562 ((-1152) $)) + (-15 -4344 ((-3 $ "failed") (-1152)))))) + (-4 *4 (-1028)) (-4 *5 (-776)) (-5 *1 (-963 *4 *5 *6 *2)) + (-4 *2 (-928 (-931 *4) *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-310 *4)) (-4 *4 (-13 (-811) (-830) (-1028))) + (-5 *2 (-1134)) (-5 *1 (-809 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-310 *5)) (-5 *4 (-111)) + (-4 *5 (-13 (-811) (-830) (-1028))) (-5 *2 (-1134)) + (-5 *1 (-809 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-805)) (-5 *4 (-310 *5)) + (-4 *5 (-13 (-811) (-830) (-1028))) (-5 *2 (-1240)) + (-5 *1 (-809 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-805)) (-5 *4 (-310 *6)) (-5 *5 (-111)) + (-4 *6 (-13 (-811) (-830) (-1028))) (-5 *2 (-1240)) + (-5 *1 (-809 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-811)) (-5 *2 (-1134)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-811)) (-5 *3 (-111)) (-5 *2 (-1134)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-811)) (-5 *3 (-805)) (-5 *2 (-1240)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-811)) (-5 *3 (-805)) (-5 *4 (-111)) (-5 *2 (-1240))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1078 (-1078 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1076))))) +(((*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) +(((*1 *2 *1) + (-12 (-5 *2 (-754)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) + (-14 *4 *2) (-4 *5 (-169)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-900)) (-5 *1 (-162 *3 *4)) + (-4 *3 (-163 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-900)))) + ((*1 *2) + (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1211 *3)) + (-5 *2 (-900)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) - (-4 *3 (-1208 (-167 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-897)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)))) - ((*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358)))) - ((*1 *2 *1) - (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1208 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1208 *2)) (-4 *2 (-968 *3)) (-5 *1 (-408 *3 *2 *4 *5)) - (-4 *3 (-302)) (-4 *5 (-13 (-404 *2 *4) (-1014 *2))))) + (-12 (-4 *4 (-357)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) + (-5 *2 (-754)) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-671 *5)) (-5 *4 (-1235 *5)) (-4 *5 (-357)) + (-5 *2 (-754)) (-5 *1 (-649 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4367)))) + (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-5 *2 (-754)) + (-5 *1 (-650 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-1208 *2)) (-4 *2 (-968 *3)) - (-5 *1 (-409 *3 *2 *4 *5 *6)) (-4 *3 (-302)) (-4 *5 (-404 *2 *4)) - (-14 *6 (-1232 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-897)) (-4 *5 (-1025)) - (-4 *2 (-13 (-399) (-1014 *5) (-358) (-1171) (-279))) - (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1208 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-596 (-488)))) (-5 *1 (-488)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-596 (-488))) (-5 *1 (-488)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1145 (-488))) (-5 *3 (-625 (-596 (-488)))) - (-5 *1 (-488)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1145 (-488))) (-5 *3 (-596 (-488))) (-5 *1 (-488)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1232 *4)) (-5 *3 (-897)) (-4 *4 (-344)) - (-5 *1 (-521 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-446)) (-4 *5 (-705 *4 *2)) (-4 *2 (-1208 *4)) - (-5 *1 (-755 *4 *2 *5 *3)) (-4 *3 (-1208 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)))) - ((*1 *1 *1) (-4 *1 (-1034)))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) - (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) - (-4 *3 (-362 *4)))) - ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1149)) - (-4 *4 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) - (-5 *1 (-784 *4 *2)) (-4 *2 (-13 (-29 *4) (-1171) (-935))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-839))) ((*1 *1 *1 *1) (-5 *1 (-839))) - ((*1 *1 *1) (-5 *1 (-839))) + (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-4 *3 (-544)) (-5 *2 (-754)))) ((*1 *2 *3) - (-12 (-5 *2 (-1129 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025))))) -(((*1 *2 *3 *2) - (-12 (-4 *1 (-767)) (-5 *2 (-1011)) - (-5 *3 - (-2 (|:| |fn| (-311 (-221))) - (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) - (|:| |relerr| (-221)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-767)) (-5 *2 (-1011)) - (-5 *3 - (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) - (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) - (|:| |relerr| (-221))))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-544)) - (-4 *7 (-925 *3 *5 *6)) - (-5 *2 (-2 (|:| -3564 (-751)) (|:| -3340 *8) (|:| |radicand| *8))) - (-5 *1 (-929 *5 *6 *3 *7 *8)) (-5 *4 (-751)) - (-4 *8 - (-13 (-358) - (-10 -8 (-15 -1356 (*7 $)) (-15 -1368 (*7 $)) (-15 -1683 ($ *7)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-518))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))) -(((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-1025)))) + (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) + (-4 *6 (-367 *4)) (-5 *2 (-754)) (-5 *1 (-670 *4 *5 *6 *3)) + (-4 *3 (-669 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *3 (-544)) (-5 *2 (-112)) (-5 *1 (-605 *3 *4)) - (-4 *4 (-1208 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) - (-4 *4 (-707)))) + (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-544)) + (-5 *2 (-754))))) +(((*1 *1 *2) (-12 (-5 *2 (-900)) (-4 *1 (-362)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-900)) (-5 *2 (-1235 *4)) (-5 *1 (-520 *4)) + (-4 *4 (-343)))) ((*1 *2 *1) - (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) - (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-885)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-925 *4 *5 *6)) (-5 *2 (-413 (-1145 *7))) - (-5 *1 (-882 *4 *5 *6 *7)) (-5 *3 (-1145 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-885)) (-4 *5 (-1208 *4)) (-5 *2 (-413 (-1145 *5))) - (-5 *1 (-883 *4 *5)) (-5 *3 (-1145 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)) (-4 *2 (-537)))) - ((*1 *1 *1) (-4 *1 (-1034)))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) - (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-625 (-1232 *4))) (-5 *1 (-361 *3 *4)) - (-4 *3 (-362 *4)))) - ((*1 *2) - (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-544)) - (-5 *2 (-625 (-1232 *3)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1129 (-552))) (-5 *1 (-1133 *4)) (-4 *4 (-1025)) - (-5 *3 (-552))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-766))))) + (-12 (-4 *2 (-830)) (-5 *1 (-696 *2 *3 *4)) (-4 *3 (-1076)) + (-14 *4 + (-1 (-111) (-2 (|:| -4153 *2) (|:| -4067 *3)) + (-2 (|:| -4153 *2) (|:| -4067 *3))))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1080)) (-5 *1 (-274))))) +(((*1 *2 *2) + (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-144)) + (-4 *3 (-301)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *1 (-956 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) + (-5 *2 (-1014)) (-5 *1 (-731))))) +(((*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) +(((*1 *2 *2) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-32 *3 *4)) + (-4 *4 (-424 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-754)) (-5 *1 (-113)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-113)))) + ((*1 *2 *2) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *4)) + (-4 *4 (-424 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-113)) (-5 *1 (-160)))) + ((*1 *2 *2) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *4)) + (-4 *4 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-295 *3)) (-4 *3 (-296)))) + ((*1 *2 *2) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) + ((*1 *2 *2) + (-12 (-5 *2 (-113)) (-4 *4 (-830)) (-5 *1 (-423 *3 *4)) + (-4 *3 (-424 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *4)) + (-4 *4 (-424 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-598 *3)) (-4 *3 (-830)))) + ((*1 *2 *2) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *4)) + (-4 *4 (-13 (-424 *3) (-981) (-1174))))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-998))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-827)) - (-5 *2 (-2 (|:| |val| *1) (|:| -3564 (-552)))) (-4 *1 (-425 *3)))) + (-12 (-4 *1 (-955 *3 *4 *2 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-1042 *3 *4 *2)) (-4 *2 (-830)))) ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-868 *3)) (|:| -3564 (-868 *3)))) - (-5 *1 (-868 *3)) (-4 *3 (-1073)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) - (-4 *7 (-925 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -3564 (-552)))) - (-5 *1 (-926 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-358) - (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) - (-15 -1368 (*7 $)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-1185))) (-5 *1 (-517))))) -(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) - ((*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222))))) -(((*1 *1 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170)))) - ((*1 *1 *1) - (-12 (-5 *1 (-609 *2 *3 *4)) (-4 *2 (-827)) - (-4 *3 (-13 (-170) (-698 (-402 (-552))))) (-14 *4 (-897)))) - ((*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) - ((*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-625 (-1145 *7))) (-5 *3 (-1145 *7)) - (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-885)) (-4 *5 (-773)) - (-4 *6 (-827)) (-5 *1 (-882 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-625 (-1145 *5))) (-5 *3 (-1145 *5)) - (-4 *5 (-1208 *4)) (-4 *4 (-885)) (-5 *1 (-883 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)) (-4 *2 (-537)))) - ((*1 *1 *1) (-4 *1 (-1034)))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) - (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))) + (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *2 (-830))))) +(((*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-127))))) +(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-805))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-498)) (-5 *3 (-1094)) (-5 *1 (-1091))))) (((*1 *2 *1) - (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-544)) - (-5 *2 (-1145 *3))))) + (-12 (-4 *2 (-1189)) (-5 *1 (-852 *3 *2)) (-4 *3 (-1189)))) + ((*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) +(((*1 *1 *2) + (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-357)) + (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *6))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4367)) (-4 *1 (-239 *2)) (-4 *2 (-1189))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-803)) (-14 *5 (-1152)) + (-5 *2 (-552)) (-5 *1 (-1090 *4 *5))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-871 *4)) (-4 *4 (-1076)) (-5 *2 (-111)) + (-5 *1 (-868 *4 *5)) (-4 *5 (-1076)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-871 *5)) (-4 *5 (-1076)) (-5 *2 (-111)) + (-5 *1 (-869 *5 *3)) (-4 *3 (-1189)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 *6)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) + (-4 *6 (-1189)) (-5 *2 (-111)) (-5 *1 (-869 *5 *6))))) (((*1 *1 *1) - (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1025)) (-4 *3 (-827)) - (-4 *4 (-261 *3)) (-4 *5 (-773))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |nullBranch| "null") - (|:| |assignmentBranch| - (-2 (|:| |var| (-1149)) - (|:| |arrayIndex| (-625 (-928 (-552)))) - (|:| |rand| - (-2 (|:| |ints2Floats?| (-112)) (|:| -2149 (-839)))))) - (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1149)) (|:| |rand| (-839)) - (|:| |ints2Floats?| (-112)))) - (|:| |conditionalBranch| - (-2 (|:| |switch| (-1148)) (|:| |thenClause| (-325)) - (|:| |elseClause| (-325)))) - (|:| |returnBranch| - (-2 (|:| -1916 (-112)) - (|:| -3800 - (-2 (|:| |ints2Floats?| (-112)) (|:| -2149 (-839)))))) - (|:| |blockBranch| (-625 (-325))) - (|:| |commentBranch| (-625 (-1131))) (|:| |callBranch| (-1131)) - (|:| |forBranch| - (-2 (|:| -3315 (-1065 (-928 (-552)))) - (|:| |span| (-928 (-552))) (|:| -1300 (-325)))) - (|:| |labelBranch| (-1093)) - (|:| |loopBranch| (-2 (|:| |switch| (-1148)) (|:| -1300 (-325)))) - (|:| |commonBranch| - (-2 (|:| -1288 (-1149)) (|:| |contents| (-625 (-1149))))) - (|:| |printBranch| (-625 (-839))))) - (-5 *1 (-325))))) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) (((*1 *2 *3) - (-12 (-5 *2 (-1129 (-552))) (-5 *1 (-1133 *4)) (-4 *4 (-1025)) - (-5 *3 (-552))))) -(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-766))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1149)) (-4 *4 (-1025)) (-4 *4 (-827)) - (-5 *2 (-2 (|:| |var| (-596 *1)) (|:| -3564 (-552)))) - (-4 *1 (-425 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1025)) (-4 *4 (-827)) - (-5 *2 (-2 (|:| |var| (-596 *1)) (|:| -3564 (-552)))) - (-4 *1 (-425 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1085)) (-4 *3 (-827)) - (-5 *2 (-2 (|:| |var| (-596 *1)) (|:| -3564 (-552)))) - (-4 *1 (-425 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-868 *3)) (|:| -3564 (-751)))) - (-5 *1 (-868 *3)) (-4 *3 (-1073)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-925 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-827)) (-5 *2 (-2 (|:| |var| *5) (|:| -3564 (-751)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) - (-4 *7 (-925 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -3564 (-552)))) - (-5 *1 (-926 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-358) - (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) - (-15 -1368 (*7 $)))))))) + (-12 (-5 *2 (-166 *4)) (-5 *1 (-178 *4 *3)) + (-4 *4 (-13 (-357) (-828))) (-4 *3 (-1211 *2))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-129)))) (((*1 *2 *2) - (-12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) - (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-928 *6)) (-5 *4 (-1149)) - (-5 *5 (-820 *7)) - (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-4 *7 (-13 (-1171) (-29 *6))) (-5 *1 (-220 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1145 *6)) (-5 *4 (-820 *6)) - (-4 *6 (-13 (-1171) (-29 *5))) - (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-220 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) - (-4 *4 (-1025)) (-4 *4 (-170)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)) - (-4 *3 (-170))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-625 (-1145 *7))) (-5 *3 (-1145 *7)) - (-4 *7 (-925 *5 *6 *4)) (-4 *5 (-885)) (-4 *6 (-773)) - (-4 *4 (-827)) (-5 *1 (-882 *5 *6 *4 *7))))) -(((*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))) - ((*1 *2 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))) - ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)) (-4 *2 (-302)))) - ((*1 *2 *1) (-12 (-4 *1 (-1034)) (-5 *2 (-552))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) - (-4 *4 (-368 *3)) (-4 *5 (-368 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-544)) - (-5 *2 (-1145 *3))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-897)) (-4 *3 (-358)) - (-14 *4 (-969 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1208 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-544)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) - ((*1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) - ((*1 *1 *1) (|partial| -4 *1 (-703))) - ((*1 *1 *1) (|partial| -4 *1 (-707))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1042 *3 *2)) (-4 *3 (-13 (-825) (-358))) - (-4 *2 (-1208 *3)))) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-897)) (-5 *1 (-766))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1085)) (-4 *3 (-827)) (-5 *2 (-625 *1)) - (-4 *1 (-425 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3)) - (-4 *3 (-1073)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *2 (-625 *1)) (-4 *1 (-925 *3 *4 *5)))) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *1 *1) (-4 *1 (-278))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) - (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-625 *3)) - (-5 *1 (-926 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-358) - (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) - (-15 -1368 (*7 $)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-820 *4)) (-5 *3 (-596 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1171) (-29 *6))) - (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-220 *6 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) - ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1025)) (-14 *3 (-625 (-1149))))) - ((*1 *1 *1) - (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827))) - (-14 *3 (-625 (-1149))))) - ((*1 *1 *1) - (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1073)))) + (-12 (-5 *3 (-412 *4)) (-4 *4 (-544)) + (-5 *2 (-627 (-2 (|:| -3069 (-754)) (|:| |logand| *4)))) + (-5 *1 (-314 *4)))) ((*1 *1 *1) - (-12 (-14 *2 (-625 (-1149))) (-4 *3 (-170)) - (-4 *5 (-234 (-1471 *2) (-751))) - (-14 *6 - (-1 (-112) (-2 (|:| -3123 *4) (|:| -3564 *5)) - (-2 (|:| -3123 *4) (|:| -3564 *5)))) - (-5 *1 (-455 *2 *3 *4 *5 *6 *7)) (-4 *4 (-827)) - (-4 *7 (-925 *3 *5 (-841 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-502 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-827)))) - ((*1 *1 *1) - (-12 (-4 *2 (-544)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1208 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-689 *2)) (-4 *2 (-1025)))) - ((*1 *1 *1) - (-12 (-5 *1 (-716 *2 *3)) (-4 *3 (-827)) (-4 *2 (-1025)) - (-4 *3 (-707)))) - ((*1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *2 (-827)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1179 *4 *5 *3 *6)) (-4 *4 (-544)) (-4 *5 (-773)) - (-4 *3 (-827)) (-4 *6 (-1039 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *6)) - (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-625 (-881 *3))) (-5 *1 (-880 *3)) (-4 *3 (-1073))))) -(((*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-213)))) - ((*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-481)))) - ((*1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)) (-4 *2 (-302)))) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) + (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) ((*1 *2 *1) - (-12 (-5 *2 (-402 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))) - ((*1 *1 *1) (-4 *1 (-1034)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1073)) (-4 *5 (-1073)) - (-4 *6 (-1073)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-664 *4 *5 *6))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-544)) (-4 *2 (-170))))) -(((*1 *1 *1 *1) (-5 *1 (-129)))) -(((*1 *1 *2) - (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1131)) (-5 *1 (-766))))) + (-12 (-5 *2 (-646 *3 *4)) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) + (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-754)) (-4 *4 (-13 (-1028) (-700 (-401 (-552))))) + (-4 *5 (-830)) (-5 *1 (-1251 *4 *5 *2)) (-4 *2 (-1256 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-5 *1 (-1255 *3 *4)) + (-4 *4 (-700 (-401 (-552)))) (-4 *3 (-830)) (-4 *4 (-169))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-827)) (-5 *2 (-625 *1)) - (-4 *1 (-425 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3)) - (-4 *3 (-1073)))) + (-12 (-5 *2 (-1078 *3)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *2 (-625 *1)) (-4 *1 (-925 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) - (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-625 *3)) - (-5 *1 (-926 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-358) - (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) - (-15 -1368 (*7 $)))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1131)) - (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-112)) (-5 *1 (-220 *4 *5)) (-4 *5 (-13 (-1171) (-29 *4)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1)) - (-4 *1 (-925 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-112))))) + (-12 (-5 *2 (-1078 *3)) (-5 *1 (-884 *3)) (-4 *3 (-1076))))) +(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1189))))) +(((*1 *2 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) +(((*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-1156))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1028)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-1211 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-544)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-1179 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-552)) (-5 *5 (-671 (-220))) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *3 (-220)) + (-5 *2 (-1014)) (-5 *1 (-732))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-754)) (-4 *3 (-544)) (-5 *1 (-948 *3 *2)) + (-4 *2 (-1211 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-807))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-900)) (-5 *4 (-412 *6)) (-4 *6 (-1211 *5)) + (-4 *5 (-1028)) (-5 *2 (-627 *6)) (-5 *1 (-437 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) (((*1 *2 *1) - (-12 (-5 *2 (-625 (-881 *3))) (-5 *1 (-880 *3)) (-4 *3 (-1073))))) -(((*1 *1 *1) (-4 *1 (-1034)))) + (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-627 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) +(((*1 *2 *3 *2 *3) + (-12 (-5 *2 (-431)) (-5 *3 (-1152)) (-5 *1 (-1155)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-431)) (-5 *3 (-1152)) (-5 *1 (-1155)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-431)) (-5 *3 (-627 (-1152))) (-5 *4 (-1152)) + (-5 *1 (-1155)))) + ((*1 *2 *3 *2 *3 *1) + (-12 (-5 *2 (-431)) (-5 *3 (-1152)) (-5 *1 (-1155)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-431)) (-5 *3 (-1152)) (-5 *1 (-1156)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-431)) (-5 *3 (-627 (-1152))) (-5 *1 (-1156))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1073)) (-4 *6 (-1073)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-664 *4 *5 *6)) (-4 *4 (-1073))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-544)) (-4 *2 (-170))))) -(((*1 *1 *1 *1) (-5 *1 (-129)))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-625 *4)) (-4 *4 (-1073)) (-4 *4 (-1186)) (-5 *2 (-112)) - (-5 *1 (-1129 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-897)) (-5 *1 (-766))))) + (-12 (-4 *4 (-1028)) + (-4 *2 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))) + (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1211 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-900)) (-4 *5 (-1028)) + (-4 *2 (-13 (-398) (-1017 *5) (-357) (-1174) (-278))) + (-5 *1 (-436 *5 *3 *2)) (-4 *3 (-1211 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-627 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-411 *4))))) +(((*1 *1 *1) (-4 *1 (-537)))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) + (-4 *4 (-343))))) +(((*1 *2) + (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) + (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) + (-5 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) + (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) + (-5 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-671 (-401 (-552)))) (-5 *2 (-627 *4)) (-5 *1 (-762 *4)) + (-4 *4 (-13 (-357) (-828)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *1) (-5 *1 (-220))) ((*1 *1) (-5 *1 (-373)))) +(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1134)) (-5 *1 (-299))))) (((*1 *2 *1) - (-12 (-4 *3 (-1025)) (-4 *4 (-1073)) (-5 *2 (-625 *1)) - (-4 *1 (-377 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-625 (-716 *3 *4))) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) - (-4 *4 (-707)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1)) - (-4 *1 (-925 *3 *4 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-528))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-322 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-509 *3 *4)) - (-14 *4 (-552))))) + (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) + (-4 *4 (-1028))))) (((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1025)) (-14 *3 (-625 (-1149))))) - ((*1 *1 *1) - (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827))) - (-14 *3 (-625 (-1149)))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1025)) (-5 *1 (-50 *2 *3)) (-14 *3 (-625 (-1149))))) - ((*1 *2 *1) - (-12 (-5 *2 (-311 *3)) (-5 *1 (-219 *3 *4)) - (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-625 (-1149))))) - ((*1 *2 *1) - (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1073)) (-4 *2 (-1025)))) - ((*1 *2 *1) - (-12 (-14 *3 (-625 (-1149))) (-4 *5 (-234 (-1471 *3) (-751))) - (-14 *6 - (-1 (-112) (-2 (|:| -3123 *4) (|:| -3564 *5)) - (-2 (|:| -3123 *4) (|:| -3564 *5)))) - (-4 *2 (-170)) (-5 *1 (-455 *3 *2 *4 *5 *6 *7)) (-4 *4 (-827)) - (-4 *7 (-925 *2 *5 (-841 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-502 *2 *3)) (-4 *3 (-827)) (-4 *2 (-1073)))) - ((*1 *2 *1) - (-12 (-4 *2 (-544)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1208 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-689 *2)) (-4 *2 (-1025)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1025)) (-5 *1 (-716 *2 *3)) (-4 *3 (-827)) - (-4 *3 (-707)))) - ((*1 *2 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)))) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-842))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-552)) (|has| *1 (-6 -4367)) (-4 *1 (-367 *3)) + (-4 *3 (-1189))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-627 *1)) (-4 *1 (-1042 *4 *5 *6)) (-4 *4 (-1028)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-830)) (-5 *2 (-111)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *1 (-1182 *5 *6 *7 *3)) + (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-111))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-900)) (-5 *2 (-1240)) (-5 *1 (-209 *4)) + (-4 *4 + (-13 (-830) + (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 (*2 $)) + (-15 -4103 (*2 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *3 (-772)) (-4 *4 (-827)) - (-4 *2 (-1025)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *2 (-827))))) -(((*1 *2 *1) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-112))))) + (-12 (-5 *2 (-1240)) (-5 *1 (-209 *3)) + (-4 *3 + (-13 (-830) + (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 (*2 $)) + (-15 -4103 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-494))))) (((*1 *2 *1) - (-12 (-5 *2 (-625 (-625 (-751)))) (-5 *1 (-880 *3)) (-4 *3 (-1073))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-163 *3 *4)) - (-4 *3 (-164 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1186)) (-5 *2 (-751)) - (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-827)) (-5 *2 (-751)) (-5 *1 (-424 *3 *4)) - (-4 *3 (-425 *4)))) - ((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-536 *3)) (-4 *3 (-537)))) - ((*1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-751)))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-776 *3 *4)) - (-4 *3 (-777 *4)))) - ((*1 *2) - (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-967 *3 *4)) - (-4 *3 (-968 *4)))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-972 *3 *4)) - (-4 *3 (-973 *4)))) - ((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-987 *3)) (-4 *3 (-988)))) - ((*1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-751)))) - ((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1033 *3)) (-4 *3 (-1034))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-552)) (-5 *1 (-1168 *3)) (-4 *3 (-1025))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1073)) (-4 *6 (-1073)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-664 *4 *5 *6)) (-4 *5 (-1073))))) -(((*1 *1 *1) (-5 *1 (-221))) - ((*1 *1 *1) - (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) - (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) - ((*1 *1 *1) (-5 *1 (-374))) ((*1 *1) (-5 *1 (-374)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1131)) (-4 *1 (-359 *3 *4)) (-4 *3 (-1073)) - (-4 *4 (-1073))))) -(((*1 *2 *3 *1) - (-12 + (-12 (-4 *4 (-1076)) (-5 *2 (-111)) (-5 *1 (-864 *3 *4 *5)) + (-4 *3 (-1076)) (-4 *5 (-648 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-868 *3 *4)) (-4 *3 (-1076)) + (-4 *4 (-1076))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *1 *1 *1) (-5 *1 (-842)))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-521))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-627 *6)) (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) + (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) + (-4 *3 (-544))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-373)))) + ((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-373))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-1152)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-111))))) +(((*1 *1) + (-12 (-4 *1 (-398)) (-1681 (|has| *1 (-6 -4357))) + (-1681 (|has| *1 (-6 -4349))))) + ((*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1076)) (-4 *2 (-830)))) + ((*1 *1 *1 *1) (-4 *1 (-830))) + ((*1 *2 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-830)))) + ((*1 *1) (-5 *1 (-1096)))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-900)) + (-5 *2 (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096)))))) + (-5 *1 (-340 *4)) (-4 *4 (-343))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1152)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-627 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-627 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3446 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1174) (-27) (-424 *8))) + (-4 *8 (-13 (-445) (-830) (-144) (-1017 *3) (-623 *3))) + (-5 *3 (-552)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -2791 *4) (|:| |sol?| (-111)))) + (-5 *1 (-992 *8 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-1193)) + (-4 *6 (-1211 (-401 *5))) (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -2667 (-751)) (|:| |period| (-751)))) - (-5 *1 (-1129 *4)) (-4 *4 (-1186)) (-5 *3 (-751))))) -(((*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-1131)) (-5 *1 (-766))))) -(((*1 *2 *1) (-12 (-4 *1 (-321 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) - ((*1 *2 *1) (-12 (-4 *1 (-689 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) - ((*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-625 *6)) (-4 *1 (-925 *4 *5 *6)) (-4 *4 (-1025)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 (-751))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-925 *4 *5 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) - (-4 *3 (-827)) (-5 *2 (-751))))) -(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-322 *3)) (-4 *3 (-1186)))) + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-336 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) + (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1235 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) + (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-751)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1186)) - (-14 *4 (-552))))) + (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1211 *3)) + (-5 *2 (-671 *3))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-740))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-552) (-552))) (-5 *1 (-355 *3)) (-4 *3 (-1076)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-754) (-754))) (-5 *1 (-380 *3)) (-4 *3 (-1076)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-631 *3 *4 *5)) (-4 *3 (-1076))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) + (-4 *4 (-776)) (-4 *5 (-830)) (-4 *3 (-544))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) + (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 + (-3 (|:| |%expansion| (-307 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134)))))) + (-5 *1 (-414 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1174) (-424 *5))) + (-14 *6 (-1152)) (-14 *7 *3)))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) - (-14 *4 (-625 (-1149))))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) - (-14 *4 (-625 (-1149)))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) - ((*1 *2 *1) - (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1073)))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-552)))) ((*1 *2 *1) - (-12 (-14 *3 (-625 (-1149))) (-4 *4 (-170)) - (-4 *6 (-234 (-1471 *3) (-751))) - (-14 *7 - (-1 (-112) (-2 (|:| -3123 *5) (|:| -3564 *6)) - (-2 (|:| -3123 *5) (|:| -3564 *6)))) - (-5 *2 (-694 *5 *6 *7)) (-5 *1 (-455 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-827)) (-4 *8 (-925 *4 *6 (-841 *3))))) - ((*1 *2 *1) - (-12 (-4 *2 (-707)) (-4 *2 (-827)) (-5 *1 (-716 *3 *2)) - (-4 *3 (-1025)))) - ((*1 *1 *1) - (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-772)) - (-4 *4 (-827))))) + (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1189)) (-5 *1 (-179 *3 *2)) (-4 *2 (-656 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-357) (-1174) (-981)))))) (((*1 *2) - (-12 (-4 *4 (-358)) (-5 *2 (-897)) (-5 *1 (-323 *3 *4)) - (-4 *3 (-324 *4)))) - ((*1 *2) - (-12 (-4 *4 (-358)) (-5 *2 (-813 (-897))) (-5 *1 (-323 *3 *4)) - (-4 *3 (-324 *4)))) - ((*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-897)))) + (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) + (-5 *2 (-754)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-813 (-897)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-625 (-881 *3))) (-4 *3 (-1073)) (-5 *1 (-880 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-669 *5)) (-4 *5 (-1025)) (-5 *1 (-1029 *3 *4 *5)) - (-14 *3 (-751)) (-14 *4 (-751))))) -(((*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-552)))) - ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) - (-4 *3 (-1208 *4)) (-5 *2 (-552)))) - ((*1 *2 *3) - (|partial| -12 - (-4 *4 (-13 (-544) (-827) (-1014 *2) (-621 *2) (-446))) - (-5 *2 (-552)) (-5 *1 (-1089 *4 *3)) - (-4 *3 (-13 (-27) (-1171) (-425 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-820 *3)) - (-4 *3 (-13 (-27) (-1171) (-425 *6))) - (-4 *6 (-13 (-544) (-827) (-1014 *2) (-621 *2) (-446))) - (-5 *2 (-552)) (-5 *1 (-1089 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-1131)) - (-4 *6 (-13 (-544) (-827) (-1014 *2) (-621 *2) (-446))) - (-5 *2 (-552)) (-5 *1 (-1089 *6 *3)) - (-4 *3 (-13 (-27) (-1171) (-425 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-446)) (-5 *2 (-552)) - (-5 *1 (-1090 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-820 (-402 (-928 *6)))) - (-5 *3 (-402 (-928 *6))) (-4 *6 (-446)) (-5 *2 (-552)) - (-5 *1 (-1090 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-402 (-928 *6))) (-5 *4 (-1149)) - (-5 *5 (-1131)) (-4 *6 (-446)) (-5 *2 (-552)) (-5 *1 (-1090 *6)))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-552)) (-5 *1 (-1168 *3)) (-4 *3 (-1025))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1073)) (-4 *5 (-1073)) - (-4 *6 (-1073)) (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *4 *5 *6))))) -(((*1 *1 *1) (-4 *1 (-171))) - ((*1 *1 *1) - (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-625 (-374))) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-625 (-374))) (-5 *1 (-462)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 (-374))) (-5 *1 (-462)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-897)) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-1233)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1129 *3))) (-5 *1 (-1129 *3)) (-4 *3 (-1186))))) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-5 *2 (-754)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-754))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-928 (-167 *4))) (-4 *4 (-170)) - (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-928 (-167 *5))) (-5 *4 (-897)) (-4 *5 (-170)) - (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) + (-12 (-5 *3 (-627 (-2 (|:| -1727 *4) (|:| -3567 (-552))))) + (-4 *4 (-1211 (-552))) (-5 *2 (-720 (-754))) (-5 *1 (-435 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-928 *4)) (-4 *4 (-1025)) - (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-928 *5)) (-5 *4 (-897)) (-4 *5 (-1025)) - (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544)) - (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-897)) (-4 *5 (-544)) - (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-402 (-928 (-167 *4)))) (-4 *4 (-544)) - (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-402 (-928 (-167 *5)))) (-5 *4 (-897)) - (-4 *5 (-544)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) - (-5 *1 (-765 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-311 *4)) (-4 *4 (-544)) (-4 *4 (-827)) - (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-311 *5)) (-5 *4 (-897)) (-4 *5 (-544)) - (-4 *5 (-827)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) - (-5 *1 (-765 *5)))) + (-12 (-5 *3 (-412 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-1028)) + (-5 *2 (-720 (-754))) (-5 *1 (-437 *4 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-627 (-931 (-552)))) (-5 *4 (-627 (-1152))) + (-5 *2 (-627 (-627 (-373)))) (-5 *1 (-1002)) (-5 *5 (-373)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-311 (-167 *4))) (-4 *4 (-544)) (-4 *4 (-827)) - (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-311 (-167 *5))) (-5 *4 (-897)) (-4 *5 (-544)) - (-4 *5 (-827)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) - (-5 *1 (-765 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-625 *6)) (-4 *1 (-925 *4 *5 *6)) (-4 *4 (-1025)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-751)))) - ((*1 *2 *1) - (-12 (-4 *1 (-925 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-827)) (-5 *2 (-751))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) - (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) - (|:| |relerr| (-221)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1129 (-221))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3315 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-547))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-322 *3)) (-4 *3 (-1186)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-552)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1186)) (-14 *4 *2)))) -(((*1 *1 *2) - (-12 (-5 *2 (-311 *3)) (-4 *3 (-13 (-1025) (-827))) - (-5 *1 (-219 *3 *4)) (-14 *4 (-625 (-1149)))))) -(((*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) - ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-827))))) + (-12 (-5 *3 (-1025 *4 *5)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) + (-14 *5 (-627 (-1152))) (-5 *2 (-627 (-627 (-1003 (-401 *4))))) + (-5 *1 (-1261 *4 *5 *6)) (-14 *6 (-627 (-1152))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-828) (-301) (-144) (-1001))) + (-5 *2 (-627 (-627 (-1003 (-401 *5))))) (-5 *1 (-1261 *5 *6 *7)) + (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-828) (-301) (-144) (-1001))) + (-5 *2 (-627 (-627 (-1003 (-401 *5))))) (-5 *1 (-1261 *5 *6 *7)) + (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-828) (-301) (-144) (-1001))) + (-5 *2 (-627 (-627 (-1003 (-401 *5))))) (-5 *1 (-1261 *5 *6 *7)) + (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-931 *4))) + (-4 *4 (-13 (-828) (-301) (-144) (-1001))) + (-5 *2 (-627 (-627 (-1003 (-401 *4))))) (-5 *1 (-1261 *4 *5 *6)) + (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-552)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-5 *2 (-1240)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-928 *4 *5 *6))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-552)) (-4 *4 (-169)) (-4 *5 (-367 *4)) + (-4 *6 (-367 *4)) (-5 *1 (-670 *4 *5 *6 *2)) + (-4 *2 (-669 *4 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-828) (-357))) (-5 *2 (-111)) (-5 *1 (-1038 *4 *3)) + (-4 *3 (-1211 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-445)) + (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *1 (-956 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-627 *7)) (-5 *3 (-111)) (-4 *7 (-1042 *4 *5 *6)) + (-4 *4 (-445)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) + (-5 *1 (-956 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *4 (-358)) (-5 *2 (-751)) (-5 *1 (-323 *3 *4)) - (-4 *3 (-324 *4)))) - ((*1 *2) (-12 (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-5 *2 (-751))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-879 *3)) (-4 *3 (-1073)) (-5 *2 (-1075 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1073)) (-5 *2 (-1075 (-625 *4))) (-5 *1 (-880 *4)) - (-5 *3 (-625 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1073)) (-5 *2 (-1075 (-1075 *4))) (-5 *1 (-880 *4)) - (-5 *3 (-1075 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1075 *3)) (-5 *1 (-880 *3)) (-4 *3 (-1073))))) -(((*1 *2 *1) - (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) - (-4 *5 (-368 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) - (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1167)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1167))))) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-288 (-401 (-931 *5)))) (-5 *4 (-1152)) + (-4 *5 (-13 (-301) (-830) (-144))) + (-5 *2 (-1141 (-627 (-310 *5)) (-627 (-288 (-310 *5))))) + (-5 *1 (-1105 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) + (-4 *5 (-13 (-301) (-830) (-144))) + (-5 *2 (-1141 (-627 (-310 *5)) (-627 (-288 (-310 *5))))) + (-5 *1 (-1105 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 (-754))) (-5 *3 (-168)) (-5 *1 (-1140 *4 *5)) + (-14 *4 (-900)) (-4 *5 (-1028))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1235 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-357)) + (-4 *1 (-707 *5 *6)) (-4 *5 (-169)) (-4 *6 (-1211 *5)) + (-5 *2 (-671 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1073)) (-4 *4 (-1073)) - (-4 *6 (-1073)) (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *5 *4 *6))))) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 *4)) + (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-359 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-5 *2 (-1131))))) + (-12 (-5 *2 (-2 (|:| |preimage| (-627 *3)) (|:| |image| (-627 *3)))) + (-5 *1 (-884 *3)) (-4 *3 (-1076))))) (((*1 *2 *1) - (-12 (-5 *2 (-839)) (-5 *1 (-1129 *3)) (-4 *3 (-1073)) - (-4 *3 (-1186))))) + (-12 (-5 *2 (-1220 *3 *4 *5)) (-5 *1 (-313 *3 *4 *5)) + (-4 *3 (-13 (-357) (-830))) (-14 *4 (-1152)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-552)))) + ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-412 *3)) (-4 *3 (-544)))) + ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-681)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1076)) (-5 *1 (-696 *3 *2 *4)) (-4 *3 (-830)) + (-14 *4 + (-1 (-111) (-2 (|:| -4153 *3) (|:| -4067 *2)) + (-2 (|:| -4153 *3) (|:| -4067 *2))))))) +(((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1019))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-928 *4)) (-4 *4 (-1025)) (-4 *4 (-598 *2)) - (-5 *2 (-374)) (-5 *1 (-765 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-928 *5)) (-5 *4 (-897)) (-4 *5 (-1025)) - (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544)) - (-4 *4 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-897)) (-4 *5 (-544)) - (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-311 *4)) (-4 *4 (-544)) (-4 *4 (-827)) - (-4 *4 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-311 *5)) (-5 *4 (-897)) (-4 *5 (-544)) - (-4 *5 (-827)) (-4 *5 (-598 *2)) (-5 *2 (-374)) - (-5 *1 (-765 *5))))) + (-12 (-5 *3 (-931 *5)) (-4 *5 (-1028)) (-5 *2 (-242 *4 *5)) + (-5 *1 (-923 *4 *5)) (-14 *4 (-627 (-1152)))))) (((*1 *2 *1) - (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)) - (-4 *2 (-446)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 *4)) (-4 *4 (-1208 (-552))) (-5 *2 (-625 (-552))) - (-5 *1 (-480 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-446)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-925 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *2 (-827)) (-4 *3 (-446))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-322 *3)) (-4 *3 (-1186)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1186)) - (-14 *4 (-552))))) -(((*1 *1 *1) - (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827))) - (-14 *3 (-625 (-1149)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-827)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-344)) (-4 *4 (-324 *3)) (-4 *5 (-1208 *4)) - (-5 *1 (-757 *3 *4 *5 *2 *6)) (-4 *2 (-1208 *5)) (-14 *6 (-897)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *1 (-1251 *3)) (-4 *3 (-358)) (-4 *3 (-363)))) - ((*1 *1 *1) (-12 (-4 *1 (-1251 *2)) (-4 *2 (-358)) (-4 *2 (-363))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1075 (-1075 *3))) (-5 *1 (-880 *3)) (-4 *3 (-1073))))) -(((*1 *2 *1) - (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) - (-4 *5 (-368 *3)) (-5 *2 (-112)))) + (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) - (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1167))))) + (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111))))) +(((*1 *1 *1) (-5 *1 (-111)))) +(((*1 *2 *1) + (-12 (-5 *2 (-842)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 (-754)) + (-14 *4 (-754)) (-4 *5 (-169))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1073)) (-4 *5 (-1073)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-663 *4 *5))))) + (-12 (-5 *3 (-1152)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-684 *4 *5 *6 *7)) + (-4 *4 (-600 (-528))) (-4 *5 (-1189)) (-4 *6 (-1189)) + (-4 *7 (-1189))))) (((*1 *2 *1) - (-12 (-4 *1 (-359 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) - (-4 *5 (-827)) (-5 *2 (-928 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) - (-4 *5 (-827)) (-5 *2 (-928 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-751)) (-4 *1 (-1223 *4)) (-4 *4 (-1025)) - (-5 *2 (-928 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-751)) (-4 *1 (-1223 *4)) (-4 *4 (-1025)) - (-5 *2 (-928 *4))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1129 *3)) (-4 *3 (-1073)) - (-4 *3 (-1186))))) + (-12 (-5 *2 (-1005 (-823 (-552)))) (-5 *1 (-582 *3)) (-4 *3 (-1028))))) +(((*1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) + ((*1 *2 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238))))) +(((*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-108))) (-5 *1 (-172))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -3446 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-357)) (-5 *1 (-562 *4 *2)) (-4 *2 (-1211 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-38 (-402 (-552)))) - (-4 *2 (-170))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-625 *5)) (-5 *4 (-552)) (-4 *5 (-825)) (-4 *5 (-358)) - (-5 *2 (-751)) (-5 *1 (-921 *5 *6)) (-4 *6 (-1208 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-502 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-827))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1149)) (-5 *6 (-112)) - (-4 *7 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) - (-4 *3 (-13 (-1171) (-935) (-29 *7))) - (-5 *2 - (-3 (|:| |f1| (-820 *3)) (|:| |f2| (-625 (-820 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-215 *7 *3)) (-5 *5 (-820 *3))))) -(((*1 *1 *1) (-4 *1 (-239))) - ((*1 *1 *1) - (-12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1208 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (-1523 (-12 (-5 *1 (-289 *2)) (-4 *2 (-358)) (-4 *2 (-1186))) - (-12 (-5 *1 (-289 *2)) (-4 *2 (-467)) (-4 *2 (-1186))))) - ((*1 *1 *1) (-4 *1 (-467))) - ((*1 *2 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-344)) (-5 *1 (-521 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)) (-4 *2 (-358))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-552))))) - (-4 *5 (-827)) (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1253 *5 *4))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-881 *4)) (-4 *4 (-1073)) (-5 *2 (-625 (-751))) - (-5 *1 (-880 *4))))) + (-12 (-5 *3 (-900)) (-5 *1 (-1009 *2)) + (-4 *2 (-13 (-1076) (-10 -8 (-15 -2384 ($ $ $)))))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-132))))) (((*1 *2 *1) - (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) - (-4 *5 (-368 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) - (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1131)) (-5 *1 (-1167))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1073)) (-4 *5 (-1073)) - (-5 *2 (-1 *5)) (-5 *1 (-663 *4 *5))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-359 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1131)) (-5 *2 (-754)) (-5 *1 (-114)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1077)) (-5 *1 (-941))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-552)) (-4 *4 (-13 (-544) (-145))) (-5 *1 (-529 *4 *2)) - (-4 *2 (-1223 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-552)) (-4 *4 (-13 (-358) (-363) (-598 *3))) - (-4 *5 (-1208 *4)) (-4 *6 (-705 *4 *5)) (-5 *1 (-533 *4 *5 *6 *2)) - (-4 *2 (-1223 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-552)) (-4 *4 (-13 (-358) (-363) (-598 *3))) - (-5 *1 (-534 *4 *2)) (-4 *2 (-1223 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1129 *4)) (-5 *3 (-552)) (-4 *4 (-13 (-544) (-145))) - (-5 *1 (-1125 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-38 (-402 (-552)))) - (-4 *2 (-170))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 *4)) (-4 *4 (-825)) (-4 *4 (-358)) (-5 *2 (-751)) - (-5 *1 (-921 *4 *5)) (-4 *5 (-1208 *4))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-552)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-751)) (-4 *5 (-170)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-552)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-751)) (-4 *5 (-170)))) - ((*1 *2 *2 *3) + (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) + (-5 *2 (-2 (|:| |k| (-802 *3)) (|:| |c| *4)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1120)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) + (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) +(((*1 *1 *2 *2) (-12 (-5 *2 - (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4) - (-243 *4 (-402 (-552))))) - (-5 *3 (-625 (-841 *4))) (-14 *4 (-625 (-1149))) (-14 *5 (-751)) - (-5 *1 (-498 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-213))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) - (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *1 (-1245 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-625 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) - (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1245 *5 *6 *7 *8))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-881 *4)) (-4 *4 (-1073)) (-5 *2 (-625 (-751))) - (-5 *1 (-880 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) - (-4 *5 (-368 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) - (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1093)) (-5 *1 (-109)))) - ((*1 *2 *1) (|partial| -12 (-5 *1 (-360 *2)) (-4 *2 (-1073)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1131)) (-5 *1 (-1167))))) + (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) + (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) + (-5 *1 (-1151))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-663 *4 *3)) (-4 *4 (-1073)) - (-4 *3 (-1073))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1145 *4)) (-4 *4 (-344)) - (-4 *2 - (-13 (-397) - (-10 -7 (-15 -1683 (*2 *4)) (-15 -4318 ((-897) *2)) - (-15 -1270 ((-1232 *2) (-897))) (-15 -4104 (*2 *2))))) - (-5 *1 (-351 *2 *4))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-402 *5)) (-4 *4 (-1190)) (-4 *5 (-1208 *4)) - (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1208 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1151 (-402 (-552)))) (-5 *2 (-402 (-552))) - (-5 *1 (-186)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-669 (-311 (-221)))) (-5 *3 (-625 (-1149))) - (-5 *4 (-1232 (-311 (-221)))) (-5 *1 (-201)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-625 (-289 *3))) (-4 *3 (-304 *3)) (-4 *3 (-1073)) - (-4 *3 (-1186)) (-5 *1 (-289 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-304 *2)) (-4 *2 (-1073)) (-4 *2 (-1186)) - (-5 *1 (-289 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-625 *1))) (-4 *1 (-297)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 (-114))) (-5 *3 (-625 (-1 *1 (-625 *1)))) - (-4 *1 (-297)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 (-114))) (-5 *3 (-625 (-1 *1 *1))) (-4 *1 (-297)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-1 *1 *1)) (-4 *1 (-297)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-1 *1 (-625 *1))) (-4 *1 (-297)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-625 (-1 *1 (-625 *1)))) - (-4 *1 (-297)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-625 (-1 *1 *1))) (-4 *1 (-297)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-625 (-289 *3))) (-4 *1 (-304 *3)) (-4 *3 (-1073)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-289 *3)) (-4 *1 (-304 *3)) (-4 *3 (-1073)))) + (-12 (-5 *3 (-627 *4)) (-4 *4 (-1028)) (-5 *2 (-1235 *4)) + (-5 *1 (-1153 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-552))) (-5 *4 (-1151 (-402 (-552)))) - (-5 *1 (-305 *2)) (-4 *2 (-38 (-402 (-552)))))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 *4)) (-5 *3 (-625 *1)) (-4 *1 (-369 *4 *5)) - (-4 *4 (-827)) (-4 *5 (-170)))) - ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-425 *5)) (-4 *5 (-827)) (-4 *5 (-1025)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *4 (-1 *1 (-625 *1))) - (-4 *1 (-425 *5)) (-4 *5 (-827)) (-4 *5 (-1025)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-625 (-751))) - (-5 *4 (-625 (-1 *1 (-625 *1)))) (-4 *1 (-425 *5)) (-4 *5 (-827)) - (-4 *5 (-1025)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-625 (-751))) - (-5 *4 (-625 (-1 *1 *1))) (-4 *1 (-425 *5)) (-4 *5 (-827)) - (-4 *5 (-1025)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-625 (-114))) (-5 *3 (-625 *1)) (-5 *4 (-1149)) - (-4 *1 (-425 *5)) (-4 *5 (-827)) (-4 *5 (-598 (-528))))) - ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1149)) (-4 *1 (-425 *4)) (-4 *4 (-827)) - (-4 *4 (-598 (-528))))) - ((*1 *1 *1) - (-12 (-4 *1 (-425 *2)) (-4 *2 (-827)) (-4 *2 (-598 (-528))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-625 (-1149))) (-4 *1 (-425 *3)) (-4 *3 (-827)) - (-4 *3 (-598 (-528))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1149)) (-4 *1 (-425 *3)) (-4 *3 (-827)) - (-4 *3 (-598 (-528))))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1186)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 *4)) (-5 *3 (-625 *5)) (-4 *1 (-507 *4 *5)) - (-4 *4 (-1073)) (-4 *5 (-1186)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-813 *3)) (-4 *3 (-358)) (-5 *1 (-699 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-879 *2)) (-4 *2 (-1073)))) - ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-402 (-928 *4))) (-5 *3 (-1149)) (-4 *4 (-544)) - (-5 *1 (-1019 *4)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-625 (-1149))) (-5 *4 (-625 (-402 (-928 *5)))) - (-5 *2 (-402 (-928 *5))) (-4 *5 (-544)) (-5 *1 (-1019 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-289 (-402 (-928 *4)))) (-5 *2 (-402 (-928 *4))) - (-4 *4 (-544)) (-5 *1 (-1019 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-625 (-289 (-402 (-928 *4))))) (-5 *2 (-402 (-928 *4))) - (-4 *4 (-544)) (-5 *1 (-1019 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1129 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) - (-5 *2 (-625 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1208 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) - (-5 *2 (-625 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1208 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-544) (-145))) (-5 *1 (-529 *3 *2)) - (-4 *2 (-1223 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-4 *4 (-1208 *3)) - (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1223 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-5 *1 (-534 *3 *2)) - (-4 *2 (-1223 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-13 (-544) (-145))) - (-5 *1 (-1125 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-1025))))) -(((*1 *2 *3) - (-12 (-4 *2 (-358)) (-4 *2 (-825)) (-5 *1 (-921 *2 *3)) - (-4 *3 (-1208 *2))))) -(((*1 *2 *3) - (-12 (-14 *4 (-625 (-1149))) (-14 *5 (-751)) + (-12 (-5 *4 (-900)) (-5 *2 (-1235 *3)) (-5 *1 (-1153 *3)) + (-4 *3 (-1028))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) + (-5 *2 (-1014)) (-5 *1 (-734))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-763 *5 (-844 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) + (-14 *6 (-627 (-1152))) (-5 *2 - (-625 - (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4) - (-243 *4 (-402 (-552)))))) - (-5 *1 (-498 *4 *5)) - (-5 *3 - (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4) - (-243 *4 (-402 (-552)))))))) + (-627 (-1122 *5 (-523 (-844 *6)) (-844 *6) (-763 *5 (-844 *6))))) + (-5 *1 (-612 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-344)) (-5 *2 (-112)) (-5 *1 (-212 *4 *3)) - (-4 *3 (-1208 *4))))) + (-12 (-5 *3 (-1134)) (-5 *2 (-627 (-1157))) (-5 *1 (-1112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) + (-5 *2 (-1014)) (-5 *1 (-736))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1166 *4 *5)) + (-4 *4 (-1076)) (-4 *5 (-1076))))) (((*1 *2 *3) - (-12 (-5 *3 (-1149)) - (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) - (-4 *5 (-13 (-27) (-1171) (-425 *4))))) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1189)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-931 (-373))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) + (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-401 (-931 (-373)))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) + (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-310 (-373))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) + (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-931 (-552))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) + (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-401 (-931 (-552)))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) + (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-310 (-552))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) + (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-333 *3 *4 *5)) + (-14 *3 (-627 *2)) (-14 *4 (-627 *2)) (-4 *5 (-381)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-310 *5)) (-4 *5 (-381)) + (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 (-1152))) + (-14 *4 (-627 (-1152))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-671 (-401 (-931 (-552))))) (-4 *1 (-378)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-671 (-401 (-931 (-373))))) (-4 *1 (-378)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-671 (-931 (-552)))) (-4 *1 (-378)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-671 (-931 (-373)))) (-4 *1 (-378)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-671 (-310 (-552)))) (-4 *1 (-378)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-671 (-310 (-373)))) (-4 *1 (-378)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-401 (-931 (-552)))) (-4 *1 (-390)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-401 (-931 (-373)))) (-4 *1 (-390)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-931 (-552))) (-4 *1 (-390)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-931 (-373))) (-4 *1 (-390)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-552))) (-4 *1 (-390)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-310 (-373))) (-4 *1 (-390)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1235 (-401 (-931 (-552))))) (-4 *1 (-434)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1235 (-401 (-931 (-373))))) (-4 *1 (-434)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1235 (-931 (-552)))) (-4 *1 (-434)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1235 (-931 (-373)))) (-4 *1 (-434)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1235 (-310 (-552)))) (-4 *1 (-434)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1235 (-310 (-373)))) (-4 *1 (-434)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) - (-4 *3 (-13 (-27) (-1171) (-425 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-402 (-552))) - (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) - (-4 *3 (-13 (-27) (-1171) (-425 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))) - (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-289 *3)) (-5 *5 (-402 (-552))) - (-4 *3 (-13 (-27) (-1171) (-425 *6))) - (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-402 (-552)))) (-5 *4 (-289 *8)) - (-5 *5 (-1199 (-402 (-552)))) (-5 *6 (-402 (-552))) - (-4 *8 (-13 (-27) (-1171) (-425 *7))) - (-4 *7 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-453 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-5 *6 (-1199 (-402 (-552)))) - (-5 *7 (-402 (-552))) (-4 *3 (-13 (-27) (-1171) (-425 *8))) - (-4 *8 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-453 *8 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-402 (-552))) (-4 *4 (-1025)) (-4 *1 (-1215 *4 *3)) - (-4 *3 (-1192 *4))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) - (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *1 (-1245 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-625 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) - (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1245 *5 *6 *7 *8))))) + (|partial| -12 (-4 *4 (-343)) (-4 *5 (-323 *4)) (-4 *6 (-1211 *5)) + (-5 *2 (-1148 (-1148 *4))) (-5 *1 (-760 *4 *5 *6 *3 *7)) + (-4 *3 (-1211 *6)) (-14 *7 (-900)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) + (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) + (-4 *1 (-955 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1017 *2)) (-4 *2 (-1189)))) + ((*1 *1 *2) + (|partial| -1559 + (-12 (-5 *2 (-931 *3)) + (-12 (-1681 (-4 *3 (-38 (-401 (-552))))) + (-1681 (-4 *3 (-38 (-552)))) (-4 *5 (-600 (-1152)))) + (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) + (-4 *5 (-830))) + (-12 (-5 *2 (-931 *3)) + (-12 (-1681 (-4 *3 (-537))) (-1681 (-4 *3 (-38 (-401 (-552))))) + (-4 *3 (-38 (-552))) (-4 *5 (-600 (-1152)))) + (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) + (-4 *5 (-830))) + (-12 (-5 *2 (-931 *3)) + (-12 (-1681 (-4 *3 (-971 (-552)))) (-4 *3 (-38 (-401 (-552)))) + (-4 *5 (-600 (-1152)))) + (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) + (-4 *5 (-830))))) + ((*1 *1 *2) + (|partial| -1559 + (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) + (-12 (-1681 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) + (-4 *5 (-600 (-1152)))) + (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))) + (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152)))) + (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-931 (-401 (-552)))) (-4 *1 (-1042 *3 *4 *5)) + (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152))) + (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-830) (-544)))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) + (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) + (-5 *1 (-1151))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-922 *5)) (-4 *5 (-1028)) (-5 *2 (-754)) + (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 (-754))) (-5 *3 (-754)) (-5 *1 (-1140 *4 *5)) + (-14 *4 (-900)) (-4 *5 (-1028)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 (-754))) (-5 *3 (-922 *5)) (-4 *5 (-1028)) + (-5 *1 (-1140 *4 *5)) (-14 *4 (-900))))) (((*1 *2 *1) - (-12 (-5 *2 (-1075 *3)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) + (|partial| -12 (-4 *3 (-1088)) (-4 *3 (-830)) (-5 *2 (-627 *1)) + (-4 *1 (-424 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1075 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1073))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) - (-4 *5 (-368 *3)) (-5 *2 (-552)))) + (|partial| -12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) + (-4 *3 (-1076)))) ((*1 *2 *1) - (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) - (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-552))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-751) *2)) (-5 *4 (-751)) (-4 *2 (-1073)) - (-5 *1 (-658 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-751) *3)) (-4 *3 (-1073)) (-5 *1 (-662 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-344)) (-5 *2 (-934 (-1145 *4))) (-5 *1 (-352 *4)) - (-5 *3 (-1145 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-544) (-145))) (-5 *1 (-529 *3 *2)) - (-4 *2 (-1223 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-4 *4 (-1208 *3)) - (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1223 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-5 *1 (-534 *3 *2)) - (-4 *2 (-1223 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-13 (-544) (-145))) - (-5 *1 (-1125 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-1025))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-897)) (-5 *2 (-751)) (-5 *1 (-1074 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *3) - (-12 (-4 *4 (-358)) (-5 *2 (-625 *3)) (-5 *1 (-921 *4 *3)) - (-4 *3 (-1208 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4) - (-243 *4 (-402 (-552))))) - (-14 *4 (-625 (-1149))) (-14 *5 (-751)) (-5 *2 (-112)) - (-5 *1 (-498 *4 *5))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-751)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2)) - (-4 *2 (-1208 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1149)) - (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) - (-4 *5 (-13 (-27) (-1171) (-425 *4))))) + (|partial| -12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *2 (-627 *1)) (-4 *1 (-928 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) - (-4 *3 (-13 (-27) (-1171) (-425 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-552)) (-4 *5 (-13 (-446) (-827) (-1014 *4) (-621 *4))) - (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) - (-4 *3 (-13 (-27) (-1171) (-425 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))) - (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *6))) - (-4 *6 (-13 (-446) (-827) (-1014 *5) (-621 *5))) (-5 *5 (-552)) - (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-289 *7)) (-5 *5 (-1199 (-552))) - (-4 *7 (-13 (-27) (-1171) (-425 *6))) - (-4 *6 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-453 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-5 *6 (-1199 (-552))) - (-4 *3 (-13 (-27) (-1171) (-425 *7))) - (-4 *7 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-453 *7 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-552)) (-4 *4 (-1025)) (-4 *1 (-1194 *4 *3)) - (-4 *3 (-1223 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1192 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 (-1245 *4 *5 *6 *7))) - (-5 *1 (-1245 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-625 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-544)) - (-4 *7 (-773)) (-4 *8 (-827)) (-5 *2 (-625 (-1245 *6 *7 *8 *9))) - (-5 *1 (-1245 *6 *7 *8 *9))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-880 *4)) - (-4 *4 (-1073)))) - ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-880 *3)) (-4 *3 (-1073))))) + (|partial| -12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) + (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-627 *3)) + (-5 *1 (-929 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-357) + (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) + (-15 -2929 (*7 $)))))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-544)) (-4 *3 (-169)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2957 (-627 *1)))) + (-4 *1 (-361 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-446 *3 *4 *5 *6)) + (|:| -2957 (-627 (-446 *3 *4 *5 *6))))) + (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-900)) + (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) - (-4 *5 (-368 *3)) (-5 *2 (-552)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) - (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-552))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-662 *2)) (-4 *2 (-1073)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-625 *5) (-625 *5))) (-5 *4 (-552)) - (-5 *2 (-625 *5)) (-5 *1 (-662 *5)) (-4 *5 (-1073))))) -(((*1 *2 *2) (-12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-544) (-145))) (-5 *1 (-529 *3 *2)) - (-4 *2 (-1223 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-4 *4 (-1208 *3)) - (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1223 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-358) (-363) (-598 (-552)))) (-5 *1 (-534 *3 *2)) - (-4 *2 (-1223 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-13 (-544) (-145))) - (-5 *1 (-1125 *3))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-625 (-762 *3))) (-5 *1 (-762 *3)) (-4 *3 (-544)) - (-4 *3 (-1025))))) + (-12 (-4 *1 (-247 *3 *4 *2 *5)) (-4 *3 (-1028)) (-4 *4 (-830)) + (-4 *5 (-776)) (-4 *2 (-260 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-358)) (-5 *2 (-625 *3)) (-5 *1 (-921 *4 *3)) - (-4 *3 (-1208 *4))))) + (-12 (-4 *4 (-357)) (-5 *2 (-627 *3)) (-5 *1 (-924 *4 *3)) + (-4 *3 (-1211 *4))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-754)) (-5 *2 (-111))))) +(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946))))) +(((*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1028)) (-4 *1 (-1211 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-671 *7)) (-5 *3 (-627 *7)) (-4 *7 (-928 *4 *6 *5)) + (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) + (-4 *6 (-776)) (-5 *1 (-903 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1120)) (-5 *2 (-111))))) (((*1 *2 *3) (-12 (-5 *3 - (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4) - (-243 *4 (-402 (-552))))) - (-14 *4 (-625 (-1149))) (-14 *5 (-751)) (-5 *2 (-112)) - (-5 *1 (-498 *4 *5))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-751)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2)) - (-4 *2 (-1208 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1149)) - (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) - (-4 *5 (-13 (-27) (-1171) (-425 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) - (-4 *3 (-13 (-27) (-1171) (-425 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-751)) - (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) - (-4 *3 (-13 (-27) (-1171) (-425 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))) - (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-289 *3)) (-5 *5 (-751)) - (-4 *3 (-13 (-27) (-1171) (-425 *6))) - (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-552))) (-5 *4 (-289 *6)) - (-4 *6 (-13 (-27) (-1171) (-425 *5))) - (-4 *5 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-453 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) - (-4 *3 (-13 (-27) (-1171) (-425 *6))) - (-4 *6 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-453 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-289 *7)) (-5 *5 (-1199 (-751))) - (-4 *7 (-13 (-27) (-1171) (-425 *6))) - (-4 *6 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-453 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-5 *6 (-1199 (-751))) - (-4 *3 (-13 (-27) (-1171) (-425 *7))) - (-4 *7 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-453 *7 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1194 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1223 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-842 *4 *5 *6 *7)) - (-4 *4 (-1025)) (-14 *5 (-625 (-1149))) (-14 *6 (-625 *3)) - (-14 *7 *3))) - ((*1 *2 *3) - (-12 (-5 *3 (-751)) (-4 *4 (-1025)) (-4 *5 (-827)) (-4 *6 (-773)) - (-14 *8 (-625 *5)) (-5 *2 (-1237)) - (-5 *1 (-1244 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-925 *4 *6 *5)) - (-14 *9 (-625 *3)) (-14 *10 *3)))) -(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-4 *1 (-879 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) - (-4 *5 (-368 *3)) (-5 *2 (-552)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) - (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-552))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-662 *3)) (-4 *3 (-1073))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3))))) -(((*1 *1 *1) (|partial| -4 *1 (-1124)))) -(((*1 *2 *1 *1) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-754)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-776)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-830)) + (-5 *2 (-111)) (-5 *1 (-442 *4 *5 *6 *7))))) +(((*1 *1 *2 *2) (-12 (-5 *2 - (-2 (|:| -3207 *3) (|:| |coef1| (-762 *3)) (|:| |coef2| (-762 *3)))) - (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025))))) -(((*1 *2 *3) - (-12 (-5 *3 (-928 *5)) (-4 *5 (-1025)) (-5 *2 (-243 *4 *5)) - (-5 *1 (-920 *4 *5)) (-14 *4 (-625 (-1149)))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) - (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-925 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-344)) - (-5 *2 (-625 (-2 (|:| |deg| (-751)) (|:| -2430 *3)))) - (-5 *1 (-212 *4 *3)) (-4 *3 (-1208 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1242))))) -(((*1 *1 *2) - (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1073)) (-4 *1 (-879 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) - (-4 *5 (-368 *3)) (-5 *2 (-552)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) - (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-552))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-625 (-1185))) (-5 *3 (-1185)) (-5 *1 (-661))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-528))) (-5 *1 (-528))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1186)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3207 *3) (|:| |coef1| (-762 *3)))) - (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025))))) + (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) + (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) + (-5 *1 (-1151))))) (((*1 *2 *3) - (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-1025)) - (-5 *2 (-928 *5)) (-5 *1 (-920 *4 *5))))) + (-12 (-5 *3 (-474 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-1028)) + (-5 *2 (-242 *4 *5)) (-5 *1 (-923 *4 *5))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) +(((*1 *1 *1 *1) (-5 *1 (-842)))) +(((*1 *1 *1) (-4 *1 (-1037))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775))))) +(((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-754)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-396)) (-5 *2 (-754))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-627 *1)) (|has| *1 (-6 -4367)) (-4 *1 (-989 *3)) + (-4 *3 (-1189))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1134)) (-4 *1 (-383))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-871 *4)) (-4 *4 (-1076)) (-5 *1 (-868 *4 *3)) + (-4 *3 (-1076))))) +(((*1 *1 *1) + (-12 (-4 *1 (-928 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830)) (-4 *2 (-445)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *3 (-1042 *4 *5 *6)) + (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *1)))) + (-4 *1 (-1048 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1193))) + ((*1 *2 *2) + (-12 (-4 *3 (-544)) (-5 *1 (-1214 *3 *2)) + (-4 *2 (-13 (-1211 *3) (-544) (-10 -8 (-15 -1323 ($ $ $)))))))) (((*1 *2 *3) - (-12 (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-294 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1067 (-820 (-221)))) (-5 *3 (-221)) (-5 *2 (-112)) - (-5 *1 (-300)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) - (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-344)) + (-12 (-5 *3 (-1134)) (-4 *4 (-13 (-301) (-144))) + (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 - (-2 (|:| |cont| *5) - (|:| -3449 (-625 (-2 (|:| |irr| *3) (|:| -3515 (-552))))))) - (-5 *1 (-212 *5 *3)) (-4 *3 (-1208 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1242))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1115 *4 *2)) (-14 *4 (-897)) - (-4 *2 (-13 (-1025) (-10 -7 (-6 (-4355 "*"))))) - (-5 *1 (-878 *4 *2))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1186)) - (-4 *5 (-368 *4)) (-4 *2 (-368 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-1028 *4 *5 *6 *2 *7)) (-4 *6 (-1025)) - (-4 *7 (-234 *4 *6)) (-4 *2 (-234 *5 *6))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1149)) (-5 *4 (-928 (-552))) (-5 *2 (-325)) - (-5 *1 (-327)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1149)) (-5 *4 (-1065 (-928 (-552)))) (-5 *2 (-325)) - (-5 *1 (-327)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-751)) (-5 *1 (-655 *3)) (-4 *3 (-1025)) - (-4 *3 (-1073))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1186)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3207 *3) (|:| |coef2| (-762 *3)))) - (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025))))) -(((*1 *2 *3) - (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-1025)) - (-5 *2 (-928 *5)) (-5 *1 (-920 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) - (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-925 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-358)) (-4 *6 (-1208 (-402 *2))) - (-4 *2 (-1208 *5)) (-5 *1 (-211 *5 *2 *6 *3)) - (-4 *3 (-337 *5 *2 *6))))) + (-627 + (-2 (|:| |eqzro| (-627 *7)) (|:| |neqzro| (-627 *7)) + (|:| |wcond| (-627 (-931 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1235 (-401 (-931 *4)))) + (|:| -2957 (-627 (-1235 (-401 (-931 *4)))))))))) + (-5 *1 (-903 *4 *5 *6 *7)) (-4 *7 (-928 *4 *6 *5))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) - (-4 *4 (-1208 *3)) + (-12 (-4 *4 (-830)) (-5 *2 (-627 (-627 (-627 *4)))) + (-5 *1 (-1160 *4)) (-5 *3 (-627 (-627 *4)))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 - (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-669 *3)))) - (-5 *1 (-345 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-552)) (-4 *4 (-1208 *3)) + (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) + (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) + (-5 *1 (-1151))))) +(((*1 *2) + (-12 (-4 *4 (-357)) (-5 *2 (-754)) (-5 *1 (-322 *3 *4)) + (-4 *3 (-323 *4)))) + ((*1 *2) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-754))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-357)) (-5 *1 (-749 *2 *3)) (-4 *2 (-691 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1170)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1170))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-776)) + (-4 *3 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))) (-4 *5 (-544)) + (-5 *1 (-715 *4 *3 *5 *2)) (-4 *2 (-928 (-401 (-931 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1028)) (-4 *5 (-776)) + (-4 *3 + (-13 (-830) + (-10 -8 (-15 -3562 ((-1152) $)) + (-15 -4344 ((-3 $ "failed") (-1152)))))) + (-5 *1 (-963 *4 *5 *3 *2)) (-4 *2 (-928 (-931 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-627 *6)) + (-4 *6 + (-13 (-830) + (-10 -8 (-15 -3562 ((-1152) $)) + (-15 -4344 ((-3 $ "failed") (-1152)))))) + (-4 *4 (-1028)) (-4 *5 (-776)) (-5 *1 (-963 *4 *5 *6 *2)) + (-4 *2 (-928 (-931 *4) *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-635 (-401 *2))) (-4 *2 (-1211 *4)) (-5 *1 (-793 *4 *2)) + (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-636 *2 (-401 *2))) (-4 *2 (-1211 *4)) + (-5 *1 (-793 *4 *2)) + (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552)))))))) +(((*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-828)) (-5 *1 (-297 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-5 *2 - (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-669 *3)))) - (-5 *1 (-748 *4 *5)) (-4 *5 (-404 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-344)) (-4 *3 (-1208 *4)) (-4 *5 (-1208 *3)) + (-2 (|:| -2618 (-407 *4 (-401 *4) *5 *6)) (|:| |principalPart| *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) (-5 *2 - (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-669 *3)))) - (-5 *1 (-961 *4 *3 *5 *6)) (-4 *6 (-705 *3 *5)))) + (-2 (|:| |poly| *6) (|:| -1317 (-401 *6)) + (|:| |special| (-401 *6)))) + (-5 *1 (-710 *5 *6)) (-5 *3 (-401 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-344)) (-4 *3 (-1208 *4)) (-4 *5 (-1208 *3)) - (-5 *2 - (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-669 *3)))) - (-5 *1 (-1241 *4 *3 *5 *6)) (-4 *6 (-404 *3 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-625 *3)) (|:| |image| (-625 *3)))) - (-5 *1 (-881 *3)) (-4 *3 (-1073))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1186)) - (-4 *5 (-368 *4)) (-4 *2 (-368 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-1028 *4 *5 *6 *7 *2)) (-4 *6 (-1025)) - (-4 *7 (-234 *5 *6)) (-4 *2 (-234 *4 *6))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166))))) -(((*1 *1 *2) - (-12 (-5 *2 (-751)) (-5 *1 (-655 *3)) (-4 *3 (-1025)) - (-4 *3 (-1073))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1199 (-552))) (-4 *1 (-631 *3)) (-4 *3 (-1186)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-631 *3)) (-4 *3 (-1186))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-5 *2 (-625 (-1003 *5 *6 *7 *3))) (-5 *1 (-1003 *5 *6 *7 *3)) - (-4 *3 (-1039 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-625 *6)) (-4 *1 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) - (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1045 *3 *4 *5 *2)) (-4 *3 (-446)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-5 *2 (-625 (-1119 *5 *6 *7 *3))) (-5 *1 (-1119 *5 *6 *7 *3)) - (-4 *3 (-1039 *5 *6 *7))))) + (-12 (-4 *4 (-357)) (-5 *2 (-627 *3)) (-5 *1 (-875 *3 *4)) + (-4 *3 (-1211 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-754)) (-4 *5 (-357)) + (-5 *2 (-2 (|:| -2776 *3) (|:| -2791 *3))) (-5 *1 (-875 *3 *5)) + (-4 *3 (-1211 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-627 *9)) (-5 *3 (-627 *8)) (-5 *4 (-111)) + (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) + (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-627 *9)) (-5 *3 (-627 *8)) (-5 *4 (-111)) + (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) + (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-627 *9)) (-5 *3 (-627 *8)) (-5 *4 (-111)) + (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1085 *5 *6 *7 *8)) (-4 *5 (-445)) + (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1121 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-627 *9)) (-5 *3 (-627 *8)) (-5 *4 (-111)) + (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1085 *5 *6 *7 *8)) (-4 *5 (-445)) + (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1121 *5 *6 *7 *8 *9))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1120)) (-5 *3 (-552)) (-5 *2 (-111))))) +(((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1189))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1116 *5 *6)) (-5 *4 (-1 (-111) *6 *6)) + (-4 *5 (-13 (-1076) (-34))) (-4 *6 (-13 (-1076) (-34))) + (-5 *2 (-111)) (-5 *1 (-1117 *5 *6))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1028))))) +(((*1 *2 *3) + (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) +(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) + ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1236)))) + ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1237))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-669 (-402 (-552)))) - (-5 *2 - (-625 - (-2 (|:| |outval| *4) (|:| |outmult| (-552)) - (|:| |outvect| (-625 (-669 *4)))))) - (-5 *1 (-759 *4)) (-4 *4 (-13 (-358) (-825)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-928 *5)) (-4 *5 (-1025)) (-5 *2 (-475 *4 *5)) - (-5 *1 (-920 *4 *5)) (-14 *4 (-625 (-1149)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) - (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-625 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) - (-5 *2 (-112)) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-925 *4 *5 *6))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-625 (-311 (-221)))) - (|:| |constraints| - (-625 - (-2 (|:| |start| (-221)) (|:| |finish| (-221)) - (|:| |grid| (-751)) (|:| |boundaryType| (-552)) - (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) - (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) - (|:| |tol| (-221)))) - (-5 *2 (-112)) (-5 *1 (-206))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-552)) (-4 *1 (-631 *3)) (-4 *3 (-1186)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-631 *2)) (-4 *2 (-1186))))) + (|partial| -12 (-5 *4 (-627 (-401 *6))) (-5 *3 (-401 *6)) + (-4 *6 (-1211 *5)) (-4 *5 (-13 (-357) (-144) (-1017 (-552)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-556 *5 *6))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1028)) (-4 *3 (-830)) + (-4 *5 (-260 *3)) (-4 *6 (-776)) (-5 *2 (-627 (-754))))) + ((*1 *2 *1) + (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-830)) + (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-627 (-754)))))) (((*1 *2) - (-12 (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) - (-5 *2 (-1232 *1)) (-4 *1 (-337 *3 *4 *5)))) + (-12 (-4 *4 (-169)) (-5 *2 (-754)) (-5 *1 (-162 *3 *4)) + (-4 *3 (-163 *4)))) ((*1 *2) - (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) - (-4 *4 (-1208 *3)) - (-5 *2 - (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-669 *3)))) - (-5 *1 (-345 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) + (-12 (-14 *4 *2) (-4 *5 (-1189)) (-5 *2 (-754)) + (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-1208 (-552))) - (-5 *2 - (-2 (|:| -1270 (-669 (-552))) (|:| |basisDen| (-552)) - (|:| |basisInv| (-669 (-552))))) - (-5 *1 (-748 *3 *4)) (-4 *4 (-404 (-552) *3)))) + (-12 (-4 *4 (-830)) (-5 *2 (-754)) (-5 *1 (-423 *3 *4)) + (-4 *3 (-424 *4)))) + ((*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-536 *3)) (-4 *3 (-537)))) + ((*1 *2) (-12 (-4 *1 (-746)) (-5 *2 (-754)))) ((*1 *2) - (-12 (-4 *3 (-344)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 *4)) - (-5 *2 - (-2 (|:| -1270 (-669 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-669 *4)))) - (-5 *1 (-961 *3 *4 *5 *6)) (-4 *6 (-705 *4 *5)))) + (-12 (-4 *4 (-169)) (-5 *2 (-754)) (-5 *1 (-779 *3 *4)) + (-4 *3 (-780 *4)))) ((*1 *2) - (-12 (-4 *3 (-344)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 *4)) - (-5 *2 - (-2 (|:| -1270 (-669 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-669 *4)))) - (-5 *1 (-1241 *3 *4 *5 *6)) (-4 *6 (-404 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1073)) (-5 *1 (-881 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) - (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) - (-4 *7 (-968 *4)) (-4 *2 (-667 *7 *8 *9)) - (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-667 *4 *5 *6)) - (-4 *8 (-368 *7)) (-4 *9 (-368 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) - (-4 *4 (-368 *2)) (-4 *2 (-302)))) - ((*1 *2 *2) - (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-368 *3)) - (-4 *5 (-368 *3)) (-5 *1 (-668 *3 *4 *5 *2)) - (-4 *2 (-667 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1028 *2 *3 *4 *5 *6)) (-4 *4 (-1025)) - (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *2 *4)) (-4 *4 (-302))))) -(((*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1164))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-751)) (-5 *1 (-655 *2)) (-4 *2 (-1073))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1145 *3)) (-4 *3 (-344)) (-5 *1 (-352 *3))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) - (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-5 *2 (-625 (-1003 *5 *6 *7 *8))) (-5 *1 (-1003 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) - (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-5 *2 (-625 (-1119 *5 *6 *7 *8))) (-5 *1 (-1119 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-669 (-402 (-552)))) (-5 *2 (-625 *4)) (-5 *1 (-759 *4)) - (-4 *4 (-13 (-358) (-825)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-1025)) - (-5 *2 (-243 *4 *5)) (-5 *1 (-920 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-925 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) - (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-625 (-311 (-221)))) (-5 *3 (-221)) (-5 *2 (-112)) - (-5 *1 (-206))))) + (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-970 *3 *4)) + (-4 *3 (-971 *4)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-754)) (-5 *1 (-975 *3 *4)) + (-4 *3 (-976 *4)))) + ((*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-990 *3)) (-4 *3 (-991)))) + ((*1 *2) (-12 (-4 *1 (-1028)) (-5 *2 (-754)))) + ((*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-1036 *3)) (-4 *3 (-1037))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-544)) (-4 *2 (-169))))) (((*1 *2 *3) (-12 - (-5 *3 - (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) - (-5 *2 (-625 (-1149))) (-5 *1 (-262)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1145 *7)) (-4 *7 (-925 *6 *4 *5)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *6 (-1025)) (-5 *2 (-625 *5)) - (-5 *1 (-316 *4 *5 *6 *7)))) - ((*1 *2 *1) - (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-334 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-382)))) - ((*1 *2 *1) - (-12 (-4 *1 (-425 *3)) (-4 *3 (-827)) (-5 *2 (-625 (-1149))))) - ((*1 *2 *1) - (-12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) - ((*1 *2 *1) - (-12 (-4 *1 (-925 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-827)) (-5 *2 (-625 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) - (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-625 *5)) - (-5 *1 (-926 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-358) - (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1075 (-1149))) (-5 *1 (-942 *3)) (-4 *3 (-943)))) - ((*1 *2 *1) - (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-772)) - (-4 *5 (-827)) (-5 *2 (-625 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-625 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544)) (-5 *2 (-625 (-1149))) - (-5 *1 (-1019 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-751)) (-4 *6 (-358)) (-5 *4 (-1180 *6)) - (-5 *2 (-1 (-1129 *4) (-1129 *4))) (-5 *1 (-1240 *6)) - (-5 *5 (-1129 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1073)) (-5 *1 (-881 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-358)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) - (-5 *2 (-751)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) - (-4 *5 (-368 *3)) (-4 *3 (-544)) (-5 *2 (-751)))) - ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *4 (-170)) (-4 *5 (-368 *4)) - (-4 *6 (-368 *4)) (-5 *2 (-751)) (-5 *1 (-668 *4 *5 *6 *3)) - (-4 *3 (-667 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) - (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-544)) - (-5 *2 (-751))))) -(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-52)) (-5 *1 (-1164))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1149)) (-5 *1 (-655 *3)) (-4 *3 (-1073))))) -(((*1 *2 *3) - (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4)) - (-4 *4 (-344))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *8 (-1039 *5 *6 *7)) (-5 *2 - (-2 (|:| |val| (-625 *8)) - (|:| |towers| (-625 (-1003 *5 *6 *7 *8))))) - (-5 *1 (-1003 *5 *6 *7 *8)) (-5 *3 (-625 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *8 (-1039 *5 *6 *7)) + (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) + (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552))))) + ((*1 *2 *3 *4) + (-12 (-5 *2 - (-2 (|:| |val| (-625 *8)) - (|:| |towers| (-625 (-1119 *5 *6 *7 *8))))) - (-5 *1 (-1119 *5 *6 *7 *8)) (-5 *3 (-625 *8))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-669 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-170)) (-4 *2 (-1208 *4)) (-5 *1 (-175 *4 *2 *3)) - (-4 *3 (-705 *4 *2)))) + (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) + (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552))) + (-5 *4 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-669 (-402 (-928 *5)))) (-5 *4 (-1149)) - (-5 *2 (-928 *5)) (-5 *1 (-287 *5)) (-4 *5 (-446)))) - ((*1 *2 *3) - (-12 (-5 *3 (-669 (-402 (-928 *4)))) (-5 *2 (-928 *4)) - (-5 *1 (-287 *4)) (-4 *4 (-446)))) - ((*1 *2 *1) - (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1208 *3)))) + (-12 + (-5 *2 + (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) + (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552))) (-5 *4 (-401 (-552))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-401 (-552))) + (-5 *2 (-627 (-2 (|:| -2776 *5) (|:| -2791 *5)))) (-5 *1 (-999 *3)) + (-4 *3 (-1211 (-552))) (-5 *4 (-2 (|:| -2776 *5) (|:| -2791 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-669 (-167 (-402 (-552))))) - (-5 *2 (-928 (-167 (-402 (-552))))) (-5 *1 (-745 *4)) - (-4 *4 (-13 (-358) (-825))))) + (-12 + (-5 *2 + (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) + (-5 *1 (-1000 *3)) (-4 *3 (-1211 (-401 (-552)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-669 (-167 (-402 (-552))))) (-5 *4 (-1149)) - (-5 *2 (-928 (-167 (-402 (-552))))) (-5 *1 (-745 *5)) - (-4 *5 (-13 (-358) (-825))))) - ((*1 *2 *3) - (-12 (-5 *3 (-669 (-402 (-552)))) (-5 *2 (-928 (-402 (-552)))) - (-5 *1 (-759 *4)) (-4 *4 (-13 (-358) (-825))))) + (-12 + (-5 *2 + (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) + (-5 *1 (-1000 *3)) (-4 *3 (-1211 (-401 (-552)))) + (-5 *4 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-669 (-402 (-552)))) (-5 *4 (-1149)) - (-5 *2 (-928 (-402 (-552)))) (-5 *1 (-759 *5)) - (-4 *5 (-13 (-358) (-825)))))) + (-12 (-5 *4 (-401 (-552))) + (-5 *2 (-627 (-2 (|:| -2776 *4) (|:| -2791 *4)))) (-5 *1 (-1000 *3)) + (-4 *3 (-1211 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-401 (-552))) + (-5 *2 (-627 (-2 (|:| -2776 *5) (|:| -2791 *5)))) (-5 *1 (-1000 *3)) + (-4 *3 (-1211 *5)) (-5 *4 (-2 (|:| -2776 *5) (|:| -2791 *5)))))) +(((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-52)) (-5 *1 (-814))))) +(((*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028))))) (((*1 *2 *3) - (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-1025)) - (-5 *2 (-475 *4 *5)) (-5 *1 (-920 *4 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-625 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) - (-5 *2 - (-2 (|:| |mval| (-669 *4)) (|:| |invmval| (-669 *4)) - (|:| |genIdeal| (-497 *4 *5 *6 *7)))) - (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-925 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-311 (-221))) (-5 *1 (-206))))) + (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1211 (-552)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-627 (-1152))) (-4 *4 (-1076)) + (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-424 *5) (-865 *4) (-600 (-871 *4))))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-111) *5 *5)) (-5 *4 (-1 (-111) *6 *6)) + (-4 *5 (-13 (-1076) (-34))) (-4 *6 (-13 (-1076) (-34))) + (-5 *2 (-111)) (-5 *1 (-1116 *5 *6))))) +(((*1 *1) (-5 *1 (-138)))) +(((*1 *2) (-12 (-5 *2 (-1109 (-220))) (-5 *1 (-1172))))) +(((*1 *1 *2) (-12 (-5 *2 (-180)) (-5 *1 (-243))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) + (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *3 (-1042 *4 *5 *6)) + (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *1)))) + (-4 *1 (-1048 *4 *5 *6 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1145 (-402 (-1145 *2)))) (-5 *4 (-596 *2)) - (-4 *2 (-13 (-425 *5) (-27) (-1171))) - (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) - (-5 *1 (-548 *5 *2 *6)) (-4 *6 (-1073)))) + (-12 (-5 *3 (-1 *2 (-754) *2)) (-5 *4 (-754)) (-4 *2 (-1076)) + (-5 *1 (-660 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-754) *3)) (-4 *3 (-1076)) (-5 *1 (-664 *3))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-111) *9)) (-5 *5 (-1 (-111) *9 *9)) + (-4 *9 (-1042 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-776)) + (-4 *8 (-830)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2240 (-627 *9)))) + (-5 *3 (-627 *9)) (-4 *1 (-1182 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-111) *8 *8)) (-4 *8 (-1042 *5 *6 *7)) + (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -2240 (-627 *8)))) + (-5 *3 (-627 *8)) (-4 *1 (-1182 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1132 *2)) (-4 *2 (-301)) (-5 *1 (-171 *2))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-922 (-220)) (-220))) (-5 *3 (-1070 (-220))) + (-5 *1 (-905)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145 *1)) (-4 *1 (-925 *4 *5 *3)) (-4 *4 (-1025)) - (-4 *5 (-773)) (-4 *3 (-827)))) + (-12 (-5 *2 (-1 (-922 (-220)) (-220))) (-5 *3 (-1070 (-220))) + (-5 *1 (-905)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-922 (-220)) (-220))) (-5 *3 (-1070 (-220))) + (-5 *1 (-906)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145 *4)) (-4 *4 (-1025)) (-4 *1 (-925 *4 *5 *3)) - (-4 *5 (-773)) (-4 *3 (-827)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-402 (-1145 *2))) (-4 *5 (-773)) (-4 *4 (-827)) - (-4 *6 (-1025)) - (-4 *2 - (-13 (-358) - (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $))))) - (-5 *1 (-926 *5 *4 *6 *7 *2)) (-4 *7 (-925 *6 *5 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-402 (-1145 (-402 (-928 *5))))) (-5 *4 (-1149)) - (-5 *2 (-402 (-928 *5))) (-5 *1 (-1019 *5)) (-4 *5 (-544))))) + (-12 (-5 *2 (-1 (-922 (-220)) (-220))) (-5 *3 (-1070 (-220))) + (-5 *1 (-906))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-412 *4)) (-4 *4 (-544))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1025 *4 *5)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) + (-14 *5 (-627 (-1152))) (-5 *2 (-627 (-627 (-1003 (-401 *4))))) + (-5 *1 (-1261 *4 *5 *6)) (-14 *6 (-627 (-1152))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-828) (-301) (-144) (-1001))) + (-5 *2 (-627 (-627 (-1003 (-401 *5))))) (-5 *1 (-1261 *5 *6 *7)) + (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-828) (-301) (-144) (-1001))) + (-5 *2 (-627 (-627 (-1003 (-401 *5))))) (-5 *1 (-1261 *5 *6 *7)) + (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-931 *4))) + (-4 *4 (-13 (-828) (-301) (-144) (-1001))) + (-5 *2 (-627 (-627 (-1003 (-401 *4))))) (-5 *1 (-1261 *4 *5 *6)) + (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1149)) (-4 *5 (-358)) (-5 *2 (-625 (-1180 *5))) - (-5 *1 (-1240 *5)) (-5 *4 (-1180 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-947)) (-5 *1 (-881 *3)) (-4 *3 (-1073))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4354)) (-4 *4 (-358)) (-4 *5 (-368 *4)) - (-4 *6 (-368 *4)) (-5 *2 (-625 *6)) (-5 *1 (-514 *4 *5 *6 *3)) - (-4 *3 (-667 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4354)) (-4 *4 (-544)) (-4 *5 (-368 *4)) - (-4 *6 (-368 *4)) (-4 *7 (-968 *4)) (-4 *8 (-368 *7)) - (-4 *9 (-368 *7)) (-5 *2 (-625 *6)) - (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-667 *4 *5 *6)) - (-4 *10 (-667 *7 *8 *9)))) - ((*1 *2 *1) - (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) - (-4 *5 (-368 *3)) (-4 *3 (-544)) (-5 *2 (-625 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *4 (-170)) (-4 *5 (-368 *4)) - (-4 *6 (-368 *4)) (-5 *2 (-625 *6)) (-5 *1 (-668 *4 *5 *6 *3)) - (-4 *3 (-667 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) - (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-544)) - (-5 *2 (-625 *7))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1186)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-827)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-827)))) + (-12 (-5 *3 (-627 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-552)) + (-14 *6 (-754)) (-4 *7 (-169)) (-4 *8 (-169)) + (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-133 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 *9)) (-4 *9 (-1028)) (-4 *5 (-830)) (-4 *6 (-776)) + (-4 *8 (-1028)) (-4 *2 (-928 *9 *7 *5)) + (-5 *1 (-711 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-776)) + (-4 *4 (-928 *8 *6 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-251))))) +(((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-754)) (-5 *2 (-111)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-111)) (-5 *1 (-1190 *3)) (-4 *3 (-1076)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-111) *3 *3)) (-4 *3 (-1076)) (-5 *2 (-111)) + (-5 *1 (-1190 *3))))) +(((*1 *1 *1) (-5 *1 (-220))) ((*1 *1 *1) (-5 *1 (-373))) + ((*1 *1) (-5 *1 (-373)))) +(((*1 *1 *2) + (-12 (-5 *2 (-900)) (-4 *1 (-233 *3 *4)) (-4 *4 (-1028)) + (-4 *4 (-1189)))) + ((*1 *1 *2) + (-12 (-14 *3 (-627 (-1152))) (-4 *4 (-169)) + (-4 *5 (-233 (-1383 *3) (-754))) + (-14 *6 + (-1 (-111) (-2 (|:| -4153 *2) (|:| -4067 *5)) + (-2 (|:| -4153 *2) (|:| -4067 *5)))) + (-5 *1 (-454 *3 *4 *2 *5 *6 *7)) (-4 *2 (-830)) + (-4 *7 (-928 *4 *5 (-844 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-922 (-220))) (-5 *1 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-786))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1028)) + (-4 *2 (-1226 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1118 *4 *2)) (-14 *4 (-900)) + (-4 *2 (-13 (-1028) (-10 -7 (-6 (-4368 "*"))))) + (-5 *1 (-881 *4 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-627 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) + (-14 *4 (-754)) (-4 *5 (-169))))) +(((*1 *2 *3) + (-12 (-5 *3 (-552)) (|has| *1 (-6 -4357)) (-4 *1 (-398)) + (-5 *2 (-900))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-301)))) + ((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-380 *3)) (|:| |rm| (-380 *3)))) + (-5 *1 (-380 *3)) (-4 *3 (-1076)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2404 (-754)) (|:| -3401 (-754)))) + (-5 *1 (-754)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) + (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 *4)) + (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) + (-5 *5 (-1070 (-220))) (-5 *6 (-552)) (-5 *2 (-1184 (-905))) + (-5 *1 (-312)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) + (-5 *5 (-1070 (-220))) (-5 *6 (-552)) (-5 *7 (-1134)) + (-5 *2 (-1184 (-905))) (-5 *1 (-312)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) + (-5 *5 (-1070 (-220))) (-5 *6 (-220)) (-5 *7 (-552)) + (-5 *2 (-1184 (-905))) (-5 *1 (-312)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-310 (-552))) (-5 *4 (-1 (-220) (-220))) + (-5 *5 (-1070 (-220))) (-5 *6 (-220)) (-5 *7 (-552)) (-5 *8 (-1134)) + (-5 *2 (-1184 (-905))) (-5 *1 (-312))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-220)) (-5 *3 (-754)) (-5 *1 (-221)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-166 (-220))) (-5 *3 (-754)) (-5 *1 (-221)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1115)))) +(((*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-544))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1189)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-830)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-830)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-552)) (-4 *1 (-277 *3)) (-4 *3 (-1186)))) + (-12 (-5 *2 (-552)) (-4 *1 (-276 *3)) (-4 *3 (-1189)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-277 *2)) (-4 *2 (-1186)))) + (-12 (-5 *3 (-552)) (-4 *1 (-276 *2)) (-4 *2 (-1189)))) ((*1 *1 *2) (-12 (-5 *2 (-2 - (|:| -2971 - (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) - (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) - (|:| |relerr| (-221)))) - (|:| -4120 + (|:| -3998 + (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) + (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (|:| -2162 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -2358,10 +1979,10 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1129 (-221))) + (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -3315 + (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") @@ -2371,8778 +1992,9433 @@ (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-547)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-751)) (-4 *1 (-675 *2)) (-4 *2 (-1073)))) + (-12 (-5 *3 (-754)) (-4 *1 (-677 *2)) (-4 *2 (-1076)))) ((*1 *1 *2) (-12 (-5 *2 (-2 - (|:| -2971 - (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) - (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) - (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) - (|:| |abserr| (-221)) (|:| |relerr| (-221)))) - (|:| -4120 - (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) - (|:| |expense| (-374)) (|:| |accuracy| (-374)) - (|:| |intermediateResults| (-374)))))) - (-5 *1 (-783)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073)) - (-4 *4 (-1073))))) + (|:| -3998 + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) + (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) + (|:| -2162 + (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) + (|:| |expense| (-373)) (|:| |accuracy| (-373)) + (|:| |intermediateResults| (-373)))))) + (-5 *1 (-786)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1240)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) + (-4 *4 (-1076))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1235 *5)) (-4 *5 (-775)) (-5 *2 (-111)) + (-5 *1 (-825 *4 *5)) (-14 *4 (-754))))) +(((*1 *1) + (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *2) + (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) + (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) + (-5 *1 (-967 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) + (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-627 (-598 *6))) (-5 *4 (-1152)) (-5 *2 (-598 *6)) + (-4 *6 (-424 *5)) (-4 *5 (-830)) (-5 *1 (-561 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-552)) (-4 *5 (-343)) (-5 *2 (-412 (-1148 (-1148 *5)))) + (-5 *1 (-1187 *5)) (-5 *3 (-1148 (-1148 *5)))))) +(((*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028))))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1193)) (-4 *5 (-1211 (-401 *2))) + (-4 *2 (-1211 *4)) (-5 *1 (-335 *3 *4 *2 *5)) + (-4 *3 (-336 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-336 *3 *2 *4)) (-4 *3 (-1193)) + (-4 *4 (-1211 (-401 *2))) (-4 *2 (-1211 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-1232 (-751))) (-5 *1 (-655 *3)) (-4 *3 (-1073))))) + (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111))))) (((*1 *2 *3) - (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4)) - (-4 *4 (-344))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-625 *11)) - (|:| |todo| (-625 (-2 (|:| |val| *3) (|:| -3715 *11)))))) - (-5 *6 (-751)) - (-5 *2 (-625 (-2 (|:| |val| (-625 *10)) (|:| -3715 *11)))) - (-5 *3 (-625 *10)) (-5 *4 (-625 *11)) (-4 *10 (-1039 *7 *8 *9)) - (-4 *11 (-1045 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-773)) - (-4 *9 (-827)) (-5 *1 (-1043 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-625 *11)) - (|:| |todo| (-625 (-2 (|:| |val| *3) (|:| -3715 *11)))))) - (-5 *6 (-751)) - (-5 *2 (-625 (-2 (|:| |val| (-625 *10)) (|:| -3715 *11)))) - (-5 *3 (-625 *10)) (-5 *4 (-625 *11)) (-4 *10 (-1039 *7 *8 *9)) - (-4 *11 (-1082 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-773)) - (-4 *9 (-827)) (-5 *1 (-1118 *7 *8 *9 *10 *11))))) -(((*1 *1 *1) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1073))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1145 (-402 (-552)))) (-5 *1 (-918)) (-5 *3 (-552))))) + (-12 (-5 *3 (-627 *4)) (-4 *4 (-357)) (-5 *2 (-671 *4)) + (-5 *1 (-797 *4 *5)) (-4 *5 (-638 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 *5)) (-5 *4 (-754)) (-4 *5 (-357)) + (-5 *2 (-671 *5)) (-5 *1 (-797 *5 *6)) (-4 *6 (-638 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-600 (-871 *3))) (-4 *3 (-865 *3)) + (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-600 (-871 *3))) (-4 *2 (-865 *3)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *3 (-627 (-853))) + (-5 *4 (-627 (-900))) (-5 *5 (-627 (-257))) (-5 *1 (-461)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *3 (-627 (-853))) + (-5 *4 (-627 (-900))) (-5 *1 (-461)))) + ((*1 *1 *2) (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *1 (-461)))) + ((*1 *1 *1) (-5 *1 (-461)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1189)) (-5 *2 (-754))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-412 *4) *4)) (-4 *4 (-544)) (-5 *2 (-412 *4)) + (-5 *1 (-413 *4)))) + ((*1 *1 *1) (-5 *1 (-905))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-905)))) + ((*1 *1 *1) (-5 *1 (-906))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-906)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) + (-5 *4 (-401 (-552))) (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) + (-5 *1 (-999 *3)) (-4 *3 (-1211 (-552))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) + (-5 *4 (-401 (-552))) (-5 *1 (-1000 *3)) (-4 *3 (-1211 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) + (-5 *1 (-1000 *3)) (-4 *3 (-1211 (-401 (-552)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) + (-4 *3 (-1211 *2))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) + (-4 *3 (-1076))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-627 (-474 *4 *5))) (-5 *3 (-844 *4)) + (-14 *4 (-627 (-1152))) (-4 *5 (-445)) (-5 *1 (-615 *4 *5))))) +(((*1 *2) + (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) + (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) + (-5 *1 (-967 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) + (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) + (-5 *1 (-1083 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-627 (-1152))) (-4 *2 (-169)) + (-4 *3 (-233 (-1383 *4) (-754))) + (-14 *6 + (-1 (-111) (-2 (|:| -4153 *5) (|:| -4067 *3)) + (-2 (|:| -4153 *5) (|:| -4067 *3)))) + (-5 *1 (-454 *4 *2 *5 *3 *6 *7)) (-4 *5 (-830)) + (-4 *7 (-928 *2 *3 (-844 *4)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-154)) (-5 *2 (-1240)) (-5 *1 (-1237))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-220) (-220) (-220))) + (-5 *4 (-3 (-1 (-220) (-220) (-220) (-220)) "undefined")) + (-5 *5 (-1070 (-220))) (-5 *6 (-627 (-257))) (-5 *2 (-1109 (-220))) + (-5 *1 (-679)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-220))) + (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-679)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1109 (-220))) (-5 *3 (-1 (-922 (-220)) (-220) (-220))) + (-5 *4 (-1070 (-220))) (-5 *5 (-627 (-257))) (-5 *1 (-679))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-884 *4)) (-4 *4 (-1076)) (-5 *2 (-627 (-754))) + (-5 *1 (-883 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) - (-5 *2 (-625 (-751))) (-5 *1 (-758 *3 *4 *5 *6 *7)) - (-4 *3 (-1208 *6)) (-4 *7 (-925 *6 *4 *5))))) -(((*1 *1 *2) - (-12 + (-12 (-14 *4 (-627 (-1152))) (-14 *5 (-754)) (-5 *2 - (-2 (|:| |mval| (-669 *3)) (|:| |invmval| (-669 *3)) - (|:| |genIdeal| (-497 *3 *4 *5 *6)))) - (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5))))) -(((*1 *2 *3) - (-12 + (-627 + (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) + (-242 *4 (-401 (-552)))))) + (-5 *1 (-497 *4 *5)) (-5 *3 - (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) - (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) - (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) - (|:| |abserr| (-221)) (|:| |relerr| (-221)))) - (-5 *2 (-374)) (-5 *1 (-201))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-625 (-897))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-897)) - (-4 *2 (-358)) (-14 *5 (-969 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-694 *5 *6 *7)) (-4 *5 (-827)) - (-4 *6 (-234 (-1471 *4) (-751))) - (-14 *7 - (-1 (-112) (-2 (|:| -3123 *5) (|:| -3564 *6)) - (-2 (|:| -3123 *5) (|:| -3564 *6)))) - (-14 *4 (-625 (-1149))) (-4 *2 (-170)) - (-5 *1 (-455 *4 *2 *5 *6 *7 *8)) (-4 *8 (-925 *2 *6 (-841 *4))))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-502 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-827)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-552)) (-4 *2 (-544)) (-5 *1 (-605 *2 *4)) - (-4 *4 (-1208 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-689 *2)) (-4 *2 (-1025)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-716 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-707)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 *5)) (-5 *3 (-625 (-751))) (-4 *1 (-721 *4 *5)) - (-4 *4 (-1025)) (-4 *5 (-827)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *2)) (-4 *4 (-1025)) - (-4 *2 (-827)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-829 *2)) (-4 *2 (-1025)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 *6)) (-5 *3 (-625 (-751))) (-4 *1 (-925 *4 *5 *6)) - (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-751)) (-4 *1 (-925 *4 *5 *2)) (-4 *4 (-1025)) - (-4 *5 (-773)) (-4 *2 (-827)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 *6)) (-5 *3 (-625 *5)) (-4 *1 (-949 *4 *5 *6)) - (-4 *4 (-1025)) (-4 *5 (-772)) (-4 *6 (-827)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-949 *4 *3 *2)) (-4 *4 (-1025)) (-4 *3 (-772)) - (-4 *2 (-827))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1149)) (-5 *2 (-1 (-1145 (-928 *4)) (-928 *4))) - (-5 *1 (-1240 *4)) (-4 *4 (-358))))) -(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-881 *3)) (-4 *3 (-1073))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1073)) (-5 *1 (-1163 *3 *2)) (-4 *3 (-1073))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1205 *4 *5)) (-5 *3 (-625 *5)) (-14 *4 (-1149)) - (-4 *5 (-358)) (-5 *1 (-899 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-625 *5)) (-4 *5 (-358)) (-5 *2 (-1145 *5)) - (-5 *1 (-899 *4 *5)) (-14 *4 (-1149)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-625 *6)) (-5 *4 (-751)) (-4 *6 (-358)) - (-5 *2 (-402 (-928 *6))) (-5 *1 (-1026 *5 *6)) (-14 *5 (-1149))))) -(((*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1186)) (-5 *2 (-112))))) + (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) + (-242 *4 (-401 (-552)))))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-552)) (-5 *1 (-310 *3)) (-4 *3 (-544)) (-4 *3 (-830))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-128)) (-5 *2 (-1096))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-871 *4)) (-4 *4 (-1076)) (-5 *1 (-869 *4 *3)) + (-4 *3 (-1189)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-738))))) (((*1 *2 *3) - (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4)) - (-4 *4 (-344))))) -(((*1 *2 *1) - (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) - (-5 *2 - (-2 (|:| -2150 (-408 *4 (-402 *4) *5 *6)) (|:| |principalPart| *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358)) + (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-754)) + (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-928 *4 *5 *6))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1152)) (-5 *6 (-627 (-598 *3))) + (-5 *5 (-598 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *7))) + (-4 *7 (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-2 (|:| -3446 *3) (|:| |coeff| *3))) + (-5 *1 (-545 *7 *3))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-445)) (-4 *3 (-830)) (-4 *3 (-1017 (-552))) + (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) + (-4 *2 + (-13 (-357) (-296) + (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) + (-15 -2929 ((-1101 *3 (-598 $)) $)) + (-15 -1477 ($ (-1101 *3 (-598 $)))))))))) +(((*1 *1) (-5 *1 (-431)))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4367)) (-4 *1 (-239 *2)) (-4 *2 (-1189))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-959 *2)) (-4 *2 (-1028)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-922 (-220))) (-5 *1 (-1185)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-1028))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1211 *9)) (-4 *7 (-776)) (-4 *8 (-830)) (-4 *9 (-301)) + (-4 *10 (-928 *9 *7 *8)) (-5 *2 - (-2 (|:| |poly| *6) (|:| -2992 (-402 *6)) - (|:| |special| (-402 *6)))) - (-5 *1 (-708 *5 *6)) (-5 *3 (-402 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-358)) (-5 *2 (-625 *3)) (-5 *1 (-872 *3 *4)) - (-4 *3 (-1208 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-751)) (-4 *5 (-358)) - (-5 *2 (-2 (|:| -2290 *3) (|:| -2303 *3))) (-5 *1 (-872 *3 *5)) - (-4 *3 (-1208 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-625 *9)) (-5 *3 (-625 *8)) (-5 *4 (-112)) - (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) - (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-625 *9)) (-5 *3 (-625 *8)) (-5 *4 (-112)) - (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) - (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-625 *9)) (-5 *3 (-625 *8)) (-5 *4 (-112)) - (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) - (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-625 *9)) (-5 *3 (-625 *8)) (-5 *4 (-112)) - (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) - (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1118 *5 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-5 *2 (-625 (-1172 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1073))))) + (-2 (|:| |deter| (-627 (-1148 *10))) + (|:| |dterm| + (-627 (-627 (-2 (|:| -3247 (-754)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-627 *6)) (|:| |nlead| (-627 *10)))) + (-5 *1 (-761 *6 *7 *8 *9 *10)) (-5 *3 (-1148 *10)) (-5 *4 (-627 *6)) + (-5 *5 (-627 *10))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-754)) (-4 *2 (-1076)) + (-5 *1 (-660 *2))))) (((*1 *2 *3) - (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-918)) (-5 *3 (-552))))) + (-12 (-5 *3 (-627 *7)) (-4 *7 (-928 *4 *5 *6)) (-4 *6 (-600 (-1152))) + (-4 *4 (-357)) (-4 *5 (-776)) (-4 *6 (-830)) + (-5 *2 (-1141 (-627 (-931 *4)) (-627 (-288 (-931 *4))))) + (-5 *1 (-496 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-544)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-1179 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1208 *9)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-302)) - (-4 *10 (-925 *9 *7 *8)) + (-12 (-5 *4 (-111)) + (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-4 *3 (-13 (-27) (-1174) (-424 *6) (-10 -8 (-15 -1477 ($ *7))))) + (-4 *7 (-828)) + (-4 *8 + (-13 (-1213 *3 *7) (-357) (-1174) + (-10 -8 (-15 -2942 ($ $)) (-15 -2747 ($ $))))) (-5 *2 - (-2 (|:| |deter| (-625 (-1145 *10))) - (|:| |dterm| - (-625 (-625 (-2 (|:| -1894 (-751)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-625 *6)) (|:| |nlead| (-625 *10)))) - (-5 *1 (-758 *6 *7 *8 *9 *10)) (-5 *3 (-1145 *10)) (-5 *4 (-625 *6)) - (-5 *5 (-625 *10))))) + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134)))))) + (-5 *1 (-416 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1134)) (-4 *9 (-962 *8)) + (-14 *10 (-1152))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-955 *3 *4 *2 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *2 (-830)) (-4 *5 (-1042 *3 *4 *2))))) (((*1 *1 *1) - (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) - (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4))))) -(((*1 *2 *3) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(((*1 *1 *2 *2) (-12 - (-5 *3 - (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) - (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) - (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) - (|:| |abserr| (-221)) (|:| |relerr| (-221)))) - (-5 *2 (-374)) (-5 *1 (-201))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1149)) (-4 *5 (-358)) (-5 *2 (-1129 (-1129 (-928 *5)))) - (-5 *1 (-1240 *5)) (-5 *4 (-1129 (-928 *5)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1014 (-552))) (-4 *1 (-297)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-881 *3)) (-4 *3 (-1073))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073)) - (-4 *4 (-1073))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1023))))) -(((*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1186)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4)) - (-4 *4 (-344))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-751)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-773)) - (-4 *9 (-827)) (-4 *3 (-1039 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-625 *4)) - (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) - (-5 *1 (-1043 *7 *8 *9 *3 *4)) (-4 *4 (-1045 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) - (-4 *3 (-1039 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-625 *4)) - (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) - (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-625 *4)) - (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) - (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-751)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-773)) - (-4 *9 (-827)) (-4 *3 (-1039 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-625 *4)) - (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) - (-5 *1 (-1118 *7 *8 *9 *3 *4)) (-4 *4 (-1082 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) - (-4 *3 (-1039 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-625 *4)) - (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) - (-5 *1 (-1118 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-625 *4)) - (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) - (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-344)) (-4 *5 (-324 *4)) (-4 *6 (-1208 *5)) - (-5 *2 (-625 *3)) (-5 *1 (-757 *4 *5 *6 *3 *7)) (-4 *3 (-1208 *6)) - (-14 *7 (-897))))) + (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) + (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) + (-5 *1 (-1151))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *6 (-220)) + (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-734))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1202 (-552))) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-633 *3)) (-4 *3 (-1189))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1145 (-552))) (-5 *2 (-552)) (-5 *1 (-918))))) -(((*1 *2 *1) - (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) - (-5 *2 (-408 *4 (-402 *4) *5 *6)))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1076)) (-4 *6 (-1076)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-666 *4 *5 *6)) (-4 *5 (-1076))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1148 *2)) (-4 *2 (-928 (-401 (-931 *6)) *5 *4)) + (-5 *1 (-715 *5 *4 *6 *2)) (-4 *5 (-776)) + (-4 *4 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))) + (-4 *6 (-544))))) +(((*1 *1 *1) (-4 *1 (-613))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981) (-1174)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-1188))) (-5 *1 (-663)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 (-1157))) (-5 *1 (-1094))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-552)) (|has| *1 (-6 -4367)) (-4 *1 (-1223 *3)) + (-4 *3 (-1189))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-754)) (-4 *5 (-357)) (-5 *2 (-171 *6)) + (-5 *1 (-846 *5 *4 *6)) (-4 *4 (-1226 *5)) (-4 *6 (-1211 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1184 *3)) (-4 *3 (-953))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1235 (-1152))) (-5 *3 (-1235 (-446 *4 *5 *6 *7))) + (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-900)) + (-14 *6 (-627 (-1152))) (-14 *7 (-1235 (-671 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-446 *4 *5 *6 *7))) + (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-169)) (-14 *5 (-900)) + (-14 *6 (-627 *2)) (-14 *7 (-1235 (-671 *4))))) ((*1 *1 *2) - (-12 (-5 *2 (-1232 *6)) (-4 *6 (-13 (-404 *4 *5) (-1014 *4))) - (-4 *4 (-968 *3)) (-4 *5 (-1208 *4)) (-4 *3 (-302)) - (-5 *1 (-408 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1235 (-446 *3 *4 *5 *6))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) + (-14 *6 (-1235 (-671 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-358)) - (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) - (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) - (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) - (|:| |abserr| (-221)) (|:| |relerr| (-221)))) - (-5 *2 (-374)) (-5 *1 (-201))))) -(((*1 *2 *3) - (-12 (-5 *3 (-751)) (-5 *2 (-1 (-1129 (-928 *4)) (-1129 (-928 *4)))) - (-5 *1 (-1240 *4)) (-4 *4 (-358))))) + (-12 (-5 *2 (-1235 (-1152))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-169)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))) + (-14 *6 (-1235 (-671 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1152)) (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) + (-14 *4 (-900)) (-14 *5 (-627 *2)) (-14 *6 (-1235 (-671 *3))))) + ((*1 *1) + (-12 (-5 *1 (-446 *2 *3 *4 *5)) (-4 *2 (-169)) (-14 *3 (-900)) + (-14 *4 (-627 (-1152))) (-14 *5 (-1235 (-671 *2)))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1152)) (-5 *2 (-431)) (-5 *1 (-1156))))) +(((*1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-812))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-906))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-627 (-552))) (-5 *1 (-242 *3 *4)) + (-14 *3 (-627 (-1152))) (-4 *4 (-1028)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-627 (-552))) (-14 *3 (-627 (-1152))) + (-5 *1 (-447 *3 *4 *5)) (-4 *4 (-1028)) + (-4 *5 (-233 (-1383 *3) (-754))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-627 (-552))) (-5 *1 (-474 *3 *4)) + (-14 *3 (-627 (-1152))) (-4 *4 (-1028))))) (((*1 *2 *1) - (-12 (-4 *1 (-1014 (-552))) (-4 *1 (-297)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-881 *3)) (-4 *3 (-1073))))) -(((*1 *2 *3) - (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-237)) (-5 *3 (-1131)))) - ((*1 *2 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-237)))) - ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073)) - (-4 *4 (-1073))))) -(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-897)))) ((*1 *1) (-4 *1 (-537))) - ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-679)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-880 *3)) (-4 *3 (-1073))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1023))))) -(((*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1186)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4)) - (-4 *4 (-344))))) + (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1189)) + (-5 *2 (-627 *3))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-1037)) (-4 *3 (-1174)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) +(((*1 *2 *1) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-128))) + ((*1 *1) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) + (-4 *4 (-169)))) + ((*1 *1) (-4 *1 (-709))) ((*1 *1) (-5 *1 (-1152)))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1148 *7)) + (-4 *5 (-1028)) (-4 *7 (-1028)) (-4 *2 (-1211 *5)) + (-5 *1 (-493 *5 *2 *6 *7)) (-4 *6 (-1211 *2))))) +(((*1 *1) (-5 *1 (-1240)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1189)) + (-4 *5 (-367 *4)) (-4 *2 (-367 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-4 *1 (-1031 *4 *5 *6 *2 *7)) (-4 *6 (-1028)) + (-4 *7 (-233 *4 *6)) (-4 *2 (-233 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-868 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1073)) - (-4 *5 (-1186)) (-5 *1 (-866 *4 *5)))) + (-12 (-5 *3 (-401 (-552))) (-4 *4 (-1017 (-552))) + (-4 *4 (-13 (-830) (-544))) (-5 *1 (-32 *4 *2)) (-4 *2 (-424 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-132))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-220))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-238)) (-5 *2 (-552)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-868 *4)) (-5 *3 (-625 (-1 (-112) *5))) (-4 *4 (-1073)) - (-4 *5 (-1186)) (-5 *1 (-866 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-868 *5)) (-5 *3 (-625 (-1149))) - (-5 *4 (-1 (-112) (-625 *6))) (-4 *5 (-1073)) (-4 *6 (-1186)) - (-5 *1 (-866 *5 *6)))) + (-12 (-5 *3 (-401 (-552))) (-4 *4 (-357)) (-4 *4 (-38 *3)) + (-4 *5 (-1226 *4)) (-5 *1 (-272 *4 *5 *2)) (-4 *2 (-1197 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1186)) (-4 *4 (-827)) - (-5 *1 (-913 *4 *2 *5)) (-4 *2 (-425 *4)))) + (-12 (-5 *3 (-401 (-552))) (-4 *4 (-357)) (-4 *4 (-38 *3)) + (-4 *5 (-1195 *4)) (-5 *1 (-273 *4 *5 *2 *6)) (-4 *2 (-1218 *4 *5)) + (-4 *6 (-962 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-278))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-355 *2)) (-4 *2 (-1076)))) + ((*1 *1 *1 *1) (-5 *1 (-373))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-754)) (-5 *1 (-380 *2)) (-4 *2 (-1076)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-4 *1 (-424 *3)) (-4 *3 (-830)) (-4 *3 (-1088)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-466)) (-5 *2 (-552)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-625 (-1 (-112) *5))) (-4 *5 (-1186)) (-4 *4 (-827)) - (-5 *1 (-913 *4 *2 *5)) (-4 *2 (-425 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1149)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1186)) - (-5 *2 (-311 (-552))) (-5 *1 (-914 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1149)) (-5 *4 (-625 (-1 (-112) *5))) (-4 *5 (-1186)) - (-5 *2 (-311 (-552))) (-5 *1 (-914 *5)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-1 (-112) (-625 *6))) - (-4 *6 (-13 (-425 *5) (-862 *4) (-598 (-868 *4)))) (-4 *4 (-1073)) - (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4)))) - (-5 *1 (-1049 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) - (-4 *3 (-1039 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-625 *4)) - (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) - (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-625 *4)) - (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) - (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) - (-4 *3 (-1039 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-625 *4)) - (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) - (-5 *1 (-1118 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-625 *4)) - (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) - (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) - (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *4)))) - (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1145 (-402 (-552)))) (-5 *1 (-918)) (-5 *3 (-552))))) -(((*1 *1 *2) - (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-358)) - (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6))))) -(((*1 *2 *3) + (-12 (-5 *2 (-1235 *4)) (-5 *3 (-552)) (-4 *4 (-343)) + (-5 *1 (-520 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-528)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-528)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-754)) (-4 *4 (-1076)) + (-5 *1 (-664 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-357)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-671 *4)) (-5 *3 (-754)) (-4 *4 (-1028)) + (-5 *1 (-672 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-552)) (-4 *3 (-1028)) (-5 *1 (-697 *3 *4)) + (-4 *4 (-630 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-552)) (-4 *4 (-1028)) + (-5 *1 (-697 *4 *5)) (-4 *5 (-630 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-900)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-754)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-709)) (-5 *2 (-754)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-754)) (-5 *1 (-802 *2)) (-4 *2 (-830)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-817 *3)) (-4 *3 (-1028)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-552)) (-5 *1 (-817 *4)) (-4 *4 (-1028)))) + ((*1 *1 *1 *1) (-5 *1 (-842))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-401 (-552))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1088)) (-5 *2 (-900)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-552)) (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *4 (-1028)) + (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *3 *4)) (-4 *4 (-357)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-627 (-2 (|:| |func| *2) (|:| |pole| (-111))))) + (-4 *2 (-13 (-424 *4) (-981))) (-4 *4 (-13 (-830) (-544))) + (-5 *1 (-270 *4 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-754)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) + (-4 *4 (-1028))))) +(((*1 *1) (-5 *1 (-806)))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *3) + (-12 (-5 *3 (-671 *2)) (-4 *4 (-1211 *2)) + (-4 *2 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) + (-5 *1 (-491 *2 *4 *5)) (-4 *5 (-403 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1099 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) + (-4 *5 (-233 *3 *2)) (-4 *2 (-1028))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) + ((*1 *1 *1 *1) (-5 *1 (-842)))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-544)) (-5 *1 (-948 *3 *2)) (-4 *2 (-1211 *3))))) +(((*1 *2 *1) (-12 - (-5 *3 - (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) - (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) - (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) - (|:| |abserr| (-221)) (|:| |relerr| (-221)))) - (-5 *2 (-374)) (-5 *1 (-201))))) + (-5 *2 + (-627 + (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1148 *3)) + (|:| |logand| (-1148 *3))))) + (-5 *1 (-573 *3)) (-4 *3 (-357))))) +(((*1 *2 *2) + (-12 (-5 *2 (-627 (-627 *6))) (-4 *6 (-928 *3 *5 *4)) + (-4 *3 (-13 (-301) (-144))) (-4 *4 (-13 (-830) (-600 (-1152)))) + (-4 *5 (-776)) (-5 *1 (-903 *3 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1019))))) +(((*1 *1 *1 *1) (-5 *1 (-842)))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-735))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-544)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) - (-5 *1 (-1176 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5))))) + (-12 (-5 *3 (-627 *2)) (-4 *2 (-1042 *4 *5 *6)) (-4 *4 (-544)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-956 *4 *5 *6 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) + (-4 *4 (-776)) (-4 *5 (-830)) (-4 *3 (-544))))) +(((*1 *1) (-5 *1 (-138)))) +(((*1 *2) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111))))) (((*1 *2 *3) - (-12 (-5 *3 (-751)) (-5 *2 (-1 (-1129 (-928 *4)) (-1129 (-928 *4)))) - (-5 *1 (-1240 *4)) (-4 *4 (-358))))) + (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-627 *7)) (|:| |badPols| (-627 *7)))) + (-5 *1 (-956 *4 *5 *6 *7)) (-5 *3 (-627 *7))))) (((*1 *2 *1) - (-12 (-5 *2 (-1075 *3)) (-5 *1 (-881 *3)) (-4 *3 (-363)) - (-4 *3 (-1073))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073)) - (-4 *4 (-1073))))) + (-12 (-4 *2 (-691 *3)) (-5 *1 (-810 *2 *3)) (-4 *3 (-1028))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1193)) (-4 *5 (-1211 *3)) (-4 *6 (-1211 (-401 *5))) + (-5 *2 (-111)) (-5 *1 (-335 *4 *3 *5 *6)) (-4 *4 (-336 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-169))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) +(((*1 *2 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-301))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *5 (-1134)) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-81 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1014)) + (-5 *1 (-733))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1134)) (-5 *3 (-552)) (-5 *1 (-1040))))) (((*1 *2 *1) - (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) - (-5 *2 - (-2 (|:| -1521 (-751)) (|:| |curves| (-751)) - (|:| |polygons| (-751)) (|:| |constructs| (-751))))))) + (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) + (-4 *4 (-1028))))) +(((*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-111))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1023))))) -(((*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1186))))) -(((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-352 *3)) (-4 *3 (-344))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) - (-4 *3 (-1039 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-625 *4)) - (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) - (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-625 *4)) - (|:| |todo| (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))))) - (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1131)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) - (-4 *4 (-1039 *6 *7 *8)) (-5 *2 (-1237)) - (-5 *1 (-756 *6 *7 *8 *4 *5)) (-4 *5 (-1045 *6 *7 *8 *4))))) + (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-236)) (-5 *3 (-1134)))) + ((*1 *2 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-236)))) + ((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-357)) (-5 *2 (-627 (-1132 *4))) (-5 *1 (-279 *4 *5)) + (-5 *3 (-1132 *4)) (-4 *5 (-1226 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-187)) (-5 *3 (-552)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-170)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-918)) (-5 *3 (-552))))) + (-12 (-5 *3 (-627 (-1152))) (-5 *2 (-1240)) (-5 *1 (-1191)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-627 (-1152))) (-5 *2 (-1240)) (-5 *1 (-1191))))) +(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1 (-373))) (-5 *1 (-1019))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-627 *1)) (-4 *1 (-1042 *4 *5 *6)) (-4 *4 (-1028)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-830)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1182 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-776)) + (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (-5 *3 (-671 (-310 (-220)))) (-5 *2 (-373)) (-5 *1 (-200))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1189)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1132 *2)) (-4 *2 (-1189))))) (((*1 *2 *1) - (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) - (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *5)) - (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-625 (-625 (-839)))) (-5 *1 (-839)))) + (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-5 *2 (-1115 *3 *4)) (-5 *1 (-969 *3 *4)) (-14 *3 (-897)) - (-4 *4 (-358)))) - ((*1 *1 *2) - (-12 (-5 *2 (-625 (-625 *5))) (-4 *5 (-1025)) - (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *6 (-234 *4 *5)) - (-4 *7 (-234 *3 *5))))) + (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1189))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) - (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) - (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) - (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (-12 (-5 *3 (-1235 (-1235 *4))) (-4 *4 (-1028)) (-5 *2 (-671 *4)) + (-5 *1 (-1008 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1076)) (-4 *4 (-1076)) + (-4 *6 (-1076)) (-5 *2 (-1 *6 *5)) (-5 *1 (-666 *5 *4 *6))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-552)) (-5 *5 (-1134)) (-5 *6 (-671 (-220))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) + (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) + (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) + (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-732))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-357) (-828))) (-5 *1 (-178 *3 *2)) + (-4 *2 (-1211 (-166 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1235 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) + (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)) + (-5 *1 (-402 *3 *4 *5)) (-4 *3 (-403 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1211 *3)) + (-5 *2 (-671 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-373)))) + ((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-373))))) +(((*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-269))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-132))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 *5)) (-5 *4 (-627 *6)) (-4 *5 (-1076)) + (-4 *6 (-1189)) (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-627 *5)) (-5 *4 (-627 *2)) (-4 *5 (-1076)) + (-4 *2 (-1189)) (-5 *1 (-624 *5 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-627 *6)) (-5 *4 (-627 *5)) (-4 *6 (-1076)) + (-4 *5 (-1189)) (-5 *2 (-1 *5 *6)) (-5 *1 (-624 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-627 *5)) (-5 *4 (-627 *2)) (-4 *5 (-1076)) + (-4 *2 (-1189)) (-5 *1 (-624 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-627 *5)) (-5 *4 (-627 *6)) + (-4 *5 (-1076)) (-4 *6 (-1189)) (-5 *1 (-624 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-627 *5)) (-5 *4 (-627 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1076)) (-4 *2 (-1189)) (-5 *1 (-624 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1120)) (-5 *3 (-141)) (-5 *2 (-754))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1152)) (-5 *3 (-373)) (-5 *1 (-1040))))) +(((*1 *2 *3) + (-12 (-4 *4 (-830)) (-5 *2 (-1161 (-627 *4))) (-5 *1 (-1160 *4)) + (-5 *3 (-627 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552))))) + (-5 *2 (-401 (-552))) (-5 *1 (-999 *4)) (-4 *4 (-1211 (-552)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-921)) (-5 *3 (-552))))) +(((*1 *2 *2) + (-12 (-4 *2 (-169)) (-4 *2 (-1028)) (-5 *1 (-697 *2 *3)) + (-4 *3 (-630 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-169)) (-4 *2 (-1028))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1152)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-627 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-627 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3446 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1174) (-27) (-424 *8))) + (-4 *8 (-13 (-445) (-830) (-144) (-1017 *3) (-623 *3))) + (-5 *3 (-552)) (-5 *2 (-627 *4)) (-5 *1 (-993 *8 *4))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-96))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-428)) (-5 *2 - (-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374)))) - (-5 *1 (-201))))) + (-627 + (-3 (|:| -3112 (-1152)) + (|:| -3536 (-627 (-3 (|:| S (-1152)) (|:| P (-931 (-552))))))))) + (-5 *1 (-1156))))) (((*1 *2 *1) - (-12 (-5 *2 (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 *4)))) - (-5 *1 (-865 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)))) + (-12 (-5 *2 (-627 *4)) (-5 *1 (-1117 *3 *4)) + (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-807)) (-5 *3 (-627 (-1152))) (-5 *1 (-808))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1134)) (-5 *4 (-166 (-220))) (-5 *5 (-552)) + (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) + (-4 *3 (-1211 *4)) (-5 *1 (-792 *4 *3 *2 *5)) (-4 *2 (-638 *3)) + (-4 *5 (-638 (-401 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-401 *5)) + (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *5 (-1211 *4)) + (-5 *1 (-792 *4 *5 *2 *6)) (-4 *2 (-638 *5)) (-4 *6 (-638 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-351 *3)) (-4 *3 (-343))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-296)))) + ((*1 *1 *1) (-4 *1 (-296))) + ((*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) + ((*1 *1 *1) (-5 *1 (-842)))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-627 *3)) (-4 *3 (-301)) (-5 *1 (-176 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1028)) (-5 *2 (-552)) (-5 *1 (-436 *4 *3 *5)) + (-4 *3 (-1211 *4)) + (-4 *5 (-13 (-398) (-1017 *4) (-357) (-1174) (-278)))))) +(((*1 *1 *1) + (-12 (-4 *2 (-445)) (-4 *3 (-830)) (-4 *4 (-776)) + (-5 *1 (-966 *2 *3 *4 *5)) (-4 *5 (-928 *2 *4 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-931 (-220))) (-5 *2 (-220)) (-5 *1 (-299))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1152)) (-4 *4 (-1028)) (-4 *4 (-830)) + (-5 *2 (-2 (|:| |var| (-598 *1)) (|:| -4067 (-552)))) + (-4 *1 (-424 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1028)) (-4 *4 (-830)) + (-5 *2 (-2 (|:| |var| (-598 *1)) (|:| -4067 (-552)))) + (-4 *1 (-424 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) - (-4 *7 (-1073)) (-5 *2 (-625 *1)) (-4 *1 (-1076 *3 *4 *5 *6 *7))))) + (|partial| -12 (-4 *3 (-1088)) (-4 *3 (-830)) + (-5 *2 (-2 (|:| |var| (-598 *1)) (|:| -4067 (-552)))) + (-4 *1 (-424 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-871 *3)) (|:| -4067 (-754)))) + (-5 *1 (-871 *3)) (-4 *3 (-1076)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-928 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-830)) (-5 *2 (-2 (|:| |var| *5) (|:| -4067 (-754)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) + (-4 *7 (-928 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -4067 (-552)))) + (-5 *1 (-929 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-357) + (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) + (-15 -2929 (*7 $)))))))) (((*1 *2) - (-12 (-14 *4 (-751)) (-4 *5 (-1186)) (-5 *2 (-133)) - (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5)))) + (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) + (-5 *2 (-627 (-627 *4))) (-5 *1 (-335 *3 *4 *5 *6)) + (-4 *3 (-336 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *4 (-358)) (-5 *2 (-133)) (-5 *1 (-323 *3 *4)) - (-4 *3 (-324 *4)))) - ((*1 *2) - (-12 (-5 *2 (-751)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-170)))) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-4 *3 (-362)) (-5 *2 (-627 (-627 *3)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1028)) + (-4 *4 (-775))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-445)) + (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *1 (-956 *3 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1134)) (-5 *1 (-299))))) +(((*1 *2 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-552)) - (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-625 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) - (-5 *2 (-552)) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-925 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-956 *3)) (-4 *3 (-1025)) (-5 *2 (-897)))) - ((*1 *2) (-12 (-4 *1 (-1239 *3)) (-4 *3 (-358)) (-5 *2 (-133))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-881 *3))))) -(((*1 *2) - (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073)) - (-4 *4 (-1073))))) -(((*1 *1 *1 *1) (-4 *1 (-141))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2)) - (-4 *2 (-425 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) - ((*1 *1 *1 *1) (-5 *1 (-839))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1023)) - (-5 *3 (-552))))) -(((*1 *2 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1186))))) -(((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-352 *3)) (-4 *3 (-344))))) -(((*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1152))))) -(((*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186))))) + (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) + (-4 *4 (-1028))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 *9)) (-4 *8 (-1039 *5 *6 *7)) - (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) - (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-627 (-2 (|:| |val| (-627 *8)) (|:| -3443 *9)))) + (-5 *4 (-754)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1048 *5 *6 *7 *8)) + (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-1240)) + (-5 *1 (-1046 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-2 (|:| |val| (-627 *8)) (|:| -3443 *9)))) + (-5 *4 (-754)) (-4 *8 (-1042 *5 *6 *7)) (-4 *9 (-1085 *5 *6 *7 *8)) + (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-1240)) + (-5 *1 (-1121 *5 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-154)) (-5 *1 (-853)))) + ((*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028))))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-661 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-401 (-931 *4))) (-5 *3 (-1152)) + (-4 *4 (-13 (-544) (-1017 (-552)) (-144))) (-5 *1 (-558 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-220)) (-5 *2 (-111)) (-5 *1 (-293 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 *9)) (-4 *8 (-1039 *5 *6 *7)) - (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) - (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1118 *5 *6 *7 *8 *9))))) + (-12 (-5 *4 (-1070 (-823 (-220)))) (-5 *3 (-220)) (-5 *2 (-111)) + (-5 *1 (-299)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) + (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5))))) +(((*1 *2) + (-12 (-4 *4 (-357)) (-5 *2 (-900)) (-5 *1 (-322 *3 *4)) + (-4 *3 (-323 *4)))) + ((*1 *2) + (-12 (-4 *4 (-357)) (-5 *2 (-816 (-900))) (-5 *1 (-322 *3 *4)) + (-4 *3 (-323 *4)))) + ((*1 *2) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-900)))) + ((*1 *2) + (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-816 (-900)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1149)) - (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4))))) - ((*1 *1 *1) (-5 *1 (-374))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) - (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) - (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-918)) (-5 *3 (-552))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-625 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) - (-5 *1 (-497 *4 *5 *6 *2)) (-4 *2 (-925 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-925 *3 *4 *5))))) + (|partial| -12 (-4 *3 (-1189)) (-5 *1 (-179 *3 *2)) + (-4 *2 (-656 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-669 (-311 (-221)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-374)) (|:| |stabilityFactor| (-374)))) - (-5 *1 (-201))))) -(((*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-221)) (-5 *1 (-1235)))) - ((*1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-1235))))) + (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-111)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 (-166 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-111)) (-5 *1 (-1178 *4 *3)) + (-4 *3 (-13 (-27) (-1174) (-424 *4)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1028)) (-4 *2 (-357)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-357)) (-5 *1 (-641 *4 *2)) + (-4 *2 (-638 *4))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-842))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842))))) +(((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-842))))) +(((*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-830)) (-4 *2 (-1028)))) + ((*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544))))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-661 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076))))) +(((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)) (-4 *2 (-537)))) + ((*1 *1 *1) (-4 *1 (-1037)))) +(((*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-627 (-113)))))) +(((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *1 *1) (-4 *1 (-1115)))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) + (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *2 (-2 (|:| -3354 (-113)) (|:| |w| (-220)))) (-5 *1 (-199))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-884 *3))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-607 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -2791 *4) (|:| |sol?| (-111))) + (-552) *4)) + (-4 *4 (-357)) (-4 *5 (-1211 *4)) (-5 *1 (-562 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-749)) + (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-627 *7)) (|:| |badPols| (-627 *7)))) + (-5 *1 (-956 *4 *5 *6 *7)) (-5 *3 (-627 *7))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-166 (-220)))) + (-5 *2 (-1014)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 *7)) (-4 *7 (-830)) + (-4 *8 (-928 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) (-5 *2 - (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) - (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011)))) - (-5 *1 (-553)))) + (-2 (|:| |particular| (-3 (-1235 (-401 *8)) "failed")) + (|:| -2957 (-627 (-1235 (-401 *8)))))) + (-5 *1 (-651 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-2 (|:| |deg| (-754)) (|:| -1451 *5)))) + (-4 *5 (-1211 *4)) (-4 *4 (-343)) (-5 *2 (-627 *5)) + (-5 *1 (-211 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-749)) (-5 *4 (-1037)) + (-12 (-5 *3 (-627 (-2 (|:| -1727 *5) (|:| -3567 (-552))))) + (-5 *4 (-552)) (-4 *5 (-1211 *4)) (-5 *2 (-627 *5)) + (-5 *1 (-678 *5))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1152)) (-5 *4 (-931 (-552))) (-5 *2 (-324)) + (-5 *1 (-326)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1152)) (-5 *4 (-1068 (-931 (-552)))) (-5 *2 (-324)) + (-5 *1 (-326)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-754)) (-5 *1 (-657 *3)) (-4 *3 (-1028)) + (-4 *3 (-1076))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-922 (-220))) (-5 *2 (-1240)) (-5 *1 (-461))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-985))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-978 *3)) (-4 *3 (-169)) (-5 *1 (-782 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) + (-4 *3 (-13 (-1076) (-34)))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-627 (-1152))) (-5 *2 (-1152)) (-5 *1 (-324))))) +(((*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-107)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-528))) (-5 *1 (-528))))) +(((*1 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-430)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-382)) (-5 *1 (-430))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-544)) (-5 *2 (-111))))) +(((*1 *2 *3 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-754)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-776)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-830)) + (-5 *2 (-111)) (-5 *1 (-442 *4 *5 *6 *7))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-552)) (-4 *3 (-169)) (-4 *5 (-367 *3)) + (-4 *6 (-367 *3)) (-5 *1 (-670 *3 *5 *6 *2)) + (-4 *2 (-669 *3 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1211 *4)) (-5 *1 (-792 *4 *2 *3 *5)) + (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *3 (-638 *2)) + (-4 *5 (-638 (-401 *2)))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-737))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1076)) + (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))) + (-5 *2 (-627 (-1052 *3 *4 *5))) (-5 *1 (-1053 *3 *4 *5)) + (-4 *5 (-13 (-424 *4) (-865 *3) (-600 (-871 *3))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-401 *5)) (-4 *5 (-1211 *4)) (-4 *4 (-544)) + (-4 *4 (-1028)) (-4 *2 (-1226 *4)) (-5 *1 (-1229 *4 *5 *6 *2)) + (-4 *6 (-638 *5))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 - (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) - (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011)))) - (-5 *1 (-553)))) + (-2 (|:| |cycle?| (-111)) (|:| -4047 (-754)) (|:| |period| (-754)))) + (-5 *1 (-1132 *4)) (-4 *4 (-1189)) (-5 *3 (-754))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *1) (-5 *1 (-138))) ((*1 *1 *1) (-5 *1 (-141))) + ((*1 *1 *1) (-4 *1 (-1120)))) +(((*1 *2 *3) (-12 (-5 *3 (-111)) (-5 *2 (-1134)) (-5 *1 (-52))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-665 *4 *3)) (-4 *4 (-1076)) + (-4 *3 (-1076))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1152)) + (-4 *5 (-13 (-830) (-1017 (-552)) (-445) (-623 (-552)))) + (-5 *2 (-2 (|:| -3767 *3) (|:| |nconst| *3))) (-5 *1 (-555 *5 *3)) + (-4 *3 (-13 (-27) (-1174) (-424 *5)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1140 3 *3)) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) + ((*1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1028))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1076)) (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 *2))) + (-5 *2 (-871 *3)) (-5 *1 (-1052 *3 *4 *5)) + (-4 *5 (-13 (-424 *4) (-865 *3) (-600 *2)))))) +(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) + ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-627 *6)) (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) + (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) + (-4 *3 (-544))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1157))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1189)) (-4 *2 (-830)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1189)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-830)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1028)))) + ((*1 *1 *2) + (-12 (-5 *2 (-627 *1)) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) + ((*1 *1 *2) + (-12 (-5 *2 (-627 (-1140 *3 *4))) (-5 *1 (-1140 *3 *4)) + (-14 *3 (-900)) (-4 *4 (-1028)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-1003 *3)) + (-4 *3 (-13 (-828) (-357) (-1001))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) + (-4 *3 (-1211 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1045 *2 *3)) (-4 *2 (-13 (-828) (-357))) + (-4 *3 (-1211 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-1140 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-220))) (-5 *1 (-1237)))) + ((*1 *2 *1) (-12 (-5 *2 (-1109 (-220))) (-5 *1 (-1237))))) +(((*1 *2 *1) + (-12 (-5 *2 (-627 (-52))) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1076)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-767)) (-5 *3 (-1037)) - (-5 *4 - (-2 (|:| |fn| (-311 (-221))) - (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) - (|:| |relerr| (-221)))) + (-12 (-5 *4 (-552)) (-5 *2 (-1132 *3)) (-5 *1 (-1136 *3)) + (-4 *3 (-1028)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-802 *4)) (-4 *4 (-830)) (-4 *1 (-1252 *4 *3)) + (-4 *3 (-1028))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1120)) (-5 *2 (-1202 (-552)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-5 *2 (-552))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3))))) +(((*1 *1 *1 *1) (-5 *1 (-842)))) +(((*1 *2 *3) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) + (-5 *1 (-32 *4 *5)) (-4 *5 (-424 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) + (-5 *1 (-155 *4 *5)) (-4 *5 (-424 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) + (-5 *1 (-270 *4 *5)) (-4 *5 (-13 (-424 *4) (-981))))) + ((*1 *2 *3) + (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-295 *4)) (-4 *4 (-296)))) + ((*1 *2 *3) (-12 (-4 *1 (-296)) (-5 *3 (-113)) (-5 *2 (-111)))) + ((*1 *2 *3) + (-12 (-5 *3 (-113)) (-4 *5 (-830)) (-5 *2 (-111)) + (-5 *1 (-423 *4 *5)) (-4 *4 (-424 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) + (-5 *1 (-425 *4 *5)) (-4 *5 (-424 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) + (-5 *1 (-614 *4 *5)) (-4 *5 (-13 (-424 *4) (-981) (-1174)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -2101 (-627 (-2 (|:| |irr| *10) (|:| -3594 (-552))))))) + (-5 *6 (-627 *3)) (-5 *7 (-627 *8)) (-4 *8 (-830)) (-4 *3 (-301)) + (-4 *10 (-928 *3 *9 *8)) (-4 *9 (-776)) + (-5 *2 + (-2 (|:| |polfac| (-627 *10)) (|:| |correct| *3) + (|:| |corrfact| (-627 (-1148 *3))))) + (-5 *1 (-609 *8 *9 *3 *10)) (-5 *4 (-627 (-1148 *3)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) + (|:| |expense| (-373)) (|:| |accuracy| (-373)) + (|:| |intermediateResults| (-373)))) + (-5 *2 (-1014)) (-5 *1 (-299))))) +(((*1 *2 *2) + (-12 (-5 *2 - (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) - (|:| |extra| (-1011)))))) + (-496 (-401 (-552)) (-235 *4 (-754)) (-844 *3) + (-242 *3 (-401 (-552))))) + (-14 *3 (-627 (-1152))) (-14 *4 (-754)) (-5 *1 (-497 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-1152))) (-5 *2 (-1240)) (-5 *1 (-1155)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-767)) (-5 *3 (-1037)) - (-5 *4 - (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) - (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) - (|:| |relerr| (-221)))) + (-12 (-5 *4 (-627 (-1152))) (-5 *3 (-1152)) (-5 *2 (-1240)) + (-5 *1 (-1155)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-627 (-1152))) (-5 *3 (-1152)) (-5 *2 (-1240)) + (-5 *1 (-1155))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-627 *6)) (-4 *6 (-830)) (-4 *4 (-357)) (-4 *5 (-776)) (-5 *2 - (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)) - (|:| |extra| (-1011)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-780)) (-5 *3 (-1037)) - (-5 *4 - (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) - (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) - (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) - (|:| |abserr| (-221)) (|:| |relerr| (-221)))) - (-5 *2 (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-788)) + (-2 (|:| |mval| (-671 *4)) (|:| |invmval| (-671 *4)) + (|:| |genIdeal| (-496 *4 *5 *6 *7)))) + (-5 *1 (-496 *4 *5 *6 *7)) (-4 *7 (-928 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-473))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-754)) (-4 *5 (-544)) (-5 *2 - (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) - (|:| |explanations| (-625 (-1131))))) - (-5 *1 (-785)))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-948 *5 *3)) (-4 *3 (-1211 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1028)) (-14 *3 (-1152)) + (-14 *4 *2)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-445)) (-4 *4 (-830)) + (-5 *1 (-561 *4 *2)) (-4 *2 (-278)) (-4 *2 (-424 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1132 (-401 *3))) (-5 *1 (-171 *3)) (-4 *3 (-301))))) +(((*1 *2 *3) (-12 (-5 *2 (-373)) (-5 *1 (-768 *3)) (-4 *3 (-600 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-788)) (-5 *4 (-1037)) - (-5 *2 - (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) - (|:| |explanations| (-625 (-1131))))) - (-5 *1 (-785)))) + (-12 (-5 *4 (-900)) (-5 *2 (-373)) (-5 *1 (-768 *3)) + (-4 *3 (-600 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-931 *4)) (-4 *4 (-1028)) (-4 *4 (-600 *2)) + (-5 *2 (-373)) (-5 *1 (-768 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-816)) (-5 *3 (-1037)) - (-5 *4 - (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) - (-5 *2 (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)))))) + (-12 (-5 *3 (-931 *5)) (-5 *4 (-900)) (-4 *5 (-1028)) + (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) (-4 *4 (-600 *2)) + (-5 *2 (-373)) (-5 *1 (-768 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-816)) (-5 *3 (-1037)) - (-5 *4 - (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) - (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) - (|:| |ub| (-625 (-820 (-221)))))) - (-5 *2 (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)))))) + (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-900)) (-4 *5 (-544)) + (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-818)) - (-5 *2 - (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) - (|:| |explanations| (-625 (-1131))))) - (-5 *1 (-817)))) + (-12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-830)) + (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-818)) (-5 *4 (-1037)) - (-5 *2 - (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) - (|:| |explanations| (-625 (-1131))))) - (-5 *1 (-817)))) + (-12 (-5 *3 (-310 *5)) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-830)) + (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1134)) (-5 *5 (-671 (-220))) (-5 *6 (-671 (-552))) + (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-740))))) +(((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1028)) (-14 *3 (-627 (-1152))))) + ((*1 *1 *1) + (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1028) (-830))) + (-14 *3 (-627 (-1152)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-113)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1134)) (-4 *4 (-830)) (-5 *1 (-908 *4 *2)) + (-4 *2 (-424 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-871)) (-5 *3 (-1037)) - (-5 *4 - (-2 (|:| |pde| (-625 (-311 (-221)))) - (|:| |constraints| - (-625 - (-2 (|:| |start| (-221)) (|:| |finish| (-221)) - (|:| |grid| (-751)) (|:| |boundaryType| (-552)) - (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) - (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) - (|:| |tol| (-221)))) - (-5 *2 (-2 (|:| -3890 (-374)) (|:| |explanations| (-1131)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-874)) + (-12 (-5 *3 (-1152)) (-5 *4 (-1134)) (-5 *2 (-310 (-552))) + (-5 *1 (-909))))) +(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-517))))) +(((*1 *2 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-411 *4))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *1 (-343)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-4 *3 (-1076)) + (-5 *2 (-111))))) +(((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-565)))) + ((*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-565))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4))) + (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-271 *4 *2))))) +(((*1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) + ((*1 *2 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238))))) +(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-306)) (-5 *1 (-290)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-306)) (-5 *1 (-290)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-306)) (-5 *1 (-290)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-627 (-1134))) (-5 *3 (-1134)) (-5 *2 (-306)) + (-5 *1 (-290))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1061))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-343)) (-5 *2 - (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) - (|:| |explanations| (-625 (-1131))))) - (-5 *1 (-873)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-874)) (-5 *4 (-1037)) + (-2 (|:| |cont| *5) + (|:| -2101 (-627 (-2 (|:| |irr| *3) (|:| -3594 (-552))))))) + (-5 *1 (-211 *5 *3)) (-4 *3 (-1211 *5))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-754)) (-4 *1 (-1211 *3)) (-4 *3 (-1028))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3116 *4))) + (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-445)) (-5 *2 - (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) - (|:| |explanations| (-625 (-1131))))) - (-5 *1 (-873))))) + (-627 + (-2 (|:| |eigval| (-3 (-401 (-931 *4)) (-1141 (-1152) (-931 *4)))) + (|:| |eigmult| (-754)) + (|:| |eigvec| (-627 (-671 (-401 (-931 *4)))))))) + (-5 *1 (-286 *4)) (-5 *3 (-671 (-401 (-931 *4))))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) (((*1 *2) - (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073)) - (-4 *4 (-1073))))) + (-12 (-4 *3 (-544)) (-5 *2 (-627 (-671 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-411 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1195 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-138)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-141))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-922 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-627 (-922 *3))) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-627 (-627 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-627 (-922 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1134)) + (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *1 *1) (-4 *1 (-1115)))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-627 (-552))) (-5 *2 (-671 (-552))) (-5 *1 (-1086))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946))))) (((*1 *2 *3) - (-12 (-5 *3 (-1075 *4)) (-4 *4 (-1073)) (-5 *2 (-1 *4)) - (-5 *1 (-993 *4)))) + (|partial| -12 (-5 *2 (-552)) (-5 *1 (-557 *3)) (-4 *3 (-1017 *2))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *3 (-552)) + (-5 *2 (-1014)) (-5 *1 (-739))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1211 (-401 (-552)))) (-5 *1 (-892 *3 *2)) + (-4 *2 (-1211 (-401 *3)))))) +(((*1 *2) + (-12 (-4 *1 (-343)) + (-5 *2 (-627 (-2 (|:| -1727 (-552)) (|:| -4067 (-552)))))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-138)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-141))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) + (-5 *1 (-967 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1016)) (-5 *3 (-374)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1067 (-552))) (-5 *2 (-1 (-552))) (-5 *1 (-1023))))) -(((*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1186))))) -(((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-352 *3)) (-4 *3 (-344))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1152)))) + (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) + (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *1 *1) (-5 *1 (-1040)))) +(((*1 *1 *1 *1) (-4 *1 (-140))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537)))) + ((*1 *1 *1 *1) (-5 *1 (-842))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-625 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1237)) - (-5 *1 (-1152)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-625 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1237)) - (-5 *1 (-1152))))) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1026)) + (-5 *3 (-552))))) +(((*1 *2 *3) + (-12 (-5 *3 (-552)) (-4 *4 (-1211 (-401 *3))) (-5 *2 (-900)) + (-5 *1 (-892 *4 *5)) (-4 *5 (-1211 (-401 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-217 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-4 *1 (-248 *3)))) + ((*1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-830) (-544)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1182 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-776)) + (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111))))) (((*1 *1 *2) - (-12 (-5 *2 (-625 (-1049 *3 *4 *5))) (-4 *3 (-1073)) - (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3)))) - (-4 *5 (-13 (-425 *4) (-862 *3) (-598 (-868 *3)))) - (-5 *1 (-1050 *3 *4 *5))))) + (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-1123 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544))))) +(((*1 *2 *3) + (-12 (-5 *3 (-754)) (-5 *2 (-1 (-1132 (-931 *4)) (-1132 (-931 *4)))) + (-5 *1 (-1243 *4)) (-4 *4 (-357))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-113)) (-4 *4 (-1028)) (-5 *1 (-697 *4 *2)) + (-4 *2 (-630 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-817 *2)) (-4 *2 (-1028))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 *9)) (-4 *8 (-1039 *5 *6 *7)) - (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) - (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 *9)) (-4 *8 (-1039 *5 *6 *7)) - (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) - (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1118 *5 *6 *7 *8 *9))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *2 (-1039 *4 *5 *6)) (-5 *1 (-756 *4 *5 *6 *2 *3)) - (-4 *3 (-1045 *4 *5 *6 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-918)) (-5 *3 (-552))))) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122)))) +(((*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1134)) (-5 *1 (-769))))) (((*1 *2 *3) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-925 *4 *5 *6)) (-4 *6 (-598 (-1149))) - (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) - (-5 *2 (-1138 (-625 (-928 *4)) (-625 (-289 (-928 *4))))) - (-5 *1 (-497 *4 *5 *6 *7))))) + (-12 (-4 *4 (-13 (-357) (-1017 (-401 *2)))) (-5 *2 (-552)) + (-5 *1 (-114 *4 *3)) (-4 *3 (-1211 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-373))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-310 (-220)))) (-5 *2 (-111)) (-5 *1 (-261))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1211 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-169)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-169)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-669 (-311 (-221)))) (-5 *2 (-374)) (-5 *1 (-201))))) + (-12 (-4 *1 (-888)) (-5 *2 (-412 (-1148 *1))) (-5 *3 (-1148 *1))))) +(((*1 *2 *1) + (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-830)) + (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-111))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-754)) (-4 *5 (-544)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-948 *5 *3)) (-4 *3 (-1211 *5))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) + (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1040)) (-5 *3 (-1134))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-880 *2)) (-4 *2 (-1076)))) + ((*1 *1 *2) (-12 (-5 *1 (-880 *2)) (-4 *2 (-1076))))) +(((*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-274))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830))))) (((*1 *1 *2) - (-12 (-5 *2 (-1232 *4)) (-4 *4 (-1186)) (-4 *1 (-234 *3 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))) - ((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-751)) (-4 *4 (-358)) (-5 *1 (-872 *2 *4)) - (-4 *2 (-1208 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1163 *4 *5)) - (-4 *4 (-1073)) (-4 *5 (-1073))))) -(((*1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-23))))) -(((*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1186)) (-5 *2 (-751))))) -(((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1145 *4)) (-4 *4 (-344)) (-5 *2 (-112)) - (-5 *1 (-352 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-839)))) - ((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1237)) (-5 *1 (-938))))) -(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142))) - ((*1 *1 *1) (-4 *1 (-1117)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-669 (-167 (-402 (-552))))) + (-12 (-5 *2 - (-625 - (-2 (|:| |outval| (-167 *4)) (|:| |outmult| (-552)) - (|:| |outvect| (-625 (-669 (-167 *4))))))) - (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825)))))) -(((*1 *2 *3) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-549)) (-5 *3 (-552)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1145 (-402 (-552)))) (-5 *1 (-918)) (-5 *3 (-552))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-897)) (-5 *2 (-1237)) (-5 *1 (-210 *4)) - (-4 *4 - (-13 (-827) - (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 (*2 $)) - (-15 -3867 (*2 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1237)) (-5 *1 (-210 *3)) - (-4 *3 - (-13 (-827) - (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 (*2 $)) - (-15 -3867 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-495))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-201)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-625 (-374))) (-5 *2 (-374)) (-5 *1 (-201))))) -(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-311 *4)) - (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 (-167 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3)))))) -(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))) - ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-358)) (-5 *1 (-872 *2 *3)) - (-4 *2 (-1208 *3))))) + (-627 + (-2 + (|:| -3998 + (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) + (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (|:| -2162 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1132 (-220))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1707 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-547))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *1) (-12 (-4 *1 (-750 *3)) (-4 *3 (-1076)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1163 *4 *5)) - (-4 *4 (-1073)) (-4 *5 (-1073))))) -(((*1 *1) (-5 *1 (-155))) - ((*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23))))) -(((*1 *2 *3) - (-12 (-5 *3 (-799 *4)) (-4 *4 (-827)) (-5 *2 (-112)) - (-5 *1 (-652 *4))))) + (-12 (-5 *3 (-1235 *5)) (-4 *5 (-775)) (-5 *2 (-111)) + (-5 *1 (-825 *4 *5)) (-14 *4 (-754))))) +(((*1 *2 *1) + (-12 (-4 *1 (-590 *2 *3)) (-4 *3 (-1189)) (-4 *2 (-1076)) + (-4 *2 (-830))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-324))))) +(((*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) + (-4 *5 (-13 (-357) (-144) (-1017 (-552)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-401 *6)) (|:| |h| *6) + (|:| |c1| (-401 *6)) (|:| |c2| (-401 *6)) (|:| -3268 *6))) + (-5 *1 (-995 *5 *6)) (-5 *3 (-401 *6))))) (((*1 *2) - (-12 - (-5 *2 - (-1232 (-625 (-2 (|:| -3800 (-886 *3)) (|:| -3123 (-1093)))))) - (-5 *1 (-346 *3 *4)) (-14 *3 (-897)) (-14 *4 (-897)))) - ((*1 *2) - (-12 (-5 *2 (-1232 (-625 (-2 (|:| -3800 *3) (|:| -3123 (-1093)))))) - (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) (-14 *4 (-3 (-1145 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1232 (-625 (-2 (|:| -3800 *3) (|:| -3123 (-1093)))))) - (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) (-14 *4 (-897))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))) -(((*1 *1 *1) (-4 *1 (-1117)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-669 (-167 (-402 (-552))))) (-5 *2 (-625 (-167 *4))) - (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825)))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 (-868 *6))) - (-5 *5 (-1 (-865 *6 *8) *8 (-868 *6) (-865 *6 *8))) (-4 *6 (-1073)) - (-4 *8 (-13 (-1025) (-598 (-868 *6)) (-1014 *7))) - (-5 *2 (-865 *6 *8)) (-4 *7 (-13 (-1025) (-827))) - (-5 *1 (-917 *6 *7 *8))))) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1025)) (-4 *7 (-1025)) - (-4 *6 (-1208 *5)) (-5 *2 (-1145 (-1145 *7))) - (-5 *1 (-494 *5 *6 *4 *7)) (-4 *4 (-1208 *6))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) - (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) - (|:| |relerr| (-221)))) - (-5 *2 (-552)) (-5 *1 (-200))))) -(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-311 *4)) - (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 (-167 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3)))))) -(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))) - ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235))))) + (-12 (-5 *3 (-401 (-552))) (-5 *4 (-552)) (-5 *2 (-52)) + (-5 *1 (-984))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-357)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 (-401 *3))) + (-4 *1 (-329 *4 *3 *5 *2)) (-4 *2 (-336 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-552)) (-4 *2 (-357)) (-4 *4 (-1211 *2)) + (-4 *5 (-1211 (-401 *4))) (-4 *1 (-329 *2 *4 *5 *6)) + (-4 *6 (-336 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-357)) (-4 *3 (-1211 *2)) (-4 *4 (-1211 (-401 *3))) + (-4 *1 (-329 *2 *3 *4 *5)) (-4 *5 (-336 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-357)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) + (-4 *1 (-329 *3 *4 *5 *2)) (-4 *2 (-336 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-407 *4 (-401 *4) *5 *6)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-4 *3 (-357)) + (-4 *1 (-329 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *1 (-871)) - (-5 *3 - (-2 (|:| |pde| (-625 (-311 (-221)))) - (|:| |constraints| - (-625 - (-2 (|:| |start| (-221)) (|:| |finish| (-221)) - (|:| |grid| (-751)) (|:| |boundaryType| (-552)) - (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) - (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) - (|:| |tol| (-221)))) - (-5 *2 (-1011))))) -(((*1 *2) - (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1073)) - (-4 *4 (-1073))))) -(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510)))) + (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *2 (-627 *4)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1211 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *2 (-627 *3)) (-5 *1 (-1104 *4 *3)) (-4 *4 (-1211 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-1061))) (-5 *1 (-285))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-1152))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1152)) (-5 *6 (-111)) + (-4 *7 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-4 *3 (-13 (-1174) (-938) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-823 *3)) (|:| |f2| (-627 (-823 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-214 *7 *3)) (-5 *5 (-823 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) + (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) + (-5 *2 (-802 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1073) (-34))) (-5 *1 (-1113 *3 *2)) - (-4 *3 (-13 (-1073) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1243))))) -(((*1 *1) (-5 *1 (-155))) - ((*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23))))) -(((*1 *1 *2) (-12 (-5 *2 (-799 *3)) (-4 *3 (-827)) (-5 *1 (-652 *3))))) -(((*1 *2) - (-12 (-5 *2 (-669 (-886 *3))) (-5 *1 (-346 *3 *4)) (-14 *3 (-897)) - (-14 *4 (-897)))) - ((*1 *2) - (-12 (-5 *2 (-669 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) - (-14 *4 - (-3 (-1145 *3) - (-1232 (-625 (-2 (|:| -3800 *3) (|:| -3123 (-1093))))))))) - ((*1 *2) - (-12 (-5 *2 (-669 *3)) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) - (-14 *4 (-897))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-625 *1)) (-4 *1 (-425 *4)) - (-4 *4 (-827)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1149)) (-4 *1 (-425 *3)) (-4 *3 (-827)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1149)) (-4 *1 (-425 *3)) (-4 *3 (-827)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1149)) (-4 *1 (-425 *3)) (-4 *3 (-827)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-425 *3)) (-4 *3 (-827))))) -(((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142))) - ((*1 *1 *1) (-4 *1 (-1117)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-742)))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-865 *5 *3)) (-5 *4 (-868 *5)) (-4 *5 (-1073)) - (-4 *3 (-164 *6)) (-4 (-928 *6) (-862 *5)) - (-4 *6 (-13 (-862 *5) (-170))) (-5 *1 (-176 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-865 *4 *1)) (-5 *3 (-868 *4)) (-4 *1 (-862 *4)) - (-4 *4 (-1073)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-865 *5 *6)) (-5 *4 (-868 *5)) (-4 *5 (-1073)) - (-4 *6 (-13 (-1073) (-1014 *3))) (-4 *3 (-862 *5)) - (-5 *1 (-907 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-865 *5 *3)) (-4 *5 (-1073)) - (-4 *3 (-13 (-425 *6) (-598 *4) (-862 *5) (-1014 (-596 $)))) - (-5 *4 (-868 *5)) (-4 *6 (-13 (-544) (-827) (-862 *5))) - (-5 *1 (-908 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-865 (-552) *3)) (-5 *4 (-868 (-552))) (-4 *3 (-537)) - (-5 *1 (-909 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-865 *5 *6)) (-5 *3 (-596 *6)) (-4 *5 (-1073)) - (-4 *6 (-13 (-827) (-1014 (-596 $)) (-598 *4) (-862 *5))) - (-5 *4 (-868 *5)) (-5 *1 (-910 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-861 *5 *6 *3)) (-5 *4 (-868 *5)) (-4 *5 (-1073)) - (-4 *6 (-862 *5)) (-4 *3 (-646 *6)) (-5 *1 (-911 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-865 *6 *3) *8 (-868 *6) (-865 *6 *3))) - (-4 *8 (-827)) (-5 *2 (-865 *6 *3)) (-5 *4 (-868 *6)) - (-4 *6 (-1073)) (-4 *3 (-13 (-925 *9 *7 *8) (-598 *4))) - (-4 *7 (-773)) (-4 *9 (-13 (-1025) (-827) (-862 *6))) - (-5 *1 (-912 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-865 *5 *3)) (-4 *5 (-1073)) - (-4 *3 (-13 (-925 *8 *6 *7) (-598 *4))) (-5 *4 (-868 *5)) - (-4 *7 (-862 *5)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *8 (-13 (-1025) (-827) (-862 *5))) - (-5 *1 (-912 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-865 *5 *3)) (-4 *5 (-1073)) (-4 *3 (-968 *6)) - (-4 *6 (-13 (-544) (-862 *5) (-598 *4))) (-5 *4 (-868 *5)) - (-5 *1 (-915 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-865 *5 (-1149))) (-5 *3 (-1149)) (-5 *4 (-868 *5)) - (-4 *5 (-1073)) (-5 *1 (-916 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-625 (-868 *7))) (-5 *5 (-1 *9 (-625 *9))) - (-5 *6 (-1 (-865 *7 *9) *9 (-868 *7) (-865 *7 *9))) (-4 *7 (-1073)) - (-4 *9 (-13 (-1025) (-598 (-868 *7)) (-1014 *8))) - (-5 *2 (-865 *7 *9)) (-5 *3 (-625 *9)) (-4 *8 (-13 (-1025) (-827))) - (-5 *1 (-917 *7 *8 *9))))) + (-12 (-4 *2 (-826)) (-5 *1 (-1258 *3 *2)) (-4 *3 (-1028))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-669 (-1145 *8))) (-4 *5 (-1025)) (-4 *8 (-1025)) - (-4 *6 (-1208 *5)) (-5 *2 (-669 *6)) (-5 *1 (-494 *5 *6 *7 *8)) - (-4 *7 (-1208 *6))))) -(((*1 *1 *2 *2) (-12 - (-5 *2 - (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) - (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) - (-5 *1 (-1148))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-241 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) - (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-845 *3)) (-5 *2 (-552)))) - ((*1 *1 *1) (-4 *1 (-978))) - ((*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-988)))) - ((*1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-4 *1 (-988)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-897)))) - ((*1 *1 *1) (-4 *1 (-988)))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) - (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) - (|:| |relerr| (-221)))) - (-5 *2 (-625 (-221))) (-5 *1 (-200))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-1160 *2)) (-4 *2 (-358))))) -(((*1 *1) (-5 *1 (-155))) - ((*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-799 *3)) (-4 *3 (-827)) (-5 *1 (-652 *3))))) + (-5 *3 + (-627 + (-2 (|:| |eqzro| (-627 *8)) (|:| |neqzro| (-627 *8)) + (|:| |wcond| (-627 (-931 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1235 (-401 (-931 *5)))) + (|:| -2957 (-627 (-1235 (-401 (-931 *5)))))))))) + (-5 *4 (-1134)) (-4 *5 (-13 (-301) (-144))) (-4 *8 (-928 *5 *7 *6)) + (-4 *6 (-13 (-830) (-600 (-1152)))) (-4 *7 (-776)) (-5 *2 (-552)) + (-5 *1 (-903 *5 *6 *7 *8))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3116 *4))) + (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093)))))) - (-4 *4 (-344)) (-5 *2 (-751)) (-5 *1 (-341 *4)))) - ((*1 *2) - (-12 (-5 *2 (-751)) (-5 *1 (-346 *3 *4)) (-14 *3 (-897)) - (-14 *4 (-897)))) - ((*1 *2) - (-12 (-5 *2 (-751)) (-5 *1 (-347 *3 *4)) (-4 *3 (-344)) - (-14 *4 - (-3 (-1145 *3) - (-1232 (-625 (-2 (|:| -3800 *3) (|:| -3123 (-1093))))))))) - ((*1 *2) - (-12 (-5 *2 (-751)) (-5 *1 (-348 *3 *4)) (-4 *3 (-344)) - (-14 *4 (-897))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-297)) (-4 *2 (-1186)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 (-596 *1))) (-5 *3 (-625 *1)) (-4 *1 (-297)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-289 *1))) (-4 *1 (-297)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-289 *1)) (-4 *1 (-297))))) -(((*1 *2 *2) - (-12 (-4 *3 (-827)) (-5 *1 (-905 *3 *2)) (-4 *2 (-425 *3)))) + (-12 (-5 *2 (-412 (-1148 *1))) (-5 *1 (-310 *4)) (-5 *3 (-1148 *1)) + (-4 *4 (-445)) (-4 *4 (-544)) (-4 *4 (-830)))) ((*1 *2 *3) - (-12 (-5 *3 (-1149)) (-5 *2 (-311 (-552))) (-5 *1 (-906))))) -(((*1 *1 *1) (-4 *1 (-1117)))) -(((*1 *1 *1 *1) (-4 *1 (-467))) ((*1 *1 *1 *1) (-4 *1 (-742)))) + (-12 (-4 *1 (-888)) (-5 *2 (-412 (-1148 *1))) (-5 *3 (-1148 *1))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) + (-5 *2 (-1014)) (-5 *1 (-729))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-357) (-828))) (-5 *1 (-178 *2 *3)) + (-4 *3 (-1211 (-166 *2)))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *2 (-1014)) + (-5 *1 (-739))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1076) (-34))) + (-4 *3 (-13 (-1076) (-34)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1073) (-1014 *5))) - (-4 *5 (-862 *4)) (-4 *4 (-1073)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-907 *4 *5 *6))))) + (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) + (-4 *6 (-776)) (-5 *2 (-627 *3)) (-5 *1 (-903 *4 *5 *6 *3)) + (-4 *3 (-928 *4 *6 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-659 *3)) (-4 *3 (-830)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-802 *3)) (-4 *3 (-830))))) +(((*1 *2 *2) (-12 (-5 *2 (-310 (-220))) (-5 *1 (-205))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1145 *7)) - (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *2 (-1208 *5)) - (-5 *1 (-494 *5 *2 *6 *7)) (-4 *6 (-1208 *2))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) - (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) - (|:| |relerr| (-221)))) - (-5 *2 (-2 (|:| -3362 (-114)) (|:| |w| (-221)))) (-5 *1 (-200))))) + (-12 (-5 *3 (-1 (-111) *8)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) + (-4 *6 (-776)) (-4 *7 (-830)) + (-5 *2 (-2 (|:| |goodPols| (-627 *8)) (|:| |badPols| (-627 *8)))) + (-5 *1 (-956 *5 *6 *7 *8)) (-5 *4 (-627 *8))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-537)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1074 *3)) (-4 *3 (-1076)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-629 *3)) (-4 *3 (-1076))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-625 (-48))) (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1208 (-48))))) - ((*1 *2 *3) - (-12 (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1208 (-48))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-625 (-48))) (-4 *5 (-827)) (-4 *6 (-773)) - (-5 *2 (-413 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-925 (-48) *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-625 (-48))) (-4 *5 (-827)) (-4 *6 (-773)) - (-4 *7 (-925 (-48) *6 *5)) (-5 *2 (-413 (-1145 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1145 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-165 *4 *3)) - (-4 *3 (-1208 (-167 *4))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-825))) (-5 *2 (-413 *3)) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-413 *3)) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-413 *3)) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-344)) (-5 *2 (-413 *3)) (-5 *1 (-212 *4 *3)) - (-4 *3 (-1208 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-751)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) - (-4 *3 (-1208 (-552))))) + (-12 (-4 *5 (-357)) (-4 *7 (-1211 *5)) (-4 *4 (-707 *5 *7)) + (-5 *2 (-2 (|:| -2515 (-671 *6)) (|:| |vec| (-1235 *5)))) + (-5 *1 (-794 *5 *6 *7 *4 *3)) (-4 *6 (-638 *5)) (-4 *3 (-638 *4))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-627 (-257))) (-5 *4 (-1152)) + (-5 *1 (-256 *2)) (-4 *2 (-1189)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-625 (-751))) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) - (-4 *3 (-1208 (-552))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-625 (-751))) (-5 *5 (-751)) (-5 *2 (-413 *3)) - (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-751)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) - (-4 *3 (-1208 (-552))))) - ((*1 *2 *3) - (-12 (-5 *2 (-413 (-167 (-552)))) (-5 *1 (-440)) - (-5 *3 (-167 (-552))))) - ((*1 *2 *3) + (|partial| -12 (-5 *3 (-627 (-257))) (-5 *4 (-1152)) (-5 *2 (-52)) + (-5 *1 (-257))))) +(((*1 *1 *1) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-830)) (-4 *3 (-169)))) + ((*1 *1 *1) + (-12 (-5 *1 (-611 *2 *3 *4)) (-4 *2 (-830)) + (-4 *3 (-13 (-169) (-700 (-401 (-552))))) (-14 *4 (-900)))) + ((*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) + ((*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028))))) +(((*1 *2 *1) (-12 - (-4 *4 - (-13 (-827) - (-10 -8 (-15 -2042 ((-1149) $)) - (-15 -2195 ((-3 $ "failed") (-1149)))))) - (-4 *5 (-773)) (-4 *7 (-544)) (-5 *2 (-413 *3)) - (-5 *1 (-450 *4 *5 *6 *7 *3)) (-4 *6 (-544)) - (-4 *3 (-925 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-302)) (-5 *2 (-413 (-1145 *4))) (-5 *1 (-452 *4)) - (-5 *3 (-1145 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358)) - (-4 *7 (-13 (-358) (-145) (-705 *5 *6))) (-5 *2 (-413 *3)) - (-5 *1 (-487 *5 *6 *7 *3)) (-4 *3 (-1208 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-413 (-1145 *7)) (-1145 *7))) - (-4 *7 (-13 (-302) (-145))) (-4 *5 (-827)) (-4 *6 (-773)) - (-5 *2 (-413 *3)) (-5 *1 (-532 *5 *6 *7 *3)) - (-4 *3 (-925 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-413 (-1145 *7)) (-1145 *7))) - (-4 *7 (-13 (-302) (-145))) (-4 *5 (-827)) (-4 *6 (-773)) - (-4 *8 (-925 *7 *6 *5)) (-5 *2 (-413 (-1145 *8))) - (-5 *1 (-532 *5 *6 *7 *8)) (-5 *3 (-1145 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-625 *5) *6)) - (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) - (-4 *6 (-1208 *5)) (-5 *2 (-625 (-633 (-402 *6)))) - (-5 *1 (-637 *5 *6)) (-5 *3 (-633 (-402 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) - (-4 *5 (-1208 *4)) (-5 *2 (-625 (-633 (-402 *5)))) - (-5 *1 (-637 *4 *5)) (-5 *3 (-633 (-402 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-799 *4)) (-4 *4 (-827)) (-5 *2 (-625 (-652 *4))) - (-5 *1 (-652 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-552)) (-5 *2 (-625 *3)) (-5 *1 (-676 *3)) - (-4 *3 (-1208 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-344)) (-5 *2 (-413 *3)) - (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-925 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-344)) - (-4 *7 (-925 *6 *5 *4)) (-5 *2 (-413 (-1145 *7))) - (-5 *1 (-678 *4 *5 *6 *7)) (-5 *3 (-1145 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-773)) - (-4 *5 - (-13 (-827) - (-10 -8 (-15 -2042 ((-1149) $)) - (-15 -2195 ((-3 $ "failed") (-1149)))))) - (-4 *6 (-302)) (-5 *2 (-413 *3)) (-5 *1 (-711 *4 *5 *6 *3)) - (-4 *3 (-925 (-928 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-773)) - (-4 *5 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))) (-4 *6 (-544)) - (-5 *2 (-413 *3)) (-5 *1 (-713 *4 *5 *6 *3)) - (-4 *3 (-925 (-402 (-928 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-13 (-302) (-145))) - (-5 *2 (-413 *3)) (-5 *1 (-714 *4 *5 *6 *3)) - (-4 *3 (-925 (-402 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-13 (-302) (-145))) - (-5 *2 (-413 *3)) (-5 *1 (-722 *4 *5 *6 *3)) - (-4 *3 (-925 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-13 (-302) (-145))) - (-4 *7 (-925 *6 *5 *4)) (-5 *2 (-413 (-1145 *7))) - (-5 *1 (-722 *4 *5 *6 *7)) (-5 *3 (-1145 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-413 *3)) (-5 *1 (-983 *3)) - (-4 *3 (-1208 (-402 (-552)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-413 *3)) (-5 *1 (-1017 *3)) - (-4 *3 (-1208 (-402 (-928 (-552))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1208 (-402 (-552)))) - (-4 *5 (-13 (-358) (-145) (-705 (-402 (-552)) *4))) - (-5 *2 (-413 *3)) (-5 *1 (-1052 *4 *5 *3)) (-4 *3 (-1208 *5)))) + (-5 *2 + (-1235 + (-2 (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) + (|:| |deltaX| (-220)) (|:| |deltaY| (-220)) (|:| -1432 (-552)) + (|:| -3286 (-552)) (|:| |spline| (-552)) (|:| -2832 (-552)) + (|:| |axesColor| (-853)) (|:| -1516 (-552)) + (|:| |unitsColor| (-853)) (|:| |showing| (-552))))) + (-5 *1 (-1236))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-671 (-166 (-401 (-552))))) + (-5 *2 + (-627 + (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-552)) + (|:| |outvect| (-627 (-671 (-166 *4))))))) + (-5 *1 (-747 *4)) (-4 *4 (-13 (-357) (-828)))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-90 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-971 *2)) (-4 *2 (-544)) (-5 *1 (-139 *2 *4 *3)) + (-4 *3 (-367 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-1208 (-402 (-928 (-552))))) - (-4 *5 (-13 (-358) (-145) (-705 (-402 (-928 (-552))) *4))) - (-5 *2 (-413 *3)) (-5 *1 (-1054 *4 *5 *3)) (-4 *3 (-1208 *5)))) + (-12 (-4 *4 (-971 *2)) (-4 *2 (-544)) (-5 *1 (-495 *2 *4 *5 *3)) + (-4 *5 (-367 *2)) (-4 *3 (-367 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-446)) - (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-413 (-1145 (-402 *7)))) - (-5 *1 (-1144 *4 *5 *6 *7)) (-5 *3 (-1145 (-402 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-413 *1)) (-4 *1 (-1190)))) + (-12 (-5 *3 (-671 *4)) (-4 *4 (-971 *2)) (-4 *2 (-544)) + (-5 *1 (-675 *2 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-413 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-1208 (-552)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-897)) (-5 *2 (-1145 *3)) (-5 *1 (-1160 *3)) - (-4 *3 (-358))))) -(((*1 *2) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *5)) (-5 *4 (-897)) (-4 *5 (-827)) - (-5 *2 (-58 (-625 (-652 *5)))) (-5 *1 (-652 *5))))) -(((*1 *2) - (-12 (-4 *1 (-344)) - (-5 *2 (-625 (-2 (|:| -3824 (-552)) (|:| -3564 (-552)))))))) -(((*1 *2 *3) - (-12 (-5 *2 (-413 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1208 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) - (-5 *1 (-121 *3)) (-4 *3 (-827)))) - ((*1 *2 *2) - (-12 (-5 *2 (-571 *4)) (-4 *4 (-13 (-29 *3) (-1171))) - (-4 *3 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) - (-5 *1 (-569 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-571 (-402 (-928 *3)))) - (-4 *3 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) - (-5 *1 (-574 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-358)) - (-5 *2 (-2 (|:| -2992 *3) (|:| |special| *3))) (-5 *1 (-708 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1232 *5)) (-4 *5 (-358)) (-4 *5 (-1025)) - (-5 *2 (-625 (-625 (-669 *5)))) (-5 *1 (-1005 *5)) - (-5 *3 (-625 (-669 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1232 (-1232 *5))) (-4 *5 (-358)) (-4 *5 (-1025)) - (-5 *2 (-625 (-625 (-669 *5)))) (-5 *1 (-1005 *5)) - (-5 *3 (-625 (-669 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-625 *1)) (-4 *1 (-1117)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-625 *1)) (-4 *1 (-1117))))) -(((*1 *1 *1 *1) (-4 *1 (-742)))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-625 (-919 (-221))))) - (-5 *2 (-625 (-1067 (-221)))) (-5 *1 (-904))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1145 *7)) (-4 *5 (-1025)) - (-4 *7 (-1025)) (-4 *2 (-1208 *5)) (-5 *1 (-494 *5 *2 *6 *7)) - (-4 *6 (-1208 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1025)) (-4 *7 (-1025)) - (-4 *4 (-1208 *5)) (-5 *2 (-1145 *7)) (-5 *1 (-494 *5 *4 *6 *7)) - (-4 *6 (-1208 *4))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1011)) (-5 *3 (-1149)) (-5 *1 (-188))))) -(((*1 *2 *3) (-12 (-5 *3 (-625 *2)) (-5 *1 (-1160 *2)) (-4 *2 (-358))))) -(((*1 *2 *3) - (-12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-302)) - (-5 *2 (-402 (-413 (-928 *4)))) (-5 *1 (-1018 *4))))) + (-12 (-4 *4 (-971 *2)) (-4 *2 (-544)) (-5 *1 (-1204 *2 *4 *3)) + (-4 *3 (-1211 *4))))) +(((*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-385))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *5)) (-5 *4 (-897)) (-4 *5 (-827)) - (-5 *2 (-625 (-652 *5))) (-5 *1 (-652 *5))))) + (-12 (-5 *3 (-1148 *5)) (-4 *5 (-357)) (-5 *2 (-627 *6)) + (-5 *1 (-524 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-828)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-5 *2 (-111))))) (((*1 *2 *3) - (-12 (-4 *1 (-344)) (-5 *3 (-552)) (-5 *2 (-1159 (-897) (-751)))))) + (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-1240)) + (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-928 *4 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-900)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-257))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-402 (-552))) (-4 *4 (-1014 (-552))) - (-4 *4 (-13 (-827) (-544))) (-5 *1 (-32 *4 *2)) (-4 *2 (-425 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-133))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2)) - (-4 *2 (-425 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-221))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-552)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-402 (-552))) (-4 *4 (-358)) (-4 *4 (-38 *3)) - (-4 *5 (-1223 *4)) (-5 *1 (-273 *4 *5 *2)) (-4 *2 (-1194 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-402 (-552))) (-4 *4 (-358)) (-4 *4 (-38 *3)) - (-4 *5 (-1192 *4)) (-5 *1 (-274 *4 *5 *2 *6)) (-4 *2 (-1215 *4 *5)) - (-4 *6 (-959 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-279))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-356 *2)) (-4 *2 (-1073)))) - ((*1 *1 *1 *1) (-5 *1 (-374))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-381 *2)) (-4 *2 (-1073)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *1 (-425 *3)) (-4 *3 (-827)) (-4 *3 (-1085)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-467)) (-5 *2 (-552)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) + (-12 (-5 *2 (-671 *4)) (-5 *3 (-900)) (-4 *4 (-1028)) + (-5 *1 (-1007 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1232 *4)) (-5 *3 (-552)) (-4 *4 (-344)) - (-5 *1 (-521 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-528)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-528)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *4 (-1073)) - (-5 *1 (-662 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) - (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) (-4 *3 (-358)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) - (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) + (-12 (-5 *2 (-627 (-671 *4))) (-5 *3 (-900)) (-4 *4 (-1028)) + (-5 *1 (-1007 *4))))) +(((*1 *2 *3) + (-12 (-4 *1 (-874)) + (-5 *3 + (-2 (|:| |pde| (-627 (-310 (-220)))) + (|:| |constraints| + (-627 + (-2 (|:| |start| (-220)) (|:| |finish| (-220)) + (|:| |grid| (-754)) (|:| |boundaryType| (-552)) + (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) + (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) + (|:| |tol| (-220)))) + (-5 *2 (-1014))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) + ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) + ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) + (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-4 *1 (-882 *3))))) +(((*1 *2) (-12 (-5 *2 (-823 (-552))) (-5 *1 (-526)))) + ((*1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1076))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-669 *4)) (-5 *3 (-751)) (-4 *4 (-1025)) - (-5 *1 (-670 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-552)) (-4 *3 (-1025)) (-5 *1 (-695 *3 *4)) - (-4 *4 (-628 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-552)) (-4 *4 (-1025)) - (-5 *1 (-695 *4 *5)) (-4 *5 (-628 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-897)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-751)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-799 *2)) (-4 *2 (-827)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-814 *3)) (-4 *3 (-1025)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-552)) (-5 *1 (-814 *4)) (-4 *4 (-1025)))) - ((*1 *1 *1 *1) (-5 *1 (-839))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-402 (-552))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1085)) (-5 *2 (-897)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-552)) (-4 *1 (-1096 *3 *4 *5 *6)) (-4 *4 (-1025)) - (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4)) (-4 *4 (-358)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142))))) -(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-740))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1067 (-221))) - (-5 *1 (-902)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1067 (-221))) - (-5 *1 (-902)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1067 (-221))) - (-5 *1 (-903)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1067 (-221))) - (-5 *1 (-903))))) -(((*1 *2 *2 *2) + (-12 (-5 *3 (-1152)) + (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-754)) (-4 *6 (-357)) (-5 *4 (-1183 *6)) + (-5 *2 (-1 (-1132 *4) (-1132 *4))) (-5 *1 (-1243 *6)) + (-5 *5 (-1132 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1134)) (-5 *2 (-552)) (-5 *1 (-1171 *4)) + (-4 *4 (-1028))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) + ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -1270 (-669 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-669 *3)))) - (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) - (-4 *4 (-1208 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-404 *3 *4))))) + (-2 (|:| -2167 (-627 (-842))) (|:| -2796 (-627 (-842))) + (|:| |presup| (-627 (-842))) (|:| -3750 (-627 (-842))) + (|:| |args| (-627 (-842))))) + (-5 *1 (-1152))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1132 (-1132 *4))) (-5 *2 (-1132 *4)) (-5 *1 (-1136 *4)) + (-4 *4 (-1028))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-75 G JACOBG JACGEP)))) + (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-732))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-596 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-541))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1134)) + (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1152)) + (-4 *5 (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-2 (|:| -3446 *3) (|:| |coeff| *3))) (-5 *1 (-545 *5 *3)) + (-4 *3 (-13 (-27) (-1174) (-424 *5)))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) - (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) - (|:| |relerr| (-221)))) - (-5 *2 (-374)) (-5 *1 (-188))))) -(((*1 *2 *1) - (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) - (-4 *5 (-368 *3)) (-5 *2 (-625 (-625 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) - (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-625 (-625 *5))))) - ((*1 *2 *1) - (-12 (-5 *2 (-625 (-625 *3))) (-5 *1 (-1158 *3)) (-4 *3 (-1073))))) -(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-374))) (-5 *1 (-1016))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 *7)) (-4 *7 (-827)) - (-4 *8 (-925 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1232 (-402 *8)) "failed")) - (|:| -1270 (-625 (-1232 (-402 *8)))))) - (-5 *1 (-649 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-835)))) - ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-941)))) - ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-965)))) - ((*1 *2 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-1186)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1073) (-34))) (-5 *1 (-1113 *2 *3)) - (-4 *3 (-13 (-1073) (-34)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) - (-4 *5 (-368 *3)) (-5 *2 (-625 *3)))) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-754)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-776)) (-4 *2 (-928 *4 *5 *6)) (-5 *1 (-442 *4 *5 *6 *2)) + (-4 *4 (-445)) (-4 *6 (-830))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-905))))) +(((*1 *2) (-12 (-5 *2 (-823 (-552))) (-5 *1 (-526)))) + ((*1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1076))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-552)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-754)) (-4 *5 (-169)))) + ((*1 *1 *1) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) + (-4 *4 (-169)))) + ((*1 *1 *1) + (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1028)) (-4 *1 (-669 *3 *2 *4)) (-4 *2 (-367 *3)) + (-4 *4 (-367 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1118 *2 *3)) (-14 *2 (-754)) (-4 *3 (-1028))))) +(((*1 *2) + (-12 (-4 *3 (-1028)) (-5 *2 (-937 (-695 *3 *4))) (-5 *1 (-695 *3 *4)) + (-4 *4 (-1211 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1028)) + (-4 *2 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))) + (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1211 *4)))) + ((*1 *1 *1) (-4 *1 (-537))) + ((*1 *2 *1) (-12 (-5 *2 (-900)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) + ((*1 *2 *1) (-12 (-5 *2 (-900)) (-5 *1 (-659 *3)) (-4 *3 (-830)))) + ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-802 *3)) (-4 *3 (-830)))) + ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-872 *3)) (-4 *3 (-830)))) + ((*1 *2 *1) (-12 (-4 *1 (-974 *3)) (-4 *3 (-1189)) (-5 *2 (-754)))) + ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-1186 *3)) (-4 *3 (-1189)))) ((*1 *2 *1) - (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1186)) - (-5 *2 (-625 *3))))) -(((*1 *1) (-4 *1 (-344)))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) + (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-981)) + (-4 *2 (-1028))))) +(((*1 *2 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-1189)) (-5 *2 (-111))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-529 *3 *2)) + (-4 *2 (-1226 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) + (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-4 *4 (-1211 *3)) + (-4 *5 (-707 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1226 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) + (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-5 *1 (-534 *3 *2)) + (-4 *2 (-1226 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-13 (-544) (-144))) + (-5 *1 (-1128 *3))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-931 (-552))) (-5 *3 (-1152)) + (-5 *4 (-1070 (-401 (-552)))) (-5 *1 (-30))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1189)) (-5 *1 (-1108 *4 *2)) + (-4 *2 (-13 (-590 (-552) *4) (-10 -7 (-6 -4366) (-6 -4367)))))) ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3))))) + (-12 (-4 *3 (-830)) (-4 *3 (-1189)) (-5 *1 (-1108 *3 *2)) + (-4 *2 (-13 (-590 (-552) *3) (-10 -7 (-6 -4366) (-6 -4367))))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *6 (-220)) + (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-735))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) + (-4 *5 (-424 *4)) (-5 *2 (-412 (-1148 (-401 (-552))))) + (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1211 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1149)) (-5 *5 (-1067 (-221))) (-5 *2 (-903)) - (-5 *1 (-901 *3)) (-4 *3 (-598 (-528))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1149)) (-5 *5 (-1067 (-221))) (-5 *2 (-903)) - (-5 *1 (-901 *3)) (-4 *3 (-598 (-528))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-902)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221))) - (-5 *1 (-902)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221))) - (-5 *1 (-902)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-903)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221))) - (-5 *1 (-903)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221))) - (-5 *1 (-903)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-625 (-1 (-221) (-221)))) (-5 *3 (-1067 (-221))) - (-5 *1 (-903)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-625 (-1 (-221) (-221)))) (-5 *3 (-1067 (-221))) - (-5 *1 (-903)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221))) - (-5 *1 (-903)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221))) - (-5 *1 (-903))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-669 *3)) - (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) - (-4 *4 (-1208 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-404 *3 *4))))) + (-12 (-5 *3 (-1 *4 (-552))) (-5 *5 (-1 (-1132 *4))) (-4 *4 (-357)) + (-4 *4 (-1028)) (-5 *2 (-1132 *4)) (-5 *1 (-1136 *4))))) (((*1 *2 *3) + (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-445)) (-5 *2 (-111)) + (-5 *1 (-354 *4 *5)) (-14 *5 (-627 (-1152))))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-763 *4 (-844 *5)))) (-4 *4 (-445)) + (-14 *5 (-627 (-1152))) (-5 *2 (-111)) (-5 *1 (-612 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-445)) (-4 *4 (-803)) + (-14 *5 (-1152)) (-5 *2 (-552)) (-5 *1 (-1090 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-208 4 (-128))) (-5 *1 (-567))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-754)) (-5 *3 (-111)) (-5 *1 (-109)))) + ((*1 *2 *2) (-12 (-5 *2 (-900)) (|has| *1 (-6 -4357)) (-4 *1 (-398)))) + ((*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-900))))) +(((*1 *2 *3 *2) (-12 - (-5 *3 - (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) - (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) - (|:| |relerr| (-221)))) (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-188))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-596 *1)) (-4 *1 (-425 *4)) (-4 *4 (-827)) - (-4 *4 (-544)) (-5 *2 (-402 (-1145 *1))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-596 *3)) (-4 *3 (-13 (-425 *6) (-27) (-1171))) - (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) - (-5 *2 (-1145 (-402 (-1145 *3)))) (-5 *1 (-548 *6 *3 *7)) - (-5 *5 (-1145 *3)) (-4 *7 (-1073)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1228 *5)) (-14 *5 (-1149)) (-4 *6 (-1025)) - (-5 *2 (-1205 *5 (-928 *6))) (-5 *1 (-923 *5 *6)) (-5 *3 (-928 *6)))) + (-627 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-754)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-776)) (-4 *3 (-928 *4 *5 *6)) (-4 *4 (-445)) (-4 *6 (-830)) + (-5 *1 (-442 *4 *5 *6 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1134)) (-5 *1 (-693))))) +(((*1 *2 *1) + (-12 (-5 *2 (-842)) (-5 *1 (-1132 *3)) (-4 *3 (-1076)) + (-4 *3 (-1189))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-653)))) ((*1 *2 *1) - (-12 (-4 *1 (-925 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-827)) (-5 *2 (-1145 *3)))) + (-12 (-5 *2 (-627 (-900))) (-5 *1 (-1077 *3 *4)) (-14 *3 (-900)) + (-14 *4 (-900))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) + ((*1 *2 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-754)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-754))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-357)) (-4 *3 (-1028)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2220 *1))) + (-4 *1 (-832 *3))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) + (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) + ((*1 *2 *1) + (-12 (-5 *2 (-754)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1028)) + (-14 *4 (-627 (-1152))))) + ((*1 *2 *1) + (-12 (-5 *2 (-552)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1028) (-830))) + (-14 *4 (-627 (-1152))))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-1145 *1)) - (-4 *1 (-925 *4 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-1025)) - (-4 *7 (-925 *6 *5 *4)) (-5 *2 (-402 (-1145 *3))) - (-5 *1 (-926 *5 *4 *6 *7 *3)) - (-4 *3 - (-13 (-358) - (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $))))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1145 *3)) - (-4 *3 - (-13 (-358) - (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) (-15 -1368 (*7 $))))) - (-4 *7 (-925 *6 *5 *4)) (-4 *5 (-773)) (-4 *4 (-827)) - (-4 *6 (-1025)) (-5 *1 (-926 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1149)) (-4 *5 (-544)) - (-5 *2 (-402 (-1145 (-402 (-928 *5))))) (-5 *1 (-1019 *5)) - (-5 *3 (-402 (-928 *5)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1217 *3 *4 *5)) (-4 *3 (-13 (-358) (-827))) - (-14 *4 (-1149)) (-14 *5 *3) (-5 *1 (-314 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1016)) (-5 *3 (-374))))) + (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1028)) (-4 *3 (-830)) + (-4 *5 (-260 *3)) (-4 *6 (-776)) (-5 *2 (-754)))) + ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-269)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1148 *8)) (-5 *4 (-627 *6)) (-4 *6 (-830)) + (-4 *8 (-928 *7 *5 *6)) (-4 *5 (-776)) (-4 *7 (-1028)) + (-5 *2 (-627 (-754))) (-5 *1 (-315 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-900)))) + ((*1 *2 *1) + (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) + (-5 *2 (-754)))) + ((*1 *2 *1) (-12 (-4 *1 (-463 *3 *2)) (-4 *3 (-169)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-544)) (-5 *2 (-552)) (-5 *1 (-607 *3 *4)) + (-4 *4 (-1211 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1028)) (-5 *2 (-754)))) + ((*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1028)) (-5 *2 (-754)))) + ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) + ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-627 *6)) (-4 *1 (-928 *4 *5 *6)) (-4 *4 (-1028)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 (-754))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-928 *4 *5 *3)) (-4 *4 (-1028)) (-4 *5 (-776)) + (-4 *3 (-830)) (-5 *2 (-754)))) + ((*1 *2 *1) + (-12 (-4 *1 (-952 *3 *2 *4)) (-4 *3 (-1028)) (-4 *4 (-830)) + (-4 *2 (-775)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-754)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1197 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1226 *3)) + (-5 *2 (-552)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1218 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1195 *3)) + (-5 *2 (-401 (-552))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-816 (-900))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1256 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) + (-5 *2 (-754))))) +(((*1 *2 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1189))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-544)) (-4 *3 (-169)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *1 (-670 *3 *4 *5 *2)) + (-4 *2 (-669 *3 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-102 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-754)) (-5 *1 (-58 *3)) (-4 *3 (-1189)))) + ((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-58 *3))))) +(((*1 *2 *3) + (-12 (-4 *5 (-13 (-600 *2) (-169))) (-5 *2 (-871 *4)) + (-5 *1 (-167 *4 *5 *3)) (-4 *4 (-1076)) (-4 *3 (-163 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-1070 (-823 (-373))))) + (-5 *2 (-627 (-1070 (-823 (-220))))) (-5 *1 (-299)))) + ((*1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-373)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-842)) (-5 *3 (-552)) (-5 *1 (-388)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1235 *3)) (-4 *3 (-169)) (-4 *1 (-403 *3 *4)) + (-4 *4 (-1211 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1211 *3)) + (-5 *2 (-1235 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-169)) (-4 *1 (-411 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1235 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-412 *1)) (-4 *1 (-424 *3)) (-4 *3 (-544)) + (-4 *3 (-830)))) + ((*1 *1 *2) + (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-1028)) + (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-456 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-528)))) + ((*1 *2 *1) (-12 (-4 *1 (-600 *2)) (-4 *2 (-1189)))) + ((*1 *1 *2) + (-12 (-4 *3 (-169)) (-4 *1 (-707 *3 *2)) (-4 *2 (-1211 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) + ((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1028)) (-4 *1 (-959 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1039)))) + ((*1 *1 *2) + (-12 (-5 *2 (-931 *3)) (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) + (-4 *5 (-600 (-1152))) (-4 *4 (-776)) (-4 *5 (-830)))) + ((*1 *1 *2) + (-1559 + (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) + (-12 (-1681 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) + (-4 *5 (-600 (-1152)))) + (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))) + (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152)))) + (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))))) + ((*1 *1 *2) + (-12 (-5 *2 (-931 (-401 (-552)))) (-4 *1 (-1042 *3 *4 *5)) + (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152))) (-4 *3 (-1028)) + (-4 *4 (-776)) (-4 *5 (-830)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-627 *7)) (|:| -3443 *8))) + (-4 *7 (-1042 *4 *5 *6)) (-4 *8 (-1048 *4 *5 *6 *7)) (-4 *4 (-445)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-1134)) + (-5 *1 (-1046 *4 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1058)))) + ((*1 *1 *2) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1079 *3 *4 *5 *6 *2)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1079 *3 *4 *5 *2 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-4 *5 (-1076)) (-4 *2 (-1076)) (-4 *6 (-1076)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1079 *3 *4 *2 *5 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-4 *2 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1079 *3 *2 *4 *5 *6)) (-4 *3 (-1076)) (-4 *2 (-1076)) + (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1079 *2 *3 *4 *5 *6)) (-4 *2 (-1076)) (-4 *3 (-1076)) + (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)))) + ((*1 *1 *2) + (-12 (-5 *2 (-627 *1)) (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) + (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-627 *7)) (|:| -3443 *8))) + (-4 *7 (-1042 *4 *5 *6)) (-4 *8 (-1085 *4 *5 *6 *7)) (-4 *4 (-445)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-1134)) + (-5 *1 (-1121 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1080)) (-5 *1 (-1157)))) + ((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-1157)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-842)) (-5 *3 (-552)) (-5 *1 (-1169)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-842)) (-5 *3 (-552)) (-5 *1 (-1169)))) + ((*1 *2 *3) + (-12 (-5 *3 (-763 *4 (-844 *5))) + (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-14 *5 (-627 (-1152))) + (-5 *2 (-763 *4 (-844 *6))) (-5 *1 (-1261 *4 *5 *6)) + (-14 *6 (-627 (-1152))))) + ((*1 *2 *3) + (-12 (-5 *3 (-931 *4)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) + (-5 *2 (-931 (-1003 (-401 *4)))) (-5 *1 (-1261 *4 *5 *6)) + (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152))))) + ((*1 *2 *3) + (-12 (-5 *3 (-763 *4 (-844 *6))) + (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-14 *6 (-627 (-1152))) + (-5 *2 (-931 (-1003 (-401 *4)))) (-5 *1 (-1261 *4 *5 *6)) + (-14 *5 (-627 (-1152))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1148 *4)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) + (-5 *2 (-1148 (-1003 (-401 *4)))) (-5 *1 (-1261 *4 *5 *6)) + (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152))))) + ((*1 *2 *3) + (-12 + (-5 *3 (-1122 *4 (-523 (-844 *6)) (-844 *6) (-763 *4 (-844 *6)))) + (-4 *4 (-13 (-828) (-301) (-144) (-1001))) (-14 *6 (-627 (-1152))) + (-5 *2 (-627 (-763 *4 (-844 *6)))) (-5 *1 (-1261 *4 *5 *6)) + (-14 *5 (-627 (-1152)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-922 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-627 (-922 *3))) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-627 (-627 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-627 (-922 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-754)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-754))))) +(((*1 *2 *3) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-549)) (-5 *3 (-552)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1148 (-401 (-552)))) (-5 *1 (-921)) (-5 *3 (-552))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-900))) (-5 *2 (-883 (-552))) (-5 *1 (-896))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-357)) (-4 *3 (-1028)) + (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-832 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-357)) (-4 *5 (-1028)) + (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-833 *5 *3)) + (-4 *3 (-832 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-537)))) +(((*1 *1) (-5 *1 (-547)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-669 *5)) (-5 *4 (-1232 *5)) (-4 *5 (-358)) - (-5 *2 (-112)) (-5 *1 (-647 *5)))) + (-12 (-5 *3 (-671 *8)) (-5 *4 (-754)) (-4 *8 (-928 *5 *7 *6)) + (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) + (-4 *7 (-776)) + (-5 *2 + (-627 + (-2 (|:| |det| *8) (|:| |rows| (-627 (-552))) + (|:| |cols| (-627 (-552)))))) + (-5 *1 (-903 *5 *6 *7 *8))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-574 *2)) (-4 *2 (-537))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1025 *4 *5)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) + (-14 *5 (-627 (-1152))) + (-5 *2 + (-627 (-2 (|:| -2667 (-1148 *4)) (|:| -3133 (-627 (-931 *4)))))) + (-5 *1 (-1261 *4 *5 *6)) (-14 *6 (-627 (-1152))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) + (-5 *2 + (-627 (-2 (|:| -2667 (-1148 *5)) (|:| -3133 (-627 (-931 *5)))))) + (-5 *1 (-1261 *5 *6 *7)) (-5 *3 (-627 (-931 *5))) + (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) + (-5 *2 + (-627 (-2 (|:| -2667 (-1148 *5)) (|:| -3133 (-627 (-931 *5)))))) + (-5 *1 (-1261 *5 *6 *7)) (-5 *3 (-627 (-931 *5))) + (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4354)))) - (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-112)) - (-5 *1 (-648 *5 *6 *4 *3)) (-4 *3 (-667 *5 *6 *4))))) -(((*1 *2) - (-12 (-4 *1 (-344)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3))))) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-828) (-301) (-144) (-1001))) + (-5 *2 + (-627 (-2 (|:| -2667 (-1148 *5)) (|:| -3133 (-627 (-931 *5)))))) + (-5 *1 (-1261 *5 *6 *7)) (-5 *3 (-627 (-931 *5))) + (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-828) (-301) (-144) (-1001))) + (-5 *2 + (-627 (-2 (|:| -2667 (-1148 *4)) (|:| -3133 (-627 (-931 *4)))))) + (-5 *1 (-1261 *4 *5 *6)) (-5 *3 (-627 (-931 *4))) + (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-401 *2)) (-4 *2 (-1211 *5)) + (-5 *1 (-790 *5 *2 *3 *6)) + (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) + (-4 *3 (-638 *2)) (-4 *6 (-638 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-627 (-401 *2))) (-4 *2 (-1211 *5)) + (-5 *1 (-790 *5 *2 *3 *6)) + (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *3 (-638 *2)) + (-4 *6 (-638 (-401 *2)))))) +(((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-1076)) (-5 *2 (-754))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388))))) +(((*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-742))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-625 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-827)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1179 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-773)) - (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *1) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-902)))) - ((*1 *2 *1) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-903))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-669 *3)) - (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) - (-4 *4 (-1208 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-404 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-669 *3)) - (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) - (-4 *4 (-1208 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-404 *3 *4))))) + (-12 (-5 *3 (-552)) (-4 *1 (-317 *4 *2)) (-4 *4 (-1076)) + (-4 *2 (-129))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-627 *3)) (-5 *5 (-900)) (-4 *3 (-1211 *4)) + (-4 *4 (-301)) (-5 *1 (-453 *4 *3))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) - (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) - (|:| |relerr| (-221)))) - (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-188))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-596 *1))) (-4 *1 (-297))))) -(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-374)) (-5 *1 (-1016))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-625 (-1145 *4))) (-5 *3 (-1145 *4)) - (-4 *4 (-885)) (-5 *1 (-643 *4))))) + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) + (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) + (-5 *2 (-373)) (-5 *1 (-200))))) +(((*1 *2 *1) (-12 (-4 *1 (-1223 *3)) (-4 *3 (-1189)) (-5 *2 (-754))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-627 (-598 *2))) (-5 *4 (-627 (-1152))) + (-4 *2 (-13 (-424 (-166 *5)) (-981) (-1174))) + (-4 *5 (-13 (-544) (-830))) (-5 *1 (-586 *5 *6 *2)) + (-4 *6 (-13 (-424 *5) (-981) (-1174)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-931 *6))) (-5 *4 (-627 (-1152))) + (-4 *6 (-13 (-544) (-1017 *5))) (-4 *5 (-544)) + (-5 *2 (-627 (-627 (-288 (-401 (-931 *6)))))) (-5 *1 (-1018 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-897)) + (-12 (-5 *3 (-906)) (-5 *2 - (-3 (-1145 *4) - (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093))))))) - (-5 *1 (-341 *4)) (-4 *4 (-344))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-297)))) - ((*1 *1 *1) (-4 *1 (-297))) ((*1 *1 *1) (-5 *1 (-839)))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-625 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-827)) (-5 *2 (-112)))) + (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) + (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) + (-5 *1 (-150)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-906)) (-5 *4 (-401 (-552))) + (-5 *2 + (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) + (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) + (-5 *1 (-150)))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) + (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) + (-5 *1 (-150)) (-5 *3 (-627 (-922 (-220)))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) + (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) + (-5 *1 (-150)) (-5 *3 (-627 (-627 (-922 (-220))))))) + ((*1 *1 *2) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *1 (-257)))) + ((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-754)) (-4 *4 (-13 (-1028) (-700 (-401 (-552))))) + (-4 *5 (-830)) (-5 *1 (-1251 *4 *5 *2)) (-4 *2 (-1256 *5 *4))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *2 (-1014)) + (-5 *1 (-731))))) +(((*1 *1 *1 *1) (-4 *1 (-537)))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-1066))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830)) (-4 *2 (-445))))) +(((*1 *1) (-5 *1 (-154))) + ((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-23))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-742))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) + (-5 *3 (-627 (-552)))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-627 *3)) + (-4 *3 (-13 (-424 *6) (-27) (-1174))) + (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1076))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1226 *4)) (-5 *1 (-1228 *4 *2)) + (-4 *4 (-38 (-401 (-552))))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-111)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257)))) + ((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) + ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1182 *4 *5 *3 *6)) (-4 *4 (-544)) (-4 *5 (-776)) + (-4 *3 (-830)) (-4 *6 (-1042 *4 *5 *3)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-111))))) +(((*1 *1 *1 *1) (-5 *1 (-842)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-922 *4)) (-4 *4 (-1028)) (-5 *1 (-1140 *3 *4)) + (-14 *3 (-900))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) + (-5 *2 + (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) + (|:| |success| (-111)))) + (-5 *1 (-772)) (-5 *5 (-552))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-155 *4 *2)) + (-4 *2 (-424 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1068 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-830) (-544))) + (-5 *1 (-155 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1068 *1)) (-4 *1 (-157)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1152))))) +(((*1 *2 *1) + (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) + (-5 *2 (-754)))) ((*1 *2 *1) - (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1179 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-773)) - (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-625 (-221)))) (-5 *1 (-902))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-751)) - (-4 *3 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) - (-4 *4 (-1208 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-404 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-413 (-1145 (-552)))) (-5 *1 (-187)) (-5 *3 (-552))))) -(((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1016))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-639 *4 *2)) - (-4 *2 (-636 *4))))) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)) + (-5 *2 (-754)))) + ((*1 *2 *1) + (-12 (-5 *2 (-754)) (-5 *1 (-718 *3 *4)) (-4 *3 (-1028)) + (-4 *4 (-709))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-897)) - (-5 *2 (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093)))))) - (-5 *1 (-341 *4)) (-4 *4 (-344))))) + (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1193)) (-4 *3 (-1211 *4)) + (-4 *5 (-1211 (-401 *3))) (-5 *2 (-111)))) + ((*1 *2 *3) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1148 *3)) (-4 *3 (-362)) (-4 *1 (-323 *3)) + (-4 *3 (-357))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *1 (-227 *4)) - (-4 *4 (-1025)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1025)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-751)))) - ((*1 *1 *1) (-4 *1 (-229))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)) - (-4 *4 (-1208 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3)) - (-4 *3 (-1208 *2)))) - ((*1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1025)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 *4)) (-5 *3 (-625 (-751))) (-4 *1 (-876 *4)) - (-4 *4 (-1073)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-751)) (-4 *1 (-876 *2)) (-4 *2 (-1073)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-625 *3)) (-4 *1 (-876 *3)) (-4 *3 (-1073)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1073))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-625 *7))) (-4 *1 (-1179 *4 *5 *6 *7)) - (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-669 *2)) (-5 *4 (-552)) - (-4 *2 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) - (-4 *5 (-1208 *2)) (-5 *1 (-492 *2 *5 *6)) (-4 *6 (-404 *2 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-625 (-1145 (-552)))) (-5 *1 (-187)) (-5 *3 (-552))))) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-627 *4)) (-4 *4 (-1076)) (-4 *4 (-1189)) (-5 *2 (-111)) + (-5 *1 (-1132 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-167 (-374))) (-5 *1 (-765 *3)) (-4 *3 (-598 (-374))))) + (-12 (-5 *3 (-871 *4)) (-4 *4 (-1076)) (-5 *2 (-627 *5)) + (-5 *1 (-869 *4 *5)) (-4 *5 (-1189))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1028)) + (-4 *4 (-775)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-627 (-1152))))) + ((*1 *1 *2 *1 *1 *3) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-897)) (-5 *2 (-167 (-374))) (-5 *1 (-765 *3)) - (-4 *3 (-598 (-374))))) - ((*1 *2 *3) - (-12 (-5 *3 (-167 *4)) (-4 *4 (-170)) (-4 *4 (-598 (-374))) - (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1189)) + (-4 *6 (-1189)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-167 *5)) (-5 *4 (-897)) (-4 *5 (-170)) - (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-928 (-167 *4))) (-4 *4 (-170)) (-4 *4 (-598 (-374))) - (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-552)) + (-14 *6 (-754)) (-4 *7 (-169)) (-4 *8 (-169)) + (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-133 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-928 (-167 *5))) (-5 *4 (-897)) (-4 *5 (-170)) - (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-928 *4)) (-4 *4 (-1025)) (-4 *4 (-598 (-374))) - (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-169)) + (-4 *6 (-169)) (-5 *2 (-166 *6)) (-5 *1 (-165 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-310 *3) (-310 *3))) (-4 *3 (-13 (-1028) (-830))) + (-5 *1 (-218 *3 *4)) (-14 *4 (-627 (-1152))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-928 *5)) (-5 *4 (-897)) (-4 *5 (-1025)) - (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544)) (-4 *4 (-598 (-374))) - (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-235 *5 *6)) (-14 *5 (-754)) + (-4 *6 (-1189)) (-4 *7 (-1189)) (-5 *2 (-235 *5 *7)) + (-5 *1 (-234 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-897)) (-4 *5 (-544)) - (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-402 (-928 (-167 *4)))) (-4 *4 (-544)) - (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-288 *5)) (-4 *5 (-1189)) + (-4 *6 (-1189)) (-5 *2 (-288 *6)) (-5 *1 (-287 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1189)) (-5 *1 (-288 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1134)) (-5 *5 (-598 *6)) + (-4 *6 (-296)) (-4 *2 (-1189)) (-5 *1 (-291 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-402 (-928 (-167 *5)))) (-5 *4 (-897)) (-4 *5 (-544)) - (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-311 *4)) (-4 *4 (-544)) (-4 *4 (-827)) - (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-598 *5)) (-4 *5 (-296)) + (-4 *2 (-296)) (-5 *1 (-292 *5 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-598 *1)) (-4 *1 (-296)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-311 *5)) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-827)) - (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-311 (-167 *4))) (-4 *4 (-544)) (-4 *4 (-827)) - (-4 *4 (-598 (-374))) (-5 *2 (-167 (-374))) (-5 *1 (-765 *4)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-671 *5)) (-4 *5 (-1028)) + (-4 *6 (-1028)) (-5 *2 (-671 *6)) (-5 *1 (-298 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-311 (-167 *5))) (-5 *4 (-897)) (-4 *5 (-544)) - (-4 *5 (-827)) (-4 *5 (-598 (-374))) (-5 *2 (-167 (-374))) - (-5 *1 (-765 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) - ((*1 *1 *1) (-5 *1 (-839))) - ((*1 *1 *2) - (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-4 *1 (-1071 *3)))) - ((*1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093)))))) - (-4 *4 (-344)) (-5 *2 (-669 *4)) (-5 *1 (-341 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *1 *1) (-4 *1 (-486))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-625 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1179 *5 *6 *7 *8)) (-4 *5 (-544)) - (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-669 *2)) (-5 *4 (-751)) - (-4 *2 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) - (-4 *5 (-1208 *2)) (-5 *1 (-492 *2 *5 *6)) (-4 *6 (-404 *2 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-625 (-552))) (-5 *2 (-1151 (-402 (-552)))) - (-5 *1 (-186))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) - (-5 *2 (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))) - (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-720 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1145 *4)) (-4 *4 (-344)) - (-5 *2 (-1232 (-625 (-2 (|:| -3800 *4) (|:| -3123 (-1093)))))) - (-5 *1 (-341 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *1 *1) (-4 *1 (-486))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-751)) (-4 *5 (-344)) (-4 *6 (-1208 *5)) - (-5 *2 - (-625 - (-2 (|:| -1270 (-669 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-669 *6))))) - (-5 *1 (-491 *5 *6 *7)) - (-5 *3 - (-2 (|:| -1270 (-669 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-669 *6)))) - (-4 *7 (-1208 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-552))) (-5 *2 (-1151 (-402 (-552)))) - (-5 *1 (-186))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-839))) - ((*1 *1 *1 *1) (-4 *1 (-943)))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-310 *5)) (-4 *5 (-830)) + (-4 *6 (-830)) (-5 *2 (-310 *6)) (-5 *1 (-308 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-330 *5 *6 *7 *8)) (-4 *5 (-357)) + (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) + (-4 *9 (-357)) (-4 *10 (-1211 *9)) (-4 *11 (-1211 (-401 *10))) + (-5 *2 (-330 *9 *10 *11 *12)) + (-5 *1 (-327 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-336 *9 *10 *11)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-332 *3)) (-4 *3 (-1076)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1193)) (-4 *8 (-1193)) + (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) (-4 *9 (-1211 *8)) + (-4 *2 (-336 *8 *9 *10)) (-5 *1 (-334 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-336 *5 *6 *7)) (-4 *10 (-1211 (-401 *9))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1189)) (-4 *6 (-1189)) + (-4 *2 (-367 *6)) (-5 *1 (-365 *5 *4 *6 *2)) (-4 *4 (-367 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) + (-4 *4 (-1076)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-412 *5)) (-4 *5 (-544)) + (-4 *6 (-544)) (-5 *2 (-412 *6)) (-5 *1 (-399 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-401 *5)) (-4 *5 (-544)) + (-4 *6 (-544)) (-5 *2 (-401 *6)) (-5 *1 (-400 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-407 *5 *6 *7 *8)) (-4 *5 (-301)) + (-4 *6 (-971 *5)) (-4 *7 (-1211 *6)) + (-4 *8 (-13 (-403 *6 *7) (-1017 *6))) (-4 *9 (-301)) + (-4 *10 (-971 *9)) (-4 *11 (-1211 *10)) + (-5 *2 (-407 *9 *10 *11 *12)) + (-5 *1 (-406 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-403 *10 *11) (-1017 *10))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) + (-4 *2 (-411 *6)) (-5 *1 (-409 *4 *5 *2 *6)) (-4 *4 (-411 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-544)) (-5 *1 (-412 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1028) (-830))) + (-4 *6 (-13 (-1028) (-830))) (-4 *2 (-424 *6)) + (-5 *1 (-415 *5 *4 *6 *2)) (-4 *4 (-424 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) + (-4 *2 (-419 *6)) (-5 *1 (-417 *5 *4 *6 *2)) (-4 *4 (-419 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-482 *3)) (-4 *3 (-1189)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3 *4)) (-4 *3 (-1076)) + (-4 *4 (-830)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-573 *5)) (-4 *5 (-357)) + (-4 *6 (-357)) (-5 *2 (-573 *6)) (-5 *1 (-572 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 (-3 (-2 (|:| -3446 *5) (|:| |coeff| *5)) "failed")) + (-4 *5 (-357)) (-4 *6 (-357)) + (-5 *2 (-2 (|:| -3446 *6) (|:| |coeff| *6))) + (-5 *1 (-572 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) + (-4 *5 (-357)) (-4 *2 (-357)) (-5 *1 (-572 *5 *2)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 *6 *5)) + (-5 *4 + (-3 + (-2 (|:| |mainpart| *5) + (|:| |limitedlogs| + (-627 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + "failed")) + (-4 *5 (-357)) (-4 *6 (-357)) + (-5 *2 + (-2 (|:| |mainpart| *6) + (|:| |limitedlogs| + (-627 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-572 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-587 *5)) (-4 *5 (-1189)) + (-4 *6 (-1189)) (-5 *2 (-587 *6)) (-5 *1 (-584 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-587 *6)) (-5 *5 (-587 *7)) + (-4 *6 (-1189)) (-4 *7 (-1189)) (-4 *8 (-1189)) (-5 *2 (-587 *8)) + (-5 *1 (-585 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1132 *6)) (-5 *5 (-587 *7)) + (-4 *6 (-1189)) (-4 *7 (-1189)) (-4 *8 (-1189)) (-5 *2 (-1132 *8)) + (-5 *1 (-585 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-587 *6)) (-5 *5 (-1132 *7)) + (-4 *6 (-1189)) (-4 *7 (-1189)) (-4 *8 (-1189)) (-5 *2 (-1132 *8)) + (-5 *1 (-585 *6 *7 *8)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1189)) (-5 *1 (-587 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-627 *5)) (-4 *5 (-1189)) + (-4 *6 (-1189)) (-5 *2 (-627 *6)) (-5 *1 (-625 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-627 *6)) (-5 *5 (-627 *7)) + (-4 *6 (-1189)) (-4 *7 (-1189)) (-4 *8 (-1189)) (-5 *2 (-627 *8)) + (-5 *1 (-626 *6 *7 *8)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1028)) (-4 *8 (-1028)) + (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *2 (-669 *8 *9 *10)) + (-5 *1 (-667 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-669 *5 *6 *7)) + (-4 *9 (-367 *8)) (-4 *10 (-367 *8)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1028)) + (-4 *8 (-1028)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) + (-4 *2 (-669 *8 *9 *10)) (-5 *1 (-667 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-669 *5 *6 *7)) (-4 *9 (-367 *8)) (-4 *10 (-367 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-544)) (-4 *7 (-544)) + (-4 *6 (-1211 *5)) (-4 *2 (-1211 (-401 *8))) + (-5 *1 (-692 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1211 (-401 *6))) + (-4 *8 (-1211 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1028)) (-4 *9 (-1028)) + (-4 *5 (-830)) (-4 *6 (-776)) (-4 *2 (-928 *9 *7 *5)) + (-5 *1 (-711 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-776)) + (-4 *4 (-928 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-830)) (-4 *6 (-830)) (-4 *7 (-776)) + (-4 *9 (-1028)) (-4 *2 (-928 *9 *8 *6)) + (-5 *1 (-712 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-776)) + (-4 *4 (-928 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-718 *5 *7)) (-4 *5 (-1028)) + (-4 *6 (-1028)) (-4 *7 (-709)) (-5 *2 (-718 *6 *7)) + (-5 *1 (-717 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-718 *3 *4)) + (-4 *4 (-709)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1028)) + (-4 *6 (-1028)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) + (-4 *2 (-780 *6)) (-5 *1 (-781 *4 *5 *2 *6)) (-4 *4 (-780 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1076)) + (-4 *6 (-1076)) (-5 *2 (-816 *6)) (-5 *1 (-815 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-816 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) + (-4 *5 (-1076)) (-4 *6 (-1076)) (-5 *1 (-815 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-823 *5)) (-4 *5 (-1076)) + (-4 *6 (-1076)) (-5 *2 (-823 *6)) (-5 *1 (-822 *5 *6)))) + ((*1 *2 *3 *4 *2 *2) + (-12 (-5 *2 (-823 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-823 *5)) + (-4 *5 (-1076)) (-4 *6 (-1076)) (-5 *1 (-822 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-1189)) + (-4 *6 (-1189)) (-5 *2 (-856 *6)) (-5 *1 (-855 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-1189)) + (-4 *6 (-1189)) (-5 *2 (-858 *6)) (-5 *1 (-857 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-861 *5)) (-4 *5 (-1189)) + (-4 *6 (-1189)) (-5 *2 (-861 *6)) (-5 *1 (-860 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-868 *5 *6)) (-4 *5 (-1076)) + (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-868 *5 *7)) + (-5 *1 (-867 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-871 *5)) (-4 *5 (-1076)) + (-4 *6 (-1076)) (-5 *2 (-871 *6)) (-5 *1 (-870 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-931 *5)) (-4 *5 (-1028)) + (-4 *6 (-1028)) (-5 *2 (-931 *6)) (-5 *1 (-925 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-830)) + (-4 *8 (-1028)) (-4 *6 (-776)) + (-4 *2 + (-13 (-1076) + (-10 -8 (-15 -2384 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-754)))))) + (-5 *1 (-930 *6 *7 *8 *5 *2)) (-4 *5 (-928 *8 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-937 *5)) (-4 *5 (-1189)) + (-4 *6 (-1189)) (-5 *2 (-937 *6)) (-5 *1 (-936 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-922 *5)) (-4 *5 (-1028)) + (-4 *6 (-1028)) (-5 *2 (-922 *6)) (-5 *1 (-960 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-1 *2 (-931 *4))) (-4 *4 (-1028)) + (-4 *2 (-928 (-931 *4) *5 *6)) (-4 *5 (-776)) + (-4 *6 + (-13 (-830) + (-10 -8 (-15 -3562 ((-1152) $)) + (-15 -4344 ((-3 $ "failed") (-1152)))))) + (-5 *1 (-963 *4 *5 *6 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-544)) (-4 *6 (-544)) + (-4 *2 (-971 *6)) (-5 *1 (-969 *5 *6 *4 *2)) (-4 *4 (-971 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-169)) (-4 *6 (-169)) + (-4 *2 (-976 *6)) (-5 *1 (-977 *4 *5 *2 *6)) (-4 *4 (-976 *5)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1031 *3 *4 *5 *6 *7)) + (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1031 *3 *4 *5 *6 *7)) + (-4 *5 (-1028)) (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1028)) (-4 *10 (-1028)) + (-14 *5 (-754)) (-14 *6 (-754)) (-4 *8 (-233 *6 *7)) + (-4 *9 (-233 *5 *7)) (-4 *2 (-1031 *5 *6 *10 *11 *12)) + (-5 *1 (-1033 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1031 *5 *6 *7 *8 *9)) (-4 *11 (-233 *6 *10)) + (-4 *12 (-233 *5 *10)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-1189)) + (-4 *6 (-1189)) (-5 *2 (-1070 *6)) (-5 *1 (-1065 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1070 *5)) (-4 *5 (-828)) + (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-627 *6)) + (-5 *1 (-1065 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1068 *5)) (-4 *5 (-1189)) + (-4 *6 (-1189)) (-5 *2 (-1068 *6)) (-5 *1 (-1067 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) - (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-718 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-1073)))) - ((*1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-1073))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1145 *4)) (-4 *4 (-344)) (-5 *2 (-934 (-1093))) - (-5 *1 (-341 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *1 *1) (-4 *1 (-486))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1071 *4 *2)) (-4 *4 (-828)) + (-4 *2 (-1125 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1132 *5)) (-4 *5 (-1189)) + (-4 *6 (-1189)) (-5 *2 (-1132 *6)) (-5 *1 (-1130 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1132 *6)) (-5 *5 (-1132 *7)) + (-4 *6 (-1189)) (-4 *7 (-1189)) (-4 *8 (-1189)) (-5 *2 (-1132 *8)) + (-5 *1 (-1131 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1028)) + (-4 *6 (-1028)) (-5 *2 (-1148 *6)) (-5 *1 (-1146 *5 *6)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1165 *3 *4)) (-4 *3 (-1076)) + (-4 *4 (-1076)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1199 *5 *7 *9)) (-4 *5 (-1028)) + (-4 *6 (-1028)) (-14 *7 (-1152)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1199 *6 *8 *10)) (-5 *1 (-1194 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1152)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1202 *5)) (-4 *5 (-1189)) + (-4 *6 (-1189)) (-5 *2 (-1202 *6)) (-5 *1 (-1201 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1202 *5)) (-4 *5 (-828)) + (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-1132 *6)) + (-5 *1 (-1201 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1208 *5 *6)) (-14 *5 (-1152)) + (-4 *6 (-1028)) (-4 *8 (-1028)) (-5 *2 (-1208 *7 *8)) + (-5 *1 (-1203 *5 *6 *7 *8)) (-14 *7 (-1152)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1028)) (-4 *6 (-1028)) + (-4 *2 (-1211 *6)) (-5 *1 (-1209 *5 *4 *6 *2)) (-4 *4 (-1211 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1220 *5 *7 *9)) (-4 *5 (-1028)) + (-4 *6 (-1028)) (-14 *7 (-1152)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1220 *6 *8 *10)) (-5 *1 (-1215 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1152)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1028)) (-4 *6 (-1028)) + (-4 *2 (-1226 *6)) (-5 *1 (-1224 *5 *6 *4 *2)) (-4 *4 (-1226 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1235 *5)) (-4 *5 (-1189)) + (-4 *6 (-1189)) (-5 *2 (-1235 *6)) (-5 *1 (-1234 *5 *6)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1235 *5)) + (-4 *5 (-1189)) (-4 *6 (-1189)) (-5 *2 (-1235 *6)) + (-5 *1 (-1234 *5 *6)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) + (-4 *4 (-1028)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-1258 *3 *4)) + (-4 *4 (-826))))) (((*1 *2 *1) - (-12 + (-12 (-5 *2 (-1132 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-671 *8)) (-4 *8 (-928 *5 *7 *6)) + (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) + (-4 *7 (-776)) (-5 *2 - (-625 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-552))))) - (-5 *1 (-413 *3)) (-4 *3 (-544)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-751)) (-4 *3 (-344)) (-4 *5 (-1208 *3)) - (-5 *2 (-625 (-1145 *3))) (-5 *1 (-491 *3 *5 *6)) - (-4 *6 (-1208 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186))))) -(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-600)))) + (-627 + (-2 (|:| -4154 (-754)) + (|:| |eqns| + (-627 + (-2 (|:| |det| *8) (|:| |rows| (-627 (-552))) + (|:| |cols| (-627 (-552)))))) + (|:| |fgb| (-627 *8))))) + (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-754))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1028))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-240 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-552)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) - (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4366)) (-4 *1 (-482 *4)) + (-4 *4 (-1189)) (-5 *2 (-111))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1152)) (-5 *3 (-373)) (-5 *1 (-1040))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-166 (-220)))) + (-5 *2 (-1014)) (-5 *1 (-737))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1161 (-627 *4))) (-4 *4 (-830)) + (-5 *2 (-627 (-627 *4))) (-5 *1 (-1160 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1235 *5)) (-4 *5 (-623 *4)) (-4 *4 (-544)) + (-5 *2 (-1235 *4)) (-5 *1 (-622 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155)))) + ((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1156))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) + (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) + (-5 *1 (-771))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-111)) + (-5 *6 (-220)) (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 APROD)))) + (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-72 MSOLVE)))) + (-5 *2 (-1014)) (-5 *1 (-739))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) + (-5 *2 (-2 (|:| -3069 (-401 *5)) (|:| |poly| *3))) + (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1211 (-401 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1152)) (-5 *2 (-528)) (-5 *1 (-527 *4)) + (-4 *4 (-1189))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1134)) (-5 *1 (-1170))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2376 (-552)) (|:| -2101 (-627 *3)))) + (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-627 *3)) (-4 *3 (-1211 (-552))) (-5 *1 (-479 *3))))) (((*1 *2 *1) - (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1186)) - (-5 *2 (-625 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-718 *3)) (-4 *3 (-1073))))) -(((*1 *2) - (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-338 *3 *4)) (-14 *3 (-897)) - (-14 *4 (-897)))) - ((*1 *2) - (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-339 *3 *4)) (-4 *3 (-344)) - (-14 *4 (-1145 *3)))) - ((*1 *2) - (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-340 *3 *4)) (-4 *3 (-344)) - (-14 *4 (-897))))) + (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)) + (-4 *2 (-445)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 *4)) (-4 *4 (-1211 (-552))) (-5 *2 (-627 (-552))) + (-5 *1 (-479 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-445)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-928 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *2 (-830)) (-4 *3 (-445))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-528))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-816 *3)) (-4 *3 (-1076)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-823 *3)) (-4 *3 (-1076))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) - (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) - ((*1 *1 *1) (-4 *1 (-486))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-671 *4)) (-5 *3 (-900)) (|has| *4 (-6 (-4368 "*"))) + (-4 *4 (-1028)) (-5 *1 (-1007 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-627 (-671 *4))) (-5 *3 (-900)) + (|has| *4 (-6 (-4368 "*"))) (-4 *4 (-1028)) (-5 *1 (-1007 *4))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3116 *3) (|:| |coef2| (-765 *3)))) + (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1076)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-665 *4 *5)) (-4 *4 (-1076)))) ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) - (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) - (-5 *2 (-751)))) + (-12 (-4 *3 (-830)) (-5 *1 (-908 *3 *2)) (-4 *2 (-424 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1152)) (-5 *2 (-310 (-552))) (-5 *1 (-909)))) ((*1 *2 *1) - (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073)) - (-5 *2 (-751)))) + (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-830)) (-4 *2 (-1028)))) ((*1 *2 *1) - (-12 (-5 *2 (-751)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) - (-4 *4 (-707))))) + (-12 (-4 *2 (-1028)) (-5 *1 (-1258 *2 *3)) (-4 *3 (-826))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1132 *4)) (-5 *3 (-1 *4 (-552))) (-4 *4 (-1028)) + (-5 *1 (-1136 *4))))) +(((*1 *1) (-5 *1 (-806)))) (((*1 *2) - (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) - (-5 *2 (-751)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *3 (-169)) (-4 *2 (-23)) (-5 *1 (-283 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1211 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-694 *3 *2 *4 *5 *6)) (-4 *3 (-169)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) - (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-5 *2 (-751))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) - (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) - ((*1 *1 *1) (-4 *1 (-486))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *2 (-827)) (-4 *5 (-1039 *3 *4 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-549)) (-5 *3 (-552))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1151 (-402 (-552)))) (-5 *2 (-402 (-552))) - (-5 *1 (-186))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-596 *1))) (-4 *1 (-297))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) - (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *2 (-1211 *3)) (-5 *1 (-695 *3 *2)) (-4 *3 (-1028)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-698 *3 *2 *4 *5 *6)) (-4 *3 (-169)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-848 *3)) (-5 *2 (-552))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-635 (-401 *6))) (-5 *4 (-1 (-627 *5) *6)) + (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) + (-4 *6 (-1211 *5)) (-5 *2 (-627 (-401 *6))) (-5 *1 (-795 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-635 (-401 *7))) (-5 *4 (-1 (-627 *6) *7)) + (-5 *5 (-1 (-412 *7) *7)) + (-4 *6 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) + (-4 *7 (-1211 *6)) (-5 *2 (-627 (-401 *7))) (-5 *1 (-795 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-636 *6 (-401 *6))) (-5 *4 (-1 (-627 *5) *6)) + (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) + (-4 *6 (-1211 *5)) (-5 *2 (-627 (-401 *6))) (-5 *1 (-795 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-636 *7 (-401 *7))) (-5 *4 (-1 (-627 *6) *7)) + (-5 *5 (-1 (-412 *7) *7)) + (-4 *6 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) + (-4 *7 (-1211 *6)) (-5 *2 (-627 (-401 *7))) (-5 *1 (-795 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-635 (-401 *5))) (-4 *5 (-1211 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) + (-5 *2 (-627 (-401 *5))) (-5 *1 (-795 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-635 (-401 *6))) (-5 *4 (-1 (-412 *6) *6)) + (-4 *6 (-1211 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) + (-5 *2 (-627 (-401 *6))) (-5 *1 (-795 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-636 *5 (-401 *5))) (-4 *5 (-1211 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) + (-5 *2 (-627 (-401 *5))) (-5 *1 (-795 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-636 *6 (-401 *6))) (-5 *4 (-1 (-412 *6) *6)) + (-4 *6 (-1211 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) + (-5 *2 (-627 (-401 *6))) (-5 *1 (-795 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-544)) (-4 *2 (-925 *3 *5 *4)) - (-5 *1 (-713 *5 *4 *6 *2)) (-5 *3 (-402 (-928 *6))) (-4 *5 (-773)) - (-4 *4 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)))))))) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-627 (-111))) (-5 *5 (-671 (-220))) + (-5 *6 (-671 (-552))) (-5 *7 (-220)) (-5 *3 (-552)) (-5 *2 (-1014)) + (-5 *1 (-737))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-625 - (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) - (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) - (|:| |relerr| (-221))))) - (-5 *1 (-547)))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-552)))) ((*1 *2 *1) - (-12 (-4 *1 (-594 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-5 *2 (-625 *3)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-625 - (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) - (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) - (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) - (|:| |abserr| (-221)) (|:| |relerr| (-221))))) - (-5 *1 (-783))))) + (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552))))) +(((*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028))))) (((*1 *2) - (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) - (-5 *2 (-112)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112))))) + (-12 (-4 *2 (-13 (-424 *3) (-981))) (-5 *1 (-270 *3 *2)) + (-4 *3 (-13 (-830) (-544)))))) +(((*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-1189)) (-5 *2 (-754)))) + ((*1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-754)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1028)) + (-4 *2 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))) + (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1211 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-598 *3)) (-4 *3 (-830)))) + ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) + ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-842))))) +(((*1 *2 *3) + (-12 (-5 *2 (-598 *4)) (-5 *1 (-597 *3 *4)) (-4 *3 (-830)) + (-4 *4 (-830))))) +(((*1 *1) (-5 *1 (-461)))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1189)) + (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4367)) (-4 *1 (-282 *3 *2)) (-4 *3 (-1076)) + (-4 *2 (-1189))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) - (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) - ((*1 *1 *1) (-4 *1 (-486))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) + (-12 (-4 *3 (-13 (-544) (-830) (-1017 (-552)))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-13 (-27) (-1174) (-424 (-166 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) + (-5 *1 (-183 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 (-166 *4)))))) ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1179 *2 *3 *4 *5)) (-4 *2 (-544)) (-4 *3 (-773)) - (-4 *4 (-827)) (-4 *5 (-1039 *2 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *1) - (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-625 *2)) (-5 *1 (-177 *2)) (-4 *2 (-302)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-625 (-625 *4))) (-5 *2 (-625 *4)) (-4 *4 (-302)) - (-5 *1 (-177 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-625 *8)) - (-5 *4 - (-625 - (-2 (|:| -1270 (-669 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-669 *7))))) - (-5 *5 (-751)) (-4 *8 (-1208 *7)) (-4 *7 (-1208 *6)) (-4 *6 (-344)) - (-5 *2 - (-2 (|:| -1270 (-669 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-669 *7)))) - (-5 *1 (-491 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-3 (-112) (-625 *1))) - (-4 *1 (-1045 *4 *5 *6 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1145 (-928 *6))) (-4 *6 (-544)) - (-4 *2 (-925 (-402 (-928 *6)) *5 *4)) (-5 *1 (-713 *5 *4 *6 *2)) - (-4 *5 (-773)) - (-4 *4 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $)))))))) + (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-1178 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1152)) + (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-1178 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4)))))) +(((*1 *2 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301)))) + ((*1 *2 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-301)))) + ((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)) (-4 *2 (-301)))) + ((*1 *2 *1) (-12 (-4 *1 (-1037)) (-5 *2 (-552))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) + (-5 *2 (-1014)) (-5 *1 (-738))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -3446 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-627 (-401 *8))) (-4 *7 (-357)) (-4 *8 (-1211 *7)) + (-5 *3 (-401 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-562 *7 *8))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1189))))) +(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-950))))) (((*1 *2 *3) - (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4)) - (-4 *4 (-344)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-352 *4)) - (-4 *4 (-344)))) - ((*1 *1) (-4 *1 (-363))) + (-12 (-4 *1 (-819)) + (-5 *3 + (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) + (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) + (|:| |ub| (-627 (-823 (-220)))))) + (-5 *2 (-1014)))) ((*1 *2 *3) - (-12 (-5 *3 (-897)) (-5 *2 (-1232 *4)) (-5 *1 (-521 *4)) - (-4 *4 (-344)))) - ((*1 *1 *1) (-4 *1 (-537))) ((*1 *1) (-4 *1 (-537))) - ((*1 *1 *1) (-5 *1 (-552))) ((*1 *1 *1) (-5 *1 (-751))) - ((*1 *2 *1) (-12 (-5 *2 (-881 *3)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) + (-12 (-4 *1 (-819)) + (-5 *3 + (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) + (-5 *2 (-1014))))) +(((*1 *2 *1) (-12 (-4 *1 (-320 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) + ((*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1028)) (-5 *2 (-754)))) + ((*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1028)) (-5 *2 (-754)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-5 *2 (-881 *4)) (-5 *1 (-880 *4)) - (-4 *4 (-1073)))) - ((*1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-537)) (-4 *2 (-544))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1190)) (-4 *5 (-1208 *3)) (-4 *6 (-1208 (-402 *5))) - (-5 *2 (-112)) (-5 *1 (-336 *4 *3 *5 *6)) (-4 *4 (-337 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) + (-12 (-5 *3 (-627 *6)) (-4 *1 (-928 *4 *5 *6)) (-4 *4 (-1028)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 (-754))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-928 *4 *5 *3)) (-4 *4 (-1028)) (-4 *5 (-776)) + (-4 *3 (-830)) (-5 *2 (-754))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-627 (-401 (-931 *6)))) + (-5 *3 (-401 (-931 *6))) + (-4 *6 (-13 (-544) (-1017 (-552)) (-144))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-558 *6))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4367)) (-4 *1 (-482 *3)) + (-4 *3 (-1189))))) +(((*1 *1 *1) (-5 *1 (-1040)))) +(((*1 *1) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) + (-4 *4 (-169))))) (((*1 *2 *1) - (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-596 *4)) (-5 *6 (-1145 *4)) - (-4 *4 (-13 (-425 *7) (-27) (-1171))) - (-4 *7 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) - (-5 *1 (-548 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1073)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-596 *4)) (-5 *6 (-402 (-1145 *4))) - (-4 *4 (-13 (-425 *7) (-27) (-1171))) - (-4 *7 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) - (-5 *1 (-548 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1073))))) + (-12 (-5 *2 (-852 (-945 *3) (-945 *3))) (-5 *1 (-945 *3)) + (-4 *3 (-946))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1134)) (-5 *5 (-671 (-220))) (-5 *6 (-220)) + (-5 *7 (-671 (-552))) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-735))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *1 (-1104 *3 *2)) (-4 *3 (-1211 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-1070 (-220)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-169)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-169))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1218 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1195 *3)) + (-5 *2 (-401 (-552)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) - (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *3 (-1039 *4 *5 *6)) - (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *1)))) - (-4 *1 (-1045 *4 *5 *6 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1145 *2)) (-4 *2 (-925 (-402 (-928 *6)) *5 *4)) - (-5 *1 (-713 *5 *4 *6 *2)) (-4 *5 (-773)) - (-4 *4 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))) - (-4 *6 (-544))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1186)) - (-4 *4 (-368 *2)) (-4 *5 (-368 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4354)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1073)) - (-4 *2 (-1186))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3))))) + (-12 (-5 *3 (-1235 (-310 (-220)))) (-5 *2 (-1235 (-310 (-373)))) + (-5 *1 (-299))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) - (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 *10)) - (-5 *1 (-606 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1045 *5 *6 *7 *8)) - (-4 *10 (-1082 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) - (-14 *6 (-625 (-1149))) (-5 *2 (-625 (-1022 *5 *6))) - (-5 *1 (-610 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) - (-14 *6 (-625 (-1149))) + (-12 (-4 *5 (-544)) + (-5 *2 (-2 (|:| -2515 (-671 *5)) (|:| |vec| (-1235 (-627 (-900)))))) + (-5 *1 (-89 *5 *3)) (-5 *4 (-900)) (-4 *3 (-638 *5))))) +(((*1 *2 *1) (-12 (-5 *1 (-1005 *2)) (-4 *2 (-1189))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) + (-4 *3 (-1042 *6 *7 *8)) (-5 *2 - (-625 (-1119 *5 (-524 (-841 *6)) (-841 *6) (-760 *5 (-841 *6))))) - (-5 *1 (-610 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) - (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-5 *2 (-625 (-1003 *5 *6 *7 *8))) (-5 *1 (-1003 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) - (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-5 *2 (-625 (-1003 *5 *6 *7 *8))) (-5 *1 (-1003 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-625 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) - (-14 *6 (-625 (-1149))) (-5 *2 (-625 (-1022 *5 *6))) - (-5 *1 (-1022 *5 *6)))) + (-2 (|:| |done| (-627 *4)) + (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) + (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1048 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) - (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-625 *1)) - (-4 *1 (-1045 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) - (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-5 *2 (-625 (-1119 *5 *6 *7 *8))) (-5 *1 (-1119 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-625 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) - (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-5 *2 (-625 (-1119 *5 *6 *7 *8))) (-5 *1 (-1119 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *1)) - (-4 *1 (-1179 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) - (-5 *2 (-112))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-596 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1149))) (-5 *5 (-1145 *2)) - (-4 *2 (-13 (-425 *6) (-27) (-1171))) - (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) - (-5 *1 (-548 *6 *2 *7)) (-4 *7 (-1073)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-596 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1149))) - (-5 *5 (-402 (-1145 *2))) (-4 *2 (-13 (-425 *6) (-27) (-1171))) - (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) - (-5 *1 (-548 *6 *2 *7)) (-4 *7 (-1073))))) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-627 *4)) + (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) + (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1085 *5 *6 *7 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-549)) (-5 *3 (-552))))) (((*1 *2 *3) - (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 *1)) - (-4 *1 (-1045 *4 *5 *6 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-773)) - (-4 *5 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))) (-4 *6 (-544)) - (-5 *2 (-2 (|:| -1282 (-928 *6)) (|:| -3480 (-928 *6)))) - (-5 *1 (-713 *4 *5 *6 *3)) (-4 *3 (-925 (-402 (-928 *6)) *4 *5))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) - (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4354)) (-4 *1 (-483 *3)) - (-4 *3 (-1186))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-413 *2)) (-4 *2 (-544))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) - (-5 *2 (-625 (-2 (|:| -1387 *1) (|:| -2508 (-625 *7))))) - (-5 *3 (-625 *7)) (-4 *1 (-1179 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-596 *3)) (-5 *5 (-625 *3)) (-5 *6 (-1145 *3)) - (-4 *3 (-13 (-425 *7) (-27) (-1171))) - (-4 *7 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-548 *7 *3 *8)) (-4 *8 (-1073)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-596 *3)) (-5 *5 (-625 *3)) - (-5 *6 (-402 (-1145 *3))) (-4 *3 (-13 (-425 *7) (-27) (-1171))) - (-4 *7 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-548 *7 *3 *8)) (-4 *8 (-1073))))) + (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) + (-5 *2 (-1235 (-671 *4))))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-1235 (-671 *4))) (-5 *1 (-410 *3 *4)) + (-4 *3 (-411 *4)))) + ((*1 *2) + (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1235 (-671 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-1152))) (-4 *5 (-357)) + (-5 *2 (-1235 (-671 (-401 (-931 *5))))) (-5 *1 (-1062 *5)) + (-5 *4 (-671 (-401 (-931 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-1152))) (-4 *5 (-357)) + (-5 *2 (-1235 (-671 (-931 *5)))) (-5 *1 (-1062 *5)) + (-5 *4 (-671 (-931 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-671 *4))) (-4 *4 (-357)) + (-5 *2 (-1235 (-671 *4))) (-5 *1 (-1062 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552))))) -(((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1067 (-221)))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-3 *3 (-625 *1))) - (-4 *1 (-1045 *4 *5 *6 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-402 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1208 *5)) - (-5 *1 (-708 *5 *2)) (-4 *5 (-358))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-413 *3)) (-4 *3 (-544))))) -(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-306)))) - ((*1 *2 *1) - (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) - (-4 *4 (-1025))))) -(((*1 *1 *1) (-4 *1 (-94))) ((*1 *1 *1 *1) (-5 *1 (-221))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) - (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) - ((*1 *1 *1 *1) (-5 *1 (-374))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-625 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) + (-12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-301)) + (-5 *2 (-401 (-412 (-931 *4)))) (-5 *1 (-1021 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-934)) (-5 *2 (-1070 (-220))))) + ((*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-1070 (-220)))))) +(((*1 *2 *1) (-12 (-5 *1 (-573 *2)) (-4 *2 (-357))))) +(((*1 *1 *1) (-4 *1 (-537)))) (((*1 *2 *1) - (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) - (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-1185))) (-5 *1 (-590))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-596 *3)) (-5 *5 (-1145 *3)) - (-4 *3 (-13 (-425 *6) (-27) (-1171))) - (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) - (-5 *2 (-2 (|:| -3114 *3) (|:| |coeff| *3))) - (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1073)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-596 *3)) (-5 *5 (-402 (-1145 *3))) - (-4 *3 (-13 (-425 *6) (-27) (-1171))) - (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) - (-5 *2 (-2 (|:| -3114 *3) (|:| |coeff| *3))) - (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1073))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552))))) -(((*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-1067 (-221))))) - ((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1067 (-221)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-544)) (-4 *2 (-1025)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-544)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1208 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827)) (-4 *2 (-544)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *3 (-1039 *4 *5 *6)) - (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *1)))) - (-4 *1 (-1045 *4 *5 *6 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-358)) - (-5 *2 (-2 (|:| -2992 (-413 *3)) (|:| |special| (-413 *3)))) - (-5 *1 (-708 *5 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-413 *4)) (-4 *4 (-544))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) - (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3))))) -(((*1 *1) - (-12 (-4 *1 (-399)) (-2960 (|has| *1 (-6 -4344))) - (-2960 (|has| *1 (-6 -4336))))) - ((*1 *2 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1073)) (-4 *2 (-827)))) - ((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-827)))) - ((*1 *1 *1 *1) (-4 *1 (-827))) ((*1 *1) (-5 *1 (-1093)))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) - (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-952 *4 *5 *6 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) - (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-544)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *1 *1) (-4 *1 (-611))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978) (-1171)))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-596 *3)) (-5 *5 (-1145 *3)) - (-4 *3 (-13 (-425 *6) (-27) (-1171))) - (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) - (-5 *2 (-571 *3)) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1073)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-596 *3)) (-5 *5 (-402 (-1145 *3))) - (-4 *3 (-13 (-425 *6) (-27) (-1171))) - (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) - (-5 *2 (-571 *3)) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1073))))) -(((*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-1067 (-221))))) - ((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1067 (-221)))))) + (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) + (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-598 *1))) (-4 *1 (-296))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *1) (-4 *1 (-343)))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-625 *1)) (-5 *3 (-625 *7)) (-4 *1 (-1045 *4 *5 *6 *7)) - (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *1)) - (-4 *1 (-1045 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) - (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 *1)) - (-4 *1 (-1045 *4 *5 *6 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) - (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-703)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-707)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-413 *2)) (-4 *2 (-544))))) -(((*1 *1 *1) (-4 *1 (-94))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) - (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *5 (-363)) - (-5 *2 (-751))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-952 *4 *5 *6 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) - (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-544)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-625 - (-2 - (|:| -2971 - (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) - (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) - (|:| |relerr| (-221)))) - (|:| -4120 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1129 (-221))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3315 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-547))))) + (-12 (-5 *2 (-111)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-257))))) +(((*1 *2 *1) (-12 (-4 *1 (-934)) (-5 *2 (-1070 (-220))))) + ((*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-1070 (-220)))))) +(((*1 *1) (-5 *1 (-566)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-582 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1028))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) -(((*1 *2 *3) (-12 (-5 *2 (-552)) (-5 *1 (-557 *3)) (-4 *3 (-1014 *2)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1076 *3 *4 *2 *5 *6)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) - (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) - (-4 *3 (-1208 *4)) (-5 *2 (-112))))) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-155 *4 *2)) + (-4 *2 (-424 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1152)))) + ((*1 *1 *1) (-4 *1 (-157)))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4367)) (-4 *1 (-118 *2)) (-4 *2 (-1189))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1232 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) - (-4 *1 (-705 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1208 *5)) - (-5 *2 (-669 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-413 *2)) (-4 *2 (-544))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) + (|partial| -12 (-5 *4 (-900)) (-4 *5 (-544)) (-5 *2 (-671 *5)) + (-5 *1 (-935 *5 *3)) (-4 *3 (-638 *5))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) + (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1132 (-220))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1707 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-547))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1109 (-220))) (-5 *3 (-627 (-257))) (-5 *1 (-1237)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1109 (-220))) (-5 *3 (-1134)) (-5 *1 (-1237)))) + ((*1 *1 *1) (-5 *1 (-1237)))) +(((*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1189)))) ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3)))) - ((*1 *1 *1) (-4 *1 (-1174)))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1025)) (-5 *1 (-50 *2 *3)) (-14 *3 (-625 (-1149))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-625 (-897))) (-4 *2 (-358)) (-5 *1 (-150 *4 *2 *5)) - (-14 *4 (-897)) (-14 *5 (-969 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-311 *3)) (-5 *1 (-219 *3 *4)) - (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-625 (-1149))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-130)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1073)) (-4 *2 (-1025)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *2 (-544)) (-5 *1 (-605 *2 *4)) - (-4 *4 (-1208 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-689 *2)) (-4 *2 (-1025)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1025)) (-5 *1 (-716 *2 *3)) (-4 *3 (-707)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 *5)) (-5 *3 (-625 (-751))) (-4 *1 (-721 *4 *5)) - (-4 *4 (-1025)) (-4 *5 (-827)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *2)) (-4 *4 (-1025)) - (-4 *2 (-827)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-829 *2)) (-4 *2 (-1025)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 *6)) (-5 *3 (-625 (-751))) (-4 *1 (-925 *4 *5 *6)) - (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-751)) (-4 *1 (-925 *4 *5 *2)) (-4 *4 (-1025)) - (-4 *5 (-773)) (-4 *2 (-827)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-751)) (-4 *2 (-925 *4 (-524 *5) *5)) - (-5 *1 (-1099 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-827)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-751)) (-5 *2 (-928 *4)) (-5 *1 (-1180 *4)) - (-4 *4 (-1025))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-625 *6)) (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) - (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) - (-4 *3 (-544))))) -(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-547))))) + (-12 (-4 *3 (-1028)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1211 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-537)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-900)) (-5 *2 (-754)) (-5 *1 (-1077 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-301))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-310 (-220))) (-5 *1 (-299)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-871 *3)) (|:| |den| (-871 *3)))) + (-5 *1 (-871 *3)) (-4 *3 (-1076))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-985)))) + ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-985))))) +(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-900)) (-5 *1 (-769))))) (((*1 *2) - (-12 (-4 *2 (-13 (-425 *3) (-978))) (-5 *1 (-271 *3 *2)) - (-4 *3 (-13 (-827) (-544)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-178)))) - ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-306)))) - ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-946)))) - ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-970)))) - ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1012)))) - ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1047))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-522 *3)) (-4 *3 (-13 (-709) (-25)))))) +(((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-754)) (-5 *1 (-208 *4 *2)) (-14 *4 (-900)) + (-4 *2 (-1076))))) +(((*1 *2 *3) + (-12 (-4 *2 (-357)) (-4 *2 (-828)) (-5 *1 (-924 *2 *3)) + (-4 *3 (-1211 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1080)) (-5 *3 (-757)) (-5 *1 (-52))))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) + (-4 *5 (-13 (-357) (-144) (-1017 (-552)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-401 *6)) (|:| |c| (-401 *6)) + (|:| -3268 *6))) + (-5 *1 (-994 *5 *6)) (-5 *3 (-401 *6))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-4 *1 (-320 *3 *4)) (-4 *3 (-1028)) + (-4 *4 (-775)) (-4 *3 (-169))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-627 (-598 *4))) (-4 *4 (-424 *3)) (-4 *3 (-830)) + (-5 *1 (-561 *3 *4)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-4 *3 (-1076)) + (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *3 (-544)) (-5 *2 (-627 (-671 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-411 *3))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-368 *2)) - (-4 *5 (-368 *2)) (-4 *2 (-1186)))) + (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2)) + (-4 *5 (-367 *2)) (-4 *2 (-1189)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-754)) (-4 *2 (-1076)) (-5 *1 (-208 *4 *2)) + (-14 *4 (-900)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1186)))) + (-12 (-4 *1 (-282 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1189)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) - (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)) (-4 *2 (-1025))))) -(((*1 *2 *1) - (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) - (-4 *3 (-1208 *4)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-897)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-552)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-413 *2)) (-4 *2 (-544))))) + (-12 (-5 *3 (-552)) (-4 *1 (-1031 *4 *5 *2 *6 *7)) + (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)) (-4 *2 (-1028))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) + (-4 *5 (-1211 *4)) (-5 *2 (-627 (-2 (|:| -3174 *5) (|:| -3262 *5)))) + (-5 *1 (-790 *4 *5 *3 *6)) (-4 *3 (-638 *5)) + (-4 *6 (-638 (-401 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) + (-4 *4 (-1211 *5)) (-5 *2 (-627 (-2 (|:| -3174 *4) (|:| -3262 *4)))) + (-5 *1 (-790 *5 *4 *3 *6)) (-4 *3 (-638 *4)) + (-4 *6 (-638 (-401 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) + (-4 *5 (-1211 *4)) (-5 *2 (-627 (-2 (|:| -3174 *5) (|:| -3262 *5)))) + (-5 *1 (-790 *4 *5 *6 *3)) (-4 *6 (-638 *5)) + (-4 *3 (-638 (-401 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) + (-4 *4 (-1211 *5)) (-5 *2 (-627 (-2 (|:| -3174 *4) (|:| -3262 *4)))) + (-5 *1 (-790 *5 *4 *6 *3)) (-4 *6 (-638 *4)) + (-4 *3 (-638 (-401 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-754)) (-5 *4 (-1235 *2)) (-4 *5 (-301)) + (-4 *6 (-971 *5)) (-4 *2 (-13 (-403 *6 *7) (-1017 *6))) + (-5 *1 (-407 *5 *6 *7 *2)) (-4 *7 (-1211 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-922 (-220)) (-220) (-220))) + (-5 *3 (-1 (-220) (-220) (-220) (-220))) (-5 *1 (-249))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1096)) (-5 *2 (-111)) (-5 *1 (-804))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-243))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3)))) - ((*1 *1 *1) (-4 *1 (-1174)))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1099 *4 *3 *5))) (-4 *4 (-38 (-402 (-552)))) - (-4 *4 (-1025)) (-4 *3 (-827)) (-5 *1 (-1099 *4 *3 *5)) - (-4 *5 (-925 *4 (-524 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1180 *4))) (-5 *3 (-1149)) (-5 *1 (-1180 *4)) - (-4 *4 (-38 (-402 (-552)))) (-4 *4 (-1025))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-625 *6)) (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) - (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) - (-4 *3 (-544))))) -(((*1 *1) (-5 *1 (-547)))) + (-12 (-4 *3 (-343)) (-4 *4 (-323 *3)) (-4 *5 (-1211 *4)) + (-5 *1 (-760 *3 *4 *5 *2 *6)) (-4 *2 (-1211 *5)) (-14 *6 (-900)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-4 *3 (-362)))) + ((*1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-357)) (-4 *2 (-362))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-445)) + (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *1 (-956 *3 *4 *5 *6))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-754)) (-5 *3 (-922 *5)) (-4 *5 (-1028)) + (-5 *1 (-1140 *4 *5)) (-14 *4 (-900)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 (-754))) (-5 *3 (-754)) (-5 *1 (-1140 *4 *5)) + (-14 *4 (-900)) (-4 *5 (-1028)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 (-754))) (-5 *3 (-922 *5)) (-4 *5 (-1028)) + (-5 *1 (-1140 *4 *5)) (-14 *4 (-900))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-627 *7) *7 (-1148 *7))) (-5 *5 (-1 (-412 *7) *7)) + (-4 *7 (-1211 *6)) (-4 *6 (-13 (-357) (-144) (-1017 (-401 (-552))))) + (-5 *2 (-627 (-2 (|:| |frac| (-401 *7)) (|:| -1651 *3)))) + (-5 *1 (-792 *6 *7 *3 *8)) (-4 *3 (-638 *7)) + (-4 *8 (-638 (-401 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1211 *5)) + (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) + (-5 *2 + (-627 (-2 (|:| |frac| (-401 *6)) (|:| -1651 (-636 *6 (-401 *6)))))) + (-5 *1 (-795 *5 *6)) (-5 *3 (-636 *6 (-401 *6)))))) (((*1 *2) - (-12 (-4 *2 (-13 (-425 *3) (-978))) (-5 *1 (-271 *3 *2)) - (-4 *3 (-13 (-827) (-544)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1076 *3 *2 *4 *5 *6)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073))))) -(((*1 *2 *1) - (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) - (-4 *3 (-1208 *4)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-897)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 (-374))) (-5 *1 (-258)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-544)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-544))))) -(((*1 *2 *2) - (-12 (-4 *3 (-598 (-868 *3))) (-4 *3 (-862 *3)) - (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-598 (-868 *3))) (-4 *2 (-862 *3)) - (-4 *2 (-13 (-425 *3) (-1171)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-803)) (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1149)) - (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-310 *4 *5)) - (-4 *5 (-13 (-27) (-1171) (-425 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-310 *4 *3)) - (-4 *3 (-13 (-27) (-1171) (-425 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-402 (-552))) - (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-310 *5 *3)) - (-4 *3 (-13 (-27) (-1171) (-425 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-289 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5))) - (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-310 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-289 *3)) (-5 *5 (-402 (-552))) - (-4 *3 (-13 (-27) (-1171) (-425 *6))) - (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-310 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-552))) (-5 *4 (-289 *6)) - (-4 *6 (-13 (-27) (-1171) (-425 *5))) - (-4 *5 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-453 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) - (-4 *3 (-13 (-27) (-1171) (-425 *6))) - (-4 *6 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-453 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-289 *7)) (-5 *5 (-1199 (-552))) - (-4 *7 (-13 (-27) (-1171) (-425 *6))) - (-4 *6 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-453 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-5 *6 (-1199 (-552))) - (-4 *3 (-13 (-27) (-1171) (-425 *7))) - (-4 *7 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-453 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-402 (-552)))) (-5 *4 (-289 *8)) - (-5 *5 (-1199 (-402 (-552)))) (-5 *6 (-402 (-552))) - (-4 *8 (-13 (-27) (-1171) (-425 *7))) - (-4 *7 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-453 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1149)) (-5 *5 (-289 *3)) (-5 *6 (-1199 (-402 (-552)))) - (-5 *7 (-402 (-552))) (-4 *3 (-13 (-27) (-1171) (-425 *8))) - (-4 *8 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-52)) (-5 *1 (-453 *8 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1129 (-2 (|:| |k| (-552)) (|:| |c| *3)))) - (-4 *3 (-1025)) (-5 *1 (-580 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-581 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1129 (-2 (|:| |k| (-552)) (|:| |c| *3)))) - (-4 *3 (-1025)) (-4 *1 (-1192 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-751)) - (-5 *3 (-1129 (-2 (|:| |k| (-402 (-552))) (|:| |c| *4)))) - (-4 *4 (-1025)) (-4 *1 (-1213 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-4 *1 (-1223 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1129 (-2 (|:| |k| (-751)) (|:| |c| *3)))) - (-4 *3 (-1025)) (-4 *1 (-1223 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) + (-12 (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) + (-5 *2 (-1235 *1)) (-4 *1 (-336 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) + (-4 *4 (-1211 *3)) + (-5 *2 + (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-671 *3)))) + (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1211 (-552))) + (-5 *2 + (-2 (|:| -2957 (-671 (-552))) (|:| |basisDen| (-552)) + (|:| |basisInv| (-671 (-552))))) + (-5 *1 (-751 *3 *4)) (-4 *4 (-403 (-552) *3)))) + ((*1 *2) + (-12 (-4 *3 (-343)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 *4)) + (-5 *2 + (-2 (|:| -2957 (-671 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-671 *4)))) + (-5 *1 (-964 *3 *4 *5 *6)) (-4 *6 (-707 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-343)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 *4)) + (-5 *2 + (-2 (|:| -2957 (-671 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-671 *4)))) + (-5 *1 (-1244 *3 *4 *5 *6)) (-4 *6 (-403 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-955 *4 *5 *6 *3)) (-4 *4 (-1028)) (-4 *5 (-776)) + (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-4 *4 (-544)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-627 (-931 *4))) (-5 *3 (-627 (-1152))) (-4 *4 (-445)) + (-5 *1 (-897 *4))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-598 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1152))) + (-4 *2 (-13 (-424 *5) (-27) (-1174))) + (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) + (-5 *1 (-554 *5 *2 *6)) (-4 *6 (-1076))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1076) (-34))) + (-4 *3 (-13 (-1076) (-34)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1115)))) +(((*1 *2 *3) + (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-424 *4) (-981) (-1174))) + (-4 *4 (-13 (-544) (-830))) + (-4 *2 (-13 (-424 (-166 *4)) (-981) (-1174))) + (-5 *1 (-586 *4 *5 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1152)) + (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-573 *3)) (-5 *1 (-420 *5 *3)) + (-4 *3 (-13 (-1174) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-544) (-1017 (-552)) (-144))) + (-5 *2 (-573 (-401 (-931 *5)))) (-5 *1 (-558 *5)) + (-5 *3 (-401 (-931 *5)))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-357) (-144) (-1017 (-552)))) + (-4 *5 (-1211 *4)) (-5 *2 (-627 (-401 *5))) (-5 *1 (-995 *4 *5)) + (-5 *3 (-401 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-1007 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-627 (-671 *3))) (-4 *3 (-1028)) (-5 *1 (-1007 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) + (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-1007 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3)))) - ((*1 *1 *1) (-4 *1 (-1174)))) -(((*1 *2 *1) - (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) - (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-546 *2)) (-4 *2 (-537))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-270))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1014 (-552))) (-4 *3 (-13 (-827) (-544))) - (-5 *1 (-32 *3 *2)) (-4 *2 (-425 *3)))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-1145 *4)) (-5 *1 (-163 *3 *4)) - (-4 *3 (-164 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1025)) (-4 *1 (-297)))) - ((*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1145 *3)))) - ((*1 *2) (-12 (-4 *1 (-705 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1208 *3)))) + (-12 (-5 *2 (-627 (-671 *3))) (-4 *3 (-1028)) (-5 *1 (-1007 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) + (-5 *2 + (-2 (|:| |ir| (-573 (-401 *6))) (|:| |specpart| (-401 *6)) + (|:| |polypart| *6))) + (-5 *1 (-562 *5 *6)) (-5 *3 (-401 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-900)) (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)))) + ((*1 *2 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-357)))) ((*1 *2 *1) - (-12 (-4 *1 (-1042 *3 *2)) (-4 *3 (-13 (-825) (-358))) - (-4 *2 (-1208 *3))))) + (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1211 *2)) (-4 *2 (-169)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1235 *4)) (-5 *3 (-900)) (-4 *4 (-343)) + (-5 *1 (-520 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1099 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) + (-4 *5 (-233 *3 *2)) (-4 *2 (-1028))))) (((*1 *1 *1) - (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-544)))) - ((*1 *1 *1) (|partial| -4 *1 (-703)))) -(((*1 *1 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-544))))) + (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) +(((*1 *1 *2) + (-12 (-5 *2 (-627 (-496 *3 *4 *5 *6))) (-4 *3 (-357)) (-4 *4 (-776)) + (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) + (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) + (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-627 *1)) (-5 *3 (-627 *7)) (-4 *1 (-1048 *4 *5 *6 *7)) + (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *1)) + (-4 *1 (-1048 *4 *5 *6 *7)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 *1)) + (-4 *1 (-1048 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1323 *3))) + (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-906))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-552)) + (-5 *6 + (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1953 (-373)))) + (-5 *7 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) + (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) + (-5 *1 (-771)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-552)) + (-5 *6 + (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1953 (-373)))) + (-5 *7 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) + (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) + (-5 *1 (-771))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-220))) + (-5 *2 (-1014)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) (((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-412 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) - (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3)))) - ((*1 *1 *1) (-4 *1 (-1174)))) -(((*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-625 (-625 (-919 (-221))))))) - ((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-625 (-625 (-919 (-221)))))))) -(((*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537))))) -(((*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-270))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-286))) - ((*1 *1) (-5 *1 (-839))) - ((*1 *1) - (-12 (-4 *2 (-446)) (-4 *3 (-827)) (-4 *4 (-773)) - (-5 *1 (-963 *2 *3 *4 *5)) (-4 *5 (-925 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1058))) - ((*1 *1) - (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34))) - (-4 *3 (-13 (-1073) (-34))))) - ((*1 *1) (-5 *1 (-1152))) ((*1 *1) (-5 *1 (-1153)))) + (-12 (-5 *3 (-310 (-220))) (-5 *2 (-310 (-373))) (-5 *1 (-299))))) +(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-509))))) +(((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-324))))) +(((*1 *2 *3) + (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-1028)) + (-5 *2 (-931 *5)) (-5 *1 (-923 *4 *5))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-357)) (-5 *1 (-875 *2 *3)) + (-4 *2 (-1211 *3))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-552)) (-4 *4 (-13 (-544) (-144))) (-5 *1 (-529 *4 *2)) + (-4 *2 (-1226 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-552)) (-4 *4 (-13 (-357) (-362) (-600 *3))) + (-4 *5 (-1211 *4)) (-4 *6 (-707 *4 *5)) (-5 *1 (-533 *4 *5 *6 *2)) + (-4 *2 (-1226 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-552)) (-4 *4 (-13 (-357) (-362) (-600 *3))) + (-5 *1 (-534 *4 *2)) (-4 *2 (-1226 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1132 *4)) (-5 *3 (-552)) (-4 *4 (-13 (-544) (-144))) + (-5 *1 (-1128 *4))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4366)) (-4 *1 (-148 *2)) (-4 *2 (-1189)) + (-4 *2 (-1076))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-664 *2)) (-4 *2 (-1076)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-627 *5) (-627 *5))) (-5 *4 (-552)) + (-5 *2 (-627 *5)) (-5 *1 (-664 *5)) (-4 *5 (-1076))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-671 *6)) (-5 *5 (-1 (-412 (-1148 *6)) (-1148 *6))) + (-4 *6 (-357)) + (-5 *2 + (-627 + (-2 (|:| |outval| *7) (|:| |outmult| (-552)) + (|:| |outvect| (-627 (-671 *7)))))) + (-5 *1 (-524 *6 *7 *4)) (-4 *7 (-357)) (-4 *4 (-13 (-357) (-828)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155))))) (((*1 *2 *3) - (-12 (-5 *3 (-928 (-552))) (-5 *2 (-625 *1)) (-4 *1 (-988)))) + (|partial| -12 (-5 *3 (-931 (-166 *4))) (-4 *4 (-169)) + (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-931 (-166 *5))) (-5 *4 (-900)) (-4 *5 (-169)) + (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-928 (-402 (-552)))) (-5 *2 (-625 *1)) (-4 *1 (-988)))) - ((*1 *2 *3) (-12 (-5 *3 (-928 *1)) (-4 *1 (-988)) (-5 *2 (-625 *1)))) + (|partial| -12 (-5 *3 (-931 *4)) (-4 *4 (-1028)) + (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-931 *5)) (-5 *4 (-900)) (-4 *5 (-1028)) + (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1145 (-552))) (-5 *2 (-625 *1)) (-4 *1 (-988)))) + (|partial| -12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) + (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-900)) (-4 *5 (-544)) + (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1145 (-402 (-552)))) (-5 *2 (-625 *1)) (-4 *1 (-988)))) - ((*1 *2 *3) (-12 (-5 *3 (-1145 *1)) (-4 *1 (-988)) (-5 *2 (-625 *1)))) + (|partial| -12 (-5 *3 (-401 (-931 (-166 *4)))) (-4 *4 (-544)) + (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-401 (-931 (-166 *5)))) (-5 *4 (-900)) + (-4 *5 (-544)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) + (-5 *1 (-768 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1208 *4)) (-5 *2 (-625 *1)) - (-4 *1 (-1042 *4 *3))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-544)))) - ((*1 *1 *1) (|partial| -4 *1 (-703)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-897)) (|has| *1 (-6 -4344)) (-4 *1 (-399)))) - ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-897))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-114)) (-5 *4 (-751)) (-4 *5 (-446)) (-4 *5 (-827)) - (-4 *5 (-1014 (-552))) (-4 *5 (-544)) (-5 *1 (-41 *5 *2)) - (-4 *2 (-425 *5)) - (-4 *2 - (-13 (-358) (-297) - (-10 -8 (-15 -1356 ((-1098 *5 (-596 $)) $)) - (-15 -1368 ((-1098 *5 (-596 $)) $)) - (-15 -1683 ($ (-1098 *5 (-596 $)))))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-803)) (-5 *1 (-802))))) + (|partial| -12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-830)) + (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-310 *5)) (-5 *4 (-900)) (-4 *5 (-544)) + (-4 *5 (-830)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) + (-5 *1 (-768 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-310 (-166 *4))) (-4 *4 (-544)) (-4 *4 (-830)) + (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-310 (-166 *5))) (-5 *4 (-900)) (-4 *5 (-544)) + (-4 *5 (-830)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) + (-5 *1 (-768 *5))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-629 *2)) (-4 *2 (-1076))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-598 *1)) (-4 *1 (-296))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-401 (-552))) + (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1076)) + (-4 *6 (-1076)) (-4 *2 (-1076)) (-5 *1 (-662 *5 *6 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-111)) (-4 *4 (-13 (-357) (-828))) (-5 *2 (-412 *3)) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-412 *3)) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4)))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-627 *3)) + (-4 *3 (-13 (-27) (-1174) (-424 *6))) + (-4 *6 (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-545 *6 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827)))) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) + (-4 *6 (-776)) (-5 *2 (-401 (-931 *4))) (-5 *1 (-903 *4 *5 *6 *3)) + (-4 *3 (-928 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-671 *7)) (-4 *7 (-928 *4 *6 *5)) + (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) + (-4 *6 (-776)) (-5 *2 (-671 (-401 (-931 *4)))) + (-5 *1 (-903 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 *7)) (-4 *7 (-928 *4 *6 *5)) + (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) + (-4 *6 (-776)) (-5 *2 (-627 (-401 (-931 *4)))) + (-5 *1 (-903 *4 *5 *6 *7))))) +(((*1 *1 *2) + (-12 (-4 *3 (-1028)) (-5 *1 (-810 *2 *3)) (-4 *2 (-691 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1118 *3 *4)) (-14 *3 (-900)) (-4 *4 (-357)) + (-5 *1 (-972 *3 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) + ((*1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) + ((*1 *1 *1) (-12 (-5 *1 (-872 *2)) (-4 *2 (-830)))) ((*1 *1 *1) - (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) - (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3)))) - ((*1 *1 *1) (-4 *1 (-1174)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) - ((*1 *2 *1) - (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-772)) - (-4 *5 (-827)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1149)) (-5 *6 (-625 (-596 *3))) - (-5 *5 (-596 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *7))) - (-4 *7 (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-2 (|:| -3114 *3) (|:| |coeff| *3))) - (-5 *1 (-545 *7 *3))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) - (|:| |lb| (-625 (-820 (-221)))) - (|:| |cf| (-625 (-311 (-221)))) - (|:| |ub| (-625 (-820 (-221)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-625 (-311 (-221)))) - (|:| -2071 (-625 (-221))))))) - (-5 *2 (-625 (-1131))) (-5 *1 (-262))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-432)) (-5 *1 (-1153))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1145 *1)) (-5 *3 (-1149)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1145 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-928 *1)) (-4 *1 (-27)))) + (|partial| -12 (-4 *1 (-1182 *2 *3 *4 *5)) (-4 *2 (-544)) + (-4 *3 (-776)) (-4 *4 (-830)) (-4 *5 (-1042 *2 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-4 *1 (-1223 *3)) (-4 *3 (-1189)))) + ((*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-544)) (-5 *1 (-948 *2 *3)) (-4 *3 (-1211 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 *5)) (-5 *4 (-900)) (-4 *5 (-830)) + (-5 *2 (-627 (-654 *5))) (-5 *1 (-654 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1148 *1)) (-5 *3 (-1152)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-931 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1149)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-827) (-544))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-827) (-544))))) + (-12 (-5 *2 (-1152)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-830) (-544))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-830) (-544))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1145 *2)) (-5 *4 (-1149)) (-4 *2 (-425 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-827) (-544))))) + (-12 (-5 *3 (-1148 *2)) (-5 *4 (-1152)) (-4 *2 (-424 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-830) (-544))))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1145 *1)) (-5 *3 (-897)) (-4 *1 (-988)))) + (|partial| -12 (-5 *2 (-1148 *1)) (-5 *3 (-900)) (-4 *1 (-991)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1145 *1)) (-5 *3 (-897)) (-5 *4 (-839)) - (-4 *1 (-988)))) + (|partial| -12 (-5 *2 (-1148 *1)) (-5 *3 (-900)) (-5 *4 (-842)) + (-4 *1 (-991)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-897)) (-4 *4 (-13 (-825) (-358))) - (-4 *1 (-1042 *4 *2)) (-4 *2 (-1208 *4))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358))))) -(((*1 *2 *3) - (-12 (-5 *3 (-552)) (|has| *1 (-6 -4344)) (-4 *1 (-399)) - (-5 *2 (-897))))) + (|partial| -12 (-5 *3 (-900)) (-4 *4 (-13 (-828) (-357))) + (-4 *1 (-1045 *4 *2)) (-4 *2 (-1211 *4))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-301)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2220 *1))) + (-4 *1 (-301))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830))))) (((*1 *2 *2) - (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-552))) - (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3)) - (-4 *2 - (-13 (-358) (-297) - (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $)) - (-15 -1368 ((-1098 *3 (-596 $)) $)) - (-15 -1683 ($ (-1098 *3 (-596 $)))))))))) + (-12 (-5 *2 (-754)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1028)))) + ((*1 *2) + (-12 (-5 *2 (-754)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1028))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-803)) (-5 *1 (-802))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-919 (-221))) (-5 *4 (-850)) (-5 *2 (-1237)) - (-5 *1 (-462)))) - ((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1025)) (-4 *1 (-956 *3)))) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-544)) + (-5 *2 (-1148 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-136)))) + ((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-182))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-754)) (-4 *4 (-1028)) + (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-1211 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-590 *3 *2)) (-4 *3 (-1076)) (-4 *3 (-830)) + (-4 *2 (-1189)))) + ((*1 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) + ((*1 *2 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) ((*1 *2 *1) - (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-919 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-919 *3)) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-625 *3)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) + (-12 (-4 *2 (-1189)) (-5 *1 (-852 *2 *3)) (-4 *3 (-1189)))) + ((*1 *2 *1) (-12 (-5 *2 (-654 *3)) (-5 *1 (-872 *3)) (-4 *3 (-830)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) + (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-919 *3)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)) (-5 *3 (-221))))) + (-12 (-5 *2 (-754)) (-4 *1 (-1223 *3)) (-4 *3 (-1189)))) + ((*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827)))) - ((*1 *1 *1) - (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) - (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) + (-12 (-4 *3 (-13 (-544) (-830) (-1017 (-552)))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-13 (-27) (-1174) (-424 (-166 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) + (-5 *1 (-183 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 (-166 *4)))))) ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3)))) - ((*1 *1 *1) (-4 *1 (-1174)))) -(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))) - ((*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1186)))) - ((*1 *1 *1) (-4 *1 (-845 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-772)) - (-4 *4 (-827))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1149)) - (-4 *5 (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-571 *3)) (-5 *1 (-545 *5 *3)) - (-4 *3 (-13 (-27) (-1171) (-425 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-1153))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1011)) (-5 *3 (-1149)) (-5 *1 (-262))))) + (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-1178 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1152)) + (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-1178 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1189))))) +(((*1 *2 *2) (-12 (-5 *1 (-574 *2)) (-4 *2 (-537))))) +(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189))))) +(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-236)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-1240)) (-5 *1 (-236))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1134)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) + (-4 *4 (-1042 *6 *7 *8)) (-5 *2 (-1240)) + (-5 *1 (-759 *6 *7 *8 *4 *5)) (-4 *5 (-1048 *6 *7 *8 *4))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-402 (-552))) (-5 *1 (-1000 *3)) - (-4 *3 (-13 (-825) (-358) (-998))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) - (-4 *3 (-1208 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1042 *2 *3)) (-4 *2 (-13 (-825) (-358))) - (-4 *3 (-1208 *2))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1208 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) + (-12 (-5 *2 (-627 (-288 *4))) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) + (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1323 *3))) + (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-552)) (|has| *1 (-6 -4344)) (-4 *1 (-399)) - (-5 *2 (-897))))) -(((*1 *2 *2) - (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-552))) - (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3)) - (-4 *2 - (-13 (-358) (-297) - (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $)) - (-15 -1368 ((-1098 *3 (-596 $)) $)) - (-15 -1683 ($ (-1098 *3 (-596 $)))))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1093)) (-5 *2 (-112)) (-5 *1 (-801))))) -(((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) - ((*1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-947))))) -(((*1 *1 *1) (-4 *1 (-611))) + (-12 + (-5 *3 + (-2 (|:| |pde| (-627 (-310 (-220)))) + (|:| |constraints| + (-627 + (-2 (|:| |start| (-220)) (|:| |finish| (-220)) + (|:| |grid| (-754)) (|:| |boundaryType| (-552)) + (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) + (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) + (|:| |tol| (-220)))) + (-5 *2 (-111)) (-5 *1 (-205))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-900)) (-5 *4 (-220)) (-5 *5 (-552)) (-5 *6 (-853)) + (-5 *2 (-1240)) (-5 *1 (-1236))))) +(((*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1037)))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) + (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978) (-1171)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1149)) - (-4 *4 (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-545 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-112)) (-5 *1 (-262))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-429)) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)) (-4 *2 (-1037)))) + ((*1 *1 *1) (-4 *1 (-828))) + ((*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)) (-4 *2 (-1037)))) + ((*1 *1 *1) (-4 *1 (-1037))) ((*1 *1 *1) (-4 *1 (-1115)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-1157))) (-5 *1 (-1157)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-1157))) (-5 *1 (-1157))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) + (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 - (-625 - (-3 (|:| -1288 (-1149)) - (|:| -2791 (-625 (-3 (|:| S (-1149)) (|:| P (-928 (-552))))))))) - (-5 *1 (-1153))))) + (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) + (-5 *1 (-200))))) +(((*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896))))) +(((*1 *2) (-12 (-5 *2 (-627 *3)) (-5 *1 (-1060 *3)) (-4 *3 (-130))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-754)) (-5 *1 (-574 *2)) (-4 *2 (-537))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-573 *3) *3 (-1152))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1152))) + (-4 *3 (-278)) (-4 *3 (-613)) (-4 *3 (-1017 *4)) (-4 *3 (-424 *7)) + (-5 *4 (-1152)) (-4 *7 (-600 (-871 (-552)))) (-4 *7 (-445)) + (-4 *7 (-865 (-552))) (-4 *7 (-830)) (-5 *2 (-573 *3)) + (-5 *1 (-561 *7 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-900)) (-4 *1 (-1213 *3 *4)) (-4 *3 (-1028)) + (-4 *4 (-775)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-401 (-552))) (-4 *1 (-1216 *3)) (-4 *3 (-1028))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-401 *5)) (-4 *4 (-1193)) (-4 *5 (-1211 *4)) + (-5 *1 (-145 *4 *5 *2)) (-4 *2 (-1211 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1154 (-401 (-552)))) (-5 *2 (-401 (-552))) + (-5 *1 (-185)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-671 (-310 (-220)))) (-5 *3 (-627 (-1152))) + (-5 *4 (-1235 (-310 (-220)))) (-5 *1 (-200)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-627 (-288 *3))) (-4 *3 (-303 *3)) (-4 *3 (-1076)) + (-4 *3 (-1189)) (-5 *1 (-288 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-303 *2)) (-4 *2 (-1076)) (-4 *2 (-1189)) + (-5 *1 (-288 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-296)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-627 *1))) (-4 *1 (-296)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 (-113))) (-5 *3 (-627 (-1 *1 (-627 *1)))) + (-4 *1 (-296)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 (-113))) (-5 *3 (-627 (-1 *1 *1))) (-4 *1 (-296)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1152)) (-5 *3 (-1 *1 *1)) (-4 *1 (-296)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1152)) (-5 *3 (-1 *1 (-627 *1))) (-4 *1 (-296)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-627 (-1 *1 (-627 *1)))) + (-4 *1 (-296)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-627 (-1 *1 *1))) (-4 *1 (-296)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-627 (-288 *3))) (-4 *1 (-303 *3)) (-4 *3 (-1076)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-288 *3)) (-4 *1 (-303 *3)) (-4 *3 (-1076)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-552))) (-5 *4 (-1154 (-401 (-552)))) + (-5 *1 (-304 *2)) (-4 *2 (-38 (-401 (-552)))))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 *4)) (-5 *3 (-627 *1)) (-4 *1 (-368 *4 *5)) + (-4 *4 (-830)) (-4 *5 (-169)))) + ((*1 *1 *1 *2 *1) + (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-830)) (-4 *3 (-169)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1152)) (-5 *3 (-754)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-424 *5)) (-4 *5 (-830)) (-4 *5 (-1028)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1152)) (-5 *3 (-754)) (-5 *4 (-1 *1 (-627 *1))) + (-4 *1 (-424 *5)) (-4 *5 (-830)) (-4 *5 (-1028)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-627 (-754))) + (-5 *4 (-627 (-1 *1 (-627 *1)))) (-4 *1 (-424 *5)) (-4 *5 (-830)) + (-4 *5 (-1028)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-627 (-754))) + (-5 *4 (-627 (-1 *1 *1))) (-4 *1 (-424 *5)) (-4 *5 (-830)) + (-4 *5 (-1028)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-627 (-113))) (-5 *3 (-627 *1)) (-5 *4 (-1152)) + (-4 *1 (-424 *5)) (-4 *5 (-830)) (-4 *5 (-600 (-528))))) + ((*1 *1 *1 *2 *1 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-1152)) (-4 *1 (-424 *4)) (-4 *4 (-830)) + (-4 *4 (-600 (-528))))) + ((*1 *1 *1) + (-12 (-4 *1 (-424 *2)) (-4 *2 (-830)) (-4 *2 (-600 (-528))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-627 (-1152))) (-4 *1 (-424 *3)) (-4 *3 (-830)) + (-4 *3 (-600 (-528))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1152)) (-4 *1 (-424 *3)) (-4 *3 (-830)) + (-4 *3 (-600 (-528))))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-506 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1189)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 *4)) (-5 *3 (-627 *5)) (-4 *1 (-506 *4 *5)) + (-4 *4 (-1076)) (-4 *5 (-1189)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-816 *3)) (-4 *3 (-357)) (-5 *1 (-701 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-882 *2)) (-4 *2 (-1076)))) + ((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-401 (-931 *4))) (-5 *3 (-1152)) (-4 *4 (-544)) + (-5 *1 (-1022 *4)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-627 (-1152))) (-5 *4 (-627 (-401 (-931 *5)))) + (-5 *2 (-401 (-931 *5))) (-4 *5 (-544)) (-5 *1 (-1022 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-288 (-401 (-931 *4)))) (-5 *2 (-401 (-931 *4))) + (-4 *4 (-544)) (-5 *1 (-1022 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-627 (-288 (-401 (-931 *4))))) (-5 *2 (-401 (-931 *4))) + (-4 *4 (-544)) (-5 *1 (-1022 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1213 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1132 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-1039 *3 *4 *2)) (-4 *2 (-827)))) + (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-598 *3)) (-4 *3 (-830))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-671 *1)) (-4 *1 (-343)) (-5 *2 (-1235 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-671 *1)) (-4 *1 (-142)) (-4 *1 (-888)) + (-5 *2 (-1235 *1))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-552)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-754)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-776)) (-4 *4 (-928 *5 *6 *7)) (-4 *5 (-445)) (-4 *7 (-830)) + (-5 *1 (-442 *5 *6 *7 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3116 *4))) + (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-730))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1014)) + (-5 *1 (-729))))) +(((*1 *2 *1) (-12 (-5 *2 (-757)) (-5 *1 (-52))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1235 *4)) (-5 *3 (-671 *4)) (-4 *4 (-357)) + (-5 *1 (-649 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-357)) + (-4 *5 (-13 (-367 *4) (-10 -7 (-6 -4367)))) + (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4367)))) + (-5 *1 (-650 *4 *5 *2 *3)) (-4 *3 (-669 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-627 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-357)) + (-5 *1 (-797 *2 *3)) (-4 *3 (-638 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *1 (-1104 *3 *2)) (-4 *3 (-1211 *2))))) +(((*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-742))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1175 *3)) (-4 *3 (-1076))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-627 (-598 *2))) (-5 *4 (-1152)) + (-4 *2 (-13 (-27) (-1174) (-424 *5))) + (-4 *5 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-271 *5 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) + (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) + (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) +(((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1189)) (-5 *2 (-754)) + (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *2 (-827))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1217 *3 *4 *5)) (-5 *1 (-314 *3 *4 *5)) - (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-552)))) - ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-413 *3)) (-4 *3 (-544)))) - ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-679)))) + (-12 (-4 *1 (-317 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-129)) + (-5 *2 (-754)))) + ((*1 *2) + (-12 (-4 *4 (-357)) (-5 *2 (-754)) (-5 *1 (-322 *3 *4)) + (-4 *3 (-323 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-355 *3)) (-4 *3 (-1076)))) + ((*1 *2) (-12 (-4 *1 (-362)) (-5 *2 (-754)))) + ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-380 *3)) (-4 *3 (-1076)))) + ((*1 *2) + (-12 (-4 *4 (-1076)) (-5 *2 (-754)) (-5 *1 (-418 *3 *4)) + (-4 *3 (-419 *4)))) ((*1 *2 *1) - (-12 (-4 *2 (-1073)) (-5 *1 (-694 *3 *2 *4)) (-4 *3 (-827)) - (-14 *4 - (-1 (-112) (-2 (|:| -3123 *3) (|:| -3564 *2)) - (-2 (|:| -3123 *3) (|:| -3564 *2))))))) -(((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-751)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-397)) (-5 *2 (-751))))) -(((*1 *2 *2) - (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-552))) - (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-425 *3)) - (-4 *2 - (-13 (-358) (-297) - (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $)) - (-15 -1368 ((-1098 *3 (-596 $)) $)) - (-15 -1683 ($ (-1098 *3 (-596 $)))))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1131)) (-5 *4 (-1093)) (-5 *2 (-112)) (-5 *1 (-801))))) + (-12 (-5 *2 (-754)) (-5 *1 (-631 *3 *4 *5)) (-4 *3 (-1076)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-4 *5 (-1211 *4)) (-5 *2 (-754)) + (-5 *1 (-706 *3 *4 *5)) (-4 *3 (-707 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-802 *3)) (-4 *3 (-830)))) + ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-985)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) + (-4 *3 (-1211 *2))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) + (-5 *1 (-967 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) + (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4367)) (-4 *1 (-590 *3 *4)) (-4 *3 (-1076)) + (-4 *4 (-1189)) (-5 *2 (-1240))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-111)) (-5 *3 (-627 (-257))) (-5 *1 (-255))))) (((*1 *2 *3) - (-12 (-5 *2 (-625 (-625 (-552)))) (-5 *1 (-947)) - (-5 *3 (-625 (-552)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-625 *3)) - (-4 *3 (-13 (-27) (-1171) (-425 *6))) - (-4 *6 (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552)))) + (-12 (-4 *3 (-1211 (-401 (-552)))) + (-5 *2 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552)))) + (-5 *1 (-892 *3 *4)) (-4 *4 (-1211 (-401 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1211 (-401 *2))) (-5 *2 (-552)) (-5 *1 (-892 *4 *3)) + (-4 *3 (-1211 (-401 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-257)))) + ((*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) + (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-545 *6 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-625 (-311 (-221)))) (-5 *1 (-262))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-827)) (-5 *2 (-751))))) + (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) + (|:| |expense| (-373)) (|:| |accuracy| (-373)) + (|:| |intermediateResults| (-373)))) + (-5 *1 (-786))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4366)) (-4 *1 (-482 *4)) + (-4 *4 (-1189)) (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (-5 *2 (-113)) (-5 *1 (-112 *3)) (-4 *3 (-830)) (-4 *3 (-1076))))) +(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) + ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-598 *3)) (-5 *5 (-1148 *3)) + (-4 *3 (-13 (-424 *6) (-27) (-1174))) + (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) + (-5 *2 (-573 *3)) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1076)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-598 *3)) (-5 *5 (-401 (-1148 *3))) + (-4 *3 (-13 (-424 *6) (-27) (-1174))) + (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) + (-5 *2 (-573 *3)) (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1076))))) +(((*1 *1) (-5 *1 (-154))) + ((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-23))))) (((*1 *2 *2) - (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1208 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-751)))) - ((*1 *1 *1) (-4 *1 (-397)))) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *3 (-627 (-552))) + (-5 *1 (-862))))) +(((*1 *1) (-5 *1 (-1061)))) +(((*1 *2 *1) + (-12 (-5 *2 (-627 (-288 *3))) (-5 *1 (-288 *3)) (-4 *3 (-544)) + (-4 *3 (-1189))))) (((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-1145 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-358) (-297) - (-10 -8 (-15 -1356 ((-1098 *4 (-596 $)) $)) - (-15 -1368 ((-1098 *4 (-596 $)) $)) - (-15 -1683 ($ (-1098 *4 (-596 $)))))))))) + (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-4 *5 (-424 *4)) + (-5 *2 + (-3 (|:| |overq| (-1148 (-401 (-552)))) + (|:| |overan| (-1148 (-48))) (|:| -2953 (-111)))) + (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1211 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1148 *9)) (-5 *4 (-627 *7)) (-5 *5 (-627 *8)) + (-4 *7 (-830)) (-4 *8 (-1028)) (-4 *9 (-928 *8 *6 *7)) + (-4 *6 (-776)) (-5 *2 (-1148 *8)) (-5 *1 (-315 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-630 *5)) (-4 *5 (-1028)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-832 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-671 *3)) (-4 *1 (-411 *3)) (-4 *3 (-169)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1028)) + (-5 *1 (-833 *2 *3)) (-4 *3 (-832 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) -(((*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-947))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1149)) - (-4 *5 (-13 (-446) (-827) (-145) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-2 (|:| -3114 *3) (|:| |coeff| *3))) (-5 *1 (-545 *5 *3)) - (-4 *3 (-13 (-27) (-1171) (-425 *5)))))) -(((*1 *2 *2) (-12 (-5 *2 (-625 (-311 (-221)))) (-5 *1 (-262))))) -(((*1 *1) - (-12 (-4 *3 (-1073)) (-5 *1 (-861 *2 *3 *4)) (-4 *2 (-1073)) - (-4 *4 (-646 *3)))) - ((*1 *1) (-12 (-5 *1 (-865 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073))))) + (|partial| -12 (-5 *2 (-627 (-931 *3))) (-4 *3 (-445)) + (-5 *1 (-354 *3 *4)) (-14 *4 (-627 (-1152))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-627 (-763 *3 (-844 *4)))) (-4 *3 (-445)) + (-14 *4 (-627 (-1152))) (-5 *1 (-612 *3 *4))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236))))) +(((*1 *2 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |partsol| (-1235 (-401 (-931 *4)))) + (|:| -2957 (-627 (-1235 (-401 (-931 *4))))))) + (-5 *3 (-627 *7)) (-4 *4 (-13 (-301) (-144))) + (-4 *7 (-928 *4 *6 *5)) (-4 *5 (-13 (-830) (-600 (-1152)))) + (-4 *6 (-776)) (-5 *1 (-903 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-900)) (|has| *1 (-6 -4357)) (-4 *1 (-398)))) + ((*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-900)))) + ((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-681)))) + ((*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-681))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-686 *3 *4)) (-4 *3 (-1186)) (-4 *4 (-1186))))) -(((*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-214)))) - ((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1186)))) - ((*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-656)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1025)) (-5 *2 (-1232 *3)) (-5 *1 (-693 *3 *4)) - (-4 *4 (-1208 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-402 *4)) (-4 *4 (-1208 *3)) (-4 *3 (-13 (-358) (-145))) - (-5 *1 (-394 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1073)) - (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3)))) - (-5 *2 (-625 (-1049 *3 *4 *5))) (-5 *1 (-1050 *3 *4 *5)) - (-4 *5 (-13 (-425 *4) (-862 *3) (-598 (-868 *3))))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1211 *6)) + (-4 *6 (-13 (-27) (-424 *5))) + (-4 *5 (-13 (-830) (-544) (-1017 (-552)))) (-4 *8 (-1211 (-401 *7))) + (-5 *2 (-573 *3)) (-5 *1 (-540 *5 *6 *7 *8 *3)) + (-4 *3 (-336 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-552))) (-5 *2 (-552)) (-5 *1 (-479 *4)) + (-4 *4 (-1211 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1152)) (-4 *5 (-357)) (-5 *2 (-1132 (-1132 (-931 *5)))) + (-5 *1 (-1243 *5)) (-5 *4 (-1132 (-931 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1202 *3)) (-4 *3 (-1189))))) +(((*1 *2 *2) + (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) + (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *3)) + (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-627 *3)) (-4 *3 (-1042 *4 *5 *6)) (-4 *4 (-544)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-956 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) + (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-627 *7) (-627 *7))) (-5 *2 (-627 *7)) + (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-776)) + (-4 *6 (-830)) (-5 *1 (-956 *4 *5 *6 *7))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-627 *6)) (-4 *1 (-928 *4 *5 *6)) (-4 *4 (-1028)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-754)))) + ((*1 *2 *1) + (-12 (-4 *1 (-928 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-830)) (-5 *2 (-754))))) +(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-884 *3)) (-4 *3 (-1076))))) (((*1 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-358) (-297) - (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $)) - (-15 -1368 ((-1098 *3 (-596 $)) $)) - (-15 -1683 ($ (-1098 *3 (-596 $))))))))) + (-13 (-357) (-296) + (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) + (-15 -2929 ((-1101 *3 (-598 $)) $)) + (-15 -1477 ($ (-1101 *3 (-598 $))))))))) ((*1 *2 *2 *2) (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-358) (-297) - (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $)) - (-15 -1368 ((-1098 *3 (-596 $)) $)) - (-15 -1683 ($ (-1098 *3 (-596 $))))))))) + (-13 (-357) (-296) + (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) + (-15 -2929 ((-1101 *3 (-598 $)) $)) + (-15 -1477 ($ (-1101 *3 (-598 $))))))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-625 *2)) + (-12 (-5 *3 (-627 *2)) (-4 *2 - (-13 (-358) (-297) - (-10 -8 (-15 -1356 ((-1098 *4 (-596 $)) $)) - (-15 -1368 ((-1098 *4 (-596 $)) $)) - (-15 -1683 ($ (-1098 *4 (-596 $))))))) + (-13 (-357) (-296) + (-10 -8 (-15 -2918 ((-1101 *4 (-598 $)) $)) + (-15 -2929 ((-1101 *4 (-598 $)) $)) + (-15 -1477 ($ (-1101 *4 (-598 $))))))) (-4 *4 (-544)) (-5 *1 (-41 *4 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-625 (-596 *2))) + (-12 (-5 *3 (-627 (-598 *2))) (-4 *2 - (-13 (-358) (-297) - (-10 -8 (-15 -1356 ((-1098 *4 (-596 $)) $)) - (-15 -1368 ((-1098 *4 (-596 $)) $)) - (-15 -1683 ($ (-1098 *4 (-596 $))))))) + (-13 (-357) (-296) + (-10 -8 (-15 -2918 ((-1101 *4 (-598 $)) $)) + (-15 -2929 ((-1101 *4 (-598 $)) $)) + (-15 -1477 ($ (-1101 *4 (-598 $))))))) (-4 *4 (-544)) (-5 *1 (-41 *4 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) -(((*1 *2 *1) (-12 (-5 *2 (-802)) (-5 *1 (-801))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3207 *4))) - (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1152)) + (-4 *4 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) + (-5 *1 (-787 *4 *2)) (-4 *2 (-13 (-29 *4) (-1174) (-938))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *1) (-5 *1 (-842))) + ((*1 *1 *1) (-5 *1 (-842))) + ((*1 *2 *3) + (-12 (-5 *2 (-1132 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-1028))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1235 *4)) (-4 *4 (-623 *5)) (-4 *5 (-357)) + (-4 *5 (-544)) (-5 *2 (-1235 *5)) (-5 *1 (-622 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1235 *4)) (-4 *4 (-623 *5)) + (-1681 (-4 *5 (-357))) (-4 *5 (-544)) (-5 *2 (-1235 (-401 *5))) + (-5 *1 (-622 *5 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1132 *3))) (-5 *2 (-1132 *3)) (-5 *1 (-1136 *3)) + (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-111)) + (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) + (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *4)))) + (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) +(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-547))))) +(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1 (-373))) (-5 *1 (-1019))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -3618 *1) (|:| -4340 *1) (|:| |associate| *1))) - (-4 *1 (-544))))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) + (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)) + (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-582 *3)) (-4 *3 (-1028)))) + ((*1 *2 *1) + (-12 (-4 *3 (-544)) (-5 *2 (-111)) (-5 *1 (-607 *3 *4)) + (-4 *4 (-1211 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-718 *3 *4)) (-4 *3 (-1028)) + (-4 *4 (-709)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) + (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1134)) + (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-111)) (-5 *1 (-219 *4 *5)) (-4 *5 (-13 (-1174) (-29 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-311 (-221)))) (-5 *4 (-751)) - (-5 *2 (-669 (-221))) (-5 *1 (-262))))) + (-12 (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-544)) + (-4 *7 (-928 *3 *5 *6)) + (-5 *2 (-2 (|:| -4067 (-754)) (|:| -3069 *8) (|:| |radicand| *8))) + (-5 *1 (-932 *5 *6 *3 *7 *8)) (-5 *4 (-754)) + (-4 *8 + (-13 (-357) + (-10 -8 (-15 -2918 (*7 $)) (-15 -2929 (*7 $)) (-15 -1477 ($ *7)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 *4)) (-4 *4 (-828)) (-4 *4 (-357)) (-5 *2 (-754)) + (-5 *1 (-924 *4 *5)) (-4 *5 (-1211 *4))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1189)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1134)) (-5 *1 (-968)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1152)) (-5 *3 (-1070 *4)) (-4 *4 (-1189)) + (-5 *1 (-1068 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-544)) + (-4 *3 (-928 *7 *5 *6)) + (-5 *2 + (-2 (|:| -4067 (-754)) (|:| -3069 *3) (|:| |radicand| (-627 *3)))) + (-5 *1 (-932 *5 *6 *7 *3 *8)) (-5 *4 (-754)) + (-4 *8 + (-13 (-357) + (-10 -8 (-15 -2918 (*3 $)) (-15 -2929 (*3 $)) (-15 -1477 ($ *3)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1134)) (-5 *1 (-693))))) +(((*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-804))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-1083 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7))))) (((*1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1232 *3)) (-4 *3 (-1025)) (-5 *1 (-693 *3 *4)) - (-4 *4 (-1208 *3))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1208 *3)) (-5 *1 (-394 *3 *2)) - (-4 *3 (-13 (-358) (-145)))))) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) + (-242 *4 (-401 (-552))))) + (-14 *4 (-627 (-1152))) (-14 *5 (-754)) (-5 *2 (-111)) + (-5 *1 (-497 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) + (-12 (-5 *2 (-111)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 (-1152))) + (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) + ((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 (-1152))) + (-14 *4 (-627 (-1152))) (-4 *5 (-381))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-552)) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-4 *1 (-633 *2)) (-4 *2 (-1189))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1148 *4)) (-4 *4 (-343)) (-4 *2 - (-13 (-358) (-297) - (-10 -8 (-15 -1356 ((-1098 *3 (-596 $)) $)) - (-15 -1368 ((-1098 *3 (-596 $)) $)) - (-15 -1683 ($ (-1098 *3 (-596 $)))))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-801))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3207 *4))) - (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4))))) + (-13 (-396) + (-10 -7 (-15 -1477 (*2 *4)) (-15 -2886 ((-900) *2)) + (-15 -2957 ((-1235 *2) (-900))) (-15 -3406 (*2 *2))))) + (-5 *1 (-350 *2 *4))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1068 (-931 (-552)))) (-5 *3 (-931 (-552))) + (-5 *1 (-324)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1068 (-931 (-552)))) (-5 *1 (-324))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169))))) +(((*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-1014)) (-5 *1 (-820)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-310 (-373)))) (-5 *4 (-627 (-373))) + (-5 *2 (-1014)) (-5 *1 (-820))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-900)) (-5 *1 (-1011 *2)) + (-4 *2 (-13 (-1076) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096)))))) + (-4 *4 (-343)) (-5 *2 (-754)) (-5 *1 (-340 *4)))) + ((*1 *2) + (-12 (-5 *2 (-754)) (-5 *1 (-345 *3 *4)) (-14 *3 (-900)) + (-14 *4 (-900)))) + ((*1 *2) + (-12 (-5 *2 (-754)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) + (-14 *4 + (-3 (-1148 *3) + (-1235 (-627 (-2 (|:| -4288 *3) (|:| -4153 (-1096))))))))) + ((*1 *2) + (-12 (-5 *2 (-754)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) + (-14 *4 (-900))))) (((*1 *1 *1) (-4 *1 (-544)))) (((*1 *2 *3) - (-12 (-5 *3 (-625 (-311 (-221)))) (-5 *2 (-112)) (-5 *1 (-262))))) -(((*1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1186))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1)) - (-4 *1 (-1039 *3 *4 *5))))) + (-12 (-4 *4 (-13 (-357) (-828))) + (-5 *2 (-2 (|:| |start| *3) (|:| -2101 (-412 *3)))) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-220)) (-5 *1 (-299))))) +(((*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-111)) (-5 *1 (-261))))) +(((*1 *1 *1) + (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1028) (-830))) + (-14 *3 (-627 (-1152)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111))))) (((*1 *2 *1) - (-12 (-4 *3 (-1025)) (-5 *2 (-1232 *3)) (-5 *1 (-693 *3 *4)) - (-4 *4 (-1208 *3))))) + (-12 (-14 *3 (-627 (-1152))) (-4 *4 (-169)) + (-4 *5 (-233 (-1383 *3) (-754))) + (-14 *6 + (-1 (-111) (-2 (|:| -4153 *2) (|:| -4067 *5)) + (-2 (|:| -4153 *2) (|:| -4067 *5)))) + (-4 *2 (-830)) (-5 *1 (-454 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-928 *4 *5 (-844 *3)))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-627 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-111) *8 *8)) (-4 *1 (-1182 *5 *6 *7 *8)) (-4 *5 (-544)) + (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1096)) (-5 *2 (-1240)) (-5 *1 (-814))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237))))) (((*1 *2 *1) - (-12 (-4 *3 (-13 (-358) (-145))) - (-5 *2 (-625 (-2 (|:| -3564 (-751)) (|:| -2845 *4) (|:| |num| *4)))) - (-5 *1 (-394 *3 *4)) (-4 *4 (-1208 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-751)) (-4 *4 (-358)) (-4 *5 (-1208 *4)) (-5 *2 (-1237)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1208 (-402 *5))) (-14 *7 *6)))) + (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-801))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-544)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1208 *2))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-311 (-221))) (-5 *1 (-262))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827))))) -(((*1 *2) - (-12 (-4 *3 (-1025)) (-5 *2 (-934 (-693 *3 *4))) (-5 *1 (-693 *3 *4)) - (-4 *4 (-1208 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-392))))) + (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) + (-5 *1 (-173 *3))))) +(((*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1208 (-48)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-799 *3)) (-4 *3 (-827))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-544)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1208 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-544)) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-311 (-221))) (-5 *1 (-262))))) + (-12 (-4 *4 (-544)) (-5 *2 (-1235 (-671 *4))) (-5 *1 (-89 *4 *5)) + (-5 *3 (-671 *4)) (-4 *5 (-638 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-357)) (-4 *3 (-1028)) + (-5 *1 (-1136 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830)) (-4 *2 (-445))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) + (-5 *2 (-1014)) (-5 *1 (-733))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-301)) (-5 *1 (-448 *3 *2)) (-4 *2 (-1211 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-301)) (-5 *1 (-453 *3 *2)) (-4 *2 (-1211 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-301)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-754))) + (-5 *1 (-531 *3 *2 *4 *5)) (-4 *2 (-1211 *3))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-552)) (-5 *5 (-111)) (-5 *6 (-671 (-220))) + (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-738))))) (((*1 *2 *3) - (-12 (-4 *4 (-1025)) (-5 *2 (-112)) (-5 *1 (-438 *4 *3)) - (-4 *3 (-1208 *4)))) + (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-186)) (-5 *3 (-552)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-766 *2)) (-4 *2 (-169)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-921)) (-5 *3 (-552))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-627 (-220)))) (-5 *1 (-905))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) + (-4 *4 (-1028)) (-4 *4 (-169)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)) + (-4 *3 (-169))))) +(((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1028)) + (-14 *4 (-627 (-1152))))) + ((*1 *2 *3) + (-12 (-5 *3 (-52)) (-5 *2 (-111)) (-5 *1 (-51 *4)) (-4 *4 (-1189)))) ((*1 *2 *1) - (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-827)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-4 *3 (-1025)) (-5 *2 (-934 (-693 *3 *4))) (-5 *1 (-693 *3 *4)) - (-4 *4 (-1208 *3))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-625 (-625 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-625 (-3 (|:| |array| (-625 *3)) (|:| |scalar| (-1149))))) - (-5 *6 (-625 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1077)) - (-5 *1 (-392)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-625 (-625 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-625 (-3 (|:| |array| (-625 *3)) (|:| |scalar| (-1149))))) - (-5 *6 (-625 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1077)) - (-5 *1 (-392)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-625 (-1149))) (-5 *5 (-1152)) (-5 *3 (-1149)) - (-5 *2 (-1077)) (-5 *1 (-392))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1073)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-751)) (-4 *3 (-544)) (-5 *1 (-945 *3 *2)) - (-4 *2 (-1208 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-402 (-552))) (-4 *1 (-542 *3)) - (-4 *3 (-13 (-399) (-1171))))) - ((*1 *1 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171)))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) - (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) - (|:| |ub| (-625 (-820 (-221)))))) - (-5 *1 (-262))))) + (-12 (-5 *2 (-111)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1028) (-830))) + (-14 *4 (-627 (-1152))))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-659 *3)) (-4 *3 (-830)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-872 *3)) (-4 *3 (-830))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-2 (|:| -1727 (-1148 *6)) (|:| -4067 (-552))))) + (-4 *6 (-301)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-552)) + (-5 *1 (-725 *4 *5 *6 *7)) (-4 *7 (-928 *6 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-445)) (-4 *3 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) + (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-928 *4 *3 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-802 *4)) (-4 *4 (-830)) (-5 *2 (-111)) + (-5 *1 (-654 *4))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-129)) + (-4 *3 (-775))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1152)) + (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-573 *3)) (-5 *1 (-420 *5 *3)) + (-4 *3 (-13 (-1174) (-29 *5)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-827)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *2 (-344)) (-4 *2 (-1025)) (-5 *1 (-693 *2 *3)) - (-4 *3 (-1208 *2))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-600)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1073)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-751)) (-4 *2 (-544)) (-5 *1 (-945 *2 *4)) - (-4 *4 (-1208 *2))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171)))))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-627 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4366)) (-4 *1 (-482 *3)) (-4 *3 (-1189)) + (-5 *2 (-627 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-900)) (-5 *2 (-461)) (-5 *1 (-1236))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-820 (-221)))) (-5 *4 (-221)) (-5 *2 (-625 *4)) - (-5 *1 (-262))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *3)) - (-4 *3 (-1186)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1186)) (-5 *1 (-585 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-654 *3)) (-4 *3 (-1186)))) + (-12 (-5 *3 (-1148 *1)) (-5 *4 (-1152)) (-4 *1 (-27)) + (-5 *2 (-627 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-27)) (-5 *2 (-627 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-931 *1)) (-4 *1 (-27)) (-5 *2 (-627 *1)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1179 *4 *5 *3 *2)) (-4 *4 (-544)) - (-4 *5 (-773)) (-4 *3 (-827)) (-4 *2 (-1039 *4 *5 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-751)) (-5 *1 (-1183 *2)) (-4 *2 (-1186))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827))))) -(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1131)) (-5 *1 (-691))))) -(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-386))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-552)) (-4 *2 (-425 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1014 *4)) (-4 *3 (-13 (-827) (-544)))))) + (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-627 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *2 (-627 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-310 (-220))) (-5 *4 (-627 (-1152))) + (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-1132 (-220))) (-5 *1 (-294))))) +(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-111)) (-5 *1 (-812))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552))))) +(((*1 *2) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-5 *2 (-671 (-401 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) -(((*1 *2 *1 *1) - (-12 + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *1 *1) (-5 *1 (-1040)))) +(((*1 *2 *3) + (-12 (-5 *3 (-906)) (-5 *2 - (-2 (|:| |lm| (-381 *3)) (|:| |mm| (-381 *3)) (|:| |rm| (-381 *3)))) - (-5 *1 (-381 *3)) (-4 *3 (-1073)))) - ((*1 *2 *1 *1) - (-12 + (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) + (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) + (-5 *1 (-150)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-906)) (-5 *4 (-401 (-552))) (-5 *2 - (-2 (|:| |lm| (-799 *3)) (|:| |mm| (-799 *3)) (|:| |rm| (-799 *3)))) - (-5 *1 (-799 *3)) (-4 *3 (-827))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-302)))) - ((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-381 *3)) (|:| |rm| (-381 *3)))) - (-5 *1 (-381 *3)) (-4 *3 (-1073)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3984 (-751)) (|:| -3645 (-751)))) - (-5 *1 (-751)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) - (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-229)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) - (-4 *6 (-773)) (-5 *2 (-1 *1 (-751))) (-4 *1 (-248 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) - (-5 *2 (-1 *1 (-751))) (-4 *1 (-248 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-261 *2)) (-4 *2 (-827))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1186)) (-5 *1 (-585 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827))))) -(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1131)) (-5 *1 (-691))))) -(((*1 *2) (-12 (-5 *2 (-1120 (-1131))) (-5 *1 (-386))))) + (-2 (|:| |brans| (-627 (-627 (-922 (-220))))) + (|:| |xValues| (-1070 (-220))) (|:| |yValues| (-1070 (-220))))) + (-5 *1 (-150))))) +(((*1 *1 *2) (-12 (-5 *1 (-1005 *2)) (-4 *2 (-1189))))) +(((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-52))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) + (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *1 *2) + (-12 (-5 *2 (-627 *1)) (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *5)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-627 *3)) (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *5)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1235 *3)) (-4 *3 (-1028)) (-5 *1 (-671 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-627 *4)) (-4 *4 (-1028)) (-4 *1 (-1099 *3 *4 *5 *6)) + (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-625 *5)) (-4 *5 (-425 *4)) (-4 *4 (-13 (-827) (-544))) - (-5 *2 (-839)) (-5 *1 (-32 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-356 *3)) (-4 *3 (-1073)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-5 *2 (-751)) (-5 *1 (-381 *4)) (-4 *4 (-1073)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *2 (-23)) (-5 *1 (-629 *4 *2 *5)) - (-4 *4 (-1073)) (-14 *5 *2))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-5 *2 (-751)) (-5 *1 (-799 *4)) (-4 *4 (-827))))) + (|partial| -12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) + (-5 *2 (-2 (|:| |radicand| (-401 *5)) (|:| |deg| (-754)))) + (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1211 (-401 *5)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-446)) (-4 *4 (-544)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -3447 *4))) (-5 *1 (-945 *4 *3)) - (-4 *3 (-1208 *4))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-114)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) - (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751)))) - ((*1 *2 *1) - (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) - (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-751)))) - ((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-827)) (-5 *2 (-751))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| -2520 (-625 (-839))) (|:| -1282 (-625 (-839))) - (|:| |presup| (-625 (-839))) (|:| -2501 (-625 (-839))) - (|:| |args| (-625 (-839))))) - (-5 *1 (-1149))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1186)) (-5 *1 (-585 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1)) - (-4 *1 (-1039 *3 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1131)) (-5 *1 (-691))))) -(((*1 *2) (-12 (-5 *2 (-1120 (-1131))) (-5 *1 (-386))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1145 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-827) (-544))) - (-5 *1 (-32 *4 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-318 *2 *4)) (-4 *4 (-130)) - (-4 *2 (-1073)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-356 *2)) (-4 *2 (-1073)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-381 *2)) (-4 *2 (-1073)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-413 *2)) (-4 *2 (-544)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *2 (-1073)) (-5 *1 (-629 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-799 *2)) (-4 *2 (-827))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-446)) (-4 *4 (-544)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3447 *4))) - (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-112)) (-5 *1 (-541))))) + (-12 (-4 *4 (-544)) (-5 *2 (-937 *3)) (-5 *1 (-1139 *4 *3)) + (-4 *3 (-1211 *4))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *1 (-1104 *3 *2)) (-4 *3 (-1211 *2))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-374)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) - ((*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258))))) -(((*1 *1) (-5 *1 (-182)))) -(((*1 *2 *3) - (-12 (-4 *4 (-1025)) - (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) - (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1208 *4)))) - ((*1 *1 *1) (-4 *1 (-537))) - ((*1 *2 *1) (-12 (-5 *2 (-897)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) - ((*1 *2 *1) (-12 (-5 *2 (-897)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) - ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-799 *3)) (-4 *3 (-827)))) - ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) - ((*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-1186)) (-5 *2 (-751)))) - ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1183 *3)) (-4 *3 (-1186)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-978)) - (-4 *2 (-1025))))) + (-12 (-4 *1 (-770)) (-5 *2 (-1014)) + (-5 *3 + (-2 (|:| |fn| (-310 (-220))) + (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-770)) (-5 *2 (-1014)) + (-5 *3 + (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) + (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220))))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-897)) (-4 *6 (-13 (-544) (-827))) - (-5 *2 (-625 (-311 *6))) (-5 *1 (-217 *5 *6)) (-5 *3 (-311 *6)) - (-4 *5 (-1025)))) - ((*1 *2 *1) (-12 (-5 *1 (-413 *2)) (-4 *2 (-544)))) - ((*1 *2 *3) - (-12 (-5 *3 (-571 *5)) (-4 *5 (-13 (-29 *4) (-1171))) - (-4 *4 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) - (-5 *2 (-625 *5)) (-5 *1 (-569 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-571 (-402 (-928 *4)))) - (-4 *4 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) - (-5 *2 (-625 (-311 *4))) (-5 *1 (-574 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1068 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1122 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 *1)) (-4 *1 (-1068 *4 *2)) (-4 *4 (-825)) - (-4 *2 (-1122 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1247 (-1149) *3)) (-5 *1 (-1254 *3)) (-4 *3 (-1025)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-1256 *3 *4)) (-4 *3 (-827)) - (-4 *4 (-1025))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-625 *1)) - (-4 *1 (-1039 *3 *4 *5))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-625 (-1145 *13))) (-5 *3 (-1145 *13)) - (-5 *4 (-625 *12)) (-5 *5 (-625 *10)) (-5 *6 (-625 *13)) - (-5 *7 (-625 (-625 (-2 (|:| -1894 (-751)) (|:| |pcoef| *13))))) - (-5 *8 (-625 (-751))) (-5 *9 (-1232 (-625 (-1145 *10)))) - (-4 *12 (-827)) (-4 *10 (-302)) (-4 *13 (-925 *10 *11 *12)) - (-4 *11 (-773)) (-5 *1 (-688 *11 *12 *10 *13))))) -(((*1 *2 *1) - (-12 (-5 *2 (-839)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-751)) - (-14 *4 (-751)) (-4 *5 (-170))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-928 (-552))) (-5 *3 (-1149)) - (-5 *4 (-1067 (-402 (-552)))) (-5 *1 (-30))))) + (-12 (-5 *3 (-1152)) (-5 *4 (-931 (-552))) (-5 *2 (-324)) + (-5 *1 (-326))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) + (-5 *2 + (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) + (|:| |success| (-111)))) + (-5 *1 (-772)) (-5 *5 (-552))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) + (-12 (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-357) (-296) + (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) + (-15 -2929 ((-1101 *3 (-598 $)) $)) + (-15 -1477 ($ (-1101 *3 (-598 $)))))))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-738))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-627 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-754)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-776)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-445)) (-4 *5 (-830)) + (-5 *1 (-442 *3 *4 *5 *6))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-357)) (-4 *3 (-1028)) + (-5 *1 (-1136 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946))))) (((*1 *2 *1) - (-12 (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 (-552))))) - (-5 *1 (-356 *3)) (-4 *3 (-1073)))) - ((*1 *2 *1) - (-12 (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 (-751))))) - (-5 *1 (-381 *3)) (-4 *3 (-1073)))) + (-12 (-4 *1 (-1256 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) + (-5 *2 (-802 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-625 (-2 (|:| -3824 *3) (|:| -3564 (-552))))) - (-5 *1 (-413 *3)) (-4 *3 (-544)))) - ((*1 *2 *1) - (-12 (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 (-751))))) - (-5 *1 (-799 *3)) (-4 *3 (-827))))) -(((*1 *2 *1) - (-12 (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) - (-5 *1 (-1114 *3 *4)) (-4 *3 (-13 (-1073) (-34))) - (-4 *4 (-13 (-1073) (-34)))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-544)) (-4 *2 (-446)) (-5 *1 (-945 *2 *3)) - (-4 *3 (-1208 *2))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-541))))) + (-12 (-4 *2 (-826)) (-5 *1 (-1258 *3 *2)) (-4 *3 (-1028))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-897)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) - ((*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-258))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-523 *3)) (-4 *3 (-13 (-707) (-25)))))) -(((*1 *1) (-5 *1 (-182)))) + (-12 (-5 *2 (-900)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-257))))) (((*1 *2 *1) - (-12 (-5 *2 (-751)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552)) - (-14 *4 *2) (-4 *5 (-170)))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-897)) (-5 *1 (-163 *3 *4)) - (-4 *3 (-164 *4)))) - ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-897)))) - ((*1 *2) - (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1208 *3)) - (-5 *2 (-897)))) - ((*1 *2 *3) - (-12 (-4 *4 (-358)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) - (-5 *2 (-751)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-669 *5)) (-5 *4 (-1232 *5)) (-4 *5 (-358)) - (-5 *2 (-751)) (-5 *1 (-647 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4354)))) - (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-751)) - (-5 *1 (-648 *5 *6 *4 *3)) (-4 *3 (-667 *5 *6 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) - (-4 *5 (-368 *3)) (-4 *3 (-544)) (-5 *2 (-751)))) - ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *4 (-170)) (-4 *5 (-368 *4)) - (-4 *6 (-368 *4)) (-5 *2 (-751)) (-5 *1 (-668 *4 *5 *6 *3)) - (-4 *3 (-667 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) - (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-544)) - (-5 *2 (-751))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) - (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-625 *11)) (-5 *5 (-625 (-1145 *9))) - (-5 *6 (-625 *9)) (-5 *7 (-625 *12)) (-5 *8 (-625 (-751))) - (-4 *11 (-827)) (-4 *9 (-302)) (-4 *12 (-925 *9 *10 *11)) - (-4 *10 (-773)) (-5 *2 (-625 (-1145 *12))) - (-5 *1 (-688 *10 *11 *9 *12)) (-5 *3 (-1145 *12))))) + (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) + (-5 *2 (-111))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) + ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-754)) (-5 *1 (-766 *2)) (-4 *2 (-38 (-401 (-552)))) + (-4 *2 (-169))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-274))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-627 (-2 (|:| -1727 (-1148 *6)) (|:| -4067 (-552))))) + (-4 *6 (-301)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) + (-5 *1 (-725 *4 *5 *6 *7)) (-4 *7 (-928 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1028))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *5 (-111)) + (-5 *2 (-1014)) (-5 *1 (-728))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-754)) (-5 *1 (-549))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-321 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-508 *3 *4)) + (-14 *4 (-552))))) +(((*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1208 *4 *5)) (-5 *3 (-627 *5)) (-14 *4 (-1152)) + (-4 *5 (-357)) (-5 *1 (-902 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-627 *5)) (-4 *5 (-357)) (-5 *2 (-1148 *5)) + (-5 *1 (-902 *4 *5)) (-14 *4 (-1152)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-627 *6)) (-5 *4 (-754)) (-4 *6 (-357)) + (-5 *2 (-401 (-931 *6))) (-5 *1 (-1029 *5 *6)) (-14 *5 (-1152))))) +(((*1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238)))) + ((*1 *2 *2) (-12 (-5 *2 (-853)) (-5 *1 (-1238))))) (((*1 *2 *1) - (-12 (-5 *2 (-839)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-751)) - (-14 *4 (-751)) (-4 *5 (-170))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1145 *1)) (-5 *4 (-1149)) (-4 *1 (-27)) - (-5 *2 (-625 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1145 *1)) (-4 *1 (-27)) (-5 *2 (-625 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-928 *1)) (-4 *1 (-27)) (-5 *2 (-625 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-625 *1)) - (-4 *1 (-29 *4)))) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-671 (-220))) (-5 *5 (-111)) (-5 *6 (-220)) + (-5 *7 (-671 (-552))) + (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-79 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) + (-5 *3 (-552)) (-5 *2 (-1014)) (-5 *1 (-736))))) +(((*1 *1 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-544))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1134)) (-5 *3 (-552)) (-5 *1 (-236)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-627 (-1134))) (-5 *3 (-552)) (-5 *4 (-1134)) + (-5 *1 (-236)))) + ((*1 *1 *1) (-5 *1 (-842))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) ((*1 *2 *1) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *2 (-625 *1)) (-4 *1 (-29 *3))))) + (-12 (-4 *1 (-1213 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) + ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) + ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906))))) +(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1191))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-625 *4)) (-4 *4 (-358)) (-5 *2 (-1232 *4)) - (-5 *1 (-794 *4 *3)) (-4 *3 (-636 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-625 (-751))) (-5 *1 (-945 *4 *3)) - (-4 *3 (-1208 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-541))))) -(((*1 *1) (-5 *1 (-142))) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122)))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-552)) (-5 *5 (-1134)) (-5 *6 (-671 (-220))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-88 G)))) + (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) + (-5 *9 (-3 (|:| |fn| (-382)) (|:| |fp| (-70 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) + (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-732))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-373)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257))))) +(((*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-111))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-519)) (-5 *3 (-127)) (-5 *2 (-1096))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1258 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-826))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-552)))) ((*1 *2 *3) - (-12 (-5 *3 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-256)))) - ((*1 *1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-258))))) -(((*1 *1) (-5 *1 (-182)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-827)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-625 (-1145 *11))) (-5 *3 (-1145 *11)) - (-5 *4 (-625 *10)) (-5 *5 (-625 *8)) (-5 *6 (-625 (-751))) - (-5 *7 (-1232 (-625 (-1145 *8)))) (-4 *10 (-827)) - (-4 *8 (-302)) (-4 *11 (-925 *8 *9 *10)) (-4 *9 (-773)) - (-5 *1 (-688 *9 *10 *8 *11))))) -(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1145 *1)) (-5 *3 (-1149)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1145 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-928 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1149)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-827) (-544))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-827) (-544)))))) + (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-552)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-552))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) + (-12 (-4 *3 (-13 (-301) (-144))) (-4 *4 (-13 (-830) (-600 (-1152)))) + (-4 *5 (-776)) (-5 *1 (-903 *3 *4 *5 *2)) (-4 *2 (-928 *3 *5 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-627 (-52))) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) +(((*1 *2) + (-12 (-4 *3 (-544)) (-5 *2 (-627 (-671 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-411 *3))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-754)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) + (-4 *2 (-1211 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-625 *4)) (-4 *4 (-358)) (-5 *2 (-669 *4)) - (-5 *1 (-794 *4 *5)) (-4 *5 (-636 *4)))) + (-12 (-5 *3 (-627 *5)) (-4 *5 (-424 *4)) (-4 *4 (-13 (-830) (-544))) + (-5 *2 (-842)) (-5 *1 (-32 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-1132 *4) (-1132 *4))) (-5 *2 (-1132 *4)) + (-5 *1 (-1260 *4)) (-4 *4 (-1189)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *5)) (-5 *4 (-751)) (-4 *5 (-358)) - (-5 *2 (-669 *5)) (-5 *1 (-794 *5 *6)) (-4 *6 (-636 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-625 *3)) (-5 *1 (-945 *4 *3)) - (-4 *3 (-1208 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1208 *5)) - (-4 *5 (-13 (-27) (-425 *4))) - (-4 *4 (-13 (-827) (-544) (-1014 (-552)))) - (-4 *7 (-1208 (-402 *6))) (-5 *1 (-540 *4 *5 *6 *7 *2)) - (-4 *2 (-337 *5 *6 *7))))) -(((*1 *2 *1) - (-12 + (-12 (-5 *3 (-1 (-627 (-1132 *5)) (-627 (-1132 *5)))) (-5 *4 (-552)) + (-5 *2 (-627 (-1132 *5))) (-5 *1 (-1260 *5)) (-4 *5 (-1189))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-627 *10)) (-5 *5 (-111)) (-4 *10 (-1048 *6 *7 *8 *9)) + (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) + (-4 *9 (-1042 *6 *7 *8)) (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-325))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-897)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) - ((*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-258))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-751)) (-5 *2 (-1232 (-625 (-552)))) (-5 *1 (-474)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1186)) (-5 *1 (-585 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-374)))) - ((*1 *1 *1 *1) (-4 *1 (-537))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) - ((*1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-751))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-625 (-596 *4))) (-4 *4 (-425 *3)) (-4 *3 (-827)) - (-5 *1 (-561 *3 *4)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-865 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *2 (-827)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1149)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-682 *3 *5 *6 *7)) - (-4 *3 (-598 (-528))) (-4 *5 (-1186)) (-4 *6 (-1186)) - (-4 *7 (-1186)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1149)) (-5 *2 (-1 *6 *5)) (-5 *1 (-687 *3 *5 *6)) - (-4 *3 (-598 (-528))) (-4 *5 (-1186)) (-4 *6 (-1186))))) -(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-625 (-1149))) (-4 *5 (-544)) - (-5 *2 (-625 (-625 (-289 (-402 (-928 *5)))))) (-5 *1 (-750 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-544)) - (-5 *2 (-625 (-625 (-289 (-402 (-928 *4)))))) (-5 *1 (-750 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-669 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1270 (-625 *6))) - *7 *6)) - (-4 *6 (-358)) (-4 *7 (-636 *6)) + (-627 + (-2 (|:| -1651 (-627 *9)) (|:| -3443 *10) (|:| |ineq| (-627 *9))))) + (-5 *1 (-967 *6 *7 *8 *9 *10)) (-5 *3 (-627 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-627 *10)) (-5 *5 (-111)) (-4 *10 (-1048 *6 *7 *8 *9)) + (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) + (-4 *9 (-1042 *6 *7 *8)) (-5 *2 - (-2 (|:| |particular| (-3 (-1232 *6) "failed")) - (|:| -1270 (-625 (-1232 *6))))) - (-5 *1 (-793 *6 *7)) (-5 *4 (-1232 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3217 *4))) - (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1208 *6)) - (-4 *6 (-13 (-27) (-425 *5))) - (-4 *5 (-13 (-827) (-544) (-1014 (-552)))) (-4 *8 (-1208 (-402 *7))) - (-5 *2 (-571 *3)) (-5 *1 (-540 *5 *6 *7 *8 *3)) - (-4 *3 (-337 *6 *7 *8))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-897)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) - ((*1 *1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-258))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *2 (-827)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1149)) (-5 *2 (-1 *6 *5)) (-5 *1 (-687 *4 *5 *6)) - (-4 *4 (-598 (-528))) (-4 *5 (-1186)) (-4 *6 (-1186))))) -(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112))))) + (-627 + (-2 (|:| -1651 (-627 *9)) (|:| -3443 *10) (|:| |ineq| (-627 *9))))) + (-5 *1 (-1083 *6 *7 *8 *9 *10)) (-5 *3 (-627 *9))))) +(((*1 *1 *2) + (-12 (-5 *2 (-627 (-552))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1028)) + (-14 *4 (-627 (-1152))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *1 *1) (-4 *1 (-278))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) + (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) + ((*1 *1 *2) + (-12 (-5 *2 (-646 *3 *4)) (-4 *3 (-830)) + (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-5 *1 (-611 *3 *4 *5)) + (-14 *5 (-900)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-754)) (-4 *4 (-13 (-1028) (-700 (-401 (-552))))) + (-4 *5 (-830)) (-5 *1 (-1251 *4 *5 *2)) (-4 *2 (-1256 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-5 *1 (-1255 *3 *4)) + (-4 *4 (-700 (-401 (-552)))) (-4 *3 (-830)) (-4 *4 (-169))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) + (-12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-529 *3 *2)) + (-4 *2 (-1226 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-4 *4 (-1211 *3)) + (-4 *5 (-707 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1226 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-5 *1 (-534 *3 *2)) + (-4 *2 (-1226 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-13 (-544) (-144))) + (-5 *1 (-1128 *3))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) + (-5 *2 (-1014)) (-5 *1 (-731))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4367)) (-4 *1 (-239 *2)) (-4 *2 (-1189)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1189)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1189)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *1 (-1104 *3 *2)) (-4 *3 (-1211 *2))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-627 (-552))) (-5 *2 (-671 (-552))) (-5 *1 (-1086))))) +(((*1 *1) (-5 *1 (-431)))) +(((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-358)) - (-5 *2 - (-2 (|:| A (-669 *5)) - (|:| |eqs| - (-625 - (-2 (|:| C (-669 *5)) (|:| |g| (-1232 *5)) (|:| -2772 *6) - (|:| |rh| *5)))))) - (-5 *1 (-793 *5 *6)) (-5 *3 (-669 *5)) (-5 *4 (-1232 *5)) - (-4 *6 (-636 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-358)) (-4 *6 (-636 *5)) - (-5 *2 (-2 (|:| -2351 (-669 *6)) (|:| |vec| (-1232 *5)))) - (-5 *1 (-793 *5 *6)) (-5 *3 (-669 *6)) (-5 *4 (-1232 *5))))) + (-12 (-5 *3 (-627 (-310 (-220)))) (-5 *4 (-754)) + (-5 *2 (-671 (-220))) (-5 *1 (-261))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830)) (-4 *2 (-544))))) (((*1 *2 *3) - (-12 (-4 *4 (-544)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3217 *4))) - (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1208 *6)) - (-4 *6 (-13 (-27) (-425 *5))) - (-4 *5 (-13 (-827) (-544) (-1014 (-552)))) (-4 *8 (-1208 (-402 *7))) - (-5 *2 (-571 *3)) (-5 *1 (-540 *5 *6 *7 *8 *3)) - (-4 *3 (-337 *6 *7 *8))))) + (-12 (-5 *3 (-1235 *4)) (-4 *4 (-343)) (-5 *2 (-1148 *4)) + (-5 *1 (-520 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-671 *3)) + (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) + (-4 *4 (-1211 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-807)) (-5 *1 (-808))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-850)) (-5 *3 (-625 (-258))) (-5 *1 (-256))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1011)) (-5 *1 (-300)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-1011))) (-5 *2 (-1011)) (-5 *1 (-300)))) - ((*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-631 *3)) (-4 *3 (-1186)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1186)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1186)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1186)))) - ((*1 *1 *1 *1) (-5 *1 (-1037))) - ((*1 *2 *3) - (-12 (-5 *3 (-1129 (-1129 *4))) (-5 *2 (-1129 *4)) (-5 *1 (-1126 *4)) - (-4 *4 (-1186)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *2 (-827)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1149)) (-5 *2 (-1 (-221) (-221))) (-5 *1 (-684 *3)) - (-4 *3 (-598 (-528))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1149)) (-5 *2 (-1 (-221) (-221) (-221))) - (-5 *1 (-684 *3)) (-4 *3 (-598 (-528)))))) -(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-625 *3)) (-5 *1 (-1057 *3)) (-4 *3 (-131))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) + (-12 (-5 *2 (-853)) (-5 *3 (-627 (-257))) (-5 *1 (-255))))) +(((*1 *1 *1 *1) (-5 *1 (-842)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) + (-5 *2 + (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) + (|:| |success| (-111)))) + (-5 *1 (-772)) (-5 *5 (-552))))) +(((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-830) (-1017 (-552)) (-623 (-552)) (-445))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1220 *4 *5 *6)) + (|:| |%expon| (-313 *4 *5 *6)) + (|:| |%expTerms| + (-627 (-2 (|:| |k| (-401 (-552))) (|:| |c| *4)))))) + (|:| |%type| (-1134)))) + (-5 *1 (-1221 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1174) (-424 *3))) + (-14 *5 (-1152)) (-14 *6 *4)))) +(((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-351 *3)) (-4 *3 (-343))))) +(((*1 *2 *1) + (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) + (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-633 (-402 *6))) (-5 *4 (-1 (-625 *5) *6)) - (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) - (-4 *6 (-1208 *5)) (-5 *2 (-625 (-402 *6))) (-5 *1 (-792 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-633 (-402 *7))) (-5 *4 (-1 (-625 *6) *7)) - (-5 *5 (-1 (-413 *7) *7)) - (-4 *6 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) - (-4 *7 (-1208 *6)) (-5 *2 (-625 (-402 *7))) (-5 *1 (-792 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-634 *6 (-402 *6))) (-5 *4 (-1 (-625 *5) *6)) - (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) - (-4 *6 (-1208 *5)) (-5 *2 (-625 (-402 *6))) (-5 *1 (-792 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-634 *7 (-402 *7))) (-5 *4 (-1 (-625 *6) *7)) - (-5 *5 (-1 (-413 *7) *7)) - (-4 *6 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) - (-4 *7 (-1208 *6)) (-5 *2 (-625 (-402 *7))) (-5 *1 (-792 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-633 (-402 *5))) (-4 *5 (-1208 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) - (-5 *2 (-625 (-402 *5))) (-5 *1 (-792 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-633 (-402 *6))) (-5 *4 (-1 (-413 *6) *6)) - (-4 *6 (-1208 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) - (-5 *2 (-625 (-402 *6))) (-5 *1 (-792 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-634 *5 (-402 *5))) (-4 *5 (-1208 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) - (-5 *2 (-625 (-402 *5))) (-5 *1 (-792 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-634 *6 (-402 *6))) (-5 *4 (-1 (-413 *6) *6)) - (-4 *6 (-1208 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) - (-5 *2 (-625 (-402 *6))) (-5 *1 (-792 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2633 *3))) - (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-596 *3)) (-5 *5 (-1 (-1145 *3) (-1145 *3))) - (-4 *3 (-13 (-27) (-425 *6))) (-4 *6 (-13 (-827) (-544))) - (-5 *2 (-571 *3)) (-5 *1 (-539 *6 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 (-499))) (-5 *1 (-477))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-850)) (-5 *3 (-625 (-258))) (-5 *1 (-256))))) + (-12 (-5 *3 (-1 *2 (-627 *2))) (-5 *4 (-627 *5)) + (-4 *5 (-38 (-401 (-552)))) (-4 *2 (-1226 *5)) + (-5 *1 (-1228 *5 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-476)) (-5 *1 (-213)))) + ((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1189)))) + ((*1 *2 *1) (-12 (-5 *2 (-476)) (-5 *1 (-658)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830))))) (((*1 *1 *2) - (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1073)) (-5 *1 (-1158 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *2 (-827)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827))))) + (-12 (-5 *2 (-1 (-922 (-220)) (-922 (-220)))) (-5 *1 (-257)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1235 *1)) (-4 *1 (-323 *4)) (-4 *4 (-357)) + (-5 *2 (-671 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1235 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) + (-5 *2 (-671 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) + (-5 *2 (-1235 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1235 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) + (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1235 *1)) (-4 *1 (-364 *4 *5)) (-4 *4 (-169)) + (-4 *5 (-1211 *4)) (-5 *2 (-1235 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1235 *1)) (-4 *1 (-403 *4 *5)) (-4 *4 (-169)) + (-4 *5 (-1211 *4)) (-5 *2 (-671 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-169)) (-4 *4 (-1211 *3)) + (-5 *2 (-1235 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1235 *1)) (-4 *1 (-411 *4)) (-4 *4 (-169)) + (-5 *2 (-671 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-1235 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-627 (-671 *5))) (-5 *3 (-671 *5)) (-4 *5 (-357)) + (-5 *2 (-1235 *5)) (-5 *1 (-1062 *5))))) +(((*1 *2) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) + (-12 (-4 *1 (-677 *3)) (-4 *3 (-1076)) + (-5 *2 (-627 (-2 (|:| -2162 *3) (|:| -1509 (-754)))))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-754)) (-5 *1 (-102 *3)) (-4 *3 (-1076))))) (((*1 *2 *3) - (-12 (-5 *3 (-1149)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-682 *4 *5 *6 *7)) - (-4 *4 (-598 (-528))) (-4 *5 (-1186)) (-4 *6 (-1186)) - (-4 *7 (-1186))))) + (-12 (-4 *4 (-301)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) + (-5 *2 + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1100 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-445)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1148 *6)) (-4 *6 (-928 *5 *3 *4)) (-4 *3 (-776)) + (-4 *4 (-830)) (-4 *5 (-888)) (-5 *1 (-450 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-888))))) (((*1 *2 *1) - (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-52))))) + (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-627 (-627 *3))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-627 (-627 *5))))) + ((*1 *2 *1) + (-12 (-5 *2 (-627 (-627 *3))) (-5 *1 (-1161 *3)) (-4 *3 (-1076))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-124 *2)) (-4 *2 (-1076))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *1 *1) (-5 *1 (-1040)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-4 *1 (-1211 *3)) (-4 *3 (-1028))))) +(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-131)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-136)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-151)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-158)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-213)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-658)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-998)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1043)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-1072))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-754)) (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1238)))) + ((*1 *2 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1238))))) +(((*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *2)) (-4 *2 (-169)))) + ((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) + ((*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-625 *5) *6)) - (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *6 (-1208 *5)) - (-5 *2 (-625 (-2 (|:| |poly| *6) (|:| -2772 *3)))) - (-5 *1 (-789 *5 *6 *3 *7)) (-4 *3 (-636 *6)) - (-4 *7 (-636 (-402 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-625 *5) *6)) - (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) - (-4 *6 (-1208 *5)) - (-5 *2 (-625 (-2 (|:| |poly| *6) (|:| -2772 (-634 *6 (-402 *6)))))) - (-5 *1 (-792 *5 *6)) (-5 *3 (-634 *6 (-402 *6)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2633 *3))) - (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-827)) (-5 *3 (-625 *6)) (-5 *5 (-625 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-625 *5)) (|:| |f3| *5) - (|:| |f4| (-625 *5)))) - (-5 *1 (-1157 *6)) (-5 *4 (-625 *5))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) - (-5 *2 (-2 (|:| -3340 *1) (|:| |gap| (-751)) (|:| -3645 *1))) - (-4 *1 (-1039 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *2 (-2 (|:| -3340 *1) (|:| |gap| (-751)) (|:| -3645 *1))) - (-4 *1 (-1039 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-681)))) - ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-681))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-625 (-402 (-928 (-552))))) (-5 *4 (-625 (-1149))) - (-5 *2 (-625 (-625 *5))) (-5 *1 (-375 *5)) - (-4 *5 (-13 (-825) (-358))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-402 (-928 (-552)))) (-5 *2 (-625 *4)) (-5 *1 (-375 *4)) - (-4 *4 (-13 (-825) (-358)))))) -(((*1 *1) (-5 *1 (-286)))) -(((*1 *1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-325)))) - ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-325))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-839) (-839) (-839))) (-5 *4 (-552)) (-5 *2 (-839)) - (-5 *1 (-629 *5 *6 *7)) (-4 *5 (-1073)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-839)) (-5 *1 (-831 *3 *4 *5)) (-4 *3 (-1025)) - (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-839)))) - ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-839)))) - ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-839)))) - ((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-839)) (-5 *1 (-1145 *3)) (-4 *3 (-1025))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-625 *7) *7 (-1145 *7))) (-5 *5 (-1 (-413 *7) *7)) - (-4 *7 (-1208 *6)) (-4 *6 (-13 (-358) (-145) (-1014 (-402 (-552))))) - (-5 *2 (-625 (-2 (|:| |frac| (-402 *7)) (|:| -2772 *3)))) - (-5 *1 (-789 *6 *7 *3 *8)) (-4 *3 (-636 *7)) - (-4 *8 (-636 (-402 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1208 *5)) - (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) - (-5 *2 - (-625 (-2 (|:| |frac| (-402 *6)) (|:| -2772 (-634 *6 (-402 *6)))))) - (-5 *1 (-792 *5 *6)) (-5 *3 (-634 *6 (-402 *6)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2633 *3))) - (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-537)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1131)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) - ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-258))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -3340 *3) (|:| |gap| (-751)) (|:| -3984 (-762 *3)) - (|:| -3645 (-762 *3)))) - (-5 *1 (-762 *3)) (-4 *3 (-1025)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) - (-5 *2 - (-2 (|:| -3340 *1) (|:| |gap| (-751)) (|:| -3984 *1) - (|:| -3645 *1))) - (-4 *1 (-1039 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *2 - (-2 (|:| -3340 *1) (|:| |gap| (-751)) (|:| -3984 *1) - (|:| -3645 *1))) - (-4 *1 (-1039 *3 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-368 *3)) - (-4 *5 (-368 *3)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) - (-5 *1 (-668 *3 *4 *5 *6)) (-4 *6 (-667 *3 *4 *5)))) + (-12 (-4 *5 (-1076)) (-4 *3 (-879 *5)) (-5 *2 (-1235 *3)) + (-5 *1 (-674 *5 *3 *6 *4)) (-4 *6 (-367 *3)) + (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4366))))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-928 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *2 (-830)) (-4 *3 (-169)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-680 *3)) - (-4 *3 (-302))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-402 (-928 (-167 (-552))))) (-5 *2 (-625 (-167 *4))) - (-5 *1 (-373 *4)) (-4 *4 (-13 (-358) (-825))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-625 (-402 (-928 (-167 (-552)))))) - (-5 *4 (-625 (-1149))) (-5 *2 (-625 (-625 (-167 *5)))) - (-5 *1 (-373 *5)) (-4 *5 (-13 (-358) (-825)))))) -(((*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-5 *2 (-112)))) + (-12 (-4 *2 (-544)) (-5 *1 (-948 *2 *3)) (-4 *3 (-1211 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830)) (-4 *2 (-544)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-169))))) +(((*1 *2 *2) + (-12 (-5 *2 (-627 *7)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) + (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) + (-5 *1 (-967 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-627 *7)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) + (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) + (-5 *1 (-1083 *3 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4366)) (-4 *1 (-482 *3)) (-4 *3 (-1189)) + (-5 *2 (-627 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-720 *3)) (-4 *3 (-1076))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-754)) (-4 *4 (-13 (-544) (-144))) + (-5 *1 (-1205 *4 *2)) (-4 *2 (-1211 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-95)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-113)))) + ((*1 *2 *1) (-12 (-5 *2 (-498)) (-5 *1 (-182)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) - (-4 *4 (-1025))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-358)) (-4 *7 (-1208 *5)) (-4 *4 (-705 *5 *7)) - (-5 *2 (-2 (|:| -2351 (-669 *6)) (|:| |vec| (-1232 *5)))) - (-5 *1 (-791 *5 *6 *7 *4 *3)) (-4 *6 (-636 *5)) (-4 *3 (-636 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-537)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-625 (-258))) (-5 *1 (-256))))) + (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1076)) (-4 *2 (-1076)))) + ((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1134)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-432 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-498)) (-5 *1 (-476)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-598 *3)) (-4 *3 (-830)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-944)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1051 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-498)) (-5 *1 (-1091)))) + ((*1 *1 *1) (-5 *1 (-1152)))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-738))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237))))) +(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1155))))) (((*1 *1 *2) - (-12 (-4 *3 (-1025)) (-5 *1 (-807 *2 *3)) (-4 *2 (-689 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-1025)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3))))) + (|partial| -12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) + (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *1 (-1248 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-627 *8)) (-5 *3 (-1 (-111) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) + (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1248 *5 *6 *7 *8))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-544)) (-4 *3 (-1028)) + (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-832 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-544)) (-4 *5 (-1028)) + (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-833 *5 *3)) + (-4 *3 (-832 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-627 (-474 *3 *4))) (-14 *3 (-627 (-1152))) + (-4 *4 (-445)) (-5 *1 (-615 *3 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *3 (-552)) + (-5 *2 (-1014)) (-5 *1 (-739))))) +(((*1 *2 *1) + (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) + (-5 *2 (-407 *4 (-401 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1235 *6)) (-4 *6 (-13 (-403 *4 *5) (-1017 *4))) + (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) (-4 *3 (-301)) + (-5 *1 (-407 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-357)) + (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) + (-5 *2 + (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) + (|:| |success| (-111)))) + (-5 *1 (-772)) (-5 *5 (-552))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-402 (-928 (-167 (-552)))))) - (-5 *2 (-625 (-625 (-289 (-928 (-167 *4)))))) (-5 *1 (-373 *4)) - (-4 *4 (-13 (-358) (-825))))) + (-12 (-5 *3 (-1148 *5)) (-4 *5 (-445)) (-5 *2 (-627 *6)) + (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-828))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-289 (-402 (-928 (-167 (-552))))))) - (-5 *2 (-625 (-625 (-289 (-928 (-167 *4)))))) (-5 *1 (-373 *4)) - (-4 *4 (-13 (-358) (-825))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-402 (-928 (-167 (-552))))) - (-5 *2 (-625 (-289 (-928 (-167 *4))))) (-5 *1 (-373 *4)) - (-4 *4 (-13 (-358) (-825))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-289 (-402 (-928 (-167 (-552)))))) - (-5 *2 (-625 (-289 (-928 (-167 *4))))) (-5 *1 (-373 *4)) - (-4 *4 (-13 (-358) (-825)))))) + (-12 (-5 *3 (-931 *5)) (-4 *5 (-445)) (-5 *2 (-627 *6)) + (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-357)) (-4 *4 (-13 (-357) (-828)))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) - (-4 *4 (-1025))))) + (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) + (-5 *2 (-627 (-627 (-627 (-754)))))))) (((*1 *2 *3) - (-12 (-5 *3 (-633 (-402 *2))) (-4 *2 (-1208 *4)) (-5 *1 (-790 *4 *2)) - (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-634 *2 (-402 *2))) (-4 *2 (-1208 *4)) - (-5 *1 (-790 *4 *2)) - (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552)))))))) + (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) + ((*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-537)))) -(((*1 *2 *3) - (-12 (-5 *3 (-903)) - (-5 *2 - (-2 (|:| |brans| (-625 (-625 (-919 (-221))))) - (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221))))) - (-5 *1 (-151)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-903)) (-5 *4 (-402 (-552))) - (-5 *2 - (-2 (|:| |brans| (-625 (-625 (-919 (-221))))) - (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221))))) - (-5 *1 (-151)))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-625 (-625 (-919 (-221))))) - (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221))))) - (-5 *1 (-151)) (-5 *3 (-625 (-919 (-221)))))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-625 (-625 (-919 (-221))))) - (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221))))) - (-5 *1 (-151)) (-5 *3 (-625 (-625 (-919 (-221))))))) - ((*1 *1 *2) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *1 (-258)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258))))) -(((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-183))))) -(((*1 *2 *1 *1) - (-12 + (-12 (-5 *3 (-627 *2)) (-5 *1 (-176 *2)) (-4 *2 (-301)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-627 (-627 *4))) (-5 *2 (-627 *4)) (-4 *4 (-301)) + (-5 *1 (-176 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-627 *8)) + (-5 *4 + (-627 + (-2 (|:| -2957 (-671 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-671 *7))))) + (-5 *5 (-754)) (-4 *8 (-1211 *7)) (-4 *7 (-1211 *6)) (-4 *6 (-343)) (-5 *2 - (-2 (|:| |polnum| (-762 *3)) (|:| |polden| *3) (|:| -4321 (-751)))) - (-5 *1 (-762 *3)) (-4 *3 (-1025)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4321 (-751)))) - (-4 *1 (-1039 *3 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-552)) (-5 *1 (-374))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) - (-4 *4 (-1025))))) + (-2 (|:| -2957 (-671 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-671 *7)))) + (-5 *1 (-490 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-633 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1208 *5)) - (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) - (-5 *1 (-790 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-633 (-402 *6))) (-4 *6 (-1208 *5)) - (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) - (-5 *2 (-2 (|:| -1270 (-625 (-402 *6))) (|:| -2351 (-669 *5)))) - (-5 *1 (-790 *5 *6)) (-5 *4 (-625 (-402 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-634 *6 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1208 *5)) - (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) - (-5 *1 (-790 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-634 *6 (-402 *6))) (-4 *6 (-1208 *5)) - (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) - (-5 *2 (-2 (|:| -1270 (-625 (-402 *6))) (|:| -2351 (-669 *5)))) - (-5 *1 (-790 *5 *6)) (-5 *4 (-625 (-402 *6)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-751)) (-4 *5 (-544)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-945 *5 *3)) (-4 *3 (-1208 *5))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-537)))) -(((*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-258)))) - ((*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-544)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) - (-5 *1 (-1176 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827)) (-4 *2 (-544))))) -(((*1 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-751)) (-5 *2 (-402 (-552))) (-5 *1 (-221)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-751)) (-5 *2 (-402 (-552))) (-5 *1 (-221)))) + (-12 (-5 *3 (-627 (-257))) (-5 *4 (-1152)) (-5 *2 (-111)) + (-5 *1 (-257))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1152)) (-5 *1 (-573 *2)) (-4 *2 (-1017 *3)) + (-4 *2 (-357)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-573 *2)) (-4 *2 (-357)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-614 *4 *2)) + (-4 *2 (-13 (-424 *4) (-981) (-1174))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1068 *2)) (-4 *2 (-13 (-424 *4) (-981) (-1174))) + (-4 *4 (-13 (-830) (-544))) (-5 *1 (-614 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-938)) (-5 *2 (-1152)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1068 *1)) (-4 *1 (-938))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-627 *3)) (-5 *1 (-948 *4 *3)) + (-4 *3 (-1211 *4))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830)) (-4 *2 (-544)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830)) (-4 *2 (-544))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1235 *3)) (-4 *3 (-1211 *4)) (-4 *4 (-1193)) + (-4 *1 (-336 *4 *3 *5)) (-4 *5 (-1211 (-401 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-296)))) + ((*1 *1 *1) (-4 *1 (-296))) ((*1 *1 *1) (-5 *1 (-842)))) +(((*1 *2) (-12 (-5 *2 (-627 (-900))) (-5 *1 (-1238)))) + ((*1 *2 *2) (-12 (-5 *2 (-627 (-900))) (-5 *1 (-1238))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-153)))) + ((*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1189)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-471)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-579)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-610)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1076)) + (-4 *2 (-13 (-424 *4) (-865 *3) (-600 (-871 *3)))) + (-5 *1 (-1052 *3 *4 *2)) + (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1076)) (-5 *1 (-1141 *3 *2)) (-4 *3 (-1076))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-900)) (-5 *1 (-1077 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-730))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1226 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-754)) (-5 *2 (-671 (-931 *4))) (-5 *1 (-1007 *4)) + (-4 *4 (-1028))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174))))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-900)) (-5 *4 (-373)) (-5 *2 (-1240)) (-5 *1 (-1236)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-751)) (-5 *2 (-402 (-552))) (-5 *1 (-374)))) + (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-321 *3)) (-4 *3 (-1189)))) + ((*1 *2 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-508 *3 *4)) (-4 *3 (-1189)) + (-14 *4 (-552))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4366)) (-4 *1 (-482 *3)) (-4 *3 (-1189)) + (-4 *3 (-1076)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-884 *4)) (-4 *4 (-1076)) (-5 *2 (-111)) + (-5 *1 (-883 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-900)) (-5 *2 (-111)) (-5 *1 (-1077 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896))))) +(((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-397 *3)) (-4 *3 (-398)))) + ((*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-397 *3)) (-4 *3 (-398)))) + ((*1 *2 *2) (-12 (-5 *2 (-900)) (|has| *1 (-6 -4357)) (-4 *1 (-398)))) + ((*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-900)))) + ((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-5 *2 (-1132 (-552)))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1076)) (-5 *1 (-102 *3)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-751)) (-5 *2 (-402 (-552))) (-5 *1 (-374))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1076))))) +(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-153)))) + ((*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1189)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-471)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-579)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-610)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1076)) + (-4 *2 (-13 (-424 *4) (-865 *3) (-600 (-871 *3)))) + (-5 *1 (-1052 *3 *4 *2)) + (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1076)) (-5 *1 (-1141 *2 *3)) (-4 *3 (-1076))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-627 (-552))) (-5 *1 (-1086)) (-5 *3 (-552))))) +(((*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1189)) (-5 *2 (-111))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1115)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-1156))))) +(((*1 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-527 *2)) (-4 *2 (-1189)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-528))))) +(((*1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-599 (-842)))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-944))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1134) (-757))) (-5 *1 (-113))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1256 *4 *2)) (-4 *1 (-369 *4 *2)) (-4 *4 (-827)) - (-4 *2 (-170)))) + (-12 (-5 *3 (-1259 *4 *2)) (-4 *1 (-368 *4 *2)) (-4 *4 (-830)) + (-4 *2 (-169)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025)))) + (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-830)) (-4 *2 (-1028)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-799 *4)) (-4 *1 (-1249 *4 *2)) (-4 *4 (-827)) - (-4 *2 (-1025)))) + (-12 (-5 *3 (-802 *4)) (-4 *1 (-1252 *4 *2)) (-4 *4 (-830)) + (-4 *2 (-1028)))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-1025)) (-5 *1 (-1255 *2 *3)) (-4 *3 (-823))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025))))) + (-12 (-4 *2 (-1028)) (-5 *1 (-1258 *2 *3)) (-4 *3 (-826))))) +(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-430))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) - (-4 *3 (-1208 *4)) (-5 *1 (-789 *4 *3 *2 *5)) (-4 *2 (-636 *3)) - (-4 *5 (-636 (-402 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-402 *5)) - (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *5 (-1208 *4)) - (-5 *1 (-789 *4 *5 *2 *6)) (-4 *2 (-636 *5)) (-4 *6 (-636 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-751)) (-4 *5 (-544)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-945 *5 *3)) (-4 *3 (-1208 *5))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-537)))) -(((*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-258)))) - ((*1 *1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-258))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827)) (-4 *2 (-544))))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-679)))) - ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-679))))) -(((*1 *1) - (-12 (-4 *1 (-399)) (-2960 (|has| *1 (-6 -4344))) - (-2960 (|has| *1 (-6 -4336))))) - ((*1 *2 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1073)) (-4 *2 (-827)))) - ((*1 *1 *1 *1) (-4 *1 (-827))) - ((*1 *2 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827)))) - ((*1 *1) (-5 *1 (-1093)))) -(((*1 *1 *1) (-5 *1 (-221))) ((*1 *1 *1) (-5 *1 (-374))) - ((*1 *1) (-5 *1 (-374)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) - (-4 *4 (-1025))))) + (-12 (-5 *3 (-1152)) + (-4 *4 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-420 *4 *2)) (-4 *2 (-13 (-1174) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) (-4 *5 (-144)) + (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) + (-5 *2 (-310 *5)) (-5 *1 (-576 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-625 *5) *6)) - (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *6 (-1208 *5)) - (-5 *2 (-625 (-2 (|:| -1426 *5) (|:| -2772 *3)))) - (-5 *1 (-789 *5 *6 *3 *7)) (-4 *3 (-636 *6)) - (-4 *7 (-636 (-402 *6)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-751)) (-4 *4 (-544)) (-5 *1 (-945 *4 *2)) - (-4 *2 (-1208 *4))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-537)))) + (-12 (-5 *4 (-627 (-844 *5))) (-14 *5 (-627 (-1152))) (-4 *6 (-445)) + (-5 *2 (-627 (-627 (-242 *5 *6)))) (-5 *1 (-464 *5 *6 *7)) + (-5 *3 (-627 (-242 *5 *6))) (-4 *7 (-445))))) +(((*1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-362)) (-4 *2 (-1076))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-138)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-141))))) (((*1 *1 *2) - (-12 (-5 *2 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-258)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221) (-221))) (-5 *1 (-258)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-258))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827)) (-4 *2 (-544)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827)) (-4 *2 (-544))))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-679)))) - ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-679))))) -(((*1 *1) (-5 *1 (-221))) ((*1 *1) (-5 *1 (-374)))) + (-12 (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 *4)))) + (-4 *3 (-1076)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-631 *3 *4 *5))))) +(((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) + (-4 *4 (-1076))))) +(((*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174)))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) + (-5 *2 (-1014)) (-5 *1 (-734))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-357)) (-5 *1 (-1004 *3 *2)) (-4 *2 (-638 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-357)) (-5 *2 (-2 (|:| -1651 *3) (|:| -3354 (-627 *5)))) + (-5 *1 (-1004 *5 *3)) (-5 *4 (-627 *5)) (-4 *3 (-638 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) + (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *2 + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-187))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1028)) (-4 *4 (-1076)) (-5 *2 (-627 *1)) + (-4 *1 (-376 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-627 (-718 *3 *4))) (-5 *1 (-718 *3 *4)) (-4 *3 (-1028)) + (-4 *4 (-709)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) + (-4 *1 (-928 *3 *4 *5))))) +(((*1 *1 *2 *3) + (-12 + (-5 *3 + (-627 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-552))))) + (-4 *2 (-544)) (-5 *1 (-412 *2)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |contp| (-552)) + (|:| -2101 (-627 (-2 (|:| |irr| *4) (|:| -3594 (-552))))))) + (-4 *4 (-1211 (-552))) (-5 *2 (-412 *4)) (-5 *1 (-435 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1211 *2)) (-4 *2 (-1193)) (-5 *1 (-145 *2 *4 *3)) + (-4 *3 (-1211 (-401 *4)))))) +(((*1 *1 *1) (-4 *1 (-1120)))) +(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-96))))) +(((*1 *2 *1) + (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *1 (-1184 *3)) + (-4 *3 (-953))))) +(((*1 *1 *1) (|partial| -4 *1 (-142))) ((*1 *1 *1) (-4 *1 (-343))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-142)) (-4 *1 (-888))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 *2)) (-5 *1 (-479 *2)) (-4 *2 (-1211 (-552)))))) +(((*1 *2 *1) (-12 (-5 *2 (-950)) (-5 *1 (-884 *3)) (-4 *3 (-1076))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-111)) (-5 *5 (-671 (-166 (-220)))) + (-5 *2 (-1014)) (-5 *1 (-738))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374))) - (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) + (-12 (-5 *3 (-858 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) + (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374))) - (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) + (-12 (-5 *3 (-858 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) + (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1067 (-374))) - (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) + (-12 (-5 *3 (-1 (-922 (-220)) (-220))) (-5 *4 (-1070 (-373))) + (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1067 (-374))) - (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) + (-12 (-5 *3 (-1 (-922 (-220)) (-220))) (-5 *4 (-1070 (-373))) + (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1067 (-374))) - (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) + (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1070 (-373))) + (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1067 (-374))) - (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) + (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1070 (-373))) + (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-374))) - (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) + (-12 (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-373))) + (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-374))) - (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) + (-12 (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-373))) + (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1067 (-374))) - (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) + (-12 (-5 *3 (-861 (-1 (-220) (-220) (-220)))) (-5 *4 (-1070 (-373))) + (-5 *5 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1067 (-374))) - (-5 *2 (-1106 (-221))) (-5 *1 (-250)))) + (-12 (-5 *3 (-861 (-1 (-220) (-220) (-220)))) (-5 *4 (-1070 (-373))) + (-5 *2 (-1109 (-220))) (-5 *1 (-249)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-855 *6)) (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) - (-4 *6 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1106 (-221))) - (-5 *1 (-254 *6)))) + (-12 (-5 *3 (-858 *6)) (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) + (-4 *6 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1109 (-220))) + (-5 *1 (-253 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-855 *5)) (-5 *4 (-1065 (-374))) - (-4 *5 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1106 (-221))) - (-5 *1 (-254 *5)))) + (-12 (-5 *3 (-858 *5)) (-5 *4 (-1068 (-373))) + (-4 *5 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1109 (-220))) + (-5 *1 (-253 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) - (-5 *2 (-1106 (-221))) (-5 *1 (-254 *3)) - (-4 *3 (-13 (-598 (-528)) (-1073))))) + (-12 (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) + (-5 *2 (-1109 (-220))) (-5 *1 (-253 *3)) + (-4 *3 (-13 (-600 (-528)) (-1076))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1065 (-374))) (-5 *2 (-1106 (-221))) (-5 *1 (-254 *3)) - (-4 *3 (-13 (-598 (-528)) (-1073))))) + (-12 (-5 *4 (-1068 (-373))) (-5 *2 (-1109 (-220))) (-5 *1 (-253 *3)) + (-4 *3 (-13 (-600 (-528)) (-1076))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-858 *6)) (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) - (-4 *6 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1106 (-221))) - (-5 *1 (-254 *6)))) + (-12 (-5 *3 (-861 *6)) (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) + (-4 *6 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1109 (-220))) + (-5 *1 (-253 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-858 *5)) (-5 *4 (-1065 (-374))) - (-4 *5 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1106 (-221))) - (-5 *1 (-254 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-868 *4)) (-4 *4 (-1073)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-866 *4 *5)) (-4 *5 (-1186)))) - ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1139))))) -(((*1 *2 *1) (-12 (-4 *3 (-1186)) (-5 *2 (-625 *1)) (-4 *1 (-986 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-625 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4)) - (-14 *3 (-897)) (-4 *4 (-1025))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) - (-4 *5 (-1208 *4)) - (-5 *2 (-625 (-2 (|:| |deg| (-751)) (|:| -2772 *5)))) - (-5 *1 (-789 *4 *5 *3 *6)) (-4 *3 (-636 *5)) - (-4 *6 (-636 (-402 *5)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-751)) (-4 *5 (-544)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-945 *5 *3)) (-4 *3 (-1208 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-537)))) -(((*1 *1) (-5 *1 (-325)))) -(((*1 *1 *2) (-12 (-5 *2 (-625 (-1067 (-402 (-552))))) (-5 *1 (-258)))) - ((*1 *1 *2) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *1 (-258))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827)) (-4 *2 (-544)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827)) (-4 *2 (-544))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-221) (-221) (-221))) - (-5 *4 (-1 (-221) (-221) (-221) (-221))) - (-5 *2 (-1 (-919 (-221)) (-221) (-221))) (-5 *1 (-677))))) -(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-374)))) - ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-374))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) - (-5 *2 (-167 (-311 *4))) (-5 *1 (-184 *4 *3)) - (-4 *3 (-13 (-27) (-1171) (-425 (-167 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-167 *3)) (-5 *1 (-1175 *4 *3)) - (-4 *3 (-13 (-27) (-1171) (-425 *4)))))) + (-12 (-5 *3 (-861 *5)) (-5 *4 (-1068 (-373))) + (-4 *5 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1109 (-220))) + (-5 *1 (-253 *5))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-552))) (-4 *3 (-1028)) (-5 *1 (-582 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-552))) (-4 *1 (-1195 *3)) (-4 *3 (-1028)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-552))) (-4 *1 (-1226 *3)) (-4 *3 (-1028))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-627 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552))))) (((*1 *2 *1) - (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) - (-4 *4 (-1025))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1208 *4)) (-5 *1 (-789 *4 *2 *3 *5)) - (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *3 (-636 *2)) - (-4 *5 (-636 (-402 *2)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-751)) (-4 *5 (-544)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-945 *5 *3)) (-4 *3 (-1208 *5))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-552) "failed") *5)) (-4 *5 (-1025)) - (-5 *2 (-552)) (-5 *1 (-535 *5 *3)) (-4 *3 (-1208 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-552) "failed") *4)) (-4 *4 (-1025)) - (-5 *2 (-552)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1208 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-552) "failed") *4)) (-4 *4 (-1025)) - (-5 *2 (-552)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1208 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-258))) (-5 *4 (-1149)) (-5 *2 (-112)) - (-5 *1 (-258))))) -(((*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186))))) + (-12 (-4 *2 (-1211 *3)) (-5 *1 (-393 *3 *2)) + (-4 *3 (-13 (-357) (-144)))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169))))) (((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -2633 (-762 *3)) (|:| |coef1| (-762 *3)) - (|:| |coef2| (-762 *3)))) - (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *2 (-2 (|:| -2633 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1039 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-311 (-552))) (-5 *4 (-1 (-221) (-221))) - (-5 *5 (-1067 (-221))) (-5 *6 (-625 (-258))) (-5 *2 (-1106 (-221))) - (-5 *1 (-677))))) -(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-374)))) - ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-374))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-112)) - (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-425 (-167 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-112)) (-5 *1 (-1175 *4 *3)) - (-4 *3 (-13 (-27) (-1171) (-425 *4)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025))))) + (-12 (-5 *2 (-627 (-765 *3))) (-5 *1 (-765 *3)) (-4 *3 (-544)) + (-4 *3 (-1028))))) (((*1 *2 *3 *4) - (-12 (-4 *2 (-1208 *4)) (-5 *1 (-787 *4 *2 *3 *5)) - (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *3 (-636 *2)) - (-4 *5 (-636 (-402 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1208 *4)) (-5 *1 (-787 *4 *2 *5 *3)) - (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *5 (-636 *2)) - (-4 *3 (-636 (-402 *2)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-751)) (-4 *4 (-544)) (-5 *1 (-945 *4 *2)) - (-4 *2 (-1208 *4))))) + (-12 (-4 *5 (-1076)) (-4 *3 (-879 *5)) (-5 *2 (-671 *3)) + (-5 *1 (-674 *5 *3 *6 *4)) (-4 *6 (-367 *3)) + (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4366))))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-730))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 *5)) (-5 *4 (-900)) (-4 *5 (-830)) + (-5 *2 (-58 (-627 (-654 *5)))) (-5 *1 (-654 *5))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1076)) (-5 *1 (-943 *3 *2)) (-4 *3 (-1076))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-735))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-627 *3)) (-4 *3 (-928 *4 *6 *5)) (-4 *4 (-445)) + (-4 *5 (-830)) (-4 *6 (-776)) (-5 *1 (-966 *4 *5 *6 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-302)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1208 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-302)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1208 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-302)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-751))) - (-5 *1 (-531 *3 *2 *4 *5)) (-4 *2 (-1208 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-252))))) -(((*1 *2 *1) (-12 (-4 *1 (-1066 *3)) (-4 *3 (-1186)) (-5 *2 (-552))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2633 (-762 *3)) (|:| |coef1| (-762 *3)))) - (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *2 (-2 (|:| -2633 *1) (|:| |coef1| *1))) - (-4 *1 (-1039 *3 *4 *5))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-221) (-221) (-221))) - (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) "undefined")) - (-5 *5 (-1067 (-221))) (-5 *6 (-625 (-258))) (-5 *2 (-1106 (-221))) - (-5 *1 (-677))))) -(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-374)))) - ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-374))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) - (-4 *5 (-1208 *4)) (-5 *2 (-625 (-2 (|:| -2845 *5) (|:| -2438 *5)))) - (-5 *1 (-787 *4 *5 *3 *6)) (-4 *3 (-636 *5)) - (-4 *6 (-636 (-402 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) - (-4 *4 (-1208 *5)) (-5 *2 (-625 (-2 (|:| -2845 *4) (|:| -2438 *4)))) - (-5 *1 (-787 *5 *4 *3 *6)) (-4 *3 (-636 *4)) - (-4 *6 (-636 (-402 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-552))))) - (-4 *5 (-1208 *4)) (-5 *2 (-625 (-2 (|:| -2845 *5) (|:| -2438 *5)))) - (-5 *1 (-787 *4 *5 *6 *3)) (-4 *6 (-636 *5)) - (-4 *3 (-636 (-402 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) - (-4 *4 (-1208 *5)) (-5 *2 (-625 (-2 (|:| -2845 *4) (|:| -2438 *4)))) - (-5 *1 (-787 *5 *4 *6 *3)) (-4 *6 (-636 *4)) - (-4 *3 (-636 (-402 *4)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3207 *4))) - (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 *2)) (-4 *2 (-1208 *4)) (-5 *1 (-531 *4 *2 *5 *6)) - (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-751)))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-252))))) -(((*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2633 (-762 *3)) (|:| |coef2| (-762 *3)))) - (-5 *1 (-762 *3)) (-4 *3 (-544)) (-4 *3 (-1025)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *2 (-2 (|:| -2633 *1) (|:| |coef2| *1))) - (-4 *1 (-1039 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-221) (-221) (-221))) - (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) "undefined")) - (-5 *5 (-1067 (-221))) (-5 *6 (-625 (-258))) (-5 *2 (-1106 (-221))) - (-5 *1 (-677)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-221))) - (-5 *5 (-625 (-258))) (-5 *2 (-1106 (-221))) (-5 *1 (-677)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-1 (-919 (-221)) (-221) (-221))) - (-5 *4 (-1067 (-221))) (-5 *5 (-625 (-258))) (-5 *1 (-677))))) -(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-374))))) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) - (-5 *2 (-1237)) (-5 *1 (-1152)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1149)) - (-5 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-5 *2 (-1237)) - (-5 *1 (-1152)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1149)) - (-5 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-5 *2 (-1237)) - (-5 *1 (-1152))))) + (-12 (-5 *3 (-754)) (-4 *4 (-357)) (-5 *1 (-875 *2 *4)) + (-4 *2 (-1211 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-671 *3)) (-4 *3 (-301)) (-5 *1 (-682 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-116 *4)) (-14 *4 *3) + (-5 *3 (-552)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-848 *3)) (-5 *2 (-552)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-850 *4)) (-14 *4 *3) + (-5 *3 (-552)))) + ((*1 *2 *1 *3) + (-12 (-14 *4 *3) (-5 *2 (-401 (-552))) (-5 *1 (-851 *4 *5)) + (-5 *3 (-552)) (-4 *5 (-848 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-991)) (-5 *2 (-401 (-552))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1045 *2 *3)) (-4 *2 (-13 (-828) (-357))) + (-4 *3 (-1211 *2)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1213 *2 *3)) (-4 *3 (-775)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1477 (*2 (-1152)))) + (-4 *2 (-1028))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) + (-5 *2 (-671 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-671 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-4 *1 (-230 *3)))) + ((*1 *1) (-12 (-4 *1 (-230 *2)) (-4 *2 (-1076))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-111)) (-5 *5 (-552)) (-4 *6 (-357)) (-4 *6 (-362)) + (-4 *6 (-1028)) (-5 *2 (-627 (-627 (-671 *6)))) (-5 *1 (-1008 *6)) + (-5 *3 (-627 (-671 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-357)) (-4 *4 (-362)) (-4 *4 (-1028)) + (-5 *2 (-627 (-627 (-671 *4)))) (-5 *1 (-1008 *4)) + (-5 *3 (-627 (-671 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1028)) + (-5 *2 (-627 (-627 (-671 *5)))) (-5 *1 (-1008 *5)) + (-5 *3 (-627 (-671 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-900)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1028)) + (-5 *2 (-627 (-627 (-671 *5)))) (-5 *1 (-1008 *5)) + (-5 *3 (-627 (-671 *5)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-570))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-627 (-627 (-627 *5)))) (-5 *3 (-1 (-111) *5 *5)) + (-5 *4 (-627 *5)) (-4 *5 (-830)) (-5 *1 (-1160 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) + (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1045 *4 *3)) (-4 *4 (-13 (-828) (-357))) + (-4 *3 (-1211 *4)) (-5 *2 (-111))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237))))) +(((*1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-1189))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |var| (-627 (-1152))) (|:| |pred| (-52)))) + (-5 *1 (-871 *3)) (-4 *3 (-1076))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1152)) + (-5 *2 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-5 *1 (-1155))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1028)) (-5 *2 (-1235 *3)) (-5 *1 (-695 *3 *4)) + (-4 *4 (-1211 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-754)) (-5 *2 (-1208 *5 *4)) (-5 *1 (-1150 *4 *5 *6)) + (-4 *4 (-1028)) (-14 *5 (-1152)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-754)) (-5 *2 (-1208 *5 *4)) (-5 *1 (-1227 *4 *5 *6)) + (-4 *4 (-1028)) (-14 *5 (-1152)) (-14 *6 *4)))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-751)) (-5 *2 (-1 (-374))) (-5 *1 (-1016))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1186)) (-4 *2 (-827)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-368 *3)) (-4 *3 (-1186)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))) - ((*1 *1 *2) - (-12 (-5 *2 (-625 *1)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) - ((*1 *1 *2) - (-12 (-5 *2 (-625 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4)) - (-14 *3 (-897)) (-4 *4 (-1025)))) + (-12 (-5 *2 (-1148 *3)) (-5 *1 (-893 *3)) (-4 *3 (-301))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *2 (-830)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025))))) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830))))) +(((*1 *1 *2) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-830)) (-4 *1 (-368 *3 *4)) + (-4 *4 (-169))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 (-1116 *4 *5))) (-5 *3 (-1 (-111) *5 *5)) + (-4 *4 (-13 (-1076) (-34))) (-4 *5 (-13 (-1076) (-34))) + (-5 *1 (-1117 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-627 (-1116 *3 *4))) (-4 *3 (-13 (-1076) (-34))) + (-4 *4 (-13 (-1076) (-34))) (-5 *1 (-1117 *3 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3207 *4))) - (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-402 *2)) (-4 *2 (-1208 *5)) - (-5 *1 (-787 *5 *2 *3 *6)) - (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) - (-4 *3 (-636 *2)) (-4 *6 (-636 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-625 (-402 *2))) (-4 *2 (-1208 *5)) - (-5 *1 (-787 *5 *2 *3 *6)) - (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) (-4 *3 (-636 *2)) - (-4 *6 (-636 (-402 *2)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 *2)) (-4 *2 (-1208 *4)) (-5 *1 (-531 *4 *2 *5 *6)) - (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-751)))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-252))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-544)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *2 (-625 *1)) (-4 *1 (-1039 *3 *4 *5))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-751)) (-4 *4 (-344)) (-5 *1 (-212 *4 *2)) - (-4 *2 (-1208 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-552)) (-5 *1 (-676 *2)) (-4 *2 (-1208 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1186)) (-5 *1 (-370 *4 *2)) - (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4354))))))) -(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1152)))) - ((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *2 (-751)) - (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 (-751))) (-5 *3 (-751)) (-5 *1 (-1137 *4 *5)) - (-14 *4 (-897)) (-4 *5 (-1025)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 (-751))) (-5 *3 (-919 *5)) (-4 *5 (-1025)) - (-5 *1 (-1137 *4 *5)) (-14 *4 (-897))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-633 *4)) (-4 *4 (-337 *5 *6 *7)) - (-4 *5 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) - (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6))) + (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) + (-4 *6 (-776)) (-4 *7 (-928 *4 *6 *5)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) - (-5 *1 (-786 *5 *6 *7 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3207 *4))) - (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *6)) (-5 *4 (-625 (-1149))) (-4 *6 (-358)) - (-5 *2 (-625 (-289 (-928 *6)))) (-5 *1 (-530 *5 *6 *7)) - (-4 *5 (-446)) (-4 *7 (-13 (-358) (-825)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-167 (-221)) (-167 (-221)))) (-5 *4 (-1067 (-221))) - (-5 *2 (-1234)) (-5 *1 (-252))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) - (-4 *4 (-773)) (-4 *5 (-827)) (-4 *3 (-544))))) + (-2 (|:| |sysok| (-111)) (|:| |z0| (-627 *7)) (|:| |n0| (-627 *7)))) + (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-627 *7))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-738))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1202 (-552))) (-4 *1 (-276 *3)) (-4 *3 (-1189)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-276 *3)) (-4 *3 (-1189))))) (((*1 *2 *3) - (-12 (-5 *3 (-625 (-2 (|:| |deg| (-751)) (|:| -2430 *5)))) - (-4 *5 (-1208 *4)) (-4 *4 (-344)) (-5 *2 (-625 *5)) - (-5 *1 (-212 *4 *5)))) + (-12 (-4 *1 (-899)) (-5 *2 (-2 (|:| -3069 (-627 *1)) (|:| -2220 *1))) + (-5 *3 (-627 *1))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-357)) (-4 *3 (-1028)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2220 *1))) + (-4 *1 (-832 *3))))) +(((*1 *2 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-599 (-842))))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-552)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1134)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-498)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-579)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-471)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-135)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-153)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1142)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-610)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1072)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1066)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1050)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-949)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-177)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1015)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-305)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-653)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-151)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-517)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1246)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1043)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-509)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-663)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-95)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1091)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-131)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-136)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-1245)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-658)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-213)))) + ((*1 *2 *1) (-12 (-4 *1 (-1113)) (-5 *2 (-516)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1157)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1157)))) + ((*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-1157)))) + ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1157))))) +(((*1 *2 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-537))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-220) (-220))) (-5 *4 (-1070 (-373))) + (-5 *5 (-627 (-257))) (-5 *2 (-1236)) (-5 *1 (-249)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-2 (|:| -3824 *5) (|:| -4276 (-552))))) - (-5 *4 (-552)) (-4 *5 (-1208 *4)) (-5 *2 (-625 *5)) - (-5 *1 (-676 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1186)) (-5 *1 (-370 *4 *2)) - (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4354))))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1149)) - (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) (-5 *1 (-1152))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-919 *4)) (-4 *4 (-1025)) (-5 *1 (-1137 *3 *4)) - (-14 *3 (-897))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1149)) - (-4 *4 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-784 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1171) (-935)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1186)) (-4 *2 (-827)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-277 *3)) (-4 *3 (-1186)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-625 (-928 *6))) (-5 *4 (-625 (-1149))) (-4 *6 (-446)) - (-5 *2 (-625 (-625 *7))) (-5 *1 (-530 *6 *7 *5)) (-4 *7 (-358)) - (-4 *5 (-13 (-358) (-825)))))) + (-12 (-5 *3 (-1 (-220) (-220))) (-5 *4 (-1070 (-373))) + (-5 *2 (-1236)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-856 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) + (-5 *5 (-627 (-257))) (-5 *2 (-1236)) (-5 *1 (-249)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-856 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) + (-5 *2 (-1236)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-858 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) + (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-249)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-858 (-1 (-220) (-220)))) (-5 *4 (-1070 (-373))) + (-5 *2 (-1237)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-922 (-220)) (-220))) (-5 *4 (-1070 (-373))) + (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-249)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-922 (-220)) (-220))) (-5 *4 (-1070 (-373))) + (-5 *2 (-1237)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1070 (-373))) + (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-220) (-220) (-220))) (-5 *4 (-1070 (-373))) + (-5 *2 (-1237)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-373))) + (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-922 (-220)) (-220) (-220))) (-5 *4 (-1070 (-373))) + (-5 *2 (-1237)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-861 (-1 (-220) (-220) (-220)))) (-5 *4 (-1070 (-373))) + (-5 *5 (-627 (-257))) (-5 *2 (-1237)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-861 (-1 (-220) (-220) (-220)))) (-5 *4 (-1070 (-373))) + (-5 *2 (-1237)) (-5 *1 (-249)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-288 *7)) (-5 *4 (-1152)) (-5 *5 (-627 (-257))) + (-4 *7 (-424 *6)) (-4 *6 (-13 (-544) (-830) (-1017 (-552)))) + (-5 *2 (-1236)) (-5 *1 (-250 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1236)) + (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1076))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1068 (-373))) (-5 *2 (-1236)) (-5 *1 (-253 *3)) + (-4 *3 (-13 (-600 (-528)) (-1076))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-856 *6)) (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) + (-4 *6 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1236)) + (-5 *1 (-253 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-856 *5)) (-5 *4 (-1068 (-373))) + (-4 *5 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1236)) + (-5 *1 (-253 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-858 *6)) (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) + (-4 *6 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1237)) + (-5 *1 (-253 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-858 *5)) (-5 *4 (-1068 (-373))) + (-4 *5 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1237)) + (-5 *1 (-253 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) (-5 *2 (-1237)) + (-5 *1 (-253 *3)) (-4 *3 (-13 (-600 (-528)) (-1076))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1068 (-373))) (-5 *2 (-1237)) (-5 *1 (-253 *3)) + (-4 *3 (-13 (-600 (-528)) (-1076))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-861 *6)) (-5 *4 (-1068 (-373))) (-5 *5 (-627 (-257))) + (-4 *6 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1237)) + (-5 *1 (-253 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-861 *5)) (-5 *4 (-1068 (-373))) + (-4 *5 (-13 (-600 (-528)) (-1076))) (-5 *2 (-1237)) + (-5 *1 (-253 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-627 (-220))) (-5 *2 (-1236)) (-5 *1 (-254)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-627 (-220))) (-5 *4 (-627 (-257))) (-5 *2 (-1236)) + (-5 *1 (-254)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-922 (-220)))) (-5 *2 (-1236)) (-5 *1 (-254)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-922 (-220)))) (-5 *4 (-627 (-257))) + (-5 *2 (-1236)) (-5 *1 (-254)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-627 (-220))) (-5 *2 (-1237)) (-5 *1 (-254)))) + ((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-627 (-220))) (-5 *4 (-627 (-257))) (-5 *2 (-1237)) + (-5 *1 (-254))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-167 (-221)) (-167 (-221)))) (-5 *4 (-1067 (-221))) - (-5 *5 (-112)) (-5 *2 (-1234)) (-5 *1 (-252))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) - (-4 *4 (-773)) (-4 *5 (-827)) (-4 *3 (-544))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-552)) (-5 *2 (-625 (-2 (|:| -3824 *3) (|:| -4276 *4)))) - (-5 *1 (-676 *3)) (-4 *3 (-1208 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1186)) (-5 *1 (-370 *4 *2)) - (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4354))))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-1152)) (-5 *3 (-1149))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-919 *5)) (-5 *3 (-751)) (-4 *5 (-1025)) - (-5 *1 (-1137 *4 *5)) (-14 *4 (-897))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1149)) - (-4 *4 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) - (-5 *1 (-784 *4 *2)) (-4 *2 (-13 (-29 *4) (-1171) (-935)))))) -(((*1 *1 *1 *1) (-4 *1 (-943)))) + (-12 (-5 *3 (-1 (-166 (-220)) (-166 (-220)))) (-5 *4 (-1070 (-220))) + (-5 *5 (-111)) (-5 *2 (-1237)) (-5 *1 (-251))))) +(((*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-804))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830)))) + ((*1 *1) (-4 *1 (-1127)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1145 *5)) (-4 *5 (-446)) (-5 *2 (-625 *6)) - (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825))))) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-776)) + (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7)) (-5 *2 (-627 *3)) + (-5 *1 (-578 *5 *6 *7 *8 *3)) (-4 *3 (-1085 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-928 *5)) (-4 *5 (-446)) (-5 *2 (-625 *6)) - (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-919 (-221)) (-221) (-221))) - (-5 *3 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-250))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827)) (-4 *2 (-544))))) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) + (-5 *2 + (-627 (-2 (|:| -2667 (-1148 *5)) (|:| -3133 (-627 (-931 *5)))))) + (-5 *1 (-1054 *5 *6)) (-5 *3 (-627 (-931 *5))) + (-14 *6 (-627 (-1152))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-301) (-144))) + (-5 *2 + (-627 (-2 (|:| -2667 (-1148 *4)) (|:| -3133 (-627 (-931 *4)))))) + (-5 *1 (-1054 *4 *5)) (-5 *3 (-627 (-931 *4))) + (-14 *5 (-627 (-1152))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) + (-5 *2 + (-627 (-2 (|:| -2667 (-1148 *5)) (|:| -3133 (-627 (-931 *5)))))) + (-5 *1 (-1054 *5 *6)) (-5 *3 (-627 (-931 *5))) + (-14 *6 (-627 (-1152)))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-739))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1120)) (-5 *3 (-141)) (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1235 *5)) (-4 *5 (-623 *4)) (-4 *4 (-544)) + (-5 *2 (-111)) (-5 *1 (-622 *4 *5))))) +(((*1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1189))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-552)) (-5 *1 (-676 *2)) (-4 *2 (-1208 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-4 *1 (-369 *3 *4)) - (-4 *4 (-170))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-1153)) (-5 *1 (-1152))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-751)) (-5 *3 (-919 *5)) (-4 *5 (-1025)) - (-5 *1 (-1137 *4 *5)) (-14 *4 (-897)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 (-751))) (-5 *3 (-751)) (-5 *1 (-1137 *4 *5)) - (-14 *4 (-897)) (-4 *5 (-1025)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 (-751))) (-5 *3 (-919 *5)) (-4 *5 (-1025)) - (-5 *1 (-1137 *4 *5)) (-14 *4 (-897))))) + (-12 (-5 *2 (-1235 *4)) (-5 *3 (-754)) (-4 *4 (-343)) + (-5 *1 (-520 *4))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-734))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-730))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) - (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) - (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) - (|:| |abserr| (-221)) (|:| |relerr| (-221)))) - (-5 *2 - (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) - (|:| |expense| (-374)) (|:| |accuracy| (-374)) - (|:| |intermediateResults| (-374)))) - (-5 *1 (-783))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1149)) (-5 *2 (-528)) (-5 *1 (-527 *4)) - (-4 *4 (-1186))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-218 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-4 *1 (-249 *3)))) - ((*1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827)) (-4 *2 (-446))))) -(((*1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1186)) (-4 *2 (-1073)))) - ((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1073))))) + (-12 (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) + (-4 *4 (-1211 *3)) + (-5 *2 + (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-671 *3)))) + (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-552)) (-4 *4 (-1211 *3)) + (-5 *2 + (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-671 *3)))) + (-5 *1 (-751 *4 *5)) (-4 *5 (-403 *3 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-343)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 *3)) + (-5 *2 + (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-671 *3)))) + (-5 *1 (-964 *4 *3 *5 *6)) (-4 *6 (-707 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-343)) (-4 *3 (-1211 *4)) (-4 *5 (-1211 *3)) + (-5 *2 + (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-671 *3)))) + (-5 *1 (-1244 *4 *3 *5 *6)) (-4 *6 (-403 *3 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-368 *3)) (-4 *3 (-1186)) (-4 *3 (-827)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-368 *4)) (-4 *4 (-1186)) - (-5 *2 (-112))))) + (-12 (-4 *4 (-1076)) (-5 *2 (-868 *3 *4)) (-5 *1 (-864 *3 *4 *5)) + (-4 *3 (-1076)) (-4 *5 (-648 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-627 *1)) (-4 *1 (-296)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-598 *3)) (-4 *3 (-830)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-113)) (-5 *3 (-627 *5)) (-5 *4 (-754)) (-4 *5 (-830)) + (-5 *1 (-598 *5))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-220))) + (-5 *2 (-1014)) (-5 *1 (-740))))) (((*1 *2 *3) - (-12 (-5 *3 (-625 *4)) (-4 *4 (-1025)) (-5 *2 (-1232 *4)) - (-5 *1 (-1150 *4)))) + (-12 (-4 *4 (-13 (-830) (-544) (-1017 (-552)))) (-5 *2 (-401 (-552))) + (-5 *1 (-427 *4 *3)) (-4 *3 (-424 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-897)) (-5 *2 (-1232 *3)) (-5 *1 (-1150 *3)) - (-4 *3 (-1025))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 (-751))) (-5 *3 (-112)) (-5 *1 (-1137 *4 *5)) - (-14 *4 (-897)) (-4 *5 (-1025))))) -(((*1 *1 *2) + (-12 (-5 *4 (-598 *3)) (-4 *3 (-424 *5)) + (-4 *5 (-13 (-830) (-544) (-1017 (-552)))) + (-5 *2 (-1148 (-401 (-552)))) (-5 *1 (-427 *5 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-805))))) +(((*1 *1 *2 *3 *4) (-12 - (-5 *2 - (-625 - (-2 - (|:| -2971 - (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) - (|:| |fn| (-1232 (-311 (-221)))) - (|:| |yinit| (-625 (-221))) (|:| |intvals| (-625 (-221))) - (|:| |g| (-311 (-221))) (|:| |abserr| (-221)) - (|:| |relerr| (-221)))) - (|:| -4120 - (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) - (|:| |expense| (-374)) (|:| |accuracy| (-374)) - (|:| |intermediateResults| (-374))))))) - (-5 *1 (-783))))) -(((*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943))))) -(((*1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-107)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-528))) (-5 *1 (-528))))) -(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827)) (-4 *2 (-446))))) -(((*1 *2 *1) - (-12 (-4 *1 (-675 *3)) (-4 *3 (-1073)) - (-5 *2 (-625 (-2 (|:| -4120 *3) (|:| -2840 (-751)))))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-552)) (|has| *1 (-6 -4354)) (-4 *1 (-368 *3)) - (-4 *3 (-1186))))) -(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1149))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943))))) -(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-528))))) -(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1073)) (-5 *2 (-865 *3 *5)) (-5 *1 (-861 *3 *4 *5)) - (-4 *3 (-1073)) (-4 *5 (-646 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827)) (-4 *2 (-446))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-751)) (-4 *6 (-1073)) (-4 *7 (-876 *6)) - (-5 *2 (-669 *7)) (-5 *1 (-672 *6 *7 *3 *4)) (-4 *3 (-368 *7)) - (-4 *4 (-13 (-368 *6) (-10 -7 (-6 -4353))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1149))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4354)) (-4 *1 (-368 *2)) (-4 *2 (-1186)) - (-4 *2 (-827)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4354)) - (-4 *1 (-368 *3)) (-4 *3 (-1186))))) -(((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1232 *1)) (-4 *1 (-365 *2 *4)) (-4 *4 (-1208 *2)) - (-4 *2 (-170)))) - ((*1 *2) - (-12 (-4 *4 (-1208 *2)) (-4 *2 (-170)) (-5 *1 (-403 *3 *2 *4)) - (-4 *3 (-404 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-404 *2 *3)) (-4 *3 (-1208 *2)) (-4 *2 (-170)))) - ((*1 *2) - (-12 (-4 *3 (-1208 *2)) (-5 *2 (-552)) (-5 *1 (-748 *3 *4)) - (-4 *4 (-404 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-925 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *2 (-827)) (-4 *3 (-170)))) - ((*1 *2 *3) - (-12 (-4 *2 (-544)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1208 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-820 *3)) (-4 *3 (-1073))))) -(((*1 *1 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943))))) -(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-528))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186))))) + (-5 *3 + (-627 + (-2 (|:| |scalar| (-401 (-552))) (|:| |coeff| (-1148 *2)) + (|:| |logand| (-1148 *2))))) + (-5 *4 (-627 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-357)) (-5 *1 (-573 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-751)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) - (-14 *4 (-625 (-1149))))) - ((*1 *1 *2) - (-12 (-5 *2 (-751)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) - (-14 *4 (-625 (-1149))))) - ((*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-330 *3 *4 *5 *2)) (-4 *3 (-358)) - (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) - (-4 *2 (-337 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-751)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-170)))) - ((*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-705 *2 *3)) (-4 *3 (-1208 *2))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827)) (-4 *2 (-446))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1232 (-311 (-221)))) (-5 *4 (-625 (-1149))) - (-5 *2 (-669 (-311 (-221)))) (-5 *1 (-201)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1073)) (-4 *6 (-876 *5)) (-5 *2 (-669 *6)) - (-5 *1 (-672 *5 *6 *3 *4)) (-4 *3 (-368 *6)) - (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4353))))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142))))) -(((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1232 *1)) (-4 *1 (-362 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-925 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *2 (-827)) (-4 *3 (-170)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-544)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1208 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827)) (-4 *2 (-544)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-170))))) -(((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1011)) (-5 *1 (-817)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-311 (-374)))) (-5 *4 (-625 (-374))) - (-5 *2 (-1011)) (-5 *1 (-817))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-669 *6)) (-5 *5 (-1 (-413 (-1145 *6)) (-1145 *6))) - (-4 *6 (-358)) - (-5 *2 - (-625 - (-2 (|:| |outval| *7) (|:| |outmult| (-552)) - (|:| |outvect| (-625 (-669 *7)))))) - (-5 *1 (-525 *6 *7 *4)) (-4 *7 (-358)) (-4 *4 (-13 (-358) (-825)))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-751)) (-5 *2 (-625 (-1149))) (-5 *1 (-206)) - (-5 *3 (-1149)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-311 (-221))) (-5 *4 (-751)) (-5 *2 (-625 (-1149))) - (-5 *1 (-262)))) - ((*1 *2 *1) - (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) - (-5 *2 (-625 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-625 *3)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) - (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-799 *3)) (-4 *3 (-827)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) - (-5 *2 (-625 *3))))) -(((*1 *1) (-5 *1 (-1037)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-751)) (-4 *6 (-1073)) (-4 *3 (-876 *6)) - (-5 *2 (-669 *3)) (-5 *1 (-672 *6 *3 *7 *4)) (-4 *7 (-368 *3)) - (-4 *4 (-13 (-368 *6) (-10 -7 (-6 -4353))))))) -(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170))))) -(((*1 *1) (-5 *1 (-325)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-544)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1208 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827)) (-4 *2 (-544)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-544))))) + (-12 (-5 *2 (-1 *3 *3 (-552))) (-4 *3 (-1028)) (-5 *1 (-98 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-98 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-98 *3))))) (((*1 *2 *3) - (-12 (-4 *1 (-816)) - (-5 *3 - (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) - (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) - (|:| |ub| (-625 (-820 (-221)))))) - (-5 *2 (-1011)))) - ((*1 *2 *3) - (-12 (-4 *1 (-816)) + (-12 (-5 *3 - (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) - (-5 *2 (-1011))))) + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) + (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) + (-5 *2 (-373)) (-5 *1 (-200))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-830) (-544)))))) (((*1 *2 *1) - (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) - (-4 *3 (-943))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1145 *5)) (-4 *5 (-358)) (-5 *2 (-625 *6)) - (-5 *1 (-525 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825)))))) -(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186))))) -(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1230 *3)) (-4 *3 (-1186)) (-4 *3 (-1025)) - (-5 *2 (-669 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-625 *1)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-402 *1)) (-4 *1 (-1208 *3)) (-4 *3 (-1025)) - (-4 *3 (-544)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-544))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1131)) (-5 *2 (-210 (-495))) (-5 *1 (-815))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943))))) + (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-398) (-1174))) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-828)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1045 *4 *3)) (-4 *4 (-13 (-828) (-357))) + (-4 *3 (-1211 *4)) (-5 *2 (-111))))) (((*1 *2 *3) - (-12 (-5 *3 (-669 *4)) (-4 *4 (-358)) (-5 *2 (-1145 *4)) - (-5 *1 (-525 *4 *5 *6)) (-4 *5 (-358)) (-4 *6 (-13 (-358) (-825)))))) -(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) - (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8)) - (-5 *2 - (-2 (|:| -2772 (-625 *9)) (|:| -3715 *4) (|:| |ineq| (-625 *9)))) - (-5 *1 (-964 *6 *7 *8 *9 *4)) (-5 *3 (-625 *9)) - (-4 *4 (-1045 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) - (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8)) - (-5 *2 - (-2 (|:| -2772 (-625 *9)) (|:| -3715 *4) (|:| |ineq| (-625 *9)))) - (-5 *1 (-1080 *6 *7 *8 *9 *4)) (-5 *3 (-625 *9)) - (-4 *4 (-1045 *6 *7 *8 *9))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-732))))) -(((*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-5 *2 (-625 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-544))))) -(((*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1025)))) - ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *4 (-170)) (-4 *5 (-368 *4)) - (-4 *6 (-368 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3)) - (-4 *3 (-628 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3)) - (-4 *3 (-628 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025)))) - ((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025))))) -(((*1 *2 *1) - (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) - (-4 *3 (-943))))) + (-12 (-5 *3 (-627 (-2 (|:| -4288 *4) (|:| -2671 (-552))))) + (-4 *4 (-1076)) (-5 *2 (-1 *4)) (-5 *1 (-996 *4))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4368 "*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) + (-4 *2 (-1028)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1211 *2)) + (-4 *4 (-669 *2 *5 *6))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-65 FUNCT1)))) + (-5 *2 (-1014)) (-5 *1 (-736))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) + (-5 *2 (-1014)) (-5 *1 (-731))))) +(((*1 *2 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1175 *3)) (-4 *3 (-1076))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1134)) (-5 *2 (-627 (-1157))) (-5 *1 (-859))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1134)) (-5 *3 (-806)) (-5 *1 (-805))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-220) (-220) (-220))) + (-5 *4 (-1 (-220) (-220) (-220) (-220))) + (-5 *2 (-1 (-922 (-220)) (-220) (-220))) (-5 *1 (-679))))) (((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-523 *3)) (-4 *3 (-13 (-707) (-25)))))) + (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-411 *3))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-113))) + ((*1 *1 *1) (-5 *1 (-168))) ((*1 *1 *1) (-4 *1 (-537))) + ((*1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) + ((*1 *1 *1) (-12 (-4 *1 (-1110 *2)) (-4 *2 (-1028)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) + (-4 *3 (-13 (-1076) (-34)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1070 (-823 (-373)))) (-5 *2 (-1070 (-823 (-220)))) + (-5 *1 (-299))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-357) (-828))) (-5 *1 (-178 *3 *2)) + (-4 *2 (-1211 (-166 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) - (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-625 *4))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-625 *10)) (-5 *5 (-112)) (-4 *10 (-1045 *6 *7 *8 *9)) - (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) - (-4 *9 (-1039 *6 *7 *8)) + (-12 (-5 *2 (-627 (-627 (-754)))) (-5 *1 (-883 *3)) (-4 *3 (-1076))))) +(((*1 *2 *3) + (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) + (-4 *4 (-343))))) +(((*1 *2 *1) (-12 (-4 *1 (-130)) (-5 *2 (-754)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-552)) (-4 *1 (-367 *3)) (-4 *3 (-1189)) + (-4 *3 (-1076)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-367 *3)) (-4 *3 (-1189)) (-4 *3 (-1076)) + (-5 *2 (-552)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-111) *4)) (-4 *1 (-367 *4)) (-4 *4 (-1189)) + (-5 *2 (-552)))) + ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-521)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-552)) (-5 *3 (-138)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1120)) (-5 *2 (-552))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-671 (-166 (-401 (-552))))) (-5 *2 (-627 (-166 *4))) + (-5 *1 (-747 *4)) (-4 *4 (-13 (-357) (-828)))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-552)) (-5 *5 (-166 (-220))) (-5 *6 (-1134)) + (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-111)) (-5 *5 (-1078 (-754))) (-5 *6 (-754)) (-5 *2 - (-625 - (-2 (|:| -2772 (-625 *9)) (|:| -3715 *10) (|:| |ineq| (-625 *9))))) - (-5 *1 (-964 *6 *7 *8 *9 *10)) (-5 *3 (-625 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-625 *10)) (-5 *5 (-112)) (-4 *10 (-1045 *6 *7 *8 *9)) - (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) - (-4 *9 (-1039 *6 *7 *8)) + (-2 (|:| |contp| (-552)) + (|:| -2101 (-627 (-2 (|:| |irr| *3) (|:| -3594 (-552))))))) + (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) +(((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169))))) +(((*1 *2) (-12 (-5 *2 (-816 (-552))) (-5 *1 (-526)))) + ((*1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1076))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-625 - (-2 (|:| -2772 (-625 *9)) (|:| -3715 *10) (|:| |ineq| (-625 *9))))) - (-5 *1 (-1080 *6 *7 *8 *9 *10)) (-5 *3 (-625 *9))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) - (-5 *2 (-1011)) (-5 *1 (-732))))) -(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) - (-5 *2 (-2 (|:| -3340 *4) (|:| -3984 *3) (|:| -3645 *3))) - (-5 *1 (-945 *4 *3)) (-4 *3 (-1208 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-1039 *3 *4 *5)))) + (-2 (|:| -3069 *3) (|:| |gap| (-754)) (|:| -2404 (-765 *3)) + (|:| -3401 (-765 *3)))) + (-5 *1 (-765 *3)) (-4 *3 (-1028)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) + (-5 *2 + (-2 (|:| -3069 *1) (|:| |gap| (-754)) (|:| -2404 *1) + (|:| -3401 *1))) + (-4 *1 (-1042 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-544)) (-4 *3 (-1025)) - (-5 *2 (-2 (|:| -3340 *3) (|:| -3984 *1) (|:| -3645 *1))) - (-4 *1 (-1208 *3))))) -(((*1 *2 *2) - (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3)) - (-4 *3 (-628 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943))))) -(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-522)))) - ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-522))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) - (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-625 (-751))))) + (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *2 + (-2 (|:| -3069 *1) (|:| |gap| (-754)) (|:| -2404 *1) + (|:| -3401 *1))) + (-4 *1 (-1042 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4367)) (-4 *4 (-357)) (-4 *5 (-367 *4)) + (-4 *6 (-367 *4)) (-5 *2 (-627 *6)) (-5 *1 (-513 *4 *5 *6 *3)) + (-4 *3 (-669 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (|has| *9 (-6 -4367)) (-4 *4 (-544)) (-4 *5 (-367 *4)) + (-4 *6 (-367 *4)) (-4 *7 (-971 *4)) (-4 *8 (-367 *7)) + (-4 *9 (-367 *7)) (-5 *2 (-627 *6)) + (-5 *1 (-514 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-669 *4 *5 *6)) + (-4 *10 (-669 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-4 *3 (-544)) (-5 *2 (-627 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) + (-4 *6 (-367 *4)) (-5 *2 (-627 *6)) (-5 *1 (-670 *4 *5 *6 *3)) + (-4 *3 (-669 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) - (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-625 (-751)))))) + (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-544)) + (-5 *2 (-627 *7))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) + (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) +(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-742))))) (((*1 *2 *2) - (-12 (-5 *2 (-625 (-2 (|:| |val| (-625 *6)) (|:| -3715 *7)))) - (-4 *6 (-1039 *3 *4 *5)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) - (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-964 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-625 (-2 (|:| |val| (-625 *6)) (|:| -3715 *7)))) - (-4 *6 (-1039 *3 *4 *5)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) - (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1080 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-732))))) -(((*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1145 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-358)) (-4 *4 (-544)) (-4 *5 (-1208 *4)) - (-5 *2 (-2 (|:| -3533 (-605 *4 *5)) (|:| -3523 (-402 *5)))) - (-5 *1 (-605 *4 *5)) (-5 *3 (-402 *5)))) + (-12 (-5 *2 (-1235 *4)) (-4 *4 (-411 *3)) (-4 *3 (-301)) + (-4 *3 (-544)) (-5 *1 (-43 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-900)) (-4 *4 (-357)) (-5 *2 (-1235 *1)) + (-4 *1 (-323 *4)))) + ((*1 *2) (-12 (-4 *3 (-357)) (-5 *2 (-1235 *1)) (-4 *1 (-323 *3)))) + ((*1 *2) + (-12 (-4 *3 (-169)) (-4 *4 (-1211 *3)) (-5 *2 (-1235 *1)) + (-4 *1 (-403 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-625 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4)) - (-14 *3 (-897)) (-4 *4 (-1025)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-446)) (-4 *3 (-1025)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1208 *3))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-625 *2)) (-5 *1 (-113 *2)) - (-4 *2 (-1073)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-625 *4))) (-4 *4 (-1073)) - (-5 *1 (-113 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1073)) - (-5 *1 (-113 *4)))) + (-12 (-4 *3 (-301)) (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) + (-5 *2 (-1235 *6)) (-5 *1 (-407 *3 *4 *5 *6)) + (-4 *6 (-13 (-403 *4 *5) (-1017 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-301)) (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) + (-5 *2 (-1235 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7)) + (-4 *6 (-403 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1235 *1)) (-4 *1 (-411 *3)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-625 *4))) - (-5 *1 (-113 *4)) (-4 *4 (-1073)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-628 *3)) (-4 *3 (-1025)) - (-5 *1 (-695 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-814 *3))))) -(((*1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-839)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) - (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-625 *7)) (|:| -3715 *8))) - (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) - (-5 *1 (-964 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-625 *7)) (|:| -3715 *8))) - (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) - (-5 *1 (-1080 *4 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-732))))) -(((*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1145 *3))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *1 (-1204 *4 *2)) - (-4 *2 (-1208 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-628 *3)) (-4 *3 (-1025)) - (-5 *1 (-695 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-814 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-572 *2)) (-4 *2 (-537))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-849 *2 *3)) (-4 *2 (-1186)) (-4 *3 (-1186))))) -(((*1 *1 *1) - (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1025)) (-4 *3 (-827)) - (-4 *4 (-261 *3)) (-4 *5 (-773))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-839))) - ((*1 *1 *1 *1) (-4 *1 (-943)))) -(((*1 *2 *2) - (-12 (-5 *2 (-625 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) - (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) - (-5 *1 (-964 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-625 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) - (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) - (-5 *1 (-1080 *3 *4 *5 *6 *7))))) + (-12 (-5 *3 (-900)) (-5 *2 (-1235 (-1235 *4))) (-5 *1 (-520 *4)) + (-4 *4 (-343))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1132 *4)) (-5 *3 (-552)) (-4 *4 (-1028)) + (-5 *1 (-1136 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-552)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1028)) + (-14 *4 (-1152)) (-14 *5 *3)))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-531 *4 *2 *5 *6)) + (-4 *4 (-301)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-754)))))) +(((*1 *1 *1 *1) (-5 *1 (-842)))) +(((*1 *1) + (-12 (-4 *3 (-1076)) (-5 *1 (-864 *2 *3 *4)) (-4 *2 (-1076)) + (-4 *4 (-648 *3)))) + ((*1 *1) (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-358)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) - (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-544)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) - (-4 *7 (-968 *4)) (-4 *2 (-667 *7 *8 *9)) - (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-667 *4 *5 *6)) - (-4 *8 (-368 *7)) (-4 *9 (-368 *7)))) + (|partial| -12 (-4 *4 (-544)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) + (-4 *7 (-971 *4)) (-4 *2 (-669 *7 *8 *9)) + (-5 *1 (-514 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-669 *4 *5 *6)) + (-4 *8 (-367 *7)) (-4 *9 (-367 *7)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) - (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-358)))) + (|partial| -12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) + (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-357)))) ((*1 *2 *2) - (|partial| -12 (-4 *3 (-358)) (-4 *3 (-170)) (-4 *4 (-368 *3)) - (-4 *5 (-368 *3)) (-5 *1 (-668 *3 *4 *5 *2)) - (-4 *2 (-667 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-357)) (-4 *3 (-169)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *1 (-670 *3 *4 *5 *2)) + (-4 *2 (-669 *3 *4 *5)))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-669 *2)) (-4 *2 (-358)) (-4 *2 (-1025)))) + (|partial| -12 (-5 *1 (-671 *2)) (-4 *2 (-357)) (-4 *2 (-1028)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1096 *2 *3 *4 *5)) (-4 *3 (-1025)) - (-4 *4 (-234 *2 *3)) (-4 *5 (-234 *2 *3)) (-4 *3 (-358)))) - ((*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-1157 *3))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-732))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) - (-4 *3 (-362 *4)))) - ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-1149))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1025)) (-5 *1 (-1204 *3 *2)) (-4 *2 (-1208 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-114)) (-4 *4 (-1025)) (-5 *1 (-695 *4 *2)) - (-4 *2 (-628 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-814 *2)) (-4 *2 (-1025))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-751)) (-5 *1 (-572 *2)) (-4 *2 (-537)))) - ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3929 *3) (|:| -3564 (-751)))) (-5 *1 (-572 *3)) - (-4 *3 (-537))))) -(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-244))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-625 (-258))) (-5 *4 (-1149)) - (-5 *1 (-257 *2)) (-4 *2 (-1186)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-625 (-258))) (-5 *4 (-1149)) (-5 *2 (-52)) - (-5 *1 (-258))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-625 *3)) (-4 *3 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) - (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-964 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-625 *3)) (-4 *3 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) - (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1080 *5 *6 *7 *8 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-827)) (-5 *2 (-625 (-625 *4))) (-5 *1 (-1157 *4)) - (-5 *3 (-625 *4))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-732))))) -(((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) - (-4 *3 (-362 *4)))) - ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-1149))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1025)) (-5 *1 (-1204 *3 *2)) (-4 *2 (-1208 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-356 (-114))) (-4 *2 (-1025)) (-5 *1 (-695 *2 *4)) - (-4 *4 (-628 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-356 (-114))) (-5 *1 (-814 *2)) (-4 *2 (-1025))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-751)) (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-537))))) -(((*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-244))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-552)) (-5 *5 (-669 (-221))) (-5 *6 (-655 (-221))) - (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-731))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-594 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-544)) - (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-1203 *4 *3)) - (-4 *3 (-1208 *4))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1093)) (-5 *2 (-1237)) (-5 *1 (-811))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *1 *2 *3 *4) - (-12 - (-5 *3 - (-625 - (-2 (|:| |scalar| (-402 (-552))) (|:| |coeff| (-1145 *2)) - (|:| |logand| (-1145 *2))))) - (-5 *4 (-625 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-358)) (-5 *1 (-571 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-897)) (-4 *1 (-363)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-897)) (-5 *2 (-1232 *4)) (-5 *1 (-521 *4)) - (-4 *4 (-344)))) - ((*1 *2 *1) - (-12 (-4 *2 (-827)) (-5 *1 (-694 *2 *3 *4)) (-4 *3 (-1073)) - (-14 *4 - (-1 (-112) (-2 (|:| -3123 *2) (|:| -3564 *3)) - (-2 (|:| -3123 *2) (|:| -3564 *3))))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-751)) - (-4 *3 (-13 (-707) (-363) (-10 -7 (-15 ** (*3 *3 (-552)))))) - (-5 *1 (-242 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) - (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) - (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *5 (-1131)) - (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-1011)) - (-5 *1 (-731))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2462 (-552)) (|:| -3449 (-625 *3)))) - (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-1149))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-544) (-145))) (-5 *2 (-625 *3)) - (-5 *1 (-1202 *4 *3)) (-4 *3 (-1208 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-801)) (-5 *4 (-52)) (-5 *2 (-1237)) (-5 *1 (-811))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *2 *1) (-12 (-5 *1 (-571 *2)) (-4 *2 (-358))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1186))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) - (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) - (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) - (-5 *2 (-1011)) (-5 *1 (-731))))) -(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-413 *3)) (-4 *3 (-544)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-2 (|:| -3824 *4) (|:| -4276 (-552))))) - (-4 *4 (-1208 (-552))) (-5 *2 (-751)) (-5 *1 (-436 *4))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-544) (-145))) - (-5 *2 (-2 (|:| -2290 *3) (|:| -2303 *3))) (-5 *1 (-1202 *4 *3)) - (-4 *3 (-1208 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-801)) (-5 *2 (-52)) (-5 *1 (-811))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-625 - (-2 (|:| |scalar| (-402 (-552))) (|:| |coeff| (-1145 *3)) - (|:| |logand| (-1145 *3))))) - (-5 *1 (-571 *3)) (-4 *3 (-358))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1186))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) - (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) - (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) - (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-75 G JACOBG JACGEP)))) - (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-730))))) + (|partial| -12 (-4 *1 (-1099 *2 *3 *4 *5)) (-4 *3 (-1028)) + (-4 *4 (-233 *2 *3)) (-4 *5 (-233 *2 *3)) (-4 *3 (-357)))) + ((*1 *2 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-1160 *3))))) (((*1 *2) - (-12 (-5 *2 (-897)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) - ((*1 *2 *2) - (-12 (-5 *2 (-897)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552)))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-129))) + (-12 (-4 *2 (-13 (-424 *3) (-981))) (-5 *1 (-270 *3 *2)) + (-4 *3 (-13 (-830) (-544))))) ((*1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751)) - (-4 *4 (-170)))) - ((*1 *1) (-4 *1 (-707))) ((*1 *1) (-5 *1 (-1149)))) -(((*1 *1 *1) (-5 *1 (-528)))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-544) (-145))) (-5 *1 (-1202 *3 *2)) - (-4 *2 (-1208 *3))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-307)) (-5 *1 (-809))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *2 *1) - (-12 (-5 *2 (-625 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-571 *3)) (-4 *3 (-358))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *5 (-221)) - (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 BDYVAL)))) - (-5 *2 (-1011)) (-5 *1 (-730)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *5 (-221)) - (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 BDYVAL)))) - (-5 *8 (-383)) (-5 *2 (-1011)) (-5 *1 (-730))))) -(((*1 *2) - (-12 (-5 *2 (-897)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) - ((*1 *2 *2) - (-12 (-5 *2 (-897)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552)))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-751)) (-4 *4 (-13 (-544) (-145))) - (-5 *1 (-1202 *4 *2)) (-4 *2 (-1208 *4))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-809))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-571 *3)) (-4 *3 (-358))))) -(((*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1186))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-552)) (-5 *5 (-669 (-221))) - (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-83 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-221)) - (-5 *2 (-1011)) (-5 *1 (-730))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-625 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-552))))) - (-4 *2 (-544)) (-5 *1 (-413 *2)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |contp| (-552)) - (|:| -3449 (-625 (-2 (|:| |irr| *4) (|:| -3515 (-552))))))) - (-4 *4 (-1208 (-552))) (-5 *2 (-413 *4)) (-5 *1 (-436 *4))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-751)) (-4 *4 (-13 (-544) (-145))) - (-5 *1 (-1202 *4 *2)) (-4 *2 (-1208 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-809))))) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) + (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) + ((*1 *1) (-5 *1 (-470))) ((*1 *1) (-4 *1 (-1174)))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1189)) + (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "right") (|has| *1 (-6 -4367)) (-4 *1 (-118 *3)) + (-4 *3 (-1189)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "left") (|has| *1 (-6 -4367)) (-4 *1 (-118 *3)) + (-4 *3 (-1189)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4367)) (-4 *1 (-282 *3 *2)) (-4 *3 (-1076)) + (-4 *2 (-1189)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1152)) (-5 *1 (-616)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-1202 (-552))) (|has| *1 (-6 -4367)) (-4 *1 (-633 *2)) + (-4 *2 (-1189)))) + ((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-627 (-552))) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "value") (|has| *1 (-6 -4367)) (-4 *1 (-989 *2)) + (-4 *2 (-1189)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1005 *2)) (-4 *2 (-1189)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-1165 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "last") (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) + (-4 *2 (-1189)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4367)) (-4 *1 (-1223 *3)) + (-4 *3 (-1189)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "first") (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) + (-4 *2 (-1189))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) + ((*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896))))) +(((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-552)))) + ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-681))))) +(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-509))))) +(((*1 *2) (-12 (-4 *3 (-169)) (-5 *2 (-1235 *1)) (-4 *1 (-361 *3))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-751)) (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-568))))) -(((*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1186))))) -(((*1 *2 *2) - (-12 (-5 *2 (-625 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) - (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) - (-5 *1 (-964 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-625 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) - (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) - (-5 *1 (-1080 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *5 (-221)) - (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1011)) - (-5 *1 (-730))))) -(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-431)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-431))))) + (-12 (-5 *2 (-1148 *7)) (-5 *3 (-552)) (-4 *7 (-928 *6 *4 *5)) + (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) + (-5 *1 (-315 *4 *5 *6 *7))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-130)) (-5 *3 (-754)) (-5 *2 (-1240))))) (((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-968 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) - (-4 *3 (-368 *5)))) + (-12 (-5 *3 (-627 (-310 (-220)))) (-5 *2 (-111)) (-5 *1 (-261)))) + ((*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-111)) (-5 *1 (-261)))) ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-968 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-496 *4 *5 *6 *3)) (-4 *6 (-368 *4)) (-4 *3 (-368 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-669 *5)) (-4 *5 (-968 *4)) (-4 *4 (-544)) - (-5 *2 (-2 (|:| |num| (-669 *4)) (|:| |den| *4))) - (-5 *1 (-673 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-552))))) - (-4 *6 (-1208 *5)) - (-5 *2 (-2 (|:| -2772 *7) (|:| |rh| (-625 (-402 *6))))) - (-5 *1 (-787 *5 *6 *7 *3)) (-5 *4 (-625 (-402 *6))) - (-4 *7 (-636 *6)) (-4 *3 (-636 (-402 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-968 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1201 *4 *5 *3)) - (-4 *3 (-1208 *5))))) -(((*1 *2 *3) - (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-809)) (-5 *3 (-1131))))) -(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-850)))) - ((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025))))) -(((*1 *1) (-5 *1 (-565)))) + (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) + (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *1 (-227 *4)) - (-4 *4 (-1025)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-754)) (-4 *1 (-226 *4)) + (-4 *4 (-1028)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1025)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-751)))) - ((*1 *1 *1) (-4 *1 (-229))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-261 *3)) (-4 *3 (-827)))) - ((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-226 *3)) (-4 *3 (-1028)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-228)) (-5 *2 (-754)))) + ((*1 *1 *1) (-4 *1 (-228))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-4 *1 (-260 *3)) (-4 *3 (-830)))) + ((*1 *1 *1) (-12 (-4 *1 (-260 *2)) (-4 *2 (-830)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) - (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) + (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)) - (-4 *4 (-1208 *3)))) + (-12 (-5 *2 (-754)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)) + (-4 *4 (-1211 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3)) - (-4 *3 (-1208 *2)))) + (-12 (-4 *2 (-13 (-357) (-144))) (-5 *1 (-393 *2 *3)) + (-4 *3 (-1211 *2)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5)) - (-4 *3 (-1025)) (-14 *5 *3))) + (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-467 *3 *4 *5)) + (-4 *3 (-1028)) (-14 *5 *3))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-358)) (-4 *2 (-876 *3)) (-5 *1 (-571 *2)) - (-5 *3 (-1149)))) + (-12 (-4 *2 (-357)) (-4 *2 (-879 *3)) (-5 *1 (-573 *2)) + (-5 *3 (-1152)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-571 *2)) (-4 *2 (-358)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-839)))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-573 *2)) (-4 *2 (-357)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-842)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 *4)) (-5 *3 (-625 (-751))) (-4 *1 (-876 *4)) - (-4 *4 (-1073)))) + (-12 (-5 *2 (-627 *4)) (-5 *3 (-627 (-754))) (-4 *1 (-879 *4)) + (-4 *4 (-1076)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-751)) (-4 *1 (-876 *2)) (-4 *2 (-1073)))) + (-12 (-5 *3 (-754)) (-4 *1 (-879 *2)) (-4 *2 (-1076)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-625 *3)) (-4 *1 (-876 *3)) (-4 *3 (-1073)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1073)))) + (-12 (-5 *2 (-627 *3)) (-4 *1 (-879 *3)) (-4 *3 (-1076)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-879 *2)) (-4 *2 (-1076)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5)) - (-4 *3 (-1025)) (-14 *5 *3))) + (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1143 *3 *4 *5)) + (-4 *3 (-1028)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5)) - (-4 *3 (-1025)) (-14 *5 *3))) + (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1149 *3 *4 *5)) + (-4 *3 (-1028)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5)) - (-4 *3 (-1025)) (-14 *5 *3))) + (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1150 *3 *4 *5)) + (-4 *3 (-1028)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1196 *3 *4 *5)) - (-4 *3 (-1025)) (-14 *5 *3))) + (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1199 *3 *4 *5)) + (-4 *3 (-1028)) (-14 *5 *3))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1208 *3)) (-4 *3 (-1025)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1217 *3 *4 *5)) - (-4 *3 (-1025)) (-14 *5 *3))) + (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1220 *3 *4 *5)) + (-4 *3 (-1028)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1224 *3 *4 *5)) - (-4 *3 (-1025)) (-14 *5 *3)))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-289 *2)) (-4 *2 (-707)) (-4 *2 (-1186))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-827)) (-5 *1 (-1157 *3))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-552)) (-5 *5 (-1131)) (-5 *6 (-669 (-221))) - (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G)))) - (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN)))) - (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-70 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT)))) - (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730))))) -(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-431))))) + (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1227 *3 *4 *5)) + (-4 *3 (-1028)) (-14 *5 *3)))) +(((*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1159))))) +(((*1 *2 *3) + (-12 (-14 *4 (-627 (-1152))) (-4 *5 (-445)) + (-5 *2 + (-2 (|:| |glbase| (-627 (-242 *4 *5))) (|:| |glval| (-627 (-552))))) + (-5 *1 (-615 *4 *5)) (-5 *3 (-627 (-242 *4 *5)))))) (((*1 *2 *2) - (-12 (-4 *3 (-544)) (-4 *4 (-968 *3)) (-5 *1 (-140 *3 *4 *2)) - (-4 *2 (-368 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-968 *4)) (-4 *2 (-368 *4)) - (-5 *1 (-496 *4 *5 *2 *3)) (-4 *3 (-368 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-669 *5)) (-4 *5 (-968 *4)) (-4 *4 (-544)) - (-5 *2 (-669 *4)) (-5 *1 (-673 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-544)) (-4 *4 (-968 *3)) (-5 *1 (-1201 *3 *4 *2)) - (-4 *2 (-1208 *4))))) -(((*1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-809))))) -(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) - ((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1149)) - (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-563 *4 *2)) - (-4 *2 (-13 (-1171) (-935) (-1112) (-29 *4)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-1232 *3))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-289 *2)) (-4 *2 (-707)) (-4 *2 (-1186))))) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3))))) (((*1 *2) - (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) - (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) - (-5 *1 (-964 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) + (-12 (-5 *2 (-671 (-889 *3))) (-5 *1 (-345 *3 *4)) (-14 *3 (-900)) + (-14 *4 (-900)))) ((*1 *2) - (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) - (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) - (-5 *1 (-1080 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-827)) (-5 *2 (-1158 (-625 *4))) (-5 *1 (-1157 *4)) - (-5 *3 (-625 *4))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-552)) (-5 *5 (-1131)) (-5 *6 (-669 (-221))) - (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G)))) - (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN)))) - (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT)))) - (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730))))) -(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-431))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) -(((*1 *2 *3) - (-12 (-4 *4 (-968 *2)) (-4 *2 (-544)) (-5 *1 (-140 *2 *4 *3)) - (-4 *3 (-368 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-968 *2)) (-4 *2 (-544)) (-5 *1 (-496 *2 *4 *5 *3)) - (-4 *5 (-368 *2)) (-4 *3 (-368 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-669 *4)) (-4 *4 (-968 *2)) (-4 *2 (-544)) - (-5 *1 (-673 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-968 *2)) (-4 *2 (-544)) (-5 *1 (-1201 *2 *4 *3)) - (-4 *3 (-1208 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-52)) (-5 *1 (-809))))) -(((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-155)))) - ((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-358)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-562 *5 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-625 (-289 *3))) (-5 *1 (-289 *3)) (-4 *3 (-544)) - (-4 *3 (-1186))))) -(((*1 *1 *1 *1) (-5 *1 (-839)))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) - (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) - (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-827)) (-5 *2 (-625 (-625 (-625 *4)))) - (-5 *1 (-1157 *4)) (-5 *3 (-625 (-625 *4)))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-552)) (-5 *5 (-669 (-221))) - (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G)))) - (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN)))) (-5 *3 (-221)) - (-5 *2 (-1011)) (-5 *1 (-730))))) -(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-431))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-751)) (-5 *1 (-762 *3)) (-4 *3 (-1025)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-939 *3 *2)) (-4 *2 (-130)) (-4 *3 (-544)) - (-4 *3 (-1025)) (-4 *2 (-772)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-751)) (-5 *1 (-1145 *3)) (-4 *3 (-1025)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-947)) (-4 *2 (-130)) (-5 *1 (-1151 *3)) (-4 *3 (-544)) - (-4 *3 (-1025)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-751)) (-5 *1 (-1205 *4 *3)) (-14 *4 (-1149)) - (-4 *3 (-1025))))) -(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-52)) (-5 *1 (-809))))) -(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025))))) + (-12 (-5 *2 (-671 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) + (-14 *4 + (-3 (-1148 *3) + (-1235 (-627 (-2 (|:| -4288 *3) (|:| -4153 (-1096))))))))) + ((*1 *2) + (-12 (-5 *2 (-671 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) + (-14 *4 (-900))))) +(((*1 *2 *2) + (-12 (-5 *2 (-627 *7)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) + (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) + (-5 *1 (-967 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-627 *7)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) + (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) + (-5 *1 (-1083 *3 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) + ((*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896))))) +(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-220)) (-5 *1 (-1238)))) + ((*1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-1238))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-552)) (-5 *1 (-557 *3)) (-4 *3 (-1017 *2)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1079 *3 *4 *2 *5 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358)) + (-12 (-5 *3 (-627 (-401 (-931 (-166 (-552)))))) + (-5 *2 (-627 (-627 (-288 (-931 (-166 *4)))))) (-5 *1 (-372 *4)) + (-4 *4 (-13 (-357) (-828))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-288 (-401 (-931 (-166 (-552))))))) + (-5 *2 (-627 (-627 (-288 (-931 (-166 *4)))))) (-5 *1 (-372 *4)) + (-4 *4 (-13 (-357) (-828))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-401 (-931 (-166 (-552))))) + (-5 *2 (-627 (-288 (-931 (-166 *4))))) (-5 *1 (-372 *4)) + (-4 *4 (-13 (-357) (-828))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-288 (-401 (-931 (-166 (-552)))))) + (-5 *2 (-627 (-288 (-931 (-166 *4))))) (-5 *1 (-372 *4)) + (-4 *4 (-13 (-357) (-828)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-1235 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-2 (|:| |ir| (-571 (-402 *6))) (|:| |specpart| (-402 *6)) - (|:| |polypart| *6))) - (-5 *1 (-562 *5 *6)) (-5 *3 (-402 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-446)) + (-2 (|:| |lm| (-380 *3)) (|:| |mm| (-380 *3)) (|:| |rm| (-380 *3)))) + (-5 *1 (-380 *3)) (-4 *3 (-1076)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 - (-625 - (-2 (|:| |eigval| (-3 (-402 (-928 *4)) (-1138 (-1149) (-928 *4)))) - (|:| |eigmult| (-751)) - (|:| |eigvec| (-625 (-669 (-402 (-928 *4)))))))) - (-5 *1 (-287 *4)) (-5 *3 (-669 (-402 (-928 *4))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112))))) + (-2 (|:| |lm| (-802 *3)) (|:| |mm| (-802 *3)) (|:| |rm| (-802 *3)))) + (-5 *1 (-802 *3)) (-4 *3 (-830))))) +(((*1 *2 *1) (-12 (-5 *2 (-1101 (-552) (-598 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *1) + (-12 (-4 *3 (-971 *2)) (-4 *4 (-1211 *3)) (-4 *2 (-301)) + (-5 *1 (-407 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1017 *3))))) + ((*1 *2 *1) + (-12 (-4 *3 (-544)) (-4 *3 (-830)) (-5 *2 (-1101 *3 (-598 *1))) + (-4 *1 (-424 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1101 (-552) (-598 (-487)))) (-5 *1 (-487)))) + ((*1 *2 *1) + (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-709) *4)) + (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-38 *4)))) + ((*1 *2 *1) + (-12 (-4 *4 (-169)) (-4 *2 (|SubsetCategory| (-709) *4)) + (-5 *1 (-644 *3 *4 *2)) (-4 *3 (-700 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544))))) (((*1 *2 *3) - (-12 (-5 *3 (-1158 (-625 *4))) (-4 *4 (-827)) - (-5 *2 (-625 (-625 *4))) (-5 *1 (-1157 *4))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-552)) (-5 *5 (-669 (-221))) - (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCN)))) - (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 OUTPUT)))) - (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) - (-5 *1 (-432))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-114))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1199 *3)) (-4 *3 (-1186))))) -(((*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-52)) (-5 *1 (-809))))) -(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025))))) + (-12 (-5 *3 (-671 (-401 (-931 (-552))))) (-5 *2 (-627 (-310 (-552)))) + (-5 *1 (-1010))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1028)) (-4 *4 (-1211 *3)) (-5 *1 (-161 *3 *4 *2)) + (-4 *2 (-1211 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1189))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-754)) (-5 *1 (-113)))) + ((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-182))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-111) *7 (-627 *7))) (-4 *1 (-1182 *4 *5 *6 *7)) + (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-900)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-257))))) +(((*1 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-23))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-605 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -2303 *4) (|:| |sol?| (-112))) - (-552) *4)) - (-4 *4 (-358)) (-4 *5 (-1208 *4)) (-5 *1 (-562 *4 *5))))) -(((*1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-552)))) - ((*1 *1 *1) (-5 *1 (-1093)))) -(((*1 *2 *3) - (-12 (-4 *4 (-446)) - (-5 *2 - (-625 - (-2 (|:| |eigval| (-3 (-402 (-928 *4)) (-1138 (-1149) (-928 *4)))) - (|:| |geneigvec| (-625 (-669 (-402 (-928 *4)))))))) - (-5 *1 (-287 *4)) (-5 *3 (-669 (-402 (-928 *4))))))) + (-12 (-5 *2 (-1235 (-1235 (-552)))) (-5 *3 (-900)) (-5 *1 (-459))))) (((*1 *2 *1) - (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-625 (-625 *4)))) (-5 *2 (-625 (-625 *4))) - (-5 *1 (-1157 *4)) (-4 *4 (-827))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) - (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 FUNCTN)))) - (-5 *2 (-1011)) (-5 *1 (-729))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-432))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-754)) (-5 *1 (-114))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-552)) - (|:| -3449 (-625 (-2 (|:| |irr| *3) (|:| -3515 (-552))))))) - (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-552)) - (|:| -3449 (-625 (-2 (|:| |irr| *3) (|:| -3515 (-552))))))) - (-5 *1 (-1197 *3)) (-4 *3 (-1208 (-552)))))) + (-12 (-4 *3 (-1028)) (-5 *2 (-627 *1)) (-4 *1 (-1110 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-177)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-305)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-949)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-973)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1015)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1050))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1235 *4)) (-4 *4 (-623 (-552))) + (-5 *2 (-1235 (-552))) (-5 *1 (-1262 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1101 (-552) (-598 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *1) + (-12 (-4 *3 (-301)) (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) + (-5 *2 (-1235 *6)) (-5 *1 (-407 *3 *4 *5 *6)) + (-4 *6 (-13 (-403 *4 *5) (-1017 *4))))) + ((*1 *2 *1) + (-12 (-4 *3 (-1028)) (-4 *3 (-830)) (-5 *2 (-1101 *3 (-598 *1))) + (-4 *1 (-424 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1101 (-552) (-598 (-487)))) (-5 *1 (-487)))) + ((*1 *2 *1) + (-12 (-4 *3 (-169)) (-4 *2 (-38 *3)) (-5 *1 (-605 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-709) *3)))) + ((*1 *2 *1) + (-12 (-4 *3 (-169)) (-4 *2 (-700 *3)) (-5 *1 (-644 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-709) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-461)) (-5 *3 (-627 (-257))) (-5 *1 (-1236)))) + ((*1 *1 *1) (-5 *1 (-1236)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-627 (-52))) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1235 (-627 *3))) (-4 *4 (-301)) + (-5 *2 (-627 *3)) (-5 *1 (-448 *4 *3)) (-4 *3 (-1211 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830)) (-4 *2 (-445))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-1134)) (-5 *5 (-671 (-220))) + (-5 *2 (-1014)) (-5 *1 (-730))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1235 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) + (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4)))))) +(((*1 *1 *1 *1) (-4 *1 (-296))) ((*1 *1 *1) (-4 *1 (-296)))) +(((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1028)) (-14 *3 (-1152)) + (-14 *4 *2)))) (((*1 *2 *1) - (-12 (-4 *2 (-689 *3)) (-5 *1 (-807 *2 *3)) (-4 *3 (-1025))))) -(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -3114 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-358)) (-5 *1 (-562 *4 *2)) (-4 *2 (-1208 *4))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-552)))) - ((*1 *1 *1 *1) (-5 *1 (-1093)))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-402 (-928 *6)) (-1138 (-1149) (-928 *6)))) - (-5 *5 (-751)) (-4 *6 (-446)) (-5 *2 (-625 (-669 (-402 (-928 *6))))) - (-5 *1 (-287 *6)) (-5 *4 (-669 (-402 (-928 *6)))))) - ((*1 *2 *3 *4) - (-12 + (-12 (-4 *1 (-1079 *3 *2 *4 *5 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-882 *3)) (-4 *3 (-1076)) (-5 *2 (-1078 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1076)) (-5 *2 (-1078 (-627 *4))) (-5 *1 (-883 *4)) + (-5 *3 (-627 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1076)) (-5 *2 (-1078 (-1078 *4))) (-5 *1 (-883 *4)) + (-5 *3 (-1078 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1078 *3)) (-5 *1 (-883 *3)) (-4 *3 (-1076))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-552)) (-5 *3 - (-2 (|:| |eigval| (-3 (-402 (-928 *5)) (-1138 (-1149) (-928 *5)))) - (|:| |eigmult| (-751)) (|:| |eigvec| (-625 *4)))) - (-4 *5 (-446)) (-5 *2 (-625 (-669 (-402 (-928 *5))))) - (-5 *1 (-287 *5)) (-5 *4 (-669 (-402 (-928 *5))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1131)) (-5 *2 (-625 (-1154))) (-5 *1 (-1109))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-625 (-625 (-625 *4)))) (-5 *2 (-625 (-625 *4))) - (-4 *4 (-827)) (-5 *1 (-1157 *4))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *2 (-1011)) - (-5 *1 (-729))))) -(((*1 *1) (-5 *1 (-432)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1131) (-754))) (-5 *1 (-114))))) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-754)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-776)) (-4 *4 (-928 *5 *6 *7)) (-4 *5 (-445)) (-4 *7 (-830)) + (-5 *1 (-442 *5 *6 *7 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-128)))) +(((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-1189))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-776)) (-4 *4 (-830)) (-4 *6 (-301)) (-5 *2 (-412 *3)) + (-5 *1 (-725 *5 *4 *6 *3)) (-4 *3 (-928 *6 *5 *4))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-461)) (-5 *4 (-900)) (-5 *2 (-1240)) (-5 *1 (-1236))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -1323 (-765 *3)) (|:| |coef2| (-765 *3)))) + (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *2 (-2 (|:| -1323 *1) (|:| |coef2| *1))) + (-4 *1 (-1042 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-671 *5))) (-5 *4 (-1235 *5)) (-4 *5 (-301)) + (-4 *5 (-1028)) (-5 *2 (-671 *5)) (-5 *1 (-1008 *5))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-627 *8)) (-5 *3 (-1 (-111) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) + (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-956 *5 *6 *7 *8))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830)) (-4 *2 (-544)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830)) (-4 *2 (-544))))) +(((*1 *1) (-5 *1 (-1040)))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) + (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) + (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-900)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-754))))) +(((*1 *1 *1 *1) (-5 *1 (-128)))) +(((*1 *2 *2) (-12 (-5 *2 (-671 (-310 (-552)))) (-5 *1 (-1010))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 (-871 *6))) + (-5 *5 (-1 (-868 *6 *8) *8 (-871 *6) (-868 *6 *8))) (-4 *6 (-1076)) + (-4 *8 (-13 (-1028) (-600 (-871 *6)) (-1017 *7))) + (-5 *2 (-868 *6 *8)) (-4 *7 (-13 (-1028) (-830))) + (-5 *1 (-920 *6 *7 *8))))) +(((*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-301))))) +(((*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) + ((*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1189)))) + ((*1 *1 *1) (-4 *1 (-848 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-952 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-775)) + (-4 *4 (-830))))) (((*1 *2 *3) - (-12 (-4 *4 (-344)) (-5 *2 (-413 *3)) (-5 *1 (-212 *4 *3)) - (-4 *3 (-1208 *4)))) + (-12 (-5 *3 (-1152)) (-5 *2 (-1 (-1148 (-931 *4)) (-931 *4))) + (-5 *1 (-1243 *4)) (-4 *4 (-357))))) +(((*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) ((*1 *2 *3) - (-12 (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-751)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) - (-4 *3 (-1208 (-552))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-625 (-751))) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) - (-4 *3 (-1208 (-552))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-625 (-751))) (-5 *5 (-751)) (-5 *2 (-413 *3)) - (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-751)) (-5 *2 (-413 *3)) (-5 *1 (-436 *3)) - (-4 *3 (-1208 (-552))))) - ((*1 *2 *3) - (-12 (-5 *2 (-413 *3)) (-5 *1 (-983 *3)) - (-4 *3 (-1208 (-402 (-552)))))) + (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896))))) +(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) + ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237))))) +(((*1 *2 *1) (-12 (-4 *1 (-362)) (-5 *2 (-900)))) ((*1 *2 *3) - (-12 (-5 *2 (-413 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-1208 (-552)))))) + (-12 (-5 *3 (-1235 *4)) (-4 *4 (-343)) (-5 *2 (-900)) + (-5 *1 (-520 *4))))) +(((*1 *1 *1) (-5 *1 (-220))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) + (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) + ((*1 *1 *1) (-5 *1 (-373))) ((*1 *1) (-5 *1 (-373)))) (((*1 *2 *3) - (-12 (-5 *3 (-311 *4)) (-4 *4 (-13 (-808) (-827) (-1025))) - (-5 *2 (-1131)) (-5 *1 (-806 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-311 *5)) (-5 *4 (-112)) - (-4 *5 (-13 (-808) (-827) (-1025))) (-5 *2 (-1131)) - (-5 *1 (-806 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-802)) (-5 *4 (-311 *5)) - (-4 *5 (-13 (-808) (-827) (-1025))) (-5 *2 (-1237)) - (-5 *1 (-806 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-802)) (-5 *4 (-311 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-808) (-827) (-1025))) (-5 *2 (-1237)) - (-5 *1 (-806 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-808)) (-5 *2 (-1131)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-808)) (-5 *3 (-112)) (-5 *2 (-1131)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-808)) (-5 *3 (-802)) (-5 *2 (-1237)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-808)) (-5 *3 (-802)) (-5 *4 (-112)) (-5 *2 (-1237))))) -(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-625 (-402 *7))) - (-4 *7 (-1208 *6)) (-5 *3 (-402 *7)) (-4 *6 (-358)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-562 *6 *7))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-552)))) - ((*1 *1 *1 *1) (-5 *1 (-1093)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-402 (-928 *5)) (-1138 (-1149) (-928 *5)))) - (-4 *5 (-446)) (-5 *2 (-625 (-669 (-402 (-928 *5))))) - (-5 *1 (-287 *5)) (-5 *4 (-669 (-402 (-928 *5))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-625 (-625 (-625 *4)))) (-5 *3 (-625 *4)) (-4 *4 (-827)) - (-5 *1 (-1157 *4))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) - (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 FUNCTN)))) - (-5 *2 (-1011)) (-5 *1 (-729))))) -(((*1 *1) (-5 *1 (-432)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-109))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1194 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1223 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804))))) -(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358)) - (-5 *2 (-2 (|:| -3114 (-402 *6)) (|:| |coeff| (-402 *6)))) - (-5 *1 (-562 *5 *6)) (-5 *3 (-402 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-669 (-402 (-928 *4)))) (-4 *4 (-446)) - (-5 *2 (-625 (-3 (-402 (-928 *4)) (-1138 (-1149) (-928 *4))))) - (-5 *1 (-287 *4))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384))))) + (-12 (-5 *3 (-1235 (-310 (-220)))) + (-5 *2 + (-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) + (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552)))) + (-5 *1 (-299))))) (((*1 *2 *1) - (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112))))) + (-12 (-4 *3 (-357)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) + (-5 *2 (-1235 *6)) (-5 *1 (-330 *3 *4 *5 *6)) + (-4 *6 (-336 *3 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-374))) (-5 *1 (-1016)) (-5 *3 (-374))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-625 (-625 (-625 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-625 *5)) (-4 *5 (-827)) (-5 *1 (-1157 *5))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-729))))) -(((*1 *1) (-5 *1 (-432)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-941))) (-5 *1 (-108))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-117 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-552)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-847 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-847 *2)) (-14 *2 (-552)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-552)) (-14 *3 *2) (-5 *1 (-848 *3 *4)) - (-4 *4 (-845 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-552)) (-5 *1 (-848 *2 *3)) (-4 *3 (-845 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-552)) (-4 *1 (-1194 *3 *4)) (-4 *3 (-1025)) - (-4 *4 (-1223 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1194 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1223 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804))))) -(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -2303 *7) (|:| |sol?| (-112))) - (-552) *7)) - (-5 *6 (-625 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1208 *7)) - (-5 *3 (-402 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-562 *7 *8))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-751)) (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *5)) - (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *1 (-1230 *3)) (-4 *3 (-23)) (-4 *3 (-1186))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-1058))) (-5 *1 (-286))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112))))) + (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-401 *5)) + (|:| |c2| (-401 *5)) (|:| |deg| (-754)))) + (-5 *1 (-145 *4 *5 *3)) (-4 *3 (-1211 (-401 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-301)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1100 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-827)) (-5 *4 (-625 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-625 *4)))) - (-5 *1 (-1157 *6)) (-5 *5 (-625 *4))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) - (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) (-5 *2 (-1011)) - (-5 *1 (-729))))) -(((*1 *1) (-5 *1 (-432)))) -(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-4 *1 (-106 *3))))) + (-12 (-5 *3 (-1148 *9)) (-5 *4 (-627 *7)) (-4 *7 (-830)) + (-4 *9 (-928 *8 *6 *7)) (-4 *6 (-776)) (-4 *8 (-301)) + (-5 *2 (-627 (-754))) (-5 *1 (-725 *6 *7 *8 *9)) (-5 *5 (-754))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1134)) (-5 *3 (-552)) (-5 *1 (-236))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-220))) + (-5 *2 (-1014)) (-5 *1 (-737))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) + (-5 *2 (-671 *4)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-671 *4)) (-5 *1 (-410 *3 *4)) + (-4 *3 (-411 *4)))) + ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-671 *3))))) +(((*1 *2) + (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) + (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) + (-5 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) + (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-1240)) + (-5 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *7 (-1048 *3 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-5 *2 (-627 (-931 *3))) (-4 *3 (-445)) (-5 *1 (-354 *3 *4)) + (-14 *4 (-627 (-1152))))) + ((*1 *2 *2) + (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-445)) + (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-443 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-627 *7)) (-5 *3 (-1134)) (-4 *7 (-928 *4 *5 *6)) + (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-5 *1 (-443 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-627 *7)) (-5 *3 (-1134)) (-4 *7 (-928 *4 *5 *6)) + (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-5 *1 (-443 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) + (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-627 (-763 *3 (-844 *4)))) (-4 *3 (-445)) + (-14 *4 (-627 (-1152))) (-5 *1 (-612 *3 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1194 *3 *2)) (-4 *3 (-1025)) - (-4 *2 (-1223 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-358)) - (-5 *2 (-625 (-2 (|:| C (-669 *5)) (|:| |g| (-1232 *5))))) - (-5 *1 (-954 *5)) (-5 *3 (-669 *5)) (-5 *4 (-1232 *5))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -3114 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-625 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1208 *7)) - (-5 *3 (-402 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-562 *7 *8))))) -(((*1 *2 *3 *3 *1) - (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-1077)) (-5 *1 (-286))))) -(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-462)))) - ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1233)))) - ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1234))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-557 *3)) (-4 *3 (-1014 (-552))))) + (-12 (-5 *2 (-627 (-2 (|:| |k| (-1152)) (|:| |c| (-1257 *3))))) + (-5 *1 (-1257 *3)) (-4 *3 (-1028)))) ((*1 *2 *1) - (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) - (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) (-5 *2 (-1011)) - (-5 *1 (-729))))) -(((*1 *1) (-5 *1 (-432)))) -(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1186))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-1192 *4)) (-4 *4 (-1025)) (-4 *4 (-544)) - (-5 *2 (-402 (-928 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-1192 *4)) (-4 *4 (-1025)) (-4 *4 (-544)) - (-5 *2 (-402 (-928 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-897)) (-5 *1 (-679)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-669 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-358)) (-5 *1 (-954 *5))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -2303 *6) (|:| |sol?| (-112))) (-552) - *6)) - (-4 *6 (-358)) (-4 *7 (-1208 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6)) - (-2 (|:| -3114 (-402 *7)) (|:| |coeff| (-402 *7))) "failed")) - (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-1149)) (-5 *3 (-1077)) (-5 *1 (-286))))) -(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-839))) - ((*1 *1 *1) (-4 *1 (-943))) ((*1 *1 *1) (-5 *1 (-1093)))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1186)) - (-4 *2 (-1073))))) + (-12 (-5 *2 (-627 (-2 (|:| |k| *3) (|:| |c| (-1259 *3 *4))))) + (-5 *1 (-1259 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028))))) +(((*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1028))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-168))))) (((*1 *2 *1) - (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) - (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) (-5 *2 (-1011)) - (-5 *1 (-729))))) -(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-719))))) -(((*1 *1) (-5 *1 (-432)))) -(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1186))))) + (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-830)) (-5 *2 (-111))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1005 *2)) (-4 *2 (-1189))))) +(((*1 *2 *3) (-12 (-5 *3 (-627 (-52))) (-5 *2 (-1240)) (-5 *1 (-843))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-301)) (-4 *3 (-169)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) + (-5 *1 (-670 *3 *4 *5 *6)) (-4 *6 (-669 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-682 *3)) + (-4 *3 (-301))))) (((*1 *2 *1) - (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-919 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-167 (-552))) (-5 *2 (-112)) (-5 *1 (-440)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-497 (-402 (-552)) (-236 *5 (-751)) (-841 *4) - (-243 *4 (-402 (-552))))) - (-14 *4 (-625 (-1149))) (-14 *5 (-751)) (-5 *2 (-112)) - (-5 *1 (-498 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-937 *3)) (-4 *3 (-537)))) - ((*1 *2 *1) (-12 (-4 *1 (-1190)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-805))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *4 *5 *6)) (-4 *4 (-358)) - (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-5 *1 (-444 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-358)) - (-5 *2 - (-2 (|:| R (-669 *6)) (|:| A (-669 *6)) (|:| |Ainv| (-669 *6)))) - (-5 *1 (-954 *6)) (-5 *3 (-669 *6))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3114 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-358)) (-4 *7 (-1208 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6)) - (-2 (|:| -3114 (-402 *7)) (|:| |coeff| (-402 *7))) "failed")) - (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-625 (-941))) (-5 *1 (-286))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1073))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-897)) (-5 *1 (-1074 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) - (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 G)))) (-5 *2 (-1011)) - (-5 *1 (-729))))) -(((*1 *1) (-5 *1 (-432)))) -(((*1 *2) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-104))))) -(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1188))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-805))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145)) - (-4 *3 (-302)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *1 (-953 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-625 *6) "failed") (-552) *6 *6)) (-4 *6 (-358)) - (-4 *7 (-1208 *6)) - (-5 *2 (-2 (|:| |answer| (-571 (-402 *7))) (|:| |a0| *6))) - (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-941))) (-5 *1 (-286))))) -(((*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) - ((*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) - ((*1 *1 *1) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1179 *2 *3 *4 *5)) (-4 *2 (-544)) - (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-1039 *2 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1186)))) - ((*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-897)) (-5 *1 (-1074 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) - (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) - (-5 *2 (-1011)) (-5 *1 (-729))))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1014 (-48))) - (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-4 *5 (-425 *4)) - (-5 *2 (-413 (-1145 (-48)))) (-5 *1 (-430 *4 *5 *3)) - (-4 *3 (-1208 *5))))) + (-12 (-5 *2 (-1235 (-754))) (-5 *1 (-657 *3)) (-4 *3 (-1076))))) (((*1 *2 *3) - (-12 (-5 *3 (-1149)) + (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-357) (-1174) (-981)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 - (-2 (|:| |zeros| (-1129 (-221))) (|:| |ones| (-1129 (-221))) - (|:| |singularities| (-1129 (-221))))) - (-5 *1 (-104))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -2800 (-625 (-1149))) (|:| -2811 (-625 (-1149))))) - (-5 *1 (-1188))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-804)) (-5 *3 (-625 (-1149))) (-5 *1 (-805))))) + (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) + (|:| |success| (-111)))) + (-5 *1 (-772)) (-5 *5 (-552))))) (((*1 *2 *2) - (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145)) - (-4 *3 (-302)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *1 (-953 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -2303 *6) (|:| |sol?| (-112))) (-552) - *6)) - (-4 *6 (-358)) (-4 *7 (-1208 *6)) - (-5 *2 (-2 (|:| |answer| (-571 (-402 *7))) (|:| |a0| *6))) - (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7))))) -(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-61 *3)) (-14 *3 (-1149)))) - ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-68 *3)) (-14 *3 (-1149)))) - ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-71 *3)) (-14 *3 (-1149)))) - ((*1 *2 *1) (-12 (-4 *1 (-390)) (-5 *2 (-1237)))) - ((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1237)) (-5 *1 (-392)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1131)) (-5 *4 (-839)) (-5 *2 (-1237)) (-5 *1 (-1111)))) - ((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1237)) (-5 *1 (-1111)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-839))) (-5 *2 (-1237)) (-5 *1 (-1111))))) -(((*1 *1) (-5 *1 (-286)))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-625 (-1149))) (-4 *4 (-1073)) - (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4)))) - (-5 *1 (-1049 *4 *5 *2)) - (-4 *2 (-13 (-425 *5) (-862 *4) (-598 (-868 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1073)) - (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3)))) - (-5 *1 (-1049 *3 *4 *2)) - (-4 *2 (-13 (-425 *4) (-862 *3) (-598 (-868 *3))))))) + (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1152))))) +(((*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1189))))) (((*1 *2 *1) - (-12 (-4 *1 (-588 *3 *2)) (-4 *3 (-1073)) (-4 *3 (-827)) - (-4 *2 (-1186)))) - ((*1 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) - ((*1 *2 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) + (|partial| -12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-537)) + (-5 *2 (-401 (-552))))) ((*1 *2 *1) - (-12 (-4 *2 (-1186)) (-5 *1 (-849 *2 *3)) (-4 *3 (-1186)))) - ((*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) + (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-412 *3)) (-4 *3 (-537)) + (-4 *3 (-544)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-537)) (-5 *2 (-401 (-552))))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) - (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1186)))) - ((*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-651)))) + (|partial| -12 (-4 *1 (-780 *3)) (-4 *3 (-169)) (-4 *3 (-537)) + (-5 *2 (-401 (-552))))) ((*1 *2 *1) - (-12 (-5 *2 (-625 (-897))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-897)) - (-14 *4 (-897))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-552)) (-5 *5 (-669 (-221))) - (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) (-5 *3 (-221)) - (-5 *2 (-1011)) (-5 *1 (-729))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-4 *5 (-425 *4)) - (-5 *2 - (-3 (|:| |overq| (-1145 (-402 (-552)))) - (|:| |overan| (-1145 (-48))) (|:| -3547 (-112)))) - (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1208 *5))))) -(((*1 *2 *3) - (-12 (|has| *2 (-6 (-4355 "*"))) (-4 *5 (-368 *2)) (-4 *6 (-368 *2)) - (-4 *2 (-1025)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1208 *2)) - (-4 *4 (-667 *2 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1188)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-625 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1188))))) -(((*1 *1) (-5 *1 (-803)))) -(((*1 *2 *2) - (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145)) - (-4 *3 (-302)) (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *1 (-953 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3114 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-358)) (-4 *7 (-1208 *6)) - (-5 *2 (-2 (|:| |answer| (-571 (-402 *7))) (|:| |a0| *6))) - (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7))))) -(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-386))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-358)) (-5 *2 (-625 (-1129 *4))) (-5 *1 (-280 *4 *5)) - (-5 *3 (-1129 *4)) (-4 *5 (-1223 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-625 (-897))) (-5 *1 (-1074 *3 *4)) (-14 *3 (-897)) - (-14 *4 (-897))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) - (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) - (-5 *2 (-1011)) (-5 *1 (-729))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) - (-4 *5 (-425 *4)) (-5 *2 (-413 (-1145 (-402 (-552))))) - (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1208 *5))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4355 "*"))) (-4 *5 (-368 *2)) (-4 *6 (-368 *2)) - (-4 *2 (-1025)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1208 *2)) - (-4 *4 (-667 *2 *5 *6))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-827)) - (-4 *3 (-1073))))) -(((*1 *1) (-5 *1 (-803)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) - (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *1 (-953 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-571 *3) *3 (-1149))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1149))) - (-4 *3 (-279)) (-4 *3 (-611)) (-4 *3 (-1014 *4)) (-4 *3 (-425 *7)) - (-5 *4 (-1149)) (-4 *7 (-598 (-868 (-552)))) (-4 *7 (-446)) - (-4 *7 (-862 (-552))) (-4 *7 (-827)) (-5 *2 (-571 *3)) - (-5 *1 (-561 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1237)) (-5 *1 (-386)))) - ((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-386))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1223 *3))))) -(((*1 *2) - (-12 (-5 *2 (-1232 (-1074 *3 *4))) (-5 *1 (-1074 *3 *4)) - (-14 *3 (-897)) (-14 *4 (-897))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) - (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) - (-5 *2 (-1011)) (-5 *1 (-729))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) (-4 *5 (-425 *4)) - (-5 *2 (-413 *3)) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1208 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1025)) (-4 *2 (-667 *4 *5 *6)) - (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1208 *4)) (-4 *5 (-368 *4)) - (-4 *6 (-368 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1187 *2)) - (-4 *2 (-1073)))) + (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-816 *3)) (-4 *3 (-537)) + (-4 *3 (-1076)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-823 *3)) (-4 *3 (-537)) + (-4 *3 (-1076)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-976 *3)) (-4 *3 (-169)) (-4 *3 (-537)) + (-5 *2 (-401 (-552))))) ((*1 *2 *3) - (-12 (-5 *3 (-625 *2)) (-4 *2 (-1073)) (-4 *2 (-827)) - (-5 *1 (-1187 *2))))) -(((*1 *1) (-5 *1 (-803)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) - (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *1 (-953 *3 *4 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1149)) (-4 *4 (-446)) (-4 *4 (-827)) - (-5 *1 (-561 *4 *2)) (-4 *2 (-279)) (-4 *2 (-425 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1223 *3))))) + (|partial| -12 (-5 *2 (-401 (-552))) (-5 *1 (-987 *3)) + (-4 *3 (-1017 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-357)) (-5 *2 (-627 *3)) (-5 *1 (-924 *4 *3)) + (-4 *3 (-1211 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-325 *3)) (-4 *3 (-830))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1186)) (-5 *2 (-751)) - (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-130)) - (-5 *2 (-751)))) + (-12 (-4 *4 (-169)) (-5 *2 (-1148 (-931 *4))) (-5 *1 (-410 *3 *4)) + (-4 *3 (-411 *4)))) ((*1 *2) - (-12 (-4 *4 (-358)) (-5 *2 (-751)) (-5 *1 (-323 *3 *4)) - (-4 *3 (-324 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-356 *3)) (-4 *3 (-1073)))) - ((*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-751)))) - ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-381 *3)) (-4 *3 (-1073)))) + (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-4 *3 (-357)) + (-5 *2 (-1148 (-931 *3))))) ((*1 *2) - (-12 (-4 *4 (-1073)) (-5 *2 (-751)) (-5 *1 (-419 *3 *4)) - (-4 *3 (-420 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-751)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1073)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-4 *5 (-1208 *4)) (-5 *2 (-751)) - (-5 *1 (-704 *3 *4 *5)) (-4 *3 (-705 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-799 *3)) (-4 *3 (-827)))) - ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-982)))) + (-12 (-5 *2 (-1148 (-401 (-931 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) + (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-823 *4)) (-5 *3 (-598 *4)) (-5 *5 (-111)) + (-4 *4 (-13 (-1174) (-29 *6))) + (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-219 *6 *4))))) +(((*1 *2) + (-12 (-5 *2 (-1240)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) + (-4 *4 (-1076))))) +(((*1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1238))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-627 (-922 (-220))))) + (-5 *2 (-627 (-1070 (-220)))) (-5 *1 (-907))))) +(((*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1134)) (-4 *1 (-358 *2 *4)) (-4 *2 (-1076)) + (-4 *4 (-1076)))) + ((*1 *1 *2) + (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) + (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *2 (-111)) (-5 *1 (-294))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-401 *4)) (-4 *4 (-1211 *3)) + (-4 *3 (-13 (-357) (-144) (-1017 (-552)))) (-5 *1 (-556 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) + (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) - (-4 *3 (-1208 *2))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1186)) - (-4 *3 (-1073)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-881 *4)) (-4 *4 (-1073)) (-5 *2 (-112)) - (-5 *1 (-880 *4)))) + (-12 (-5 *2 (-111)) (-5 *1 (-1258 *3 *4)) (-4 *3 (-1028)) + (-4 *4 (-826))))) +(((*1 *2 *3) + (-12 (-5 *3 (-754)) (-5 *2 (-1148 *4)) (-5 *1 (-520 *4)) + (-4 *4 (-343))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-1163 *2)) (-4 *2 (-357))))) +(((*1 *2 *3) + (-12 (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1211 (-48))))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-897)) (-5 *2 (-112)) (-5 *1 (-1074 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-728))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1025)) (-4 *2 (-667 *4 *5 *6)) - (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1208 *4)) (-4 *5 (-368 *4)) - (-4 *6 (-368 *4))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-1073))))) -(((*1 *1) (-5 *1 (-803)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) - (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *1 (-953 *3 *4 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1149)) (-4 *4 (-544)) (-4 *4 (-827)) - (-5 *1 (-561 *4 *2)) (-4 *2 (-425 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 (-432))))) - (-5 *1 (-1153))))) + (-12 (-5 *2 (-2 (|:| |less| (-120 *3)) (|:| |greater| (-120 *3)))) + (-5 *1 (-120 *3)) (-4 *3 (-830)))) + ((*1 *2 *2) + (-12 (-5 *2 (-573 *4)) (-4 *4 (-13 (-29 *3) (-1174))) + (-4 *3 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) + (-5 *1 (-571 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-573 (-401 (-931 *3)))) + (-4 *3 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) + (-5 *1 (-576 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-357)) + (-5 *2 (-2 (|:| -1317 *3) (|:| |special| *3))) (-5 *1 (-710 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1235 *5)) (-4 *5 (-357)) (-4 *5 (-1028)) + (-5 *2 (-627 (-627 (-671 *5)))) (-5 *1 (-1008 *5)) + (-5 *3 (-627 (-671 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1235 (-1235 *5))) (-4 *5 (-357)) (-4 *5 (-1028)) + (-5 *2 (-627 (-627 (-671 *5)))) (-5 *1 (-1008 *5)) + (-5 *3 (-627 (-671 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-138)) (-5 *2 (-627 *1)) (-4 *1 (-1120)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-627 *1)) (-4 *1 (-1120))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) + (-5 *2 (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))) + (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *5 (-220)) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) (-5 *2 (-1014)) + (-5 *1 (-732))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1199 (-552))) (-4 *1 (-277 *3)) (-4 *3 (-1186)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-277 *3)) (-4 *3 (-1186))))) -(((*1 *2 *1) (-12 (-4 *1 (-1073)) (-5 *2 (-1131))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-728))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) -(((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1186))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *1 (-102 *3)) (-4 *3 (-1073))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-1073)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1073)) (-5 *2 (-112)) - (-5 *1 (-1187 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-802))))) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-411 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111))))) (((*1 *2 *2) - (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) - (-4 *3 (-544)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *1 (-953 *3 *4 *5 *6)))) + (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-301)) + (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-440 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-625 *7)) (-5 *3 (-112)) (-4 *7 (-1039 *4 *5 *6)) - (-4 *4 (-446)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) - (-5 *1 (-953 *4 *5 *6 *7))))) + (-12 (-5 *2 (-627 *7)) (-5 *3 (-1134)) (-4 *7 (-928 *4 *5 *6)) + (-4 *4 (-301)) (-4 *5 (-776)) (-4 *6 (-830)) + (-5 *1 (-440 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-627 *7)) (-5 *3 (-1134)) (-4 *7 (-928 *4 *5 *6)) + (-4 *4 (-301)) (-4 *5 (-776)) (-4 *6 (-830)) + (-5 *1 (-440 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-180))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1028)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-1211 *3))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-900)) (-5 *4 (-853)) (-5 *2 (-1240)) (-5 *1 (-1236)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237))))) +(((*1 *1 *1) (-4 *1 (-643))) ((*1 *1 *1) (-5 *1 (-1096)))) +(((*1 *1 *1) (-5 *1 (-842)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-738))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-1134)) (-5 *5 (-671 (-220))) + (-5 *2 (-1014)) (-5 *1 (-730))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *6)) (-5 *4 (-1149)) (-4 *6 (-425 *5)) - (-4 *5 (-827)) (-5 *2 (-625 (-596 *6))) (-5 *1 (-561 *5 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-402 (-552))) (-5 *1 (-117 *4)) (-14 *4 *3) - (-5 *3 (-552)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-845 *3)) (-5 *2 (-552)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-402 (-552))) (-5 *1 (-847 *4)) (-14 *4 *3) - (-5 *3 (-552)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-402 (-552))) (-5 *1 (-848 *4 *5)) - (-5 *3 (-552)) (-4 *5 (-845 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-988)) (-5 *2 (-402 (-552))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1042 *2 *3)) (-4 *2 (-13 (-825) (-358))) - (-4 *3 (-1208 *2)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1683 (*2 (-1149)))) - (-4 *2 (-1025))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-231 *3)) - (-4 *3 (-1073)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1186))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-628 *5)) (-4 *5 (-1025)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-829 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-669 *3)) (-4 *1 (-412 *3)) (-4 *3 (-170)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1025)) - (-5 *1 (-830 *2 *3)) (-4 *3 (-829 *2))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1071 *3)) (-4 *3 (-1073)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-728))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-102 *3))))) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) + (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *2 (-373)) (-5 *1 (-187))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1235 (-671 *4))) (-4 *4 (-169)) + (-5 *2 (-1235 (-671 (-931 *4)))) (-5 *1 (-184 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-627 (-552))) (-5 *2 (-754)) (-5 *1 (-577))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -2811 (-625 *3)) (|:| -2800 (-625 *3)))) - (-5 *1 (-1187 *3)) (-4 *3 (-1073))))) + (-12 + (-5 *2 + (-1235 (-627 (-2 (|:| -4288 (-889 *3)) (|:| -4153 (-1096)))))) + (-5 *1 (-345 *3 *4)) (-14 *3 (-900)) (-14 *4 (-900)))) + ((*1 *2) + (-12 (-5 *2 (-1235 (-627 (-2 (|:| -4288 *3) (|:| -4153 (-1096)))))) + (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1148 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1235 (-627 (-2 (|:| -4288 *3) (|:| -4153 (-1096)))))) + (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-900))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1189)) (-4 *2 (-1076)))) + ((*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1076))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1131)) (|:| -1288 (-1131)))) - (-5 *1 (-802))))) + (-12 (-5 *2 (-1148 (-401 (-931 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) + (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1148 *6)) (-5 *3 (-552)) (-4 *6 (-301)) (-4 *4 (-776)) + (-4 *5 (-830)) (-5 *1 (-725 *4 *5 *6 *7)) (-4 *7 (-928 *6 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-177)))) + ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-663)))) + ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-949)))) + ((*1 *2 *1) (-12 (-5 *2 (-1188)) (-5 *1 (-1050)))) + ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1094))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-631 *3 *4 *5)) (-4 *3 (-1076)) + (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *2 *3) - (-12 (-4 *4 (-446)) (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) - (-5 *2 (-625 *3)) (-5 *1 (-953 *4 *5 *6 *3)) - (-4 *3 (-1039 *4 *5 *6))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-625 (-596 *6))) (-5 *4 (-1149)) (-5 *2 (-596 *6)) - (-4 *6 (-425 *5)) (-4 *5 (-827)) (-5 *1 (-561 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-625 (-552))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) - (-14 *4 (-625 (-1149))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *1 *1) (-4 *1 (-279))) - ((*1 *1 *1) - (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) - (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) - ((*1 *1 *2) - (-12 (-5 *2 (-644 *3 *4)) (-4 *3 (-827)) - (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-5 *1 (-609 *3 *4 *5)) - (-14 *5 (-897)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-552))))) - (-4 *5 (-827)) (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1253 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) - (-4 *4 (-698 (-402 (-552)))) (-4 *3 (-827)) (-4 *4 (-170))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1077)) (-5 *1 (-275))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-625 *2)) (-4 *2 (-1073)) (-4 *2 (-1186))))) -(((*1 *1 *2) - (-12 (-5 *2 (-625 (-497 *3 *4 *5 *6))) (-4 *3 (-358)) (-4 *4 (-773)) - (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-925 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) - (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) - (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-625 *1)) (-5 *3 (-625 *7)) (-4 *1 (-1045 *4 *5 *6 *7)) - (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *1)) - (-4 *1 (-1045 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 *1)) - (-4 *1 (-1045 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-728))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1073)) (-5 *1 (-102 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1073))))) + (-12 (-5 *3 (-627 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))))) + (-4 *4 (-1211 (-401 *2))) (-5 *2 (-552)) (-5 *1 (-892 *4 *5)) + (-4 *5 (-1211 (-401 *4)))))) +(((*1 *1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1 *1) (-5 *1 (-754))) + ((*1 *1 *1 *1) (-5 *1 (-842)))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-357)) (-5 *1 (-749 *2 *3)) (-4 *2 (-691 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *1 (-1104 *3 *2)) (-4 *3 (-1211 *2))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *2 (-1014)) + (-5 *1 (-738))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 (-498))) (-5 *1 (-476))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1226 *4)) + (-4 *4 (-38 (-401 (-552)))) (-5 *2 (-1 (-1132 *4) (-1132 *4))) + (-5 *1 (-1228 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(((*1 *2 *3) (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *2)) (-4 *2 (-169)))) + ((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) + ((*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-169))))) (((*1 *2 *3) - (-12 (-5 *3 (-625 *4)) (-4 *4 (-1073)) (-5 *2 (-1237)) - (-5 *1 (-1187 *4)))) + (-12 (-5 *3 (-627 *4)) (-4 *4 (-1076)) (-5 *2 (-1240)) + (-5 *1 (-1190 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-625 *4)) (-4 *4 (-1073)) (-5 *2 (-1237)) - (-5 *1 (-1187 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-802))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-625 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) - (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-953 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-596 *5))) (-4 *4 (-827)) (-5 *2 (-596 *5)) - (-5 *1 (-561 *4 *5)) (-4 *5 (-425 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-275))))) -(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1 *1) (-5 *1 (-751))) - ((*1 *1 *1 *1) (-5 *1 (-839)))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-625 *2)) (-4 *2 (-1073)) (-4 *2 (-1186))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) - (-5 *2 (-1011)) (-5 *1 (-728))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-625 *2) *2 *2 *2)) (-4 *2 (-1073)) - (-5 *1 (-102 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1073)) (-5 *1 (-102 *2))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-552)) (-5 *1 (-237)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-625 (-1131))) (-5 *3 (-552)) (-5 *4 (-1131)) - (-5 *1 (-237)))) - ((*1 *1 *1) (-5 *1 (-839))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) + (-12 (-5 *3 (-627 *4)) (-4 *4 (-1076)) (-5 *2 (-1240)) + (-5 *1 (-1190 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1115)))) +(((*1 *2 *3) + (-12 (-4 *4 (-1028)) (-4 *3 (-1211 *4)) (-4 *2 (-1226 *4)) + (-5 *1 (-1229 *4 *3 *5 *2)) (-4 *5 (-638 *3))))) +(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-61 *3)) (-14 *3 (-1152)))) + ((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-68 *3)) (-14 *3 (-1152)))) + ((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-71 *3)) (-14 *3 (-1152)))) + ((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1240)))) + ((*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1240)) (-5 *1 (-391)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1134)) (-5 *4 (-842)) (-5 *2 (-1240)) (-5 *1 (-1114)))) + ((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1240)) (-5 *1 (-1114)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-842))) (-5 *2 (-1240)) (-5 *1 (-1114))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-754)) (-4 *6 (-1076)) (-4 *3 (-879 *6)) + (-5 *2 (-671 *3)) (-5 *1 (-674 *6 *3 *7 *4)) (-4 *7 (-367 *3)) + (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4366))))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-627 (-931 *6))) (-5 *4 (-627 (-1152))) (-4 *6 (-445)) + (-5 *2 (-627 (-627 *7))) (-5 *1 (-530 *6 *7 *5)) (-4 *7 (-357)) + (-4 *5 (-13 (-357) (-828)))))) +(((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-1148 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-853)) (-5 *3 (-627 (-257))) (-5 *1 (-255))))) +(((*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174))))) + ((*1 *1 *1 *1) (-4 *1 (-776)))) +(((*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-830) (-544) (-1017 (-552)))) (-5 *2 (-1240)) + (-5 *1 (-427 *3 *4)) (-4 *4 (-424 *3))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-861 *2)) (-4 *2 (-1189))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-4 *1 (-317 *2 *4)) (-4 *4 (-129)) + (-4 *2 (-1076)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-355 *2)) (-4 *2 (-1076)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-380 *2)) (-4 *2 (-1076)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-4 *2 (-1076)) (-5 *1 (-631 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *1 (-802 *2)) (-4 *2 (-830))))) +(((*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1189)))) + ((*1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-830)))) + ((*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) + ((*1 *1 *1) (-5 *1 (-842))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) ((*1 *2 *1) - (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-552)) (-4 *5 (-344)) (-5 *2 (-413 (-1145 (-1145 *5)))) - (-5 *1 (-1184 *5)) (-5 *3 (-1145 (-1145 *5)))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-625 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-773)) - (-4 *8 (-827)) (-5 *1 (-953 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-802))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-625 (-596 *5))) (-5 *3 (-1149)) (-4 *5 (-425 *4)) - (-4 *4 (-827)) (-5 *1 (-561 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1186)) - (-4 *3 (-1073)) (-5 *2 (-751)))) + (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) + (-4 *3 (-1211 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4)) - (-4 *4 (-1186)) (-5 *2 (-751))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-625 *2)) (-4 *2 (-1073)) (-4 *2 (-1186))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) - (-5 *2 (-1011)) (-5 *1 (-728))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-827) (-544) (-1014 (-552)))) (-5 *2 (-1237)) - (-5 *1 (-428 *3 *4)) (-4 *4 (-425 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-446) (-145))) (-5 *2 (-413 *3)) - (-5 *1 (-99 *4 *3)) (-4 *3 (-1208 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-625 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-13 (-446) (-145))) - (-5 *2 (-413 *3)) (-5 *1 (-99 *5 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-344)) (-5 *2 (-413 (-1145 (-1145 *4)))) - (-5 *1 (-1184 *4)) (-5 *3 (-1145 (-1145 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-802))))) -(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-578 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-4 *1 (-1073)) (-5 *2 (-1093))))) + (-12 (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) + (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *1 *1 *1) (-4 *1 (-301))) ((*1 *1 *1 *1) (-5 *1 (-754))) + ((*1 *1 *1 *1) (-5 *1 (-842)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) + (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) + (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-734))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-598 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1152))) (-5 *5 (-1148 *2)) + (-4 *2 (-13 (-424 *6) (-27) (-1174))) + (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) + (-5 *1 (-548 *6 *2 *7)) (-4 *7 (-1076)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-598 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1152))) + (-5 *5 (-401 (-1148 *2))) (-4 *2 (-13 (-424 *6) (-27) (-1174))) + (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) + (-5 *1 (-548 *6 *2 *7)) (-4 *7 (-1076))))) +(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-385))))) +(((*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) + ((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238))))) (((*1 *2 *2) - (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) - (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1149)) - (-4 *5 (-13 (-544) (-1014 (-552)) (-145))) - (-5 *2 - (-2 (|:| -3114 (-402 (-928 *5))) (|:| |coeff| (-402 (-928 *5))))) - (-5 *1 (-558 *5)) (-5 *3 (-402 (-928 *5)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-402 (-552))) - (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4)))))) -(((*1 *1 *1 *1) (-4 *1 (-641))) ((*1 *1 *1 *1) (-5 *1 (-1093)))) -(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1 *1) (-5 *1 (-751))) - ((*1 *1 *1 *1) (-5 *1 (-839)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1076 *2 *3 *4 *5 *6)) (-4 *2 (-1073)) (-4 *3 (-1073)) - (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073))))) -(((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1186))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1071 *3)) (-4 *3 (-1073)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) - (-5 *2 (-1011)) (-5 *1 (-728))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-827) (-544) (-1014 (-552)))) (-5 *2 (-402 (-552))) - (-5 *1 (-428 *4 *3)) (-4 *3 (-425 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-596 *3)) (-4 *3 (-425 *5)) - (-4 *5 (-13 (-827) (-544) (-1014 (-552)))) - (-5 *2 (-1145 (-402 (-552)))) (-5 *1 (-428 *5 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-552))) (-4 *3 (-1025)) (-5 *1 (-98 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-98 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-98 *3))))) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) (((*1 *2 *3) - (-12 (-4 *4 (-344)) (-5 *2 (-413 (-1145 (-1145 *4)))) - (-5 *1 (-1184 *4)) (-5 *3 (-1145 (-1145 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-802))))) + (-12 (-4 *4 (-13 (-544) (-144))) (-5 *2 (-627 *3)) + (-5 *1 (-1205 *4 *3)) (-4 *3 (-1211 *4))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-470 *4 *5 *6 *7)) (|:| -1549 (-625 *7)))) - (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-625 *7))))) + (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-445)) + (-5 *2 (-474 *4 *5)) (-5 *1 (-615 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1189)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-552)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-552))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1236)))) + ((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-1237))))) +(((*1 *2 *3) (-12 (-5 *3 (-627 *2)) (-5 *1 (-1163 *2)) (-4 *2 (-357))))) +(((*1 *1 *1) (-12 (-4 *1 (-118 *2)) (-4 *2 (-1189)))) + ((*1 *1 *1) (-12 (-5 *1 (-654 *2)) (-4 *2 (-830)))) + ((*1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) + ((*1 *1 *1) (-5 *1 (-842))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) + (-4 *3 (-1211 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-552)) (-4 *2 (-424 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1017 *4)) (-4 *3 (-13 (-830) (-544)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-168)))))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-802 *3)) (|:| |rm| (-802 *3)))) + (-5 *1 (-802 *3)) (-4 *3 (-830)))) + ((*1 *1 *1 *1) (-5 *1 (-842)))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-1205 *3 *2)) + (-4 *2 (-1211 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-171 (-401 (-552)))) (-5 *1 (-116 *3)) (-14 *3 (-552)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1132 *2)) (-4 *2 (-301)) (-5 *1 (-171 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-401 *3)) (-4 *3 (-301)) (-5 *1 (-171 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-171 (-552))) (-5 *1 (-748 *3)) (-4 *3 (-398)))) + ((*1 *2 *1) + (-12 (-5 *2 (-171 (-401 (-552)))) (-5 *1 (-850 *3)) (-14 *3 (-552)))) + ((*1 *2 *1) + (-12 (-14 *3 (-552)) (-5 *2 (-171 (-401 (-552)))) + (-5 *1 (-851 *3 *4)) (-4 *4 (-848 *3))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-681)))) + ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-681))))) +(((*1 *2 *3) (-12 (-5 *3 (-382)) (-5 *2 (-1240)) (-5 *1 (-385)))) + ((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-385))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) + (-5 *2 (-1014)) (-5 *1 (-735))))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-627 *11)) + (|:| |todo| (-627 (-2 (|:| |val| *3) (|:| -3443 *11)))))) + (-5 *6 (-754)) + (-5 *2 (-627 (-2 (|:| |val| (-627 *10)) (|:| -3443 *11)))) + (-5 *3 (-627 *10)) (-5 *4 (-627 *11)) (-4 *10 (-1042 *7 *8 *9)) + (-4 *11 (-1048 *7 *8 *9 *10)) (-4 *7 (-445)) (-4 *8 (-776)) + (-4 *9 (-830)) (-5 *1 (-1046 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-627 *11)) + (|:| |todo| (-627 (-2 (|:| |val| *3) (|:| -3443 *11)))))) + (-5 *6 (-754)) + (-5 *2 (-627 (-2 (|:| |val| (-627 *10)) (|:| -3443 *11)))) + (-5 *3 (-627 *10)) (-5 *4 (-627 *11)) (-4 *10 (-1042 *7 *8 *9)) + (-4 *11 (-1085 *7 *8 *9 *10)) (-4 *7 (-445)) (-4 *8 (-776)) + (-4 *9 (-830)) (-5 *1 (-1121 *7 *8 *9 *10 *11))))) +(((*1 *2) + (-12 (-5 *2 (-937 (-1096))) (-5 *1 (-337 *3 *4)) (-14 *3 (-900)) + (-14 *4 (-900)))) + ((*1 *2) + (-12 (-5 *2 (-937 (-1096))) (-5 *1 (-338 *3 *4)) (-4 *3 (-343)) + (-14 *4 (-1148 *3)))) + ((*1 *2) + (-12 (-5 *2 (-937 (-1096))) (-5 *1 (-339 *3 *4)) (-4 *3 (-343)) + (-14 *4 (-900))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-625 (-402 (-928 *6)))) - (-5 *3 (-402 (-928 *6))) - (-4 *6 (-13 (-544) (-1014 (-552)) (-145))) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-627 (-401 *7))) + (-4 *7 (-1211 *6)) (-5 *3 (-401 *7)) (-4 *6 (-357)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| - (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-558 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-596 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4))) - (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-272 *4 *2))))) -(((*1 *1 *1 *1) (-4 *1 (-641))) ((*1 *1 *1 *1) (-5 *1 (-1093)))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-799 *3)) (|:| |rm| (-799 *3)))) - (-5 *1 (-799 *3)) (-4 *3 (-827)))) - ((*1 *1 *1 *1) (-5 *1 (-839)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1076 *2 *3 *4 *5 *6)) (-4 *2 (-1073)) (-4 *3 (-1073)) - (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073))))) -(((*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) - (-5 *2 (-1011)) (-5 *1 (-728))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) - (-4 *2 (-425 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-96)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-96))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-625 (-625 (-221)))) (-5 *4 (-221)) - (-5 *2 (-625 (-919 *4))) (-5 *1 (-1182)) (-5 *3 (-919 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *2) - (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) - (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-402 (-928 *4))) (-5 *3 (-1149)) - (-4 *4 (-13 (-544) (-1014 (-552)) (-145))) (-5 *1 (-558 *4))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-625 (-596 *2))) (-5 *4 (-1149)) - (-4 *2 (-13 (-27) (-1171) (-425 *5))) - (-4 *5 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-272 *5 *2))))) + (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-562 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-519)) (-5 *2 (-1096))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-52)) (-5 *1 (-871 *4)) + (-4 *4 (-1076))))) +(((*1 *2 *3) + (-12 (-4 *4 (-830)) + (-5 *2 + (-2 (|:| |f1| (-627 *4)) (|:| |f2| (-627 (-627 (-627 *4)))) + (|:| |f3| (-627 (-627 *4))) (|:| |f4| (-627 (-627 (-627 *4)))))) + (-5 *1 (-1160 *4)) (-5 *3 (-627 (-627 (-627 *4))))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-544)))) + (|partial| -12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)) + (|partial| -12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)) (-4 *2 (-544)))) ((*1 *1 *1 *1) (|partial| -4 *1 (-544))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) - (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) (-4 *2 (-544)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-751))) + (|partial| -12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) + (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-544)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-754))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-544)))) - ((*1 *1 *1 *1) (-5 *1 (-839))) + (|partial| -12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-544)))) + ((*1 *1 *1 *1) (-5 *1 (-842))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1232 *4)) (-4 *4 (-1208 *3)) (-4 *3 (-544)) - (-5 *1 (-945 *3 *4)))) + (-12 (-5 *2 (-1235 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-544)) + (-5 *1 (-948 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1028 *3 *4 *2 *5 *6)) (-4 *2 (-1025)) - (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-544)))) + (|partial| -12 (-4 *1 (-1031 *3 *4 *2 *5 *6)) (-4 *2 (-1028)) + (-4 *5 (-233 *4 *2)) (-4 *6 (-233 *3 *2)) (-4 *2 (-544)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))) -(((*1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1186)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-1149))))) -(((*1 *2 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-728))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) - (-4 *2 (-425 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-96)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-96))))) -(((*1 *2 *3) - (-12 (-5 *3 (-552)) (-5 *2 (-625 (-625 (-221)))) (-5 *1 (-1182))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) + (|partial| -12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3))))) +(((*1 *1 *1) + (-12 (-4 *2 (-343)) (-4 *2 (-1028)) (-5 *1 (-695 *2 *3)) + (-4 *3 (-1211 *2))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-627 (-552))) (-5 *3 (-111)) (-5 *1 (-1086))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-625 *2)) (-4 *2 (-1039 *4 *5 *6)) (-4 *4 (-544)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1149)) - (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-571 *3)) (-5 *1 (-421 *5 *3)) - (-4 *3 (-13 (-1171) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-544) (-1014 (-552)) (-145))) - (-5 *2 (-571 (-402 (-928 *5)))) (-5 *1 (-558 *5)) - (-5 *3 (-402 (-928 *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1149)) - (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-1063))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-728))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-552))))) - (-4 *2 (-13 (-827) (-21)))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-374)) (-5 *1 (-96))))) -(((*1 *1 *2) - (-12 (-5 *2 (-897)) (-4 *1 (-234 *3 *4)) (-4 *4 (-1025)) - (-4 *4 (-1186)))) - ((*1 *1 *2) - (-12 (-14 *3 (-625 (-1149))) (-4 *4 (-170)) - (-4 *5 (-234 (-1471 *3) (-751))) - (-14 *6 - (-1 (-112) (-2 (|:| -3123 *2) (|:| -3564 *5)) - (-2 (|:| -3123 *2) (|:| -3564 *5)))) - (-5 *1 (-455 *3 *4 *2 *5 *6 *7)) (-4 *2 (-827)) - (-4 *7 (-925 *4 *5 (-841 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) + (|partial| -12 (-5 *2 (-627 (-474 *4 *5))) (-5 *3 (-627 (-844 *4))) + (-14 *4 (-627 (-1152))) (-4 *5 (-445)) (-5 *1 (-464 *4 *5 *6)) + (-4 *6 (-445))))) +(((*1 *2) + (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) + (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) + (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) + (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-900)) (-5 *1 (-1077 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *1) + (-12 (-4 *2 (-1076)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1076))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) - (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-625 *7)) (-5 *3 (-112)) (-4 *7 (-1039 *4 *5 *6)) - (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) - (-5 *1 (-953 *4 *5 *6 *7))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-552)) (-5 *1 (-557 *3)) (-4 *3 (-1014 *2))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-751)) (-4 *2 (-1073)) - (-5 *1 (-658 *2))))) + (-12 (-4 *3 (-357)) (-5 *1 (-749 *2 *3)) (-4 *2 (-691 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-754)) + (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) + (-4 *4 (-1211 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1226 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 (-431))))) + (-5 *1 (-1156))))) +(((*1 *1 *2) + (-12 (-5 *2 (-627 *1)) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-401 *1)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)) + (-4 *3 (-544)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-544))))) +(((*1 *2) + (-12 (-5 *2 (-1235 (-1077 *3 *4))) (-5 *1 (-1077 *3 *4)) + (-14 *3 (-900)) (-14 *4 (-900))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1149)) - (-4 *5 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) + (-12 (-5 *4 (-1068 (-823 *3))) (-4 *3 (-13 (-1174) (-938) (-29 *5))) + (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-625 (-596 *3))) - (|:| |vals| (-625 *3)))) - (-5 *1 (-272 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-425 *5)))))) -(((*1 *1) (-5 *1 (-1237)))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *1 (-258)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1232 *1)) (-4 *1 (-324 *4)) (-4 *4 (-358)) - (-5 *2 (-669 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1232 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) - (-5 *2 (-669 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) - (-5 *2 (-1232 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1232 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) - (-4 *5 (-1208 *4)) (-5 *2 (-669 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1232 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) - (-4 *5 (-1208 *4)) (-5 *2 (-1232 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1232 *1)) (-4 *1 (-404 *4 *5)) (-4 *4 (-170)) - (-4 *5 (-1208 *4)) (-5 *2 (-669 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1208 *3)) - (-5 *2 (-1232 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1232 *1)) (-4 *1 (-412 *4)) (-4 *4 (-170)) - (-5 *2 (-669 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1232 *3)))) + (-3 (|:| |f1| (-823 *3)) (|:| |f2| (-627 (-823 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-214 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1068 (-823 *3))) (-5 *5 (-1134)) + (-4 *3 (-13 (-1174) (-938) (-29 *6))) + (-4 *6 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-5 *2 + (-3 (|:| |f1| (-823 *3)) (|:| |f2| (-627 (-823 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-214 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-625 (-669 *5))) (-5 *3 (-669 *5)) (-4 *5 (-358)) - (-5 *2 (-1232 *5)) (-5 *1 (-1059 *5))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-728))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-552))))) - (-4 *2 (-13 (-827) (-21)))))) -(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-96))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-221)) (-5 *5 (-552)) (-5 *2 (-1181 *3)) - (-5 *1 (-770 *3)) (-4 *3 (-950)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *4 (-112)) - (-5 *1 (-1181 *2)) (-4 *2 (-950))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-625 *7)) (|:| |badPols| (-625 *7)))) - (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-625 *7))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-625 (-402 *6))) (-5 *3 (-402 *6)) - (-4 *6 (-1208 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-552)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-556 *5 *6))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112)) (-5 *1 (-271 *4 *3)) - (-4 *3 (-13 (-425 *4) (-978)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) - (-5 *2 (-1232 (-669 *4))))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-1232 (-669 *4))) (-5 *1 (-411 *3 *4)) - (-4 *3 (-412 *4)))) - ((*1 *2) - (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1232 (-669 *3))))) + (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1068 (-823 (-310 *5)))) + (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-5 *2 + (-3 (|:| |f1| (-823 (-310 *5))) (|:| |f2| (-627 (-823 (-310 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-215 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-401 (-931 *6))) (-5 *4 (-1068 (-823 (-310 *6)))) + (-5 *5 (-1134)) + (-4 *6 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-5 *2 + (-3 (|:| |f1| (-823 (-310 *6))) (|:| |f2| (-627 (-823 (-310 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-215 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1068 (-823 (-401 (-931 *5))))) (-5 *3 (-401 (-931 *5))) + (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-5 *2 + (-3 (|:| |f1| (-823 (-310 *5))) (|:| |f2| (-627 (-823 (-310 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-215 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1068 (-823 (-401 (-931 *6))))) (-5 *5 (-1134)) + (-5 *3 (-401 (-931 *6))) + (-4 *6 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-5 *2 + (-3 (|:| |f1| (-823 (-310 *6))) (|:| |f2| (-627 (-823 (-310 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-215 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1152)) + (-4 *5 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-3 *3 (-627 *3))) (-5 *1 (-422 *5 *3)) + (-4 *3 (-13 (-1174) (-938) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-467 *3 *4 *5)) + (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1070 (-823 (-373)))) + (-5 *5 (-373)) (-5 *6 (-1040)) (-5 *2 (-1014)) (-5 *1 (-553)))) + ((*1 *2 *3) (-12 (-5 *3 (-752)) (-5 *2 (-1014)) (-5 *1 (-553)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1070 (-823 (-373)))) + (-5 *5 (-373)) (-5 *2 (-1014)) (-5 *1 (-553)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1070 (-823 (-373)))) + (-5 *5 (-373)) (-5 *2 (-1014)) (-5 *1 (-553)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-1149))) (-4 *5 (-358)) - (-5 *2 (-1232 (-669 (-402 (-928 *5))))) (-5 *1 (-1059 *5)) - (-5 *4 (-669 (-402 (-928 *5)))))) + (-12 (-5 *3 (-310 (-373))) (-5 *4 (-1070 (-823 (-373)))) + (-5 *2 (-1014)) (-5 *1 (-553)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-1149))) (-4 *5 (-358)) - (-5 *2 (-1232 (-669 (-928 *5)))) (-5 *1 (-1059 *5)) - (-5 *4 (-669 (-928 *5))))) + (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-1070 (-823 (-373))))) + (-5 *2 (-1014)) (-5 *1 (-553)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-1070 (-823 (-373))))) + (-5 *5 (-373)) (-5 *2 (-1014)) (-5 *1 (-553)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-1070 (-823 (-373))))) + (-5 *5 (-373)) (-5 *2 (-1014)) (-5 *1 (-553)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-1070 (-823 (-373))))) + (-5 *5 (-373)) (-5 *6 (-1040)) (-5 *2 (-1014)) (-5 *1 (-553)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-310 (-373))) (-5 *4 (-1068 (-823 (-373)))) + (-5 *5 (-1134)) (-5 *2 (-1014)) (-5 *1 (-553)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-310 (-373))) (-5 *4 (-1068 (-823 (-373)))) + (-5 *5 (-1152)) (-5 *2 (-1014)) (-5 *1 (-553)))) ((*1 *2 *3) - (-12 (-5 *3 (-625 (-669 *4))) (-4 *4 (-358)) - (-5 *2 (-1232 (-669 *4))) (-5 *1 (-1059 *4))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-728))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1149)) - (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-571 *3)) (-5 *1 (-421 *5 *3)) - (-4 *3 (-13 (-1171) (-29 *5)))))) -(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-96))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) - (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1014 (-552)))) - (-4 *5 (-1208 *4)) - (-5 *2 (-2 (|:| -3114 (-402 *5)) (|:| |coeff| (-402 *5)))) - (-5 *1 (-556 *4 *5)) (-5 *3 (-402 *5))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-625 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-425 *4) (-978))) (-4 *4 (-13 (-827) (-544))) - (-5 *1 (-271 *4 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-325))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-173))) (-5 *1 (-1058))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) - (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1011)) - (-5 *1 (-727))))) -(((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-1073)) (-5 *2 (-751))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-1131)) (-5 *1 (-96)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-374)) (-5 *3 (-1131)) (-5 *1 (-96))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-625 *7)) (|:| |badPols| (-625 *7)))) - (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-625 *7))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1208 *3)) - (-4 *3 (-13 (-358) (-145) (-1014 (-552)))) (-5 *1 (-556 *3 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-108)) (-5 *1 (-173)))) - ((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-108)) (-5 *1 (-1058))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) - (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1011)) - (-5 *1 (-727))))) -(((*1 *1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-1073)) (-4 *2 (-363))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-90 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-311 (-221)))) (-5 *2 (-112)) (-5 *1 (-262)))) - ((*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-112)) (-5 *1 (-262)))) - ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) - (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-598 (-868 (-552)))) - (-4 *5 (-862 (-552))) - (-4 *5 (-13 (-827) (-1014 (-552)) (-446) (-621 (-552)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-555 *5 *3)) (-4 *3 (-611)) - (-4 *3 (-13 (-27) (-1171) (-425 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1149)) (-5 *4 (-820 *2)) (-4 *2 (-1112)) - (-4 *2 (-13 (-27) (-1171) (-425 *5))) - (-4 *5 (-598 (-868 (-552)))) (-4 *5 (-862 (-552))) - (-4 *5 (-13 (-827) (-1014 (-552)) (-446) (-621 (-552)))) - (-5 *1 (-555 *5 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1058))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) - (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 -3281)))) - (-5 *2 (-1011)) (-5 *1 (-727))))) -(((*1 *1) (-12 (-4 *1 (-420 *2)) (-4 *2 (-363)) (-4 *2 (-1073))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-358)) (-4 *5 (-544)) + (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-552)))) (-4 *5 (-1211 *4)) + (-5 *2 (-573 (-401 *5))) (-5 *1 (-556 *4 *5)) (-5 *3 (-401 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) (-4 *5 (-144)) + (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) + (-5 *2 (-3 (-310 *5) (-627 (-310 *5)))) (-5 *1 (-576 *5)))) + ((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-723 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-830)) + (-4 *3 (-38 (-401 (-552)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1152)) (-5 *1 (-931 *3)) (-4 *3 (-38 (-401 (-552)))) + (-4 *3 (-1028)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-4 *2 (-830)) + (-5 *1 (-1102 *3 *2 *4)) (-4 *4 (-928 *3 (-523 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) + (-5 *1 (-1136 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1143 *3 *4 *5)) + (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1149 *3 *4 *5)) + (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1150 *3 *4 *5)) + (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1152)) (-5 *1 (-1183 *3)) (-4 *3 (-38 (-401 (-552)))) + (-4 *3 (-1028)))) + ((*1 *1 *1 *2) + (-1559 + (-12 (-5 *2 (-1152)) (-4 *1 (-1195 *3)) (-4 *3 (-1028)) + (-12 (-4 *3 (-29 (-552))) (-4 *3 (-938)) (-4 *3 (-1174)) + (-4 *3 (-38 (-401 (-552)))))) + (-12 (-5 *2 (-1152)) (-4 *1 (-1195 *3)) (-4 *3 (-1028)) + (-12 (|has| *3 (-15 -1853 ((-627 *2) *3))) + (|has| *3 (-15 -2747 (*3 *3 *2))) (-4 *3 (-38 (-401 (-552)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1195 *2)) (-4 *2 (-1028)) (-4 *2 (-38 (-401 (-552)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1199 *3 *4 *5)) + (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-38 (-401 (-552)))))) + ((*1 *1 *1 *2) + (-1559 + (-12 (-5 *2 (-1152)) (-4 *1 (-1216 *3)) (-4 *3 (-1028)) + (-12 (-4 *3 (-29 (-552))) (-4 *3 (-938)) (-4 *3 (-1174)) + (-4 *3 (-38 (-401 (-552)))))) + (-12 (-5 *2 (-1152)) (-4 *1 (-1216 *3)) (-4 *3 (-1028)) + (-12 (|has| *3 (-15 -1853 ((-627 *2) *3))) + (|has| *3 (-15 -2747 (*3 *3 *2))) (-4 *3 (-38 (-401 (-552)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1216 *2)) (-4 *2 (-1028)) (-4 *2 (-38 (-401 (-552)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1220 *3 *4 *5)) + (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-1559 + (-12 (-5 *2 (-1152)) (-4 *1 (-1226 *3)) (-4 *3 (-1028)) + (-12 (-4 *3 (-29 (-552))) (-4 *3 (-938)) (-4 *3 (-1174)) + (-4 *3 (-38 (-401 (-552)))))) + (-12 (-5 *2 (-1152)) (-4 *1 (-1226 *3)) (-4 *3 (-1028)) + (-12 (|has| *3 (-15 -1853 ((-627 *2) *3))) + (|has| *3 (-15 -2747 (*3 *3 *2))) (-4 *3 (-38 (-401 (-552)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1028)) (-4 *2 (-38 (-401 (-552)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1227 *3 *4 *5)) + (-4 *3 (-38 (-401 (-552)))) (-4 *3 (-1028)) (-14 *5 *3)))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-830)) (-5 *2 (-627 *1)) + (-4 *1 (-424 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) + (-4 *3 (-1076)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *2 (-627 *1)) (-4 *1 (-928 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) + (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-627 *3)) + (-5 *1 (-929 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-357) + (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) + (-15 -2929 (*7 $)))))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) + (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) + (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) + (-5 *3 (-627 (-257))) (-5 *1 (-255)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) + (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) + (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) + (-5 *1 (-257)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-552)) (-5 *4 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) + (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) + (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) + (-5 *2 (-1240)) (-5 *1 (-1237)))) + ((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |minor| (-625 (-897))) (|:| -2772 *3) - (|:| |minors| (-625 (-625 (-897)))) (|:| |ops| (-625 *3)))) - (-5 *1 (-89 *5 *3)) (-5 *4 (-897)) (-4 *3 (-636 *5))))) + (-2 (|:| |theta| (-220)) (|:| |phi| (-220)) (|:| -2442 (-220)) + (|:| |scaleX| (-220)) (|:| |scaleY| (-220)) (|:| |scaleZ| (-220)) + (|:| |deltaX| (-220)) (|:| |deltaY| (-220)))) + (-5 *1 (-1237)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237))))) (((*1 *2 *1) - (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *1 (-1181 *3)) - (-4 *3 (-950))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-625 *7)) (|:| |badPols| (-625 *7)))) - (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-625 *7))))) + (-12 (-5 *2 (-627 (-884 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1076))))) +(((*1 *1 *1 *1) (-4 *1 (-744)))) +(((*1 *1 *1) (-5 *1 (-1040)))) (((*1 *2 *1) - (-12 (-5 *2 (-1067 *3)) (-5 *1 (-1065 *3)) (-4 *3 (-1186)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186)))) - ((*1 *1 *2) (-12 (-5 *1 (-1199 *2)) (-4 *2 (-1186))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-598 (-868 (-552)))) - (-4 *5 (-862 (-552))) - (-4 *5 (-13 (-827) (-1014 (-552)) (-446) (-621 (-552)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-555 *5 *3)) (-4 *3 (-611)) - (-4 *3 (-13 (-27) (-1171) (-425 *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) -(((*1 *1) (-5 *1 (-1058)))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *5 (-112)) - (-5 *2 (-1011)) (-5 *1 (-726))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-415 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1171) (-425 *3))) - (-14 *4 (-1149)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-4 *2 (-13 (-27) (-1171) (-425 *3) (-10 -8 (-15 -1683 ($ *4))))) - (-4 *4 (-825)) - (-4 *5 - (-13 (-1210 *2 *4) (-358) (-1171) - (-10 -8 (-15 -3072 ($ $)) (-15 -2481 ($ $))))) - (-5 *1 (-417 *3 *2 *4 *5 *6 *7)) (-4 *6 (-959 *5)) (-14 *7 (-1149))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-1232 (-669 *4))) (-5 *1 (-89 *4 *5)) - (-5 *3 (-669 *4)) (-4 *5 (-636 *4))))) -(((*1 *2 *1) (-12 (-5 *1 (-1181 *2)) (-4 *2 (-950))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) - (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1149)) - (-4 *5 (-13 (-827) (-1014 (-552)) (-446) (-621 (-552)))) - (-5 *2 (-2 (|:| -4075 *3) (|:| |nconst| *3))) (-5 *1 (-555 *5 *3)) - (-4 *3 (-13 (-27) (-1171) (-425 *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) -(((*1 *1) (-5 *1 (-1058)))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *5 (-112)) - (-5 *2 (-1011)) (-5 *1 (-726))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) - (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-4 *3 (-13 (-27) (-1171) (-425 *6) (-10 -8 (-15 -1683 ($ *7))))) - (-4 *7 (-825)) - (-4 *8 - (-13 (-1210 *3 *7) (-358) (-1171) - (-10 -8 (-15 -3072 ($ $)) (-15 -2481 ($ $))))) + (-12 (-4 *3 (-1028)) (-5 *2 (-1235 *3)) (-5 *1 (-695 *3 *4)) + (-4 *4 (-1211 *3))))) +(((*1 *1) (-4 *1 (-343))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 *5)) (-4 *5 (-424 *4)) + (-4 *4 (-13 (-544) (-830) (-144))) (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131)))))) - (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1131)) (-4 *9 (-959 *8)) - (-14 *10 (-1149))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-544)) - (-5 *2 (-2 (|:| -2351 (-669 *5)) (|:| |vec| (-1232 (-625 (-897)))))) - (-5 *1 (-89 *5 *3)) (-5 *4 (-897)) (-4 *3 (-636 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) - (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-827)) (-5 *2 (-112)))) + (-2 (|:| |primelt| *5) (|:| |poly| (-627 (-1148 *5))) + (|:| |prim| (-1148 *5)))) + (-5 *1 (-426 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) - (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-625 *7)) (|:| |badPols| (-625 *7)))) - (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-625 *7))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-596 *4)) (-5 *6 (-1149)) - (-4 *4 (-13 (-425 *7) (-27) (-1171))) - (-4 *7 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) + (-12 (-4 *4 (-13 (-544) (-830) (-144))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) - (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1073))))) -(((*1 *1 *1) (-4 *1 (-537)))) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1148 *3)) + (|:| |pol2| (-1148 *3)) (|:| |prim| (-1148 *3)))) + (-5 *1 (-426 *4 *3)) (-4 *3 (-27)) (-4 *3 (-424 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-931 *5)) (-5 *4 (-1152)) (-4 *5 (-13 (-357) (-144))) + (-5 *2 + (-2 (|:| |coef1| (-552)) (|:| |coef2| (-552)) + (|:| |prim| (-1148 *5)))) + (-5 *1 (-939 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-627 (-1152))) + (-4 *5 (-13 (-357) (-144))) + (-5 *2 + (-2 (|:| -3069 (-627 (-552))) (|:| |poly| (-627 (-1148 *5))) + (|:| |prim| (-1148 *5)))) + (-5 *1 (-939 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-627 (-931 *6))) (-5 *4 (-627 (-1152))) (-5 *5 (-1152)) + (-4 *6 (-13 (-357) (-144))) + (-5 *2 + (-2 (|:| -3069 (-627 (-552))) (|:| |poly| (-627 (-1148 *6))) + (|:| |prim| (-1148 *6)))) + (-5 *1 (-939 *6))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-552)) (-5 *5 (-671 (-220))) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-85 FCN)))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-87 OUTPUT)))) + (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-732))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-474 *4 *5))) (-14 *4 (-627 (-1152))) + (-4 *5 (-445)) (-5 *2 (-627 (-242 *4 *5))) (-5 *1 (-615 *4 *5))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) + (-5 *2 + (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) + (|:| |success| (-111)))) + (-5 *1 (-772)) (-5 *5 (-552))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1152)) (-5 *1 (-657 *3)) (-4 *3 (-1076))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) + (-4 *4 (-169)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *1 (-155 *4 *2)) + (-4 *2 (-424 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1068 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-830) (-544))) + (-5 *1 (-155 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1068 *1)) (-4 *1 (-157)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-157)) (-5 *2 (-1152)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-458 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-830)) + (-4 *4 (-169))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-991)) (-5 *2 (-842))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-627 *1)) (-5 *3 (-627 *7)) (-4 *1 (-1048 *4 *5 *6 *7)) + (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *1)) + (-4 *1 (-1048 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-627 *1)) (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) + (-4 *5 (-776)) (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-627 *1)) + (-4 *1 (-1048 *4 *5 *6 *3))))) +(((*1 *2) + (-12 (-5 *2 (-900)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) + ((*1 *2 *2) + (-12 (-5 *2 (-900)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1057 *2)))) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-321 *3)) (-4 *3 (-1189)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-552)) (-5 *1 (-508 *3 *4)) (-4 *3 (-1189)) (-14 *4 *2)))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-552)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-754)) (-4 *5 (-169)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-552)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-754)) (-4 *5 (-169)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-552) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1057 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-897)) (-4 *1 (-725 *3)) (-4 *3 (-170))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) - (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-4 *3 (-13 (-27) (-1171) (-425 *6) (-10 -8 (-15 -1683 ($ *7))))) - (-4 *7 (-825)) - (-4 *8 - (-13 (-1210 *3 *7) (-358) (-1171) - (-10 -8 (-15 -3072 ($ $)) (-15 -2481 ($ $))))) + (-12 (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131)))))) - (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1131)) (-4 *9 (-959 *8)) - (-14 *10 (-1149))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *1 (-58 *3)) (-4 *3 (-1186)))) - ((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-58 *3))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-773)) - (-4 *8 (-827)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1549 (-625 *9)))) - (-5 *3 (-625 *9)) (-4 *1 (-1179 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1039 *5 *6 *7)) - (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -1549 (-625 *8)))) - (-5 *3 (-625 *8)) (-4 *1 (-1179 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-1 (-112) *8))) (-4 *8 (-1039 *5 *6 *7)) - (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) - (-5 *2 (-2 (|:| |goodPols| (-625 *8)) (|:| |badPols| (-625 *8)))) - (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-625 *8))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-596 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1149))) - (-4 *2 (-13 (-425 *5) (-27) (-1171))) - (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) - (-5 *1 (-554 *5 *2 *6)) (-4 *6 (-1073))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) -(((*1 *1) (-5 *1 (-1055)))) + (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) + (-242 *4 (-401 (-552))))) + (-5 *3 (-627 (-844 *4))) (-14 *4 (-627 (-1152))) (-14 *5 (-754)) + (-5 *1 (-497 *4 *5))))) +(((*1 *2) + (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-411 *3))))) +(((*1 *1 *1) (-4 *1 (-1120)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-627 (-52))) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-627 *11)) (-5 *5 (-627 (-1148 *9))) + (-5 *6 (-627 *9)) (-5 *7 (-627 *12)) (-5 *8 (-627 (-754))) + (-4 *11 (-830)) (-4 *9 (-301)) (-4 *12 (-928 *9 *10 *11)) + (-4 *10 (-776)) (-5 *2 (-627 (-1148 *12))) + (-5 *1 (-690 *10 *11 *9 *12)) (-5 *3 (-1148 *12))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1145 *6)) (-5 *3 (-552)) (-4 *6 (-302)) (-4 *4 (-773)) - (-4 *5 (-827)) (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-925 *6 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 - (-3 (|:| |%expansion| (-308 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131)))))) - (-5 *1 (-415 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1171) (-425 *5))) - (-14 *6 (-1149)) (-14 *7 *3)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-552)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1186)) - (-4 *3 (-368 *4)) (-4 *5 (-368 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3)) (-4 *3 (-1073))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-625 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-1 (-112) *8))) (-4 *8 (-1039 *5 *6 *7)) - (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) - (-5 *2 (-2 (|:| |goodPols| (-625 *8)) (|:| |badPols| (-625 *8)))) - (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-625 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-596 *3)) (-5 *5 (-625 *3)) - (-4 *3 (-13 (-425 *6) (-27) (-1171))) - (-4 *6 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-625 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1073))))) + (-12 (-4 *3 (-357)) (-5 *1 (-279 *3 *2)) (-4 *2 (-1226 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-805))))) +(((*1 *1 *2) + (-12 (-5 *2 (-627 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-735))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-1083 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-301)) (-5 *2 (-754))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 (-373))) (-5 *1 (-257)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-544)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-544))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) + (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-445)) + (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-442 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-871 *4)) (-4 *4 (-1076)) (-5 *2 (-1 (-111) *5)) + (-5 *1 (-869 *4 *5)) (-4 *5 (-1189)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1142))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-573 *3)) (-4 *3 (-357))))) +(((*1 *1 *2) + (-12 (-5 *2 (-401 (-552))) (-4 *1 (-542 *3)) + (-4 *3 (-13 (-398) (-1174))))) + ((*1 *1 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174)))))) +(((*1 *2 *2) (-12 (-5 *2 (-754)) (-5 *1 (-438 *3)) (-4 *3 (-1028)))) + ((*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-438 *3)) (-4 *3 (-1028))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) - (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-625 *3)) - (-5 *1 (-576 *5 *6 *7 *8 *3)) (-4 *3 (-1082 *5 *6 *7 *8)))) + (-12 (-5 *3 (-627 (-823 (-220)))) (-5 *4 (-220)) (-5 *2 (-627 *4)) + (-5 *1 (-261))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *2 (-830)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1189)) (-5 *1 (-369 *4 *2)) + (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4367))))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1070 *3)) (-4 *3 (-928 *7 *6 *4)) (-4 *6 (-776)) + (-4 *4 (-830)) (-4 *7 (-544)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-552)))) + (-5 *1 (-581 *6 *4 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) - (-5 *2 - (-625 (-2 (|:| -3368 (-1145 *5)) (|:| -2780 (-625 (-928 *5)))))) - (-5 *1 (-1051 *5 *6)) (-5 *3 (-625 (-928 *5))) - (-14 *6 (-625 (-1149))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-302) (-145))) + (-12 (-4 *5 (-776)) (-4 *4 (-830)) (-4 *6 (-544)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-552)))) + (-5 *1 (-581 *5 *4 *6 *3)) (-4 *3 (-928 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *1) (-5 *1 (-842))) + ((*1 *1 *1) (-5 *1 (-842))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1152)) + (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-1144 *4 *2)) (-4 *2 (-13 (-424 *4) (-157) (-27) (-1174))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1068 *2)) (-4 *2 (-13 (-424 *4) (-157) (-27) (-1174))) + (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-1144 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-544) (-830) (-1017 (-552)))) + (-5 *2 (-401 (-931 *5))) (-5 *1 (-1145 *5)) (-5 *3 (-931 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1152)) (-4 *5 (-13 (-544) (-830) (-1017 (-552)))) + (-5 *2 (-3 (-401 (-931 *5)) (-310 *5))) (-5 *1 (-1145 *5)) + (-5 *3 (-401 (-931 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1068 (-931 *5))) (-5 *3 (-931 *5)) + (-4 *5 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-401 *3)) + (-5 *1 (-1145 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1068 (-401 (-931 *5)))) (-5 *3 (-401 (-931 *5))) + (-4 *5 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-3 *3 (-310 *5))) + (-5 *1 (-1145 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-445)) (-4 *4 (-544)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2006 *4))) + (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-398)) (-5 *2 (-900)))) ((*1 *1) (-4 *1 (-537))) + ((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-681)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-883 *3)) (-4 *3 (-1076))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-734))))) +(((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-351 *3)) (-4 *3 (-343))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1211 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-964 *4 *2 *3 *5)) + (-4 *4 (-343)) (-4 *5 (-707 *2 *3))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4367)) (-4 *1 (-367 *2)) (-4 *2 (-1189)) + (-4 *2 (-830)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3 *3)) (|has| *1 (-6 -4367)) + (-4 *1 (-367 *3)) (-4 *3 (-1189))))) +(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-893 *3)) (-4 *3 (-301))))) +(((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-401 (-552))) (-5 *1 (-299))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-754)) (-4 *4 (-1028)) (-5 *1 (-1207 *4 *2)) + (-4 *2 (-1211 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-1188))) (-5 *1 (-592))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-627 (-627 (-627 *4)))) (-5 *3 (-627 *4)) (-4 *4 (-830)) + (-5 *1 (-1160 *4))))) +(((*1 *1) (-5 *1 (-138)))) +(((*1 *2 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-842))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -1323 (-765 *3)) (|:| |coef1| (-765 *3)))) + (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *2 (-2 (|:| -1323 *1) (|:| |coef1| *1))) + (-4 *1 (-1042 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-168)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1184 *3)) (-4 *3 (-953))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 - (-625 (-2 (|:| -3368 (-1145 *4)) (|:| -2780 (-625 (-928 *4)))))) - (-5 *1 (-1051 *4 *5)) (-5 *3 (-625 (-928 *4))) - (-14 *5 (-625 (-1149))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) + (-2 (|:| -1432 (-754)) (|:| |curves| (-754)) + (|:| |polygons| (-754)) (|:| |constructs| (-754))))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-720 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-720 *2)) (-4 *2 (-1076)))) + ((*1 *1) (-12 (-5 *1 (-720 *2)) (-4 *2 (-1076))))) +(((*1 *2 *3) + (-12 (-5 *3 (-288 (-931 (-552)))) (-5 *2 - (-625 (-2 (|:| -3368 (-1145 *5)) (|:| -2780 (-625 (-928 *5)))))) - (-5 *1 (-1051 *5 *6)) (-5 *3 (-625 (-928 *5))) - (-14 *6 (-625 (-1149)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1145 *9)) (-5 *4 (-625 *7)) (-4 *7 (-827)) - (-4 *9 (-925 *8 *6 *7)) (-4 *6 (-773)) (-4 *8 (-302)) - (-5 *2 (-625 (-751))) (-5 *1 (-723 *6 *7 *8 *9)) (-5 *5 (-751))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-827)) - (-5 *2 (-2 (|:| -3340 (-552)) (|:| |var| (-596 *1)))) - (-4 *1 (-425 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-552)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1186)) - (-4 *5 (-368 *4)) (-4 *3 (-368 *4))))) + (-2 (|:| |varOrder| (-627 (-1152))) + (|:| |inhom| (-3 (-627 (-1235 (-754))) "failed")) + (|:| |hom| (-627 (-1235 (-754)))))) + (-5 *1 (-231))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-166 (-220)) (-166 (-220)))) (-5 *4 (-1070 (-220))) + (-5 *2 (-1237)) (-5 *1 (-251))))) (((*1 *2 *1) - (-12 (-5 *2 (-625 (-1172 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1073))))) + (|partial| -12 (-4 *1 (-928 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *2 (-830)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-776)) (-4 *5 (-1028)) (-4 *6 (-928 *5 *4 *2)) + (-4 *2 (-830)) (-5 *1 (-929 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-357) + (-10 -8 (-15 -1477 ($ *6)) (-15 -2918 (*6 $)) + (-15 -2929 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) + (-5 *2 (-1152)) (-5 *1 (-1022 *4))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-871 *4)) (-4 *4 (-1076)) (-5 *1 (-868 *4 *3)) + (-4 *3 (-1076))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-928 *4 *5 *6)) (-5 *2 (-627 (-627 *7))) + (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-776)) + (-4 *7 (-830)) (-4 *8 (-928 *5 *6 *7)) (-5 *2 (-627 (-627 *8))) + (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-627 *8))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1148 *1)) (-5 *3 (-1152)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-931 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1152)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-830) (-544))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-830) (-544)))))) +(((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) + (-4 *4 (-1076))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-412 *2)) (-4 *2 (-301)) (-5 *1 (-893 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) + (-4 *5 (-13 (-301) (-144))) (-5 *2 (-52)) (-5 *1 (-894 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-412 (-931 *6))) (-5 *5 (-1152)) (-5 *3 (-931 *6)) + (-4 *6 (-13 (-301) (-144))) (-5 *2 (-52)) (-5 *1 (-894 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) (((*1 *2 *1) - (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) - (-5 *2 (-2 (|:| -1387 (-625 *6)) (|:| -2508 (-625 *6))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) - (-4 *6 (-773)) (-4 *7 (-827)) - (-5 *2 (-2 (|:| |goodPols| (-625 *8)) (|:| |badPols| (-625 *8)))) - (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-625 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-596 *3)) - (-4 *3 (-13 (-425 *5) (-27) (-1171))) - (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) - (-5 *2 (-2 (|:| -3114 *3) (|:| |coeff| *3))) - (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1073))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) + (-12 (-5 *2 (-1078 *3)) (-5 *1 (-884 *3)) (-4 *3 (-362)) + (-4 *3 (-1076))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-69 APROD)))) (-5 *4 (-220)) + (-5 *2 (-1014)) (-5 *1 (-739))))) +(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1245))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-166 (-220)))) (-5 *2 (-1014)) + (-5 *1 (-739))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) (((*1 *2 *1) - (-12 (-4 *3 (-1073)) - (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3)))) - (-5 *2 (-625 (-1149))) (-5 *1 (-1049 *3 *4 *5)) - (-4 *5 (-13 (-425 *4) (-862 *3) (-598 (-868 *3))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-552)) (-5 *4 (-413 *2)) (-4 *2 (-925 *7 *5 *6)) - (-5 *1 (-723 *5 *6 *7 *2)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-302))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-413 *3)) (-4 *3 (-544)) (-5 *1 (-414 *3))))) -(((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1073))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-625 (-1149))) (-4 *4 (-1073)) - (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-425 *5) (-862 *4) (-598 (-868 *4))))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-625 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-827)) (-5 *2 (-112)))) + (-12 (-5 *2 (-852 (-945 *3) (-945 *3))) (-5 *1 (-945 *3)) + (-4 *3 (-946))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-220))) + (-5 *2 (-1014)) (-5 *1 (-740))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-113)))) + ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-113)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1028)) (-4 *3 (-830)) + (-4 *5 (-260 *3)) (-4 *6 (-776)) (-5 *2 (-754)))) ((*1 *2 *1) - (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1179 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-773)) - (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) - (-5 *1 (-953 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-596 *3)) (-4 *3 (-13 (-425 *5) (-27) (-1171))) - (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) - (-5 *2 (-571 *3)) (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1073))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1186)) (-5 *1 (-849 *3 *2)) (-4 *3 (-1186)))) - ((*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186))))) + (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-830)) + (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-754)))) + ((*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-830)) (-5 *2 (-754))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-111)) + (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-4 *3 (-13 (-27) (-1174) (-424 *6) (-10 -8 (-15 -1477 ($ *7))))) + (-4 *7 (-828)) + (-4 *8 + (-13 (-1213 *3 *7) (-357) (-1174) + (-10 -8 (-15 -2942 ($ $)) (-15 -2747 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1134)) (|:| |prob| (-1134)))))) + (-5 *1 (-416 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1134)) (-4 *9 (-962 *8)) + (-14 *10 (-1152))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-401 (-931 *6)) (-1141 (-1152) (-931 *6)))) + (-5 *5 (-754)) (-4 *6 (-445)) (-5 *2 (-627 (-671 (-401 (-931 *6))))) + (-5 *1 (-286 *6)) (-5 *4 (-671 (-401 (-931 *6)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-401 (-931 *5)) (-1141 (-1152) (-931 *5)))) + (|:| |eigmult| (-754)) (|:| |eigvec| (-627 *4)))) + (-4 *5 (-445)) (-5 *2 (-627 (-671 (-401 (-931 *5))))) + (-5 *1 (-286 *5)) (-5 *4 (-671 (-401 (-931 *5))))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1014)) (-5 *1 (-299)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-1014))) (-5 *2 (-1014)) (-5 *1 (-299)))) + ((*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1189)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1189)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1189)))) + ((*1 *1 *1 *1) (-5 *1 (-1040))) + ((*1 *2 *3) + (-12 (-5 *3 (-1132 (-1132 *4))) (-5 *2 (-1132 *4)) (-5 *1 (-1129 *4)) + (-4 *4 (-1189)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) - (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) - (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) + (-12 (-5 *3 (-401 (-931 (-166 (-552))))) (-5 *2 (-627 (-166 *4))) + (-5 *1 (-372 *4)) (-4 *4 (-13 (-357) (-828))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-627 (-401 (-931 (-166 (-552)))))) + (-5 *4 (-627 (-1152))) (-5 *2 (-627 (-627 (-166 *5)))) + (-5 *1 (-372 *5)) (-4 *5 (-13 (-357) (-828)))))) +(((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-125 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1145 *9)) (-5 *4 (-625 *7)) (-5 *5 (-625 (-625 *8))) - (-4 *7 (-827)) (-4 *8 (-302)) (-4 *9 (-925 *8 *6 *7)) (-4 *6 (-773)) + (-12 (-5 *3 (-1235 *6)) (-5 *4 (-1235 (-552))) (-5 *5 (-552)) + (-4 *6 (-1076)) (-5 *2 (-1 *6)) (-5 *1 (-996 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1148 *9)) (-5 *4 (-627 *7)) (-5 *5 (-627 (-627 *8))) + (-4 *7 (-830)) (-4 *8 (-301)) (-4 *9 (-928 *8 *6 *7)) (-4 *6 (-776)) (-5 *2 - (-2 (|:| |upol| (-1145 *8)) (|:| |Lval| (-625 *8)) + (-2 (|:| |upol| (-1148 *8)) (|:| |Lval| (-627 *8)) (|:| |Lfact| - (-625 (-2 (|:| -3824 (-1145 *8)) (|:| -3564 (-552))))) + (-627 (-2 (|:| -1727 (-1148 *8)) (|:| -4067 (-552))))) (|:| |ctpol| *8))) - (-5 *1 (-723 *6 *7 *8 *9))))) -(((*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-358)) (-4 *1 (-324 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1232 *3)) (-4 *3 (-1208 *4)) (-4 *4 (-1190)) - (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1208 (-402 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1232 *4)) (-5 *3 (-1232 *1)) (-4 *4 (-170)) - (-4 *1 (-362 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1232 *4)) (-5 *3 (-1232 *1)) (-4 *4 (-170)) - (-4 *1 (-365 *4 *5)) (-4 *5 (-1208 *4)))) + (-5 *1 (-725 *6 *7 *8 *9))))) +(((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-521)))) + ((*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-521))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-3 *3 (-627 *1))) + (-4 *1 (-1048 *4 *5 *6 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) + (-4 *3 (-13 (-1076) (-34)))))) +(((*1 *2) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-5 *2 (-671 (-401 *4)))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1038 (-1003 *3) (-1148 (-1003 *3)))) + (-5 *1 (-1003 *3)) (-4 *3 (-13 (-828) (-357) (-1001)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-412 (-1148 (-552)))) (-5 *1 (-186)) (-5 *3 (-552))))) +(((*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-754))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-754)) (-4 *3 (-1189)) (-4 *1 (-56 *3 *4 *5)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1) (-5 *1 (-168))) + ((*1 *1) (-12 (-5 *1 (-208 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1076)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1134)) (-4 *1 (-383)))) + ((*1 *1) (-5 *1 (-388))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-754)) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) + ((*1 *1) + (-12 (-4 *3 (-1076)) (-5 *1 (-864 *2 *3 *4)) (-4 *2 (-1076)) + (-4 *4 (-648 *3)))) + ((*1 *1) (-12 (-5 *1 (-868 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076)))) ((*1 *1 *2) - (-12 (-5 *2 (-1232 *3)) (-4 *3 (-170)) (-4 *1 (-404 *3 *4)) - (-4 *4 (-1208 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-170)) (-4 *1 (-412 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-625 (-1049 *4 *5 *2))) (-4 *4 (-1073)) - (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4)))) - (-4 *2 (-13 (-425 *5) (-862 *4) (-598 (-868 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-625 (-1049 *5 *6 *2))) (-5 *4 (-897)) (-4 *5 (-1073)) - (-4 *6 (-13 (-1025) (-862 *5) (-827) (-598 (-868 *5)))) - (-4 *2 (-13 (-425 *6) (-862 *5) (-598 (-868 *5)))) - (-5 *1 (-54 *5 *6 *2))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-625 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) + (-12 (-5 *1 (-1118 *3 *2)) (-14 *3 (-754)) (-4 *2 (-1028)))) + ((*1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028)))) + ((*1 *1 *1) (-5 *1 (-1152))) ((*1 *1) (-5 *1 (-1152))) + ((*1 *1) (-5 *1 (-1169)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) + (-5 *1 (-967 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-827)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1179 *5 *6 *7 *3)) - (-4 *5 (-544)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-625 (-625 *8))) (-5 *3 (-625 *8)) - (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-773)) - (-4 *7 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *5 *6 *7 *8))))) -(((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-432)) (-5 *3 (-1149)) (-5 *1 (-1152)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-432)) (-5 *3 (-1149)) (-5 *1 (-1152)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-432)) (-5 *3 (-625 (-1149))) (-5 *4 (-1149)) - (-5 *1 (-1152)))) - ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-432)) (-5 *3 (-1149)) (-5 *1 (-1152)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-432)) (-5 *3 (-1149)) (-5 *1 (-1153)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-432)) (-5 *3 (-625 (-1149))) (-5 *1 (-1153))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-802))))) + (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-830)) (-5 *2 (-111)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) + (-5 *1 (-1083 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) + (-5 *2 (-1014)) (-5 *1 (-731))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358)) - (-4 *7 (-1208 (-402 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -3106 *3))) - (-5 *1 (-550 *5 *6 *7 *3)) (-4 *3 (-337 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) (-4 *5 (-358)) - (-5 *2 - (-2 (|:| |answer| (-402 *6)) (|:| -3106 (-402 *6)) - (|:| |specpart| (-402 *6)) (|:| |polypart| *6))) - (-5 *1 (-551 *5 *6)) (-5 *3 (-402 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-136)))) - ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1186)))) - ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-472)))) - ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-577)))) - ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-608)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1073)) - (-4 *2 (-13 (-425 *4) (-862 *3) (-598 (-868 *3)))) - (-5 *1 (-1049 *3 *4 *2)) - (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1073)) (-5 *1 (-1138 *3 *2)) (-4 *3 (-1073))))) + (-12 (-5 *3 (-627 (-1235 *5))) (-5 *4 (-552)) (-5 *2 (-1235 *5)) + (-5 *1 (-1008 *5)) (-4 *5 (-357)) (-4 *5 (-362)) (-4 *5 (-1028))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-357) (-828))) (-5 *1 (-178 *2 *3)) + (-4 *3 (-1211 (-166 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-357) (-828))) (-5 *1 (-178 *2 *3)) + (-4 *3 (-1211 (-166 *2)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) + (-12 (-4 *3 (-1028)) (-5 *1 (-695 *3 *2)) (-4 *2 (-1211 *3))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-627 (-1148 *7))) (-5 *3 (-1148 *7)) + (-4 *7 (-928 *5 *6 *4)) (-4 *5 (-888)) (-4 *6 (-776)) + (-4 *4 (-830)) (-5 *1 (-885 *5 *6 *4 *7))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 *4)) - (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-625 *7)) (-5 *5 (-625 (-625 *8))) (-4 *7 (-827)) - (-4 *8 (-302)) (-4 *6 (-773)) (-4 *9 (-925 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-625 (-2 (|:| -3824 (-1145 *9)) (|:| -3564 (-552))))))) - (-5 *1 (-723 *6 *7 *8 *9)) (-5 *3 (-1145 *9))))) -(((*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170)))) - ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-411 *3 *2)) (-4 *3 (-412 *2)))) - ((*1 *2) (-12 (-4 *1 (-412 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-52))))) + (-12 (-4 *5 (-1076)) (-4 *6 (-865 *5)) (-5 *2 (-864 *5 *6 (-627 *6))) + (-5 *1 (-866 *5 *6 *4)) (-5 *3 (-627 *6)) (-4 *4 (-600 (-871 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1076)) (-5 *2 (-627 (-288 *3))) (-5 *1 (-866 *5 *3 *4)) + (-4 *3 (-1017 (-1152))) (-4 *3 (-865 *5)) (-4 *4 (-600 (-871 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1076)) (-5 *2 (-627 (-288 (-931 *3)))) + (-5 *1 (-866 *5 *3 *4)) (-4 *3 (-1028)) + (-1681 (-4 *3 (-1017 (-1152)))) (-4 *3 (-865 *5)) + (-4 *4 (-600 (-871 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1076)) (-5 *2 (-868 *5 *3)) (-5 *1 (-866 *5 *3 *4)) + (-1681 (-4 *3 (-1017 (-1152)))) (-1681 (-4 *3 (-1028))) + (-4 *3 (-865 *5)) (-4 *4 (-600 (-871 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)) + (-5 *2 (-627 (-754))) (-5 *1 (-761 *3 *4 *5 *6 *7)) + (-4 *3 (-1211 *6)) (-4 *7 (-928 *6 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) (-4 *6 (-1211 *5)) + (-4 *7 (-1211 (-401 *6))) (-4 *8 (-336 *5 *6 *7)) + (-4 *4 (-13 (-830) (-544) (-1017 (-552)))) (-5 *2 (-111)) + (-5 *1 (-890 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-330 (-401 (-552)) *4 *5 *6)) + (-4 *4 (-1211 (-401 (-552)))) (-4 *5 (-1211 (-401 *4))) + (-4 *6 (-336 (-401 (-552)) *4 *5)) (-5 *2 (-111)) + (-5 *1 (-891 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-627 (-671 *6))) (-5 *4 (-111)) (-5 *5 (-552)) + (-5 *2 (-671 *6)) (-5 *1 (-1008 *6)) (-4 *6 (-357)) (-4 *6 (-1028)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-627 (-671 *4))) (-5 *2 (-671 *4)) (-5 *1 (-1008 *4)) + (-4 *4 (-357)) (-4 *4 (-1028)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-627 (-671 *5))) (-5 *4 (-552)) (-5 *2 (-671 *5)) + (-5 *1 (-1008 *5)) (-4 *5 (-357)) (-4 *5 (-1028))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169))))) +(((*1 *1 *2) + (-12 (-5 *2 (-627 (-2 (|:| -3998 *3) (|:| -2162 *4)))) + (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *1 (-1165 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1165 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076))))) (((*1 *2 *1) - (-12 (-4 *1 (-1179 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1179 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-773)) - (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-802))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) - (-5 *1 (-953 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-751)) (-5 *1 (-549))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-136)))) - ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1186)))) - ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-472)))) - ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-577)))) - ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-608)))) + (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-830)) + (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-754)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-247 *4 *3 *5 *6)) (-4 *4 (-1028)) (-4 *3 (-830)) + (-4 *5 (-260 *3)) (-4 *6 (-776)) (-5 *2 (-754)))) + ((*1 *2 *1) (-12 (-4 *1 (-260 *3)) (-4 *3 (-830)) (-5 *2 (-754)))) + ((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-900)))) + ((*1 *2 *3) + (-12 (-5 *3 (-330 *4 *5 *6 *7)) (-4 *4 (-13 (-362) (-357))) + (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) (-4 *7 (-336 *4 *5 *6)) + (-5 *2 (-754)) (-5 *1 (-386 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-396)) (-5 *2 (-816 (-900))))) + ((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-552)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-583 *3)) (-4 *3 (-1028)))) + ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-583 *3)) (-4 *3 (-1028)))) ((*1 *2 *1) - (-12 (-4 *3 (-1073)) - (-4 *2 (-13 (-425 *4) (-862 *3) (-598 (-868 *3)))) - (-5 *1 (-1049 *3 *4 *2)) - (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-868 *3)))))) + (-12 (-4 *3 (-544)) (-5 *2 (-552)) (-5 *1 (-607 *3 *4)) + (-4 *4 (-1211 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-754)) (-4 *1 (-723 *4 *3)) (-4 *4 (-1028)) + (-4 *3 (-830)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-723 *4 *3)) (-4 *4 (-1028)) (-4 *3 (-830)) + (-5 *2 (-754)))) + ((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-5 *2 (-754)))) + ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) + ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) + (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) + (-4 *8 (-336 *5 *6 *7)) + (-4 *4 (-13 (-830) (-544) (-1017 (-552)))) (-5 *2 (-754)) + (-5 *1 (-890 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-330 (-401 (-552)) *4 *5 *6)) + (-4 *4 (-1211 (-401 (-552)))) (-4 *5 (-1211 (-401 *4))) + (-4 *6 (-336 (-401 (-552)) *4 *5)) (-5 *2 (-754)) + (-5 *1 (-891 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-330 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-357)) + (-4 *7 (-1211 *6)) (-4 *4 (-1211 (-401 *7))) (-4 *8 (-336 *6 *7 *4)) + (-4 *9 (-13 (-362) (-357))) (-5 *2 (-754)) + (-5 *1 (-997 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1211 *3)) (-4 *3 (-1028)) (-4 *3 (-544)) + (-5 *2 (-754)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775)))) ((*1 *2 *1) - (-12 (-4 *2 (-1073)) (-5 *1 (-1138 *2 *3)) (-4 *3 (-1073))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) - (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *4)))) - (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-552)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-302)) - (-4 *9 (-925 *8 *6 *7)) - (-5 *2 (-2 (|:| -4256 (-1145 *9)) (|:| |polval| (-1145 *8)))) - (-5 *1 (-723 *6 *7 *8 *9)) (-5 *3 (-1145 *9)) (-5 *4 (-1145 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170)))) - ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-411 *3 *2)) (-4 *3 (-412 *2)))) - ((*1 *2) (-12 (-4 *1 (-412 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-52))))) -(((*1 *2 *2) - (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) - (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *3)) - (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-625 *3)) (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-544)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) - (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-625 *7) (-625 *7))) (-5 *2 (-625 *7)) - (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-544)) (-4 *5 (-773)) - (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) + (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-775))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-754)) (-5 *2 (-401 (-552))) (-5 *1 (-220)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-754)) (-5 *2 (-401 (-552))) (-5 *1 (-220)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-754)) (-5 *2 (-401 (-552))) (-5 *1 (-373)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-754)) (-5 *2 (-401 (-552))) (-5 *1 (-373))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-868 *4 *5)) (-5 *3 (-868 *4 *6)) (-4 *4 (-1076)) + (-4 *5 (-1076)) (-4 *6 (-648 *5)) (-5 *1 (-864 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) -(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-600)))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) - (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) - (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) + (-12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-900)) (-5 *1 (-435 *2)) + (-4 *2 (-1211 (-552))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-900)) (-5 *4 (-754)) (-5 *1 (-435 *2)) + (-4 *2 (-1211 (-552))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-900)) (-5 *4 (-627 (-754))) (-5 *1 (-435 *2)) + (-4 *2 (-1211 (-552))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-900)) (-5 *4 (-627 (-754))) (-5 *5 (-754)) + (-5 *1 (-435 *2)) (-4 *2 (-1211 (-552))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-900)) (-5 *4 (-627 (-754))) (-5 *5 (-754)) + (-5 *6 (-111)) (-5 *1 (-435 *2)) (-4 *2 (-1211 (-552))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-900)) (-5 *4 (-412 *2)) (-4 *2 (-1211 *5)) + (-5 *1 (-437 *5 *2)) (-4 *5 (-1028))))) +(((*1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-438 *3)) (-4 *3 (-1028))))) +(((*1 *1 *1) (-4 *1 (-1037)))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1014)) + (-5 *1 (-731))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-302)) (-5 *2 (-413 *3)) - (-5 *1 (-723 *5 *4 *6 *3)) (-4 *3 (-925 *6 *5 *4))))) + (-12 (-4 *5 (-1076)) (-4 *2 (-879 *5)) (-5 *1 (-674 *5 *2 *3 *4)) + (-4 *3 (-367 *2)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4366))))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-627 (-1188))) (-5 *3 (-1188)) (-5 *1 (-663))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1235 *4)) (-5 *3 (-1096)) (-4 *4 (-343)) + (-5 *1 (-520 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-430))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-627 *3)) (-5 *1 (-940 *3)) (-4 *3 (-537))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) - (-5 *2 (-669 *4)))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-669 *4)) (-5 *1 (-411 *3 *4)) - (-4 *3 (-412 *4)))) - ((*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1131)) (-5 *1 (-52))))) + (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) + ((*1 *2 *3) (-12 (-5 *3 (-950)) (-5 *2 (-883 (-552))) (-5 *1 (-896))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-671 (-220))) (-5 *6 (-671 (-552))) (-5 *3 (-552)) + (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-735))))) (((*1 *2 *1) - (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-978)) - (-4 *2 (-1025))))) -(((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839))))) + (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) + (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-705)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-709)) (-5 *2 (-111))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-671 (-1148 *8))) (-4 *5 (-1028)) (-4 *8 (-1028)) + (-4 *6 (-1211 *5)) (-5 *2 (-671 *6)) (-5 *1 (-493 *5 *6 *7 *8)) + (-4 *7 (-1211 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-549)) (-5 *3 (-552))))) +(((*1 *1 *2) (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-296)) (-4 *2 (-1189)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 (-598 *1))) (-5 *3 (-627 *1)) (-4 *1 (-296)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-288 *1))) (-4 *1 (-296)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-288 *1)) (-4 *1 (-296))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *3)) - (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-446)))) - ((*1 *1 *1 *1) (-4 *1 (-446))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1208 (-552))))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-552)) (-5 *1 (-676 *2)) (-4 *2 (-1208 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-751))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) - (-5 *1 (-892 *3 *4 *5 *2)) (-4 *2 (-925 *5 *3 *4)))) + (-12 (-4 *4 (-13 (-445) (-144))) (-5 *2 (-412 *3)) + (-5 *1 (-99 *4 *3)) (-4 *3 (-1211 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-627 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-13 (-445) (-144))) + (-5 *2 (-412 *3)) (-5 *1 (-99 *5 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-664 *2)) (-4 *2 (-1076))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-627 (-922 *4))) (-4 *1 (-1110 *4)) (-4 *4 (-1028)) + (-5 *2 (-754))))) +(((*1 *1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) + ((*1 *1 *1 *1) (-4 *1 (-466))) + ((*1 *1 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) + ((*1 *2 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-862)))) + ((*1 *1 *1) (-5 *1 (-950))) + ((*1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-111) *6)) (-4 *6 (-13 (-1076) (-1017 *5))) + (-4 *5 (-865 *4)) (-4 *4 (-1076)) (-5 *2 (-1 (-111) *5)) + (-5 *1 (-910 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-627 (-884 *3))) (-4 *3 (-1076)) (-5 *1 (-883 *3))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *2 (-830)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830))))) +(((*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357)))) ((*1 *2 *3) - (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *6 *4 *5)) - (-5 *1 (-892 *4 *5 *6 *2)) (-4 *4 (-773)) (-4 *5 (-827)) - (-4 *6 (-302)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1145 *6)) (-4 *6 (-925 *5 *3 *4)) (-4 *3 (-773)) - (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *6)))) + (-12 (-5 *3 (-900)) (-5 *2 (-1235 *4)) (-5 *1 (-520 *4)) + (-4 *4 (-343))))) +(((*1 *1 *1) (-4 *1 (-140))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537))))) +(((*1 *2 *1) + (-12 (-4 *2 (-928 *3 *5 *4)) (-5 *1 (-966 *3 *4 *5 *2)) + (-4 *3 (-445)) (-4 *4 (-830)) (-4 *5 (-776))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-442 *4 *5 *6 *2))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-627 + (-627 + (-3 (|:| -3112 (-1152)) + (|:| -3536 (-627 (-3 (|:| S (-1152)) (|:| P (-931 (-552)))))))))) + (-5 *1 (-1156))))) +(((*1 *1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| -2167 (-627 (-842))) (|:| -2796 (-627 (-842))) + (|:| |presup| (-627 (-842))) (|:| -3750 (-627 (-842))) + (|:| |args| (-627 (-842))))) + (-5 *1 (-1152)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-627 (-842)))) (-5 *1 (-1152))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-688 *3 *4)) (-4 *3 (-1189)) (-4 *4 (-1189))))) +(((*1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) + (-5 *2 (-1014)) (-5 *1 (-735))))) +(((*1 *2 *3) + (-12 (-5 *3 (-598 *5)) (-4 *5 (-424 *4)) (-4 *4 (-1017 (-552))) + (-4 *4 (-13 (-830) (-544))) (-5 *2 (-1148 *5)) (-5 *1 (-32 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-625 (-1145 *7))) (-4 *4 (-773)) (-4 *5 (-827)) - (-4 *6 (-302)) (-5 *2 (-1145 *7)) (-5 *1 (-892 *4 *5 *6 *7)) - (-4 *7 (-925 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-897))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-446)) (-4 *3 (-544)) (-5 *1 (-945 *3 *2)) - (-4 *2 (-1208 *3)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827)) (-4 *2 (-446))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) - (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) - (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-740))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-2 (|:| -3824 (-1145 *6)) (|:| -3564 (-552))))) - (-4 *6 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-552)) - (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-925 *6 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) - (-5 *2 (-669 *4)))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-669 *4)) (-5 *1 (-411 *3 *4)) - (-4 *3 (-412 *4)))) - ((*1 *2) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3))))) -(((*1 *2) - (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-412 *3))))) + (-12 (-5 *3 (-598 *1)) (-4 *1 (-1028)) (-4 *1 (-296)) + (-5 *2 (-1148 *1))))) +(((*1 *2) (-12 (-5 *2 (-1123 (-1134))) (-5 *1 (-385))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-144) (-27) (-1017 (-552)) (-1017 (-401 (-552))))) + (-4 *5 (-1211 *4)) (-5 *2 (-1148 (-401 *5))) (-5 *1 (-601 *4 *5)) + (-5 *3 (-401 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1211 *5)) + (-4 *5 (-13 (-144) (-27) (-1017 (-552)) (-1017 (-401 (-552))))) + (-5 *2 (-1148 (-401 *6))) (-5 *1 (-601 *5 *6)) (-5 *3 (-401 *6))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 (-754))) (-5 *3 (-111)) (-5 *1 (-1140 *4 *5)) + (-14 *4 (-900)) (-4 *5 (-1028))))) (((*1 *2 *3) - (-12 (-5 *3 (-402 *5)) (-4 *5 (-1208 *4)) (-4 *4 (-544)) - (-4 *4 (-1025)) (-4 *2 (-1223 *4)) (-5 *1 (-1226 *4 *5 *6 *2)) - (-4 *6 (-636 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839))))) -(((*1 *2 *2) - (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-544)) - (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1186))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) - (-4 *3 (-1039 *6 *7 *8)) - (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) - (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-625 (-2 (|:| |val| (-625 *8)) (|:| -3715 *9)))) - (-5 *5 (-112)) (-4 *8 (-1039 *6 *7 *4)) (-4 *9 (-1045 *6 *7 *4 *8)) - (-4 *6 (-446)) (-4 *7 (-773)) (-4 *4 (-827)) - (-5 *2 (-625 (-2 (|:| |val| *8) (|:| -3715 *9)))) - (-5 *1 (-1046 *6 *7 *4 *8 *9))))) -(((*1 *2 *3) - (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-413 *3)) - (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-925 *6 *4 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) - (-5 *2 (-669 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3))))) -(((*1 *2) - (-12 (-4 *3 (-544)) (-5 *2 (-625 (-669 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-412 *3))))) + (-12 (-4 *4 (-1028)) + (-4 *2 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))) + (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1211 *4))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-991)) (-5 *2 (-842))))) +(((*1 *1 *2) + (-12 (-5 *2 (-401 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-13 (-357) (-144))) + (-5 *1 (-393 *3 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-1025)) (-4 *5 (-1208 *4)) (-5 *2 (-1 *6 (-625 *6))) - (-5 *1 (-1226 *4 *5 *3 *6)) (-4 *3 (-636 *5)) (-4 *6 (-1223 *4))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839))))) + (-12 (-4 *4 (-1028)) (-5 *2 (-552)) (-5 *1 (-436 *4 *3 *5)) + (-4 *3 (-1211 *4)) + (-4 *5 (-13 (-398) (-1017 *4) (-357) (-1174) (-278)))))) (((*1 *2 *1) - (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-625 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) + (-12 (-4 *2 (-13 (-828) (-357))) (-5 *1 (-1038 *2 *3)) + (-4 *3 (-1211 *2))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) - (-5 *2 (-669 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3))))) -(((*1 *2) - (-12 (-4 *3 (-544)) (-5 *2 (-625 (-669 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-412 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-751)) (-4 *5 (-1025)) (-4 *2 (-1208 *5)) - (-5 *1 (-1226 *5 *2 *6 *3)) (-4 *6 (-636 *2)) (-4 *3 (-1223 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) - ((*1 *1 *1 *1) (-5 *1 (-839)))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-952 *4 *5 *3 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) - (-4 *3 (-827)) (-4 *6 (-1039 *4 *5 *3)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-549)) (-5 *3 (-552))))) + (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) + (-5 *2 (-671 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-671 *3))))) +(((*1 *1) (-5 *1 (-1236)))) +(((*1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *1) (-5 *1 (-842))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189)))) + ((*1 *1 *2) (-12 (-5 *1 (-1202 *2)) (-4 *2 (-1189))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-310 (-220))) (-5 *1 (-261))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-446)))) - ((*1 *1 *1 *1) (-4 *1 (-446)))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) - (-5 *1 (-1101 *3 *2)) (-4 *3 (-1208 *2))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-167 (-221)))) (-5 *2 (-1011)) - (-5 *1 (-737))))) -(((*1 *1 *2) - (-12 (-5 *2 (-408 *3 *4 *5 *6)) (-4 *6 (-1014 *4)) (-4 *3 (-302)) - (-4 *4 (-968 *3)) (-4 *5 (-1208 *4)) (-4 *6 (-404 *4 *5)) - (-14 *7 (-1232 *6)) (-5 *1 (-409 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1232 *6)) (-4 *6 (-404 *4 *5)) (-4 *4 (-968 *3)) - (-4 *5 (-1208 *4)) (-4 *3 (-302)) (-5 *1 (-409 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1166))))) -(((*1 *2) - (-12 (-4 *3 (-544)) (-5 *2 (-625 (-669 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-412 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1025)) (-4 *3 (-1208 *4)) (-4 *2 (-1223 *4)) - (-5 *1 (-1226 *4 *3 *5 *2)) (-4 *5 (-636 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-544) (-827) (-1014 (-552)))) (-5 *1 (-184 *3 *2)) - (-4 *2 (-13 (-27) (-1171) (-425 (-167 *3)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) - ((*1 *1 *1 *1) (-5 *1 (-839)))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-897)) (-5 *1 (-1006 *2)) - (-4 *2 (-13 (-1073) (-10 -8 (-15 -2382 ($ $ $)))))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *2 (-827)) (-4 *5 (-1039 *3 *4 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-552)))) - ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-679))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) + (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) + (-5 *1 (-173 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) - (-5 *1 (-1101 *3 *2)) (-4 *3 (-1208 *2))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-112)) (-5 *5 (-669 (-167 (-221)))) - (-5 *2 (-1011)) (-5 *1 (-736))))) -(((*1 *1 *1) - (-12 (-4 *2 (-302)) (-4 *3 (-968 *2)) (-4 *4 (-1208 *3)) - (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-404 *3 *4) (-1014 *3)))))) -(((*1 *2) - (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-412 *3))))) + (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) + (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-552)) (-5 *2 (-627 (-627 (-220)))) (-5 *1 (-1185))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1005 (-823 (-552)))) + (-5 *3 (-1132 (-2 (|:| |k| (-552)) (|:| |c| *4)))) (-4 *4 (-1028)) + (-5 *1 (-582 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-398) (-1174))) (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-627 *7)) (|:| |badPols| (-627 *7)))) + (-5 *1 (-956 *4 *5 *6 *7)) (-5 *3 (-627 *7))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-120 *2)) (-4 *2 (-830))))) +(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-96)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-96))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) + (-5 *1 (-1049 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1134)) (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-1240)) + (-5 *1 (-1084 *4 *5 *6 *7 *8)) (-4 *8 (-1048 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 *7)) (-4 *7 (-928 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-1240)) + (-5 *1 (-442 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-4 *1 (-106 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1240)) (-5 *1 (-805))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *5)) (-5 *4 (-625 (-1 *6 (-625 *6)))) - (-4 *5 (-38 (-402 (-552)))) (-4 *6 (-1223 *5)) (-5 *2 (-625 *6)) - (-5 *1 (-1225 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-544) (-827) (-1014 (-552)))) (-5 *1 (-184 *3 *2)) - (-4 *2 (-13 (-27) (-1171) (-425 (-167 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) - (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 (-167 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1149)) - (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4)))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-839))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *2 (-827)) (-4 *5 (-1039 *3 *4 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) - (-5 *1 (-1101 *3 *2)) (-4 *3 (-1208 *2))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-112)) (-5 *5 (-669 (-221))) - (-5 *2 (-1011)) (-5 *1 (-736))))) + (-12 (-5 *4 (-1152)) (-5 *2 (-1 (-220) (-220))) (-5 *1 (-686 *3)) + (-4 *3 (-600 (-528))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1152)) (-5 *2 (-1 (-220) (-220) (-220))) + (-5 *1 (-686 *3)) (-4 *3 (-600 (-528)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-751)) (-5 *4 (-1232 *2)) (-4 *5 (-302)) - (-4 *6 (-968 *5)) (-4 *2 (-13 (-404 *6 *7) (-1014 *6))) - (-5 *1 (-408 *5 *6 *7 *2)) (-4 *7 (-1208 *6))))) + (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 *9)) (-4 *8 (-1042 *5 *6 *7)) + (-4 *9 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) + (-4 *7 (-830)) (-5 *2 (-754)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 *9)) (-4 *8 (-1042 *5 *6 *7)) + (-4 *9 (-1085 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) + (-4 *7 (-830)) (-5 *2 (-754)) (-5 *1 (-1121 *5 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-4 *1 (-248 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-827)) - (-4 *5 (-773)) (-4 *2 (-261 *4))))) -(((*1 *2) - (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-412 *3))))) + (-12 (-5 *2 (-2 (|:| |cd| (-1134)) (|:| -3112 (-1134)))) + (-5 *1 (-805))))) +(((*1 *1 *1 *1) (-5 *1 (-842)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-627 *4)) (-4 *4 (-357)) (-4 *2 (-1211 *4)) + (-5 *1 (-901 *4 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-625 *2))) (-5 *4 (-625 *5)) - (-4 *5 (-38 (-402 (-552)))) (-4 *2 (-1223 *5)) - (-5 *1 (-1225 *5 *2))))) -(((*1 *1 *1 *1) (-5 *1 (-839)))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-528))) (-5 *2 (-1149)) (-5 *1 (-528))))) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-111)) + (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) + (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *4)))) + (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) + (-5 *2 (-2 (|:| -3069 *1) (|:| |gap| (-754)) (|:| -3401 *1))) + (-4 *1 (-1042 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *2 (-2 (|:| -3069 *1) (|:| |gap| (-754)) (|:| -3401 *1))) + (-4 *1 (-1042 *3 *4 *5))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-871 *4)) (-4 *4 (-1076)) (-4 *2 (-1076)) + (-5 *1 (-868 *4 *2))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *4 *5 *6)) (-4 *4 (-357)) + (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-5 *1 (-443 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-357)) + (-5 *2 + (-2 (|:| R (-671 *6)) (|:| A (-671 *6)) (|:| |Ainv| (-671 *6)))) + (-5 *1 (-957 *6)) (-5 *3 (-671 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) - (-5 *2 (-625 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1208 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) - (-5 *2 (-625 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1208 *3))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) - (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT)))) - (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-221)) - (-5 *2 (-1011)) (-5 *1 (-736)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) - (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT)))) - (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-383)) - (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736))))) + (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1166 *4 *5)) + (-4 *4 (-1076)) (-4 *5 (-1076))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-552)) (-5 *5 (-671 (-220))) (-5 *6 (-657 (-220))) + (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-733))))) (((*1 *2 *3) - (-12 (-5 *3 (-1232 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) - (-4 *5 (-1208 *4)) (-5 *2 (-669 *4)))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-4 *5 (-1208 *4)) (-5 *2 (-669 *4)) - (-5 *1 (-403 *3 *4 *5)) (-4 *3 (-404 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1208 *3)) - (-5 *2 (-669 *3))))) -(((*1 *1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| -2520 (-625 (-839))) (|:| -1282 (-625 (-839))) - (|:| |presup| (-625 (-839))) (|:| -2501 (-625 (-839))) - (|:| |args| (-625 (-839))))) - (-5 *1 (-1149)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-625 (-839)))) (-5 *1 (-1149))))) -(((*1 *2) - (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-412 *3))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1223 *4)) (-5 *1 (-1225 *4 *2)) - (-4 *4 (-38 (-402 (-552))))))) -(((*1 *1 *1 *1) (-5 *1 (-839)))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4354)) (-4 *1 (-986 *2)) (-4 *2 (-1186))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1186)) - (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) -(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850))))) + (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-411 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) - (-5 *2 (-625 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1208 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) - (-5 *2 (-625 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1208 *3))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-552)) (-5 *5 (-112)) (-5 *6 (-669 (-221))) - (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1232 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) - (-4 *5 (-1208 *4)) (-5 *2 (-669 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1208 *3)) - (-5 *2 (-669 *3))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1026))))) +(((*1 *2 *1) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) + (-5 *2 (-2 (|:| |num| (-1235 *4)) (|:| |den| *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) + ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) + ((*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-627 *1)) (-4 *1 (-301))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-754)) (-4 *5 (-343)) (-4 *6 (-1211 *5)) + (-5 *2 + (-627 + (-2 (|:| -2957 (-671 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-671 *6))))) + (-5 *1 (-490 *5 *6 *7)) + (-5 *3 + (-2 (|:| -2957 (-671 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-671 *6)))) + (-4 *7 (-1211 *6))))) +(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1155))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-803)) (-14 *5 (-1152)) (-5 *2 (-627 (-1208 *5 *4))) + (-5 *1 (-1090 *4 *5)) (-5 *3 (-1208 *5 *4))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-220) (-220) (-220))) + (-5 *4 (-3 (-1 (-220) (-220) (-220) (-220)) "undefined")) + (-5 *5 (-1070 (-220))) (-5 *6 (-627 (-257))) (-5 *2 (-1109 (-220))) + (-5 *1 (-679))))) (((*1 *2) - (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-412 *3))))) + (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-411 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1223 *4)) (-5 *1 (-1225 *4 *2)) - (-4 *4 (-38 (-402 (-552))))))) -(((*1 *1 *1 *1) (-5 *1 (-839)))) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *1 *1) + (-12 (-4 *1 (-247 *2 *3 *4 *5)) (-4 *2 (-1028)) (-4 *3 (-830)) + (-4 *4 (-260 *3)) (-4 *5 (-776))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537)) - (-5 *2 (-402 (-552))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-402 (-552))) (-5 *1 (-413 *3)) (-4 *3 (-537)) - (-4 *3 (-544)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-537)) (-5 *2 (-402 (-552))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-777 *3)) (-4 *3 (-170)) (-4 *3 (-537)) - (-5 *2 (-402 (-552))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-402 (-552))) (-5 *1 (-813 *3)) (-4 *3 (-537)) - (-4 *3 (-1073)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-402 (-552))) (-5 *1 (-820 *3)) (-4 *3 (-537)) - (-4 *3 (-1073)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-973 *3)) (-4 *3 (-170)) (-4 *3 (-537)) - (-5 *2 (-402 (-552))))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-402 (-552))) (-5 *1 (-984 *3)) - (-4 *3 (-1014 *2))))) + (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-5 *2 (-1134))))) +(((*1 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-763 *5 (-844 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) + (-14 *6 (-627 (-1152))) (-5 *2 (-627 (-1025 *5 *6))) + (-5 *1 (-612 *5 *6))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-830)) + (-5 *2 (-2 (|:| -3069 (-552)) (|:| |var| (-598 *1)))) + (-4 *1 (-424 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1186)) - (-5 *2 (-625 *3))))) + (-12 (-4 *1 (-247 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-830)) + (-4 *5 (-260 *4)) (-4 *6 (-776)) (-5 *2 (-627 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-111))) ((*1 *1 *1 *1) (-4 *1 (-122))) + ((*1 *1 *1 *1) (-5 *1 (-1096)))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-521))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) + (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-144)) + (-4 *3 (-301)) (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *1 (-956 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-671 *11)) (-5 *4 (-627 (-401 (-931 *8)))) + (-5 *5 (-754)) (-5 *6 (-1134)) (-4 *8 (-13 (-301) (-144))) + (-4 *11 (-928 *8 *10 *9)) (-4 *9 (-13 (-830) (-600 (-1152)))) + (-4 *10 (-776)) + (-5 *2 + (-2 + (|:| |rgl| + (-627 + (-2 (|:| |eqzro| (-627 *11)) (|:| |neqzro| (-627 *11)) + (|:| |wcond| (-627 (-931 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1235 (-401 (-931 *8)))) + (|:| -2957 (-627 (-1235 (-401 (-931 *8)))))))))) + (|:| |rgsz| (-552)))) + (-5 *1 (-903 *8 *9 *10 *11)) (-5 *7 (-552))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) - (-5 *2 (-625 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1208 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) - (-5 *2 (-625 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1208 *3))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) - (-5 *2 (-1011)) (-5 *1 (-736))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-413 *2)) (-4 *2 (-544))))) -(((*1 *2) - (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-412 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-5 *1 (-1225 *3 *2)) - (-4 *2 (-1223 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-839)))) -(((*1 *2 *1) - (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-413 *3)) (-4 *3 (-537)) (-4 *3 (-544)))) - ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-777 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-813 *3)) (-4 *3 (-537)) (-4 *3 (-1073)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-537)) (-4 *3 (-1073)))) - ((*1 *2 *1) - (-12 (-4 *1 (-973 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112)))) + (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) + (-5 *2 (-627 (-931 *4))))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-627 (-931 *4))) (-5 *1 (-410 *3 *4)) + (-4 *3 (-411 *4)))) + ((*1 *2) + (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-627 (-931 *3))))) + ((*1 *2) + (-12 (-5 *2 (-627 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) + (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3))))) ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-984 *3)) (-4 *3 (-1014 (-402 (-552))))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4353)) (-4 *1 (-588 *4 *3)) (-4 *4 (-1073)) - (-4 *3 (-1186)) (-4 *3 (-1073)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1235 (-446 *4 *5 *6 *7))) (-5 *2 (-627 (-931 *4))) + (-5 *1 (-446 *4 *5 *6 *7)) (-4 *4 (-544)) (-4 *4 (-169)) + (-14 *5 (-900)) (-14 *6 (-627 (-1152))) (-14 *7 (-1235 (-671 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) + (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *1 (-442 *3 *4 *5 *2)) (-4 *2 (-928 *3 *4 *5))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4366)) (-4 *1 (-148 *3)) + (-4 *3 (-1189)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1189)) (-5 *1 (-587 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-656 *3)) (-4 *3 (-1189)))) + ((*1 *2 *1 *3) + (|partial| -12 (-4 *1 (-1182 *4 *5 *3 *2)) (-4 *4 (-544)) + (-4 *5 (-776)) (-4 *3 (-830)) (-4 *2 (-1042 *4 *5 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-754)) (-5 *1 (-1186 *2)) (-4 *2 (-1189))))) +(((*1 *2 *1) (-12 (-4 *3 (-1189)) (-5 *2 (-627 *1)) (-4 *1 (-989 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-627 (-1140 *3 *4))) (-5 *1 (-1140 *3 *4)) + (-14 *3 (-900)) (-4 *4 (-1028))))) +(((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| -3354 (-113)) (|:| |arg| (-627 (-871 *3))))) + (-5 *1 (-871 *3)) (-4 *3 (-1076)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-113)) (-5 *2 (-627 (-871 *4))) + (-5 *1 (-871 *4)) (-4 *4 (-1076))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *8 (-1042 *5 *6 *7)) (-5 *2 - (-2 (|:| |solns| (-625 *5)) - (|:| |maps| (-625 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1101 *3 *5)) (-4 *3 (-1208 *5))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *2 (-1011)) - (-5 *1 (-736))))) + (-2 (|:| |val| (-627 *8)) + (|:| |towers| (-627 (-1006 *5 *6 *7 *8))))) + (-5 *1 (-1006 *5 *6 *7 *8)) (-5 *3 (-627 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *8 (-1042 *5 *6 *7)) + (-5 *2 + (-2 (|:| |val| (-627 *8)) + (|:| |towers| (-627 (-1122 *5 *6 *7 *8))))) + (-5 *1 (-1122 *5 *6 *7 *8)) (-5 *3 (-627 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-625 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-412 *4))))) + (|partial| -12 (-5 *3 (-671 (-401 (-931 (-552))))) + (-5 *2 (-671 (-310 (-552)))) (-5 *1 (-1010))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-625 *5))) (-4 *5 (-1223 *4)) - (-4 *4 (-38 (-402 (-552)))) - (-5 *2 (-1 (-1129 *4) (-625 (-1129 *4)))) (-5 *1 (-1225 *4 *5))))) + (-12 (-5 *3 (-552)) (|has| *1 (-6 -4357)) (-4 *1 (-398)) + (-5 *2 (-900))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-401 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1211 *5)) + (-5 *1 (-710 *5 *2)) (-4 *5 (-357))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1148 (-401 (-552)))) (-5 *1 (-921)) (-5 *3 (-552))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *2) + (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-830)) (-5 *1 (-1160 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1227 *2 *3 *4)) (-4 *2 (-1028)) (-14 *3 (-1152)) + (-14 *4 *2)))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1189)) (-5 *1 (-587 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-445)) (-4 *4 (-830)) (-4 *5 (-776)) + (-5 *2 (-111)) (-5 *1 (-966 *3 *4 *5 *6)) + (-4 *6 (-928 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) + (-4 *4 (-13 (-1076) (-34)))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552)))) - (-5 *4 (-311 (-167 (-374)))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) + (-5 *4 (-310 (-166 (-373)))) (-5 *1 (-324)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552)))) - (-5 *4 (-311 (-374))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) + (-5 *4 (-310 (-373))) (-5 *1 (-324)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552)))) - (-5 *4 (-311 (-552))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) + (-5 *4 (-310 (-552))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-167 (-374))))) - (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-166 (-373))))) + (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-374)))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-373)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-552)))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-552)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-167 (-374))))) - (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-166 (-373))))) + (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-374)))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-373)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-552)))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-552)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-167 (-374)))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-166 (-373)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-374))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-373))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-552))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-552))) (-5 *1 (-324)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552)))) - (-5 *4 (-311 (-674))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) + (-5 *4 (-310 (-676))) (-5 *1 (-324)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552)))) - (-5 *4 (-311 (-679))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) + (-5 *4 (-310 (-681))) (-5 *1 (-324)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-928 (-552)))) - (-5 *4 (-311 (-681))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-931 (-552)))) + (-5 *4 (-310 (-683))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-674)))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-676)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-679)))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-681)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-311 (-681)))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-310 (-683)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-674)))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-676)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-679)))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-681)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-311 (-681)))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-310 (-683)))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-674))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-676))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-679))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-681))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-681))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-1235 (-683))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-674))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-676))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-679))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-681))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-681))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-671 (-683))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-674))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-676))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-679))) (-5 *1 (-325)))) + (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-681))) (-5 *1 (-324)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-311 (-681))) (-5 *1 (-325)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1131)) (-5 *1 (-325)))) - ((*1 *1 *1 *1) (-5 *1 (-839)))) -(((*1 *2 *1) - (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537)) - (-5 *2 (-402 (-552))))) - ((*1 *2 *1) - (-12 (-5 *2 (-402 (-552))) (-5 *1 (-413 *3)) (-4 *3 (-537)) - (-4 *3 (-544)))) - ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-402 (-552))))) - ((*1 *2 *1) - (-12 (-4 *1 (-777 *3)) (-4 *3 (-170)) (-4 *3 (-537)) - (-5 *2 (-402 (-552))))) - ((*1 *2 *1) - (-12 (-5 *2 (-402 (-552))) (-5 *1 (-813 *3)) (-4 *3 (-537)) - (-4 *3 (-1073)))) - ((*1 *2 *1) - (-12 (-5 *2 (-402 (-552))) (-5 *1 (-820 *3)) (-4 *3 (-537)) - (-4 *3 (-1073)))) - ((*1 *2 *1) - (-12 (-4 *1 (-973 *3)) (-4 *3 (-170)) (-4 *3 (-537)) - (-5 *2 (-402 (-552))))) - ((*1 *2 *3) - (-12 (-5 *2 (-402 (-552))) (-5 *1 (-984 *3)) (-4 *3 (-1014 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-588 *2 *3)) (-4 *3 (-1186)) (-4 *2 (-1073)) - (-4 *2 (-827))))) + (-12 (-5 *2 (-1152)) (-5 *3 (-310 (-683))) (-5 *1 (-324)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1134)) (-5 *1 (-324)))) + ((*1 *1 *1 *1) (-5 *1 (-842)))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-830) (-544)))))) +(((*1 *1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1 *1) (-5 *1 (-842))) + ((*1 *1 *1 *1) (-4 *1 (-946)))) +(((*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4367)) (-4 *1 (-367 *2)) (-4 *2 (-1189)))) + ((*1 *1 *1) + (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-111)) (-5 *3 (-931 *6)) (-5 *4 (-1152)) + (-5 *5 (-823 *7)) + (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-4 *7 (-13 (-1174) (-29 *6))) (-5 *1 (-219 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-111)) (-5 *3 (-1148 *6)) (-5 *4 (-823 *6)) + (-4 *6 (-13 (-1174) (-29 *5))) + (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-219 *5 *6))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-172))))) +(((*1 *1 *1 *1) (-4 *1 (-946)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-220))) (-5 *4 (-754)) (-5 *2 (-671 (-220))) + (-5 *1 (-299))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1076)) (-4 *6 (-1076)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-666 *4 *5 *6)) (-4 *4 (-1076))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-544)) (-4 *2 (-169))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1232 *4)) (-5 *3 (-669 *4)) (-4 *4 (-358)) - (-5 *1 (-647 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-358)) - (-4 *5 (-13 (-368 *4) (-10 -7 (-6 -4354)))) - (-4 *2 (-13 (-368 *4) (-10 -7 (-6 -4354)))) - (-5 *1 (-648 *4 *5 *2 *3)) (-4 *3 (-667 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-625 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-358)) - (-5 *1 (-794 *2 *3)) (-4 *3 (-636 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) - (-5 *1 (-1101 *3 *2)) (-4 *3 (-1208 *2))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-736))))) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) + ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-460)))) + ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906))))) +(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-552)) (-5 *1 (-236)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-552)) (-5 *1 (-236))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1189)) (-5 *1 (-587 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1232 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) - (-5 *2 (-625 (-928 *4))))) - ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-625 (-928 *4))) (-5 *1 (-411 *3 *4)) - (-4 *3 (-412 *4)))) - ((*1 *2) - (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-625 (-928 *3))))) - ((*1 *2) - (-12 (-5 *2 (-625 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) - (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1232 (-447 *4 *5 *6 *7))) (-5 *2 (-625 (-928 *4))) - (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-544)) (-4 *4 (-170)) - (-14 *5 (-897)) (-14 *6 (-625 (-1149))) (-14 *7 (-1232 (-669 *4)))))) + (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) + (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1028))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-1083 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7))))) (((*1 *1 *2) - (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-1120 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-625 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-412 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1223 *4)) - (-4 *4 (-38 (-402 (-552)))) - (-5 *2 (-1 (-1129 *4) (-1129 *4) (-1129 *4))) (-5 *1 (-1225 *4 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-839)))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-982))))) -(((*1 *2 *1) - (-12 (-4 *1 (-588 *2 *3)) (-4 *3 (-1186)) (-4 *2 (-1073)) - (-4 *2 (-827))))) + (-12 (-5 *2 (-671 *5)) (-4 *5 (-1028)) (-5 *1 (-1032 *3 *4 *5)) + (-14 *3 (-754)) (-14 *4 (-754))))) +(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1152))))) +(((*1 *1) (-5 *1 (-111))) ((*1 *1) (-5 *1 (-602)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *6)) (-5 *4 (-625 (-1129 *7))) (-4 *6 (-827)) - (-4 *7 (-925 *5 (-524 *6) *6)) (-4 *5 (-1025)) - (-5 *2 (-1 (-1129 *7) *7)) (-5 *1 (-1099 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-736))))) -(((*1 *2 *3) - (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-751)) - (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-925 *4 *5 *6))))) -(((*1 *2) - (-12 (-4 *3 (-544)) (-5 *2 (-625 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-412 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1223 *4)) - (-4 *4 (-38 (-402 (-552)))) (-5 *2 (-1 (-1129 *4) (-1129 *4))) - (-5 *1 (-1225 *4 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-839)))) -(((*1 *2 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-982))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1186)) (-4 *3 (-368 *2)) - (-4 *4 (-368 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4354)) (-4 *1 (-588 *3 *2)) (-4 *3 (-1073)) - (-4 *2 (-1186))))) + (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) + (-5 *1 (-173 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-627 (-1175 *3))) (-5 *1 (-1175 *3)) (-4 *3 (-1076))))) +(((*1 *2 *1) (-12 (-5 *2 (-180)) (-5 *1 (-243))))) +(((*1 *1 *1) (-4 *1 (-613))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981) (-1174)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978)))))) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1134)) (-5 *3 (-806)) (-5 *1 (-805))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-302)) (-4 *6 (-368 *5)) (-4 *4 (-368 *5)) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) - (-5 *1 (-1097 *5 *6 *4 *3)) (-4 *3 (-667 *5 *6 *4))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-736))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-751)) (|:| -4256 *4))) (-5 *5 (-751)) - (-4 *4 (-925 *6 *7 *8)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) - (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-443 *6 *7 *8 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-412 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) - (-5 *2 (-625 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073)) - (-5 *2 (-625 *3)))) + (-12 (-5 *4 (-900)) (-4 *6 (-13 (-544) (-830))) + (-5 *2 (-627 (-310 *6))) (-5 *1 (-216 *5 *6)) (-5 *3 (-310 *6)) + (-4 *5 (-1028)))) + ((*1 *2 *1) (-12 (-5 *1 (-412 *2)) (-4 *2 (-544)))) + ((*1 *2 *3) + (-12 (-5 *3 (-573 *5)) (-4 *5 (-13 (-29 *4) (-1174))) + (-4 *4 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) + (-5 *2 (-627 *5)) (-5 *1 (-571 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-573 (-401 (-931 *4)))) + (-4 *4 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) + (-5 *2 (-627 (-310 *4))) (-5 *1 (-576 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-1129 *3)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) + (-12 (-4 *1 (-1071 *3 *2)) (-4 *3 (-828)) (-4 *2 (-1125 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 *1)) (-4 *1 (-1071 *4 *2)) (-4 *4 (-828)) + (-4 *2 (-1125 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174))))) ((*1 *2 *1) - (-12 (-5 *2 (-625 *3)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) - (-4 *4 (-707)))) - ((*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-625 *3)))) + (-12 (-5 *2 (-1250 (-1152) *3)) (-5 *1 (-1257 *3)) (-4 *3 (-1028)))) ((*1 *2 *1) - (-12 (-4 *1 (-1223 *3)) (-4 *3 (-1025)) (-5 *2 (-1129 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-839)))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-982)))) - ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-982))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4354)) (-4 *1 (-588 *3 *4)) (-4 *3 (-1073)) - (-4 *4 (-1186)) (-5 *2 (-1237))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1131)) (-4 *1 (-359 *2 *4)) (-4 *2 (-1073)) - (-4 *4 (-1073)))) - ((*1 *1 *2) - (-12 (-4 *1 (-359 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073))))) + (-12 (-5 *2 (-1250 *3 *4)) (-5 *1 (-1259 *3 *4)) (-4 *3 (-830)) + (-4 *4 (-1028))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-627 (-671 *4))) (-5 *2 (-671 *4)) (-4 *4 (-1028)) + (-5 *1 (-1008 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-127))))) +(((*1 *1 *1 *1) (-4 *1 (-466))) ((*1 *1 *1 *1) (-4 *1 (-744)))) +(((*1 *2 *1) + (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) (-5 *2 (-111)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1148 *4)) (-4 *4 (-343)) (-5 *2 (-111)) + (-5 *1 (-351 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1235 *4)) (-4 *4 (-343)) (-5 *2 (-111)) + (-5 *1 (-520 *4))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-1134)) (-5 *5 (-671 (-220))) + (-5 *2 (-1014)) (-5 *1 (-730))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1028)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1211 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-412 *3)) (-4 *3 (-544))))) (((*1 *2 *3) - (-12 (-4 *4 (-302)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) + (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *2 (-627 (-220))) (-5 *1 (-199))))) +(((*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537)))) + ((*1 *2 *3) + (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)) (-5 *2 (-412 *3)) + (-5 *1 (-725 *4 *5 *6 *3)) (-4 *3 (-928 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)) + (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-412 (-1148 *7))) + (-5 *1 (-725 *4 *5 *6 *7)) (-5 *3 (-1148 *7)))) + ((*1 *2 *1) + (-12 (-4 *3 (-445)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *2 (-412 *1)) (-4 *1 (-928 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-830)) (-4 *5 (-776)) (-4 *6 (-445)) (-5 *2 (-412 *3)) + (-5 *1 (-958 *4 *5 *6 *3)) (-4 *3 (-928 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-445)) + (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-412 (-1148 (-401 *7)))) + (-5 *1 (-1147 *4 *5 *6 *7)) (-5 *3 (-1148 (-401 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-412 *1)) (-4 *1 (-1193)))) + ((*1 *2 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-412 *3)) (-5 *1 (-1214 *4 *3)) + (-4 *3 (-13 (-1211 *4) (-544) (-10 -8 (-15 -1323 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1025 *4 *5)) (-4 *4 (-13 (-828) (-301) (-144) (-1001))) + (-14 *5 (-627 (-1152))) (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1097 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-736))))) -(((*1 *2 *3) (-12 (-5 *3 (-625 (-52))) (-5 *2 (-1237)) (-5 *1 (-840))))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-773)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827)) - (-5 *2 (-112)) (-5 *1 (-443 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-412 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1025))))) -(((*1 *1 *1 *1) (-5 *1 (-839)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-402 (-552))) (-5 *4 (-552)) (-5 *2 (-52)) - (-5 *1 (-981))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-625 (-596 *2))) (-5 *4 (-625 (-1149))) - (-4 *2 (-13 (-425 (-167 *5)) (-978) (-1171))) - (-4 *5 (-13 (-544) (-827))) (-5 *1 (-584 *5 *6 *2)) - (-4 *6 (-13 (-425 *5) (-978) (-1171)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1145 *6)) (-4 *6 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *2 (-1145 *7)) (-5 *1 (-316 *4 *5 *6 *7)) - (-4 *7 (-925 *6 *4 *5))))) + (-627 (-1122 *4 (-523 (-844 *6)) (-844 *6) (-763 *4 (-844 *6))))) + (-5 *1 (-1261 *4 *5 *6)) (-14 *6 (-627 (-1152)))))) (((*1 *2 *2) - (-12 (-4 *3 (-302)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) - (-5 *1 (-1097 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-736))))) -(((*1 *2 *3) - (-12 (-5 *3 (-552)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-5 *2 (-1237)) (-5 *1 (-443 *4 *5 *6 *7)) (-4 *7 (-925 *4 *5 *6))))) + (-12 (-4 *3 (-445)) (-4 *4 (-776)) (-4 *5 (-830)) + (-4 *6 (-1042 *3 *4 *5)) (-5 *1 (-608 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *2 (-1085 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301))))) (((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-412 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-552))) (-4 *3 (-1025)) (-5 *1 (-580 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-552))) (-4 *1 (-1192 *3)) (-4 *3 (-1025)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-552))) (-4 *1 (-1223 *3)) (-4 *3 (-1025))))) -(((*1 *1 *1 *1) (-5 *1 (-839)))) -(((*1 *2 *1) - (-12 (-5 *2 (-625 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-544) (-827))) (-5 *2 (-167 *5)) - (-5 *1 (-584 *4 *5 *3)) (-4 *5 (-13 (-425 *4) (-978) (-1171))) - (-4 *3 (-13 (-425 (-167 *4)) (-978) (-1171)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1145 *7)) (-4 *7 (-925 *6 *4 *5)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *6 (-1025)) (-5 *2 (-1145 *6)) - (-5 *1 (-316 *4 *5 *6 *7))))) -(((*1 *1 *1) (-4 *1 (-641))) ((*1 *1 *1) (-5 *1 (-1093)))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-1149)) (-5 *1 (-528)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-528))))) - ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-528))))) - ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-528))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-625 (-1149))) (-5 *2 (-1149)) (-5 *1 (-685 *3)) - (-4 *3 (-598 (-528)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-302)) (-4 *5 (-368 *4)) (-4 *6 (-368 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1097 *4 *5 *6 *3)) (-4 *3 (-667 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-736))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-446)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1237)) - (-5 *1 (-443 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-751)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-552)) (-4 *1 (-368 *3)) (-4 *3 (-1186)) - (-4 *3 (-1073)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-368 *3)) (-4 *3 (-1186)) (-4 *3 (-1073)) - (-5 *2 (-552)))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-522 *3)) (-4 *3 (-13 (-709) (-25)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1132 *4)) (-5 *3 (-552)) (-4 *4 (-1028)) + (-5 *1 (-1136 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-552)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1028)) + (-14 *4 (-1152)) (-14 *5 *3)))) +(((*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1159))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-627 *1)) (-4 *1 (-1042 *4 *5 *6)) (-4 *4 (-1028)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-830)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-368 *4)) (-4 *4 (-1186)) - (-5 *2 (-552)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-552)) (-5 *3 (-139)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-552))))) + (-12 (-4 *1 (-1182 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-776)) + (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111))))) (((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-412 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1065 (-820 *3))) (-4 *3 (-13 (-1171) (-935) (-29 *5))) - (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) - (-5 *2 - (-3 (|:| |f1| (-820 *3)) (|:| |f2| (-625 (-820 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-215 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1065 (-820 *3))) (-5 *5 (-1131)) - (-4 *3 (-13 (-1171) (-935) (-29 *6))) - (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) - (-5 *2 - (-3 (|:| |f1| (-820 *3)) (|:| |f2| (-625 (-820 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-215 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1065 (-820 (-311 *5)))) - (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) - (-5 *2 - (-3 (|:| |f1| (-820 (-311 *5))) (|:| |f2| (-625 (-820 (-311 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-216 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-402 (-928 *6))) (-5 *4 (-1065 (-820 (-311 *6)))) - (-5 *5 (-1131)) - (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) - (-5 *2 - (-3 (|:| |f1| (-820 (-311 *6))) (|:| |f2| (-625 (-820 (-311 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-216 *6)))) + (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-803)) (-14 *5 (-1152)) + (-5 *2 (-552)) (-5 *1 (-1090 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-544)) (-4 *3 (-169)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2957 (-627 *1)))) + (-4 *1 (-361 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-446 *3 *4 *5 *6)) + (|:| -2957 (-627 (-446 *3 *4 *5 *6))))) + (-5 *1 (-446 *3 *4 *5 *6)) (-4 *3 (-169)) (-14 *4 (-900)) + (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1152)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-684 *3 *5 *6 *7)) + (-4 *3 (-600 (-528))) (-4 *5 (-1189)) (-4 *6 (-1189)) + (-4 *7 (-1189)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1065 (-820 (-402 (-928 *5))))) (-5 *3 (-402 (-928 *5))) - (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) - (-5 *2 - (-3 (|:| |f1| (-820 (-311 *5))) (|:| |f2| (-625 (-820 (-311 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-216 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1065 (-820 (-402 (-928 *6))))) (-5 *5 (-1131)) - (-5 *3 (-402 (-928 *6))) - (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) + (-12 (-5 *4 (-1152)) (-5 *2 (-1 *6 *5)) (-5 *1 (-689 *3 *5 *6)) + (-4 *3 (-600 (-528))) (-4 *5 (-1189)) (-4 *6 (-1189))))) +(((*1 *1 *2) + (-12 (-5 *2 - (-3 (|:| |f1| (-820 (-311 *6))) (|:| |f2| (-625 (-820 (-311 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-216 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1149)) - (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-3 *3 (-625 *3))) (-5 *1 (-423 *5 *3)) - (-4 *3 (-13 (-1171) (-935) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5)) - (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1067 (-820 (-374)))) - (-5 *5 (-374)) (-5 *6 (-1037)) (-5 *2 (-1011)) (-5 *1 (-553)))) - ((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1011)) (-5 *1 (-553)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1067 (-820 (-374)))) - (-5 *5 (-374)) (-5 *2 (-1011)) (-5 *1 (-553)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1067 (-820 (-374)))) - (-5 *5 (-374)) (-5 *2 (-1011)) (-5 *1 (-553)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-311 (-374))) (-5 *4 (-1067 (-820 (-374)))) - (-5 *2 (-1011)) (-5 *1 (-553)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-1067 (-820 (-374))))) - (-5 *2 (-1011)) (-5 *1 (-553)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-1067 (-820 (-374))))) - (-5 *5 (-374)) (-5 *2 (-1011)) (-5 *1 (-553)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-1067 (-820 (-374))))) - (-5 *5 (-374)) (-5 *2 (-1011)) (-5 *1 (-553)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-1067 (-820 (-374))))) - (-5 *5 (-374)) (-5 *6 (-1037)) (-5 *2 (-1011)) (-5 *1 (-553)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-311 (-374))) (-5 *4 (-1065 (-820 (-374)))) - (-5 *5 (-1131)) (-5 *2 (-1011)) (-5 *1 (-553)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-311 (-374))) (-5 *4 (-1065 (-820 (-374)))) - (-5 *5 (-1149)) (-5 *2 (-1011)) (-5 *1 (-553)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-552)))) (-4 *5 (-1208 *4)) - (-5 *2 (-571 (-402 *5))) (-5 *1 (-556 *4 *5)) (-5 *3 (-402 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149)) (-4 *5 (-145)) - (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) - (-5 *2 (-3 (-311 *5) (-625 (-311 *5)))) (-5 *1 (-574 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-827)) - (-4 *3 (-38 (-402 (-552)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1149)) (-5 *1 (-928 *3)) (-4 *3 (-38 (-402 (-552)))) - (-4 *3 (-1025)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-4 *2 (-827)) - (-5 *1 (-1099 *3 *2 *4)) (-4 *4 (-925 *3 (-524 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) - (-5 *1 (-1133 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5)) - (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5)) - (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5)) - (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *1 (-1180 *3)) (-4 *3 (-38 (-402 (-552)))) - (-4 *3 (-1025)))) - ((*1 *1 *1 *2) - (-1523 - (-12 (-5 *2 (-1149)) (-4 *1 (-1192 *3)) (-4 *3 (-1025)) - (-12 (-4 *3 (-29 (-552))) (-4 *3 (-935)) (-4 *3 (-1171)) - (-4 *3 (-38 (-402 (-552)))))) - (-12 (-5 *2 (-1149)) (-4 *1 (-1192 *3)) (-4 *3 (-1025)) - (-12 (|has| *3 (-15 -3982 ((-625 *2) *3))) - (|has| *3 (-15 -2481 (*3 *3 *2))) (-4 *3 (-38 (-402 (-552)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1192 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-552)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1196 *3 *4 *5)) - (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-552)))))) - ((*1 *1 *1 *2) - (-1523 - (-12 (-5 *2 (-1149)) (-4 *1 (-1213 *3)) (-4 *3 (-1025)) - (-12 (-4 *3 (-29 (-552))) (-4 *3 (-935)) (-4 *3 (-1171)) - (-4 *3 (-38 (-402 (-552)))))) - (-12 (-5 *2 (-1149)) (-4 *1 (-1213 *3)) (-4 *3 (-1025)) - (-12 (|has| *3 (-15 -3982 ((-625 *2) *3))) - (|has| *3 (-15 -2481 (*3 *3 *2))) (-4 *3 (-38 (-402 (-552)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1213 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-552)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1217 *3 *4 *5)) - (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-1523 - (-12 (-5 *2 (-1149)) (-4 *1 (-1223 *3)) (-4 *3 (-1025)) - (-12 (-4 *3 (-29 (-552))) (-4 *3 (-935)) (-4 *3 (-1171)) - (-4 *3 (-38 (-402 (-552)))))) - (-12 (-5 *2 (-1149)) (-4 *1 (-1223 *3)) (-4 *3 (-1025)) - (-12 (|has| *3 (-15 -3982 ((-625 *2) *3))) - (|has| *3 (-15 -2481 (*3 *3 *2))) (-4 *3 (-38 (-402 (-552)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-552)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1224 *3 *4 *5)) - (-4 *3 (-38 (-402 (-552)))) (-4 *3 (-1025)) (-14 *5 *3)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839))))) + (-627 + (-2 + (|:| -3998 + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1235 (-310 (-220)))) + (|:| |yinit| (-627 (-220))) (|:| |intvals| (-627 (-220))) + (|:| |g| (-310 (-220))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (|:| -2162 + (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) + (|:| |expense| (-373)) (|:| |accuracy| (-373)) + (|:| |intermediateResults| (-373))))))) + (-5 *1 (-786))))) +(((*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301))))) +(((*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-357) (-1174) (-981)))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4367)) (-4 *1 (-989 *2)) (-4 *2 (-1189))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *2) + (-12 (-4 *3 (-445)) (-4 *3 (-830)) (-4 *3 (-1017 (-552))) + (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) + (-4 *2 + (-13 (-357) (-296) + (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) + (-15 -2929 ((-1101 *3 (-598 $)) $)) + (-15 -1477 ($ (-1101 *3 (-598 $)))))))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830)) (-4 *2 (-544))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) + (-5 *2 (-1014)) (-5 *1 (-734))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-357)) + (-5 *2 (-627 (-2 (|:| C (-671 *5)) (|:| |g| (-1235 *5))))) + (-5 *1 (-957 *5)) (-5 *3 (-671 *5)) (-5 *4 (-1235 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-343)) (-5 *2 (-412 (-1148 (-1148 *4)))) + (-5 *1 (-1187 *4)) (-5 *3 (-1148 (-1148 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-324))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842))))) (((*1 *2 *1) - (-12 (-5 *2 (-1129 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552))))) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-313 *3 *4 *5)) + (-4 *3 (-13 (-357) (-830))) (-14 *4 (-1152)) (-14 *5 *3)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1182 *2 *3 *4 *5)) (-4 *2 (-544)) (-4 *3 (-776)) + (-4 *4 (-830)) (-4 *5 (-1042 *2 *3 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-544) (-827))) - (-4 *2 (-13 (-425 (-167 *4)) (-978) (-1171))) - (-5 *1 (-584 *4 *3 *2)) (-4 *3 (-13 (-425 *4) (-978) (-1171)))))) + (-12 (-4 *4 (-445)) (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) + (-5 *2 (-627 *3)) (-5 *1 (-956 *4 *5 *6 *3)) + (-4 *3 (-1042 *4 *5 *6))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-754)) (-4 *5 (-544)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-948 *5 *3)) (-4 *3 (-1211 *5))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1152)) (-5 *3 (-428)) (-4 *5 (-830)) + (-5 *1 (-1082 *5 *4)) (-4 *4 (-424 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-754)) (-5 *2 (-1235 (-627 (-552)))) (-5 *1 (-473)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1189)) (-5 *1 (-587 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3))))) +(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1155)))) + ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155))))) +(((*1 *1 *1) + (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1145 *9)) (-5 *4 (-625 *7)) (-5 *5 (-625 *8)) - (-4 *7 (-827)) (-4 *8 (-1025)) (-4 *9 (-925 *8 *6 *7)) - (-4 *6 (-773)) (-5 *2 (-1145 *8)) (-5 *1 (-316 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) + (-12 (-5 *5 (-552)) (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-301)) + (-4 *9 (-928 *8 *6 *7)) + (-5 *2 (-2 (|:| -3144 (-1148 *9)) (|:| |polval| (-1148 *8)))) + (-5 *1 (-725 *6 *7 *8 *9)) (-5 *3 (-1148 *9)) (-5 *4 (-1148 *8))))) +(((*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-683)))) + ((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-683))))) (((*1 *2 *3) - (-12 (-5 *2 (-1145 (-552))) (-5 *1 (-918)) (-5 *3 (-552)))) - ((*1 *2 *2) - (-12 (-4 *3 (-302)) (-4 *4 (-368 *3)) (-4 *5 (-368 *3)) - (-5 *1 (-1097 *3 *4 *5 *2)) (-4 *2 (-667 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-736))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-552)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-751)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-773)) (-4 *4 (-925 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-827)) - (-5 *1 (-443 *5 *6 *7 *4))))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) + (-4 *5 (-1211 *4)) (-5 *2 (-627 (-635 (-401 *5)))) + (-5 *1 (-639 *4 *5)) (-5 *3 (-635 (-401 *5)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-627 (-598 *5))) (-5 *3 (-1152)) (-4 *5 (-424 *4)) + (-4 *4 (-830)) (-5 *1 (-561 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *3)) + (-5 *1 (-956 *4 *5 *6 *3)) (-4 *3 (-1042 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-751)) (-5 *2 (-1205 *5 *4)) (-5 *1 (-1147 *4 *5 *6)) - (-4 *4 (-1025)) (-14 *5 (-1149)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-751)) (-5 *2 (-1205 *5 *4)) (-5 *1 (-1224 *4 *5 *6)) - (-4 *4 (-1025)) (-14 *5 (-1149)) (-14 *6 *4)))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-839)))) -(((*1 *2 *1) - (-12 (-5 *2 (-625 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552))))) + (-12 (-5 *3 (-754)) (-4 *1 (-1211 *4)) (-4 *4 (-1028)) + (-5 *2 (-1235 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-357) (-144) (-1017 (-552)))) + (-4 *5 (-1211 *4)) + (-5 *2 (-2 (|:| -3446 (-401 *5)) (|:| |coeff| (-401 *5)))) + (-5 *1 (-556 *4 *5)) (-5 *3 (-401 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-627 *5)) (-4 *5 (-1211 *3)) (-4 *3 (-301)) + (-5 *2 (-111)) (-5 *1 (-448 *3 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-544) (-827))) - (-4 *2 (-13 (-425 *4) (-978) (-1171))) (-5 *1 (-584 *4 *2 *3)) - (-4 *3 (-13 (-425 (-167 *4)) (-978) (-1171)))))) + (-12 (-5 *3 (-627 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-187)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-294)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-299))))) +(((*1 *2 *2) (-12 (-5 *2 (-627 (-671 (-310 (-552))))) (-5 *1 (-1010))))) (((*1 *2 *1) - (-12 (-5 *2 (-402 (-552))) (-5 *1 (-314 *3 *4 *5)) - (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149)) (-14 *5 *3)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-751)) (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *5)) - (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-1025)) (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) - (-4 *5 (-234 *3 *2))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *2 (-1011)) - (-5 *1 (-736))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-552)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-751)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-773)) (-4 *4 (-925 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-827)) - (-5 *1 (-443 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-827) (-544)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1224 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) - (-14 *4 *2)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-839)))) - ((*1 *1 *1) (-5 *1 (-839)))) + (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) + (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-222 *2)) (-4 *2 (-13 (-357) (-1174))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) + ((*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-900)) (-5 *4 (-373)) (-5 *2 (-1240)) (-5 *1 (-1236))))) (((*1 *2 *1) - (-12 (-5 *2 (-625 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552))))) -(((*1 *2 *3) - (-12 (-5 *3 (-167 *5)) (-4 *5 (-13 (-425 *4) (-978) (-1171))) - (-4 *4 (-13 (-544) (-827))) - (-4 *2 (-13 (-425 (-167 *4)) (-978) (-1171))) - (-5 *1 (-584 *4 *5 *2))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-311 (-552))) (-5 *4 (-1 (-221) (-221))) - (-5 *5 (-1067 (-221))) (-5 *6 (-552)) (-5 *2 (-1181 (-902))) - (-5 *1 (-313)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-311 (-552))) (-5 *4 (-1 (-221) (-221))) - (-5 *5 (-1067 (-221))) (-5 *6 (-552)) (-5 *7 (-1131)) - (-5 *2 (-1181 (-902))) (-5 *1 (-313)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-311 (-552))) (-5 *4 (-1 (-221) (-221))) - (-5 *5 (-1067 (-221))) (-5 *6 (-221)) (-5 *7 (-552)) - (-5 *2 (-1181 (-902))) (-5 *1 (-313)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-311 (-552))) (-5 *4 (-1 (-221) (-221))) - (-5 *5 (-1067 (-221))) (-5 *6 (-221)) (-5 *7 (-552)) (-5 *8 (-1131)) - (-5 *2 (-1181 (-902))) (-5 *1 (-313))))) + (-12 (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) + (-5 *1 (-1117 *3 *4)) (-4 *3 (-13 (-1076) (-34))) + (-4 *4 (-13 (-1076) (-34)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-803)) (-14 *5 (-1152)) + (-5 *2 (-627 *4)) (-5 *1 (-1090 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-804))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-111)) + (-5 *2 (-1014)) (-5 *1 (-736))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1223 *3)) - (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1194 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *4 (-1192 *3)) - (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1215 *3 *4)) (-4 *5 (-959 *4)))) - ((*1 *1 *1) (-4 *1 (-279))) + (-12 (-4 *3 (-830)) (-5 *1 (-908 *3 *2)) (-4 *2 (-424 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-413 *4)) (-4 *4 (-544)) - (-5 *2 (-625 (-2 (|:| -3340 (-751)) (|:| |logand| *4)))) - (-5 *1 (-315 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) - (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) - ((*1 *2 *1) - (-12 (-5 *2 (-644 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) - (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1134 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-38 (-402 (-552)))) - (-5 *1 (-1135 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-552))))) - (-4 *5 (-827)) (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1253 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) - (-4 *4 (-698 (-402 (-552)))) (-4 *3 (-827)) (-4 *4 (-170))))) -(((*1 *1 *2) - (-12 (-5 *2 (-625 *1)) (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *5)) - (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-625 *3)) (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *5)) - (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1232 *3)) (-4 *3 (-1025)) (-5 *1 (-669 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-625 *4)) (-4 *4 (-1025)) (-4 *1 (-1096 *3 *4 *5 *6)) - (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-736))))) + (-12 (-5 *3 (-1152)) (-5 *2 (-310 (-552))) (-5 *1 (-909))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *2 (-1042 *4 *5 *6)) (-5 *1 (-759 *4 *5 *6 *2 *3)) + (-4 *3 (-1048 *4 *5 *6 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) + (-4 *6 (-776)) (-5 *2 (-627 (-627 (-552)))) + (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-552)) (-4 *7 (-928 *4 *6 *5))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-731))))) (((*1 *2 *3) - (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1237)) - (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-925 *4 *5 *6))))) + (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) + (-5 *2 (-166 (-310 *4))) (-5 *1 (-183 *4 *3)) + (-4 *3 (-13 (-27) (-1174) (-424 (-166 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-166 *3)) (-5 *1 (-1178 *4 *3)) + (-4 *3 (-13 (-27) (-1174) (-424 *4)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-111))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-627 (-242 *4 *5))) (-5 *2 (-242 *4 *5)) + (-14 *4 (-627 (-1152))) (-4 *5 (-445)) (-5 *1 (-615 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-357)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) + (-5 *2 (-1235 *6)) (-5 *1 (-330 *3 *4 *5 *6)) + (-4 *6 (-336 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-827) (-544)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154))))) + (-12 (-5 *2 (-1132 (-552))) (-5 *1 (-1136 *4)) (-4 *4 (-1028)) + (-5 *3 (-552))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -2791 *6) (|:| |sol?| (-111))) (-552) + *6)) + (-4 *6 (-357)) (-4 *7 (-1211 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-401 *7)) (|:| |a0| *6)) + (-2 (|:| -3446 (-401 *7)) (|:| |coeff| (-401 *7))) "failed")) + (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1149)) (-5 *3 (-429)) (-4 *5 (-827)) - (-5 *1 (-1079 *5 *4)) (-4 *4 (-425 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1224 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) - (-14 *4 *2)))) -(((*1 *1 *1) (-5 *1 (-839)))) -(((*1 *1 *2) - (-12 (-5 *2 (-625 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552))))) + (-12 (-14 *5 (-627 (-1152))) (-4 *2 (-169)) + (-4 *4 (-233 (-1383 *5) (-754))) + (-14 *6 + (-1 (-111) (-2 (|:| -4153 *3) (|:| -4067 *4)) + (-2 (|:| -4153 *3) (|:| -4067 *4)))) + (-5 *1 (-454 *5 *2 *3 *4 *6 *7)) (-4 *3 (-830)) + (-4 *7 (-928 *2 *4 (-844 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-5 *1 (-1228 *3 *2)) + (-4 *2 (-1226 *3))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1002 (-820 (-552)))) - (-5 *3 (-1129 (-2 (|:| |k| (-552)) (|:| |c| *4)))) (-4 *4 (-1025)) - (-5 *1 (-580 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-313)) (-5 *3 (-221))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1096 *3 *4 *2 *5)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4)) - (-4 *2 (-234 *3 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-167 (-221)))) - (-5 *2 (-1011)) (-5 *1 (-735))))) -(((*1 *2 *3) - (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-552)) - (-5 *1 (-443 *4 *5 *6 *3)) (-4 *3 (-925 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-827) (-544)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-275)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-552) (-221) (-1149) (-1131) (-1154))) - (-5 *1 (-1154))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1224 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) - (-14 *4 *2)))) -(((*1 *1 *1 *1) (-5 *1 (-839)))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-625 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1186)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1131)) (-5 *1 (-965)))) + (|partial| -12 (-5 *2 (-483)) (-5 *3 (-933)) (-5 *1 (-525)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-1067 *4)) (-4 *4 (-1186)) - (-5 *1 (-1065 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1002 (-820 (-552)))) (-5 *1 (-580 *3)) (-4 *3 (-1025))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-289 *6)) (-5 *4 (-114)) (-4 *6 (-425 *5)) - (-4 *5 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) - (-5 *1 (-312 *5 *6)))) + (|partial| -12 (-5 *3 (-933)) (-4 *1 (-750 *2)) (-4 *2 (-1076))))) +(((*1 *2 *3) + (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1193)) (-4 *3 (-1211 *4)) + (-4 *5 (-1211 (-401 *3))) (-5 *2 (-111)))) + ((*1 *2 *3) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-4 *1 (-828)) (-5 *2 (-552)))) + ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-884 *3)) (-4 *3 (-1076)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1045 *4 *3)) (-4 *4 (-13 (-828) (-357))) + (-4 *3 (-1211 *4)) (-5 *2 (-552)))) + ((*1 *2 *3) + (|partial| -12 + (-4 *4 (-13 (-544) (-830) (-1017 *2) (-623 *2) (-445))) + (-5 *2 (-552)) (-5 *1 (-1092 *4 *3)) + (-4 *3 (-13 (-27) (-1174) (-424 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-823 *3)) + (-4 *3 (-13 (-27) (-1174) (-424 *6))) + (-4 *6 (-13 (-544) (-830) (-1017 *2) (-623 *2) (-445))) + (-5 *2 (-552)) (-5 *1 (-1092 *6 *3)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-289 *7)) (-5 *4 (-114)) (-5 *5 (-625 *7)) - (-4 *7 (-425 *6)) (-4 *6 (-13 (-827) (-544) (-598 (-528)))) - (-5 *2 (-52)) (-5 *1 (-312 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-625 (-289 *7))) (-5 *4 (-625 (-114))) (-5 *5 (-289 *7)) - (-4 *7 (-425 *6)) (-4 *6 (-13 (-827) (-544) (-598 (-528)))) - (-5 *2 (-52)) (-5 *1 (-312 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-625 (-289 *8))) (-5 *4 (-625 (-114))) (-5 *5 (-289 *8)) - (-5 *6 (-625 *8)) (-4 *8 (-425 *7)) - (-4 *7 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) - (-5 *1 (-312 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-625 *7)) (-5 *4 (-625 (-114))) (-5 *5 (-289 *7)) - (-4 *7 (-425 *6)) (-4 *6 (-13 (-827) (-544) (-598 (-528)))) - (-5 *2 (-52)) (-5 *1 (-312 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-625 *8)) (-5 *4 (-625 (-114))) (-5 *6 (-625 (-289 *8))) - (-4 *8 (-425 *7)) (-5 *5 (-289 *8)) - (-4 *7 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) - (-5 *1 (-312 *7 *8)))) + (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-1134)) + (-4 *6 (-13 (-544) (-830) (-1017 *2) (-623 *2) (-445))) + (-5 *2 (-552)) (-5 *1 (-1092 *6 *3)) + (-4 *3 (-13 (-27) (-1174) (-424 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-445)) (-5 *2 (-552)) + (-5 *1 (-1093 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-823 (-401 (-931 *6)))) + (-5 *3 (-401 (-931 *6))) (-4 *6 (-445)) (-5 *2 (-552)) + (-5 *1 (-1093 *6)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-289 *5)) (-5 *4 (-114)) (-4 *5 (-425 *6)) - (-4 *6 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) - (-5 *1 (-312 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-4 *3 (-425 *6)) - (-4 *6 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) - (-5 *1 (-312 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-4 *3 (-425 *6)) - (-4 *6 (-13 (-827) (-544) (-598 (-528)))) (-5 *2 (-52)) - (-5 *1 (-312 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-114)) (-5 *5 (-289 *3)) (-5 *6 (-625 *3)) - (-4 *3 (-425 *7)) (-4 *7 (-13 (-827) (-544) (-598 (-528)))) - (-5 *2 (-52)) (-5 *1 (-312 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-669 *2)) (-4 *4 (-1208 *2)) - (-4 *2 (-13 (-302) (-10 -8 (-15 -1330 ((-413 $) $))))) - (-5 *1 (-492 *2 *4 *5)) (-4 *5 (-404 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) - (-4 *5 (-234 *3 *2)) (-4 *2 (-1025))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-167 (-221)))) - (-5 *2 (-1011)) (-5 *1 (-735))))) -(((*1 *2 *2) - (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-446)) - (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-443 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2)) - (-4 *2 (-425 *3))))) + (|partial| -12 (-5 *3 (-401 (-931 *6))) (-5 *4 (-1152)) + (-5 *5 (-1134)) (-4 *6 (-445)) (-5 *2 (-552)) (-5 *1 (-1093 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-552)) (-5 *1 (-1171 *3)) (-4 *3 (-1028))))) +(((*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1189))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1250 (-1152) *3)) (-4 *3 (-1028)) (-5 *1 (-1257 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1250 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) + (-5 *1 (-1259 *3 *4))))) +(((*1 *2) + (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) + (-5 *2 (-111)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111))))) (((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1224 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) - (-14 *4 *2)))) -(((*1 *1 *1 *1 *1) (-5 *1 (-839))) ((*1 *1 *1 *1) (-5 *1 (-839))) - ((*1 *1 *1) (-5 *1 (-839)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-413 *5)) (-4 *5 (-544)) - (-5 *2 - (-2 (|:| -3564 (-751)) (|:| -3340 *5) (|:| |radicand| (-625 *5)))) - (-5 *1 (-315 *5)) (-5 *4 (-751)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-552))))) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-905))))) (((*1 *2 *1) - (-12 (-5 *2 (-1129 (-2 (|:| |k| (-552)) (|:| |c| *3)))) - (-5 *1 (-580 *3)) (-4 *3 (-1025))))) + (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) + (-5 *2 (-2 (|:| -4267 (-627 *6)) (|:| -2849 (-627 *6))))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-754)) (-4 *5 (-1028)) (-4 *2 (-1211 *5)) + (-5 *1 (-1229 *5 *2 *6 *3)) (-4 *6 (-638 *2)) (-4 *3 (-1226 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-373)) (-5 *1 (-1019))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-311 *3)) (-4 *3 (-544)) (-4 *3 (-827))))) -(((*1 *2 *3) - (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-358)) - (-5 *1 (-514 *2 *4 *5 *3)) (-4 *3 (-667 *2 *4 *5)))) + (-12 (-4 *1 (-163 *3)) (-4 *3 (-169)) (-4 *3 (-537)) + (-5 *2 (-401 (-552))))) ((*1 *2 *1) - (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) - (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025)))) - ((*1 *2 *3) - (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-170)) - (-5 *1 (-668 *2 *4 *5 *3)) (-4 *3 (-667 *2 *4 *5)))) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-412 *3)) (-4 *3 (-537)) + (-4 *3 (-544)))) + ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-401 (-552))))) ((*1 *2 *1) - (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) - (-4 *5 (-234 *3 *2)) (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-167 (-221)))) (-5 *2 (-1011)) - (-5 *1 (-735))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-625 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-751)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-773)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-827)) - (-5 *1 (-443 *3 *4 *5 *6))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-462)) (-5 *4 (-897)) (-5 *2 (-1237)) (-5 *1 (-1233))))) -(((*1 *1) (-5 *1 (-155)))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1129 *4)) (-5 *3 (-552)) (-4 *4 (-1025)) - (-5 *1 (-1133 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-552)) (-5 *1 (-1224 *3 *4 *5)) (-4 *3 (-1025)) - (-14 *4 (-1149)) (-14 *5 *3)))) -(((*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) - ((*1 *1 *1) (-5 *1 (-839)))) -(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-976 *3))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-1025))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-552)) (-5 *1 (-311 *3)) (-4 *3 (-544)) (-4 *3 (-827))))) -(((*1 *2 *1) - (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *3 (-368 *2)) (-4 *4 (-368 *2)) - (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025)))) + (-12 (-4 *1 (-780 *3)) (-4 *3 (-169)) (-4 *3 (-537)) + (-5 *2 (-401 (-552))))) + ((*1 *2 *1) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-816 *3)) (-4 *3 (-537)) + (-4 *3 (-1076)))) + ((*1 *2 *1) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-823 *3)) (-4 *3 (-537)) + (-4 *3 (-1076)))) + ((*1 *2 *1) + (-12 (-4 *1 (-976 *3)) (-4 *3 (-169)) (-4 *3 (-537)) + (-5 *2 (-401 (-552))))) ((*1 *2 *3) - (-12 (-4 *4 (-368 *2)) (-4 *5 (-368 *2)) (-4 *2 (-170)) - (-5 *1 (-668 *2 *4 *5 *3)) (-4 *3 (-667 *2 *4 *5)))) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-987 *3)) (-4 *3 (-1017 *2))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-671 *2)) (-4 *2 (-169)) (-5 *1 (-143 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-169)) (-4 *2 (-1211 *4)) (-5 *1 (-174 *4 *2 *3)) + (-4 *3 (-707 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-671 (-401 (-931 *5)))) (-5 *4 (-1152)) + (-5 *2 (-931 *5)) (-5 *1 (-286 *5)) (-4 *5 (-445)))) + ((*1 *2 *3) + (-12 (-5 *3 (-671 (-401 (-931 *4)))) (-5 *2 (-931 *4)) + (-5 *1 (-286 *4)) (-4 *4 (-445)))) ((*1 *2 *1) - (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) - (-4 *5 (-234 *3 *2)) (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-221))) - (-5 *2 (-1011)) (-5 *1 (-735))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-773)) (-4 *2 (-925 *4 *5 *6)) (-5 *1 (-443 *4 *5 *6 *2)) - (-4 *4 (-446)) (-4 *6 (-827))))) -(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-155))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1224 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) - (-14 *4 *2)))) -(((*1 *1 *2) (-12 (-5 *2 (-625 *1)) (-4 *1 (-297)))) - ((*1 *1 *1) (-4 *1 (-297))) - ((*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) - ((*1 *1 *1) (-5 *1 (-839)))) -(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) - ((*1 *1 *1 *1) (-4 *1 (-467))) - ((*1 *1 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) - ((*1 *2 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-859)))) - ((*1 *1 *1) (-5 *1 (-947))) - ((*1 *1 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170))))) -(((*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1025))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-1149))) (-5 *1 (-1153))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1186))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-221))) - (-5 *2 (-1011)) (-5 *1 (-735))))) + (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1211 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-671 (-166 (-401 (-552))))) + (-5 *2 (-931 (-166 (-401 (-552))))) (-5 *1 (-747 *4)) + (-4 *4 (-13 (-357) (-828))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-671 (-166 (-401 (-552))))) (-5 *4 (-1152)) + (-5 *2 (-931 (-166 (-401 (-552))))) (-5 *1 (-747 *5)) + (-4 *5 (-13 (-357) (-828))))) + ((*1 *2 *3) + (-12 (-5 *3 (-671 (-401 (-552)))) (-5 *2 (-931 (-401 (-552)))) + (-5 *1 (-762 *4)) (-4 *4 (-13 (-357) (-828))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-671 (-401 (-552)))) (-5 *4 (-1152)) + (-5 *2 (-931 (-401 (-552)))) (-5 *1 (-762 *5)) + (-4 *5 (-13 (-357) (-828)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1076)) (-4 *5 (-1076)) + (-4 *6 (-1076)) (-5 *2 (-1 *6 *5)) (-5 *1 (-666 *4 *5 *6))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-627 *4)) (-4 *4 (-357)) (-5 *2 (-1235 *4)) + (-5 *1 (-797 *4 *3)) (-4 *3 (-638 *4))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)) - (-4 *2 (-358)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-221)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)) + (-4 *2 (-357)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-220)))) ((*1 *1 *1 *1) - (-1523 (-12 (-5 *1 (-289 *2)) (-4 *2 (-358)) (-4 *2 (-1186))) - (-12 (-5 *1 (-289 *2)) (-4 *2 (-467)) (-4 *2 (-1186))))) - ((*1 *1 *1 *1) (-4 *1 (-358))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-374)))) + (-1559 (-12 (-5 *1 (-288 *2)) (-4 *2 (-357)) (-4 *2 (-1189))) + (-12 (-5 *1 (-288 *2)) (-4 *2 (-466)) (-4 *2 (-1189))))) + ((*1 *1 *1 *1) (-4 *1 (-357))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-373)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1098 *3 (-596 *1))) (-4 *3 (-544)) (-4 *3 (-827)) - (-4 *1 (-425 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-467))) + (-12 (-5 *2 (-1101 *3 (-598 *1))) (-4 *3 (-544)) (-4 *3 (-830)) + (-4 *1 (-424 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-466))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1232 *3)) (-4 *3 (-344)) (-5 *1 (-521 *3)))) + (-12 (-5 *2 (-1235 *3)) (-4 *3 (-343)) (-5 *1 (-520 *3)))) ((*1 *1 *1 *1) (-5 *1 (-528))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-170)) (-5 *1 (-603 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-707) *4)))) + (-12 (-4 *4 (-169)) (-5 *1 (-605 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-709) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-170)) (-5 *1 (-603 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-707) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-170)) (-4 *2 (-358)))) + (-12 (-4 *4 (-169)) (-5 *1 (-605 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-709) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-169)) (-4 *2 (-357)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-170)) (-5 *1 (-642 *2 *4 *3)) (-4 *2 (-698 *4)) - (-4 *3 (|SubsetCategory| (-707) *4)))) + (-12 (-4 *4 (-169)) (-5 *1 (-644 *2 *4 *3)) (-4 *2 (-700 *4)) + (-4 *3 (|SubsetCategory| (-709) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-170)) (-5 *1 (-642 *3 *4 *2)) (-4 *3 (-698 *4)) - (-4 *2 (|SubsetCategory| (-707) *4)))) + (-12 (-4 *4 (-169)) (-5 *1 (-644 *3 *4 *2)) (-4 *3 (-700 *4)) + (-4 *2 (|SubsetCategory| (-709) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) - (-4 *4 (-368 *2)) (-4 *2 (-358)))) - ((*1 *1 *1 *1) (-5 *1 (-839))) + (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)) (-4 *2 (-357)))) + ((*1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-842 *2 *3 *4 *5)) (-4 *2 (-358)) - (-4 *2 (-1025)) (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-751))) - (-14 *5 (-751)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544)))) + (|partial| -12 (-5 *1 (-845 *2 *3 *4 *5)) (-4 *2 (-357)) + (-4 *2 (-1028)) (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-754))) + (-14 *5 (-754)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1028 *3 *4 *2 *5 *6)) (-4 *2 (-1025)) - (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-358)))) + (-12 (-4 *1 (-1031 *3 *4 *2 *5 *6)) (-4 *2 (-1028)) + (-4 *5 (-233 *4 *2)) (-4 *6 (-233 *3 *2)) (-4 *2 (-357)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-358)))) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-357)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-358)) (-4 *2 (-1025)) (-4 *3 (-827)) - (-4 *4 (-773)) (-14 *6 (-625 *3)) - (-5 *1 (-1244 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-925 *2 *4 *3)) - (-14 *7 (-625 (-751))) (-14 *8 (-751)))) + (|partial| -12 (-4 *2 (-357)) (-4 *2 (-1028)) (-4 *3 (-830)) + (-4 *4 (-776)) (-14 *6 (-627 *3)) + (-5 *1 (-1247 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-928 *2 *4 *3)) + (-14 *7 (-627 (-754))) (-14 *8 (-754)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-358)) (-4 *2 (-1025)) - (-4 *3 (-823))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-625 (-2 (|:| |totdeg| (-751)) (|:| -4256 *3)))) - (-5 *4 (-751)) (-4 *3 (-925 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) - (-4 *7 (-827)) (-5 *1 (-443 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-221)) - (-5 *2 - (-2 (|:| |brans| (-625 (-625 (-919 *4)))) - (|:| |xValues| (-1067 *4)) (|:| |yValues| (-1067 *4)))) - (-5 *1 (-151)) (-5 *3 (-625 (-625 (-919 *4))))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1129 *4)) (-5 *3 (-552)) (-4 *4 (-1025)) - (-5 *1 (-1133 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-552)) (-5 *1 (-1224 *3 *4 *5)) (-4 *3 (-1025)) - (-14 *4 (-1149)) (-14 *5 *3)))) -(((*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839))))) -(((*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1025))))) -(((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-751))))) + (-12 (-5 *1 (-1258 *2 *3)) (-4 *2 (-357)) (-4 *2 (-1028)) + (-4 *3 (-826))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-627 *6) "failed") (-552) *6 *6)) (-4 *6 (-357)) + (-4 *7 (-1211 *6)) + (-5 *2 (-2 (|:| |answer| (-573 (-401 *7))) (|:| |a0| *6))) + (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7))))) +(((*1 *2) + (-12 (-14 *4 (-754)) (-4 *5 (-1189)) (-5 *2 (-132)) + (-5 *1 (-232 *3 *4 *5)) (-4 *3 (-233 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-357)) (-5 *2 (-132)) (-5 *1 (-322 *3 *4)) + (-4 *3 (-323 *4)))) + ((*1 *2) + (-12 (-5 *2 (-754)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-169)))) + ((*1 *2 *1) + (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-552)) + (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-627 *6)) (-4 *6 (-830)) (-4 *4 (-357)) (-4 *5 (-776)) + (-5 *2 (-552)) (-5 *1 (-496 *4 *5 *6 *7)) (-4 *7 (-928 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-959 *3)) (-4 *3 (-1028)) (-5 *2 (-900)))) + ((*1 *2) (-12 (-4 *1 (-1242 *3)) (-4 *3 (-357)) (-5 *2 (-132))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-928 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) + (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-884 *4)) (-4 *4 (-1076)) (-5 *2 (-627 (-754))) + (-5 *1 (-883 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-373)))) + ((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-373))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-625 - (-625 - (-3 (|:| -1288 (-1149)) - (|:| -2791 (-625 (-3 (|:| S (-1149)) (|:| P (-928 (-552)))))))))) - (-5 *1 (-1153))))) -(((*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1186))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-735))))) + (-12 (-5 *2 (-754)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) + (-4 *4 (-1028))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) + (-4 *5 (-1211 *4)) + (-5 *2 (-627 (-2 (|:| |deg| (-754)) (|:| -1651 *5)))) + (-5 *1 (-792 *4 *5 *3 *6)) (-4 *3 (-638 *5)) + (-4 *6 (-638 (-401 *5)))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-552)) (-5 *5 (-671 (-220))) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-83 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-220)) + (-5 *2 (-1014)) (-5 *1 (-732))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-754)) + (-4 *3 (-13 (-709) (-362) (-10 -7 (-15 ** (*3 *3 (-552)))))) + (-5 *1 (-241 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-133))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-132))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-210 *2)) + (-12 (-5 *1 (-209 *2)) (-4 *2 - (-13 (-827) - (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $)) - (-15 -3867 ((-1237) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1186)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-21)) (-4 *2 (-1186)))) + (-13 (-830) + (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) + (-15 -4103 ((-1240) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1189)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1189)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) - (-4 *4 (-368 *2)))) + (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) - (-4 *4 (-368 *2)))) - ((*1 *1 *1) (-5 *1 (-839))) ((*1 *1 *1 *1) (-5 *1 (-839))) + (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) + ((*1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *1) (-5 *1 (-842))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-21))))) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-922 (-220))) (-5 *1 (-1185)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-21))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1189)) (-4 *2 (-1028)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-842)))) + ((*1 *1 *1) (-5 *1 (-842))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-922 (-220))) (-5 *2 (-220)) (-5 *1 (-1185)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-1028))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-1236)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-1237))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) (((*1 *2 *2) - (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *1 (-443 *3 *4 *5 *2)) (-4 *2 (-925 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-903)) - (-5 *2 - (-2 (|:| |brans| (-625 (-625 (-919 (-221))))) - (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221))))) - (-5 *1 (-151)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-903)) (-5 *4 (-402 (-552))) + (-12 (-5 *2 - (-2 (|:| |brans| (-625 (-625 (-919 (-221))))) - (|:| |xValues| (-1067 (-221))) (|:| |yValues| (-1067 (-221))))) - (-5 *1 (-151))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1129 *4)) (-5 *3 (-552)) (-4 *4 (-1025)) - (-5 *1 (-1133 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-552)) (-5 *1 (-1224 *3 *4 *5)) (-4 *3 (-1025)) - (-14 *4 (-1149)) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) - ((*1 *2 *1) (-12 (-4 *1 (-1094 *3)) (-4 *3 (-1186)) (-5 *2 (-751))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-1131)) (-5 *1 (-188)))) - ((*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839))))) -(((*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1129 (-2 (|:| |k| (-552)) (|:| |c| *6)))) - (-5 *4 (-1002 (-820 (-552)))) (-5 *5 (-1149)) (-5 *7 (-402 (-552))) - (-4 *6 (-1025)) (-5 *2 (-839)) (-5 *1 (-580 *6))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-302)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3212 *1))) - (-4 *1 (-302))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-1091)) (-5 *1 (-1088))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *3 (-552)) - (-5 *2 (-1011)) (-5 *1 (-735))))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-155))) + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-552)))) + (-4 *4 (-13 (-1211 *3) (-544) (-10 -8 (-15 -1323 ($ $ $))))) + (-4 *3 (-544)) (-5 *1 (-1214 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-583 *3)) (-4 *3 (-1028)))) + ((*1 *2 *1) + (-12 (-4 *1 (-952 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-775)) + (-4 *5 (-830)) (-5 *2 (-111))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-528))) (-5 *1 (-528))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1152)) (-4 *5 (-600 (-871 (-552)))) + (-4 *5 (-865 (-552))) + (-4 *5 (-13 (-830) (-1017 (-552)) (-445) (-623 (-552)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-555 *5 *3)) (-4 *3 (-613)) + (-4 *3 (-13 (-27) (-1174) (-424 *5)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-310 *3)) (-4 *3 (-544)) (-4 *3 (-830))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-627 (-111))) (-5 *7 (-671 (-220))) + (-5 *8 (-671 (-552))) (-5 *3 (-552)) (-5 *4 (-220)) (-5 *5 (-111)) + (-5 *2 (-1014)) (-5 *1 (-737))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1028)) (-4 *7 (-1028)) + (-4 *6 (-1211 *5)) (-5 *2 (-1148 (-1148 *7))) + (-5 *1 (-493 *5 *6 *4 *7)) (-4 *4 (-1211 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-154))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-210 *2)) + (-12 (-5 *1 (-209 *2)) (-4 *2 - (-13 (-827) - (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $)) - (-15 -3867 ((-1237) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-25)) (-4 *2 (-1186)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-25)) (-4 *2 (-1186)))) + (-13 (-830) + (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) + (-15 -4103 ((-1240) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1189)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1189)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-130)))) + (-12 (-4 *1 (-317 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-129)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *2)) - (-4 *2 (-1208 *3)))) + (-12 (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *2)) + (-4 *2 (-1211 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) - (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4)))) + (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) + (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) ((*1 *1 *1 *1) (-5 *1 (-528))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) - (-4 *4 (-368 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-839))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) + (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-842))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-25))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-625 *3)) (-4 *3 (-925 *5 *6 *7)) (-4 *5 (-446)) - (-4 *6 (-773)) (-4 *7 (-827)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-443 *5 *6 *7 *3))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) - (-4 *2 (-1186))))) -(((*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839))))) -(((*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-625 *1)) (-4 *1 (-302))))) -(((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1153))))) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-922 (-220))) (-5 *1 (-1185)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-25))))) (((*1 *2 *3) - (-12 (-5 *3 (-1205 *5 *4)) (-4 *4 (-446)) (-4 *4 (-800)) - (-14 *5 (-1149)) (-5 *2 (-552)) (-5 *1 (-1087 *4 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-625 (-112))) (-5 *5 (-669 (-221))) - (-5 *6 (-669 (-552))) (-5 *7 (-221)) (-5 *3 (-552)) (-5 *2 (-1011)) - (-5 *1 (-735))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-625 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-751)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-773)) (-4 *6 (-925 *4 *3 *5)) (-4 *4 (-446)) (-4 *5 (-827)) - (-5 *1 (-443 *4 *3 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *8)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-552)) - (-14 *6 (-751)) (-4 *7 (-170)) (-4 *8 (-170)) - (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *9)) (-4 *9 (-1025)) (-4 *5 (-827)) (-4 *6 (-773)) - (-4 *8 (-1025)) (-4 *2 (-925 *9 *7 *5)) - (-5 *1 (-709 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-773)) - (-4 *4 (-925 *8 *6 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) - (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-402 *5)) - (|:| |c2| (-402 *5)) (|:| |deg| (-751)))) - (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1208 (-402 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1220 *3)) (-4 *3 (-1186)) (-5 *2 (-751))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-402 (-552))) (-5 *1 (-580 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1025))))) -(((*1 *2 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-825)) (-5 *1 (-298 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) - ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1153))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1205 *5 *4)) (-4 *4 (-446)) (-4 *4 (-800)) - (-14 *5 (-1149)) (-5 *2 (-552)) (-5 *1 (-1087 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-669 (-552))) (-5 *5 (-112)) (-5 *7 (-669 (-221))) - (-5 *3 (-552)) (-5 *6 (-221)) (-5 *2 (-1011)) (-5 *1 (-735))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-625 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-751)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-773)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-827)) - (-5 *1 (-443 *3 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1208 *2)) (-4 *2 (-1190)) (-5 *1 (-146 *2 *4 *3)) - (-4 *3 (-1208 (-402 *4)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-625 *5)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552)) - (-14 *4 (-751)) (-4 *5 (-170))))) -(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1156))))) -(((*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186))))) -(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-838)))) - ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-838))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1186))))) + (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-812)) (-5 *3 (-1134))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-627 (-498))) (-5 *2 (-498)) (-5 *1 (-476))))) +(((*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-324))))) (((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) - (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) - (|:| |relerr| (-221)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1129 (-221))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3315 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-547))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-221))) (-5 *4 (-751)) (-5 *2 (-669 (-221))) - (-5 *1 (-300))))) -(((*1 *1) (-5 *1 (-1152)))) -(((*1 *1 *1) (-4 *1 (-611))) + (-12 (-4 *2 (-144)) (-4 *2 (-301)) (-4 *2 (-445)) (-4 *3 (-830)) + (-4 *4 (-776)) (-5 *1 (-966 *2 *3 *4 *5)) (-4 *5 (-928 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-310 (-552))) (-5 *1 (-1095)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978) (-1171)))))) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-310 (-373))) (-5 *1 (-299))))) (((*1 *2 *3) - (-12 (-5 *3 (-1205 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149)) - (-5 *2 (-552)) (-5 *1 (-1087 *4 *5))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-625 (-112))) (-5 *7 (-669 (-221))) - (-5 *8 (-669 (-552))) (-5 *3 (-552)) (-5 *4 (-221)) (-5 *5 (-112)) - (-5 *2 (-1011)) (-5 *1 (-735))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-839)))) -(((*1 *2 *3 *2) (-12 - (-5 *2 - (-625 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-773)) (-4 *3 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827)) - (-5 *1 (-443 *4 *5 *6 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *5)) (-5 *4 (-625 *6)) (-4 *5 (-1073)) - (-4 *6 (-1186)) (-5 *2 (-1 *6 *5)) (-5 *1 (-622 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-625 *5)) (-5 *4 (-625 *2)) (-4 *5 (-1073)) - (-4 *2 (-1186)) (-5 *1 (-622 *5 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-625 *6)) (-5 *4 (-625 *5)) (-4 *6 (-1073)) - (-4 *5 (-1186)) (-5 *2 (-1 *5 *6)) (-5 *1 (-622 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-625 *5)) (-5 *4 (-625 *2)) (-4 *5 (-1073)) - (-4 *2 (-1186)) (-5 *1 (-622 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-625 *5)) (-5 *4 (-625 *6)) - (-4 *5 (-1073)) (-4 *6 (-1186)) (-5 *1 (-622 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-625 *5)) (-5 *4 (-625 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1073)) (-4 *2 (-1186)) (-5 *1 (-622 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-142)) (-5 *2 (-751))))) + (-5 *3 + (-627 + (-2 (|:| -4154 (-754)) + (|:| |eqns| + (-627 + (-2 (|:| |det| *7) (|:| |rows| (-627 (-552))) + (|:| |cols| (-627 (-552)))))) + (|:| |fgb| (-627 *7))))) + (-4 *7 (-928 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) + (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-754)) + (-5 *1 (-903 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-842)))) + ((*1 *1 *1) (-5 *1 (-842)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-402 *6)) (-4 *5 (-1190)) (-4 *6 (-1208 *5)) - (-5 *2 (-2 (|:| -3564 (-751)) (|:| -3340 *3) (|:| |radicand| *6))) - (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-751)) (-4 *7 (-1208 *3))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1186)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1186)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1186)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-522)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838))))) -(((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1186))))) -(((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) -(((*1 *2 *3) (-12 (-5 *3 (-402 (-552))) (-5 *2 (-221)) (-5 *1 (-300))))) -(((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) - ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1152))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1205 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149)) - (-5 *2 (-552)) (-5 *1 (-1087 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) - (-5 *2 (-1011)) (-5 *1 (-734))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-839))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-880 *3)) (-4 *3 (-1073))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-446)) (-4 *3 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) - (-5 *1 (-443 *4 *3 *5 *6)) (-4 *6 (-925 *4 *3 *5))))) + (-12 (-5 *4 (-754)) (-4 *5 (-1028)) (-5 *2 (-552)) + (-5 *1 (-436 *5 *3 *6)) (-4 *3 (-1211 *5)) + (-4 *6 (-13 (-398) (-1017 *5) (-357) (-1174) (-278))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1028)) (-5 *2 (-552)) (-5 *1 (-436 *4 *3 *5)) + (-4 *3 (-1211 *4)) + (-4 *5 (-13 (-398) (-1017 *4) (-357) (-1174) (-278)))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-671 (-552))) (-5 *3 (-627 (-552))) (-5 *1 (-1086))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-285))) + ((*1 *1) (-5 *1 (-842))) + ((*1 *1) + (-12 (-4 *2 (-445)) (-4 *3 (-830)) (-4 *4 (-776)) + (-5 *1 (-966 *2 *3 *4 *5)) (-4 *5 (-928 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1061))) + ((*1 *1) + (-12 (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) + (-4 *3 (-13 (-1076) (-34))))) + ((*1 *1) (-5 *1 (-1155))) ((*1 *1) (-5 *1 (-1156)))) (((*1 *2 *1) - (-12 (-5 *2 (-625 *4)) (-5 *1 (-1114 *3 *4)) - (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34)))))) + (-12 (-4 *1 (-1099 *3 *4 *2 *5)) (-4 *4 (-1028)) (-4 *5 (-233 *3 *4)) + (-4 *2 (-233 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 *6)) (-5 *4 (-1152)) (-4 *6 (-424 *5)) + (-4 *5 (-830)) (-5 *2 (-627 (-598 *6))) (-5 *1 (-561 *5 *6))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) - (-5 *2 (-2 (|:| |radicand| (-402 *5)) (|:| |deg| (-751)))) - (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1208 (-402 *5)))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186))))) + (-12 (-5 *3 (-1152)) (-4 *5 (-1193)) (-4 *6 (-1211 *5)) + (-4 *7 (-1211 (-401 *6))) (-5 *2 (-627 (-931 *5))) + (-5 *1 (-335 *4 *5 *6 *7)) (-4 *4 (-336 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1152)) (-4 *1 (-336 *4 *5 *6)) (-4 *4 (-1193)) + (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) (-4 *4 (-357)) + (-5 *2 (-627 (-931 *4)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) + (-4 *4 (-1028))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-883 *4)) + (-4 *4 (-1076)))) + ((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-883 *3)) (-4 *3 (-1076))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-127))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-220)) (-5 *5 (-552)) (-5 *2 (-1184 *3)) + (-5 *1 (-773 *3)) (-4 *3 (-953)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *4 (-111)) + (-5 *1 (-1184 *2)) (-4 *2 (-953))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-552)) (-5 *1 (-678 *2)) (-4 *2 (-1211 *3))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -2791 *7) (|:| |sol?| (-111))) + (-552) *7)) + (-5 *6 (-627 (-401 *8))) (-4 *7 (-357)) (-4 *8 (-1211 *7)) + (-5 *3 (-401 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-562 *7 *8))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-544) (-827) (-1014 (-552)))) (-5 *1 (-184 *3 *2)) - (-4 *2 (-13 (-27) (-1171) (-425 (-167 *3)))))) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *2 *1) (-12 (-5 *1 (-945 *2)) (-4 *2 (-946))))) +(((*1 *2 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-1189)) (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (-4 *4 (-888)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-928 *4 *5 *6)) (-5 *2 (-412 (-1148 *7))) + (-5 *1 (-885 *4 *5 *6 *7)) (-5 *3 (-1148 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-888)) (-4 *5 (-1211 *4)) (-5 *2 (-412 (-1148 *5))) + (-5 *1 (-886 *4 *5)) (-5 *3 (-1148 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-398) (-1174))))) + ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) + ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-842))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1189)) + (-5 *2 (-111))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1190 *3)) (-4 *3 (-1076))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1076)) + (-4 *4 (-129)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1076)) (-5 *1 (-355 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1076)) (-5 *1 (-380 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1076)) (-5 *1 (-631 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *4 *5 *6)) (-4 *4 (-301)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-440 *4 *5 *6 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-111))))) +(((*1 *1 *1) (-5 *1 (-1040)))) +(((*1 *1 *2) + (-12 (-5 *2 (-900)) (-5 *1 (-149 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-357)) (-14 *5 (-972 *3 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-830)) (-5 *2 (-111)))) + ((*1 *1 *1 *1) (-5 *1 (-842)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-1152))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-598 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-48))) (-5 *1 (-48)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-544) (-827) (-1014 (-552)))) - (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 (-167 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *3))))) + (-12 (-5 *2 (-1148 (-48))) (-5 *3 (-627 (-598 (-48)))) (-5 *1 (-48)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1149)) - (-4 *4 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-425 *4)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-837)) (-5 *3 (-129)) (-5 *2 (-1093))))) -(((*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1186))))) -(((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) -(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-311 (-374))) (-5 *1 (-300))))) -(((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-244))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1205 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149)) - (-5 *2 (-625 *4)) (-5 *1 (-1087 *4 *5))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-669 (-221))) (-5 *5 (-112)) (-5 *6 (-221)) - (-5 *7 (-669 (-552))) - (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-79 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-76 OBJFUN)))) - (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-734))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-839)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-446)) (-4 *3 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) - (-5 *1 (-443 *4 *3 *5 *6)) (-4 *6 (-925 *4 *3 *5))))) + (-12 (-5 *2 (-1148 (-48))) (-5 *3 (-598 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-357) (-828))) (-5 *1 (-178 *2 *3)) + (-4 *3 (-1211 (-166 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-900)) (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)))) + ((*1 *2 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-357)))) + ((*1 *2 *1) + (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1211 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1211 *2)) (-4 *2 (-971 *3)) (-5 *1 (-407 *3 *2 *4 *5)) + (-4 *3 (-301)) (-4 *5 (-13 (-403 *2 *4) (-1017 *2))))) + ((*1 *2 *1) + (-12 (-4 *4 (-1211 *2)) (-4 *2 (-971 *3)) + (-5 *1 (-408 *3 *2 *4 *5 *6)) (-4 *3 (-301)) (-4 *5 (-403 *2 *4)) + (-14 *6 (-1235 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-900)) (-4 *5 (-1028)) + (-4 *2 (-13 (-398) (-1017 *5) (-357) (-1174) (-278))) + (-5 *1 (-436 *5 *3 *2)) (-4 *3 (-1211 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-598 (-487)))) (-5 *1 (-487)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-487))) (-5 *1 (-487)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1148 (-487))) (-5 *3 (-627 (-598 (-487)))) + (-5 *1 (-487)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1148 (-487))) (-5 *3 (-598 (-487))) (-5 *1 (-487)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1235 *4)) (-5 *3 (-900)) (-4 *4 (-343)) + (-5 *1 (-520 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-445)) (-4 *5 (-707 *4 *2)) (-4 *2 (-1211 *4)) + (-5 *1 (-758 *4 *2 *5 *3)) (-4 *3 (-1211 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)))) + ((*1 *1 *1) (-4 *1 (-1037)))) +(((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) (((*1 *2 *3) - (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) - (-5 *2 (-2 (|:| -3340 (-402 *5)) (|:| |poly| *3))) - (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1208 (-402 *5)))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186))))) -(((*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3)) (-4 *3 (-1073))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-837)) (-5 *3 (-128)) (-5 *2 (-1093))))) -(((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1186))))) + (-12 (-4 *4 (-13 (-830) (-544))) (-5 *2 (-111)) (-5 *1 (-270 *4 *3)) + (-4 *3 (-13 (-424 *4) (-981)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-357)) (-4 *1 (-323 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1235 *3)) (-4 *3 (-1211 *4)) (-4 *4 (-1193)) + (-4 *1 (-336 *4 *3 *5)) (-4 *5 (-1211 (-401 *3))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1235 *4)) (-5 *3 (-1235 *1)) (-4 *4 (-169)) + (-4 *1 (-361 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1235 *4)) (-5 *3 (-1235 *1)) (-4 *4 (-169)) + (-4 *1 (-364 *4 *5)) (-4 *5 (-1211 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1235 *3)) (-4 *3 (-169)) (-4 *1 (-403 *3 *4)) + (-4 *4 (-1211 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-169)) (-4 *1 (-411 *3))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-769))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-830)) (-5 *2 (-111)))) + ((*1 *1 *1 *1) (-5 *1 (-842))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-883 *3)) (-4 *3 (-1076))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -3180 (-627 (-1152))) (|:| -1781 (-627 (-1152))))) + (-5 *1 (-1191))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-3 (-111) (-627 *1))) + (-4 *1 (-1048 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-1134)) (-5 *1 (-187)))) + ((*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842))))) +(((*1 *2 *1) (-12 (-4 *3 (-1189)) (-5 *2 (-627 *1)) (-4 *1 (-989 *3))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-111) *5 *5)) (-4 *5 (-13 (-1076) (-34))) + (-5 *2 (-111)) (-5 *1 (-1116 *4 *5)) (-4 *4 (-13 (-1076) (-34)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-52)) (-5 *1 (-1167))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-627 (-552))) (-5 *3 (-671 (-552))) (-5 *1 (-1086))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) + (-4 *4 (-13 (-1076) (-34)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) + (-5 *2 (-627 (-627 (-922 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-627 (-627 (-922 *4)))) (-5 *3 (-111)) (-4 *4 (-1028)) + (-4 *1 (-1110 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-627 (-627 (-922 *3)))) (-4 *3 (-1028)) + (-4 *1 (-1110 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-627 (-627 (-627 *4)))) (-5 *3 (-111)) + (-4 *1 (-1110 *4)) (-4 *4 (-1028)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-627 (-627 (-922 *4)))) (-5 *3 (-111)) + (-4 *1 (-1110 *4)) (-4 *4 (-1028)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-627 (-627 (-627 *5)))) (-5 *3 (-627 (-168))) + (-5 *4 (-168)) (-4 *1 (-1110 *5)) (-4 *5 (-1028)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-627 (-627 (-922 *5)))) (-5 *3 (-627 (-168))) + (-5 *4 (-168)) (-4 *1 (-1110 *5)) (-4 *5 (-1028))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) + (-5 *2 (-111))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-830)) (-5 *2 (-111)))) + ((*1 *1 *1 *1) (-5 *1 (-842)))) +(((*1 *2 *2) + (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) + (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1235 *4)) (-4 *4 (-1028)) (-4 *2 (-1211 *4)) + (-5 *1 (-437 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-401 (-1148 (-310 *5)))) (-5 *3 (-1235 (-310 *5))) + (-5 *4 (-552)) (-4 *5 (-13 (-544) (-830))) (-5 *1 (-1106 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-808))))) +(((*1 *1) (-5 *1 (-1040)))) (((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) -(((*1 *2 *3) (-12 (-5 *3 (-928 (-221))) (-5 *2 (-221)) (-5 *1 (-300))))) -(((*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1152))))) -(((*1 *1 *2 *2) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(((*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-630 *3)) (-4 *3 (-1028)) + (-5 *1 (-697 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-817 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-52)) (-5 *1 (-812))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1134)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-257)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237))))) +(((*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1076)))) + ((*1 *1 *1) (-5 *1 (-616)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096)))))) + (-4 *4 (-343)) (-5 *2 (-671 *4)) (-5 *1 (-340 *4))))) +(((*1 *1) (-5 *1 (-285)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-830)) (-5 *2 (-111)))) + ((*1 *1 *1 *1) (-5 *1 (-842))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-882 *3)) (-4 *3 (-1076)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-883 *3)) (-4 *3 (-1076))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1102 *4 *3 *5))) (-4 *4 (-38 (-401 (-552)))) + (-4 *4 (-1028)) (-4 *3 (-830)) (-5 *1 (-1102 *4 *3 *5)) + (-4 *5 (-928 *4 (-523 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1183 *4))) (-5 *3 (-1152)) (-5 *1 (-1183 *4)) + (-4 *4 (-38 (-401 (-552)))) (-4 *4 (-1028))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) + (-4 *1 (-1042 *3 *4 *5))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-169)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-921)) (-5 *3 (-552))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-627 (-552))) + (|:| |cols| (-627 (-552))))) + (-5 *4 (-671 *12)) (-5 *5 (-627 (-401 (-931 *9)))) + (-5 *6 (-627 (-627 *12))) (-5 *7 (-754)) (-5 *8 (-552)) + (-4 *9 (-13 (-301) (-144))) (-4 *12 (-928 *9 *11 *10)) + (-4 *10 (-13 (-830) (-600 (-1152)))) (-4 *11 (-776)) (-5 *2 - (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) - (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) - (-5 *1 (-1148))))) + (-2 (|:| |eqzro| (-627 *12)) (|:| |neqzro| (-627 *12)) + (|:| |wcond| (-627 (-931 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1235 (-401 (-931 *9)))) + (|:| -2957 (-627 (-1235 (-401 (-931 *9))))))))) + (-5 *1 (-903 *9 *10 *11 *12))))) +(((*1 *2 *1) + (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-5 *2 (-111))))) +(((*1 *1) (-5 *1 (-324)))) +(((*1 *2 *1) (-12 (-4 *1 (-1069 *3)) (-4 *3 (-1189)) (-5 *2 (-552))))) +(((*1 *2 *3) + (-12 (-4 *1 (-783)) + (-5 *3 + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) + (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) + (-5 *2 (-1014))))) +(((*1 *2 *3) + (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) + (-4 *4 (-343))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-981)) + (-4 *2 (-1028))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-625 (-1205 *5 *4))) - (-5 *1 (-1087 *4 *5)) (-5 *3 (-1205 *5 *4))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-669 (-221))) (-5 *6 (-112)) (-5 *7 (-669 (-552))) - (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 QPHESS)))) - (-5 *3 (-552)) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-734))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-839))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-879 *3)) (-4 *3 (-1073)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-880 *3)) (-4 *3 (-1073))))) -(((*1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1186)))) + (-12 (-5 *3 (-1235 *5)) (-4 *5 (-775)) (-5 *2 (-111)) + (-5 *1 (-825 *4 *5)) (-14 *4 (-754))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-487))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-627 (-310 (-220)))) (-5 *3 (-220)) (-5 *2 (-111)) + (-5 *1 (-205))))) +(((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-343)) (-5 *2 (-111)) (-5 *1 (-211 *4 *3)) + (-4 *3 (-1211 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537))))) +(((*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-754)) (-4 *5 (-544)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-948 *5 *3)) (-4 *3 (-1211 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-627 (-1148 *4))) (-5 *3 (-1148 *4)) + (-4 *4 (-888)) (-5 *1 (-645 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-242 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-1028)) + (-5 *2 (-474 *4 *5)) (-5 *1 (-923 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-931 (-220))) (-5 *2 (-310 (-373))) (-5 *1 (-299))))) +(((*1 *2 *3) + (-12 (-4 *4 (-343)) (-5 *2 (-412 (-1148 (-1148 *4)))) + (-5 *1 (-1187 *4)) (-5 *3 (-1148 (-1148 *4)))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-111)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1189)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) + ((*1 *1 *1 *1) (-5 *1 (-842))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1005 *3)) (-4 *3 (-1189))))) +(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-853)))) + ((*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-922 (-220))) (-5 *4 (-853)) (-5 *5 (-900)) + (-5 *2 (-1240)) (-5 *1 (-461)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-922 (-220))) (-5 *2 (-1240)) (-5 *1 (-461)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-627 (-922 (-220)))) (-5 *4 (-853)) (-5 *5 (-900)) + (-5 *2 (-1240)) (-5 *1 (-461))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-627 (-944))) (-5 *1 (-285))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-955 *3 *4 *2 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *2 (-830)) (-4 *5 (-1042 *3 *4 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-590 *2 *3)) (-4 *3 (-1189)) (-4 *2 (-1076)) + (-4 *2 (-830))))) +(((*1 *2) + (-12 (-5 *2 (-900)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) ((*1 *2 *2) - (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1208 *3)))) + (-12 (-5 *2 (-900)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552)))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-627 (-627 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-627 (-3 (|:| |array| (-627 *3)) (|:| |scalar| (-1152))))) + (-5 *6 (-627 (-1152))) (-5 *3 (-1152)) (-5 *2 (-1080)) + (-5 *1 (-391)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-627 (-627 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-627 (-3 (|:| |array| (-627 *3)) (|:| |scalar| (-1152))))) + (-5 *6 (-627 (-1152))) (-5 *3 (-1152)) (-5 *2 (-1080)) + (-5 *1 (-391)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-627 (-1152))) (-5 *5 (-1155)) (-5 *3 (-1152)) + (-5 *2 (-1080)) (-5 *1 (-391))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-627 (-754))) (-5 *1 (-948 *4 *3)) + (-4 *3 (-1211 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-842)))) +(((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-52))))) +(((*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1028)))) + ((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) + (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-670 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-169)) (-4 *2 (-1028)) (-5 *1 (-697 *2 *3)) + (-4 *3 (-630 *2)))) ((*1 *1 *1) - (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-659 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073))))) + (-12 (-4 *2 (-169)) (-4 *2 (-1028)) (-5 *1 (-697 *2 *3)) + (-4 *3 (-630 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-169)) (-4 *2 (-1028)))) + ((*1 *1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-169)) (-4 *2 (-1028))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1076)))) + ((*1 *1 *2) (-12 (-5 *1 (-126 *2)) (-4 *2 (-1076))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-773)) (-4 *7 (-925 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827)) - (-5 *2 (-112)) (-5 *1 (-443 *4 *5 *6 *7))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1186)))) - ((*1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-827)))) - ((*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) - ((*1 *1 *1) (-5 *1 (-839))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) + (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) + (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *2 (-552)) (-5 *1 (-199))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1134)) (-5 *3 (-757)) (-5 *1 (-113))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1148 *2)) (-4 *2 (-424 *4)) (-4 *4 (-13 (-830) (-544))) + (-5 *1 (-32 *4 *2))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3446 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-357)) (-4 *7 (-1211 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-401 *7)) (|:| |a0| *6)) + (-2 (|:| -3446 (-401 *7)) (|:| |coeff| (-401 *7))) "failed")) + (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-1 (-111) *8))) (-4 *8 (-1042 *5 *6 *7)) + (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) + (-5 *2 (-2 (|:| |goodPols| (-627 *8)) (|:| |badPols| (-627 *8)))) + (-5 *1 (-956 *5 *6 *7 *8)) (-5 *4 (-627 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-635 (-401 *6))) (-5 *4 (-401 *6)) (-4 *6 (-1211 *5)) + (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) + (-5 *1 (-793 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-635 (-401 *6))) (-4 *6 (-1211 *5)) + (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) + (-5 *2 (-2 (|:| -2957 (-627 (-401 *6))) (|:| -2515 (-671 *5)))) + (-5 *1 (-793 *5 *6)) (-5 *4 (-627 (-401 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-636 *6 (-401 *6))) (-5 *4 (-401 *6)) (-4 *6 (-1211 *5)) + (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) + (-5 *1 (-793 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-636 *6 (-401 *6))) (-4 *6 (-1211 *5)) + (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) + (-5 *2 (-2 (|:| -2957 (-627 (-401 *6))) (|:| -2515 (-671 *5)))) + (-5 *1 (-793 *5 *6)) (-5 *4 (-627 (-401 *6)))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-627 (-1152))) (-4 *4 (-1076)) + (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) + (-5 *1 (-1052 *4 *5 *2)) + (-4 *2 (-13 (-424 *5) (-865 *4) (-600 (-871 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1076)) + (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))) + (-5 *1 (-1052 *3 *4 *2)) + (-4 *2 (-13 (-424 *4) (-865 *3) (-600 (-871 *3))))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-754)) (-4 *5 (-357)) (-5 *2 (-401 *6)) + (-5 *1 (-846 *5 *4 *6)) (-4 *4 (-1226 *5)) (-4 *6 (-1211 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-754)) (-5 *4 (-1227 *5 *6 *7)) (-4 *5 (-357)) + (-14 *6 (-1152)) (-14 *7 *5) (-5 *2 (-401 (-1208 *6 *5))) + (-5 *1 (-847 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-754)) (-5 *4 (-1227 *5 *6 *7)) (-4 *5 (-357)) + (-14 *6 (-1152)) (-14 *7 *5) (-5 *2 (-401 (-1208 *6 *5))) + (-5 *1 (-847 *5 *6 *7))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-842) (-842) (-842))) (-5 *4 (-552)) (-5 *2 (-842)) + (-5 *1 (-631 *5 *6 *7)) (-4 *5 (-1076)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-842)) (-5 *1 (-834 *3 *4 *5)) (-4 *3 (-1028)) + (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-220)) (-5 *1 (-842)))) + ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-842)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-842)))) + ((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-842)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-842)) (-5 *1 (-1148 *3)) (-4 *3 (-1028))))) +(((*1 *2 *1) + (-12 (-5 *2 (-627 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (|has| *1 (-6 -4366)) (-4 *1 (-230 *3)) + (-4 *3 (-1076)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4366)) (-4 *1 (-230 *2)) (-4 *2 (-1076)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-276 *2)) (-4 *2 (-1189)) (-4 *2 (-1076)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-111) *3)) (-4 *1 (-276 *3)) (-4 *3 (-1189)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-596 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-111) *4)) (-5 *3 (-552)) (-4 *4 (-1076)) + (-5 *1 (-720 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-5 *1 (-720 *2)) (-4 *2 (-1076)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) + (-4 *4 (-13 (-1076) (-34))) (-5 *1 (-1117 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *2 (-627 (-220))) + (-5 *1 (-461))))) +(((*1 *2 *3) (-12 (-5 *3 (-401 (-552))) (-5 *2 (-220)) (-5 *1 (-299))))) +(((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-52))))) +(((*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) + (-5 *2 (-1148 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) - (-4 *3 (-1208 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-142))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-552)) (-5 *1 (-1129 *3)) (-4 *3 (-1186)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186))))) + (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) + (-5 *2 (-1148 *3))))) +(((*1 *1 *1) (-5 *1 (-842))) + ((*1 *2 *1) + (-12 (-4 *1 (-1079 *2 *3 *4 *5 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076)))) + ((*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1133)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1152))))) +(((*1 *2) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-627 *3)) (-4 *3 (-301)) (-5 *1 (-176 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) + ((*1 *1 *1 *1) (-5 *1 (-842)))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-38 (-402 (-552)))) - (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1186))))) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1189)) (-5 *1 (-369 *4 *2)) + (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4367))))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-735))))) (((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) + (-12 (-4 *1 (-247 *2 *3 *4 *5)) (-4 *2 (-1028)) (-4 *3 (-830)) + (-4 *4 (-260 *3)) (-4 *5 (-776))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1148 (-931 *6))) (-4 *6 (-544)) + (-4 *2 (-928 (-401 (-931 *6)) *5 *4)) (-5 *1 (-715 *5 *4 *6 *2)) + (-4 *5 (-776)) + (-4 *4 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1189)) (-5 *2 (-754)) (-5 *1 (-179 *4 *3)) + (-4 *3 (-656 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-111))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-627 (-627 (-627 *4)))) (-5 *2 (-627 (-627 *4))) + (-4 *4 (-830)) (-5 *1 (-1160 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) + (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-956 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-627 *7)) (-5 *3 (-111)) (-4 *7 (-1042 *4 *5 *6)) + (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) + (-5 *1 (-956 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-928 (-221))) (-5 *2 (-311 (-374))) (-5 *1 (-300))))) -(((*1 *1 *2 *2) - (-12 + (-12 (-5 *2 (-412 (-1148 *1))) (-5 *1 (-310 *4)) (-5 *3 (-1148 *1)) + (-4 *4 (-445)) (-4 *4 (-544)) (-4 *4 (-830)))) + ((*1 *2 *3) + (-12 (-4 *1 (-888)) (-5 *2 (-412 (-1148 *1))) (-5 *3 (-1148 *1))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3116 *3) (|:| |coef1| (-765 *3)))) + (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) + (-5 *2 (-1014)) (-5 *1 (-739))))) +(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-509)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1076) (-34))) (-5 *1 (-1116 *3 *2)) + (-4 *3 (-13 (-1076) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1246))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1134)) + (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1189))))) +(((*1 *2 *3) + (-12 (-4 *4 (-343)) (-4 *5 (-323 *4)) (-4 *6 (-1211 *5)) + (-5 *2 (-627 *3)) (-5 *1 (-760 *4 *5 *6 *3 *7)) (-4 *3 (-1211 *6)) + (-14 *7 (-900))))) +(((*1 *2 *1) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) + (-5 *2 (-2 (|:| |num| (-1235 *4)) (|:| |den| *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1240)) (-5 *1 (-1114)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-842))) (-5 *2 (-1240)) (-5 *1 (-1114))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-357) (-1174) (-981)))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-671 *4)) (-5 *3 (-754)) (-4 *4 (-1028)) + (-5 *1 (-672 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1132 *3)) (-5 *1 (-171 *3)) (-4 *3 (-301))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-627 (-1148 *13))) (-5 *3 (-1148 *13)) + (-5 *4 (-627 *12)) (-5 *5 (-627 *10)) (-5 *6 (-627 *13)) + (-5 *7 (-627 (-627 (-2 (|:| -3247 (-754)) (|:| |pcoef| *13))))) + (-5 *8 (-627 (-754))) (-5 *9 (-1235 (-627 (-1148 *10)))) + (-4 *12 (-830)) (-4 *10 (-301)) (-4 *13 (-928 *10 *11 *12)) + (-4 *11 (-776)) (-5 *1 (-690 *11 *12 *10 *13))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-257))) (-5 *1 (-1236)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 (-257))) (-5 *1 (-1236)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-257))) (-5 *1 (-1237)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 (-257))) (-5 *1 (-1237))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-735))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -2791 *6) (|:| |sol?| (-111))) (-552) + *6)) + (-4 *6 (-357)) (-4 *7 (-1211 *6)) + (-5 *2 (-2 (|:| |answer| (-573 (-401 *7))) (|:| |a0| *6))) + (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-166 (-220))) (-5 *4 (-552)) (-5 *2 (-1014)) + (-5 *1 (-741))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-598 *4)) (-5 *6 (-1148 *4)) + (-4 *4 (-13 (-424 *7) (-27) (-1174))) + (-4 *7 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) (-5 *2 - (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) - (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) - (-5 *1 (-1148))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-625 (-1205 *5 *4))) - (-5 *1 (-1087 *4 *5)) (-5 *3 (-1205 *5 *4))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-112)) - (-5 *2 (-1011)) (-5 *1 (-734))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-625 *7)) (-5 *3 (-552)) (-4 *7 (-925 *4 *5 *6)) - (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-5 *1 (-443 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-659 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1186)))) - ((*1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-827)))) - ((*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) - ((*1 *1 *1) (-5 *1 (-839))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) + (-5 *1 (-548 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1076)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-598 *4)) (-5 *6 (-401 (-1148 *4))) + (-4 *4 (-13 (-424 *7) (-27) (-1174))) + (-4 *7 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) + (-5 *1 (-548 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1076))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-598 *4)) (-4 *4 (-830)) (-4 *2 (-830)) + (-5 *1 (-597 *2 *4))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1250 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) + (-5 *1 (-646 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) - (-4 *3 (-1208 *2))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1186))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170))))) + (|partial| -12 (-5 *2 (-646 *3 *4)) (-5 *1 (-1255 *3 *4)) + (-4 *3 (-830)) (-4 *4 (-169))))) +(((*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-132))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-552)) (-4 *3 (-169)) (-4 *5 (-367 *3)) + (-4 *6 (-367 *3)) (-5 *1 (-670 *3 *5 *6 *2)) + (-4 *2 (-669 *3 *5 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-1115 *3 *4)) (-14 *3 (-897)) (-4 *4 (-358)) - (-5 *1 (-969 *3 *4))))) + (-12 (-5 *2 (-754)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1028)) + (-14 *4 (-627 (-1152))))) + ((*1 *1 *2) + (-12 (-5 *2 (-754)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1028) (-830))) + (-14 *4 (-627 (-1152))))) + ((*1 *1) (-12 (-4 *1 (-323 *2)) (-4 *2 (-362)) (-4 *2 (-357)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-329 *3 *4 *5 *2)) (-4 *3 (-357)) + (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) + (-4 *2 (-336 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-754)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-169)))) + ((*1 *1) (-12 (-4 *2 (-169)) (-4 *1 (-707 *2 *3)) (-4 *3 (-1211 *2))))) +(((*1 *1 *1) (-4 *1 (-170))) + ((*1 *1 *1) + (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1132 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-187)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1132 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-294)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1132 (-220))) (-5 *2 (-627 (-1134))) (-5 *1 (-299))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1132 *3))) (-5 *1 (-1132 *3)) (-4 *3 (-1189))))) +(((*1 *2) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-5 *2 (-671 (-401 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-671 (-401 (-931 *4)))) (-4 *4 (-445)) + (-5 *2 (-627 (-3 (-401 (-931 *4)) (-1141 (-1152) (-931 *4))))) + (-5 *1 (-286 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1134))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1076)) (-4 *5 (-1076)) + (-5 *2 (-1 *5)) (-5 *1 (-665 *4 *5))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-754)) (-4 *1 (-723 *4 *5)) (-4 *4 (-1028)) + (-4 *5 (-830)) (-5 *2 (-931 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-754)) (-4 *1 (-723 *4 *5)) (-4 *4 (-1028)) + (-4 *5 (-830)) (-5 *2 (-931 *4)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-754)) (-4 *1 (-1226 *4)) (-4 *4 (-1028)) + (-5 *2 (-931 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-754)) (-4 *1 (-1226 *4)) (-4 *4 (-1028)) + (-5 *2 (-931 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-754)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) + (-4 *3 (-1042 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-627 *4)) + (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) + (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1048 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-627 *4)) + (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) + (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-754)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) + (-4 *3 (-1042 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-627 *4)) + (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) + (-5 *1 (-1121 *6 *7 *8 *3 *4)) (-4 *4 (-1085 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-627 *4)) + (|:| |todo| (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))))) + (-5 *1 (-1121 *5 *6 *7 *3 *4)) (-4 *4 (-1085 *5 *6 *7 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1220 *3 *4 *5)) (-4 *3 (-13 (-357) (-830))) + (-14 *4 (-1152)) (-14 *5 *3) (-5 *1 (-313 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1019)) (-5 *3 (-373))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-373)) (-5 *1 (-1040))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1014)) + (-5 *1 (-731))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-469 *4 *5 *6 *7)) (|:| -2240 (-627 *7)))) + (-5 *1 (-956 *4 *5 *6 *7)) (-5 *3 (-627 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-168)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) + (-4 *4 (-1028))))) (((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-269))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-113)) (-5 *4 (-627 *2)) (-5 *1 (-112 *2)) + (-4 *2 (-1076)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-627 *4))) (-4 *4 (-1076)) + (-5 *1 (-112 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1076)) + (-5 *1 (-112 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-627 *4))) + (-5 *1 (-112 *4)) (-4 *4 (-1076)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-630 *3)) (-4 *3 (-1028)) + (-5 *1 (-697 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1028)) (-5 *1 (-817 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-430))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-627 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) + (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-627 *6)) (-4 *6 (-830)) (-4 *4 (-357)) (-4 *5 (-776)) + (-5 *2 (-111)) (-5 *1 (-496 *4 *5 *6 *7)) (-4 *7 (-928 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-842))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-803)) (-14 *5 (-1152)) (-5 *2 (-627 (-1208 *5 *4))) + (-5 *1 (-1090 *4 *5)) (-5 *3 (-1208 *5 *4))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *3 (-552)) + (-5 *2 (-1014)) (-5 *1 (-737))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |stiffness| (-374)) (|:| |stability| (-374)) - (|:| |expense| (-374)) (|:| |accuracy| (-374)) - (|:| |intermediateResults| (-374)))) - (-5 *2 (-1011)) (-5 *1 (-300))))) -(((*1 *1 *2 *2) + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) + (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) + (-5 *2 (-373)) (-5 *1 (-200))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *2 *1) + (-12 (-5 *2 (-922 *4)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) + (-4 *4 (-1028))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *2 (-627 *4)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1211 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *2 (-627 *3)) (-5 *1 (-1104 *4 *3)) (-4 *4 (-1211 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-627 *5) *6)) + (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *6 (-1211 *5)) + (-5 *2 (-627 (-2 (|:| -3488 *5) (|:| -1651 *3)))) + (-5 *1 (-792 *5 *6 *3 *7)) (-4 *3 (-638 *6)) + (-4 *7 (-638 (-401 *6)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1132 (-401 *3))) (-5 *1 (-171 *3)) (-4 *3 (-301))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-627 *2)) (-4 *2 (-537)) (-5 *1 (-156 *2))))) +(((*1 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) + (-4 *4 (-1076))))) +(((*1 *2 *1) (-12 (-5 *2 - (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) - (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) - (-5 *1 (-1148))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-625 (-552))) (-5 *1 (-1083)) (-5 *3 (-552))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) - (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-65 FUNCT1)))) - (-5 *2 (-1011)) (-5 *1 (-734))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1186)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) - ((*1 *1 *1 *1) (-5 *1 (-839))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1002 *3)) (-4 *3 (-1186))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *4 *5 *6)) (-4 *4 (-446)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-443 *4 *5 *6 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-552)) (|has| *1 (-6 -4354)) (-4 *1 (-1220 *3)) - (-4 *3 (-1186))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170))))) -(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-827)) (-4 *2 (-1025)))) - ((*1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544))))) + (-627 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-552))))) + (-5 *1 (-412 *3)) (-4 *3 (-544)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-754)) (-4 *3 (-343)) (-4 *5 (-1211 *3)) + (-5 *2 (-627 (-1148 *3))) (-5 *1 (-490 *3 *5 *6)) + (-4 *6 (-1211 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *1 *1 *1) (-5 *1 (-159))) + ((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-159))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *2 (-627 *4)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1211 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *2 (-627 *3)) (-5 *1 (-1104 *4 *3)) (-4 *4 (-1211 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) + ((*1 *1 *1) (-5 *1 (-842)))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4366)) (-4 *1 (-590 *4 *3)) (-4 *4 (-1076)) + (-4 *3 (-1189)) (-4 *3 (-1076)) (-5 *2 (-111))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-541))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-1152)) (-5 *3 (-1080)) (-5 *1 (-285))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1140 *2 *3)) (-14 *2 (-900)) (-4 *3 (-1028))))) (((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-108)) (-5 *1 (-172)))) + ((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-108)) (-5 *1 (-1061))))) +(((*1 *2 *3) + (-12 (-5 *3 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) + (-5 *2 (-1240)) (-5 *1 (-1155)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1152)) + (-5 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-5 *2 (-1240)) + (-5 *1 (-1155)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1152)) + (-5 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) (-5 *2 (-1240)) + (-5 *1 (-1155))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-544) (-144))) + (-5 *2 (-2 (|:| -2776 *3) (|:| -2791 *3))) (-5 *1 (-1205 *4 *3)) + (-4 *3 (-1211 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-1083 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428)))) + ((*1 *2 *3) + (-12 (-5 *2 (-111)) (-5 *1 (-557 *3)) (-4 *3 (-1017 (-552))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1189)) + (-4 *5 (-1189)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-235 *6 *7)) (-14 *6 (-754)) + (-4 *7 (-1189)) (-4 *5 (-1189)) (-5 *2 (-235 *6 *5)) + (-5 *1 (-234 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1189)) (-4 *5 (-1189)) + (-4 *2 (-367 *5)) (-5 *1 (-365 *6 *4 *5 *2)) (-4 *4 (-367 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1076)) (-4 *5 (-1076)) + (-4 *2 (-419 *5)) (-5 *1 (-417 *6 *4 *5 *2)) (-4 *4 (-419 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-627 *6)) (-4 *6 (-1189)) + (-4 *5 (-1189)) (-5 *2 (-627 *5)) (-5 *1 (-625 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-937 *6)) (-4 *6 (-1189)) + (-4 *5 (-1189)) (-5 *2 (-937 *5)) (-5 *1 (-936 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1132 *6)) (-4 *6 (-1189)) + (-4 *3 (-1189)) (-5 *2 (-1132 *3)) (-5 *1 (-1130 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1235 *6)) (-4 *6 (-1189)) + (-4 *5 (-1189)) (-5 *2 (-1235 *5)) (-5 *1 (-1234 *6 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-754)) (-5 *3 (-922 *4)) (-4 *1 (-1110 *4)) + (-4 *4 (-1028)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-754)) (-5 *4 (-922 (-220))) (-5 *2 (-1240)) + (-5 *1 (-1237))))) +(((*1 *1 *1 *1) (-5 *1 (-842)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-537)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-544)) + (-5 *2 (-111))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-671 *8)) (-4 *8 (-928 *5 *7 *6)) + (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) + (-4 *7 (-776)) + (-5 *2 + (-627 + (-2 (|:| |eqzro| (-627 *8)) (|:| |neqzro| (-627 *8)) + (|:| |wcond| (-627 (-931 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1235 (-401 (-931 *5)))) + (|:| -2957 (-627 (-1235 (-401 (-931 *5)))))))))) + (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-627 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-671 *8)) (-5 *4 (-627 (-1152))) (-4 *8 (-928 *5 *7 *6)) + (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) + (-4 *7 (-776)) + (-5 *2 + (-627 + (-2 (|:| |eqzro| (-627 *8)) (|:| |neqzro| (-627 *8)) + (|:| |wcond| (-627 (-931 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1235 (-401 (-931 *5)))) + (|:| -2957 (-627 (-1235 (-401 (-931 *5)))))))))) + (-5 *1 (-903 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-671 *7)) (-4 *7 (-928 *4 *6 *5)) + (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) + (-4 *6 (-776)) + (-5 *2 + (-627 + (-2 (|:| |eqzro| (-627 *7)) (|:| |neqzro| (-627 *7)) + (|:| |wcond| (-627 (-931 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1235 (-401 (-931 *4)))) + (|:| -2957 (-627 (-1235 (-401 (-931 *4)))))))))) + (-5 *1 (-903 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-671 *9)) (-5 *5 (-900)) (-4 *9 (-928 *6 *8 *7)) + (-4 *6 (-13 (-301) (-144))) (-4 *7 (-13 (-830) (-600 (-1152)))) + (-4 *8 (-776)) + (-5 *2 + (-627 + (-2 (|:| |eqzro| (-627 *9)) (|:| |neqzro| (-627 *9)) + (|:| |wcond| (-627 (-931 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1235 (-401 (-931 *6)))) + (|:| -2957 (-627 (-1235 (-401 (-931 *6)))))))))) + (-5 *1 (-903 *6 *7 *8 *9)) (-5 *4 (-627 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-671 *9)) (-5 *4 (-627 (-1152))) (-5 *5 (-900)) + (-4 *9 (-928 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) + (-4 *7 (-13 (-830) (-600 (-1152)))) (-4 *8 (-776)) + (-5 *2 + (-627 + (-2 (|:| |eqzro| (-627 *9)) (|:| |neqzro| (-627 *9)) + (|:| |wcond| (-627 (-931 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1235 (-401 (-931 *6)))) + (|:| -2957 (-627 (-1235 (-401 (-931 *6)))))))))) + (-5 *1 (-903 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-671 *8)) (-5 *4 (-900)) (-4 *8 (-928 *5 *7 *6)) + (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) + (-4 *7 (-776)) + (-5 *2 + (-627 + (-2 (|:| |eqzro| (-627 *8)) (|:| |neqzro| (-627 *8)) + (|:| |wcond| (-627 (-931 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1235 (-401 (-931 *5)))) + (|:| -2957 (-627 (-1235 (-401 (-931 *5)))))))))) + (-5 *1 (-903 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-671 *9)) (-5 *4 (-627 *9)) (-5 *5 (-1134)) + (-4 *9 (-928 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) + (-4 *7 (-13 (-830) (-600 (-1152)))) (-4 *8 (-776)) (-5 *2 (-552)) + (-5 *1 (-903 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-671 *9)) (-5 *4 (-627 (-1152))) (-5 *5 (-1134)) + (-4 *9 (-928 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) + (-4 *7 (-13 (-830) (-600 (-1152)))) (-4 *8 (-776)) (-5 *2 (-552)) + (-5 *1 (-903 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-671 *8)) (-5 *4 (-1134)) (-4 *8 (-928 *5 *7 *6)) + (-4 *5 (-13 (-301) (-144))) (-4 *6 (-13 (-830) (-600 (-1152)))) + (-4 *7 (-776)) (-5 *2 (-552)) (-5 *1 (-903 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-671 *10)) (-5 *4 (-627 *10)) (-5 *5 (-900)) + (-5 *6 (-1134)) (-4 *10 (-928 *7 *9 *8)) (-4 *7 (-13 (-301) (-144))) + (-4 *8 (-13 (-830) (-600 (-1152)))) (-4 *9 (-776)) (-5 *2 (-552)) + (-5 *1 (-903 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-671 *10)) (-5 *4 (-627 (-1152))) (-5 *5 (-900)) + (-5 *6 (-1134)) (-4 *10 (-928 *7 *9 *8)) (-4 *7 (-13 (-301) (-144))) + (-4 *8 (-13 (-830) (-600 (-1152)))) (-4 *9 (-776)) (-5 *2 (-552)) + (-5 *1 (-903 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-671 *9)) (-5 *4 (-900)) (-5 *5 (-1134)) + (-4 *9 (-928 *6 *8 *7)) (-4 *6 (-13 (-301) (-144))) + (-4 *7 (-13 (-830) (-600 (-1152)))) (-4 *8 (-776)) (-5 *2 (-552)) + (-5 *1 (-903 *6 *7 *8 *9))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-627 *1)) (-4 *1 (-1042 *4 *5 *6)) (-4 *4 (-1028)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-830)) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1182 *4 *5 *6 *3)) (-4 *4 (-544)) (-4 *5 (-776)) + (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111))))) (((*1 *2 *3) (-12 (-5 *3 + (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) + (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -11155,7276 +11431,7013 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1129 (-221))) + (-3 (|:| |str| (-1132 (-220))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -3315 + (|:| -1707 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1011)) (-5 *1 (-300))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) - (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) - (-5 *1 (-1148))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-625 (-1149))) (-5 *2 (-1149)) (-5 *1 (-325))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-625 (-552))) (-5 *1 (-1083)) (-5 *3 (-552))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) - (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-62 LSFUN2)))) - (-5 *2 (-1011)) (-5 *1 (-734))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *4 *5 *6)) (-4 *4 (-446)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-443 *4 *5 *6 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-827) (-1014 (-552)) (-621 (-552)) (-446))) - (-5 *2 (-820 *4)) (-5 *1 (-308 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1171) (-425 *3))) (-14 *5 (-1149)) - (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-827) (-1014 (-552)) (-621 (-552)) (-446))) - (-5 *2 (-820 *4)) (-5 *1 (-1218 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1171) (-425 *3))) (-14 *5 (-1149)) - (-14 *6 *4)))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-358)) (-4 *3 (-1025)) - (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-829 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-358)) (-4 *5 (-1025)) - (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-830 *5 *3)) - (-4 *3 (-829 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-827)) (-4 *2 (-544)))) - ((*1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544))))) -(((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) + (-5 *1 (-547))))) +(((*1 *2) + (-12 (-4 *4 (-1193)) (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) + (-5 *2 (-754)) (-5 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-336 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-5 *2 (-754))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *1 *2) + (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-1 (-111) *8))) (-4 *8 (-1042 *5 *6 *7)) + (-4 *5 (-544)) (-4 *6 (-776)) (-4 *7 (-830)) + (-5 *2 (-2 (|:| |goodPols| (-627 *8)) (|:| |badPols| (-627 *8)))) + (-5 *1 (-956 *5 *6 *7 *8)) (-5 *4 (-627 *8))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-754)) (-5 *5 (-627 *3)) (-4 *3 (-301)) (-4 *6 (-830)) + (-4 *7 (-776)) (-5 *2 (-111)) (-5 *1 (-609 *6 *7 *3 *8)) + (-4 *8 (-928 *3 *7 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-544)) (-4 *4 (-971 *3)) (-5 *1 (-139 *3 *4 *2)) + (-4 *2 (-367 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *5 (-971 *4)) (-4 *2 (-367 *4)) + (-5 *1 (-495 *4 *5 *2 *3)) (-4 *3 (-367 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-671 *5)) (-4 *5 (-971 *4)) (-4 *4 (-544)) + (-5 *2 (-671 *4)) (-5 *1 (-675 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-544)) (-4 *4 (-971 *3)) (-5 *1 (-1204 *3 *4 *2)) + (-4 *2 (-1211 *4))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) - (|:| |explanations| (-625 (-1131))))) - (-5 *2 (-1011)) (-5 *1 (-300)))) - ((*1 *2 *3) + (-627 + (-2 (|:| -4154 (-754)) + (|:| |eqns| + (-627 + (-2 (|:| |det| *7) (|:| |rows| (-627 (-552))) + (|:| |cols| (-627 (-552)))))) + (|:| |fgb| (-627 *7))))) + (-4 *7 (-928 *4 *6 *5)) (-4 *4 (-13 (-301) (-144))) + (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-754)) + (-5 *1 (-903 *4 *5 *6 *7))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-944))) (-5 *1 (-108))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1189)) + (-4 *5 (-367 *4)) (-4 *2 (-367 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-4 *1 (-1031 *4 *5 *6 *7 *2)) (-4 *6 (-1028)) + (-4 *7 (-233 *5 *6)) (-4 *2 (-233 *4 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-552)) (-5 *2 (-627 (-2 (|:| -1727 *3) (|:| -3567 *4)))) + (-5 *1 (-678 *3)) (-4 *3 (-1211 *4))))) +(((*1 *2 *3 *2) (-12 - (-5 *3 - (-2 (|:| -3890 (-374)) (|:| -1288 (-1131)) - (|:| |explanations| (-625 (-1131))) (|:| |extra| (-1011)))) - (-5 *2 (-1011)) (-5 *1 (-300))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-625 (-552))) (-5 *1 (-1083)) (-5 *3 (-552))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) - (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-78 LSFUN1)))) - (-5 *2 (-1011)) (-5 *1 (-734))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-925 *4 *5 *6)) (-5 *2 (-625 (-625 *7))) - (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-625 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) - (-4 *7 (-827)) (-4 *8 (-925 *5 *6 *7)) (-5 *2 (-625 (-625 *8))) - (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-625 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-925 *4 *5 *6)) (-5 *2 (-625 (-625 *7))) - (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-625 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) - (-4 *7 (-827)) (-4 *8 (-925 *5 *6 *7)) (-5 *2 (-625 (-625 *8))) - (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-625 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-827) (-1014 (-552)) (-621 (-552)) (-446))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1217 *4 *5 *6)) - (|:| |%expon| (-314 *4 *5 *6)) - (|:| |%expTerms| - (-625 (-2 (|:| |k| (-402 (-552))) (|:| |c| *4)))))) - (|:| |%type| (-1131)))) - (-5 *1 (-1218 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-425 *3))) - (-14 *5 (-1149)) (-14 *6 *4)))) + (-5 *2 + (-627 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-754)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-776)) (-4 *6 (-928 *4 *3 *5)) (-4 *4 (-445)) (-4 *5 (-830)) + (-5 *1 (-442 *4 *3 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-1157))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-358)) (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) - (-5 *1 (-747 *3 *4)) (-4 *3 (-689 *4)))) + (-12 (-4 *4 (-544)) + (-5 *2 (-2 (|:| -3069 *4) (|:| -2404 *3) (|:| -3401 *3))) + (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-358)) (-4 *3 (-1025)) - (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-829 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-358)) (-4 *5 (-1025)) - (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-830 *5 *3)) - (-4 *3 (-829 *5))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-963 (-402 (-552)) (-841 *3) (-236 *4 (-751)) - (-243 *3 (-402 (-552))))) - (-14 *3 (-625 (-1149))) (-14 *4 (-751)) (-5 *1 (-962 *3 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) -(((*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1131)) (-5 *1 (-300))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1083))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-552)) (-5 *5 (-112)) (-5 *6 (-669 (-221))) - (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-76 OBJFUN)))) - (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-734))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-925 *4 *5 *6)) (-5 *2 (-625 (-625 *7))) - (-5 *1 (-442 *4 *5 *6 *7)) (-5 *3 (-625 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) - (-4 *7 (-827)) (-4 *8 (-925 *5 *6 *7)) (-5 *2 (-625 (-625 *8))) - (-5 *1 (-442 *5 *6 *7 *8)) (-5 *3 (-625 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1215 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1192 *3)) - (-5 *2 (-402 (-552)))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-544)) (-4 *3 (-1025)) - (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-829 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-544)) (-4 *5 (-1025)) - (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-830 *5 *3)) - (-4 *3 (-829 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-625 *3)) (-4 *3 (-925 *4 *6 *5)) (-4 *4 (-446)) - (-4 *5 (-827)) (-4 *6 (-773)) (-5 *1 (-963 *4 *5 *6 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-188)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-295)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-300))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) - ((*1 *1 *1 *1) (-5 *1 (-1093)))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1073)))) + (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-1042 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-544)) (-4 *3 (-1028)) + (-5 *2 (-2 (|:| -3069 *3) (|:| -2404 *1) (|:| -3401 *1))) + (-4 *1 (-1211 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-544)) (-4 *4 (-830)) + (-5 *1 (-561 *4 *2)) (-4 *2 (-424 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-671 *5)) (-5 *4 (-1235 *5)) (-4 *5 (-357)) + (-5 *2 (-111)) (-5 *1 (-649 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-552)) (-5 *2 (-1129 *3)) (-5 *1 (-1133 *3)) - (-4 *3 (-1025)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-799 *4)) (-4 *4 (-827)) (-4 *1 (-1249 *4 *3)) - (-4 *3 (-1025))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1232 (-552))) (-5 *3 (-552)) (-5 *1 (-1083)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1232 (-552))) (-5 *3 (-625 (-552))) (-5 *4 (-552)) - (-5 *1 (-1083))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-733))))) -(((*1 *2 *2) - (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-302)) - (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-441 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-625 *7)) (-5 *3 (-1131)) (-4 *7 (-925 *4 *5 *6)) - (-4 *4 (-302)) (-4 *5 (-773)) (-4 *6 (-827)) - (-5 *1 (-441 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-625 *7)) (-5 *3 (-1131)) (-4 *7 (-925 *4 *5 *6)) - (-4 *4 (-302)) (-4 *5 (-773)) (-4 *6 (-827)) - (-5 *1 (-441 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1192 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-544)) (-4 *3 (-1025)) - (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-829 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-544)) (-4 *5 (-1025)) - (-5 *2 (-2 (|:| -3984 *3) (|:| -3645 *3))) (-5 *1 (-830 *5 *3)) - (-4 *3 (-829 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-446)) (-4 *4 (-827)) - (-4 *5 (-773)) (-5 *1 (-963 *3 *4 *5 *6)) (-4 *6 (-925 *3 *5 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) + (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4367)))) + (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-5 *2 (-111)) + (-5 *1 (-650 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-188)))) + (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1193)) (-4 *3 (-1211 *4)) + (-4 *5 (-1211 (-401 *3))) (-5 *2 (-111)))) ((*1 *2 *3) - (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-295)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1067 (-820 (-221)))) (-5 *2 (-221)) (-5 *1 (-300))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-625 (-552))) (-5 *3 (-112)) (-5 *1 (-1083))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) - (-5 *2 (-1011)) (-5 *1 (-733))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *4 *5 *6)) (-4 *4 (-302)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-441 *4 *5 *6 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 (-142))) (-5 *1 (-139)))) - ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-139))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) - (-5 *2 (-112)) (-5 *1 (-963 *3 *4 *5 *6)) - (-4 *6 (-925 *3 *5 *4)))) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-627 *7)) (-5 *5 (-627 (-627 *8))) (-4 *7 (-830)) + (-4 *8 (-301)) (-4 *6 (-776)) (-4 *9 (-928 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-627 (-2 (|:| -1727 (-1148 *9)) (|:| -4067 (-552))))))) + (-5 *1 (-725 *6 *7 *8 *9)) (-5 *3 (-1148 *9))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-627 (-552))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)) + (-14 *4 (-754)) (-4 *5 (-169))))) +(((*1 *1 *1) (-12 (-5 *1 (-492 *2)) (-14 *2 (-552)))) + ((*1 *1 *1) (-5 *1 (-1096)))) +(((*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-856 *2)) (-4 *2 (-1189)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-858 *2)) (-4 *2 (-1189)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34))) - (-4 *4 (-13 (-1073) (-34)))))) -(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-374))) (-5 *1 (-1016))))) -(((*1 *1 *2) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1073)))) + (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-922 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-1172 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-625 (-1172 *2))) (-5 *1 (-1172 *2)) (-4 *2 (-1073))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1025)) - (-4 *2 (-1192 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) -(((*1 *2 *1) - (-12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-625 *6)) - (-5 *1 (-963 *3 *4 *5 *6)) (-4 *6 (-925 *3 *5 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1129 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-188)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1129 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-295)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1129 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-300))))) -(((*1 *1 *1 *1) (-4 *1 (-943)))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-669 (-552))) (-5 *3 (-625 (-552))) (-5 *1 (-1083))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-733))))) -(((*1 *2 *3) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-440)) (-5 *3 (-552))))) -(((*1 *1) (-5 *1 (-139)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *1 (-1208 *3)) (-4 *3 (-1025)))) + (-12 (-5 *2 (-627 (-922 *3))) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-897)) (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) - (-4 *4 (-772)))) + (-12 (-5 *2 (-627 (-627 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-402 (-552))) (-4 *1 (-1213 *3)) (-4 *3 (-1025))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) -(((*1 *2 *1) - (-12 (-4 *2 (-925 *3 *5 *4)) (-5 *1 (-963 *3 *4 *5 *2)) - (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773))))) -(((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) + (-12 (-5 *2 (-627 (-922 *3))) (-4 *1 (-1110 *3)) (-4 *3 (-1028))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) (((*1 *2 *3) - (-12 (-5 *3 (-625 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-188)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-295)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-221))) (-5 *2 (-625 (-1131))) (-5 *1 (-300))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-625 (-552))) (-5 *2 (-669 (-552))) (-5 *1 (-1083))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-733))))) -(((*1 *2 *2) - (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))) - ((*1 *2) - (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025))))) -(((*1 *1) (-5 *1 (-139)))) -(((*1 *2 *1) (-12 (-4 *1 (-249 *3)) (-4 *3 (-1186)) (-5 *2 (-751)))) - ((*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-751)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1025)) - (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) - (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1208 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-596 *3)) (-4 *3 (-827)))) - ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) - ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-839))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-152)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-1040))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-552)))) - (-4 *4 (-13 (-1208 *3) (-544) (-10 -8 (-15 -2633 ($ $ $))))) - (-4 *3 (-544)) (-5 *1 (-1211 *3 *4))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) -(((*1 *1 *1) - (-12 (-4 *2 (-446)) (-4 *3 (-827)) (-4 *4 (-773)) - (-5 *1 (-963 *2 *3 *4 *5)) (-4 *5 (-925 *2 *4 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) -(((*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1131)) (-5 *1 (-300))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1025)) - (-5 *1 (-830 *5 *2)) (-4 *2 (-829 *5))))) + (-12 (-4 *4 (-1028)) (-4 *5 (-1211 *4)) (-5 *2 (-1 *6 (-627 *6))) + (-5 *1 (-1229 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-1226 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-625 (-552))) (-5 *2 (-625 (-669 (-552)))) - (-5 *1 (-1083))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-221))) - (-5 *6 (-221)) (-5 *2 (-1011)) (-5 *1 (-733))))) -(((*1 *2 *3) - (-12 (-5 *2 (-552)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025))))) -(((*1 *1) (-5 *1 (-139)))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-841 *3)) (-14 *3 (-625 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) - ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-965)))) - ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1065 *3)) (-4 *3 (-1186)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) - (-5 *2 (-1149)))) - ((*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1228 *3)) (-14 *3 *2)))) -(((*1 *1 *1) - (-12 (-4 *1 (-925 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827)) (-4 *2 (-446)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *3 (-1039 *4 *5 *6)) - (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *1)))) - (-4 *1 (-1045 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1190))) - ((*1 *2 *2) - (-12 (-4 *3 (-544)) (-5 *1 (-1211 *3 *2)) - (-4 *2 (-13 (-1208 *3) (-544) (-10 -8 (-15 -2633 ($ $ $)))))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) + (-12 (-5 *3 (-1148 (-552))) (-5 *2 (-552)) (-5 *1 (-921))))) (((*1 *2 *3) - (-12 (-4 *3 (-1208 *2)) (-4 *2 (-1208 *4)) (-5 *1 (-961 *4 *2 *3 *5)) - (-4 *4 (-344)) (-4 *5 (-705 *2 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) -(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-188)))) - ((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-295)))) - ((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-300))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-897)) (-4 *1 (-399)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-399)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1076 *3 *4 *5 *2 *6)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-625 (-552))) (-5 *3 (-669 (-552))) (-5 *1 (-1083))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-221)) - (-5 *7 (-669 (-552))) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-733))))) + (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-830) (-544)))))) +(((*1 *2 *2) (-12 (-5 *2 (-310 (-220))) (-5 *1 (-261))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-200)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-627 (-373))) (-5 *2 (-373)) (-5 *1 (-200))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-492 *2)) (-14 *2 (-552)))) + ((*1 *1 *1 *1) (-5 *1 (-1096)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-1152))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2))))) (((*1 *2 *3) - (-12 (-5 *2 (-552)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325))))) -(((*1 *1) (-5 *1 (-139)))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-751)) (-4 *3 (-1186)) (-4 *1 (-56 *3 *4 *5)) - (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) - ((*1 *1) (-5 *1 (-169))) - ((*1 *1) (-12 (-5 *1 (-209 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1073)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384)))) - ((*1 *1) (-5 *1 (-389))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-4 *1 (-631 *3)) (-4 *3 (-1186)))) - ((*1 *1) - (-12 (-4 *3 (-1073)) (-5 *1 (-861 *2 *3 *4)) (-4 *2 (-1073)) - (-4 *4 (-646 *3)))) - ((*1 *1) (-12 (-5 *1 (-865 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073)))) - ((*1 *1 *2) - (-12 (-5 *1 (-1115 *3 *2)) (-14 *3 (-751)) (-4 *2 (-1025)))) - ((*1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025)))) - ((*1 *1 *1) (-5 *1 (-1149))) ((*1 *1) (-5 *1 (-1149))) - ((*1 *1) (-5 *1 (-1166)))) + (-12 (-4 *4 (-445)) + (-5 *2 + (-627 + (-2 (|:| |eigval| (-3 (-401 (-931 *4)) (-1141 (-1152) (-931 *4)))) + (|:| |geneigvec| (-627 (-671 (-401 (-931 *4)))))))) + (-5 *1 (-286 *4)) (-5 *3 (-671 (-401 (-931 *4))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1076)) (-4 *5 (-1076)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-665 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-979 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-130)) - (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 *4)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-625 (-2 (|:| -3340 *3) (|:| -2243 *4)))) - (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) + (-12 (-5 *2 (-111)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1028)) + (-14 *4 (-627 (-1152))))) ((*1 *2 *1) - (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) - (-5 *2 (-1129 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-358)) (-4 *3 (-1025)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3212 *1))) - (-4 *1 (-829 *3))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-773)) - (-4 *3 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))) (-4 *5 (-544)) - (-5 *1 (-713 *4 *3 *5 *2)) (-4 *2 (-925 (-402 (-928 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1025)) (-4 *5 (-773)) - (-4 *3 - (-13 (-827) - (-10 -8 (-15 -2042 ((-1149) $)) - (-15 -2195 ((-3 $ "failed") (-1149)))))) - (-5 *1 (-960 *4 *5 *3 *2)) (-4 *2 (-925 (-928 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-625 *6)) - (-4 *6 - (-13 (-827) - (-10 -8 (-15 -2042 ((-1149) $)) - (-15 -2195 ((-3 $ "failed") (-1149)))))) - (-4 *4 (-1025)) (-4 *5 (-773)) (-5 *1 (-960 *4 *5 *6 *2)) - (-4 *2 (-925 (-928 *4) *5 *6))))) + (-12 (-5 *2 (-111)) (-5 *1 (-218 *3 *4)) (-4 *3 (-13 (-1028) (-830))) + (-14 *4 (-627 (-1152)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-671 (-401 (-931 (-552))))) + (-5 *2 (-627 (-671 (-310 (-552))))) (-5 *1 (-1010))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1028)) + (-4 *2 (-13 (-398) (-1017 *4) (-357) (-1174) (-278))) + (-5 *1 (-436 *4 *3 *2)) (-4 *3 (-1211 *4))))) +(((*1 *1) (-5 *1 (-181)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-492 *2)) (-14 *2 (-552)))) + ((*1 *1 *1 *1) (-5 *1 (-1096)))) (((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-324))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-330 *5 *6 *7 *8)) (-4 *5 (-424 *4)) + (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) + (-4 *8 (-336 *5 *6 *7)) + (-4 *4 (-13 (-830) (-544) (-1017 (-552)))) + (-5 *2 (-2 (|:| -2641 (-754)) (|:| -4218 *8))) + (-5 *1 (-890 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-330 (-401 (-552)) *4 *5 *6)) + (-4 *4 (-1211 (-401 (-552)))) (-4 *5 (-1211 (-401 *4))) + (-4 *6 (-336 (-401 (-552)) *4 *5)) + (-5 *2 (-2 (|:| -2641 (-754)) (|:| -4218 *6))) + (-5 *1 (-891 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1232 (-311 (-221)))) (-5 *2 (-1232 (-311 (-374)))) - (-5 *1 (-300))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-625 (-552))) (-5 *2 (-669 (-552))) (-5 *1 (-1083))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *6 (-221)) - (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-733))))) -(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-439 *3)) (-4 *3 (-1025))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-625 (-552))) (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552)) - (-14 *4 (-751)) (-4 *5 (-170))))) + (-12 + (-5 *3 + (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) + (-242 *4 (-401 (-552))))) + (-14 *4 (-627 (-1152))) (-14 *5 (-754)) (-5 *2 (-111)) + (-5 *1 (-497 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-934)) (-5 *2 (-627 (-627 (-922 (-220))))))) + ((*1 *2 *1) (-12 (-4 *1 (-953)) (-5 *2 (-627 (-627 (-922 (-220)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-552))) (-5 *2 (-627 (-671 (-552)))) + (-5 *1 (-1086))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1152)) + (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) + (-4 *4 (-13 (-29 *6) (-1174) (-938))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2957 (-627 *4)))) + (-5 *1 (-784 *6 *4 *3)) (-4 *3 (-638 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-627 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552))))) +(((*1 *2 *1) + (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-357)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-4 *6 (-336 *3 *4 *5)) (-5 *2 (-111))))) +(((*1 *1) (-5 *1 (-285)))) +(((*1 *1) (-5 *1 (-181)))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1152)) + (-4 *5 (-13 (-544) (-1017 (-552)) (-144))) + (-5 *2 + (-2 (|:| -3446 (-401 (-931 *5))) (|:| |coeff| (-401 (-931 *5))))) + (-5 *1 (-558 *5)) (-5 *3 (-401 (-931 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169))))) (((*1 *1 *2) - (-12 (-5 *2 (-625 (-2 (|:| -2971 *3) (|:| -4120 *4)))) - (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *1 (-1162 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1162 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073))))) + (-12 (-5 *2 (-627 *5)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) + (-14 *3 (-552)) (-14 *4 (-754))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1159))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-552)) (-5 *3 (-900)) (-4 *1 (-398)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-552)) (-4 *1 (-398)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1079 *3 *4 *5 *2 *6)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *2 (-1076))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-635 *4)) (-4 *4 (-336 *5 *6 *7)) + (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) + (-4 *6 (-1211 *5)) (-4 *7 (-1211 (-401 *6))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) + (-5 *1 (-789 *5 *6 *7 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) - (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-751)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) - (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751)))) - ((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-827)) (-5 *2 (-751)))) - ((*1 *2 *1) (-12 (-4 *1 (-344)) (-5 *2 (-897)))) - ((*1 *2 *3) - (-12 (-5 *3 (-331 *4 *5 *6 *7)) (-4 *4 (-13 (-363) (-358))) - (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) (-4 *7 (-337 *4 *5 *6)) - (-5 *2 (-751)) (-5 *1 (-387 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-813 (-897))))) - ((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-552)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) - ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) + (-12 (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 (-552))))) + (-5 *1 (-355 *3)) (-4 *3 (-1076)))) ((*1 *2 *1) - (-12 (-4 *3 (-544)) (-5 *2 (-552)) (-5 *1 (-605 *3 *4)) - (-4 *4 (-1208 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-751)) (-4 *1 (-721 *4 *3)) (-4 *4 (-1025)) - (-4 *3 (-827)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-721 *4 *3)) (-4 *4 (-1025)) (-4 *3 (-827)) - (-5 *2 (-751)))) - ((*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-5 *2 (-751)))) - ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) - ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-331 *5 *6 *7 *8)) (-4 *5 (-425 *4)) - (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6))) - (-4 *8 (-337 *5 *6 *7)) - (-4 *4 (-13 (-827) (-544) (-1014 (-552)))) (-5 *2 (-751)) - (-5 *1 (-887 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-331 (-402 (-552)) *4 *5 *6)) - (-4 *4 (-1208 (-402 (-552)))) (-4 *5 (-1208 (-402 *4))) - (-4 *6 (-337 (-402 (-552)) *4 *5)) (-5 *2 (-751)) - (-5 *1 (-888 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-331 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-358)) - (-4 *7 (-1208 *6)) (-4 *4 (-1208 (-402 *7))) (-4 *8 (-337 *6 *7 *4)) - (-4 *9 (-13 (-363) (-358))) (-5 *2 (-751)) - (-5 *1 (-994 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1208 *3)) (-4 *3 (-1025)) (-4 *3 (-544)) - (-5 *2 (-751)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) + (-12 (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 (-754))))) + (-5 *1 (-380 *3)) (-4 *3 (-1076)))) ((*1 *2 *1) - (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-773)) - (-4 *3 (-13 (-827) (-10 -8 (-15 -2042 ((-1149) $))))) (-4 *5 (-544)) - (-5 *1 (-713 *4 *3 *5 *2)) (-4 *2 (-925 (-402 (-928 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1025)) (-4 *5 (-773)) - (-4 *3 - (-13 (-827) - (-10 -8 (-15 -2042 ((-1149) $)) - (-15 -2195 ((-3 $ "failed") (-1149)))))) - (-5 *1 (-960 *4 *5 *3 *2)) (-4 *2 (-925 (-928 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-625 *6)) - (-4 *6 - (-13 (-827) - (-10 -8 (-15 -2042 ((-1149) $)) - (-15 -2195 ((-3 $ "failed") (-1149)))))) - (-4 *4 (-1025)) (-4 *5 (-773)) (-5 *1 (-960 *4 *5 *6 *2)) - (-4 *2 (-925 (-928 *4) *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) -(((*1 *2 *3) - (-12 (-5 *3 (-311 (-221))) (-5 *2 (-311 (-374))) (-5 *1 (-300))))) + (-12 (-5 *2 (-627 (-2 (|:| -1727 *3) (|:| -4067 (-552))))) + (-5 *1 (-412 *3)) (-4 *3 (-544)))) + ((*1 *2 *1) + (-12 (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 (-754))))) + (-5 *1 (-802 *3)) (-4 *3 (-830))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-1188))) (-5 *1 (-516))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-754)) (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *5)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-754)) (-4 *1 (-1233 *3)) (-4 *3 (-23)) (-4 *3 (-1189))))) +(((*1 *1) (-5 *1 (-181)))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-671 (-220))) (-5 *6 (-111)) (-5 *7 (-671 (-552))) + (-5 *8 (-3 (|:| |fn| (-382)) (|:| |fp| (-64 QPHESS)))) + (-5 *3 (-552)) (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-736))))) +(((*1 *2 *3) + (-12 (-5 *3 (-754)) (-5 *2 (-1 (-1132 (-931 *4)) (-1132 (-931 *4)))) + (-5 *1 (-1243 *4)) (-4 *4 (-357))))) +(((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1134)) (-5 *1 (-187)))) + ((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1134)) (-5 *1 (-294)))) + ((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-1134)) (-5 *1 (-299))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) - (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) - (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-221)) - (-5 *7 (-669 (-552))) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-733))))) -(((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025))))) -(((*1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751)) - (-4 *4 (-170))))) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) + (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *4)))) + (-5 *1 (-759 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1186)) - (-4 *2 (-1186)) (-5 *1 (-57 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1189)) + (-4 *2 (-1189)) (-5 *1 (-57 *5 *2)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1073)) (|has| *1 (-6 -4353)) - (-4 *1 (-149 *2)) (-4 *2 (-1186)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1076)) (|has| *1 (-6 -4366)) + (-4 *1 (-148 *2)) (-4 *2 (-1189)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) - (-4 *2 (-1186)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4366)) (-4 *1 (-148 *2)) + (-4 *2 (-1189)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) - (-4 *2 (-1186)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4366)) (-4 *1 (-148 *2)) + (-4 *2 (-1189)))) ((*1 *2 *3) - (-12 (-4 *4 (-1025)) - (-5 *2 (-2 (|:| -4256 (-1145 *4)) (|:| |deg| (-897)))) - (-5 *1 (-217 *4 *5)) (-5 *3 (-1145 *4)) (-4 *5 (-13 (-544) (-827))))) + (-12 (-4 *4 (-1028)) + (-5 *2 (-2 (|:| -3144 (-1148 *4)) (|:| |deg| (-900)))) + (-5 *1 (-216 *4 *5)) (-5 *3 (-1148 *4)) (-4 *5 (-13 (-544) (-830))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-236 *5 *6)) (-14 *5 (-751)) - (-4 *6 (-1186)) (-4 *2 (-1186)) (-5 *1 (-235 *5 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-235 *5 *6)) (-14 *5 (-754)) + (-4 *6 (-1189)) (-4 *2 (-1189)) (-5 *1 (-234 *5 *6 *2)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-170)) (-5 *1 (-284 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1208 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-12 (-4 *4 (-169)) (-5 *1 (-283 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1211 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-311 *2)) (-4 *2 (-544)) (-4 *2 (-827)))) + ((*1 *1 *1) (-12 (-5 *1 (-310 *2)) (-4 *2 (-544)) (-4 *2 (-830)))) ((*1 *1 *1) - (-12 (-4 *1 (-330 *2 *3 *4 *5)) (-4 *2 (-358)) (-4 *3 (-1208 *2)) - (-4 *4 (-1208 (-402 *3))) (-4 *5 (-337 *2 *3 *4)))) + (-12 (-4 *1 (-329 *2 *3 *4 *5)) (-4 *2 (-357)) (-4 *3 (-1211 *2)) + (-4 *4 (-1211 (-401 *3))) (-4 *5 (-336 *2 *3 *4)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1186)) (-4 *2 (-1186)) - (-5 *1 (-366 *5 *4 *2 *6)) (-4 *4 (-368 *5)) (-4 *6 (-368 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1189)) (-4 *2 (-1189)) + (-5 *1 (-365 *5 *4 *2 *6)) (-4 *4 (-367 *5)) (-4 *6 (-367 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1073)) (-4 *2 (-1073)) - (-5 *1 (-418 *5 *4 *2 *6)) (-4 *4 (-420 *5)) (-4 *6 (-420 *2)))) - ((*1 *1 *1) (-5 *1 (-488))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1076)) (-4 *2 (-1076)) + (-5 *1 (-417 *5 *4 *2 *6)) (-4 *4 (-419 *5)) (-4 *6 (-419 *2)))) + ((*1 *1 *1) (-5 *1 (-487))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-625 *5)) (-4 *5 (-1186)) - (-4 *2 (-1186)) (-5 *1 (-623 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-627 *5)) (-4 *5 (-1189)) + (-4 *2 (-1189)) (-5 *1 (-625 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1025)) (-4 *2 (-1025)) - (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) (-4 *8 (-368 *2)) - (-4 *9 (-368 *2)) (-5 *1 (-665 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-667 *5 *6 *7)) (-4 *10 (-667 *2 *8 *9)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1028)) (-4 *2 (-1028)) + (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *8 (-367 *2)) + (-4 *9 (-367 *2)) (-5 *1 (-667 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-669 *5 *6 *7)) (-4 *10 (-669 *2 *8 *9)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) + (-12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1208 *3)))) + (-12 (-4 *3 (-1028)) (-5 *1 (-695 *3 *2)) (-4 *2 (-1211 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) + (-12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1208 *3)) (-4 *3 (-358)) - (-4 *3 (-170)) (-4 *1 (-705 *3 *4)))) + (|partial| -12 (-5 *2 (-401 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-357)) + (-4 *3 (-169)) (-4 *1 (-707 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-170)) (-4 *1 (-705 *3 *2)) (-4 *2 (-1208 *3)))) + (-12 (-4 *3 (-169)) (-4 *1 (-707 *3 *2)) (-4 *2 (-1211 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-934 *5)) (-4 *5 (-1186)) - (-4 *2 (-1186)) (-5 *1 (-933 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-937 *5)) (-4 *5 (-1189)) + (-4 *2 (-1189)) (-5 *1 (-936 *5 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *2 (-925 *3 *4 *5)) - (-14 *6 (-625 *2)))) + (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *1 (-1013 *3 *4 *5 *2 *6)) (-4 *2 (-928 *3 *4 *5)) + (-14 *6 (-627 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1025)) (-4 *2 (-1025)) - (-14 *5 (-751)) (-14 *6 (-751)) (-4 *8 (-234 *6 *7)) - (-4 *9 (-234 *5 *7)) (-4 *10 (-234 *6 *2)) (-4 *11 (-234 *5 *2)) - (-5 *1 (-1030 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1028 *5 *6 *7 *8 *9)) (-4 *12 (-1028 *5 *6 *2 *10 *11)))) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1028)) (-4 *2 (-1028)) + (-14 *5 (-754)) (-14 *6 (-754)) (-4 *8 (-233 *6 *7)) + (-4 *9 (-233 *5 *7)) (-4 *10 (-233 *6 *2)) (-4 *11 (-233 *5 *2)) + (-5 *1 (-1033 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1031 *5 *6 *7 *8 *9)) (-4 *12 (-1031 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1129 *5)) (-4 *5 (-1186)) - (-4 *2 (-1186)) (-5 *1 (-1127 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1132 *5)) (-4 *5 (-1189)) + (-4 *2 (-1189)) (-5 *1 (-1130 *5 *2)))) ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1179 *5 *6 *7 *2)) (-4 *5 (-544)) (-4 *6 (-773)) - (-4 *7 (-827)) (-4 *2 (-1039 *5 *6 *7)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-111) *2 *2)) + (-4 *1 (-1182 *5 *6 *7 *2)) (-4 *5 (-544)) (-4 *6 (-776)) + (-4 *7 (-830)) (-4 *2 (-1042 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1232 *5)) (-4 *5 (-1186)) - (-4 *2 (-1186)) (-5 *1 (-1231 *5 *2))))) -(((*1 *1 *1) (-4 *1 (-1034))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1235 *5)) (-4 *5 (-1189)) + (-4 *2 (-1189)) (-5 *1 (-1234 *5 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-552)) (-4 *1 (-1069 *3)) (-4 *3 (-1189))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-357)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) + (-5 *1 (-496 *4 *5 *6 *3)) (-4 *3 (-928 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-544) (-830) (-1017 (-552)))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-13 (-27) (-1174) (-424 (-166 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-1178 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-220)) (-5 *2 (-681)) (-5 *1 (-299))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-627 + (-2 + (|:| -3998 + (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) + (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (|:| -2162 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1132 (-220))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1707 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-547)))) + ((*1 *2 *1) + (-12 (-4 *1 (-590 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1189)) + (-5 *2 (-627 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1086))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-900)) (-4 *5 (-301)) (-4 *3 (-1211 *5)) + (-5 *2 (-2 (|:| |plist| (-627 *3)) (|:| |modulo| *5))) + (-5 *1 (-453 *5 *3)) (-5 *4 (-627 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1116 *3 *2)) (-4 *3 (-13 (-1076) (-34))) + (-4 *2 (-13 (-1076) (-34)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-598 *6)) (-4 *6 (-13 (-424 *5) (-27) (-1174))) + (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) + (-5 *2 (-1148 (-401 (-1148 *6)))) (-5 *1 (-548 *5 *6 *7)) + (-5 *3 (-1148 *6)) (-4 *7 (-1076)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1211 *3)) (-5 *1 (-695 *3 *2)) (-4 *3 (-1028)))) + ((*1 *2 *1) + (-12 (-4 *1 (-707 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1211 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1148 *11)) (-5 *6 (-627 *10)) + (-5 *7 (-627 (-754))) (-5 *8 (-627 *11)) (-4 *10 (-830)) + (-4 *11 (-301)) (-4 *9 (-776)) (-4 *5 (-928 *11 *9 *10)) + (-5 *2 (-627 (-1148 *5))) (-5 *1 (-725 *9 *10 *11 *5)) + (-5 *3 (-1148 *5)))) + ((*1 *2 *1) + (-12 (-4 *2 (-928 *3 *4 *5)) (-5 *1 (-1013 *3 *4 *5 *2 *6)) + (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-14 *6 (-627 *2))))) +(((*1 *2 *1) + (-12 (-4 *3 (-445)) (-4 *4 (-830)) (-4 *5 (-776)) (-5 *2 (-627 *6)) + (-5 *1 (-966 *3 *4 *5 *6)) (-4 *6 (-928 *3 *5 *4))))) +(((*1 *1) (-5 *1 (-1061)))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4367)) (-4 *1 (-118 *2)) (-4 *2 (-1189))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) + (-4 *1 (-1042 *3 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-627 (-1052 *4 *5 *2))) (-4 *4 (-1076)) + (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) + (-4 *2 (-13 (-424 *5) (-865 *4) (-600 (-871 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-627 (-1052 *5 *6 *2))) (-5 *4 (-900)) (-4 *5 (-1076)) + (-4 *6 (-13 (-1028) (-865 *5) (-830) (-600 (-871 *5)))) + (-4 *2 (-13 (-424 *6) (-865 *5) (-600 (-871 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1152)) + (-4 *5 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-627 (-598 *3))) + (|:| |vals| (-627 *3)))) + (-5 *1 (-271 *5 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1167))))) +(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-305)))) + ((*1 *2 *1) + (-12 (-5 *2 (-754)) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) + (-4 *4 (-1028))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-111)) (-5 *1 (-113)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-1152)) (-5 *2 (-111)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-296)) (-5 *3 (-113)) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1152)) (-5 *2 (-111)) (-5 *1 (-598 *4)) (-4 *4 (-830)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-113)) (-5 *2 (-111)) (-5 *1 (-598 *4)) (-4 *4 (-830)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1076)) (-5 *2 (-111)) (-5 *1 (-866 *5 *3 *4)) + (-4 *3 (-865 *5)) (-4 *4 (-600 (-871 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 *6)) (-4 *6 (-865 *5)) (-4 *5 (-1076)) + (-5 *2 (-111)) (-5 *1 (-866 *5 *6 *4)) (-4 *4 (-600 (-871 *5)))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-754)) (-4 *4 (-544)) (-5 *1 (-948 *4 *2)) + (-4 *2 (-1211 *4))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *5 (-220)) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL)))) + (-5 *2 (-1014)) (-5 *1 (-732)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *5 (-220)) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-60 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-86 BDYVAL)))) + (-5 *8 (-382)) (-5 *2 (-1014)) (-5 *1 (-732))))) +(((*1 *1 *1) (-5 *1 (-1040)))) +(((*1 *2 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-985))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-324))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1152)) (-5 *5 (-1070 (-220))) (-5 *2 (-906)) + (-5 *1 (-904 *3)) (-4 *3 (-600 (-528))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1152)) (-5 *2 (-906)) (-5 *1 (-904 *3)) + (-4 *3 (-600 (-528))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-906)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) + (-5 *1 (-906))))) (((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775))))) +(((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544)) (-4 *2 (-537)))) + ((*1 *1 *1) (-4 *1 (-1037)))) +(((*1 *1 *1) (-4 *1 (-613))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981) (-1174)))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) + (-5 *2 (-2 (|:| -3446 (-401 *6)) (|:| |coeff| (-401 *6)))) + (-5 *1 (-562 *5 *6)) (-5 *3 (-401 *6))))) +(((*1 *2) + (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-411 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1211 *4)) (-5 *1 (-790 *4 *2 *3 *5)) + (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *3 (-638 *2)) + (-4 *5 (-638 (-401 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1211 *4)) (-5 *1 (-790 *4 *2 *5 *3)) + (-4 *4 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *5 (-638 *2)) + (-4 *3 (-638 (-401 *2)))))) +(((*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-212))))) +(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-141))))) (((*1 *2 *3) - (-12 (-5 *3 (-625 (-221))) (-5 *2 (-1232 (-679))) (-5 *1 (-300))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-655 *2)) (-4 *2 (-1025)) (-4 *2 (-1073))))) + (-12 (-5 *3 (-627 (-552))) (-5 *2 (-1154 (-401 (-552)))) + (-5 *1 (-185))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-552)) (-5 *1 (-1171 *3)) (-4 *3 (-1028))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-627 (-922 *3)))))) +(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-842)))) +(((*1 *1 *2) + (-12 (-5 *2 (-754)) (-5 *1 (-657 *3)) (-4 *3 (-1028)) + (-4 *3 (-1076))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1028)) (-5 *1 (-873 *2 *3)) (-4 *2 (-1211 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-141)))) + ((*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-141))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1076)) (-4 *2 (-830)) + (-5 *1 (-112 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-1134)) (-5 *1 (-769))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-598 *4)) (-5 *6 (-1152)) + (-4 *4 (-13 (-424 *7) (-27) (-1174))) + (-4 *7 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) + (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1076))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1040))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-149 *2 *3 *4)) (-14 *2 (-900)) (-4 *3 (-357)) + (-14 *4 (-972 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1211 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-169)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) + ((*1 *1) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) + ((*1 *1 *1) (|partial| -4 *1 (-705))) + ((*1 *1 *1) (|partial| -4 *1 (-709))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-759 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1045 *3 *2)) (-4 *3 (-13 (-828) (-357))) + (-4 *2 (-1211 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) + ((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *1 *1) (-4 *1 (-1115)))) +(((*1 *2 *3) + (-12 (-4 *1 (-343)) (-5 *3 (-552)) (-5 *2 (-1162 (-900) (-754)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1208 *5 *4)) (-4 *4 (-445)) (-4 *4 (-803)) + (-14 *5 (-1152)) (-5 *2 (-552)) (-5 *1 (-1090 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1189)) (-5 *1 (-369 *4 *2)) + (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4367))))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1076))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -2515 (-671 (-401 (-931 *4)))) + (|:| |vec| (-627 (-401 (-931 *4)))) (|:| -4154 (-754)) + (|:| |rows| (-627 (-552))) (|:| |cols| (-627 (-552))))) + (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) + (-4 *6 (-776)) + (-5 *2 + (-2 (|:| |partsol| (-1235 (-401 (-931 *4)))) + (|:| -2957 (-627 (-1235 (-401 (-931 *4))))))) + (-5 *1 (-903 *4 *5 *6 *7)) (-4 *7 (-928 *4 *6 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-4 *1 (-638 *3)) (-4 *3 (-1028)) (-4 *3 (-357)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-754)) (-5 *4 (-1 *5 *5)) (-4 *5 (-357)) + (-5 *1 (-641 *5 *2)) (-4 *2 (-638 *5))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1132 (-220))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -1707 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1014)) (-5 *1 (-299))))) +(((*1 *1 *2) (-12 (-5 *1 (-1175 *2)) (-4 *2 (-1076)))) + ((*1 *1 *2) + (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-1175 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-627 (-1175 *2))) (-5 *1 (-1175 *2)) (-4 *2 (-1076))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-945 *3)) (-4 *3 (-946))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *3 (-627 (-853))) + (-5 *1 (-461))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-412 *3)) (-4 *3 (-544)) (-5 *1 (-413 *3))))) +(((*1 *1) (-5 *1 (-1155)))) +(((*1 *1 *1) (-12 (-5 *1 (-171 *2)) (-4 *2 (-301))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 *4)) - (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-733))))) + (-12 (-4 *5 (-357)) + (-5 *2 + (-2 (|:| A (-671 *5)) + (|:| |eqs| + (-627 + (-2 (|:| C (-671 *5)) (|:| |g| (-1235 *5)) (|:| -1651 *6) + (|:| |rh| *5)))))) + (-5 *1 (-796 *5 *6)) (-5 *3 (-671 *5)) (-5 *4 (-1235 *5)) + (-4 *6 (-638 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-357)) (-4 *6 (-638 *5)) + (-5 *2 (-2 (|:| -2515 (-671 *6)) (|:| |vec| (-1235 *5)))) + (-5 *1 (-796 *5 *6)) (-5 *3 (-671 *6)) (-5 *4 (-1235 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-852 (-945 *3) (-945 *3))) (-5 *1 (-945 *3)) + (-4 *3 (-946))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) + (-4 *3 (-1076))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-546 *2)) (-4 *2 (-537))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) + (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-5 *2 (-111)) (-5 *1 (-1258 *3 *4)) (-4 *3 (-1028)) + (-4 *4 (-826))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-111)) (-5 *1 (-582 *3)) (-4 *3 (-1028))))) +(((*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-111))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3116 *4))) + (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-357)) (-5 *1 (-749 *2 *3)) (-4 *2 (-691 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-1148 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-357) (-296) + (-10 -8 (-15 -2918 ((-1101 *4 (-598 $)) $)) + (-15 -2929 ((-1101 *4 (-598 $)) $)) + (-15 -1477 ($ (-1101 *4 (-598 $)))))))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)))) + ((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1028)) (-14 *3 (-627 (-1152))))) + ((*1 *1 *1) + (-12 (-5 *1 (-218 *2 *3)) (-4 *2 (-13 (-1028) (-830))) + (-14 *3 (-627 (-1152))))) + ((*1 *1 *1) + (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-1076)))) + ((*1 *1 *1) + (-12 (-14 *2 (-627 (-1152))) (-4 *3 (-169)) + (-4 *5 (-233 (-1383 *2) (-754))) + (-14 *6 + (-1 (-111) (-2 (|:| -4153 *4) (|:| -4067 *5)) + (-2 (|:| -4153 *4) (|:| -4067 *5)))) + (-5 *1 (-454 *2 *3 *4 *5 *6 *7)) (-4 *4 (-830)) + (-4 *7 (-928 *3 *5 (-844 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-501 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-830)))) + ((*1 *1 *1) + (-12 (-4 *2 (-544)) (-5 *1 (-607 *2 *3)) (-4 *3 (-1211 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-691 *2)) (-4 *2 (-1028)))) + ((*1 *1 *1) + (-12 (-5 *1 (-718 *2 *3)) (-4 *3 (-830)) (-4 *2 (-1028)) + (-4 *3 (-709)))) + ((*1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *2 (-830)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1258 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-826))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-627 (-2 (|:| |totdeg| (-754)) (|:| -3144 *3)))) + (-5 *4 (-754)) (-4 *3 (-928 *5 *6 *7)) (-4 *5 (-445)) (-4 *6 (-776)) + (-4 *7 (-830)) (-5 *1 (-442 *5 *6 *7 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |mval| (-671 *3)) (|:| |invmval| (-671 *3)) + (|:| |genIdeal| (-496 *3 *4 *5 *6)))) + (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-288 (-816 *3))) + (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-816 *3)) (-5 *1 (-620 *5 *3)) + (-4 *3 (-13 (-27) (-1174) (-424 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-288 (-816 (-931 *5)))) (-4 *5 (-445)) + (-5 *2 (-816 (-401 (-931 *5)))) (-5 *1 (-621 *5)) + (-5 *3 (-401 (-931 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-288 (-401 (-931 *5)))) (-5 *3 (-401 (-931 *5))) + (-4 *5 (-445)) (-5 *2 (-816 *3)) (-5 *1 (-621 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-544) (-830))) (-5 *2 (-166 *5)) + (-5 *1 (-586 *4 *5 *3)) (-4 *5 (-13 (-424 *4) (-981) (-1174))) + (-4 *3 (-13 (-424 (-166 *4)) (-981) (-1174)))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-544)) (-4 *2 (-445)) (-5 *1 (-948 *2 *3)) + (-4 *3 (-1211 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-274))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1048 *4 *5 *6 *3)) (-4 *4 (-445)) (-4 *5 (-776)) + (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) + (-4 *1 (-928 *3 *4 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-537)))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-754)) (-4 *4 (-343)) (-5 *1 (-211 *4 *2)) + (-4 *2 (-1211 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 *2)) (-5 *4 (-1 (-111) *2 *2)) (-5 *1 (-1190 *2)) + (-4 *2 (-1076)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 *2)) (-4 *2 (-1076)) (-4 *2 (-830)) + (-5 *1 (-1190 *2))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1134)) (-5 *4 (-552)) (-5 *5 (-671 (-220))) + (-5 *6 (-220)) (-5 *2 (-1014)) (-5 *1 (-735))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) + (-5 *1 (-956 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221))))) +(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-842))))) +(((*1 *2) (-12 (-5 *2 (-1123 (-1134))) (-5 *1 (-385))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) + (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *4)))) + (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1028)) (-5 *1 (-50 *2 *3)) (-14 *3 (-627 (-1152))))) + ((*1 *2 *1) + (-12 (-5 *2 (-310 *3)) (-5 *1 (-218 *3 *4)) + (-4 *3 (-13 (-1028) (-830))) (-14 *4 (-627 (-1152))))) + ((*1 *2 *1) + (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1076)) (-4 *2 (-1028)))) + ((*1 *2 *1) + (-12 (-14 *3 (-627 (-1152))) (-4 *5 (-233 (-1383 *3) (-754))) + (-14 *6 + (-1 (-111) (-2 (|:| -4153 *4) (|:| -4067 *5)) + (-2 (|:| -4153 *4) (|:| -4067 *5)))) + (-4 *2 (-169)) (-5 *1 (-454 *3 *2 *4 *5 *6 *7)) (-4 *4 (-830)) + (-4 *7 (-928 *2 *5 (-844 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-501 *2 *3)) (-4 *3 (-830)) (-4 *2 (-1076)))) + ((*1 *2 *1) + (-12 (-4 *2 (-544)) (-5 *1 (-607 *2 *3)) (-4 *3 (-1211 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-691 *2)) (-4 *2 (-1028)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1028)) (-5 *1 (-718 *2 *3)) (-4 *3 (-830)) + (-4 *3 (-709)))) + ((*1 *2 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)))) + ((*1 *2 *1) + (-12 (-4 *1 (-952 *2 *3 *4)) (-4 *3 (-775)) (-4 *4 (-830)) + (-4 *2 (-1028)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1042 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *2 (-830))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3116 *4))) + (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-357)) (-5 *2 (-111))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1148 (-401 (-552)))) (-5 *1 (-921)) (-5 *3 (-552))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-627 (-627 *8))) (-5 *3 (-627 *8)) + (-4 *8 (-928 *5 *7 *6)) (-4 *5 (-13 (-301) (-144))) + (-4 *6 (-13 (-830) (-600 (-1152)))) (-4 *7 (-776)) (-5 *2 (-111)) + (-5 *1 (-903 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-357)) (-4 *6 (-1211 (-401 *2))) + (-4 *2 (-1211 *5)) (-5 *1 (-210 *5 *2 *6 *3)) + (-4 *3 (-336 *5 *2 *6))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *5 (-111)) + (-5 *2 (-1014)) (-5 *1 (-728))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1186)) - (-4 *4 (-368 *2)) (-4 *5 (-368 *2)))) + (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1189)) + (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-368 *2)) - (-4 *5 (-368 *2)) (-4 *2 (-1186)))) + (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2)) + (-4 *5 (-367 *2)) (-4 *2 (-1189)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1186)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1186)))) + (-12 (-5 *2 "right") (-4 *1 (-118 *3)) (-4 *3 (-1189)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-118 *3)) (-4 *3 (-1189)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-625 (-552))) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) - (-14 *4 (-552)) (-14 *5 (-751)))) + (-12 (-5 *3 (-627 (-552))) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) + (-14 *4 (-552)) (-14 *5 (-754)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-552)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-751)))) + (-12 (-5 *3 (-552)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-754)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-552)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-751)))) + (-12 (-5 *3 (-552)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-754)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-552)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-751)))) + (-12 (-5 *3 (-552)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-754)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *2 (-170)) (-5 *1 (-135 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-751)))) + (-12 (-5 *3 (-552)) (-4 *2 (-169)) (-5 *1 (-134 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-754)))) ((*1 *2 *1) - (-12 (-4 *2 (-170)) (-5 *1 (-135 *3 *4 *2)) (-14 *3 (-552)) - (-14 *4 (-751)))) + (-12 (-4 *2 (-169)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-552)) + (-14 *4 (-754)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-751)) (-4 *2 (-1073)) (-5 *1 (-209 *4 *2)) - (-14 *4 (-897)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1149)) (-5 *2 (-241 (-1131))) (-5 *1 (-210 *4)) + (-12 (-5 *3 (-1152)) (-5 *2 (-240 (-1134))) (-5 *1 (-209 *4)) (-4 *4 - (-13 (-827) - (-10 -8 (-15 -2154 ((-1131) $ *3)) (-15 -1407 ((-1237) $)) - (-15 -3867 ((-1237) $))))))) + (-13 (-830) + (-10 -8 (-15 -1985 ((-1134) $ *3)) (-15 -4291 ((-1240) $)) + (-15 -4103 ((-1240) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-965)) (-5 *1 (-210 *3)) + (-12 (-5 *2 (-968)) (-5 *1 (-209 *3)) (-4 *3 - (-13 (-827) - (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $)) - (-15 -3867 ((-1237) $))))))) + (-13 (-830) + (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) + (-15 -4103 ((-1240) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-751)) (-5 *1 (-241 *4)) (-4 *4 (-827)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-241 *3)) (-4 *3 (-827)))) + (-12 (-5 *3 "count") (-5 *2 (-754)) (-5 *1 (-240 *4)) (-4 *4 (-830)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-240 *3)) (-4 *3 (-830)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-241 *3)) (-4 *3 (-827)))) + (-12 (-5 *2 "unique") (-5 *1 (-240 *3)) (-4 *3 (-830)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1186)))) + (-12 (-4 *1 (-280 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1189)))) ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1186)))) + (-12 (-4 *1 (-282 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-1189)))) ((*1 *2 *1 *2) - (-12 (-4 *3 (-170)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) - (-4 *2 (-1208 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-12 (-4 *3 (-169)) (-5 *1 (-283 *3 *2 *4 *5 *6 *7)) + (-4 *2 (-1211 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-625 *1)) (-4 *1 (-297)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-627 *1)) (-4 *1 (-296)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-296)) (-5 *2 (-113)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1190)) (-4 *3 (-1208 *2)) - (-4 *4 (-1208 (-402 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-412 *2)) (-4 *2 (-170)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1131)) (-5 *1 (-495)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-52)) (-5 *1 (-614)))) + (-12 (-4 *1 (-336 *2 *3 *4)) (-4 *2 (-1193)) (-4 *3 (-1211 *2)) + (-4 *4 (-1211 (-401 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-4 *1 (-411 *2)) (-4 *2 (-169)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1134)) (-5 *1 (-494)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-616)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1199 (-552))) (-4 *1 (-631 *3)) (-4 *3 (-1186)))) + (-12 (-5 *2 (-1202 (-552))) (-4 *1 (-633 *3)) (-4 *3 (-1189)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-751)) (-5 *1 (-655 *2)) (-4 *2 (-1073)))) + (-12 (-5 *3 (-754)) (-5 *1 (-657 *2)) (-4 *2 (-1076)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-625 (-552))) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) - (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-839)))) + (-12 (-5 *2 (-627 (-552))) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-842)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-625 (-868 *4))) (-5 *1 (-868 *4)) - (-4 *4 (-1073)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-879 *2)) (-4 *2 (-1073)))) + (-12 (-5 *2 (-113)) (-5 *3 (-627 (-871 *4))) (-5 *1 (-871 *4)) + (-4 *4 (-1076)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-882 *2)) (-4 *2 (-1076)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-751)) (-5 *2 (-881 *4)) (-5 *1 (-880 *4)) - (-4 *4 (-1073)))) + (-12 (-5 *3 (-754)) (-5 *2 (-884 *4)) (-5 *1 (-883 *4)) + (-4 *4 (-1076)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-236 *4 *2)) (-14 *4 (-897)) (-4 *2 (-358)) - (-5 *1 (-969 *4 *2)))) + (-12 (-5 *3 (-235 *4 *2)) (-14 *4 (-900)) (-4 *2 (-357)) + (-5 *1 (-972 *4 *2)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-986 *2)) (-4 *2 (-1186)))) - ((*1 *2 *1) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1186)))) + (-12 (-5 *3 "value") (-4 *1 (-989 *2)) (-4 *2 (-1189)))) + ((*1 *2 *1) (-12 (-5 *1 (-1005 *2)) (-4 *2 (-1189)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-552)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) (-4 *2 (-1025)) - (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)))) + (-12 (-5 *3 (-552)) (-4 *1 (-1031 *4 *5 *2 *6 *7)) (-4 *2 (-1028)) + (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) - (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)) (-4 *2 (-1025)))) + (-12 (-5 *3 (-552)) (-4 *1 (-1031 *4 *5 *2 *6 *7)) + (-4 *6 (-233 *5 *2)) (-4 *7 (-233 *4 *2)) (-4 *2 (-1028)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-897)) (-4 *4 (-1073)) - (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4)))) - (-5 *1 (-1049 *4 *5 *2)) - (-4 *2 (-13 (-425 *5) (-862 *4) (-598 (-868 *4)))))) + (-12 (-5 *3 (-900)) (-4 *4 (-1076)) + (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) + (-5 *1 (-1052 *4 *5 *2)) + (-4 *2 (-13 (-424 *5) (-865 *4) (-600 (-871 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-897)) (-4 *4 (-1073)) - (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-868 *4)))) - (-5 *1 (-1050 *4 *5 *2)) - (-4 *2 (-13 (-425 *5) (-862 *4) (-598 (-868 *4)))))) + (-12 (-5 *3 (-900)) (-4 *4 (-1076)) + (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) + (-5 *1 (-1053 *4 *5 *2)) + (-4 *2 (-13 (-424 *5) (-865 *4) (-600 (-871 *4)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-625 (-552))) (-4 *1 (-1076 *3 *4 *5 *6 *7)) - (-4 *3 (-1073)) (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) - (-4 *7 (-1073)))) + (-12 (-5 *2 (-627 (-552))) (-4 *1 (-1079 *3 *4 *5 *6 *7)) + (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) + (-4 *7 (-1076)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-552)) (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) - (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)))) - ((*1 *1 *1 *1) (-4 *1 (-1117))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-1149)))) + (-12 (-5 *2 (-552)) (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) + (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)))) + ((*1 *1 *1 *1) (-4 *1 (-1120))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-842))) (-5 *1 (-1152)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-402 *1)) (-4 *1 (-1208 *2)) (-4 *2 (-1025)) - (-4 *2 (-358)))) + (-12 (-5 *3 (-401 *1)) (-4 *1 (-1211 *2)) (-4 *2 (-1028)) + (-4 *2 (-357)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-402 *1)) (-4 *1 (-1208 *3)) (-4 *3 (-1025)) + (-12 (-5 *2 (-401 *1)) (-4 *1 (-1211 *3)) (-4 *3 (-1028)) (-4 *3 (-544)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) + (-12 (-4 *1 (-1213 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1220 *2)) (-4 *2 (-1186)))) + (-12 (-5 *3 "last") (-4 *1 (-1223 *2)) (-4 *2 (-1189)))) ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1220 *3)) (-4 *3 (-1186)))) + (-12 (-5 *2 "rest") (-4 *1 (-1223 *3)) (-4 *3 (-1189)))) ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1220 *2)) (-4 *2 (-1186))))) -(((*1 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))) - ((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025))))) -(((*1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751)) - (-4 *4 (-170))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-311 (-221))) (-5 *1 (-300)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-868 *3)) (|:| |den| (-868 *3)))) - (-5 *1 (-868 *3)) (-4 *3 (-1073))))) -(((*1 *2 *2) (-12 (-5 *1 (-662 *2)) (-4 *2 (-1073))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1076 *3 *4 *5 *6 *2)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073))))) + (-12 (-5 *3 "first") (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) + (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-928 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1028)) (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) + (-4 *1 (-1211 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *4 (-1189)) (-5 *1 (-1108 *4 *2)) + (-4 *2 (-13 (-590 (-552) *4) (-10 -7 (-6 -4366) (-6 -4367)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-830)) (-4 *3 (-1189)) (-5 *1 (-1108 *3 *2)) + (-4 *2 (-13 (-590 (-552) *3) (-10 -7 (-6 -4366) (-6 -4367))))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-596 *6)) (-4 *6 (-13 (-425 *5) (-27) (-1171))) - (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-145) (-621 (-552)))) - (-5 *2 (-1145 (-402 (-1145 *6)))) (-5 *1 (-548 *5 *6 *7)) - (-5 *3 (-1145 *6)) (-4 *7 (-1073)))) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) + (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) + (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)))) ((*1 *2 *1) - (-12 (-4 *2 (-1208 *3)) (-5 *1 (-693 *3 *2)) (-4 *3 (-1025)))) + (-12 (-4 *1 (-376 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1076)))) ((*1 *2 *1) - (-12 (-4 *1 (-705 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1208 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1145 *11)) (-5 *6 (-625 *10)) - (-5 *7 (-625 (-751))) (-5 *8 (-625 *11)) (-4 *10 (-827)) - (-4 *11 (-302)) (-4 *9 (-773)) (-4 *5 (-925 *11 *9 *10)) - (-5 *2 (-625 (-1145 *5))) (-5 *1 (-723 *9 *10 *11 *5)) - (-5 *3 (-1145 *5)))) + (-12 (-14 *3 (-627 (-1152))) (-4 *4 (-169)) + (-4 *6 (-233 (-1383 *3) (-754))) + (-14 *7 + (-1 (-111) (-2 (|:| -4153 *5) (|:| -4067 *6)) + (-2 (|:| -4153 *5) (|:| -4067 *6)))) + (-5 *2 (-696 *5 *6 *7)) (-5 *1 (-454 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-830)) (-4 *8 (-928 *4 *6 (-844 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-925 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *2 *6)) - (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-14 *6 (-625 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-654 *3)) (-4 *3 (-1186)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *1 (-721 *3 *4)) (-4 *3 (-1025)) - (-4 *4 (-827)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-845 *3)) (-5 *2 (-552)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-625 *3)) (-4 *1 (-956 *3)) (-4 *3 (-1025)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-625 *1)) (-5 *3 (-625 *7)) (-4 *1 (-1045 *4 *5 *6 *7)) - (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-625 *1)) - (-4 *1 (-1045 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-625 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) - (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-625 *1)) - (-4 *1 (-1045 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-773)) - (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) -(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-679)) (-5 *1 (-300))))) + (-12 (-4 *2 (-709)) (-4 *2 (-830)) (-5 *1 (-718 *3 *2)) + (-4 *3 (-1028)))) + ((*1 *1 *1) + (-12 (-4 *1 (-952 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-775)) + (-4 *4 (-830))))) +(((*1 *2 *1) + (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-4 *3 (-362)) + (-5 *2 (-1148 *3))))) +(((*1 *1) (-5 *1 (-806)))) +(((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-574 *3)) (-4 *3 (-537))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1028)) + (-4 *2 (-1195 *3))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1152)) (-5 *3 (-627 (-944))) (-5 *1 (-285))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905))))) +(((*1 *1 *1 *1) (-5 *1 (-220))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-754)) (-5 *2 (-1 (-373))) (-5 *1 (-1019)))) + ((*1 *1 *1 *1) (-4 *1 (-1115)))) +(((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-830) (-1017 (-552)) (-623 (-552)) (-445))) + (-5 *2 (-823 *4)) (-5 *1 (-307 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1174) (-424 *3))) (-14 *5 (-1152)) + (-14 *6 *4))) + ((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-830) (-1017 (-552)) (-623 (-552)) (-445))) + (-5 *2 (-823 *4)) (-5 *1 (-1221 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1174) (-424 *3))) (-14 *5 (-1152)) + (-14 *6 *4)))) +(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1134)) (-5 *1 (-693))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *5 (-971 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-139 *4 *5 *3)) + (-4 *3 (-367 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *5 (-971 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-495 *4 *5 *6 *3)) (-4 *6 (-367 *4)) (-4 *3 (-367 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-671 *5)) (-4 *5 (-971 *4)) (-4 *4 (-544)) + (-5 *2 (-2 (|:| |num| (-671 *4)) (|:| |den| *4))) + (-5 *1 (-675 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) + (-4 *6 (-1211 *5)) + (-5 *2 (-2 (|:| -1651 *7) (|:| |rh| (-627 (-401 *6))))) + (-5 *1 (-790 *5 *6 *7 *3)) (-5 *4 (-627 (-401 *6))) + (-4 *7 (-638 *6)) (-4 *3 (-638 (-401 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *5 (-971 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1204 *4 *5 *3)) + (-4 *3 (-1211 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-320 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)))) + ((*1 *2 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-830))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-537)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-187)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-294)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-299))))) +(((*1 *2 *1) + (-12 (-5 *2 (-627 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) - (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *4)))) - (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) - (-5 *2 (-1011)) (-5 *1 (-733))))) + (-12 (-5 *3 (-3 (-401 (-931 *5)) (-1141 (-1152) (-931 *5)))) + (-4 *5 (-445)) (-5 *2 (-627 (-671 (-401 (-931 *5))))) + (-5 *1 (-286 *5)) (-5 *4 (-671 (-401 (-931 *5))))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-627 (-1148 *5))) (-5 *3 (-1148 *5)) + (-4 *5 (-163 *4)) (-4 *4 (-537)) (-5 *1 (-146 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-627 *3)) (-4 *3 (-1211 *5)) + (-4 *5 (-1211 *4)) (-4 *4 (-343)) (-5 *1 (-352 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-627 (-1148 (-552)))) (-5 *3 (-1148 (-552))) + (-5 *1 (-560)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-627 (-1148 *1))) (-5 *3 (-1148 *1)) + (-4 *1 (-888))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) + (-4 *4 (-169)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-4 *1 (-1256 *3 *4)) (-4 *3 (-830)) + (-4 *4 (-1028))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-355 (-113))) (-4 *2 (-1028)) (-5 *1 (-697 *2 *4)) + (-4 *4 (-630 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-355 (-113))) (-5 *1 (-817 *2)) (-4 *2 (-1028))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-751)) (-5 *4 (-552)) (-5 *1 (-439 *2)) (-4 *2 (-1025))))) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *1) + (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) + (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-424 *3)) (-4 *3 (-830)) (-5 *2 (-111))))) (((*1 *1 *2) - (-12 (-5 *2 (-625 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) - (-14 *3 (-552)) (-14 *4 (-751))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-751)) (-4 *1 (-1208 *4)) (-4 *4 (-1025)) - (-5 *2 (-1232 *4))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) + (-12 (-5 *2 (-671 *4)) (-4 *4 (-1028)) (-5 *1 (-1118 *3 *4)) + (-14 *3 (-754))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-113)) (-5 *4 (-754)) (-4 *5 (-445)) (-4 *5 (-830)) + (-4 *5 (-1017 (-552))) (-4 *5 (-544)) (-5 *1 (-41 *5 *2)) + (-4 *2 (-424 *5)) + (-4 *2 + (-13 (-357) (-296) + (-10 -8 (-15 -2918 ((-1101 *5 (-598 $)) $)) + (-15 -2929 ((-1101 *5 (-598 $)) $)) + (-15 -1477 ($ (-1101 *5 (-598 $)))))))))) +(((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-567))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1148 *3)) (-4 *3 (-343)) (-5 *1 (-351 *3))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1134)) (-5 *4 (-1096)) (-5 *2 (-111)) (-5 *1 (-804))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-671 *3)) (-4 *3 (-1028)) (-5 *1 (-672 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1189))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-754)) (-4 *4 (-544)) (-5 *1 (-948 *4 *2)) + (-4 *2 (-1211 *4))))) +(((*1 *1 *1) (-4 *1 (-238))) + ((*1 *1 *1) + (-12 (-4 *2 (-169)) (-5 *1 (-283 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1211 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-1559 (-12 (-5 *1 (-288 *2)) (-4 *2 (-357)) (-4 *2 (-1189))) + (-12 (-5 *1 (-288 *2)) (-4 *2 (-466)) (-4 *2 (-1189))))) + ((*1 *1 *1) (-4 *1 (-466))) + ((*1 *2 *2) (-12 (-5 *2 (-1235 *3)) (-4 *3 (-343)) (-5 *1 (-520 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *2 (-169)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)) (-4 *2 (-357))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-77 FUNCTN)))) + (-5 *2 (-1014)) (-5 *1 (-731))))) +(((*1 *2 *2) + (-12 (-4 *3 (-544)) (-4 *3 (-169)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *1 (-670 *3 *4 *5 *2)) + (-4 *2 (-669 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1152)) (-4 *5 (-357)) (-5 *2 (-627 (-1183 *5))) + (-5 *1 (-1243 *5)) (-5 *4 (-1183 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-52)) (-5 *1 (-812))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) - (-5 *2 (-625 (-221))) (-5 *1 (-300))))) -(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-839))))) -(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-142)))) - ((*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-142))))) + (-12 (-5 *3 (-627 (-627 (-627 *4)))) (-5 *2 (-627 (-627 *4))) + (-5 *1 (-1160 *4)) (-4 *4 (-830))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-671 (-552))) (-5 *5 (-111)) (-5 *7 (-671 (-220))) + (-5 *3 (-552)) (-5 *6 (-220)) (-5 *2 (-1014)) (-5 *1 (-737))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-955 *4 *5 *6 *3)) (-4 *4 (-1028)) (-4 *5 (-776)) + (-4 *6 (-830)) (-4 *3 (-1042 *4 *5 *6)) (-4 *4 (-544)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1189)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4367)) (-4 *1 (-590 *3 *2)) (-4 *3 (-1076)) + (-4 *2 (-1189))))) +(((*1 *2 *3) + (-12 (-5 *3 (-900)) + (-5 *2 + (-3 (-1148 *4) + (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096))))))) + (-5 *1 (-340 *4)) (-4 *4 (-343))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-111) (-113) (-113))) (-5 *1 (-113))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 *4)) - (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) - (-5 *2 (-1011)) (-5 *1 (-733))))) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-528))))) +(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-412 *3)) (-4 *3 (-544)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-2 (|:| -1727 *4) (|:| -3567 (-552))))) + (-4 *4 (-1211 (-552))) (-5 *2 (-754)) (-5 *1 (-435 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-113))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-754)) (-5 *2 (-1 (-373))) (-5 *1 (-1019))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1148 *1)) (-4 *1 (-991))))) +(((*1 *1) (-12 (-4 *1 (-458 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-528))) ((*1 *1) (-4 *1 (-705))) + ((*1 *1) (-4 *1 (-709))) + ((*1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) + ((*1 *1) (-12 (-5 *1 (-872 *2)) (-4 *2 (-830))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-132)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-816 *3)) (-4 *3 (-1076)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-823 *3)) (-4 *3 (-1076))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-897)) (-5 *4 (-413 *6)) (-4 *6 (-1208 *5)) - (-4 *5 (-1025)) (-5 *2 (-625 *6)) (-5 *1 (-438 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-133))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1208 *3)) (-4 *3 (-1025)) (-5 *2 (-1145 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1226 *4)) (-5 *1 (-1228 *4 *2)) + (-4 *4 (-38 (-401 (-552))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1152)) + (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) + (-4 *5 (-13 (-27) (-1174) (-424 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) + (-4 *3 (-13 (-27) (-1174) (-424 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-401 (-552))) + (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) + (-4 *3 (-13 (-27) (-1174) (-424 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))) + (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-288 *3)) (-5 *5 (-401 (-552))) + (-4 *3 (-13 (-27) (-1174) (-424 *6))) + (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-401 (-552)))) (-5 *4 (-288 *8)) + (-5 *5 (-1202 (-401 (-552)))) (-5 *6 (-401 (-552))) + (-4 *8 (-13 (-27) (-1174) (-424 *7))) + (-4 *7 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-5 *6 (-1202 (-401 (-552)))) + (-5 *7 (-401 (-552))) (-4 *3 (-13 (-27) (-1174) (-424 *8))) + (-4 *8 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *8 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-401 (-552))) (-4 *4 (-1028)) (-4 *1 (-1218 *4 *3)) + (-4 *3 (-1195 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-424 *3) (-981))) (-5 *1 (-270 *3 *2)) + (-4 *3 (-13 (-830) (-544)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-955 *4 *5 *3 *6)) (-4 *4 (-1028)) (-4 *5 (-776)) + (-4 *3 (-830)) (-4 *6 (-1042 *4 *5 *3)) (-5 *2 (-111))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-141))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-2 (|:| |val| (-625 *8)) (|:| -3715 *9)))) - (-5 *4 (-751)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) - (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-1237)) - (-5 *1 (-1043 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-2 (|:| |val| (-625 *8)) (|:| -3715 *9)))) - (-5 *4 (-751)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) - (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-1237)) - (-5 *1 (-1118 *5 *6 *7 *8 *9))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) -(((*1 *2 *2) (-12 (-5 *2 (-1067 (-820 (-221)))) (-5 *1 (-300))))) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-598 *3)) + (-4 *3 (-13 (-424 *5) (-27) (-1174))) + (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) + (-5 *2 (-2 (|:| -3446 *3) (|:| |coeff| *3))) + (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1076))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-552)) (-5 *2 (-111)) (-5 *1 (-541))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-528))) + ((*1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) - (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *4)))) - (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-733))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-897)) (-5 *1 (-436 *2)) - (-4 *2 (-1208 (-552))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-897)) (-5 *4 (-751)) (-5 *1 (-436 *2)) - (-4 *2 (-1208 (-552))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-897)) (-5 *4 (-625 (-751))) (-5 *1 (-436 *2)) - (-4 *2 (-1208 (-552))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-897)) (-5 *4 (-625 (-751))) (-5 *5 (-751)) - (-5 *1 (-436 *2)) (-4 *2 (-1208 (-552))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-897)) (-5 *4 (-625 (-751))) (-5 *5 (-751)) - (-5 *6 (-112)) (-5 *1 (-436 *2)) (-4 *2 (-1208 (-552))))) + (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) + (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-288 (-310 *5)))) + (-5 *1 (-1105 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-13 (-301) (-830) (-144))) + (-5 *2 (-627 (-288 (-310 *4)))) (-5 *1 (-1105 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-897)) (-5 *4 (-413 *2)) (-4 *2 (-1208 *5)) - (-5 *1 (-438 *5 *2)) (-4 *5 (-1025))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1145 *3)) (-4 *3 (-1025)) (-4 *1 (-1208 *3))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-358)) (-4 *3 (-1025)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3212 *1))) - (-4 *1 (-829 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) + (-12 (-5 *3 (-288 (-401 (-931 *5)))) (-5 *4 (-1152)) + (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-288 (-310 *5)))) + (-5 *1 (-1105 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-288 (-401 (-931 *4)))) + (-4 *4 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-288 (-310 *4)))) + (-5 *1 (-1105 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-401 (-931 *5)))) (-5 *4 (-627 (-1152))) + (-4 *5 (-13 (-301) (-830) (-144))) + (-5 *2 (-627 (-627 (-288 (-310 *5))))) (-5 *1 (-1105 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-401 (-931 *4)))) + (-4 *4 (-13 (-301) (-830) (-144))) + (-5 *2 (-627 (-627 (-288 (-310 *4))))) (-5 *1 (-1105 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-288 (-401 (-931 *5))))) (-5 *4 (-627 (-1152))) + (-4 *5 (-13 (-301) (-830) (-144))) + (-5 *2 (-627 (-627 (-288 (-310 *5))))) (-5 *1 (-1105 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-288 (-401 (-931 *4))))) + (-4 *4 (-13 (-301) (-830) (-144))) + (-5 *2 (-627 (-627 (-288 (-310 *4))))) (-5 *1 (-1105 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-311 (-221))) (-5 *2 (-311 (-402 (-552)))) - (-5 *1 (-300))))) + (-12 (-5 *3 (-1152)) + (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) + (-4 *5 (-13 (-27) (-1174) (-424 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) + (-4 *3 (-13 (-27) (-1174) (-424 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-552)) (-4 *5 (-13 (-445) (-830) (-1017 *4) (-623 *4))) + (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) + (-4 *3 (-13 (-27) (-1174) (-424 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))) + (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *6))) + (-4 *6 (-13 (-445) (-830) (-1017 *5) (-623 *5))) (-5 *5 (-552)) + (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-288 *7)) (-5 *5 (-1202 (-552))) + (-4 *7 (-13 (-27) (-1174) (-424 *6))) + (-4 *6 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-5 *6 (-1202 (-552))) + (-4 *3 (-13 (-27) (-1174) (-424 *7))) + (-4 *7 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-552)) (-4 *4 (-1028)) (-4 *1 (-1197 *4 *3)) + (-4 *3 (-1226 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1218 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1195 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-625 *4)) - (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) - (-5 *2 (-1011)) (-5 *1 (-733))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-2 (|:| -3824 *4) (|:| -4276 (-552))))) - (-4 *4 (-1208 (-552))) (-5 *2 (-718 (-751))) (-5 *1 (-436 *4)))) + (-12 (-5 *3 (-884 (-552))) (-5 *4 (-552)) (-5 *2 (-671 *4)) + (-5 *1 (-1007 *5)) (-4 *5 (-1028)))) ((*1 *2 *3) - (-12 (-5 *3 (-413 *5)) (-4 *5 (-1208 *4)) (-4 *4 (-1025)) - (-5 *2 (-718 (-751))) (-5 *1 (-438 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-751)) (-4 *1 (-1208 *3)) (-4 *3 (-1025))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) + (-12 (-5 *3 (-627 (-552))) (-5 *2 (-671 (-552))) (-5 *1 (-1007 *4)) + (-4 *4 (-1028)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-884 (-552)))) (-5 *4 (-552)) + (-5 *2 (-627 (-671 *4))) (-5 *1 (-1007 *5)) (-4 *5 (-1028)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-627 (-552)))) (-5 *2 (-627 (-671 (-552)))) + (-5 *1 (-1007 *4)) (-4 *4 (-1028))))) (((*1 *2 *3) - (-12 (-5 *3 (-1232 (-311 (-221)))) - (-5 *2 - (-2 (|:| |additions| (-552)) (|:| |multiplications| (-552)) - (|:| |exponentiations| (-552)) (|:| |functionCalls| (-552)))) - (-5 *1 (-300))))) + (-12 (-5 *3 (-1134)) (-5 *2 (-209 (-494))) (-5 *1 (-818))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) - (-5 *2 (-625 (-2 (|:| |val| (-112)) (|:| -3715 *4)))) - (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) - (-5 *2 (-1011)) (-5 *1 (-733))))) -(((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1186)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827)))) - ((*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186))))) -(((*1 *1) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-528))) ((*1 *1) (-4 *1 (-703))) - ((*1 *1) (-4 *1 (-707))) - ((*1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) - ((*1 *1) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1208 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) - (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-925 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1025)) (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) - (-4 *1 (-1208 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1232 *5)) (-4 *5 (-772)) (-5 *2 (-112)) - (-5 *1 (-822 *4 *5)) (-14 *4 (-751))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) - (-5 *2 (-374)) (-5 *1 (-262)))) + (-12 (-4 *6 (-544)) (-4 *2 (-928 *3 *5 *4)) + (-5 *1 (-715 *5 *4 *6 *2)) (-5 *3 (-401 (-931 *6))) (-4 *5 (-776)) + (-4 *4 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $)))))))) +(((*1 *2 *3) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-439)) (-5 *3 (-552))))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-288 *6)) (-5 *4 (-113)) (-4 *6 (-424 *5)) + (-4 *5 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) + (-5 *1 (-311 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-627 *7)) + (-4 *7 (-424 *6)) (-4 *6 (-13 (-830) (-544) (-600 (-528)))) + (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-627 (-288 *7))) (-5 *4 (-627 (-113))) (-5 *5 (-288 *7)) + (-4 *7 (-424 *6)) (-4 *6 (-13 (-830) (-544) (-600 (-528)))) + (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-627 (-288 *8))) (-5 *4 (-627 (-113))) (-5 *5 (-288 *8)) + (-5 *6 (-627 *8)) (-4 *8 (-424 *7)) + (-4 *7 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) + (-5 *1 (-311 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-627 *7)) (-5 *4 (-627 (-113))) (-5 *5 (-288 *7)) + (-4 *7 (-424 *6)) (-4 *6 (-13 (-830) (-544) (-600 (-528)))) + (-5 *2 (-52)) (-5 *1 (-311 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 (-113))) (-5 *6 (-627 (-288 *8))) + (-4 *8 (-424 *7)) (-5 *5 (-288 *8)) + (-4 *7 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) + (-5 *1 (-311 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-288 *5)) (-5 *4 (-113)) (-4 *5 (-424 *6)) + (-4 *6 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) + (-5 *1 (-311 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-424 *6)) + (-4 *6 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) + (-5 *1 (-311 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-424 *6)) + (-4 *6 (-13 (-830) (-544) (-600 (-528)))) (-5 *2 (-52)) + (-5 *1 (-311 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-5 *6 (-627 *3)) + (-4 *3 (-424 *7)) (-4 *7 (-13 (-830) (-544) (-600 (-528)))) + (-5 *2 (-52)) (-5 *1 (-311 *7 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1240)) (-5 *1 (-1114)))) ((*1 *2 *3) - (-12 (-5 *3 (-1232 (-311 (-221)))) (-5 *2 (-374)) (-5 *1 (-300))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1073)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 *2))) - (-5 *2 (-868 *3)) (-5 *1 (-1049 *3 *4 *5)) - (-4 *5 (-13 (-425 *4) (-862 *3) (-598 *2)))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) - (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) - (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) - (-5 *2 (-1011)) (-5 *1 (-733))))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-528))) - ((*1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1208 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-751)) (-5 *2 (-1237))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-751)) (-4 *4 (-1025)) - (-5 *2 (-2 (|:| -3984 *1) (|:| -3645 *1))) (-4 *1 (-1208 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1232 *5)) (-4 *5 (-772)) (-5 *2 (-112)) - (-5 *1 (-822 *4 *5)) (-14 *4 (-751))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) + (-12 (-5 *3 (-627 (-842))) (-5 *2 (-1240)) (-5 *1 (-1114))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1235 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) + (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4)))))) (((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) -(((*1 *2 *3) (-12 (-5 *3 (-311 (-221))) (-5 *2 (-221)) (-5 *1 (-300))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) - (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) - (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-669 (-221))) (-5 *6 (-669 (-552))) (-5 *3 (-552)) - (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733))))) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3732)) (-5 *2 (-112)) (-5 *1 (-600)))) + (-12 (-5 *3 (|[\|\|]| -2503)) (-5 *2 (-111)) (-5 *1 (-602)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3494)) (-5 *2 (-112)) (-5 *1 (-600)))) + (-12 (-5 *3 (|[\|\|]| -1645)) (-5 *2 (-111)) (-5 *1 (-602)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2643)) (-5 *2 (-112)) (-5 *1 (-600)))) + (-12 (-5 *3 (|[\|\|]| -1336)) (-5 *2 (-111)) (-5 *1 (-602)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3163)) (-5 *2 (-112)) (-5 *1 (-671 *4)) - (-4 *4 (-597 (-839))))) + (-12 (-5 *3 (|[\|\|]| -3071)) (-5 *2 (-111)) (-5 *1 (-673 *4)) + (-4 *4 (-599 (-842))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-597 (-839))) (-5 *2 (-112)) - (-5 *1 (-671 *4)))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-599 (-842))) (-5 *2 (-111)) + (-5 *1 (-673 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-552))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-552))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1131))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1134))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-499))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-498))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-579))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-472))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-471))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-153))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1139))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1142))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-608))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-610))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1069))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1063))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1047))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1050))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-946))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-949))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-177))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1012))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1015))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-306))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-305))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-651))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-653))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-151))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1243))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1246))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1040))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1043))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-510))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-661))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-663))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1088))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1091))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-131))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1242))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-1245))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-656))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-658))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-214))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-213))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1113)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-111)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1131))) (-5 *2 (-112)) (-5 *1 (-1154)))) + (-12 (-5 *3 (|[\|\|]| (-1134))) (-5 *2 (-111)) (-5 *1 (-1157)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1149))) (-5 *2 (-112)) (-5 *1 (-1154)))) + (-12 (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-111)) (-5 *1 (-1157)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-221))) (-5 *2 (-112)) (-5 *1 (-1154)))) + (-12 (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-111)) (-5 *1 (-1157)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-552))) (-5 *2 (-112)) (-5 *1 (-1154))))) + (-12 (-5 *3 (|[\|\|]| (-552))) (-5 *2 (-111)) (-5 *1 (-1157))))) (((*1 *2 *3) - (-12 (-4 *4 (-1025)) - (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) - (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1208 *4))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-130)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *1 (-1208 *3)) (-4 *3 (-1025))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1232 *5)) (-4 *5 (-772)) (-5 *2 (-112)) - (-5 *1 (-822 *4 *5)) (-14 *4 (-751))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *1 *1) - (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-552)))) (-4 *2 (-1025))))) + (-12 (-4 *4 (-544)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1637 *4))) + (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1152)) + (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) + (-4 *5 (-13 (-27) (-1174) (-424 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) + (-4 *3 (-13 (-27) (-1174) (-424 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-754)) + (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) + (-4 *3 (-13 (-27) (-1174) (-424 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))) + (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-288 *3)) (-5 *5 (-754)) + (-4 *3 (-13 (-27) (-1174) (-424 *6))) + (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-552))) (-5 *4 (-288 *6)) + (-4 *6 (-13 (-27) (-1174) (-424 *5))) + (-4 *5 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) + (-4 *3 (-13 (-27) (-1174) (-424 *6))) + (-4 *6 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-288 *7)) (-5 *5 (-1202 (-754))) + (-4 *7 (-13 (-27) (-1174) (-424 *6))) + (-4 *6 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-5 *6 (-1202 (-754))) + (-4 *3 (-13 (-27) (-1174) (-424 *7))) + (-4 *7 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1197 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-1226 *3))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) (((*1 *2 *3) - (-12 (-5 *3 (-311 (-221))) (-5 *2 (-402 (-552))) (-5 *1 (-300))))) + (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *2 (-627 *4)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1211 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *2 (-627 *3)) (-5 *1 (-1104 *4 *3)) (-4 *4 (-1211 *3))))) (((*1 *1 *1) - (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827)))) - ((*1 *1) (-4 *1 (-1124)))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) - (-4 *3 (-1039 *6 *7 *8)) - (-5 *2 (-625 (-2 (|:| |val| *3) (|:| -3715 *4)))) - (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-625 (-2 (|:| |val| (-625 *8)) (|:| -3715 *9)))) - (-5 *5 (-112)) (-4 *8 (-1039 *6 *7 *4)) (-4 *9 (-1045 *6 *7 *4 *8)) - (-4 *6 (-446)) (-4 *7 (-773)) (-4 *4 (-827)) - (-5 *2 (-625 (-2 (|:| |val| *8) (|:| -3715 *9)))) - (-5 *1 (-1081 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) - (-5 *2 (-1011)) (-5 *1 (-733))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-625 *3)) (-4 *3 (-1186))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1025)) - (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) - (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1208 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-129))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *1 (-1208 *3)) (-4 *3 (-1025))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-813 *3)) (-4 *3 (-1073)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-1073))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-625 *3)) (-4 *3 (-1082 *5 *6 *7 *8)) - (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-576 *5 *6 *7 *8 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-402 (-552))) (-5 *1 (-300))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-552)) (-4 *1 (-1066 *3)) (-4 *3 (-1186))))) -(((*1 *1 *1) (-4 *1 (-537)))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) - (-4 *3 (-1039 *5 *6 *7)) - (-5 *2 (-625 (-2 (|:| |val| (-625 *3)) (|:| -3715 *4)))) - (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-733))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-751)) (-4 *5 (-1025)) (-5 *2 (-552)) - (-5 *1 (-437 *5 *3 *6)) (-4 *3 (-1208 *5)) - (-4 *6 (-13 (-399) (-1014 *5) (-358) (-1171) (-279))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1025)) (-5 *2 (-552)) (-5 *1 (-437 *4 *3 *5)) - (-4 *3 (-1208 *4)) - (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-214)))) - ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1088)))) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(((*1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1) (-5 *1 (-842))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-625 (-1154))) (-5 *3 (-1154)) (-5 *1 (-1091))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1073)))) - ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1073))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1077)) (-5 *3 (-754)) (-5 *1 (-52))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1208 *2)) (-4 *2 (-1025))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-813 *3)) (-4 *3 (-1073)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-1073))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) + (-12 (-5 *2 (-1148 (-552))) (-5 *3 (-552)) (-4 *1 (-848 *4))))) +(((*1 *1 *1) + (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) + (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-828) (-301) (-144) (-1001))) + (-5 *2 (-627 (-1025 *5 *6))) (-5 *1 (-1261 *5 *6 *7)) + (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-111)) + (-4 *5 (-13 (-828) (-301) (-144) (-1001))) + (-5 *2 (-627 (-1025 *5 *6))) (-5 *1 (-1261 *5 *6 *7)) + (-14 *6 (-627 (-1152))) (-14 *7 (-627 (-1152))))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-931 *4))) + (-4 *4 (-13 (-828) (-301) (-144) (-1001))) + (-5 *2 (-627 (-1025 *4 *5))) (-5 *1 (-1261 *4 *5 *6)) + (-14 *5 (-627 (-1152))) (-14 *6 (-627 (-1152)))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-905))))) +(((*1 *1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1076)) (-4 *2 (-362))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-627 *3)) (-4 *3 (-1189))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1259 *3 *4)) (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) + (-4 *4 (-169)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-802 *3)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) + (-4 *4 (-1028)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-671 *4)) (-4 *4 (-357)) (-5 *2 (-1148 *4)) + (-5 *1 (-524 *4 *5 *6)) (-4 *5 (-357)) (-4 *6 (-13 (-357) (-828)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1134)) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-257))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-552))) (-5 *4 (-881 (-552))) - (-5 *2 (-669 (-552))) (-5 *1 (-575)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-552))) (-5 *2 (-625 (-669 (-552)))) - (-5 *1 (-575)))) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *2 + (-2 (|:| |solns| (-627 *5)) + (|:| |maps| (-627 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1104 *3 *5)) (-4 *3 (-1211 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *3 (-627 (-257))) + (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *1 (-257)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *1 (-461)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *1 (-461))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *4 (-853)) + (-5 *5 (-900)) (-5 *6 (-627 (-257))) (-5 *2 (-1236)) + (-5 *1 (-1239)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-552))) (-5 *4 (-625 (-881 (-552)))) - (-5 *2 (-625 (-669 (-552)))) (-5 *1 (-575))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1067 (-820 (-374)))) (-5 *2 (-1067 (-820 (-221)))) - (-5 *1 (-300))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839))))) -(((*1 *2) - (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) - (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) - (-5 *1 (-1046 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) - (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) - (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) - (-5 *2 (-1011)) (-5 *1 (-732))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1025)) (-5 *2 (-552)) (-5 *1 (-437 *4 *3 *5)) - (-4 *3 (-1208 *4)) - (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279)))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-126 *3))))) -(((*1 *2 *3) - (-12 (-4 *5 (-13 (-598 *2) (-170))) (-5 *2 (-868 *4)) - (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1073)) (-4 *3 (-164 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-1067 (-820 (-374))))) - (-5 *2 (-625 (-1067 (-820 (-221))))) (-5 *1 (-300)))) - ((*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-374)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-839)) (-5 *3 (-552)) (-5 *1 (-389)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1232 *3)) (-4 *3 (-170)) (-4 *1 (-404 *3 *4)) - (-4 *4 (-1208 *3)))) + (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *4 (-627 (-257))) + (-5 *2 (-1236)) (-5 *1 (-1239))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-5 *2 (-627 (-1006 *5 *6 *7 *3))) (-5 *1 (-1006 *5 *6 *7 *3)) + (-4 *3 (-1042 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-627 *6)) (-4 *1 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) + (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1048 *3 *4 *5 *2)) (-4 *3 (-445)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-5 *2 (-627 (-1122 *5 *6 *7 *3))) (-5 *1 (-1122 *5 *6 *7 *3)) + (-4 *3 (-1042 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) ((*1 *2 *1) - (-12 (-4 *1 (-404 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1208 *3)) - (-5 *2 (-1232 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1232 *3)) (-4 *3 (-170)) (-4 *1 (-412 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-5 *2 (-1232 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-413 *1)) (-4 *1 (-425 *3)) (-4 *3 (-544)) - (-4 *3 (-827)))) - ((*1 *1 *2) - (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025)) - (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-457 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-528)))) - ((*1 *2 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-1186)))) - ((*1 *1 *2) - (-12 (-4 *3 (-170)) (-4 *1 (-705 *3 *2)) (-4 *2 (-1208 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3)) (-4 *3 (-1073)))) - ((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1025)) (-4 *1 (-956 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1036)))) - ((*1 *1 *2) - (-12 (-5 *2 (-928 *3)) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) - (-4 *5 (-598 (-1149))) (-4 *4 (-773)) (-4 *5 (-827)))) - ((*1 *1 *2) - (-1523 - (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5)) - (-12 (-2960 (-4 *3 (-38 (-402 (-552))))) (-4 *3 (-38 (-552))) - (-4 *5 (-598 (-1149)))) - (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))) - (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5)) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149)))) - (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))))) - ((*1 *1 *2) - (-12 (-5 *2 (-928 (-402 (-552)))) (-4 *1 (-1039 *3 *4 *5)) - (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025)) - (-4 *4 (-773)) (-4 *5 (-827)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-625 *7)) (|:| -3715 *8))) - (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1131)) - (-5 *1 (-1043 *4 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1055)))) - ((*1 *1 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1076 *3 *4 *5 *6 *2)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *2 (-1073)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1076 *3 *4 *5 *2 *6)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-4 *5 (-1073)) (-4 *2 (-1073)) (-4 *6 (-1073)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1076 *3 *4 *2 *5 *6)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-4 *2 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1076 *3 *2 *4 *5 *6)) (-4 *3 (-1073)) (-4 *2 (-1073)) - (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1076 *2 *3 *4 *5 *6)) (-4 *2 (-1073)) (-4 *3 (-1073)) - (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)))) - ((*1 *1 *2) - (-12 (-5 *2 (-625 *1)) (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) - (-4 *4 (-1073)) (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-625 *7)) (|:| -3715 *8))) - (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1082 *4 *5 *6 *7)) (-4 *4 (-446)) - (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1131)) - (-5 *1 (-1118 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1077)) (-5 *1 (-1154)))) - ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-1154)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-839)) (-5 *3 (-552)) (-5 *1 (-1166)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-839)) (-5 *3 (-552)) (-5 *1 (-1166)))) - ((*1 *2 *3) - (-12 (-5 *3 (-760 *4 (-841 *5))) - (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-14 *5 (-625 (-1149))) - (-5 *2 (-760 *4 (-841 *6))) (-5 *1 (-1258 *4 *5 *6)) - (-14 *6 (-625 (-1149))))) - ((*1 *2 *3) - (-12 (-5 *3 (-928 *4)) (-4 *4 (-13 (-825) (-302) (-145) (-998))) - (-5 *2 (-928 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6)) - (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149))))) - ((*1 *2 *3) - (-12 (-5 *3 (-760 *4 (-841 *6))) - (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-14 *6 (-625 (-1149))) - (-5 *2 (-928 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6)) - (-14 *5 (-625 (-1149))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1145 *4)) (-4 *4 (-13 (-825) (-302) (-145) (-998))) - (-5 *2 (-1145 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6)) - (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149))))) - ((*1 *2 *3) - (-12 - (-5 *3 (-1119 *4 (-524 (-841 *6)) (-841 *6) (-760 *4 (-841 *6)))) - (-4 *4 (-13 (-825) (-302) (-145) (-998))) (-14 *6 (-625 (-1149))) - (-5 *2 (-625 (-760 *4 (-841 *6)))) (-5 *1 (-1258 *4 *5 *6)) - (-14 *5 (-625 (-1149)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *2 *3) (-12 (-5 *3 (-625 (-552))) (-5 *2 (-751)) (-5 *1 (-575))))) -(((*1 *2 *3) - (-12 (-5 *3 (-820 (-374))) (-5 *2 (-820 (-221))) (-5 *1 (-300))))) + (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-818)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-817)))) - ((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1011)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-625 (-374))) (-5 *5 (-625 (-820 (-374)))) - (-5 *6 (-625 (-311 (-374)))) (-5 *3 (-311 (-374))) (-5 *2 (-1011)) - (-5 *1 (-817)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-374))) - (-5 *5 (-625 (-820 (-374)))) (-5 *2 (-1011)) (-5 *1 (-817)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-311 (-374))) (-5 *4 (-625 (-374))) (-5 *2 (-1011)) - (-5 *1 (-817)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-311 (-374)))) (-5 *4 (-625 (-374))) - (-5 *2 (-1011)) (-5 *1 (-817))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) - (-5 *1 (-1046 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) - (-5 *1 (-1081 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) - (-5 *2 (-1011)) (-5 *1 (-732))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1025)) - (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) - (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1208 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-897)) (-4 *5 (-1025)) - (-4 *2 (-13 (-399) (-1014 *5) (-358) (-1171) (-279))) - (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1208 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1235))))) + (-12 (-4 *5 (-357)) (-4 *5 (-544)) + (-5 *2 + (-2 (|:| |minor| (-627 (-900))) (|:| -1651 *3) + (|:| |minors| (-627 (-627 (-900)))) (|:| |ops| (-627 *3)))) + (-5 *1 (-89 *5 *3)) (-5 *4 (-900)) (-4 *3 (-638 *5))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-775)) (-4 *2 (-1028)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1028)) (-5 *1 (-50 *2 *3)) (-14 *3 (-627 (-1152))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-627 (-900))) (-4 *2 (-357)) (-5 *1 (-149 *4 *2 *5)) + (-14 *4 (-900)) (-14 *5 (-972 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-310 *3)) (-5 *1 (-218 *3 *4)) + (-4 *3 (-13 (-1028) (-830))) (-14 *4 (-627 (-1152))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-129)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-376 *2 *3)) (-4 *3 (-1076)) (-4 *2 (-1028)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-4 *2 (-544)) (-5 *1 (-607 *2 *4)) + (-4 *4 (-1211 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *1 (-691 *2)) (-4 *2 (-1028)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1028)) (-5 *1 (-718 *2 *3)) (-4 *3 (-709)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 *5)) (-5 *3 (-627 (-754))) (-4 *1 (-723 *4 *5)) + (-4 *4 (-1028)) (-4 *5 (-830)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-754)) (-4 *1 (-723 *4 *2)) (-4 *4 (-1028)) + (-4 *2 (-830)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-4 *1 (-832 *2)) (-4 *2 (-1028)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 *6)) (-5 *3 (-627 (-754))) (-4 *1 (-928 *4 *5 *6)) + (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-754)) (-4 *1 (-928 *4 *5 *2)) (-4 *4 (-1028)) + (-4 *5 (-776)) (-4 *2 (-830)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-754)) (-4 *2 (-928 *4 (-523 *5) *5)) + (-5 *1 (-1102 *4 *5 *2)) (-4 *4 (-1028)) (-4 *5 (-830)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-754)) (-5 *2 (-931 *4)) (-5 *1 (-1183 *4)) + (-4 *4 (-1028))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-735))))) (((*1 *2 *1) - (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1073)) - (-5 *2 (-625 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-625 (-2 (|:| |k| (-869 *3)) (|:| |c| *4)))) - (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) - (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897)))) + (-12 (-5 *2 (-2 (|:| -2717 *1) (|:| -4353 *1) (|:| |associate| *1))) + (-4 *1 (-544))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-172))) (-5 *1 (-1061))))) +(((*1 *2 *1) + (-12 (-5 *2 (-842)) (-5 *1 (-384 *3 *4 *5)) (-14 *3 (-754)) + (-14 *4 (-754)) (-4 *5 (-169))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-445)) + (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *1 (-956 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-552)) (-5 *5 (-111)) (-5 *6 (-671 (-220))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-76 OBJFUN)))) + (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-736))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-274)))) ((*1 *2 *1) - (-12 (-5 *2 (-625 (-652 *3))) (-5 *1 (-869 *3)) (-4 *3 (-827))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1149)) - (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-421 *4 *2)) (-4 *2 (-13 (-1171) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149)) (-4 *5 (-145)) - (-4 *5 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) - (-5 *2 (-311 *5)) (-5 *1 (-574 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-311 (-374))) (-5 *2 (-311 (-221))) (-5 *1 (-300))))) -(((*1 *2) - (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) - (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) - (-5 *1 (-1046 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) - (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) - (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *6 (-221)) - (-5 *3 (-552)) (-5 *2 (-1011)) (-5 *1 (-732))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1025)) (-5 *2 (-552)) (-5 *1 (-437 *4 *3 *5)) - (-4 *3 (-1208 *4)) - (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279)))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1235)))) - ((*1 *2 *2) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-1235))))) + (-12 (-5 *2 (-3 (-552) (-220) (-1152) (-1134) (-1157))) + (-5 *1 (-1157))))) +(((*1 *1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1 *1) (-5 *1 (-842))) + ((*1 *1 *1 *1) (-4 *1 (-946)))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) - (-14 *4 (-625 (-1149))))) - ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1186)))) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)) + (-5 *2 (-627 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) - (-14 *4 (-625 (-1149))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-869 *3)) (-4 *3 (-827))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *2 *3) - (-12 (-5 *3 (-571 *2)) (-4 *2 (-13 (-29 *4) (-1171))) - (-5 *1 (-569 *4 *2)) - (-4 *4 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-571 (-402 (-928 *4)))) - (-4 *4 (-13 (-446) (-1014 (-552)) (-827) (-621 (-552)))) - (-5 *2 (-311 *4)) (-5 *1 (-574 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-374)) (-5 *2 (-221)) (-5 *1 (-300))))) + (-12 (-5 *2 (-627 (-2 (|:| |k| (-872 *3)) (|:| |c| *4)))) + (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) + (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) + ((*1 *2 *1) + (-12 (-5 *2 (-627 (-654 *3))) (-5 *1 (-872 *3)) (-4 *3 (-830))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-671 *2)) (-5 *4 (-552)) + (-4 *2 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) + (-4 *5 (-1211 *2)) (-5 *1 (-491 *2 *5 *6)) (-4 *6 (-403 *2 *5))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) - (-5 *1 (-1046 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) - (-5 *1 (-1081 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-732))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1075 (-751))) (-5 *6 (-751)) - (-5 *2 - (-2 (|:| |contp| (-552)) - (|:| -3449 (-625 (-2 (|:| |irr| *3) (|:| -3515 (-552))))))) - (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552)))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-121 *3))))) -(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1235))))) -(((*1 *2 *3) - (-12 (-5 *3 (-868 *4)) (-4 *4 (-1073)) (-5 *2 (-625 *5)) - (-5 *1 (-866 *4 *5)) (-4 *5 (-1186))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *2 *3) - (-12 (-5 *3 (-897)) (-5 *2 (-1145 *4)) (-5 *1 (-573 *4)) - (-4 *4 (-344))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-928 (-402 (-552)))) (-5 *4 (-1149)) - (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-625 (-221))) (-5 *1 (-295))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552)))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-827))))) -(((*1 *2) (-12 (-5 *2 (-625 (-897))) (-5 *1 (-1235)))) - ((*1 *2 *2) (-12 (-5 *2 (-625 (-897))) (-5 *1 (-1235))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-868 *4)) (-4 *4 (-1073)) (-5 *1 (-866 *4 *3)) - (-4 *3 (-1186)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-868 *3)) (-4 *3 (-1073))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *2 *2) (-12 (-5 *1 (-572 *2)) (-4 *2 (-537))))) + (-12 (-5 *2 (-627 (-552))) (-5 *1 (-1086)) (-5 *3 (-552))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-671 (-220))) (-5 *5 (-671 (-552))) (-5 *3 (-552)) + (-5 *2 (-1014)) (-5 *1 (-739))))) +(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-96))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) + (-5 *3 (-627 (-552))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) + (-5 *3 (-627 (-552)))))) +(((*1 *2) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-104))))) +(((*1 *1 *1 *1) (-4 *1 (-643))) ((*1 *1 *1 *1) (-5 *1 (-1096)))) +(((*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) - (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) - (|:| |relerr| (-221)))) - (-5 *2 (-1129 (-221))) (-5 *1 (-188)))) + (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) + (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *2 (-1132 (-220))) (-5 *1 (-187)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-311 (-221))) (-5 *4 (-625 (-1149))) - (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-1129 (-221))) (-5 *1 (-295)))) + (-12 (-5 *3 (-310 (-220))) (-5 *4 (-627 (-1152))) + (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-1132 (-220))) (-5 *1 (-294)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1232 (-311 (-221)))) (-5 *4 (-625 (-1149))) - (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-1129 (-221))) (-5 *1 (-295))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-552)) (-5 *1 (-135 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-751)) (-4 *5 (-170)))) - ((*1 *1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751)) - (-4 *4 (-170)))) - ((*1 *1 *1) - (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) - (-4 *4 (-368 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1025)) (-4 *1 (-667 *3 *2 *4)) (-4 *2 (-368 *3)) - (-4 *4 (-368 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1115 *2 *3)) (-14 *2 (-751)) (-4 *3 (-1025))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-928 (-552)))) (-5 *1 (-432)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1149)) (-5 *4 (-669 (-221))) (-5 *2 (-1077)) - (-5 *1 (-740)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1149)) (-5 *4 (-669 (-552))) (-5 *2 (-1077)) - (-5 *1 (-740))))) + (-12 (-5 *3 (-1235 (-310 (-220)))) (-5 *4 (-627 (-1152))) + (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-1132 (-220))) (-5 *1 (-294))))) +(((*1 *2 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-391))))) +(((*1 *1 *1 *1) (-4 *1 (-140))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-627 *3)) (-4 *3 (-928 *5 *6 *7)) (-4 *5 (-445)) + (-4 *6 (-776)) (-4 *7 (-830)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-442 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1134)) (-5 *5 (-671 (-220))) (-5 *6 (-220)) + (-5 *7 (-671 (-552))) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-735))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-113))))) +(((*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-480))))) +(((*1 *1 *1 *1) (-4 *1 (-643))) ((*1 *1 *1 *1) (-5 *1 (-1096)))) +(((*1 *2 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-742))))) +(((*1 *1 *2) (-12 (-5 *2 (-853)) (-5 *1 (-257)))) + ((*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-257))))) (((*1 *2 *2) - (-12 (-4 *3 (-827)) (-5 *1 (-905 *3 *2)) (-4 *2 (-425 *3)))) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-922 *5)) (-5 *3 (-754)) (-4 *5 (-1028)) + (-5 *1 (-1140 *4 *5)) (-14 *4 (-900))))) +(((*1 *2 *1) (-12 (-4 *1 (-361 *2)) (-4 *2 (-169))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-166 (-220))) (-5 *5 (-552)) (-5 *6 (-1134)) + (-5 *3 (-220)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1074 *3)) (-4 *3 (-1076)) (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) + (-5 *2 (-627 (-1152))) (-5 *1 (-261)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1148 *7)) (-4 *7 (-928 *6 *4 *5)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *6 (-1028)) (-5 *2 (-627 *5)) + (-5 *1 (-315 *4 *5 *6 *7)))) + ((*1 *2 *1) + (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-333 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-381)))) + ((*1 *2 *1) + (-12 (-4 *1 (-424 *3)) (-4 *3 (-830)) (-5 *2 (-627 (-1152))))) + ((*1 *2 *1) + (-12 (-5 *2 (-627 (-871 *3))) (-5 *1 (-871 *3)) (-4 *3 (-1076)))) + ((*1 *2 *1) + (-12 (-4 *1 (-928 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-830)) (-5 *2 (-627 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1149)) (-5 *2 (-311 (-552))) (-5 *1 (-906))))) + (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) + (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-627 *5)) + (-5 *1 (-929 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-357) + (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1078 (-1152))) (-5 *1 (-945 *3)) (-4 *3 (-946)))) + ((*1 *2 *1) + (-12 (-4 *1 (-952 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-775)) + (-4 *5 (-830)) (-5 *2 (-627 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-955 *3 *4 *5 *6)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-5 *2 (-627 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) (-5 *2 (-627 (-1152))) + (-5 *1 (-1022 *4))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1208 (-552)))))) -(((*1 *2) (-12 (-5 *2 (-625 (-751))) (-5 *1 (-1235)))) - ((*1 *2 *2) (-12 (-5 *2 (-625 (-751))) (-5 *1 (-1235))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-868 *4)) (-4 *4 (-1073)) (-5 *2 (-112)) - (-5 *1 (-865 *4 *5)) (-4 *5 (-1073)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-868 *5)) (-4 *5 (-1073)) (-5 *2 (-112)) - (-5 *1 (-866 *5 *3)) (-4 *3 (-1186)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *6)) (-5 *4 (-868 *5)) (-4 *5 (-1073)) - (-4 *6 (-1186)) (-5 *2 (-112)) (-5 *1 (-866 *5 *6))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1025)) - (-4 *4 (-772)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-625 (-1149))))) - ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) - (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) - (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) - (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1186)) - (-4 *6 (-1186)) (-5 *2 (-58 *6)) (-5 *1 (-57 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-135 *5 *6 *7)) (-14 *5 (-552)) - (-14 *6 (-751)) (-4 *7 (-170)) (-4 *8 (-170)) - (-5 *2 (-135 *5 *6 *8)) (-5 *1 (-134 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-167 *5)) (-4 *5 (-170)) - (-4 *6 (-170)) (-5 *2 (-167 *6)) (-5 *1 (-166 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-311 *3) (-311 *3))) (-4 *3 (-13 (-1025) (-827))) - (-5 *1 (-219 *3 *4)) (-14 *4 (-625 (-1149))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-236 *5 *6)) (-14 *5 (-751)) - (-4 *6 (-1186)) (-4 *7 (-1186)) (-5 *2 (-236 *5 *7)) - (-5 *1 (-235 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-289 *5)) (-4 *5 (-1186)) - (-4 *6 (-1186)) (-5 *2 (-289 *6)) (-5 *1 (-288 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1186)) (-5 *1 (-289 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1131)) (-5 *5 (-596 *6)) - (-4 *6 (-297)) (-4 *2 (-1186)) (-5 *1 (-292 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-596 *5)) (-4 *5 (-297)) - (-4 *2 (-297)) (-5 *1 (-293 *5 *2)))) + (-12 (-5 *2 (-111)) (-5 *1 (-1132 *3)) (-4 *3 (-1076)) + (-4 *3 (-1189))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) + (-5 *2 (-627 (-2 (|:| |val| (-627 *3)) (|:| -3443 *4)))) + (-5 *1 (-1049 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-5 *2 (-552))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-544) (-830))) + (-4 *2 (-13 (-424 *4) (-981) (-1174))) (-5 *1 (-586 *4 *2 *3)) + (-4 *3 (-13 (-424 (-166 *4)) (-981) (-1174)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-627 (-627 (-552)))) (-5 *1 (-950)) + (-5 *3 (-627 (-552)))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-445)) (-4 *3 (-776)) (-4 *5 (-830)) (-5 *2 (-111)) + (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-928 *4 *3 *5))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1028)) + (-5 *1 (-833 *5 *2)) (-4 *2 (-832 *5))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1116 *4 *5)) (-4 *4 (-13 (-1076) (-34))) + (-4 *5 (-13 (-1076) (-34))) (-5 *2 (-111)) (-5 *1 (-1117 *4 *5))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1148 (-401 (-1148 *2)))) (-5 *4 (-598 *2)) + (-4 *2 (-13 (-424 *5) (-27) (-1174))) + (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) + (-5 *1 (-548 *5 *2 *6)) (-4 *6 (-1076)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-596 *1)) (-4 *1 (-297)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-669 *5)) (-4 *5 (-1025)) - (-4 *6 (-1025)) (-5 *2 (-669 *6)) (-5 *1 (-299 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-311 *5)) (-4 *5 (-827)) - (-4 *6 (-827)) (-5 *2 (-311 *6)) (-5 *1 (-309 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-331 *5 *6 *7 *8)) (-4 *5 (-358)) - (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) - (-4 *9 (-358)) (-4 *10 (-1208 *9)) (-4 *11 (-1208 (-402 *10))) - (-5 *2 (-331 *9 *10 *11 *12)) - (-5 *1 (-328 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-337 *9 *10 *11)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3)) (-4 *3 (-1073)))) + (-12 (-5 *2 (-1148 *1)) (-4 *1 (-928 *4 *5 *3)) (-4 *4 (-1028)) + (-4 *5 (-776)) (-4 *3 (-830)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1148 *4)) (-4 *4 (-1028)) (-4 *1 (-928 *4 *5 *3)) + (-4 *5 (-776)) (-4 *3 (-830)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1190)) (-4 *8 (-1190)) - (-4 *6 (-1208 *5)) (-4 *7 (-1208 (-402 *6))) (-4 *9 (-1208 *8)) - (-4 *2 (-337 *8 *9 *10)) (-5 *1 (-335 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-337 *5 *6 *7)) (-4 *10 (-1208 (-402 *9))))) + (-12 (-5 *3 (-401 (-1148 *2))) (-4 *5 (-776)) (-4 *4 (-830)) + (-4 *6 (-1028)) + (-4 *2 + (-13 (-357) + (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))) + (-5 *1 (-929 *5 *4 *6 *7 *2)) (-4 *7 (-928 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1186)) (-4 *6 (-1186)) - (-4 *2 (-368 *6)) (-5 *1 (-366 *5 *4 *6 *2)) (-4 *4 (-368 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-377 *3 *4)) (-4 *3 (-1025)) - (-4 *4 (-1073)))) + (-12 (-5 *3 (-401 (-1148 (-401 (-931 *5))))) (-5 *4 (-1152)) + (-5 *2 (-401 (-931 *5))) (-5 *1 (-1022 *5)) (-4 *5 (-544))))) +(((*1 *2 *3) + (-12 (-5 *3 (-752)) + (-5 *2 + (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) + (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014)))) + (-5 *1 (-553)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-413 *5)) (-4 *5 (-544)) - (-4 *6 (-544)) (-5 *2 (-413 *6)) (-5 *1 (-400 *5 *6)))) + (-12 (-5 *3 (-752)) (-5 *4 (-1040)) + (-5 *2 + (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) + (|:| |explanations| (-627 (-1134))) (|:| |extra| (-1014)))) + (-5 *1 (-553)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-402 *5)) (-4 *5 (-544)) - (-4 *6 (-544)) (-5 *2 (-402 *6)) (-5 *1 (-401 *5 *6)))) + (-12 (-4 *1 (-770)) (-5 *3 (-1040)) + (-5 *4 + (-2 (|:| |fn| (-310 (-220))) + (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *2 + (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) + (|:| |extra| (-1014)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-408 *5 *6 *7 *8)) (-4 *5 (-302)) - (-4 *6 (-968 *5)) (-4 *7 (-1208 *6)) - (-4 *8 (-13 (-404 *6 *7) (-1014 *6))) (-4 *9 (-302)) - (-4 *10 (-968 *9)) (-4 *11 (-1208 *10)) - (-5 *2 (-408 *9 *10 *11 *12)) - (-5 *1 (-407 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-404 *10 *11) (-1014 *10))))) + (-12 (-4 *1 (-770)) (-5 *3 (-1040)) + (-5 *4 + (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) + (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *2 + (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)) + (|:| |extra| (-1014)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) - (-4 *2 (-412 *6)) (-5 *1 (-410 *4 *5 *2 *6)) (-4 *4 (-412 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-544)) (-5 *1 (-413 *3)))) + (-12 (-4 *1 (-783)) (-5 *3 (-1040)) + (-5 *4 + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) + (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) + (-5 *2 (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-791)) + (-5 *2 + (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) + (|:| |explanations| (-627 (-1134))))) + (-5 *1 (-788)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1025) (-827))) - (-4 *6 (-13 (-1025) (-827))) (-4 *2 (-425 *6)) - (-5 *1 (-416 *5 *4 *6 *2)) (-4 *4 (-425 *5)))) + (-12 (-5 *3 (-791)) (-5 *4 (-1040)) + (-5 *2 + (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) + (|:| |explanations| (-627 (-1134))))) + (-5 *1 (-788)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1073)) (-4 *6 (-1073)) - (-4 *2 (-420 *6)) (-5 *1 (-418 *5 *4 *6 *2)) (-4 *4 (-420 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-483 *3)) (-4 *3 (-1186)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-502 *3 *4)) (-4 *3 (-1073)) - (-4 *4 (-827)))) + (-12 (-4 *1 (-819)) (-5 *3 (-1040)) + (-5 *4 + (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) + (-5 *2 (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-571 *5)) (-4 *5 (-358)) - (-4 *6 (-358)) (-5 *2 (-571 *6)) (-5 *1 (-570 *5 *6)))) + (-12 (-4 *1 (-819)) (-5 *3 (-1040)) + (-5 *4 + (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) + (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) + (|:| |ub| (-627 (-823 (-220)))))) + (-5 *2 (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-821)) + (-5 *2 + (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) + (|:| |explanations| (-627 (-1134))))) + (-5 *1 (-820)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -3114 *5) (|:| |coeff| *5)) "failed")) - (-4 *5 (-358)) (-4 *6 (-358)) - (-5 *2 (-2 (|:| -3114 *6) (|:| |coeff| *6))) - (-5 *1 (-570 *5 *6)))) + (-12 (-5 *3 (-821)) (-5 *4 (-1040)) + (-5 *2 + (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) + (|:| |explanations| (-627 (-1134))))) + (-5 *1 (-820)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-358)) (-4 *2 (-358)) (-5 *1 (-570 *5 *2)))) + (-12 (-4 *1 (-874)) (-5 *3 (-1040)) + (-5 *4 + (-2 (|:| |pde| (-627 (-310 (-220)))) + (|:| |constraints| + (-627 + (-2 (|:| |start| (-220)) (|:| |finish| (-220)) + (|:| |grid| (-754)) (|:| |boundaryType| (-552)) + (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) + (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) + (|:| |tol| (-220)))) + (-5 *2 (-2 (|:| -1841 (-373)) (|:| |explanations| (-1134)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-877)) + (-5 *2 + (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) + (|:| |explanations| (-627 (-1134))))) + (-5 *1 (-876)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 - (-3 - (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| - (-625 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) - "failed")) - (-4 *5 (-358)) (-4 *6 (-358)) - (-5 *2 - (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| - (-625 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-570 *5 *6)))) + (-12 (-5 *3 (-877)) (-5 *4 (-1040)) + (-5 *2 + (-2 (|:| -1841 (-373)) (|:| -3112 (-1134)) + (|:| |explanations| (-627 (-1134))))) + (-5 *1 (-876))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *4 *5 *6)) (-4 *4 (-445)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *1 (-442 *4 *5 *6 *2))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-754)) (-5 *1 (-765 *3)) (-4 *3 (-1028)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-942 *3 *2)) (-4 *2 (-129)) (-4 *3 (-544)) + (-4 *3 (-1028)) (-4 *2 (-775)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-754)) (-5 *1 (-1148 *3)) (-4 *3 (-1028)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-950)) (-4 *2 (-129)) (-5 *1 (-1154 *3)) (-4 *3 (-544)) + (-4 *3 (-1028)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-754)) (-5 *1 (-1208 *4 *3)) (-14 *4 (-1152)) + (-4 *3 (-1028))))) +(((*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-128))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-627 *5) *6)) + (-4 *5 (-13 (-357) (-144) (-1017 (-401 (-552))))) (-4 *6 (-1211 *5)) + (-5 *2 (-627 (-2 (|:| |poly| *6) (|:| -1651 *3)))) + (-5 *1 (-792 *5 *6 *3 *7)) (-4 *3 (-638 *6)) + (-4 *7 (-638 (-401 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-627 *5) *6)) + (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) + (-4 *6 (-1211 *5)) + (-5 *2 (-627 (-2 (|:| |poly| *6) (|:| -1651 (-636 *6 (-401 *6)))))) + (-5 *1 (-795 *5 *6)) (-5 *3 (-636 *6 (-401 *6)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-821)) (-5 *4 (-1040)) (-5 *2 (-1014)) (-5 *1 (-820)))) + ((*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-1014)) (-5 *1 (-820)))) + ((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-627 (-373))) (-5 *5 (-627 (-823 (-373)))) + (-5 *6 (-627 (-310 (-373)))) (-5 *3 (-310 (-373))) (-5 *2 (-1014)) + (-5 *1 (-820)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-373))) + (-5 *5 (-627 (-823 (-373)))) (-5 *2 (-1014)) (-5 *1 (-820)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-1186)) - (-4 *6 (-1186)) (-5 *2 (-585 *6)) (-5 *1 (-582 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-585 *7)) - (-4 *6 (-1186)) (-4 *7 (-1186)) (-4 *8 (-1186)) (-5 *2 (-585 *8)) - (-5 *1 (-583 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1129 *6)) (-5 *5 (-585 *7)) - (-4 *6 (-1186)) (-4 *7 (-1186)) (-4 *8 (-1186)) (-5 *2 (-1129 *8)) - (-5 *1 (-583 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-1129 *7)) - (-4 *6 (-1186)) (-4 *7 (-1186)) (-4 *8 (-1186)) (-5 *2 (-1129 *8)) - (-5 *1 (-583 *6 *7 *8)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1186)) (-5 *1 (-585 *3)))) + (-12 (-5 *3 (-310 (-373))) (-5 *4 (-627 (-373))) (-5 *2 (-1014)) + (-5 *1 (-820)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-625 *5)) (-4 *5 (-1186)) - (-4 *6 (-1186)) (-5 *2 (-625 *6)) (-5 *1 (-623 *5 *6)))) + (-12 (-5 *3 (-627 (-310 (-373)))) (-5 *4 (-627 (-373))) + (-5 *2 (-1014)) (-5 *1 (-820))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-1148 *3)) + (-4 *3 (-13 (-424 *6) (-27) (-1174))) + (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) + (-5 *2 (-2 (|:| -3446 *3) (|:| |coeff| *3))) + (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1076)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-401 (-1148 *3))) + (-4 *3 (-13 (-424 *6) (-27) (-1174))) + (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) + (-5 *2 (-2 (|:| -3446 *3) (|:| |coeff| *3))) + (-5 *1 (-548 *6 *3 *7)) (-4 *7 (-1076))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-627 (-900))) (-5 *1 (-149 *4 *2 *5)) (-14 *4 (-900)) + (-4 *2 (-357)) (-14 *5 (-972 *4 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-696 *5 *6 *7)) (-4 *5 (-830)) + (-4 *6 (-233 (-1383 *4) (-754))) + (-14 *7 + (-1 (-111) (-2 (|:| -4153 *5) (|:| -4067 *6)) + (-2 (|:| -4153 *5) (|:| -4067 *6)))) + (-14 *4 (-627 (-1152))) (-4 *2 (-169)) + (-5 *1 (-454 *4 *2 *5 *6 *7 *8)) (-4 *8 (-928 *2 *6 (-844 *4))))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-501 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-830)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-552)) (-4 *2 (-544)) (-5 *1 (-607 *2 *4)) + (-4 *4 (-1211 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-691 *2)) (-4 *2 (-1028)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-718 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-709)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 *5)) (-5 *3 (-627 (-754))) (-4 *1 (-723 *4 *5)) + (-4 *4 (-1028)) (-4 *5 (-830)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-754)) (-4 *1 (-723 *4 *2)) (-4 *4 (-1028)) + (-4 *2 (-830)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-754)) (-4 *1 (-832 *2)) (-4 *2 (-1028)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 *6)) (-5 *3 (-627 (-754))) (-4 *1 (-928 *4 *5 *6)) + (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *6 (-830)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-754)) (-4 *1 (-928 *4 *5 *2)) (-4 *4 (-1028)) + (-4 *5 (-776)) (-4 *2 (-830)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 *6)) (-5 *3 (-627 *5)) (-4 *1 (-952 *4 *5 *6)) + (-4 *4 (-1028)) (-4 *5 (-775)) (-4 *6 (-830)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-952 *4 *3 *2)) (-4 *4 (-1028)) (-4 *3 (-775)) + (-4 *2 (-830))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-552) "failed") *5)) (-4 *5 (-1028)) + (-5 *2 (-552)) (-5 *1 (-535 *5 *3)) (-4 *3 (-1211 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-552) "failed") *4)) (-4 *4 (-1028)) + (-5 *2 (-552)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1211 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-625 *6)) (-5 *5 (-625 *7)) - (-4 *6 (-1186)) (-4 *7 (-1186)) (-4 *8 (-1186)) (-5 *2 (-625 *8)) - (-5 *1 (-624 *6 *7 *8)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-631 *3)) (-4 *3 (-1186)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1025)) (-4 *8 (-1025)) - (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) (-4 *2 (-667 *8 *9 *10)) - (-5 *1 (-665 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-667 *5 *6 *7)) - (-4 *9 (-368 *8)) (-4 *10 (-368 *8)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1025)) - (-4 *8 (-1025)) (-4 *6 (-368 *5)) (-4 *7 (-368 *5)) - (-4 *2 (-667 *8 *9 *10)) (-5 *1 (-665 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-667 *5 *6 *7)) (-4 *9 (-368 *8)) (-4 *10 (-368 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-544)) (-4 *7 (-544)) - (-4 *6 (-1208 *5)) (-4 *2 (-1208 (-402 *8))) - (-5 *1 (-690 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1208 (-402 *6))) - (-4 *8 (-1208 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1025)) (-4 *9 (-1025)) - (-4 *5 (-827)) (-4 *6 (-773)) (-4 *2 (-925 *9 *7 *5)) - (-5 *1 (-709 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-773)) - (-4 *4 (-925 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-827)) (-4 *6 (-827)) (-4 *7 (-773)) - (-4 *9 (-1025)) (-4 *2 (-925 *9 *8 *6)) - (-5 *1 (-710 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-773)) - (-4 *4 (-925 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-716 *5 *7)) (-4 *5 (-1025)) - (-4 *6 (-1025)) (-4 *7 (-707)) (-5 *2 (-716 *6 *7)) - (-5 *1 (-715 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-716 *3 *4)) - (-4 *4 (-707)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-762 *5)) (-4 *5 (-1025)) - (-4 *6 (-1025)) (-5 *2 (-762 *6)) (-5 *1 (-761 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) - (-4 *2 (-777 *6)) (-5 *1 (-778 *4 *5 *2 *6)) (-4 *4 (-777 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-813 *5)) (-4 *5 (-1073)) - (-4 *6 (-1073)) (-5 *2 (-813 *6)) (-5 *1 (-812 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-813 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-813 *5)) - (-4 *5 (-1073)) (-4 *6 (-1073)) (-5 *1 (-812 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1073)) - (-4 *6 (-1073)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6)))) - ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-820 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) - (-4 *5 (-1073)) (-4 *6 (-1073)) (-5 *1 (-819 *5 *6)))) + (|partial| -12 (-5 *5 (-1 (-3 (-552) "failed") *4)) (-4 *4 (-1028)) + (-5 *2 (-552)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1211 *4))))) +(((*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) + ((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-431))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-906))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-549))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1240)) (-5 *1 (-1155)))) + ((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1155))))) +(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-438 *3)) (-4 *3 (-1028))))) +(((*1 *2 *1) + (-12 (-4 *2 (-544)) (-5 *1 (-607 *2 *3)) (-4 *3 (-1211 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-989 *3)) (-4 *3 (-1189)) (-5 *2 (-627 *3))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *2) + (-12 (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-888)) + (-5 *1 (-450 *3 *4 *2 *5)) (-4 *5 (-928 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-776)) (-4 *4 (-830)) (-4 *2 (-888)) + (-5 *1 (-885 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-888)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1211 *2))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-317 *3 *4)) (-4 *3 (-1076)) + (-4 *4 (-129))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-111)) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) + ((*1 *2) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-111))))) +(((*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-324))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-544) (-144))) (-5 *1 (-529 *3 *2)) + (-4 *2 (-1226 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-4 *4 (-1211 *3)) + (-4 *5 (-707 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1226 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-357) (-362) (-600 (-552)))) (-5 *1 (-534 *3 *2)) + (-4 *2 (-1226 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-13 (-544) (-144))) + (-5 *1 (-1128 *3))))) +(((*1 *1) + (-12 (-4 *1 (-398)) (-1681 (|has| *1 (-6 -4357))) + (-1681 (|has| *1 (-6 -4349))))) + ((*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1076)) (-4 *2 (-830)))) + ((*1 *2 *1) (-12 (-4 *1 (-813 *2)) (-4 *2 (-830)))) + ((*1 *1 *1 *1) (-4 *1 (-830))) ((*1 *1) (-5 *1 (-1096)))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-1152))) (-4 *4 (-13 (-301) (-144))) + (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) + (-5 *2 (-627 (-401 (-931 *4)))) (-5 *1 (-903 *4 *5 *6 *7)) + (-4 *7 (-928 *4 *6 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-357) (-144) (-1017 (-552)))) (-4 *5 (-1211 *4)) + (-5 *2 (-2 (|:| |ans| (-401 *5)) (|:| |nosol| (-111)))) + (-5 *1 (-994 *4 *5)) (-5 *3 (-401 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-357) (-1174) (-981)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-627 *3)) (-4 *3 (-1085 *5 *6 *7 *8)) + (-4 *5 (-13 (-301) (-144))) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *8 (-1042 *5 *6 *7)) (-5 *2 (-111)) + (-5 *1 (-578 *5 *6 *7 *8 *3))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) + (-4 *3 (-544)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *1 (-1248 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-627 *8)) (-5 *3 (-1 (-111) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) + (-4 *6 (-776)) (-4 *7 (-830)) (-5 *1 (-1248 *5 *6 *7 *8))))) +(((*1 *1 *1) + (-12 (-4 *2 (-301)) (-4 *3 (-971 *2)) (-4 *4 (-1211 *3)) + (-5 *1 (-407 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1017 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-575 *4)) + (-4 *4 (-343))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) + (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) + (-5 *1 (-771))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-627 (-166 *4))) (-5 *1 (-152 *3 *4)) + (-4 *3 (-1211 (-166 (-552)))) (-4 *4 (-13 (-357) (-828))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-627 (-166 *4))) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1186)) - (-4 *6 (-1186)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6)))) + (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-627 (-166 *4))) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4)))))) +(((*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-220))) (-5 *2 (-1235 (-681))) (-5 *1 (-299))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-739))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-631 *2 *3 *4)) (-4 *2 (-1076)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-657 *2)) (-4 *2 (-1028)) (-4 *2 (-1076))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-671 *1)) (-5 *4 (-1235 *1)) (-4 *1 (-623 *5)) + (-4 *5 (-1028)) + (-5 *2 (-2 (|:| -2515 (-671 *5)) (|:| |vec| (-1235 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-671 *1)) (-4 *1 (-623 *4)) (-4 *4 (-1028)) + (-5 *2 (-671 *4))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-905)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-906)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-906)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-187)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-294)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1070 (-823 (-220)))) (-5 *2 (-220)) (-5 *1 (-299))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3446 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-357)) (-4 *7 (-1211 *6)) + (-5 *2 (-2 (|:| |answer| (-573 (-401 *7))) (|:| |a0| *6))) + (-5 *1 (-562 *6 *7)) (-5 *3 (-401 *7))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-357) (-1174) (-981)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-483))))) +(((*1 *2 *1) + (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-544)) + (-5 *2 (-1148 *3))))) +(((*1 *1) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) + (-4 *4 (-169))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-871 *4)) (-5 *3 (-1 (-111) *5)) (-4 *4 (-1076)) + (-4 *5 (-1189)) (-5 *1 (-869 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-871 *4)) (-5 *3 (-627 (-1 (-111) *5))) (-4 *4 (-1076)) + (-4 *5 (-1189)) (-5 *1 (-869 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-871 *5)) (-5 *3 (-627 (-1152))) + (-5 *4 (-1 (-111) (-627 *6))) (-4 *5 (-1076)) (-4 *6 (-1189)) + (-5 *1 (-869 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-111) *5)) (-4 *5 (-1189)) (-4 *4 (-830)) + (-5 *1 (-916 *4 *2 *5)) (-4 *2 (-424 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-627 (-1 (-111) *5))) (-4 *5 (-1189)) (-4 *4 (-830)) + (-5 *1 (-916 *4 *2 *5)) (-4 *2 (-424 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1186)) - (-4 *6 (-1186)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6)))) + (-12 (-5 *3 (-1152)) (-5 *4 (-1 (-111) *5)) (-4 *5 (-1189)) + (-5 *2 (-310 (-552))) (-5 *1 (-917 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-1186)) - (-4 *6 (-1186)) (-5 *2 (-858 *6)) (-5 *1 (-857 *5 *6)))) + (-12 (-5 *3 (-1152)) (-5 *4 (-627 (-1 (-111) *5))) (-4 *5 (-1189)) + (-5 *2 (-310 (-552))) (-5 *1 (-917 *5)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-627 (-1152))) (-5 *3 (-1 (-111) (-627 *6))) + (-4 *6 (-13 (-424 *5) (-865 *4) (-600 (-871 *4)))) (-4 *4 (-1076)) + (-4 *5 (-13 (-1028) (-865 *4) (-830) (-600 (-871 *4)))) + (-5 *1 (-1052 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1211 *6)) + (-4 *6 (-13 (-27) (-424 *5))) + (-4 *5 (-13 (-830) (-544) (-1017 (-552)))) (-4 *8 (-1211 (-401 *7))) + (-5 *2 (-573 *3)) (-5 *1 (-540 *5 *6 *7 *8 *3)) + (-4 *3 (-336 *6 *7 *8))))) +(((*1 *2 *1) + (-12 (-5 *2 (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 *4)))) + (-5 *1 (-868 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1076)) (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076)) + (-4 *7 (-1076)) (-5 *2 (-627 *1)) (-4 *1 (-1079 *3 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460)))) + ((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-460))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT)))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-220)) + (-5 *2 (-1014)) (-5 *1 (-738)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-66 DOT)))) + (-5 *7 (-3 (|:| |fn| (-382)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-382)) + (-5 *4 (-220)) (-5 *2 (-1014)) (-5 *1 (-738))))) +(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-928 *4 *5 *6)) (-5 *2 (-627 (-627 *7))) + (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-776)) + (-4 *7 (-830)) (-4 *8 (-928 *5 *6 *7)) (-5 *2 (-627 (-627 *8))) + (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-627 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-301) (-144))) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-928 *4 *5 *6)) (-5 *2 (-627 (-627 *7))) + (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-627 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-865 *5 *6)) (-4 *5 (-1073)) - (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-865 *5 *7)) - (-5 *1 (-864 *5 *6 *7)))) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-301) (-144))) (-4 *6 (-776)) + (-4 *7 (-830)) (-4 *8 (-928 *5 *6 *7)) (-5 *2 (-627 (-627 *8))) + (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-627 *8))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) + (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) + (-5 *2 (-373)) (-5 *1 (-200))))) +(((*1 *2 *1) + (-12 (-5 *2 (-627 (-1175 *3))) (-5 *1 (-1175 *3)) (-4 *3 (-1076))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-359 *2)) (-4 *2 (-1076)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1134)) (-5 *1 (-1170))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1014)) + (-5 *1 (-731))))) +(((*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1189))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1132 *4)) (-5 *3 (-552)) (-4 *4 (-1028)) + (-5 *1 (-1136 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-552)) (-5 *1 (-1227 *3 *4 *5)) (-4 *3 (-1028)) + (-14 *4 (-1152)) (-14 *5 *3)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-754)) (-5 *4 (-552)) (-5 *1 (-438 *2)) (-4 *2 (-1028))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1014)) + (-5 *1 (-729))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1152)) + (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *4 *5)) + (-4 *5 (-13 (-27) (-1174) (-424 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *4 *3)) + (-4 *3 (-13 (-27) (-1174) (-424 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-868 *5)) (-4 *5 (-1073)) - (-4 *6 (-1073)) (-5 *2 (-868 *6)) (-5 *1 (-867 *5 *6)))) + (-12 (-5 *4 (-401 (-552))) + (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *5 *3)) + (-4 *3 (-13 (-27) (-1174) (-424 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-928 *5)) (-4 *5 (-1025)) - (-4 *6 (-1025)) (-5 *2 (-928 *6)) (-5 *1 (-922 *5 *6)))) + (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1174) (-424 *5))) + (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-827)) - (-4 *8 (-1025)) (-4 *6 (-773)) - (-4 *2 - (-13 (-1073) - (-10 -8 (-15 -2382 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-751)))))) - (-5 *1 (-927 *6 *7 *8 *5 *2)) (-4 *5 (-925 *8 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-934 *5)) (-4 *5 (-1186)) - (-4 *6 (-1186)) (-5 *2 (-934 *6)) (-5 *1 (-933 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-919 *5)) (-4 *5 (-1025)) - (-4 *6 (-1025)) (-5 *2 (-919 *6)) (-5 *1 (-957 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-928 *4))) (-4 *4 (-1025)) - (-4 *2 (-925 (-928 *4) *5 *6)) (-4 *5 (-773)) - (-4 *6 - (-13 (-827) - (-10 -8 (-15 -2042 ((-1149) $)) - (-15 -2195 ((-3 $ "failed") (-1149)))))) - (-5 *1 (-960 *4 *5 *6 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-544)) (-4 *6 (-544)) - (-4 *2 (-968 *6)) (-5 *1 (-966 *5 *6 *4 *2)) (-4 *4 (-968 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) - (-4 *2 (-973 *6)) (-5 *1 (-974 *4 *5 *2 *6)) (-4 *4 (-973 *5)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1028 *3 *4 *5 *6 *7)) - (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1028 *3 *4 *5 *6 *7)) - (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1025)) (-4 *10 (-1025)) - (-14 *5 (-751)) (-14 *6 (-751)) (-4 *8 (-234 *6 *7)) - (-4 *9 (-234 *5 *7)) (-4 *2 (-1028 *5 *6 *10 *11 *12)) - (-5 *1 (-1030 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1028 *5 *6 *7 *8 *9)) (-4 *11 (-234 *6 *10)) - (-4 *12 (-234 *5 *10)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1067 *5)) (-4 *5 (-1186)) - (-4 *6 (-1186)) (-5 *2 (-1067 *6)) (-5 *1 (-1062 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1067 *5)) (-4 *5 (-825)) - (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-625 *6)) - (-5 *1 (-1062 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1065 *5)) (-4 *5 (-1186)) - (-4 *6 (-1186)) (-5 *2 (-1065 *6)) (-5 *1 (-1064 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1068 *4 *2)) (-4 *4 (-825)) - (-4 *2 (-1122 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1129 *5)) (-4 *5 (-1186)) - (-4 *6 (-1186)) (-5 *2 (-1129 *6)) (-5 *1 (-1127 *5 *6)))) + (-12 (-5 *4 (-288 *3)) (-5 *5 (-401 (-552))) + (-4 *3 (-13 (-27) (-1174) (-424 *6))) + (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-309 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-552))) (-5 *4 (-288 *6)) + (-4 *6 (-13 (-27) (-1174) (-424 *5))) + (-4 *5 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1129 *6)) (-5 *5 (-1129 *7)) - (-4 *6 (-1186)) (-4 *7 (-1186)) (-4 *8 (-1186)) (-5 *2 (-1129 *8)) - (-5 *1 (-1128 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5)) (-4 *5 (-1025)) - (-4 *6 (-1025)) (-5 *2 (-1145 *6)) (-5 *1 (-1143 *5 *6)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1162 *3 *4)) (-4 *3 (-1073)) - (-4 *4 (-1073)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1196 *5 *7 *9)) (-4 *5 (-1025)) - (-4 *6 (-1025)) (-14 *7 (-1149)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1196 *6 *8 *10)) (-5 *1 (-1191 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1149)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1199 *5)) (-4 *5 (-1186)) - (-4 *6 (-1186)) (-5 *2 (-1199 *6)) (-5 *1 (-1198 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1199 *5)) (-4 *5 (-825)) - (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-1129 *6)) - (-5 *1 (-1198 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1205 *5 *6)) (-14 *5 (-1149)) - (-4 *6 (-1025)) (-4 *8 (-1025)) (-5 *2 (-1205 *7 *8)) - (-5 *1 (-1200 *5 *6 *7 *8)) (-14 *7 (-1149)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) - (-4 *2 (-1208 *6)) (-5 *1 (-1206 *5 *4 *6 *2)) (-4 *4 (-1208 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1217 *5 *7 *9)) (-4 *5 (-1025)) - (-4 *6 (-1025)) (-14 *7 (-1149)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1217 *6 *8 *10)) (-5 *1 (-1212 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1149)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) - (-4 *2 (-1223 *6)) (-5 *1 (-1221 *5 *6 *4 *2)) (-4 *4 (-1223 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1232 *5)) (-4 *5 (-1186)) - (-4 *6 (-1186)) (-5 *2 (-1232 *6)) (-5 *1 (-1231 *5 *6)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1232 *5)) - (-4 *5 (-1186)) (-4 *6 (-1186)) (-5 *2 (-1232 *6)) - (-5 *1 (-1231 *5 *6)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-827)) - (-4 *4 (-1025)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-1255 *3 *4)) - (-4 *4 (-823))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-572 *2)) (-4 *2 (-537))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1145 *1)) (-5 *4 (-1149)) (-4 *1 (-27)) - (-5 *2 (-625 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1145 *1)) (-4 *1 (-27)) (-5 *2 (-625 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-928 *1)) (-4 *1 (-27)) (-5 *2 (-625 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-625 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *2 (-625 *1)) (-4 *1 (-29 *3)))) + (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) + (-4 *3 (-13 (-27) (-1174) (-424 *6))) + (-4 *6 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-311 (-221))) (-5 *4 (-625 (-1149))) - (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-1129 (-221))) (-5 *1 (-295))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1 *7 (-552))) (-5 *4 (-288 *7)) (-5 *5 (-1202 (-552))) + (-4 *7 (-13 (-27) (-1174) (-424 *6))) + (-4 *6 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-5 *6 (-1202 (-552))) + (-4 *3 (-13 (-27) (-1174) (-424 *7))) + (-4 *7 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-401 (-552)))) (-5 *4 (-288 *8)) + (-5 *5 (-1202 (-401 (-552)))) (-5 *6 (-401 (-552))) + (-4 *8 (-13 (-27) (-1174) (-424 *7))) + (-4 *7 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1152)) (-5 *5 (-288 *3)) (-5 *6 (-1202 (-401 (-552)))) + (-5 *7 (-401 (-552))) (-4 *3 (-13 (-27) (-1174) (-424 *8))) + (-4 *8 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-52)) (-5 *1 (-452 *8 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1132 (-2 (|:| |k| (-552)) (|:| |c| *3)))) + (-4 *3 (-1028)) (-5 *1 (-582 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-583 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1132 (-2 (|:| |k| (-552)) (|:| |c| *3)))) + (-4 *3 (-1028)) (-4 *1 (-1195 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-754)) + (-5 *3 (-1132 (-2 (|:| |k| (-401 (-552))) (|:| |c| *4)))) + (-4 *4 (-1028)) (-4 *1 (-1216 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-4 *1 (-1226 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1132 (-2 (|:| |k| (-754)) (|:| |c| *3)))) + (-4 *3 (-1028)) (-4 *1 (-1226 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-905)))) + ((*1 *2 *1) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-906))))) +(((*1 *1) (-5 *1 (-154))) + ((*1 *2 *1) (-12 (-4 *1 (-1023 *2)) (-4 *2 (-23))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-671 (-401 (-552)))) + (-5 *2 + (-627 + (-2 (|:| |outval| *4) (|:| |outmult| (-552)) + (|:| |outvect| (-627 (-671 *4)))))) + (-5 *1 (-762 *4)) (-4 *4 (-13 (-357) (-828)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-627 (-1148 (-552)))) (-5 *1 (-186)) (-5 *3 (-552))))) +(((*1 *2 *2) + (-12 (-4 *3 (-445)) (-4 *3 (-830)) (-4 *3 (-1017 (-552))) + (-4 *3 (-544)) (-5 *1 (-41 *3 *2)) (-4 *2 (-424 *3)) + (-4 *2 + (-13 (-357) (-296) + (-10 -8 (-15 -2918 ((-1101 *3 (-598 $)) $)) + (-15 -2929 ((-1101 *3 (-598 $)) $)) + (-15 -1477 ($ (-1101 *3 (-598 $)))))))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-754)) (-5 *1 (-836 *2)) (-4 *2 (-38 (-401 (-552)))) + (-4 *2 (-169))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-627 (-931 *4))) (-5 *3 (-627 (-1152))) (-4 *4 (-445)) + (-5 *1 (-897 *4))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) + (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) + (-5 *1 (-771)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-552)) (-5 *6 (-1 (-1240) (-1235 *5) (-1235 *5) (-373))) + (-5 *3 (-1235 (-373))) (-5 *5 (-373)) (-5 *2 (-1240)) + (-5 *1 (-771))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-357))))) (((*1 *1 *2) - (-12 (-5 *2 (-669 *4)) (-4 *4 (-1025)) (-5 *1 (-1115 *3 *4)) - (-14 *3 (-751))))) -(((*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740))))) + (-12 (-5 *2 (-1235 *4)) (-4 *4 (-1189)) (-4 *1 (-233 *3 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-357)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-562 *5 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552)))))) -(((*1 *2) - (-12 (-5 *2 (-751)) (-5 *1 (-120 *3)) (-4 *3 (-1208 (-552))))) + (-12 (-4 *4 (-544)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) + (-5 *2 (-627 (-2 (|:| -4267 *1) (|:| -2849 (-627 *7))))) + (-5 *3 (-627 *7)) (-4 *1 (-1182 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1152)) + (-4 *4 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) + (-5 *1 (-787 *4 *2)) (-4 *2 (-13 (-29 *4) (-1174) (-938)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 (-627 *5))) (-4 *5 (-1226 *4)) + (-4 *4 (-38 (-401 (-552)))) + (-5 *2 (-1 (-1132 *4) (-627 (-1132 *4)))) (-5 *1 (-1228 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1014))))) +(((*1 *1 *2) + (-12 (-5 *2 (-627 (-1052 *3 *4 *5))) (-4 *3 (-1076)) + (-4 *4 (-13 (-1028) (-865 *3) (-830) (-600 (-871 *3)))) + (-4 *5 (-13 (-424 *4) (-865 *3) (-600 (-871 *3)))) + (-5 *1 (-1053 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-310 *4)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 (-166 *4)))))) ((*1 *2 *2) - (-12 (-5 *2 (-751)) (-5 *1 (-120 *3)) (-4 *3 (-1208 (-552)))))) -(((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235)))) - ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-1235))))) + (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-1178 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-357) (-1174) (-981))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1193)) (-4 *5 (-1211 (-401 *2))) + (-4 *2 (-1211 *4)) (-5 *1 (-335 *3 *4 *2 *5)) + (-4 *3 (-336 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-336 *3 *2 *4)) (-4 *3 (-1193)) + (-4 *4 (-1211 (-401 *2))) (-4 *2 (-1211 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-671 (-401 (-931 (-552))))) + (-5 *2 + (-627 + (-2 (|:| |radval| (-310 (-552))) (|:| |radmult| (-552)) + (|:| |radvect| (-627 (-671 (-310 (-552)))))))) + (-5 *1 (-1010))))) +(((*1 *2 *2) (-12 (-5 *2 (-627 (-310 (-220)))) (-5 *1 (-261))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-461)) (-5 *4 (-900)) (-5 *2 (-1240)) (-5 *1 (-1236))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-671 (-220))) (-5 *4 (-552)) (-5 *2 (-1014)) + (-5 *1 (-738))))) +(((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-823 *3)) (-4 *3 (-1076))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1148 *7)) (-4 *7 (-928 *6 *4 *5)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *6 (-1028)) (-5 *2 (-1148 *6)) + (-5 *1 (-315 *4 *5 *6 *7))))) (((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -3362 (-114)) (|:| |arg| (-625 (-868 *3))))) - (-5 *1 (-868 *3)) (-4 *3 (-1073)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-625 (-868 *4))) - (-5 *1 (-868 *4)) (-4 *4 (-1073))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-537))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-311 (-221))) (-5 *4 (-1149)) - (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-625 (-221))) (-5 *1 (-188)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-311 (-221))) (-5 *4 (-1149)) - (-5 *5 (-1067 (-820 (-221)))) (-5 *2 (-625 (-221))) (-5 *1 (-295))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1073) (-34))) - (-4 *3 (-13 (-1073) (-34)))))) -(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552)))))) + (-12 (-5 *2 (-627 (-922 *4))) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) + (-4 *4 (-1028))))) +(((*1 *1) (-5 *1 (-431)))) +(((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-5 *2 (-310 *4)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-13 (-27) (-1174) (-424 (-166 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-1178 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3)))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-730))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1208 (-552))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1208 (-552)))))) -(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))) - ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235))))) + (-12 (-5 *2 (-552)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1028))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-922 (-220))) (-5 *4 (-853)) (-5 *2 (-1240)) + (-5 *1 (-461)))) + ((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1028)) (-4 *1 (-959 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-922 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-922 *3)) (-4 *3 (-1028)) (-4 *1 (-1110 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-627 *3)) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-922 *3)) (-4 *1 (-1110 *3)) (-4 *3 (-1028)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-922 (-220))) (-5 *1 (-1185)) (-5 *3 (-220))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3)) - (-4 *3 (-1073))))) + (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) + (|has| *2 (-6 (-4368 "*"))) (-4 *2 (-1028)))) + ((*1 *2 *3) + (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-169)) + (-5 *1 (-670 *2 *4 *5 *3)) (-4 *3 (-669 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1099 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) + (-4 *5 (-233 *3 *2)) (|has| *2 (-6 (-4368 "*"))) (-4 *2 (-1028))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) + (-5 *1 (-956 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1323 *3))) + (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-722 *3))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1152)) + (-4 *4 (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-545 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4)))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) - (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) - (|:| |relerr| (-221)))) - (-5 *2 (-112)) (-5 *1 (-295))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-112))))) + (-12 (-4 *4 (-38 (-401 (-552)))) + (-5 *2 (-2 (|:| -1445 (-1132 *4)) (|:| -1456 (-1132 *4)))) + (-5 *1 (-1138 *4)) (-5 *3 (-1132 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1078 *4)) (-4 *4 (-1076)) (-5 *2 (-1 *4)) + (-5 *1 (-996 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1019)) (-5 *3 (-373)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1070 (-552))) (-5 *2 (-1 (-552))) (-5 *1 (-1026))))) (((*1 *1 *1) - (-12 (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1073) (-34))) - (-4 *3 (-13 (-1073) (-34)))))) -(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552)))))) -(((*1 *1 *1) (-4 *1 (-537)))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-497 (-402 (-552)) (-236 *4 (-751)) (-841 *3) - (-243 *3 (-402 (-552))))) - (-14 *3 (-625 (-1149))) (-14 *4 (-751)) (-5 *1 (-498 *3 *4))))) -(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))) - ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073))))) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) + (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-848 *3)) (-5 *2 (-552)))) + ((*1 *1 *1) (-4 *1 (-981))) + ((*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-991)))) + ((*1 *1 *2) (-12 (-5 *2 (-401 (-552))) (-4 *1 (-991)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-991)) (-5 *2 (-900)))) + ((*1 *1 *1) (-4 *1 (-991)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) -(((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1016))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *1 (-636 *3)) (-4 *3 (-1025)) (-4 *3 (-358)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-751)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) - (-5 *1 (-639 *5 *2)) (-4 *2 (-636 *5))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4354)) (-4 *1 (-119 *2)) (-4 *2 (-1186))))) -(((*1 *1 *1 *1) (-4 *1 (-297))) ((*1 *1 *1) (-4 *1 (-297)))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1113 *4 *5)) (-4 *4 (-13 (-1073) (-34))) - (-4 *5 (-13 (-1073) (-34))) (-5 *2 (-112)) (-5 *1 (-1114 *4 *5))))) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) (((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *2) (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552)))))) -(((*1 *2 *3) (-12 (-5 *2 (-374)) (-5 *1 (-765 *3)) (-4 *3 (-598 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-897)) (-5 *2 (-374)) (-5 *1 (-765 *3)) - (-4 *3 (-598 *2)))) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *2 *1) (-12 (-5 *2 (-805)) (-5 *1 (-804))))) +(((*1 *2 *1) (-12 (-4 *1 (-163 *2)) (-4 *2 (-169)) (-4 *2 (-1174)))) + ((*1 *2 *1) (-12 (-5 *1 (-325 *2)) (-4 *2 (-830)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-598 *3)) (-4 *3 (-830))))) +(((*1 *2 *2) (-12 (-5 *2 (-1070 (-823 (-220)))) (-5 *1 (-299))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1152)) (-5 *3 (-627 *1)) (-4 *1 (-424 *4)) + (-4 *4 (-830)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1152)) (-4 *1 (-424 *3)) (-4 *3 (-830)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1152)) (-4 *1 (-424 *3)) (-4 *3 (-830)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1152)) (-4 *1 (-424 *3)) (-4 *3 (-830)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1152)) (-4 *1 (-424 *3)) (-4 *3 (-830))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1028)) (-4 *2 (-669 *4 *5 *6)) + (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1211 *4)) (-4 *5 (-367 *4)) + (-4 *6 (-367 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-627 (-48))) (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1211 (-48))))) ((*1 *2 *3) - (-12 (-5 *3 (-928 *4)) (-4 *4 (-1025)) (-4 *4 (-598 *2)) - (-5 *2 (-374)) (-5 *1 (-765 *4)))) + (-12 (-5 *2 (-412 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1211 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-928 *5)) (-5 *4 (-897)) (-4 *5 (-1025)) - (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5)))) + (-12 (-5 *4 (-627 (-48))) (-4 *5 (-830)) (-4 *6 (-776)) + (-5 *2 (-412 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-928 (-48) *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-627 (-48))) (-4 *5 (-830)) (-4 *6 (-776)) + (-4 *7 (-928 (-48) *6 *5)) (-5 *2 (-412 (-1148 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1148 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544)) (-4 *4 (-598 *2)) - (-5 *2 (-374)) (-5 *1 (-765 *4)))) + (-12 (-4 *4 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-164 *4 *3)) + (-4 *3 (-1211 (-166 *4))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-111)) (-4 *4 (-13 (-357) (-828))) (-5 *2 (-412 *3)) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-897)) (-4 *5 (-544)) - (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5)))) + (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-412 *3)) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-357) (-828))) (-5 *2 (-412 *3)) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-343)) (-5 *2 (-412 *3)) (-5 *1 (-211 *4 *3)) + (-4 *3 (-1211 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-311 *4)) (-4 *4 (-544)) (-4 *4 (-827)) - (-4 *4 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *4)))) + (-12 (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-311 *5)) (-5 *4 (-897)) (-4 *5 (-544)) (-4 *5 (-827)) - (-4 *5 (-598 *2)) (-5 *2 (-374)) (-5 *1 (-765 *5))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4354)) (-4 *1 (-119 *2)) (-4 *2 (-1186))))) -(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))) - ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) -(((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1016))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-639 *4 *2)) - (-4 *2 (-636 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-596 *1)) (-4 *1 (-297))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-552)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-114)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1131)) (-4 *4 (-827)) (-5 *1 (-905 *4 *2)) - (-4 *2 (-425 *4)))) + (-12 (-5 *4 (-754)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) + (-4 *3 (-1211 (-552))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1149)) (-5 *4 (-1131)) (-5 *2 (-311 (-552))) - (-5 *1 (-906))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1113 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1073) (-34))) (-4 *6 (-13 (-1073) (-34))) - (-5 *2 (-112)) (-5 *1 (-1114 *5 *6))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1208 (-552)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-358) (-1014 (-402 *2)))) (-5 *2 (-552)) - (-5 *1 (-115 *4 *3)) (-4 *3 (-1208 *4))))) -(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235)))) - ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1235))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-925 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *2 (-827)))) + (-12 (-5 *4 (-627 (-754))) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) + (-4 *3 (-1211 (-552))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-627 (-754))) (-5 *5 (-754)) (-5 *2 (-412 *3)) + (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-754)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) + (-4 *3 (-1211 (-552))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-773)) (-4 *5 (-1025)) (-4 *6 (-925 *5 *4 *2)) - (-4 *2 (-827)) (-5 *1 (-926 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-358) - (-10 -8 (-15 -1683 ($ *6)) (-15 -1356 (*6 $)) - (-15 -1368 (*6 $))))))) + (-12 (-5 *2 (-412 (-166 (-552)))) (-5 *1 (-439)) + (-5 *3 (-166 (-552))))) + ((*1 *2 *3) + (-12 + (-4 *4 + (-13 (-830) + (-10 -8 (-15 -3562 ((-1152) $)) + (-15 -4344 ((-3 $ "failed") (-1152)))))) + (-4 *5 (-776)) (-4 *7 (-544)) (-5 *2 (-412 *3)) + (-5 *1 (-449 *4 *5 *6 *7 *3)) (-4 *6 (-544)) + (-4 *3 (-928 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-301)) (-5 *2 (-412 (-1148 *4))) (-5 *1 (-451 *4)) + (-5 *3 (-1148 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-412 *6) *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) + (-4 *7 (-13 (-357) (-144) (-707 *5 *6))) (-5 *2 (-412 *3)) + (-5 *1 (-486 *5 *6 *7 *3)) (-4 *3 (-1211 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-412 (-1148 *7)) (-1148 *7))) + (-4 *7 (-13 (-301) (-144))) (-4 *5 (-830)) (-4 *6 (-776)) + (-5 *2 (-412 *3)) (-5 *1 (-532 *5 *6 *7 *3)) + (-4 *3 (-928 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-412 (-1148 *7)) (-1148 *7))) + (-4 *7 (-13 (-301) (-144))) (-4 *5 (-830)) (-4 *6 (-776)) + (-4 *8 (-928 *7 *6 *5)) (-5 *2 (-412 (-1148 *8))) + (-5 *1 (-532 *5 *6 *7 *8)) (-5 *3 (-1148 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-412 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-627 *5) *6)) + (-4 *5 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) + (-4 *6 (-1211 *5)) (-5 *2 (-627 (-635 (-401 *6)))) + (-5 *1 (-639 *5 *6)) (-5 *3 (-635 (-401 *6))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-544)) - (-5 *2 (-1149)) (-5 *1 (-1019 *4))))) -(((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-358) (-145) (-1014 (-552)) (-1014 (-402 (-552))))) - (-4 *5 (-1208 *4)) (-5 *2 (-625 (-633 (-402 *5)))) - (-5 *1 (-637 *4 *5)) (-5 *3 (-633 (-402 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-625 (-114)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-307)) (-5 *1 (-291)))) + (-4 *4 (-13 (-357) (-144) (-1017 (-552)) (-1017 (-401 (-552))))) + (-4 *5 (-1211 *4)) (-5 *2 (-627 (-635 (-401 *5)))) + (-5 *1 (-639 *4 *5)) (-5 *3 (-635 (-401 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-307)) (-5 *1 (-291)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-307)) (-5 *1 (-291)))) + (-12 (-5 *3 (-802 *4)) (-4 *4 (-830)) (-5 *2 (-627 (-654 *4))) + (-5 *1 (-654 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-625 (-1131))) (-5 *3 (-1131)) (-5 *2 (-307)) - (-5 *1 (-291))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-231 *3)) - (-4 *3 (-1073)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4353)) (-4 *1 (-231 *2)) (-4 *2 (-1073)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-277 *2)) (-4 *2 (-1186)) (-4 *2 (-1073)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1186)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-594 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-552)) (-4 *4 (-1073)) - (-5 *1 (-718 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-5 *1 (-718 *2)) (-4 *2 (-1073)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34))) - (-4 *4 (-13 (-1073) (-34))) (-5 *1 (-1114 *3 *4))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1073)) (-4 *2 (-827)) - (-5 *1 (-113 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) - ((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073))))) -(((*1 *1 *1) - (-12 (-4 *2 (-145)) (-4 *2 (-302)) (-4 *2 (-446)) (-4 *3 (-827)) - (-4 *4 (-773)) (-5 *1 (-963 *2 *3 *4 *5)) (-4 *5 (-925 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-311 (-552))) (-5 *1 (-1092)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) - (-4 *2 (-13 (-425 *3) (-1171)))))) + (-12 (-5 *4 (-552)) (-5 *2 (-627 *3)) (-5 *1 (-678 *3)) + (-4 *3 (-1211 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-830)) (-4 *5 (-776)) (-4 *6 (-343)) (-5 *2 (-412 *3)) + (-5 *1 (-680 *4 *5 *6 *3)) (-4 *3 (-928 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-830)) (-4 *5 (-776)) (-4 *6 (-343)) + (-4 *7 (-928 *6 *5 *4)) (-5 *2 (-412 (-1148 *7))) + (-5 *1 (-680 *4 *5 *6 *7)) (-5 *3 (-1148 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-776)) + (-4 *5 + (-13 (-830) + (-10 -8 (-15 -3562 ((-1152) $)) + (-15 -4344 ((-3 $ "failed") (-1152)))))) + (-4 *6 (-301)) (-5 *2 (-412 *3)) (-5 *1 (-713 *4 *5 *6 *3)) + (-4 *3 (-928 (-931 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-776)) + (-4 *5 (-13 (-830) (-10 -8 (-15 -3562 ((-1152) $))))) (-4 *6 (-544)) + (-5 *2 (-412 *3)) (-5 *1 (-715 *4 *5 *6 *3)) + (-4 *3 (-928 (-401 (-931 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-13 (-301) (-144))) + (-5 *2 (-412 *3)) (-5 *1 (-716 *4 *5 *6 *3)) + (-4 *3 (-928 (-401 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-830)) (-4 *5 (-776)) (-4 *6 (-13 (-301) (-144))) + (-5 *2 (-412 *3)) (-5 *1 (-724 *4 *5 *6 *3)) + (-4 *3 (-928 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-830)) (-4 *5 (-776)) (-4 *6 (-13 (-301) (-144))) + (-4 *7 (-928 *6 *5 *4)) (-5 *2 (-412 (-1148 *7))) + (-5 *1 (-724 *4 *5 *6 *7)) (-5 *3 (-1148 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-412 *3)) (-5 *1 (-986 *3)) + (-4 *3 (-1211 (-401 (-552)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-412 *3)) (-5 *1 (-1020 *3)) + (-4 *3 (-1211 (-401 (-931 (-552))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1211 (-401 (-552)))) + (-4 *5 (-13 (-357) (-144) (-707 (-401 (-552)) *4))) + (-5 *2 (-412 *3)) (-5 *1 (-1055 *4 *5 *3)) (-4 *3 (-1211 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1211 (-401 (-931 (-552))))) + (-4 *5 (-13 (-357) (-144) (-707 (-401 (-931 (-552))) *4))) + (-5 *2 (-412 *3)) (-5 *1 (-1057 *4 *5 *3)) (-4 *3 (-1211 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-445)) + (-4 *7 (-928 *6 *4 *5)) (-5 *2 (-412 (-1148 (-401 *7)))) + (-5 *1 (-1147 *4 *5 *6 *7)) (-5 *3 (-1148 (-401 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-412 *1)) (-4 *1 (-1193)))) + ((*1 *2 *3) + (-12 (-5 *2 (-412 *3)) (-5 *1 (-1200 *3)) (-4 *3 (-1211 (-552)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-928 *6))) (-5 *4 (-625 (-1149))) - (-4 *6 (-13 (-544) (-1014 *5))) (-4 *5 (-544)) - (-5 *2 (-625 (-625 (-289 (-402 (-928 *6)))))) (-5 *1 (-1015 *5 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) -(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1149)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-297)) (-5 *2 (-112))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 (-1113 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1073) (-34))) (-4 *5 (-13 (-1073) (-34))) - (-5 *1 (-1114 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-625 (-1113 *3 *4))) (-4 *3 (-13 (-1073) (-34))) - (-4 *4 (-13 (-1073) (-34))) (-5 *1 (-1114 *3 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-488))))) -(((*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171))))) - ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-839)))) - ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-839))))) -(((*1 *2 *2) (-12 (-5 *2 (-897)) (|has| *1 (-6 -4344)) (-4 *1 (-399)))) - ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-897)))) - ((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-679)))) - ((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-679))))) -(((*1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-827)) (-4 *3 (-1073))))) -(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) - ((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1011))))) + (-12 (-5 *4 (-754)) (-5 *2 (-111)) (-5 *1 (-574 *3)) (-4 *3 (-537))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1132 (-1132 *4))) (-5 *2 (-1132 *4)) (-5 *1 (-1136 *4)) + (-4 *4 (-38 (-401 (-552)))) (-4 *4 (-1028))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-155 *3 *2)) + (-4 *2 (-424 *3))))) +(((*1 *1) (-5 *1 (-1237)))) +(((*1 *1 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-933))))) (((*1 *2 *1) - (-12 (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 *4)))) - (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1073)) (-4 *4 (-23)) (-14 *5 *4)))) + (-12 (-14 *3 (-627 (-1152))) (-4 *4 (-169)) + (-14 *6 + (-1 (-111) (-2 (|:| -4153 *5) (|:| -4067 *2)) + (-2 (|:| -4153 *5) (|:| -4067 *2)))) + (-4 *2 (-233 (-1383 *3) (-754))) (-5 *1 (-454 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-830)) (-4 *7 (-928 *4 *2 (-844 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-596 *5)) (-4 *5 (-425 *4)) (-4 *4 (-1014 (-552))) - (-4 *4 (-13 (-827) (-544))) (-5 *2 (-1145 *5)) (-5 *1 (-32 *4 *5)))) + (-12 (-5 *2 (-111)) (-5 *1 (-39 *3)) (-4 *3 (-1211 (-48)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-900)) (-5 *2 (-1240)) (-5 *1 (-1236)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-900)) (-5 *2 (-1240)) (-5 *1 (-1237))))) +(((*1 *2 *2) + (-12 (-4 *3 (-830)) (-5 *1 (-908 *3 *2)) (-4 *2 (-424 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-596 *1)) (-4 *1 (-1025)) (-4 *1 (-297)) - (-5 *2 (-1145 *1))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-112)) - (-5 *1 (-963 *3 *4 *5 *6)) (-4 *6 (-925 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34))) - (-4 *4 (-13 (-1073) (-34)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902))))) -(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-484))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-1154))) (-5 *1 (-181))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-625 (-1 *4 (-625 *4)))) (-4 *4 (-1073)) - (-5 *1 (-113 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1073)) - (-5 *1 (-113 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-625 (-1 *4 (-625 *4)))) - (-5 *1 (-113 *4)) (-4 *4 (-1073))))) -(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) - ((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1011))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-275))))) -(((*1 *2 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-839))))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-552)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1131)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-499)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-577)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-472)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-136)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-154)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1139)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-608)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1069)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1063)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1047)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-946)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-178)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1012)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-306)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-651)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-152)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-518)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1243)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1040)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-510)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-661)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-95)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1088)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-132)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-137)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1242)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-656)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-214)))) - ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-517)))) - ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1154)))) - ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1154)))) - ((*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1154)))) - ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1154))))) + (-12 (-5 *3 (-1152)) (-5 *2 (-310 (-552))) (-5 *1 (-909))))) (((*1 *2 *2) - (-12 (-4 *3 (-1025)) (-4 *4 (-1208 *3)) (-5 *1 (-162 *3 *4 *2)) - (-4 *2 (-1208 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-289 *2)) (-4 *2 (-1186))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34))) - (-4 *3 (-13 (-1073) (-34)))))) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-902))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4)) - (-4 *4 (-1186)) (-5 *2 (-112))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-142)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) - ((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234))))) + (-12 (-4 *5 (-301)) (-4 *6 (-367 *5)) (-4 *4 (-367 *5)) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) + (-5 *1 (-1100 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169))))) +(((*1 *2 *3) + (-12 (-5 *3 (-931 (-552))) (-5 *2 (-627 *1)) (-4 *1 (-991)))) + ((*1 *2 *3) + (-12 (-5 *3 (-931 (-401 (-552)))) (-5 *2 (-627 *1)) (-4 *1 (-991)))) + ((*1 *2 *3) (-12 (-5 *3 (-931 *1)) (-4 *1 (-991)) (-5 *2 (-627 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1148 (-552))) (-5 *2 (-627 *1)) (-4 *1 (-991)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1148 (-401 (-552)))) (-5 *2 (-627 *1)) (-4 *1 (-991)))) + ((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-991)) (-5 *2 (-627 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-828) (-357))) (-4 *3 (-1211 *4)) (-5 *2 (-627 *1)) + (-4 *1 (-1045 *4 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1028))))) (((*1 *2 *1) - (-12 (-5 *2 (-625 (-52))) (-5 *1 (-868 *3)) (-4 *3 (-1073))))) -(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1186)))) + (-12 (-5 *2 (-627 (-2 (|:| |k| (-654 *3)) (|:| |c| *4)))) + (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) + (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1017 (-48))) + (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-4 *5 (-424 *4)) + (-5 *2 (-412 (-1148 (-48)))) (-5 *1 (-429 *4 *5 *3)) + (-4 *3 (-1211 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-310 (-166 (-373)))) (-5 *1 (-324)))) + ((*1 *1 *2) (-12 (-5 *2 (-310 (-552))) (-5 *1 (-324)))) + ((*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-5 *1 (-324)))) + ((*1 *1 *2) (-12 (-5 *2 (-310 (-676))) (-5 *1 (-324)))) + ((*1 *1 *2) (-12 (-5 *2 (-310 (-683))) (-5 *1 (-324)))) + ((*1 *1 *2) (-12 (-5 *2 (-310 (-681))) (-5 *1 (-324)))) + ((*1 *1) (-5 *1 (-324)))) +(((*1 *2 *3) (-12 (-5 *3 (-310 (-220))) (-5 *2 (-220)) (-5 *1 (-299))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 (-1070 (-401 (-552))))) (-5 *1 (-257)))) + ((*1 *1 *2) (-12 (-5 *2 (-627 (-1070 (-373)))) (-5 *1 (-257))))) +(((*1 *2 *3) + (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1211 (-552))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-111)) (-5 *1 (-119 *3)) (-4 *3 (-1211 (-552)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-754)) (-5 *1 (-766 *2)) (-4 *2 (-38 (-401 (-552)))) + (-4 *2 (-169))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-928 (-374))) (-5 *1 (-334 *3 *4 *5)) - (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149))) - (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) + (-12 (-5 *2 (-931 (-373))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) + (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) ((*1 *1 *2) - (-12 (-5 *2 (-402 (-928 (-374)))) (-5 *1 (-334 *3 *4 *5)) - (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149))) - (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) + (-12 (-5 *2 (-401 (-931 (-373)))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) + (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) ((*1 *1 *2) - (-12 (-5 *2 (-311 (-374))) (-5 *1 (-334 *3 *4 *5)) - (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149))) - (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) + (-12 (-5 *2 (-310 (-373))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1017 (-373))) (-14 *3 (-627 (-1152))) + (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) ((*1 *1 *2) - (-12 (-5 *2 (-928 (-552))) (-5 *1 (-334 *3 *4 *5)) - (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149))) - (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) + (-12 (-5 *2 (-931 (-552))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) + (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) ((*1 *1 *2) - (-12 (-5 *2 (-402 (-928 (-552)))) (-5 *1 (-334 *3 *4 *5)) - (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149))) - (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) + (-12 (-5 *2 (-401 (-931 (-552)))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) + (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) ((*1 *1 *2) - (-12 (-5 *2 (-311 (-552))) (-5 *1 (-334 *3 *4 *5)) - (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149))) - (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) + (-12 (-5 *2 (-310 (-552))) (-5 *1 (-333 *3 *4 *5)) + (-4 *5 (-1017 (-552))) (-14 *3 (-627 (-1152))) + (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) ((*1 *1 *2) - (-12 (-5 *2 (-1149)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 *2)) - (-14 *4 (-625 *2)) (-4 *5 (-382)))) + (-12 (-5 *2 (-1152)) (-5 *1 (-333 *3 *4 *5)) (-14 *3 (-627 *2)) + (-14 *4 (-627 *2)) (-4 *5 (-381)))) ((*1 *1 *2) - (-12 (-5 *2 (-311 *5)) (-4 *5 (-382)) (-5 *1 (-334 *3 *4 *5)) - (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))))) - ((*1 *1 *2) (-12 (-5 *2 (-669 (-402 (-928 (-552))))) (-4 *1 (-379)))) - ((*1 *1 *2) (-12 (-5 *2 (-669 (-402 (-928 (-374))))) (-4 *1 (-379)))) - ((*1 *1 *2) (-12 (-5 *2 (-669 (-928 (-552)))) (-4 *1 (-379)))) - ((*1 *1 *2) (-12 (-5 *2 (-669 (-928 (-374)))) (-4 *1 (-379)))) - ((*1 *1 *2) (-12 (-5 *2 (-669 (-311 (-552)))) (-4 *1 (-379)))) - ((*1 *1 *2) (-12 (-5 *2 (-669 (-311 (-374)))) (-4 *1 (-379)))) - ((*1 *1 *2) (-12 (-5 *2 (-402 (-928 (-552)))) (-4 *1 (-391)))) - ((*1 *1 *2) (-12 (-5 *2 (-402 (-928 (-374)))) (-4 *1 (-391)))) - ((*1 *1 *2) (-12 (-5 *2 (-928 (-552))) (-4 *1 (-391)))) - ((*1 *1 *2) (-12 (-5 *2 (-928 (-374))) (-4 *1 (-391)))) - ((*1 *1 *2) (-12 (-5 *2 (-311 (-552))) (-4 *1 (-391)))) - ((*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-4 *1 (-391)))) - ((*1 *1 *2) (-12 (-5 *2 (-1232 (-402 (-928 (-552))))) (-4 *1 (-435)))) - ((*1 *1 *2) (-12 (-5 *2 (-1232 (-402 (-928 (-374))))) (-4 *1 (-435)))) - ((*1 *1 *2) (-12 (-5 *2 (-1232 (-928 (-552)))) (-4 *1 (-435)))) - ((*1 *1 *2) (-12 (-5 *2 (-1232 (-928 (-374)))) (-4 *1 (-435)))) - ((*1 *1 *2) (-12 (-5 *2 (-1232 (-311 (-552)))) (-4 *1 (-435)))) - ((*1 *1 *2) (-12 (-5 *2 (-1232 (-311 (-374)))) (-4 *1 (-435)))) + (-12 (-5 *2 (-310 *5)) (-4 *5 (-381)) (-5 *1 (-333 *3 *4 *5)) + (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))))) + ((*1 *1 *2) (-12 (-5 *2 (-671 (-401 (-931 (-552))))) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-671 (-401 (-931 (-373))))) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-671 (-931 (-552)))) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-671 (-931 (-373)))) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-671 (-310 (-552)))) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-671 (-310 (-373)))) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-401 (-931 (-552)))) (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-401 (-931 (-373)))) (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-931 (-552))) (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-931 (-373))) (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-310 (-552))) (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-310 (-373))) (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-1235 (-401 (-931 (-552))))) (-4 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-1235 (-401 (-931 (-373))))) (-4 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-1235 (-931 (-552)))) (-4 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-1235 (-931 (-373)))) (-4 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-1235 (-310 (-552)))) (-4 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-1235 (-310 (-373)))) (-4 *1 (-434)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) - (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) - (|:| |relerr| (-221)))) + (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) + (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) (|:| |mdnia| - (-2 (|:| |fn| (-311 (-221))) - (|:| -3315 (-625 (-1067 (-820 (-221))))) - (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) - (-5 *1 (-749)))) + (-2 (|:| |fn| (-310 (-220))) + (|:| -1707 (-627 (-1070 (-823 (-220))))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) + (-5 *1 (-752)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) - (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) - (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) - (|:| |abserr| (-221)) (|:| |relerr| (-221)))) - (-5 *1 (-788)))) + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) + (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) + (-5 *1 (-791)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) - (|:| |lb| (-625 (-820 (-221)))) - (|:| |cf| (-625 (-311 (-221)))) - (|:| |ub| (-625 (-820 (-221)))))) + (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) + (|:| |lb| (-627 (-823 (-220)))) + (|:| |cf| (-627 (-310 (-220)))) + (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| - (-2 (|:| |lfn| (-625 (-311 (-221)))) - (|:| -2071 (-625 (-221))))))) - (-5 *1 (-818)))) + (-2 (|:| |lfn| (-627 (-310 (-220)))) + (|:| -3002 (-627 (-220))))))) + (-5 *1 (-821)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |pde| (-625 (-311 (-221)))) + (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| - (-625 - (-2 (|:| |start| (-221)) (|:| |finish| (-221)) - (|:| |grid| (-751)) (|:| |boundaryType| (-552)) - (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) - (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) - (|:| |tol| (-221)))) - (-5 *1 (-874)))) - ((*1 *1 *2) - (-12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025)) - (-4 *4 (-773)) (-4 *5 (-827)) (-4 *1 (-952 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1186)))) - ((*1 *1 *2) - (-1523 - (-12 (-5 *2 (-928 *3)) - (-12 (-2960 (-4 *3 (-38 (-402 (-552))))) - (-2960 (-4 *3 (-38 (-552)))) (-4 *5 (-598 (-1149)))) - (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) - (-4 *5 (-827))) - (-12 (-5 *2 (-928 *3)) - (-12 (-2960 (-4 *3 (-537))) (-2960 (-4 *3 (-38 (-402 (-552))))) - (-4 *3 (-38 (-552))) (-4 *5 (-598 (-1149)))) - (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) - (-4 *5 (-827))) - (-12 (-5 *2 (-928 *3)) - (-12 (-2960 (-4 *3 (-968 (-552)))) (-4 *3 (-38 (-402 (-552)))) - (-4 *5 (-598 (-1149)))) - (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) - (-4 *5 (-827))))) - ((*1 *1 *2) - (-1523 - (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5)) - (-12 (-2960 (-4 *3 (-38 (-402 (-552))))) (-4 *3 (-38 (-552))) - (-4 *5 (-598 (-1149)))) - (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))) - (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5)) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149)))) - (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))))) - ((*1 *1 *2) - (-12 (-5 *2 (-928 (-402 (-552)))) (-4 *1 (-1039 *3 *4 *5)) - (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025)) - (-4 *4 (-773)) (-4 *5 (-827))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-897)) (-5 *1 (-1008 *2)) - (-4 *2 (-13 (-1073) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1186)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-928 (-374))) (-5 *1 (-334 *3 *4 *5)) - (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149))) - (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) + (-627 + (-2 (|:| |start| (-220)) (|:| |finish| (-220)) + (|:| |grid| (-754)) (|:| |boundaryType| (-552)) + (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) + (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) + (|:| |tol| (-220)))) + (-5 *1 (-877)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-402 (-928 (-374)))) (-5 *1 (-334 *3 *4 *5)) - (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149))) - (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) + (-12 (-5 *2 (-627 *6)) (-4 *6 (-1042 *3 *4 *5)) (-4 *3 (-1028)) + (-4 *4 (-776)) (-4 *5 (-830)) (-4 *1 (-955 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1189)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-311 (-374))) (-5 *1 (-334 *3 *4 *5)) - (-4 *5 (-1014 (-374))) (-14 *3 (-625 (-1149))) - (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) + (-1559 + (-12 (-5 *2 (-931 *3)) + (-12 (-1681 (-4 *3 (-38 (-401 (-552))))) + (-1681 (-4 *3 (-38 (-552)))) (-4 *5 (-600 (-1152)))) + (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) + (-4 *5 (-830))) + (-12 (-5 *2 (-931 *3)) + (-12 (-1681 (-4 *3 (-537))) (-1681 (-4 *3 (-38 (-401 (-552))))) + (-4 *3 (-38 (-552))) (-4 *5 (-600 (-1152)))) + (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) + (-4 *5 (-830))) + (-12 (-5 *2 (-931 *3)) + (-12 (-1681 (-4 *3 (-971 (-552)))) (-4 *3 (-38 (-401 (-552)))) + (-4 *5 (-600 (-1152)))) + (-4 *3 (-1028)) (-4 *1 (-1042 *3 *4 *5)) (-4 *4 (-776)) + (-4 *5 (-830))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-928 (-552))) (-5 *1 (-334 *3 *4 *5)) - (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149))) - (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) + (-1559 + (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) + (-12 (-1681 (-4 *3 (-38 (-401 (-552))))) (-4 *3 (-38 (-552))) + (-4 *5 (-600 (-1152)))) + (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))) + (-12 (-5 *2 (-931 (-552))) (-4 *1 (-1042 *3 *4 *5)) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152)))) + (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-402 (-928 (-552)))) (-5 *1 (-334 *3 *4 *5)) - (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149))) - (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-311 (-552))) (-5 *1 (-334 *3 *4 *5)) - (-4 *5 (-1014 (-552))) (-14 *3 (-625 (-1149))) - (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-334 *3 *4 *5)) - (-14 *3 (-625 *2)) (-14 *4 (-625 *2)) (-4 *5 (-382)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-311 *5)) (-4 *5 (-382)) - (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 (-1149))) - (-14 *4 (-625 (-1149))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-669 (-402 (-928 (-552))))) (-4 *1 (-379)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-669 (-402 (-928 (-374))))) (-4 *1 (-379)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-669 (-928 (-552)))) (-4 *1 (-379)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-669 (-928 (-374)))) (-4 *1 (-379)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-669 (-311 (-552)))) (-4 *1 (-379)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-669 (-311 (-374)))) (-4 *1 (-379)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-402 (-928 (-552)))) (-4 *1 (-391)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-402 (-928 (-374)))) (-4 *1 (-391)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-928 (-552))) (-4 *1 (-391)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-928 (-374))) (-4 *1 (-391)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-552))) (-4 *1 (-391)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-311 (-374))) (-4 *1 (-391)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1232 (-402 (-928 (-552))))) (-4 *1 (-435)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1232 (-402 (-928 (-374))))) (-4 *1 (-435)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1232 (-928 (-552)))) (-4 *1 (-435)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1232 (-928 (-374)))) (-4 *1 (-435)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1232 (-311 (-552)))) (-4 *1 (-435)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1232 (-311 (-374)))) (-4 *1 (-435)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-344)) (-4 *5 (-324 *4)) (-4 *6 (-1208 *5)) - (-5 *2 (-1145 (-1145 *4))) (-5 *1 (-757 *4 *5 *6 *3 *7)) - (-4 *3 (-1208 *6)) (-14 *7 (-897)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-625 *6)) (-4 *6 (-1039 *3 *4 *5)) - (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) - (-4 *1 (-952 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1186)))) - ((*1 *1 *2) - (|partial| -1523 - (-12 (-5 *2 (-928 *3)) - (-12 (-2960 (-4 *3 (-38 (-402 (-552))))) - (-2960 (-4 *3 (-38 (-552)))) (-4 *5 (-598 (-1149)))) - (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) - (-4 *5 (-827))) - (-12 (-5 *2 (-928 *3)) - (-12 (-2960 (-4 *3 (-537))) (-2960 (-4 *3 (-38 (-402 (-552))))) - (-4 *3 (-38 (-552))) (-4 *5 (-598 (-1149)))) - (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) - (-4 *5 (-827))) - (-12 (-5 *2 (-928 *3)) - (-12 (-2960 (-4 *3 (-968 (-552)))) (-4 *3 (-38 (-402 (-552)))) - (-4 *5 (-598 (-1149)))) - (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) - (-4 *5 (-827))))) - ((*1 *1 *2) - (|partial| -1523 - (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5)) - (-12 (-2960 (-4 *3 (-38 (-402 (-552))))) (-4 *3 (-38 (-552))) - (-4 *5 (-598 (-1149)))) - (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))) - (-12 (-5 *2 (-928 (-552))) (-4 *1 (-1039 *3 *4 *5)) - (-12 (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149)))) - (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-928 (-402 (-552)))) (-4 *1 (-1039 *3 *4 *5)) - (-4 *3 (-38 (-402 (-552)))) (-4 *5 (-598 (-1149))) - (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))))) + (-12 (-5 *2 (-931 (-401 (-552)))) (-4 *1 (-1042 *3 *4 *5)) + (-4 *3 (-38 (-401 (-552)))) (-4 *5 (-600 (-1152))) (-4 *3 (-1028)) + (-4 *4 (-776)) (-4 *5 (-830))))) (((*1 *1 *2) - (-12 (-5 *2 (-625 (-2 (|:| |gen| *3) (|:| -2863 *4)))) - (-4 *3 (-1073)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-629 *3 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1113 *3 *2)) (-4 *3 (-13 (-1073) (-34))) - (-4 *2 (-13 (-1073) (-34)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-902))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4)) - (-4 *4 (-1186)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234)))) - ((*1 *2) (-12 (-5 *2 (-374)) (-5 *1 (-1234))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-625 (-52))) (-5 *1 (-868 *3)) (-4 *3 (-1073))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-1232 *5))) (-5 *4 (-552)) (-5 *2 (-1232 *5)) - (-5 *1 (-1005 *5)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025))))) -(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1186)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4354)) (-4 *1 (-368 *2)) (-4 *2 (-1186)))) - ((*1 *1 *1) - (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2) - (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34))) - (-4 *4 (-13 (-1073) (-34)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-902))))) -(((*1 *1 *2) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-481))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *1) (-5 *1 (-1234)))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-625 (-52))) (-5 *1 (-868 *3)) (-4 *3 (-1073))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-552)) (-4 *6 (-358)) (-4 *6 (-363)) - (-4 *6 (-1025)) (-5 *2 (-625 (-625 (-669 *6)))) (-5 *1 (-1005 *6)) - (-5 *3 (-625 (-669 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-358)) (-4 *4 (-363)) (-4 *4 (-1025)) - (-5 *2 (-625 (-625 (-669 *4)))) (-5 *1 (-1005 *4)) - (-5 *3 (-625 (-669 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025)) - (-5 *2 (-625 (-625 (-669 *5)))) (-5 *1 (-1005 *5)) - (-5 *3 (-625 (-669 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-897)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025)) - (-5 *2 (-625 (-625 (-669 *5)))) (-5 *1 (-1005 *5)) - (-5 *3 (-625 (-669 *5)))))) -(((*1 *1) - (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3) - (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1208 *4)) - (-4 *5 (-1208 (-402 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114))) - ((*1 *1 *1) (-5 *1 (-169))) ((*1 *1 *1) (-4 *1 (-537))) - ((*1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) - ((*1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34))) - (-4 *3 (-13 (-1073) (-34)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34))) - (-4 *3 (-13 (-1073) (-34)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-902))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-552))) (-5 *2 (-552)) (-5 *1 (-480 *4)) - (-4 *4 (-1208 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-625 (-258))) (-5 *1 (-1234)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-1131)) (-5 *1 (-1234)))) - ((*1 *1 *1) (-5 *1 (-1234)))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-112)) (-5 *1 (-868 *4)) - (-4 *4 (-1073))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-669 *5))) (-5 *4 (-552)) (-4 *5 (-358)) - (-4 *5 (-1025)) (-5 *2 (-112)) (-5 *1 (-1005 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-669 *4))) (-4 *4 (-358)) (-4 *4 (-1025)) - (-5 *2 (-112)) (-5 *1 (-1005 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2) - (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1073) (-34))) (-4 *6 (-13 (-1073) (-34))) - (-5 *2 (-112)) (-5 *1 (-1113 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1149)) (-5 *5 (-1067 (-221))) (-5 *2 (-903)) - (-5 *1 (-901 *3)) (-4 *3 (-598 (-528))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1149)) (-5 *2 (-903)) (-5 *1 (-901 *3)) - (-4 *3 (-598 (-528))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-903)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1067 (-221))) - (-5 *1 (-903))))) + (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1076)) (-5 *1 (-884 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-625 *3)) (-4 *3 (-1208 (-552))) (-5 *1 (-480 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-1137 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1234)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1234))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 (-1149))) (-5 *3 (-52)) (-5 *1 (-868 *4)) - (-4 *4 (-1073))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-625 (-669 *6))) (-5 *4 (-112)) (-5 *5 (-552)) - (-5 *2 (-669 *6)) (-5 *1 (-1005 *6)) (-4 *6 (-358)) (-4 *6 (-1025)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-625 (-669 *4))) (-5 *2 (-669 *4)) (-5 *1 (-1005 *4)) - (-4 *4 (-358)) (-4 *4 (-1025)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-625 (-669 *5))) (-5 *4 (-552)) (-5 *2 (-669 *5)) - (-5 *1 (-1005 *5)) (-4 *5 (-358)) (-4 *5 (-1025))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1073)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3) - (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1208 *4)) - (-4 *5 (-1208 (-402 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-552)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1186)) - (-4 *4 (-368 *2)) (-4 *5 (-368 *2)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4354)) (-4 *1 (-119 *3)) - (-4 *3 (-1186)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4354)) (-4 *1 (-119 *3)) - (-4 *3 (-1186)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-751)) (-5 *1 (-209 *4 *2)) (-14 *4 (-897)) - (-4 *2 (-1073)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4354)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1073)) - (-4 *2 (-1186)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1149)) (-5 *1 (-614)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1199 (-552))) (|has| *1 (-6 -4354)) (-4 *1 (-631 *2)) - (-4 *2 (-1186)))) - ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-625 (-552))) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) - (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4354)) (-4 *1 (-986 *2)) - (-4 *2 (-1186)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1186)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-1073)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) - (-4 *2 (-1186)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *3)) - (-4 *3 (-1186)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) - (-4 *2 (-1186))))) -(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1073) (-34))) - (-5 *2 (-112)) (-5 *1 (-1113 *4 *5)) (-4 *4 (-13 (-1073) (-34)))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-167 (-221))) (-5 *5 (-552)) (-5 *6 (-1131)) - (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-903))))) -(((*1 *2 *2) - (-12 (-5 *2 (-625 *3)) (-4 *3 (-1208 (-552))) (-5 *1 (-480 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1232 (-669 *4))) (-4 *4 (-170)) - (-5 *2 (-1232 (-669 (-928 *4)))) (-5 *1 (-185 *4))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-751)) (-5 *3 (-919 *4)) (-4 *1 (-1107 *4)) - (-4 *4 (-1025)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-751)) (-5 *4 (-919 (-221))) (-5 *2 (-1237)) - (-5 *1 (-1234))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-625 (-1149))) (|:| |pred| (-52)))) - (-5 *1 (-868 *3)) (-4 *3 (-1073))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-669 *5))) (-5 *4 (-1232 *5)) (-4 *5 (-302)) - (-4 *5 (-1025)) (-5 *2 (-669 *5)) (-5 *1 (-1005 *5))))) -(((*1 *2) (-12 (-5 *2 (-820 (-552))) (-5 *1 (-526)))) - ((*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1073))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1073)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2) - (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-402 (-928 *5)))) (-5 *4 (-625 (-1149))) - (-4 *5 (-544)) (-5 *2 (-625 (-625 (-928 *5)))) (-5 *1 (-1155 *5))))) -(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1057 *3)) (-4 *3 (-131))))) -(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) - ((*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) - (-4 *2 (-425 *3)))) - ((*1 *1 *1) (-4 *1 (-1112)))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-167 (-221))) (-5 *5 (-552)) (-5 *6 (-1131)) - (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) - ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) - ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1208 (-552)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-751)) (-5 *1 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-183))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-1233)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-868 *3)) (-4 *3 (-1073))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-669 *5))) (-4 *5 (-302)) (-4 *5 (-1025)) - (-5 *2 (-1232 (-1232 *5))) (-5 *1 (-1005 *5)) (-5 *4 (-1232 *5))))) -(((*1 *2) (-12 (-5 *2 (-820 (-552))) (-5 *1 (-526)))) - ((*1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1073))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-552) (-552))) (-5 *1 (-356 *3)) (-4 *3 (-1073)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-751) (-751))) (-5 *1 (-381 *3)) (-4 *3 (-1073)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1073))))) -(((*1 *2 *3) - (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1208 *4)) - (-4 *5 (-1208 (-402 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) - ((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) - (-4 *2 (-425 *3)))) - ((*1 *1 *1) (-4 *1 (-1112)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-478 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1186)) (-5 *1 (-180 *3 *2)) (-4 *2 (-654 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-897)) (-5 *2 (-1237)) (-5 *1 (-1233)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-897)) (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-625 (-669 *4))) (-5 *2 (-669 *4)) (-4 *4 (-1025)) - (-5 *1 (-1005 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1073)) - (-4 *4 (-130)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1073)) (-5 *1 (-356 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1073)) (-5 *1 (-381 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1073)) (-5 *1 (-629 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2) - (-12 (-4 *3 (-1190)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) - (-5 *2 (-1232 *1)) (-4 *1 (-337 *3 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) - (-4 *2 (-425 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1112)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) - ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) - ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-625 (-499))) (-5 *2 (-499)) (-5 *1 (-477))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1186)) (-5 *2 (-751)) (-5 *1 (-180 *4 *3)) - (-4 *3 (-654 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-625 (-275))) (-5 *1 (-275)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 (-1154))) (-5 *1 (-1154))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-751)) (-5 *4 (-897)) (-5 *2 (-1237)) (-5 *1 (-1233)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-751)) (-5 *4 (-897)) (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *2 *1) - (-12 (-5 *2 (-625 (-52))) (-5 *1 (-868 *3)) (-4 *3 (-1073))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1232 (-1232 *4))) (-4 *4 (-1025)) (-5 *2 (-669 *4)) - (-5 *1 (-1005 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-627 *3)) (-4 *3 (-1073))))) -(((*1 *2 *1) - (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) - (-4 *2 (-425 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1112)))) + (-12 (-5 *2 (-627 *3)) (-4 *3 (-1211 (-552))) (-5 *1 (-479 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1189)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830)))) + ((*1 *1 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-625 (-552))) (-5 *1 (-243 *3 *4)) - (-14 *3 (-625 (-1149))) (-4 *4 (-1025)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-625 (-552))) (-14 *3 (-625 (-1149))) - (-5 *1 (-448 *3 *4 *5)) (-4 *4 (-1025)) - (-4 *5 (-234 (-1471 *3) (-751))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-625 (-552))) (-5 *1 (-475 *3 *4)) - (-14 *3 (-625 (-1149))) (-4 *4 (-1025))))) -(((*1 *1 *1) (-12 (-4 *1 (-368 *2)) (-4 *2 (-1186)) (-4 *2 (-827)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-368 *3)) (-4 *3 (-1186)))) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 *4)) + (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1154 (-401 (-552)))) (-5 *2 (-401 (-552))) + (-5 *1 (-185))))) +(((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-5 *2 (-625 (-881 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1073)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) - (-4 *6 (-1039 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -4189 *1) (|:| |upper| *1))) - (-4 *1 (-952 *4 *5 *3 *6))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-1186)) (-5 *1 (-180 *3 *2)) - (-4 *2 (-654 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) - (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) - (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) - (-5 *3 (-625 (-258))) (-5 *1 (-256)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) - (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) - (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) - (-5 *1 (-258)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-552)) (-5 *4 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) - ((*1 *2 *1 *3) - (-12 - (-5 *3 - (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) - (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) - (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) - (-5 *2 (-1237)) (-5 *1 (-1234)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -1487 (-221)) - (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) - (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) - (-5 *1 (-1234)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-625 (-868 *3))) (-5 *1 (-868 *3)) - (-4 *3 (-1073))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-881 (-552))) (-5 *4 (-552)) (-5 *2 (-669 *4)) - (-5 *1 (-1004 *5)) (-4 *5 (-1025)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-552))) (-5 *2 (-669 (-552))) (-5 *1 (-1004 *4)) - (-4 *4 (-1025)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-881 (-552)))) (-5 *4 (-552)) - (-5 *2 (-625 (-669 *4))) (-5 *1 (-1004 *5)) (-4 *5 (-1025)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-625 (-552)))) (-5 *2 (-625 (-669 (-552)))) - (-5 *1 (-1004 *4)) (-4 *4 (-1025))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-669 *1)) (-5 *4 (-1232 *1)) (-4 *1 (-621 *5)) - (-4 *5 (-1025)) - (-5 *2 (-2 (|:| -2351 (-669 *5)) (|:| |vec| (-1232 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-669 *1)) (-4 *1 (-621 *4)) (-4 *4 (-1025)) - (-5 *2 (-669 *4))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1208 *4)) - (-4 *5 (-1208 (-402 *3))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-5 *2 (-112))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) - (-4 *2 (-425 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1112)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1067 *3)) (-4 *3 (-925 *7 *6 *4)) (-4 *6 (-773)) - (-4 *4 (-827)) (-4 *7 (-544)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-552)))) - (-5 *1 (-579 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-544)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-552)))) - (-5 *1 (-579 *5 *4 *6 *3)) (-4 *3 (-925 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-839))) ((*1 *1 *1 *1) (-5 *1 (-839))) - ((*1 *1 *1) (-5 *1 (-839))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1149)) - (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-1141 *4 *2)) (-4 *2 (-13 (-425 *4) (-158) (-27) (-1171))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1065 *2)) (-4 *2 (-13 (-425 *4) (-158) (-27) (-1171))) - (-4 *4 (-13 (-544) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-1141 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-544) (-827) (-1014 (-552)))) - (-5 *2 (-402 (-928 *5))) (-5 *1 (-1142 *5)) (-5 *3 (-928 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-544) (-827) (-1014 (-552)))) - (-5 *2 (-3 (-402 (-928 *5)) (-311 *5))) (-5 *1 (-1142 *5)) - (-5 *3 (-402 (-928 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1065 (-928 *5))) (-5 *3 (-928 *5)) - (-4 *5 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-402 *3)) - (-5 *1 (-1142 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1065 (-402 (-928 *5)))) (-5 *3 (-402 (-928 *5))) - (-4 *5 (-13 (-544) (-827) (-1014 (-552)))) (-5 *2 (-3 *3 (-311 *5))) - (-5 *1 (-1142 *5))))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) - ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-461)))) - ((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-552)) (-5 *2 (-112)) (-5 *1 (-474))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-358) (-825))) - (-5 *2 (-2 (|:| |start| *3) (|:| -3449 (-413 *3)))) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1073)) (-5 *2 (-112)) (-5 *1 (-861 *3 *4 *5)) - (-4 *3 (-1073)) (-4 *5 (-646 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-865 *3 *4)) (-4 *3 (-1073)) - (-4 *4 (-1073))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) - (-4 *5 (-368 *3)) (-5 *2 (-751)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) - (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-751))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-1004 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-625 (-669 *3))) (-4 *3 (-1025)) (-5 *1 (-1004 *3)))) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) ((*1 *2 *2) - (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-1004 *3)))) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-625 (-669 *3))) (-4 *3 (-1025)) (-5 *1 (-1004 *3))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1232 *4)) (-4 *4 (-621 *5)) (-4 *5 (-358)) - (-4 *5 (-544)) (-5 *2 (-1232 *5)) (-5 *1 (-620 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1232 *4)) (-4 *4 (-621 *5)) - (-2960 (-4 *5 (-358))) (-4 *5 (-544)) (-5 *2 (-1232 (-402 *5))) - (-5 *1 (-620 *5 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1232 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) - (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) - (-4 *2 (-425 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1112)))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-552)) (-5 *5 (-167 (-221))) (-5 *6 (-1131)) - (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-474))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) - (-4 *3 (-1208 (-167 *2)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-897)) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-1233)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-868 *4)) (-4 *4 (-1073)) (-4 *2 (-1073)) - (-5 *1 (-865 *4 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1186)) (-4 *4 (-368 *3)) - (-4 *5 (-368 *3)) (-5 *2 (-751)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) - (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-751))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-669 *4)) (-5 *3 (-897)) (-4 *4 (-1025)) - (-5 *1 (-1004 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-625 (-669 *4))) (-5 *3 (-897)) (-4 *4 (-1025)) - (-5 *1 (-1004 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1232 *5)) (-4 *5 (-621 *4)) (-4 *4 (-544)) - (-5 *2 (-1232 *4)) (-5 *1 (-620 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1232 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) - (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4)))))) -(((*1 *1 *1) (-5 *1 (-221))) - ((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) - ((*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) - (-4 *2 (-425 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) - (-4 *2 (-425 *3)))) - ((*1 *1 *1) (-4 *1 (-1112))) ((*1 *1 *1 *1) (-4 *1 (-1112)))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1131)) (-5 *4 (-167 (-221))) (-5 *5 (-552)) - (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-625 (-841 *5))) (-14 *5 (-625 (-1149))) (-4 *6 (-446)) - (-5 *2 - (-2 (|:| |dpolys| (-625 (-243 *5 *6))) - (|:| |coords| (-625 (-552))))) - (-5 *1 (-465 *5 *6 *7)) (-5 *3 (-625 (-243 *5 *6))) (-4 *7 (-446))))) -(((*1 *2 *3) - (-12 (-5 *2 (-167 *4)) (-5 *1 (-179 *4 *3)) - (-4 *4 (-13 (-358) (-825))) (-4 *3 (-1208 *2))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-868 *4)) (-4 *4 (-1073)) (-5 *1 (-865 *4 *3)) - (-4 *3 (-1073))))) -(((*1 *2 *3) - (-12 (-5 *3 (-751)) (-5 *2 (-669 (-928 *4))) (-5 *1 (-1004 *4)) - (-4 *4 (-1025))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1232 *5)) (-4 *5 (-621 *4)) (-4 *4 (-544)) - (-5 *2 (-112)) (-5 *1 (-620 *4 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1232 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) - (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4)))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-221)) (-5 *3 (-751)) (-5 *1 (-222)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-167 (-221))) (-5 *3 (-751)) (-5 *1 (-222)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) - (-4 *2 (-425 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1112)))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1131)) (-5 *4 (-167 (-221))) (-5 *5 (-552)) - (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-625 (-475 *4 *5))) (-5 *3 (-625 (-841 *4))) - (-14 *4 (-625 (-1149))) (-4 *5 (-446)) (-5 *1 (-465 *4 *5 *6)) - (-4 *6 (-446))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) - (-4 *3 (-1208 (-167 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) - (-4 *3 (-1208 (-167 *2)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-868 *4)) (-4 *4 (-1073)) (-5 *1 (-865 *4 *3)) - (-4 *3 (-1073))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-669 *4)) (-5 *3 (-897)) (|has| *4 (-6 (-4355 "*"))) - (-4 *4 (-1025)) (-5 *1 (-1004 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-625 (-669 *4))) (-5 *3 (-897)) - (|has| *4 (-6 (-4355 "*"))) (-4 *4 (-1025)) (-5 *1 (-1004 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-289 (-820 *3))) (-4 *3 (-13 (-27) (-1171) (-425 *5))) - (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 - (-3 (-820 *3) - (-2 (|:| |leftHandLimit| (-3 (-820 *3) "failed")) - (|:| |rightHandLimit| (-3 (-820 *3) "failed"))) - "failed")) - (-5 *1 (-618 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-289 *3)) (-5 *5 (-1131)) - (-4 *3 (-13 (-27) (-1171) (-425 *6))) - (-4 *6 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-820 *3)) (-5 *1 (-618 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-289 (-820 (-928 *5)))) (-4 *5 (-446)) - (-5 *2 - (-3 (-820 (-402 (-928 *5))) - (-2 (|:| |leftHandLimit| (-3 (-820 (-402 (-928 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-820 (-402 (-928 *5))) "failed"))) - "failed")) - (-5 *1 (-619 *5)) (-5 *3 (-402 (-928 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-289 (-402 (-928 *5)))) (-5 *3 (-402 (-928 *5))) - (-4 *5 (-446)) - (-5 *2 - (-3 (-820 *3) - (-2 (|:| |leftHandLimit| (-3 (-820 *3) "failed")) - (|:| |rightHandLimit| (-3 (-820 *3) "failed"))) - "failed")) - (-5 *1 (-619 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-289 (-402 (-928 *6)))) (-5 *5 (-1131)) - (-5 *3 (-402 (-928 *6))) (-4 *6 (-446)) (-5 *2 (-820 *3)) - (-5 *1 (-619 *6))))) -(((*1 *2) - (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-5 *2 (-669 (-402 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) - ((*1 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) - (-4 *2 (-425 *3)))) - ((*1 *1 *1) (-4 *1 (-1112)))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-167 (-221))) (-5 *5 (-552)) (-5 *6 (-1131)) - (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-903))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-625 (-841 *5))) (-14 *5 (-625 (-1149))) (-4 *6 (-446)) - (-5 *2 (-625 (-625 (-243 *5 *6)))) (-5 *1 (-465 *5 *6 *7)) - (-5 *3 (-625 (-243 *5 *6))) (-4 *7 (-446))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-358) (-825))) (-5 *1 (-179 *3 *2)) - (-4 *2 (-1208 (-167 *3)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-868 *4)) (-4 *4 (-1073)) (-5 *1 (-865 *4 *3)) - (-4 *3 (-1073))))) -(((*1 *2 *3) - (-12 (-5 *3 (-669 (-402 (-928 (-552))))) - (-5 *2 (-625 (-669 (-311 (-552))))) (-5 *1 (-1007))))) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-289 (-813 *3))) - (-4 *5 (-13 (-446) (-827) (-1014 (-552)) (-621 (-552)))) - (-5 *2 (-813 *3)) (-5 *1 (-618 *5 *3)) - (-4 *3 (-13 (-27) (-1171) (-425 *5))))) + (-12 (-5 *3 (-627 (-401 (-931 (-552))))) + (-5 *2 (-627 (-627 (-288 (-931 *4))))) (-5 *1 (-374 *4)) + (-4 *4 (-13 (-828) (-357))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-289 (-813 (-928 *5)))) (-4 *5 (-446)) - (-5 *2 (-813 (-402 (-928 *5)))) (-5 *1 (-619 *5)) - (-5 *3 (-402 (-928 *5))))) + (-12 (-5 *3 (-627 (-288 (-401 (-931 (-552)))))) + (-5 *2 (-627 (-627 (-288 (-931 *4))))) (-5 *1 (-374 *4)) + (-4 *4 (-13 (-828) (-357))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-289 (-402 (-928 *5)))) (-5 *3 (-402 (-928 *5))) - (-4 *5 (-446)) (-5 *2 (-813 *3)) (-5 *1 (-619 *5))))) -(((*1 *2) - (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-5 *2 (-669 (-402 *4)))))) -(((*1 *1 *1 *1) (-5 *1 (-221))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-167 (-221))) (-5 *1 (-222)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) - (-4 *2 (-425 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-751)) (-5 *2 (-1 (-374))) (-5 *1 (-1016)))) - ((*1 *1 *1 *1) (-4 *1 (-1112)))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-167 (-221))) (-5 *5 (-552)) (-5 *6 (-1131)) - (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-925 *4 *6 *5)) - (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) - (-4 *6 (-773)) (-5 *2 (-112)) (-5 *1 (-900 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-13 (-302) (-145))) - (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-112)) - (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-925 *4 *6 *5))))) -(((*1 *1) (-5 *1 (-462)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-825))) (-5 *2 (-413 *3)) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))) + (-12 (-5 *3 (-401 (-931 (-552)))) (-5 *2 (-627 (-288 (-931 *4)))) + (-5 *1 (-374 *4)) (-4 *4 (-13 (-828) (-357))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-413 *3)) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-1234)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1073)) (-4 *6 (-862 *5)) (-5 *2 (-861 *5 *6 (-625 *6))) - (-5 *1 (-863 *5 *6 *4)) (-5 *3 (-625 *6)) (-4 *4 (-598 (-868 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1073)) (-5 *2 (-625 (-289 *3))) (-5 *1 (-863 *5 *3 *4)) - (-4 *3 (-1014 (-1149))) (-4 *3 (-862 *5)) (-4 *4 (-598 (-868 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1073)) (-5 *2 (-625 (-289 (-928 *3)))) - (-5 *1 (-863 *5 *3 *4)) (-4 *3 (-1025)) - (-2960 (-4 *3 (-1014 (-1149)))) (-4 *3 (-862 *5)) - (-4 *4 (-598 (-868 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1073)) (-5 *2 (-865 *5 *3)) (-5 *1 (-863 *5 *3 *4)) - (-2960 (-4 *3 (-1014 (-1149)))) (-2960 (-4 *3 (-1025))) - (-4 *3 (-862 *5)) (-4 *4 (-598 (-868 *5)))))) -(((*1 *2 *2) (-12 (-5 *2 (-625 (-669 (-311 (-552))))) (-5 *1 (-1007))))) -(((*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1073)))) - ((*1 *1 *1) (-5 *1 (-614)))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-1131))) (-5 *1 (-389))))) -(((*1 *2) - (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-5 *2 (-669 (-402 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-402 (-928 (-552))))) - (-5 *2 (-625 (-625 (-289 (-928 *4))))) (-5 *1 (-375 *4)) - (-4 *4 (-13 (-825) (-358))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-289 (-402 (-928 (-552)))))) - (-5 *2 (-625 (-625 (-289 (-928 *4))))) (-5 *1 (-375 *4)) - (-4 *4 (-13 (-825) (-358))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-402 (-928 (-552)))) (-5 *2 (-625 (-289 (-928 *4)))) - (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-289 (-402 (-928 (-552))))) - (-5 *2 (-625 (-289 (-928 *4)))) (-5 *1 (-375 *4)) - (-4 *4 (-13 (-825) (-358))))) + (-12 (-5 *3 (-288 (-401 (-931 (-552))))) + (-5 *2 (-627 (-288 (-931 *4)))) (-5 *1 (-374 *4)) + (-4 *4 (-13 (-828) (-357))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1149)) - (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) - (-4 *4 (-13 (-29 *6) (-1171) (-935))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -1270 (-625 *4)))) - (-5 *1 (-632 *6 *4 *3)) (-4 *3 (-636 *4)))) + (|partial| -12 (-5 *5 (-1152)) + (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) + (-4 *4 (-13 (-29 *6) (-1174) (-938))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2957 (-627 *4)))) + (-5 *1 (-634 *6 *4 *3)) (-4 *3 (-638 *4)))) ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-625 *2)) - (-4 *2 (-13 (-29 *6) (-1171) (-935))) - (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) - (-5 *1 (-632 *6 *2 *3)) (-4 *3 (-636 *2)))) + (|partial| -12 (-5 *4 (-1152)) (-5 *5 (-627 *2)) + (-4 *2 (-13 (-29 *6) (-1174) (-938))) + (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) + (-5 *1 (-634 *6 *2 *3)) (-4 *3 (-638 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-669 *5)) (-4 *5 (-358)) + (-12 (-5 *3 (-671 *5)) (-4 *5 (-357)) (-5 *2 - (-2 (|:| |particular| (-3 (-1232 *5) "failed")) - (|:| -1270 (-625 (-1232 *5))))) - (-5 *1 (-647 *5)) (-5 *4 (-1232 *5)))) + (-2 (|:| |particular| (-3 (-1235 *5) "failed")) + (|:| -2957 (-627 (-1235 *5))))) + (-5 *1 (-649 *5)) (-5 *4 (-1235 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-625 *5))) (-4 *5 (-358)) + (-12 (-5 *3 (-627 (-627 *5))) (-4 *5 (-357)) (-5 *2 - (-2 (|:| |particular| (-3 (-1232 *5) "failed")) - (|:| -1270 (-625 (-1232 *5))))) - (-5 *1 (-647 *5)) (-5 *4 (-1232 *5)))) + (-2 (|:| |particular| (-3 (-1235 *5) "failed")) + (|:| -2957 (-627 (-1235 *5))))) + (-5 *1 (-649 *5)) (-5 *4 (-1235 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-669 *5)) (-4 *5 (-358)) + (-12 (-5 *3 (-671 *5)) (-4 *5 (-357)) (-5 *2 - (-625 - (-2 (|:| |particular| (-3 (-1232 *5) "failed")) - (|:| -1270 (-625 (-1232 *5)))))) - (-5 *1 (-647 *5)) (-5 *4 (-625 (-1232 *5))))) + (-627 + (-2 (|:| |particular| (-3 (-1235 *5) "failed")) + (|:| -2957 (-627 (-1235 *5)))))) + (-5 *1 (-649 *5)) (-5 *4 (-627 (-1235 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-625 *5))) (-4 *5 (-358)) + (-12 (-5 *3 (-627 (-627 *5))) (-4 *5 (-357)) (-5 *2 - (-625 - (-2 (|:| |particular| (-3 (-1232 *5) "failed")) - (|:| -1270 (-625 (-1232 *5)))))) - (-5 *1 (-647 *5)) (-5 *4 (-625 (-1232 *5))))) + (-627 + (-2 (|:| |particular| (-3 (-1235 *5) "failed")) + (|:| -2957 (-627 (-1235 *5)))))) + (-5 *1 (-649 *5)) (-5 *4 (-627 (-1235 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4354)))) - (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4354)))) + (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4367)))) + (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1270 (-625 *4)))) - (-5 *1 (-648 *5 *6 *4 *3)) (-4 *3 (-667 *5 *6 *4)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2957 (-627 *4)))) + (-5 *1 (-650 *5 *6 *4 *3)) (-4 *3 (-669 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-358)) (-4 *6 (-13 (-368 *5) (-10 -7 (-6 -4354)))) - (-4 *7 (-13 (-368 *5) (-10 -7 (-6 -4354)))) + (-12 (-4 *5 (-357)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4367)))) + (-4 *7 (-13 (-367 *5) (-10 -7 (-6 -4367)))) (-5 *2 - (-625 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1270 (-625 *7))))) - (-5 *1 (-648 *5 *6 *7 *3)) (-5 *4 (-625 *7)) - (-4 *3 (-667 *5 *6 *7)))) + (-627 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2957 (-627 *7))))) + (-5 *1 (-650 *5 *6 *7 *3)) (-5 *4 (-627 *7)) + (-4 *3 (-669 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-625 (-1149))) (-4 *5 (-544)) - (-5 *2 (-625 (-625 (-289 (-402 (-928 *5)))))) (-5 *1 (-750 *5)))) + (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-627 (-1152))) (-4 *5 (-544)) + (-5 *2 (-627 (-627 (-288 (-401 (-931 *5)))))) (-5 *1 (-753 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-544)) - (-5 *2 (-625 (-625 (-289 (-402 (-928 *4)))))) (-5 *1 (-750 *4)))) + (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-544)) + (-5 *2 (-627 (-627 (-288 (-401 (-931 *4)))))) (-5 *1 (-753 *4)))) ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1149)) - (-4 *5 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) - (-5 *1 (-752 *5 *2)) (-4 *2 (-13 (-29 *5) (-1171) (-935))))) + (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1152)) + (-4 *5 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) + (-5 *1 (-755 *5 *2)) (-4 *2 (-13 (-29 *5) (-1174) (-938))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-669 *7)) (-5 *5 (-1149)) - (-4 *7 (-13 (-29 *6) (-1171) (-935))) - (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) + (|partial| -12 (-5 *3 (-671 *7)) (-5 *5 (-1152)) + (-4 *7 (-13 (-29 *6) (-1174) (-938))) + (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 - (-2 (|:| |particular| (-1232 *7)) (|:| -1270 (-625 (-1232 *7))))) - (-5 *1 (-782 *6 *7)) (-5 *4 (-1232 *7)))) + (-2 (|:| |particular| (-1235 *7)) (|:| -2957 (-627 (-1235 *7))))) + (-5 *1 (-785 *6 *7)) (-5 *4 (-1235 *7)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-669 *6)) (-5 *4 (-1149)) - (-4 *6 (-13 (-29 *5) (-1171) (-935))) - (-4 *5 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) - (-5 *2 (-625 (-1232 *6))) (-5 *1 (-782 *5 *6)))) + (|partial| -12 (-5 *3 (-671 *6)) (-5 *4 (-1152)) + (-4 *6 (-13 (-29 *5) (-1174) (-938))) + (-4 *5 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) + (-5 *2 (-627 (-1235 *6))) (-5 *1 (-785 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-625 (-289 *7))) (-5 *4 (-625 (-114))) - (-5 *5 (-1149)) (-4 *7 (-13 (-29 *6) (-1171) (-935))) - (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) + (|partial| -12 (-5 *3 (-627 (-288 *7))) (-5 *4 (-627 (-113))) + (-5 *5 (-1152)) (-4 *7 (-13 (-29 *6) (-1174) (-938))) + (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 - (-2 (|:| |particular| (-1232 *7)) (|:| -1270 (-625 (-1232 *7))))) - (-5 *1 (-782 *6 *7)))) + (-2 (|:| |particular| (-1235 *7)) (|:| -2957 (-627 (-1235 *7))))) + (-5 *1 (-785 *6 *7)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-625 *7)) (-5 *4 (-625 (-114))) - (-5 *5 (-1149)) (-4 *7 (-13 (-29 *6) (-1171) (-935))) - (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) + (|partial| -12 (-5 *3 (-627 *7)) (-5 *4 (-627 (-113))) + (-5 *5 (-1152)) (-4 *7 (-13 (-29 *6) (-1174) (-938))) + (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 - (-2 (|:| |particular| (-1232 *7)) (|:| -1270 (-625 (-1232 *7))))) - (-5 *1 (-782 *6 *7)))) + (-2 (|:| |particular| (-1235 *7)) (|:| -2957 (-627 (-1235 *7))))) + (-5 *1 (-785 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-289 *7)) (-5 *4 (-114)) (-5 *5 (-1149)) - (-4 *7 (-13 (-29 *6) (-1171) (-935))) - (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) + (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-1152)) + (-4 *7 (-13 (-29 *6) (-1174) (-938))) + (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -1270 (-625 *7))) *7 "failed")) - (-5 *1 (-782 *6 *7)))) + (-3 (-2 (|:| |particular| *7) (|:| -2957 (-627 *7))) *7 "failed")) + (-5 *1 (-785 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-1149)) - (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) + (-12 (-5 *4 (-113)) (-5 *5 (-1152)) + (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -1270 (-625 *3))) *3 "failed")) - (-5 *1 (-782 *6 *3)) (-4 *3 (-13 (-29 *6) (-1171) (-935))))) + (-3 (-2 (|:| |particular| *3) (|:| -2957 (-627 *3))) *3 "failed")) + (-5 *1 (-785 *6 *3)) (-4 *3 (-13 (-29 *6) (-1174) (-938))))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-289 *2)) (-5 *4 (-114)) (-5 *5 (-625 *2)) - (-4 *2 (-13 (-29 *6) (-1171) (-935))) (-5 *1 (-782 *6 *2)) - (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))))) + (|partial| -12 (-5 *3 (-288 *2)) (-5 *4 (-113)) (-5 *5 (-627 *2)) + (-4 *2 (-13 (-29 *6) (-1174) (-938))) (-5 *1 (-785 *6 *2)) + (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))))) ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-289 *2)) (-5 *5 (-625 *2)) - (-4 *2 (-13 (-29 *6) (-1171) (-935))) - (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) - (-5 *1 (-782 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-1011)) (-5 *1 (-785)))) + (|partial| -12 (-5 *3 (-113)) (-5 *4 (-288 *2)) (-5 *5 (-627 *2)) + (-4 *2 (-13 (-29 *6) (-1174) (-938))) + (-4 *6 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) + (-5 *1 (-785 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1014)) (-5 *1 (-788)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-788)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-785)))) + (-12 (-5 *3 (-791)) (-5 *4 (-1040)) (-5 *2 (-1014)) (-5 *1 (-788)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1232 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-625 *4)) - (-5 *2 (-1011)) (-5 *1 (-785)))) + (-12 (-5 *3 (-1235 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-627 *4)) + (-5 *2 (-1014)) (-5 *1 (-788)))) ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1232 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-625 *4)) - (-5 *2 (-1011)) (-5 *1 (-785)))) + (-12 (-5 *3 (-1235 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-627 *4)) + (-5 *2 (-1014)) (-5 *1 (-788)))) ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1232 (-311 *4))) (-5 *5 (-625 (-374))) - (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1011)) (-5 *1 (-785)))) + (-12 (-5 *3 (-1235 (-310 *4))) (-5 *5 (-627 (-373))) + (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1014)) (-5 *1 (-788)))) ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1232 (-311 (-374)))) (-5 *4 (-374)) (-5 *5 (-625 *4)) - (-5 *2 (-1011)) (-5 *1 (-785)))) + (-12 (-5 *3 (-1235 (-310 (-373)))) (-5 *4 (-373)) (-5 *5 (-627 *4)) + (-5 *2 (-1014)) (-5 *1 (-788)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1232 (-311 *4))) (-5 *5 (-625 (-374))) - (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1011)) (-5 *1 (-785)))) + (-12 (-5 *3 (-1235 (-310 *4))) (-5 *5 (-627 (-373))) + (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1014)) (-5 *1 (-788)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1232 (-311 *4))) (-5 *5 (-625 (-374))) - (-5 *6 (-311 (-374))) (-5 *4 (-374)) (-5 *2 (-1011)) (-5 *1 (-785)))) + (-12 (-5 *3 (-1235 (-310 *4))) (-5 *5 (-627 (-373))) + (-5 *6 (-310 (-373))) (-5 *4 (-373)) (-5 *2 (-1014)) (-5 *1 (-788)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 - (-3 (-2 (|:| |particular| *6) (|:| -1270 (-625 *6))) "failed") + (-3 (-2 (|:| |particular| *6) (|:| -2957 (-627 *6))) "failed") *7 *6)) - (-4 *6 (-358)) (-4 *7 (-636 *6)) - (-5 *2 (-2 (|:| |particular| (-1232 *6)) (|:| -1270 (-669 *6)))) - (-5 *1 (-793 *6 *7)) (-5 *3 (-669 *6)) (-5 *4 (-1232 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1011)) (-5 *1 (-873)))) + (-4 *6 (-357)) (-4 *7 (-638 *6)) + (-5 *2 (-2 (|:| |particular| (-1235 *6)) (|:| -2957 (-671 *6)))) + (-5 *1 (-796 *6 *7)) (-5 *3 (-671 *6)) (-5 *4 (-1235 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1014)) (-5 *1 (-876)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-874)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-873)))) + (-12 (-5 *3 (-877)) (-5 *4 (-1040)) (-5 *2 (-1014)) (-5 *1 (-876)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-751)) (-5 *6 (-625 (-625 (-311 *3)))) (-5 *7 (-1131)) - (-5 *8 (-221)) (-5 *5 (-625 (-311 (-374)))) (-5 *3 (-374)) - (-5 *2 (-1011)) (-5 *1 (-873)))) + (-12 (-5 *4 (-754)) (-5 *6 (-627 (-627 (-310 *3)))) (-5 *7 (-1134)) + (-5 *8 (-220)) (-5 *5 (-627 (-310 (-373)))) (-5 *3 (-373)) + (-5 *2 (-1014)) (-5 *1 (-876)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-751)) (-5 *6 (-625 (-625 (-311 *3)))) (-5 *7 (-1131)) - (-5 *5 (-625 (-311 (-374)))) (-5 *3 (-374)) (-5 *2 (-1011)) - (-5 *1 (-873)))) + (-12 (-5 *4 (-754)) (-5 *6 (-627 (-627 (-310 *3)))) (-5 *7 (-1134)) + (-5 *5 (-627 (-310 (-373)))) (-5 *3 (-373)) (-5 *2 (-1014)) + (-5 *1 (-876)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-928 (-402 (-552)))) (-5 *2 (-625 (-374))) - (-5 *1 (-999)) (-5 *4 (-374)))) + (-12 (-5 *3 (-931 (-401 (-552)))) (-5 *2 (-627 (-373))) + (-5 *1 (-1002)) (-5 *4 (-373)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-928 (-552))) (-5 *2 (-625 (-374))) (-5 *1 (-999)) - (-5 *4 (-374)))) + (-12 (-5 *3 (-931 (-552))) (-5 *2 (-627 (-373))) (-5 *1 (-1002)) + (-5 *4 (-373)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) - (-5 *2 (-625 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1208 *4)))) + (-12 (-4 *4 (-13 (-357) (-10 -8 (-15 ** ($ $ (-401 (-552))))))) + (-5 *2 (-627 *4)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1211 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) - (-5 *2 (-625 (-289 (-311 *4)))) (-5 *1 (-1104 *4)) - (-5 *3 (-311 *4)))) + (-12 (-4 *4 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) + (-5 *2 (-627 (-288 (-310 *4)))) (-5 *1 (-1107 *4)) + (-5 *3 (-310 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) - (-5 *2 (-625 (-289 (-311 *4)))) (-5 *1 (-1104 *4)) - (-5 *3 (-289 (-311 *4))))) + (-12 (-4 *4 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) + (-5 *2 (-627 (-288 (-310 *4)))) (-5 *1 (-1107 *4)) + (-5 *3 (-288 (-310 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1149)) - (-4 *5 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) - (-5 *2 (-625 (-289 (-311 *5)))) (-5 *1 (-1104 *5)) - (-5 *3 (-289 (-311 *5))))) + (-12 (-5 *4 (-1152)) + (-4 *5 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) + (-5 *2 (-627 (-288 (-310 *5)))) (-5 *1 (-1107 *5)) + (-5 *3 (-288 (-310 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1149)) - (-4 *5 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) - (-5 *2 (-625 (-289 (-311 *5)))) (-5 *1 (-1104 *5)) - (-5 *3 (-311 *5)))) + (-12 (-5 *4 (-1152)) + (-4 *5 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) + (-5 *2 (-627 (-288 (-310 *5)))) (-5 *1 (-1107 *5)) + (-5 *3 (-310 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-625 (-1149))) - (-4 *5 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) - (-5 *2 (-625 (-625 (-289 (-311 *5))))) (-5 *1 (-1104 *5)) - (-5 *3 (-625 (-289 (-311 *5)))))) + (-12 (-5 *4 (-627 (-1152))) + (-4 *5 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) + (-5 *2 (-627 (-627 (-288 (-310 *5))))) (-5 *1 (-1107 *5)) + (-5 *3 (-627 (-288 (-310 *5)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-402 (-928 *5)))) (-5 *4 (-625 (-1149))) - (-4 *5 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *5)))))) - (-5 *1 (-1155 *5)))) + (-12 (-5 *3 (-627 (-401 (-931 *5)))) (-5 *4 (-627 (-1152))) + (-4 *5 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *5)))))) + (-5 *1 (-1158 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-625 (-1149))) (-4 *5 (-544)) - (-5 *2 (-625 (-625 (-289 (-402 (-928 *5)))))) (-5 *1 (-1155 *5)) - (-5 *3 (-625 (-289 (-402 (-928 *5))))))) + (-12 (-5 *4 (-627 (-1152))) (-4 *5 (-544)) + (-5 *2 (-627 (-627 (-288 (-401 (-931 *5)))))) (-5 *1 (-1158 *5)) + (-5 *3 (-627 (-288 (-401 (-931 *5))))))) ((*1 *2 *3) - (-12 (-5 *3 (-625 (-402 (-928 *4)))) (-4 *4 (-544)) - (-5 *2 (-625 (-625 (-289 (-402 (-928 *4)))))) (-5 *1 (-1155 *4)))) + (-12 (-5 *3 (-627 (-401 (-931 *4)))) (-4 *4 (-544)) + (-5 *2 (-627 (-627 (-288 (-401 (-931 *4)))))) (-5 *1 (-1158 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-625 (-625 (-289 (-402 (-928 *4)))))) - (-5 *1 (-1155 *4)) (-5 *3 (-625 (-289 (-402 (-928 *4))))))) + (-12 (-4 *4 (-544)) (-5 *2 (-627 (-627 (-288 (-401 (-931 *4)))))) + (-5 *1 (-1158 *4)) (-5 *3 (-627 (-288 (-401 (-931 *4))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1149)) (-4 *5 (-544)) - (-5 *2 (-625 (-289 (-402 (-928 *5))))) (-5 *1 (-1155 *5)) - (-5 *3 (-402 (-928 *5))))) + (-12 (-5 *4 (-1152)) (-4 *5 (-544)) + (-5 *2 (-627 (-288 (-401 (-931 *5))))) (-5 *1 (-1158 *5)) + (-5 *3 (-401 (-931 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1149)) (-4 *5 (-544)) - (-5 *2 (-625 (-289 (-402 (-928 *5))))) (-5 *1 (-1155 *5)) - (-5 *3 (-289 (-402 (-928 *5)))))) + (-12 (-5 *4 (-1152)) (-4 *5 (-544)) + (-5 *2 (-627 (-288 (-401 (-931 *5))))) (-5 *1 (-1158 *5)) + (-5 *3 (-288 (-401 (-931 *5)))))) ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-625 (-289 (-402 (-928 *4))))) - (-5 *1 (-1155 *4)) (-5 *3 (-402 (-928 *4))))) + (-12 (-4 *4 (-544)) (-5 *2 (-627 (-288 (-401 (-931 *4))))) + (-5 *1 (-1158 *4)) (-5 *3 (-401 (-931 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-625 (-289 (-402 (-928 *4))))) - (-5 *1 (-1155 *4)) (-5 *3 (-289 (-402 (-928 *4))))))) -(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) - ((*1 *1 *1) - (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) - (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *2)) - (-4 *2 (-425 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) - ((*1 *1 *1) (-4 *1 (-825))) - ((*1 *2 *1) (-12 (-4 *1 (-973 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) - ((*1 *1 *1) (-4 *1 (-1034))) ((*1 *1 *1) (-4 *1 (-1112)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-827) (-598 (-1149)))) - (-4 *5 (-773)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *2 (-925 *3 *5 *4))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *3 (-625 (-850))) - (-5 *4 (-625 (-897))) (-5 *5 (-625 (-258))) (-5 *1 (-462)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *3 (-625 (-850))) - (-5 *4 (-625 (-897))) (-5 *1 (-462)))) - ((*1 *1 *2) (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *1 (-462)))) - ((*1 *1 *1) (-5 *1 (-462)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-358) (-825))) (-5 *1 (-179 *3 *2)) - (-4 *2 (-1208 (-167 *3)))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-902)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-903)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1067 (-221))) (-5 *1 (-903)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-112)) (-5 *1 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-1149)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-297)) (-5 *3 (-114)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1149)) (-5 *2 (-112)) (-5 *1 (-596 *4)) (-4 *4 (-827)))) + (-12 (-4 *4 (-544)) (-5 *2 (-627 (-288 (-401 (-931 *4))))) + (-5 *1 (-1158 *4)) (-5 *3 (-288 (-401 (-931 *4))))))) +(((*1 *1) (-5 *1 (-1058)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-598 *1)) (-4 *1 (-424 *4)) (-4 *4 (-830)) + (-4 *4 (-544)) (-5 *2 (-401 (-1148 *1))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-598 *3)) (-4 *3 (-13 (-424 *6) (-27) (-1174))) + (-4 *6 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) + (-5 *2 (-1148 (-401 (-1148 *3)))) (-5 *1 (-548 *6 *3 *7)) + (-5 *5 (-1148 *3)) (-4 *7 (-1076)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1231 *5)) (-14 *5 (-1152)) (-4 *6 (-1028)) + (-5 *2 (-1208 *5 (-931 *6))) (-5 *1 (-926 *5 *6)) (-5 *3 (-931 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-928 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-830)) (-5 *2 (-1148 *3)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-596 *4)) (-4 *4 (-827)))) + (-12 (-4 *4 (-1028)) (-4 *5 (-776)) (-4 *3 (-830)) (-5 *2 (-1148 *1)) + (-4 *1 (-928 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1073)) (-5 *2 (-112)) (-5 *1 (-863 *5 *3 *4)) - (-4 *3 (-862 *5)) (-4 *4 (-598 (-868 *5))))) + (-12 (-4 *5 (-776)) (-4 *4 (-830)) (-4 *6 (-1028)) + (-4 *7 (-928 *6 *5 *4)) (-5 *2 (-401 (-1148 *3))) + (-5 *1 (-929 *5 *4 *6 *7 *3)) + (-4 *3 + (-13 (-357) + (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1148 *3)) + (-4 *3 + (-13 (-357) + (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) (-15 -2929 (*7 $))))) + (-4 *7 (-928 *6 *5 *4)) (-4 *5 (-776)) (-4 *4 (-830)) + (-4 *6 (-1028)) (-5 *1 (-929 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 *6)) (-4 *6 (-862 *5)) (-4 *5 (-1073)) - (-5 *2 (-112)) (-5 *1 (-863 *5 *6 *4)) (-4 *4 (-598 (-868 *5)))))) -(((*1 *2 *2) (-12 (-5 *2 (-669 (-311 (-552)))) (-5 *1 (-1007))))) + (-12 (-5 *4 (-1152)) (-4 *5 (-544)) + (-5 *2 (-401 (-1148 (-401 (-931 *5))))) (-5 *1 (-1022 *5)) + (-5 *3 (-401 (-931 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-625 (-1149))) (-4 *5 (-446)) - (-5 *2 (-475 *4 *5)) (-5 *1 (-613 *4 *5))))) -(((*1 *2) - (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-5 *2 (-669 (-402 *4)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-625 (-1154))) (-5 *1 (-1154)))) + (-12 (-5 *3 (-310 (-373))) (-5 *2 (-310 (-220))) (-5 *1 (-299))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-310 *3)) (-4 *3 (-13 (-1028) (-830))) + (-5 *1 (-218 *3 *4)) (-14 *4 (-627 (-1152)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-931 *5)) (-4 *5 (-1028)) (-5 *2 (-474 *4 *5)) + (-5 *1 (-923 *4 *5)) (-14 *4 (-627 (-1152)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-111)) (-5 *1 (-812))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-830)) (-5 *3 (-627 *6)) (-5 *5 (-627 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-627 *5)) (|:| |f3| *5) + (|:| |f4| (-627 *5)))) + (-5 *1 (-1160 *6)) (-5 *4 (-627 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-343)) (-5 *2 (-412 *3)) (-5 *1 (-211 *4 *3)) + (-4 *3 (-1211 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-754)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) + (-4 *3 (-1211 (-552))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-627 (-754))) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) + (-4 *3 (-1211 (-552))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-627 (-754))) (-5 *5 (-754)) (-5 *2 (-412 *3)) + (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-754)) (-5 *2 (-412 *3)) (-5 *1 (-435 *3)) + (-4 *3 (-1211 (-552))))) + ((*1 *2 *3) + (-12 (-5 *2 (-412 *3)) (-5 *1 (-986 *3)) + (-4 *3 (-1211 (-401 (-552)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-412 *3)) (-5 *1 (-1200 *3)) (-4 *3 (-1211 (-552)))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-598 *1))) (-4 *1 (-296))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-765 *3)) (|:| |polden| *3) (|:| -3229 (-754)))) + (-5 *1 (-765 *3)) (-4 *3 (-1028)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3229 (-754)))) + (-4 *1 (-1042 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) + (-5 *1 (-173 *3))))) +(((*1 *1 *1) (-4 *1 (-122))) ((*1 *1 *1) (-5 *1 (-842))) + ((*1 *1 *1) (-4 *1 (-946))) ((*1 *1 *1) (-5 *1 (-1096)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-627 *7)) (|:| -3443 *8))) + (-4 *7 (-1042 *4 *5 *6)) (-4 *8 (-1048 *4 *5 *6 *7)) (-4 *4 (-445)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) + (-5 *1 (-967 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-627 *7)) (|:| -3443 *8))) + (-4 *7 (-1042 *4 *5 *6)) (-4 *8 (-1048 *4 *5 *6 *7)) (-4 *4 (-445)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) + (-5 *1 (-1083 *4 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-807))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-802 *3)) (-4 *3 (-830)) (-5 *1 (-654 *3))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-2 (|:| -2957 (-671 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-671 *3)))) + (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) + (-4 *4 (-1211 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) +(((*1 *1) (-5 *1 (-431)))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) + ((*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896))))) +(((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-324))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-552)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-754)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-900)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-754)) + (-4 *4 (-169)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-154)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-900)) (-5 *1 (-154)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174))) + (-5 *1 (-222 *3)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1189)) (-4 *2 (-709)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-233 *3 *2)) (-4 *2 (-1189)) (-4 *2 (-709)))) + ((*1 *1 *2 *1) + (-12 (-5 *1 (-288 *2)) (-4 *2 (-1088)) (-4 *2 (-1189)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-288 *2)) (-4 *2 (-1088)) (-4 *2 (-1189)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-625 (-1154))) (-5 *1 (-1154))))) -(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1237)) (-5 *1 (-1111)))) + (-12 (-4 *1 (-317 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-129)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-355 *2)) (-4 *2 (-1076)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-355 *2)) (-4 *2 (-1076)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-375 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-830)))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-1076)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) + ((*1 *1 *2 *1) + (-12 (-14 *3 (-627 (-1152))) (-4 *4 (-169)) + (-4 *6 (-233 (-1383 *3) (-754))) + (-14 *7 + (-1 (-111) (-2 (|:| -4153 *5) (|:| -4067 *6)) + (-2 (|:| -4153 *5) (|:| -4067 *6)))) + (-5 *1 (-454 *3 *4 *5 *6 *7 *2)) (-4 *5 (-830)) + (-4 *2 (-928 *4 *6 (-844 *3))))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-463 *2 *3)) (-4 *2 (-169)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-357)) (-4 *3 (-776)) (-4 *4 (-830)) + (-5 *1 (-496 *2 *3 *4 *5)) (-4 *5 (-928 *2 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1235 *3)) (-4 *3 (-343)) (-5 *1 (-520 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-528))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-583 *3)) (-4 *3 (-1028)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1028)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1028)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1035)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-830)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1076)) + (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-666 *5 *6 *7)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-669 *3 *2 *4)) (-4 *3 (-1028)) (-4 *2 (-367 *3)) + (-4 *4 (-367 *3)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-669 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) + (-4 *2 (-367 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-703))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) + ((*1 *1 *1 *1) (-5 *1 (-842))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-871 *2)) (-4 *2 (-1076)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1235 *4)) (-4 *4 (-1211 *3)) (-4 *3 (-544)) + (-5 *1 (-948 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1035)))) + ((*1 *1 *1 *1) (-4 *1 (-1088))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1099 *3 *4 *2 *5)) (-4 *4 (-1028)) (-4 *2 (-233 *3 *4)) + (-4 *5 (-233 *3 *4)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *4 (-1028)) (-4 *5 (-233 *3 *4)) + (-4 *2 (-233 *3 *4)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-1028)) (-4 *4 (-830)) (-5 *1 (-1102 *3 *4 *2)) + (-4 *2 (-928 *3 (-523 *4) *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-1028)) (-5 *1 (-1136 *3)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-922 (-220))) (-5 *3 (-220)) (-5 *1 (-1185)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-709)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1189)) (-4 *2 (-709)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-552)) (-4 *1 (-1233 *3)) (-4 *3 (-1189)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-830)) (-4 *2 (-1028)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-1258 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-826))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-754)) (-5 *2 (-627 (-1152))) (-5 *1 (-205)) + (-5 *3 (-1152)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-310 (-220))) (-5 *4 (-754)) (-5 *2 (-627 (-1152))) + (-5 *1 (-261)))) + ((*1 *2 *1) + (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) + (-5 *2 (-627 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-627 *3)) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) + (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-659 *3)) (-4 *3 (-830)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-802 *3)) (-4 *3 (-830)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-872 *3)) (-4 *3 (-830)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) (-4 *4 (-1028)) + (-5 *2 (-627 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-900)) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1152)) (-5 *2 (-1156)) (-5 *1 (-1155))))) +(((*1 *2) + (-12 (-4 *3 (-1193)) (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4))) + (-5 *2 (-1235 *1)) (-4 *1 (-336 *3 *4 *5))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-709)) (-4 *2 (-1189))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-552)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1189)) + (-4 *5 (-367 *4)) (-4 *3 (-367 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-754)) (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *5)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1028)) (-4 *1 (-1099 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) + (-4 *5 (-233 *3 *2))))) +(((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-841)))) + ((*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-841))))) +(((*1 *2 *3) + (-12 (-4 *4 (-888)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-928 *4 *5 *6)) (-5 *2 (-412 (-1148 *7))) + (-5 *1 (-885 *4 *5 *6 *7)) (-5 *3 (-1148 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-625 (-839))) (-5 *2 (-1237)) (-5 *1 (-1111))))) + (-12 (-4 *4 (-888)) (-4 *5 (-1211 *4)) (-5 *2 (-412 (-1148 *5))) + (-5 *1 (-886 *4 *5)) (-5 *3 (-1148 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 (-5 *3 (-627 (-931 *5))) (-5 *4 (-627 (-1152))) (-4 *5 (-544)) + (-5 *2 (-627 (-627 (-288 (-401 (-931 *5)))))) (-5 *1 (-753 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-544)) + (-5 *2 (-627 (-627 (-288 (-401 (-931 *4)))))) (-5 *1 (-753 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-671 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2957 (-627 *6))) + *7 *6)) + (-4 *6 (-357)) (-4 *7 (-638 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1235 *6) "failed")) + (|:| -2957 (-627 (-1235 *6))))) + (-5 *1 (-796 *6 *7)) (-5 *4 (-1235 *6))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-401 (-552))) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-544)) (-4 *8 (-928 *7 *5 *6)) + (-5 *2 (-2 (|:| -4067 (-754)) (|:| -3069 *9) (|:| |radicand| *9))) + (-5 *1 (-932 *5 *6 *7 *8 *9)) (-5 *4 (-754)) + (-4 *9 + (-13 (-357) + (-10 -8 (-15 -2918 (*8 $)) (-15 -2929 (*8 $)) (-15 -1477 ($ *8)))))))) +(((*1 *2 *3) + (-12 (-5 *2 (-166 (-373))) (-5 *1 (-768 *3)) (-4 *3 (-600 (-373))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-900)) (-5 *2 (-166 (-373))) (-5 *1 (-768 *3)) + (-4 *3 (-600 (-373))))) + ((*1 *2 *3) + (-12 (-5 *3 (-166 *4)) (-4 *4 (-169)) (-4 *4 (-600 (-373))) + (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-166 *5)) (-5 *4 (-900)) (-4 *5 (-169)) + (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-931 (-166 *4))) (-4 *4 (-169)) (-4 *4 (-600 (-373))) + (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-931 (-166 *5))) (-5 *4 (-900)) (-4 *5 (-169)) + (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-931 *4)) (-4 *4 (-1028)) (-4 *4 (-600 (-373))) + (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-931 *5)) (-5 *4 (-900)) (-4 *5 (-1028)) + (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) (-4 *4 (-600 (-373))) + (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-900)) (-4 *5 (-544)) + (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-401 (-931 (-166 *4)))) (-4 *4 (-544)) + (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-401 (-931 (-166 *5)))) (-5 *4 (-900)) (-4 *5 (-544)) + (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-830)) + (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-310 *5)) (-5 *4 (-900)) (-4 *5 (-544)) (-4 *5 (-830)) + (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-310 (-166 *4))) (-4 *4 (-544)) (-4 *4 (-830)) + (-4 *4 (-600 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-768 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-310 (-166 *5))) (-5 *4 (-900)) (-4 *5 (-544)) + (-4 *5 (-830)) (-4 *5 (-600 (-373))) (-5 *2 (-166 (-373))) + (-5 *1 (-768 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-627 *3)) (-4 *3 (-1211 *5)) (-4 *5 (-301)) + (-5 *2 (-754)) (-5 *1 (-448 *5 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-421 *3 *2)) (-4 *3 (-13 (-169) (-38 (-401 (-552))))) + (-4 *2 (-13 (-830) (-21)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *1 *1 *1) (-4 *1 (-946)))) +(((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-1134)) (-5 *5 (-671 (-220))) + (-5 *2 (-1014)) (-5 *1 (-730))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-111))))) +(((*1 *1 *2) + (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1076)) (-4 *1 (-882 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-627 (-552))) (-5 *1 (-1086)) (-5 *3 (-552))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1152)) + (-5 *2 + (-2 (|:| |zeros| (-1132 (-220))) (|:| |ones| (-1132 (-220))) + (|:| |singularities| (-1132 (-220))))) + (-5 *1 (-104))))) +(((*1 *1) (-5 *1 (-602)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) + (-4 *7 (-1211 (-401 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -3874 *3))) + (-5 *1 (-550 *5 *6 *7 *3)) (-4 *3 (-336 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1211 *5)) (-4 *5 (-357)) + (-5 *2 + (-2 (|:| |answer| (-401 *6)) (|:| -3874 (-401 *6)) + (|:| |specpart| (-401 *6)) (|:| |polypart| *6))) + (-5 *1 (-551 *5 *6)) (-5 *3 (-401 *6))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-598 *3)) (-5 *5 (-1 (-1148 *3) (-1148 *3))) + (-4 *3 (-13 (-27) (-424 *6))) (-4 *6 (-13 (-830) (-544))) + (-5 *2 (-573 *3)) (-5 *1 (-539 *6 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-627 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-411 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1182 *3 *4 *5 *6)) (-4 *3 (-544)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *6 (-1042 *3 *4 *5)) (-4 *5 (-362)) + (-5 *2 (-754))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *1 *1) (-4 *1 (-485))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *1)) + (-4 *1 (-1042 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028))))) +(((*1 *2) (-12 (-4 *2 (-169)) (-5 *1 (-162 *3 *2)) (-4 *3 (-163 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1235 *1)) (-4 *1 (-364 *2 *4)) (-4 *4 (-1211 *2)) + (-4 *2 (-169)))) + ((*1 *2) + (-12 (-4 *4 (-1211 *2)) (-4 *2 (-169)) (-5 *1 (-402 *3 *2 *4)) + (-4 *3 (-403 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-403 *2 *3)) (-4 *3 (-1211 *2)) (-4 *2 (-169)))) + ((*1 *2) + (-12 (-4 *3 (-1211 *2)) (-5 *2 (-552)) (-5 *1 (-751 *3 *4)) + (-4 *4 (-403 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-928 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *2 (-830)) (-4 *3 (-169)))) + ((*1 *2 *3) + (-12 (-4 *2 (-544)) (-5 *1 (-948 *2 *3)) (-4 *3 (-1211 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-169))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) + (-4 *3 (-1042 *6 *7 *8)) + (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) + (-5 *1 (-1049 *6 *7 *8 *3 *4)) (-4 *4 (-1048 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-627 (-2 (|:| |val| (-627 *8)) (|:| -3443 *9)))) + (-5 *5 (-111)) (-4 *8 (-1042 *6 *7 *4)) (-4 *9 (-1048 *6 *7 *4 *8)) + (-4 *6 (-445)) (-4 *7 (-776)) (-4 *4 (-830)) + (-5 *2 (-627 (-2 (|:| |val| *8) (|:| -3443 *9)))) + (-5 *1 (-1049 *6 *7 *4 *8 *9))))) +(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-52)) (-5 *1 (-812))))) +(((*1 *2 *3) (-12 (-5 *3 (-166 (-552))) (-5 *2 (-111)) (-5 *1 (-439)))) + ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-625 (-552))) - (|:| |cols| (-625 (-552))))) - (-5 *4 (-669 *12)) (-5 *5 (-625 (-402 (-928 *9)))) - (-5 *6 (-625 (-625 *12))) (-5 *7 (-751)) (-5 *8 (-552)) - (-4 *9 (-13 (-302) (-145))) (-4 *12 (-925 *9 *11 *10)) - (-4 *10 (-13 (-827) (-598 (-1149)))) (-4 *11 (-773)) + (-496 (-401 (-552)) (-235 *5 (-754)) (-844 *4) + (-242 *4 (-401 (-552))))) + (-14 *4 (-627 (-1152))) (-14 *5 (-754)) (-5 *2 (-111)) + (-5 *1 (-497 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-111)) (-5 *1 (-940 *3)) (-4 *3 (-537)))) + ((*1 *2 *1) (-12 (-4 *1 (-1193)) (-5 *2 (-111))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1132 (-552))) (-5 *1 (-1136 *4)) (-4 *4 (-1028)) + (-5 *3 (-552))))) +(((*1 *2 *2) (-12 (-5 *2 (-1096)) (-5 *1 (-324))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1014)) (-5 *3 (-1152)) (-5 *1 (-261))))) +(((*1 *2 *2) (-12 (-5 *2 (-111)) (-5 *1 (-1014))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *1 *1) (-4 *1 (-485))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905))))) +(((*1 *2 *2) + (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) + (-5 *1 (-173 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-769))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-922 (-220)) (-922 (-220)))) (-5 *3 (-627 (-257))) + (-5 *1 (-255)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-922 (-220)) (-922 (-220)))) (-5 *1 (-257)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-627 (-474 *5 *6))) (-5 *3 (-474 *5 *6)) + (-14 *5 (-627 (-1152))) (-4 *6 (-445)) (-5 *2 (-1235 *6)) + (-5 *1 (-615 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-931 (-552)))) (-5 *1 (-431)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1152)) (-5 *4 (-671 (-220))) (-5 *2 (-1080)) + (-5 *1 (-742)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1152)) (-5 *4 (-671 (-552))) (-5 *2 (-1080)) + (-5 *1 (-742))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1152)) (-5 *4 (-931 (-552))) (-5 *2 (-324)) + (-5 *1 (-326))))) +(((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |eqzro| (-625 *12)) (|:| |neqzro| (-625 *12)) - (|:| |wcond| (-625 (-928 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1232 (-402 (-928 *9)))) - (|:| -1270 (-625 (-1232 (-402 (-928 *9))))))))) - (-5 *1 (-900 *9 *10 *11 *12))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *1 (-462))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-358) (-825))) - (-5 *2 (-625 (-2 (|:| -3449 (-625 *3)) (|:| -1939 *5)))) - (-5 *1 (-179 *5 *3)) (-4 *3 (-1208 (-167 *5))))) + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-324))))) +(((*1 *2 *3) + (-12 (-5 *3 (-754)) (-5 *2 (-1240)) (-5 *1 (-845 *4 *5 *6 *7)) + (-4 *4 (-1028)) (-14 *5 (-627 (-1152))) (-14 *6 (-627 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-754)) (-4 *4 (-1028)) (-4 *5 (-830)) (-4 *6 (-776)) + (-14 *8 (-627 *5)) (-5 *2 (-1240)) + (-5 *1 (-1247 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-928 *4 *6 *5)) + (-14 *9 (-627 *3)) (-14 *10 *3)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) + (-5 *2 (-627 (-2 (|:| |val| (-111)) (|:| -3443 *4)))) + (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 *7)) (-4 *7 (-928 *4 *6 *5)) + (-4 *4 (-13 (-301) (-144))) (-4 *5 (-13 (-830) (-600 (-1152)))) + (-4 *6 (-776)) (-5 *2 (-111)) (-5 *1 (-903 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-931 *4))) (-4 *4 (-13 (-301) (-144))) + (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776)) (-5 *2 (-111)) + (-5 *1 (-903 *4 *5 *6 *7)) (-4 *7 (-928 *4 *6 *5))))) +(((*1 *1) (-5 *1 (-431)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *1 *1) (-4 *1 (-485))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-627 *5)) (-5 *4 (-552)) (-4 *5 (-828)) (-4 *5 (-357)) + (-5 *2 (-754)) (-5 *1 (-924 *5 *6)) (-4 *6 (-1211 *5))))) +(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1238))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-4 *1 (-1211 *3)) (-4 *3 (-1028))))) +(((*1 *2 *3) + (-12 (-4 *4 (-357)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) + (-5 *2 (-754)) (-5 *1 (-513 *4 *5 *6 *3)) (-4 *3 (-669 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-4 *3 (-544)) (-5 *2 (-754)))) + ((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *4 (-169)) (-4 *5 (-367 *4)) + (-4 *6 (-367 *4)) (-5 *2 (-754)) (-5 *1 (-670 *4 *5 *6 *3)) + (-4 *3 (-669 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1031 *3 *4 *5 *6 *7)) (-4 *5 (-1028)) + (-4 *6 (-233 *4 *5)) (-4 *7 (-233 *3 *5)) (-4 *5 (-544)) + (-5 *2 (-754))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-401 (-1148 (-310 *3)))) (-4 *3 (-13 (-544) (-830))) + (-5 *1 (-1106 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-5 *2 (-1148 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) + (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) + ((*1 *1 *1) (-4 *1 (-485))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-336 *4 *5 *6)) (-4 *4 (-1193)) + (-4 *5 (-1211 *4)) (-4 *6 (-1211 (-401 *5))) + (-5 *2 (-2 (|:| |num| (-671 *5)) (|:| |den| *5)))))) +(((*1 *2 *2) (-12 (-5 *2 (-627 (-310 (-220)))) (-5 *1 (-261))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) + (-5 *2 + (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) + (|:| |success| (-111)))) + (-5 *1 (-772)) (-5 *5 (-552))))) +(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-900)) (-5 *1 (-769))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-754)) (-5 *2 (-111)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-358) (-825))) - (-5 *2 (-625 (-2 (|:| -3449 (-625 *3)) (|:| -1939 *4)))) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-178)))) - ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-661)))) - ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-946)))) - ((*1 *2 *1) (-12 (-5 *2 (-1185)) (-5 *1 (-1047)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1091))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-865 *4 *5)) (-5 *3 (-865 *4 *6)) (-4 *4 (-1073)) - (-4 *5 (-1073)) (-4 *6 (-646 *5)) (-5 *1 (-861 *4 *5 *6))))) + (-12 (-5 *2 (-111)) (-5 *1 (-1190 *3)) (-4 *3 (-830)) + (-4 *3 (-1076))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-552)) (-5 *5 (-671 (-220))) + (-5 *6 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 -1935)))) (-5 *3 (-220)) + (-5 *2 (-1014)) (-5 *1 (-731))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-807))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-401 *6)) (-4 *5 (-1193)) (-4 *6 (-1211 *5)) + (-5 *2 (-2 (|:| -4067 (-754)) (|:| -3069 *3) (|:| |radicand| *6))) + (-5 *1 (-145 *5 *6 *7)) (-5 *4 (-754)) (-4 *7 (-1211 *3))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) + (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-111))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1028)) (-4 *2 (-669 *4 *5 *6)) + (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1211 *4)) (-4 *5 (-367 *4)) + (-4 *6 (-367 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) + (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) + ((*1 *1 *1) (-4 *1 (-485))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1076)) (-5 *2 (-1134))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-669 (-402 (-928 (-552))))) - (-5 *2 (-669 (-311 (-552)))) (-5 *1 (-1007))))) + (-12 (-5 *2 (-552)) (-5 *1 (-438 *3)) (-4 *3 (-398)) (-4 *3 (-1028))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-361 *2)) (-4 *2 (-169)) (-4 *2 (-544)))) + ((*1 *1 *1) (|partial| -4 *1 (-705)))) +(((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1189))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *1 (-461))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-754)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-411 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-962 *2)) (-4 *2 (-1174))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-754)) (-4 *2 (-544)) (-5 *1 (-948 *2 *4)) + (-4 *4 (-1211 *2))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *5 (-220)) + (-5 *2 (-1014)) (-5 *1 (-735))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-627 *3)) (-5 *6 (-1148 *3)) + (-4 *3 (-13 (-424 *7) (-27) (-1174))) + (-4 *7 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-548 *7 *3 *8)) (-4 *8 (-1076)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-598 *3)) (-5 *5 (-627 *3)) + (-5 *6 (-401 (-1148 *3))) (-4 *3 (-13 (-424 *7) (-27) (-1174))) + (-4 *7 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-627 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-548 *7 *3 *8)) (-4 *8 (-1076))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) + (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) + ((*1 *1 *1) (-4 *1 (-485))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-424 *2)) (-4 *2 (-830)) (-4 *2 (-544)))) + ((*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-544))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-625 (-243 *4 *5))) (-5 *2 (-243 *4 *5)) - (-14 *4 (-625 (-1149))) (-4 *5 (-446)) (-5 *1 (-613 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) - (-5 *2 (-2 (|:| |num| (-1232 *4)) (|:| |den| *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1237)) (-5 *1 (-1111)))) + (|partial| -12 (-5 *3 (-754)) (-5 *1 (-574 *2)) (-4 *2 (-537)))) ((*1 *2 *3) - (-12 (-5 *3 (-625 (-839))) (-5 *2 (-1237)) (-5 *1 (-1111))))) + (-12 (-5 *2 (-2 (|:| -2705 *3) (|:| -4067 (-754)))) (-5 *1 (-574 *3)) + (-4 *3 (-537))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-78 LSFUN1)))) + (-5 *2 (-1014)) (-5 *1 (-736))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-730))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-931 (-401 (-552)))) (-5 *4 (-1152)) + (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-627 (-220))) (-5 *1 (-294))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1211 *3)) (-4 *3 (-1028)) (-5 *2 (-1148 *3))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-3 (|:| |nullBranch| "null") + (|:| |assignmentBranch| + (-2 (|:| |var| (-1152)) + (|:| |arrayIndex| (-627 (-931 (-552)))) + (|:| |rand| + (-2 (|:| |ints2Floats?| (-111)) (|:| -4301 (-842)))))) + (|:| |arrayAssignmentBranch| + (-2 (|:| |var| (-1152)) (|:| |rand| (-842)) + (|:| |ints2Floats?| (-111)))) + (|:| |conditionalBranch| + (-2 (|:| |switch| (-1151)) (|:| |thenClause| (-324)) + (|:| |elseClause| (-324)))) + (|:| |returnBranch| + (-2 (|:| -1275 (-111)) + (|:| -4288 + (-2 (|:| |ints2Floats?| (-111)) (|:| -4301 (-842)))))) + (|:| |blockBranch| (-627 (-324))) + (|:| |commentBranch| (-627 (-1134))) (|:| |callBranch| (-1134)) + (|:| |forBranch| + (-2 (|:| -1707 (-1068 (-931 (-552)))) + (|:| |span| (-931 (-552))) (|:| -3122 (-324)))) + (|:| |labelBranch| (-1096)) + (|:| |loopBranch| (-2 (|:| |switch| (-1151)) (|:| -3122 (-324)))) + (|:| |commonBranch| + (-2 (|:| -3112 (-1152)) (|:| |contents| (-627 (-1152))))) + (|:| |printBranch| (-627 (-842))))) + (-5 *1 (-324))))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(((*1 *1 *1) (-4 *1 (-94))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) + (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) + (-5 *1 (-1151))))) +(((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1134))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) + (-12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-1152)) + (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-310 *5))) + (-5 *1 (-1105 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 (-401 (-931 *5)))) (-5 *4 (-627 (-1152))) + (-4 *5 (-13 (-301) (-830) (-144))) (-5 *2 (-627 (-627 (-310 *5)))) + (-5 *1 (-1105 *5))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-776)) + (-4 *8 (-830)) (-4 *9 (-1042 *6 *7 *8)) + (-5 *2 + (-2 (|:| -1651 (-627 *9)) (|:| -3443 *4) (|:| |ineq| (-627 *9)))) + (-5 *1 (-967 *6 *7 *8 *9 *4)) (-5 *3 (-627 *9)) + (-4 *4 (-1048 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-776)) + (-4 *8 (-830)) (-4 *9 (-1042 *6 *7 *8)) + (-5 *2 + (-2 (|:| -1651 (-627 *9)) (|:| -3443 *4) (|:| |ineq| (-627 *9)))) + (-5 *1 (-1083 *6 *7 *8 *9 *4)) (-5 *3 (-627 *9)) + (-4 *4 (-1048 *6 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) + (-4 *4 (-343))))) +(((*1 *1) (-5 *1 (-324)))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-62 LSFUN2)))) + (-5 *2 (-1014)) (-5 *1 (-736))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-552)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1189)) + (-4 *3 (-367 *4)) (-4 *5 (-367 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1076)) (-5 *1 (-884 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-627 *6)) (-4 *6 (-830)) (-4 *4 (-357)) (-4 *5 (-776)) + (-5 *1 (-496 *4 *5 *6 *2)) (-4 *2 (-928 *4 *5 *6)))) + ((*1 *1 *1 *2) + (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-928 *3 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-154))))) +(((*1 *2 *3) + (-12 (-4 *4 (-544)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1637 *4))) + (-5 *1 (-948 *4 *3)) (-4 *3 (-1211 *4))))) +(((*1 *1 *1) (-4 *1 (-94))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 *6)) (-5 *4 (-627 (-1132 *7))) (-4 *6 (-830)) + (-4 *7 (-928 *5 (-523 *6) *6)) (-4 *5 (-1028)) + (-5 *2 (-1 (-1132 *7) *7)) (-5 *1 (-1102 *5 *6 *7))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) + (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) + (-5 *1 (-1151))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) + (-5 *1 (-431))))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-1134)) (-5 *1 (-1236)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1236)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1236)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-627 (-1134))) (-5 *2 (-1134)) (-5 *1 (-1237)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1237)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1237))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-669 *7)) (-5 *3 (-625 *7)) (-4 *7 (-925 *4 *6 *5)) - (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) - (-4 *6 (-773)) (-5 *1 (-900 *4 *5 *6 *7))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *3 (-625 (-258))) - (-5 *1 (-256)))) - ((*1 *1 *2) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *1 (-258)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *1 (-462)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 (-1067 (-374)))) (-5 *1 (-462))))) + (-12 (-5 *2 (-671 *3)) (-4 *3 (-301)) (-5 *1 (-682 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-528))) (-5 *2 (-1152)) (-5 *1 (-528))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-120 *3))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) (-4 *4 (-776)) + (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-154)))) + ((*1 *2 *3) (-12 (-5 *3 (-922 *2)) (-5 *1 (-961 *2)) (-4 *2 (-1028))))) +(((*1 *1 *2) (-12 (-5 *2 (-802 *3)) (-4 *3 (-830)) (-5 *1 (-654 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 *2)) (-4 *2 (-1211 *4)) (-5 *1 (-531 *4 *2 *5 *6)) + (-4 *4 (-301)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-754)))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-1189))))) +(((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-1148 (-931 *4))) (-5 *1 (-410 *3 *4)) + (-4 *3 (-411 *4)))) + ((*1 *2) + (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-4 *3 (-357)) + (-5 *2 (-1148 (-931 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1148 (-401 (-931 *3)))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) + (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) +(((*1 *1 *1) (-4 *1 (-94))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-625 (-167 *4))) (-5 *1 (-153 *3 *4)) - (-4 *3 (-1208 (-167 (-552)))) (-4 *4 (-13 (-358) (-825))))) + (-12 (-5 *3 (-627 *7)) (-4 *7 (-830)) (-4 *5 (-888)) (-4 *6 (-776)) + (-4 *8 (-928 *5 *6 *7)) (-5 *2 (-412 (-1148 *8))) + (-5 *1 (-885 *5 *6 *7 *8)) (-5 *4 (-1148 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-888)) (-4 *5 (-1211 *4)) (-5 *2 (-412 (-1148 *5))) + (-5 *1 (-886 *4 *5)) (-5 *3 (-1148 *5))))) +(((*1 *1 *1) (-5 *1 (-1151))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-3 (|:| I (-310 (-552))) (|:| -1935 (-310 (-373))) + (|:| CF (-310 (-166 (-373)))) (|:| |switch| (-1151)))) + (-5 *1 (-1151))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-220) (-220) (-220) (-220))) (-5 *1 (-257)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220) (-220))) (-5 *1 (-257)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-220) (-220))) (-5 *1 (-257))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1259 *3 *4)) (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) + (-4 *4 (-169)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-380 *2)) (-4 *2 (-1076)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-802 *2)) (-4 *2 (-830)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-802 *3)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-830)) + (-4 *4 (-1028)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028))))) +(((*1 *2 *1) + (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) + (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1233 *3)) (-4 *3 (-1189)) (-4 *3 (-1028)) + (-5 *2 (-671 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1152)) (-5 *5 (-1070 (-220))) (-5 *2 (-906)) + (-5 *1 (-904 *3)) (-4 *3 (-600 (-528))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1152)) (-5 *5 (-1070 (-220))) (-5 *2 (-906)) + (-5 *1 (-904 *3)) (-4 *3 (-600 (-528))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-905)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) + (-5 *1 (-905)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) + (-5 *1 (-905)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1070 (-220))) (-5 *1 (-906)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) + (-5 *1 (-906)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) + (-5 *1 (-906)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-627 (-1 (-220) (-220)))) (-5 *3 (-1070 (-220))) + (-5 *1 (-906)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-627 (-1 (-220) (-220)))) (-5 *3 (-1070 (-220))) + (-5 *1 (-906)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) + (-5 *1 (-906)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-220) (-220))) (-5 *3 (-1070 (-220))) + (-5 *1 (-906))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-754)) (-4 *6 (-1076)) (-4 *7 (-879 *6)) + (-5 *2 (-671 *7)) (-5 *1 (-674 *6 *7 *3 *4)) (-4 *3 (-367 *7)) + (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4366))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-552)) (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1028)) + (-5 *1 (-315 *4 *5 *2 *6)) (-4 *6 (-928 *2 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537))))) +(((*1 *2 *1) + (-12 (-5 *2 (-852 (-945 *3) (-945 *3))) (-5 *1 (-945 *3)) + (-4 *3 (-946))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-428))))) +(((*1 *1 *1) (-4 *1 (-94))) ((*1 *1 *1 *1) (-5 *1 (-220))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) + (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) + ((*1 *1 *1 *1) (-5 *1 (-373))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-111) *2)) (-4 *2 (-130)) (-5 *1 (-1060 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-552) *2 *2)) (-4 *2 (-130)) (-5 *1 (-1060 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-407 *3 *4 *5 *6)) (-4 *6 (-1017 *4)) (-4 *3 (-301)) + (-4 *4 (-971 *3)) (-4 *5 (-1211 *4)) (-4 *6 (-403 *4 *5)) + (-14 *7 (-1235 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1235 *6)) (-4 *6 (-403 *4 *5)) (-4 *4 (-971 *3)) + (-4 *5 (-1211 *4)) (-4 *3 (-301)) (-5 *1 (-408 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-111)) (-5 *1 (-113))))) +(((*1 *2 *3) + (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-357)) + (-5 *1 (-513 *2 *4 *5 *3)) (-4 *3 (-669 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) + (|has| *2 (-6 (-4368 "*"))) (-4 *2 (-1028)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-625 (-167 *4))) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4))))) + (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-169)) + (-5 *1 (-670 *2 *4 *5 *3)) (-4 *3 (-669 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1099 *3 *2 *4 *5)) (-4 *4 (-233 *3 *2)) + (-4 *5 (-233 *3 *2)) (|has| *2 (-6 (-4368 "*"))) (-4 *2 (-1028))))) +(((*1 *2 *3) + (-12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-301)) (-5 *2 (-412 *3)) + (-5 *1 (-725 *4 *5 *6 *3)) (-4 *3 (-928 *6 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1152)) + (-4 *4 (-13 (-830) (-301) (-1017 (-552)) (-623 (-552)) (-144))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-787 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1174) (-938)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-830)) (-5 *2 (-754))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-127)) (-5 *2 (-1096))))) +(((*1 *1 *1) (-4 *1 (-94))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) + (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-111)) + (-5 *2 + (-2 (|:| |contp| (-552)) + (|:| -2101 (-627 (-2 (|:| |irr| *3) (|:| -3594 (-552))))))) + (-5 *1 (-435 *3)) (-4 *3 (-1211 (-552))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-625 (-167 *4))) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1208 (-167 *4)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234))))) + (-12 (-5 *4 (-111)) + (-5 *2 + (-2 (|:| |contp| (-552)) + (|:| -2101 (-627 (-2 (|:| |irr| *3) (|:| -3594 (-552))))))) + (-5 *1 (-1200 *3)) (-4 *3 (-1211 (-552)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-754)) (-4 *4 (-13 (-544) (-144))) + (-5 *1 (-1205 *4 *2)) (-4 *2 (-1211 *4))))) +(((*1 *2) + (-12 (-5 *2 (-754)) (-5 *1 (-119 *3)) (-4 *3 (-1211 (-552))))) + ((*1 *2 *2) + (-12 (-5 *2 (-754)) (-5 *1 (-119 *3)) (-4 *3 (-1211 (-552)))))) (((*1 *2 *1) - (-12 (-4 *4 (-1073)) (-5 *2 (-865 *3 *4)) (-5 *1 (-861 *3 *4 *5)) - (-4 *3 (-1073)) (-4 *5 (-646 *4))))) + (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) + (-5 *2 (-627 (-627 (-627 (-922 *3)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-528))))) (((*1 *2 *3) - (-12 (-5 *3 (-669 (-402 (-928 (-552))))) (-5 *2 (-625 (-311 (-552)))) - (-5 *1 (-1007))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-625 (-475 *4 *5))) (-5 *3 (-841 *4)) - (-14 *4 (-625 (-1149))) (-4 *5 (-446)) (-5 *1 (-613 *4 *5))))) + (-12 (-4 *4 (-13 (-544) (-830))) + (-4 *2 (-13 (-424 (-166 *4)) (-981) (-1174))) + (-5 *1 (-586 *4 *3 *2)) (-4 *3 (-13 (-424 *4) (-981) (-1174)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-900)) (-5 *2 (-1235 (-1235 (-552)))) (-5 *1 (-459))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-627 (-373))) (-5 *3 (-627 (-257))) (-5 *1 (-255)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-627 (-373))) (-5 *1 (-461)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 (-373))) (-5 *1 (-461)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-900)) (-5 *4 (-853)) (-5 *2 (-1240)) (-5 *1 (-1236)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-552)) (-5 *5 (-671 (-220))) (-5 *4 (-220)) + (-5 *2 (-1014)) (-5 *1 (-735))))) +(((*1 *2 *1) + (-12 (-5 *2 (-627 (-2 (|:| |gen| *3) (|:| -3154 *4)))) + (-5 *1 (-631 *3 *4 *5)) (-4 *3 (-1076)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *1 *1) (-4 *1 (-94))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) + (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1115)))) +(((*1 *2 *3) + (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552))))) +(((*1 *2 *2) + (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) + (-5 *1 (-173 *3))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4366)) (-4 *1 (-482 *3)) (-4 *3 (-1189)) + (-4 *3 (-1076)) (-5 *2 (-754)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-111) *4)) (|has| *1 (-6 -4366)) (-4 *1 (-482 *4)) + (-4 *4 (-1189)) (-5 *2 (-754))))) +(((*1 *2 *1) + (-12 (-4 *1 (-542 *3)) (-4 *3 (-13 (-398) (-1174))) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-828)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1045 *4 *3)) (-4 *4 (-13 (-828) (-357))) + (-4 *3 (-1211 *4)) (-5 *2 (-111))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1017 (-552))) (-4 *1 (-296)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-884 *3)) (-4 *3 (-1076))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-336 *4 *3 *5)) (-4 *4 (-1193)) (-4 *3 (-1211 *4)) + (-4 *5 (-1211 (-401 *3))) (-5 *2 (-111)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111)))) + ((*1 *2 *1) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-5 *2 (-111))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-739))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-111) *2)) (-4 *1 (-148 *2)) + (-4 *2 (-1189))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3)))) + ((*1 *1 *1) (-4 *1 (-1177)))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-1155)) (-5 *3 (-1152))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1132 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1028)) + (-5 *3 (-401 (-552))) (-5 *1 (-1136 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) (-4 *7 (-544)) + (-4 *8 (-928 *7 *5 *6)) + (-5 *2 (-2 (|:| -4067 (-754)) (|:| -3069 *3) (|:| |radicand| *3))) + (-5 *1 (-932 *5 *6 *7 *8 *3)) (-5 *4 (-754)) + (-4 *3 + (-13 (-357) + (-10 -8 (-15 -2918 (*8 $)) (-15 -2929 (*8 $)) (-15 -1477 ($ *8)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-580 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-4 *1 (-1076)) (-5 *2 (-1096))))) +(((*1 *1 *1) (-4 *1 (-848 *2)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1134)) (-4 *1 (-358 *3 *4)) (-4 *3 (-1076)) + (-4 *4 (-1076))))) +(((*1 *2 *3) + (-12 (-5 *3 (-474 *4 *5)) (-14 *4 (-627 (-1152))) (-4 *5 (-1028)) + (-5 *2 (-931 *5)) (-5 *1 (-923 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-931 *4)) (-4 *4 (-13 (-301) (-144))) + (-4 *2 (-928 *4 *6 *5)) (-5 *1 (-903 *4 *5 *6 *2)) + (-4 *5 (-13 (-830) (-600 (-1152)))) (-4 *6 (-776))))) (((*1 *2 *1) - (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) - (-5 *2 (-2 (|:| |num| (-1232 *4)) (|:| |den| *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-4 *1 (-149 *3)))) + (-12 (-4 *1 (-320 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-775)) + (-5 *2 (-627 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-1028)) (-4 *4 (-1076)) + (-5 *2 (-627 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1132 *3)) (-5 *1 (-583 *3)) (-4 *3 (-1028)))) + ((*1 *2 *1) + (-12 (-5 *2 (-627 *3)) (-5 *1 (-718 *3 *4)) (-4 *3 (-1028)) + (-4 *4 (-709)))) + ((*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1028)) (-5 *2 (-627 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1226 *3)) (-4 *3 (-1028)) (-5 *2 (-1132 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3)))) + ((*1 *1 *1) (-4 *1 (-1177)))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-627 *1)) (-4 *1 (-899))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-4 *1 (-148 *3)))) ((*1 *1 *2) (-12 - (-5 *2 (-625 (-2 (|:| -3564 (-751)) (|:| -2845 *4) (|:| |num| *4)))) - (-4 *4 (-1208 *3)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)))) + (-5 *2 (-627 (-2 (|:| -4067 (-754)) (|:| -3174 *4) (|:| |num| *4)))) + (-4 *4 (-1211 *3)) (-4 *3 (-13 (-357) (-144))) (-5 *1 (-393 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) - (-5 *3 (-625 (-928 (-552)))) (-5 *4 (-112)) (-5 *1 (-432)))) + (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) + (-5 *3 (-627 (-931 (-552)))) (-5 *4 (-111)) (-5 *1 (-431)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) - (-5 *3 (-625 (-1149))) (-5 *4 (-112)) (-5 *1 (-432)))) + (-12 (-5 *2 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) + (-5 *3 (-627 (-1152))) (-5 *4 (-111)) (-5 *1 (-431)))) ((*1 *2 *1) - (-12 (-5 *2 (-1129 *3)) (-5 *1 (-585 *3)) (-4 *3 (-1186)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-616 *2)) (-4 *2 (-170)))) + (-12 (-5 *2 (-1132 *3)) (-5 *1 (-587 *3)) (-4 *3 (-1189)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-618 *2)) (-4 *2 (-169)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4)) - (-4 *4 (-170)))) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-830)) (-5 *1 (-646 *3 *4)) + (-4 *4 (-169)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4)) - (-4 *4 (-170)))) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-830)) (-5 *1 (-646 *3 *4)) + (-4 *4 (-169)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4)) - (-4 *4 (-170)))) + (-12 (-5 *2 (-654 *3)) (-4 *3 (-830)) (-5 *1 (-646 *3 *4)) + (-4 *4 (-169)))) ((*1 *1 *2) - (-12 (-5 *2 (-625 (-625 (-625 *3)))) (-4 *3 (-1073)) - (-5 *1 (-655 *3)))) + (-12 (-5 *2 (-627 (-627 (-627 *3)))) (-4 *3 (-1076)) + (-5 *1 (-657 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-694 *2 *3 *4)) (-4 *2 (-827)) (-4 *3 (-1073)) + (-12 (-5 *1 (-696 *2 *3 *4)) (-4 *2 (-830)) (-4 *3 (-1076)) (-14 *4 - (-1 (-112) (-2 (|:| -3123 *2) (|:| -3564 *3)) - (-2 (|:| -3123 *2) (|:| -3564 *3)))))) + (-1 (-111) (-2 (|:| -4153 *2) (|:| -4067 *3)) + (-2 (|:| -4153 *2) (|:| -4067 *3)))))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-849 *2 *3)) (-4 *2 (-1186)) (-4 *3 (-1186)))) + (-12 (-5 *1 (-852 *2 *3)) (-4 *2 (-1189)) (-4 *3 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-625 (-2 (|:| -2971 (-1149)) (|:| -4120 *4)))) - (-4 *4 (-1073)) (-5 *1 (-865 *3 *4)) (-4 *3 (-1073)))) + (-12 (-5 *2 (-627 (-2 (|:| -3998 (-1152)) (|:| -2162 *4)))) + (-4 *4 (-1076)) (-5 *1 (-868 *3 *4)) (-4 *3 (-1076)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-625 *5)) (-4 *5 (-13 (-1073) (-34))) - (-5 *2 (-625 (-1113 *3 *5))) (-5 *1 (-1113 *3 *5)) - (-4 *3 (-13 (-1073) (-34))))) + (-12 (-5 *4 (-627 *5)) (-4 *5 (-13 (-1076) (-34))) + (-5 *2 (-627 (-1116 *3 *5))) (-5 *1 (-1116 *3 *5)) + (-4 *3 (-13 (-1076) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-625 (-2 (|:| |val| *4) (|:| -3715 *5)))) - (-4 *4 (-13 (-1073) (-34))) (-4 *5 (-13 (-1073) (-34))) - (-5 *2 (-625 (-1113 *4 *5))) (-5 *1 (-1113 *4 *5)))) + (-12 (-5 *3 (-627 (-2 (|:| |val| *4) (|:| -3443 *5)))) + (-4 *4 (-13 (-1076) (-34))) (-4 *5 (-13 (-1076) (-34))) + (-5 *2 (-627 (-1116 *4 *5))) (-5 *1 (-1116 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3715 *4))) - (-4 *3 (-13 (-1073) (-34))) (-4 *4 (-13 (-1073) (-34))) - (-5 *1 (-1113 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3443 *4))) + (-4 *3 (-13 (-1076) (-34))) (-4 *4 (-13 (-1076) (-34))) + (-5 *1 (-1116 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34))) - (-4 *3 (-13 (-1073) (-34))))) + (-12 (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) + (-4 *3 (-13 (-1076) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1073) (-34))) - (-4 *3 (-13 (-1073) (-34))))) + (-12 (-5 *4 (-111)) (-5 *1 (-1116 *2 *3)) (-4 *2 (-13 (-1076) (-34))) + (-4 *3 (-13 (-1076) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-625 *3)) (-4 *3 (-13 (-1073) (-34))) - (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1073) (-34))))) + (-12 (-5 *4 (-627 *3)) (-4 *3 (-13 (-1076) (-34))) + (-5 *1 (-1117 *2 *3)) (-4 *2 (-13 (-1076) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-625 (-1113 *2 *3))) (-4 *2 (-13 (-1073) (-34))) - (-4 *3 (-13 (-1073) (-34))) (-5 *1 (-1114 *2 *3)))) + (-12 (-5 *4 (-627 (-1116 *2 *3))) (-4 *2 (-13 (-1076) (-34))) + (-4 *3 (-13 (-1076) (-34))) (-5 *1 (-1117 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-625 (-1114 *2 *3))) (-5 *1 (-1114 *2 *3)) - (-4 *2 (-13 (-1073) (-34))) (-4 *3 (-13 (-1073) (-34))))) + (-12 (-5 *4 (-627 (-1117 *2 *3))) (-5 *1 (-1117 *2 *3)) + (-4 *2 (-13 (-1076) (-34))) (-4 *3 (-13 (-1076) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34))) - (-4 *4 (-13 (-1073) (-34))) (-5 *1 (-1114 *3 *4)))) + (-12 (-5 *2 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) + (-4 *4 (-13 (-1076) (-34))) (-5 *1 (-1117 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1138 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1137 3 *3)) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) - ((*1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) + (-12 (-5 *1 (-1141 *2 *3)) (-4 *2 (-1076)) (-4 *3 (-1076))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-931 *4)) (-4 *4 (-1028)) (-4 *4 (-600 *2)) + (-5 *2 (-373)) (-5 *1 (-768 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-931 *5)) (-5 *4 (-900)) (-4 *5 (-1028)) + (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-401 (-931 *4))) (-4 *4 (-544)) + (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-401 (-931 *5))) (-5 *4 (-900)) (-4 *5 (-544)) + (-4 *5 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-310 *4)) (-4 *4 (-544)) (-4 *4 (-830)) + (-4 *4 (-600 *2)) (-5 *2 (-373)) (-5 *1 (-768 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-310 *5)) (-5 *4 (-900)) (-4 *5 (-544)) + (-4 *5 (-830)) (-4 *5 (-600 *2)) (-5 *2 (-373)) + (-5 *1 (-768 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-664 *3)) (-4 *3 (-1076))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1148 *4)) (-4 *4 (-343)) + (-5 *2 (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096)))))) + (-5 *1 (-340 *4))))) +(((*1 *2) + (-12 (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) (-4 *4 (-1211 *3)) + (-4 *5 (-1211 (-401 *4))) (-5 *2 (-671 (-401 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-807))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-669 *8)) (-5 *4 (-751)) (-4 *8 (-925 *5 *7 *6)) - (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) - (-4 *7 (-773)) + (-12 (-5 *4 (-288 (-823 *3))) (-4 *3 (-13 (-27) (-1174) (-424 *5))) + (-4 *5 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) (-5 *2 - (-625 - (-2 (|:| |det| *8) (|:| |rows| (-625 (-552))) - (|:| |cols| (-625 (-552)))))) - (-5 *1 (-900 *5 *6 *7 *8))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-919 (-221))) (-5 *4 (-850)) (-5 *5 (-897)) - (-5 *2 (-1237)) (-5 *1 (-462)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-462)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-625 (-919 (-221)))) (-5 *4 (-850)) (-5 *5 (-897)) - (-5 *2 (-1237)) (-5 *1 (-462))))) -(((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-181))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-625 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234))))) + (-3 (-823 *3) + (-2 (|:| |leftHandLimit| (-3 (-823 *3) "failed")) + (|:| |rightHandLimit| (-3 (-823 *3) "failed"))) + "failed")) + (-5 *1 (-620 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-288 *3)) (-5 *5 (-1134)) + (-4 *3 (-13 (-27) (-1174) (-424 *6))) + (-4 *6 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-823 *3)) (-5 *1 (-620 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-288 (-823 (-931 *5)))) (-4 *5 (-445)) + (-5 *2 + (-3 (-823 (-401 (-931 *5))) + (-2 (|:| |leftHandLimit| (-3 (-823 (-401 (-931 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-823 (-401 (-931 *5))) "failed"))) + "failed")) + (-5 *1 (-621 *5)) (-5 *3 (-401 (-931 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-288 (-401 (-931 *5)))) (-5 *3 (-401 (-931 *5))) + (-4 *5 (-445)) + (-5 *2 + (-3 (-823 *3) + (-2 (|:| |leftHandLimit| (-3 (-823 *3) "failed")) + (|:| |rightHandLimit| (-3 (-823 *3) "failed"))) + "failed")) + (-5 *1 (-621 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-288 (-401 (-931 *6)))) (-5 *5 (-1134)) + (-5 *3 (-401 (-931 *6))) (-4 *6 (-445)) (-5 *2 (-823 *3)) + (-5 *1 (-621 *6))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830)) (-4 *2 (-544))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-111)) (-4 *5 (-13 (-357) (-828))) + (-5 *2 (-627 (-2 (|:| -2101 (-627 *3)) (|:| -3722 *5)))) + (-5 *1 (-178 *5 *3)) (-4 *3 (-1211 (-166 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-357) (-828))) + (-5 *2 (-627 (-2 (|:| -2101 (-627 *3)) (|:| -3722 *4)))) + (-5 *1 (-178 *4 *3)) (-4 *3 (-1211 (-166 *4)))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1134)) (-5 *2 (-757)) (-5 *1 (-113)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-1080)) (-5 *1 (-944))))) (((*1 *2 *3) - (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-552))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-669 (-402 (-928 (-552))))) - (-5 *2 (-625 (-669 (-311 (-552))))) (-5 *1 (-1007)) - (-5 *3 (-311 (-552)))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-625 *6)) (-5 *4 (-625 (-243 *5 *6))) (-4 *6 (-446)) - (-5 *2 (-243 *5 *6)) (-14 *5 (-625 (-1149))) (-5 *1 (-613 *5 *6))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1232 *3)) (-4 *3 (-1208 *4)) (-4 *4 (-1190)) - (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1208 (-402 *3)))))) -(((*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170)))) + (-12 (-4 *4 (-38 (-401 (-552)))) + (-5 *2 (-2 (|:| -1584 (-1132 *4)) (|:| -1596 (-1132 *4)))) + (-5 *1 (-1138 *4)) (-5 *3 (-1132 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3)))) + ((*1 *1 *1) (-4 *1 (-1177)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830))))) +(((*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-169)))) ((*1 *1 *2) - (-12 (-5 *2 (-1232 *3)) (-4 *3 (-358)) (-14 *6 (-1232 (-669 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))))) - ((*1 *1 *2) (-12 (-5 *2 (-1098 (-552) (-596 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1186)))) + (-12 (-5 *2 (-1235 *3)) (-4 *3 (-357)) (-14 *6 (-1235 (-671 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-900)) (-14 *5 (-627 (-1152))))) + ((*1 *1 *2) (-12 (-5 *2 (-1101 (-552) (-598 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1189)))) ((*1 *1 *2) - (-12 (-5 *2 (-1232 (-334 (-1695 'JINT 'X 'ELAM) (-1695) (-679)))) - (-5 *1 (-60 *3)) (-14 *3 (-1149)))) + (-12 (-5 *2 (-1235 (-333 (-1490 'JINT 'X 'ELAM) (-1490) (-681)))) + (-5 *1 (-60 *3)) (-14 *3 (-1152)))) ((*1 *1 *2) - (-12 (-5 *2 (-1232 (-334 (-1695) (-1695 'XC) (-679)))) - (-5 *1 (-62 *3)) (-14 *3 (-1149)))) + (-12 (-5 *2 (-1235 (-333 (-1490) (-1490 'XC) (-681)))) + (-5 *1 (-62 *3)) (-14 *3 (-1152)))) ((*1 *1 *2) - (-12 (-5 *2 (-334 (-1695 'X) (-1695) (-679))) (-5 *1 (-63 *3)) - (-14 *3 (-1149)))) + (-12 (-5 *2 (-333 (-1490 'X) (-1490) (-681))) (-5 *1 (-63 *3)) + (-14 *3 (-1152)))) ((*1 *1 *2) - (-12 (-5 *2 (-669 (-334 (-1695) (-1695 'X 'HESS) (-679)))) - (-5 *1 (-64 *3)) (-14 *3 (-1149)))) + (-12 (-5 *2 (-671 (-333 (-1490) (-1490 'X 'HESS) (-681)))) + (-5 *1 (-64 *3)) (-14 *3 (-1152)))) ((*1 *1 *2) - (-12 (-5 *2 (-334 (-1695) (-1695 'XC) (-679))) (-5 *1 (-65 *3)) - (-14 *3 (-1149)))) + (-12 (-5 *2 (-333 (-1490) (-1490 'XC) (-681))) (-5 *1 (-65 *3)) + (-14 *3 (-1152)))) ((*1 *1 *2) - (-12 (-5 *2 (-1232 (-334 (-1695 'X) (-1695 '-1367) (-679)))) - (-5 *1 (-70 *3)) (-14 *3 (-1149)))) + (-12 (-5 *2 (-1235 (-333 (-1490 'X) (-1490 '-3156) (-681)))) + (-5 *1 (-70 *3)) (-14 *3 (-1152)))) ((*1 *1 *2) - (-12 (-5 *2 (-1232 (-334 (-1695) (-1695 'X) (-679)))) - (-5 *1 (-73 *3)) (-14 *3 (-1149)))) + (-12 (-5 *2 (-1235 (-333 (-1490) (-1490 'X) (-681)))) + (-5 *1 (-73 *3)) (-14 *3 (-1152)))) ((*1 *1 *2) - (-12 (-5 *2 (-1232 (-334 (-1695 'X 'EPS) (-1695 '-1367) (-679)))) - (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1149)) (-14 *4 (-1149)) - (-14 *5 (-1149)))) + (-12 (-5 *2 (-1235 (-333 (-1490 'X 'EPS) (-1490 '-3156) (-681)))) + (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1152)) (-14 *4 (-1152)) + (-14 *5 (-1152)))) ((*1 *1 *2) - (-12 (-5 *2 (-1232 (-334 (-1695 'EPS) (-1695 'YA 'YB) (-679)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1149)) (-14 *4 (-1149)) - (-14 *5 (-1149)))) + (-12 (-5 *2 (-1235 (-333 (-1490 'EPS) (-1490 'YA 'YB) (-681)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1152)) (-14 *4 (-1152)) + (-14 *5 (-1152)))) ((*1 *1 *2) - (-12 (-5 *2 (-334 (-1695) (-1695 'X) (-679))) (-5 *1 (-76 *3)) - (-14 *3 (-1149)))) + (-12 (-5 *2 (-333 (-1490) (-1490 'X) (-681))) (-5 *1 (-76 *3)) + (-14 *3 (-1152)))) ((*1 *1 *2) - (-12 (-5 *2 (-334 (-1695) (-1695 'X) (-679))) (-5 *1 (-77 *3)) - (-14 *3 (-1149)))) + (-12 (-5 *2 (-333 (-1490) (-1490 'X) (-681))) (-5 *1 (-77 *3)) + (-14 *3 (-1152)))) ((*1 *1 *2) - (-12 (-5 *2 (-1232 (-334 (-1695) (-1695 'XC) (-679)))) - (-5 *1 (-78 *3)) (-14 *3 (-1149)))) + (-12 (-5 *2 (-1235 (-333 (-1490) (-1490 'XC) (-681)))) + (-5 *1 (-78 *3)) (-14 *3 (-1152)))) ((*1 *1 *2) - (-12 (-5 *2 (-1232 (-334 (-1695) (-1695 'X) (-679)))) - (-5 *1 (-79 *3)) (-14 *3 (-1149)))) + (-12 (-5 *2 (-1235 (-333 (-1490) (-1490 'X) (-681)))) + (-5 *1 (-79 *3)) (-14 *3 (-1152)))) ((*1 *1 *2) - (-12 (-5 *2 (-1232 (-334 (-1695) (-1695 'X) (-679)))) - (-5 *1 (-80 *3)) (-14 *3 (-1149)))) + (-12 (-5 *2 (-1235 (-333 (-1490) (-1490 'X) (-681)))) + (-5 *1 (-80 *3)) (-14 *3 (-1152)))) ((*1 *1 *2) - (-12 (-5 *2 (-1232 (-334 (-1695 'X '-1367) (-1695) (-679)))) - (-5 *1 (-81 *3)) (-14 *3 (-1149)))) + (-12 (-5 *2 (-1235 (-333 (-1490 'X '-3156) (-1490) (-681)))) + (-5 *1 (-81 *3)) (-14 *3 (-1152)))) ((*1 *1 *2) - (-12 (-5 *2 (-669 (-334 (-1695 'X '-1367) (-1695) (-679)))) - (-5 *1 (-82 *3)) (-14 *3 (-1149)))) + (-12 (-5 *2 (-671 (-333 (-1490 'X '-3156) (-1490) (-681)))) + (-5 *1 (-82 *3)) (-14 *3 (-1152)))) ((*1 *1 *2) - (-12 (-5 *2 (-669 (-334 (-1695 'X) (-1695) (-679)))) (-5 *1 (-83 *3)) - (-14 *3 (-1149)))) + (-12 (-5 *2 (-671 (-333 (-1490 'X) (-1490) (-681)))) (-5 *1 (-83 *3)) + (-14 *3 (-1152)))) ((*1 *1 *2) - (-12 (-5 *2 (-1232 (-334 (-1695 'X) (-1695) (-679)))) - (-5 *1 (-84 *3)) (-14 *3 (-1149)))) + (-12 (-5 *2 (-1235 (-333 (-1490 'X) (-1490) (-681)))) + (-5 *1 (-84 *3)) (-14 *3 (-1152)))) ((*1 *1 *2) - (-12 (-5 *2 (-1232 (-334 (-1695 'X) (-1695 '-1367) (-679)))) - (-5 *1 (-85 *3)) (-14 *3 (-1149)))) + (-12 (-5 *2 (-1235 (-333 (-1490 'X) (-1490 '-3156) (-681)))) + (-5 *1 (-85 *3)) (-14 *3 (-1152)))) ((*1 *1 *2) - (-12 (-5 *2 (-669 (-334 (-1695 'XL 'XR 'ELAM) (-1695) (-679)))) - (-5 *1 (-86 *3)) (-14 *3 (-1149)))) + (-12 (-5 *2 (-671 (-333 (-1490 'XL 'XR 'ELAM) (-1490) (-681)))) + (-5 *1 (-86 *3)) (-14 *3 (-1152)))) ((*1 *1 *2) - (-12 (-5 *2 (-334 (-1695 'X) (-1695 '-1367) (-679))) (-5 *1 (-88 *3)) - (-14 *3 (-1149)))) - ((*1 *1 *2) (-12 (-5 *2 (-1154)) (-4 *1 (-92)))) - ((*1 *2 *1) (-12 (-5 *2 (-980 2)) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-107)))) - ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-129)))) - ((*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-129)))) + (-12 (-5 *2 (-333 (-1490 'X) (-1490 '-3156) (-681))) (-5 *1 (-88 *3)) + (-14 *3 (-1152)))) + ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-92)))) + ((*1 *2 *1) (-12 (-5 *2 (-983 2)) (-5 *1 (-107)))) + ((*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-107)))) + ((*1 *1 *2) (-12 (-5 *2 (-141)) (-5 *1 (-128)))) + ((*1 *1 *2) (-12 (-5 *2 (-754)) (-5 *1 (-128)))) ((*1 *1 *2) - (-12 (-5 *2 (-625 (-135 *3 *4 *5))) (-5 *1 (-135 *3 *4 *5)) - (-14 *3 (-552)) (-14 *4 (-751)) (-4 *5 (-170)))) + (-12 (-5 *2 (-627 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) + (-14 *3 (-552)) (-14 *4 (-754)) (-4 *5 (-169)))) ((*1 *1 *2) - (-12 (-5 *2 (-625 *5)) (-4 *5 (-170)) (-5 *1 (-135 *3 *4 *5)) - (-14 *3 (-552)) (-14 *4 (-751)))) + (-12 (-5 *2 (-627 *5)) (-4 *5 (-169)) (-5 *1 (-134 *3 *4 *5)) + (-14 *3 (-552)) (-14 *4 (-754)))) ((*1 *1 *2) - (-12 (-5 *2 (-1115 *4 *5)) (-14 *4 (-751)) (-4 *5 (-170)) - (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552)))) + (-12 (-5 *2 (-1118 *4 *5)) (-14 *4 (-754)) (-4 *5 (-169)) + (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)))) ((*1 *1 *2) - (-12 (-5 *2 (-236 *4 *5)) (-14 *4 (-751)) (-4 *5 (-170)) - (-5 *1 (-135 *3 *4 *5)) (-14 *3 (-552)))) + (-12 (-5 *2 (-235 *4 *5)) (-14 *4 (-754)) (-4 *5 (-169)) + (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-552)))) ((*1 *2 *3) - (-12 (-5 *3 (-1232 (-669 *4))) (-4 *4 (-170)) - (-5 *2 (-1232 (-669 (-402 (-928 *4))))) (-5 *1 (-185 *4)))) + (-12 (-5 *3 (-1235 (-671 *4))) (-4 *4 (-169)) + (-5 *2 (-1235 (-671 (-401 (-931 *4))))) (-5 *1 (-184 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-625 *3)) + (-12 (-5 *2 (-627 *3)) (-4 *3 - (-13 (-827) - (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 ((-1237) $)) - (-15 -3867 ((-1237) $))))) - (-5 *1 (-210 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-980 10)) (-5 *1 (-213)))) - ((*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-213)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-241 *3)) (-4 *3 (-827)))) - ((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-827)) (-5 *1 (-241 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1065 (-311 *4))) - (-4 *4 (-13 (-827) (-544) (-598 (-374)))) (-5 *2 (-1065 (-374))) - (-5 *1 (-253 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827)))) - ((*1 *1 *2) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-270)))) + (-13 (-830) + (-10 -8 (-15 -1985 ((-1134) $ (-1152))) (-15 -4291 ((-1240) $)) + (-15 -4103 ((-1240) $))))) + (-5 *1 (-209 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-983 10)) (-5 *1 (-212)))) + ((*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-212)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 *3)) (-5 *1 (-240 *3)) (-4 *3 (-830)))) + ((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-830)) (-5 *1 (-240 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1068 (-310 *4))) + (-4 *4 (-13 (-830) (-544) (-600 (-373)))) (-5 *2 (-1068 (-373))) + (-5 *1 (-252 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-260 *2)) (-4 *2 (-830)))) + ((*1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-269)))) ((*1 *2 *1) - (-12 (-4 *2 (-1208 *3)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) - (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-12 (-4 *2 (-1211 *3)) (-5 *1 (-283 *3 *2 *4 *5 *6 *7)) + (-4 *3 (-169)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1217 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-425 *3))) - (-14 *5 (-1149)) (-14 *6 *4) - (-4 *3 (-13 (-827) (-1014 (-552)) (-621 (-552)) (-446))) - (-5 *1 (-308 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-325)))) + (-12 (-5 *2 (-1220 *4 *5 *6)) (-4 *4 (-13 (-27) (-1174) (-424 *3))) + (-14 *5 (-1152)) (-14 *6 *4) + (-4 *3 (-13 (-830) (-1017 (-552)) (-623 (-552)) (-445))) + (-5 *1 (-307 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-324)))) ((*1 *2 *1) - (-12 (-5 *2 (-311 *5)) (-5 *1 (-334 *3 *4 *5)) - (-14 *3 (-625 (-1149))) (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) + (-12 (-5 *2 (-310 *5)) (-5 *1 (-333 *3 *4 *5)) + (-14 *3 (-627 (-1152))) (-14 *4 (-627 (-1152))) (-4 *5 (-381)))) ((*1 *2 *3) - (-12 (-4 *4 (-344)) (-4 *2 (-324 *4)) (-5 *1 (-342 *3 *4 *2)) - (-4 *3 (-324 *4)))) + (-12 (-4 *4 (-343)) (-4 *2 (-323 *4)) (-5 *1 (-341 *3 *4 *2)) + (-4 *3 (-323 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-344)) (-4 *2 (-324 *4)) (-5 *1 (-342 *2 *4 *3)) - (-4 *3 (-324 *4)))) + (-12 (-4 *4 (-343)) (-4 *2 (-323 *4)) (-5 *1 (-341 *2 *4 *3)) + (-4 *3 (-323 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) - (-5 *2 (-1256 *3 *4)))) + (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) + (-5 *2 (-1259 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) - (-5 *2 (-1247 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170)))) + (-12 (-4 *1 (-368 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) + (-5 *2 (-1250 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-368 *2 *3)) (-4 *2 (-830)) (-4 *3 (-169)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) - (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-669 (-679))) (-4 *1 (-378)))) + (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) + (-4 *1 (-377)))) + ((*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-377)))) + ((*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-4 *1 (-377)))) + ((*1 *1 *2) (-12 (-5 *2 (-671 (-681))) (-4 *1 (-377)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) - (-4 *1 (-379)))) - ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-379)))) - ((*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-4 *1 (-379)))) - ((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))) - ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384)))) - ((*1 *2 *3) (-12 (-5 *2 (-389)) (-5 *1 (-388 *3)) (-4 *3 (-1073)))) - ((*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-389)))) + (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) + (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-4 *1 (-378)))) + ((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-1134)))) + ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-4 *1 (-383)))) + ((*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-387 *3)) (-4 *3 (-1076)))) + ((*1 *1 *2) (-12 (-5 *2 (-842)) (-5 *1 (-388)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) - (-4 *1 (-391)))) - ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-391)))) - ((*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-4 *1 (-391)))) + (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) + (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-390)))) + ((*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-4 *1 (-390)))) ((*1 *1 *2) - (-12 (-5 *2 (-289 (-311 (-167 (-374))))) (-5 *1 (-393 *3 *4 *5 *6)) - (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) - (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) + (-12 (-5 *2 (-288 (-310 (-166 (-373))))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) + (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) ((*1 *1 *2) - (-12 (-5 *2 (-289 (-311 (-374)))) (-5 *1 (-393 *3 *4 *5 *6)) - (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) - (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) + (-12 (-5 *2 (-288 (-310 (-373)))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) + (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) ((*1 *1 *2) - (-12 (-5 *2 (-289 (-311 (-552)))) (-5 *1 (-393 *3 *4 *5 *6)) - (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) - (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) + (-12 (-5 *2 (-288 (-310 (-552)))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) + (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) ((*1 *1 *2) - (-12 (-5 *2 (-311 (-167 (-374)))) (-5 *1 (-393 *3 *4 *5 *6)) - (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) - (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) + (-12 (-5 *2 (-310 (-166 (-373)))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) + (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) ((*1 *1 *2) - (-12 (-5 *2 (-311 (-374))) (-5 *1 (-393 *3 *4 *5 *6)) - (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) - (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) + (-12 (-5 *2 (-310 (-373))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) + (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) ((*1 *1 *2) - (-12 (-5 *2 (-311 (-552))) (-5 *1 (-393 *3 *4 *5 *6)) - (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) - (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) + (-12 (-5 *2 (-310 (-552))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) + (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) ((*1 *1 *2) - (-12 (-5 *2 (-289 (-311 (-674)))) (-5 *1 (-393 *3 *4 *5 *6)) - (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) - (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) + (-12 (-5 *2 (-288 (-310 (-676)))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) + (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) ((*1 *1 *2) - (-12 (-5 *2 (-289 (-311 (-679)))) (-5 *1 (-393 *3 *4 *5 *6)) - (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) - (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) + (-12 (-5 *2 (-288 (-310 (-681)))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) + (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) ((*1 *1 *2) - (-12 (-5 *2 (-289 (-311 (-681)))) (-5 *1 (-393 *3 *4 *5 *6)) - (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) - (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) + (-12 (-5 *2 (-288 (-310 (-683)))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) + (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) ((*1 *1 *2) - (-12 (-5 *2 (-311 (-674))) (-5 *1 (-393 *3 *4 *5 *6)) - (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) - (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) + (-12 (-5 *2 (-310 (-676))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) + (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) ((*1 *1 *2) - (-12 (-5 *2 (-311 (-679))) (-5 *1 (-393 *3 *4 *5 *6)) - (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) - (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) + (-12 (-5 *2 (-310 (-681))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) + (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) ((*1 *1 *2) - (-12 (-5 *2 (-311 (-681))) (-5 *1 (-393 *3 *4 *5 *6)) - (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) - (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) + (-12 (-5 *2 (-310 (-683))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) + (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) - (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) - (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) - (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) + (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) + (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) + (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) + (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) ((*1 *1 *2) - (-12 (-5 *2 (-625 (-325))) (-5 *1 (-393 *3 *4 *5 *6)) - (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) - (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) + (-12 (-5 *2 (-627 (-324))) (-5 *1 (-392 *3 *4 *5 *6)) + (-14 *3 (-1152)) (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) + (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) ((*1 *1 *2) - (-12 (-5 *2 (-325)) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) - (-14 *4 (-3 (|:| |fst| (-429)) (|:| -2781 "void"))) - (-14 *5 (-625 (-1149))) (-14 *6 (-1153)))) + (-12 (-5 *2 (-324)) (-5 *1 (-392 *3 *4 *5 *6)) (-14 *3 (-1152)) + (-14 *4 (-3 (|:| |fst| (-428)) (|:| -3885 "void"))) + (-14 *5 (-627 (-1152))) (-14 *6 (-1156)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 *4)) (-4 *4 (-13 (-827) (-21))) - (-5 *1 (-422 *3 *4)) (-4 *3 (-13 (-170) (-38 (-402 (-552))))))) + (-12 (-5 *2 (-325 *4)) (-4 *4 (-13 (-830) (-21))) + (-5 *1 (-421 *3 *4)) (-4 *3 (-13 (-169) (-38 (-401 (-552))))))) ((*1 *1 *2) - (-12 (-5 *1 (-422 *2 *3)) (-4 *2 (-13 (-170) (-38 (-402 (-552))))) - (-4 *3 (-13 (-827) (-21))))) + (-12 (-5 *1 (-421 *2 *3)) (-4 *2 (-13 (-169) (-38 (-401 (-552))))) + (-4 *3 (-13 (-830) (-21))))) ((*1 *1 *2) - (-12 (-5 *2 (-402 (-928 (-402 *3)))) (-4 *3 (-544)) (-4 *3 (-827)) - (-4 *1 (-425 *3)))) + (-12 (-5 *2 (-401 (-931 (-401 *3)))) (-4 *3 (-544)) (-4 *3 (-830)) + (-4 *1 (-424 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-928 (-402 *3))) (-4 *3 (-544)) (-4 *3 (-827)) - (-4 *1 (-425 *3)))) + (-12 (-5 *2 (-931 (-401 *3))) (-4 *3 (-544)) (-4 *3 (-830)) + (-4 *1 (-424 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-402 *3)) (-4 *3 (-544)) (-4 *3 (-827)) - (-4 *1 (-425 *3)))) + (-12 (-5 *2 (-401 *3)) (-4 *3 (-544)) (-4 *3 (-830)) + (-4 *1 (-424 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1098 *3 (-596 *1))) (-4 *3 (-1025)) (-4 *3 (-827)) - (-4 *1 (-425 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-429)))) - ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-429)))) - ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-429)))) - ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-429)))) - ((*1 *1 *2) (-12 (-5 *2 (-429)) (-5 *1 (-432)))) - ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-432)))) + (-12 (-5 *2 (-1101 *3 (-598 *1))) (-4 *3 (-1028)) (-4 *3 (-830)) + (-4 *1 (-424 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1080)) (-5 *1 (-428)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-428)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-428)))) + ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-428)))) + ((*1 *1 *2) (-12 (-5 *2 (-428)) (-5 *1 (-431)))) + ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-431)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) - (-4 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-4 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-1232 (-679))) (-4 *1 (-434)))) + (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) + (-4 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-4 *1 (-433)))) + ((*1 *1 *2) (-12 (-5 *2 (-1235 (-681))) (-4 *1 (-433)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -4185 (-625 (-325))))) - (-4 *1 (-435)))) - ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-435)))) - ((*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-4 *1 (-435)))) + (-5 *2 (-2 (|:| |localSymbols| (-1156)) (|:| -1577 (-627 (-324))))) + (-4 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-324)) (-4 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-627 (-324))) (-4 *1 (-434)))) ((*1 *1 *2) - (-12 (-5 *2 (-1232 (-402 (-928 *3)))) (-4 *3 (-170)) - (-14 *6 (-1232 (-669 *3))) (-5 *1 (-447 *3 *4 *5 *6)) - (-14 *4 (-897)) (-14 *5 (-625 (-1149))))) - ((*1 *1 *2) (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *1 (-462)))) - ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-462)))) + (-12 (-5 *2 (-1235 (-401 (-931 *3)))) (-4 *3 (-169)) + (-14 *6 (-1235 (-671 *3))) (-5 *1 (-446 *3 *4 *5 *6)) + (-14 *4 (-900)) (-14 *5 (-627 (-1152))))) + ((*1 *1 *2) (-12 (-5 *2 (-627 (-627 (-922 (-220))))) (-5 *1 (-461)))) + ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-461)))) ((*1 *1 *2) - (-12 (-5 *2 (-1217 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) - (-14 *5 *3) (-5 *1 (-468 *3 *4 *5)))) + (-12 (-5 *2 (-1220 *3 *4 *5)) (-4 *3 (-1028)) (-14 *4 (-1152)) + (-14 *5 *3) (-5 *1 (-467 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5)) - (-4 *3 (-1025)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-5 *2 (-980 16)) (-5 *1 (-481)))) - ((*1 *2 *1) (-12 (-5 *2 (-402 (-552))) (-5 *1 (-481)))) - ((*1 *1 *2) (-12 (-5 *2 (-1098 (-552) (-596 (-488)))) (-5 *1 (-488)))) - ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-495)))) + (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-467 *3 *4 *5)) + (-4 *3 (-1028)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-5 *2 (-983 16)) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-401 (-552))) (-5 *1 (-480)))) + ((*1 *1 *2) (-12 (-5 *2 (-1101 (-552) (-598 (-487)))) (-5 *1 (-487)))) + ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-494)))) ((*1 *1 *2) - (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-358)) - (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-625 (-1185))) (-5 *1 (-517)))) - ((*1 *1 *2) (-12 (-5 *2 (-129)) (-5 *1 (-589)))) - ((*1 *1 *2) (-12 (-5 *2 (-625 (-1185))) (-5 *1 (-590)))) + (-12 (-5 *2 (-627 *6)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-357)) + (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-496 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-627 (-1188))) (-5 *1 (-516)))) + ((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-591)))) + ((*1 *1 *2) (-12 (-5 *2 (-627 (-1188))) (-5 *1 (-592)))) ((*1 *1 *2) - (-12 (-4 *3 (-170)) (-5 *1 (-591 *3 *2)) (-4 *2 (-725 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1186)))) - ((*1 *1 *2) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1025)))) + (-12 (-4 *3 (-169)) (-5 *1 (-593 *3 *2)) (-4 *2 (-727 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-1189)))) + ((*1 *1 *2) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1028)))) ((*1 *2 *1) - (-12 (-5 *2 (-1252 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) - (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897)))) + (-12 (-5 *2 (-1255 *3 *4)) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) + (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) ((*1 *2 *1) - (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) - (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897)))) + (-12 (-5 *2 (-1250 *3 *4)) (-5 *1 (-611 *3 *4 *5)) (-4 *3 (-830)) + (-4 *4 (-13 (-169) (-700 (-401 (-552))))) (-14 *5 (-900)))) ((*1 *1 *2) - (-12 (-4 *3 (-170)) (-5 *1 (-617 *3 *2)) (-4 *2 (-725 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) - ((*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) + (-12 (-4 *3 (-169)) (-5 *1 (-619 *3 *2)) (-4 *2 (-727 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-659 *3)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) + ((*1 *2 *1) (-12 (-5 *2 (-802 *3)) (-5 *1 (-654 *3)) (-4 *3 (-830)))) ((*1 *2 *1) - (-12 (-5 *2 (-934 (-934 (-934 *3)))) (-5 *1 (-655 *3)) - (-4 *3 (-1073)))) + (-12 (-5 *2 (-937 (-937 (-937 *3)))) (-5 *1 (-657 *3)) + (-4 *3 (-1076)))) ((*1 *1 *2) - (-12 (-5 *2 (-934 (-934 (-934 *3)))) (-4 *3 (-1073)) - (-5 *1 (-655 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) - ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-661)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-662 *3)) (-4 *3 (-1073)))) + (-12 (-5 *2 (-937 (-937 (-937 *3)))) (-4 *3 (-1076)) + (-5 *1 (-657 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-802 *3)) (-5 *1 (-659 *3)) (-4 *3 (-830)))) + ((*1 *1 *2) (-12 (-5 *2 (-1094)) (-5 *1 (-663)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-664 *3)) (-4 *3 (-1076)))) ((*1 *1 *2) - (-12 (-4 *3 (-1025)) (-4 *1 (-667 *3 *4 *2)) (-4 *4 (-368 *3)) - (-4 *2 (-368 *3)))) - ((*1 *2 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-839))))) - ((*1 *1 *2) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-839))))) - ((*1 *2 *1) (-12 (-5 *2 (-167 (-374))) (-5 *1 (-674)))) - ((*1 *1 *2) (-12 (-5 *2 (-167 (-681))) (-5 *1 (-674)))) - ((*1 *1 *2) (-12 (-5 *2 (-167 (-679))) (-5 *1 (-674)))) - ((*1 *1 *2) (-12 (-5 *2 (-167 (-552))) (-5 *1 (-674)))) - ((*1 *1 *2) (-12 (-5 *2 (-167 (-374))) (-5 *1 (-674)))) - ((*1 *1 *2) (-12 (-5 *2 (-681)) (-5 *1 (-679)))) - ((*1 *2 *1) (-12 (-5 *2 (-374)) (-5 *1 (-679)))) - ((*1 *2 *3) - (-12 (-5 *3 (-311 (-552))) (-5 *2 (-311 (-681))) (-5 *1 (-681)))) - ((*1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1073)))) - ((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1131)) (-5 *1 (-691)))) + (-12 (-4 *3 (-1028)) (-4 *1 (-669 *3 *4 *2)) (-4 *4 (-367 *3)) + (-4 *2 (-367 *3)))) + ((*1 *2 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-599 (-842))))) + ((*1 *1 *2) (-12 (-5 *1 (-673 *2)) (-4 *2 (-599 (-842))))) + ((*1 *2 *1) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-676)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-683))) (-5 *1 (-676)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-681))) (-5 *1 (-676)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-552))) (-5 *1 (-676)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-676)))) + ((*1 *1 *2) (-12 (-5 *2 (-683)) (-5 *1 (-681)))) + ((*1 *2 *1) (-12 (-5 *2 (-373)) (-5 *1 (-681)))) + ((*1 *2 *3) + (-12 (-5 *3 (-310 (-552))) (-5 *2 (-310 (-683))) (-5 *1 (-683)))) + ((*1 *1 *2) (-12 (-5 *1 (-685 *2)) (-4 *2 (-1076)))) + ((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1134)) (-5 *1 (-693)))) ((*1 *2 *1) - (-12 (-4 *2 (-170)) (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-169)) (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1208 *3)))) + (-12 (-4 *3 (-1028)) (-5 *1 (-695 *3 *2)) (-4 *2 (-1211 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -3123 *3) (|:| -3564 *4))) - (-5 *1 (-694 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-1073)) - (-14 *5 (-1 (-112) *2 *2)))) + (-12 (-5 *2 (-2 (|:| -4153 *3) (|:| -4067 *4))) + (-5 *1 (-696 *3 *4 *5)) (-4 *3 (-830)) (-4 *4 (-1076)) + (-14 *5 (-1 (-111) *2 *2)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| -3123 *3) (|:| -3564 *4))) (-4 *3 (-827)) - (-4 *4 (-1073)) (-5 *1 (-694 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) + (-12 (-5 *2 (-2 (|:| -4153 *3) (|:| -4067 *4))) (-4 *3 (-830)) + (-4 *4 (-1076)) (-5 *1 (-696 *3 *4 *5)) (-14 *5 (-1 (-111) *2 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-170)) (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-169)) (-5 *1 (-698 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-625 (-2 (|:| -3340 *3) (|:| -2243 *4)))) - (-4 *3 (-1025)) (-4 *4 (-707)) (-5 *1 (-716 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-744)))) + (-12 (-5 *2 (-627 (-2 (|:| -3069 *3) (|:| -3755 *4)))) + (-4 *3 (-1028)) (-4 *4 (-709)) (-5 *1 (-718 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-746)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) - (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) - (|:| |relerr| (-221)))) + (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) + (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) (|:| |mdnia| - (-2 (|:| |fn| (-311 (-221))) - (|:| -3315 (-625 (-1067 (-820 (-221))))) - (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) - (-5 *1 (-749)))) + (-2 (|:| |fn| (-310 (-220))) + (|:| -1707 (-627 (-1070 (-823 (-220))))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))))) + (-5 *1 (-752)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-311 (-221))) - (|:| -3315 (-625 (-1067 (-820 (-221))))) (|:| |abserr| (-221)) - (|:| |relerr| (-221)))) - (-5 *1 (-749)))) + (-2 (|:| |fn| (-310 (-220))) + (|:| -1707 (-627 (-1070 (-823 (-220))))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *1 (-752)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) - (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) - (|:| |relerr| (-221)))) - (-5 *1 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-749)))) - ((*1 *2 *3) (-12 (-5 *2 (-754)) (-5 *1 (-753 *3)) (-4 *3 (-1186)))) + (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) + (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *1 (-752)))) + ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-752)))) + ((*1 *2 *3) (-12 (-5 *2 (-757)) (-5 *1 (-756 *3)) (-4 *3 (-1189)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) - (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) - (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) - (|:| |abserr| (-221)) (|:| |relerr| (-221)))) - (-5 *1 (-788)))) - ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-788)))) + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) + (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220)))) + (-5 *1 (-791)))) + ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-791)))) ((*1 *2 *1) - (-12 (-4 *2 (-876 *3)) (-5 *1 (-797 *3 *2 *4)) (-4 *3 (-1073)) + (-12 (-4 *2 (-879 *3)) (-5 *1 (-800 *3 *2 *4)) (-4 *3 (-1076)) (-14 *4 *3))) ((*1 *1 *2) - (-12 (-4 *3 (-1073)) (-14 *4 *3) (-5 *1 (-797 *3 *2 *4)) - (-4 *2 (-876 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-804)))) + (-12 (-4 *3 (-1076)) (-14 *4 *3) (-5 *1 (-800 *3 *2 *4)) + (-4 *2 (-879 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-807)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) - (|:| |lb| (-625 (-820 (-221)))) - (|:| |cf| (-625 (-311 (-221)))) - (|:| |ub| (-625 (-820 (-221)))))) + (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) + (|:| |lb| (-627 (-823 (-220)))) + (|:| |cf| (-627 (-310 (-220)))) + (|:| |ub| (-627 (-823 (-220)))))) (|:| |lsa| - (-2 (|:| |lfn| (-625 (-311 (-221)))) - (|:| -2071 (-625 (-221))))))) - (-5 *1 (-818)))) + (-2 (|:| |lfn| (-627 (-310 (-220)))) + (|:| -3002 (-627 (-220))))))) + (-5 *1 (-821)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |lfn| (-625 (-311 (-221)))) (|:| -2071 (-625 (-221))))) - (-5 *1 (-818)))) + (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) + (-5 *1 (-821)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-311 (-221))) (|:| -2071 (-625 (-221))) - (|:| |lb| (-625 (-820 (-221)))) (|:| |cf| (-625 (-311 (-221)))) - (|:| |ub| (-625 (-820 (-221)))))) - (-5 *1 (-818)))) - ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-818)))) + (-2 (|:| |fn| (-310 (-220))) (|:| -3002 (-627 (-220))) + (|:| |lb| (-627 (-823 (-220)))) (|:| |cf| (-627 (-310 (-220)))) + (|:| |ub| (-627 (-823 (-220)))))) + (-5 *1 (-821)))) + ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-821)))) ((*1 *1 *2) - (-12 (-5 *2 (-1228 *3)) (-14 *3 (-1149)) (-5 *1 (-832 *3 *4 *5 *6)) - (-4 *4 (-1025)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-835)))) + (-12 (-5 *2 (-1231 *3)) (-14 *3 (-1152)) (-5 *1 (-835 *3 *4 *5 *6)) + (-4 *4 (-1028)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-838)))) ((*1 *1 *2) - (-12 (-5 *2 (-928 *3)) (-4 *3 (-1025)) (-5 *1 (-842 *3 *4 *5 *6)) - (-14 *4 (-625 (-1149))) (-14 *5 (-625 (-751))) (-14 *6 (-751)))) + (-12 (-5 *2 (-931 *3)) (-4 *3 (-1028)) (-5 *1 (-845 *3 *4 *5 *6)) + (-14 *4 (-627 (-1152))) (-14 *5 (-627 (-754))) (-14 *6 (-754)))) ((*1 *2 *1) - (-12 (-5 *2 (-928 *3)) (-5 *1 (-842 *3 *4 *5 *6)) (-4 *3 (-1025)) - (-14 *4 (-625 (-1149))) (-14 *5 (-625 (-751))) (-14 *6 (-751)))) - ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) + (-12 (-5 *2 (-931 *3)) (-5 *1 (-845 *3 *4 *5 *6)) (-4 *3 (-1028)) + (-14 *4 (-627 (-1152))) (-14 *5 (-627 (-754))) (-14 *6 (-754)))) + ((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853)))) ((*1 *2 *3) - (-12 (-5 *3 (-928 (-48))) (-5 *2 (-311 (-552))) (-5 *1 (-851)))) + (-12 (-5 *3 (-931 (-48))) (-5 *2 (-310 (-552))) (-5 *1 (-854)))) ((*1 *2 *3) - (-12 (-5 *3 (-402 (-928 (-48)))) (-5 *2 (-311 (-552))) - (-5 *1 (-851)))) - ((*1 *1 *2) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827)))) - ((*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) + (-12 (-5 *3 (-401 (-931 (-48)))) (-5 *2 (-310 (-552))) + (-5 *1 (-854)))) + ((*1 *1 *2) (-12 (-5 *1 (-872 *2)) (-4 *2 (-830)))) + ((*1 *2 *1) (-12 (-5 *2 (-802 *3)) (-5 *1 (-872 *3)) (-4 *3 (-830)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-625 (-311 (-221)))) + (-2 (|:| |pde| (-627 (-310 (-220)))) (|:| |constraints| - (-625 - (-2 (|:| |start| (-221)) (|:| |finish| (-221)) - (|:| |grid| (-751)) (|:| |boundaryType| (-552)) - (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) - (|:| |f| (-625 (-625 (-311 (-221))))) (|:| |st| (-1131)) - (|:| |tol| (-221)))) - (-5 *1 (-874)))) - ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-874)))) + (-627 + (-2 (|:| |start| (-220)) (|:| |finish| (-220)) + (|:| |grid| (-754)) (|:| |boundaryType| (-552)) + (|:| |dStart| (-671 (-220))) (|:| |dFinish| (-671 (-220)))))) + (|:| |f| (-627 (-627 (-310 (-220))))) (|:| |st| (-1134)) + (|:| |tol| (-220)))) + (-5 *1 (-877)))) + ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-877)))) ((*1 *2 *1) - (-12 (-5 *2 (-1172 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1073)))) + (-12 (-5 *2 (-1175 *3)) (-5 *1 (-880 *3)) (-4 *3 (-1076)))) ((*1 *1 *2) - (-12 (-5 *2 (-625 (-881 *3))) (-4 *3 (-1073)) (-5 *1 (-880 *3)))) + (-12 (-5 *2 (-627 (-884 *3))) (-4 *3 (-1076)) (-5 *1 (-883 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-625 (-881 *3))) (-5 *1 (-880 *3)) (-4 *3 (-1073)))) - ((*1 *1 *2) (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-5 *1 (-881 *3)))) + (-12 (-5 *2 (-627 (-884 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) + ((*1 *1 *2) (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-5 *1 (-884 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-625 (-625 *3))) (-4 *3 (-1073)) (-5 *1 (-881 *3)))) + (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1076)) (-5 *1 (-884 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-402 (-413 *3))) (-4 *3 (-302)) (-5 *1 (-890 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-402 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) - ((*1 *2 *3) - (-12 (-5 *3 (-471)) (-5 *2 (-311 *4)) (-5 *1 (-895 *4)) - (-4 *4 (-13 (-827) (-544))))) - ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) - ((*1 *1 *2) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 (-552))) (-5 *1 (-947)))) + (-12 (-5 *2 (-401 (-412 *3))) (-4 *3 (-301)) (-5 *1 (-893 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-401 *3)) (-5 *1 (-893 *3)) (-4 *3 (-301)))) + ((*1 *2 *3) + (-12 (-5 *3 (-470)) (-5 *2 (-310 *4)) (-5 *1 (-898 *4)) + (-4 *4 (-13 (-830) (-544))))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-945 *3)) (-4 *3 (-946)))) + ((*1 *1 *2) (-12 (-5 *1 (-945 *2)) (-4 *2 (-946)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-950)))) ((*1 *2 *1) - (-12 (-5 *2 (-402 (-552))) (-5 *1 (-980 *3)) (-14 *3 (-552)))) - ((*1 *2 *3) (-12 (-5 *2 (-1237)) (-5 *1 (-1009 *3)) (-4 *3 (-1186)))) - ((*1 *2 *3) (-12 (-5 *3 (-307)) (-5 *1 (-1009 *2)) (-4 *2 (-1186)))) + (-12 (-5 *2 (-401 (-552))) (-5 *1 (-983 *3)) (-14 *3 (-552)))) + ((*1 *2 *3) (-12 (-5 *2 (-1240)) (-5 *1 (-1012 *3)) (-4 *3 (-1189)))) + ((*1 *2 *3) (-12 (-5 *3 (-306)) (-5 *1 (-1012 *2)) (-4 *2 (-1189)))) ((*1 *1 *2) - (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *2 (-925 *3 *4 *5)) - (-14 *6 (-625 *2)))) - ((*1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1186)))) + (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *1 (-1013 *3 *4 *5 *2 *6)) (-4 *2 (-928 *3 *4 *5)) + (-14 *6 (-627 *2)))) + ((*1 *1 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1189)))) ((*1 *2 *3) - (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-1019 *3)) (-4 *3 (-544)))) - ((*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1025)))) + (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-1022 *3)) (-4 *3 (-544)))) + ((*1 *1 *2) (-12 (-5 *2 (-552)) (-4 *1 (-1028)))) ((*1 *2 *1) - (-12 (-5 *2 (-669 *5)) (-5 *1 (-1029 *3 *4 *5)) (-14 *3 (-751)) - (-14 *4 (-751)) (-4 *5 (-1025)))) + (-12 (-5 *2 (-671 *5)) (-5 *1 (-1032 *3 *4 *5)) (-14 *3 (-754)) + (-14 *4 (-754)) (-4 *5 (-1028)))) ((*1 *1 *2) - (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-5 *1 (-1099 *3 *4 *2)) - (-4 *2 (-925 *3 (-524 *4) *4)))) + (-12 (-4 *3 (-1028)) (-4 *4 (-830)) (-5 *1 (-1102 *3 *4 *2)) + (-4 *2 (-928 *3 (-523 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-1025)) (-4 *2 (-827)) (-5 *1 (-1099 *3 *2 *4)) - (-4 *4 (-925 *3 (-524 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-839)))) - ((*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1117)))) + (-12 (-4 *3 (-1028)) (-4 *2 (-830)) (-5 *1 (-1102 *3 *2 *4)) + (-4 *4 (-928 *3 (-523 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110 *3)) (-4 *3 (-1028)) (-5 *2 (-842)))) + ((*1 *1 *2) (-12 (-5 *2 (-141)) (-4 *1 (-1120)))) ((*1 *1 *2) - (-12 (-5 *2 (-625 *3)) (-4 *3 (-1186)) (-5 *1 (-1129 *3)))) + (-12 (-5 *2 (-627 *3)) (-4 *3 (-1189)) (-5 *1 (-1132 *3)))) ((*1 *2 *3) - (-12 (-5 *2 (-1129 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025)))) + (-12 (-5 *2 (-1132 *3)) (-5 *1 (-1136 *3)) (-4 *3 (-1028)))) ((*1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5)) - (-4 *3 (-1025)) (-14 *5 *3))) + (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1143 *3 *4 *5)) + (-4 *3 (-1028)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5)) - (-4 *3 (-1025)) (-14 *5 *3))) + (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1149 *3 *4 *5)) + (-4 *3 (-1028)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5)) - (-4 *3 (-1025)) (-14 *5 *3))) + (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1150 *3 *4 *5)) + (-4 *3 (-1028)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1205 *4 *3)) (-4 *3 (-1025)) (-14 *4 (-1149)) - (-14 *5 *3) (-5 *1 (-1147 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1148)))) - ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1149)))) - ((*1 *2 *1) (-12 (-5 *2 (-1159 (-1149) (-432))) (-5 *1 (-1153)))) - ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1154)))) - ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1154)))) - ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1154)))) - ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1154)))) - ((*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1154)))) - ((*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-1154)))) - ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1154)))) - ((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1154)))) - ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-1158 *3)) (-4 *3 (-1073)))) - ((*1 *2 *3) (-12 (-5 *2 (-1166)) (-5 *1 (-1165 *3)) (-4 *3 (-1073)))) - ((*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1166)))) + (-12 (-5 *2 (-1208 *4 *3)) (-4 *3 (-1028)) (-14 *4 (-1152)) + (-14 *5 *3) (-5 *1 (-1150 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1151)))) + ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1152)))) + ((*1 *2 *1) (-12 (-5 *2 (-1162 (-1152) (-431))) (-5 *1 (-1156)))) + ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1157)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1157)))) + ((*1 *2 *1) (-12 (-5 *2 (-220)) (-5 *1 (-1157)))) + ((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-1157)))) + ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1161 *3)) (-4 *3 (-1076)))) + ((*1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *1 (-1168 *3)) (-4 *3 (-1076)))) + ((*1 *1 *2) (-12 (-5 *2 (-842)) (-5 *1 (-1169)))) ((*1 *1 *2) - (-12 (-5 *2 (-928 *3)) (-4 *3 (-1025)) (-5 *1 (-1180 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1180 *3)) (-4 *3 (-1025)))) + (-12 (-5 *2 (-931 *3)) (-4 *3 (-1028)) (-5 *1 (-1183 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1183 *3)) (-4 *3 (-1028)))) ((*1 *1 *2) - (-12 (-5 *2 (-934 *3)) (-4 *3 (-1186)) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-937 *3)) (-4 *3 (-1189)) (-5 *1 (-1186 *3)))) ((*1 *1 *2) - (-12 (-4 *3 (-1025)) (-4 *1 (-1194 *3 *2)) (-4 *2 (-1223 *3)))) + (-12 (-4 *3 (-1028)) (-4 *1 (-1197 *3 *2)) (-4 *2 (-1226 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1196 *3 *4 *5)) - (-4 *3 (-1025)) (-14 *5 *3))) + (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1199 *3 *4 *5)) + (-4 *3 (-1028)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1067 *3)) (-4 *3 (-1186)) (-5 *1 (-1199 *3)))) + (-12 (-5 *2 (-1070 *3)) (-4 *3 (-1189)) (-5 *1 (-1202 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1228 *3)) (-14 *3 (-1149)) (-5 *1 (-1205 *3 *4)) - (-4 *4 (-1025)))) + (-12 (-5 *2 (-1231 *3)) (-14 *3 (-1152)) (-5 *1 (-1208 *3 *4)) + (-4 *4 (-1028)))) ((*1 *1 *2) - (-12 (-4 *3 (-1025)) (-4 *1 (-1215 *3 *2)) (-4 *2 (-1192 *3)))) + (-12 (-4 *3 (-1028)) (-4 *1 (-1218 *3 *2)) (-4 *2 (-1195 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1217 *3 *4 *5)) - (-4 *3 (-1025)) (-14 *5 *3))) + (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1220 *3 *4 *5)) + (-4 *3 (-1028)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1224 *3 *4 *5)) - (-4 *3 (-1025)) (-14 *5 *3))) + (-12 (-5 *2 (-1231 *4)) (-14 *4 (-1152)) (-5 *1 (-1227 *3 *4 *5)) + (-4 *3 (-1028)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1205 *4 *3)) (-4 *3 (-1025)) (-14 *4 (-1149)) - (-14 *5 *3) (-5 *1 (-1224 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1228 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-1233)))) - ((*1 *2 *3) (-12 (-5 *3 (-462)) (-5 *2 (-1233)) (-5 *1 (-1236)))) - ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-1237)))) + (-12 (-5 *2 (-1208 *4 *3)) (-4 *3 (-1028)) (-14 *4 (-1152)) + (-14 *5 *3) (-5 *1 (-1227 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1231 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1236)))) + ((*1 *2 *3) (-12 (-5 *3 (-461)) (-5 *2 (-1236)) (-5 *1 (-1239)))) + ((*1 *2 *1) (-12 (-5 *2 (-842)) (-5 *1 (-1240)))) ((*1 *1 *2) - (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773)) (-14 *6 (-625 *4)) - (-5 *1 (-1244 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-925 *3 *5 *4)) - (-14 *7 (-625 (-751))) (-14 *8 (-751)))) + (-12 (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-776)) (-14 *6 (-627 *4)) + (-5 *1 (-1247 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-928 *3 *5 *4)) + (-14 *7 (-627 (-754))) (-14 *8 (-754)))) ((*1 *2 *1) - (-12 (-4 *2 (-925 *3 *5 *4)) (-5 *1 (-1244 *3 *4 *5 *2 *6 *7 *8)) - (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773)) (-14 *6 (-625 *4)) - (-14 *7 (-625 (-751))) (-14 *8 (-751)))) - ((*1 *1 *2) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1025)))) + (-12 (-4 *2 (-928 *3 *5 *4)) (-5 *1 (-1247 *3 *4 *5 *2 *6 *7 *8)) + (-4 *3 (-1028)) (-4 *4 (-830)) (-4 *5 (-776)) (-14 *6 (-627 *4)) + (-14 *7 (-627 (-754))) (-14 *8 (-754)))) + ((*1 *1 *2) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1028)))) ((*1 *1 *2) - (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) + (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-830)) (-4 *3 (-1028)))) ((*1 *2 *1) - (-12 (-5 *2 (-1256 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) - (-4 *4 (-170)))) + (-12 (-5 *2 (-1259 *3 *4)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-830)) + (-4 *4 (-169)))) ((*1 *2 *1) - (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) - (-4 *4 (-170)))) + (-12 (-5 *2 (-1250 *3 *4)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-830)) + (-4 *4 (-169)))) ((*1 *1 *2) - (-12 (-5 *2 (-644 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) - (-5 *1 (-1252 *3 *4)))) + (-12 (-5 *2 (-646 *3 *4)) (-4 *3 (-830)) (-4 *4 (-169)) + (-5 *1 (-1255 *3 *4)))) ((*1 *1 *2) - (-12 (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-823))))) -(((*1 *2) - (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) - (-5 *2 (-751)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-5 *2 (-751)))) - ((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-751))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-625 (-625 *8))) (-5 *3 (-625 *8)) - (-4 *8 (-925 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) - (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-112)) - (-5 *1 (-900 *5 *6 *7 *8))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-462))))) -(((*1 *2 *3) - (-12 (-4 *4 (-827)) - (-5 *2 - (-2 (|:| |f1| (-625 *4)) (|:| |f2| (-625 (-625 (-625 *4)))) - (|:| |f3| (-625 (-625 *4))) (|:| |f4| (-625 (-625 (-625 *4)))))) - (-5 *1 (-1157 *4)) (-5 *3 (-625 (-625 (-625 *4))))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-625 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) - (-5 *3 (-625 (-552))))) - ((*1 *2 *3) - (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) - (-5 *3 (-625 (-552)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-669 (-402 (-928 (-552))))) - (-5 *2 - (-625 - (-2 (|:| |radval| (-311 (-552))) (|:| |radmult| (-552)) - (|:| |radvect| (-625 (-669 (-311 (-552)))))))) - (-5 *1 (-1007))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *3 (-625 (-258))) - (-5 *1 (-256)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *1 (-258)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-625 (-475 *5 *6))) (-5 *3 (-475 *5 *6)) - (-14 *5 (-625 (-1149))) (-4 *6 (-446)) (-5 *2 (-1232 *6)) - (-5 *1 (-613 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1190)) - (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) - (-5 *2 (-2 (|:| |num| (-669 *5)) (|:| |den| *5)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-839)))) -(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-751))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) - (-4 *6 (-773)) (-5 *2 (-625 (-625 (-552)))) - (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-552)) (-4 *7 (-925 *4 *6 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-625 (-625 (-919 (-221))))) (-5 *3 (-625 (-850))) - (-5 *1 (-462))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-358) (-1171) (-978)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *3 (-625 (-552))) - (-5 *1 (-859))))) -(((*1 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1186))))) -(((*1 *2 *2) - (-12 (-5 *2 (-625 (-475 *3 *4))) (-14 *3 (-625 (-1149))) - (-4 *4 (-446)) (-5 *1 (-613 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-358) (-1171) (-978))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1208 (-402 *2))) - (-4 *2 (-1208 *4)) (-5 *1 (-336 *3 *4 *2 *5)) - (-4 *3 (-337 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1190)) - (-4 *4 (-1208 (-402 *2))) (-4 *2 (-1208 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1025)) (-5 *2 (-625 *1)) (-4 *1 (-1107 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *2) - (-12 (-5 *2 (-625 (-625 *6))) (-4 *6 (-925 *3 *5 *4)) - (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-827) (-598 (-1149)))) - (-4 *5 (-773)) (-5 *1 (-900 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *2 (-625 (-221))) - (-5 *1 (-462))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-358) (-1171) (-978)))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-1185))) (-5 *1 (-661)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 (-1154))) (-5 *1 (-1091))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) - (-5 *3 (-625 (-552)))))) -(((*1 *2 *1) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1186))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-625 (-475 *5 *6))) (-5 *4 (-841 *5)) - (-14 *5 (-625 (-1149))) (-5 *2 (-475 *5 *6)) (-5 *1 (-613 *5 *6)) - (-4 *6 (-446)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-475 *5 *6))) (-5 *4 (-841 *5)) - (-14 *5 (-625 (-1149))) (-5 *2 (-475 *5 *6)) (-5 *1 (-613 *5 *6)) - (-4 *6 (-446))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-897)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)))) - ((*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358)))) - ((*1 *2 *1) - (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1208 *2)) (-4 *2 (-170)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1232 *4)) (-5 *3 (-897)) (-4 *4 (-344)) - (-5 *1 (-521 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) - (-4 *5 (-234 *3 *2)) (-4 *2 (-1025))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1208 (-402 *2))) - (-4 *2 (-1208 *4)) (-5 *1 (-336 *3 *4 *2 *5)) - (-4 *3 (-337 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1190)) - (-4 *4 (-1208 (-402 *2))) (-4 *2 (-1208 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1025)) (-5 *2 (-625 *1)) (-4 *1 (-1107 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-625 - (-2 (|:| -3442 (-751)) - (|:| |eqns| - (-625 - (-2 (|:| |det| *7) (|:| |rows| (-625 (-552))) - (|:| |cols| (-625 (-552)))))) - (|:| |fgb| (-625 *7))))) - (-4 *7 (-925 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) - (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-751)) - (-5 *1 (-900 *4 *5 *6 *7))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-625 (-258))) (-5 *1 (-256)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-258)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-358) (-1171) (-978)))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *2 *2) (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1186))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-475 *4 *5))) (-14 *4 (-625 (-1149))) - (-4 *5 (-446)) (-5 *2 (-625 (-243 *4 *5))) (-5 *1 (-613 *4 *5))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1208 *4)) (-4 *4 (-1190)) - (-4 *6 (-1208 (-402 *5))) - (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-337 *4 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1073)))) - ((*1 *1 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1073))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-625 (-919 *4))) (-4 *1 (-1107 *4)) (-4 *4 (-1025)) - (-5 *2 (-751))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-625 - (-2 (|:| -3442 (-751)) - (|:| |eqns| - (-625 - (-2 (|:| |det| *7) (|:| |rows| (-625 (-552))) - (|:| |cols| (-625 (-552)))))) - (|:| |fgb| (-625 *7))))) - (-4 *7 (-925 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) - (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-751)) - (-5 *1 (-900 *4 *5 *6 *7))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-552)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-751)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-897)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-135 *2 *3 *4)) (-14 *2 (-552)) (-14 *3 (-751)) - (-4 *4 (-170)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-155)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-897)) (-5 *1 (-155)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171))) - (-5 *1 (-223 *3)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1186)) (-4 *2 (-707)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1186)) (-4 *2 (-707)))) - ((*1 *1 *2 *1) - (-12 (-5 *1 (-289 *2)) (-4 *2 (-1085)) (-4 *2 (-1186)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-289 *2)) (-4 *2 (-1085)) (-4 *2 (-1186)))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1073)) (-4 *2 (-130)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1073)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1073)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-376 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-827)))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1073)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1073)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1073)))) - ((*1 *1 *2 *1) - (-12 (-14 *3 (-625 (-1149))) (-4 *4 (-170)) - (-4 *6 (-234 (-1471 *3) (-751))) - (-14 *7 - (-1 (-112) (-2 (|:| -3123 *5) (|:| -3564 *6)) - (-2 (|:| -3123 *5) (|:| -3564 *6)))) - (-5 *1 (-455 *3 *4 *5 *6 *7 *2)) (-4 *5 (-827)) - (-4 *2 (-925 *4 *6 (-841 *3))))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) - (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1232 *3)) (-4 *3 (-344)) (-5 *1 (-521 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-528))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-581 *2)) (-4 *2 (-1025)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-581 *2)) (-4 *2 (-1025)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1032)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1073)) - (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-664 *5 *6 *7)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-667 *3 *2 *4)) (-4 *3 (-1025)) (-4 *2 (-368 *3)) - (-4 *4 (-368 *3)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-667 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-368 *3)) - (-4 *2 (-368 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-552)) (-4 *1 (-667 *3 *4 *5)) (-4 *3 (-1025)) - (-4 *4 (-368 *3)) (-4 *5 (-368 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) - (-4 *4 (-368 *2)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) - (-4 *4 (-368 *2)))) + (-12 (-5 *1 (-1258 *3 *2)) (-4 *3 (-1028)) (-4 *2 (-826))))) +(((*1 *2) (-12 (-5 *2 (-627 (-754))) (-5 *1 (-1238)))) + ((*1 *2 *2) (-12 (-5 *2 (-627 (-754))) (-5 *1 (-1238))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-730))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-552)) (-5 *1 (-1132 *3)) (-4 *3 (-1189)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-667 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-368 *2)) - (-4 *4 (-368 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-701))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) - ((*1 *1 *1 *1) (-5 *1 (-839))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-868 *2)) (-4 *2 (-1073)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1232 *4)) (-4 *4 (-1208 *3)) (-4 *3 (-544)) - (-5 *1 (-945 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1032)))) - ((*1 *1 *1 *1) (-4 *1 (-1085))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1096 *3 *4 *2 *5)) (-4 *4 (-1025)) (-4 *2 (-234 *3 *4)) - (-4 *5 (-234 *3 *4)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1096 *3 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4)) - (-4 *2 (-234 *3 *4)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-5 *1 (-1099 *3 *4 *2)) - (-4 *2 (-925 *3 (-524 *4) *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1129 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-919 (-221))) (-5 *3 (-221)) (-5 *1 (-1182)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-707)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-707)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-552)) (-4 *1 (-1230 *3)) (-4 *3 (-1186)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-358) (-1171) (-978)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-552)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-552)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1129 (-625 (-552)))) (-5 *1 (-859)) (-5 *3 (-552))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-358)) (-5 *1 (-1001 *3 *2)) (-4 *2 (-636 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-358)) (-5 *2 (-2 (|:| -2772 *3) (|:| -3362 (-625 *5)))) - (-5 *1 (-1001 *5 *3)) (-5 *4 (-625 *5)) (-4 *3 (-636 *5))))) -(((*1 *2 *3) - (-12 (-14 *4 (-625 (-1149))) (-4 *5 (-446)) - (-5 *2 - (-2 (|:| |glbase| (-625 (-243 *4 *5))) (|:| |glval| (-625 (-552))))) - (-5 *1 (-613 *4 *5)) (-5 *3 (-625 (-243 *4 *5)))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1149)) (-4 *5 (-1190)) (-4 *6 (-1208 *5)) - (-4 *7 (-1208 (-402 *6))) (-5 *2 (-625 (-928 *5))) - (-5 *1 (-336 *4 *5 *6 *7)) (-4 *4 (-337 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1149)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1190)) - (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) (-4 *4 (-358)) - (-5 *2 (-625 (-928 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) - (-4 *6 (-773)) (-5 *2 (-625 *3)) (-5 *1 (-900 *4 *5 *6 *3)) - (-4 *3 (-925 *4 *6 *5))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-358) (-1171) (-978)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-155)) (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-853 *2)) (-4 *2 (-1186)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-855 *2)) (-4 *2 (-1186)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-858 *2)) (-4 *2 (-1186))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-897)) (-5 *4 (-374)) (-5 *2 (-1237)) (-5 *1 (-1233)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-374)) (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1035 (-1000 *4) (-1145 (-1000 *4)))) (-5 *3 (-839)) - (-5 *1 (-1000 *4)) (-4 *4 (-13 (-825) (-358) (-998)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-475 *4 *5))) (-14 *4 (-625 (-1149))) - (-4 *5 (-446)) - (-5 *2 - (-2 (|:| |gblist| (-625 (-243 *4 *5))) - (|:| |gvlist| (-625 (-552))))) - (-5 *1 (-613 *4 *5))))) -(((*1 *2) - (-12 (-4 *4 (-1190)) (-4 *5 (-1208 *4)) (-4 *6 (-1208 (-402 *5))) - (-5 *2 (-625 (-625 *4))) (-5 *1 (-336 *3 *4 *5 *6)) - (-4 *3 (-337 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-4 *3 (-363)) (-5 *2 (-625 (-625 *3)))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1186)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1186)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-919 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-625 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-625 (-625 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-625 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2351 (-669 (-402 (-928 *4)))) - (|:| |vec| (-625 (-402 (-928 *4)))) (|:| -3442 (-751)) - (|:| |rows| (-625 (-552))) (|:| |cols| (-625 (-552))))) - (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) - (-4 *6 (-773)) - (-5 *2 - (-2 (|:| |partsol| (-1232 (-402 (-928 *4)))) - (|:| -1270 (-625 (-1232 (-402 (-928 *4))))))) - (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-925 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-897)) (-5 *2 (-1232 (-1232 (-552)))) (-5 *1 (-460))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-358) (-1171) (-978)))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-919 (-221)))) (-5 *1 (-1233))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-858 *2)) (-4 *2 (-1186))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1035 (-1000 *3) (-1145 (-1000 *3)))) - (-5 *1 (-1000 *3)) (-4 *3 (-13 (-825) (-358) (-998)))))) -(((*1 *1 *1) (-4 *1 (-611))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978) (-1171)))))) + (-12 (|has| *1 (-6 -4367)) (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 (-1149))) - (-14 *4 (-625 (-1149))) (-4 *5 (-382)))) - ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-625 (-1149))) - (-14 *4 (-625 (-1149))) (-4 *5 (-382))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-941))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1131) (-754))) (-5 *1 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *2 *3) (-12 (-5 *2 - (-2 (|:| |partsol| (-1232 (-402 (-928 *4)))) - (|:| -1270 (-625 (-1232 (-402 (-928 *4))))))) - (-5 *3 (-625 *7)) (-4 *4 (-13 (-302) (-145))) - (-4 *7 (-925 *4 *6 *5)) (-4 *5 (-13 (-827) (-598 (-1149)))) - (-4 *6 (-773)) (-5 *1 (-900 *4 *5 *6 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1232 (-1232 (-552)))) (-5 *3 (-897)) (-5 *1 (-460))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-358) (-1171) (-978)))))) -(((*1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1169))))) -(((*1 *1) (-5 *1 (-1233)))) -(((*1 *2 *3) - (-12 - (-5 *2 - (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) - (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) - (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552))) - (-5 *4 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) - (-5 *1 (-996 *3)) (-4 *3 (-1208 (-552))) (-5 *4 (-402 (-552))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-402 (-552))) - (-5 *2 (-625 (-2 (|:| -2290 *5) (|:| -2303 *5)))) (-5 *1 (-996 *3)) - (-4 *3 (-1208 (-552))) (-5 *4 (-2 (|:| -2290 *5) (|:| -2303 *5))))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) - (-5 *1 (-997 *3)) (-4 *3 (-1208 (-402 (-552)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) - (-5 *1 (-997 *3)) (-4 *3 (-1208 (-402 (-552)))) - (-5 *4 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-402 (-552))) - (-5 *2 (-625 (-2 (|:| -2290 *4) (|:| -2303 *4)))) (-5 *1 (-997 *3)) - (-4 *3 (-1208 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-402 (-552))) - (-5 *2 (-625 (-2 (|:| -2290 *5) (|:| -2303 *5)))) (-5 *1 (-997 *3)) - (-4 *3 (-1208 *5)) (-5 *4 (-2 (|:| -2290 *5) (|:| -2303 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1131)) (-5 *2 (-625 (-1154))) (-5 *1 (-856))))) -(((*1 *1 *1) (-4 *1 (-611))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978) (-1171)))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-358)) (-4 *3 (-1208 *4)) (-4 *5 (-1208 (-402 *3))) - (-4 *1 (-330 *4 *3 *5 *2)) (-4 *2 (-337 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-552)) (-4 *2 (-358)) (-4 *4 (-1208 *2)) - (-4 *5 (-1208 (-402 *4))) (-4 *1 (-330 *2 *4 *5 *6)) - (-4 *6 (-337 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-358)) (-4 *3 (-1208 *2)) (-4 *4 (-1208 (-402 *3))) - (-4 *1 (-330 *2 *3 *4 *5)) (-4 *5 (-337 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-358)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) - (-4 *1 (-330 *3 *4 *5 *2)) (-4 *2 (-337 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-408 *4 (-402 *4) *5 *6)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-4 *3 (-358)) - (-4 *1 (-330 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-919 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-625 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-625 (-625 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-625 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-669 *8)) (-4 *8 (-925 *5 *7 *6)) - (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) - (-4 *7 (-773)) - (-5 *2 - (-625 - (-2 (|:| -3442 (-751)) - (|:| |eqns| - (-625 - (-2 (|:| |det| *8) (|:| |rows| (-625 (-552))) - (|:| |cols| (-625 (-552)))))) - (|:| |fgb| (-625 *8))))) - (-5 *1 (-900 *5 *6 *7 *8)) (-5 *4 (-751))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-827)) (-4 *5 (-773)) - (-4 *6 (-544)) (-4 *7 (-925 *6 *5 *3)) - (-5 *1 (-456 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1014 (-402 (-552))) (-358) - (-10 -8 (-15 -1683 ($ *7)) (-15 -1356 (*7 $)) - (-15 -1368 (*7 $)))))))) + (-627 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-754)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-776)) (-4 *6 (-928 *3 *4 *5)) (-4 *3 (-445)) (-4 *5 (-830)) + (-5 *1 (-442 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) - (-5 *1 (-174 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1186)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1129 *2)) (-4 *2 (-1186))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1131)) (-5 *2 (-552)) (-5 *1 (-1168 *4)) - (-4 *4 (-1025))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-462)) (-5 *3 (-625 (-258))) (-5 *1 (-1233)))) - ((*1 *1 *1) (-5 *1 (-1233)))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-625 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552)))))) - (-5 *2 (-625 (-402 (-552)))) (-5 *1 (-996 *4)) - (-4 *4 (-1208 (-552)))))) -(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850))))) -(((*1 *1 *1) (-4 *1 (-611))) + (-12 (-4 *3 (-357)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-513 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-544)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) + (-4 *7 (-971 *4)) (-4 *2 (-669 *7 *8 *9)) + (-5 *1 (-514 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-669 *4 *5 *6)) + (-4 *8 (-367 *7)) (-4 *9 (-367 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-669 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)) (-4 *2 (-301)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *2)) - (-4 *2 (-13 (-425 *3) (-978) (-1171)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-330 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1208 *3)) - (-4 *5 (-1208 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) - (-4 *6 (-773)) (-4 *7 (-925 *4 *6 *5)) - (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-625 *7)) (|:| |n0| (-625 *7)))) - (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-625 *7))))) -(((*1 *2 *1) - (-12 (-14 *3 (-625 (-1149))) (-4 *4 (-170)) - (-14 *6 - (-1 (-112) (-2 (|:| -3123 *5) (|:| -3564 *2)) - (-2 (|:| -3123 *5) (|:| -3564 *2)))) - (-4 *2 (-234 (-1471 *3) (-751))) (-5 *1 (-455 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-827)) (-4 *7 (-925 *4 *2 (-841 *3)))))) + (-12 (-4 *3 (-301)) (-4 *3 (-169)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *1 (-670 *3 *4 *5 *2)) + (-4 *2 (-669 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-671 *3)) (-4 *3 (-301)) (-5 *1 (-682 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1031 *2 *3 *4 *5 *6)) (-4 *4 (-1028)) + (-4 *5 (-233 *3 *4)) (-4 *6 (-233 *2 *4)) (-4 *4 (-301))))) (((*1 *2 *2) - (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) - (-5 *1 (-174 *3))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-897)) (-5 *4 (-221)) (-5 *5 (-552)) (-5 *6 (-850)) - (-5 *2 (-1237)) (-5 *1 (-1233))))) -(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -2290 (-402 (-552))) (|:| -2303 (-402 (-552))))) - (-5 *2 (-402 (-552))) (-5 *1 (-996 *4)) (-4 *4 (-1208 (-552)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112)) - (-5 *1 (-32 *4 *5)) (-4 *5 (-425 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112)) - (-5 *1 (-156 *4 *5)) (-4 *5 (-425 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112)) - (-5 *1 (-271 *4 *5)) (-4 *5 (-13 (-425 *4) (-978))))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-296 *4)) (-4 *4 (-297)))) - ((*1 *2 *3) (-12 (-4 *1 (-297)) (-5 *3 (-114)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *5 (-827)) (-5 *2 (-112)) - (-5 *1 (-424 *4 *5)) (-4 *4 (-425 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112)) - (-5 *1 (-426 *4 *5)) (-4 *5 (-425 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-827) (-544))) (-5 *2 (-112)) - (-5 *1 (-612 *4 *5)) (-4 *5 (-13 (-425 *4) (-978) (-1171)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-358)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) - (-5 *2 (-1232 *6)) (-5 *1 (-331 *3 *4 *5 *6)) - (-4 *6 (-337 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-919 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-625 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-625 (-625 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-625 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *3) - (-12 (-5 *3 (-928 *4)) (-4 *4 (-13 (-302) (-145))) - (-4 *2 (-925 *4 *6 *5)) (-5 *1 (-900 *4 *5 *6 *2)) - (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773))))) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-627 (-627 *3))) (-4 *3 (-1076)) (-5 *1 (-1161 *3))))) (((*1 *2 *1) - (-12 (-14 *3 (-625 (-1149))) (-4 *4 (-170)) - (-4 *5 (-234 (-1471 *3) (-751))) - (-14 *6 - (-1 (-112) (-2 (|:| -3123 *2) (|:| -3564 *5)) - (-2 (|:| -3123 *2) (|:| -3564 *5)))) - (-4 *2 (-827)) (-5 *1 (-455 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-925 *4 *5 (-841 *3)))))) + (-12 (-4 *3 (-13 (-357) (-144))) + (-5 *2 (-627 (-2 (|:| -4067 (-754)) (|:| -3174 *4) (|:| |num| *4)))) + (-5 *1 (-393 *3 *4)) (-4 *4 (-1211 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) - (-5 *1 (-174 *3))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-1232 - (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) - (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -1521 (-552)) - (|:| -1497 (-552)) (|:| |spline| (-552)) (|:| -1775 (-552)) - (|:| |axesColor| (-850)) (|:| -4124 (-552)) - (|:| |unitsColor| (-850)) (|:| |showing| (-552))))) - (-5 *1 (-1233))))) -(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850))))) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981)))))) (((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-32 *3 *4)) - (-4 *4 (-425 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *1 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-114)))) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *4)) - (-4 *4 (-425 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-114)) (-5 *1 (-161)))) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-271 *3 *4)) - (-4 *4 (-13 (-425 *3) (-978))))) - ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-296 *3)) (-4 *3 (-297)))) - ((*1 *2 *2) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *4 (-827)) (-5 *1 (-424 *3 *4)) - (-4 *3 (-425 *4)))) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) + (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-426 *3 *4)) - (-4 *4 (-425 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-596 *3)) (-4 *3 (-827)))) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-827) (-544))) (-5 *1 (-612 *3 *4)) - (-4 *4 (-13 (-425 *3) (-978) (-1171))))) - ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-995))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) - (-14 *6 (-625 (-1149))) - (-5 *2 - (-625 (-1119 *5 (-524 (-841 *6)) (-841 *6) (-760 *5 (-841 *6))))) - (-5 *1 (-610 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-358)) (-4 *4 (-1208 *3)) (-4 *5 (-1208 (-402 *4))) - (-5 *2 (-1232 *6)) (-5 *1 (-331 *3 *4 *5 *6)) - (-4 *6 (-337 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325))))) -(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-221)) (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-739))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-1149))) (-4 *4 (-13 (-302) (-145))) - (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) - (-5 *2 (-625 (-402 (-928 *4)))) (-5 *1 (-900 *4 *5 *6 *7)) - (-4 *7 (-925 *4 *6 *5))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-625 (-1149))) (-4 *2 (-170)) - (-4 *4 (-234 (-1471 *5) (-751))) - (-14 *6 - (-1 (-112) (-2 (|:| -3123 *3) (|:| -3564 *4)) - (-2 (|:| -3123 *3) (|:| -3564 *4)))) - (-5 *1 (-455 *5 *2 *3 *4 *6 *7)) (-4 *3 (-827)) - (-4 *7 (-925 *2 *4 (-841 *5)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) - (-5 *1 (-174 *3))))) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3)))) + ((*1 *1 *1) (-4 *1 (-1177)))) +(((*1 *1 *1) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-111)))) + ((*1 *1 *1 *1) (-5 *1 (-842)))) (((*1 *2 *3) - (-12 (-5 *2 (-1151 (-402 (-552)))) (-5 *1 (-186)) (-5 *3 (-552)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1232 (-3 (-462) "undefined"))) (-5 *1 (-1233))))) -(((*1 *2 *1) - (-12 (-5 *2 (-172 (-402 (-552)))) (-5 *1 (-117 *3)) (-14 *3 (-552)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1129 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-402 *3)) (-4 *3 (-302)) (-5 *1 (-172 *3)))) + (-12 (-5 *3 (-573 *2)) (-4 *2 (-13 (-29 *4) (-1174))) + (-5 *1 (-571 *4 *2)) + (-4 *4 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))))) ((*1 *2 *3) - (-12 (-5 *2 (-172 (-552))) (-5 *1 (-746 *3)) (-4 *3 (-399)))) - ((*1 *2 *1) - (-12 (-5 *2 (-172 (-402 (-552)))) (-5 *1 (-847 *3)) (-14 *3 (-552)))) - ((*1 *2 *1) - (-12 (-14 *3 (-552)) (-5 *2 (-172 (-402 (-552)))) - (-5 *1 (-848 *3 *4)) (-4 *4 (-845 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1232 *6)) (-5 *4 (-1232 (-552))) (-5 *5 (-552)) - (-4 *6 (-1073)) (-5 *2 (-1 *6)) (-5 *1 (-993 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) - (-14 *6 (-625 (-1149))) (-5 *2 (-625 (-1022 *5 *6))) - (-5 *1 (-610 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1149)) (-5 *4 (-928 (-552))) (-5 *2 (-325)) - (-5 *1 (-327))))) -(((*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1186))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) - (-5 *2 (-625 (-625 (-919 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-625 (-625 (-919 *4)))) (-5 *3 (-112)) (-4 *4 (-1025)) - (-4 *1 (-1107 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-625 (-625 (-919 *3)))) (-4 *3 (-1025)) - (-4 *1 (-1107 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-625 (-625 (-625 *4)))) (-5 *3 (-112)) - (-4 *1 (-1107 *4)) (-4 *4 (-1025)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-625 (-625 (-919 *4)))) (-5 *3 (-112)) - (-4 *1 (-1107 *4)) (-4 *4 (-1025)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-625 (-625 (-625 *5)))) (-5 *3 (-625 (-169))) - (-5 *4 (-169)) (-4 *1 (-1107 *5)) (-4 *5 (-1025)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-625 (-625 (-919 *5)))) (-5 *3 (-625 (-169))) - (-5 *4 (-169)) (-4 *1 (-1107 *5)) (-4 *5 (-1025))))) + (-12 (-5 *3 (-573 (-401 (-931 *4)))) + (-4 *4 (-13 (-445) (-1017 (-552)) (-830) (-623 (-552)))) + (-5 *2 (-310 *4)) (-5 *1 (-576 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-922 *3)) (-4 *3 (-13 (-357) (-1174) (-981))) + (-5 *1 (-173 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-627 (-2 (|:| |val| (-627 *6)) (|:| -3443 *7)))) + (-4 *6 (-1042 *3 *4 *5)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) + (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-967 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-627 (-2 (|:| |val| (-627 *6)) (|:| -3443 *7)))) + (-4 *6 (-1042 *3 *4 *5)) (-4 *7 (-1048 *3 *4 *5 *6)) (-4 *3 (-445)) + (-4 *4 (-776)) (-4 *5 (-830)) (-5 *1 (-1083 *3 *4 *5 *6 *7))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-627 *7)) (-5 *3 (-552)) (-4 *7 (-928 *4 *5 *6)) + (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-5 *1 (-442 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-167 (-221))) (-5 *4 (-552)) (-5 *2 (-1011)) - (-5 *1 (-739))))) + (-12 (-5 *3 (-804)) (-5 *4 (-52)) (-5 *2 (-1240)) (-5 *1 (-814))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-552)) (-4 *1 (-669 *3 *4 *5)) (-4 *3 (-1028)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-401 (-931 *3))) (-5 *1 (-446 *3 *4 *5 *6)) + (-4 *3 (-544)) (-4 *3 (-169)) (-14 *4 (-900)) + (-14 *5 (-627 (-1152))) (-14 *6 (-1235 (-671 *3)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) - (-4 *6 (-773)) (-5 *2 (-402 (-928 *4))) (-5 *1 (-900 *4 *5 *6 *3)) - (-4 *3 (-925 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-669 *7)) (-4 *7 (-925 *4 *6 *5)) - (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) - (-4 *6 (-773)) (-5 *2 (-669 (-402 (-928 *4)))) - (-5 *1 (-900 *4 *5 *6 *7)))) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-627 (-310 (-220)))) (|:| -3002 (-627 (-220))))) + (-5 *2 (-373)) (-5 *1 (-261)))) ((*1 *2 *3) - (-12 (-5 *3 (-625 *7)) (-4 *7 (-925 *4 *6 *5)) - (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) - (-4 *6 (-773)) (-5 *2 (-625 (-402 (-928 *4)))) - (-5 *1 (-900 *4 *5 *6 *7))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-625 (-1149))) (-4 *2 (-170)) - (-4 *3 (-234 (-1471 *4) (-751))) - (-14 *6 - (-1 (-112) (-2 (|:| -3123 *5) (|:| -3564 *3)) - (-2 (|:| -3123 *5) (|:| -3564 *3)))) - (-5 *1 (-455 *4 *2 *5 *3 *6 *7)) (-4 *5 (-827)) - (-4 *7 (-925 *2 *3 (-841 *4)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) - (-5 *1 (-174 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-462)) (-5 *4 (-897)) (-5 *2 (-1237)) (-5 *1 (-1233))))) -(((*1 *2 *2) (-12 (-5 *2 (-897)) (-5 *1 (-398 *3)) (-4 *3 (-399)))) - ((*1 *2) (-12 (-5 *2 (-897)) (-5 *1 (-398 *3)) (-4 *3 (-399)))) - ((*1 *2 *2) (-12 (-5 *2 (-897)) (|has| *1 (-6 -4344)) (-4 *1 (-399)))) - ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-897)))) - ((*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-5 *2 (-1129 (-552)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-2 (|:| -3800 *4) (|:| -3469 (-552))))) - (-4 *4 (-1073)) (-5 *2 (-1 *4)) (-5 *1 (-993 *4))))) + (-12 (-5 *3 (-1235 (-310 (-220)))) (-5 *2 (-373)) (-5 *1 (-299))))) (((*1 *2 *2) - (-12 (-5 *2 (-625 (-928 *3))) (-4 *3 (-446)) (-5 *1 (-355 *3 *4)) - (-14 *4 (-625 (-1149))))) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) ((*1 *2 *2) - (-12 (-5 *2 (-625 *6)) (-4 *6 (-925 *3 *4 *5)) (-4 *3 (-446)) - (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-444 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-625 *7)) (-5 *3 (-1131)) (-4 *7 (-925 *4 *5 *6)) - (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-5 *1 (-444 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-625 *7)) (-5 *3 (-1131)) (-4 *7 (-925 *4 *5 *6)) - (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) - (-5 *1 (-444 *4 *5 *6 *7)))) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-325 *2)) (-4 *2 (-830)))) ((*1 *1 *1) - (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) - (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-925 *2 *3 *4)))) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) + (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) ((*1 *2 *2) - (-12 (-5 *2 (-625 (-760 *3 (-841 *4)))) (-4 *3 (-446)) - (-14 *4 (-625 (-1149))) (-5 *1 (-610 *3 *4))))) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3)))) + ((*1 *1 *1) (-4 *1 (-1177)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1149)) (-5 *4 (-928 (-552))) (-5 *2 (-325)) - (-5 *1 (-327))))) -(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-221))) - (-5 *2 (-1011)) (-5 *1 (-738))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-669 *11)) (-5 *4 (-625 (-402 (-928 *8)))) - (-5 *5 (-751)) (-5 *6 (-1131)) (-4 *8 (-13 (-302) (-145))) - (-4 *11 (-925 *8 *10 *9)) (-4 *9 (-13 (-827) (-598 (-1149)))) - (-4 *10 (-773)) - (-5 *2 - (-2 - (|:| |rgl| - (-625 - (-2 (|:| |eqzro| (-625 *11)) (|:| |neqzro| (-625 *11)) - (|:| |wcond| (-625 (-928 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1232 (-402 (-928 *8)))) - (|:| -1270 (-625 (-1232 (-402 (-928 *8)))))))))) - (|:| |rgsz| (-552)))) - (-5 *1 (-900 *8 *9 *10 *11)) (-5 *7 (-552))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-625 *3)) (-5 *5 (-897)) (-4 *3 (-1208 *4)) - (-4 *4 (-302)) (-5 *1 (-454 *4 *3))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) - (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) - (-5 *1 (-1148))))) + (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 *9)) (-4 *8 (-1042 *5 *6 *7)) + (-4 *9 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) + (-4 *7 (-830)) (-5 *2 (-754)) (-5 *1 (-1046 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-627 *8)) (-5 *4 (-627 *9)) (-4 *8 (-1042 *5 *6 *7)) + (-4 *9 (-1085 *5 *6 *7 *8)) (-4 *5 (-445)) (-4 *6 (-776)) + (-4 *7 (-830)) (-5 *2 (-754)) (-5 *1 (-1121 *5 *6 *7 *8 *9))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-1237)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-671 *3)) + (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) + (-4 *4 (-1211 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-671 *3)) + (-4 *3 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) + (-4 *4 (-1211 *3)) (-5 *1 (-491 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-373)))) + ((*1 *1 *1 *1) (-4 *1 (-537))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) + ((*1 *1 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-357)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-754))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-842))) ((*1 *1 *1 *1) (-5 *1 (-842))) + ((*1 *1 *1) (-5 *1 (-842)))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1152)) + (-4 *4 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-563 *4 *2)) + (-4 *2 (-13 (-1174) (-938) (-1115) (-29 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-1175 *2)) (-4 *2 (-1076))))) (((*1 *2 *2) - (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) - (-5 *1 (-174 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-897)) (-5 *2 (-462)) (-5 *1 (-1233))))) -(((*1 *2 *1) - (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-284 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1208 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-692 *3 *2 *4 *5 *6)) (-4 *3 (-170)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) - (-12 (-4 *2 (-1208 *3)) (-5 *1 (-693 *3 *2)) (-4 *3 (-1025)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-696 *3 *2 *4 *5 *6)) (-4 *3 (-170)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-845 *3)) (-5 *2 (-552))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1014 (-552)))) - (-4 *5 (-1208 *4)) (-5 *2 (-625 (-402 *5))) (-5 *1 (-992 *4 *5)) - (-5 *3 (-402 *5))))) + (-12 (-4 *3 (-301)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-1100 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1235 *5)) (-5 *3 (-754)) (-5 *4 (-1096)) (-4 *5 (-343)) + (-5 *1 (-520 *5))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1211 *5)) + (-4 *5 (-13 (-27) (-424 *4))) + (-4 *4 (-13 (-830) (-544) (-1017 (-552)))) + (-4 *7 (-1211 (-401 *6))) (-5 *1 (-540 *4 *5 *6 *7 *2)) + (-4 *2 (-336 *5 *6 *7))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-625 (-928 *3))) (-4 *3 (-446)) - (-5 *1 (-355 *3 *4)) (-14 *4 (-625 (-1149))))) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-270 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1226 *3)) + (-5 *1 (-272 *3 *4 *2)) (-4 *2 (-1197 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-401 (-552)))) (-4 *4 (-1195 *3)) + (-5 *1 (-273 *3 *4 *2 *5)) (-4 *2 (-1218 *3 *4)) (-4 *5 (-962 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-325 *2)) (-4 *2 (-830)))) + ((*1 *1 *1) + (-12 (-5 *1 (-333 *2 *3 *4)) (-14 *2 (-627 (-1152))) + (-14 *3 (-627 (-1152))) (-4 *4 (-381)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-625 (-760 *3 (-841 *4)))) (-4 *3 (-446)) - (-14 *4 (-625 (-1149))) (-5 *1 (-610 *3 *4))))) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1137 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1132 *3)) (-4 *3 (-38 (-401 (-552)))) + (-5 *1 (-1138 *3)))) + ((*1 *1 *1) (-4 *1 (-1177)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-310 (-220))) (-5 *4 (-1152)) + (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-627 (-220))) (-5 *1 (-187)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-310 (-220))) (-5 *4 (-1152)) + (-5 *5 (-1070 (-823 (-220)))) (-5 *2 (-627 (-220))) (-5 *1 (-294))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-111)) (-5 *5 (-671 (-220))) + (-5 *2 (-1014)) (-5 *1 (-738))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 *2)) (-4 *2 (-424 *4)) (-5 *1 (-155 *4 *2)) + (-4 *4 (-13 (-830) (-544)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1148 *1)) (-4 *1 (-991))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1149)) (-5 *4 (-928 (-552))) (-5 *2 (-325)) - (-5 *1 (-327))))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1148 *7)) (-4 *5 (-1028)) + (-4 *7 (-1028)) (-4 *2 (-1211 *5)) (-5 *1 (-493 *5 *2 *6 *7)) + (-4 *6 (-1211 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1028)) (-4 *7 (-1028)) + (-4 *4 (-1211 *5)) (-5 *2 (-1148 *7)) (-5 *1 (-493 *5 *4 *6 *7)) + (-4 *6 (-1211 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) - (-5 *2 (-625 (-625 (-625 (-751)))))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1131)) (-5 *4 (-552)) (-5 *5 (-669 (-221))) - (-5 *2 (-1011)) (-5 *1 (-738))))) + (-12 (-4 *1 (-367 *3)) (-4 *3 (-1189)) (-4 *3 (-830)) (-5 *2 (-111)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-111) *4 *4)) (-4 *1 (-367 *4)) (-4 *4 (-1189)) + (-5 *2 (-111))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-276 *2)) (-4 *2 (-1189)) (-4 *2 (-830)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-111) *3 *3)) (-4 *1 (-276 *3)) (-4 *3 (-1189)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-947 *2)) (-4 *2 (-830))))) +(((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-251))))) +(((*1 *2 *1) (-12 (-4 *1 (-501 *3 *2)) (-4 *3 (-1076)) (-4 *2 (-830))))) +(((*1 *2) (-12 (-5 *2 (-1240)) (-5 *1 (-1060 *3)) (-4 *3 (-130))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 (-141))) (-5 *1 (-138)))) + ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-138))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-900)) (-5 *4 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-730))))) +(((*1 *1 *1) (-4 *1 (-613))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981) (-1174)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-805))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-166 (-220)))) (-5 *2 (-1014)) + (-5 *1 (-737))))) +(((*1 *1 *1) (-5 *1 (-528)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-627 (-627 *8))) (-5 *3 (-627 *8)) + (-4 *8 (-1042 *5 *6 *7)) (-4 *5 (-544)) (-4 *6 (-776)) + (-4 *7 (-830)) (-5 *2 (-111)) (-5 *1 (-956 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-1131)) (-4 *4 (-13 (-302) (-145))) - (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) - (-5 *2 - (-625 - (-2 (|:| |eqzro| (-625 *7)) (|:| |neqzro| (-625 *7)) - (|:| |wcond| (-625 (-928 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1232 (-402 (-928 *4)))) - (|:| -1270 (-625 (-1232 (-402 (-928 *4)))))))))) - (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-925 *4 *6 *5))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-897)) (-4 *5 (-302)) (-4 *3 (-1208 *5)) - (-5 *2 (-2 (|:| |plist| (-625 *3)) (|:| |modulo| *5))) - (-5 *1 (-454 *5 *3)) (-5 *4 (-625 *3))))) -(((*1 *1 *2 *2) - (-12 + (-12 (-5 *3 (-1235 *1)) (-4 *1 (-361 *4)) (-4 *4 (-169)) + (-5 *2 (-671 *4)))) + ((*1 *2) + (-12 (-4 *4 (-169)) (-5 *2 (-671 *4)) (-5 *1 (-410 *3 *4)) + (-4 *3 (-411 *4)))) + ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-169)) (-5 *2 (-671 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-156 *2)) (-4 *2 (-537)))) + ((*1 *1 *2) (-12 (-5 *2 (-627 (-552))) (-5 *1 (-950))))) +(((*1 *2 *3) + (-12 (-5 *3 (-671 (-310 (-220)))) (-5 *2 - (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) - (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) - (-5 *1 (-1148))))) -(((*1 *2 *2) - (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) - (-5 *1 (-174 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233))))) -(((*1 *2 *1) (-12 (-4 *1 (-845 *3)) (-5 *2 (-552))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) - (-4 *5 (-13 (-358) (-145) (-1014 (-552)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |h| *6) - (|:| |c1| (-402 *6)) (|:| |c2| (-402 *6)) (|:| -2228 *6))) - (-5 *1 (-992 *5 *6)) (-5 *3 (-402 *6))))) + (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) + (-5 *1 (-200))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-627 (-1 *4 (-627 *4)))) (-4 *4 (-1076)) + (-5 *1 (-112 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1076)) + (-5 *1 (-112 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-113)) (-5 *2 (-627 (-1 *4 (-627 *4)))) + (-5 *1 (-112 *4)) (-4 *4 (-1076))))) +(((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-169)))) + ((*1 *2 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-169))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-738))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028))))) (((*1 *2 *3) - (-12 (-5 *3 (-625 (-928 *4))) (-4 *4 (-446)) (-5 *2 (-112)) - (-5 *1 (-355 *4 *5)) (-14 *5 (-625 (-1149))))) + (-12 (-5 *2 (-1 (-922 *3) (-922 *3))) (-5 *1 (-173 *3)) + (-4 *3 (-13 (-357) (-1174) (-981)))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-1026))))) +(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-1189))))) +(((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-111)))) ((*1 *2 *3) - (-12 (-5 *3 (-625 (-760 *4 (-841 *5)))) (-4 *4 (-446)) - (-14 *5 (-625 (-1149))) (-5 *2 (-112)) (-5 *1 (-610 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-625 *3)) (-4 *3 (-1073)) (-4 *1 (-1071 *3)))) - ((*1 *1) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1073))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-827))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) - (-5 *2 (-625 (-625 (-625 (-919 *3)))))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-669 (-552))) - (-5 *4 (-552)) (-5 *2 (-1011)) (-5 *1 (-738))))) -(((*1 *2 *3 *4) + (-12 (-5 *3 (-1148 *4)) (-4 *4 (-343)) (-5 *2 (-111)) + (-5 *1 (-351 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-754)) (-4 *4 (-357)) (-4 *5 (-1211 *4)) (-5 *2 (-1240)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1211 (-401 *5))) (-14 *7 *6)))) +(((*1 *2 *3) (-12 (-5 *3 - (-625 - (-2 (|:| |eqzro| (-625 *8)) (|:| |neqzro| (-625 *8)) - (|:| |wcond| (-625 (-928 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1232 (-402 (-928 *5)))) - (|:| -1270 (-625 (-1232 (-402 (-928 *5)))))))))) - (-5 *4 (-1131)) (-4 *5 (-13 (-302) (-145))) (-4 *8 (-925 *5 *7 *6)) - (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-552)) - (-5 *1 (-900 *5 *6 *7 *8))))) + (-627 (-2 (|:| -2776 (-401 (-552))) (|:| -2791 (-401 (-552)))))) + (-5 *2 (-627 (-220))) (-5 *1 (-299))))) +(((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-1189))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-625 *5)) (-4 *5 (-1208 *3)) (-4 *3 (-302)) - (-5 *2 (-112)) (-5 *1 (-449 *3 *5))))) -(((*1 *1 *1) (-5 *1 (-1148))) - ((*1 *1 *2) - (-12 + (-12 (-5 *3 (-627 (-401 (-931 *5)))) (-5 *4 (-627 (-1152))) + (-4 *5 (-544)) (-5 *2 (-627 (-627 (-931 *5)))) (-5 *1 (-1158 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-900)) (-4 *1 (-727 *3)) (-4 *3 (-169))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1132 (-627 (-552)))) (-5 *1 (-862)) (-5 *3 (-552))))) +(((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-905))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-900)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-754))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1134) (-757))) (-5 *1 (-113))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-116 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-116 *2)) (-14 *2 (-552)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-850 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-850 *2)) (-14 *2 (-552)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-552)) (-14 *3 *2) (-5 *1 (-851 *3 *4)) + (-4 *4 (-848 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-552)) (-5 *1 (-851 *2 *3)) (-4 *3 (-848 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-552)) (-4 *1 (-1197 *3 *4)) (-4 *3 (-1028)) + (-4 *4 (-1226 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1197 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-1226 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1148 *6)) (-4 *6 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *2 (-1148 *7)) (-5 *1 (-315 *4 *5 *6 *7)) + (-4 *7 (-928 *6 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *1 (-1184 *2)) (-4 *2 (-953))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-544)) + (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-1206 *4 *3)) + (-4 *3 (-1211 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *1 (-856 *2)) (-4 *2 (-1189)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *1 (-858 *2)) (-4 *2 (-1189)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *1 (-861 *2)) (-4 *2 (-1189))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 - (-3 (|:| I (-311 (-552))) (|:| -3281 (-311 (-374))) - (|:| CF (-311 (-167 (-374)))) (|:| |switch| (-1148)))) - (-5 *1 (-1148))))) -(((*1 *2 *1) (-12 (-5 *2 (-625 (-108))) (-5 *1 (-173))))) -(((*1 *2 *3) (-12 (-5 *3 (-528)) (-5 *1 (-527 *2)) (-4 *2 (-1186)))) - ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-528))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233))))) -(((*1 *1 *1) (-4 *1 (-845 *2)))) + (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) + (|:| |success| (-111)))) + (-5 *1 (-772)) (-5 *5 (-552))))) +(((*1 *1 *1) (-4 *1 (-613))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-614 *3 *2)) + (-4 *2 (-13 (-424 *3) (-981) (-1174)))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) + (-5 *5 (-3 (|:| |fn| (-382)) (|:| |fp| (-63 G)))) (-5 *2 (-1014)) + (-5 *1 (-731))))) +(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237)))) + ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1237))))) +(((*1 *1) (-5 *1 (-566))) + ((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-843)))) + ((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1240)) (-5 *1 (-843)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1134)) (-5 *4 (-842)) (-5 *2 (-1240)) (-5 *1 (-843)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-552)) (-5 *2 (-1240)) (-5 *1 (-1132 *4)) + (-4 *4 (-1076)) (-4 *4 (-1189))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1017 (-552))) (-4 *1 (-296)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-111)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-884 *3)) (-4 *3 (-1076))))) +(((*1 *1 *1) (-5 *1 (-220))) + ((*1 *2 *2) (-12 (-5 *2 (-220)) (-5 *1 (-221)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-220))) (-5 *1 (-221)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *1 (-425 *3 *2)) + (-4 *2 (-424 *3)))) + ((*1 *1 *1) (-4 *1 (-1115))) ((*1 *1 *1 *1) (-4 *1 (-1115)))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-830)) (-4 *5 (-776)) + (-4 *6 (-544)) (-4 *7 (-928 *6 *5 *3)) + (-5 *1 (-455 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1017 (-401 (-552))) (-357) + (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) + (-15 -2929 (*7 $)))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1148 *4)) (-4 *4 (-343)) (-5 *2 (-937 (-1096))) + (-5 *1 (-340 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-355 *3)) (-4 *3 (-1076)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-5 *2 (-754)) (-5 *1 (-380 *4)) (-4 *4 (-1076)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-4 *2 (-23)) (-5 *1 (-631 *4 *2 *5)) + (-4 *4 (-1076)) (-14 *5 *2))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-5 *2 (-754)) (-5 *1 (-802 *4)) (-4 *4 (-830))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-220)) (-5 *4 (-552)) (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-321 *3)) (-4 *3 (-1189)))) + ((*1 *2 *1) + (-12 (-5 *2 (-754)) (-5 *1 (-508 *3 *4)) (-4 *3 (-1189)) + (-14 *4 (-552))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1226 *4)) + (-4 *4 (-38 (-401 (-552)))) + (-5 *2 (-1 (-1132 *4) (-1132 *4) (-1132 *4))) (-5 *1 (-1228 *4 *5))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1208 *6)) - (-4 *6 (-13 (-358) (-145) (-1014 *4))) (-5 *4 (-552)) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1211 *6)) + (-4 *6 (-13 (-357) (-144) (-1017 *4))) (-5 *4 (-552)) (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -2772 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-111)))) + (|:| -1651 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) - (-5 *1 (-991 *6 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 *4)) (-4 *4 (-827)) (-5 *2 (-625 (-644 *4 *5))) - (-5 *1 (-609 *4 *5 *6)) (-4 *5 (-13 (-170) (-698 (-402 (-552))))) - (-14 *6 (-897))))) -(((*1 *1 *1) (-5 *1 (-839))) ((*1 *1 *1 *1) (-5 *1 (-839))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-1186)))) - ((*1 *1 *2) (-12 (-5 *1 (-1199 *2)) (-4 *2 (-1186))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1065 (-928 (-552)))) (-5 *3 (-928 (-552))) - (-5 *1 (-325)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1065 (-928 (-552)))) (-5 *1 (-325))))) + (-5 *1 (-994 *6 *3))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-734))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4366)) (-4 *1 (-34)) (-5 *2 (-754)))) + ((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-127)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-4 *5 (-1076)) (-4 *6 (-1076)) (-4 *7 (-1076)) (-5 *2 (-552)))) + ((*1 *2 *1) + (-12 (-5 *2 (-754)) (-5 *1 (-1258 *3 *4)) (-4 *3 (-1028)) + (-4 *4 (-826))))) (((*1 *2 *1) - (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-625 (-169))))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-738))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-669 *8)) (-4 *8 (-925 *5 *7 *6)) - (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) - (-4 *7 (-773)) - (-5 *2 - (-625 - (-2 (|:| |eqzro| (-625 *8)) (|:| |neqzro| (-625 *8)) - (|:| |wcond| (-625 (-928 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1232 (-402 (-928 *5)))) - (|:| -1270 (-625 (-1232 (-402 (-928 *5)))))))))) - (-5 *1 (-900 *5 *6 *7 *8)) (-5 *4 (-625 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-669 *8)) (-5 *4 (-625 (-1149))) (-4 *8 (-925 *5 *7 *6)) - (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) - (-4 *7 (-773)) - (-5 *2 - (-625 - (-2 (|:| |eqzro| (-625 *8)) (|:| |neqzro| (-625 *8)) - (|:| |wcond| (-625 (-928 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1232 (-402 (-928 *5)))) - (|:| -1270 (-625 (-1232 (-402 (-928 *5)))))))))) - (-5 *1 (-900 *5 *6 *7 *8)))) + (|partial| -12 (-4 *3 (-1028)) (-4 *3 (-830)) + (-5 *2 (-2 (|:| |val| *1) (|:| -4067 (-552)))) (-4 *1 (-424 *3)))) + ((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-871 *3)) (|:| -4067 (-871 *3)))) + (-5 *1 (-871 *3)) (-4 *3 (-1076)))) ((*1 *2 *3) - (-12 (-5 *3 (-669 *7)) (-4 *7 (-925 *4 *6 *5)) - (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) - (-4 *6 (-773)) - (-5 *2 - (-625 - (-2 (|:| |eqzro| (-625 *7)) (|:| |neqzro| (-625 *7)) - (|:| |wcond| (-625 (-928 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1232 (-402 (-928 *4)))) - (|:| -1270 (-625 (-1232 (-402 (-928 *4)))))))))) - (-5 *1 (-900 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-669 *9)) (-5 *5 (-897)) (-4 *9 (-925 *6 *8 *7)) - (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) - (-4 *8 (-773)) - (-5 *2 - (-625 - (-2 (|:| |eqzro| (-625 *9)) (|:| |neqzro| (-625 *9)) - (|:| |wcond| (-625 (-928 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1232 (-402 (-928 *6)))) - (|:| -1270 (-625 (-1232 (-402 (-928 *6)))))))))) - (-5 *1 (-900 *6 *7 *8 *9)) (-5 *4 (-625 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-669 *9)) (-5 *4 (-625 (-1149))) (-5 *5 (-897)) - (-4 *9 (-925 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) - (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) - (-5 *2 - (-625 - (-2 (|:| |eqzro| (-625 *9)) (|:| |neqzro| (-625 *9)) - (|:| |wcond| (-625 (-928 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1232 (-402 (-928 *6)))) - (|:| -1270 (-625 (-1232 (-402 (-928 *6)))))))))) - (-5 *1 (-900 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-669 *8)) (-5 *4 (-897)) (-4 *8 (-925 *5 *7 *6)) - (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) - (-4 *7 (-773)) - (-5 *2 - (-625 - (-2 (|:| |eqzro| (-625 *8)) (|:| |neqzro| (-625 *8)) - (|:| |wcond| (-625 (-928 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1232 (-402 (-928 *5)))) - (|:| -1270 (-625 (-1232 (-402 (-928 *5)))))))))) - (-5 *1 (-900 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-669 *9)) (-5 *4 (-625 *9)) (-5 *5 (-1131)) - (-4 *9 (-925 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) - (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-552)) - (-5 *1 (-900 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-669 *9)) (-5 *4 (-625 (-1149))) (-5 *5 (-1131)) - (-4 *9 (-925 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) - (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-552)) - (-5 *1 (-900 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-669 *8)) (-5 *4 (-1131)) (-4 *8 (-925 *5 *7 *6)) - (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) - (-4 *7 (-773)) (-5 *2 (-552)) (-5 *1 (-900 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-669 *10)) (-5 *4 (-625 *10)) (-5 *5 (-897)) - (-5 *6 (-1131)) (-4 *10 (-925 *7 *9 *8)) (-4 *7 (-13 (-302) (-145))) - (-4 *8 (-13 (-827) (-598 (-1149)))) (-4 *9 (-773)) (-5 *2 (-552)) - (-5 *1 (-900 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-669 *10)) (-5 *4 (-625 (-1149))) (-5 *5 (-897)) - (-5 *6 (-1131)) (-4 *10 (-925 *7 *9 *8)) (-4 *7 (-13 (-302) (-145))) - (-4 *8 (-13 (-827) (-598 (-1149)))) (-4 *9 (-773)) (-5 *2 (-552)) - (-5 *1 (-900 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-669 *9)) (-5 *4 (-897)) (-5 *5 (-1131)) - (-4 *9 (-925 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) - (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-552)) - (-5 *1 (-900 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1232 (-625 *3))) (-4 *4 (-302)) - (-5 *2 (-625 *3)) (-5 *1 (-449 *4 *3)) (-4 *3 (-1208 *4))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-897)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1233))))) -(((*1 *1 *1 *1) (-5 *1 (-839))) ((*1 *1 *1) (-5 *1 (-839))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1145 (-552))) (-5 *3 (-552)) (-4 *1 (-845 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-552)))) (-4 *5 (-1208 *4)) - (-5 *2 (-2 (|:| |ans| (-402 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-991 *4 *5)) (-5 *3 (-402 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-625 (-2 (|:| |k| (-652 *3)) (|:| |c| *4)))) - (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) - (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325))))) + (|partial| -12 (-4 *4 (-776)) (-4 *5 (-830)) (-4 *6 (-1028)) + (-4 *7 (-928 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -4067 (-552)))) + (-5 *1 (-929 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-357) + (-10 -8 (-15 -1477 ($ *7)) (-15 -2918 (*7 $)) + (-15 -2929 (*7 $)))))))) +(((*1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-681)))) + ((*1 *2 *2) (-12 (-5 *2 (-552)) (-5 *1 (-681))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1235 *1)) (-4 *1 (-336 *3 *4 *5)) (-4 *3 (-1193)) + (-4 *4 (-1211 *3)) (-4 *5 (-1211 (-401 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-625 (-169)))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) - (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-69 APROD)))) (-5 *4 (-221)) - (-5 *2 (-1011)) (-5 *1 (-737))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-625 *4)) (-4 *4 (-358)) (-4 *2 (-1208 *4)) - (-5 *1 (-898 *4 *2))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-751)) (-4 *4 (-302)) (-4 *6 (-1208 *4)) - (-5 *2 (-1232 (-625 *6))) (-5 *1 (-449 *4 *6)) (-5 *5 (-625 *6))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1129 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) - ((*1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-897)) (-5 *4 (-374)) (-5 *2 (-1237)) (-5 *1 (-1233))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-751)) (-4 *5 (-358)) (-5 *2 (-402 *6)) - (-5 *1 (-843 *5 *4 *6)) (-4 *4 (-1223 *5)) (-4 *6 (-1208 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-751)) (-5 *4 (-1224 *5 *6 *7)) (-4 *5 (-358)) - (-14 *6 (-1149)) (-14 *7 *5) (-5 *2 (-402 (-1205 *6 *5))) - (-5 *1 (-844 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-751)) (-5 *4 (-1224 *5 *6 *7)) (-4 *5 (-358)) - (-14 *6 (-1149)) (-14 *7 *5) (-5 *2 (-402 (-1205 *6 *5))) - (-5 *1 (-844 *5 *6 *7))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1208 *5)) - (-4 *5 (-13 (-358) (-145) (-1014 (-552)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |c| (-402 *6)) - (|:| -2228 *6))) - (-5 *1 (-991 *5 *6)) (-5 *3 (-402 *6))))) + (-12 (-4 *3 (-357)) (-4 *4 (-776)) (-4 *5 (-830)) (-5 *2 (-627 *6)) + (-5 *1 (-496 *3 *4 *5 *6)) (-4 *6 (-928 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-627 (-884 *3))) (-5 *1 (-883 *3)) (-4 *3 (-1076))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-625 (-289 *4))) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) - (-4 *4 (-13 (-170) (-698 (-402 (-552))))) (-14 *5 (-897))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-625 (-2 (|:| -3824 (-1145 *6)) (|:| -3564 (-552))))) - (-4 *6 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) - (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-925 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *3 (-552)) - (-5 *2 (-1011)) (-5 *1 (-737))))) -(((*1 *2 *3) - (-12 (-4 *1 (-896)) (-5 *2 (-2 (|:| -3340 (-625 *1)) (|:| -3212 *1))) - (-5 *3 (-625 *1))))) + (-12 (-4 *3 (-544)) (-4 *3 (-1028)) + (-5 *2 (-2 (|:| -2404 *1) (|:| -3401 *1))) (-4 *1 (-832 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-544)) (-4 *5 (-1028)) + (-5 *2 (-2 (|:| -2404 *3) (|:| -3401 *3))) (-5 *1 (-833 *5 *3)) + (-4 *3 (-832 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-625 *3)) (-4 *3 (-1208 *5)) (-4 *5 (-302)) - (-5 *2 (-751)) (-5 *1 (-449 *5 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *4 (-850)) - (-5 *5 (-897)) (-5 *6 (-625 (-258))) (-5 *2 (-1233)) - (-5 *1 (-1236)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *4 (-625 (-258))) - (-5 *2 (-1233)) (-5 *1 (-1236))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-751)) (-4 *5 (-358)) (-5 *2 (-172 *6)) - (-5 *1 (-843 *5 *4 *6)) (-4 *4 (-1223 *5)) (-4 *6 (-1208 *5))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1149)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-625 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-625 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3114 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1171) (-27) (-425 *8))) - (-4 *8 (-13 (-446) (-827) (-145) (-1014 *3) (-621 *3))) - (-5 *3 (-552)) (-5 *2 (-625 *4)) (-5 *1 (-990 *8 *4))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -3449 (-625 (-2 (|:| |irr| *10) (|:| -3515 (-552))))))) - (-5 *6 (-625 *3)) (-5 *7 (-625 *8)) (-4 *8 (-827)) (-4 *3 (-302)) - (-4 *10 (-925 *3 *9 *8)) (-4 *9 (-773)) - (-5 *2 - (-2 (|:| |polfac| (-625 *10)) (|:| |correct| *3) - (|:| |corrfact| (-625 (-1145 *3))))) - (-5 *1 (-607 *8 *9 *3 *10)) (-5 *4 (-625 (-1145 *3)))))) -(((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-614))))) -(((*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-34)) (-5 *2 (-751)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1076 *3 *4 *5 *6 *7)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-4 *5 (-1073)) (-4 *6 (-1073)) (-4 *7 (-1073)) (-5 *2 (-552)))) - ((*1 *2 *1) - (-12 (-5 *2 (-751)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025)) - (-4 *4 (-823))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1186)) (-5 *1 (-1105 *4 *2)) - (-4 *2 (-13 (-588 (-552) *4) (-10 -7 (-6 -4353) (-6 -4354)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-827)) (-4 *3 (-1186)) (-5 *1 (-1105 *3 *2)) - (-4 *2 (-13 (-588 (-552) *3) (-10 -7 (-6 -4353) (-6 -4354))))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *5 (-112)) - (-5 *6 (-221)) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 APROD)))) - (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-72 MSOLVE)))) - (-5 *2 (-1011)) (-5 *1 (-737))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-625 *1)) (-4 *1 (-896))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-544)) (-4 *3 (-170)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -1270 (-625 *1)))) - (-4 *1 (-362 *3)))) + (-12 (-5 *3 (-1235 (-627 (-2 (|:| -4288 *4) (|:| -4153 (-1096)))))) + (-4 *4 (-343)) (-5 *2 (-1240)) (-5 *1 (-520 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1017 (-552))) (-4 *3 (-13 (-830) (-544))) + (-5 *1 (-32 *3 *2)) (-4 *2 (-424 *3)))) ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-447 *3 *4 *5 *6)) - (|:| -1270 (-625 (-447 *3 *4 *5 *6))))) - (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-897)) - (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *4 (-850)) - (-5 *5 (-897)) (-5 *6 (-625 (-258))) (-5 *2 (-462)) (-5 *1 (-1236)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *2 (-462)) - (-5 *1 (-1236)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-625 (-919 (-221))))) (-5 *4 (-625 (-258))) - (-5 *2 (-462)) (-5 *1 (-1236))))) -(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-839))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1149)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-625 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-625 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3114 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1171) (-27) (-425 *8))) - (-4 *8 (-13 (-446) (-827) (-145) (-1014 *3) (-621 *3))) - (-5 *3 (-552)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -2303 *4) (|:| |sol?| (-112)))) - (-5 *1 (-989 *8 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-751)) (-5 *5 (-625 *3)) (-4 *3 (-302)) (-4 *6 (-827)) - (-4 *7 (-773)) (-5 *2 (-112)) (-5 *1 (-607 *6 *7 *3 *8)) - (-4 *8 (-925 *3 *7 *6))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-528) (-625 (-528)))) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-528) (-625 (-528)))) (-5 *1 (-114)))) - ((*1 *1) (-5 *1 (-565)))) -(((*1 *1 *2) (-12 (-5 *2 (-311 (-167 (-374)))) (-5 *1 (-325)))) - ((*1 *1 *2) (-12 (-5 *2 (-311 (-552))) (-5 *1 (-325)))) - ((*1 *1 *2) (-12 (-5 *2 (-311 (-374))) (-5 *1 (-325)))) - ((*1 *1 *2) (-12 (-5 *2 (-311 (-674))) (-5 *1 (-325)))) - ((*1 *1 *2) (-12 (-5 *2 (-311 (-681))) (-5 *1 (-325)))) - ((*1 *1 *2) (-12 (-5 *2 (-311 (-679))) (-5 *1 (-325)))) - ((*1 *1) (-5 *1 (-325)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1186)) (-5 *1 (-1105 *4 *2)) - (-4 *2 (-13 (-588 (-552) *4) (-10 -7 (-6 -4353) (-6 -4354)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-827)) (-4 *3 (-1186)) (-5 *1 (-1105 *3 *2)) - (-4 *2 (-13 (-588 (-552) *3) (-10 -7 (-6 -4353) (-6 -4354))))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *3 (-552)) - (-5 *2 (-1011)) (-5 *1 (-737))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-625 (-928 *4))) (-5 *3 (-625 (-1149))) (-4 *4 (-446)) - (-5 *1 (-894 *4))))) + (-12 (-4 *4 (-169)) (-5 *2 (-1148 *4)) (-5 *1 (-162 *3 *4)) + (-4 *3 (-163 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1028)) (-4 *1 (-296)))) + ((*1 *2) (-12 (-4 *1 (-323 *3)) (-4 *3 (-357)) (-5 *2 (-1148 *3)))) + ((*1 *2) (-12 (-4 *1 (-707 *3 *2)) (-4 *3 (-169)) (-4 *2 (-1211 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1045 *3 *2)) (-4 *3 (-13 (-828) (-357))) + (-4 *2 (-1211 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-320 *2 *3)) (-4 *2 (-1028)) (-4 *3 (-775)) + (-4 *2 (-445)))) + ((*1 *1 *1) + (-12 (-4 *1 (-336 *2 *3 *4)) (-4 *2 (-1193)) (-4 *3 (-1211 *2)) + (-4 *4 (-1211 (-401 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1028)) (-4 *2 (-445)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-928 *3 *4 *2)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *2 (-830)) (-4 *3 (-445)))) + ((*1 *1 *1) + (-12 (-4 *1 (-928 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830)) (-4 *2 (-445)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-301)) (-4 *3 (-544)) (-5 *1 (-1139 *3 *2)) + (-4 *2 (-1211 *3))))) (((*1 *2) - (|partial| -12 (-4 *3 (-544)) (-4 *3 (-170)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -1270 (-625 *1)))) - (-4 *1 (-362 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-447 *3 *4 *5 *6)) - (|:| -1270 (-625 (-447 *3 *4 *5 *6))))) - (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-897)) - (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302))))) + (-12 (-5 *2 (-1240)) (-5 *1 (-1166 *3 *4)) (-4 *3 (-1076)) + (-4 *4 (-1076))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-627 (-754))) (-5 *1 (-1140 *3 *4)) (-14 *3 (-900)) + (-4 *4 (-1028))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-754)) (-5 *1 (-657 *2)) (-4 *2 (-1076))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-357)) (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-111)) + (-5 *1 (-496 *4 *5 *6 *3)) (-4 *3 (-928 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-871 *3)) (-4 *3 (-1076))))) +(((*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) + ((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1235 *3)) (-4 *3 (-1028)) (-5 *1 (-695 *3 *4)) + (-4 *4 (-1211 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1186)) - (-4 *5 (-1186)) (-5 *2 (-58 *5)) (-5 *1 (-57 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-236 *6 *7)) (-14 *6 (-751)) - (-4 *7 (-1186)) (-4 *5 (-1186)) (-5 *2 (-236 *6 *5)) - (-5 *1 (-235 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1186)) (-4 *5 (-1186)) - (-4 *2 (-368 *5)) (-5 *1 (-366 *6 *4 *5 *2)) (-4 *4 (-368 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1073)) (-4 *5 (-1073)) - (-4 *2 (-420 *5)) (-5 *1 (-418 *6 *4 *5 *2)) (-4 *4 (-420 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-625 *6)) (-4 *6 (-1186)) - (-4 *5 (-1186)) (-5 *2 (-625 *5)) (-5 *1 (-623 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-934 *6)) (-4 *6 (-1186)) - (-4 *5 (-1186)) (-5 *2 (-934 *5)) (-5 *1 (-933 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1129 *6)) (-4 *6 (-1186)) - (-4 *3 (-1186)) (-5 *2 (-1129 *3)) (-5 *1 (-1127 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1232 *6)) (-4 *6 (-1186)) - (-4 *5 (-1186)) (-5 *2 (-1232 *5)) (-5 *1 (-1231 *6 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-839))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-988)) (-5 *2 (-839))))) -(((*1 *2 *2) - (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) - (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-606 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *2 (-1082 *3 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 (-325))) (-5 *1 (-325))))) + (|partial| -12 (-5 *3 (-754)) (-4 *4 (-301)) (-4 *6 (-1211 *4)) + (-5 *2 (-1235 (-627 *6))) (-5 *1 (-448 *4 *6)) (-5 *5 (-627 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1232 *4)) (-4 *4 (-1025)) (-4 *2 (-1208 *4)) - (-5 *1 (-438 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-402 (-1145 (-311 *5)))) (-5 *3 (-1232 (-311 *5))) - (-5 *4 (-552)) (-4 *5 (-13 (-544) (-827))) (-5 *1 (-1103 *5))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-552)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) - (-5 *2 (-1011)) (-5 *1 (-737))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-625 (-928 *4))) (-5 *3 (-625 (-1149))) (-4 *4 (-446)) - (-5 *1 (-894 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1232 (-1149))) (-5 *3 (-1232 (-447 *4 *5 *6 *7))) - (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-897)) - (-14 *6 (-625 (-1149))) (-14 *7 (-1232 (-669 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1149)) (-5 *3 (-1232 (-447 *4 *5 *6 *7))) - (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-897)) - (-14 *6 (-625 *2)) (-14 *7 (-1232 (-669 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1232 (-447 *3 *4 *5 *6))) (-5 *1 (-447 *3 *4 *5 *6)) - (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) - (-14 *6 (-1232 (-669 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1232 (-1149))) (-5 *1 (-447 *3 *4 *5 *6)) - (-4 *3 (-170)) (-14 *4 (-897)) (-14 *5 (-625 (-1149))) - (-14 *6 (-1232 (-669 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1149)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) - (-14 *4 (-897)) (-14 *5 (-625 *2)) (-14 *6 (-1232 (-669 *3))))) - ((*1 *1) - (-12 (-5 *1 (-447 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-897)) - (-14 *4 (-625 (-1149))) (-14 *5 (-1232 (-669 *2)))))) -(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-5 *2 (-2 (|:| -2971 *3) (|:| -4120 *4)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1186)) (-4 *2 (-1025)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-839)))) - ((*1 *1 *1) (-5 *1 (-839))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-919 (-221))) (-5 *2 (-221)) (-5 *1 (-1182)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-1025))))) -(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-839))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1145 *1)) (-4 *1 (-988))))) -(((*1 *2 *1) - (-12 (-4 *2 (-544)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1208 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-625 (-839))) (-5 *1 (-325))))) + (-12 (-5 *3 (-823 (-373))) (-5 *2 (-823 (-220))) (-5 *1 (-299))))) +(((*1 *2 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238)))) + ((*1 *2) (-12 (-5 *2 (-900)) (-5 *1 (-1238))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-627 *2)) (-4 *2 (-1076)) (-4 *2 (-1189))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1067 (-374))) - (-5 *5 (-625 (-258))) (-5 *2 (-1233)) (-5 *1 (-250)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1067 (-374))) - (-5 *2 (-1233)) (-5 *1 (-250)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-853 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374))) - (-5 *5 (-625 (-258))) (-5 *2 (-1233)) (-5 *1 (-250)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-853 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374))) - (-5 *2 (-1233)) (-5 *1 (-250)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374))) - (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-250)))) + (-12 (-5 *3 (-1 (-111) *6 *6)) (-4 *6 (-830)) (-5 *4 (-627 *6)) + (-5 *2 (-2 (|:| |fs| (-111)) (|:| |sd| *4) (|:| |td| (-627 *4)))) + (-5 *1 (-1160 *6)) (-5 *5 (-627 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) + (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 *10)) + (-5 *1 (-608 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1048 *5 *6 *7 *8)) + (-4 *10 (-1085 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1067 (-374))) - (-5 *2 (-1234)) (-5 *1 (-250)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1067 (-374))) - (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-250)))) + (-12 (-5 *3 (-627 (-763 *5 (-844 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) + (-14 *6 (-627 (-1152))) (-5 *2 (-627 (-1025 *5 *6))) + (-5 *1 (-612 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1067 (-374))) - (-5 *2 (-1234)) (-5 *1 (-250)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1067 (-374))) - (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-250)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1067 (-374))) - (-5 *2 (-1234)) (-5 *1 (-250)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-374))) - (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-250)))) + (-12 (-5 *3 (-627 (-763 *5 (-844 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) + (-14 *6 (-627 (-1152))) + (-5 *2 + (-627 (-1122 *5 (-523 (-844 *6)) (-844 *6) (-763 *5 (-844 *6))))) + (-5 *1 (-612 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) + (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-5 *2 (-627 (-1006 *5 *6 *7 *8))) (-5 *1 (-1006 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1067 (-374))) - (-5 *2 (-1234)) (-5 *1 (-250)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1067 (-374))) - (-5 *5 (-625 (-258))) (-5 *2 (-1234)) (-5 *1 (-250)))) + (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) + (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-5 *2 (-627 (-1006 *5 *6 *7 *8))) (-5 *1 (-1006 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1067 (-374))) - (-5 *2 (-1234)) (-5 *1 (-250)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-289 *7)) (-5 *4 (-1149)) (-5 *5 (-625 (-258))) - (-4 *7 (-425 *6)) (-4 *6 (-13 (-544) (-827) (-1014 (-552)))) - (-5 *2 (-1233)) (-5 *1 (-251 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1233)) - (-5 *1 (-254 *3)) (-4 *3 (-13 (-598 (-528)) (-1073))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1065 (-374))) (-5 *2 (-1233)) (-5 *1 (-254 *3)) - (-4 *3 (-13 (-598 (-528)) (-1073))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-853 *6)) (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) - (-4 *6 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1233)) - (-5 *1 (-254 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-853 *5)) (-5 *4 (-1065 (-374))) - (-4 *5 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1233)) - (-5 *1 (-254 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-855 *6)) (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) - (-4 *6 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1234)) - (-5 *1 (-254 *6)))) + (-12 (-5 *3 (-627 (-763 *5 (-844 *6)))) (-5 *4 (-111)) (-4 *5 (-445)) + (-14 *6 (-627 (-1152))) (-5 *2 (-627 (-1025 *5 *6))) + (-5 *1 (-1025 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-855 *5)) (-5 *4 (-1065 (-374))) - (-4 *5 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1234)) - (-5 *1 (-254 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) (-5 *2 (-1234)) - (-5 *1 (-254 *3)) (-4 *3 (-13 (-598 (-528)) (-1073))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1065 (-374))) (-5 *2 (-1234)) (-5 *1 (-254 *3)) - (-4 *3 (-13 (-598 (-528)) (-1073))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-858 *6)) (-5 *4 (-1065 (-374))) (-5 *5 (-625 (-258))) - (-4 *6 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1234)) - (-5 *1 (-254 *6)))) + (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) + (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) (-5 *2 (-627 *1)) + (-4 *1 (-1048 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) + (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-5 *2 (-627 (-1122 *5 *6 *7 *8))) (-5 *1 (-1122 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-858 *5)) (-5 *4 (-1065 (-374))) - (-4 *5 (-13 (-598 (-528)) (-1073))) (-5 *2 (-1234)) - (-5 *1 (-254 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-625 (-221))) (-5 *2 (-1233)) (-5 *1 (-255)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-625 (-221))) (-5 *4 (-625 (-258))) (-5 *2 (-1233)) - (-5 *1 (-255)))) + (-12 (-5 *3 (-627 *8)) (-5 *4 (-111)) (-4 *8 (-1042 *5 *6 *7)) + (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-5 *2 (-627 (-1122 *5 *6 *7 *8))) (-5 *1 (-1122 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-625 (-919 (-221)))) (-5 *2 (-1233)) (-5 *1 (-255)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-919 (-221)))) (-5 *4 (-625 (-258))) - (-5 *2 (-1233)) (-5 *1 (-255)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-625 (-221))) (-5 *2 (-1234)) (-5 *1 (-255)))) - ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-625 (-221))) (-5 *4 (-625 (-258))) (-5 *2 (-1234)) - (-5 *1 (-255))))) -(((*1 *2 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1186)))) - ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1069)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1179 *3 *4 *5 *2)) (-4 *3 (-544)) - (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1186)))) - ((*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1186))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-402 (-1145 (-311 *3)))) (-4 *3 (-13 (-544) (-827))) - (-5 *1 (-1103 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) - ((*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-880 (-552))) (-5 *1 (-893))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-737))))) + (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 *1)) + (-4 *1 (-1182 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-1145 (-928 *4))) (-5 *1 (-411 *3 *4)) - (-4 *3 (-412 *4)))) - ((*1 *2) - (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-4 *3 (-358)) - (-5 *2 (-1145 (-928 *3))))) + (-12 (-4 *4 (-169)) (-5 *2 (-627 (-1235 *4))) (-5 *1 (-360 *3 *4)) + (-4 *3 (-361 *4)))) ((*1 *2) - (-12 (-5 *2 (-1145 (-402 (-928 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) - (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1129 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-1025)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) + (-12 (-4 *1 (-361 *3)) (-4 *3 (-169)) (-4 *3 (-544)) + (-5 *2 (-627 (-1235 *3)))))) +(((*1 *1) (-5 *1 (-431)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) + (-5 *2 + (-2 (|:| -4288 *4) (|:| -3722 *4) (|:| |totalpts| (-552)) + (|:| |success| (-111)))) + (-5 *1 (-772)) (-5 *5 (-552))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-544) (-830) (-1017 (-552)))) (-4 *5 (-424 *4)) + (-5 *2 (-412 *3)) (-5 *1 (-429 *4 *5 *3)) (-4 *3 (-1211 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-343)) (-5 *2 (-937 (-1148 *4))) (-5 *1 (-351 *4)) + (-5 *3 (-1148 *4))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1028)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1186)) (-4 *2 (-1025))))) -(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-839))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1145 *1)) (-4 *1 (-988))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1149)) - (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-552)) (-621 (-552)))) - (-5 *1 (-604 *4 *2)) (-4 *2 (-13 (-1171) (-935) (-29 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-325))))) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1073)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-663 *4 *5)) (-4 *4 (-1073)))) - ((*1 *2 *2) - (-12 (-4 *3 (-827)) (-5 *1 (-905 *3 *2)) (-4 *2 (-425 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1149)) (-5 *2 (-311 (-552))) (-5 *1 (-906)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1025)) (-5 *1 (-1255 *2 *3)) (-4 *3 (-823))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-625 *1)) (-4 *1 (-297)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-297)) (-5 *2 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-596 *3)) (-4 *3 (-827)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-114)) (-5 *3 (-625 *5)) (-5 *4 (-751)) (-4 *5 (-827)) - (-5 *1 (-596 *5))))) + (-12 (-5 *3 (-310 (-220))) (-5 *2 (-310 (-401 (-552)))) + (-5 *1 (-299))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-627 *2)) (-4 *2 (-1076)) (-4 *2 (-1189))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-289 (-402 (-928 *5)))) (-5 *4 (-1149)) - (-4 *5 (-13 (-302) (-827) (-145))) - (-5 *2 (-1138 (-625 (-311 *5)) (-625 (-289 (-311 *5))))) - (-5 *1 (-1102 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149)) - (-4 *5 (-13 (-302) (-827) (-145))) - (-5 *2 (-1138 (-625 (-311 *5)) (-625 (-289 (-311 *5))))) - (-5 *1 (-1102 *5))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-552))) (-5 *3 (-552)) - (-5 *2 (-1011)) (-5 *1 (-737))))) -(((*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1145 (-402 (-928 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) - (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1129 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-839))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-145) (-27) (-1014 (-552)) (-1014 (-402 (-552))))) - (-4 *5 (-1208 *4)) (-5 *2 (-1145 (-402 *5))) (-5 *1 (-599 *4 *5)) - (-5 *3 (-402 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-413 *6) *6)) (-4 *6 (-1208 *5)) - (-4 *5 (-13 (-145) (-27) (-1014 (-552)) (-1014 (-402 (-552))))) - (-5 *2 (-1145 (-402 *6))) (-5 *1 (-599 *5 *6)) (-5 *3 (-402 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1077)) (-5 *1 (-325))))) -(((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1186)) - (-4 *2 (-1073)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *3)) - (-4 *3 (-1186)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-654 *3)) (-4 *3 (-1186)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-552)) (-4 *4 (-1073)) - (-5 *1 (-718 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-5 *1 (-718 *2)) (-4 *2 (-1073)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1073) (-34))) - (-4 *4 (-13 (-1073) (-34))) (-5 *1 (-1114 *3 *4))))) + (-12 (-5 *3 (-412 *5)) (-4 *5 (-544)) + (-5 *2 + (-2 (|:| -4067 (-754)) (|:| -3069 *5) (|:| |radicand| (-627 *5)))) + (-5 *1 (-314 *5)) (-5 *4 (-754)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-981)) (-5 *2 (-552))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-709)) (-4 *2 (-1189))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1240)) (-5 *1 (-1237))))) +(((*1 *1) (-5 *1 (-138))) ((*1 *1 *1) (-5 *1 (-141))) + ((*1 *1 *1) (-4 *1 (-1120)))) +(((*1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-236))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-111)) (-4 *6 (-445)) (-4 *7 (-776)) (-4 *8 (-830)) + (-4 *3 (-1042 *6 *7 *8)) + (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) + (-5 *1 (-1084 *6 *7 *8 *3 *4)) (-4 *4 (-1048 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-627 (-2 (|:| |val| (-627 *8)) (|:| -3443 *9)))) + (-5 *5 (-111)) (-4 *8 (-1042 *6 *7 *4)) (-4 *9 (-1048 *6 *7 *4 *8)) + (-4 *6 (-445)) (-4 *7 (-776)) (-4 *4 (-830)) + (-5 *2 (-627 (-2 (|:| |val| *8) (|:| -3443 *9)))) + (-5 *1 (-1084 *6 *7 *4 *8 *9))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-830) (-445))) (-5 *1 (-1180 *3 *2)) + (-4 *2 (-13 (-424 *3) (-1174)))))) +(((*1 *1) (-5 *1 (-141))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-257))) (-5 *2 (-1109 (-220))) (-5 *1 (-255)))) + ((*1 *1 *2) (-12 (-5 *2 (-1109 (-220))) (-5 *1 (-257))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 (-552))) (-5 *2 (-883 (-552))) (-5 *1 (-896)))) + ((*1 *2) (-12 (-5 *2 (-883 (-552))) (-5 *1 (-896))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-754)) (-5 *4 (-900)) (-5 *2 (-1240)) (-5 *1 (-1236)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-754)) (-5 *4 (-900)) (-5 *2 (-1240)) (-5 *1 (-1237))))) +(((*1 *1 *2) + (-12 (-5 *2 (-627 *3)) (-4 *3 (-1076)) (-4 *1 (-1074 *3)))) + ((*1 *1) (-12 (-4 *1 (-1074 *2)) (-4 *2 (-1076))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-627 *2)) (-4 *2 (-1076)) (-4 *2 (-1189))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-544)) (-5 *1 (-948 *3 *2)) (-4 *2 (-1211 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830)) (-4 *2 (-544)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1211 *2)) (-4 *2 (-1028)) (-4 *2 (-544))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1014)) (-5 *3 (-1152)) (-5 *1 (-187))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-306)) (-5 *1 (-812))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-552)) (-5 *4 (-671 (-220))) (-5 *2 (-1014)) + (-5 *1 (-738))))) +(((*1 *1) (-5 *1 (-111))) ((*1 *1) (-5 *1 (-602)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149)) - (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-311 *5))) - (-5 *1 (-1102 *5)))) + (-12 (-5 *4 (-1152)) + (-4 *5 (-13 (-445) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-5 *2 (-573 *3)) (-5 *1 (-545 *5 *3)) + (-4 *3 (-13 (-27) (-1174) (-424 *5)))))) +(((*1 *2 *3 *3 *1) + (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-1080)) (-5 *1 (-285))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1236)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-1237))))) +(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1170))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-402 (-928 *5)))) (-5 *4 (-625 (-1149))) - (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-625 (-311 *5)))) - (-5 *1 (-1102 *5))))) + (-12 (-5 *4 (-627 *3)) (-4 *3 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) + (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7)) + (-5 *2 (-111)) (-5 *1 (-967 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-445)) (-4 *5 (-776)) (-4 *6 (-830)) + (-4 *7 (-1042 *4 *5 *6)) (-5 *2 (-111)) + (-5 *1 (-1083 *4 *5 *6 *7 *3)) (-4 *3 (-1048 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-627 *3)) (-4 *3 (-1048 *5 *6 *7 *8)) (-4 *5 (-445)) + (-4 *6 (-776)) (-4 *7 (-830)) (-4 *8 (-1042 *5 *6 *7)) + (-5 *2 (-111)) (-5 *1 (-1083 *5 *6 *7 *8 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-421 *3 *2)) (-4 *3 (-13 (-169) (-38 (-401 (-552))))) + (-4 *2 (-13 (-830) (-21)))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-627 *9)) (-5 *3 (-1 (-111) *9)) + (-5 *4 (-1 (-111) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1042 *6 *7 *8)) (-4 *6 (-544)) (-4 *7 (-776)) + (-4 *8 (-830)) (-5 *1 (-956 *6 *7 *8 *9))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1079 *2 *3 *4 *5 *6)) (-4 *2 (-1076)) (-4 *3 (-1076)) + (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076))))) (((*1 *2 *3) - (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) - ((*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-669 (-221))) (-5 *4 (-552)) (-5 *2 (-1011)) - (-5 *1 (-737))))) -(((*1 *2 *1) - (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) - (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302))))) -(((*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-839))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-596 *4)) (-4 *4 (-827)) (-4 *2 (-827)) - (-5 *1 (-595 *2 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-839) (-839))) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-839) (-625 (-839)))) (-5 *1 (-114)))) + (-12 (-5 *2 (-1154 (-401 (-552)))) (-5 *1 (-185)) (-5 *3 (-552)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-839) (-625 (-839)))) (-5 *1 (-114)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1237)) (-5 *1 (-210 *3)) - (-4 *3 - (-13 (-827) - (-10 -8 (-15 -2154 ((-1131) $ (-1149))) (-15 -1407 (*2 $)) - (-15 -3867 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-389)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-389)))) - ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-495)))) - ((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-691)))) - ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1166)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-552)) (-5 *2 (-1237)) (-5 *1 (-1166))))) -(((*1 *2 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149)) - (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-289 (-311 *5)))) - (-5 *1 (-1102 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-402 (-928 *4))) (-4 *4 (-13 (-302) (-827) (-145))) - (-5 *2 (-625 (-289 (-311 *4)))) (-5 *1 (-1102 *4)))) + (-12 (-5 *2 (-1235 (-3 (-461) "undefined"))) (-5 *1 (-1236))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-627 (-474 *5 *6))) (-5 *4 (-844 *5)) + (-14 *5 (-627 (-1152))) (-5 *2 (-474 *5 *6)) (-5 *1 (-615 *5 *6)) + (-4 *6 (-445)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-289 (-402 (-928 *5)))) (-5 *4 (-1149)) - (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-289 (-311 *5)))) - (-5 *1 (-1102 *5)))) + (-12 (-5 *3 (-627 (-474 *5 *6))) (-5 *4 (-844 *5)) + (-14 *5 (-627 (-1152))) (-5 *2 (-474 *5 *6)) (-5 *1 (-615 *5 *6)) + (-4 *6 (-445))))) +(((*1 *2 *3) + (-12 (-5 *3 (-627 *7)) (-4 *7 (-1042 *4 *5 *6)) (-4 *4 (-544)) + (-4 *5 (-776)) (-4 *6 (-830)) (-5 *2 (-627 (-1248 *4 *5 *6 *7))) + (-5 *1 (-1248 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-627 *9)) (-5 *4 (-1 (-111) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1042 *6 *7 *8)) (-4 *6 (-544)) + (-4 *7 (-776)) (-4 *8 (-830)) (-5 *2 (-627 (-1248 *6 *7 *8 *9))) + (-5 *1 (-1248 *6 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1148 (-552))) (-5 *1 (-921)) (-5 *3 (-552)))) + ((*1 *2 *2) + (-12 (-4 *3 (-301)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-1100 *3 *4 *5 *2)) (-4 *2 (-669 *3 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-445)))) + ((*1 *1 *1 *1) (-4 *1 (-445))) ((*1 *2 *3) - (-12 (-5 *3 (-289 (-402 (-928 *4)))) - (-4 *4 (-13 (-302) (-827) (-145))) (-5 *2 (-625 (-289 (-311 *4)))) - (-5 *1 (-1102 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-402 (-928 *5)))) (-5 *4 (-625 (-1149))) - (-4 *5 (-13 (-302) (-827) (-145))) - (-5 *2 (-625 (-625 (-289 (-311 *5))))) (-5 *1 (-1102 *5)))) + (-12 (-5 *3 (-627 *2)) (-5 *1 (-479 *2)) (-4 *2 (-1211 (-552))))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-552)) (-5 *1 (-678 *2)) (-4 *2 (-1211 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-754))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-776)) (-4 *4 (-830)) (-4 *5 (-301)) + (-5 *1 (-895 *3 *4 *5 *2)) (-4 *2 (-928 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-625 (-402 (-928 *4)))) - (-4 *4 (-13 (-302) (-827) (-145))) - (-5 *2 (-625 (-625 (-289 (-311 *4))))) (-5 *1 (-1102 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-289 (-402 (-928 *5))))) (-5 *4 (-625 (-1149))) - (-4 *5 (-13 (-302) (-827) (-145))) - (-5 *2 (-625 (-625 (-289 (-311 *5))))) (-5 *1 (-1102 *5)))) + (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *6 *4 *5)) + (-5 *1 (-895 *4 *5 *6 *2)) (-4 *4 (-776)) (-4 *5 (-830)) + (-4 *6 (-301)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1148 *6)) (-4 *6 (-928 *5 *3 *4)) (-4 *3 (-776)) + (-4 *4 (-830)) (-4 *5 (-301)) (-5 *1 (-895 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-625 (-289 (-402 (-928 *4))))) - (-4 *4 (-13 (-302) (-827) (-145))) - (-5 *2 (-625 (-625 (-289 (-311 *4))))) (-5 *1 (-1102 *4))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-737))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) - ((*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893))))) -(((*1 *2 *1) - (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) - (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) - (-5 *1 (-892 *3 *4 *5 *2)) (-4 *2 (-925 *5 *3 *4)))) + (-12 (-5 *3 (-627 (-1148 *7))) (-4 *4 (-776)) (-4 *5 (-830)) + (-4 *6 (-301)) (-5 *2 (-1148 *7)) (-5 *1 (-895 *4 *5 *6 *7)) + (-4 *7 (-928 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-900))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1145 *6)) (-4 *6 (-925 *5 *3 *4)) (-4 *3 (-773)) - (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 *2)) (-4 *2 (-925 *6 *4 *5)) - (-5 *1 (-892 *4 *5 *6 *2)) (-4 *4 (-773)) (-4 *5 (-827)) - (-4 *6 (-302))))) -(((*1 *2 *1) (-12 (-4 *3 (-1186)) (-5 *2 (-625 *1)) (-4 *1 (-986 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-596 *4)) (-5 *1 (-595 *3 *4)) (-4 *3 (-827)) - (-4 *4 (-827))))) -(((*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358))))) -(((*1 *2) (-12 (-5 *2 (-813 (-552))) (-5 *1 (-526)))) - ((*1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1073))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-552))))))) - (-5 *1 (-1101 *3 *2)) (-4 *3 (-1208 *2))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-552)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) - (-5 *1 (-737))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) - ((*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893))))) + (-12 (-4 *3 (-445)) (-4 *3 (-544)) (-5 *1 (-948 *3 *2)) + (-4 *2 (-1211 *3)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1042 *2 *3 *4)) (-4 *2 (-1028)) (-4 *3 (-776)) + (-4 *4 (-830)) (-4 *2 (-445))))) +(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-96)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-373)) (-5 *1 (-96))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-1145 (-928 *4))) (-5 *1 (-411 *3 *4)) - (-4 *3 (-412 *4)))) - ((*1 *2) - (-12 (-4 *1 (-412 *3)) (-4 *3 (-170)) (-4 *3 (-358)) - (-5 *2 (-1145 (-928 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1145 (-402 (-928 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) - (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-413 *2)) (-4 *2 (-302)) (-5 *1 (-890 *2)))) + (-12 (-4 *3 (-544)) (-5 *2 (-627 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-411 *3))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-627 (-627 (-220)))) (-5 *4 (-220)) + (-5 *2 (-627 (-922 *4))) (-5 *1 (-1185)) (-5 *3 (-922 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1152)) + (-4 *4 (-13 (-544) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-271 *4 *2)) (-4 *2 (-13 (-27) (-1174) (-424 *4))))) + ((*1 *1 *1) (-5 *1 (-373))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-402 (-928 *5))) (-5 *4 (-1149)) - (-4 *5 (-13 (-302) (-145))) (-5 *2 (-52)) (-5 *1 (-891 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-413 (-928 *6))) (-5 *5 (-1149)) (-5 *3 (-928 *6)) - (-4 *6 (-13 (-302) (-145))) (-5 *2 (-52)) (-5 *1 (-891 *6))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-5 *2 (-552))))) -(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1171)))) - ((*1 *2 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 *3)) (-5 *1 (-596 *3)) (-4 *3 (-827))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) - ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1233)))) - ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1145 *3)) (-4 *3 (-363)) (-4 *1 (-324 *3)) - (-4 *3 (-358))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-425 *3) (-978))) (-5 *1 (-271 *3 *2)) - (-4 *3 (-13 (-827) (-544))))) - ((*1 *1) - (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-625 (-1149))) - (-14 *3 (-625 (-1149))) (-4 *4 (-382)))) - ((*1 *1) (-5 *1 (-471))) ((*1 *1) (-4 *1 (-1171)))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) - ((*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1145 (-402 (-928 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) - (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169))))) -(((*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-4 *3 (-1073)) - (-5 *2 (-112))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-596 *3)) (-4 *3 (-827))))) -(((*1 *2 *1) - (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) - (-5 *2 (-1145 *3))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-625 (-751))) (-5 *3 (-169)) (-5 *1 (-1137 *4 *5)) - (-14 *4 (-897)) (-4 *5 (-1025))))) -(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-783))))) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) + (-5 *2 (-627 (-2 (|:| |val| *3) (|:| -3443 *4)))) + (-5 *1 (-759 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) - ((*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893))))) -(((*1 *2 *1) - (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) - (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3)))))) -(((*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-5 *2 (-413 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-986 *3)) (-4 *3 (-1186)) (-4 *3 (-1073)) - (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-594 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1073)) - (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) - (-5 *2 (-1145 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) - (-5 *2 (-1145 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1098 (-552) (-596 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-968 *2)) (-4 *4 (-1208 *3)) (-4 *2 (-302)) - (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-404 *3 *4) (-1014 *3))))) - ((*1 *2 *1) - (-12 (-4 *3 (-544)) (-4 *3 (-827)) (-5 *2 (-1098 *3 (-596 *1))) - (-4 *1 (-425 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1098 (-552) (-596 (-488)))) (-5 *1 (-488)))) - ((*1 *2 *1) - (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-707) *4)) - (-5 *1 (-603 *3 *4 *2)) (-4 *3 (-38 *4)))) - ((*1 *2 *1) - (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-707) *4)) - (-5 *1 (-642 *3 *4 *2)) (-4 *3 (-698 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) + (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220)))) + (-5 *2 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-187))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1019)) (-5 *3 (-373))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-671 (-401 (-931 (-552))))) + (-5 *2 (-627 (-671 (-310 (-552))))) (-5 *1 (-1010)) + (-5 *3 (-310 (-552)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1152)) + (-4 *4 (-13 (-301) (-830) (-144) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-606 *4 *2)) (-4 *2 (-13 (-1174) (-938) (-29 *4)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1079 *2 *3 *4 *5 *6)) (-4 *2 (-1076)) (-4 *3 (-1076)) + (-4 *4 (-1076)) (-4 *5 (-1076)) (-4 *6 (-1076))))) +(((*1 *1 *1) (-4 *1 (-537)))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-388)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-627 (-1134))) (-5 *1 (-1169))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1129 *4) (-1129 *4))) (-5 *2 (-1129 *4)) - (-5 *1 (-1257 *4)) (-4 *4 (-1186)))) + (-12 (-4 *4 (-1211 (-401 *2))) (-5 *2 (-552)) (-5 *1 (-892 *4 *3)) + (-4 *3 (-1211 (-401 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-154)) (-5 *1 (-853))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *4 (-853)) + (-5 *5 (-900)) (-5 *6 (-627 (-257))) (-5 *2 (-461)) (-5 *1 (-1239)))) + ((*1 *2 *3) + (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *2 (-461)) + (-5 *1 (-1239)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-625 (-1129 *5)) (-625 (-1129 *5)))) (-5 *4 (-552)) - (-5 *2 (-625 (-1129 *5))) (-5 *1 (-1257 *5)) (-4 *5 (-1186))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-625 (-751))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) - (-4 *4 (-1025))))) -(((*1 *1) (-5 *1 (-783)))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) - ((*1 *2) (-12 (-5 *2 (-880 (-552))) (-5 *1 (-893))))) -(((*1 *2 *1) - (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) - (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1034)) (-4 *3 (-1171)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) + (-12 (-5 *3 (-627 (-627 (-922 (-220))))) (-5 *4 (-627 (-257))) + (-5 *2 (-461)) (-5 *1 (-1239))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1232 *4)) (-4 *4 (-621 (-552))) - (-5 *2 (-1232 (-402 (-552)))) (-5 *1 (-1259 *4))))) -(((*1 *2 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-625 *1)) (|has| *1 (-6 -4354)) (-4 *1 (-986 *3)) - (-4 *3 (-1186))))) + (-12 (-4 *5 (-445)) (-4 *6 (-776)) (-4 *7 (-830)) + (-4 *3 (-1042 *5 *6 *7)) (-5 *2 (-627 *4)) + (-5 *1 (-1084 *5 *6 *7 *3 *4)) (-4 *4 (-1048 *5 *6 *7 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1189))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-598 *3)) (-4 *3 (-13 (-424 *5) (-27) (-1174))) + (-4 *5 (-13 (-445) (-1017 (-552)) (-830) (-144) (-623 (-552)))) + (-5 *2 (-573 *3)) (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1076))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-5 *2 (-2 (|:| -3998 *3) (|:| -2162 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1148 *1)) (-5 *4 (-1152)) (-4 *1 (-27)) + (-5 *2 (-627 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-27)) (-5 *2 (-627 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-931 *1)) (-4 *1 (-27)) (-5 *2 (-627 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-830) (-544))) (-5 *2 (-627 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-830) (-544))) (-5 *2 (-627 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -1323 (-765 *3)) (|:| |coef1| (-765 *3)) + (|:| |coef2| (-765 *3)))) + (-5 *1 (-765 *3)) (-4 *3 (-544)) (-4 *3 (-1028)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-544)) (-4 *3 (-1028)) (-4 *4 (-776)) (-4 *5 (-830)) + (-5 *2 (-2 (|:| -1323 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1042 *3 *4 *5))))) +(((*1 *1 *1) (-5 *1 (-1040)))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1152)) (-5 *3 (-111)) (-5 *1 (-871 *4)) + (-4 *4 (-1076))))) +(((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-521)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-565)))) + ((*1 *2 *1) (-12 (-5 *2 (-111)) (-5 *1 (-841))))) +(((*1 *1 *2) (-12 (-4 *1 (-648 *2)) (-4 *2 (-1189)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 (-1152))) (-5 *1 (-1152))))) +(((*1 *2 *1) (-12 (-4 *1 (-656 *3)) (-4 *3 (-1189)) (-5 *2 (-111))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-552)) (-5 *1 (-412 *2)) (-4 *2 (-544))))) (((*1 *2 *1) (-12 (-5 *2 - (-625 - (-2 - (|:| -2971 - (-2 (|:| |var| (-1149)) (|:| |fn| (-311 (-221))) - (|:| -3315 (-1067 (-820 (-221)))) (|:| |abserr| (-221)) - (|:| |relerr| (-221)))) - (|:| -4120 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1129 (-221))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -3315 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-627 + (-2 (|:| |var| (-1152)) (|:| |fn| (-310 (-220))) + (|:| -1707 (-1070 (-823 (-220)))) (|:| |abserr| (-220)) + (|:| |relerr| (-220))))) (-5 *1 (-547)))) ((*1 *2 *1) - (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1073)) (-4 *4 (-1186)) - (-5 *2 (-625 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) - (-4 *4 (-772))))) -(((*1 *2 *1) (-12 (-5 *2 (-1098 (-552) (-596 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-302)) (-4 *4 (-968 *3)) (-4 *5 (-1208 *4)) - (-5 *2 (-1232 *6)) (-5 *1 (-408 *3 *4 *5 *6)) - (-4 *6 (-13 (-404 *4 *5) (-1014 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-1025)) (-4 *3 (-827)) (-5 *2 (-1098 *3 (-596 *1))) - (-4 *1 (-425 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1098 (-552) (-596 (-488)))) (-5 *1 (-488)))) - ((*1 *2 *1) - (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-603 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-707) *3)))) + (-12 (-4 *1 (-596 *3 *4)) (-4 *3 (-1076)) (-4 *4 (-1076)) + (-5 *2 (-627 *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-170)) (-4 *2 (-698 *3)) (-5 *1 (-642 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-707) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-544))))) -(((*1 *2 *1) - (-12 (-5 *2 (-919 *4)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) - (-4 *4 (-1025))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1149)) - (-4 *6 (-13 (-827) (-302) (-1014 (-552)) (-621 (-552)) (-145))) - (-4 *4 (-13 (-29 *6) (-1171) (-935))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -1270 (-625 *4)))) - (-5 *1 (-781 *6 *4 *3)) (-4 *3 (-636 *4))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-1199 (-552)))))) -(((*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) - (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3)))))) -(((*1 *1 *1 *1) (-5 *1 (-160))) - ((*1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-160))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1232 *4)) (-4 *4 (-621 (-552))) - (-5 *2 (-1232 (-552))) (-5 *1 (-1259 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-552)) (-5 *1 (-890 *3)) (-4 *3 (-302))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772))))) -(((*1 *2 *1) - (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) - (-4 *4 (-1025))))) -(((*1 *2 *3) - (-12 (-4 *1 (-780)) - (-5 *3 - (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) - (|:| |fn| (-1232 (-311 (-221)))) (|:| |yinit| (-625 (-221))) - (|:| |intvals| (-625 (-221))) (|:| |g| (-311 (-221))) - (|:| |abserr| (-221)) (|:| |relerr| (-221)))) - (-5 *2 (-1011))))) -(((*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893))))) -(((*1 *2) - (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) - (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2)) - (-4 *2 (-425 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-156 *4 *2)) - (-4 *2 (-425 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1149)))) - ((*1 *1 *1) (-4 *1 (-158)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1232 *4)) (-4 *4 (-621 (-552))) (-5 *2 (-112)) - (-5 *1 (-1259 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-552)) (-5 *1 (-890 *3)) (-4 *3 (-302))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-1131)) (-5 *1 (-1233)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1233)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1233)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-1131)) (-5 *1 (-1234)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1234)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1234))))) -(((*1 *1 *1) (-5 *1 (-1037)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1073)) (-4 *3 (-876 *5)) (-5 *2 (-669 *3)) - (-5 *1 (-672 *5 *3 *6 *4)) (-4 *6 (-368 *3)) - (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4353))))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-751)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) - (-4 *4 (-772)) (-4 *3 (-170))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) - (-4 *4 (-1025))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-777 *2)) (-4 *2 (-170)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-975 *3)) (-4 *3 (-170)) (-5 *1 (-779 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-897))) (-5 *2 (-880 (-552))) (-5 *1 (-893))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) - (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-544))) (-5 *1 (-156 *4 *2)) - (-4 *2 (-425 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1065 *2)) (-4 *2 (-425 *4)) (-4 *4 (-13 (-827) (-544))) - (-5 *1 (-156 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-158)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1149))))) -(((*1 *2 *3) (-12 (-5 *2 (-413 *3)) (-5 *1 (-546 *3)) (-4 *3 (-537)))) - ((*1 *2 *3) - (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-413 *3)) - (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-925 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) - (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-413 (-1145 *7))) - (-5 *1 (-723 *4 *5 *6 *7)) (-5 *3 (-1145 *7)))) - ((*1 *2 *1) - (-12 (-4 *3 (-446)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) - (-5 *2 (-413 *1)) (-4 *1 (-925 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-446)) (-5 *2 (-413 *3)) - (-5 *1 (-955 *4 *5 *6 *3)) (-4 *3 (-925 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-446)) - (-4 *7 (-925 *6 *4 *5)) (-5 *2 (-413 (-1145 (-402 *7)))) - (-5 *1 (-1144 *4 *5 *6 *7)) (-5 *3 (-1145 (-402 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-413 *1)) (-4 *1 (-1190)))) - ((*1 *2 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-413 *3)) (-5 *1 (-1211 *4 *3)) - (-4 *3 (-13 (-1208 *4) (-544) (-10 -8 (-15 -2633 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-998))) - (-14 *5 (-625 (-1149))) + (-12 (-5 *2 - (-625 (-1119 *4 (-524 (-841 *6)) (-841 *6) (-760 *4 (-841 *6))))) - (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-625 (-1149)))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1145 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302))))) -(((*1 *1 *1) (-5 *1 (-1037)))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1073)) (-4 *2 (-876 *4)) (-5 *1 (-672 *4 *2 *5 *3)) - (-4 *5 (-368 *2)) (-4 *3 (-13 (-368 *4) (-10 -7 (-6 -4353))))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-552)) (-4 *1 (-318 *4 *2)) (-4 *4 (-1073)) - (-4 *2 (-130))))) -(((*1 *2 *1) - (-12 (-5 *2 (-169)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) - (-4 *4 (-1025))))) -(((*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170))))) -(((*1 *2 *3) (-12 (-5 *3 (-897)) (-5 *2 (-880 (-552))) (-5 *1 (-893)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-552))) (-5 *2 (-880 (-552))) (-5 *1 (-893))))) -(((*1 *2) - (-12 (-5 *2 (-402 (-928 *3))) (-5 *1 (-447 *3 *4 *5 *6)) - (-4 *3 (-544)) (-4 *3 (-170)) (-14 *4 (-897)) - (-14 *5 (-625 (-1149))) (-14 *6 (-1232 (-669 *3)))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-998))) - (-14 *5 (-625 (-1149))) (-5 *2 (-625 (-625 (-1000 (-402 *4))))) - (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-625 (-1149))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-825) (-302) (-145) (-998))) - (-5 *2 (-625 (-625 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) - (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-825) (-302) (-145) (-998))) - (-5 *2 (-625 (-625 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) - (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-928 *4))) - (-4 *4 (-13 (-825) (-302) (-145) (-998))) - (-5 *2 (-625 (-625 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6)) - (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149)))))) -(((*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302))))) -(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1233)))) - ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1234))))) -(((*1 *1 *1) (-5 *1 (-1037)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1073)) (-4 *2 (-876 *5)) (-5 *1 (-672 *5 *2 *3 *4)) - (-4 *3 (-368 *2)) (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4353))))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1073)) - (-4 *4 (-130))))) + (-627 + (-2 (|:| |xinit| (-220)) (|:| |xend| (-220)) + (|:| |fn| (-1235 (-310 (-220)))) (|:| |yinit| (-627 (-220))) + (|:| |intvals| (-627 (-220))) (|:| |g| (-310 (-220))) + (|:| |abserr| (-220)) (|:| |relerr| (-220))))) + (-5 *1 (-786))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-627 (-274))) (-5 *1 (-274)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 (-1157))) (-5 *1 (-1157))))) +(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-1189)))) + ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1072)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1182 *3 *4 *5 *2)) (-4 *3 (-544)) + (-4 *4 (-776)) (-4 *5 (-830)) (-4 *2 (-1042 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-754)) (-4 *1 (-1223 *3)) (-4 *3 (-1189)))) + ((*1 *2 *1) (-12 (-4 *1 (-1223 *2)) (-4 *2 (-1189))))) +(((*1 *1 *1 *1) (-5 *1 (-842)))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1134)) (-5 *4 (-166 (-220))) (-5 *5 (-552)) + (-5 *2 (-1014)) (-5 *1 (-741))))) +(((*1 *1 *2) (|partial| -12 (-5 *2 (-483)) (-5 *1 (-567))))) (((*1 *1 *1) - (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-897)) (-4 *3 (-1025))))) -(((*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-625 (-928 (-552)))) (-5 *4 (-625 (-1149))) - (-5 *2 (-625 (-625 (-374)))) (-5 *1 (-999)) (-5 *5 (-374)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-998))) - (-14 *5 (-625 (-1149))) (-5 *2 (-625 (-625 (-1000 (-402 *4))))) - (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-625 (-1149))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-825) (-302) (-145) (-998))) - (-5 *2 (-625 (-625 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) - (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-825) (-302) (-145) (-998))) - (-5 *2 (-625 (-625 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) - (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-825) (-302) (-145) (-998))) - (-5 *2 (-625 (-625 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) - (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-928 *4))) - (-4 *4 (-13 (-825) (-302) (-145) (-998))) - (-5 *2 (-625 (-625 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6)) - (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1208 (-402 (-552)))) (-5 *1 (-889 *3 *2)) - (-4 *2 (-1208 (-402 *3)))))) -(((*1 *1 *1) (-5 *1 (-1037)))) + (-12 (-5 *1 (-582 *2)) (-4 *2 (-38 (-401 (-552)))) (-4 *2 (-1028))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1073)) (-4 *3 (-876 *5)) (-5 *2 (-1232 *3)) - (-5 *1 (-672 *5 *3 *6 *4)) (-4 *6 (-368 *3)) - (-4 *4 (-13 (-368 *5) (-10 -7 (-6 -4353))))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-130)) - (-4 *3 (-772))))) -(((*1 *2 *1) - (-12 (-5 *2 (-625 (-919 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-897)) - (-4 *4 (-1025))))) -(((*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) - (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) - (-4 *3 (-943))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-522))))) -(((*1 *1 *1 *1) (-4 *1 (-141))) + (-12 (-5 *3 (-627 *6)) (-5 *4 (-627 (-1152))) (-4 *6 (-357)) + (-5 *2 (-627 (-288 (-931 *6)))) (-5 *1 (-530 *5 *6 *7)) + (-4 *5 (-445)) (-4 *7 (-13 (-357) (-828)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-776)) (-4 *4 (-830)) (-4 *5 (-301)) + (-5 *1 (-895 *3 *4 *5 *2)) (-4 *2 (-928 *5 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2)) - (-4 *2 (-425 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-998))) - (-14 *5 (-625 (-1149))) - (-5 *2 - (-625 (-2 (|:| -3368 (-1145 *4)) (|:| -2780 (-625 (-928 *4)))))) - (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-625 (-1149))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) - (-5 *2 - (-625 (-2 (|:| -3368 (-1145 *5)) (|:| -2780 (-625 (-928 *5)))))) - (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-625 (-928 *5))) - (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) - (-5 *2 - (-625 (-2 (|:| -3368 (-1145 *5)) (|:| -2780 (-625 (-928 *5)))))) - (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-625 (-928 *5))) - (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-998))) - (-5 *2 - (-625 (-2 (|:| -3368 (-1145 *5)) (|:| -2780 (-625 (-928 *5)))))) - (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-625 (-928 *5))) - (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) + (-12 (-5 *2 (-1148 *6)) (-4 *6 (-928 *5 *3 *4)) (-4 *3 (-776)) + (-4 *4 (-830)) (-4 *5 (-301)) (-5 *1 (-895 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-825) (-302) (-145) (-998))) - (-5 *2 - (-625 (-2 (|:| -3368 (-1145 *4)) (|:| -2780 (-625 (-928 *4)))))) - (-5 *1 (-1258 *4 *5 *6)) (-5 *3 (-625 (-928 *4))) - (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-132)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-152)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-159)))) - ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-214)))) - ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-656)))) - ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-995)))) - ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1040)))) - ((*1 *2 *1) (-12 (-5 *2 (-625 (-1108))) (-5 *1 (-1069))))) -(((*1 *1 *1) (-5 *1 (-1037)))) -(((*1 *2 *3) - (-12 (-4 *4 (-1208 (-402 *2))) (-5 *2 (-552)) (-5 *1 (-889 *4 *3)) - (-4 *3 (-1208 (-402 *4)))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-669 *4)) (-5 *3 (-751)) (-4 *4 (-1025)) - (-5 *1 (-670 *4))))) + (-12 (-5 *3 (-627 *2)) (-4 *2 (-928 *6 *4 *5)) + (-5 *1 (-895 *4 *5 *6 *2)) (-4 *4 (-776)) (-4 *5 (-830)) + (-4 *6 (-301))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1132 (-2 (|:| |k| (-552)) (|:| |c| *6)))) + (-5 *4 (-1005 (-823 (-552)))) (-5 *5 (-1152)) (-5 *7 (-401 (-552))) + (-4 *6 (-1028)) (-5 *2 (-842)) (-5 *1 (-582 *6))))) +(((*1 *2 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-537))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-671 *2)) (-5 *4 (-754)) + (-4 *2 (-13 (-301) (-10 -8 (-15 -2487 ((-412 $) $))))) + (-4 *5 (-1211 *2)) (-5 *1 (-491 *2 *5 *6)) (-4 *6 (-403 *2 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-382)) (-5 *1 (-616))))) (((*1 *2 *3) - (-12 (-5 *3 (-552)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1025)) - (-5 *1 (-316 *4 *5 *2 *6)) (-4 *6 (-925 *2 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-897)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-358)) (-14 *5 (-969 *3 *4))))) -(((*1 *1 *1) - (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)) - (-4 *2 (-446)))) - ((*1 *1 *1) - (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1190)) (-4 *3 (-1208 *2)) - (-4 *4 (-1208 (-402 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-446)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-925 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) - (-4 *2 (-827)) (-4 *3 (-446)))) - ((*1 *1 *1) - (-12 (-4 *1 (-925 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) - (-4 *4 (-827)) (-4 *2 (-446)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-302)) (-4 *3 (-544)) (-5 *1 (-1136 *3 *2)) - (-4 *2 (-1208 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-777 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-897)) (-4 *4 (-363)) (-4 *4 (-358)) (-5 *2 (-1145 *1)) - (-4 *1 (-324 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1145 *3)))) + (-12 (-4 *4 (-1028)) (-5 *2 (-111)) (-5 *1 (-437 *4 *3)) + (-4 *3 (-1211 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *3 (-358)) - (-4 *2 (-1208 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1232 *4)) (-4 *4 (-344)) (-5 *2 (-1145 *4)) - (-5 *1 (-521 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-625 *2)) (-4 *2 (-537)) (-5 *1 (-157 *2))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-825) (-302) (-145) (-998))) - (-5 *2 (-625 (-1022 *5 *6))) (-5 *1 (-1258 *5 *6 *7)) - (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-625 (-928 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-825) (-302) (-145) (-998))) - (-5 *2 (-625 (-1022 *5 *6))) (-5 *1 (-1258 *5 *6 *7)) - (-14 *6 (-625 (-1149))) (-14 *7 (-625 (-1149))))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-928 *4))) - (-4 *4 (-13 (-825) (-302) (-145) (-998))) - (-5 *2 (-625 (-1022 *4 *5))) (-5 *1 (-1258 *4 *5 *6)) - (-14 *5 (-625 (-1149))) (-14 *6 (-625 (-1149)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-95)))) - ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-183)))) - ((*1 *2 *1) - (-12 (-4 *1 (-359 *2 *3)) (-4 *3 (-1073)) (-4 *2 (-1073)))) - ((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))) - ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-433 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-477)))) - ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-596 *3)) (-4 *3 (-827)))) - ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-941)))) - ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1048 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1088)))) - ((*1 *1 *1) (-5 *1 (-1149)))) -(((*1 *1 *1) (-5 *1 (-1037)))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552))))) - (-4 *4 (-1208 (-402 *2))) (-5 *2 (-552)) (-5 *1 (-889 *4 *5)) - (-4 *5 (-1208 (-402 *4)))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1145 *7)) (-5 *3 (-552)) (-4 *7 (-925 *6 *4 *5)) - (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) - (-5 *1 (-316 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-544)) (-5 *2 (-934 *3)) (-5 *1 (-1136 *4 *3)) - (-4 *3 (-1208 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-542 *2)) (-4 *2 (-13 (-399) (-1171))))) - ((*1 *1 *1 *1) (-4 *1 (-773)))) -(((*1 *2 *1) - (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) - (-4 *3 (-943))))) -(((*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) - ((*1 *2 *3) - (-12 (-5 *3 (-897)) (-5 *2 (-1232 *4)) (-5 *1 (-521 *4)) - (-4 *4 (-344))))) -(((*1 *1 *1) (-4 *1 (-141))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-827) (-544))) (-5 *1 (-156 *3 *2)) - (-4 *2 (-425 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1247 (-1149) *3)) (-4 *3 (-1025)) (-5 *1 (-1254 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1247 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) - (-5 *1 (-1256 *3 *4))))) + (-12 (-4 *1 (-1042 *3 *4 *5)) (-4 *3 (-1028)) (-4 *4 (-776)) + (-4 *5 (-830)) (-5 *2 (-111))))) (((*1 *2 *3) - (-12 (-4 *3 (-1208 (-402 (-552)))) - (-5 *2 (-2 (|:| |den| (-552)) (|:| |gcdnum| (-552)))) - (-5 *1 (-889 *3 *4)) (-4 *4 (-1208 (-402 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1208 (-402 *2))) (-5 *2 (-552)) (-5 *1 (-889 *4 *3)) - (-4 *3 (-1208 (-402 *4)))))) -(((*1 *1 *1) (-5 *1 (-1037)))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-237)))) - ((*1 *2 *3) - (-12 (-5 *3 (-625 (-1131))) (-5 *2 (-1237)) (-5 *1 (-237))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-552))) (-5 *1 (-1026))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-552)) (-4 *1 (-1195 *4)) (-4 *4 (-1028)) (-4 *4 (-544)) + (-5 *2 (-401 (-931 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-4 *1 (-1195 *4)) (-4 *4 (-1028)) (-4 *4 (-544)) + (-5 *2 (-401 (-931 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-151)))) + ((*1 *2 *1) (-12 (-5 *2 (-627 (-1111))) (-5 *1 (-1043))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-402 (-552)))) - (-5 *2 (-2 (|:| -3710 (-1129 *4)) (|:| -3721 (-1129 *4)))) - (-5 *1 (-1135 *4)) (-5 *3 (-1129 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-374) (-374))) (-5 *4 (-374)) - (-5 *2 - (-2 (|:| -3800 *4) (|:| -1939 *4) (|:| |totalpts| (-552)) - (|:| |success| (-112)))) - (-5 *1 (-769)) (-5 *5 (-552))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-940 *2 *3)) (-4 *2 (-1073)) (-4 *3 (-1073))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1232 *4)) (-4 *4 (-412 *3)) (-4 *3 (-302)) - (-4 *3 (-544)) (-5 *1 (-43 *3 *4)))) + (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) + (-4 *4 (-343)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-900)) (-5 *2 (-1148 *4)) (-5 *1 (-351 *4)) + (-4 *4 (-343)))) + ((*1 *1) (-4 *1 (-362))) ((*1 *2 *3) - (-12 (-5 *3 (-897)) (-4 *4 (-358)) (-5 *2 (-1232 *1)) - (-4 *1 (-324 *4)))) - ((*1 *2) (-12 (-4 *3 (-358)) (-5 *2 (-1232 *1)) (-4 *1 (-324 *3)))) - ((*1 *2) - (-12 (-4 *3 (-170)) (-4 *4 (-1208 *3)) (-5 *2 (-1232 *1)) - (-4 *1 (-404 *3 *4)))) + (-12 (-5 *3 (-900)) (-5 *2 (-1235 *4)) (-5 *1 (-520 *4)) + (-4 *4 (-343)))) + ((*1 *1 *1) (-4 *1 (-537))) ((*1 *1) (-4 *1 (-537))) + ((*1 *1 *1) (-5 *1 (-552))) ((*1 *1 *1) (-5 *1 (-754))) + ((*1 *2 *1) (-12 (-5 *2 (-884 *3)) (-5 *1 (-883 *3)) (-4 *3 (-1076)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-552)) (-5 *2 (-884 *4)) (-5 *1 (-883 *4)) + (-4 *4 (-1076)))) + ((*1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-537)) (-4 *2 (-544))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-517))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-842)))) + ((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1240)) (-5 *1 (-941))))) +(((*1 *1 *2) (-12 (-5 *2 (-627 *1)) (-4 *1 (-445)))) + ((*1 *1 *1 *1) (-4 *1 (-445)))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-111)))) ((*1 *2 *1) - (-12 (-4 *3 (-302)) (-4 *4 (-968 *3)) (-4 *5 (-1208 *4)) - (-5 *2 (-1232 *6)) (-5 *1 (-408 *3 *4 *5 *6)) - (-4 *6 (-13 (-404 *4 *5) (-1014 *4))))) + (-12 (-4 *3 (-445)) (-4 *4 (-830)) (-4 *5 (-776)) (-5 *2 (-111)) + (-5 *1 (-966 *3 *4 *5 *6)) (-4 *6 (-928 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-302)) (-4 *4 (-968 *3)) (-4 *5 (-1208 *4)) - (-5 *2 (-1232 *6)) (-5 *1 (-409 *3 *4 *5 *6 *7)) - (-4 *6 (-404 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1232 *1)) (-4 *1 (-412 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-897)) (-5 *2 (-1232 (-1232 *4))) (-5 *1 (-521 *4)) - (-4 *4 (-344))))) -(((*1 *2 *3) - (-12 (-5 *3 (-625 *2)) (-4 *2 (-425 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-827) (-544)))))) + (-12 (-5 *2 (-111)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-13 (-1076) (-34))) + (-4 *4 (-13 (-1076) (-34)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-552)) (-5 *1 (-373))))) +(((*1 *2 *1) (-12 (-5 *2 (-1240)) (-5 *1 (-805))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-5 *1 (-414 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1174) (-424 *3))) + (-14 *4 (-1152)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-445) (-830) (-1017 (-552)) (-623 (-552)))) + (-4 *2 (-13 (-27) (-1174) (-424 *3) (-10 -8 (-15 -1477 ($ *4))))) + (-4 *4 (-828)) + (-4 *5 + (-13 (-1213 *2 *4) (-357) (-1174) + (-10 -8 (-15 -2942 ($ $)) (-15 -2747 ($ $))))) + (-5 *1 (-416 *3 *2 *4 *5 *6 *7)) (-4 *6 (-962 *5)) (-14 *7 (-1152))))) +(((*1 *2 *3) (-12 (-5 *3 (-1134)) (-5 *2 (-1240)) (-5 *1 (-721))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-627 *2) *2 *2 *2)) (-4 *2 (-1076)) + (-5 *1 (-102 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1076)) (-5 *1 (-102 *2))))) +(((*1 *1) (-5 *1 (-431)))) (((*1 *2 *1) - (-12 (-5 *2 (-625 (-2 (|:| |k| (-1149)) (|:| |c| (-1254 *3))))) - (-5 *1 (-1254 *3)) (-4 *3 (-1025)))) - ((*1 *2 *1) - (-12 (-5 *2 (-625 (-2 (|:| |k| *3) (|:| |c| (-1256 *3 *4))))) - (-5 *1 (-1256 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025))))) -(((*1 *2 *3) - (-12 (-5 *3 (-552)) (-4 *4 (-1208 (-402 *3))) (-5 *2 (-897)) - (-5 *1 (-889 *4 *5)) (-4 *5 (-1208 (-402 *4)))))) -(((*1 *1 *1) (-5 *1 (-1037)))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3))))) -((-1265 . 738665) (-1266 . 738633) (-1267 . 738503) (-1268 . 738247) - (-1269 . 738135) (-1270 . 737269) (-1271 . 737189) (-1272 . 736970) - (-1273 . 736815) (-1274 . 736670) (-1275 . 736588) (-1276 . 736556) - (-1277 . 736282) (-1278 . 736096) (-1279 . 735920) (-1280 . 735761) - (-1281 . 735666) (-1282 . 735565) (-1283 . 735461) (-1284 . 735297) - (-1285 . 735215) (-1286 . 735036) (-1287 . 735004) (-1288 . 734290) - (-1289 . 733649) (-1290 . 733571) (-1291 . 733196) (-1292 . 733126) - (-1293 . 733071) (-1294 . 732476) (-1295 . 732361) (-1296 . 732222) - (-1297 . 732116) (-1298 . 732001) (-1299 . 731969) (-1300 . 731378) - (-1301 . 730081) (-1302 . 729896) (-1303 . 729844) (-1304 . 729749) - (-1305 . 729694) (-1306 . 729588) (-1307 . 729491) (-1308 . 729316) - (-1309 . 729284) (-1310 . 729180) (-1311 . 727924) (-1312 . 727866) - (-1313 . 727811) (-1314 . 727733) (-1315 . 727632) (-1316 . 727479) - (-1317 . 727447) (-1318 . 727341) (-1319 . 727286) (-1320 . 726407) - (-1321 . 726349) (-1322 . 726173) (-1323 . 726018) (-1324 . 725963) - (-1325 . 725867) (-1326 . 725770) (-1327 . 725617) (-1328 . 725585) - (-1329 . 725506) (-1330 . 724234) (-1331 . 723896) (-1332 . 723714) - (-1333 . 723631) (-1334 . 723477) (-1335 . 723381) (-1336 . 723266) - (-1337 . 723092) (-1338 . 723060) (-1339 . 722666) (-1340 . 722596) - (-1341 . 722494) (-1342 . 722206) (-1343 . 722030) (-1344 . 721875) - (-1345 . 721582) (-1346 . 721486) (-1347 . 721401) (-1348 . 721328) - (-1349 . 721205) (-1350 . 721121) (-1351 . 720939) (-1352 . 720784) - (-1353 . 720717) (-1354 . 720458) (-1355 . 720359) (-1356 . 719658) - (-1357 . 719557) (-1358 . 718015) (-1359 . 717911) (-1360 . 717856) - (-1361 . 717723) (-1362 . 717590) (-1363 . 717411) (-1364 . 717274) - (-1365 . 717246) (-1366 . 717140) (-1367 . 716871) (-1368 . 716193) - (-1369 . 715991) (-1370 . 715893) (-1371 . 715798) (-1372 . 715725) - (-1373 . 715673) (-1374 . 715494) (-1375 . 715357) (-1376 . 715307) - (-1377 . 715183) (-1378 . 715089) (-1379 . 715006) (-1380 . 714911) - (-1381 . 714856) (-1382 . 714801) (-1383 . 714614) (-1384 . 714477) - (-1385 . 714212) (-1386 . 714115) (-1387 . 713956) (-1388 . 713761) - (-1389 . 713687) (-1390 . 713330) (-1391 . 713278) (-1392 . 712896) - (-1393 . 712759) (-1394 . 712652) (-1395 . 712513) (-1396 . 712406) - (-1397 . 712339) (-1398 . 712243) (-1399 . 712169) (-1400 . 711758) - (-1401 . 711684) (-1402 . 711505) (-1403 . 711368) (-1404 . 711261) - (-1405 . 709976) (-1406 . 709923) (-1407 . 709169) (-1408 . 709060) - (-1409 . 709005) (-1410 . 708850) (-1411 . 708776) (-1412 . 708597) - (-1413 . 708487) (-1414 . 708350) (-1415 . 708025) (-1416 . 707426) - (-1417 . 707373) (-1418 . 706940) (-1419 . 706885) (-1420 . 706802) - (-1421 . 706615) (-1422 . 706559) (-1423 . 706421) (-1424 . 706040) - (-1425 . 705733) (-1426 . 705317) (-1427 . 705264) (-1428 . 705089) - (-1429 . 705023) (-1430 . 704971) (-1431 . 704775) (-1432 . 704692) - (-1433 . 704310) (-1434 . 704200) (-1435 . 704045) (-1436 . 703932) - (-1437 . 703558) (-1438 . 699495) (-1439 . 699436) (-1440 . 699357) - (-1441 . 699291) (-1442 . 699239) (-1443 . 698923) (-1444 . 698785) - (-1445 . 698730) (-1446 . 697734) (-1447 . 697623) (-1448 . 697492) - (-1449 . 697238) (-1450 . 697179) (-1451 . 696990) (-1452 . 696928) - (-1453 . 696875) (-1454 . 695694) (-1455 . 695620) (-1456 . 695212) - (-1457 . 695101) (-1458 . 694945) (-1459 . 694649) (-1460 . 694272) - (-1461 . 694091) (-1462 . 693911) (-1463 . 693391) (-1464 . 693322) - (-1465 . 692955) (-1466 . 692881) (-1467 . 692473) (-1468 . 692405) - (-1469 . 692132) (-1470 . 691836) (-1471 . 691519) (-1472 . 691466) - (-1473 . 691414) (-1474 . 690963) (-1475 . 690442) (-1476 . 690283) - (-1477 . 690003) (-1478 . 689929) (-1479 . 689811) (-1480 . 689701) - (-1481 . 689554) (-1482 . 689293) (-1483 . 689237) (-1484 . 689085) - (-1485 . 688811) (-1486 . 688275) (-1487 . 687996) (-1488 . 687917) - (-1489 . 687757) (-1490 . 687654) (-1491 . 687451) (-1492 . 687370) - (-1493 . 687314) (-1494 . 687134) (-1495 . 686944) (-1496 . 686801) - (-1497 . 686708) (-1498 . 686653) (-1499 . 686508) (-1500 . 682348) - (-1501 . 682244) (-1502 . 682156) (-1503 . 681988) (-1504 . 681813) - (-1505 . 681640) (-1506 . 681297) (-1507 . 681263) (-1508 . 681170) - (-1509 . 681050) (-1510 . 680991) (-1511 . 680792) (-1512 . 680674) - (-1513 . 680226) (-1514 . 680072) (-1515 . 679971) (-1516 . 679901) - (-1517 . 679772) (-1518 . 679510) (-1519 . 679198) (-1520 . 679143) - (-1521 . 679050) (-1522 . 678951) (-1523 . 678779) (-1524 . 678597) - (-1525 . 678170) (-1526 . 678050) (-1527 . 677952) (-1528 . 677854) - (-1529 . 677596) (-1530 . 677418) (-1531 . 676705) (-1532 . 676634) - (-1533 . 676535) (-12 . 676363) (-1535 . 676239) (-1536 . 675619) - (-1537 . 675490) (-1538 . 675418) (-1539 . 675320) (-1540 . 674503) - (-1541 . 674372) (-1542 . 674057) (-1543 . 673965) (-1544 . 673866) - (-1545 . 673573) (-1546 . 672966) (-1547 . 672868) (-1548 . 672061) - (-1549 . 672004) (-1550 . 671906) (-1551 . 671734) (-1552 . 671594) - (-1553 . 671085) (-1554 . 670923) (-1555 . 670824) (-1556 . 670531) - (-1557 . 670313) (-1558 . 670225) (-1559 . 670153) (-1560 . 670100) - (-1561 . 669940) (-1562 . 669717) (-1563 . 668630) (-1564 . 668578) - (-1565 . 668218) (-1566 . 668119) (-1567 . 667832) (-1568 . 667654) - (-1569 . 667566) (-1570 . 667230) (-1571 . 667070) (-1572 . 666166) - (-1573 . 666011) (-1574 . 665959) (-1575 . 665801) (-1576 . 665702) - (-1577 . 665418) (-1578 . 665154) (-1579 . 665066) (-1580 . 664994) - (-1581 . 664841) (-1582 . 664697) (-1583 . 664645) (-1584 . 664466) - (-1585 . 664356) (-1586 . 664263) (-1587 . 664146) (-1588 . 664047) - (-1589 . 663741) (-1590 . 663327) (-1591 . 663239) (-1592 . 662903) - (-1593 . 662145) (-1594 . 662001) (-1595 . 661923) (-1596 . 660499) - (-1597 . 660470) (-1598 . 660412) (-1599 . 660298) (-1600 . 660210) - (-1601 . 659916) (-1602 . 659828) (-1603 . 659756) (-1604 . 659633) - (-1605 . 659380) (-1606 . 659236) (-1607 . 659096) (-1608 . 659034) - (-1609 . 658967) (-1610 . 658853) (-1611 . 658768) (-1612 . 658320) - (-1613 . 658226) (-1614 . 657773) (-1615 . 657462) (-1616 . 657255) - (-1617 . 657110) (-1618 . 656865) (-1619 . 656647) (-1620 . 656570) - (-1621 . 656456) (-1622 . 656357) (-1623 . 656179) (-1624 . 656091) - (-1625 . 656019) (-1626 . 655667) (-1627 . 655574) (-1628 . 655376) - (-1629 . 655143) (-1630 . 654886) (-1631 . 654814) (-1632 . 654700) - (* . 650154) (-1634 . 650055) (-1635 . 649662) (-1636 . 649574) - (-1637 . 649469) (-1638 . 649356) (-1639 . 649130) (-1640 . 648987) - (-1641 . 648927) (-1642 . 648860) (-1643 . 648780) (-1644 . 648666) - (-1645 . 648440) (-1646 . 648047) (-1647 . 647959) (-1648 . 647882) - (-1649 . 647607) (-1650 . 647181) (-1651 . 646860) (-1652 . 646803) - (-1653 . 646706) (-1654 . 646633) (-1655 . 646514) (-1656 . 646400) - (-1657 . 646300) (-1658 . 646115) (-1659 . 646027) (-1660 . 645950) - (-1661 . 645563) (-1662 . 645448) (-1663 . 645391) (-1664 . 645294) - (-1665 . 645221) (-1666 . 645104) (-1667 . 645001) (-1668 . 644794) - (-1669 . 644706) (-1670 . 644634) (-1671 . 644547) (-1672 . 644363) - (-1673 . 644018) (-1674 . 643805) (-1675 . 643616) (-1676 . 643543) - (-1677 . 643465) (-1678 . 643228) (-1679 . 643148) (-1680 . 642924) - (-1681 . 642836) (-1682 . 642493) (-1683 . 619120) (-1684 . 618986) - (-1685 . 618826) (-1686 . 618683) (-1687 . 618599) (-1688 . 618527) - (-1689 . 618449) (-1690 . 618396) (-1691 . 618069) (-1692 . 617763) - (-1693 . 617675) (-1694 . 617543) (-1695 . 614791) (-1696 . 614625) - (-1697 . 614486) (-1698 . 614378) (-1699 . 614256) (-1700 . 614184) - (-1701 . 613797) (-1702 . 613502) (-1703 . 613303) (-1704 . 613215) - (-1705 . 613070) (-1706 . 612904) (-1707 . 612765) (-1708 . 612644) - (-1709 . 612498) (-1710 . 612425) (-1711 . 612166) (-1712 . 611820) - (-1713 . 611747) (-1714 . 611113) (-1715 . 611025) (-1716 . 610880) - (-1717 . 610736) (-1718 . 610602) (-1719 . 610473) (-1720 . 610406) - (-1721 . 609751) (-1722 . 609409) (-1723 . 609307) (-1724 . 608922) - (-1725 . 608765) (-1726 . 608677) (-1727 . 608176) (-1728 . 598616) - (-1729 . 598482) (-1730 . 598422) (-1731 . 598337) (-1732 . 598263) - (-1733 . 597553) (-1734 . 597401) (-1735 . 597139) (-1736 . 597111) - (-1737 . 596720) (-1738 . 596582) (-1739 . 596231) (-1740 . 596097) - (-1741 . 595594) (-1742 . 595479) (-1743 . 595372) (-1744 . 595299) - (-1745 . 595197) (-1746 . 594998) (-1747 . 594949) (-1748 . 594811) - (-1749 . 594580) (-1750 . 594446) (-1751 . 593134) (-1752 . 592877) - (-1753 . 592773) (-1754 . 592700) (-1755 . 592495) (-1756 . 592315) - (-1757 . 592263) (-1758 . 592143) (-1759 . 591868) (-1760 . 591737) - (-1761 . 591622) (-1762 . 591520) (-1763 . 591416) (-1764 . 591343) - (-1765 . 591230) (-1766 . 590980) (-1767 . 590931) (-1768 . 590811) - (-1769 . 590424) (-1770 . 590293) (-1771 . 590161) (-1772 . 589960) - (-1773 . 589714) (-1774 . 589600) (-1775 . 589346) (-1776 . 589244) - (-1777 . 589189) (-1778 . 589137) (-1779 . 588996) (-1780 . 588753) - (-1781 . 588622) (-1782 . 588303) (-1783 . 587981) (-1784 . 587735) - (-1785 . 587526) (-1786 . 587382) (-1787 . 587225) (-1788 . 587147) - (-1789 . 587059) (-1790 . 586913) (-1791 . 585443) (-1792 . 585200) - (-1793 . 584817) (-1794 . 584560) (-1795 . 584086) (-1796 . 583987) - (-1797 . 582647) (-1798 . 582594) (-1799 . 582499) (-1800 . 582068) - (-1801 . 581694) (-1802 . 581642) (-1803 . 581554) (-1804 . 581311) - (-1805 . 581184) (-1806 . 581113) (-1807 . 581006) (-1808 . 580927) - (-1809 . 580733) (-1810 . 580605) (-1811 . 580508) (-1812 . 580429) - (-1813 . 580283) (-1814 . 580195) (-1815 . 579952) (-1816 . 579824) - (-1817 . 579454) (-1818 . 579346) (-1819 . 579290) (-1820 . 579138) - (-1821 . 579056) (-1822 . 578983) (-1823 . 578931) (-1824 . 578843) - (-1825 . 578612) (-1826 . 578360) (-1827 . 578073) (-1828 . 577966) - (-1829 . 577815) (-1830 . 577744) (-1831 . 577592) (-1832 . 577479) - (-1833 . 577396) (-1834 . 577250) (-1835 . 577112) (-1836 . 576881) - (-1837 . 576812) (-1838 . 576661) (-1839 . 576537) (-1840 . 576426) - (-1841 . 576319) (-1842 . 576177) (-1843 . 576057) (-1844 . 575856) - (-1845 . 575737) (-1846 . 575654) (-1847 . 575602) (-1848 . 575464) - (-1849 . 575312) (-1850 . 575261) (-1851 . 573859) (-1852 . 573607) - (-1853 . 573511) (-1854 . 573092) (-1855 . 572988) (-1856 . 572716) - (-1857 . 572633) (-1858 . 572252) (-1859 . 572164) (-1860 . 571980) - (-1861 . 571856) (-1862 . 571760) (-1863 . 571510) (-1864 . 571409) - (-1865 . 571211) (-1866 . 571137) (-1867 . 571036) (-1868 . 570984) - (-1869 . 570896) (-1870 . 570791) (-1871 . 570464) (-1872 . 570212) - (-1873 . 570122) (-1874 . 569445) (-1875 . 569363) (-1876 . 569334) - (-1877 . 569282) (-1878 . 569223) (-1879 . 569174) (-1880 . 569086) - (-1881 . 568963) (-1882 . 568839) (-1883 . 568614) (-1884 . 568459) - (-1885 . 568377) (-1886 . 568276) (-1887 . 568224) (-1888 . 568100) - (-1889 . 568048) (-1890 . 567960) (-1891 . 567852) (-1892 . 567709) - (-1893 . 563167) (-1894 . 563056) (-1895 . 557718) (-1896 . 557639) - (-1897 . 557538) (-1898 . 557486) (-1899 . 557412) (-1900 . 557288) - (-1901 . 557239) (-1902 . 557151) (-1903 . 557043) (-1904 . 556884) - (-1905 . 555026) (-1906 . 554974) (-1907 . 554878) (-1908 . 554825) - (-1909 . 554754) (-1910 . 554653) (-1911 . 554325) (-1912 . 554265) - (-1913 . 554212) (-1914 . 554160) (-1915 . 554072) (-1916 . 553767) - (-1917 . 553521) (-1918 . 553378) (-1919 . 553325) (-1920 . 553254) - (-1921 . 553153) (-1922 . 553065) (-1923 . 552847) (-1924 . 552681) - (-1925 . 552626) (-1926 . 552577) (-1927 . 552486) (-1928 . 552176) - (-1929 . 552052) (-1930 . 551999) (-1931 . 551928) (-1932 . 551732) - (-1933 . 551400) (-1934 . 551329) (-1935 . 551228) (-1936 . 551124) - (-1937 . 551030) (-1938 . 550287) (-1939 . 549978) (-1940 . 549919) - (-1941 . 549710) (-1942 . 549232) (-1943 . 549123) (-1944 . 549052) - (-1945 . 548951) (-1946 . 548830) (-1947 . 548753) (-1948 . 548659) - (-1949 . 548482) (-1950 . 548231) (-1951 . 548157) (-1952 . 548092) - (-1953 . 547914) (-1954 . 547864) (-1955 . 547755) (-1956 . 547684) - (-1957 . 547583) (-1958 . 547500) (-1959 . 546579) (-1960 . 546499) - (-1961 . 546402) (-1962 . 546257) (-1963 . 546195) (-1964 . 546112) - (-1965 . 545902) (-1966 . 545852) (-1967 . 545743) (-1968 . 545672) - (-1969 . 545571) (-1970 . 545391) (-1971 . 545360) (-1972 . 545283) - (-1973 . 545233) (-1974 . 545128) (-1975 . 545072) (-1976 . 544862) - (-1977 . 544763) (-1978 . 544662) (-1979 . 544501) (-1980 . 544421) - (-1981 . 544371) (-1982 . 544253) (-1983 . 543979) (-1984 . 543909) - (-1985 . 543843) (-1986 . 543587) (-1987 . 543486) (-1988 . 543331) - (-1989 . 543251) (-1990 . 543198) (-1991 . 543099) (-1992 . 543043) - (-1993 . 542469) (-1994 . 542404) (-1995 . 542338) (-1996 . 528224) - (-1997 . 527849) (-1998 . 527734) (-1999 . 527654) (-2000 . 527577) - (-2001 . 527424) (-2002 . 527164) (-2003 . 526675) (-2004 . 526161) - (-2005 . 526106) (-2006 . 526040) (-2007 . 525868) (-2008 . 525753) - (-2009 . 525695) (-2010 . 525615) (-2011 . 525470) (-2012 . 525376) - (-2013 . 525310) (-2014 . 525194) (-2015 . 525143) (-2016 . 525070) - (-2017 . 524836) (-2018 . 524729) (-2019 . 524337) (-2020 . 524270) - (-2021 . 523960) (-2022 . 523894) (-2023 . 523390) (-2024 . 523273) - (-2025 . 523208) (-2026 . 523050) (-2027 . 522894) (-2028 . 522552) - (-2029 . 522469) (-2030 . 522124) (-2031 . 522058) (-2032 . 521674) - (-2033 . 521616) (-2034 . 521551) (-2035 . 521249) (-2036 . 521115) - (-2037 . 520723) (-2038 . 520044) (-2039 . 519961) (-2040 . 519887) - (-2041 . 519821) (-2042 . 515099) (-2043 . 515026) (-2044 . 514868) - (-2045 . 514734) (-2046 . 514392) (-2047 . 514340) (-2048 . 514238) - (-2049 . 513913) (-2050 . 513847) (-2051 . 513707) (-2052 . 513647) - (-2053 . 513577) (-2054 . 513461) (-2055 . 513276) (-2056 . 512944) - (-2057 . 512831) (-2058 . 512606) (-2059 . 512575) (-2060 . 512498) - (-2061 . 512424) (-2062 . 512214) (-2063 . 512148) (-2064 . 511958) - (-2065 . 511881) (-2066 . 511829) (-2067 . 511686) (-2068 . 511615) - (-2069 . 511496) (-2070 . 510966) (-2071 . 510841) (-2072 . 510758) - (-2073 . 510672) (-2074 . 510606) (-2075 . 510490) (-2076 . 510413) - (-2077 . 510369) (-2078 . 510226) (-2079 . 506890) (-2080 . 506713) - (-2081 . 506495) (-2082 . 506421) (-2083 . 506335) (-2084 . 506269) - (-2085 . 506153) (-2086 . 506030) (-2087 . 505959) (-2088 . 505876) - (-2089 . 505705) (-2090 . 505571) (-2091 . 505353) (-2092 . 505171) - (-2093 . 504953) (-2094 . 504867) (-2095 . 504801) (-2096 . 504685) - (-2097 . 504433) (-2098 . 504381) (-2099 . 504298) (-2100 . 504051) - (-2101 . 503844) (-2102 . 503707) (-2103 . 503488) (-2104 . 503275) - (-2105 . 503189) (-2106 . 503123) (-2107 . 502970) (-2108 . 502883) - (-2109 . 502834) (-2110 . 502569) (-2111 . 502438) (-2112 . 502258) - (-2113 . 502165) (-2114 . 502079) (-2115 . 502013) (-2116 . 501869) - (-2117 . 501791) (-2118 . 501739) (-2119 . 500988) (-2120 . 500875) - (-2121 . 500656) (-2122 . 500589) (-2123 . 500503) (-2124 . 500437) - (-2125 . 499933) (-2126 . 499859) (-2127 . 499781) (-2128 . 499729) - (-2129 . 499592) (-2130 . 499470) (-2131 . 499290) (-2132 . 499187) - (-2133 . 499134) (-2134 . 498991) (-2135 . 498905) (-2136 . 498839) - (-2137 . 498753) (-2138 . 498654) (-2139 . 498538) (-2140 . 498447) - (-2141 . 498322) (-2142 . 497928) (-2143 . 497861) (-2144 . 497775) - (-2145 . 497709) (-2146 . 497635) (-2147 . 496437) (-2148 . 495588) - (-2149 . 495450) (-2150 . 495394) (-2151 . 495190) (-2152 . 495095) - (-2153 . 494958) (-2154 . 489750) (-2155 . 489646) (-2156 . 489466) - (-2157 . 489198) (-2158 . 489114) (-2159 . 489028) (-2160 . 488962) - (-2161 . 488888) (-2162 . 488697) (-2163 . 485076) (-2164 . 484981) - (-2165 . 484913) (-2166 . 484729) (-2167 . 484514) (-2168 . 484431) - (-2169 . 484345) (-2170 . 483688) (-2171 . 483614) (-2172 . 481346) - (-2173 . 481144) (-2174 . 481021) (-2175 . 480952) (-2176 . 480778) - (-2177 . 480688) (-2178 . 480586) (-2179 . 480500) (-2180 . 479843) - (-2181 . 479699) (-2182 . 479318) (-2183 . 478548) (-2184 . 478520) - (-2185 . 478407) (-2186 . 478319) (-2187 . 478120) (-2188 . 478030) - (-2189 . 477768) (-2190 . 477568) (-2191 . 477482) (-2192 . 477354) - (-2193 . 477201) (-2194 . 476754) (-2195 . 476265) (-2196 . 476237) - (-2197 . 476149) (-2198 . 475975) (-2199 . 475881) (-2200 . 475754) - (-2201 . 475686) (-2202 . 475600) (-2203 . 475477) (-2204 . 475302) - (-2205 . 475067) (-2206 . 474948) (-2207 . 474521) (-2208 . 474493) - (-2209 . 474322) (-2210 . 474203) (-2211 . 474116) (-2212 . 473868) - (-2213 . 473782) (-2214 . 473659) (-2215 . 473506) (-2216 . 473251) - (-2217 . 473223) (-2218 . 473149) (-2219 . 473021) (-2220 . 472931) - (-2221 . 472897) (-2222 . 472646) (-2223 . 472560) (-2224 . 472419) - (-2225 . 472266) (-2226 . 472169) (-2227 . 471951) (-2228 . 471878) - (-2229 . 471603) (-2230 . 471493) (-2231 . 471349) (-2232 . 471221) - (-2233 . 471138) (-2234 . 470890) (-2235 . 470804) (-2236 . 470649) - (-2237 . 470363) (-2238 . 470282) (-2239 . 470230) (-2240 . 469764) - (-2241 . 469642) (-2242 . 469451) (-2243 . 469175) (-2244 . 469077) - (-2245 . 468829) (-2246 . 468743) (-2247 . 468599) (-2248 . 468313) - (-2249 . 468207) (-2250 . 468155) (-2251 . 467775) (-2252 . 467550) - (-2253 . 467494) (-2254 . 467426) (-2255 . 467340) (-2256 . 467160) - (-2257 . 466749) (-2258 . 466273) (-2259 . 466221) (-2260 . 465457) - (-2261 . 465286) (-2262 . 465203) (-2263 . 464867) (-2264 . 464781) - (-2265 . 464658) (-2266 . 464372) (-2267 . 463919) (-2268 . 463867) - (-2269 . 463723) (-2270 . 463552) (-2271 . 463469) (-2272 . 463388) - (-2273 . 463216) (-2274 . 462151) (-2275 . 462065) (-2276 . 461941) - (-2277 . 461868) (-2278 . 461766) (-2279 . 461714) (-2280 . 461570) - (-2281 . 461298) (-2282 . 461121) (-2283 . 461038) (-2284 . 460866) - (-2285 . 460646) (-2286 . 460560) (-2287 . 460459) (-2288 . 460310) - (-2289 . 460226) (-2290 . 459888) (-2291 . 459860) (-2292 . 459780) - (-2293 . 459615) (-2294 . 459463) (-2295 . 459328) (-2296 . 459156) - (-2297 . 459073) (-2298 . 458987) (-2299 . 458931) (-2300 . 458825) - (-2301 . 458663) (-2302 . 458611) (-2303 . 458273) (-2304 . 458035) - (-2305 . 457955) (-2306 . 457730) (-2307 . 457499) (-2308 . 457219) - (-2309 . 457084) (-2310 . 456912) (-2311 . 456861) (-2312 . 456787) - (-2313 . 456701) (-2314 . 456645) (-2315 . 456574) (-2316 . 456433) - (-2317 . 456349) (-2318 . 456183) (-2319 . 456042) (-2320 . 455955) - (-2321 . 455551) (-2322 . 455427) (-2323 . 455374) (-2324 . 455304) - (-2325 . 455230) (-2326 . 455144) (-2327 . 455088) (-2328 . 455017) - (-2329 . 454422) (-2330 . 454341) (-2331 . 454151) (-2332 . 454028) - (-2333 . 453881) (-2334 . 453722) (-2335 . 453591) (-2336 . 453470) - (-2337 . 453351) (-2338 . 453277) (-2339 . 453191) (-2340 . 453135) - (-2341 . 453033) (-2342 . 452672) (-2343 . 452461) (-2344 . 451588) - (-2345 . 451349) (-2346 . 451262) (-2347 . 451057) (-2348 . 450939) - (-2349 . 450795) (-2350 . 450766) (-2351 . 450662) (-2352 . 449366) - (-2353 . 449280) (-2354 . 449221) (-2355 . 449118) (-2356 . 449061) - (-2357 . 448991) (-2358 . 448875) (-2359 . 448760) (-2360 . 448524) - (-2361 . 448341) (-2362 . 448205) (-2363 . 448083) (-2364 . 448010) - (-2365 . 447907) (-2366 . 447843) (-2367 . 447784) (-2368 . 447712) - (-2369 . 447479) (-2370 . 447078) (-2371 . 446839) (-2372 . 446652) - (-2373 . 446519) (-2374 . 446465) (-2375 . 446397) (-2376 . 446308) - (-2377 . 446200) (-2378 . 446141) (-2379 . 446084) (-2380 . 445984) - (-2381 . 445789) (-2382 . 444603) (-2383 . 444474) (-2384 . 444402) - (-2385 . 444189) (-2386 . 443979) (-2387 . 443871) (-2388 . 443736) - (-2389 . 443595) (-2390 . 443377) (-2391 . 442979) (-2392 . 442856) - (-2393 . 441674) (-2394 . 441567) (-2395 . 441510) (-2396 . 441333) - (-2397 . 441281) (-2398 . 441222) (-2399 . 441114) (-2400 . 441055) - (-2401 . 440837) (-2402 . 440619) (-2403 . 440415) (-2404 . 438209) - (-2405 . 438068) (-2406 . 438008) (-2407 . 437947) (-2408 . 437892) - (-2409 . 437836) (-2410 . 437557) (-2411 . 437387) (-2412 . 437214) - (-2413 . 437165) (-2414 . 436942) (-2415 . 436810) (-2416 . 436413) - (-2417 . 436323) (-2418 . 436234) (-2419 . 436160) (-2420 . 436072) - (-2421 . 435854) (-2422 . 435826) (-2423 . 435734) (-2424 . 435495) - (-2425 . 435381) (-2426 . 434857) (-2427 . 434770) (-2428 . 434658) - (-2429 . 434428) (-2430 . 434331) (-2431 . 434158) (-2432 . 434064) - (-2433 . 433923) (-2434 . 433775) (-2435 . 433497) (-2436 . 431646) - (-2437 . 431558) (-2438 . 431331) (-2439 . 431248) (-2440 . 431214) - (-2441 . 431041) (-2442 . 430886) (-2443 . 430774) (-2444 . 430636) - (-2445 . 430497) (-2446 . 430384) (-2447 . 430303) (-2448 . 430155) - (-2449 . 430075) (-2450 . 430044) (-2451 . 429871) (-2452 . 429752) - (-2453 . 429699) (-2454 . 429587) (-2455 . 429448) (-2456 . 429344) - (-2457 . 428900) (-2458 . 427662) (-2459 . 426908) (-2460 . 426720) - (-2461 . 426640) (-2462 . 426556) (-2463 . 426383) (-2464 . 426271) - (-2465 . 426018) (-2466 . 425911) (-2467 . 425679) (-2468 . 425549) - (-2469 . 425382) (-2470 . 425302) (-2471 . 425246) (-2472 . 424974) - (-2473 . 424718) (-2474 . 424608) (-2475 . 424403) (-2476 . 424351) - (-2477 . 424144) (-2478 . 423977) (-2479 . 423896) (-2480 . 423834) - (-2481 . 416835) (-2482 . 416740) (-2483 . 416219) (-2484 . 416059) - (-2485 . 415946) (-2486 . 415764) (-2487 . 415318) (-2488 . 415258) - (-2489 . 415093) (-2490 . 414908) (-2491 . 414828) (-2492 . 414794) - (-2493 . 414544) (-2494 . 414449) (-2495 . 414295) (-2496 . 414191) - (-2497 . 414061) (-2498 . 413896) (-2499 . 413672) (-2500 . 413576) - (-2501 . 413542) (-2502 . 413485) (-2503 . 413390) (-2504 . 413149) - (-2505 . 413075) (-2506 . 412965) (-2507 . 412755) (-2508 . 412581) - (-2509 . 412457) (-2510 . 412358) (-2511 . 412324) (-2512 . 411813) - (-2513 . 411718) (-2514 . 411428) (-2515 . 411318) (-2516 . 411107) - (-2517 . 411000) (-2518 . 410792) (-2519 . 410724) (-2520 . 410690) - (-2521 . 410537) (-2522 . 410442) (-2523 . 410304) (-2524 . 410188) - (-2525 . 409997) (-2526 . 409890) (-2527 . 409795) (-2528 . 409746) - (-2529 . 409712) (-2530 . 409545) (-2531 . 409447) (-2532 . 409370) - (-2533 . 408702) (-2534 . 408592) (-2535 . 408009) (-2536 . 407902) - (-2537 . 407807) (-2538 . 407095) (-2539 . 404314) (-2540 . 404147) - (-2541 . 404049) (-2542 . 403933) (-2543 . 403677) (-2544 . 403570) - (-2545 . 403434) (-2546 . 402785) (-2547 . 402751) (-2548 . 402652) - (-2549 . 402557) (-2550 . 402484) (-2551 . 402353) (-2552 . 402059) - (-2553 . 401952) (-2554 . 401854) (-2555 . 401038) (-2556 . 401004) - (-2557 . 400886) (-2558 . 400791) (-2559 . 400571) (-2560 . 400422) - (-2561 . 400125) (-2562 . 400073) (-2563 . 399966) (-2564 . 399868) - (-2565 . 399785) (-2566 . 399751) (-2567 . 399627) (-2568 . 399532) - (-2569 . 399254) (-2570 . 398921) (-2571 . 398383) (-2572 . 398083) - (-2573 . 397976) (-2574 . 397899) (-2575 . 397865) (-2576 . 397719) - (-2577 . 397624) (-2578 . 397506) (-2579 . 397322) (-2580 . 397179) - (-2581 . 397049) (-2582 . 396942) (-2583 . 396890) (-2584 . 396762) - (-2585 . 396665) (-2586 . 396070) (-2587 . 395899) (-2588 . 395804) - (-2589 . 395660) (-2590 . 395510) (-2591 . 395377) (-2592 . 395270) - (-2593 . 395218) (-2594 . 395116) (-2595 . 394988) (-2596 . 394873) - (-2597 . 394782) (-2598 . 394504) (-2599 . 394377) (-2600 . 394275) - (-2601 . 394214) (-2602 . 393853) (-2603 . 393730) (-2604 . 393594) - (-2605 . 393507) (-2606 . 393400) (-2607 . 393326) (-2608 . 393183) - (-2609 . 393092) (-2610 . 392947) (-2611 . 392845) (-2612 . 392674) - (-2613 . 392567) (-2614 . 392512) (-2615 . 392369) (-2616 . 392314) - (-2617 . 392161) (-2618 . 392059) (-2619 . 391888) (-2620 . 391747) - (-2621 . 391217) (-2622 . 391158) (-2623 . 391051) (-2624 . 390999) - (-2625 . 390857) (-2626 . 390805) (-2627 . 390642) (-2628 . 390547) - (-2629 . 390288) (-2630 . 390085) (-2631 . 390036) (-2632 . 389818) - (-2633 . 388716) (-2634 . 388609) (-2635 . 388557) (-2636 . 388412) - (-2637 . 388360) (-2638 . 388267) (-2639 . 388200) (-2640 . 387941) - (-2641 . 387797) (-2642 . 387579) (-2643 . 387526) (-2644 . 387419) - (-2645 . 387367) (-2646 . 386614) (-2647 . 386563) (-2648 . 386368) - (-2649 . 386118) (-2650 . 385724) (-2651 . 385158) (-2652 . 385051) - (-2653 . 384981) (-2654 . 384818) (-2655 . 384746) (-2656 . 384465) - (-2657 . 384414) (-2658 . 384219) (-2659 . 383901) (-2660 . 383721) - (-2661 . 383614) (-2662 . 383048) (-2663 . 382597) (-2664 . 382520) - (-2665 . 382034) (-2666 . 381846) (-2667 . 381784) (-2668 . 381363) - (-2669 . 380919) (-2670 . 380322) (-2671 . 379956) (-2672 . 379741) - (-2673 . 379609) (-2674 . 379502) (-2675 . 379288) (-2676 . 379128) - (-2677 . 379075) (-2678 . 378548) (-2679 . 378343) (-2680 . 378281) - (-2681 . 378250) (-2682 . 378172) (-2683 . 378010) (-2684 . 377806) - (-2685 . 377699) (-2686 . 377427) (-2687 . 377374) (-2688 . 377134) - (-2689 . 376949) (-2690 . 376864) (-2691 . 376741) (-2692 . 376594) - (-2693 . 376388) (-2694 . 375524) (-2695 . 375417) (-2696 . 375044) - (-2697 . 374991) (-2698 . 374744) (-2699 . 374601) (-2700 . 374524) - (-2701 . 374401) (-2702 . 374072) (-2703 . 373912) (-2704 . 373883) - (-2705 . 373776) (-2706 . 373499) (-2707 . 373252) (-2708 . 373199) - (-2709 . 372681) (-2710 . 372537) (-2711 . 372045) (-2712 . 371972) - (-2713 . 371803) (-2714 . 371696) (-2715 . 371665) (-2716 . 371348) - (-2717 . 371134) (-2718 . 371081) (-2719 . 370439) (-2720 . 370269) - (-2721 . 369777) (-2722 . 369658) (-2723 . 369629) (-2724 . 369522) - (-2725 . 369308) (-2726 . 369169) (-2727 . 369116) (-2728 . 369060) - (-2729 . 368936) (-2730 . 368418) (-2731 . 368299) (-2732 . 368270) - (-2733 . 368163) (-2734 . 367845) (-2735 . 367654) (-2736 . 367440) - (-2737 . 367387) (-2738 . 367290) (-2739 . 367051) (-2740 . 366983) - (-2741 . 366823) (-2742 . 366767) (-2743 . 366660) (-2744 . 366060) - (-2745 . 365768) (-2746 . 365715) (-2747 . 365594) (-2748 . 365521) - (-2749 . 365450) (-2750 . 365270) (-2751 . 365105) (-2752 . 364998) - (-2753 . 364857) (-2754 . 364643) (-2755 . 364590) (-2756 . 364519) - (-2757 . 364378) (-2758 . 364307) (-2759 . 364124) (-2760 . 364064) - (-2761 . 364011) (-2762 . 363820) (-2763 . 363605) (-2764 . 363466) - (-2765 . 363413) (-2766 . 363339) (-2767 . 363288) (-2768 . 363102) - (-2769 . 363001) (-2770 . 362300) (-2771 . 362178) (-2772 . 362022) - (-2773 . 361713) (-2774 . 361499) (-2775 . 361446) (-2776 . 361215) - (-2777 . 361166) (-2778 . 361047) (-2779 . 360946) (-2780 . 359754) - (-2781 . 359725) (-2782 . 359466) (-2783 . 359365) (-2784 . 359279) - (-2785 . 358970) (-2786 . 358917) (-2787 . 358479) (-2788 . 358409) - (-2789 . 358290) (-2790 . 358186) (-2791 . 358125) (-2792 . 357819) - (-2793 . 357468) (-2794 . 357323) (-2795 . 357270) (-2796 . 357186) - (-2797 . 357051) (-2798 . 356957) (-2799 . 356850) (-2800 . 356793) - (-2801 . 356678) (-2802 . 355817) (-2803 . 355602) (-2804 . 355457) - (-2805 . 355315) (-2806 . 355262) (-2807 . 355120) (-2808 . 354985) - (-2809 . 354891) (-2810 . 354765) (-2811 . 354708) (-2812 . 354570) - (-2813 . 354407) (-2814 . 354341) (-2815 . 354174) (-2816 . 353848) - (-2817 . 353615) (-2818 . 353563) (-2819 . 353441) (-2820 . 353209) - (-2821 . 352917) (-2822 . 352791) (-2823 . 352714) (-2824 . 352658) - (-2825 . 352520) (-2826 . 352423) (-2827 . 352357) (-2828 . 352186) - (-2829 . 351946) (-2830 . 351804) (-2831 . 351685) (-2832 . 351633) - (-2833 . 351511) (-2834 . 351265) (-2835 . 351143) (-2836 . 351014) - (-2837 . 350954) (-2838 . 350877) (-2839 . 350825) (-2840 . 350586) - (-2841 . 350461) (-2842 . 350408) (-2843 . 350180) (-2844 . 350040) - (-2845 . 349709) (-2846 . 349526) (-2847 . 349474) (-2848 . 349342) - (-2849 . 349224) (-2850 . 349147) (-2851 . 349050) (-2852 . 348987) - (-2853 . 348863) (-2854 . 348664) (-2855 . 348611) (-2856 . 348418) - (-2857 . 348245) (-2858 . 348193) (-2859 . 348092) (-2860 . 347132) - (-2861 . 347055) (-2862 . 346992) (-2863 . 345780) (-2864 . 345634) - (-2865 . 345474) (-2866 . 345380) (-2867 . 345264) (-2868 . 345185) - (-2869 . 345133) (-2870 . 345032) (-2871 . 344955) (-2872 . 344564) - (-2873 . 344373) (-2874 . 343698) (-2875 . 343555) (-2876 . 343219) - (-2877 . 343166) (-2878 . 342905) (-2879 . 342831) (-2880 . 342775) - (-2881 . 342723) (-2882 . 342619) (-2883 . 342565) (-2884 . 342409) - (-2885 . 342307) (-2886 . 342192) (-2887 . 342029) (-2888 . 342001) - (-2889 . 341932) (-2890 . 341774) (-2891 . 341722) (-2892 . 341618) - (-2893 . 341302) (-2894 . 340299) (-2895 . 340217) (-2896 . 340087) - (-2897 . 339924) (-2898 . 339896) (-2899 . 339694) (-2900 . 339536) - (-2901 . 339387) (-2902 . 339221) (-2903 . 339113) (-2904 . 339031) - (-2905 . 338896) (-2906 . 338519) (-2907 . 338356) (-2908 . 338328) - (-2909 . 338166) (-2910 . 337980) (-2911 . 337793) (-2912 . 337627) - (-2913 . 337524) (-2914 . 337394) (-2915 . 337344) (-2916 . 337084) - (-2917 . 336909) (-2918 . 336881) (-2919 . 336722) (-2920 . 336539) - (-2921 . 336299) (-2922 . 336105) (-2923 . 335944) (-2924 . 335331) - (-2925 . 334939) (-2926 . 334911) (-2927 . 334360) (-2928 . 334080) - (-2929 . 333905) (-2930 . 333825) (-2931 . 333715) (-2932 . 333538) - (-2933 . 333331) (-2934 . 333165) (-2935 . 333058) (-2936 . 332631) - (-2937 . 332548) (-2938 . 332305) (-2939 . 332127) (-2940 . 332067) - (-2941 . 332016) (-2942 . 331959) (-2943 . 331931) (-2944 . 331763) - (-2945 . 331659) (-2946 . 331597) (-2947 . 331507) (-2948 . 331177) - (-2949 . 330818) (-2950 . 330766) (-2951 . 330377) (-2952 . 330293) - (-2953 . 330237) (-2954 . 330209) (-2955 . 330140) (-2956 . 329969) - (-2957 . 329918) (-2958 . 329765) (-2959 . 329666) (-2960 . 329549) - (-2961 . 329469) (-2962 . 329119) (-2963 . 328925) (-2964 . 328873) - (-2965 . 328632) (-2966 . 328576) (-2967 . 328548) (-2968 . 328383) - (-2969 . 328332) (-2970 . 328051) (-2971 . 327897) (-2972 . 327810) - (-2973 . 327343) (-2974 . 327181) (-2975 . 327129) (-2976 . 327032) - (-2977 . 326958) (-2978 . 326930) (-2979 . 326765) (-2980 . 326567) - (-2981 . 326345) (-2982 . 326285) (-2983 . 326078) (-2984 . 325592) - (-2985 . 325518) (-2986 . 325466) (-2987 . 324870) (-2988 . 324790) - (-2989 . 324762) (-2990 . 324662) (-2991 . 324519) (-2992 . 324441) - (-2993 . 324288) (-2994 . 324229) (-2995 . 324071) (-2996 . 323868) - (-2997 . 323794) (-2998 . 323742) (-2999 . 323661) (-3000 . 323605) - (-3001 . 323577) (-3002 . 323385) (-3003 . 323271) (-3004 . 323118) - (-3005 . 323048) (-3006 . 322855) (-3007 . 322763) (-3008 . 322460) - (-3009 . 322386) (-3010 . 321573) (-3011 . 320776) (-3012 . 320707) - (-3013 . 320679) (-3014 . 320575) (-3015 . 320454) (-3016 . 320301) - (-3017 . 320222) (-3018 . 319737) (-3019 . 319645) (-3020 . 319464) - (-3021 . 319390) (-3022 . 319311) (-3023 . 318932) (-3024 . 318858) - (-3025 . 318806) (-3026 . 318611) (-3027 . 318493) (-3028 . 318340) - (-3029 . 318098) (-3030 . 318012) (-3031 . 317794) (-3032 . 317720) - (-3033 . 317654) (-3034 . 317582) (-3035 . 317526) (-3036 . 317433) - (-3037 . 317183) (-3038 . 317071) (-3039 . 316918) (-3040 . 316650) - (-3041 . 316428) (-3042 . 316354) (-3043 . 316287) (-3044 . 315790) - (-3045 . 315719) (-3046 . 315669) (-3047 . 315424) (-3048 . 315306) - (-3049 . 314915) (-3050 . 314881) (-3051 . 314780) (-3052 . 314622) - (-3053 . 314498) (-3054 . 314431) (-3055 . 314009) (-3056 . 313935) - (-3057 . 313866) (-3058 . 313544) (-3059 . 313439) (-3060 . 313098) - (-3061 . 313015) (-3062 . 312938) (-3063 . 312733) (-3064 . 312559) - (-3065 . 312502) (-3066 . 312062) (-3067 . 311993) (-3068 . 311605) - (-3069 . 311522) (-3070 . 311171) (-3071 . 311088) (-3072 . 308926) - (-3073 . 308898) (-3074 . 308774) (-3075 . 308696) (-3076 . 307826) - (-3077 . 307721) (-3078 . 307520) (-3079 . 307169) (-3080 . 307099) - (-3081 . 307030) (-3082 . 306944) (-3083 . 306876) (-3084 . 306749) - (-3085 . 306378) (-3086 . 306114) (-3087 . 305763) (-3088 . 305693) - (-3089 . 305623) (-3090 . 305557) (-3091 . 305486) (-3092 . 305356) - (-3093 . 305201) (-3094 . 304658) (-3095 . 304307) (-3096 . 304188) - (-3097 . 304122) (-3098 . 304051) (-3099 . 303939) (-3100 . 303908) - (-3101 . 303686) (-3102 . 303531) (-3103 . 303237) (-3104 . 302850) - (-3105 . 302767) (-3106 . 302589) (-3107 . 302523) (-3108 . 302457) - (-3109 . 302299) (-3110 . 302094) (-3111 . 301957) (-3112 . 301570) - (-3113 . 301487) (-3114 . 301432) (-3115 . 301366) (-3116 . 301279) - (-3117 . 301165) (-3118 . 301102) (-3119 . 300980) (-3120 . 300734) - (-3121 . 300347) (-3122 . 300201) (-3123 . 299874) (-3124 . 299628) - (-3125 . 299562) (-3126 . 299490) (-3127 . 299342) (-3128 . 299252) - (-3129 . 299045) (-3130 . 298662) (-3131 . 298610) (-3132 . 298520) - (-3133 . 298454) (-3134 . 298266) (-3135 . 298182) (-3136 . 298119) - (-3137 . 297961) (-3138 . 297851) (-3139 . 297747) (-3140 . 297011) - (-3141 . 296788) (-3142 . 296736) (-3143 . 296546) (-3144 . 296480) - (-3145 . 296308) (-3146 . 296224) (-3147 . 296161) (-3148 . 296003) - (-3149 . 295899) (-3150 . 294933) (-3151 . 294582) (-3152 . 294485) - (-3153 . 294367) (-3154 . 294287) (-3155 . 294214) (-3156 . 294148) - (-3157 . 293966) (-3158 . 293858) (-3159 . 293784) (-3160 . 293671) - (-3161 . 293214) (-3162 . 293081) (-3163 . 293022) (-3164 . 292420) - (-3165 . 291997) (-3166 . 291923) (-3167 . 291810) (-3168 . 291381) - (-3169 . 291100) (-3170 . 290997) (-3171 . 290927) (-3172 . 290761) - (-3173 . 290334) (-3174 . 290279) (-3175 . 290151) (-3176 . 289518) - (-3177 . 289382) (-3178 . 289297) (-3179 . 289202) (-3180 . 288618) - (-3181 . 288541) (-3182 . 288486) (-3183 . 288412) (-3184 . 288302) - (-3185 . 287663) (-3186 . 287607) (-3187 . 287461) (-3188 . 287391) - (-3189 . 287314) (-3190 . 287043) (-3191 . 286944) (-3192 . 286889) - (-3193 . 286833) (-3194 . 286684) (-3195 . 286589) (-3196 . 286219) - (-3197 . 285948) (-3198 . 285920) (-3199 . 285865) (-3200 . 285673) - (-3201 . 285644) (-3202 . 284828) (-3203 . 284769) (-3204 . 284479) - (-3205 . 284409) (-3206 . 284231) (-3207 . 283844) (-3208 . 283773) - (-3209 . 283663) (-3210 . 283364) (-3211 . 283251) (-3212 . 282640) - (-3213 . 282581) (-3214 . 282528) (-3215 . 282473) (-3216 . 282401) - (-3217 . 281698) (-3218 . 281490) (-3219 . 281437) (-3220 . 281242) - (-3221 . 281132) (-3222 . 281019) (-3223 . 280897) (-3224 . 280841) - (-3225 . 280788) (-3226 . 280668) (-3227 . 280617) (-3228 . 280513) - (-3229 . 280398) (-3230 . 280285) (-3231 . 280229) (-3232 . 280110) - (-3233 . 280055) (-3234 . 279509) (-3235 . 279385) (-3236 . 279189) - (-3237 . 278998) (-3238 . 278872) (-3239 . 278759) (-3240 . 278562) - (-3241 . 278470) (-3242 . 278400) (-3243 . 277921) (-3244 . 277554) - (-3245 . 277481) (-3246 . 277385) (-3247 . 277306) (-3248 . 277184) - (-3249 . 277057) (-3250 . 276762) (-3251 . 276728) (-3252 . 276556) - (-3253 . 276433) (-3254 . 276351) (-3255 . 276214) (-3256 . 276082) - (-3257 . 275945) (-3258 . 275799) (-3259 . 275605) (-3260 . 275387) - (-3261 . 275196) (-3262 . 275094) (-3263 . 274981) (-3264 . 274844) - (-3265 . 274532) (-3266 . 274398) (-3267 . 274270) (-3268 . 274082) - (-3269 . 273932) (-3270 . 273639) (-3271 . 273275) (-3272 . 273085) - (-3273 . 272948) (-3274 . 272762) (-3275 . 272628) (-3276 . 272576) - (-3277 . 272431) (-3278 . 272028) (-3279 . 271898) (-3280 . 271360) - (-3281 . 271282) (-3282 . 270909) (-3283 . 270841) (-3284 . 270296) - (-3285 . 269996) (-3286 . 269939) (-3287 . 269887) (-3288 . 269742) - (-3289 . 269612) (-3290 . 268724) (-3291 . 268646) (-3292 . 268530) - (-3293 . 268310) (-3294 . 268010) (-3295 . 267938) (-3296 . 267886) - (-3297 . 267596) (-3298 . 267493) (-3299 . 267151) (-3300 . 267073) - (-3301 . 266712) (-3302 . 266596) (-3303 . 266419) (-3304 . 266066) - (-3305 . 266009) (-3306 . 265911) (-3307 . 265450) (-3308 . 265269) - (-3309 . 265100) (-3310 . 265004) (-3311 . 264677) (-3312 . 264561) - (-3313 . 264391) (-3314 . 264161) (-3315 . 264022) (-3316 . 263994) - (-3317 . 263960) (-3318 . 263800) (-3319 . 263571) (-3320 . 263389) - (-3321 . 263216) (-3322 . 260871) (-3323 . 260818) (-3324 . 260719) - (-3325 . 260489) (-3326 . 260278) (-3327 . 260241) (-3328 . 260138) - (-3329 . 259884) (-3330 . 259785) (-3331 . 259700) (-3332 . 259420) - (-3333 . 259321) (-3334 . 259208) (-3335 . 259106) (-3336 . 259069) - (-3337 . 258888) (-3338 . 258535) (-3339 . 258457) (-3340 . 258099) - (-3341 . 257783) (-3342 . 257710) (-3343 . 257597) (-3344 . 257464) - (-3345 . 257362) (-3346 . 257325) (-3347 . 257165) (-3348 . 256137) - (-3349 . 256041) (-3350 . 255986) (-3351 . 255908) (-3352 . 255592) - (-3353 . 255489) (-3354 . 254573) (-3355 . 254536) (-3356 . 254373) - (-3357 . 254055) (-3358 . 253959) (-3359 . 253307) (-3360 . 253226) - (-3361 . 253068) (-3362 . 252989) (-3363 . 252910) (-3364 . 252876) - (-3365 . 252734) (-3366 . 252522) (-3367 . 252357) (-3368 . 252042) - (-3369 . 251745) (-3370 . 251199) (-3371 . 251068) (-3372 . 251034) - (-3373 . 250884) (-3374 . 250310) (-3375 . 249746) (-3376 . 249635) - (-3377 . 249607) (-3378 . 249320) (-3379 . 249221) (-3380 . 248888) - (-3381 . 248663) (-3382 . 248534) (-3383 . 248479) (-3384 . 248349) - (-3385 . 247830) (-3386 . 247721) (-3387 . 247670) (-3388 . 247551) - (-3389 . 247386) (-3390 . 247183) (-3391 . 247099) (-3392 . 247020) - (-3393 . 246904) (-3394 . 246715) (-3395 . 246585) (-3396 . 244807) - (-3397 . 244698) (-3398 . 244627) (-3399 . 244575) (-3400 . 244341) - (-3401 . 244138) (-3402 . 243508) (-3403 . 243429) (-3404 . 243181) - (-3405 . 243034) (-3406 . 242562) (-3407 . 242453) (-3408 . 242401) - (-3409 . 242261) (-3410 . 242058) (-3411 . 241929) (-3412 . 241681) - (-3413 . 241554) (-3414 . 240950) (-3415 . 240841) (-3416 . 240789) - (-3417 . 240477) (-3418 . 240274) (-3419 . 239913) (-3420 . 239664) - (-3421 . 239349) (-3422 . 239220) (-3423 . 238705) (-3424 . 238453) - (-3425 . 238350) (-3426 . 238100) (-3427 . 237991) (-3428 . 237661) - (-3429 . 237608) (-3430 . 237263) (-3431 . 237147) (-9 . 237119) - (-3433 . 236951) (-3434 . 236899) (-3435 . 236792) (-3436 . 236655) - (-3437 . 236546) (-3438 . 236116) (-3439 . 236003) (-3440 . 235672) - (-3441 . 235543) (-3442 . 234293) (-8 . 234265) (-3444 . 234177) - (-3445 . 234048) (-3446 . 233993) (-3447 . 233893) (-3448 . 233735) - (-3449 . 233283) (-3450 . 233174) (-3451 . 233053) (-3452 . 232940) - (-3453 . 232519) (-3454 . 232403) (-3455 . 231393) (-3456 . 230719) - (-7 . 230691) (-3458 . 230562) (-3459 . 230492) (-3460 . 230327) - (-3461 . 229835) (-3462 . 229726) (-3463 . 229611) (-3464 . 229553) - (-3465 . 229485) (-3466 . 229369) (-3467 . 229202) (-3468 . 228935) - (-3469 . 228497) (-3470 . 228408) (-3471 . 228260) (-3472 . 227900) - (-3473 . 227791) (-3474 . 227665) (-3475 . 227607) (-3476 . 227539) - (-3477 . 227441) (-3478 . 227274) (-3479 . 226908) (-3480 . 226839) - (-3481 . 226404) (-3482 . 226113) (-3483 . 226004) (-3484 . 225874) - (-3485 . 225824) (-3486 . 225756) (-3487 . 225658) (-3488 . 225171) - (-3489 . 225064) (-3490 . 224992) (-3491 . 224889) (-3492 . 224774) - (-3493 . 224665) (-3494 . 224637) (-3495 . 224568) (-3496 . 224505) - (-3497 . 224407) (-3498 . 224294) (-3499 . 224075) (-3500 . 223842) - (-3501 . 223736) (-3502 . 223621) (-3503 . 223512) (-3504 . 223458) - (-3505 . 222855) (-3506 . 222747) (-3507 . 222538) (-3508 . 222469) - (-3509 . 222417) (-3510 . 222329) (-3511 . 222114) (-3512 . 222005) - (-3513 . 221927) (-3514 . 221867) (-3515 . 221759) (-3516 . 221661) - (-3517 . 221602) (-3518 . 221547) (-3519 . 221465) (-3520 . 221412) - (-3521 . 221303) (-3522 . 221147) (-3523 . 220980) (-3524 . 220878) - (-3525 . 220762) (-3526 . 220709) (-3527 . 220626) (-3528 . 220595) - (-3529 . 220445) (-3530 . 220392) (-3531 . 220283) (-3532 . 220055) - (-3533 . 219960) (-3534 . 219858) (-3535 . 219760) (-3536 . 219649) - (-3537 . 219543) (-3538 . 219413) (-3539 . 219361) (-3540 . 219252) - (-3541 . 218288) (-3542 . 218075) (-3543 . 217962) (-3544 . 217860) - (-3545 . 217608) (-3546 . 217478) (-3547 . 217310) (-3548 . 217244) - (-3549 . 217002) (-3550 . 216950) (-3551 . 216898) (-3552 . 216789) - (-3553 . 216542) (-3554 . 216458) (-3555 . 216378) (-3556 . 216265) - (-3557 . 216199) (-3558 . 215850) (-3559 . 215757) (-3560 . 215665) - (-3561 . 215556) (-3562 . 215254) (-3563 . 215139) (-3564 . 214658) - (-3565 . 214437) (-3566 . 214256) (-3567 . 214182) (-3568 . 213994) - (-3569 . 213850) (-3570 . 213738) (-3571 . 213667) (-3572 . 213558) - (-3573 . 213256) (-3574 . 213162) (-3575 . 212502) (-3576 . 212196) - (-3577 . 212124) (-3578 . 212063) (-3579 . 211870) (-3580 . 211552) - (-3581 . 210811) (-3582 . 210173) (-3583 . 210099) (-3584 . 209990) - (-3585 . 209688) (-3586 . 209594) (-3587 . 209530) (-3588 . 208754) - (-3589 . 208682) (-3590 . 208283) (-3591 . 207989) (-3592 . 207808) - (-3593 . 207067) (-3594 . 206996) (-3595 . 206887) (-3596 . 206546) - (-3597 . 206357) (-3598 . 206236) (-3599 . 205655) (-3600 . 205279) - (-3601 . 205227) (-3602 . 205154) (-3603 . 205010) (-3604 . 204322) - (-3605 . 204269) (-3606 . 204160) (-3607 . 204065) (-3608 . 204010) - (-3609 . 203889) (-3610 . 203392) (-3611 . 203333) (-3612 . 203268) - (-3613 . 203110) (-3614 . 202534) (-3615 . 199607) (-3616 . 199536) - (-3617 . 199335) (-3618 . 199146) (-3619 . 199038) (-3620 . 198790) - (-3621 . 198652) (-3622 . 198548) (-3623 . 198520) (-3624 . 198356) - (-3625 . 198303) (-3626 . 197988) (-3627 . 197412) (-3628 . 197289) - (-3629 . 197181) (-3630 . 196933) (-3631 . 196597) (-3632 . 196287) - (-3633 . 196183) (-3634 . 196133) (-3635 . 195969) (-3636 . 195916) - (-3637 . 194328) (-3638 . 193752) (-3639 . 193679) (-3640 . 193520) - (-3641 . 193221) (-3642 . 193011) (-3643 . 192904) (-3644 . 191458) - (-3645 . 191250) (-3646 . 191197) (-3647 . 191039) (-3648 . 190353) - (-3649 . 190280) (-3650 . 190042) (-3651 . 189419) (-3652 . 189301) - (-3653 . 188809) (-3654 . 188665) (-3655 . 188476) (-3656 . 188423) - (-3657 . 188282) (-3658 . 188003) (-3659 . 187317) (-3660 . 187197) - (-3661 . 187029) (-3662 . 186576) (-3663 . 186458) (-3664 . 186374) - (-3665 . 185772) (-3666 . 185712) (-3667 . 185554) (-3668 . 185501) - (-3669 . 185358) (-3670 . 184609) (-3671 . 184463) (-3672 . 184390) - (-3673 . 184268) (-3674 . 184108) (-3675 . 184048) (-3676 . 183964) - (-3677 . 183160) (-3678 . 182999) (-3679 . 182946) (-3680 . 182740) - (-3681 . 182166) (-3682 . 182093) (-3683 . 181866) (-3684 . 181627) - (-3685 . 181478) (-3686 . 181394) (-3687 . 180788) (-3688 . 180627) - (-3689 . 180574) (-3690 . 178606) (-3691 . 178032) (-3692 . 177800) - (-3693 . 177596) (-3694 . 177267) (-3695 . 177183) (-3696 . 176529) - (-3697 . 176371) (-3698 . 176318) (-3699 . 176190) (-3700 . 175616) - (-3701 . 175331) (-3702 . 174681) (-3703 . 174470) (-3704 . 174309) - (-3705 . 174225) (-3706 . 173639) (-3707 . 173499) (-3708 . 173446) - (-3709 . 173321) (-3710 . 172634) (-3711 . 172361) (-3712 . 171766) - (-3713 . 171573) (-3714 . 171430) (-3715 . 171368) (-3716 . 171271) - (-3717 . 171197) (-3718 . 171069) (-3719 . 171016) (-3720 . 170888) - (-3721 . 170201) (-3722 . 169928) (-3723 . 169649) (-3724 . 169506) - (-3725 . 169436) (-3726 . 169383) (-3727 . 169156) (-3728 . 168469) - (-3729 . 168171) (-3730 . 167998) (-3731 . 167855) (-3732 . 167802) - (-3733 . 167732) (-3734 . 167397) (-3735 . 167345) (-3736 . 167292) - (-3737 . 167065) (-3738 . 166490) (-3739 . 166388) (-3740 . 166209) - (-3741 . 165928) (-3742 . 165354) (-3743 . 165257) (-3744 . 165163) - (-3745 . 164834) (-3746 . 164785) (-3747 . 164732) (-3748 . 164604) - (-3749 . 164029) (-3750 . 163884) (-3751 . 163806) (-3752 . 163581) - (-3753 . 163484) (-3754 . 163296) (-3755 . 163244) (-3756 . 163191) - (-3757 . 162988) (-3758 . 162936) (-3759 . 162361) (-3760 . 162220) - (-3761 . 162005) (-3762 . 159873) (-3763 . 159789) (-3764 . 159598) - (-3765 . 159549) (-3766 . 159478) (-3767 . 159299) (-3768 . 158467) - (-3769 . 157893) (-3770 . 157736) (-3771 . 157558) (-3772 . 157508) - (-3773 . 157424) (-3774 . 157257) (-3775 . 157191) (-3776 . 157120) - (-3777 . 156593) (-3778 . 156019) (-3779 . 155907) (-3780 . 155741) - (-3781 . 155620) (-3782 . 155552) (-3783 . 155490) (-3784 . 154999) - (-3785 . 154658) (-3786 . 154540) (-3787 . 154468) (-3788 . 153941) - (-3789 . 153367) (-3790 . 153276) (-3791 . 152961) (-3792 . 152757) - (-3793 . 151349) (-3794 . 150776) (-3795 . 150606) (-3796 . 149426) - (-3797 . 148852) (-3798 . 148824) (-3799 . 148605) (-3800 . 148294) - (-3801 . 148016) (-3802 . 147943) (-3803 . 147594) (-3804 . 147384) - (-3805 . 147138) (-3806 . 146721) (-3807 . 146671) (-3808 . 146561) - (-3809 . 145987) (** . 142898) (-3811 . 142814) (-3812 . 142693) - (-3813 . 142575) (-3814 . 142501) (-3815 . 142424) (-3816 . 142090) - (-3817 . 141982) (-3818 . 141948) (-3819 . 140839) (-3820 . 140742) - (-3821 . 140615) (-3822 . 140563) (-3823 . 140465) (-3824 . 134952) - (-3825 . 134683) (-3826 . 134485) (-3827 . 134318) (-3828 . 134253) - (-3829 . 134221) (-3830 . 134068) (-3831 . 133789) (-3832 . 133310) - (-3833 . 133225) (-3834 . 133144) (-3835 . 133070) (-3836 . 132828) - (-3837 . 132440) (-3838 . 132367) (-3839 . 132195) (-3840 . 131966) - (-3841 . 129703) (-3842 . 129666) (-3843 . 129580) (-3844 . 129171) - (-3845 . 128812) (-3846 . 128739) (-3847 . 128658) (-3848 . 128450) - (-3849 . 128356) (-3850 . 127927) (-3851 . 127826) (-3852 . 127371) - (-3853 . 127161) (-3854 . 126985) (-3855 . 126705) (-3856 . 126568) - (-3857 . 126536) (-3858 . 126478) (-3859 . 126038) (-3860 . 125945) - (-3861 . 125864) (-3862 . 125748) (-3863 . 125650) (-3864 . 125549) - (-3865 . 125200) (-3866 . 125068) (-3867 . 124646) (-3868 . 124490) - (-3869 . 124252) (-3870 . 124166) (-3871 . 124047) (-3872 . 123903) - (-3873 . 123832) (-3874 . 123780) (-3875 . 123667) (-3876 . 123567) - (-3877 . 123466) (-3878 . 123386) (-3879 . 123303) (-3880 . 123076) - (-3881 . 122928) (-3882 . 122767) (-3883 . 122343) (-3884 . 122130) - (-3885 . 121850) (-3886 . 121780) (-3887 . 121724) (-3888 . 121471) - (-3889 . 121377) (-3890 . 118078) (-3891 . 117962) (-3892 . 117809) - (-3893 . 117538) (-3894 . 117390) (-3895 . 116843) (-3896 . 116419) - (-3897 . 116362) (-3898 . 116311) (-3899 . 116241) (-3900 . 116185) - (-3901 . 115864) (-3902 . 115770) (-3903 . 115696) (-3904 . 114961) - (-3905 . 114672) (-3906 . 114313) (-3907 . 113880) (-3908 . 113742) - (-3909 . 113519) (-3910 . 113320) (-3911 . 112760) (-3912 . 112690) - (-3913 . 112634) (-3914 . 112549) (-3915 . 112374) (-3916 . 112281) - (-3917 . 112186) (-3918 . 112061) (-3919 . 111928) (-3920 . 111636) - (-3921 . 111495) (-3922 . 111361) (-3923 . 111143) (-3924 . 110025) - (-3925 . 108868) (-3926 . 108774) (-3927 . 108703) (-3928 . 108618) - (-3929 . 108372) (-3930 . 108279) (-3931 . 108093) (-3932 . 107897) - (-3933 . 107772) (-3934 . 107480) (-3935 . 107002) (-3936 . 106925) - (-3937 . 106760) (-3938 . 105030) (-3939 . 104936) (-3940 . 104865) - (-3941 . 104803) (-3942 . 104710) (-3943 . 104514) (-3944 . 104374) - (-3945 . 104082) (-3946 . 103959) (-3947 . 103550) (-3948 . 103473) - (-3949 . 103388) (-3950 . 101811) (-3951 . 101717) (-3952 . 101646) - (-3953 . 101256) (-3954 . 101168) (-3955 . 101097) (-3956 . 100979) - (-3957 . 99350) (-3958 . 99058) (-3959 . 98822) (-3960 . 98652) - (-3961 . 98515) (-3962 . 98458) (-3963 . 97656) (-3964 . 97562) - (-3965 . 97481) (-3966 . 95066) (-3967 . 94179) (-3968 . 94108) - (-3969 . 93983) (-3970 . 93117) (-3971 . 93058) (-3972 . 92804) - (-3973 . 92674) (-3974 . 91589) (-3975 . 91079) (-3976 . 90985) - (-3977 . 90905) (-3978 . 90837) (-3979 . 90255) (-3980 . 90172) - (-3981 . 90014) (-3982 . 88640) (-3983 . 88533) (-3984 . 88283) - (-3985 . 88153) (-3986 . 88030) (-3987 . 87622) (-3988 . 87536) - (-3989 . 87451) (-3990 . 87397) (-3991 . 86579) (-3992 . 86496) - (-3993 . 85498) (-3994 . 85342) (-3995 . 84914) (-3996 . 84619) - (-3997 . 84492) (-3998 . 84275) (-3999 . 83615) (-4000 . 83529) - (-4001 . 83373) (-4002 . 83281) (-4003 . 83156) (-4004 . 82904) - (-4005 . 82779) (-4006 . 81900) (-4007 . 81737) (-4008 . 81596) - (-4009 . 81469) (-4010 . 81338) (-4011 . 81266) (-4012 . 81180) - (-4013 . 80876) (-4014 . 80812) (-4015 . 80560) (-4016 . 80423) - (-4017 . 80369) (-4018 . 80170) (-4019 . 79826) (-4020 . 79699) - (-4021 . 79568) (-4022 . 79496) (-4023 . 79410) (-4024 . 79330) - (-4025 . 79249) (-4026 . 79124) (-4027 . 78878) (-4028 . 78795) - (-4029 . 78741) (-4030 . 78602) (-4031 . 78461) (-4032 . 78334) - (-4033 . 78172) (-4034 . 78130) (-4035 . 78044) (-4036 . 77972) - (-4037 . 77853) (-4038 . 77607) (-4039 . 77533) (-4040 . 77153) - (-4041 . 75315) (-4042 . 75212) (-4043 . 75014) (-4044 . 74911) - (-4045 . 74807) (-4046 . 74361) (-4047 . 74287) (-4048 . 74082) - (-4049 . 73963) (-4050 . 73717) (-4051 . 73549) (-4052 . 73132) - (-4053 . 71622) (-4054 . 71519) (-4055 . 71321) (-4056 . 71221) - (-4057 . 71112) (-4058 . 71053) (-4059 . 70607) (-4060 . 70502) - (-4061 . 70312) (-4062 . 70259) (-4063 . 70013) (-4064 . 69861) - (-4065 . 69485) (-4066 . 67937) (-4067 . 67840) (-4068 . 67555) - (-4069 . 67458) (-4070 . 67399) (-4071 . 66953) (-4072 . 66662) - (-4073 . 62664) (-4074 . 62438) (-4075 . 62339) (-4076 . 62150) - (-4077 . 61903) (-4078 . 61799) (-4079 . 61423) (-4080 . 61364) - (-4081 . 60924) (-4082 . 60794) (-4083 . 60688) (-4084 . 60163) - (-4085 . 60010) (-4086 . 59930) (-4087 . 59812) (-4088 . 59748) - (-4089 . 59501) (-4090 . 59397) (-4091 . 59244) (-4092 . 58508) - (-4093 . 58166) (-4094 . 58092) (-4095 . 57941) (-4096 . 57835) - (-4097 . 57745) (-4098 . 57319) (-4099 . 57242) (-4100 . 57121) - (-4101 . 57067) (-4102 . 56820) (-4103 . 56735) (-4104 . 56433) - (-4105 . 56271) (-4106 . 56170) (-4107 . 56006) (-4108 . 55624) - (-4109 . 54784) (-4110 . 54691) (-4111 . 54595) (-4112 . 54452) - (-4113 . 54343) (-4114 . 54096) (-4115 . 53724) (-4116 . 53565) - (-4117 . 53438) (-4118 . 53319) (-4119 . 53156) (-4120 . 51954) - (-4121 . 51711) (-4122 . 49855) (-4123 . 49772) (-4124 . 49388) - (-4125 . 49282) (-4126 . 49139) (-4127 . 47763) (-4128 . 47645) - (-4129 . 47562) (-4130 . 47231) (-4131 . 46587) (-4132 . 46371) - (-4133 . 46207) (-4134 . 45744) (-4135 . 45676) (-4136 . 45513) - (-4137 . 45414) (-4138 . 45217) (-4139 . 45077) (-4140 . 44993) - (-4141 . 44134) (-4142 . 44047) (-4143 . 43976) (-4144 . 42804) - (-4145 . 42621) (-4146 . 42451) (-4147 . 42388) (-4148 . 42072) - (-4149 . 42004) (-4150 . 41890) (-4151 . 41856) (-4152 . 41777) - (-4153 . 41637) (-4154 . 41605) (-4155 . 41522) (-4156 . 41451) - (-4157 . 41336) (-4158 . 41166) (-4159 . 41113) (-4160 . 40506) - (-4161 . 40438) (-4162 . 40361) (-4163 . 40327) (-4164 . 40248) - (-4165 . 40105) (-4166 . 39756) (-4167 . 39534) (-4168 . 39322) - (-4169 . 38185) (-4170 . 37961) (-4171 . 37908) (-4172 . 37299) - (-4173 . 37231) (-4174 . 36015) (-4175 . 35921) (-4176 . 35794) - (-4177 . 35567) (-4178 . 35374) (-4179 . 35165) (-4180 . 34705) - (-4181 . 34576) (-4182 . 33501) (-4183 . 33433) (-4184 . 33333) - (-4185 . 32152) (-4186 . 32034) (-4187 . 31940) (-4188 . 31810) - (-4189 . 31710) (-4190 . 31379) (-4191 . 31003) (-4192 . 30894) - (-4193 . 30834) (-4194 . 30249) (-4195 . 30169) (-4196 . 30069) - (-4197 . 29869) (-4198 . 29745) (-4199 . 29645) (-4200 . 29349) - (-4201 . 28814) (-4202 . 28699) (-4203 . 28646) (-4204 . 28330) - (-4205 . 27923) (-4206 . 27580) (-4207 . 27422) (-4208 . 27298) - (-4209 . 25515) (-4210 . 25219) (-4211 . 24662) (-4212 . 24593) - (-4213 . 24235) (-4214 . 24182) (-4215 . 23844) (-4216 . 23482) - (-4217 . 23401) (-4218 . 23243) (-4219 . 23137) (-4220 . 23023) - (-4221 . 22713) (-4222 . 22156) (-4223 . 22087) (-4224 . 22016) - (-4225 . 21685) (-4226 . 21500) (-4227 . 21422) (-4228 . 21264) - (-4229 . 21158) (-4230 . 20092) (-4231 . 19775) (-4232 . 19535) - (-4233 . 19409) (-4234 . 19340) (-4235 . 19287) (-4236 . 18960) - (-4237 . 18417) (-4238 . 18310) (-4239 . 18152) (-4240 . 18009) - (-4241 . 17906) (-4242 . 17810) (-4243 . 17681) (-4244 . 17071) - (-4245 . 17005) (-4246 . 16863) (-4247 . 16810) (-4248 . 16631) - (-4249 . 16469) (-4250 . 16311) (-4251 . 16158) (-4252 . 16053) - (-4253 . 15862) (-4254 . 15638) (-4255 . 15513) (-4256 . 15415) - (-4257 . 15285) (-4258 . 15063) (-4259 . 14955) (-4260 . 14873) - (-4261 . 14715) (-4262 . 14559) (-4263 . 14472) (-4264 . 13984) - (-4265 . 13714) (-4266 . 13522) (-4267 . 13305) (-4268 . 13211) - (-4269 . 12679) (-4270 . 12457) (-4271 . 12321) (-4272 . 12254) - (-4273 . 12098) (-4274 . 12069) (-4275 . 11985) (-4276 . 9871) - (-4277 . 9821) (-4278 . 9705) (-4279 . 8540) (-4280 . 8318) - (-4281 . 8182) (-4282 . 8130) (-4283 . 7972) (-4284 . 7825) - (-4285 . 7768) (-4286 . 7551) (-4287 . 7399) (-4288 . 7328) - (-4289 . 7231) (-4290 . 7176) (-4291 . 6957) (-4292 . 6834) - (-4293 . 6676) (-4294 . 6513) (-4295 . 6431) (-4296 . 6214) - (-4297 . 6026) (-4298 . 5883) (-4299 . 5782) (-4300 . 5727) - (-4301 . 5508) (-4302 . 5409) (-4303 . 5251) (-4304 . 5172) - (-4305 . 5100) (-4306 . 4841) (-4307 . 4534) (-4308 . 4437) - (-4309 . 4359) (-4310 . 4140) (-4311 . 3991) (-4312 . 3833) - (-4313 . 3751) (-4314 . 3674) (-4315 . 3240) (-4316 . 3067) - (-4317 . 2955) (-4318 . 2811) (-4319 . 2734) (-4320 . 2515) - (-4321 . 2416) (-4322 . 2258) (-4323 . 2099) (-4324 . 2022) - (-4325 . 1468) (-4326 . 1295) (-4327 . 1183) (-4328 . 912) - (-4329 . 835) (-4330 . 616) (-4331 . 461) (-4332 . 188) (-4333 . 30))
\ No newline at end of file + (|partial| -12 (-5 *2 (-1 (-528) (-627 (-528)))) (-5 *1 (-113)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-528) (-627 (-528)))) (-5 *1 (-113)))) + ((*1 *1) (-5 *1 (-566)))) +((-1268 . 739111) (-1269 . 739083) (-1270 . 738900) (-1271 . 738831) + (-1272 . 738313) (-1273 . 738260) (-1274 . 738205) (-1275 . 737900) + (-1276 . 737813) (-1277 . 737694) (-1278 . 737641) (-1279 . 736991) + (-1280 . 736872) (-1281 . 736631) (-1282 . 736546) (-1283 . 736337) + (-1284 . 736285) (-1285 . 736097) (-1286 . 736042) (-1287 . 735832) + (-1288 . 735421) (-1289 . 735233) (-1290 . 735147) (-1291 . 735085) + (-1292 . 734965) (-1293 . 734931) (-1294 . 734557) (-1295 . 734429) + (-1296 . 733834) (-1297 . 733761) (-1298 . 733690) (-1299 . 733575) + (-1300 . 733423) (-1301 . 733322) (-1302 . 733290) (-1303 . 732937) + (-1304 . 732507) (-1305 . 732369) (-1306 . 732155) (-1307 . 732096) + (-1308 . 731916) (-1309 . 731549) (-1310 . 731497) (-1311 . 731382) + (-1312 . 731257) (-1313 . 731226) (-1314 . 731088) (-1315 . 730913) + (-1316 . 730770) (-1317 . 730692) (-1318 . 730201) (-1319 . 729654) + (-1320 . 729512) (-1321 . 729417) (-1322 . 729282) (-1323 . 728180) + (-1324 . 727975) (-1325 . 727558) (-1326 . 727237) (-1327 . 727075) + (-1328 . 726937) (-1329 . 726709) (-1330 . 726590) (-1331 . 725854) + (-1332 . 725800) (-1333 . 725656) (-1334 . 725569) (-1335 . 725376) + (-1336 . 725323) (-1337 . 725219) (-1338 . 725148) (-1339 . 725071) + (-1340 . 724800) (-1341 . 724723) (-1342 . 724594) (-1343 . 724400) + (-1344 . 724263) (-1345 . 724095) (-1346 . 723986) (-1347 . 723456) + (-1348 . 723406) (-1349 . 723320) (-1350 . 723248) (-1351 . 723165) + (-1352 . 722935) (-1353 . 722858) (-1354 . 722765) (-1355 . 722607) + (-1356 . 722502) (-1357 . 722353) (-1358 . 722134) (-1359 . 722106) + (-1360 . 721906) (-1361 . 719938) (-1362 . 719740) (-1363 . 719631) + (-1364 . 719554) (-1365 . 719453) (-1366 . 719370) (-1367 . 719210) + (-1368 . 719108) (-1369 . 719007) (-1370 . 718936) (-1371 . 718795) + (-1372 . 718710) (-1373 . 718604) (-1374 . 718510) (-1375 . 717915) + (-1376 . 717418) (-1377 . 717276) (-1378 . 716990) (-1379 . 716768) + (-1380 . 716637) (-1381 . 716538) (-1382 . 715953) (-1383 . 715586) + (-1384 . 715473) (-1385 . 715130) (-1386 . 714963) (-1387 . 714799) + (-1388 . 714711) (-1389 . 714351) (-1390 . 714249) (-1391 . 713943) + (-1392 . 713890) (-1393 . 713503) (-1394 . 713307) (-1395 . 712949) + (-1396 . 712848) (-1397 . 712683) (-1398 . 712539) (-1399 . 712320) + (-1400 . 712102) (-1401 . 711993) (-1402 . 711845) (-1403 . 711789) + (-1404 . 711624) (-1405 . 711028) (-1406 . 710959) (-1407 . 710851) + (-1408 . 710799) (-1409 . 710715) (-1410 . 710642) (-1411 . 710491) + (-1412 . 710435) (-1413 . 710292) (-1414 . 710136) (-1415 . 709992) + (-1416 . 709936) (-1417 . 709874) (-1418 . 709760) (-1419 . 709700) + (-1420 . 709584) (-1421 . 709476) (-1422 . 709148) (-1423 . 708995) + (-1424 . 708883) (-1425 . 708624) (-1426 . 708436) (-1427 . 708405) + (-1428 . 708291) (-1429 . 708238) (-1430 . 708094) (-1431 . 707993) + (-1432 . 707900) (-1433 . 707827) (-1434 . 707717) (-1435 . 707648) + (-1436 . 707574) (-1437 . 707522) (-1438 . 707304) (-1439 . 707113) + (-1440 . 706779) (-1441 . 706713) (-1442 . 706601) (-1443 . 706458) + (-1444 . 706184) (-1445 . 705443) (-1446 . 705191) (-1447 . 705075) + (-1448 . 704945) (-1449 . 704888) (-1450 . 704683) (-1451 . 704586) + (-1452 . 704337) (-1453 . 703996) (-1454 . 703844) (-1455 . 703420) + (-1456 . 702679) (-1457 . 702461) (-1458 . 702279) (-1459 . 702152) + (-1460 . 702065) (-1461 . 701900) (-1462 . 701471) (-1463 . 701372) + (-1464 . 701062) (-1465 . 700975) (-1466 . 700889) (-1467 . 700201) + (-1468 . 700094) (-1469 . 699927) (-1470 . 699843) (-1471 . 699749) + (-1472 . 698931) (-1473 . 698695) (-1474 . 698533) (-1475 . 698429) + (-1476 . 698314) (-1477 . 675147) (-1478 . 675049) (-1479 . 674473) + (-1480 . 674318) (-1481 . 674165) (-1482 . 673819) (-1483 . 673706) + (-1484 . 672394) (-1485 . 672342) (-1486 . 672208) (-1487 . 672063) + (-1488 . 671991) (-1489 . 671151) (-1490 . 668399) (-1491 . 668331) + (-1492 . 667755) (-1493 . 667244) (-1494 . 667066) (-1495 . 666939) + (-1496 . 666840) (-1497 . 666806) (-1498 . 666687) (-1499 . 666356) + (-1500 . 666233) (-1501 . 666151) (-1502 . 665575) (-1503 . 665475) + (-1504 . 665365) (-1505 . 664982) (-1506 . 664905) (-1507 . 664709) + (-1508 . 664461) (-1509 . 664222) (-1510 . 664123) (-1511 . 664039) + (-1512 . 663796) (-1513 . 663110) (-1514 . 662967) (-1515 . 662830) + (-1516 . 662446) (-1517 . 662361) (-1518 . 662194) (-1519 . 662141) + (-1520 . 662040) (-1521 . 661885) (-1522 . 661758) (-1523 . 661379) + (-1524 . 660693) (-1525 . 660622) (-1526 . 660509) (-1527 . 660402) + (-1528 . 660211) (-1529 . 660070) (-1530 . 659546) (-1531 . 659475) + (-1532 . 659114) (-1533 . 658945) (-1534 . 658196) (-1535 . 658144) + (-1536 . 658049) (-1537 . 657991) (-1538 . 657852) (-1539 . 657657) + (-1540 . 656477) (-1541 . 656378) (-1542 . 656199) (-1543 . 655642) + (-1544 . 655431) (-1545 . 655232) (-1546 . 654915) (-1547 . 654341) + (-1548 . 653959) (-1549 . 653900) (-1550 . 653755) (-1551 . 653682) + (-1552 . 653558) (-1553 . 653430) (-1554 . 653357) (-1555 . 653280) + (-1556 . 653202) (-1557 . 652808) (-1558 . 652715) (-1559 . 652543) + (-1560 . 652352) (-1561 . 651778) (-1562 . 651651) (-1563 . 651602) + (-1564 . 651331) (-1565 . 651248) (-1566 . 651125) (-1567 . 650954) + (-1568 . 650926) (-1569 . 650832) (-1570 . 650193) (-1571 . 649868) + (-1572 . 649815) (-12 . 649643) (-1574 . 649594) (-1575 . 649020) + (-1576 . 648934) (-1577 . 647753) (-1578 . 647675) (-1579 . 647530) + (-1580 . 647426) (-1581 . 647255) (-1582 . 647065) (-1583 . 646942) + (-1584 . 646255) (-1585 . 645451) (-1586 . 645329) (-1587 . 645226) + (-1588 . 645160) (-1589 . 645065) (-1590 . 644992) (-1591 . 644936) + (-1592 . 644815) (-1593 . 644706) (-1594 . 644618) (-1595 . 644564) + (-1596 . 643877) (-1597 . 643719) (-1598 . 643590) (-1599 . 643379) + (-1600 . 643327) (-1601 . 643133) (-1602 . 642971) (-1603 . 642903) + (-1604 . 642681) (-1605 . 642615) (-1606 . 642431) (-1607 . 641744) + (-1608 . 641670) (-1609 . 641557) (-1610 . 640975) (-1611 . 640898) + (-1612 . 640814) (-1613 . 640763) (-1614 . 640612) (-1615 . 640037) + (-1616 . 640009) (-1617 . 639618) (-1618 . 639399) (-1619 . 639290) + (-1620 . 638910) (-1621 . 638395) (-1622 . 638297) (-1623 . 638037) + (-1624 . 637692) (-1625 . 637624) (-1626 . 637525) (-1627 . 637473) + (-1628 . 636898) (-1629 . 636845) (-1630 . 636773) (-1631 . 636720) + (-1632 . 636620) (-1633 . 636231) (-1634 . 636164) (-1635 . 635634) + (-1636 . 635581) (-1637 . 634878) (-1638 . 634804) (-1639 . 634688) + (-1640 . 634113) (-1641 . 633955) (-1642 . 633857) (-1643 . 633668) + (-1644 . 633217) (-1645 . 633189) (-1646 . 633012) (-1647 . 632929) + (-1648 . 632877) (-1649 . 632791) (-1650 . 632708) (-1651 . 632552) + (-1652 . 631978) (-1653 . 631852) (-1654 . 631797) (-1655 . 631763) + (-1656 . 631697) (-1657 . 631578) (-1658 . 631460) (-1659 . 629328) + (-1660 . 628990) (-1661 . 628416) (-1662 . 627812) (-1663 . 627516) + (-1664 . 627413) (-1665 . 627181) (-1666 . 627058) (-1667 . 626975) + (-1668 . 626847) (-1669 . 626774) (-1670 . 626619) (-1671 . 625803) + (* . 621257) (-1673 . 620683) (-1674 . 620630) (-1675 . 620493) + (-1676 . 620465) (-1677 . 620219) (-1678 . 620134) (-1679 . 620082) + (-1680 . 619625) (-1681 . 619508) (-1682 . 619409) (-1683 . 619093) + (-1684 . 619031) (-1685 . 618234) (-1686 . 617660) (-1687 . 617594) + (-1688 . 617369) (-1689 . 617298) (-1690 . 617171) (-1691 . 617052) + (-1692 . 616943) (-1693 . 616860) (-1694 . 615452) (-1695 . 615423) + (-1696 . 605861) (-1697 . 605287) (-1698 . 605190) (-1699 . 605010) + (-1700 . 604803) (-1701 . 604720) (-1702 . 604637) (-1703 . 599299) + (-1704 . 599190) (-1705 . 599084) (-1706 . 598923) (-1707 . 598784) + (-1708 . 598710) (-1709 . 598333) (-1710 . 598126) (-1711 . 598007) + (-1712 . 597827) (-1713 . 597768) (-1714 . 597187) (-1715 . 597079) + (-1716 . 596868) (-1717 . 596761) (-1718 . 596608) (-1719 . 596456) + (-1720 . 596378) (-1721 . 596094) (-1722 . 596041) (-1723 . 596012) + (-1724 . 595918) (-1725 . 595782) (-1726 . 595692) (-1727 . 590179) + (-1728 . 590021) (-1729 . 589612) (-1730 . 589545) (-1731 . 589350) + (-1732 . 589298) (-1733 . 589191) (-1734 . 589124) (-1735 . 589027) + (-1736 . 588918) (-1737 . 588530) (-1738 . 588277) (-1739 . 588122) + (-1740 . 587934) (-1741 . 587856) (-1742 . 587726) (-1743 . 587563) + (-1744 . 587166) (-1745 . 586528) (-1746 . 586444) (-1747 . 586356) + (-1748 . 586255) (-1749 . 585800) (-1750 . 585772) (-1751 . 585666) + (-1752 . 585501) (-1753 . 585429) (-1754 . 585313) (-1755 . 585221) + (-1756 . 585155) (-1757 . 584942) (-1758 . 584555) (-1759 . 584206) + (-1760 . 583993) (-1761 . 583940) (-1762 . 583773) (-1763 . 583601) + (-1764 . 583395) (-1765 . 583237) (-1766 . 583165) (-1767 . 583085) + (-1768 . 583011) (-1769 . 582649) (-1770 . 582538) (-1771 . 582432) + (-1772 . 582130) (-1773 . 582046) (-1774 . 581829) (-1775 . 581748) + (-1776 . 581630) (-1777 . 578703) (-1778 . 578520) (-1779 . 578429) + (-1780 . 578211) (-1781 . 578154) (-1782 . 577989) (-1783 . 577861) + (-1784 . 577776) (-1785 . 577484) (-1786 . 576720) (-1787 . 576664) + (-1788 . 576126) (-1789 . 576027) (-1790 . 575738) (-1791 . 575490) + (-1792 . 574333) (-1793 . 574238) (-1794 . 574144) (-1795 . 574091) + (-1796 . 573977) (-1797 . 573717) (-1798 . 573469) (-1799 . 573127) + (-1800 . 572870) (-1801 . 572602) (-1802 . 572495) (-1803 . 572411) + (-1804 . 572323) (-1805 . 572266) (-1806 . 571879) (-1807 . 571700) + (-1808 . 571606) (-1809 . 571462) (-1810 . 571086) (-1811 . 570876) + (-1812 . 570762) (-1813 . 570655) (-1814 . 570465) (-1815 . 570247) + (-1816 . 569968) (-1817 . 569522) (-1818 . 569469) (-1819 . 569311) + (-1820 . 569210) (-1821 . 568900) (-1822 . 568742) (-1823 . 568668) + (-1824 . 568589) (-1825 . 568520) (-1826 . 568401) (-1827 . 568346) + (-1828 . 568294) (-1829 . 568242) (-1830 . 568141) (-1831 . 567680) + (-1832 . 566051) (-1833 . 565449) (-1834 . 564770) (-1835 . 564684) + (-1836 . 564165) (-1837 . 564093) (-1838 . 564041) (-1839 . 563544) + (-1840 . 563400) (-1841 . 560101) (-1842 . 559235) (-1843 . 559090) + (-1844 . 558963) (-1845 . 558816) (-1846 . 558723) (-1847 . 558556) + (-1848 . 558482) (-1849 . 558426) (-1850 . 558201) (-1851 . 558135) + (-1852 . 558045) (-1853 . 556671) (-1854 . 556594) (-1855 . 556456) + (-1856 . 556401) (-1857 . 556278) (-1858 . 556169) (-1859 . 556067) + (-1860 . 556014) (-1861 . 555948) (-1862 . 555889) (-1863 . 555837) + (-1864 . 555653) (-1865 . 555582) (-1866 . 555511) (-1867 . 555316) + (-1868 . 555131) (-1869 . 555071) (-1870 . 554557) (-1871 . 554483) + (-1872 . 554417) (-1873 . 554360) (-1874 . 554171) (-1875 . 554122) + (-1876 . 553966) (-1877 . 553883) (-1878 . 553725) (-1879 . 553534) + (-1880 . 553150) (-1881 . 553053) (-1882 . 552898) (-1883 . 552673) + (-1884 . 552510) (-1885 . 552397) (-1886 . 552337) (-1887 . 552231) + (-1888 . 552118) (-1889 . 550530) (-1890 . 550291) (-1891 . 550069) + (-1892 . 549409) (-1893 . 549129) (-1894 . 548834) (-1895 . 548578) + (-1896 . 548447) (-1897 . 548301) (-1898 . 548220) (-1899 . 547663) + (-1900 . 547592) (-1901 . 547521) (-1902 . 547469) (-1903 . 546825) + (-1904 . 546702) (-1905 . 546559) (-1906 . 546473) (-1907 . 546173) + (-1908 . 546079) (-1909 . 544241) (-1910 . 544094) (-1911 . 540758) + (-1912 . 540672) (-1913 . 540541) (-1914 . 540396) (-1915 . 538545) + (-1916 . 538471) (-1917 . 538278) (-1918 . 538201) (-1919 . 537727) + (-1920 . 536217) (-1921 . 534932) (-1922 . 534761) (-1923 . 534691) + (-1924 . 534419) (-1925 . 534331) (-1926 . 534279) (-1927 . 534136) + (-1928 . 534032) (-1929 . 533925) (-1930 . 532377) (-1931 . 532259) + (-1932 . 532069) (-1933 . 531822) (-1934 . 531756) (-1935 . 531678) + (-1936 . 531622) (-1937 . 531417) (-1938 . 531364) (-1939 . 531276) + (-1940 . 531202) (-1941 . 531036) (-1942 . 530828) (-1943 . 530639) + (-1944 . 530573) (-1945 . 530390) (-1946 . 530272) (-1947 . 530205) + (-1948 . 530080) (-1949 . 529933) (-1950 . 529741) (-1951 . 529005) + (-1952 . 528902) (-1953 . 528846) (-1954 . 528764) (-1955 . 528672) + (-1956 . 528586) (-1957 . 528533) (-1958 . 528192) (-1959 . 528093) + (-1960 . 527931) (-1961 . 527843) (-1962 . 527655) (-1963 . 527463) + (-1964 . 526975) (-1965 . 526782) (-1966 . 526652) (-1967 . 526572) + (-1968 . 526324) (-1969 . 526287) (-1970 . 526160) (-1971 . 525290) + (-1972 . 525222) (-1973 . 524769) (-1974 . 524418) (-1975 . 524369) + (-1976 . 524286) (-1977 . 524189) (-1978 . 524119) (-1979 . 524091) + (-1980 . 523997) (-1981 . 523353) (-1982 . 523138) (-1983 . 522842) + (-1984 . 522590) (-1985 . 517478) (-1986 . 517359) (-1987 . 517196) + (-1988 . 517108) (-1989 . 516884) (-1990 . 516750) (-1991 . 516679) + (-1992 . 516529) (-1993 . 515357) (-1994 . 515138) (-1995 . 515080) + (-1996 . 515028) (-1997 . 514919) (-1998 . 514759) (-1999 . 514585) + (-2000 . 514383) (-2001 . 514280) (-2002 . 514246) (-2003 . 514131) + (-2004 . 513988) (-2005 . 513936) (-2006 . 513836) (-2007 . 513651) + (-2008 . 513148) (-2009 . 512912) (-2010 . 512859) (-2011 . 512701) + (-2012 . 512635) (-2013 . 512431) (-2014 . 511294) (-2015 . 511047) + (-2016 . 510894) (-2017 . 510744) (-2018 . 510672) (-2019 . 510583) + (-2020 . 510276) (-2021 . 510211) (-2022 . 510112) (-2023 . 510017) + (-2024 . 509545) (-2025 . 509490) (-2026 . 509461) (-2027 . 509383) + (-2028 . 509280) (-2029 . 509210) (-2030 . 508992) (-2031 . 507927) + (-2032 . 507717) (-2033 . 507269) (-2034 . 507203) (-2035 . 507123) + (-2036 . 506986) (-2037 . 506850) (-2038 . 506766) (-2039 . 506535) + (-2040 . 505319) (-2041 . 505262) (-2042 . 504945) (-2043 . 504792) + (-2044 . 504724) (-2045 . 504620) (-2046 . 504517) (-2047 . 504355) + (-2048 . 504263) (-2049 . 504207) (-2050 . 504123) (-2051 . 504039) + (-2052 . 503945) (-2053 . 503893) (-2054 . 503834) (-2055 . 503492) + (-2056 . 503439) (-2057 . 503344) (-2058 . 503141) (-2059 . 502997) + (-2060 . 502897) (-2061 . 502812) (-2062 . 502726) (-2063 . 502345) + (-2064 . 502289) (-2065 . 502221) (-2066 . 502189) (-2067 . 501646) + (-2068 . 501552) (-2069 . 501449) (-2070 . 500794) (-2071 . 500648) + (-2072 . 500594) (-2073 . 500335) (-2074 . 499891) (-2075 . 499775) + (-2076 . 499692) (-2077 . 499663) (-2078 . 499522) (-2079 . 498673) + (-2080 . 498565) (-2081 . 498383) (-2082 . 498327) (-2083 . 496785) + (-2084 . 496718) (-2085 . 496440) (-2086 . 496370) (-2087 . 496229) + (-2088 . 496163) (-2089 . 496086) (-2090 . 496033) (-2091 . 492412) + (-2092 . 492194) (-2093 . 492079) (-2094 . 491916) (-2095 . 491716) + (-2096 . 491591) (-2097 . 491311) (-9 . 491283) (-2099 . 491076) + (-2100 . 491016) (-2101 . 490564) (-2102 . 490271) (-2103 . 490009) + (-2104 . 489943) (-2105 . 489892) (-2106 . 489783) (-2107 . 489667) + (-2108 . 489612) (-2109 . 489372) (-8 . 489344) (-2111 . 489316) + (-2112 . 489163) (-2113 . 489083) (-2114 . 488824) (-2115 . 488730) + (-2116 . 488586) (-2117 . 488388) (-2118 . 487834) (-2119 . 487781) + (-2120 . 487695) (-2121 . 487603) (-7 . 487575) (-2123 . 487432) + (-2124 . 487317) (-2125 . 487101) (-2126 . 487027) (-2127 . 486906) + (-2128 . 486664) (-2129 . 486558) (-2130 . 486495) (-2131 . 486388) + (-2132 . 486296) (-2133 . 486164) (-2134 . 486105) (-2135 . 485993) + (-2136 . 485916) (-2137 . 485763) (-2138 . 485692) (-2139 . 485239) + (-2140 . 485130) (-2141 . 485075) (-2142 . 484989) (-2143 . 484866) + (-2144 . 484548) (-2145 . 484296) (-2146 . 483981) (-2147 . 483866) + (-2148 . 483439) (-2149 . 483386) (-2150 . 483147) (-2151 . 483015) + (-2152 . 482763) (-2153 . 482683) (-2154 . 482290) (-2155 . 481850) + (-2156 . 481670) (-2157 . 481423) (-2158 . 481346) (-2159 . 481252) + (-2160 . 481145) (-2161 . 480872) (-2162 . 479670) (-2163 . 479143) + (-2164 . 474983) (-2165 . 474822) (-2166 . 474785) (-2167 . 474751) + (-2168 . 474550) (-2169 . 473369) (-2170 . 473088) (-2171 . 473002) + (-2172 . 472651) (-2173 . 472493) (-2174 . 472411) (-2175 . 472038) + (-2176 . 471873) (-2177 . 471787) (-2178 . 471709) (-2179 . 471629) + (-2180 . 471574) (-2181 . 471438) (-2182 . 471350) (-2183 . 471053) + (-2184 . 470969) (-2185 . 470862) (-2186 . 470527) (-2187 . 470434) + (-2188 . 470356) (-2189 . 470273) (-2190 . 470019) (-2191 . 469728) + (-2192 . 469629) (-2193 . 469563) (-2194 . 469271) (-2195 . 469142) + (-2196 . 469007) (-2197 . 468955) (-2198 . 468660) (-2199 . 468517) + (-2200 . 468448) (-2201 . 467846) (-2202 . 467787) (-2203 . 467701) + (-2204 . 467605) (-2205 . 467496) (-2206 . 467263) (-2207 . 467197) + (-2208 . 467026) (-2209 . 466954) (-2210 . 466750) (-2211 . 465632) + (-2212 . 465206) (-2213 . 465088) (-2214 . 465035) (-2215 . 464877) + (-2216 . 464743) (-2217 . 464660) (-2218 . 464409) (-2219 . 464303) + (-2220 . 463692) (-2221 . 463536) (-2222 . 463484) (-2223 . 463260) + (-2224 . 463151) (-2225 . 462497) (-2226 . 462399) (-2227 . 462350) + (-2228 . 462070) (-2229 . 461948) (-2230 . 461708) (-2231 . 461680) + (-2232 . 461556) (-2233 . 461135) (-2234 . 461061) (-2235 . 460955) + (-2236 . 460841) (-2237 . 460696) (-2238 . 460530) (-2239 . 460365) + (-2240 . 460308) (-2241 . 460170) (-2242 . 459962) (-2243 . 459831) + (-2244 . 459700) (-2245 . 459627) (-2246 . 459410) (-2247 . 459101) + (-2248 . 458980) (-2249 . 458909) (-2250 . 458812) (-2251 . 458601) + (-2252 . 458483) (-2253 . 458355) (-2254 . 458218) (-2255 . 458127) + (-2256 . 458049) (-2257 . 457925) (-2258 . 457655) (-2259 . 457453) + (-2260 . 457383) (-2261 . 457311) (-2262 . 457259) (-2263 . 457185) + (-2264 . 457085) (-2265 . 456342) (-2266 . 456262) (-2267 . 455698) + (-2268 . 455162) (-2269 . 454770) (-2270 . 453742) (-2271 . 453495) + (-2272 . 453431) (-2273 . 453101) (-2274 . 452986) (-2275 . 452912) + (-2276 . 452702) (-2277 . 452586) (-2278 . 452479) (-2279 . 451895) + (-2280 . 451844) (-2281 . 451810) (-2282 . 451703) (-2283 . 451100) + (-2284 . 450945) (-2285 . 450850) (-2286 . 450722) (-2287 . 450632) + (-2288 . 450305) (-2289 . 450239) (-2290 . 450161) (-2291 . 450037) + (-2292 . 449765) (-2293 . 449643) (-2294 . 449560) (-2295 . 449430) + (-2296 . 449309) (-2297 . 449149) (-2298 . 449092) (-2299 . 449019) + (-2300 . 448922) (-2301 . 448845) (-2302 . 448738) (-2303 . 448683) + (-2304 . 448567) (-2305 . 448414) (-2306 . 448321) (-2307 . 448227) + (-2308 . 447934) (-2309 . 447862) (-2310 . 447834) (-2311 . 447587) + (-2312 . 446953) (-2313 . 446805) (-2314 . 446689) (-2315 . 446374) + (-2316 . 446143) (-2317 . 446115) (-2318 . 445974) (-2319 . 445889) + (-2320 . 445616) (-2321 . 445550) (-2322 . 445368) (-2323 . 445311) + (-2324 . 445225) (-2325 . 445196) (-2326 . 445136) (-2327 . 444882) + (-2328 . 444740) (-2329 . 444653) (-2330 . 444492) (-2331 . 443685) + (-2332 . 443562) (-2333 . 443472) (-2334 . 443404) (-2335 . 443252) + (-2336 . 443178) (-2337 . 443043) (-2338 . 442882) (-2339 . 442772) + (-2340 . 442613) (-2341 . 442533) (-2342 . 441936) (-2343 . 441883) + (-2344 . 441725) (-2345 . 441610) (-2346 . 441488) (-2347 . 441436) + (-2348 . 441381) (-2349 . 439598) (-2350 . 439535) (-2351 . 439448) + (-2352 . 439333) (-2353 . 439301) (-2354 . 439249) (-2355 . 439105) + (-2356 . 438735) (-2357 . 438666) (-2358 . 438568) (-2359 . 438402) + (-2360 . 438106) (-2361 . 438034) (-2362 . 437979) (-2363 . 437870) + (-2364 . 437384) (-2365 . 437305) (-2366 . 437074) (-2367 . 437019) + (-2368 . 436851) (-2369 . 436755) (-2370 . 436403) (-2371 . 436260) + (-2372 . 436147) (-2373 . 435771) (-2374 . 435681) (-2375 . 435349) + (-2376 . 435265) (-2377 . 435212) (-2378 . 434819) (-2379 . 434745) + (-2380 . 434413) (-2381 . 434360) (-2382 . 434281) (-2383 . 434203) + (-2384 . 433017) (-2385 . 432965) (-2386 . 432789) (-2387 . 432584) + (-2388 . 432497) (-2389 . 432179) (-2390 . 432099) (-2391 . 431918) + (-2392 . 431683) (-2393 . 431630) (-2394 . 431478) (-2395 . 431162) + (-2396 . 429980) (-2397 . 429928) (-2398 . 429782) (-2399 . 429518) + (-2400 . 429289) (-2401 . 429193) (-2402 . 429077) (-2403 . 428973) + (-2404 . 428723) (-2405 . 427988) (-2406 . 427745) (-2407 . 425539) + (-2408 . 425402) (-2409 . 425259) (-2410 . 424174) (-2411 . 423462) + (-2412 . 423394) (-2413 . 423249) (-2414 . 423171) (-2415 . 422986) + (-2416 . 422937) (-2417 . 422812) (-2418 . 422703) (-2419 . 422430) + (-2420 . 422244) (-2421 . 422188) (-2422 . 420812) (-2423 . 420560) + (-2424 . 420394) (-2425 . 420295) (-2426 . 420243) (-2427 . 419950) + (-2428 . 419600) (-2429 . 419500) (-2430 . 419340) (-2431 . 419201) + (-2432 . 419147) (-2433 . 418820) (-2434 . 418720) (-2435 . 418513) + (-2436 . 418352) (-2437 . 418199) (-2438 . 418047) (-2439 . 417994) + (-2440 . 417870) (-2441 . 417712) (-2442 . 417433) (-2443 . 417254) + (-2444 . 417180) (-2445 . 416932) (-2446 . 416814) (-2447 . 416599) + (-2448 . 416533) (-2449 . 416434) (-2450 . 416381) (-2451 . 416236) + (-2452 . 416111) (-2453 . 415902) (-2454 . 415803) (-2455 . 415553) + (-2456 . 415450) (-2457 . 415260) (-2458 . 414945) (-2459 . 414826) + (-2460 . 414666) (-2461 . 414506) (-2462 . 414381) (-2463 . 414251) + (-2464 . 414196) (-2465 . 414137) (-2466 . 414015) (-2467 . 413853) + (-2468 . 413719) (-2469 . 413597) (-2470 . 413295) (-2471 . 413207) + (-2472 . 413124) (-2473 . 413010) (-2474 . 412936) (-2475 . 412862) + (-2476 . 412316) (-2477 . 412004) (-2478 . 411596) (-2479 . 411510) + (-2480 . 411392) (-2481 . 410865) (-2482 . 410814) (-2483 . 410596) + (-2484 . 410508) (-2485 . 410434) (-2486 . 410245) (-2487 . 408972) + (-2488 . 408730) (-2489 . 408657) (-2490 . 408574) (-2491 . 408442) + (-2492 . 408171) (-2493 . 408106) (-2494 . 408054) (-2495 . 407946) + (-2496 . 406936) (-2497 . 406865) (-2498 . 406758) (-2499 . 406614) + (-2500 . 406562) (-2501 . 406477) (-2502 . 406378) (-2503 . 406325) + (-2504 . 406274) (-2505 . 406156) (-2506 . 405805) (-2507 . 405749) + (-2508 . 405610) (-2509 . 405443) (-2510 . 405300) (-2511 . 405154) + (-2512 . 405045) (-2513 . 404966) (-2514 . 404826) (-2515 . 404722) + (-2516 . 404688) (-2517 . 404633) (-2518 . 404173) (-2519 . 403948) + (-2520 . 403851) (-2521 . 403739) (-2522 . 400958) (-2523 . 400683) + (-2524 . 400516) (-2525 . 400343) (-2526 . 400288) (-2527 . 400205) + (-2528 . 400117) (-2529 . 399980) (-2530 . 399858) (-2531 . 399764) + (-2532 . 399643) (-2533 . 399133) (-2534 . 398877) (-2535 . 398695) + (-2536 . 398208) (-2537 . 398112) (-2538 . 397989) (-2539 . 397321) + (-2540 . 396701) (-2541 . 396526) (-2542 . 396470) (-2543 . 396372) + (-2544 . 396236) (-2545 . 396089) (-2546 . 395917) (-2547 . 395865) + (-2548 . 395769) (-2549 . 395651) (-2550 . 395563) (-2551 . 395468) + (-2552 . 395248) (-2553 . 395113) (-2554 . 395062) (-2555 . 394733) + (-2556 . 394665) (-2557 . 394528) (-2558 . 394427) (-2559 . 394261) + (-2560 . 394176) (-2561 . 394081) (-2562 . 393874) (-2563 . 393721) + (-2564 . 393608) (-2565 . 393499) (-2566 . 393140) (-2567 . 393026) + (-2568 . 392693) (-2569 . 392299) (-2570 . 392213) (-2571 . 392110) + (-2572 . 392076) (-2573 . 391982) (-2574 . 391558) (-2575 . 391324) + (-2576 . 391253) (-2577 . 391179) (-2578 . 391108) (-2579 . 390948) + (-2580 . 390556) (-2581 . 390421) (-2582 . 390363) (-2583 . 390149) + (-2584 . 390060) (-2585 . 389986) (-2586 . 389838) (-2587 . 389754) + (-2588 . 389612) (-2589 . 389513) (-2590 . 389444) (-2591 . 389269) + (-2592 . 389240) (-2593 . 389069) (-2594 . 388973) (-2595 . 388815) + (-2596 . 388702) (-2597 . 388640) (-2598 . 388497) (-2599 . 388373) + (-2600 . 387940) (-2601 . 387882) (-2602 . 387636) (-2603 . 387508) + (-2604 . 387452) (-2605 . 387322) (-2606 . 387044) (-2607 . 386867) + (-2608 . 386723) (-2609 . 386600) (-2610 . 386424) (-2611 . 386265) + (-2612 . 386062) (-2613 . 385944) (-2614 . 385861) (-2615 . 385694) + (-2616 . 385415) (-2617 . 385310) (-2618 . 385254) (-2619 . 385008) + (-2620 . 384729) (-2621 . 384660) (-2622 . 384586) (-2623 . 384357) + (-2624 . 384119) (-2625 . 383942) (-2626 . 383787) (-2627 . 383701) + (-2628 . 383623) (-2629 . 383554) (-2630 . 383501) (-2631 . 383400) + (-2632 . 383319) (-2633 . 383166) (-2634 . 382998) (-2635 . 382966) + (-2636 . 382898) (-2637 . 382147) (-2638 . 382018) (-2639 . 381872) + (-2640 . 381556) (-2641 . 379288) (-2642 . 379086) (-2643 . 379025) + (-2644 . 378606) (-2645 . 378518) (-2646 . 378084) (-2647 . 377914) + (-2648 . 377204) (-2649 . 377011) (-2650 . 376931) (-2651 . 376726) + (-2652 . 376571) (-2653 . 376405) (-2654 . 375763) (-2655 . 374993) + (-2656 . 374921) (-2657 . 374837) (-2658 . 374696) (-2659 . 374562) + (-2660 . 374454) (-2661 . 374294) (-2662 . 374191) (-2663 . 373825) + (-2664 . 373685) (-2665 . 373612) (-2666 . 373535) (-2667 . 373220) + (-2668 . 372590) (-2669 . 372105) (-2670 . 371613) (-2671 . 371175) + (-2672 . 371046) (-2673 . 370951) (-2674 . 370865) (-2675 . 370742) + (-2676 . 370688) (-2677 . 370485) (-2678 . 370390) (-2679 . 370337) + (-2680 . 369980) (-2681 . 369887) (-2682 . 369557) (-2683 . 369177) + (-2684 . 369073) (-2685 . 368595) (-2686 . 368467) (-2687 . 368394) + (-2688 . 368177) (-2689 . 367998) (-2690 . 367823) (-2691 . 367702) + (-2692 . 367402) (-2693 . 367349) (-2694 . 367321) (-2695 . 367207) + (-2696 . 367158) (-2697 . 367098) (-2698 . 366990) (-2699 . 366916) + (-2700 . 366846) (-2701 . 366638) (-2702 . 366510) (-2703 . 366440) + (-2704 . 366330) (-2705 . 366084) (-2706 . 365919) (-2707 . 364449) + (-2708 . 364312) (-2709 . 364109) (-2710 . 364002) (-2711 . 363865) + (-2712 . 363632) (-2713 . 363562) (-2714 . 363389) (-2715 . 363248) + (-2716 . 363139) (-2717 . 362950) (-2718 . 362898) (-2719 . 362515) + (-2720 . 362402) (-2721 . 362322) (-2722 . 362270) (-2723 . 362188) + (-2724 . 361857) (-2725 . 361775) (-2726 . 361743) (-2727 . 361648) + (-2728 . 361208) (-2729 . 361045) (-2730 . 360905) (-2731 . 360796) + (-2732 . 360641) (-2733 . 360018) (-2734 . 359963) (-2735 . 359353) + (-2736 . 359273) (-2737 . 359054) (-2738 . 358911) (-2739 . 358661) + (-2740 . 357496) (-2741 . 357394) (-2742 . 357362) (-2743 . 357328) + (-2744 . 357245) (-2745 . 355905) (-2746 . 355298) (-2747 . 348299) + (-2748 . 348191) (-2749 . 347920) (-2750 . 347818) (-2751 . 347736) + (-2752 . 347569) (-2753 . 347416) (-2754 . 347339) (-2755 . 347235) + (-2756 . 347017) (-2757 . 346841) (-2758 . 346661) (-2759 . 346578) + (-2760 . 346480) (-2761 . 345619) (-2762 . 345382) (-2763 . 345278) + (-2764 . 345225) (-2765 . 344922) (-2766 . 344624) (-2767 . 343822) + (-2768 . 343697) (-2769 . 343562) (-2770 . 343463) (-2771 . 342954) + (-2772 . 342842) (-2773 . 342679) (-2774 . 342598) (-2775 . 342468) + (-2776 . 342130) (-2777 . 342056) (-2778 . 341950) (-2779 . 341898) + (-2780 . 341652) (-2781 . 341523) (-2782 . 341409) (-2783 . 341302) + (-2784 . 341201) (-2785 . 341151) (-2786 . 340545) (-2787 . 340432) + (-2788 . 340217) (-2789 . 340120) (-2790 . 339839) (-2791 . 339501) + (-2792 . 339009) (-2793 . 338947) (-2794 . 338825) (-2795 . 338753) + (-2796 . 338652) (-2797 . 338573) (-2798 . 338499) (-2799 . 338305) + (-2800 . 338113) (-2801 . 338029) (-2802 . 337478) (-2803 . 337351) + (-2804 . 337108) (-2805 . 336915) (-2806 . 336720) (-2807 . 336634) + (-2808 . 336481) (-2809 . 336365) (-2810 . 336258) (-2811 . 336122) + (-2812 . 335969) (-2813 . 335872) (-2814 . 335693) (-2815 . 335582) + (-2816 . 335323) (-2817 . 335163) (-2818 . 335097) (-2819 . 334910) + (-2820 . 334784) (-2821 . 334693) (-2822 . 334253) (-2823 . 334179) + (-2824 . 334060) (-2825 . 333850) (-2826 . 333762) (-2827 . 333633) + (-2828 . 333523) (-2829 . 333414) (-2830 . 333383) (-2831 . 333323) + (-2832 . 333069) (-2833 . 332985) (-2834 . 332932) (-2835 . 332466) + (-2836 . 332313) (-2837 . 332218) (-2838 . 332129) (-2839 . 332056) + (-2840 . 331855) (-2841 . 331630) (-2842 . 331544) (-2843 . 330435) + (-2844 . 330361) (-2845 . 330267) (-2846 . 330079) (-2847 . 329938) + (-2848 . 329728) (-2849 . 329554) (-2850 . 329501) (-2851 . 329445) + (-2852 . 329337) (-2853 . 329279) (-2854 . 329185) (-2855 . 328961) + (-2856 . 328579) (-2857 . 328509) (-2858 . 328409) (-2859 . 327593) + (-2860 . 327537) (-2861 . 327484) (-2862 . 327391) (-2863 . 327305) + (-2864 . 327086) (-2865 . 326972) (-2866 . 326891) (-2867 . 326594) + (-2868 . 326520) (-2869 . 326460) (-2870 . 326347) (-2871 . 326295) + (-2872 . 326238) (-2873 . 325982) (-2874 . 325930) (-2875 . 325113) + (-2876 . 324771) (-2877 . 324512) (-2878 . 324380) (-2879 . 324309) + (-2880 . 324103) (-2881 . 323921) (-2882 . 323688) (-2883 . 323528) + (-2884 . 323315) (-2885 . 323118) (-2886 . 322974) (-2887 . 322873) + (-2888 . 322718) (-2889 . 322600) (-2890 . 322282) (-2891 . 322227) + (-2892 . 321947) (-2893 . 321851) (-2894 . 321784) (-2895 . 321750) + (-2896 . 321642) (-2897 . 321424) (-2898 . 321395) (-2899 . 321165) + (-2900 . 320966) (-2901 . 320824) (-2902 . 320524) (-2903 . 320432) + (-2904 . 320288) (-2905 . 320232) (-2906 . 320198) (-2907 . 319942) + (-2908 . 319570) (-2909 . 319432) (-2910 . 319259) (-2911 . 319197) + (-2912 . 319066) (-2913 . 318940) (-2914 . 318827) (-2915 . 318682) + (-2916 . 318600) (-2917 . 318490) (-2918 . 317789) (-2919 . 317666) + (-2920 . 317356) (-2921 . 317279) (-2922 . 317191) (-2923 . 317139) + (-2924 . 317010) (-2925 . 316831) (-2926 . 316718) (-2927 . 316559) + (-2928 . 316451) (-2929 . 315773) (-2930 . 315482) (-2931 . 315405) + (-2932 . 314753) (-2933 . 314543) (-2934 . 314415) (-2935 . 314299) + (-2936 . 314162) (-2937 . 313811) (-2938 . 313452) (-2939 . 313358) + (-2940 . 313160) (-2941 . 313109) (-2942 . 310947) (-2943 . 310655) + (-2944 . 310584) (-2945 . 310420) (-2946 . 310349) (-2947 . 310296) + (-2948 . 310194) (-2949 . 310057) (-2950 . 308754) (-2951 . 308489) + (-2952 . 307523) (-2953 . 307355) (-2954 . 307321) (-2955 . 307176) + (-2956 . 306958) (-2957 . 306092) (-2958 . 306042) (-2959 . 305860) + (-2960 . 304973) (-2961 . 304427) (-2962 . 304320) (-2963 . 304212) + (-2964 . 303978) (-2965 . 303837) (-2966 . 303700) (-2967 . 303179) + (-2968 . 303085) (-2969 . 302998) (-2970 . 302896) (-2971 . 302789) + (-2972 . 302687) (-2973 . 302360) (-2974 . 302265) (-2975 . 302095) + (-2976 . 302021) (-2977 . 301943) (-2978 . 301802) (-2979 . 301636) + (-2980 . 301459) (-2981 . 301273) (-2982 . 301142) (-2983 . 300894) + (-2984 . 300782) (-2985 . 300490) (-2986 . 300258) (-2987 . 300012) + (-2988 . 299959) (-2989 . 299667) (-2990 . 299547) (-2991 . 299240) + (-2992 . 299118) (-2993 . 298239) (-2994 . 298135) (-2995 . 298031) + (-2996 . 297934) (-2997 . 297881) (-2998 . 297766) (-2999 . 297692) + (-3000 . 297585) (-3001 . 296721) (-3002 . 296596) (-3003 . 296543) + (-3004 . 296397) (-3005 . 292334) (-3006 . 292279) (-3007 . 290421) + (-3008 . 290277) (-3009 . 290167) (-3010 . 290011) (-3011 . 289901) + (-3012 . 289637) (-3013 . 289327) (-3014 . 289231) (-3015 . 289028) + (-3016 . 288949) (-3017 . 288677) (-3018 . 288575) (-3019 . 288462) + (-3020 . 288355) (-3021 . 288235) (-3022 . 288179) (-3023 . 288099) + (-3024 . 287800) (-3025 . 287657) (-3026 . 287588) (-3027 . 286911) + (-3028 . 286786) (-3029 . 286615) (-3030 . 285940) (-3031 . 285867) + (-3032 . 285767) (-3033 . 285623) (-3034 . 285504) (-3035 . 285427) + (-3036 . 285300) (-3037 . 285199) (-3038 . 285025) (-3039 . 284921) + (-3040 . 284863) (-3041 . 284810) (-3042 . 284752) (-3043 . 284657) + (-3044 . 284574) (-3045 . 284324) (-3046 . 281979) (-3047 . 281829) + (-3048 . 281758) (-3049 . 281675) (-3050 . 281546) (-3051 . 281449) + (-3052 . 281398) (-3053 . 281366) (-3054 . 281251) (-3055 . 280880) + (-3056 . 280564) (-3057 . 280491) (-3058 . 279918) (-3059 . 279685) + (-3060 . 279557) (-3061 . 279488) (-3062 . 279395) (-3063 . 279252) + (-3064 . 279142) (-3065 . 279074) (-3066 . 278875) (-3067 . 278530) + (-3068 . 278480) (-3069 . 278122) (-3070 . 277999) (-3071 . 277940) + (-3072 . 277820) (-3073 . 277766) (-3074 . 277678) (-3075 . 277435) + (-3076 . 277364) (-3077 . 277281) (-3078 . 276715) (-3079 . 276542) + (-3080 . 276227) (-3081 . 276072) (-3082 . 275756) (-3083 . 275592) + (-3084 . 275347) (-3085 . 275245) (-3086 . 275164) (-3087 . 275057) + (-3088 . 274950) (-3089 . 274384) (-3090 . 274277) (-3091 . 274162) + (-3092 . 274050) (-3093 . 273916) (-3094 . 273686) (-3095 . 273583) + (-3096 . 273051) (-3097 . 272953) (-3098 . 272367) (-3099 . 272230) + (-3100 . 272132) (-3101 . 271837) (-3102 . 271618) (-3103 . 271140) + (-3104 . 270993) (-3105 . 270927) (-3106 . 270812) (-3107 . 270526) + (-3108 . 270150) (-3109 . 270099) (-3110 . 270026) (-3111 . 269922) + (-3112 . 269208) (-3113 . 269078) (-3114 . 268905) (-3115 . 268554) + (-3116 . 268167) (-3117 . 267992) (-3118 . 267926) (-3119 . 267731) + (-3120 . 267614) (-3121 . 267528) (-3122 . 266937) (-3123 . 266860) + (-3124 . 266828) (-3125 . 266719) (-3126 . 266657) (-3127 . 266308) + (-3128 . 266049) (-3129 . 265839) (-3130 . 265765) (-3131 . 265650) + (-3132 . 265598) (-3133 . 264406) (-3134 . 264154) (-3135 . 264008) + (-3136 . 263829) (-3137 . 263759) (-3138 . 263283) (-3139 . 263064) + (-3140 . 263030) (-3141 . 262951) (-3142 . 262899) (-3143 . 262729) + (-3144 . 262631) (-3145 . 262518) (-3146 . 262407) (-3147 . 262330) + (-3148 . 262302) (-3149 . 262215) (-3150 . 262082) (-3151 . 261721) + (-3152 . 261526) (-3153 . 261080) (-3154 . 259868) (-3155 . 259235) + (-3156 . 258966) (-3157 . 258840) (-3158 . 258737) (-3159 . 258635) + (-3160 . 258556) (-3161 . 258399) (-3162 . 258333) (-3163 . 258076) + (-3164 . 257924) (-3165 . 257840) (-3166 . 257769) (-3167 . 257697) + (-3168 . 257568) (-3169 . 257180) (-3170 . 257115) (-3171 . 257008) + (-3172 . 256957) (-3173 . 256811) (-3174 . 256480) (-3175 . 256425) + (-3176 . 256021) (-3177 . 255894) (-3178 . 255793) (-3179 . 255403) + (-3180 . 255346) (-3181 . 255176) (-3182 . 255106) (-3183 . 254987) + (-3184 . 254726) (-3185 . 254663) (-3186 . 254557) (-3187 . 254458) + (-3188 . 254300) (-3189 . 254171) (-3190 . 253998) (-3191 . 253928) + (-3192 . 253829) (-3193 . 253590) (-3194 . 253480) (-3195 . 253252) + (-3196 . 253030) (-3197 . 252932) (-3198 . 252525) (-3199 . 252386) + (-3200 . 252282) (-3201 . 252092) (-3202 . 251648) (-3203 . 251505) + (-3204 . 251432) (-3205 . 251381) (-3206 . 251324) (-3207 . 250926) + (-3208 . 250894) (-3209 . 250787) (-3210 . 250653) (-3211 . 250569) + (-3212 . 250501) (-3213 . 249927) (-3214 . 249856) (-3215 . 249637) + (-3216 . 249451) (-3217 . 249354) (-3218 . 249261) (-3219 . 249120) + (-3220 . 248917) (-3221 . 248413) (-3222 . 248204) (-3223 . 248138) + (-3224 . 247915) (-3225 . 247766) (-3226 . 247476) (-3227 . 247339) + (-3228 . 247226) (-3229 . 247127) (-3230 . 247003) (-3231 . 246936) + (-3232 . 246837) (-3233 . 246684) (-3234 . 246611) (-3235 . 246559) + (-3236 . 246487) (-3237 . 246399) (-3238 . 246196) (-3239 . 245909) + (-3240 . 245854) (-3241 . 245753) (-3242 . 245679) (-3243 . 245612) + (-3244 . 245455) (-3245 . 245424) (-3246 . 244945) (-3247 . 244834) + (-3248 . 244656) (-3249 . 244537) (-3250 . 244369) (-3251 . 244143) + (-3252 . 243987) (-3253 . 243923) (-3254 . 243670) (-3255 . 243472) + (-3256 . 243386) (-3257 . 243035) (-3258 . 242877) (-3259 . 242825) + (-3260 . 242757) (-3261 . 242430) (-3262 . 242203) (-3263 . 242073) + (-3264 . 242020) (-3265 . 241704) (-3266 . 241534) (-3267 . 240999) + (-3268 . 240926) (-3269 . 240876) (-3270 . 240482) (-3271 . 240423) + (-3272 . 240335) (-3273 . 240199) (-3274 . 239880) (-3275 . 239537) + (-3276 . 238573) (-3277 . 238502) (-3278 . 238259) (-3279 . 237506) + (-3280 . 237434) (-3281 . 237294) (-3282 . 237193) (-3283 . 236945) + (-3284 . 236727) (-3285 . 236433) (-3286 . 236340) (-3287 . 236082) + (-3288 . 235691) (-3289 . 235484) (-3290 . 235244) (-3291 . 235143) + (-3292 . 235114) (-3293 . 235017) (-3294 . 234910) (-3295 . 234829) + (-3296 . 234337) (-3297 . 234236) (-3298 . 234148) (-3299 . 234024) + (-3300 . 233545) (-3301 . 233443) (-3302 . 233169) (-3303 . 233090) + (-3304 . 232932) (-3305 . 232808) (-3306 . 232421) (-3307 . 231418) + (-3308 . 231200) (-3309 . 231148) (-3310 . 230933) (-3311 . 230856) + (-3312 . 230806) (-3313 . 230223) (-3314 . 230172) (-3315 . 229992) + (-3316 . 229891) (-3317 . 229761) (-3318 . 229508) (-3319 . 229317) + (-3320 . 229234) (-3321 . 225236) (-3322 . 224981) (-3323 . 224604) + (-3324 . 224531) (-3325 . 224460) (-3326 . 224305) (-3327 . 223946) + (-3328 . 223802) (-3329 . 223301) (-3330 . 223143) (-3331 . 222715) + (-3332 . 222565) (-3333 . 222413) (-3334 . 222214) (-3335 . 222069) + (-3336 . 222013) (-3337 . 221958) (-3338 . 221888) (-3339 . 221293) + (-3340 . 220680) (-3341 . 220557) (-3342 . 220454) (-3343 . 220360) + (-3344 . 220251) (-3345 . 220080) (-3346 . 219982) (-3347 . 219769) + (-3348 . 218993) (-3349 . 218872) (-3350 . 218790) (-3351 . 218363) + (-3352 . 218262) (-3353 . 218183) (-3354 . 218104) (-3355 . 217497) + (-3356 . 217390) (-3357 . 217041) (-3358 . 216779) (-3359 . 216636) + (-3360 . 216465) (-3361 . 216307) (-3362 . 216242) (-3363 . 216084) + (-3364 . 216022) (-3365 . 215929) (-3366 . 214073) (-3367 . 214003) + (-3368 . 213713) (-3369 . 213508) (-3370 . 213409) (-3371 . 212884) + (-3372 . 212786) (-3373 . 212659) (-3374 . 212606) (-3375 . 212553) + (-3376 . 212470) (-3377 . 212382) (-3378 . 212241) (-3379 . 211698) + (-3380 . 211610) (-3381 . 211558) (-3382 . 211428) (-3383 . 210468) + (-3384 . 210387) (-3385 . 209961) (-3386 . 209873) (-3387 . 209801) + (-3388 . 209749) (-3389 . 209527) (-3390 . 209475) (-3391 . 209153) + (-3392 . 209087) (-3393 . 208909) (-3394 . 208558) (-3395 . 208370) + (-3396 . 208127) (-3397 . 208009) (-3398 . 207923) (-3399 . 207646) + (-3400 . 207535) (-3401 . 207327) (-3402 . 206329) (-3403 . 205755) + (-3404 . 205388) (-3405 . 205225) (-3406 . 204923) (-3407 . 204870) + (-3408 . 204799) (-3409 . 204672) (-3410 . 204488) (-3411 . 203600) + (-3412 . 203441) (-3413 . 203009) (-3414 . 202907) (-3415 . 202812) + (-3416 . 202451) (-3417 . 202336) (-3418 . 202062) (-3419 . 201992) + (-3420 . 201895) (-3421 . 201794) (-3422 . 201709) (-3423 . 201641) + (-3424 . 201542) (-3425 . 201338) (-3426 . 201283) (-3427 . 201174) + (-3428 . 201137) (-3429 . 200912) (-3430 . 200714) (-3431 . 199418) + (-3432 . 199288) (-3433 . 199205) (-3434 . 198917) (-3435 . 198814) + (-3436 . 198786) (-3437 . 198668) (-3438 . 198539) (-3439 . 198511) + (-3440 . 198445) (-3441 . 198361) (-3442 . 198291) (-3443 . 198229) + (-3444 . 198091) (-3445 . 198060) (-3446 . 198005) (-3447 . 197887) + (-3448 . 197769) (-3449 . 197068) (-3450 . 196994) (-3451 . 196434) + (-3452 . 196377) (-3453 . 196207) (-3454 . 196105) (-3455 . 195999) + (-3456 . 195850) (-3457 . 195790) (-3458 . 195660) (-3459 . 195461) + (-3460 . 195366) (-3461 . 195271) (-3462 . 195239) (-3463 . 195012) + (-3464 . 194686) (-3465 . 194223) (-3466 . 193853) (-3467 . 193801) + (-3468 . 193741) (-3469 . 193274) (-3470 . 193143) (-3471 . 192916) + (-3472 . 192321) (-3473 . 192089) (-3474 . 192061) (-3475 . 191965) + (-3476 . 191538) (-3477 . 191434) (-3478 . 191360) (-3479 . 191114) + (-3480 . 191042) (-3481 . 190855) (-3482 . 190767) (-3483 . 188989) + (-3484 . 188276) (-3485 . 188118) (-3486 . 188090) (-3487 . 187983) + (-3488 . 187567) (-3489 . 187501) (-3490 . 187370) (-3491 . 187113) + (-3492 . 187006) (-3493 . 186866) (-3494 . 186803) (-3495 . 186421) + (-3496 . 186338) (-3497 . 186216) (-3498 . 186152) (-3499 . 186060) + (-3500 . 186007) (-3501 . 185841) (-3502 . 185568) (-3503 . 185383) + (-3504 . 185261) (-3505 . 185129) (-3506 . 185017) (-3507 . 184878) + (-3508 . 184801) (-3509 . 184677) (-3510 . 184618) (-3511 . 184372) + (-3512 . 184299) (-3513 . 184240) (-3514 . 183826) (-3515 . 183745) + (-3516 . 169631) (-3517 . 169515) (-3518 . 169401) (-3519 . 168827) + (-3520 . 168730) (-3521 . 168478) (-3522 . 168199) (-3523 . 167861) + (-3524 . 167639) (-3525 . 167579) (-3526 . 167477) (-3527 . 167443) + (-3528 . 167231) (-3529 . 167005) (-3530 . 166881) (-3531 . 166508) + (-3532 . 166411) (-3533 . 166362) (-3534 . 166281) (-3535 . 166168) + (-3536 . 166107) (-3537 . 166073) (-3538 . 165969) (-3539 . 165816) + (-3540 . 164900) (-3541 . 164704) (-3542 . 164480) (-3543 . 164408) + (-3544 . 164116) (-3545 . 163992) (-3546 . 163926) (-3547 . 163829) + (-3548 . 163779) (-3549 . 163716) (-3550 . 163645) (-3551 . 163242) + (-3552 . 161940) (-3553 . 161875) (-3554 . 161569) (-3555 . 161541) + (-3556 . 161507) (-3557 . 161221) (-3558 . 161138) (-3559 . 160982) + (-3560 . 160736) (-3561 . 160400) (-3562 . 155673) (-3563 . 155529) + (-3564 . 155450) (-3565 . 155287) (-3566 . 155231) (-3567 . 153117) + (-3568 . 153043) (-3569 . 152885) (-3570 . 152727) (-3571 . 152583) + (-3572 . 152337) (-3573 . 152236) (-3574 . 152129) (-3575 . 151968) + (-3576 . 151875) (-3577 . 151807) (-3578 . 151741) (-3579 . 151502) + (-3580 . 151313) (-3581 . 151252) (-3582 . 151119) (-3583 . 150857) + (-3584 . 150708) (-3585 . 150521) (-3586 . 150347) (-3587 . 150051) + (-3588 . 149969) (-3589 . 149848) (-3590 . 149402) (-3591 . 149340) + (-3592 . 149268) (-3593 . 148594) (-3594 . 148486) (-3595 . 147997) + (-3596 . 147890) (-3597 . 147838) (-3598 . 147615) (-3599 . 147373) + (-3600 . 147235) (-3601 . 147183) (-3602 . 147093) (-3603 . 146799) + (-3604 . 146691) (-3605 . 146603) (-3606 . 146336) (-3607 . 146243) + (-3608 . 146085) (-3609 . 145779) (-3610 . 145672) (-3611 . 145598) + (-3612 . 145455) (-3613 . 145384) (-3614 . 145238) (-3615 . 144809) + (-3616 . 144608) (-3617 . 144479) (-3618 . 144340) (-3619 . 144242) + (-3620 . 144093) (-3621 . 144015) (-3622 . 143965) (-3623 . 143543) + (-3624 . 143470) (-3625 . 143232) (-3626 . 142872) (-3627 . 142496) + (-3628 . 142273) (-3629 . 142061) (-3630 . 141990) (-3631 . 141837) + (-3632 . 141760) (-3633 . 141723) (-3634 . 141608) (-3635 . 141368) + (-3636 . 141309) (-3637 . 141094) (-3638 . 140985) (-3639 . 140807) + (-3640 . 140702) (-3641 . 140592) (-3642 . 140490) (-3643 . 140330) + (-3644 . 140113) (-3645 . 139983) (-3646 . 139535) (-3647 . 139362) + (-3648 . 139204) (-3649 . 138862) (-3650 . 138755) (-3651 . 138692) + (-3652 . 138632) (-3653 . 138338) (-3654 . 137580) (-3655 . 137484) + (-3656 . 137326) (-3657 . 137014) (-3658 . 136962) (-3659 . 136891) + (-3660 . 136835) (-3661 . 136740) (-3662 . 136624) (-3663 . 136572) + (-3664 . 136501) (-3665 . 136448) (-3666 . 135002) (-3667 . 134904) + (-3668 . 134830) (-3669 . 134778) (-3670 . 134665) (-3671 . 134583) + (-3672 . 134442) (-3673 . 134261) (-3674 . 134163) (-3675 . 134030) + (-3676 . 133946) (-3677 . 133286) (-3678 . 133203) (-3679 . 133135) + (-3680 . 133014) (-3681 . 132946) (-3682 . 132881) (-3683 . 132793) + (-3684 . 132621) (-3685 . 132496) (-3686 . 132423) (-3687 . 132370) + (-3688 . 132284) (-3689 . 132207) (-3690 . 132130) (-3691 . 131849) + (-3692 . 131737) (-3693 . 131540) (-3694 . 131480) (-3695 . 131392) + (-3696 . 131262) (-3697 . 130941) (-3698 . 130909) (-3699 . 130751) + (-3700 . 130627) (-3701 . 130240) (-3702 . 130130) (-3703 . 130033) + (-3704 . 129929) (-3705 . 129791) (-3706 . 129705) (-3707 . 129635) + (-3708 . 129545) (-3709 . 129314) (-3710 . 129176) (-3711 . 128840) + (-3712 . 128730) (-3713 . 128649) (-3714 . 128547) (-3715 . 128461) + (-3716 . 128319) (-3717 . 128051) (-3718 . 127921) (-3719 . 127834) + (-3720 . 127635) (-3721 . 127579) (-3722 . 127270) (-3723 . 127169) + (-3724 . 127002) (-3725 . 126899) (-3726 . 126804) (-3727 . 126713) + (-3728 . 126555) (-3729 . 126460) (-3730 . 126380) (-3731 . 126327) + (-3732 . 126076) (-3733 . 125893) (-3734 . 125739) (-3735 . 124818) + (-3736 . 124735) (-3737 . 124605) (-3738 . 124432) (-3739 . 124251) + (-3740 . 124196) (-3741 . 124143) (-3742 . 123889) (-3743 . 123609) + (-3744 . 123429) (-3745 . 123209) (-3746 . 122758) (-3747 . 122670) + (-3748 . 122604) (-3749 . 121700) (-3750 . 121666) (-3751 . 121584) + (-3752 . 121529) (-3753 . 121458) (-3754 . 121391) (-3755 . 121115) + (-3756 . 121036) (-3757 . 120764) (-3758 . 120457) (-3759 . 119919) + (-3760 . 119866) (-3761 . 119702) (-3762 . 119601) (-3763 . 119419) + (-3764 . 119287) (-3765 . 119180) (-3766 . 118966) (-3767 . 118867) + (-3768 . 118800) (-3769 . 118714) (-3770 . 118607) (-3771 . 118444) + (-3772 . 118281) (-3773 . 118068) (-3774 . 117961) (-3775 . 117792) + (-3776 . 117636) (-3777 . 117395) (-3778 . 117340) (-3779 . 117235) + (-3780 . 117116) (-3781 . 117035) (-3782 . 116930) (-3783 . 116776) + (-3784 . 116727) (-3785 . 116647) (-3786 . 116343) (-3787 . 116031) + (-3788 . 115753) (-3789 . 115605) (-3790 . 115391) (-3791 . 115173) + (-3792 . 115099) (-3793 . 114830) (-3794 . 114599) (-3795 . 114540) + (-3796 . 114440) (-3797 . 114360) (-3798 . 114236) (-3799 . 114183) + (-3800 . 114086) (-3801 . 113908) (-3802 . 113547) (-3803 . 113452) + (-3804 . 113121) (-3805 . 112777) (-3806 . 112632) (-3807 . 112552) + (-3808 . 112378) (-3809 . 111874) (-3810 . 111709) (-3811 . 111641) + (-3812 . 111478) (-3813 . 111377) (-3814 . 111066) (-3815 . 109991) + (-3816 . 109917) (-3817 . 109794) (-3818 . 109636) (-3819 . 109558) + (-3820 . 109388) (-3821 . 109318) (-3822 . 108965) (-3823 . 108845) + (-3824 . 108792) (-3825 . 108712) (-3826 . 108589) (-3827 . 108408) + (-3828 . 108338) (-3829 . 107817) (-3830 . 107651) (-3831 . 107574) + (-3832 . 107419) (-3833 . 107314) (-3834 . 107237) (-3835 . 106364) + (-3836 . 106315) (-3837 . 106263) (-3838 . 106157) (-3839 . 106105) + (-3840 . 105989) (-3841 . 105656) (-3842 . 105554) (-3843 . 105232) + (-3844 . 105089) (-3845 . 104982) (-3846 . 104925) (-3847 . 104678) + (-3848 . 104561) (-3849 . 104478) (-3850 . 103951) (-3851 . 103878) + (-3852 . 103719) (-3853 . 103589) (-3854 . 103403) (-3855 . 103331) + (-3856 . 103235) (-3857 . 103148) (-3858 . 102902) (-3859 . 102847) + (-3860 . 102795) (-3861 . 102722) (-3862 . 102437) (-3863 . 102358) + (-3864 . 102144) (-3865 . 102020) (-3866 . 101992) (-3867 . 101858) + (-3868 . 101738) (-3869 . 101593) (-3870 . 101489) (-3871 . 101455) + (-3872 . 101405) (-3873 . 101220) (-3874 . 101042) (-3875 . 100954) + (-3876 . 100863) (-3877 . 100585) (-3878 . 100532) (-3879 . 100504) + (-3880 . 100408) (-3881 . 100217) (** . 97128) (-3883 . 97076) + (-3884 . 96824) (-3885 . 96795) (-3886 . 96597) (-3887 . 96375) + (-3888 . 96256) (-3889 . 96204) (-3890 . 96071) (-3891 . 95999) + (-3892 . 95901) (-3893 . 95527) (-3894 . 95475) (-3895 . 95418) + (-3896 . 95346) (-3897 . 94350) (-3898 . 94276) (-3899 . 94117) + (-3900 . 94015) (-3901 . 93896) (-3902 . 93818) (-3903 . 93674) + (-3904 . 93470) (-3905 . 93330) (-3906 . 93221) (-3907 . 93065) + (-3908 . 92909) (-3909 . 92737) (-3910 . 92651) (-3911 . 92523) + (-3912 . 92031) (-3913 . 91898) (-3914 . 91671) (-3915 . 91570) + (-3916 . 91161) (-3917 . 90965) (-3918 . 90882) (-3919 . 90854) + (-3920 . 90552) (-3921 . 90325) (-3922 . 90031) (-3923 . 89893) + (-3924 . 89780) (-3925 . 89608) (-3926 . 89544) (-3927 . 89471) + (-3928 . 89400) (-3929 . 89310) (-3930 . 89025) (-3931 . 88921) + (-3932 . 88376) (-3933 . 88299) (-3934 . 88006) (-3935 . 87665) + (-3936 . 87526) (-3937 . 87427) (-3938 . 86359) (-3939 . 86288) + (-3940 . 86222) (-3941 . 85837) (-3942 . 85636) (-3943 . 85386) + (-3944 . 85139) (-3945 . 84864) (-3946 . 84790) (-3947 . 84650) + (-3948 . 84504) (-3949 . 84117) (-3950 . 84064) (-3951 . 83922) + (-3952 . 83832) (-3953 . 83716) (-3954 . 81301) (-3955 . 81224) + (-3956 . 81115) (-3957 . 81056) (-3958 . 80781) (-3959 . 80027) + (-3960 . 79975) (-3961 . 79795) (-3962 . 79742) (-3963 . 79307) + (-3964 . 79213) (-3965 . 79097) (-3966 . 78960) (-3967 . 78863) + (-3968 . 78813) (-3969 . 78375) (-3970 . 78290) (-3971 . 78029) + (-3972 . 77962) (-3973 . 77910) (-3974 . 77509) (-3975 . 76626) + (-3976 . 76506) (-3977 . 76089) (-3978 . 76010) (-3979 . 75922) + (-3980 . 75869) (-3981 . 75351) (-3982 . 75161) (-3983 . 75109) + (-3984 . 74780) (-3985 . 74728) (-3986 . 74670) (-3987 . 74642) + (-3988 . 74458) (-3989 . 74253) (-3990 . 74173) (-3991 . 74099) + (-3992 . 74033) (-3993 . 72605) (-3994 . 72526) (-3995 . 71667) + (-3996 . 71386) (-3997 . 71077) (-3998 . 70923) (-3999 . 70843) + (-4000 . 70784) (-4001 . 70607) (-4002 . 70537) (-4003 . 70463) + (-4004 . 68886) (-4005 . 68813) (-4006 . 68495) (-4007 . 67838) + (-4008 . 67729) (-4009 . 67576) (-4010 . 67417) (-4011 . 67245) + (-4012 . 67127) (-4013 . 66700) (-4014 . 66253) (-4015 . 66149) + (-4016 . 66090) (-4017 . 65986) (-4018 . 65871) (-4019 . 65680) + (-4020 . 65646) (-4021 . 65560) (-4022 . 65430) (-4023 . 65258) + (-4024 . 65020) (-4025 . 64964) (-4026 . 64765) (-4027 . 64687) + (-4028 . 64613) (-4029 . 64543) (-4030 . 64491) (-4031 . 64422) + (-4032 . 64319) (-4033 . 64201) (-4034 . 63793) (-4035 . 63184) + (-4036 . 62820) (-4037 . 62648) (-4038 . 62536) (-4039 . 57994) + (-4040 . 57878) (-4041 . 57747) (-4042 . 57694) (-4043 . 57615) + (-4044 . 57392) (-4045 . 57258) (-4046 . 57062) (-4047 . 57000) + (-4048 . 56828) (-4049 . 56649) (-4050 . 56593) (-4051 . 56522) + (-4052 . 56396) (-4053 . 56344) (-4054 . 56229) (-4055 . 56048) + (-4056 . 55989) (-4057 . 55930) (-4058 . 55878) (-4059 . 55777) + (-4060 . 55689) (-4061 . 55524) (-4062 . 55411) (-4063 . 55380) + (-4064 . 55133) (-4065 . 55006) (-4066 . 54956) (-4067 . 54475) + (-4068 . 54350) (-4069 . 54170) (-4070 . 54011) (-4071 . 53887) + (-4072 . 53506) (-4073 . 53382) (-4074 . 53046) (-4075 . 52932) + (-4076 . 52779) (-4077 . 52625) (-4078 . 51363) (-4079 . 51098) + (-4080 . 50755) (-4081 . 50638) (-4082 . 50556) (-4083 . 50310) + (-4084 . 49981) (-4085 . 49844) (-4086 . 49557) (-4087 . 49453) + (-4088 . 49233) (-4089 . 49094) (-4090 . 48868) (-4091 . 48348) + (-4092 . 48191) (-4093 . 47911) (-4094 . 47787) (-4095 . 47671) + (-4096 . 47583) (-4097 . 47419) (-4098 . 47367) (-4099 . 47333) + (-4100 . 47280) (-4101 . 47214) (-4102 . 47005) (-4103 . 46583) + (-4104 . 46162) (-4105 . 46058) (-4106 . 46006) (-4107 . 45954) + (-4108 . 45868) (-4109 . 45772) (-4110 . 45704) (-4111 . 45651) + (-4112 . 45544) (-4113 . 45421) (-4114 . 45079) (-4115 . 44985) + (-4116 . 44758) (-4117 . 44727) (-4118 . 44629) (-4119 . 44327) + (-4120 . 43841) (-4121 . 43789) (-4122 . 43646) (-4123 . 43558) + (-4124 . 43421) (-4125 . 43369) (-4126 . 43263) (-4127 . 43018) + (-4128 . 42885) (-4129 . 42801) (-4130 . 42740) (-4131 . 42685) + (-4132 . 42605) (-4133 . 42549) (-4134 . 42397) (-4135 . 41159) + (-4136 . 41115) (-4137 . 41002) (-4138 . 40916) (-4139 . 40541) + (-4140 . 40420) (-4141 . 40337) (-4142 . 40196) (-4143 . 40064) + (-4144 . 39992) (-4145 . 39940) (-4146 . 39888) (-4147 . 39667) + (-4148 . 38580) (-4149 . 38523) (-4150 . 38357) (-4151 . 38182) + (-4152 . 38119) (-4153 . 37792) (-4154 . 36542) (-4155 . 36485) + (-4156 . 36400) (-4157 . 35587) (-4158 . 34930) (-4159 . 34790) + (-4160 . 34610) (-4161 . 34532) (-4162 . 34478) (-4163 . 34287) + (-4164 . 32557) (-4165 . 32501) (-4166 . 32419) (-4167 . 32291) + (-4168 . 31093) (-4169 . 31038) (-4170 . 30897) (-4171 . 30802) + (-4172 . 30697) (-4173 . 30553) (-4174 . 30480) (-4175 . 30329) + (-4176 . 29896) (-4177 . 29551) (-4178 . 29455) (-4179 . 29293) + (-4180 . 29240) (-4181 . 29157) (-4182 . 28979) (-4183 . 28817) + (-4184 . 28750) (-4185 . 28662) (-4186 . 28585) (-4187 . 28298) + (-4188 . 28164) (-4189 . 28084) (-4190 . 28014) (-4191 . 27945) + (-4192 . 27843) (-4193 . 27675) (-4194 . 27252) (-4195 . 26962) + (-4196 . 26843) (-4197 . 26790) (-4198 . 26647) (-4199 . 26462) + (-4200 . 26244) (-4201 . 26191) (-4202 . 26000) (-4203 . 25927) + (-4204 . 25858) (-4205 . 25483) (-4206 . 25147) (-4207 . 24961) + (-4208 . 22698) (-4209 . 22515) (-4210 . 22434) (-4211 . 22195) + (-4212 . 22124) (-4213 . 21917) (-4214 . 21843) (-4215 . 21700) + (-4216 . 21617) (-4217 . 21017) (-4218 . 20571) (-4219 . 20163) + (-4220 . 19864) (-4221 . 19809) (-4222 . 19615) (-4223 . 19545) + (-4224 . 19490) (-4225 . 19383) (-4226 . 19261) (-4227 . 19157) + (-4228 . 19105) (-4229 . 18456) (-4230 . 18315) (-4231 . 18262) + (-4232 . 18207) (-4233 . 17816) (-4234 . 17760) (-4235 . 17637) + (-4236 . 17461) (-4237 . 17333) (-4238 . 17155) (-4239 . 17103) + (-4240 . 17051) (-4241 . 16952) (-4242 . 16702) (-4243 . 16487) + (-4244 . 16416) (-4245 . 16035) (-4246 . 15938) (-4247 . 15841) + (-4248 . 15755) (-4249 . 15578) (-4250 . 15212) (-4251 . 14380) + (-4252 . 14249) (-4253 . 14180) (-4254 . 14128) (-4255 . 14034) + (-4256 . 13931) (-4257 . 13712) (-4258 . 13539) (-4259 . 13386) + (-4260 . 13276) (-4261 . 13182) (-4262 . 12783) (-4263 . 12731) + (-4264 . 12682) (-4265 . 12584) (-4266 . 12409) (-4267 . 12250) + (-4268 . 12191) (-4269 . 12031) (-4270 . 11936) (-4271 . 11788) + (-4272 . 11736) (-4273 . 11325) (-4274 . 11218) (-4275 . 11039) + (-4276 . 10931) (-4277 . 10903) (-4278 . 10779) (-4279 . 10719) + (-4280 . 10469) (-4281 . 10395) (-4282 . 10321) (-4283 . 10210) + (-4284 . 10007) (-4285 . 9897) (-4286 . 9724) (-4287 . 9520) + (-4288 . 9209) (-4289 . 9018) (-4290 . 8957) (-4291 . 8203) + (-4292 . 8087) (-4293 . 7989) (-4294 . 7905) (-4295 . 7750) + (-4296 . 7631) (-4297 . 7594) (-4298 . 7163) (-4299 . 6992) + (-4300 . 6919) (-4301 . 6781) (-4302 . 6643) (-4303 . 6572) + (-4304 . 6354) (-4305 . 6167) (-4306 . 6101) (-4307 . 6013) + (-4308 . 5933) (-4309 . 5905) (-4310 . 5839) (-4311 . 5705) + (-4312 . 5652) (-4313 . 5539) (-4314 . 5390) (-4315 . 5309) + (-4316 . 5161) (-4317 . 5119) (-4318 . 4666) (-4319 . 4616) + (-4320 . 4588) (-4321 . 4263) (-4322 . 4168) (-4323 . 4056) + (-4324 . 4001) (-4325 . 3609) (-4326 . 3557) (-4327 . 3441) + (-4328 . 3092) (-4329 . 3006) (-4330 . 2920) (-4331 . 2861) + (-4332 . 2833) (-4333 . 2700) (-4334 . 2587) (-4335 . 2256) + (-4336 . 2135) (-4337 . 1989) (-4338 . 1880) (-4339 . 1773) + (-4340 . 1634) (-4341 . 1420) (-4342 . 821) (-4343 . 772) + (-4344 . 283) (-4345 . 203) (-4346 . 30))
\ No newline at end of file |